]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/send.c
btrfs: fix null pointer deference at btrfs_sysfs_add_one+0x105
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / send.c
CommitLineData
31db9f7c
AB
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
a1857ebe 27#include <linux/vmalloc.h>
ed84885d 28#include <linux/string.h>
31db9f7c
AB
29
30#include "send.h"
31#include "backref.h"
0b947aff 32#include "hash.h"
31db9f7c
AB
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
37
38static int g_verbose = 0;
39
40#define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42/*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
54 char *prepared;
55
56 char *buf;
57 int buf_len;
35a3621b
SB
58 unsigned int reversed:1;
59 unsigned int virtual_mem:1;
31db9f7c
AB
60 char inline_buf[];
61 };
62 char pad[PAGE_SIZE];
63 };
64};
65#define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69/* reused for each extent */
70struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76};
77
78#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 u64 total_send_size;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 90
31db9f7c
AB
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
31db9f7c
AB
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
16e7549f 112 u64 cur_inode_last_extent;
31db9f7c
AB
113
114 u64 send_progress;
115
116 struct list_head new_refs;
117 struct list_head deleted_refs;
118
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
122
31db9f7c 123 char *read_buf;
9f03740a
FDBM
124
125 /*
126 * We process inodes by their increasing order, so if before an
127 * incremental send we reverse the parent/child relationship of
128 * directories such that a directory with a lower inode number was
129 * the parent of a directory with a higher inode number, and the one
130 * becoming the new parent got renamed too, we can't rename/move the
131 * directory with lower inode number when we finish processing it - we
132 * must process the directory with higher inode number first, then
133 * rename/move it and then rename/move the directory with lower inode
134 * number. Example follows.
135 *
136 * Tree state when the first send was performed:
137 *
138 * .
139 * |-- a (ino 257)
140 * |-- b (ino 258)
141 * |
142 * |
143 * |-- c (ino 259)
144 * | |-- d (ino 260)
145 * |
146 * |-- c2 (ino 261)
147 *
148 * Tree state when the second (incremental) send is performed:
149 *
150 * .
151 * |-- a (ino 257)
152 * |-- b (ino 258)
153 * |-- c2 (ino 261)
154 * |-- d2 (ino 260)
155 * |-- cc (ino 259)
156 *
157 * The sequence of steps that lead to the second state was:
158 *
159 * mv /a/b/c/d /a/b/c2/d2
160 * mv /a/b/c /a/b/c2/d2/cc
161 *
162 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 * before we move "d", which has higher inode number.
164 *
165 * So we just memorize which move/rename operations must be performed
166 * later when their respective parent is processed and moved/renamed.
167 */
168
169 /* Indexed by parent directory inode number. */
170 struct rb_root pending_dir_moves;
171
172 /*
173 * Reverse index, indexed by the inode number of a directory that
174 * is waiting for the move/rename of its immediate parent before its
175 * own move/rename can be performed.
176 */
177 struct rb_root waiting_dir_moves;
178};
179
180struct pending_dir_move {
181 struct rb_node node;
182 struct list_head list;
183 u64 parent_ino;
184 u64 ino;
185 u64 gen;
186 struct list_head update_refs;
187};
188
189struct waiting_dir_move {
190 struct rb_node node;
191 u64 ino;
31db9f7c
AB
192};
193
194struct name_cache_entry {
195 struct list_head list;
7e0926fe
AB
196 /*
197 * radix_tree has only 32bit entries but we need to handle 64bit inums.
198 * We use the lower 32bit of the 64bit inum to store it in the tree. If
199 * more then one inum would fall into the same entry, we use radix_list
200 * to store the additional entries. radix_list is also used to store
201 * entries where two entries have the same inum but different
202 * generations.
203 */
204 struct list_head radix_list;
31db9f7c
AB
205 u64 ino;
206 u64 gen;
207 u64 parent_ino;
208 u64 parent_gen;
209 int ret;
210 int need_later_update;
211 int name_len;
212 char name[];
213};
214
9f03740a
FDBM
215static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
216
16e7549f
JB
217static int need_send_hole(struct send_ctx *sctx)
218{
219 return (sctx->parent_root && !sctx->cur_inode_new &&
220 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
221 S_ISREG(sctx->cur_inode_mode));
222}
223
31db9f7c
AB
224static void fs_path_reset(struct fs_path *p)
225{
226 if (p->reversed) {
227 p->start = p->buf + p->buf_len - 1;
228 p->end = p->start;
229 *p->start = 0;
230 } else {
231 p->start = p->buf;
232 p->end = p->start;
233 *p->start = 0;
234 }
235}
236
924794c9 237static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
238{
239 struct fs_path *p;
240
241 p = kmalloc(sizeof(*p), GFP_NOFS);
242 if (!p)
243 return NULL;
244 p->reversed = 0;
245 p->virtual_mem = 0;
246 p->buf = p->inline_buf;
247 p->buf_len = FS_PATH_INLINE_SIZE;
248 fs_path_reset(p);
249 return p;
250}
251
924794c9 252static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
253{
254 struct fs_path *p;
255
924794c9 256 p = fs_path_alloc();
31db9f7c
AB
257 if (!p)
258 return NULL;
259 p->reversed = 1;
260 fs_path_reset(p);
261 return p;
262}
263
924794c9 264static void fs_path_free(struct fs_path *p)
31db9f7c
AB
265{
266 if (!p)
267 return;
268 if (p->buf != p->inline_buf) {
269 if (p->virtual_mem)
270 vfree(p->buf);
271 else
272 kfree(p->buf);
273 }
274 kfree(p);
275}
276
277static int fs_path_len(struct fs_path *p)
278{
279 return p->end - p->start;
280}
281
282static int fs_path_ensure_buf(struct fs_path *p, int len)
283{
284 char *tmp_buf;
285 int path_len;
286 int old_buf_len;
287
288 len++;
289
290 if (p->buf_len >= len)
291 return 0;
292
293 path_len = p->end - p->start;
294 old_buf_len = p->buf_len;
295 len = PAGE_ALIGN(len);
296
297 if (p->buf == p->inline_buf) {
8be04b93 298 tmp_buf = kmalloc(len, GFP_NOFS | __GFP_NOWARN);
31db9f7c
AB
299 if (!tmp_buf) {
300 tmp_buf = vmalloc(len);
301 if (!tmp_buf)
302 return -ENOMEM;
303 p->virtual_mem = 1;
304 }
305 memcpy(tmp_buf, p->buf, p->buf_len);
306 p->buf = tmp_buf;
307 p->buf_len = len;
308 } else {
309 if (p->virtual_mem) {
310 tmp_buf = vmalloc(len);
311 if (!tmp_buf)
312 return -ENOMEM;
313 memcpy(tmp_buf, p->buf, p->buf_len);
314 vfree(p->buf);
315 } else {
316 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
317 if (!tmp_buf) {
318 tmp_buf = vmalloc(len);
319 if (!tmp_buf)
320 return -ENOMEM;
321 memcpy(tmp_buf, p->buf, p->buf_len);
322 kfree(p->buf);
323 p->virtual_mem = 1;
324 }
325 }
326 p->buf = tmp_buf;
327 p->buf_len = len;
328 }
329 if (p->reversed) {
330 tmp_buf = p->buf + old_buf_len - path_len - 1;
331 p->end = p->buf + p->buf_len - 1;
332 p->start = p->end - path_len;
333 memmove(p->start, tmp_buf, path_len + 1);
334 } else {
335 p->start = p->buf;
336 p->end = p->start + path_len;
337 }
338 return 0;
339}
340
341static int fs_path_prepare_for_add(struct fs_path *p, int name_len)
342{
343 int ret;
344 int new_len;
345
346 new_len = p->end - p->start + name_len;
347 if (p->start != p->end)
348 new_len++;
349 ret = fs_path_ensure_buf(p, new_len);
350 if (ret < 0)
351 goto out;
352
353 if (p->reversed) {
354 if (p->start != p->end)
355 *--p->start = '/';
356 p->start -= name_len;
357 p->prepared = p->start;
358 } else {
359 if (p->start != p->end)
360 *p->end++ = '/';
361 p->prepared = p->end;
362 p->end += name_len;
363 *p->end = 0;
364 }
365
366out:
367 return ret;
368}
369
370static int fs_path_add(struct fs_path *p, const char *name, int name_len)
371{
372 int ret;
373
374 ret = fs_path_prepare_for_add(p, name_len);
375 if (ret < 0)
376 goto out;
377 memcpy(p->prepared, name, name_len);
378 p->prepared = NULL;
379
380out:
381 return ret;
382}
383
384static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
385{
386 int ret;
387
388 ret = fs_path_prepare_for_add(p, p2->end - p2->start);
389 if (ret < 0)
390 goto out;
391 memcpy(p->prepared, p2->start, p2->end - p2->start);
392 p->prepared = NULL;
393
394out:
395 return ret;
396}
397
398static int fs_path_add_from_extent_buffer(struct fs_path *p,
399 struct extent_buffer *eb,
400 unsigned long off, int len)
401{
402 int ret;
403
404 ret = fs_path_prepare_for_add(p, len);
405 if (ret < 0)
406 goto out;
407
408 read_extent_buffer(eb, p->prepared, off, len);
409 p->prepared = NULL;
410
411out:
412 return ret;
413}
414
31db9f7c
AB
415static int fs_path_copy(struct fs_path *p, struct fs_path *from)
416{
417 int ret;
418
419 p->reversed = from->reversed;
420 fs_path_reset(p);
421
422 ret = fs_path_add_path(p, from);
423
424 return ret;
425}
426
427
428static void fs_path_unreverse(struct fs_path *p)
429{
430 char *tmp;
431 int len;
432
433 if (!p->reversed)
434 return;
435
436 tmp = p->start;
437 len = p->end - p->start;
438 p->start = p->buf;
439 p->end = p->start + len;
440 memmove(p->start, tmp, len + 1);
441 p->reversed = 0;
442}
443
444static struct btrfs_path *alloc_path_for_send(void)
445{
446 struct btrfs_path *path;
447
448 path = btrfs_alloc_path();
449 if (!path)
450 return NULL;
451 path->search_commit_root = 1;
452 path->skip_locking = 1;
453 return path;
454}
455
48a3b636 456static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
457{
458 int ret;
459 mm_segment_t old_fs;
460 u32 pos = 0;
461
462 old_fs = get_fs();
463 set_fs(KERNEL_DS);
464
465 while (pos < len) {
1bcea355 466 ret = vfs_write(filp, (char *)buf + pos, len - pos, off);
31db9f7c
AB
467 /* TODO handle that correctly */
468 /*if (ret == -ERESTARTSYS) {
469 continue;
470 }*/
471 if (ret < 0)
472 goto out;
473 if (ret == 0) {
474 ret = -EIO;
475 goto out;
476 }
477 pos += ret;
478 }
479
480 ret = 0;
481
482out:
483 set_fs(old_fs);
484 return ret;
485}
486
487static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
488{
489 struct btrfs_tlv_header *hdr;
490 int total_len = sizeof(*hdr) + len;
491 int left = sctx->send_max_size - sctx->send_size;
492
493 if (unlikely(left < total_len))
494 return -EOVERFLOW;
495
496 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
497 hdr->tlv_type = cpu_to_le16(attr);
498 hdr->tlv_len = cpu_to_le16(len);
499 memcpy(hdr + 1, data, len);
500 sctx->send_size += total_len;
501
502 return 0;
503}
504
95bc79d5
DS
505#define TLV_PUT_DEFINE_INT(bits) \
506 static int tlv_put_u##bits(struct send_ctx *sctx, \
507 u##bits attr, u##bits value) \
508 { \
509 __le##bits __tmp = cpu_to_le##bits(value); \
510 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
511 }
31db9f7c 512
95bc79d5 513TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
514
515static int tlv_put_string(struct send_ctx *sctx, u16 attr,
516 const char *str, int len)
517{
518 if (len == -1)
519 len = strlen(str);
520 return tlv_put(sctx, attr, str, len);
521}
522
523static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
524 const u8 *uuid)
525{
526 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
527}
528
31db9f7c
AB
529static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
530 struct extent_buffer *eb,
531 struct btrfs_timespec *ts)
532{
533 struct btrfs_timespec bts;
534 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
535 return tlv_put(sctx, attr, &bts, sizeof(bts));
536}
537
538
539#define TLV_PUT(sctx, attrtype, attrlen, data) \
540 do { \
541 ret = tlv_put(sctx, attrtype, attrlen, data); \
542 if (ret < 0) \
543 goto tlv_put_failure; \
544 } while (0)
545
546#define TLV_PUT_INT(sctx, attrtype, bits, value) \
547 do { \
548 ret = tlv_put_u##bits(sctx, attrtype, value); \
549 if (ret < 0) \
550 goto tlv_put_failure; \
551 } while (0)
552
553#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
554#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
555#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
556#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
557#define TLV_PUT_STRING(sctx, attrtype, str, len) \
558 do { \
559 ret = tlv_put_string(sctx, attrtype, str, len); \
560 if (ret < 0) \
561 goto tlv_put_failure; \
562 } while (0)
563#define TLV_PUT_PATH(sctx, attrtype, p) \
564 do { \
565 ret = tlv_put_string(sctx, attrtype, p->start, \
566 p->end - p->start); \
567 if (ret < 0) \
568 goto tlv_put_failure; \
569 } while(0)
570#define TLV_PUT_UUID(sctx, attrtype, uuid) \
571 do { \
572 ret = tlv_put_uuid(sctx, attrtype, uuid); \
573 if (ret < 0) \
574 goto tlv_put_failure; \
575 } while (0)
31db9f7c
AB
576#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
577 do { \
578 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
579 if (ret < 0) \
580 goto tlv_put_failure; \
581 } while (0)
582
583static int send_header(struct send_ctx *sctx)
584{
585 struct btrfs_stream_header hdr;
586
587 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
588 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
589
1bcea355
AJ
590 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
591 &sctx->send_off);
31db9f7c
AB
592}
593
594/*
595 * For each command/item we want to send to userspace, we call this function.
596 */
597static int begin_cmd(struct send_ctx *sctx, int cmd)
598{
599 struct btrfs_cmd_header *hdr;
600
fae7f21c 601 if (WARN_ON(!sctx->send_buf))
31db9f7c 602 return -EINVAL;
31db9f7c
AB
603
604 BUG_ON(sctx->send_size);
605
606 sctx->send_size += sizeof(*hdr);
607 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
608 hdr->cmd = cpu_to_le16(cmd);
609
610 return 0;
611}
612
613static int send_cmd(struct send_ctx *sctx)
614{
615 int ret;
616 struct btrfs_cmd_header *hdr;
617 u32 crc;
618
619 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
620 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
621 hdr->crc = 0;
622
0b947aff 623 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
624 hdr->crc = cpu_to_le32(crc);
625
1bcea355
AJ
626 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
627 &sctx->send_off);
31db9f7c
AB
628
629 sctx->total_send_size += sctx->send_size;
630 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
631 sctx->send_size = 0;
632
633 return ret;
634}
635
636/*
637 * Sends a move instruction to user space
638 */
639static int send_rename(struct send_ctx *sctx,
640 struct fs_path *from, struct fs_path *to)
641{
642 int ret;
643
644verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
645
646 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
647 if (ret < 0)
648 goto out;
649
650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
652
653 ret = send_cmd(sctx);
654
655tlv_put_failure:
656out:
657 return ret;
658}
659
660/*
661 * Sends a link instruction to user space
662 */
663static int send_link(struct send_ctx *sctx,
664 struct fs_path *path, struct fs_path *lnk)
665{
666 int ret;
667
668verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
669
670 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
671 if (ret < 0)
672 goto out;
673
674 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
675 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
676
677 ret = send_cmd(sctx);
678
679tlv_put_failure:
680out:
681 return ret;
682}
683
684/*
685 * Sends an unlink instruction to user space
686 */
687static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
688{
689 int ret;
690
691verbose_printk("btrfs: send_unlink %s\n", path->start);
692
693 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
694 if (ret < 0)
695 goto out;
696
697 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
698
699 ret = send_cmd(sctx);
700
701tlv_put_failure:
702out:
703 return ret;
704}
705
706/*
707 * Sends a rmdir instruction to user space
708 */
709static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
710{
711 int ret;
712
713verbose_printk("btrfs: send_rmdir %s\n", path->start);
714
715 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
716 if (ret < 0)
717 goto out;
718
719 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
720
721 ret = send_cmd(sctx);
722
723tlv_put_failure:
724out:
725 return ret;
726}
727
728/*
729 * Helper function to retrieve some fields from an inode item.
730 */
731static int get_inode_info(struct btrfs_root *root,
732 u64 ino, u64 *size, u64 *gen,
85a7b33b
AB
733 u64 *mode, u64 *uid, u64 *gid,
734 u64 *rdev)
31db9f7c
AB
735{
736 int ret;
737 struct btrfs_inode_item *ii;
738 struct btrfs_key key;
739 struct btrfs_path *path;
740
741 path = alloc_path_for_send();
742 if (!path)
743 return -ENOMEM;
744
745 key.objectid = ino;
746 key.type = BTRFS_INODE_ITEM_KEY;
747 key.offset = 0;
748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
749 if (ret < 0)
750 goto out;
751 if (ret) {
752 ret = -ENOENT;
753 goto out;
754 }
755
756 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
757 struct btrfs_inode_item);
758 if (size)
759 *size = btrfs_inode_size(path->nodes[0], ii);
760 if (gen)
761 *gen = btrfs_inode_generation(path->nodes[0], ii);
762 if (mode)
763 *mode = btrfs_inode_mode(path->nodes[0], ii);
764 if (uid)
765 *uid = btrfs_inode_uid(path->nodes[0], ii);
766 if (gid)
767 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
768 if (rdev)
769 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c
AB
770
771out:
772 btrfs_free_path(path);
773 return ret;
774}
775
776typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
777 struct fs_path *p,
778 void *ctx);
779
780/*
96b5bd77
JS
781 * Helper function to iterate the entries in ONE btrfs_inode_ref or
782 * btrfs_inode_extref.
31db9f7c
AB
783 * The iterate callback may return a non zero value to stop iteration. This can
784 * be a negative value for error codes or 1 to simply stop it.
