]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/tree-log.c
ath9k_hw: allow fast channel change when only CHANNEL_HT changes
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
e02119d5
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "disk-io.h"
26#include "locking.h"
27#include "print-tree.h"
f186373f 28#include "backref.h"
b2950863 29#include "tree-log.h"
f186373f 30#include "hash.h"
e02119d5
CM
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
40
12fcfd22
CM
41/*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
e02119d5
CM
84/*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93#define LOG_WALK_PIN_ONLY 0
94#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
95#define LOG_WALK_REPLAY_DIR_INDEX 2
96#define LOG_WALK_REPLAY_ALL 3
e02119d5 97
12fcfd22 98static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only);
ec051c0f
YZ
101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
139 struct btrfs_root *root)
140{
141 int ret;
4a500fd1 142 int err = 0;
7237f183
YZ
143
144 mutex_lock(&root->log_mutex);
145 if (root->log_root) {
ff782e0a
JB
146 if (!root->log_start_pid) {
147 root->log_start_pid = current->pid;
148 root->log_multiple_pids = false;
149 } else if (root->log_start_pid != current->pid) {
150 root->log_multiple_pids = true;
151 }
152
2ecb7923 153 atomic_inc(&root->log_batch);
7237f183
YZ
154 atomic_inc(&root->log_writers);
155 mutex_unlock(&root->log_mutex);
156 return 0;
157 }
ff782e0a
JB
158 root->log_multiple_pids = false;
159 root->log_start_pid = current->pid;
e02119d5
CM
160 mutex_lock(&root->fs_info->tree_log_mutex);
161 if (!root->fs_info->log_root_tree) {
162 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
163 if (ret)
164 err = ret;
e02119d5 165 }
4a500fd1 166 if (err == 0 && !root->log_root) {
e02119d5 167 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
168 if (ret)
169 err = ret;
e02119d5 170 }
e02119d5 171 mutex_unlock(&root->fs_info->tree_log_mutex);
2ecb7923 172 atomic_inc(&root->log_batch);
7237f183
YZ
173 atomic_inc(&root->log_writers);
174 mutex_unlock(&root->log_mutex);
4a500fd1 175 return err;
e02119d5
CM
176}
177
178/*
179 * returns 0 if there was a log transaction running and we were able
180 * to join, or returns -ENOENT if there were not transactions
181 * in progress
182 */
183static int join_running_log_trans(struct btrfs_root *root)
184{
185 int ret = -ENOENT;
186
187 smp_mb();
188 if (!root->log_root)
189 return -ENOENT;
190
7237f183 191 mutex_lock(&root->log_mutex);
e02119d5
CM
192 if (root->log_root) {
193 ret = 0;
7237f183 194 atomic_inc(&root->log_writers);
e02119d5 195 }
7237f183 196 mutex_unlock(&root->log_mutex);
e02119d5
CM
197 return ret;
198}
199
12fcfd22
CM
200/*
201 * This either makes the current running log transaction wait
202 * until you call btrfs_end_log_trans() or it makes any future
203 * log transactions wait until you call btrfs_end_log_trans()
204 */
205int btrfs_pin_log_trans(struct btrfs_root *root)
206{
207 int ret = -ENOENT;
208
209 mutex_lock(&root->log_mutex);
210 atomic_inc(&root->log_writers);
211 mutex_unlock(&root->log_mutex);
212 return ret;
213}
214
e02119d5
CM
215/*
216 * indicate we're done making changes to the log tree
217 * and wake up anyone waiting to do a sync
218 */
143bede5 219void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 220{
7237f183
YZ
221 if (atomic_dec_and_test(&root->log_writers)) {
222 smp_mb();
223 if (waitqueue_active(&root->log_writer_wait))
224 wake_up(&root->log_writer_wait);
225 }
e02119d5
CM
226}
227
228
229/*
230 * the walk control struct is used to pass state down the chain when
231 * processing the log tree. The stage field tells us which part
232 * of the log tree processing we are currently doing. The others
233 * are state fields used for that specific part
234 */
235struct walk_control {
236 /* should we free the extent on disk when done? This is used
237 * at transaction commit time while freeing a log tree
238 */
239 int free;
240
241 /* should we write out the extent buffer? This is used
242 * while flushing the log tree to disk during a sync
243 */
244 int write;
245
246 /* should we wait for the extent buffer io to finish? Also used
247 * while flushing the log tree to disk for a sync
248 */
249 int wait;
250
251 /* pin only walk, we record which extents on disk belong to the
252 * log trees
253 */
254 int pin;
255
256 /* what stage of the replay code we're currently in */
257 int stage;
258
259 /* the root we are currently replaying */
260 struct btrfs_root *replay_dest;
261
262 /* the trans handle for the current replay */
263 struct btrfs_trans_handle *trans;
264
265 /* the function that gets used to process blocks we find in the
266 * tree. Note the extent_buffer might not be up to date when it is
267 * passed in, and it must be checked or read if you need the data
268 * inside it
269 */
270 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen);
272};
273
274/*
275 * process_func used to pin down extents, write them or wait on them
276 */
277static int process_one_buffer(struct btrfs_root *log,
278 struct extent_buffer *eb,
279 struct walk_control *wc, u64 gen)
280{
b50c6e25
JB
281 int ret = 0;
282
8c2a1a30
JB
283 /*
284 * If this fs is mixed then we need to be able to process the leaves to
285 * pin down any logged extents, so we have to read the block.
286 */
287 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
288 ret = btrfs_read_buffer(eb, gen);
289 if (ret)
290 return ret;
291 }
292
04018de5 293 if (wc->pin)
b50c6e25
JB
294 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
295 eb->start, eb->len);
e02119d5 296
b50c6e25 297 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
298 if (wc->pin && btrfs_header_level(eb) == 0)
299 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
300 if (wc->write)
301 btrfs_write_tree_block(eb);
302 if (wc->wait)
303 btrfs_wait_tree_block_writeback(eb);
304 }
b50c6e25 305 return ret;
e02119d5
CM
306}
307
308/*
309 * Item overwrite used by replay and tree logging. eb, slot and key all refer
310 * to the src data we are copying out.
311 *
312 * root is the tree we are copying into, and path is a scratch
313 * path for use in this function (it should be released on entry and
314 * will be released on exit).
315 *
316 * If the key is already in the destination tree the existing item is
317 * overwritten. If the existing item isn't big enough, it is extended.
318 * If it is too large, it is truncated.
319 *
320 * If the key isn't in the destination yet, a new item is inserted.
321 */
322static noinline int overwrite_item(struct btrfs_trans_handle *trans,
323 struct btrfs_root *root,
324 struct btrfs_path *path,
325 struct extent_buffer *eb, int slot,
326 struct btrfs_key *key)
327{
328 int ret;
329 u32 item_size;
330 u64 saved_i_size = 0;
331 int save_old_i_size = 0;
332 unsigned long src_ptr;
333 unsigned long dst_ptr;
334 int overwrite_root = 0;
4bc4bee4 335 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
336
337 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
338 overwrite_root = 1;
339
340 item_size = btrfs_item_size_nr(eb, slot);
341 src_ptr = btrfs_item_ptr_offset(eb, slot);
342
343 /* look for the key in the destination tree */
344 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
345 if (ret < 0)
346 return ret;
347
e02119d5
CM
348 if (ret == 0) {
349 char *src_copy;
350 char *dst_copy;
351 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
352 path->slots[0]);
353 if (dst_size != item_size)
354 goto insert;
355
356 if (item_size == 0) {
b3b4aa74 357 btrfs_release_path(path);
e02119d5
CM
358 return 0;
359 }
360 dst_copy = kmalloc(item_size, GFP_NOFS);
361 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 362 if (!dst_copy || !src_copy) {
b3b4aa74 363 btrfs_release_path(path);
2a29edc6 364 kfree(dst_copy);
365 kfree(src_copy);
366 return -ENOMEM;
367 }
e02119d5
CM
368
369 read_extent_buffer(eb, src_copy, src_ptr, item_size);
370
371 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
372 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
373 item_size);
374 ret = memcmp(dst_copy, src_copy, item_size);
375
376 kfree(dst_copy);
377 kfree(src_copy);
378 /*
379 * they have the same contents, just return, this saves
380 * us from cowing blocks in the destination tree and doing
381 * extra writes that may not have been done by a previous
382 * sync
383 */
384 if (ret == 0) {
b3b4aa74 385 btrfs_release_path(path);
e02119d5
CM
386 return 0;
387 }
388
4bc4bee4
JB
389 /*
390 * We need to load the old nbytes into the inode so when we
391 * replay the extents we've logged we get the right nbytes.
392 */
393 if (inode_item) {
394 struct btrfs_inode_item *item;
395 u64 nbytes;
d555438b 396 u32 mode;
4bc4bee4
JB
397
398 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
399 struct btrfs_inode_item);
400 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
401 item = btrfs_item_ptr(eb, slot,
402 struct btrfs_inode_item);
403 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
404
405 /*
406 * If this is a directory we need to reset the i_size to
407 * 0 so that we can set it up properly when replaying
408 * the rest of the items in this log.
409 */
410 mode = btrfs_inode_mode(eb, item);
411 if (S_ISDIR(mode))
412 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
413 }
414 } else if (inode_item) {
415 struct btrfs_inode_item *item;
d555438b 416 u32 mode;
4bc4bee4
JB
417
418 /*
419 * New inode, set nbytes to 0 so that the nbytes comes out
420 * properly when we replay the extents.
421 */
422 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
424
425 /*
426 * If this is a directory we need to reset the i_size to 0 so
427 * that we can set it up properly when replaying the rest of
428 * the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
433 }
434insert:
b3b4aa74 435 btrfs_release_path(path);
e02119d5
CM
436 /* try to insert the key into the destination tree */
437 ret = btrfs_insert_empty_item(trans, root, path,
438 key, item_size);
439
440 /* make sure any existing item is the correct size */
441 if (ret == -EEXIST) {
442 u32 found_size;
443 found_size = btrfs_item_size_nr(path->nodes[0],
444 path->slots[0]);
143bede5 445 if (found_size > item_size)
afe5fea7 446 btrfs_truncate_item(root, path, item_size, 1);
143bede5 447 else if (found_size < item_size)
4b90c680 448 btrfs_extend_item(root, path,
143bede5 449 item_size - found_size);
e02119d5 450 } else if (ret) {
4a500fd1 451 return ret;
e02119d5
CM
452 }
453 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
454 path->slots[0]);
455
456 /* don't overwrite an existing inode if the generation number
457 * was logged as zero. This is done when the tree logging code
458 * is just logging an inode to make sure it exists after recovery.
459 *
460 * Also, don't overwrite i_size on directories during replay.
461 * log replay inserts and removes directory items based on the
462 * state of the tree found in the subvolume, and i_size is modified
463 * as it goes
464 */
465 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
466 struct btrfs_inode_item *src_item;
467 struct btrfs_inode_item *dst_item;
468
469 src_item = (struct btrfs_inode_item *)src_ptr;
470 dst_item = (struct btrfs_inode_item *)dst_ptr;
471
472 if (btrfs_inode_generation(eb, src_item) == 0)
473 goto no_copy;
474
475 if (overwrite_root &&
476 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
477 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
478 save_old_i_size = 1;
479 saved_i_size = btrfs_inode_size(path->nodes[0],
480 dst_item);
481 }
482 }
483
484 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
485 src_ptr, item_size);
486
487 if (save_old_i_size) {
488 struct btrfs_inode_item *dst_item;
489 dst_item = (struct btrfs_inode_item *)dst_ptr;
490 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
491 }
492
493 /* make sure the generation is filled in */
494 if (key->type == BTRFS_INODE_ITEM_KEY) {
495 struct btrfs_inode_item *dst_item;
496 dst_item = (struct btrfs_inode_item *)dst_ptr;
497 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
498 btrfs_set_inode_generation(path->nodes[0], dst_item,
499 trans->transid);
500 }
501 }
502no_copy:
503 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 504 btrfs_release_path(path);
e02119d5
CM
505 return 0;
506}
507
508/*
509 * simple helper to read an inode off the disk from a given root
510 * This can only be called for subvolume roots and not for the log
511 */
512static noinline struct inode *read_one_inode(struct btrfs_root *root,
513 u64 objectid)
514{
5d4f98a2 515 struct btrfs_key key;
e02119d5 516 struct inode *inode;
e02119d5 517
5d4f98a2
YZ
518 key.objectid = objectid;
519 key.type = BTRFS_INODE_ITEM_KEY;
520 key.offset = 0;
73f73415 521 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
522 if (IS_ERR(inode)) {
523 inode = NULL;
524 } else if (is_bad_inode(inode)) {
e02119d5
CM
525 iput(inode);
526 inode = NULL;
527 }
528 return inode;
529}
530
531/* replays a single extent in 'eb' at 'slot' with 'key' into the
532 * subvolume 'root'. path is released on entry and should be released
533 * on exit.
