]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/super.c
btrfs: report exact callsite where transaction abort occurs
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / super.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
4b82d6e4 19#include <linux/blkdev.h>
2e635a27 20#include <linux/module.h>
e20d96d6 21#include <linux/buffer_head.h>
2e635a27
CM
22#include <linux/fs.h>
23#include <linux/pagemap.h>
24#include <linux/highmem.h>
25#include <linux/time.h>
26#include <linux/init.h>
a9572a15 27#include <linux/seq_file.h>
2e635a27 28#include <linux/string.h>
2e635a27 29#include <linux/backing-dev.h>
4b82d6e4 30#include <linux/mount.h>
dee26a9f 31#include <linux/mpage.h>
75dfe396
CM
32#include <linux/swap.h>
33#include <linux/writeback.h>
8fd17795 34#include <linux/statfs.h>
08607c1b 35#include <linux/compat.h>
95e05289 36#include <linux/parser.h>
c59f8951 37#include <linux/ctype.h>
6da6abae 38#include <linux/namei.h>
a9218f6b 39#include <linux/miscdevice.h>
1bcbf313 40#include <linux/magic.h>
5a0e3ad6 41#include <linux/slab.h>
90a887c9 42#include <linux/cleancache.h>
22c44fe6 43#include <linux/ratelimit.h>
55e301fd 44#include <linux/btrfs.h>
16cdcec7 45#include "delayed-inode.h"
2e635a27 46#include "ctree.h"
e20d96d6 47#include "disk-io.h"
d5719762 48#include "transaction.h"
2c90e5d6 49#include "btrfs_inode.h"
3a686375 50#include "print-tree.h"
14a958e6 51#include "hash.h"
63541927 52#include "props.h"
5103e947 53#include "xattr.h"
8a4b83cc 54#include "volumes.h"
be6e8dc0 55#include "export.h"
c8b97818 56#include "compression.h"
9c5085c1 57#include "rcu-string.h"
8dabb742 58#include "dev-replace.h"
74255aa0 59#include "free-space-cache.h"
b9e9a6cb 60#include "backref.h"
dc11dd5d 61#include "tests/btrfs-tests.h"
2e635a27 62
d3982100 63#include "qgroup.h"
1abe9b8a 64#define CREATE_TRACE_POINTS
65#include <trace/events/btrfs.h>
66
b87221de 67static const struct super_operations btrfs_super_ops;
830c4adb 68static struct file_system_type btrfs_fs_type;
75dfe396 69
0723a047
HH
70static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71
08748810 72static const char *btrfs_decode_error(int errno)
acce952b 73{
08748810 74 char *errstr = "unknown";
acce952b 75
76 switch (errno) {
77 case -EIO:
78 errstr = "IO failure";
79 break;
80 case -ENOMEM:
81 errstr = "Out of memory";
82 break;
83 case -EROFS:
84 errstr = "Readonly filesystem";
85 break;
8c342930
JM
86 case -EEXIST:
87 errstr = "Object already exists";
88 break;
94ef7280
DS
89 case -ENOSPC:
90 errstr = "No space left";
91 break;
92 case -ENOENT:
93 errstr = "No such entry";
94 break;
acce952b 95 }
96
97 return errstr;
98}
99
bbece8a3 100static void save_error_info(struct btrfs_fs_info *fs_info)
acce952b 101{
102 /*
103 * today we only save the error info into ram. Long term we'll
104 * also send it down to the disk
105 */
87533c47 106 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 107}
108
acce952b 109/* btrfs handle error by forcing the filesystem readonly */
110static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111{
112 struct super_block *sb = fs_info->sb;
113
114 if (sb->s_flags & MS_RDONLY)
115 return;
116
87533c47 117 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
acce952b 118 sb->s_flags |= MS_RDONLY;
c2cf52eb 119 btrfs_info(fs_info, "forced readonly");
1acd6831
SB
120 /*
121 * Note that a running device replace operation is not
122 * canceled here although there is no way to update
123 * the progress. It would add the risk of a deadlock,
124 * therefore the canceling is ommited. The only penalty
125 * is that some I/O remains active until the procedure
126 * completes. The next time when the filesystem is
127 * mounted writeable again, the device replace
128 * operation continues.
129 */
acce952b 130 }
131}
132
533574c6 133#ifdef CONFIG_PRINTK
acce952b 134/*
135 * __btrfs_std_error decodes expected errors from the caller and
136 * invokes the approciate error response.
137 */
138void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
4da35113 139 unsigned int line, int errno, const char *fmt, ...)
acce952b 140{
141 struct super_block *sb = fs_info->sb;
acce952b 142 const char *errstr;
143
144 /*
145 * Special case: if the error is EROFS, and we're already
146 * under MS_RDONLY, then it is safe here.
147 */
148 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
4da35113
JM
149 return;
150
08748810 151 errstr = btrfs_decode_error(errno);
4da35113 152 if (fmt) {
37252a66
ES
153 struct va_format vaf;
154 va_list args;
155
156 va_start(args, fmt);
157 vaf.fmt = fmt;
158 vaf.va = &args;
4da35113 159
efe120a0
FH
160 printk(KERN_CRIT
161 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
08748810 162 sb->s_id, function, line, errno, errstr, &vaf);
37252a66 163 va_end(args);
4da35113 164 } else {
efe120a0 165 printk(KERN_CRIT "BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
08748810 166 sb->s_id, function, line, errno, errstr);
4da35113 167 }
acce952b 168
4da35113 169 /* Don't go through full error handling during mount */
cf79ffb5
JB
170 save_error_info(fs_info);
171 if (sb->s_flags & MS_BORN)
4da35113 172 btrfs_handle_error(fs_info);
4da35113 173}
acce952b 174
533574c6 175static const char * const logtypes[] = {
4da35113
JM
176 "emergency",
177 "alert",
178 "critical",
179 "error",
180 "warning",
181 "notice",
182 "info",
183 "debug",
184};
185
c2cf52eb 186void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
4da35113
JM
187{
188 struct super_block *sb = fs_info->sb;
189 char lvl[4];
190 struct va_format vaf;
191 va_list args;
192 const char *type = logtypes[4];
533574c6 193 int kern_level;
4da35113
JM
194
195 va_start(args, fmt);
196
533574c6
JP
197 kern_level = printk_get_level(fmt);
198 if (kern_level) {
199 size_t size = printk_skip_level(fmt) - fmt;
200 memcpy(lvl, fmt, size);
201 lvl[size] = '\0';
202 fmt += size;
203 type = logtypes[kern_level - '0'];
4da35113
JM
204 } else
205 *lvl = '\0';
206
207 vaf.fmt = fmt;
208 vaf.va = &args;
533574c6 209
c2cf52eb 210 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
533574c6
JP
211
212 va_end(args);
213}
214
215#else
216
217void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
218 unsigned int line, int errno, const char *fmt, ...)
219{
220 struct super_block *sb = fs_info->sb;
221
222 /*
223 * Special case: if the error is EROFS, and we're already
224 * under MS_RDONLY, then it is safe here.
225 */
226 if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
227 return;
228
229 /* Don't go through full error handling during mount */
230 if (sb->s_flags & MS_BORN) {
231 save_error_info(fs_info);
232 btrfs_handle_error(fs_info);
233 }
acce952b 234}
533574c6 235#endif
acce952b 236
49b25e05
JM
237/*
238 * We only mark the transaction aborted and then set the file system read-only.
239 * This will prevent new transactions from starting or trying to join this
240 * one.
241 *
242 * This means that error recovery at the call site is limited to freeing
243 * any local memory allocations and passing the error code up without
244 * further cleanup. The transaction should complete as it normally would
245 * in the call path but will return -EIO.
246 *
247 * We'll complete the cleanup in btrfs_end_transaction and
248 * btrfs_commit_transaction.
249 */
250void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
251 struct btrfs_root *root, const char *function,
252 unsigned int line, int errno)
253{
49b25e05
JM
254 trans->aborted = errno;
255 /* Nothing used. The other threads that have joined this
256 * transaction may be able to continue. */
c92f6be3 257 if (!trans->blocks_used && list_empty(&trans->new_bgs)) {
69ce977a
MX
258 const char *errstr;
259
08748810 260 errstr = btrfs_decode_error(errno);
c2cf52eb
SK
261 btrfs_warn(root->fs_info,
262 "%s:%d: Aborting unused transaction(%s).",
263 function, line, errstr);
acce952b 264 return;
49b25e05 265 }
8d25a086 266 ACCESS_ONCE(trans->transaction->aborted) = errno;
501407aa
JB
267 /* Wake up anybody who may be waiting on this transaction */
268 wake_up(&root->fs_info->transaction_wait);
269 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
270 __btrfs_std_error(root->fs_info, function, line, errno, NULL);
271}
8c342930
JM
272/*
273 * __btrfs_panic decodes unexpected, fatal errors from the caller,
274 * issues an alert, and either panics or BUGs, depending on mount options.
275 */
276void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
277 unsigned int line, int errno, const char *fmt, ...)