785 *
96b5bd77 786 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 787 */
924794c9 788static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
789 struct btrfs_key *found_key, int resolve,
790 iterate_inode_ref_t iterate, void *ctx)
791{
96b5bd77 792 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
793 struct btrfs_item *item;
794 struct btrfs_inode_ref *iref;
96b5bd77 795 struct btrfs_inode_extref *extref;
31db9f7c
AB
796 struct btrfs_path *tmp_path;
797 struct fs_path *p;
96b5bd77 798 u32 cur = 0;
31db9f7c 799 u32 total;
96b5bd77 800 int slot = path->slots[0];
31db9f7c
AB
801 u32 name_len;
802 char *start;
803 int ret = 0;
96b5bd77 804 int num = 0;
31db9f7c 805 int index;
96b5bd77
JS
806 u64 dir;
807 unsigned long name_off;
808 unsigned long elem_size;
809 unsigned long ptr;
31db9f7c 810
924794c9 811 p = fs_path_alloc_reversed();
31db9f7c
AB
812 if (!p)
813 return -ENOMEM;
814
815 tmp_path = alloc_path_for_send();
816 if (!tmp_path) {
924794c9 817 fs_path_free(p);
31db9f7c
AB
818 return -ENOMEM;
819 }
820
31db9f7c 821
96b5bd77
JS
822 if (found_key->type == BTRFS_INODE_REF_KEY) {
823 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
824 struct btrfs_inode_ref);
dd3cc16b 825 item = btrfs_item_nr(slot);
96b5bd77
JS
826 total = btrfs_item_size(eb, item);
827 elem_size = sizeof(*iref);
828 } else {
829 ptr = btrfs_item_ptr_offset(eb, slot);
830 total = btrfs_item_size_nr(eb, slot);
831 elem_size = sizeof(*extref);
832 }
833
31db9f7c
AB
834 while (cur < total) {
835 fs_path_reset(p);
836
96b5bd77
JS
837 if (found_key->type == BTRFS_INODE_REF_KEY) {
838 iref = (struct btrfs_inode_ref *)(ptr + cur);
839 name_len = btrfs_inode_ref_name_len(eb, iref);
840 name_off = (unsigned long)(iref + 1);
841 index = btrfs_inode_ref_index(eb, iref);
842 dir = found_key->offset;
843 } else {
844 extref = (struct btrfs_inode_extref *)(ptr + cur);
845 name_len = btrfs_inode_extref_name_len(eb, extref);
846 name_off = (unsigned long)&extref->name;
847 index = btrfs_inode_extref_index(eb, extref);
848 dir = btrfs_inode_extref_parent(eb, extref);
849 }
850
31db9f7c 851 if (resolve) {
96b5bd77
JS
852 start = btrfs_ref_to_path(root, tmp_path, name_len,
853 name_off, eb, dir,
854 p->buf, p->buf_len);
31db9f7c
AB
855 if (IS_ERR(start)) {
856 ret = PTR_ERR(start);
857 goto out;
858 }
859 if (start < p->buf) {
860 /* overflow , try again with larger buffer */
861 ret = fs_path_ensure_buf(p,
862 p->buf_len + p->buf - start);
863 if (ret < 0)
864 goto out;
96b5bd77
JS
865 start = btrfs_ref_to_path(root, tmp_path,
866 name_len, name_off,
867 eb, dir,
868 p->buf, p->buf_len);
31db9f7c
AB
869 if (IS_ERR(start)) {
870 ret = PTR_ERR(start);
871 goto out;
872 }
873 BUG_ON(start < p->buf);
874 }
875 p->start = start;
876 } else {
96b5bd77
JS
877 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
878 name_len);
31db9f7c
AB
879 if (ret < 0)
880 goto out;
881 }
882
96b5bd77
JS
883 cur += elem_size + name_len;
884 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
885 if (ret)
886 goto out;
31db9f7c
AB
887 num++;
888 }
889
890out:
891 btrfs_free_path(tmp_path);
924794c9 892 fs_path_free(p);
31db9f7c
AB
893 return ret;
894}
895
896typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
897 const char *name, int name_len,
898 const char *data, int data_len,
899 u8 type, void *ctx);
900
901/*
902 * Helper function to iterate the entries in ONE btrfs_dir_item.
903 * The iterate callback may return a non zero value to stop iteration. This can
904 * be a negative value for error codes or 1 to simply stop it.
905 *
906 * path must point to the dir item when called.
907 */
924794c9 908static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
909 struct btrfs_key *found_key,
910 iterate_dir_item_t iterate, void *ctx)
911{
912 int ret = 0;
913 struct extent_buffer *eb;
914 struct btrfs_item *item;
915 struct btrfs_dir_item *di;
31db9f7c
AB
916 struct btrfs_key di_key;
917 char *buf = NULL;
918 char *buf2 = NULL;
919 int buf_len;
920 int buf_virtual = 0;
921 u32 name_len;
922 u32 data_len;
923 u32 cur;
924 u32 len;
925 u32 total;
926 int slot;
927 int num;
928 u8 type;
929
930 buf_len = PAGE_SIZE;
931 buf = kmalloc(buf_len, GFP_NOFS);
932 if (!buf) {
933 ret = -ENOMEM;
934 goto out;
935 }
936
31db9f7c
AB
937 eb = path->nodes[0];
938 slot = path->slots[0];
dd3cc16b 939 item = btrfs_item_nr(slot);
31db9f7c
AB
940 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
941 cur = 0;
942 len = 0;
943 total = btrfs_item_size(eb, item);
944
945 num = 0;
946 while (cur < total) {
947 name_len = btrfs_dir_name_len(eb, di);
948 data_len = btrfs_dir_data_len(eb, di);
949 type = btrfs_dir_type(eb, di);
950 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
951
952 if (name_len + data_len > buf_len) {
953 buf_len = PAGE_ALIGN(name_len + data_len);
954 if (buf_virtual) {
955 buf2 = vmalloc(buf_len);
956 if (!buf2) {
957 ret = -ENOMEM;
958 goto out;
959 }
960 vfree(buf);
961 } else {
962 buf2 = krealloc(buf, buf_len, GFP_NOFS);
963 if (!buf2) {
964 buf2 = vmalloc(buf_len);
965 if (!buf2) {
966 ret = -ENOMEM;
967 goto out;
968 }
969 kfree(buf);
970 buf_virtual = 1;
971 }
972 }
973
974 buf = buf2;
975 buf2 = NULL;
976 }
977
978 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
979 name_len + data_len);
980
981 len = sizeof(*di) + name_len + data_len;
982 di = (struct btrfs_dir_item *)((char *)di + len);
983 cur += len;
984
985 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
986 data_len, type, ctx);
987 if (ret < 0)
988 goto out;
989 if (ret) {
990 ret = 0;
991 goto out;
992 }
993
994 num++;
995 }
996
997out:
31db9f7c
AB
998 if (buf_virtual)
999 vfree(buf);
1000 else
1001 kfree(buf);
1002 return ret;
1003}
1004
1005static int __copy_first_ref(int num, u64 dir, int index,
1006 struct fs_path *p, void *ctx)
1007{
1008 int ret;
1009 struct fs_path *pt = ctx;
1010
1011 ret = fs_path_copy(pt, p);
1012 if (ret < 0)
1013 return ret;
1014
1015 /* we want the first only */
1016 return 1;
1017}
1018
1019/*
1020 * Retrieve the first path of an inode. If an inode has more then one
1021 * ref/hardlink, this is ignored.
1022 */
924794c9 1023static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1024 u64 ino, struct fs_path *path)
1025{
1026 int ret;
1027 struct btrfs_key key, found_key;
1028 struct btrfs_path *p;
1029
1030 p = alloc_path_for_send();
1031 if (!p)
1032 return -ENOMEM;
1033
1034 fs_path_reset(path);
1035
1036 key.objectid = ino;
1037 key.type = BTRFS_INODE_REF_KEY;
1038 key.offset = 0;
1039
1040 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1041 if (ret < 0)
1042 goto out;
1043 if (ret) {
1044 ret = 1;
1045 goto out;
1046 }
1047 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1048 if (found_key.objectid != ino ||
96b5bd77
JS
1049 (found_key.type != BTRFS_INODE_REF_KEY &&
1050 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1051 ret = -ENOENT;
1052 goto out;
1053 }
1054
924794c9
TI
1055 ret = iterate_inode_ref(root, p, &found_key, 1,
1056 __copy_first_ref, path);
31db9f7c
AB
1057 if (ret < 0)
1058 goto out;
1059 ret = 0;
1060
1061out:
1062 btrfs_free_path(p);
1063 return ret;
1064}
1065
1066struct backref_ctx {
1067 struct send_ctx *sctx;
1068
1069 /* number of total found references */
1070 u64 found;
1071
1072 /*
1073 * used for clones found in send_root. clones found behind cur_objectid
1074 * and cur_offset are not considered as allowed clones.
1075 */
1076 u64 cur_objectid;
1077 u64 cur_offset;
1078
1079 /* may be truncated in case it's the last extent in a file */
1080 u64 extent_len;
1081
1082 /* Just to check for bugs in backref resolving */
ee849c04 1083 int found_itself;
31db9f7c
AB
1084};
1085
1086static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1087{
995e01b7 1088 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1089 struct clone_root *cr = (struct clone_root *)elt;
1090
1091 if (root < cr->root->objectid)
1092 return -1;
1093 if (root > cr->root->objectid)
1094 return 1;
1095 return 0;
1096}
1097
1098static int __clone_root_cmp_sort(const void *e1, const void *e2)
1099{
1100 struct clone_root *cr1 = (struct clone_root *)e1;
1101 struct clone_root *cr2 = (struct clone_root *)e2;
1102
1103 if (cr1->root->objectid < cr2->root->objectid)
1104 return -1;
1105 if (cr1->root->objectid > cr2->root->objectid)
1106 return 1;
1107 return 0;
1108}
1109
1110/*
1111 * Called for every backref that is found for the current extent.
766702ef 1112 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1113 */
1114static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1115{
1116 struct backref_ctx *bctx = ctx_;
1117 struct clone_root *found;
1118 int ret;
1119 u64 i_size;
1120
1121 /* First check if the root is in the list of accepted clone sources */
995e01b7 1122 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1123 bctx->sctx->clone_roots_cnt,
1124 sizeof(struct clone_root),
1125 __clone_root_cmp_bsearch);
1126 if (!found)
1127 return 0;
1128
1129 if (found->root == bctx->sctx->send_root &&
1130 ino == bctx->cur_objectid &&
1131 offset == bctx->cur_offset) {
ee849c04 1132 bctx->found_itself = 1;
31db9f7c
AB
1133 }
1134
1135 /*
766702ef 1136 * There are inodes that have extents that lie behind its i_size. Don't
31db9f7c
AB
1137 * accept clones from these extents.
1138 */
85a7b33b
AB
1139 ret = get_inode_info(found->root, ino, &i_size, NULL, NULL, NULL, NULL,
1140 NULL);
31db9f7c
AB
1141 if (ret < 0)
1142 return ret;
1143
1144 if (offset + bctx->extent_len > i_size)
1145 return 0;
1146
1147 /*
1148 * Make sure we don't consider clones from send_root that are
1149 * behind the current inode/offset.
1150 */
1151 if (found->root == bctx->sctx->send_root) {
1152 /*
1153 * TODO for the moment we don't accept clones from the inode
1154 * that is currently send. We may change this when
1155 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1156 * file.
1157 */
1158 if (ino >= bctx->cur_objectid)
1159 return 0;
e938c8ad
AB
1160#if 0
1161 if (ino > bctx->cur_objectid)
1162 return 0;
1163 if (offset + bctx->extent_len > bctx->cur_offset)
31db9f7c 1164 return 0;
e938c8ad 1165#endif
31db9f7c
AB
1166 }
1167
1168 bctx->found++;
1169 found->found_refs++;
1170 if (ino < found->ino) {
1171 found->ino = ino;
1172 found->offset = offset;
1173 } else if (found->ino == ino) {
1174 /*
1175 * same extent found more then once in the same file.
1176 */
1177 if (found->offset > offset + bctx->extent_len)
1178 found->offset = offset;
1179 }
1180
1181 return 0;
1182}
1183
1184/*
766702ef
AB
1185 * Given an inode, offset and extent item, it finds a good clone for a clone
1186 * instruction. Returns -ENOENT when none could be found. The function makes
1187 * sure that the returned clone is usable at the point where sending is at the
1188 * moment. This means, that no clones are accepted which lie behind the current
1189 * inode+offset.
1190 *
31db9f7c
AB
1191 * path must point to the extent item when called.
1192 */
1193static int find_extent_clone(struct send_ctx *sctx,
1194 struct btrfs_path *path,
1195 u64 ino, u64 data_offset,
1196 u64 ino_size,
1197 struct clone_root **found)
1198{
1199 int ret;
1200 int extent_type;
1201 u64 logical;
74dd17fb 1202 u64 disk_byte;
31db9f7c
AB
1203 u64 num_bytes;
1204 u64 extent_item_pos;
69917e43 1205 u64 flags = 0;
31db9f7c
AB
1206 struct btrfs_file_extent_item *fi;
1207 struct extent_buffer *eb = path->nodes[0];
35075bb0 1208 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1209 struct clone_root *cur_clone_root;
1210 struct btrfs_key found_key;
1211 struct btrfs_path *tmp_path;
74dd17fb 1212 int compressed;
31db9f7c
AB
1213 u32 i;
1214
1215 tmp_path = alloc_path_for_send();
1216 if (!tmp_path)
1217 return -ENOMEM;
1218
35075bb0
AB
1219 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1220 if (!backref_ctx) {
1221 ret = -ENOMEM;
1222 goto out;
1223 }
1224
31db9f7c
AB
1225 if (data_offset >= ino_size) {
1226 /*
1227 * There may be extents that lie behind the file's size.
1228 * I at least had this in combination with snapshotting while
1229 * writing large files.
1230 */
1231 ret = 0;
1232 goto out;
1233 }
1234
1235 fi = btrfs_item_ptr(eb, path->slots[0],
1236 struct btrfs_file_extent_item);
1237 extent_type = btrfs_file_extent_type(eb, fi);
1238 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1239 ret = -ENOENT;
1240 goto out;
1241 }
74dd17fb 1242 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1243
1244 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1245 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1246 if (disk_byte == 0) {
31db9f7c
AB
1247 ret = -ENOENT;
1248 goto out;
1249 }
74dd17fb 1250 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1251
69917e43
LB
1252 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1253 &found_key, &flags);
31db9f7c
AB
1254 btrfs_release_path(tmp_path);
1255
1256 if (ret < 0)
1257 goto out;
69917e43 1258 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1259 ret = -EIO;
1260 goto out;
1261 }
1262
1263 /*
1264 * Setup the clone roots.
1265 */
1266 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1267 cur_clone_root = sctx->clone_roots + i;
1268 cur_clone_root->ino = (u64)-1;
1269 cur_clone_root->offset = 0;
1270 cur_clone_root->found_refs = 0;
1271 }
1272
35075bb0
AB
1273 backref_ctx->sctx = sctx;
1274 backref_ctx->found = 0;
1275 backref_ctx->cur_objectid = ino;
1276 backref_ctx->cur_offset = data_offset;
1277 backref_ctx->found_itself = 0;
1278 backref_ctx->extent_len = num_bytes;
31db9f7c
AB
1279
1280 /*
1281 * The last extent of a file may be too large due to page alignment.
1282 * We need to adjust extent_len in this case so that the checks in
1283 * __iterate_backrefs work.
1284 */
1285 if (data_offset + num_bytes >= ino_size)
35075bb0 1286 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1287
1288 /*
1289 * Now collect all backrefs.
1290 */
74dd17fb
CM
1291 if (compressed == BTRFS_COMPRESS_NONE)
1292 extent_item_pos = logical - found_key.objectid;
1293 else
1294 extent_item_pos = 0;
1295
31db9f7c
AB
1296 extent_item_pos = logical - found_key.objectid;
1297 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1298 found_key.objectid, extent_item_pos, 1,
35075bb0 1299 __iterate_backrefs, backref_ctx);
74dd17fb 1300
31db9f7c
AB
1301 if (ret < 0)
1302 goto out;
1303
35075bb0 1304 if (!backref_ctx->found_itself) {
31db9f7c
AB
1305 /* found a bug in backref code? */
1306 ret = -EIO;
efe120a0 1307 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
31db9f7c 1308 "send_root. inode=%llu, offset=%llu, "
74dd17fb
CM
1309 "disk_byte=%llu found extent=%llu\n",
1310 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1311 goto out;
1312 }
1313
1314verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1315 "ino=%llu, "
1316 "num_bytes=%llu, logical=%llu\n",
1317 data_offset, ino, num_bytes, logical);
1318
35075bb0 1319 if (!backref_ctx->found)
31db9f7c
AB
1320 verbose_printk("btrfs: no clones found\n");
1321
1322 cur_clone_root = NULL;
1323 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1324 if (sctx->clone_roots[i].found_refs) {
1325 if (!cur_clone_root)
1326 cur_clone_root = sctx->clone_roots + i;
1327 else if (sctx->clone_roots[i].root == sctx->send_root)
1328 /* prefer clones from send_root over others */
1329 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1330 }
1331
1332 }
1333
1334 if (cur_clone_root) {
1335 *found = cur_clone_root;
1336 ret = 0;
1337 } else {
1338 ret = -ENOENT;
1339 }
1340
1341out:
1342 btrfs_free_path(tmp_path);
35075bb0 1343 kfree(backref_ctx);
31db9f7c
AB
1344 return ret;
1345}
1346
924794c9 1347static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1348 u64 ino,
1349 struct fs_path *dest)
1350{
1351 int ret;
1352 struct btrfs_path *path;
1353 struct btrfs_key key;
1354 struct btrfs_file_extent_item *ei;
1355 u8 type;
1356 u8 compression;
1357 unsigned long off;
1358 int len;
1359
1360 path = alloc_path_for_send();
1361 if (!path)
1362 return -ENOMEM;
1363
1364 key.objectid = ino;
1365 key.type = BTRFS_EXTENT_DATA_KEY;
1366 key.offset = 0;
1367 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1368 if (ret < 0)
1369 goto out;
1370 BUG_ON(ret);
1371
1372 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1373 struct btrfs_file_extent_item);
1374 type = btrfs_file_extent_type(path->nodes[0], ei);
1375 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1376 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1377 BUG_ON(compression);
1378
1379 off = btrfs_file_extent_inline_start(ei);
514ac8ad 1380 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
31db9f7c
AB
1381
1382 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1383
1384out:
1385 btrfs_free_path(path);
1386 return ret;
1387}
1388
1389/*
1390 * Helper function to generate a file name that is unique in the root of
1391 * send_root and parent_root. This is used to generate names for orphan inodes.
1392 */
1393static int gen_unique_name(struct send_ctx *sctx,
1394 u64 ino, u64 gen,
1395 struct fs_path *dest)
1396{
1397 int ret = 0;
1398 struct btrfs_path *path;
1399 struct btrfs_dir_item *di;
1400 char tmp[64];
1401 int len;
1402 u64 idx = 0;
1403
1404 path = alloc_path_for_send();
1405 if (!path)
1406 return -ENOMEM;
1407
1408 while (1) {
f74b86d8 1409 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c
AB
1410 ino, gen, idx);
1411 if (len >= sizeof(tmp)) {
1412 /* should really not happen */
1413 ret = -EOVERFLOW;
1414 goto out;
1415 }
1416
1417 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1418 path, BTRFS_FIRST_FREE_OBJECTID,
1419 tmp, strlen(tmp), 0);
1420 btrfs_release_path(path);
1421 if (IS_ERR(di)) {
1422 ret = PTR_ERR(di);
1423 goto out;
1424 }
1425 if (di) {
1426 /* not unique, try again */
1427 idx++;
1428 continue;
1429 }
1430
1431 if (!sctx->parent_root) {
1432 /* unique */
1433 ret = 0;
1434 break;
1435 }
1436
1437 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1438 path, BTRFS_FIRST_FREE_OBJECTID,
1439 tmp, strlen(tmp), 0);
1440 btrfs_release_path(path);
1441 if (IS_ERR(di)) {
1442 ret = PTR_ERR(di);
1443 goto out;
1444 }
1445 if (di) {
1446 /* not unique, try again */
1447 idx++;
1448 continue;
1449 }
1450 /* unique */
1451 break;
1452 }
1453
1454 ret = fs_path_add(dest, tmp, strlen(tmp));
1455
1456out:
1457 btrfs_free_path(path);
1458 return ret;
1459}
1460
1461enum inode_state {
1462 inode_state_no_change,
1463 inode_state_will_create,
1464 inode_state_did_create,
1465 inode_state_will_delete,
1466 inode_state_did_delete,
1467};
1468
1469static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1470{
1471 int ret;
1472 int left_ret;
1473 int right_ret;
1474 u64 left_gen;
1475 u64 right_gen;
1476
1477 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1478 NULL, NULL);
31db9f7c
AB
1479 if (ret < 0 && ret != -ENOENT)
1480 goto out;
1481 left_ret = ret;
1482
1483 if (!sctx->parent_root) {
1484 right_ret = -ENOENT;
1485 } else {
1486 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1487 NULL, NULL, NULL, NULL);
31db9f7c
AB
1488 if (ret < 0 && ret != -ENOENT)
1489 goto out;
1490 right_ret = ret;
1491 }
1492
1493 if (!left_ret && !right_ret) {
e938c8ad 1494 if (left_gen == gen && right_gen == gen) {
31db9f7c 1495 ret = inode_state_no_change;
e938c8ad 1496 } else if (left_gen == gen) {
31db9f7c
AB
1497 if (ino < sctx->send_progress)
1498 ret = inode_state_did_create;
1499 else
1500 ret = inode_state_will_create;
1501 } else if (right_gen == gen) {
1502 if (ino < sctx->send_progress)
1503 ret = inode_state_did_delete;
1504 else
1505 ret = inode_state_will_delete;
1506 } else {
1507 ret = -ENOENT;
1508 }
1509 } else if (!left_ret) {
1510 if (left_gen == gen) {
1511 if (ino < sctx->send_progress)
1512 ret = inode_state_did_create;
1513 else
1514 ret = inode_state_will_create;
1515 } else {
1516 ret = -ENOENT;
1517 }
1518 } else if (!right_ret) {
1519 if (right_gen == gen) {
1520 if (ino < sctx->send_progress)
1521 ret = inode_state_did_delete;
1522 else
1523 ret = inode_state_will_delete;
1524 } else {
1525 ret = -ENOENT;
1526 }
1527 } else {
1528 ret = -ENOENT;
1529 }
1530
1531out:
1532 return ret;
1533}
1534
1535static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1536{
1537 int ret;
1538
1539 ret = get_cur_inode_state(sctx, ino, gen);
1540 if (ret < 0)
1541 goto out;
1542
1543 if (ret == inode_state_no_change ||
1544 ret == inode_state_did_create ||
1545 ret == inode_state_will_delete)
1546 ret = 1;
1547 else
1548 ret = 0;
1549
1550out:
1551 return ret;
1552}
1553
1554/*
1555 * Helper function to lookup a dir item in a dir.