534 *
535 * extents in the log tree have not been allocated out of the extent
536 * tree yet. So, this completes the allocation, taking a reference
537 * as required if the extent already exists or creating a new extent
538 * if it isn't in the extent allocation tree yet.
539 *
540 * The extent is inserted into the file, dropping any existing extents
541 * from the file that overlap the new one.
542 */
543static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
544 struct btrfs_root *root,
545 struct btrfs_path *path,
546 struct extent_buffer *eb, int slot,
547 struct btrfs_key *key)
548{
549 int found_type;
e02119d5 550 u64 extent_end;
e02119d5 551 u64 start = key->offset;
4bc4bee4 552 u64 nbytes = 0;
e02119d5
CM
553 struct btrfs_file_extent_item *item;
554 struct inode *inode = NULL;
555 unsigned long size;
556 int ret = 0;
557
558 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559 found_type = btrfs_file_extent_type(eb, item);
560
d899e052 561 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
562 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
563 nbytes = btrfs_file_extent_num_bytes(eb, item);
564 extent_end = start + nbytes;
565
566 /*
567 * We don't add to the inodes nbytes if we are prealloc or a
568 * hole.
569 */
570 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
571 nbytes = 0;
572 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 573 size = btrfs_file_extent_inline_len(eb, item);
4bc4bee4 574 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 575 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
576 } else {
577 ret = 0;
578 goto out;
579 }
580
581 inode = read_one_inode(root, key->objectid);
582 if (!inode) {
583 ret = -EIO;
584 goto out;
585 }
586
587 /*
588 * first check to see if we already have this extent in the
589 * file. This must be done before the btrfs_drop_extents run
590 * so we don't try to drop this extent.
591 */
33345d01 592 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
593 start, 0);
594
d899e052
YZ
595 if (ret == 0 &&
596 (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
598 struct btrfs_file_extent_item cmp1;
599 struct btrfs_file_extent_item cmp2;
600 struct btrfs_file_extent_item *existing;
601 struct extent_buffer *leaf;
602
603 leaf = path->nodes[0];
604 existing = btrfs_item_ptr(leaf, path->slots[0],
605 struct btrfs_file_extent_item);
606
607 read_extent_buffer(eb, &cmp1, (unsigned long)item,
608 sizeof(cmp1));
609 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
610 sizeof(cmp2));
611
612 /*
613 * we already have a pointer to this exact extent,
614 * we don't have to do anything
615 */
616 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 617 btrfs_release_path(path);
e02119d5
CM
618 goto out;
619 }
620 }
b3b4aa74 621 btrfs_release_path(path);
e02119d5
CM
622
623 /* drop any overlapping extents */
2671485d 624 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
625 if (ret)
626 goto out;
e02119d5 627
07d400a6
YZ
628 if (found_type == BTRFS_FILE_EXTENT_REG ||
629 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 630 u64 offset;
07d400a6
YZ
631 unsigned long dest_offset;
632 struct btrfs_key ins;
633
634 ret = btrfs_insert_empty_item(trans, root, path, key,
635 sizeof(*item));
3650860b
JB
636 if (ret)
637 goto out;
07d400a6
YZ
638 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
639 path->slots[0]);
640 copy_extent_buffer(path->nodes[0], eb, dest_offset,
641 (unsigned long)item, sizeof(*item));
642
643 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
644 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
645 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 646 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
647
648 if (ins.objectid > 0) {
649 u64 csum_start;
650 u64 csum_end;
651 LIST_HEAD(ordered_sums);
652 /*
653 * is this extent already allocated in the extent
654 * allocation tree? If so, just add a reference
655 */
656 ret = btrfs_lookup_extent(root, ins.objectid,
657 ins.offset);
658 if (ret == 0) {
659 ret = btrfs_inc_extent_ref(trans, root,
660 ins.objectid, ins.offset,
5d4f98a2 661 0, root->root_key.objectid,
66d7e7f0 662 key->objectid, offset, 0);
b50c6e25
JB
663 if (ret)
664 goto out;
07d400a6
YZ
665 } else {
666 /*
667 * insert the extent pointer in the extent
668 * allocation tree
669 */
5d4f98a2
YZ
670 ret = btrfs_alloc_logged_file_extent(trans,
671 root, root->root_key.objectid,
672 key->objectid, offset, &ins);
b50c6e25
JB
673 if (ret)
674 goto out;
07d400a6 675 }
b3b4aa74 676 btrfs_release_path(path);
07d400a6
YZ
677
678 if (btrfs_file_extent_compression(eb, item)) {
679 csum_start = ins.objectid;
680 csum_end = csum_start + ins.offset;
681 } else {
682 csum_start = ins.objectid +
683 btrfs_file_extent_offset(eb, item);
684 csum_end = csum_start +
685 btrfs_file_extent_num_bytes(eb, item);
686 }
687
688 ret = btrfs_lookup_csums_range(root->log_root,
689 csum_start, csum_end - 1,
a2de733c 690 &ordered_sums, 0);
3650860b
JB
691 if (ret)
692 goto out;
07d400a6
YZ
693 while (!list_empty(&ordered_sums)) {
694 struct btrfs_ordered_sum *sums;
695 sums = list_entry(ordered_sums.next,
696 struct btrfs_ordered_sum,
697 list);
3650860b
JB
698 if (!ret)
699 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
700 root->fs_info->csum_root,
701 sums);
07d400a6
YZ
702 list_del(&sums->list);
703 kfree(sums);
704 }
3650860b
JB
705 if (ret)
706 goto out;
07d400a6 707 } else {
b3b4aa74 708 btrfs_release_path(path);
07d400a6
YZ
709 }
710 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
711 /* inline extents are easy, we just overwrite them */
712 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
713 if (ret)
714 goto out;
07d400a6 715 }
e02119d5 716
4bc4bee4 717 inode_add_bytes(inode, nbytes);
b9959295 718 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
719out:
720 if (inode)
721 iput(inode);
722 return ret;
723}
724
725/*
726 * when cleaning up conflicts between the directory names in the
727 * subvolume, directory names in the log and directory names in the
728 * inode back references, we may have to unlink inodes from directories.
729 *
730 * This is a helper function to do the unlink of a specific directory
731 * item
732 */
733static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
734 struct btrfs_root *root,
735 struct btrfs_path *path,
736 struct inode *dir,
737 struct btrfs_dir_item *di)
738{
739 struct inode *inode;
740 char *name;
741 int name_len;
742 struct extent_buffer *leaf;
743 struct btrfs_key location;
744 int ret;
745
746 leaf = path->nodes[0];
747
748 btrfs_dir_item_key_to_cpu(leaf, di, &location);
749 name_len = btrfs_dir_name_len(leaf, di);
750 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 751 if (!name)
752 return -ENOMEM;
753
e02119d5 754 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 755 btrfs_release_path(path);
e02119d5
CM
756
757 inode = read_one_inode(root, location.objectid);
c00e9493 758 if (!inode) {
3650860b
JB
759 ret = -EIO;
760 goto out;
c00e9493 761 }
e02119d5 762
ec051c0f 763 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
764 if (ret)
765 goto out;
12fcfd22 766
e02119d5 767 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
768 if (ret)
769 goto out;
ada9af21
FDBM
770 else
771 ret = btrfs_run_delayed_items(trans, root);
3650860b 772out:
e02119d5 773 kfree(name);
e02119d5
CM
774 iput(inode);
775 return ret;
776}
777
778/*
779 * helper function to see if a given name and sequence number found
780 * in an inode back reference are already in a directory and correctly
781 * point to this inode
782 */
783static noinline int inode_in_dir(struct btrfs_root *root,
784 struct btrfs_path *path,
785 u64 dirid, u64 objectid, u64 index,
786 const char *name, int name_len)
787{
788 struct btrfs_dir_item *di;
789 struct btrfs_key location;
790 int match = 0;
791
792 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
793 index, name, name_len, 0);
794 if (di && !IS_ERR(di)) {
795 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
796 if (location.objectid != objectid)
797 goto out;
798 } else
799 goto out;
b3b4aa74 800 btrfs_release_path(path);
e02119d5
CM
801
802 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
803 if (di && !IS_ERR(di)) {
804 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
805 if (location.objectid != objectid)
806 goto out;
807 } else
808 goto out;
809 match = 1;
810out:
b3b4aa74 811 btrfs_release_path(path);
e02119d5
CM
812 return match;
813}
814
815/*
816 * helper function to check a log tree for a named back reference in
817 * an inode. This is used to decide if a back reference that is
818 * found in the subvolume conflicts with what we find in the log.
819 *
820 * inode backreferences may have multiple refs in a single item,
821 * during replay we process one reference at a time, and we don't
822 * want to delete valid links to a file from the subvolume if that
823 * link is also in the log.