278{
8c342930
JM
279 char *s_id = "<unknown>";
280 const char *errstr;
281 struct va_format vaf = { .fmt = fmt };
282 va_list args;
acce952b 283
8c342930
JM
284 if (fs_info)
285 s_id = fs_info->sb->s_id;
acce952b 286
8c342930
JM
287 va_start(args, fmt);
288 vaf.va = &args;
289
08748810 290 errstr = btrfs_decode_error(errno);
aa43a17c 291 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
08748810
DS
292 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
293 s_id, function, line, &vaf, errno, errstr);
8c342930 294
efe120a0
FH
295 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
296 function, line, &vaf, errno, errstr);
8c342930
JM
297 va_end(args);
298 /* Caller calls BUG() */
acce952b 299}
300
d397712b 301static void btrfs_put_super(struct super_block *sb)
b18c6685 302{
3abdbd78 303 close_ctree(btrfs_sb(sb)->tree_root);
75dfe396
CM
304}
305
95e05289 306enum {
73f73415 307 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
287a0ab9
JB
308 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
309 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
261507a0
LZ
310 Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
311 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
91435650 312 Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
9555c6c1
ID
313 Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
314 Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
21adbd5c 315 Opt_check_integrity, Opt_check_integrity_including_extent_data,
f420ee1e 316 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
e07a2ade 317 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
a258af7a 318 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
3818aea2 319 Opt_datasum, Opt_treelog, Opt_noinode_cache,
9555c6c1 320 Opt_err,
95e05289
CM
321};
322
323static match_table_t tokens = {
dfe25020 324 {Opt_degraded, "degraded"},
95e05289 325 {Opt_subvol, "subvol=%s"},
1493381f 326 {Opt_subvolid, "subvolid=%s"},
43e570b0 327 {Opt_device, "device=%s"},
b6cda9bc 328 {Opt_nodatasum, "nodatasum"},
d399167d 329 {Opt_datasum, "datasum"},
be20aa9d 330 {Opt_nodatacow, "nodatacow"},
a258af7a 331 {Opt_datacow, "datacow"},
21ad10cf 332 {Opt_nobarrier, "nobarrier"},
842bef58 333 {Opt_barrier, "barrier"},
6f568d35 334 {Opt_max_inline, "max_inline=%s"},
8f662a76 335 {Opt_alloc_start, "alloc_start=%s"},
4543df7e 336 {Opt_thread_pool, "thread_pool=%d"},
c8b97818 337 {Opt_compress, "compress"},
261507a0 338 {Opt_compress_type, "compress=%s"},
a555f810 339 {Opt_compress_force, "compress-force"},
261507a0 340 {Opt_compress_force_type, "compress-force=%s"},
e18e4809 341 {Opt_ssd, "ssd"},
451d7585 342 {Opt_ssd_spread, "ssd_spread"},
3b30c22f 343 {Opt_nossd, "nossd"},
bd0330ad 344 {Opt_acl, "acl"},
33268eaf 345 {Opt_noacl, "noacl"},
3a5e1404 346 {Opt_notreelog, "notreelog"},
a88998f2 347 {Opt_treelog, "treelog"},
dccae999 348 {Opt_flushoncommit, "flushoncommit"},
2c9ee856 349 {Opt_noflushoncommit, "noflushoncommit"},
97e728d4 350 {Opt_ratio, "metadata_ratio=%d"},
e244a0ae 351 {Opt_discard, "discard"},
e07a2ade 352 {Opt_nodiscard, "nodiscard"},
0af3d00b 353 {Opt_space_cache, "space_cache"},
88c2ba3b 354 {Opt_clear_cache, "clear_cache"},
4260f7c7 355 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
91435650 356 {Opt_enospc_debug, "enospc_debug"},
53036293 357 {Opt_noenospc_debug, "noenospc_debug"},
e15d0542 358 {Opt_subvolrootid, "subvolrootid=%d"},
4cb5300b 359 {Opt_defrag, "autodefrag"},
fc0ca9af 360 {Opt_nodefrag, "noautodefrag"},
4b9465cb 361 {Opt_inode_cache, "inode_cache"},
3818aea2 362 {Opt_noinode_cache, "noinode_cache"},
8965593e 363 {Opt_no_space_cache, "nospace_cache"},
af31f5e5 364 {Opt_recovery, "recovery"},
9555c6c1 365 {Opt_skip_balance, "skip_balance"},
21adbd5c
SB
366 {Opt_check_integrity, "check_int"},
367 {Opt_check_integrity_including_extent_data, "check_int_data"},
368 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
f420ee1e 369 {Opt_rescan_uuid_tree, "rescan_uuid_tree"},
8c342930 370 {Opt_fatal_errors, "fatal_errors=%s"},
8b87dc17 371 {Opt_commit_interval, "commit=%d"},
33268eaf 372 {Opt_err, NULL},
95e05289
CM
373};
374
edf24abe
CH
375/*
376 * Regular mount options parser. Everything that is needed only when
377 * reading in a new superblock is parsed here.
49b25e05 378 * XXX JDM: This needs to be cleaned up for remount.
edf24abe
CH
379 */
380int btrfs_parse_options(struct btrfs_root *root, char *options)
95e05289 381{
edf24abe 382 struct btrfs_fs_info *info = root->fs_info;
95e05289 383 substring_t args[MAX_OPT_ARGS];
73bc1876
JB
384 char *p, *num, *orig = NULL;
385 u64 cache_gen;
4543df7e 386 int intarg;
a7a3f7ca 387 int ret = 0;
261507a0
LZ
388 char *compress_type;
389 bool compress_force = false;
b6cda9bc 390
6c41761f 391 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876
JB
392 if (cache_gen)
393 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
394
95e05289 395 if (!options)
73bc1876 396 goto out;
95e05289 397
be20aa9d
CM
398 /*
399 * strsep changes the string, duplicate it because parse_options
400 * gets called twice
401 */
402 options = kstrdup(options, GFP_NOFS);
403 if (!options)
404 return -ENOMEM;
405
da495ecc 406 orig = options;
be20aa9d 407
edf24abe 408 while ((p = strsep(&options, ",")) != NULL) {
95e05289
CM
409 int token;
410 if (!*p)
411 continue;
412
413 token = match_token(p, tokens, args);
414 switch (token) {
dfe25020 415 case Opt_degraded:
efe120a0 416 btrfs_info(root->fs_info, "allowing degraded mounts");
edf24abe 417 btrfs_set_opt(info->mount_opt, DEGRADED);
dfe25020 418 break;
95e05289 419 case Opt_subvol:
73f73415 420 case Opt_subvolid:
e15d0542 421 case Opt_subvolrootid:
43e570b0 422 case Opt_device:
edf24abe 423 /*
43e570b0 424 * These are parsed by btrfs_parse_early_options
edf24abe
CH
425 * and can be happily ignored here.
426 */
b6cda9bc
CM
427 break;
428 case Opt_nodatasum:
07802534
QW
429 btrfs_set_and_info(root, NODATASUM,
430 "setting nodatasum");
be20aa9d 431 break;
d399167d 432 case Opt_datasum:
07802534
QW
433 if (btrfs_test_opt(root, NODATASUM)) {
434 if (btrfs_test_opt(root, NODATACOW))
435 btrfs_info(root->fs_info, "setting datasum, datacow enabled");
436 else
437 btrfs_info(root->fs_info, "setting datasum");
438 }
d399167d
QW
439 btrfs_clear_opt(info->mount_opt, NODATACOW);
440 btrfs_clear_opt(info->mount_opt, NODATASUM);
441 break;
be20aa9d 442 case Opt_nodatacow:
07802534
QW
443 if (!btrfs_test_opt(root, NODATACOW)) {
444 if (!btrfs_test_opt(root, COMPRESS) ||
445 !btrfs_test_opt(root, FORCE_COMPRESS)) {
efe120a0 446 btrfs_info(root->fs_info,
07802534
QW
447 "setting nodatacow, compression disabled");
448 } else {
449 btrfs_info(root->fs_info, "setting nodatacow");
450 }
bedb2cca 451 }
bedb2cca
AP
452 btrfs_clear_opt(info->mount_opt, COMPRESS);
453 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
edf24abe
CH
454 btrfs_set_opt(info->mount_opt, NODATACOW);
455 btrfs_set_opt(info->mount_opt, NODATASUM);
95e05289 456 break;
a258af7a 457 case Opt_datacow:
07802534
QW
458 btrfs_clear_and_info(root, NODATACOW,
459 "setting datacow");
a258af7a 460 break;
a555f810 461 case Opt_compress_force:
261507a0
LZ
462 case Opt_compress_force_type:
463 compress_force = true;
1c697d4a 464 /* Fallthrough */
261507a0
LZ
465 case Opt_compress:
466 case Opt_compress_type:
467 if (token == Opt_compress ||
468 token == Opt_compress_force ||
469 strcmp(args[0].from, "zlib") == 0) {
470 compress_type = "zlib";
471 info->compress_type = BTRFS_COMPRESS_ZLIB;
063849ea 472 btrfs_set_opt(info->mount_opt, COMPRESS);
bedb2cca
AP
473 btrfs_clear_opt(info->mount_opt, NODATACOW);
474 btrfs_clear_opt(info->mount_opt, NODATASUM);
a6fa6fae
LZ
475 } else if (strcmp(args[0].from, "lzo") == 0) {
476 compress_type = "lzo";
477 info->compress_type = BTRFS_COMPRESS_LZO;
063849ea 478 btrfs_set_opt(info->mount_opt, COMPRESS);
bedb2cca
AP
479 btrfs_clear_opt(info->mount_opt, NODATACOW);
480 btrfs_clear_opt(info->mount_opt, NODATASUM);
2b0ce2c2 481 btrfs_set_fs_incompat(info, COMPRESS_LZO);
063849ea
AH
482 } else if (strncmp(args[0].from, "no", 2) == 0) {
483 compress_type = "no";
063849ea
AH
484 btrfs_clear_opt(info->mount_opt, COMPRESS);
485 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
486 compress_force = false;
261507a0
LZ
487 } else {
488 ret = -EINVAL;
489 goto out;
490 }
491
261507a0 492 if (compress_force) {
07802534
QW
493 btrfs_set_and_info(root, FORCE_COMPRESS,
494 "force %s compression",
495 compress_type);
143f3636 496 } else {
07802534
QW
497 if (!btrfs_test_opt(root, COMPRESS))
498 btrfs_info(root->fs_info,
351fd353 499 "btrfs: use %s compression",
07802534 500 compress_type);
4027e0f4
WS
501 /*
502 * If we remount from compress-force=xxx to
503 * compress=xxx, we need clear FORCE_COMPRESS
504 * flag, otherwise, there is no way for users
505 * to disable forcible compression separately.