1556 */
1557static int lookup_dir_item_inode(struct btrfs_root *root,
1558 u64 dir, const char *name, int name_len,
1559 u64 *found_inode,
1560 u8 *found_type)
1561{
1562 int ret = 0;
1563 struct btrfs_dir_item *di;
1564 struct btrfs_key key;
1565 struct btrfs_path *path;
1566
1567 path = alloc_path_for_send();
1568 if (!path)
1569 return -ENOMEM;
1570
1571 di = btrfs_lookup_dir_item(NULL, root, path,
1572 dir, name, name_len, 0);
1573 if (!di) {
1574 ret = -ENOENT;
1575 goto out;
1576 }
1577 if (IS_ERR(di)) {
1578 ret = PTR_ERR(di);
1579 goto out;
1580 }
1581 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1582 *found_inode = key.objectid;
1583 *found_type = btrfs_dir_type(path->nodes[0], di);
1584
1585out:
1586 btrfs_free_path(path);
1587 return ret;
1588}
1589
766702ef
AB
1590/*
1591 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1592 * generation of the parent dir and the name of the dir entry.
1593 */
924794c9 1594static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1595 u64 *dir, u64 *dir_gen, struct fs_path *name)
1596{
1597 int ret;
1598 struct btrfs_key key;
1599 struct btrfs_key found_key;
1600 struct btrfs_path *path;
31db9f7c 1601 int len;
96b5bd77 1602 u64 parent_dir;
31db9f7c
AB
1603
1604 path = alloc_path_for_send();
1605 if (!path)
1606 return -ENOMEM;
1607
1608 key.objectid = ino;
1609 key.type = BTRFS_INODE_REF_KEY;
1610 key.offset = 0;
1611
1612 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1613 if (ret < 0)
1614 goto out;
1615 if (!ret)
1616 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1617 path->slots[0]);
96b5bd77
JS
1618 if (ret || found_key.objectid != ino ||
1619 (found_key.type != BTRFS_INODE_REF_KEY &&
1620 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1621 ret = -ENOENT;
1622 goto out;
1623 }
1624
96b5bd77
JS
1625 if (key.type == BTRFS_INODE_REF_KEY) {
1626 struct btrfs_inode_ref *iref;
1627 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1628 struct btrfs_inode_ref);
1629 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1630 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1631 (unsigned long)(iref + 1),
1632 len);
1633 parent_dir = found_key.offset;
1634 } else {
1635 struct btrfs_inode_extref *extref;
1636 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1637 struct btrfs_inode_extref);
1638 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1639 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1640 (unsigned long)&extref->name, len);
1641 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1642 }
31db9f7c
AB
1643 if (ret < 0)
1644 goto out;
1645 btrfs_release_path(path);
1646
96b5bd77 1647 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL, NULL,
85a7b33b 1648 NULL, NULL);
31db9f7c
AB
1649 if (ret < 0)
1650 goto out;
1651
96b5bd77 1652 *dir = parent_dir;
31db9f7c
AB
1653
1654out:
1655 btrfs_free_path(path);
1656 return ret;
1657}
1658
924794c9 1659static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1660 u64 ino, u64 dir,
1661 const char *name, int name_len)
1662{
1663 int ret;
1664 struct fs_path *tmp_name;
1665 u64 tmp_dir;
1666 u64 tmp_dir_gen;
1667
924794c9 1668 tmp_name = fs_path_alloc();
31db9f7c
AB
1669 if (!tmp_name)
1670 return -ENOMEM;
1671
924794c9 1672 ret = get_first_ref(root, ino, &tmp_dir, &tmp_dir_gen, tmp_name);
31db9f7c
AB
1673 if (ret < 0)
1674 goto out;
1675
b9291aff 1676 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1677 ret = 0;
1678 goto out;
1679 }
1680
e938c8ad 1681 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1682
1683out:
924794c9 1684 fs_path_free(tmp_name);
31db9f7c
AB
1685 return ret;
1686}
1687
766702ef
AB
1688/*
1689 * Used by process_recorded_refs to determine if a new ref would overwrite an
1690 * already existing ref. In case it detects an overwrite, it returns the
1691 * inode/gen in who_ino/who_gen.
1692 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1693 * to make sure later references to the overwritten inode are possible.
1694 * Orphanizing is however only required for the first ref of an inode.
1695 * process_recorded_refs does an additional is_first_ref check to see if
1696 * orphanizing is really required.
1697 */
31db9f7c
AB
1698static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1699 const char *name, int name_len,
1700 u64 *who_ino, u64 *who_gen)
1701{
1702 int ret = 0;
ebdad913 1703 u64 gen;
31db9f7c
AB
1704 u64 other_inode = 0;
1705 u8 other_type = 0;
1706
1707 if (!sctx->parent_root)
1708 goto out;
1709
1710 ret = is_inode_existent(sctx, dir, dir_gen);
1711 if (ret <= 0)
1712 goto out;
1713
ebdad913
JB
1714 /*
1715 * If we have a parent root we need to verify that the parent dir was
1716 * not delted and then re-created, if it was then we have no overwrite
1717 * and we can just unlink this entry.
1718 */
1719 if (sctx->parent_root) {
1720 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1721 NULL, NULL, NULL);
1722 if (ret < 0 && ret != -ENOENT)
1723 goto out;
1724 if (ret) {
1725 ret = 0;
1726 goto out;
1727 }
1728 if (gen != dir_gen)
1729 goto out;
1730 }
1731
31db9f7c
AB
1732 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1733 &other_inode, &other_type);
1734 if (ret < 0 && ret != -ENOENT)
1735 goto out;
1736 if (ret) {
1737 ret = 0;
1738 goto out;
1739 }
1740
766702ef
AB
1741 /*
1742 * Check if the overwritten ref was already processed. If yes, the ref
1743 * was already unlinked/moved, so we can safely assume that we will not
1744 * overwrite anything at this point in time.
1745 */
31db9f7c
AB
1746 if (other_inode > sctx->send_progress) {
1747 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
85a7b33b 1748 who_gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
1749 if (ret < 0)
1750 goto out;
1751
1752 ret = 1;
1753 *who_ino = other_inode;
1754 } else {
1755 ret = 0;
1756 }
1757
1758out:
1759 return ret;
1760}
1761
766702ef
AB
1762/*
1763 * Checks if the ref was overwritten by an already processed inode. This is
1764 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1765 * thus the orphan name needs be used.
1766 * process_recorded_refs also uses it to avoid unlinking of refs that were
1767 * overwritten.
1768 */
31db9f7c
AB
1769static int did_overwrite_ref(struct send_ctx *sctx,
1770 u64 dir, u64 dir_gen,
1771 u64 ino, u64 ino_gen,
1772 const char *name, int name_len)
1773{
1774 int ret = 0;
1775 u64 gen;
1776 u64 ow_inode;
1777 u8 other_type;
1778
1779 if (!sctx->parent_root)
1780 goto out;
1781
1782 ret = is_inode_existent(sctx, dir, dir_gen);
1783 if (ret <= 0)
1784 goto out;
1785
1786 /* check if the ref was overwritten by another ref */
1787 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1788 &ow_inode, &other_type);
1789 if (ret < 0 && ret != -ENOENT)
1790 goto out;
1791 if (ret) {
1792 /* was never and will never be overwritten */
1793 ret = 0;
1794 goto out;
1795 }
1796
1797 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1798 NULL, NULL);
31db9f7c
AB
1799 if (ret < 0)
1800 goto out;
1801
1802 if (ow_inode == ino && gen == ino_gen) {
1803 ret = 0;
1804 goto out;
1805 }
1806
1807 /* we know that it is or will be overwritten. check this now */
1808 if (ow_inode < sctx->send_progress)
1809 ret = 1;
1810 else
1811 ret = 0;
1812
1813out:
1814 return ret;
1815}
1816
766702ef
AB
1817/*
1818 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1819 * that got overwritten. This is used by process_recorded_refs to determine
1820 * if it has to use the path as returned by get_cur_path or the orphan name.
1821 */
31db9f7c
AB
1822static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1823{
1824 int ret = 0;
1825 struct fs_path *name = NULL;
1826 u64 dir;
1827 u64 dir_gen;
1828
1829 if (!sctx->parent_root)
1830 goto out;
1831
924794c9 1832 name = fs_path_alloc();
31db9f7c
AB
1833 if (!name)
1834 return -ENOMEM;
1835
924794c9 1836 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
1837 if (ret < 0)
1838 goto out;
1839
1840 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1841 name->start, fs_path_len(name));
31db9f7c
AB
1842
1843out:
924794c9 1844 fs_path_free(name);
31db9f7c
AB
1845 return ret;
1846}
1847
766702ef
AB
1848/*
1849 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1850 * so we need to do some special handling in case we have clashes. This function
1851 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 1852 * In case of error, nce is kfreed.
766702ef 1853 */
31db9f7c
AB
1854static int name_cache_insert(struct send_ctx *sctx,
1855 struct name_cache_entry *nce)
1856{
1857 int ret = 0;
7e0926fe
AB
1858 struct list_head *nce_head;
1859
1860 nce_head = radix_tree_lookup(&sctx->name_cache,
1861 (unsigned long)nce->ino);
1862 if (!nce_head) {
1863 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
cfa7a9cc
TI
1864 if (!nce_head) {
1865 kfree(nce);
31db9f7c 1866 return -ENOMEM;
cfa7a9cc 1867 }
7e0926fe 1868 INIT_LIST_HEAD(nce_head);
31db9f7c 1869
7e0926fe 1870 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
1871 if (ret < 0) {
1872 kfree(nce_head);
1873 kfree(nce);
31db9f7c 1874 return ret;
5dc67d0b 1875 }
31db9f7c 1876 }
7e0926fe 1877 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
1878 list_add_tail(&nce->list, &sctx->name_cache_list);
1879 sctx->name_cache_size++;
1880
1881 return ret;
1882}
1883
1884static void name_cache_delete(struct send_ctx *sctx,
1885 struct name_cache_entry *nce)
1886{
7e0926fe 1887 struct list_head *nce_head;
31db9f7c 1888
7e0926fe
AB
1889 nce_head = radix_tree_lookup(&sctx->name_cache,
1890 (unsigned long)nce->ino);
1891 BUG_ON(!nce_head);
31db9f7c 1892
7e0926fe 1893 list_del(&nce->radix_list);
31db9f7c 1894 list_del(&nce->list);
31db9f7c 1895 sctx->name_cache_size--;
7e0926fe
AB
1896
1897 if (list_empty(nce_head)) {
1898 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
1899 kfree(nce_head);
1900 }
31db9f7c
AB
1901}
1902
1903static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
1904 u64 ino, u64 gen)
1905{
7e0926fe
AB
1906 struct list_head *nce_head;
1907 struct name_cache_entry *cur;
31db9f7c 1908
7e0926fe
AB
1909 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
1910 if (!nce_head)
31db9f7c
AB
1911 return NULL;
1912
7e0926fe
AB
1913 list_for_each_entry(cur, nce_head, radix_list) {
1914 if (cur->ino == ino && cur->gen == gen)
1915 return cur;
1916 }
31db9f7c
AB
1917 return NULL;
1918}
1919
766702ef
AB
1920/*
1921 * Removes the entry from the list and adds it back to the end. This marks the
1922 * entry as recently used so that name_cache_clean_unused does not remove it.
1923 */
31db9f7c
AB
1924static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
1925{
1926 list_del(&nce->list);
1927 list_add_tail(&nce->list, &sctx->name_cache_list);
1928}
1929
766702ef
AB
1930/*
1931 * Remove some entries from the beginning of name_cache_list.
1932 */
31db9f7c
AB
1933static void name_cache_clean_unused(struct send_ctx *sctx)
1934{
1935 struct name_cache_entry *nce;
1936
1937 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
1938 return;
1939
1940 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
1941 nce = list_entry(sctx->name_cache_list.next,
1942 struct name_cache_entry, list);
1943 name_cache_delete(sctx, nce);
1944 kfree(nce);
1945 }
1946}
1947
1948static void name_cache_free(struct send_ctx *sctx)
1949{
1950 struct name_cache_entry *nce;
31db9f7c 1951
e938c8ad
AB
1952 while (!list_empty(&sctx->name_cache_list)) {
1953 nce = list_entry(sctx->name_cache_list.next,
1954 struct name_cache_entry, list);
31db9f7c 1955 name_cache_delete(sctx, nce);
17589bd9 1956 kfree(nce);
31db9f7c
AB
1957 }
1958}
1959
766702ef
AB
1960/*
1961 * Used by get_cur_path for each ref up to the root.
1962 * Returns 0 if it succeeded.
1963 * Returns 1 if the inode is not existent or got overwritten. In that case, the
1964 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
1965 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
1966 * Returns <0 in case of error.
1967 */
31db9f7c
AB
1968static int __get_cur_name_and_parent(struct send_ctx *sctx,
1969 u64 ino, u64 gen,
9f03740a 1970 int skip_name_cache,
31db9f7c
AB
1971 u64 *parent_ino,
1972 u64 *parent_gen,
1973 struct fs_path *dest)
1974{
1975 int ret;
1976 int nce_ret;
1977 struct btrfs_path *path = NULL;
1978 struct name_cache_entry *nce = NULL;
1979
9f03740a
FDBM
1980 if (skip_name_cache)
1981 goto get_ref;
766702ef
AB
1982 /*
1983 * First check if we already did a call to this function with the same
1984 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
1985 * return the cached result.
1986 */
31db9f7c
AB
1987 nce = name_cache_search(sctx, ino, gen);
1988 if (nce) {
1989 if (ino < sctx->send_progress && nce->need_later_update) {
1990 name_cache_delete(sctx, nce);
1991 kfree(nce);
1992 nce = NULL;
1993 } else {
1994 name_cache_used(sctx, nce);
1995 *parent_ino = nce->parent_ino;
1996 *parent_gen = nce->parent_gen;
1997 ret = fs_path_add(dest, nce->name, nce->name_len);
1998 if (ret < 0)
1999 goto out;
2000 ret = nce->ret;
2001 goto out;
2002 }
2003 }
2004
2005 path = alloc_path_for_send();
2006 if (!path)
2007 return -ENOMEM;
2008
766702ef
AB
2009 /*
2010 * If the inode is not existent yet, add the orphan name and return 1.
2011 * This should only happen for the parent dir that we determine in
2012 * __record_new_ref
2013 */
31db9f7c
AB
2014 ret = is_inode_existent(sctx, ino, gen);
2015 if (ret < 0)
2016 goto out;
2017
2018 if (!ret) {
2019 ret = gen_unique_name(sctx, ino, gen, dest);
2020 if (ret < 0)
2021 goto out;
2022 ret = 1;
2023 goto out_cache;
2024 }
2025
9f03740a 2026get_ref:
766702ef
AB
2027 /*
2028 * Depending on whether the inode was already processed or not, use
2029 * send_root or parent_root for ref lookup.
2030 */
9f03740a 2031 if (ino < sctx->send_progress && !skip_name_cache)
924794c9
TI
2032 ret = get_first_ref(sctx->send_root, ino,
2033 parent_ino, parent_gen, dest);
31db9f7c 2034 else
924794c9
TI
2035 ret = get_first_ref(sctx->parent_root, ino,
2036 parent_ino, parent_gen, dest);
31db9f7c
AB
2037 if (ret < 0)
2038 goto out;
2039
766702ef
AB
2040 /*
2041 * Check if the ref was overwritten by an inode's ref that was processed
2042 * earlier. If yes, treat as orphan and return 1.
2043 */
31db9f7c
AB
2044 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2045 dest->start, dest->end - dest->start);
2046 if (ret < 0)
2047 goto out;
2048 if (ret) {
2049 fs_path_reset(dest);
2050 ret = gen_unique_name(sctx, ino, gen, dest);
2051 if (ret < 0)
2052 goto out;
2053 ret = 1;
2054 }
9f03740a
FDBM
2055 if (skip_name_cache)
2056 goto out;
31db9f7c
AB
2057
2058out_cache:
766702ef
AB
2059 /*
2060 * Store the result of the lookup in the name cache.
2061 */
31db9f7c
AB
2062 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2063 if (!nce) {
2064 ret = -ENOMEM;
2065 goto out;
2066 }
2067
2068 nce->ino = ino;
2069 nce->gen = gen;
2070 nce->parent_ino = *parent_ino;
2071 nce->parent_gen = *parent_gen;
2072 nce->name_len = fs_path_len(dest);
2073 nce->ret = ret;
2074 strcpy(nce->name, dest->start);
31db9f7c
AB
2075
2076 if (ino < sctx->send_progress)
2077 nce->need_later_update = 0;
2078 else
2079 nce->need_later_update = 1;
2080
2081 nce_ret = name_cache_insert(sctx, nce);
2082 if (nce_ret < 0)
2083 ret = nce_ret;
2084 name_cache_clean_unused(sctx);
2085
2086out:
2087 btrfs_free_path(path);
2088 return ret;
2089}
2090
2091/*
2092 * Magic happens here. This function returns the first ref to an inode as it
2093 * would look like while receiving the stream at this point in time.
2094 * We walk the path up to the root. For every inode in between, we check if it
2095 * was already processed/sent. If yes, we continue with the parent as found
2096 * in send_root. If not, we continue with the parent as found in parent_root.
2097 * If we encounter an inode that was deleted at this point in time, we use the
2098 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2099 * that were not created yet and overwritten inodes/refs.
2100 *
2101 * When do we have have orphan inodes:
2102 * 1. When an inode is freshly created and thus no valid refs are available yet
2103 * 2. When a directory lost all it's refs (deleted) but still has dir items
2104 * inside which were not processed yet (pending for move/delete). If anyone
2105 * tried to get the path to the dir items, it would get a path inside that
2106 * orphan directory.
2107 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2108 * of an unprocessed inode. If in that case the first ref would be
2109 * overwritten, the overwritten inode gets "orphanized". Later when we
2110 * process this overwritten inode, it is restored at a new place by moving
2111 * the orphan inode.
2112 *
2113 * sctx->send_progress tells this function at which point in time receiving
2114 * would be.