824 */
825static noinline int backref_in_log(struct btrfs_root *log,
826 struct btrfs_key *key,
f186373f 827 u64 ref_objectid,
e02119d5
CM
828 char *name, int namelen)
829{
830 struct btrfs_path *path;
831 struct btrfs_inode_ref *ref;
832 unsigned long ptr;
833 unsigned long ptr_end;
834 unsigned long name_ptr;
835 int found_name_len;
836 int item_size;
837 int ret;
838 int match = 0;
839
840 path = btrfs_alloc_path();
2a29edc6 841 if (!path)
842 return -ENOMEM;
843
e02119d5
CM
844 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
845 if (ret != 0)
846 goto out;
847
e02119d5 848 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
849
850 if (key->type == BTRFS_INODE_EXTREF_KEY) {
851 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
852 name, namelen, NULL))
853 match = 1;
854
855 goto out;
856 }
857
858 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
859 ptr_end = ptr + item_size;
860 while (ptr < ptr_end) {
861 ref = (struct btrfs_inode_ref *)ptr;
862 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
863 if (found_name_len == namelen) {
864 name_ptr = (unsigned long)(ref + 1);
865 ret = memcmp_extent_buffer(path->nodes[0], name,
866 name_ptr, namelen);
867 if (ret == 0) {
868 match = 1;
869 goto out;
870 }
871 }
872 ptr = (unsigned long)(ref + 1) + found_name_len;
873 }
874out:
875 btrfs_free_path(path);
876 return match;
877}
878
5a1d7843 879static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 880 struct btrfs_root *root,
e02119d5 881 struct btrfs_path *path,
5a1d7843
JS
882 struct btrfs_root *log_root,
883 struct inode *dir, struct inode *inode,
5a1d7843 884 struct extent_buffer *eb,
f186373f
MF
885 u64 inode_objectid, u64 parent_objectid,
886 u64 ref_index, char *name, int namelen,
887 int *search_done)
e02119d5 888{
34f3e4f2 889 int ret;
f186373f
MF
890 char *victim_name;
891 int victim_name_len;
892 struct extent_buffer *leaf;
5a1d7843 893 struct btrfs_dir_item *di;
f186373f
MF
894 struct btrfs_key search_key;
895 struct btrfs_inode_extref *extref;
c622ae60 896
f186373f
MF
897again:
898 /* Search old style refs */
899 search_key.objectid = inode_objectid;
900 search_key.type = BTRFS_INODE_REF_KEY;
901 search_key.offset = parent_objectid;
902 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 903 if (ret == 0) {
e02119d5
CM
904 struct btrfs_inode_ref *victim_ref;
905 unsigned long ptr;
906 unsigned long ptr_end;
f186373f
MF
907
908 leaf = path->nodes[0];
e02119d5
CM
909
910 /* are we trying to overwrite a back ref for the root directory
911 * if so, just jump out, we're done
912 */
f186373f 913 if (search_key.objectid == search_key.offset)
5a1d7843 914 return 1;
e02119d5
CM
915
916 /* check all the names in this back reference to see
917 * if they are in the log. if so, we allow them to stay
918 * otherwise they must be unlinked as a conflict
919 */
920 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
921 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 922 while (ptr < ptr_end) {
e02119d5
CM
923 victim_ref = (struct btrfs_inode_ref *)ptr;
924 victim_name_len = btrfs_inode_ref_name_len(leaf,
925 victim_ref);
926 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
927 if (!victim_name)
928 return -ENOMEM;
e02119d5
CM
929
930 read_extent_buffer(leaf, victim_name,
931 (unsigned long)(victim_ref + 1),
932 victim_name_len);
933
f186373f
MF
934 if (!backref_in_log(log_root, &search_key,
935 parent_objectid,
936 victim_name,
e02119d5 937 victim_name_len)) {
8b558c5f 938 inc_nlink(inode);
b3b4aa74 939 btrfs_release_path(path);
12fcfd22 940
e02119d5
CM
941 ret = btrfs_unlink_inode(trans, root, dir,
942 inode, victim_name,
943 victim_name_len);
f186373f 944 kfree(victim_name);
3650860b
JB
945 if (ret)
946 return ret;
ada9af21
FDBM
947 ret = btrfs_run_delayed_items(trans, root);
948 if (ret)
949 return ret;
f186373f
MF
950 *search_done = 1;
951 goto again;
e02119d5
CM
952 }
953 kfree(victim_name);
f186373f 954
e02119d5
CM
955 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
956 }
e02119d5 957
c622ae60 958 /*
959 * NOTE: we have searched root tree and checked the
960 * coresponding ref, it does not need to check again.
961 */
5a1d7843 962 *search_done = 1;
e02119d5 963 }
b3b4aa74 964 btrfs_release_path(path);
e02119d5 965
f186373f
MF
966 /* Same search but for extended refs */
967 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
968 inode_objectid, parent_objectid, 0,
969 0);
970 if (!IS_ERR_OR_NULL(extref)) {
971 u32 item_size;
972 u32 cur_offset = 0;
973 unsigned long base;
974 struct inode *victim_parent;
975
976 leaf = path->nodes[0];
977
978 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
979 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
980
981 while (cur_offset < item_size) {
982 extref = (struct btrfs_inode_extref *)base + cur_offset;
983
984 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
985
986 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
987 goto next;
988
989 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
990 if (!victim_name)
991 return -ENOMEM;
f186373f
MF
992 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
993 victim_name_len);
994
995 search_key.objectid = inode_objectid;
996 search_key.type = BTRFS_INODE_EXTREF_KEY;
997 search_key.offset = btrfs_extref_hash(parent_objectid,
998 victim_name,
999 victim_name_len);
1000 ret = 0;
1001 if (!backref_in_log(log_root, &search_key,
1002 parent_objectid, victim_name,
1003 victim_name_len)) {
1004 ret = -ENOENT;
1005 victim_parent = read_one_inode(root,
1006 parent_objectid);
1007 if (victim_parent) {
8b558c5f 1008 inc_nlink(inode);
f186373f
MF
1009 btrfs_release_path(path);
1010
1011 ret = btrfs_unlink_inode(trans, root,
1012 victim_parent,
1013 inode,
1014 victim_name,
1015 victim_name_len);
ada9af21
FDBM
1016 if (!ret)
1017 ret = btrfs_run_delayed_items(
1018 trans, root);
f186373f 1019 }
f186373f
MF
1020 iput(victim_parent);
1021 kfree(victim_name);
3650860b
JB
1022 if (ret)
1023 return ret;
f186373f
MF
1024 *search_done = 1;
1025 goto again;
1026 }
1027 kfree(victim_name);
3650860b
JB
1028 if (ret)
1029 return ret;
f186373f
MF
1030next:
1031 cur_offset += victim_name_len + sizeof(*extref);
1032 }
1033 *search_done = 1;
1034 }
1035 btrfs_release_path(path);
1036
34f3e4f2 1037 /* look for a conflicting sequence number */
1038 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1039 ref_index, name, namelen, 0);
34f3e4f2 1040 if (di && !IS_ERR(di)) {
1041 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1042 if (ret)
1043 return ret;
34f3e4f2 1044 }
1045 btrfs_release_path(path);
1046
1047 /* look for a conflicing name */
1048 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1049 name, namelen, 0);
1050 if (di && !IS_ERR(di)) {
1051 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1052 if (ret)
1053 return ret;
34f3e4f2 1054 }
1055 btrfs_release_path(path);
1056
5a1d7843
JS
1057 return 0;
1058}
e02119d5 1059
f186373f
MF
1060static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1061 u32 *namelen, char **name, u64 *index,
1062 u64 *parent_objectid)
1063{
1064 struct btrfs_inode_extref *extref;
1065
1066 extref = (struct btrfs_inode_extref *)ref_ptr;
1067
1068 *namelen = btrfs_inode_extref_name_len(eb, extref);
1069 *name = kmalloc(*namelen, GFP_NOFS);
1070 if (*name == NULL)
1071 return -ENOMEM;
1072
1073 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1074 *namelen);
1075
1076 *index = btrfs_inode_extref_index(eb, extref);
1077 if (parent_objectid)
1078 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1079
1080 return 0;
1081}
1082
1083static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1084 u32 *namelen, char **name, u64 *index)
1085{
1086 struct btrfs_inode_ref *ref;
1087
1088 ref = (struct btrfs_inode_ref *)ref_ptr;
1089
1090 *namelen = btrfs_inode_ref_name_len(eb, ref);
1091 *name = kmalloc(*namelen, GFP_NOFS);
1092 if (*name == NULL)
1093 return -ENOMEM;
1094
1095 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1096
1097 *index = btrfs_inode_ref_index(eb, ref);
1098
1099 return 0;
1100}
1101
5a1d7843
JS
1102/*
1103 * replay one inode back reference item found in the log tree.
1104 * eb, slot and key refer to the buffer and key found in the log tree.
1105 * root is the destination we are replaying into, and path is for temp
1106 * use by this function. (it should be released on return).
1107 */
1108static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root,
1110 struct btrfs_root *log,
1111 struct btrfs_path *path,
1112 struct extent_buffer *eb, int slot,
1113 struct btrfs_key *key)
1114{
03b2f08b
GB
1115 struct inode *dir = NULL;
1116 struct inode *inode = NULL;
5a1d7843
JS
1117 unsigned long ref_ptr;
1118 unsigned long ref_end;
03b2f08b 1119 char *name = NULL;
5a1d7843
JS
1120 int namelen;
1121 int ret;
1122 int search_done = 0;
f186373f
MF
1123 int log_ref_ver = 0;
1124 u64 parent_objectid;
1125 u64 inode_objectid;
f46dbe3d 1126 u64 ref_index = 0;
f186373f
MF
1127 int ref_struct_size;
1128
1129 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1130 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1131
1132 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1133 struct btrfs_inode_extref *r;
1134
1135 ref_struct_size = sizeof(struct btrfs_inode_extref);
1136 log_ref_ver = 1;
1137 r = (struct btrfs_inode_extref *)ref_ptr;
1138 parent_objectid = btrfs_inode_extref_parent(eb, r);
1139 } else {
1140 ref_struct_size = sizeof(struct btrfs_inode_ref);
1141 parent_objectid = key->offset;
1142 }
1143 inode_objectid = key->objectid;
e02119d5 1144
5a1d7843
JS
1145 /*
1146 * it is possible that we didn't log all the parent directories
1147 * for a given inode. If we don't find the dir, just don't
1148 * copy the back ref in. The link count fixup code will take
1149 * care of the rest
1150 */
f186373f 1151 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1152 if (!dir) {
1153 ret = -ENOENT;
1154 goto out;
1155 }
5a1d7843 1156
f186373f 1157 inode = read_one_inode(root, inode_objectid);
5a1d7843 1158 if (!inode) {
03b2f08b
GB
1159 ret = -EIO;
1160 goto out;
5a1d7843
JS
1161 }
1162
5a1d7843 1163 while (ref_ptr < ref_end) {
f186373f
MF
1164 if (log_ref_ver) {
1165 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1166 &ref_index, &parent_objectid);
1167 /*
1168 * parent object can change from one array
1169 * item to another.
1170 */
1171 if (!dir)
1172 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1173 if (!dir) {
1174 ret = -ENOENT;
1175 goto out;
1176 }
f186373f
MF
1177 } else {
1178 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1179 &ref_index);
1180 }
1181 if (ret)
03b2f08b 1182 goto out;
5a1d7843
JS
1183
1184 /* if we already have a perfect match, we're done */
1185 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1186 ref_index, name, namelen)) {
5a1d7843
JS
1187 /*
1188 * look for a conflicting back reference in the
1189 * metadata. if we find one we have to unlink that name
1190 * of the file before we add our new link. Later on, we
1191 * overwrite any existing back reference, and we don't
1192 * want to create dangling pointers in the directory.