506 */
507 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
a7e252af 508 }
a555f810 509 break;
e18e4809 510 case Opt_ssd:
07802534
QW
511 btrfs_set_and_info(root, SSD,
512 "use ssd allocation scheme");
e18e4809 513 break;
451d7585 514 case Opt_ssd_spread:
07802534
QW
515 btrfs_set_and_info(root, SSD_SPREAD,
516 "use spread ssd allocation scheme");
2aa06a35 517 btrfs_set_opt(info->mount_opt, SSD);
451d7585 518 break;
3b30c22f 519 case Opt_nossd:
2aa06a35 520 btrfs_set_and_info(root, NOSSD,
07802534 521 "not using ssd allocation scheme");
3b30c22f
CM
522 btrfs_clear_opt(info->mount_opt, SSD);
523 break;
842bef58 524 case Opt_barrier:
07802534
QW
525 btrfs_clear_and_info(root, NOBARRIER,
526 "turning on barriers");
842bef58 527 break;
21ad10cf 528 case Opt_nobarrier:
07802534
QW
529 btrfs_set_and_info(root, NOBARRIER,
530 "turning off barriers");
21ad10cf 531 break;
4543df7e 532 case Opt_thread_pool:
2c334e87
WS
533 ret = match_int(&args[0], &intarg);
534 if (ret) {
535 goto out;
536 } else if (intarg > 0) {
4543df7e 537 info->thread_pool_size = intarg;
2c334e87
WS
538 } else {
539 ret = -EINVAL;
540 goto out;
541 }
4543df7e 542 break;
6f568d35 543 case Opt_max_inline:
edf24abe
CH
544 num = match_strdup(&args[0]);
545 if (num) {
91748467 546 info->max_inline = memparse(num, NULL);
edf24abe
CH
547 kfree(num);
548
15ada040 549 if (info->max_inline) {
feb5f965 550 info->max_inline = min_t(u64,
15ada040
CM
551 info->max_inline,
552 root->sectorsize);
553 }
efe120a0 554 btrfs_info(root->fs_info, "max_inline at %llu",
c1c9ff7c 555 info->max_inline);
2c334e87
WS
556 } else {
557 ret = -ENOMEM;
558 goto out;
6f568d35
CM
559 }
560 break;
8f662a76 561 case Opt_alloc_start:
edf24abe
CH
562 num = match_strdup(&args[0]);
563 if (num) {
c018daec 564 mutex_lock(&info->chunk_mutex);
91748467 565 info->alloc_start = memparse(num, NULL);
c018daec 566 mutex_unlock(&info->chunk_mutex);
edf24abe 567 kfree(num);
efe120a0 568 btrfs_info(root->fs_info, "allocations start at %llu",
c1c9ff7c 569 info->alloc_start);
2c334e87
WS
570 } else {
571 ret = -ENOMEM;
572 goto out;
8f662a76
CM
573 }
574 break;
bd0330ad 575 case Opt_acl:
45ff35d6 576#ifdef CONFIG_BTRFS_FS_POSIX_ACL
bd0330ad
QW
577 root->fs_info->sb->s_flags |= MS_POSIXACL;
578 break;
45ff35d6
GZ
579#else
580 btrfs_err(root->fs_info,
581 "support for ACL not compiled in!");
582 ret = -EINVAL;
583 goto out;
584#endif
33268eaf
JB
585 case Opt_noacl:
586 root->fs_info->sb->s_flags &= ~MS_POSIXACL;
587 break;
3a5e1404 588 case Opt_notreelog:
07802534
QW
589 btrfs_set_and_info(root, NOTREELOG,
590 "disabling tree log");
a88998f2
QW
591 break;
592 case Opt_treelog:
07802534
QW
593 btrfs_clear_and_info(root, NOTREELOG,
594 "enabling tree log");
3a5e1404 595 break;
dccae999 596 case Opt_flushoncommit:
07802534
QW
597 btrfs_set_and_info(root, FLUSHONCOMMIT,
598 "turning on flush-on-commit");
dccae999 599 break;
2c9ee856 600 case Opt_noflushoncommit:
07802534
QW
601 btrfs_clear_and_info(root, FLUSHONCOMMIT,
602 "turning off flush-on-commit");
2c9ee856 603 break;
97e728d4 604 case Opt_ratio:
2c334e87
WS
605 ret = match_int(&args[0], &intarg);
606 if (ret) {
607 goto out;
608 } else if (intarg >= 0) {
97e728d4 609 info->metadata_ratio = intarg;
efe120a0 610 btrfs_info(root->fs_info, "metadata ratio %d",
97e728d4 611 info->metadata_ratio);
2c334e87
WS
612 } else {
613 ret = -EINVAL;
614 goto out;
97e728d4
JB
615 }
616 break;
e244a0ae 617 case Opt_discard:
07802534
QW
618 btrfs_set_and_info(root, DISCARD,
619 "turning on discard");
e244a0ae 620 break;
e07a2ade 621 case Opt_nodiscard:
07802534
QW
622 btrfs_clear_and_info(root, DISCARD,
623 "turning off discard");
e07a2ade 624 break;
0af3d00b 625 case Opt_space_cache:
07802534
QW
626 btrfs_set_and_info(root, SPACE_CACHE,
627 "enabling disk space caching");
0de90876 628 break;
f420ee1e
SB
629 case Opt_rescan_uuid_tree:
630 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
631 break;
73bc1876 632 case Opt_no_space_cache:
07802534
QW
633 btrfs_clear_and_info(root, SPACE_CACHE,
634 "disabling disk space caching");
73bc1876 635 break;
4b9465cb 636 case Opt_inode_cache:
7e1876ac 637 btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
07802534 638 "enabling inode map caching");
3818aea2
QW
639 break;
640 case Opt_noinode_cache:
7e1876ac 641 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
07802534 642 "disabling inode map caching");
4b9465cb 643 break;
88c2ba3b 644 case Opt_clear_cache:
07802534
QW
645 btrfs_set_and_info(root, CLEAR_CACHE,
646 "force clearing of disk cache");
0af3d00b 647 break;
4260f7c7
SW
648 case Opt_user_subvol_rm_allowed:
649 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
650 break;
91435650
CM
651 case Opt_enospc_debug:
652 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
653 break;
53036293
QW
654 case Opt_noenospc_debug:
655 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
656 break;
4cb5300b 657 case Opt_defrag:
07802534
QW
658 btrfs_set_and_info(root, AUTO_DEFRAG,
659 "enabling auto defrag");
4cb5300b 660 break;
fc0ca9af 661 case Opt_nodefrag:
07802534
QW
662 btrfs_clear_and_info(root, AUTO_DEFRAG,
663 "disabling auto defrag");
fc0ca9af 664 break;
af31f5e5 665 case Opt_recovery:
efe120a0 666 btrfs_info(root->fs_info, "enabling auto recovery");
af31f5e5
CM
667 btrfs_set_opt(info->mount_opt, RECOVERY);
668 break;
9555c6c1
ID
669 case Opt_skip_balance:
670 btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
671 break;
21adbd5c
SB
672#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
673 case Opt_check_integrity_including_extent_data:
efe120a0
FH
674 btrfs_info(root->fs_info,
675 "enabling check integrity including extent data");
21adbd5c
SB
676 btrfs_set_opt(info->mount_opt,
677 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
678 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
679 break;
680 case Opt_check_integrity:
efe120a0 681 btrfs_info(root->fs_info, "enabling check integrity");
21adbd5c
SB
682 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
683 break;
684 case Opt_check_integrity_print_mask:
2c334e87
WS
685 ret = match_int(&args[0], &intarg);
686 if (ret) {
687 goto out;
688 } else if (intarg >= 0) {
21adbd5c 689 info->check_integrity_print_mask = intarg;
efe120a0 690 btrfs_info(root->fs_info, "check_integrity_print_mask 0x%x",
21adbd5c 691 info->check_integrity_print_mask);
2c334e87
WS
692 } else {
693 ret = -EINVAL;
694 goto out;
21adbd5c
SB
695 }
696 break;
697#else
698 case Opt_check_integrity_including_extent_data:
699 case Opt_check_integrity:
700 case Opt_check_integrity_print_mask:
efe120a0
FH
701 btrfs_err(root->fs_info,
702 "support for check_integrity* not compiled in!");
21adbd5c
SB
703 ret = -EINVAL;
704 goto out;
705#endif
8c342930
JM
706 case Opt_fatal_errors:
707 if (strcmp(args[0].from, "panic") == 0)
708 btrfs_set_opt(info->mount_opt,
709 PANIC_ON_FATAL_ERROR);
710 else if (strcmp(args[0].from, "bug") == 0)
711 btrfs_clear_opt(info->mount_opt,
712 PANIC_ON_FATAL_ERROR);
713 else {
714 ret = -EINVAL;
715 goto out;
716 }
717 break;
8b87dc17
DS
718 case Opt_commit_interval:
719 intarg = 0;
720 ret = match_int(&args[0], &intarg);
721 if (ret < 0) {
efe120a0 722 btrfs_err(root->fs_info, "invalid commit interval");
8b87dc17
DS
723 ret = -EINVAL;
724 goto out;
725 }
726 if (intarg > 0) {
727 if (intarg > 300) {
efe120a0 728 btrfs_warn(root->fs_info, "excessive commit interval %d",
8b87dc17
DS
729 intarg);
730 }
731 info->commit_interval = intarg;
732 } else {
efe120a0 733 btrfs_info(root->fs_info, "using default commit interval %ds",
8b87dc17
DS
734 BTRFS_DEFAULT_COMMIT_INTERVAL);
735 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
736 }
737 break;
a7a3f7ca 738 case Opt_err:
efe120a0 739 btrfs_info(root->fs_info, "unrecognized mount option '%s'", p);
a7a3f7ca
SW
740 ret = -EINVAL;
741 goto out;
95e05289 742 default:
be20aa9d 743 break;
95e05289
CM
744 }
745 }
a7a3f7ca 746out:
73bc1876 747 if (!ret && btrfs_test_opt(root, SPACE_CACHE))
efe120a0 748 btrfs_info(root->fs_info, "disk space caching is enabled");
da495ecc 749 kfree(orig);
a7a3f7ca 750 return ret;
edf24abe
CH
751}
752
753/*
754 * Parse mount options that are required early in the mount process.
755 *
756 * All other options will be parsed on much later in the mount process and
757 * only when we need to allocate a new super block.
758 */
97288f2c 759static int btrfs_parse_early_options(const char *options, fmode_t flags,
73f73415 760 void *holder, char **subvol_name, u64 *subvol_objectid,
5e2a4b25 761 struct btrfs_fs_devices **fs_devices)
edf24abe
CH
762{
763 substring_t args[MAX_OPT_ARGS];
83c8c9bd 764 char *device_name, *opts, *orig, *p;
1493381f 765 char *num = NULL;
edf24abe
CH
766 int error = 0;
767
768 if (!options)
830c4adb 769 return 0;
edf24abe
CH
770
771 /*
772 * strsep changes the string, duplicate it because parse_options
773 * gets called twice
774 */
775 opts = kstrdup(options, GFP_KERNEL);
776 if (!opts)
777 return -ENOMEM;
3f3d0bc0 778 orig = opts;
edf24abe
CH
779
780 while ((p = strsep(&opts, ",")) != NULL) {
781 int token;
782 if (!*p)
783 continue;
784
785 token = match_token(p, tokens, args);
786 switch (token) {
787 case Opt_subvol:
a90e8b6f 788 kfree(*subvol_name);
edf24abe 789 *subvol_name = match_strdup(&args[0]);
2c334e87
WS
790 if (!*subvol_name) {
791 error = -ENOMEM;
792 goto out;
793 }
edf24abe 794 break;
73f73415 795 case Opt_subvolid:
1493381f
WS
796 num = match_strdup(&args[0]);
797 if (num) {
798 *subvol_objectid = memparse(num, NULL);
799 kfree(num);
4849f01d 800 /* we want the original fs_tree */
1493381f 801 if (!*subvol_objectid)
4849f01d
JB
802 *subvol_objectid =
803 BTRFS_FS_TREE_OBJECTID;
2c334e87
WS
804 } else {
805 error = -EINVAL;
806 goto out;
4849f01d 807 }
73f73415 808 break;
e15d0542 809 case Opt_subvolrootid:
5e2a4b25 810 printk(KERN_WARNING
efe120a0
FH
811 "BTRFS: 'subvolrootid' mount option is deprecated and has "
812 "no effect\n");
e15d0542 813 break;
43e570b0 814 case Opt_device:
83c8c9bd
JL
815 device_name = match_strdup(&args[0]);
816 if (!device_name) {
817 error = -ENOMEM;
818 goto out;
819 }
820 error = btrfs_scan_one_device(device_name,
43e570b0 821 flags, holder, fs_devices);
83c8c9bd 822 kfree(device_name);
43e570b0 823 if (error)
830c4adb 824 goto out;
43e570b0 825 break;
edf24abe
CH
826 default:
827 break;
828 }
829 }
830
830c4adb 831out:
3f3d0bc0 832 kfree(orig);
edf24abe 833 return error;
95e05289
CM
834}
835
73f73415
JB
836static struct dentry *get_default_root(struct super_block *sb,
837 u64 subvol_objectid)
838{
815745cf
AV
839 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
840 struct btrfs_root *root = fs_info->tree_root;
73f73415
JB
841 struct btrfs_root *new_root;
842 struct btrfs_dir_item *di;
843 struct btrfs_path *path;
844 struct btrfs_key location;
845 struct inode *inode;
73f73415
JB
846 u64 dir_id;
847 int new = 0;
848
849 /*
850 * We have a specific subvol we want to mount, just setup location and
851 * go look up the root.