2115 */
2116static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2117 struct fs_path *dest)
2118{
2119 int ret = 0;
2120 struct fs_path *name = NULL;
2121 u64 parent_inode = 0;
2122 u64 parent_gen = 0;
2123 int stop = 0;
9f03740a
FDBM
2124 u64 start_ino = ino;
2125 u64 start_gen = gen;
2126 int skip_name_cache = 0;
31db9f7c 2127
924794c9 2128 name = fs_path_alloc();
31db9f7c
AB
2129 if (!name) {
2130 ret = -ENOMEM;
2131 goto out;
2132 }
2133
9f03740a
FDBM
2134 if (is_waiting_for_move(sctx, ino))
2135 skip_name_cache = 1;
2136
2137again:
31db9f7c
AB
2138 dest->reversed = 1;
2139 fs_path_reset(dest);
2140
2141 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2142 fs_path_reset(name);
2143
9f03740a 2144 ret = __get_cur_name_and_parent(sctx, ino, gen, skip_name_cache,
31db9f7c
AB
2145 &parent_inode, &parent_gen, name);
2146 if (ret < 0)
2147 goto out;
2148 if (ret)
2149 stop = 1;
2150
9f03740a
FDBM
2151 if (!skip_name_cache &&
2152 is_waiting_for_move(sctx, parent_inode)) {
2153 ino = start_ino;
2154 gen = start_gen;
2155 stop = 0;
2156 skip_name_cache = 1;
2157 goto again;
2158 }
2159
31db9f7c
AB
2160 ret = fs_path_add_path(dest, name);
2161 if (ret < 0)
2162 goto out;
2163
2164 ino = parent_inode;
2165 gen = parent_gen;
2166 }
2167
2168out:
924794c9 2169 fs_path_free(name);
31db9f7c
AB
2170 if (!ret)
2171 fs_path_unreverse(dest);
2172 return ret;
2173}
2174
31db9f7c
AB
2175/*
2176 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2177 */
2178static int send_subvol_begin(struct send_ctx *sctx)
2179{
2180 int ret;
2181 struct btrfs_root *send_root = sctx->send_root;
2182 struct btrfs_root *parent_root = sctx->parent_root;
2183 struct btrfs_path *path;
2184 struct btrfs_key key;
2185 struct btrfs_root_ref *ref;
2186 struct extent_buffer *leaf;
2187 char *name = NULL;
2188 int namelen;
2189
ffcfaf81 2190 path = btrfs_alloc_path();
31db9f7c
AB
2191 if (!path)
2192 return -ENOMEM;
2193
2194 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2195 if (!name) {
2196 btrfs_free_path(path);
2197 return -ENOMEM;
2198 }
2199
2200 key.objectid = send_root->objectid;
2201 key.type = BTRFS_ROOT_BACKREF_KEY;
2202 key.offset = 0;
2203
2204 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2205 &key, path, 1, 0);
2206 if (ret < 0)
2207 goto out;
2208 if (ret) {
2209 ret = -ENOENT;
2210 goto out;
2211 }
2212
2213 leaf = path->nodes[0];
2214 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2215 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2216 key.objectid != send_root->objectid) {
2217 ret = -ENOENT;
2218 goto out;
2219 }
2220 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2221 namelen = btrfs_root_ref_name_len(leaf, ref);
2222 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2223 btrfs_release_path(path);
2224
31db9f7c
AB
2225 if (parent_root) {
2226 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2227 if (ret < 0)
2228 goto out;
2229 } else {
2230 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2231 if (ret < 0)
2232 goto out;
2233 }
2234
2235 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2236 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2237 sctx->send_root->root_item.uuid);
2238 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2239 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c
AB
2240 if (parent_root) {
2241 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2242 sctx->parent_root->root_item.uuid);
2243 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2244 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2245 }
2246
2247 ret = send_cmd(sctx);
2248
2249tlv_put_failure:
2250out:
2251 btrfs_free_path(path);
2252 kfree(name);
2253 return ret;
2254}
2255
2256static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2257{
2258 int ret = 0;
2259 struct fs_path *p;
2260
2261verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2262
924794c9 2263 p = fs_path_alloc();
31db9f7c
AB
2264 if (!p)
2265 return -ENOMEM;
2266
2267 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2268 if (ret < 0)
2269 goto out;
2270
2271 ret = get_cur_path(sctx, ino, gen, p);
2272 if (ret < 0)
2273 goto out;
2274 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2275 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2276
2277 ret = send_cmd(sctx);
2278
2279tlv_put_failure:
2280out:
924794c9 2281 fs_path_free(p);
31db9f7c
AB
2282 return ret;
2283}
2284
2285static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2286{
2287 int ret = 0;
2288 struct fs_path *p;
2289
2290verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2291
924794c9 2292 p = fs_path_alloc();
31db9f7c
AB
2293 if (!p)
2294 return -ENOMEM;
2295
2296 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2297 if (ret < 0)
2298 goto out;
2299
2300 ret = get_cur_path(sctx, ino, gen, p);
2301 if (ret < 0)
2302 goto out;
2303 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2304 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2305
2306 ret = send_cmd(sctx);
2307
2308tlv_put_failure:
2309out:
924794c9 2310 fs_path_free(p);
31db9f7c
AB
2311 return ret;
2312}
2313
2314static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2315{
2316 int ret = 0;
2317 struct fs_path *p;
2318
2319verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2320
924794c9 2321 p = fs_path_alloc();
31db9f7c
AB
2322 if (!p)
2323 return -ENOMEM;
2324
2325 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2326 if (ret < 0)
2327 goto out;
2328
2329 ret = get_cur_path(sctx, ino, gen, p);
2330 if (ret < 0)
2331 goto out;
2332 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2333 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2334 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2335
2336 ret = send_cmd(sctx);
2337
2338tlv_put_failure:
2339out:
924794c9 2340 fs_path_free(p);
31db9f7c
AB
2341 return ret;
2342}
2343
2344static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2345{
2346 int ret = 0;
2347 struct fs_path *p = NULL;
2348 struct btrfs_inode_item *ii;
2349 struct btrfs_path *path = NULL;
2350 struct extent_buffer *eb;
2351 struct btrfs_key key;
2352 int slot;
2353
2354verbose_printk("btrfs: send_utimes %llu\n", ino);
2355
924794c9 2356 p = fs_path_alloc();
31db9f7c
AB
2357 if (!p)
2358 return -ENOMEM;
2359
2360 path = alloc_path_for_send();
2361 if (!path) {
2362 ret = -ENOMEM;
2363 goto out;
2364 }
2365
2366 key.objectid = ino;
2367 key.type = BTRFS_INODE_ITEM_KEY;
2368 key.offset = 0;
2369 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2370 if (ret < 0)
2371 goto out;
2372
2373 eb = path->nodes[0];
2374 slot = path->slots[0];
2375 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2376
2377 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2378 if (ret < 0)
2379 goto out;
2380
2381 ret = get_cur_path(sctx, ino, gen, p);
2382 if (ret < 0)
2383 goto out;
2384 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2385 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb,
2386 btrfs_inode_atime(ii));
2387 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb,
2388 btrfs_inode_mtime(ii));
2389 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb,
2390 btrfs_inode_ctime(ii));
766702ef 2391 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2392
2393 ret = send_cmd(sctx);
2394
2395tlv_put_failure:
2396out:
924794c9 2397 fs_path_free(p);
31db9f7c
AB
2398 btrfs_free_path(path);
2399 return ret;
2400}
2401
2402/*
2403 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2404 * a valid path yet because we did not process the refs yet. So, the inode
2405 * is created as orphan.
2406 */
1f4692da 2407static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c
AB
2408{
2409 int ret = 0;
31db9f7c 2410 struct fs_path *p;
31db9f7c 2411 int cmd;
1f4692da 2412 u64 gen;
31db9f7c 2413 u64 mode;
1f4692da 2414 u64 rdev;
31db9f7c 2415
1f4692da 2416verbose_printk("btrfs: send_create_inode %llu\n", ino);
31db9f7c 2417
924794c9 2418 p = fs_path_alloc();
31db9f7c
AB
2419 if (!p)
2420 return -ENOMEM;
2421
1f4692da
AB
2422 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode, NULL,
2423 NULL, &rdev);
2424 if (ret < 0)
2425 goto out;
31db9f7c 2426
e938c8ad 2427 if (S_ISREG(mode)) {
31db9f7c 2428 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2429 } else if (S_ISDIR(mode)) {
31db9f7c 2430 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2431 } else if (S_ISLNK(mode)) {
31db9f7c 2432 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2433 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2434 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2435 } else if (S_ISFIFO(mode)) {
31db9f7c 2436 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2437 } else if (S_ISSOCK(mode)) {
31db9f7c 2438 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2439 } else {
31db9f7c
AB
2440 printk(KERN_WARNING "btrfs: unexpected inode type %o",
2441 (int)(mode & S_IFMT));
2442 ret = -ENOTSUPP;
2443 goto out;
2444 }
2445
2446 ret = begin_cmd(sctx, cmd);
2447 if (ret < 0)
2448 goto out;
2449
1f4692da 2450 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2451 if (ret < 0)
2452 goto out;
2453
2454 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2455 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2456
2457 if (S_ISLNK(mode)) {
2458 fs_path_reset(p);
924794c9 2459 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2460 if (ret < 0)
2461 goto out;
2462 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2463 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2464 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2465 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2466 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2467 }
2468
2469 ret = send_cmd(sctx);
2470 if (ret < 0)
2471 goto out;
2472
2473
2474tlv_put_failure:
2475out:
924794c9 2476 fs_path_free(p);
31db9f7c
AB
2477 return ret;
2478}
2479
1f4692da
AB
2480/*
2481 * We need some special handling for inodes that get processed before the parent
2482 * directory got created. See process_recorded_refs for details.
2483 * This function does the check if we already created the dir out of order.
2484 */
2485static int did_create_dir(struct send_ctx *sctx, u64 dir)
2486{
2487 int ret = 0;
2488 struct btrfs_path *path = NULL;
2489 struct btrfs_key key;
2490 struct btrfs_key found_key;
2491 struct btrfs_key di_key;
2492 struct extent_buffer *eb;
2493 struct btrfs_dir_item *di;
2494 int slot;
2495
2496 path = alloc_path_for_send();
2497 if (!path) {
2498 ret = -ENOMEM;
2499 goto out;
2500 }
2501
2502 key.objectid = dir;
2503 key.type = BTRFS_DIR_INDEX_KEY;
2504 key.offset = 0;
2505 while (1) {
2506 ret = btrfs_search_slot_for_read(sctx->send_root, &key, path,
2507 1, 0);
2508 if (ret < 0)
2509 goto out;
2510 if (!ret) {
2511 eb = path->nodes[0];
2512 slot = path->slots[0];
2513 btrfs_item_key_to_cpu(eb, &found_key, slot);
2514 }
2515 if (ret || found_key.objectid != key.objectid ||
2516 found_key.type != key.type) {
2517 ret = 0;
2518 goto out;
2519 }
2520
2521 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2522 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2523
a0525414
JB
2524 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2525 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2526 ret = 1;
2527 goto out;
2528 }
2529
2530 key.offset = found_key.offset + 1;
2531 btrfs_release_path(path);
2532 }
2533
2534out:
2535 btrfs_free_path(path);
2536 return ret;
2537}
2538
2539/*
2540 * Only creates the inode if it is:
2541 * 1. Not a directory
2542 * 2. Or a directory which was not created already due to out of order
2543 * directories. See did_create_dir and process_recorded_refs for details.
2544 */
2545static int send_create_inode_if_needed(struct send_ctx *sctx)
2546{
2547 int ret;
2548
2549 if (S_ISDIR(sctx->cur_inode_mode)) {
2550 ret = did_create_dir(sctx, sctx->cur_ino);
2551 if (ret < 0)
2552 goto out;
2553 if (ret) {
2554 ret = 0;
2555 goto out;
2556 }
2557 }
2558
2559 ret = send_create_inode(sctx, sctx->cur_ino);
2560 if (ret < 0)
2561 goto out;
2562
2563out:
2564 return ret;
2565}
2566
31db9f7c
AB
2567struct recorded_ref {
2568 struct list_head list;
2569 char *dir_path;
2570 char *name;
2571 struct fs_path *full_path;
2572 u64 dir;
2573 u64 dir_gen;
2574 int dir_path_len;
2575 int name_len;
2576};
2577
2578/*
2579 * We need to process new refs before deleted refs, but compare_tree gives us
2580 * everything mixed. So we first record all refs and later process them.
2581 * This function is a helper to record one ref.
2582 */
2583static int record_ref(struct list_head *head, u64 dir,
2584 u64 dir_gen, struct fs_path *path)
2585{
2586 struct recorded_ref *ref;
31db9f7c
AB
2587
2588 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2589 if (!ref)
2590 return -ENOMEM;
2591
2592 ref->dir = dir;
2593 ref->dir_gen = dir_gen;
2594 ref->full_path = path;
2595
ed84885d
AS
2596 ref->name = (char *)kbasename(ref->full_path->start);
2597 ref->name_len = ref->full_path->end - ref->name;
2598 ref->dir_path = ref->full_path->start;
2599 if (ref->name == ref->full_path->start)
31db9f7c 2600 ref->dir_path_len = 0;
ed84885d 2601 else
31db9f7c
AB
2602 ref->dir_path_len = ref->full_path->end -
2603 ref->full_path->start - 1 - ref->name_len;
31db9f7c
AB
2604
2605 list_add_tail(&ref->list, head);
2606 return 0;
2607}
2608
ba5e8f2e
JB
2609static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2610{
2611 struct recorded_ref *new;
2612
2613 new = kmalloc(sizeof(*ref), GFP_NOFS);
2614 if (!new)
2615 return -ENOMEM;
2616
2617 new->dir = ref->dir;
2618 new->dir_gen = ref->dir_gen;
2619 new->full_path = NULL;
2620 INIT_LIST_HEAD(&new->list);
2621 list_add_tail(&new->list, list);
2622 return 0;
2623}
2624
924794c9 2625static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2626{
2627 struct recorded_ref *cur;
31db9f7c 2628
e938c8ad
AB
2629 while (!list_empty(head)) {
2630 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2631 fs_path_free(cur->full_path);
e938c8ad 2632 list_del(&cur->list);
31db9f7c
AB
2633 kfree(cur);
2634 }
31db9f7c
AB
2635}
2636
2637static void free_recorded_refs(struct send_ctx *sctx)
2638{
924794c9
TI
2639 __free_recorded_refs(&sctx->new_refs);
2640 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2641}
2642
2643/*
766702ef 2644 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2645 * ref of an unprocessed inode gets overwritten and for all non empty
2646 * directories.
2647 */
2648static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2649 struct fs_path *path)
2650{
2651 int ret;
2652 struct fs_path *orphan;
2653
924794c9 2654 orphan = fs_path_alloc();
31db9f7c
AB
2655 if (!orphan)
2656 return -ENOMEM;
2657
2658 ret = gen_unique_name(sctx, ino, gen, orphan);
2659 if (ret < 0)
2660 goto out;
2661
2662 ret = send_rename(sctx, path, orphan);
2663
2664out:
924794c9 2665 fs_path_free(orphan);
31db9f7c
AB
2666 return ret;
2667}
2668
2669/*
2670 * Returns 1 if a directory can be removed at this point in time.
2671 * We check this by iterating all dir items and checking if the inode behind
2672 * the dir item was already processed.
2673 */
2674static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 send_progress)
2675{
2676 int ret = 0;
2677 struct btrfs_root *root = sctx->parent_root;
2678 struct btrfs_path *path;
2679 struct btrfs_key key;
2680 struct btrfs_key found_key;
2681 struct btrfs_key loc;
2682 struct btrfs_dir_item *di;
2683
6d85ed05
AB
2684 /*
2685 * Don't try to rmdir the top/root subvolume dir.
2686 */
2687 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2688 return 0;
2689
31db9f7c
AB
2690 path = alloc_path_for_send();
2691 if (!path)
2692 return -ENOMEM;
2693
2694 key.objectid = dir;
2695 key.type = BTRFS_DIR_INDEX_KEY;
2696 key.offset = 0;
2697
2698 while (1) {
2699 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2700 if (ret < 0)
2701 goto out;
2702 if (!ret) {
2703 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2704 path->slots[0]);
2705 }
2706 if (ret || found_key.objectid != key.objectid ||
2707 found_key.type != key.type) {
2708 break;
2709 }
2710
2711 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2712 struct btrfs_dir_item);
2713 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2714
2715 if (loc.objectid > send_progress) {
2716 ret = 0;
2717 goto out;
2718 }
2719
2720 btrfs_release_path(path);
2721 key.offset = found_key.offset + 1;
2722 }
2723
2724 ret = 1;
2725
2726out:
2727 btrfs_free_path(path);
2728 return ret;
2729}
2730
9f03740a
FDBM
2731static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2732{
2733 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2734 struct waiting_dir_move *entry;
2735
2736 while (n) {
2737 entry = rb_entry(n, struct waiting_dir_move, node);
2738 if (ino < entry->ino)
2739 n = n->rb_left;
2740 else if (ino > entry->ino)
2741 n = n->rb_right;
2742 else
2743 return 1;
2744 }
2745 return 0;
2746}
2747
2748static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2749{
2750 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2751 struct rb_node *parent = NULL;
2752 struct waiting_dir_move *entry, *dm;
2753
2754 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2755 if (!dm)
2756 return -ENOMEM;
2757 dm->ino = ino;
2758
2759 while (*p) {
2760 parent = *p;
2761 entry = rb_entry(parent, struct waiting_dir_move, node);
2762 if (ino < entry->ino) {
2763 p = &(*p)->rb_left;
2764 } else if (ino > entry->ino) {
2765 p = &(*p)->rb_right;
2766 } else {
2767 kfree(dm);
2768 return -EEXIST;
2769 }
2770 }
2771
2772 rb_link_node(&dm->node, parent, p);
2773 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2774 return 0;
2775}
2776
9f03740a
FDBM
2777static int del_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2778{
2779 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2780 struct waiting_dir_move *entry;
2781
2782 while (n) {
2783 entry = rb_entry(n, struct waiting_dir_move, node);
2784 if (ino < entry->ino) {
2785 n = n->rb_left;
2786 } else if (ino > entry->ino) {
2787 n = n->rb_right;
2788 } else {
2789 rb_erase(&entry->node, &sctx->waiting_dir_moves);
2790 kfree(entry);
2791 return 0;
2792 }
2793 }
2794 return -ENOENT;
2795}
2796
9f03740a
FDBM
2797static int add_pending_dir_move(struct send_ctx *sctx, u64 parent_ino)
2798{
2799 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
2800 struct rb_node *parent = NULL;
2801 struct pending_dir_move *entry, *pm;
2802 struct recorded_ref *cur;
2803 int exists = 0;
2804 int ret;
2805
2806 pm = kmalloc(sizeof(*pm), GFP_NOFS);
2807 if (!pm)
2808 return -ENOMEM;
2809 pm->parent_ino = parent_ino;
2810 pm->ino = sctx->cur_ino;
2811 pm->gen = sctx->cur_inode_gen;
2812 INIT_LIST_HEAD(&pm->list);
2813 INIT_LIST_HEAD(&pm->update_refs);
2814 RB_CLEAR_NODE(&pm->node);
2815
2816 while (*p) {
2817 parent = *p;
2818 entry = rb_entry(parent, struct pending_dir_move, node);
2819 if (parent_ino < entry->parent_ino) {
2820 p = &(*p)->rb_left;
2821 } else if (parent_ino > entry->parent_ino) {
2822 p = &(*p)->rb_right;
2823 } else {
2824 exists = 1;
2825 break;
2826 }
2827 }
2828
2829 list_for_each_entry(cur, &sctx->deleted_refs, list) {
2830 ret = dup_ref(cur, &pm->update_refs);
2831 if (ret < 0)
2832 goto out;
2833 }
2834 list_for_each_entry(cur, &sctx->new_refs, list) {
2835 ret = dup_ref(cur, &pm->update_refs);
2836 if (ret < 0)
2837 goto out;
2838 }
2839
2840 ret = add_waiting_dir_move(sctx, pm->ino);
2841 if (ret)
2842 goto out;
2843
2844 if (exists) {
2845 list_add_tail(&pm->list, &entry->list);
2846 } else {
2847 rb_link_node(&pm->node, parent, p);
2848 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
2849 }
2850 ret = 0;
2851out:
2852 if (ret) {
2853 __free_recorded_refs(&pm->update_refs);
2854 kfree(pm);
2855 }
2856 return ret;
2857}
2858
2859static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
2860 u64 parent_ino)
2861{
2862 struct rb_node *n = sctx->pending_dir_moves.rb_node;
2863 struct pending_dir_move *entry;
2864
2865 while (n) {
2866 entry = rb_entry(n, struct pending_dir_move, node);
2867 if (parent_ino < entry->parent_ino)
2868 n = n->rb_left;
2869 else if (parent_ino > entry->parent_ino)
2870 n = n->rb_right;
2871 else
2872 return entry;
2873 }
2874 return NULL;
2875}
2876
2877static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
2878{
2879 struct fs_path *from_path = NULL;
2880 struct fs_path *to_path = NULL;
2881 u64 orig_progress = sctx->send_progress;
2882 struct recorded_ref *cur;
2883 int ret;
2884
2885 from_path = fs_path_alloc();
2886 if (!from_path)
2887 return -ENOMEM;
2888
2889 sctx->send_progress = pm->ino;
2890 ret = get_cur_path(sctx, pm->ino, pm->gen, from_path);
2891 if (ret < 0)
2892 goto out;
2893
2894 to_path = fs_path_alloc();
2895 if (!to_path) {
2896 ret = -ENOMEM;
2897 goto out;
2898 }
2899
2900 sctx->send_progress = sctx->cur_ino + 1;
6cc98d90
JB
2901 ret = del_waiting_dir_move(sctx, pm->ino);
2902 ASSERT(ret == 0);
2903
9f03740a
FDBM
2904 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
2905 if (ret < 0)
2906 goto out;
2907
2908 ret = send_rename(sctx, from_path, to_path);
2909 if (ret < 0)
2910 goto out;
2911
2912 ret = send_utimes(sctx, pm->ino, pm->gen);
2913 if (ret < 0)
2914 goto out;
2915
2916 /*
2917 * After rename/move, need to update the utimes of both new parent(s)
2918 * and old parent(s).