1193 */
1194
1195 if (!search_done) {
1196 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1197 dir, inode, eb,
1198 inode_objectid,
1199 parent_objectid,
1200 ref_index, name, namelen,
5a1d7843 1201 &search_done);
03b2f08b
GB
1202 if (ret) {
1203 if (ret == 1)
1204 ret = 0;
3650860b
JB
1205 goto out;
1206 }
5a1d7843
JS
1207 }
1208
1209 /* insert our name */
1210 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1211 0, ref_index);
3650860b
JB
1212 if (ret)
1213 goto out;
5a1d7843
JS
1214
1215 btrfs_update_inode(trans, root, inode);
1216 }
1217
f186373f 1218 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1219 kfree(name);
03b2f08b 1220 name = NULL;
f186373f
MF
1221 if (log_ref_ver) {
1222 iput(dir);
1223 dir = NULL;
1224 }
5a1d7843 1225 }
e02119d5
CM
1226
1227 /* finally write the back reference in the inode */
1228 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1229out:
b3b4aa74 1230 btrfs_release_path(path);
03b2f08b 1231 kfree(name);
e02119d5
CM
1232 iput(dir);
1233 iput(inode);
3650860b 1234 return ret;
e02119d5
CM
1235}
1236
c71bf099
YZ
1237static int insert_orphan_item(struct btrfs_trans_handle *trans,
1238 struct btrfs_root *root, u64 offset)
1239{
1240 int ret;
1241 ret = btrfs_find_orphan_item(root, offset);
1242 if (ret > 0)
1243 ret = btrfs_insert_orphan_item(trans, root, offset);
1244 return ret;
1245}
1246
f186373f
MF
1247static int count_inode_extrefs(struct btrfs_root *root,
1248 struct inode *inode, struct btrfs_path *path)
1249{
1250 int ret = 0;
1251 int name_len;
1252 unsigned int nlink = 0;
1253 u32 item_size;
1254 u32 cur_offset = 0;
1255 u64 inode_objectid = btrfs_ino(inode);
1256 u64 offset = 0;
1257 unsigned long ptr;
1258 struct btrfs_inode_extref *extref;
1259 struct extent_buffer *leaf;
1260
1261 while (1) {
1262 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1263 &extref, &offset);
1264 if (ret)
1265 break;
c71bf099 1266
f186373f
MF
1267 leaf = path->nodes[0];
1268 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1269 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1270
1271 while (cur_offset < item_size) {
1272 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1273 name_len = btrfs_inode_extref_name_len(leaf, extref);
1274
1275 nlink++;
1276
1277 cur_offset += name_len + sizeof(*extref);
1278 }
1279
1280 offset++;
1281 btrfs_release_path(path);
1282 }
1283 btrfs_release_path(path);
1284
1285 if (ret < 0)
1286 return ret;
1287 return nlink;
1288}
1289
1290static int count_inode_refs(struct btrfs_root *root,
1291 struct inode *inode, struct btrfs_path *path)
e02119d5 1292{
e02119d5
CM
1293 int ret;
1294 struct btrfs_key key;
f186373f 1295 unsigned int nlink = 0;
e02119d5
CM
1296 unsigned long ptr;
1297 unsigned long ptr_end;
1298 int name_len;
33345d01 1299 u64 ino = btrfs_ino(inode);
e02119d5 1300
33345d01 1301 key.objectid = ino;
e02119d5
CM
1302 key.type = BTRFS_INODE_REF_KEY;
1303 key.offset = (u64)-1;
1304
d397712b 1305 while (1) {
e02119d5
CM
1306 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1307 if (ret < 0)
1308 break;
1309 if (ret > 0) {
1310 if (path->slots[0] == 0)
1311 break;
1312 path->slots[0]--;
1313 }
e93ae26f 1314process_slot:
e02119d5
CM
1315 btrfs_item_key_to_cpu(path->nodes[0], &key,
1316 path->slots[0]);
33345d01 1317 if (key.objectid != ino ||
e02119d5
CM
1318 key.type != BTRFS_INODE_REF_KEY)
1319 break;
1320 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1321 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1322 path->slots[0]);
d397712b 1323 while (ptr < ptr_end) {
e02119d5
CM
1324 struct btrfs_inode_ref *ref;
1325
1326 ref = (struct btrfs_inode_ref *)ptr;
1327 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1328 ref);
1329 ptr = (unsigned long)(ref + 1) + name_len;
1330 nlink++;
1331 }
1332
1333 if (key.offset == 0)
1334 break;
e93ae26f
FDBM
1335 if (path->slots[0] > 0) {
1336 path->slots[0]--;
1337 goto process_slot;
1338 }
e02119d5 1339 key.offset--;
b3b4aa74 1340 btrfs_release_path(path);
e02119d5 1341 }
b3b4aa74 1342 btrfs_release_path(path);
f186373f
MF
1343
1344 return nlink;
1345}
1346
1347/*
1348 * There are a few corners where the link count of the file can't
1349 * be properly maintained during replay. So, instead of adding
1350 * lots of complexity to the log code, we just scan the backrefs
1351 * for any file that has been through replay.
1352 *
1353 * The scan will update the link count on the inode to reflect the
1354 * number of back refs found. If it goes down to zero, the iput
1355 * will free the inode.
1356 */
1357static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1358 struct btrfs_root *root,
1359 struct inode *inode)
1360{
1361 struct btrfs_path *path;
1362 int ret;
1363 u64 nlink = 0;
1364 u64 ino = btrfs_ino(inode);
1365
1366 path = btrfs_alloc_path();
1367 if (!path)
1368 return -ENOMEM;
1369
1370 ret = count_inode_refs(root, inode, path);
1371 if (ret < 0)
1372 goto out;
1373
1374 nlink = ret;
1375
1376 ret = count_inode_extrefs(root, inode, path);
1377 if (ret == -ENOENT)
1378 ret = 0;
1379
1380 if (ret < 0)
1381 goto out;
1382
1383 nlink += ret;
1384
1385 ret = 0;
1386
e02119d5 1387 if (nlink != inode->i_nlink) {
bfe86848 1388 set_nlink(inode, nlink);
e02119d5
CM
1389 btrfs_update_inode(trans, root, inode);
1390 }
8d5bf1cb 1391 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1392
c71bf099
YZ
1393 if (inode->i_nlink == 0) {
1394 if (S_ISDIR(inode->i_mode)) {
1395 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1396 ino, 1);
3650860b
JB
1397 if (ret)
1398 goto out;
c71bf099 1399 }
33345d01 1400 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1401 }
12fcfd22 1402
f186373f
MF
1403out:
1404 btrfs_free_path(path);
1405 return ret;
e02119d5
CM
1406}
1407
1408static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1409 struct btrfs_root *root,
1410 struct btrfs_path *path)
1411{
1412 int ret;
1413 struct btrfs_key key;
1414 struct inode *inode;
1415
1416 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1417 key.type = BTRFS_ORPHAN_ITEM_KEY;
1418 key.offset = (u64)-1;
d397712b 1419 while (1) {
e02119d5
CM
1420 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1421 if (ret < 0)
1422 break;
1423
1424 if (ret == 1) {
1425 if (path->slots[0] == 0)
1426 break;
1427 path->slots[0]--;
1428 }
1429
1430 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1431 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1432 key.type != BTRFS_ORPHAN_ITEM_KEY)
1433 break;
1434
1435 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1436 if (ret)
1437 goto out;
e02119d5 1438
b3b4aa74 1439 btrfs_release_path(path);
e02119d5 1440 inode = read_one_inode(root, key.offset);
c00e9493
TI
1441 if (!inode)
1442 return -EIO;
e02119d5
CM
1443
1444 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1445 iput(inode);
3650860b
JB
1446 if (ret)
1447 goto out;
e02119d5 1448
12fcfd22
CM
1449 /*
1450 * fixup on a directory may create new entries,
1451 * make sure we always look for the highset possible
1452 * offset
1453 */
1454 key.offset = (u64)-1;
e02119d5 1455 }
65a246c5
TI
1456 ret = 0;
1457out:
b3b4aa74 1458 btrfs_release_path(path);
65a246c5 1459 return ret;
e02119d5
CM
1460}
1461
1462
1463/*
1464 * record a given inode in the fixup dir so we can check its link
1465 * count when replay is done. The link count is incremented here
1466 * so the inode won't go away until we check it
1467 */
1468static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 u64 objectid)
1472{
1473 struct btrfs_key key;
1474 int ret = 0;
1475 struct inode *inode;
1476
1477 inode = read_one_inode(root, objectid);
c00e9493
TI
1478 if (!inode)
1479 return -EIO;
e02119d5
CM
1480
1481 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1482 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1483 key.offset = objectid;
1484
1485 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1486
b3b4aa74 1487 btrfs_release_path(path);
e02119d5 1488 if (ret == 0) {
9bf7a489
JB
1489 if (!inode->i_nlink)
1490 set_nlink(inode, 1);
1491 else
8b558c5f 1492 inc_nlink(inode);
b9959295 1493 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1494 } else if (ret == -EEXIST) {
1495 ret = 0;
1496 } else {
3650860b 1497 BUG(); /* Logic Error */
e02119d5
CM
1498 }
1499 iput(inode);
1500
1501 return ret;
1502}
1503
1504/*
1505 * when replaying the log for a directory, we only insert names
1506 * for inodes that actually exist. This means an fsync on a directory
1507 * does not implicitly fsync all the new files in it
1508 */
1509static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1510 struct btrfs_root *root,
1511 struct btrfs_path *path,
1512 u64 dirid, u64 index,
1513 char *name, int name_len, u8 type,
1514 struct btrfs_key *location)
1515{
1516 struct inode *inode;
1517 struct inode *dir;
1518 int ret;
1519
1520 inode = read_one_inode(root, location->objectid);
1521 if (!inode)
1522 return -ENOENT;
1523
1524 dir = read_one_inode(root, dirid);
1525 if (!dir) {
1526 iput(inode);
1527 return -EIO;
1528 }
d555438b 1529
e02119d5
CM
1530 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1531
1532 /* FIXME, put inode into FIXUP list */
1533
1534 iput(inode);
1535 iput(dir);
1536 return ret;
1537}
1538
1539/*
1540 * take a single entry in a log directory item and replay it into
1541 * the subvolume.
1542 *
1543 * if a conflicting item exists in the subdirectory already,
1544 * the inode it points to is unlinked and put into the link count
1545 * fix up tree.
1546 *
1547 * If a name from the log points to a file or directory that does
1548 * not exist in the FS, it is skipped. fsyncs on directories
1549 * do not force down inodes inside that directory, just changes to the
1550 * names or unlinks in a directory.
1551 */
1552static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1553 struct btrfs_root *root,
1554 struct btrfs_path *path,
1555 struct extent_buffer *eb,
1556 struct btrfs_dir_item *di,
1557 struct btrfs_key *key)
1558{
1559 char *name;
1560 int name_len;
1561 struct btrfs_dir_item *dst_di;
1562 struct btrfs_key found_key;
1563 struct btrfs_key log_key;
1564 struct inode *dir;
e02119d5 1565 u8 log_type;
4bef0848 1566 int exists;
3650860b 1567 int ret = 0;
d555438b 1568 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1569
1570 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1571 if (!dir)
1572 return -EIO;
e02119d5
CM
1573
1574 name_len = btrfs_dir_name_len(eb, di);
1575 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1576 if (!name) {
1577 ret = -ENOMEM;
1578 goto out;
1579 }
2a29edc6 1580
e02119d5
CM
1581 log_type = btrfs_dir_type(eb, di);
1582 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1583 name_len);
1584
1585 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1586 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1587 if (exists == 0)
1588 exists = 1;
1589 else
1590 exists = 0;
b3b4aa74 1591 btrfs_release_path(path);
4bef0848 1592
e02119d5
CM
1593 if (key->type == BTRFS_DIR_ITEM_KEY) {
1594 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1595 name, name_len, 1);
d397712b 1596 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1597 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1598 key->objectid,
1599 key->offset, name,
1600 name_len, 1);
1601 } else {
3650860b
JB
1602 /* Corruption */
1603 ret = -EINVAL;
1604 goto out;
e02119d5 1605 }
c704005d 1606 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1607 /* we need a sequence number to insert, so we only
1608 * do inserts for the BTRFS_DIR_INDEX_KEY types
1609 */
1610 if (key->type != BTRFS_DIR_INDEX_KEY)
1611 goto out;
1612 goto insert;
1613 }
1614
1615 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1616 /* the existing item matches the logged item */
1617 if (found_key.objectid == log_key.objectid &&
1618 found_key.type == log_key.type &&
1619 found_key.offset == log_key.offset &&
1620 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1621 goto out;
1622 }
1623
1624 /*
1625 * don't drop the conflicting directory entry if the inode
1626 * for the new entry doesn't exist
1627 */
4bef0848 1628 if (!exists)
e02119d5
CM
1629 goto out;
1630
e02119d5 1631 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1632 if (ret)
1633 goto out;
e02119d5
CM
1634
1635 if (key->type == BTRFS_DIR_INDEX_KEY)
1636 goto insert;
1637out:
b3b4aa74 1638 btrfs_release_path(path);
d555438b
JB
1639 if (!ret && update_size) {
1640 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1641 ret = btrfs_update_inode(trans, root, dir);
1642 }
e02119d5
CM
1643 kfree(name);
1644 iput(dir);
3650860b 1645 return ret;
e02119d5
CM
1646
1647insert:
b3b4aa74 1648 btrfs_release_path(path);
e02119d5
CM
1649 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1650 name, name_len, log_type, &log_key);
3650860b
JB
1651 if (ret && ret != -ENOENT)
1652 goto out;
d555438b 1653 update_size = false;
3650860b 1654 ret = 0;
e02119d5
CM
1655 goto out;
1656}
1657
1658/*
1659 * find all the names in a directory item and reconcile them into
1660 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1661 * one name in a directory item, but the same code gets used for
1662 * both directory index types
1663 */
1664static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1665 struct btrfs_root *root,
1666 struct btrfs_path *path,
1667 struct extent_buffer *eb, int slot,
1668 struct btrfs_key *key)
1669{
1670 int ret;
1671 u32 item_size = btrfs_item_size_nr(eb, slot);
1672 struct btrfs_dir_item *di;
1673 int name_len;
1674 unsigned long ptr;
1675 unsigned long ptr_end;
1676
1677 ptr = btrfs_item_ptr_offset(eb, slot);
1678 ptr_end = ptr + item_size;
d397712b 1679 while (ptr < ptr_end) {
e02119d5 1680 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1681 if (verify_dir_item(root, eb, di))
1682 return -EIO;
e02119d5
CM
1683 name_len = btrfs_dir_name_len(eb, di);
1684 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1685 if (ret)
1686 return ret;
e02119d5
CM
1687 ptr = (unsigned long)(di + 1);
1688 ptr += name_len;
1689 }
1690 return 0;
1691}
1692
1693/*
1694 * directory replay has two parts. There are the standard directory
1695 * items in the log copied from the subvolume, and range items
1696 * created in the log while the subvolume was logged.