852 */
853 if (subvol_objectid) {
854 location.objectid = subvol_objectid;
855 location.type = BTRFS_ROOT_ITEM_KEY;
856 location.offset = (u64)-1;
857 goto find_root;
858 }
859
860 path = btrfs_alloc_path();
861 if (!path)
862 return ERR_PTR(-ENOMEM);
863 path->leave_spinning = 1;
864
865 /*
866 * Find the "default" dir item which points to the root item that we
867 * will mount by default if we haven't been given a specific subvolume
868 * to mount.
869 */
815745cf 870 dir_id = btrfs_super_root_dir(fs_info->super_copy);
73f73415 871 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
b0839166
JL
872 if (IS_ERR(di)) {
873 btrfs_free_path(path);
fb4f6f91 874 return ERR_CAST(di);
b0839166 875 }
73f73415
JB
876 if (!di) {
877 /*
878 * Ok the default dir item isn't there. This is weird since
879 * it's always been there, but don't freak out, just try and
880 * mount to root most subvolume.
881 */
882 btrfs_free_path(path);
883 dir_id = BTRFS_FIRST_FREE_OBJECTID;
815745cf 884 new_root = fs_info->fs_root;
73f73415
JB
885 goto setup_root;
886 }
887
888 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
889 btrfs_free_path(path);
890
891find_root:
815745cf 892 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
73f73415 893 if (IS_ERR(new_root))
d0b678cb 894 return ERR_CAST(new_root);
73f73415 895
727b9784
JM
896 if (!(sb->s_flags & MS_RDONLY)) {
897 int ret;
898 down_read(&fs_info->cleanup_work_sem);
899 ret = btrfs_orphan_cleanup(new_root);
900 up_read(&fs_info->cleanup_work_sem);
901 if (ret)
902 return ERR_PTR(ret);
903 }
904
73f73415
JB
905 dir_id = btrfs_root_dirid(&new_root->root_item);
906setup_root:
907 location.objectid = dir_id;
908 location.type = BTRFS_INODE_ITEM_KEY;
909 location.offset = 0;
910
911 inode = btrfs_iget(sb, &location, new_root, &new);
4cbd1149
DC
912 if (IS_ERR(inode))
913 return ERR_CAST(inode);
73f73415
JB
914
915 /*
916 * If we're just mounting the root most subvol put the inode and return
917 * a reference to the dentry. We will have already gotten a reference
918 * to the inode in btrfs_fill_super so we're good to go.
919 */
2b0143b5 920 if (!new && d_inode(sb->s_root) == inode) {
73f73415
JB
921 iput(inode);
922 return dget(sb->s_root);
923 }
924
1a0a397e 925 return d_obtain_root(inode);
73f73415
JB
926}
927
d397712b 928static int btrfs_fill_super(struct super_block *sb,
8a4b83cc 929 struct btrfs_fs_devices *fs_devices,
d397712b 930 void *data, int silent)
75dfe396 931{
d397712b 932 struct inode *inode;
815745cf 933 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
5d4f98a2 934 struct btrfs_key key;
39279cc3 935 int err;
a429e513 936
39279cc3
CM
937 sb->s_maxbytes = MAX_LFS_FILESIZE;
938 sb->s_magic = BTRFS_SUPER_MAGIC;
939 sb->s_op = &btrfs_super_ops;
af53d29a 940 sb->s_d_op = &btrfs_dentry_operations;
be6e8dc0 941 sb->s_export_op = &btrfs_export_ops;
5103e947 942 sb->s_xattr = btrfs_xattr_handlers;
39279cc3 943 sb->s_time_gran = 1;
0eda294d 944#ifdef CONFIG_BTRFS_FS_POSIX_ACL
33268eaf 945 sb->s_flags |= MS_POSIXACL;
49cf6f45 946#endif
0c4d2d95 947 sb->s_flags |= MS_I_VERSION;
ad2b2c80
AV
948 err = open_ctree(sb, fs_devices, (char *)data);
949 if (err) {
efe120a0 950 printk(KERN_ERR "BTRFS: open_ctree failed\n");
ad2b2c80 951 return err;
a429e513
CM
952 }
953
5d4f98a2
YZ
954 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
955 key.type = BTRFS_INODE_ITEM_KEY;
956 key.offset = 0;
98c7089c 957 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
5d4f98a2
YZ
958 if (IS_ERR(inode)) {
959 err = PTR_ERR(inode);
39279cc3 960 goto fail_close;
f254e52c 961 }
f254e52c 962
48fde701
AV
963 sb->s_root = d_make_root(inode);
964 if (!sb->s_root) {
39279cc3
CM
965 err = -ENOMEM;
966 goto fail_close;
f254e52c 967 }
58176a96 968
6885f308 969 save_mount_options(sb, data);
90a887c9 970 cleancache_init_fs(sb);
59553edf 971 sb->s_flags |= MS_ACTIVE;
2619ba1f 972 return 0;
39279cc3
CM
973
974fail_close:
815745cf 975 close_ctree(fs_info->tree_root);
39279cc3 976 return err;
2619ba1f
CM
977}
978
6bf13c0c 979int btrfs_sync_fs(struct super_block *sb, int wait)
c5739bba
CM
980{
981 struct btrfs_trans_handle *trans;
815745cf
AV
982 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
983 struct btrfs_root *root = fs_info->tree_root;
2619ba1f 984
1abe9b8a 985 trace_btrfs_sync_fs(wait);
986
39279cc3 987 if (!wait) {
815745cf 988 filemap_flush(fs_info->btree_inode->i_mapping);
39279cc3
CM
989 return 0;
990 }
771ed689 991
b0244199 992 btrfs_wait_ordered_roots(fs_info, -1);
771ed689 993
d4edf39b 994 trans = btrfs_attach_transaction_barrier(root);
60376ce4 995 if (IS_ERR(trans)) {
354aa0fb 996 /* no transaction, don't bother */
6b5fe46d
DS
997 if (PTR_ERR(trans) == -ENOENT) {
998 /*
999 * Exit unless we have some pending changes
1000 * that need to go through commit
1001 */
1002 if (fs_info->pending_changes == 0)
1003 return 0;
a53f4f8e
QW
1004 /*
1005 * A non-blocking test if the fs is frozen. We must not
1006 * start a new transaction here otherwise a deadlock
1007 * happens. The pending operations are delayed to the
1008 * next commit after thawing.
1009 */
1010 if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1011 __sb_end_write(sb, SB_FREEZE_WRITE);
1012 else
1013 return 0;
6b5fe46d 1014 trans = btrfs_start_transaction(root, 0);
6b5fe46d 1015 }
98bd5c54
DS
1016 if (IS_ERR(trans))
1017 return PTR_ERR(trans);
60376ce4 1018 }
bd7de2c9 1019 return btrfs_commit_transaction(trans, root);
2c90e5d6
CM
1020}
1021
34c80b1d 1022static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
a9572a15 1023{
815745cf
AV
1024 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1025 struct btrfs_root *root = info->tree_root;
200da64e 1026 char *compress_type;
a9572a15
EP
1027
1028 if (btrfs_test_opt(root, DEGRADED))
1029 seq_puts(seq, ",degraded");
1030 if (btrfs_test_opt(root, NODATASUM))
1031 seq_puts(seq, ",nodatasum");
1032 if (btrfs_test_opt(root, NODATACOW))
1033 seq_puts(seq, ",nodatacow");
1034 if (btrfs_test_opt(root, NOBARRIER))
1035 seq_puts(seq, ",nobarrier");
95ac567a 1036 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
c1c9ff7c 1037 seq_printf(seq, ",max_inline=%llu", info->max_inline);
a9572a15 1038 if (info->alloc_start != 0)
c1c9ff7c 1039 seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
a9572a15
EP
1040 if (info->thread_pool_size != min_t(unsigned long,
1041 num_online_cpus() + 2, 8))
1042 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
200da64e
TI
1043 if (btrfs_test_opt(root, COMPRESS)) {
1044 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1045 compress_type = "zlib";
1046 else
1047 compress_type = "lzo";
1048 if (btrfs_test_opt(root, FORCE_COMPRESS))
1049 seq_printf(seq, ",compress-force=%s", compress_type);
1050 else
1051 seq_printf(seq, ",compress=%s", compress_type);
1052 }
c289811c
CM
1053 if (btrfs_test_opt(root, NOSSD))
1054 seq_puts(seq, ",nossd");
451d7585
CM
1055 if (btrfs_test_opt(root, SSD_SPREAD))
1056 seq_puts(seq, ",ssd_spread");
1057 else if (btrfs_test_opt(root, SSD))
a9572a15 1058 seq_puts(seq, ",ssd");
3a5e1404 1059 if (btrfs_test_opt(root, NOTREELOG))
6b65c5c6 1060 seq_puts(seq, ",notreelog");
dccae999 1061 if (btrfs_test_opt(root, FLUSHONCOMMIT))
6b65c5c6 1062 seq_puts(seq, ",flushoncommit");
20a5239a
MW
1063 if (btrfs_test_opt(root, DISCARD))
1064 seq_puts(seq, ",discard");
a9572a15
EP
1065 if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1066 seq_puts(seq, ",noacl");
200da64e
TI
1067 if (btrfs_test_opt(root, SPACE_CACHE))
1068 seq_puts(seq, ",space_cache");
73bc1876 1069 else
8965593e 1070 seq_puts(seq, ",nospace_cache");
f420ee1e
SB
1071 if (btrfs_test_opt(root, RESCAN_UUID_TREE))
1072 seq_puts(seq, ",rescan_uuid_tree");
200da64e
TI
1073 if (btrfs_test_opt(root, CLEAR_CACHE))
1074 seq_puts(seq, ",clear_cache");
1075 if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1076 seq_puts(seq, ",user_subvol_rm_allowed");
0942caa3
DS
1077 if (btrfs_test_opt(root, ENOSPC_DEBUG))
1078 seq_puts(seq, ",enospc_debug");
1079 if (btrfs_test_opt(root, AUTO_DEFRAG))
1080 seq_puts(seq, ",autodefrag");
1081 if (btrfs_test_opt(root, INODE_MAP_CACHE))
1082 seq_puts(seq, ",inode_cache");
9555c6c1
ID
1083 if (btrfs_test_opt(root, SKIP_BALANCE))
1084 seq_puts(seq, ",skip_balance");
8507d216
WS
1085 if (btrfs_test_opt(root, RECOVERY))
1086 seq_puts(seq, ",recovery");
1087#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1088 if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1089 seq_puts(seq, ",check_int_data");
1090 else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1091 seq_puts(seq, ",check_int");
1092 if (info->check_integrity_print_mask)
1093 seq_printf(seq, ",check_int_print_mask=%d",
1094 info->check_integrity_print_mask);
1095#endif
1096 if (info->metadata_ratio)
1097 seq_printf(seq, ",metadata_ratio=%d",
1098 info->metadata_ratio);
8c342930
JM
1099 if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1100 seq_puts(seq, ",fatal_errors=panic");
8b87dc17
DS
1101 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1102 seq_printf(seq, ",commit=%d", info->commit_interval);
a9572a15
EP
1103 return 0;
1104}
1105
a061fc8d 1106static int btrfs_test_super(struct super_block *s, void *data)
4b82d6e4 1107{
815745cf
AV
1108 struct btrfs_fs_info *p = data;
1109 struct btrfs_fs_info *fs_info = btrfs_sb(s);
4b82d6e4 1110
815745cf 1111 return fs_info->fs_devices == p->fs_devices;
4b82d6e4
Y
1112}
1113
450ba0ea
JB
1114static int btrfs_set_super(struct super_block *s, void *data)
1115{
6de1d09d
AV
1116 int err = set_anon_super(s, data);
1117 if (!err)
1118 s->s_fs_info = data;
1119 return err;
4b82d6e4
Y
1120}
1121
f9d9ef62
DS
1122/*
1123 * subvolumes are identified by ino 256
1124 */
1125static inline int is_subvolume_inode(struct inode *inode)
1126{
1127 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1128 return 1;
1129 return 0;
1130}
1131
830c4adb
JB
1132/*
1133 * This will strip out the subvol=%s argument for an argument string and add
1134 * subvolid=0 to make sure we get the actual tree root for path walking to the
1135 * subvol we want.