2919 */
2920 list_for_each_entry(cur, &pm->update_refs, list) {
2921 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
2922 if (ret < 0)
2923 goto out;
2924 }
2925
2926out:
2927 fs_path_free(from_path);
2928 fs_path_free(to_path);
2929 sctx->send_progress = orig_progress;
2930
2931 return ret;
2932}
2933
2934static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
2935{
2936 if (!list_empty(&m->list))
2937 list_del(&m->list);
2938 if (!RB_EMPTY_NODE(&m->node))
2939 rb_erase(&m->node, &sctx->pending_dir_moves);
2940 __free_recorded_refs(&m->update_refs);
2941 kfree(m);
2942}
2943
2944static void tail_append_pending_moves(struct pending_dir_move *moves,
2945 struct list_head *stack)
2946{
2947 if (list_empty(&moves->list)) {
2948 list_add_tail(&moves->list, stack);
2949 } else {
2950 LIST_HEAD(list);
2951 list_splice_init(&moves->list, &list);
2952 list_add_tail(&moves->list, stack);
2953 list_splice_tail(&list, stack);
2954 }
2955}
2956
2957static int apply_children_dir_moves(struct send_ctx *sctx)
2958{
2959 struct pending_dir_move *pm;
2960 struct list_head stack;
2961 u64 parent_ino = sctx->cur_ino;
2962 int ret = 0;
2963
2964 pm = get_pending_dir_moves(sctx, parent_ino);
2965 if (!pm)
2966 return 0;
2967
2968 INIT_LIST_HEAD(&stack);
2969 tail_append_pending_moves(pm, &stack);
2970
2971 while (!list_empty(&stack)) {
2972 pm = list_first_entry(&stack, struct pending_dir_move, list);
2973 parent_ino = pm->ino;
2974 ret = apply_dir_move(sctx, pm);
2975 free_pending_move(sctx, pm);
2976 if (ret)
2977 goto out;
2978 pm = get_pending_dir_moves(sctx, parent_ino);
2979 if (pm)
2980 tail_append_pending_moves(pm, &stack);
2981 }
2982 return 0;
2983
2984out:
2985 while (!list_empty(&stack)) {
2986 pm = list_first_entry(&stack, struct pending_dir_move, list);
2987 free_pending_move(sctx, pm);
2988 }
2989 return ret;
2990}
2991
2992static int wait_for_parent_move(struct send_ctx *sctx,
2993 struct recorded_ref *parent_ref)
2994{
2995 int ret;
2996 u64 ino = parent_ref->dir;
2997 u64 parent_ino_before, parent_ino_after;
2998 u64 new_gen, old_gen;
2999 struct fs_path *path_before = NULL;
3000 struct fs_path *path_after = NULL;
3001 int len1, len2;
3002
3003 if (parent_ref->dir <= sctx->cur_ino)
3004 return 0;
3005
3006 if (is_waiting_for_move(sctx, ino))
3007 return 1;
3008
3009 ret = get_inode_info(sctx->parent_root, ino, NULL, &old_gen,
3010 NULL, NULL, NULL, NULL);
3011 if (ret == -ENOENT)
3012 return 0;
3013 else if (ret < 0)
3014 return ret;
3015
3016 ret = get_inode_info(sctx->send_root, ino, NULL, &new_gen,
3017 NULL, NULL, NULL, NULL);
3018 if (ret < 0)
3019 return ret;
3020
3021 if (new_gen != old_gen)
3022 return 0;
3023
3024 path_before = fs_path_alloc();
3025 if (!path_before)
3026 return -ENOMEM;
3027
3028 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3029 NULL, path_before);
3030 if (ret == -ENOENT) {
3031 ret = 0;
3032 goto out;
3033 } else if (ret < 0) {
3034 goto out;
3035 }
3036
3037 path_after = fs_path_alloc();
3038 if (!path_after) {
3039 ret = -ENOMEM;
3040 goto out;
3041 }
3042
3043 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3044 NULL, path_after);
3045 if (ret == -ENOENT) {
3046 ret = 0;
3047 goto out;
3048 } else if (ret < 0) {
3049 goto out;
3050 }
3051
3052 len1 = fs_path_len(path_before);
3053 len2 = fs_path_len(path_after);
3054 if ((parent_ino_before != parent_ino_after) && (len1 != len2 ||
3055 memcmp(path_before->start, path_after->start, len1))) {
3056 ret = 1;
3057 goto out;
3058 }
3059 ret = 0;
3060
3061out:
3062 fs_path_free(path_before);
3063 fs_path_free(path_after);
3064
3065 return ret;
3066}
3067
31db9f7c
AB
3068/*
3069 * This does all the move/link/unlink/rmdir magic.
3070 */
9f03740a 3071static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c
AB
3072{
3073 int ret = 0;
3074 struct recorded_ref *cur;
1f4692da 3075 struct recorded_ref *cur2;
ba5e8f2e 3076 struct list_head check_dirs;
31db9f7c 3077 struct fs_path *valid_path = NULL;
b24baf69 3078 u64 ow_inode = 0;
31db9f7c
AB
3079 u64 ow_gen;
3080 int did_overwrite = 0;
3081 int is_orphan = 0;
3082
3083verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3084
6d85ed05
AB
3085 /*
3086 * This should never happen as the root dir always has the same ref
3087 * which is always '..'
3088 */
3089 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3090 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3091
924794c9 3092 valid_path = fs_path_alloc();
31db9f7c
AB
3093 if (!valid_path) {
3094 ret = -ENOMEM;
3095 goto out;
3096 }
3097
31db9f7c
AB
3098 /*
3099 * First, check if the first ref of the current inode was overwritten
3100 * before. If yes, we know that the current inode was already orphanized
3101 * and thus use the orphan name. If not, we can use get_cur_path to
3102 * get the path of the first ref as it would like while receiving at
3103 * this point in time.
3104 * New inodes are always orphan at the beginning, so force to use the
3105 * orphan name in this case.
3106 * The first ref is stored in valid_path and will be updated if it
3107 * gets moved around.
3108 */
3109 if (!sctx->cur_inode_new) {
3110 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3111 sctx->cur_inode_gen);
3112 if (ret < 0)
3113 goto out;
3114 if (ret)
3115 did_overwrite = 1;
3116 }
3117 if (sctx->cur_inode_new || did_overwrite) {
3118 ret = gen_unique_name(sctx, sctx->cur_ino,
3119 sctx->cur_inode_gen, valid_path);
3120 if (ret < 0)
3121 goto out;
3122 is_orphan = 1;
3123 } else {
3124 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3125 valid_path);
3126 if (ret < 0)
3127 goto out;
3128 }
3129
3130 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3131 /*
3132 * We may have refs where the parent directory does not exist
3133 * yet. This happens if the parent directories inum is higher
3134 * the the current inum. To handle this case, we create the
3135 * parent directory out of order. But we need to check if this
3136 * did already happen before due to other refs in the same dir.
3137 */
3138 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3139 if (ret < 0)
3140 goto out;
3141 if (ret == inode_state_will_create) {
3142 ret = 0;
3143 /*
3144 * First check if any of the current inodes refs did
3145 * already create the dir.
3146 */
3147 list_for_each_entry(cur2, &sctx->new_refs, list) {
3148 if (cur == cur2)
3149 break;
3150 if (cur2->dir == cur->dir) {
3151 ret = 1;
3152 break;
3153 }
3154 }
3155
3156 /*
3157 * If that did not happen, check if a previous inode
3158 * did already create the dir.
3159 */
3160 if (!ret)
3161 ret = did_create_dir(sctx, cur->dir);
3162 if (ret < 0)
3163 goto out;
3164 if (!ret) {
3165 ret = send_create_inode(sctx, cur->dir);
3166 if (ret < 0)
3167 goto out;
3168 }
3169 }
3170
31db9f7c
AB
3171 /*
3172 * Check if this new ref would overwrite the first ref of
3173 * another unprocessed inode. If yes, orphanize the
3174 * overwritten inode. If we find an overwritten ref that is
3175 * not the first ref, simply unlink it.
3176 */
3177 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3178 cur->name, cur->name_len,
3179 &ow_inode, &ow_gen);
3180 if (ret < 0)
3181 goto out;
3182 if (ret) {
924794c9
TI
3183 ret = is_first_ref(sctx->parent_root,
3184 ow_inode, cur->dir, cur->name,
3185 cur->name_len);
31db9f7c
AB
3186 if (ret < 0)
3187 goto out;
3188 if (ret) {
3189 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3190 cur->full_path);
3191 if (ret < 0)
3192 goto out;
3193 } else {
3194 ret = send_unlink(sctx, cur->full_path);
3195 if (ret < 0)
3196 goto out;
3197 }
3198 }
3199
3200 /*
3201 * link/move the ref to the new place. If we have an orphan
3202 * inode, move it and update valid_path. If not, link or move
3203 * it depending on the inode mode.
3204 */
1f4692da 3205 if (is_orphan) {
31db9f7c
AB
3206 ret = send_rename(sctx, valid_path, cur->full_path);
3207 if (ret < 0)
3208 goto out;
3209 is_orphan = 0;
3210 ret = fs_path_copy(valid_path, cur->full_path);
3211 if (ret < 0)
3212 goto out;
3213 } else {
3214 if (S_ISDIR(sctx->cur_inode_mode)) {
3215 /*
3216 * Dirs can't be linked, so move it. For moved
3217 * dirs, we always have one new and one deleted
3218 * ref. The deleted ref is ignored later.
3219 */
9f03740a
FDBM
3220 if (wait_for_parent_move(sctx, cur)) {
3221 ret = add_pending_dir_move(sctx,
3222 cur->dir);
3223 *pending_move = 1;
3224 } else {
3225 ret = send_rename(sctx, valid_path,
3226 cur->full_path);
3227 if (!ret)
3228 ret = fs_path_copy(valid_path,
3229 cur->full_path);
3230 }
31db9f7c
AB
3231 if (ret < 0)
3232 goto out;
3233 } else {
3234 ret = send_link(sctx, cur->full_path,
3235 valid_path);
3236 if (ret < 0)
3237 goto out;
3238 }
3239 }
ba5e8f2e 3240 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3241 if (ret < 0)
3242 goto out;
3243 }
3244
3245 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3246 /*
3247 * Check if we can already rmdir the directory. If not,
3248 * orphanize it. For every dir item inside that gets deleted
3249 * later, we do this check again and rmdir it then if possible.
3250 * See the use of check_dirs for more details.
3251 */
3252 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_ino);
3253 if (ret < 0)
3254 goto out;
3255 if (ret) {
3256 ret = send_rmdir(sctx, valid_path);
3257 if (ret < 0)
3258 goto out;
3259 } else if (!is_orphan) {
3260 ret = orphanize_inode(sctx, sctx->cur_ino,
3261 sctx->cur_inode_gen, valid_path);
3262 if (ret < 0)
3263 goto out;
3264 is_orphan = 1;
3265 }
3266
3267 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 3268 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3269 if (ret < 0)
3270 goto out;
3271 }
ccf1626b
AB
3272 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3273 !list_empty(&sctx->deleted_refs)) {
3274 /*
3275 * We have a moved dir. Add the old parent to check_dirs
3276 */
3277 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3278 list);
ba5e8f2e 3279 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
3280 if (ret < 0)
3281 goto out;
31db9f7c
AB
3282 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3283 /*
3284 * We have a non dir inode. Go through all deleted refs and
3285 * unlink them if they were not already overwritten by other
3286 * inodes.
3287 */
3288 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3289 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3290 sctx->cur_ino, sctx->cur_inode_gen,
3291 cur->name, cur->name_len);
3292 if (ret < 0)
3293 goto out;
3294 if (!ret) {
1f4692da
AB
3295 ret = send_unlink(sctx, cur->full_path);
3296 if (ret < 0)
3297 goto out;
31db9f7c 3298 }
ba5e8f2e 3299 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
3300 if (ret < 0)
3301 goto out;
3302 }
31db9f7c
AB
3303 /*
3304 * If the inode is still orphan, unlink the orphan. This may
3305 * happen when a previous inode did overwrite the first ref
3306 * of this inode and no new refs were added for the current
766702ef
AB
3307 * inode. Unlinking does not mean that the inode is deleted in
3308 * all cases. There may still be links to this inode in other
3309 * places.
31db9f7c 3310 */
1f4692da 3311 if (is_orphan) {
31db9f7c
AB
3312 ret = send_unlink(sctx, valid_path);
3313 if (ret < 0)
3314 goto out;
3315 }
3316 }
3317
3318 /*
3319 * We did collect all parent dirs where cur_inode was once located. We
3320 * now go through all these dirs and check if they are pending for
3321 * deletion and if it's finally possible to perform the rmdir now.
3322 * We also update the inode stats of the parent dirs here.
3323 */
ba5e8f2e 3324 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
3325 /*
3326 * In case we had refs into dirs that were not processed yet,
3327 * we don't need to do the utime and rmdir logic for these dirs.
3328 * The dir will be processed later.
3329 */
ba5e8f2e 3330 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
3331 continue;
3332
ba5e8f2e 3333 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3334 if (ret < 0)
3335 goto out;
3336
3337 if (ret == inode_state_did_create ||
3338 ret == inode_state_no_change) {
3339 /* TODO delayed utimes */
ba5e8f2e 3340 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
3341 if (ret < 0)
3342 goto out;
3343 } else if (ret == inode_state_did_delete) {
ba5e8f2e 3344 ret = can_rmdir(sctx, cur->dir, sctx->cur_ino);
31db9f7c
AB
3345 if (ret < 0)
3346 goto out;
3347 if (ret) {
ba5e8f2e
JB
3348 ret = get_cur_path(sctx, cur->dir,
3349 cur->dir_gen, valid_path);
31db9f7c
AB
3350 if (ret < 0)
3351 goto out;
3352 ret = send_rmdir(sctx, valid_path);
3353 if (ret < 0)
3354 goto out;
3355 }
3356 }
3357 }
3358
31db9f7c
AB
3359 ret = 0;
3360
3361out:
ba5e8f2e 3362 __free_recorded_refs(&check_dirs);
31db9f7c 3363 free_recorded_refs(sctx);
924794c9 3364 fs_path_free(valid_path);
31db9f7c
AB
3365 return ret;
3366}
3367
3368static int __record_new_ref(int num, u64 dir, int index,
3369 struct fs_path *name,
3370 void *ctx)
3371{
3372 int ret = 0;
3373 struct send_ctx *sctx = ctx;
3374 struct fs_path *p;
3375 u64 gen;
3376
924794c9 3377 p = fs_path_alloc();
31db9f7c
AB
3378 if (!p)
3379 return -ENOMEM;
3380
3381 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3382 NULL, NULL);
31db9f7c
AB
3383 if (ret < 0)
3384 goto out;
3385
31db9f7c
AB
3386 ret = get_cur_path(sctx, dir, gen, p);
3387 if (ret < 0)
3388 goto out;
3389 ret = fs_path_add_path(p, name);
3390 if (ret < 0)
3391 goto out;
3392
3393 ret = record_ref(&sctx->new_refs, dir, gen, p);
3394
3395out:
3396 if (ret)
924794c9 3397 fs_path_free(p);
31db9f7c
AB
3398 return ret;
3399}
3400
3401static int __record_deleted_ref(int num, u64 dir, int index,
3402 struct fs_path *name,
3403 void *ctx)
3404{
3405 int ret = 0;
3406 struct send_ctx *sctx = ctx;
3407 struct fs_path *p;
3408 u64 gen;
3409
924794c9 3410 p = fs_path_alloc();
31db9f7c
AB
3411 if (!p)
3412 return -ENOMEM;
3413
3414 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL, NULL,
85a7b33b 3415 NULL, NULL);
31db9f7c
AB
3416 if (ret < 0)
3417 goto out;
3418
3419 ret = get_cur_path(sctx, dir, gen, p);
3420 if (ret < 0)
3421 goto out;
3422 ret = fs_path_add_path(p, name);
3423 if (ret < 0)
3424 goto out;
3425
3426 ret = record_ref(&sctx->deleted_refs, dir, gen, p);
3427
3428out:
3429 if (ret)
924794c9 3430 fs_path_free(p);
31db9f7c
AB
3431 return ret;
3432}
3433
3434static int record_new_ref(struct send_ctx *sctx)
3435{
3436 int ret;
3437
924794c9
TI
3438 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3439 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
3440 if (ret < 0)
3441 goto out;
3442 ret = 0;
3443
3444out:
3445 return ret;
3446}
3447
3448static int record_deleted_ref(struct send_ctx *sctx)
3449{
3450 int ret;
3451
924794c9
TI
3452 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3453 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
3454 if (ret < 0)
3455 goto out;
3456 ret = 0;
3457
3458out:
3459 return ret;
3460}
3461
3462struct find_ref_ctx {
3463 u64 dir;
ba5e8f2e
JB
3464 u64 dir_gen;
3465 struct btrfs_root *root;
31db9f7c
AB
3466 struct fs_path *name;
3467 int found_idx;
3468};
3469
3470static int __find_iref(int num, u64 dir, int index,
3471 struct fs_path *name,
3472 void *ctx_)
3473{
3474 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
3475 u64 dir_gen;
3476 int ret;
31db9f7c
AB
3477
3478 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3479 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
3480 /*
3481 * To avoid doing extra lookups we'll only do this if everything
3482 * else matches.
3483 */
3484 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3485 NULL, NULL, NULL);
3486 if (ret)
3487 return ret;
3488 if (dir_gen != ctx->dir_gen)
3489 return 0;
31db9f7c
AB
3490 ctx->found_idx = num;
3491 return 1;
3492 }
3493 return 0;
3494}
3495
924794c9 3496static int find_iref(struct btrfs_root *root,
31db9f7c
AB
3497 struct btrfs_path *path,
3498 struct btrfs_key *key,
ba5e8f2e 3499 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
3500{
3501 int ret;
3502 struct find_ref_ctx ctx;
3503
3504 ctx.dir = dir;
3505 ctx.name = name;
ba5e8f2e 3506 ctx.dir_gen = dir_gen;
31db9f7c 3507 ctx.found_idx = -1;
ba5e8f2e 3508 ctx.root = root;
31db9f7c 3509
924794c9 3510 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
3511 if (ret < 0)
3512 return ret;
3513
3514 if (ctx.found_idx == -1)
3515 return -ENOENT;
3516
3517 return ctx.found_idx;
3518}
3519
3520static int __record_changed_new_ref(int num, u64 dir, int index,
3521 struct fs_path *name,
3522 void *ctx)
3523{
ba5e8f2e 3524 u64 dir_gen;
31db9f7c
AB
3525 int ret;
3526 struct send_ctx *sctx = ctx;
3527
ba5e8f2e
JB
3528 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3529 NULL, NULL, NULL);
3530 if (ret)
3531 return ret;
3532
924794c9 3533 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 3534 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
3535 if (ret == -ENOENT)
3536 ret = __record_new_ref(num, dir, index, name, sctx);
3537 else if (ret > 0)
3538 ret = 0;
3539
3540 return ret;
3541}
3542
3543static int __record_changed_deleted_ref(int num, u64 dir, int index,
3544 struct fs_path *name,
3545 void *ctx)
3546{
ba5e8f2e 3547 u64 dir_gen;
31db9f7c
AB
3548 int ret;
3549 struct send_ctx *sctx = ctx;
3550
ba5e8f2e
JB
3551 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
3552 NULL, NULL, NULL);
3553 if (ret)
3554 return ret;
3555
924794c9 3556 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 3557 dir, dir_gen, name);
31db9f7c
AB
3558 if (ret == -ENOENT)
3559 ret = __record_deleted_ref(num, dir, index, name, sctx);
3560 else if (ret > 0)
3561 ret = 0;
3562
3563 return ret;
3564}
3565
3566static int record_changed_ref(struct send_ctx *sctx)
3567{
3568 int ret = 0;
3569
924794c9 3570 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
3571 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
3572 if (ret < 0)
3573 goto out;
924794c9 3574 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3575 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
3576 if (ret < 0)
3577 goto out;
3578 ret = 0;
3579
3580out:
3581 return ret;
3582}
3583
3584/*
3585 * Record and process all refs at once. Needed when an inode changes the
3586 * generation number, which means that it was deleted and recreated.