1697 *
1698 * The range items tell us which parts of the key space the log
1699 * is authoritative for. During replay, if a key in the subvolume
1700 * directory is in a logged range item, but not actually in the log
1701 * that means it was deleted from the directory before the fsync
1702 * and should be removed.
1703 */
1704static noinline int find_dir_range(struct btrfs_root *root,
1705 struct btrfs_path *path,
1706 u64 dirid, int key_type,
1707 u64 *start_ret, u64 *end_ret)
1708{
1709 struct btrfs_key key;
1710 u64 found_end;
1711 struct btrfs_dir_log_item *item;
1712 int ret;
1713 int nritems;
1714
1715 if (*start_ret == (u64)-1)
1716 return 1;
1717
1718 key.objectid = dirid;
1719 key.type = key_type;
1720 key.offset = *start_ret;
1721
1722 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1723 if (ret < 0)
1724 goto out;
1725 if (ret > 0) {
1726 if (path->slots[0] == 0)
1727 goto out;
1728 path->slots[0]--;
1729 }
1730 if (ret != 0)
1731 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1732
1733 if (key.type != key_type || key.objectid != dirid) {
1734 ret = 1;
1735 goto next;
1736 }
1737 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1738 struct btrfs_dir_log_item);
1739 found_end = btrfs_dir_log_end(path->nodes[0], item);
1740
1741 if (*start_ret >= key.offset && *start_ret <= found_end) {
1742 ret = 0;
1743 *start_ret = key.offset;
1744 *end_ret = found_end;
1745 goto out;
1746 }
1747 ret = 1;
1748next:
1749 /* check the next slot in the tree to see if it is a valid item */
1750 nritems = btrfs_header_nritems(path->nodes[0]);
1751 if (path->slots[0] >= nritems) {
1752 ret = btrfs_next_leaf(root, path);
1753 if (ret)
1754 goto out;
1755 } else {
1756 path->slots[0]++;
1757 }
1758
1759 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1760
1761 if (key.type != key_type || key.objectid != dirid) {
1762 ret = 1;
1763 goto out;
1764 }
1765 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1766 struct btrfs_dir_log_item);
1767 found_end = btrfs_dir_log_end(path->nodes[0], item);
1768 *start_ret = key.offset;
1769 *end_ret = found_end;
1770 ret = 0;
1771out:
b3b4aa74 1772 btrfs_release_path(path);
e02119d5
CM
1773 return ret;
1774}
1775
1776/*
1777 * this looks for a given directory item in the log. If the directory
1778 * item is not in the log, the item is removed and the inode it points
1779 * to is unlinked
1780 */
1781static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_root *log,
1784 struct btrfs_path *path,
1785 struct btrfs_path *log_path,
1786 struct inode *dir,
1787 struct btrfs_key *dir_key)
1788{
1789 int ret;
1790 struct extent_buffer *eb;
1791 int slot;
1792 u32 item_size;
1793 struct btrfs_dir_item *di;
1794 struct btrfs_dir_item *log_di;
1795 int name_len;
1796 unsigned long ptr;
1797 unsigned long ptr_end;
1798 char *name;
1799 struct inode *inode;
1800 struct btrfs_key location;
1801
1802again:
1803 eb = path->nodes[0];
1804 slot = path->slots[0];
1805 item_size = btrfs_item_size_nr(eb, slot);
1806 ptr = btrfs_item_ptr_offset(eb, slot);
1807 ptr_end = ptr + item_size;
d397712b 1808 while (ptr < ptr_end) {
e02119d5 1809 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1810 if (verify_dir_item(root, eb, di)) {
1811 ret = -EIO;
1812 goto out;
1813 }
1814
e02119d5
CM
1815 name_len = btrfs_dir_name_len(eb, di);
1816 name = kmalloc(name_len, GFP_NOFS);
1817 if (!name) {
1818 ret = -ENOMEM;
1819 goto out;
1820 }
1821 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1822 name_len);
1823 log_di = NULL;
12fcfd22 1824 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1825 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1826 dir_key->objectid,
1827 name, name_len, 0);
12fcfd22 1828 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1829 log_di = btrfs_lookup_dir_index_item(trans, log,
1830 log_path,
1831 dir_key->objectid,
1832 dir_key->offset,
1833 name, name_len, 0);
1834 }
269d040f 1835 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1836 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1837 btrfs_release_path(path);
1838 btrfs_release_path(log_path);
e02119d5 1839 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1840 if (!inode) {
1841 kfree(name);
1842 return -EIO;
1843 }
e02119d5
CM
1844
1845 ret = link_to_fixup_dir(trans, root,
1846 path, location.objectid);
3650860b
JB
1847 if (ret) {
1848 kfree(name);
1849 iput(inode);
1850 goto out;
1851 }
1852
8b558c5f 1853 inc_nlink(inode);
e02119d5
CM
1854 ret = btrfs_unlink_inode(trans, root, dir, inode,
1855 name, name_len);
3650860b 1856 if (!ret)
ada9af21 1857 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1858 kfree(name);
1859 iput(inode);
3650860b
JB
1860 if (ret)
1861 goto out;
e02119d5
CM
1862
1863 /* there might still be more names under this key
1864 * check and repeat if required
1865 */
1866 ret = btrfs_search_slot(NULL, root, dir_key, path,
1867 0, 0);
1868 if (ret == 0)
1869 goto again;
1870 ret = 0;
1871 goto out;
269d040f
FDBM
1872 } else if (IS_ERR(log_di)) {
1873 kfree(name);
1874 return PTR_ERR(log_di);
e02119d5 1875 }
b3b4aa74 1876 btrfs_release_path(log_path);
e02119d5
CM
1877 kfree(name);
1878
1879 ptr = (unsigned long)(di + 1);
1880 ptr += name_len;
1881 }
1882 ret = 0;
1883out:
b3b4aa74
DS
1884 btrfs_release_path(path);
1885 btrfs_release_path(log_path);
e02119d5
CM
1886 return ret;
1887}
1888
1889/*
1890 * deletion replay happens before we copy any new directory items
1891 * out of the log or out of backreferences from inodes. It
1892 * scans the log to find ranges of keys that log is authoritative for,
1893 * and then scans the directory to find items in those ranges that are
1894 * not present in the log.
1895 *
1896 * Anything we don't find in the log is unlinked and removed from the
1897 * directory.
1898 */
1899static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1900 struct btrfs_root *root,
1901 struct btrfs_root *log,
1902 struct btrfs_path *path,
12fcfd22 1903 u64 dirid, int del_all)
e02119d5
CM
1904{
1905 u64 range_start;
1906 u64 range_end;
1907 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1908 int ret = 0;
1909 struct btrfs_key dir_key;
1910 struct btrfs_key found_key;
1911 struct btrfs_path *log_path;
1912 struct inode *dir;
1913
1914 dir_key.objectid = dirid;
1915 dir_key.type = BTRFS_DIR_ITEM_KEY;
1916 log_path = btrfs_alloc_path();
1917 if (!log_path)
1918 return -ENOMEM;
1919
1920 dir = read_one_inode(root, dirid);
1921 /* it isn't an error if the inode isn't there, that can happen
1922 * because we replay the deletes before we copy in the inode item
1923 * from the log
1924 */
1925 if (!dir) {
1926 btrfs_free_path(log_path);
1927 return 0;
1928 }
1929again:
1930 range_start = 0;
1931 range_end = 0;
d397712b 1932 while (1) {
12fcfd22
CM
1933 if (del_all)
1934 range_end = (u64)-1;
1935 else {
1936 ret = find_dir_range(log, path, dirid, key_type,
1937 &range_start, &range_end);
1938 if (ret != 0)
1939 break;
1940 }
e02119d5
CM
1941
1942 dir_key.offset = range_start;
d397712b 1943 while (1) {
e02119d5
CM
1944 int nritems;
1945 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1946 0, 0);
1947 if (ret < 0)
1948 goto out;
1949
1950 nritems = btrfs_header_nritems(path->nodes[0]);
1951 if (path->slots[0] >= nritems) {
1952 ret = btrfs_next_leaf(root, path);
1953 if (ret)
1954 break;
1955 }
1956 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1957 path->slots[0]);
1958 if (found_key.objectid != dirid ||
1959 found_key.type != dir_key.type)
1960 goto next_type;
1961
1962 if (found_key.offset > range_end)
1963 break;
1964
1965 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1966 log_path, dir,
1967 &found_key);
3650860b
JB
1968 if (ret)
1969 goto out;
e02119d5
CM
1970 if (found_key.offset == (u64)-1)
1971 break;
1972 dir_key.offset = found_key.offset + 1;
1973 }
b3b4aa74 1974 btrfs_release_path(path);
e02119d5
CM
1975 if (range_end == (u64)-1)
1976 break;
1977 range_start = range_end + 1;
1978 }
1979
1980next_type:
1981 ret = 0;
1982 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1983 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1984 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 1985 btrfs_release_path(path);
e02119d5
CM
1986 goto again;
1987 }
1988out:
b3b4aa74 1989 btrfs_release_path(path);
e02119d5
CM
1990 btrfs_free_path(log_path);
1991 iput(dir);
1992 return ret;
1993}
1994
1995/*
1996 * the process_func used to replay items from the log tree. This
1997 * gets called in two different stages. The first stage just looks
1998 * for inodes and makes sure they are all copied into the subvolume.
1999 *
2000 * The second stage copies all the other item types from the log into
2001 * the subvolume. The two stage approach is slower, but gets rid of
2002 * lots of complexity around inodes referencing other inodes that exist
2003 * only in the log (references come from either directory items or inode
2004 * back refs).