1136 */
1137static char *setup_root_args(char *args)
1138{
f60d16a8
JM
1139 unsigned len = strlen(args) + 2 + 1;
1140 char *src, *dst, *buf;
830c4adb
JB
1141
1142 /*
f60d16a8
JM
1143 * We need the same args as before, but with this substitution:
1144 * s!subvol=[^,]+!subvolid=0!
830c4adb 1145 *
f60d16a8
JM
1146 * Since the replacement string is up to 2 bytes longer than the
1147 * original, allocate strlen(args) + 2 + 1 bytes.
830c4adb 1148 */
830c4adb 1149
f60d16a8 1150 src = strstr(args, "subvol=");
830c4adb 1151 /* This shouldn't happen, but just in case.. */
f60d16a8
JM
1152 if (!src)
1153 return NULL;
1154
1155 buf = dst = kmalloc(len, GFP_NOFS);
1156 if (!buf)
830c4adb 1157 return NULL;
830c4adb
JB
1158
1159 /*
f60d16a8
JM
1160 * If the subvol= arg is not at the start of the string,
1161 * copy whatever precedes it into buf.
830c4adb 1162 */
f60d16a8
JM
1163 if (src != args) {
1164 *src++ = '\0';
1165 strcpy(buf, args);
1166 dst += strlen(args);
830c4adb
JB
1167 }
1168
f60d16a8
JM
1169 strcpy(dst, "subvolid=0");
1170 dst += strlen("subvolid=0");
830c4adb
JB
1171
1172 /*
f60d16a8
JM
1173 * If there is a "," after the original subvol=... string,
1174 * copy that suffix into our buffer. Otherwise, we're done.
830c4adb 1175 */
f60d16a8
JM
1176 src = strchr(src, ',');
1177 if (src)
1178 strcpy(dst, src);
830c4adb 1179
f60d16a8 1180 return buf;
830c4adb
JB
1181}
1182
1183static struct dentry *mount_subvol(const char *subvol_name, int flags,
1184 const char *device_name, char *data)
1185{
830c4adb
JB
1186 struct dentry *root;
1187 struct vfsmount *mnt;
830c4adb 1188 char *newargs;
830c4adb
JB
1189
1190 newargs = setup_root_args(data);
1191 if (!newargs)
1192 return ERR_PTR(-ENOMEM);
1193 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1194 newargs);
0723a047
HH
1195
1196 if (PTR_RET(mnt) == -EBUSY) {
1197 if (flags & MS_RDONLY) {
1198 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, device_name,
1199 newargs);
1200 } else {
1201 int r;
1202 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, device_name,
1203 newargs);
0040e606
CJ
1204 if (IS_ERR(mnt)) {
1205 kfree(newargs);
0723a047 1206 return ERR_CAST(mnt);
0040e606 1207 }
0723a047
HH
1208
1209 r = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1210 if (r < 0) {
1211 /* FIXME: release vfsmount mnt ??*/
0040e606 1212 kfree(newargs);
0723a047
HH
1213 return ERR_PTR(r);
1214 }
1215 }
1216 }
1217
0040e606
CJ
1218 kfree(newargs);
1219
830c4adb
JB
1220 if (IS_ERR(mnt))
1221 return ERR_CAST(mnt);
1222
ea441d11 1223 root = mount_subtree(mnt, subvol_name);
830c4adb 1224
2b0143b5 1225 if (!IS_ERR(root) && !is_subvolume_inode(d_inode(root))) {
ea441d11
AV
1226 struct super_block *s = root->d_sb;
1227 dput(root);
1228 root = ERR_PTR(-EINVAL);
1229 deactivate_locked_super(s);
efe120a0 1230 printk(KERN_ERR "BTRFS: '%s' is not a valid subvolume\n",
f9d9ef62 1231 subvol_name);
f9d9ef62
DS
1232 }
1233
830c4adb
JB
1234 return root;
1235}
450ba0ea 1236
f667aef6
QW
1237static int parse_security_options(char *orig_opts,
1238 struct security_mnt_opts *sec_opts)
1239{
1240 char *secdata = NULL;
1241 int ret = 0;
1242
1243 secdata = alloc_secdata();
1244 if (!secdata)
1245 return -ENOMEM;
1246 ret = security_sb_copy_data(orig_opts, secdata);
1247 if (ret) {
1248 free_secdata(secdata);
1249 return ret;
1250 }
1251 ret = security_sb_parse_opts_str(secdata, sec_opts);
1252 free_secdata(secdata);
1253 return ret;
1254}
1255
1256static int setup_security_options(struct btrfs_fs_info *fs_info,
1257 struct super_block *sb,
1258 struct security_mnt_opts *sec_opts)
1259{
1260 int ret = 0;
1261
1262 /*
1263 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1264 * is valid.
1265 */
1266 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1267 if (ret)
1268 return ret;
1269
a43bb39b 1270#ifdef CONFIG_SECURITY
f667aef6
QW
1271 if (!fs_info->security_opts.num_mnt_opts) {
1272 /* first time security setup, copy sec_opts to fs_info */
1273 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1274 } else {
1275 /*
1276 * Since SELinux(the only one supports security_mnt_opts) does
1277 * NOT support changing context during remount/mount same sb,
1278 * This must be the same or part of the same security options,
1279 * just free it.
1280 */
1281 security_free_mnt_opts(sec_opts);
1282 }
a43bb39b 1283#endif
f667aef6
QW
1284 return ret;
1285}
1286
edf24abe
CH
1287/*
1288 * Find a superblock for the given device / mount point.
1289 *
1290 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1291 * for multiple device setup. Make sure to keep it in sync.
1292 */
061dbc6b 1293static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
306e16ce 1294 const char *device_name, void *data)
4b82d6e4
Y
1295{
1296 struct block_device *bdev = NULL;
1297 struct super_block *s;
1298 struct dentry *root;
8a4b83cc 1299 struct btrfs_fs_devices *fs_devices = NULL;
450ba0ea 1300 struct btrfs_fs_info *fs_info = NULL;
f667aef6 1301 struct security_mnt_opts new_sec_opts;
97288f2c 1302 fmode_t mode = FMODE_READ;
73f73415
JB
1303 char *subvol_name = NULL;
1304 u64 subvol_objectid = 0;
4b82d6e4
Y
1305 int error = 0;
1306
97288f2c
CH
1307 if (!(flags & MS_RDONLY))
1308 mode |= FMODE_WRITE;
1309
1310 error = btrfs_parse_early_options(data, mode, fs_type,
73f73415 1311 &subvol_name, &subvol_objectid,
5e2a4b25 1312 &fs_devices);
f23c8af8
ID
1313 if (error) {
1314 kfree(subvol_name);
061dbc6b 1315 return ERR_PTR(error);
f23c8af8 1316 }
edf24abe 1317
830c4adb
JB
1318 if (subvol_name) {
1319 root = mount_subvol(subvol_name, flags, device_name, data);
1320 kfree(subvol_name);
1321 return root;
1322 }
1323
f667aef6
QW
1324 security_init_mnt_opts(&new_sec_opts);
1325 if (data) {
1326 error = parse_security_options(data, &new_sec_opts);
1327 if (error)
1328 return ERR_PTR(error);
1329 }
1330
306e16ce 1331 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
8a4b83cc 1332 if (error)
f667aef6 1333 goto error_sec_opts;
4b82d6e4 1334
450ba0ea
JB
1335 /*
1336 * Setup a dummy root and fs_info for test/set super. This is because
1337 * we don't actually fill this stuff out until open_ctree, but we need
1338 * it for searching for existing supers, so this lets us do that and
1339 * then open_ctree will properly initialize everything later.