3587 */
3588static int process_all_refs(struct send_ctx *sctx,
3589 enum btrfs_compare_tree_result cmd)
3590{
3591 int ret;
3592 struct btrfs_root *root;
3593 struct btrfs_path *path;
3594 struct btrfs_key key;
3595 struct btrfs_key found_key;
3596 struct extent_buffer *eb;
3597 int slot;
3598 iterate_inode_ref_t cb;
9f03740a 3599 int pending_move = 0;
31db9f7c
AB
3600
3601 path = alloc_path_for_send();
3602 if (!path)
3603 return -ENOMEM;
3604
3605 if (cmd == BTRFS_COMPARE_TREE_NEW) {
3606 root = sctx->send_root;
3607 cb = __record_new_ref;
3608 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
3609 root = sctx->parent_root;
3610 cb = __record_deleted_ref;
3611 } else {
3612 BUG();
3613 }
3614
3615 key.objectid = sctx->cmp_key->objectid;
3616 key.type = BTRFS_INODE_REF_KEY;
3617 key.offset = 0;
3618 while (1) {
3619 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
e938c8ad 3620 if (ret < 0)
31db9f7c 3621 goto out;
e938c8ad 3622 if (ret)
31db9f7c 3623 break;
31db9f7c
AB
3624
3625 eb = path->nodes[0];
3626 slot = path->slots[0];
3627 btrfs_item_key_to_cpu(eb, &found_key, slot);
3628
3629 if (found_key.objectid != key.objectid ||
96b5bd77
JS
3630 (found_key.type != BTRFS_INODE_REF_KEY &&
3631 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 3632 break;
31db9f7c 3633
924794c9 3634 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
3635 btrfs_release_path(path);
3636 if (ret < 0)
3637 goto out;
3638
3639 key.offset = found_key.offset + 1;
3640 }
e938c8ad 3641 btrfs_release_path(path);
31db9f7c 3642
9f03740a
FDBM
3643 ret = process_recorded_refs(sctx, &pending_move);
3644 /* Only applicable to an incremental send. */
3645 ASSERT(pending_move == 0);
31db9f7c
AB
3646
3647out:
3648 btrfs_free_path(path);
3649 return ret;
3650}
3651
3652static int send_set_xattr(struct send_ctx *sctx,
3653 struct fs_path *path,
3654 const char *name, int name_len,
3655 const char *data, int data_len)
3656{
3657 int ret = 0;
3658
3659 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
3660 if (ret < 0)
3661 goto out;
3662
3663 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3664 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3665 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
3666
3667 ret = send_cmd(sctx);
3668
3669tlv_put_failure:
3670out:
3671 return ret;
3672}
3673
3674static int send_remove_xattr(struct send_ctx *sctx,
3675 struct fs_path *path,
3676 const char *name, int name_len)
3677{
3678 int ret = 0;
3679
3680 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
3681 if (ret < 0)
3682 goto out;
3683
3684 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
3685 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
3686
3687 ret = send_cmd(sctx);
3688
3689tlv_put_failure:
3690out:
3691 return ret;
3692}
3693
3694static int __process_new_xattr(int num, struct btrfs_key *di_key,
3695 const char *name, int name_len,
3696 const char *data, int data_len,
3697 u8 type, void *ctx)
3698{
3699 int ret;
3700 struct send_ctx *sctx = ctx;
3701 struct fs_path *p;
3702 posix_acl_xattr_header dummy_acl;
3703
924794c9 3704 p = fs_path_alloc();
31db9f7c
AB
3705 if (!p)
3706 return -ENOMEM;
3707
3708 /*
3709 * This hack is needed because empty acl's are stored as zero byte
3710 * data in xattrs. Problem with that is, that receiving these zero byte
3711 * acl's will fail later. To fix this, we send a dummy acl list that
3712 * only contains the version number and no entries.
3713 */
3714 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
3715 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
3716 if (data_len == 0) {
3717 dummy_acl.a_version =
3718 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
3719 data = (char *)&dummy_acl;
3720 data_len = sizeof(dummy_acl);
3721 }
3722 }
3723
3724 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3725 if (ret < 0)
3726 goto out;
3727
3728 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
3729
3730out:
924794c9 3731 fs_path_free(p);
31db9f7c
AB
3732 return ret;
3733}
3734
3735static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
3736 const char *name, int name_len,
3737 const char *data, int data_len,
3738 u8 type, void *ctx)
3739{
3740 int ret;
3741 struct send_ctx *sctx = ctx;
3742 struct fs_path *p;
3743
924794c9 3744 p = fs_path_alloc();
31db9f7c
AB
3745 if (!p)
3746 return -ENOMEM;
3747
3748 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
3749 if (ret < 0)
3750 goto out;
3751
3752 ret = send_remove_xattr(sctx, p, name, name_len);
3753
3754out:
924794c9 3755 fs_path_free(p);
31db9f7c
AB
3756 return ret;
3757}
3758
3759static int process_new_xattr(struct send_ctx *sctx)
3760{
3761 int ret = 0;
3762
924794c9
TI
3763 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
3764 sctx->cmp_key, __process_new_xattr, sctx);
31db9f7c
AB
3765
3766 return ret;
3767}
3768
3769static int process_deleted_xattr(struct send_ctx *sctx)
3770{
3771 int ret;
3772
924794c9
TI
3773 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
3774 sctx->cmp_key, __process_deleted_xattr, sctx);
31db9f7c
AB
3775
3776 return ret;
3777}
3778
3779struct find_xattr_ctx {
3780 const char *name;
3781 int name_len;
3782 int found_idx;
3783 char *found_data;
3784 int found_data_len;
3785};
3786
3787static int __find_xattr(int num, struct btrfs_key *di_key,
3788 const char *name, int name_len,
3789 const char *data, int data_len,
3790 u8 type, void *vctx)
3791{
3792 struct find_xattr_ctx *ctx = vctx;
3793
3794 if (name_len == ctx->name_len &&
3795 strncmp(name, ctx->name, name_len) == 0) {
3796 ctx->found_idx = num;
3797 ctx->found_data_len = data_len;
a5959bc0 3798 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
31db9f7c
AB
3799 if (!ctx->found_data)
3800 return -ENOMEM;
31db9f7c
AB
3801 return 1;
3802 }
3803 return 0;
3804}
3805
924794c9 3806static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
3807 struct btrfs_path *path,
3808 struct btrfs_key *key,
3809 const char *name, int name_len,
3810 char **data, int *data_len)
3811{
3812 int ret;
3813 struct find_xattr_ctx ctx;
3814
3815 ctx.name = name;
3816 ctx.name_len = name_len;
3817 ctx.found_idx = -1;
3818 ctx.found_data = NULL;
3819 ctx.found_data_len = 0;
3820
924794c9 3821 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
31db9f7c
AB
3822 if (ret < 0)
3823 return ret;
3824
3825 if (ctx.found_idx == -1)
3826 return -ENOENT;
3827 if (data) {
3828 *data = ctx.found_data;
3829 *data_len = ctx.found_data_len;
3830 } else {
3831 kfree(ctx.found_data);
3832 }
3833 return ctx.found_idx;
3834}
3835
3836
3837static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
3838 const char *name, int name_len,
3839 const char *data, int data_len,
3840 u8 type, void *ctx)
3841{
3842 int ret;
3843 struct send_ctx *sctx = ctx;
3844 char *found_data = NULL;
3845 int found_data_len = 0;
31db9f7c 3846
924794c9
TI
3847 ret = find_xattr(sctx->parent_root, sctx->right_path,
3848 sctx->cmp_key, name, name_len, &found_data,
3849 &found_data_len);
31db9f7c
AB
3850 if (ret == -ENOENT) {
3851 ret = __process_new_xattr(num, di_key, name, name_len, data,
3852 data_len, type, ctx);
3853 } else if (ret >= 0) {
3854 if (data_len != found_data_len ||
3855 memcmp(data, found_data, data_len)) {
3856 ret = __process_new_xattr(num, di_key, name, name_len,
3857 data, data_len, type, ctx);
3858 } else {
3859 ret = 0;
3860 }
3861 }
3862
3863 kfree(found_data);
31db9f7c
AB
3864 return ret;
3865}
3866
3867static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
3868 const char *name, int name_len,
3869 const char *data, int data_len,
3870 u8 type, void *ctx)
3871{
3872 int ret;
3873 struct send_ctx *sctx = ctx;
3874
924794c9
TI
3875 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
3876 name, name_len, NULL, NULL);
31db9f7c
AB
3877 if (ret == -ENOENT)
3878 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
3879 data_len, type, ctx);
3880 else if (ret >= 0)
3881 ret = 0;
3882
3883 return ret;
3884}
3885
3886static int process_changed_xattr(struct send_ctx *sctx)
3887{
3888 int ret = 0;
3889
924794c9 3890 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
31db9f7c
AB
3891 sctx->cmp_key, __process_changed_new_xattr, sctx);
3892 if (ret < 0)
3893 goto out;
924794c9 3894 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
31db9f7c
AB
3895 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
3896
3897out:
3898 return ret;
3899}
3900
3901static int process_all_new_xattrs(struct send_ctx *sctx)
3902{
3903 int ret;
3904 struct btrfs_root *root;
3905 struct btrfs_path *path;
3906 struct btrfs_key key;
3907 struct btrfs_key found_key;
3908 struct extent_buffer *eb;
3909 int slot;
3910
3911 path = alloc_path_for_send();
3912 if (!path)
3913 return -ENOMEM;
3914
3915 root = sctx->send_root;
3916
3917 key.objectid = sctx->cmp_key->objectid;
3918 key.type = BTRFS_XATTR_ITEM_KEY;
3919 key.offset = 0;
3920 while (1) {
3921 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
3922 if (ret < 0)
3923 goto out;
3924 if (ret) {
3925 ret = 0;
3926 goto out;
3927 }
3928
3929 eb = path->nodes[0];
3930 slot = path->slots[0];
3931 btrfs_item_key_to_cpu(eb, &found_key, slot);
3932
3933 if (found_key.objectid != key.objectid ||
3934 found_key.type != key.type) {
3935 ret = 0;
3936 goto out;
3937 }
3938
924794c9
TI
3939 ret = iterate_dir_item(root, path, &found_key,
3940 __process_new_xattr, sctx);
31db9f7c
AB
3941 if (ret < 0)
3942 goto out;
3943
3944 btrfs_release_path(path);
3945 key.offset = found_key.offset + 1;
3946 }
3947
3948out:
3949 btrfs_free_path(path);
3950 return ret;
3951}
3952
ed259095
JB
3953static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
3954{
3955 struct btrfs_root *root = sctx->send_root;
3956 struct btrfs_fs_info *fs_info = root->fs_info;
3957 struct inode *inode;
3958 struct page *page;
3959 char *addr;
3960 struct btrfs_key key;
3961 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
3962 pgoff_t last_index;
3963 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
3964 ssize_t ret = 0;
3965
3966 key.objectid = sctx->cur_ino;
3967 key.type = BTRFS_INODE_ITEM_KEY;
3968 key.offset = 0;
3969
3970 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3971 if (IS_ERR(inode))
3972 return PTR_ERR(inode);
3973
3974 if (offset + len > i_size_read(inode)) {
3975 if (offset > i_size_read(inode))
3976 len = 0;
3977 else
3978 len = offset - i_size_read(inode);
3979 }
3980 if (len == 0)
3981 goto out;
3982
3983 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
3984 while (index <= last_index) {
3985 unsigned cur_len = min_t(unsigned, len,
3986 PAGE_CACHE_SIZE - pg_offset);
3987 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3988 if (!page) {
3989 ret = -ENOMEM;
3990 break;
3991 }
3992
3993 if (!PageUptodate(page)) {
3994 btrfs_readpage(NULL, page);
3995 lock_page(page);
3996 if (!PageUptodate(page)) {
3997 unlock_page(page);
3998 page_cache_release(page);
3999 ret = -EIO;
4000 break;
4001 }
4002 }
4003
4004 addr = kmap(page);
4005 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4006 kunmap(page);
4007 unlock_page(page);
4008 page_cache_release(page);
4009 index++;
4010 pg_offset = 0;
4011 len -= cur_len;
4012 ret += cur_len;
4013 }
4014out:
4015 iput(inode);
4016 return ret;
4017}
4018
31db9f7c
AB
4019/*
4020 * Read some bytes from the current inode/file and send a write command to
4021 * user space.
4022 */
4023static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4024{
4025 int ret = 0;
4026 struct fs_path *p;
ed259095 4027 ssize_t num_read = 0;
31db9f7c 4028
924794c9 4029 p = fs_path_alloc();
31db9f7c
AB
4030 if (!p)
4031 return -ENOMEM;
4032
31db9f7c
AB
4033verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4034
ed259095
JB
4035 num_read = fill_read_buf(sctx, offset, len);
4036 if (num_read <= 0) {
4037 if (num_read < 0)
4038 ret = num_read;
31db9f7c 4039 goto out;
ed259095 4040 }
31db9f7c
AB
4041
4042 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4043 if (ret < 0)
4044 goto out;
4045
4046 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4047 if (ret < 0)
4048 goto out;
4049
4050 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4051 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
e938c8ad 4052 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
31db9f7c
AB
4053
4054 ret = send_cmd(sctx);
4055
4056tlv_put_failure:
4057out:
924794c9 4058 fs_path_free(p);
31db9f7c
AB
4059 if (ret < 0)
4060 return ret;
e938c8ad 4061 return num_read;
31db9f7c
AB
4062}
4063
4064/*
4065 * Send a clone command to user space.
4066 */
4067static int send_clone(struct send_ctx *sctx,
4068 u64 offset, u32 len,
4069 struct clone_root *clone_root)
4070{
4071 int ret = 0;
31db9f7c
AB
4072 struct fs_path *p;
4073 u64 gen;
4074
4075verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4076 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4077 clone_root->root->objectid, clone_root->ino,
4078 clone_root->offset);
4079
924794c9 4080 p = fs_path_alloc();
31db9f7c
AB
4081 if (!p)
4082 return -ENOMEM;
4083
4084 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4085 if (ret < 0)
4086 goto out;
4087
4088 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4089 if (ret < 0)
4090 goto out;
4091
4092 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4093 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4094 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4095
e938c8ad 4096 if (clone_root->root == sctx->send_root) {
31db9f7c 4097 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4098 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4099 if (ret < 0)
4100 goto out;
4101 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4102 } else {
924794c9 4103 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4104 }
4105 if (ret < 0)
4106 goto out;
4107
4108 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
e938c8ad 4109 clone_root->root->root_item.uuid);
31db9f7c 4110 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4111 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4112 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4113 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4114 clone_root->offset);
4115
4116 ret = send_cmd(sctx);
4117
4118tlv_put_failure:
4119out:
924794c9 4120 fs_path_free(p);
31db9f7c
AB
4121 return ret;
4122}
4123
cb95e7bf
MF
4124/*
4125 * Send an update extent command to user space.
4126 */
4127static int send_update_extent(struct send_ctx *sctx,
4128 u64 offset, u32 len)
4129{
4130 int ret = 0;
4131 struct fs_path *p;
4132
924794c9 4133 p = fs_path_alloc();
cb95e7bf
MF
4134 if (!p)
4135 return -ENOMEM;
4136
4137 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4138 if (ret < 0)
4139 goto out;
4140
4141 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4142 if (ret < 0)
4143 goto out;
4144
4145 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4146 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4147 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4148
4149 ret = send_cmd(sctx);
4150
4151tlv_put_failure:
4152out:
924794c9 4153 fs_path_free(p);
cb95e7bf
MF
4154 return ret;
4155}
4156
16e7549f
JB
4157static int send_hole(struct send_ctx *sctx, u64 end)
4158{
4159 struct fs_path *p = NULL;
4160 u64 offset = sctx->cur_inode_last_extent;
4161 u64 len;
4162 int ret = 0;
4163
4164 p = fs_path_alloc();
4165 if (!p)
4166 return -ENOMEM;
4167 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4168 while (offset < end) {
4169 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4170
4171 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4172 if (ret < 0)
4173 break;
4174 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4175 if (ret < 0)
4176 break;
4177 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4178 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4179 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4180 ret = send_cmd(sctx);
4181 if (ret < 0)
4182 break;
4183 offset += len;
4184 }
4185tlv_put_failure:
4186 fs_path_free(p);
4187 return ret;
4188}
4189
31db9f7c
AB
4190static int send_write_or_clone(struct send_ctx *sctx,
4191 struct btrfs_path *path,
4192 struct btrfs_key *key,
4193 struct clone_root *clone_root)
4194{
4195 int ret = 0;
4196 struct btrfs_file_extent_item *ei;
4197 u64 offset = key->offset;
4198 u64 pos = 0;
4199 u64 len;
4200 u32 l;
4201 u8 type;
28e5dd8f 4202 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c
AB
4203
4204 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4205 struct btrfs_file_extent_item);
4206 type = btrfs_file_extent_type(path->nodes[0], ei);
74dd17fb 4207 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4208 len = btrfs_file_extent_inline_len(path->nodes[0],
4209 path->slots[0], ei);
74dd17fb
CM
4210 /*
4211 * it is possible the inline item won't cover the whole page,
4212 * but there may be items after this page. Make
4213 * sure to send the whole thing
4214 */
4215 len = PAGE_CACHE_ALIGN(len);
4216 } else {
31db9f7c 4217 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
74dd17fb 4218 }
31db9f7c
AB
4219
4220 if (offset + len > sctx->cur_inode_size)
4221 len = sctx->cur_inode_size - offset;
4222 if (len == 0) {
4223 ret = 0;
4224 goto out;
4225 }
4226
28e5dd8f 4227 if (clone_root && IS_ALIGNED(offset + len, bs)) {
cb95e7bf
MF
4228 ret = send_clone(sctx, offset, len, clone_root);
4229 } else if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA) {
4230 ret = send_update_extent(sctx, offset, len);
4231 } else {
31db9f7c
AB
4232 while (pos < len) {
4233 l = len - pos;
4234 if (l > BTRFS_SEND_READ_SIZE)
4235 l = BTRFS_SEND_READ_SIZE;
4236 ret = send_write(sctx, pos + offset, l);
4237 if (ret < 0)
4238 goto out;
4239 if (!ret)
4240 break;
4241 pos += ret;
4242 }
4243 ret = 0;
31db9f7c 4244 }
31db9f7c
AB
4245out:
4246 return ret;
4247}
4248
4249static int is_extent_unchanged(struct send_ctx *sctx,
4250 struct btrfs_path *left_path,
4251 struct btrfs_key *ekey)
4252{
4253 int ret = 0;
4254 struct btrfs_key key;
4255 struct btrfs_path *path = NULL;
4256 struct extent_buffer *eb;
4257 int slot;
4258 struct btrfs_key found_key;
4259 struct btrfs_file_extent_item *ei;
4260 u64 left_disknr;
4261 u64 right_disknr;
4262 u64 left_offset;
4263 u64 right_offset;
4264 u64 left_offset_fixed;
4265 u64 left_len;
4266 u64 right_len;
74dd17fb
CM
4267 u64 left_gen;
4268 u64 right_gen;
31db9f7c
AB
4269 u8 left_type;
4270 u8 right_type;
4271
4272 path = alloc_path_for_send();
4273 if (!path)
4274 return -ENOMEM;
4275
4276 eb = left_path->nodes[0];
4277 slot = left_path->slots[0];
31db9f7c
AB
4278 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4279 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4280
4281 if (left_type != BTRFS_FILE_EXTENT_REG) {
4282 ret = 0;
4283 goto out;
4284 }
74dd17fb
CM
4285 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4286 left_len = btrfs_file_extent_num_bytes(eb, ei);
4287 left_offset = btrfs_file_extent_offset(eb, ei);
4288 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
4289
4290 /*
4291 * Following comments will refer to these graphics. L is the left
4292 * extents which we are checking at the moment. 1-8 are the right
4293 * extents that we iterate.