2005 */
2006static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2007 struct walk_control *wc, u64 gen)
2008{
2009 int nritems;
2010 struct btrfs_path *path;
2011 struct btrfs_root *root = wc->replay_dest;
2012 struct btrfs_key key;
e02119d5
CM
2013 int level;
2014 int i;
2015 int ret;
2016
018642a1
TI
2017 ret = btrfs_read_buffer(eb, gen);
2018 if (ret)
2019 return ret;
e02119d5
CM
2020
2021 level = btrfs_header_level(eb);
2022
2023 if (level != 0)
2024 return 0;
2025
2026 path = btrfs_alloc_path();
1e5063d0
MF
2027 if (!path)
2028 return -ENOMEM;
e02119d5
CM
2029
2030 nritems = btrfs_header_nritems(eb);
2031 for (i = 0; i < nritems; i++) {
2032 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2033
2034 /* inode keys are done during the first stage */
2035 if (key.type == BTRFS_INODE_ITEM_KEY &&
2036 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2037 struct btrfs_inode_item *inode_item;
2038 u32 mode;
2039
2040 inode_item = btrfs_item_ptr(eb, i,
2041 struct btrfs_inode_item);
2042 mode = btrfs_inode_mode(eb, inode_item);
2043 if (S_ISDIR(mode)) {
2044 ret = replay_dir_deletes(wc->trans,
12fcfd22 2045 root, log, path, key.objectid, 0);
b50c6e25
JB
2046 if (ret)
2047 break;
e02119d5
CM
2048 }
2049 ret = overwrite_item(wc->trans, root, path,
2050 eb, i, &key);
b50c6e25
JB
2051 if (ret)
2052 break;
e02119d5 2053
c71bf099
YZ
2054 /* for regular files, make sure corresponding
2055 * orhpan item exist. extents past the new EOF
2056 * will be truncated later by orphan cleanup.
e02119d5
CM
2057 */
2058 if (S_ISREG(mode)) {
c71bf099
YZ
2059 ret = insert_orphan_item(wc->trans, root,
2060 key.objectid);
b50c6e25
JB
2061 if (ret)
2062 break;
e02119d5 2063 }
c71bf099 2064
e02119d5
CM
2065 ret = link_to_fixup_dir(wc->trans, root,
2066 path, key.objectid);
b50c6e25
JB
2067 if (ret)
2068 break;
e02119d5 2069 }
dd8e7217
JB
2070
2071 if (key.type == BTRFS_DIR_INDEX_KEY &&
2072 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2073 ret = replay_one_dir_item(wc->trans, root, path,
2074 eb, i, &key);
2075 if (ret)
2076 break;
2077 }
2078
e02119d5
CM
2079 if (wc->stage < LOG_WALK_REPLAY_ALL)
2080 continue;
2081
2082 /* these keys are simply copied */
2083 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2084 ret = overwrite_item(wc->trans, root, path,
2085 eb, i, &key);
b50c6e25
JB
2086 if (ret)
2087 break;
2da1c669
LB
2088 } else if (key.type == BTRFS_INODE_REF_KEY ||
2089 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2090 ret = add_inode_ref(wc->trans, root, log, path,
2091 eb, i, &key);
b50c6e25
JB
2092 if (ret && ret != -ENOENT)
2093 break;
2094 ret = 0;
e02119d5
CM
2095 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2096 ret = replay_one_extent(wc->trans, root, path,
2097 eb, i, &key);
b50c6e25
JB
2098 if (ret)
2099 break;
dd8e7217 2100 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2101 ret = replay_one_dir_item(wc->trans, root, path,
2102 eb, i, &key);
b50c6e25
JB
2103 if (ret)
2104 break;
e02119d5
CM
2105 }
2106 }
2107 btrfs_free_path(path);
b50c6e25 2108 return ret;
e02119d5
CM
2109}
2110
d397712b 2111static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2112 struct btrfs_root *root,
2113 struct btrfs_path *path, int *level,
2114 struct walk_control *wc)
2115{
2116 u64 root_owner;
e02119d5
CM
2117 u64 bytenr;
2118 u64 ptr_gen;
2119 struct extent_buffer *next;
2120 struct extent_buffer *cur;
2121 struct extent_buffer *parent;
2122 u32 blocksize;
2123 int ret = 0;
2124
2125 WARN_ON(*level < 0);
2126 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2127
d397712b 2128 while (*level > 0) {
e02119d5
CM
2129 WARN_ON(*level < 0);
2130 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2131 cur = path->nodes[*level];
2132
fae7f21c 2133 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2134
2135 if (path->slots[*level] >=
2136 btrfs_header_nritems(cur))
2137 break;
2138
2139 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2140 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2141 blocksize = btrfs_level_size(root, *level - 1);
2142
2143 parent = path->nodes[*level];
2144 root_owner = btrfs_header_owner(parent);
e02119d5
CM
2145
2146 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 2147 if (!next)
2148 return -ENOMEM;
e02119d5 2149
e02119d5 2150 if (*level == 1) {
1e5063d0 2151 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2152 if (ret) {
2153 free_extent_buffer(next);
1e5063d0 2154 return ret;
b50c6e25 2155 }
4a500fd1 2156
e02119d5
CM
2157 path->slots[*level]++;
2158 if (wc->free) {
018642a1
TI
2159 ret = btrfs_read_buffer(next, ptr_gen);
2160 if (ret) {
2161 free_extent_buffer(next);
2162 return ret;
2163 }
e02119d5 2164
681ae509
JB
2165 if (trans) {
2166 btrfs_tree_lock(next);
2167 btrfs_set_lock_blocking(next);
2168 clean_tree_block(trans, root, next);
2169 btrfs_wait_tree_block_writeback(next);
2170 btrfs_tree_unlock(next);
2171 }
e02119d5 2172
e02119d5
CM
2173 WARN_ON(root_owner !=
2174 BTRFS_TREE_LOG_OBJECTID);
e688b725 2175 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2176 bytenr, blocksize);
3650860b
JB
2177 if (ret) {
2178 free_extent_buffer(next);
2179 return ret;
2180 }
e02119d5
CM
2181 }
2182 free_extent_buffer(next);
2183 continue;
2184 }
018642a1
TI
2185 ret = btrfs_read_buffer(next, ptr_gen);
2186 if (ret) {
2187 free_extent_buffer(next);
2188 return ret;
2189 }
e02119d5
CM
2190
2191 WARN_ON(*level <= 0);
2192 if (path->nodes[*level-1])
2193 free_extent_buffer(path->nodes[*level-1]);
2194 path->nodes[*level-1] = next;
2195 *level = btrfs_header_level(next);
2196 path->slots[*level] = 0;
2197 cond_resched();
2198 }
2199 WARN_ON(*level < 0);
2200 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2201
4a500fd1 2202 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2203
2204 cond_resched();
2205 return 0;
2206}
2207
d397712b 2208static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2209 struct btrfs_root *root,
2210 struct btrfs_path *path, int *level,
2211 struct walk_control *wc)
2212{
2213 u64 root_owner;
e02119d5
CM
2214 int i;
2215 int slot;
2216 int ret;
2217
d397712b 2218 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2219 slot = path->slots[i];
4a500fd1 2220 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2221 path->slots[i]++;
2222 *level = i;
2223 WARN_ON(*level == 0);
2224 return 0;
2225 } else {
31840ae1
ZY
2226 struct extent_buffer *parent;
2227 if (path->nodes[*level] == root->node)
2228 parent = path->nodes[*level];
2229 else
2230 parent = path->nodes[*level + 1];
2231
2232 root_owner = btrfs_header_owner(parent);
1e5063d0 2233 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2234 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2235 if (ret)
2236 return ret;
2237
e02119d5
CM
2238 if (wc->free) {
2239 struct extent_buffer *next;
2240
2241 next = path->nodes[*level];
2242
681ae509
JB
2243 if (trans) {
2244 btrfs_tree_lock(next);
2245 btrfs_set_lock_blocking(next);
2246 clean_tree_block(trans, root, next);
2247 btrfs_wait_tree_block_writeback(next);
2248 btrfs_tree_unlock(next);
2249 }
e02119d5 2250
e02119d5 2251 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2252 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2253 path->nodes[*level]->start,
d00aff00 2254 path->nodes[*level]->len);
3650860b
JB
2255 if (ret)
2256 return ret;
e02119d5
CM
2257 }
2258 free_extent_buffer(path->nodes[*level]);
2259 path->nodes[*level] = NULL;
2260 *level = i + 1;
2261 }
2262 }
2263 return 1;
2264}
2265
2266/*
2267 * drop the reference count on the tree rooted at 'snap'. This traverses
2268 * the tree freeing any blocks that have a ref count of zero after being
2269 * decremented.
2270 */
2271static int walk_log_tree(struct btrfs_trans_handle *trans,
2272 struct btrfs_root *log, struct walk_control *wc)
2273{
2274 int ret = 0;
2275 int wret;
2276 int level;
2277 struct btrfs_path *path;
e02119d5
CM
2278 int orig_level;
2279
2280 path = btrfs_alloc_path();
db5b493a
TI
2281 if (!path)
2282 return -ENOMEM;
e02119d5
CM
2283
2284 level = btrfs_header_level(log->node);
2285 orig_level = level;
2286 path->nodes[level] = log->node;
2287 extent_buffer_get(log->node);
2288 path->slots[level] = 0;
2289
d397712b 2290 while (1) {
e02119d5
CM
2291 wret = walk_down_log_tree(trans, log, path, &level, wc);
2292 if (wret > 0)
2293 break;
79787eaa 2294 if (wret < 0) {
e02119d5 2295 ret = wret;
79787eaa
JM
2296 goto out;
2297 }
e02119d5
CM
2298
2299 wret = walk_up_log_tree(trans, log, path, &level, wc);
2300 if (wret > 0)
2301 break;
79787eaa 2302 if (wret < 0) {
e02119d5 2303 ret = wret;
79787eaa
JM
2304 goto out;
2305 }
e02119d5
CM
2306 }
2307
2308 /* was the root node processed? if not, catch it here */
2309 if (path->nodes[orig_level]) {
79787eaa 2310 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2311 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2312 if (ret)
2313 goto out;
e02119d5
CM
2314 if (wc->free) {
2315 struct extent_buffer *next;
2316
2317 next = path->nodes[orig_level];
2318
681ae509
JB
2319 if (trans) {
2320 btrfs_tree_lock(next);
2321 btrfs_set_lock_blocking(next);
2322 clean_tree_block(trans, log, next);
2323 btrfs_wait_tree_block_writeback(next);
2324 btrfs_tree_unlock(next);
2325 }
e02119d5 2326
e02119d5
CM
2327 WARN_ON(log->root_key.objectid !=
2328 BTRFS_TREE_LOG_OBJECTID);
e688b725 2329 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2330 next->len);
3650860b
JB
2331 if (ret)
2332 goto out;
e02119d5
CM
2333 }
2334 }
2335
79787eaa 2336out:
e02119d5 2337 btrfs_free_path(path);
e02119d5
CM
2338 return ret;
2339}
2340
7237f183
YZ
2341/*
2342 * helper function to update the item for a given subvolumes log root
2343 * in the tree of log roots
2344 */
2345static int update_log_root(struct btrfs_trans_handle *trans,
2346 struct btrfs_root *log)
2347{
2348 int ret;
2349
2350 if (log->log_transid == 1) {
2351 /* insert root item on the first sync */
2352 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2353 &log->root_key, &log->root_item);
2354 } else {
2355 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2356 &log->root_key, &log->root_item);
2357 }
2358 return ret;
2359}
2360
12fcfd22
CM
2361static int wait_log_commit(struct btrfs_trans_handle *trans,
2362 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
2363{
2364 DEFINE_WAIT(wait);
7237f183 2365 int index = transid % 2;
e02119d5 2366
7237f183
YZ
2367 /*
2368 * we only allow two pending log transactions at a time,
2369 * so we know that if ours is more than 2 older than the
2370 * current transaction, we're done
2371 */
e02119d5 2372 do {
7237f183
YZ
2373 prepare_to_wait(&root->log_commit_wait[index],
2374 &wait, TASK_UNINTERRUPTIBLE);
2375 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2376
2377 if (root->fs_info->last_trans_log_full_commit !=
2378 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2379 atomic_read(&root->log_commit[index]))
2380 schedule();
12fcfd22 2381
7237f183
YZ
2382 finish_wait(&root->log_commit_wait[index], &wait);
2383 mutex_lock(&root->log_mutex);
6dd70ce4
JK
2384 } while (root->fs_info->last_trans_log_full_commit !=
2385 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
2386 atomic_read(&root->log_commit[index]));
2387 return 0;
2388}
2389
143bede5
JM
2390static void wait_for_writer(struct btrfs_trans_handle *trans,
2391 struct btrfs_root *root)
7237f183
YZ
2392{
2393 DEFINE_WAIT(wait);
6dd70ce4
JK
2394 while (root->fs_info->last_trans_log_full_commit !=
2395 trans->transid && atomic_read(&root->log_writers)) {
7237f183
YZ
2396 prepare_to_wait(&root->log_writer_wait,
2397 &wait, TASK_UNINTERRUPTIBLE);
2398 mutex_unlock(&root->log_mutex);
12fcfd22
CM
2399 if (root->fs_info->last_trans_log_full_commit !=
2400 trans->transid && atomic_read(&root->log_writers))
e02119d5 2401 schedule();
7237f183
YZ
2402 mutex_lock(&root->log_mutex);
2403 finish_wait(&root->log_writer_wait, &wait);
2404 }
e02119d5
CM
2405}
2406
2407/*
2408 * btrfs_sync_log does sends a given tree log down to the disk and
2409 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2410 * you know that any inodes previously logged are safely on disk only
2411 * if it returns 0.