1340 */
1341 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
f667aef6
QW
1342 if (!fs_info) {
1343 error = -ENOMEM;
1344 goto error_sec_opts;
1345 }
04d21a24 1346
450ba0ea 1347 fs_info->fs_devices = fs_devices;
450ba0ea 1348
6c41761f
DS
1349 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1350 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
f667aef6 1351 security_init_mnt_opts(&fs_info->security_opts);
6c41761f
DS
1352 if (!fs_info->super_copy || !fs_info->super_for_commit) {
1353 error = -ENOMEM;
04d21a24
ID
1354 goto error_fs_info;
1355 }
1356
1357 error = btrfs_open_devices(fs_devices, mode, fs_type);
1358 if (error)
1359 goto error_fs_info;
1360
1361 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1362 error = -EACCES;
6c41761f
DS
1363 goto error_close_devices;
1364 }
1365
dfe25020 1366 bdev = fs_devices->latest_bdev;
9249e17f
DH
1367 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1368 fs_info);
830c4adb
JB
1369 if (IS_ERR(s)) {
1370 error = PTR_ERR(s);
1371 goto error_close_devices;
1372 }
4b82d6e4
Y
1373
1374 if (s->s_root) {
2b82032c 1375 btrfs_close_devices(fs_devices);
6c41761f 1376 free_fs_info(fs_info);
59553edf
AV
1377 if ((flags ^ s->s_flags) & MS_RDONLY)
1378 error = -EBUSY;
4b82d6e4
Y
1379 } else {
1380 char b[BDEVNAME_SIZE];
1381
4b82d6e4 1382 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
815745cf 1383 btrfs_sb(s)->bdev_holder = fs_type;
8a4b83cc
CM
1384 error = btrfs_fill_super(s, fs_devices, data,
1385 flags & MS_SILENT ? 1 : 0);
4b82d6e4
Y
1386 }
1387
59553edf 1388 root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
f667aef6
QW
1389 if (IS_ERR(root)) {
1390 deactivate_locked_super(s);
1391 error = PTR_ERR(root);
1392 goto error_sec_opts;
1393 }
1394
1395 fs_info = btrfs_sb(s);
1396 error = setup_security_options(fs_info, s, &new_sec_opts);
1397 if (error) {
1398 dput(root);
830c4adb 1399 deactivate_locked_super(s);
f667aef6
QW
1400 goto error_sec_opts;
1401 }
4b82d6e4 1402
061dbc6b 1403 return root;
4b82d6e4 1404
c146afad 1405error_close_devices:
8a4b83cc 1406 btrfs_close_devices(fs_devices);
04d21a24 1407error_fs_info:
6c41761f 1408 free_fs_info(fs_info);
f667aef6
QW
1409error_sec_opts:
1410 security_free_mnt_opts(&new_sec_opts);
061dbc6b 1411 return ERR_PTR(error);
4b82d6e4 1412}
2e635a27 1413
0d2450ab
ST
1414static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1415 int new_pool_size, int old_pool_size)
1416{
1417 if (new_pool_size == old_pool_size)
1418 return;
1419
1420 fs_info->thread_pool_size = new_pool_size;
1421
efe120a0 1422 btrfs_info(fs_info, "resize thread pool %d -> %d",
0d2450ab
ST
1423 old_pool_size, new_pool_size);
1424
5cdc7ad3 1425 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
afe3d242 1426 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
a8c93d4e 1427 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
e66f0bb1 1428 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
fccb5d86
QW
1429 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1430 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1431 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1432 new_pool_size);
1433 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1434 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
5b3bc44e 1435 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
736cfa15 1436 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
0339ef2f
QW
1437 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1438 new_pool_size);
0d2450ab
ST
1439}
1440
f42a34b2 1441static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
dc81cdc5
MX
1442{
1443 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
f42a34b2 1444}
dc81cdc5 1445
f42a34b2
MX
1446static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1447 unsigned long old_opts, int flags)
1448{
dc81cdc5
MX
1449 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1450 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1451 (flags & MS_RDONLY))) {
1452 /* wait for any defraggers to finish */
1453 wait_event(fs_info->transaction_wait,
1454 (atomic_read(&fs_info->defrag_running) == 0));
1455 if (flags & MS_RDONLY)
1456 sync_filesystem(fs_info->sb);
1457 }
1458}
1459
1460static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1461 unsigned long old_opts)
1462{
1463 /*
1464 * We need cleanup all defragable inodes if the autodefragment is
1465 * close or the fs is R/O.
1466 */
1467 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1468 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1469 (fs_info->sb->s_flags & MS_RDONLY))) {
1470 btrfs_cleanup_defrag_inodes(fs_info);
1471 }
1472
1473 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1474}
1475
c146afad
YZ
1476static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1477{
815745cf
AV
1478 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1479 struct btrfs_root *root = fs_info->tree_root;
49b25e05
JM
1480 unsigned old_flags = sb->s_flags;
1481 unsigned long old_opts = fs_info->mount_opt;
1482 unsigned long old_compress_type = fs_info->compress_type;
1483 u64 old_max_inline = fs_info->max_inline;
1484 u64 old_alloc_start = fs_info->alloc_start;
1485 int old_thread_pool_size = fs_info->thread_pool_size;
1486 unsigned int old_metadata_ratio = fs_info->metadata_ratio;
c146afad
YZ
1487 int ret;
1488
02b9984d 1489 sync_filesystem(sb);
f42a34b2 1490 btrfs_remount_prepare(fs_info);
dc81cdc5 1491
f667aef6
QW
1492 if (data) {
1493 struct security_mnt_opts new_sec_opts;
1494
1495 security_init_mnt_opts(&new_sec_opts);
1496 ret = parse_security_options(data, &new_sec_opts);
1497 if (ret)
1498 goto restore;
1499 ret = setup_security_options(fs_info, sb,
1500 &new_sec_opts);
1501 if (ret) {
1502 security_free_mnt_opts(&new_sec_opts);
1503 goto restore;
1504 }
1505 }
1506
b288052e 1507 ret = btrfs_parse_options(root, data);
49b25e05
JM
1508 if (ret) {
1509 ret = -EINVAL;
1510 goto restore;
1511 }
b288052e 1512
f42a34b2 1513 btrfs_remount_begin(fs_info, old_opts, *flags);
0d2450ab
ST
1514 btrfs_resize_thread_pool(fs_info,
1515 fs_info->thread_pool_size, old_thread_pool_size);
1516
c146afad 1517 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
dc81cdc5 1518 goto out;
c146afad
YZ
1519
1520 if (*flags & MS_RDONLY) {
8dabb742
SB
1521 /*
1522 * this also happens on 'umount -rf' or on shutdown, when
1523 * the filesystem is busy.
1524 */
21c7e756 1525 cancel_work_sync(&fs_info->async_reclaim_work);
361c093d
SB
1526
1527 /* wait for the uuid_scan task to finish */
1528 down(&fs_info->uuid_tree_rescan_sem);
1529 /* avoid complains from lockdep et al. */
1530 up(&fs_info->uuid_tree_rescan_sem);
1531
c146afad
YZ
1532 sb->s_flags |= MS_RDONLY;
1533
8dabb742
SB
1534 btrfs_dev_replace_suspend_for_unmount(fs_info);
1535 btrfs_scrub_cancel(fs_info);
061594ef 1536 btrfs_pause_balance(fs_info);
8dabb742 1537
49b25e05
JM
1538 ret = btrfs_commit_super(root);
1539 if (ret)
1540 goto restore;
c146afad 1541 } else {
6ef3de9c
DS
1542 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1543 btrfs_err(fs_info,
efe120a0 1544 "Remounting read-write after error is not allowed");
6ef3de9c
DS
1545 ret = -EINVAL;
1546 goto restore;
1547 }
8a3db184 1548 if (fs_info->fs_devices->rw_devices == 0) {
49b25e05
JM
1549 ret = -EACCES;
1550 goto restore;
8a3db184 1551 }
2b82032c 1552
292fd7fc
SB
1553 if (fs_info->fs_devices->missing_devices >
1554 fs_info->num_tolerated_disk_barrier_failures &&
1555 !(*flags & MS_RDONLY)) {
efe120a0
FH
1556 btrfs_warn(fs_info,
1557 "too many missing devices, writeable remount is not allowed");
292fd7fc
SB
1558 ret = -EACCES;
1559 goto restore;
1560 }
1561
8a3db184 1562 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
49b25e05
JM
1563 ret = -EINVAL;
1564 goto restore;
8a3db184 1565 }
c146afad 1566
815745cf 1567 ret = btrfs_cleanup_fs_roots(fs_info);
49b25e05
JM
1568 if (ret)
1569 goto restore;
c146afad 1570
d68fc57b 1571 /* recover relocation */
5f316481 1572 mutex_lock(&fs_info->cleaner_mutex);
d68fc57b 1573 ret = btrfs_recover_relocation(root);
5f316481 1574 mutex_unlock(&fs_info->cleaner_mutex);
49b25e05
JM
1575 if (ret)
1576 goto restore;
c146afad 1577
2b6ba629
ID
1578 ret = btrfs_resume_balance_async(fs_info);
1579 if (ret)
1580 goto restore;
1581
8dabb742
SB
1582 ret = btrfs_resume_dev_replace_async(fs_info);
1583 if (ret) {
efe120a0 1584 btrfs_warn(fs_info, "failed to resume dev_replace");
8dabb742
SB
1585 goto restore;
1586 }
94aebfb2
JB
1587
1588 if (!fs_info->uuid_root) {
efe120a0 1589 btrfs_info(fs_info, "creating UUID tree");
94aebfb2
JB
1590 ret = btrfs_create_uuid_tree(fs_info);
1591 if (ret) {
efe120a0 1592 btrfs_warn(fs_info, "failed to create the UUID tree %d", ret);
94aebfb2
JB
1593 goto restore;
1594 }
1595 }
c146afad
YZ
1596 sb->s_flags &= ~MS_RDONLY;
1597 }
dc81cdc5 1598out:
2c6a92b0 1599 wake_up_process(fs_info->transaction_kthread);
dc81cdc5 1600 btrfs_remount_cleanup(fs_info, old_opts);
c146afad 1601 return 0;
49b25e05
JM
1602
1603restore:
1604 /* We've hit an error - don't reset MS_RDONLY */
1605 if (sb->s_flags & MS_RDONLY)
1606 old_flags |= MS_RDONLY;
1607 sb->s_flags = old_flags;
1608 fs_info->mount_opt = old_opts;
1609 fs_info->compress_type = old_compress_type;
1610 fs_info->max_inline = old_max_inline;
c018daec 1611 mutex_lock(&fs_info->chunk_mutex);
49b25e05 1612 fs_info->alloc_start = old_alloc_start;
c018daec 1613 mutex_unlock(&fs_info->chunk_mutex);
0d2450ab
ST
1614 btrfs_resize_thread_pool(fs_info,
1615 old_thread_pool_size, fs_info->thread_pool_size);
49b25e05 1616 fs_info->metadata_ratio = old_metadata_ratio;
dc81cdc5 1617 btrfs_remount_cleanup(fs_info, old_opts);
49b25e05 1618 return ret;
c146afad
YZ
1619}
1620
bcd53741
AJ
1621/* Used to sort the devices by max_avail(descending sort) */
1622static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1623 const void *dev_info2)
1624{
1625 if (((struct btrfs_device_info *)dev_info1)->max_avail >
1626 ((struct btrfs_device_info *)dev_info2)->max_avail)
1627 return -1;
1628 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1629 ((struct btrfs_device_info *)dev_info2)->max_avail)
1630 return 1;
1631 else
1632 return 0;
1633}
1634
1635/*
1636 * sort the devices by max_avail, in which max free extent size of each device
1637 * is stored.(Descending Sort)
1638 */
1639static inline void btrfs_descending_sort_devices(
1640 struct btrfs_device_info *devices,
1641 size_t nr_devices)
1642{
1643 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1644 btrfs_cmp_device_free_bytes, NULL);
1645}
1646
6d07bcec
MX
1647/*
1648 * The helper to calc the free space on the devices that can be used to store
1649 * file data.