4294 *
4295 * |-----L-----|
4296 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4297 *
4298 * |-----L-----|
4299 * |--1--|-2b-|...(same as above)
4300 *
4301 * Alternative situation. Happens on files where extents got split.
4302 * |-----L-----|
4303 * |-----------7-----------|-6-|
4304 *
4305 * Alternative situation. Happens on files which got larger.
4306 * |-----L-----|
4307 * |-8-|
4308 * Nothing follows after 8.
4309 */
4310
4311 key.objectid = ekey->objectid;
4312 key.type = BTRFS_EXTENT_DATA_KEY;
4313 key.offset = ekey->offset;
4314 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4315 if (ret < 0)
4316 goto out;
4317 if (ret) {
4318 ret = 0;
4319 goto out;
4320 }
4321
4322 /*
4323 * Handle special case where the right side has no extents at all.
4324 */
4325 eb = path->nodes[0];
4326 slot = path->slots[0];
4327 btrfs_item_key_to_cpu(eb, &found_key, slot);
4328 if (found_key.objectid != key.objectid ||
4329 found_key.type != key.type) {
57cfd462
JB
4330 /* If we're a hole then just pretend nothing changed */
4331 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4332 goto out;
4333 }
4334
4335 /*
4336 * We're now on 2a, 2b or 7.
4337 */
4338 key = found_key;
4339 while (key.offset < ekey->offset + left_len) {
4340 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4341 right_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
4342 if (right_type != BTRFS_FILE_EXTENT_REG) {
4343 ret = 0;
4344 goto out;
4345 }
4346
007d31f7
JB
4347 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4348 right_len = btrfs_file_extent_num_bytes(eb, ei);
4349 right_offset = btrfs_file_extent_offset(eb, ei);
4350 right_gen = btrfs_file_extent_generation(eb, ei);
4351
31db9f7c
AB
4352 /*
4353 * Are we at extent 8? If yes, we know the extent is changed.
4354 * This may only happen on the first iteration.
4355 */
d8347fa4 4356 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
4357 /* If we're a hole just pretend nothing changed */
4358 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
4359 goto out;
4360 }
4361
4362 left_offset_fixed = left_offset;
4363 if (key.offset < ekey->offset) {
4364 /* Fix the right offset for 2a and 7. */
4365 right_offset += ekey->offset - key.offset;
4366 } else {
4367 /* Fix the left offset for all behind 2a and 2b */
4368 left_offset_fixed += key.offset - ekey->offset;
4369 }
4370
4371 /*
4372 * Check if we have the same extent.
4373 */
3954096d 4374 if (left_disknr != right_disknr ||
74dd17fb
CM
4375 left_offset_fixed != right_offset ||
4376 left_gen != right_gen) {
31db9f7c
AB
4377 ret = 0;
4378 goto out;
4379 }
4380
4381 /*
4382 * Go to the next extent.
4383 */
4384 ret = btrfs_next_item(sctx->parent_root, path);
4385 if (ret < 0)
4386 goto out;
4387 if (!ret) {
4388 eb = path->nodes[0];
4389 slot = path->slots[0];
4390 btrfs_item_key_to_cpu(eb, &found_key, slot);
4391 }
4392 if (ret || found_key.objectid != key.objectid ||
4393 found_key.type != key.type) {
4394 key.offset += right_len;
4395 break;
adaa4b8e
JS
4396 }
4397 if (found_key.offset != key.offset + right_len) {
4398 ret = 0;
4399 goto out;
31db9f7c
AB
4400 }
4401 key = found_key;
4402 }
4403
4404 /*
4405 * We're now behind the left extent (treat as unchanged) or at the end
4406 * of the right side (treat as changed).
4407 */
4408 if (key.offset >= ekey->offset + left_len)
4409 ret = 1;
4410 else
4411 ret = 0;
4412
4413
4414out:
4415 btrfs_free_path(path);
4416 return ret;
4417}
4418
16e7549f
JB
4419static int get_last_extent(struct send_ctx *sctx, u64 offset)
4420{
4421 struct btrfs_path *path;
4422 struct btrfs_root *root = sctx->send_root;
4423 struct btrfs_file_extent_item *fi;
4424 struct btrfs_key key;
4425 u64 extent_end;
4426 u8 type;
4427 int ret;
4428
4429 path = alloc_path_for_send();
4430 if (!path)
4431 return -ENOMEM;
4432
4433 sctx->cur_inode_last_extent = 0;
4434
4435 key.objectid = sctx->cur_ino;
4436 key.type = BTRFS_EXTENT_DATA_KEY;
4437 key.offset = offset;
4438 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
4439 if (ret < 0)
4440 goto out;
4441 ret = 0;
4442 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4443 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
4444 goto out;
4445
4446 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4447 struct btrfs_file_extent_item);
4448 type = btrfs_file_extent_type(path->nodes[0], fi);
4449 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4450 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4451 path->slots[0], fi);
16e7549f
JB
4452 extent_end = ALIGN(key.offset + size,
4453 sctx->send_root->sectorsize);
4454 } else {
4455 extent_end = key.offset +
4456 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4457 }
4458 sctx->cur_inode_last_extent = extent_end;
4459out:
4460 btrfs_free_path(path);
4461 return ret;
4462}
4463
4464static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
4465 struct btrfs_key *key)
4466{
4467 struct btrfs_file_extent_item *fi;
4468 u64 extent_end;
4469 u8 type;
4470 int ret = 0;
4471
4472 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
4473 return 0;
4474
4475 if (sctx->cur_inode_last_extent == (u64)-1) {
4476 ret = get_last_extent(sctx, key->offset - 1);
4477 if (ret)
4478 return ret;
4479 }
4480
4481 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4482 struct btrfs_file_extent_item);
4483 type = btrfs_file_extent_type(path->nodes[0], fi);
4484 if (type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
4485 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
4486 path->slots[0], fi);
16e7549f
JB
4487 extent_end = ALIGN(key->offset + size,
4488 sctx->send_root->sectorsize);
4489 } else {
4490 extent_end = key->offset +
4491 btrfs_file_extent_num_bytes(path->nodes[0], fi);
4492 }
bf54f412
FDBM
4493
4494 if (path->slots[0] == 0 &&
4495 sctx->cur_inode_last_extent < key->offset) {
4496 /*
4497 * We might have skipped entire leafs that contained only
4498 * file extent items for our current inode. These leafs have
4499 * a generation number smaller (older) than the one in the
4500 * current leaf and the leaf our last extent came from, and
4501 * are located between these 2 leafs.
4502 */
4503 ret = get_last_extent(sctx, key->offset - 1);
4504 if (ret)
4505 return ret;
4506 }
4507
16e7549f
JB
4508 if (sctx->cur_inode_last_extent < key->offset)
4509 ret = send_hole(sctx, key->offset);
4510 sctx->cur_inode_last_extent = extent_end;
4511 return ret;
4512}
4513
31db9f7c
AB
4514static int process_extent(struct send_ctx *sctx,
4515 struct btrfs_path *path,
4516 struct btrfs_key *key)
4517{
31db9f7c 4518 struct clone_root *found_clone = NULL;
57cfd462 4519 int ret = 0;
31db9f7c
AB
4520
4521 if (S_ISLNK(sctx->cur_inode_mode))
4522 return 0;
4523
4524 if (sctx->parent_root && !sctx->cur_inode_new) {
4525 ret = is_extent_unchanged(sctx, path, key);
4526 if (ret < 0)
4527 goto out;
4528 if (ret) {
4529 ret = 0;
16e7549f 4530 goto out_hole;
31db9f7c 4531 }
57cfd462
JB
4532 } else {
4533 struct btrfs_file_extent_item *ei;
4534 u8 type;
4535
4536 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4537 struct btrfs_file_extent_item);
4538 type = btrfs_file_extent_type(path->nodes[0], ei);
4539 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
4540 type == BTRFS_FILE_EXTENT_REG) {
4541 /*
4542 * The send spec does not have a prealloc command yet,
4543 * so just leave a hole for prealloc'ed extents until
4544 * we have enough commands queued up to justify rev'ing
4545 * the send spec.
4546 */
4547 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
4548 ret = 0;
4549 goto out;
4550 }
4551
4552 /* Have a hole, just skip it. */
4553 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
4554 ret = 0;
4555 goto out;
4556 }
4557 }
31db9f7c
AB
4558 }
4559
4560 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
4561 sctx->cur_inode_size, &found_clone);
4562 if (ret != -ENOENT && ret < 0)
4563 goto out;
4564
4565 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
4566 if (ret)
4567 goto out;
4568out_hole:
4569 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
4570out:
4571 return ret;
4572}
4573
4574static int process_all_extents(struct send_ctx *sctx)
4575{
4576 int ret;
4577 struct btrfs_root *root;
4578 struct btrfs_path *path;
4579 struct btrfs_key key;
4580 struct btrfs_key found_key;
4581 struct extent_buffer *eb;
4582 int slot;
4583
4584 root = sctx->send_root;
4585 path = alloc_path_for_send();
4586 if (!path)
4587 return -ENOMEM;
4588
4589 key.objectid = sctx->cmp_key->objectid;
4590 key.type = BTRFS_EXTENT_DATA_KEY;
4591 key.offset = 0;
7fdd29d0
FDBM
4592 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4593 if (ret < 0)
4594 goto out;
31db9f7c 4595
7fdd29d0 4596 while (1) {
31db9f7c
AB
4597 eb = path->nodes[0];
4598 slot = path->slots[0];
7fdd29d0
FDBM
4599
4600 if (slot >= btrfs_header_nritems(eb)) {
4601 ret = btrfs_next_leaf(root, path);
4602 if (ret < 0) {
4603 goto out;
4604 } else if (ret > 0) {
4605 ret = 0;
4606 break;
4607 }
4608 continue;
4609 }
4610
31db9f7c
AB
4611 btrfs_item_key_to_cpu(eb, &found_key, slot);
4612
4613 if (found_key.objectid != key.objectid ||
4614 found_key.type != key.type) {
4615 ret = 0;
4616 goto out;
4617 }
4618
4619 ret = process_extent(sctx, path, &found_key);
4620 if (ret < 0)
4621 goto out;
4622
7fdd29d0 4623 path->slots[0]++;
31db9f7c
AB
4624 }
4625
4626out:
4627 btrfs_free_path(path);
4628 return ret;
4629}
4630
9f03740a
FDBM
4631static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
4632 int *pending_move,
4633 int *refs_processed)
31db9f7c
AB
4634{
4635 int ret = 0;
4636
4637 if (sctx->cur_ino == 0)
4638 goto out;
4639 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 4640 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
4641 goto out;
4642 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
4643 goto out;
4644
9f03740a 4645 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
4646 if (ret < 0)
4647 goto out;
4648
9f03740a 4649 *refs_processed = 1;
31db9f7c
AB
4650out:
4651 return ret;
4652}
4653
4654static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
4655{
4656 int ret = 0;
4657 u64 left_mode;
4658 u64 left_uid;
4659 u64 left_gid;
4660 u64 right_mode;
4661 u64 right_uid;
4662 u64 right_gid;
4663 int need_chmod = 0;
4664 int need_chown = 0;
9f03740a
FDBM
4665 int pending_move = 0;
4666 int refs_processed = 0;
31db9f7c 4667
9f03740a
FDBM
4668 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
4669 &refs_processed);
31db9f7c
AB
4670 if (ret < 0)
4671 goto out;
4672
9f03740a
FDBM
4673 /*
4674 * We have processed the refs and thus need to advance send_progress.
4675 * Now, calls to get_cur_xxx will take the updated refs of the current
4676 * inode into account.
4677 *
4678 * On the other hand, if our current inode is a directory and couldn't
4679 * be moved/renamed because its parent was renamed/moved too and it has
4680 * a higher inode number, we can only move/rename our current inode
4681 * after we moved/renamed its parent. Therefore in this case operate on
4682 * the old path (pre move/rename) of our current inode, and the
4683 * move/rename will be performed later.
4684 */
4685 if (refs_processed && !pending_move)
4686 sctx->send_progress = sctx->cur_ino + 1;
4687
31db9f7c
AB
4688 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
4689 goto out;
4690 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
4691 goto out;
4692
4693 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 4694 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
4695 if (ret < 0)
4696 goto out;
4697
e2d044fe
AL
4698 if (!sctx->parent_root || sctx->cur_inode_new) {
4699 need_chown = 1;
4700 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 4701 need_chmod = 1;
e2d044fe
AL
4702 } else {
4703 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
4704 NULL, NULL, &right_mode, &right_uid,
4705 &right_gid, NULL);
4706 if (ret < 0)
4707 goto out;
31db9f7c 4708
e2d044fe
AL
4709 if (left_uid != right_uid || left_gid != right_gid)
4710 need_chown = 1;
4711 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
4712 need_chmod = 1;
31db9f7c
AB
4713 }
4714
4715 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f
JB
4716 if (need_send_hole(sctx)) {
4717 if (sctx->cur_inode_last_extent == (u64)-1) {
4718 ret = get_last_extent(sctx, (u64)-1);
4719 if (ret)
4720 goto out;
4721 }
4722 if (sctx->cur_inode_last_extent <
4723 sctx->cur_inode_size) {
4724 ret = send_hole(sctx, sctx->cur_inode_size);
4725 if (ret)
4726 goto out;
4727 }
4728 }
31db9f7c
AB
4729 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4730 sctx->cur_inode_size);
4731 if (ret < 0)
4732 goto out;
4733 }
4734
4735 if (need_chown) {
4736 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4737 left_uid, left_gid);
4738 if (ret < 0)
4739 goto out;
4740 }
4741 if (need_chmod) {
4742 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4743 left_mode);
4744 if (ret < 0)
4745 goto out;
4746 }
4747
4748 /*
9f03740a
FDBM
4749 * If other directory inodes depended on our current directory
4750 * inode's move/rename, now do their move/rename operations.
31db9f7c 4751 */
9f03740a
FDBM
4752 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
4753 ret = apply_children_dir_moves(sctx);
4754 if (ret)
4755 goto out;
4756 }
4757
4758 /*
4759 * Need to send that every time, no matter if it actually
4760 * changed between the two trees as we have done changes to
4761 * the inode before.
4762 */
4763 sctx->send_progress = sctx->cur_ino + 1;
31db9f7c
AB
4764 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4765 if (ret < 0)
4766 goto out;
4767
4768out:
4769 return ret;
4770}
4771
4772static int changed_inode(struct send_ctx *sctx,
4773 enum btrfs_compare_tree_result result)
4774{
4775 int ret = 0;
4776 struct btrfs_key *key = sctx->cmp_key;
4777 struct btrfs_inode_item *left_ii = NULL;
4778 struct btrfs_inode_item *right_ii = NULL;
4779 u64 left_gen = 0;
4780 u64 right_gen = 0;
4781
31db9f7c
AB
4782 sctx->cur_ino = key->objectid;
4783 sctx->cur_inode_new_gen = 0;
16e7549f 4784 sctx->cur_inode_last_extent = (u64)-1;
e479d9bb
AB
4785
4786 /*
4787 * Set send_progress to current inode. This will tell all get_cur_xxx
4788 * functions that the current inode's refs are not updated yet. Later,
4789 * when process_recorded_refs is finished, it is set to cur_ino + 1.
4790 */
31db9f7c
AB
4791 sctx->send_progress = sctx->cur_ino;
4792
4793 if (result == BTRFS_COMPARE_TREE_NEW ||
4794 result == BTRFS_COMPARE_TREE_CHANGED) {
4795 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
4796 sctx->left_path->slots[0],
4797 struct btrfs_inode_item);
4798 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
4799 left_ii);
4800 } else {
4801 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4802 sctx->right_path->slots[0],
4803 struct btrfs_inode_item);
4804 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4805 right_ii);
4806 }
4807 if (result == BTRFS_COMPARE_TREE_CHANGED) {
4808 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
4809 sctx->right_path->slots[0],
4810 struct btrfs_inode_item);
4811
4812 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
4813 right_ii);
6d85ed05
AB
4814
4815 /*
4816 * The cur_ino = root dir case is special here. We can't treat
4817 * the inode as deleted+reused because it would generate a
4818 * stream that tries to delete/mkdir the root dir.
4819 */
4820 if (left_gen != right_gen &&
4821 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
4822 sctx->cur_inode_new_gen = 1;
4823 }
4824
4825 if (result == BTRFS_COMPARE_TREE_NEW) {
4826 sctx->cur_inode_gen = left_gen;
4827 sctx->cur_inode_new = 1;
4828 sctx->cur_inode_deleted = 0;
4829 sctx->cur_inode_size = btrfs_inode_size(
4830 sctx->left_path->nodes[0], left_ii);
4831 sctx->cur_inode_mode = btrfs_inode_mode(
4832 sctx->left_path->nodes[0], left_ii);
4833 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 4834 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4835 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
4836 sctx->cur_inode_gen = right_gen;
4837 sctx->cur_inode_new = 0;
4838 sctx->cur_inode_deleted = 1;
4839 sctx->cur_inode_size = btrfs_inode_size(
4840 sctx->right_path->nodes[0], right_ii);
4841 sctx->cur_inode_mode = btrfs_inode_mode(
4842 sctx->right_path->nodes[0], right_ii);
4843 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
4844 /*
4845 * We need to do some special handling in case the inode was
4846 * reported as changed with a changed generation number. This
4847 * means that the original inode was deleted and new inode
4848 * reused the same inum. So we have to treat the old inode as
4849 * deleted and the new one as new.
4850 */
31db9f7c 4851 if (sctx->cur_inode_new_gen) {
766702ef
AB
4852 /*
4853 * First, process the inode as if it was deleted.
4854 */
31db9f7c
AB
4855 sctx->cur_inode_gen = right_gen;
4856 sctx->cur_inode_new = 0;
4857 sctx->cur_inode_deleted = 1;
4858 sctx->cur_inode_size = btrfs_inode_size(
4859 sctx->right_path->nodes[0], right_ii);
4860 sctx->cur_inode_mode = btrfs_inode_mode(
4861 sctx->right_path->nodes[0], right_ii);
4862 ret = process_all_refs(sctx,
4863 BTRFS_COMPARE_TREE_DELETED);
4864 if (ret < 0)
4865 goto out;
4866
766702ef
AB
4867 /*
4868 * Now process the inode as if it was new.
4869 */
31db9f7c
AB
4870 sctx->cur_inode_gen = left_gen;
4871 sctx->cur_inode_new = 1;
4872 sctx->cur_inode_deleted = 0;
4873 sctx->cur_inode_size = btrfs_inode_size(
4874 sctx->left_path->nodes[0], left_ii);
4875 sctx->cur_inode_mode = btrfs_inode_mode(
4876 sctx->left_path->nodes[0], left_ii);
1f4692da 4877 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
4878 if (ret < 0)
4879 goto out;
4880
4881 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
4882 if (ret < 0)
4883 goto out;
e479d9bb
AB
4884 /*
4885 * Advance send_progress now as we did not get into
4886 * process_recorded_refs_if_needed in the new_gen case.
4887 */
4888 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
4889
4890 /*
4891 * Now process all extents and xattrs of the inode as if
4892 * they were all new.