2412 *
2413 * Any other return value means you need to call btrfs_commit_transaction.
2414 * Some of the edge cases for fsyncing directories that have had unlinks
2415 * or renames done in the past mean that sometimes the only safe
2416 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2417 * that has happened.
e02119d5
CM
2418 */
2419int btrfs_sync_log(struct btrfs_trans_handle *trans,
2420 struct btrfs_root *root)
2421{
7237f183
YZ
2422 int index1;
2423 int index2;
8cef4e16 2424 int mark;
e02119d5 2425 int ret;
e02119d5 2426 struct btrfs_root *log = root->log_root;
7237f183 2427 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 2428 unsigned long log_transid = 0;
c6adc9cc 2429 struct blk_plug plug;
e02119d5 2430
7237f183 2431 mutex_lock(&root->log_mutex);
2ab28f32 2432 log_transid = root->log_transid;
7237f183
YZ
2433 index1 = root->log_transid % 2;
2434 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 2435 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
2436 mutex_unlock(&root->log_mutex);
2437 return 0;
e02119d5 2438 }
7237f183
YZ
2439 atomic_set(&root->log_commit[index1], 1);
2440
2441 /* wait for previous tree log sync to complete */
2442 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 2443 wait_log_commit(trans, root, root->log_transid - 1);
86df7eb9 2444 while (1) {
2ecb7923 2445 int batch = atomic_read(&root->log_batch);
cd354ad6
CM
2446 /* when we're on an ssd, just kick the log commit out */
2447 if (!btrfs_test_opt(root, SSD) && root->log_multiple_pids) {
86df7eb9
YZ
2448 mutex_unlock(&root->log_mutex);
2449 schedule_timeout_uninterruptible(1);
2450 mutex_lock(&root->log_mutex);
2451 }
12fcfd22 2452 wait_for_writer(trans, root);
2ecb7923 2453 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2454 break;
2455 }
e02119d5 2456
12fcfd22
CM
2457 /* bail out if we need to do a full commit */
2458 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2459 ret = -EAGAIN;
2ab28f32 2460 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2461 mutex_unlock(&root->log_mutex);
2462 goto out;
2463 }
2464
8cef4e16
YZ
2465 if (log_transid % 2 == 0)
2466 mark = EXTENT_DIRTY;
2467 else
2468 mark = EXTENT_NEW;
2469
690587d1
CM
2470 /* we start IO on all the marked extents here, but we don't actually
2471 * wait for them until later.
2472 */
c6adc9cc 2473 blk_start_plug(&plug);
8cef4e16 2474 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2475 if (ret) {
c6adc9cc 2476 blk_finish_plug(&plug);
79787eaa 2477 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2478 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2479 mutex_unlock(&root->log_mutex);
2480 goto out;
2481 }
7237f183 2482
5d4f98a2 2483 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2484
7237f183
YZ
2485 root->log_transid++;
2486 log->log_transid = root->log_transid;
ff782e0a 2487 root->log_start_pid = 0;
7237f183
YZ
2488 smp_mb();
2489 /*
8cef4e16
YZ
2490 * IO has been started, blocks of the log tree have WRITTEN flag set
2491 * in their headers. new modifications of the log will be written to
2492 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2493 */
2494 mutex_unlock(&root->log_mutex);
2495
2496 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2497 atomic_inc(&log_root_tree->log_batch);
7237f183
YZ
2498 atomic_inc(&log_root_tree->log_writers);
2499 mutex_unlock(&log_root_tree->log_mutex);
2500
2501 ret = update_log_root(trans, log);
7237f183
YZ
2502
2503 mutex_lock(&log_root_tree->log_mutex);
2504 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2505 smp_mb();
2506 if (waitqueue_active(&log_root_tree->log_writer_wait))
2507 wake_up(&log_root_tree->log_writer_wait);
2508 }
2509
4a500fd1 2510 if (ret) {
c6adc9cc 2511 blk_finish_plug(&plug);
79787eaa
JM
2512 if (ret != -ENOSPC) {
2513 btrfs_abort_transaction(trans, root, ret);
2514 mutex_unlock(&log_root_tree->log_mutex);
2515 goto out;
2516 }
4a500fd1
YZ
2517 root->fs_info->last_trans_log_full_commit = trans->transid;
2518 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2519 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2520 mutex_unlock(&log_root_tree->log_mutex);
2521 ret = -EAGAIN;
2522 goto out;
2523 }
2524
7237f183
YZ
2525 index2 = log_root_tree->log_transid % 2;
2526 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2527 blk_finish_plug(&plug);
8cef4e16 2528 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2529 wait_log_commit(trans, log_root_tree,
2530 log_root_tree->log_transid);
2ab28f32 2531 btrfs_free_logged_extents(log, log_transid);
7237f183 2532 mutex_unlock(&log_root_tree->log_mutex);
b31eabd8 2533 ret = 0;
7237f183
YZ
2534 goto out;
2535 }
2536 atomic_set(&log_root_tree->log_commit[index2], 1);
2537
12fcfd22
CM
2538 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2539 wait_log_commit(trans, log_root_tree,
2540 log_root_tree->log_transid - 1);
2541 }
2542
2543 wait_for_writer(trans, log_root_tree);
7237f183 2544
12fcfd22
CM
2545 /*
2546 * now that we've moved on to the tree of log tree roots,
2547 * check the full commit flag again
2548 */
2549 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
c6adc9cc 2550 blk_finish_plug(&plug);
8cef4e16 2551 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2552 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2553 mutex_unlock(&log_root_tree->log_mutex);
2554 ret = -EAGAIN;
2555 goto out_wake_log_root;
2556 }
7237f183 2557
c6adc9cc
MX
2558 ret = btrfs_write_marked_extents(log_root_tree,
2559 &log_root_tree->dirty_log_pages,
2560 EXTENT_DIRTY | EXTENT_NEW);
2561 blk_finish_plug(&plug);
79787eaa
JM
2562 if (ret) {
2563 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2564 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2565 mutex_unlock(&log_root_tree->log_mutex);
2566 goto out_wake_log_root;
2567 }
8cef4e16 2568 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
c6adc9cc
MX
2569 btrfs_wait_marked_extents(log_root_tree,
2570 &log_root_tree->dirty_log_pages,
2571 EXTENT_NEW | EXTENT_DIRTY);
2ab28f32 2572 btrfs_wait_logged_extents(log, log_transid);
e02119d5 2573
6c41761f 2574 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2575 log_root_tree->node->start);
6c41761f 2576 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2577 btrfs_header_level(log_root_tree->node));
e02119d5 2578
7237f183 2579 log_root_tree->log_transid++;
e02119d5 2580 smp_mb();
7237f183
YZ
2581
2582 mutex_unlock(&log_root_tree->log_mutex);
2583
2584 /*
2585 * nobody else is going to jump in and write the the ctree
2586 * super here because the log_commit atomic below is protecting
2587 * us. We must be called with a transaction handle pinning
2588 * the running transaction open, so a full commit can't hop
2589 * in and cause problems either.
2590 */
5af3e8cc 2591 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc
SB
2592 if (ret) {
2593 btrfs_abort_transaction(trans, root, ret);
2594 goto out_wake_log_root;
2595 }
7237f183 2596
257c62e1
CM
2597 mutex_lock(&root->log_mutex);
2598 if (root->last_log_commit < log_transid)
2599 root->last_log_commit = log_transid;
2600 mutex_unlock(&root->log_mutex);
2601
12fcfd22 2602out_wake_log_root:
7237f183
YZ
2603 atomic_set(&log_root_tree->log_commit[index2], 0);
2604 smp_mb();
2605 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2606 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2607out:
7237f183
YZ
2608 atomic_set(&root->log_commit[index1], 0);
2609 smp_mb();
2610 if (waitqueue_active(&root->log_commit_wait[index1]))
2611 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2612 return ret;
e02119d5
CM
2613}
2614
4a500fd1
YZ
2615static void free_log_tree(struct btrfs_trans_handle *trans,
2616 struct btrfs_root *log)
e02119d5
CM
2617{
2618 int ret;
d0c803c4
CM
2619 u64 start;
2620 u64 end;
e02119d5
CM
2621 struct walk_control wc = {
2622 .free = 1,
2623 .process_func = process_one_buffer
2624 };
2625
681ae509
JB
2626 ret = walk_log_tree(trans, log, &wc);
2627 /* I don't think this can happen but just in case */
2628 if (ret)
2629 btrfs_abort_transaction(trans, log, ret);
e02119d5 2630
d397712b 2631 while (1) {
d0c803c4 2632 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2633 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2634 NULL);
d0c803c4
CM
2635 if (ret)
2636 break;
2637
8cef4e16
YZ
2638 clear_extent_bits(&log->dirty_log_pages, start, end,
2639 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2640 }
2641
2ab28f32
JB
2642 /*
2643 * We may have short-circuited the log tree with the full commit logic
2644 * and left ordered extents on our list, so clear these out to keep us
2645 * from leaking inodes and memory.
2646 */
2647 btrfs_free_logged_extents(log, 0);
2648 btrfs_free_logged_extents(log, 1);
2649
7237f183
YZ
2650 free_extent_buffer(log->node);
2651 kfree(log);
4a500fd1
YZ
2652}
2653
2654/*
2655 * free all the extents used by the tree log. This should be called
2656 * at commit time of the full transaction
2657 */
2658int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2659{
2660 if (root->log_root) {
2661 free_log_tree(trans, root->log_root);
2662 root->log_root = NULL;
2663 }
2664 return 0;
2665}
2666
2667int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2668 struct btrfs_fs_info *fs_info)
2669{
2670 if (fs_info->log_root_tree) {
2671 free_log_tree(trans, fs_info->log_root_tree);
2672 fs_info->log_root_tree = NULL;
2673 }
e02119d5
CM
2674 return 0;
2675}
2676
e02119d5
CM
2677/*
2678 * If both a file and directory are logged, and unlinks or renames are
2679 * mixed in, we have a few interesting corners:
2680 *
2681 * create file X in dir Y
2682 * link file X to X.link in dir Y
2683 * fsync file X
2684 * unlink file X but leave X.link
2685 * fsync dir Y
2686 *
2687 * After a crash we would expect only X.link to exist. But file X
2688 * didn't get fsync'd again so the log has back refs for X and X.link.
2689 *
2690 * We solve this by removing directory entries and inode backrefs from the
2691 * log when a file that was logged in the current transaction is
2692 * unlinked. Any later fsync will include the updated log entries, and
2693 * we'll be able to reconstruct the proper directory items from backrefs.
2694 *
2695 * This optimizations allows us to avoid relogging the entire inode
2696 * or the entire directory.