1650 */
1651static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1652{
1653 struct btrfs_fs_info *fs_info = root->fs_info;
1654 struct btrfs_device_info *devices_info;
1655 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1656 struct btrfs_device *device;
1657 u64 skip_space;
1658 u64 type;
1659 u64 avail_space;
1660 u64 used_space;
1661 u64 min_stripe_size;
39fb26c3 1662 int min_stripes = 1, num_stripes = 1;
6d07bcec
MX
1663 int i = 0, nr_devices;
1664 int ret;
1665
7e33fd99
JB
1666 /*
1667 * We aren't under the device list lock, so this is racey-ish, but good
1668 * enough for our purposes.
1669 */
b772a86e 1670 nr_devices = fs_info->fs_devices->open_devices;
7e33fd99
JB
1671 if (!nr_devices) {
1672 smp_mb();
1673 nr_devices = fs_info->fs_devices->open_devices;
1674 ASSERT(nr_devices);
1675 if (!nr_devices) {
1676 *free_bytes = 0;
1677 return 0;
1678 }
1679 }
6d07bcec 1680
d9b0d9ba 1681 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
6d07bcec
MX
1682 GFP_NOFS);
1683 if (!devices_info)
1684 return -ENOMEM;
1685
1686 /* calc min stripe number for data space alloction */
1687 type = btrfs_get_alloc_profile(root, 1);
39fb26c3 1688 if (type & BTRFS_BLOCK_GROUP_RAID0) {
6d07bcec 1689 min_stripes = 2;
39fb26c3
MX
1690 num_stripes = nr_devices;
1691 } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
6d07bcec 1692 min_stripes = 2;
39fb26c3
MX
1693 num_stripes = 2;
1694 } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
6d07bcec 1695 min_stripes = 4;
39fb26c3
MX
1696 num_stripes = 4;
1697 }
6d07bcec
MX
1698
1699 if (type & BTRFS_BLOCK_GROUP_DUP)
1700 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1701 else
1702 min_stripe_size = BTRFS_STRIPE_LEN;
1703
7e33fd99
JB
1704 if (fs_info->alloc_start)
1705 mutex_lock(&fs_devices->device_list_mutex);
1706 rcu_read_lock();
1707 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
63a212ab
SB
1708 if (!device->in_fs_metadata || !device->bdev ||
1709 device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1710 continue;
1711
7e33fd99
JB
1712 if (i >= nr_devices)
1713 break;
1714
6d07bcec
MX
1715 avail_space = device->total_bytes - device->bytes_used;
1716
1717 /* align with stripe_len */
f8c269d7 1718 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
6d07bcec
MX
1719 avail_space *= BTRFS_STRIPE_LEN;
1720
1721 /*
1722 * In order to avoid overwritting the superblock on the drive,
1723 * btrfs starts at an offset of at least 1MB when doing chunk
1724 * allocation.
1725 */
1726 skip_space = 1024 * 1024;
1727
1728 /* user can set the offset in fs_info->alloc_start. */
7e33fd99
JB
1729 if (fs_info->alloc_start &&
1730 fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1731 device->total_bytes) {
1732 rcu_read_unlock();
6d07bcec
MX
1733 skip_space = max(fs_info->alloc_start, skip_space);
1734
7e33fd99
JB
1735 /*
1736 * btrfs can not use the free space in
1737 * [0, skip_space - 1], we must subtract it from the
1738 * total. In order to implement it, we account the used
1739 * space in this range first.
1740 */
1741 ret = btrfs_account_dev_extents_size(device, 0,
1742 skip_space - 1,
1743 &used_space);
1744 if (ret) {
1745 kfree(devices_info);
1746 mutex_unlock(&fs_devices->device_list_mutex);
1747 return ret;
1748 }
1749
1750 rcu_read_lock();
6d07bcec 1751
7e33fd99
JB
1752 /* calc the free space in [0, skip_space - 1] */
1753 skip_space -= used_space;
1754 }
6d07bcec
MX
1755
1756 /*
1757 * we can use the free space in [0, skip_space - 1], subtract
1758 * it from the total.
1759 */
1760 if (avail_space && avail_space >= skip_space)
1761 avail_space -= skip_space;
1762 else
1763 avail_space = 0;
1764
1765 if (avail_space < min_stripe_size)
1766 continue;
1767
1768 devices_info[i].dev = device;
1769 devices_info[i].max_avail = avail_space;
1770
1771 i++;
1772 }
7e33fd99
JB
1773 rcu_read_unlock();
1774 if (fs_info->alloc_start)
1775 mutex_unlock(&fs_devices->device_list_mutex);
6d07bcec
MX
1776
1777 nr_devices = i;
1778
1779 btrfs_descending_sort_devices(devices_info, nr_devices);
1780
1781 i = nr_devices - 1;
1782 avail_space = 0;
1783 while (nr_devices >= min_stripes) {
39fb26c3
MX
1784 if (num_stripes > nr_devices)
1785 num_stripes = nr_devices;
1786
6d07bcec
MX
1787 if (devices_info[i].max_avail >= min_stripe_size) {
1788 int j;
1789 u64 alloc_size;
1790
39fb26c3 1791 avail_space += devices_info[i].max_avail * num_stripes;
6d07bcec 1792 alloc_size = devices_info[i].max_avail;
39fb26c3 1793 for (j = i + 1 - num_stripes; j <= i; j++)
6d07bcec
MX
1794 devices_info[j].max_avail -= alloc_size;
1795 }
1796 i--;
1797 nr_devices--;
1798 }
1799
1800 kfree(devices_info);
1801 *free_bytes = avail_space;
1802 return 0;
1803}
1804
ba7b6e62
DS
1805/*
1806 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1807 *
1808 * If there's a redundant raid level at DATA block groups, use the respective
1809 * multiplier to scale the sizes.
1810 *
1811 * Unused device space usage is based on simulating the chunk allocator
1812 * algorithm that respects the device sizes, order of allocations and the
1813 * 'alloc_start' value, this is a close approximation of the actual use but
1814 * there are other factors that may change the result (like a new metadata
1815 * chunk).
1816 *
1817 * FIXME: not accurate for mixed block groups, total and free/used are ok,
1818 * available appears slightly larger.
1819 */
8fd17795
CM
1820static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1821{
815745cf
AV
1822 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1823 struct btrfs_super_block *disk_super = fs_info->super_copy;
1824 struct list_head *head = &fs_info->space_info;
bd4d1088
JB
1825 struct btrfs_space_info *found;
1826 u64 total_used = 0;
6d07bcec 1827 u64 total_free_data = 0;
db94535d 1828 int bits = dentry->d_sb->s_blocksize_bits;
815745cf 1829 __be32 *fsid = (__be32 *)fs_info->fsid;
ba7b6e62
DS
1830 unsigned factor = 1;
1831 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
6d07bcec 1832 int ret;
8fd17795 1833
15484377
MX
1834 /*
1835 * holding chunk_muext to avoid allocating new chunks, holding
1836 * device_list_mutex to avoid the device being removed
1837 */
bd4d1088 1838 rcu_read_lock();
89a55897 1839 list_for_each_entry_rcu(found, head, list) {
6d07bcec 1840 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
ba7b6e62
DS
1841 int i;
1842
6d07bcec
MX
1843 total_free_data += found->disk_total - found->disk_used;
1844 total_free_data -=
1845 btrfs_account_ro_block_groups_free_space(found);
ba7b6e62
DS
1846
1847 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1848 if (!list_empty(&found->block_groups[i])) {
1849 switch (i) {
1850 case BTRFS_RAID_DUP:
1851 case BTRFS_RAID_RAID1:
1852 case BTRFS_RAID_RAID10:
1853 factor = 2;
1854 }
1855 }
1856 }
6d07bcec
MX
1857 }
1858
b742bb82 1859 total_used += found->disk_used;
89a55897 1860 }
ba7b6e62 1861
bd4d1088
JB
1862 rcu_read_unlock();
1863
ba7b6e62
DS
1864 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1865 buf->f_blocks >>= bits;
1866 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1867
1868 /* Account global block reserve as used, it's in logical size already */
1869 spin_lock(&block_rsv->lock);
1870 buf->f_bfree -= block_rsv->size >> bits;
1871 spin_unlock(&block_rsv->lock);
1872
0d95c1be 1873 buf->f_bavail = div_u64(total_free_data, factor);
815745cf 1874 ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
7e33fd99 1875 if (ret)
6d07bcec 1876 return ret;
ba7b6e62 1877 buf->f_bavail += div_u64(total_free_data, factor);
6d07bcec 1878 buf->f_bavail = buf->f_bavail >> bits;
d397712b 1879
ba7b6e62
DS
1880 buf->f_type = BTRFS_SUPER_MAGIC;
1881 buf->f_bsize = dentry->d_sb->s_blocksize;
1882 buf->f_namelen = BTRFS_NAME_LEN;
1883
9d03632e 1884 /* We treat it as constant endianness (it doesn't matter _which_)
d397712b 1885 because we want the fsid to come out the same whether mounted
9d03632e
DW
1886 on a big-endian or little-endian host */
1887 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1888 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
32d48fa1 1889 /* Mask in the root object ID too, to disambiguate subvols */
2b0143b5
DH
1890 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
1891 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
32d48fa1 1892
8fd17795
CM
1893 return 0;
1894}
b5133862 1895
aea52e19
AV
1896static void btrfs_kill_super(struct super_block *sb)
1897{
815745cf 1898 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
aea52e19 1899 kill_anon_super(sb);
d22ca7de 1900 free_fs_info(fs_info);
aea52e19
AV
1901}
1902
2e635a27
CM
1903static struct file_system_type btrfs_fs_type = {
1904 .owner = THIS_MODULE,
1905 .name = "btrfs",
061dbc6b 1906 .mount = btrfs_mount,
aea52e19 1907 .kill_sb = btrfs_kill_super,
f667aef6 1908 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2e635a27 1909};
7f78e035 1910MODULE_ALIAS_FS("btrfs");
a9218f6b 1911
d8620958
TVB
1912static int btrfs_control_open(struct inode *inode, struct file *file)
1913{
1914 /*
1915 * The control file's private_data is used to hold the
1916 * transaction when it is started and is used to keep
1917 * track of whether a transaction is already in progress.