4893 */
31db9f7c
AB
4894 ret = process_all_extents(sctx);
4895 if (ret < 0)
4896 goto out;
4897 ret = process_all_new_xattrs(sctx);
4898 if (ret < 0)
4899 goto out;
4900 } else {
4901 sctx->cur_inode_gen = left_gen;
4902 sctx->cur_inode_new = 0;
4903 sctx->cur_inode_new_gen = 0;
4904 sctx->cur_inode_deleted = 0;
4905 sctx->cur_inode_size = btrfs_inode_size(
4906 sctx->left_path->nodes[0], left_ii);
4907 sctx->cur_inode_mode = btrfs_inode_mode(
4908 sctx->left_path->nodes[0], left_ii);
4909 }
4910 }
4911
4912out:
4913 return ret;
4914}
4915
766702ef
AB
4916/*
4917 * We have to process new refs before deleted refs, but compare_trees gives us
4918 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
4919 * first and later process them in process_recorded_refs.
4920 * For the cur_inode_new_gen case, we skip recording completely because
4921 * changed_inode did already initiate processing of refs. The reason for this is
4922 * that in this case, compare_tree actually compares the refs of 2 different
4923 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
4924 * refs of the right tree as deleted and all refs of the left tree as new.
4925 */
31db9f7c
AB
4926static int changed_ref(struct send_ctx *sctx,
4927 enum btrfs_compare_tree_result result)
4928{
4929 int ret = 0;
4930
4931 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4932
4933 if (!sctx->cur_inode_new_gen &&
4934 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
4935 if (result == BTRFS_COMPARE_TREE_NEW)
4936 ret = record_new_ref(sctx);
4937 else if (result == BTRFS_COMPARE_TREE_DELETED)
4938 ret = record_deleted_ref(sctx);
4939 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4940 ret = record_changed_ref(sctx);
4941 }
4942
4943 return ret;
4944}
4945
766702ef
AB
4946/*
4947 * Process new/deleted/changed xattrs. We skip processing in the
4948 * cur_inode_new_gen case because changed_inode did already initiate processing
4949 * of xattrs. The reason is the same as in changed_ref
4950 */
31db9f7c
AB
4951static int changed_xattr(struct send_ctx *sctx,
4952 enum btrfs_compare_tree_result result)
4953{
4954 int ret = 0;
4955
4956 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4957
4958 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4959 if (result == BTRFS_COMPARE_TREE_NEW)
4960 ret = process_new_xattr(sctx);
4961 else if (result == BTRFS_COMPARE_TREE_DELETED)
4962 ret = process_deleted_xattr(sctx);
4963 else if (result == BTRFS_COMPARE_TREE_CHANGED)
4964 ret = process_changed_xattr(sctx);
4965 }
4966
4967 return ret;
4968}
4969
766702ef
AB
4970/*
4971 * Process new/deleted/changed extents. We skip processing in the
4972 * cur_inode_new_gen case because changed_inode did already initiate processing
4973 * of extents. The reason is the same as in changed_ref
4974 */
31db9f7c
AB
4975static int changed_extent(struct send_ctx *sctx,
4976 enum btrfs_compare_tree_result result)
4977{
4978 int ret = 0;
4979
4980 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
4981
4982 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
4983 if (result != BTRFS_COMPARE_TREE_DELETED)
4984 ret = process_extent(sctx, sctx->left_path,
4985 sctx->cmp_key);
4986 }
4987
4988 return ret;
4989}
4990
ba5e8f2e
JB
4991static int dir_changed(struct send_ctx *sctx, u64 dir)
4992{
4993 u64 orig_gen, new_gen;
4994 int ret;
4995
4996 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
4997 NULL, NULL);
4998 if (ret)
4999 return ret;
5000
5001 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5002 NULL, NULL, NULL);
5003 if (ret)
5004 return ret;
5005
5006 return (orig_gen != new_gen) ? 1 : 0;
5007}
5008
5009static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5010 struct btrfs_key *key)
5011{
5012 struct btrfs_inode_extref *extref;
5013 struct extent_buffer *leaf;
5014 u64 dirid = 0, last_dirid = 0;
5015 unsigned long ptr;
5016 u32 item_size;
5017 u32 cur_offset = 0;
5018 int ref_name_len;
5019 int ret = 0;
5020
5021 /* Easy case, just check this one dirid */
5022 if (key->type == BTRFS_INODE_REF_KEY) {
5023 dirid = key->offset;
5024
5025 ret = dir_changed(sctx, dirid);
5026 goto out;
5027 }
5028
5029 leaf = path->nodes[0];
5030 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5031 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5032 while (cur_offset < item_size) {
5033 extref = (struct btrfs_inode_extref *)(ptr +
5034 cur_offset);
5035 dirid = btrfs_inode_extref_parent(leaf, extref);
5036 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5037 cur_offset += ref_name_len + sizeof(*extref);
5038 if (dirid == last_dirid)
5039 continue;
5040 ret = dir_changed(sctx, dirid);
5041 if (ret)
5042 break;
5043 last_dirid = dirid;
5044 }
5045out:
5046 return ret;
5047}
5048
766702ef
AB
5049/*
5050 * Updates compare related fields in sctx and simply forwards to the actual
5051 * changed_xxx functions.
5052 */
31db9f7c
AB
5053static int changed_cb(struct btrfs_root *left_root,
5054 struct btrfs_root *right_root,
5055 struct btrfs_path *left_path,
5056 struct btrfs_path *right_path,
5057 struct btrfs_key *key,
5058 enum btrfs_compare_tree_result result,
5059 void *ctx)
5060{
5061 int ret = 0;
5062 struct send_ctx *sctx = ctx;
5063
ba5e8f2e 5064 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
5065 if (key->type == BTRFS_INODE_REF_KEY ||
5066 key->type == BTRFS_INODE_EXTREF_KEY) {
5067 ret = compare_refs(sctx, left_path, key);
5068 if (!ret)
5069 return 0;
5070 if (ret < 0)
5071 return ret;
5072 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5073 return maybe_send_hole(sctx, left_path, key);
5074 } else {
ba5e8f2e 5075 return 0;
16e7549f 5076 }
ba5e8f2e
JB
5077 result = BTRFS_COMPARE_TREE_CHANGED;
5078 ret = 0;
5079 }
5080
31db9f7c
AB
5081 sctx->left_path = left_path;
5082 sctx->right_path = right_path;
5083 sctx->cmp_key = key;
5084
5085 ret = finish_inode_if_needed(sctx, 0);
5086 if (ret < 0)
5087 goto out;
5088
2981e225
AB
5089 /* Ignore non-FS objects */
5090 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5091 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5092 goto out;
5093
31db9f7c
AB
5094 if (key->type == BTRFS_INODE_ITEM_KEY)
5095 ret = changed_inode(sctx, result);
96b5bd77
JS
5096 else if (key->type == BTRFS_INODE_REF_KEY ||
5097 key->type == BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5098 ret = changed_ref(sctx, result);
5099 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5100 ret = changed_xattr(sctx, result);
5101 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5102 ret = changed_extent(sctx, result);
5103
5104out:
5105 return ret;
5106}
5107
5108static int full_send_tree(struct send_ctx *sctx)
5109{
5110 int ret;
31db9f7c
AB
5111 struct btrfs_root *send_root = sctx->send_root;
5112 struct btrfs_key key;
5113 struct btrfs_key found_key;
5114 struct btrfs_path *path;
5115 struct extent_buffer *eb;
5116 int slot;
5117 u64 start_ctransid;
5118 u64 ctransid;
5119
5120 path = alloc_path_for_send();
5121 if (!path)
5122 return -ENOMEM;
5123
5f3ab90a 5124 spin_lock(&send_root->root_item_lock);
31db9f7c 5125 start_ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 5126 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
5127
5128 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5129 key.type = BTRFS_INODE_ITEM_KEY;
5130 key.offset = 0;
5131
31db9f7c 5132 /*
766702ef
AB
5133 * Make sure the tree has not changed after re-joining. We detect this
5134 * by comparing start_ctransid and ctransid. They should always match.
31db9f7c 5135 */
5f3ab90a 5136 spin_lock(&send_root->root_item_lock);
31db9f7c 5137 ctransid = btrfs_root_ctransid(&send_root->root_item);
5f3ab90a 5138 spin_unlock(&send_root->root_item_lock);
31db9f7c
AB
5139
5140 if (ctransid != start_ctransid) {
efe120a0 5141 WARN(1, KERN_WARNING "BTRFS: the root that you're trying to "
31db9f7c
AB
5142 "send was modified in between. This is "
5143 "probably a bug.\n");
5144 ret = -EIO;
5145 goto out;
5146 }
5147
5148 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5149 if (ret < 0)
5150 goto out;
5151 if (ret)
5152 goto out_finish;
5153
5154 while (1) {
31db9f7c
AB
5155 eb = path->nodes[0];
5156 slot = path->slots[0];
5157 btrfs_item_key_to_cpu(eb, &found_key, slot);
5158
5159 ret = changed_cb(send_root, NULL, path, NULL,
5160 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5161 if (ret < 0)
5162 goto out;
5163
5164 key.objectid = found_key.objectid;
5165 key.type = found_key.type;
5166 key.offset = found_key.offset + 1;
5167
5168 ret = btrfs_next_item(send_root, path);
5169 if (ret < 0)
5170 goto out;
5171 if (ret) {
5172 ret = 0;
5173 break;
5174 }
5175 }
5176
5177out_finish:
5178 ret = finish_inode_if_needed(sctx, 1);
5179
5180out:
5181 btrfs_free_path(path);
31db9f7c
AB
5182 return ret;
5183}
5184
5185static int send_subvol(struct send_ctx *sctx)
5186{
5187 int ret;
5188
c2c71324
SB
5189 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5190 ret = send_header(sctx);
5191 if (ret < 0)
5192 goto out;
5193 }
31db9f7c
AB
5194
5195 ret = send_subvol_begin(sctx);
5196 if (ret < 0)
5197 goto out;
5198
5199 if (sctx->parent_root) {
5200 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5201 changed_cb, sctx);
5202 if (ret < 0)
5203 goto out;
5204 ret = finish_inode_if_needed(sctx, 1);
5205 if (ret < 0)
5206 goto out;
5207 } else {
5208 ret = full_send_tree(sctx);
5209 if (ret < 0)
5210 goto out;
5211 }
5212
5213out:
31db9f7c
AB
5214 free_recorded_refs(sctx);
5215 return ret;
5216}
5217
66ef7d65
DS
5218static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5219{
5220 spin_lock(&root->root_item_lock);
5221 root->send_in_progress--;
5222 /*
5223 * Not much left to do, we don't know why it's unbalanced and
5224 * can't blindly reset it to 0.
5225 */
5226 if (root->send_in_progress < 0)
5227 btrfs_err(root->fs_info,
5228 "send_in_progres unbalanced %d root %llu\n",
5229 root->send_in_progress, root->root_key.objectid);
5230 spin_unlock(&root->root_item_lock);
5231}
5232
31db9f7c
AB
5233long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5234{
5235 int ret = 0;
5236 struct btrfs_root *send_root;
5237 struct btrfs_root *clone_root;
5238 struct btrfs_fs_info *fs_info;
5239 struct btrfs_ioctl_send_args *arg = NULL;
5240 struct btrfs_key key;
31db9f7c
AB
5241 struct send_ctx *sctx = NULL;
5242 u32 i;
5243 u64 *clone_sources_tmp = NULL;
2c686537 5244 int clone_sources_to_rollback = 0;
896c14f9 5245 int sort_clone_roots = 0;
18f687d5 5246 int index;
31db9f7c
AB
5247
5248 if (!capable(CAP_SYS_ADMIN))
5249 return -EPERM;
5250
496ad9aa 5251 send_root = BTRFS_I(file_inode(mnt_file))->root;
31db9f7c
AB
5252 fs_info = send_root->fs_info;
5253
2c686537
DS
5254 /*
5255 * The subvolume must remain read-only during send, protect against
5256 * making it RW.
5257 */
5258 spin_lock(&send_root->root_item_lock);
5259 send_root->send_in_progress++;
5260 spin_unlock(&send_root->root_item_lock);
5261
139f807a
JB
5262 /*
5263 * This is done when we lookup the root, it should already be complete
5264 * by the time we get here.
5265 */
5266 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5267
2c686537
DS
5268 /*
5269 * Userspace tools do the checks and warn the user if it's
5270 * not RO.
5271 */
5272 if (!btrfs_root_readonly(send_root)) {
5273 ret = -EPERM;
5274 goto out;
5275 }
5276
31db9f7c
AB
5277 arg = memdup_user(arg_, sizeof(*arg));
5278 if (IS_ERR(arg)) {
5279 ret = PTR_ERR(arg);
5280 arg = NULL;
5281 goto out;
5282 }
5283
5284 if (!access_ok(VERIFY_READ, arg->clone_sources,
700ff4f0
DC
5285 sizeof(*arg->clone_sources) *
5286 arg->clone_sources_count)) {
31db9f7c
AB
5287 ret = -EFAULT;
5288 goto out;
5289 }
5290
c2c71324 5291 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
5292 ret = -EINVAL;
5293 goto out;
5294 }
5295
31db9f7c
AB
5296 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5297 if (!sctx) {
5298 ret = -ENOMEM;
5299 goto out;
5300 }
5301
5302 INIT_LIST_HEAD(&sctx->new_refs);
5303 INIT_LIST_HEAD(&sctx->deleted_refs);
5304 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5305 INIT_LIST_HEAD(&sctx->name_cache_list);
5306
cb95e7bf
MF
5307 sctx->flags = arg->flags;
5308
31db9f7c 5309 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
5310 if (!sctx->send_filp) {
5311 ret = -EBADF;
31db9f7c
AB
5312 goto out;
5313 }
5314
31db9f7c
AB
5315 sctx->send_root = send_root;
5316 sctx->clone_roots_cnt = arg->clone_sources_count;
5317
5318 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
5319 sctx->send_buf = vmalloc(sctx->send_max_size);
5320 if (!sctx->send_buf) {
5321 ret = -ENOMEM;
5322 goto out;
5323 }
5324
5325 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
5326 if (!sctx->read_buf) {
5327 ret = -ENOMEM;
5328 goto out;
5329 }
5330
9f03740a
FDBM
5331 sctx->pending_dir_moves = RB_ROOT;
5332 sctx->waiting_dir_moves = RB_ROOT;
5333
31db9f7c
AB
5334 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
5335 (arg->clone_sources_count + 1));
5336 if (!sctx->clone_roots) {
5337 ret = -ENOMEM;
5338 goto out;
5339 }
5340
5341 if (arg->clone_sources_count) {
5342 clone_sources_tmp = vmalloc(arg->clone_sources_count *
5343 sizeof(*arg->clone_sources));
5344 if (!clone_sources_tmp) {
5345 ret = -ENOMEM;
5346 goto out;
5347 }
5348
5349 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
5350 arg->clone_sources_count *
5351 sizeof(*arg->clone_sources));
5352 if (ret) {
5353 ret = -EFAULT;
5354 goto out;
5355 }
5356
5357 for (i = 0; i < arg->clone_sources_count; i++) {
5358 key.objectid = clone_sources_tmp[i];
5359 key.type = BTRFS_ROOT_ITEM_KEY;
5360 key.offset = (u64)-1;
18f687d5
WS
5361
5362 index = srcu_read_lock(&fs_info->subvol_srcu);
5363
31db9f7c 5364 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
31db9f7c 5365 if (IS_ERR(clone_root)) {
18f687d5 5366 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5367 ret = PTR_ERR(clone_root);
5368 goto out;
5369 }
2c686537
DS
5370 clone_sources_to_rollback = i + 1;
5371 spin_lock(&clone_root->root_item_lock);
5372 clone_root->send_in_progress++;
5373 if (!btrfs_root_readonly(clone_root)) {
5374 spin_unlock(&clone_root->root_item_lock);
18f687d5 5375 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5376 ret = -EPERM;
5377 goto out;
5378 }
5379 spin_unlock(&clone_root->root_item_lock);
18f687d5
WS
5380 srcu_read_unlock(&fs_info->subvol_srcu, index);
5381
31db9f7c
AB
5382 sctx->clone_roots[i].root = clone_root;
5383 }
5384 vfree(clone_sources_tmp);
5385 clone_sources_tmp = NULL;
5386 }
5387
5388 if (arg->parent_root) {
5389 key.objectid = arg->parent_root;
5390 key.type = BTRFS_ROOT_ITEM_KEY;
5391 key.offset = (u64)-1;
18f687d5
WS
5392
5393 index = srcu_read_lock(&fs_info->subvol_srcu);
5394
31db9f7c 5395 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
b1b19596 5396 if (IS_ERR(sctx->parent_root)) {
18f687d5 5397 srcu_read_unlock(&fs_info->subvol_srcu, index);
b1b19596 5398 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
5399 goto out;
5400 }
18f687d5 5401
2c686537
DS
5402 spin_lock(&sctx->parent_root->root_item_lock);
5403 sctx->parent_root->send_in_progress++;
5404 if (!btrfs_root_readonly(sctx->parent_root)) {
5405 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5 5406 srcu_read_unlock(&fs_info->subvol_srcu, index);
2c686537
DS
5407 ret = -EPERM;
5408 goto out;
5409 }
5410 spin_unlock(&sctx->parent_root->root_item_lock);
18f687d5
WS
5411
5412 srcu_read_unlock(&fs_info->subvol_srcu, index);
31db9f7c
AB
5413 }
5414
5415 /*
5416 * Clones from send_root are allowed, but only if the clone source
5417 * is behind the current send position. This is checked while searching
5418 * for possible clone sources.
5419 */
5420 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
5421
5422 /* We do a bsearch later */
5423 sort(sctx->clone_roots, sctx->clone_roots_cnt,
5424 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
5425 NULL);
896c14f9 5426 sort_clone_roots = 1;
31db9f7c
AB
5427
5428 ret = send_subvol(sctx);
5429 if (ret < 0)
5430 goto out;
5431
c2c71324
SB
5432 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
5433 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
5434 if (ret < 0)
5435 goto out;
5436 ret = send_cmd(sctx);
5437 if (ret < 0)
5438 goto out;
5439 }
31db9f7c
AB
5440
5441out:
9f03740a
FDBM
5442 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
5443 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
5444 struct rb_node *n;
5445 struct pending_dir_move *pm;
5446
5447 n = rb_first(&sctx->pending_dir_moves);
5448 pm = rb_entry(n, struct pending_dir_move, node);
5449 while (!list_empty(&pm->list)) {
5450 struct pending_dir_move *pm2;
5451
5452 pm2 = list_first_entry(&pm->list,
5453 struct pending_dir_move, list);
5454 free_pending_move(sctx, pm2);
5455 }
5456 free_pending_move(sctx, pm);
5457 }
5458
5459 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
5460 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
5461 struct rb_node *n;
5462 struct waiting_dir_move *dm;
5463
5464 n = rb_first(&sctx->waiting_dir_moves);
5465 dm = rb_entry(n, struct waiting_dir_move, node);
5466 rb_erase(&dm->node, &sctx->waiting_dir_moves);
5467 kfree(dm);
5468 }
5469
896c14f9
WS
5470 if (sort_clone_roots) {
5471 for (i = 0; i < sctx->clone_roots_cnt; i++)
5472 btrfs_root_dec_send_in_progress(
5473 sctx->clone_roots[i].root);
5474 } else {
5475 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
5476 btrfs_root_dec_send_in_progress(
5477 sctx->clone_roots[i].root);
5478
5479 btrfs_root_dec_send_in_progress(send_root);
5480 }
66ef7d65
DS
5481 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
5482 btrfs_root_dec_send_in_progress(sctx->parent_root);
2c686537 5483
31db9f7c
AB
5484 kfree(arg);
5485 vfree(clone_sources_tmp);
5486
5487 if (sctx) {
5488 if (sctx->send_filp)
5489 fput(sctx->send_filp);
5490
5491 vfree(sctx->clone_roots);
5492 vfree(sctx->send_buf);
5493 vfree(sctx->read_buf);
5494
5495 name_cache_free(sctx);
5496
5497 kfree(sctx);
5498 }
5499
5500 return ret;
5501}