1918 */
1919 file->private_data = NULL;
1920 return 0;
1921}
1922
d352ac68
CM
1923/*
1924 * used by btrfsctl to scan devices when no FS is mounted
1925 */
8a4b83cc
CM
1926static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1927 unsigned long arg)
1928{
1929 struct btrfs_ioctl_vol_args *vol;
1930 struct btrfs_fs_devices *fs_devices;
c071fcfd 1931 int ret = -ENOTTY;
8a4b83cc 1932
e441d54d
CM
1933 if (!capable(CAP_SYS_ADMIN))
1934 return -EPERM;
1935
dae7b665
LZ
1936 vol = memdup_user((void __user *)arg, sizeof(*vol));
1937 if (IS_ERR(vol))
1938 return PTR_ERR(vol);
c071fcfd 1939
8a4b83cc
CM
1940 switch (cmd) {
1941 case BTRFS_IOC_SCAN_DEV:
97288f2c 1942 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
8a4b83cc
CM
1943 &btrfs_fs_type, &fs_devices);
1944 break;
02db0844
JB
1945 case BTRFS_IOC_DEVICES_READY:
1946 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1947 &btrfs_fs_type, &fs_devices);
1948 if (ret)
1949 break;
1950 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1951 break;
8a4b83cc 1952 }
dae7b665 1953
8a4b83cc 1954 kfree(vol);
f819d837 1955 return ret;
8a4b83cc
CM
1956}
1957
0176260f 1958static int btrfs_freeze(struct super_block *sb)
ed0dab6b 1959{
354aa0fb
MX
1960 struct btrfs_trans_handle *trans;
1961 struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1962
d4edf39b 1963 trans = btrfs_attach_transaction_barrier(root);
354aa0fb
MX
1964 if (IS_ERR(trans)) {
1965 /* no transaction, don't bother */
1966 if (PTR_ERR(trans) == -ENOENT)
1967 return 0;
1968 return PTR_ERR(trans);
1969 }
1970 return btrfs_commit_transaction(trans, root);
ed0dab6b
Y
1971}
1972
9c5085c1
JB
1973static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1974{
1975 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1976 struct btrfs_fs_devices *cur_devices;
1977 struct btrfs_device *dev, *first_dev = NULL;
1978 struct list_head *head;
1979 struct rcu_string *name;
1980
1981 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1982 cur_devices = fs_info->fs_devices;
1983 while (cur_devices) {
1984 head = &cur_devices->devices;
1985 list_for_each_entry(dev, head, dev_list) {
aa9ddcd4
JB
1986 if (dev->missing)
1987 continue;
0aeb8a6e
AJ
1988 if (!dev->name)
1989 continue;
9c5085c1
JB
1990 if (!first_dev || dev->devid < first_dev->devid)
1991 first_dev = dev;
1992 }
1993 cur_devices = cur_devices->seed;
1994 }
1995
1996 if (first_dev) {
1997 rcu_read_lock();
1998 name = rcu_dereference(first_dev->name);
1999 seq_escape(m, name->str, " \t\n\\");
2000 rcu_read_unlock();
2001 } else {
2002 WARN_ON(1);
2003 }
2004 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2005 return 0;
2006}
2007
b87221de 2008static const struct super_operations btrfs_super_ops = {
76dda93c 2009 .drop_inode = btrfs_drop_inode,
bd555975 2010 .evict_inode = btrfs_evict_inode,
e20d96d6 2011 .put_super = btrfs_put_super,
d5719762 2012 .sync_fs = btrfs_sync_fs,
a9572a15 2013 .show_options = btrfs_show_options,
9c5085c1 2014 .show_devname = btrfs_show_devname,
4730a4bc 2015 .write_inode = btrfs_write_inode,
2c90e5d6
CM
2016 .alloc_inode = btrfs_alloc_inode,
2017 .destroy_inode = btrfs_destroy_inode,
8fd17795 2018 .statfs = btrfs_statfs,
c146afad 2019 .remount_fs = btrfs_remount,
0176260f 2020 .freeze_fs = btrfs_freeze,
e20d96d6 2021};
a9218f6b
CM
2022
2023static const struct file_operations btrfs_ctl_fops = {
d8620958 2024 .open = btrfs_control_open,
a9218f6b
CM
2025 .unlocked_ioctl = btrfs_control_ioctl,
2026 .compat_ioctl = btrfs_control_ioctl,
2027 .owner = THIS_MODULE,
6038f373 2028 .llseek = noop_llseek,
a9218f6b
CM
2029};
2030
2031static struct miscdevice btrfs_misc = {
578454ff 2032 .minor = BTRFS_MINOR,
a9218f6b
CM
2033 .name = "btrfs-control",
2034 .fops = &btrfs_ctl_fops
2035};
2036
578454ff
KS
2037MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2038MODULE_ALIAS("devname:btrfs-control");
2039
a9218f6b
CM
2040static int btrfs_interface_init(void)
2041{
2042 return misc_register(&btrfs_misc);
2043}
2044
b2950863 2045static void btrfs_interface_exit(void)
a9218f6b
CM
2046{
2047 if (misc_deregister(&btrfs_misc) < 0)
efe120a0 2048 printk(KERN_INFO "BTRFS: misc_deregister failed for control device\n");
a9218f6b
CM
2049}
2050
85965600
DS
2051static void btrfs_print_info(void)
2052{
2053 printk(KERN_INFO "Btrfs loaded"
2054#ifdef CONFIG_BTRFS_DEBUG
2055 ", debug=on"
2056#endif
79556c3d
SB
2057#ifdef CONFIG_BTRFS_ASSERT
2058 ", assert=on"
2059#endif
85965600
DS
2060#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2061 ", integrity-checker=on"
2062#endif
2063 "\n");
2064}
2065
dc11dd5d
JB
2066static int btrfs_run_sanity_tests(void)
2067{
06ea65a3
JB
2068 int ret;
2069
294e30fe 2070 ret = btrfs_init_test_fs();
06ea65a3
JB
2071 if (ret)
2072 return ret;
294e30fe
JB
2073
2074 ret = btrfs_test_free_space_cache();
2075 if (ret)
2076 goto out;
2077 ret = btrfs_test_extent_buffer_operations();
2078 if (ret)
2079 goto out;
2080 ret = btrfs_test_extent_io();
aaedb55b
JB
2081 if (ret)
2082 goto out;
2083 ret = btrfs_test_inodes();
faa2dbf0
JB
2084 if (ret)
2085 goto out;
2086 ret = btrfs_test_qgroups();
294e30fe
JB
2087out:
2088 btrfs_destroy_test_fs();
2089 return ret;
dc11dd5d
JB
2090}
2091
2e635a27
CM
2092static int __init init_btrfs_fs(void)
2093{
2c90e5d6 2094 int err;
58176a96 2095
14a958e6
FDBM
2096 err = btrfs_hash_init();
2097 if (err)
2098 return err;
2099
63541927
FDBM
2100 btrfs_props_init();
2101
58176a96
JB
2102 err = btrfs_init_sysfs();
2103 if (err)
14a958e6 2104 goto free_hash;
58176a96 2105
143bede5 2106 btrfs_init_compress();
d1310b2e 2107
261507a0
LZ
2108 err = btrfs_init_cachep();
2109 if (err)
2110 goto free_compress;
2111
d1310b2e 2112 err = extent_io_init();
2f4cbe64
WB
2113 if (err)
2114 goto free_cachep;
2115
d1310b2e
CM
2116 err = extent_map_init();
2117 if (err)
2118 goto free_extent_io;
2119
6352b91d 2120 err = ordered_data_init();
2f4cbe64
WB
2121 if (err)
2122 goto free_extent_map;
c8b97818 2123
6352b91d
MX
2124 err = btrfs_delayed_inode_init();
2125 if (err)
2126 goto free_ordered_data;
2127
9247f317 2128 err = btrfs_auto_defrag_init();
16cdcec7
MX
2129 if (err)
2130 goto free_delayed_inode;
2131
78a6184a 2132 err = btrfs_delayed_ref_init();
9247f317
MX
2133 if (err)
2134 goto free_auto_defrag;
2135
b9e9a6cb
WS
2136 err = btrfs_prelim_ref_init();
2137 if (err)
af13b492 2138 goto free_delayed_ref;
b9e9a6cb 2139
97eb6b69 2140 err = btrfs_end_io_wq_init();
78a6184a 2141 if (err)
af13b492 2142 goto free_prelim_ref;
78a6184a 2143
97eb6b69
DS
2144 err = btrfs_interface_init();
2145 if (err)
2146 goto free_end_io_wq;
2147
e565d4b9
JS
2148 btrfs_init_lockdep();
2149
85965600 2150 btrfs_print_info();
dc11dd5d
JB
2151
2152 err = btrfs_run_sanity_tests();
2153 if (err)
2154 goto unregister_ioctl;
2155
2156 err = register_filesystem(&btrfs_fs_type);
2157 if (err)
2158 goto unregister_ioctl;
74255aa0 2159
2f4cbe64
WB
2160 return 0;
2161
a9218f6b
CM
2162unregister_ioctl:
2163 btrfs_interface_exit();
97eb6b69
DS
2164free_end_io_wq:
2165 btrfs_end_io_wq_exit();
b9e9a6cb
WS
2166free_prelim_ref:
2167 btrfs_prelim_ref_exit();
78a6184a
MX
2168free_delayed_ref:
2169 btrfs_delayed_ref_exit();
9247f317
MX
2170free_auto_defrag:
2171 btrfs_auto_defrag_exit();
16cdcec7
MX
2172free_delayed_inode:
2173 btrfs_delayed_inode_exit();
6352b91d
MX
2174free_ordered_data:
2175 ordered_data_exit();
2f4cbe64
WB
2176free_extent_map:
2177 extent_map_exit();
d1310b2e
CM
2178free_extent_io:
2179 extent_io_exit();
2f4cbe64
WB
2180free_cachep:
2181 btrfs_destroy_cachep();
261507a0
LZ
2182free_compress:
2183 btrfs_exit_compress();
2f4cbe64 2184 btrfs_exit_sysfs();
14a958e6
FDBM
2185free_hash:
2186 btrfs_hash_exit();
2f4cbe64 2187 return err;
2e635a27
CM
2188}
2189
2190static void __exit exit_btrfs_fs(void)
2191{
39279cc3 2192 btrfs_destroy_cachep();
78a6184a 2193 btrfs_delayed_ref_exit();
9247f317 2194 btrfs_auto_defrag_exit();
16cdcec7 2195 btrfs_delayed_inode_exit();
b9e9a6cb 2196 btrfs_prelim_ref_exit();
6352b91d 2197 ordered_data_exit();
a52d9a80 2198 extent_map_exit();
d1310b2e 2199 extent_io_exit();
a9218f6b 2200 btrfs_interface_exit();
5ed5f588 2201 btrfs_end_io_wq_exit();
2e635a27 2202 unregister_filesystem(&btrfs_fs_type);
58176a96 2203 btrfs_exit_sysfs();
8a4b83cc 2204 btrfs_cleanup_fs_uuids();
261507a0 2205 btrfs_exit_compress();
14a958e6 2206 btrfs_hash_exit();
2e635a27
CM
2207}
2208
60efa5eb 2209late_initcall(init_btrfs_fs);
2e635a27
CM
2210module_exit(exit_btrfs_fs)
2211
2212MODULE_LICENSE("GPL");