2697 */
2698int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2699 struct btrfs_root *root,
2700 const char *name, int name_len,
2701 struct inode *dir, u64 index)
2702{
2703 struct btrfs_root *log;
2704 struct btrfs_dir_item *di;
2705 struct btrfs_path *path;
2706 int ret;
4a500fd1 2707 int err = 0;
e02119d5 2708 int bytes_del = 0;
33345d01 2709 u64 dir_ino = btrfs_ino(dir);
e02119d5 2710
3a5f1d45
CM
2711 if (BTRFS_I(dir)->logged_trans < trans->transid)
2712 return 0;
2713
e02119d5
CM
2714 ret = join_running_log_trans(root);
2715 if (ret)
2716 return 0;
2717
2718 mutex_lock(&BTRFS_I(dir)->log_mutex);
2719
2720 log = root->log_root;
2721 path = btrfs_alloc_path();
a62f44a5
TI
2722 if (!path) {
2723 err = -ENOMEM;
2724 goto out_unlock;
2725 }
2a29edc6 2726
33345d01 2727 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2728 name, name_len, -1);
4a500fd1
YZ
2729 if (IS_ERR(di)) {
2730 err = PTR_ERR(di);
2731 goto fail;
2732 }
2733 if (di) {
e02119d5
CM
2734 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2735 bytes_del += name_len;
3650860b
JB
2736 if (ret) {
2737 err = ret;
2738 goto fail;
2739 }
e02119d5 2740 }
b3b4aa74 2741 btrfs_release_path(path);
33345d01 2742 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2743 index, name, name_len, -1);
4a500fd1
YZ
2744 if (IS_ERR(di)) {
2745 err = PTR_ERR(di);
2746 goto fail;
2747 }
2748 if (di) {
e02119d5
CM
2749 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2750 bytes_del += name_len;
3650860b
JB
2751 if (ret) {
2752 err = ret;
2753 goto fail;
2754 }
e02119d5
CM
2755 }
2756
2757 /* update the directory size in the log to reflect the names
2758 * we have removed
2759 */
2760 if (bytes_del) {
2761 struct btrfs_key key;
2762
33345d01 2763 key.objectid = dir_ino;
e02119d5
CM
2764 key.offset = 0;
2765 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2766 btrfs_release_path(path);
e02119d5
CM
2767
2768 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2769 if (ret < 0) {
2770 err = ret;
2771 goto fail;
2772 }
e02119d5
CM
2773 if (ret == 0) {
2774 struct btrfs_inode_item *item;
2775 u64 i_size;
2776
2777 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2778 struct btrfs_inode_item);
2779 i_size = btrfs_inode_size(path->nodes[0], item);
2780 if (i_size > bytes_del)
2781 i_size -= bytes_del;
2782 else
2783 i_size = 0;
2784 btrfs_set_inode_size(path->nodes[0], item, i_size);
2785 btrfs_mark_buffer_dirty(path->nodes[0]);
2786 } else
2787 ret = 0;
b3b4aa74 2788 btrfs_release_path(path);
e02119d5 2789 }
4a500fd1 2790fail:
e02119d5 2791 btrfs_free_path(path);
a62f44a5 2792out_unlock:
e02119d5 2793 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2794 if (ret == -ENOSPC) {
2795 root->fs_info->last_trans_log_full_commit = trans->transid;
2796 ret = 0;
79787eaa
JM
2797 } else if (ret < 0)
2798 btrfs_abort_transaction(trans, root, ret);
2799
12fcfd22 2800 btrfs_end_log_trans(root);
e02119d5 2801
411fc6bc 2802 return err;
e02119d5
CM
2803}
2804
2805/* see comments for btrfs_del_dir_entries_in_log */
2806int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2807 struct btrfs_root *root,
2808 const char *name, int name_len,
2809 struct inode *inode, u64 dirid)
2810{
2811 struct btrfs_root *log;
2812 u64 index;
2813 int ret;
2814
3a5f1d45
CM
2815 if (BTRFS_I(inode)->logged_trans < trans->transid)
2816 return 0;
2817
e02119d5
CM
2818 ret = join_running_log_trans(root);
2819 if (ret)
2820 return 0;
2821 log = root->log_root;
2822 mutex_lock(&BTRFS_I(inode)->log_mutex);
2823
33345d01 2824 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2825 dirid, &index);
2826 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2827 if (ret == -ENOSPC) {
2828 root->fs_info->last_trans_log_full_commit = trans->transid;
2829 ret = 0;
79787eaa
JM
2830 } else if (ret < 0 && ret != -ENOENT)
2831 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2832 btrfs_end_log_trans(root);
e02119d5 2833
e02119d5
CM
2834 return ret;
2835}
2836
2837/*
2838 * creates a range item in the log for 'dirid'. first_offset and
2839 * last_offset tell us which parts of the key space the log should
2840 * be considered authoritative for.
2841 */
2842static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2843 struct btrfs_root *log,
2844 struct btrfs_path *path,
2845 int key_type, u64 dirid,
2846 u64 first_offset, u64 last_offset)
2847{
2848 int ret;
2849 struct btrfs_key key;
2850 struct btrfs_dir_log_item *item;
2851
2852 key.objectid = dirid;
2853 key.offset = first_offset;
2854 if (key_type == BTRFS_DIR_ITEM_KEY)
2855 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2856 else
2857 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2858 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2859 if (ret)
2860 return ret;
e02119d5
CM
2861
2862 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2863 struct btrfs_dir_log_item);
2864 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2865 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 2866 btrfs_release_path(path);
e02119d5
CM
2867 return 0;
2868}
2869
2870/*
2871 * log all the items included in the current transaction for a given
2872 * directory. This also creates the range items in the log tree required
2873 * to replay anything deleted before the fsync
2874 */
2875static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2876 struct btrfs_root *root, struct inode *inode,
2877 struct btrfs_path *path,
2878 struct btrfs_path *dst_path, int key_type,
2879 u64 min_offset, u64 *last_offset_ret)
2880{
2881 struct btrfs_key min_key;
e02119d5
CM
2882 struct btrfs_root *log = root->log_root;
2883 struct extent_buffer *src;
4a500fd1 2884 int err = 0;
e02119d5
CM
2885 int ret;
2886 int i;
2887 int nritems;
2888 u64 first_offset = min_offset;
2889 u64 last_offset = (u64)-1;
33345d01 2890 u64 ino = btrfs_ino(inode);
e02119d5
CM
2891
2892 log = root->log_root;
e02119d5 2893
33345d01 2894 min_key.objectid = ino;
e02119d5
CM
2895 min_key.type = key_type;
2896 min_key.offset = min_offset;
2897
2898 path->keep_locks = 1;
2899
6174d3cb 2900 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
2901
2902 /*
2903 * we didn't find anything from this transaction, see if there
2904 * is anything at all
2905 */
33345d01
LZ
2906 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
2907 min_key.objectid = ino;
e02119d5
CM
2908 min_key.type = key_type;
2909 min_key.offset = (u64)-1;
b3b4aa74 2910 btrfs_release_path(path);
e02119d5
CM
2911 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2912 if (ret < 0) {
b3b4aa74 2913 btrfs_release_path(path);
e02119d5
CM
2914 return ret;
2915 }
33345d01 2916 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2917
2918 /* if ret == 0 there are items for this type,
2919 * create a range to tell us the last key of this type.
2920 * otherwise, there are no items in this directory after
2921 * *min_offset, and we create a range to indicate that.
2922 */
2923 if (ret == 0) {
2924 struct btrfs_key tmp;
2925 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2926 path->slots[0]);
d397712b 2927 if (key_type == tmp.type)
e02119d5 2928 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2929 }
2930 goto done;
2931 }
2932
2933 /* go backward to find any previous key */
33345d01 2934 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
2935 if (ret == 0) {
2936 struct btrfs_key tmp;
2937 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2938 if (key_type == tmp.type) {
2939 first_offset = tmp.offset;
2940 ret = overwrite_item(trans, log, dst_path,
2941 path->nodes[0], path->slots[0],
2942 &tmp);
4a500fd1
YZ
2943 if (ret) {
2944 err = ret;
2945 goto done;
2946 }
e02119d5
CM
2947 }
2948 }
b3b4aa74 2949 btrfs_release_path(path);
e02119d5
CM
2950
2951 /* find the first key from this transaction again */
2952 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 2953 if (WARN_ON(ret != 0))
e02119d5 2954 goto done;
e02119d5
CM
2955
2956 /*
2957 * we have a block from this transaction, log every item in it
2958 * from our directory
2959 */
d397712b 2960 while (1) {
e02119d5
CM
2961 struct btrfs_key tmp;
2962 src = path->nodes[0];
2963 nritems = btrfs_header_nritems(src);
2964 for (i = path->slots[0]; i < nritems; i++) {
2965 btrfs_item_key_to_cpu(src, &min_key, i);
2966
33345d01 2967 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
2968 goto done;
2969 ret = overwrite_item(trans, log, dst_path, src, i,
2970 &min_key);
4a500fd1
YZ
2971 if (ret) {
2972 err = ret;
2973 goto done;
2974 }
e02119d5
CM
2975 }
2976 path->slots[0] = nritems;
2977
2978 /*
2979 * look ahead to the next item and see if it is also
2980 * from this directory and from this transaction
2981 */
2982 ret = btrfs_next_leaf(root, path);
2983 if (ret == 1) {
2984 last_offset = (u64)-1;
2985 goto done;
2986 }
2987 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 2988 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
2989 last_offset = (u64)-1;
2990 goto done;
2991 }
2992 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2993 ret = overwrite_item(trans, log, dst_path,
2994 path->nodes[0], path->slots[0],
2995 &tmp);
4a500fd1
YZ
2996 if (ret)
2997 err = ret;
2998 else
2999 last_offset = tmp.offset;
e02119d5
CM
3000 goto done;
3001 }
3002 }
3003done:
b3b4aa74
DS
3004 btrfs_release_path(path);
3005 btrfs_release_path(dst_path);
e02119d5 3006
4a500fd1
YZ
3007 if (err == 0) {
3008 *last_offset_ret = last_offset;
3009 /*
3010 * insert the log range keys to indicate where the log
3011 * is valid
3012 */
3013 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3014 ino, first_offset, last_offset);
4a500fd1
YZ
3015 if (ret)
3016 err = ret;
3017 }
3018 return err;
e02119d5
CM
3019}
3020
3021/*
3022 * logging directories is very similar to logging inodes, We find all the items
3023 * from the current transaction and write them to the log.
3024 *
3025 * The recovery code scans the directory in the subvolume, and if it finds a
3026 * key in the range logged that is not present in the log tree, then it means
3027 * that dir entry was unlinked during the transaction.
3028 *
3029 * In order for that scan to work, we must include one key smaller than
3030 * the smallest logged by this transaction and one key larger than the largest
3031 * key logged by this transaction.
3032 */
3033static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3034 struct btrfs_root *root, struct inode *inode,
3035 struct btrfs_path *path,
3036 struct btrfs_path *dst_path)
3037{
3038 u64 min_key;
3039 u64 max_key;
3040 int ret;
3041 int key_type = BTRFS_DIR_ITEM_KEY;
3042
3043again:
3044 min_key = 0;
3045 max_key = 0;
d397712b 3046 while (1) {
e02119d5
CM
3047 ret = log_dir_items(trans, root, inode, path,
3048 dst_path, key_type, min_key,
3049 &max_key);
4a500fd1
YZ
3050 if (ret)
3051 return ret;
e02119d5
CM
3052 if (max_key == (u64)-1)
3053 break;
3054 min_key = max_key + 1;
3055 }
3056
3057 if (key_type == BTRFS_DIR_ITEM_KEY) {
3058 key_type = BTRFS_DIR_INDEX_KEY;
3059 goto again;
3060 }
3061 return 0;
3062}
3063
3064/*
3065 * a helper function to drop items from the log before we relog an
3066 * inode. max_key_type indicates the highest item type to remove.
3067 * This cannot be run for file data extents because it does not
3068 * free the extents they point to.
3069 */
3070static int drop_objectid_items(struct btrfs_trans_handle *trans,
3071 struct btrfs_root *log,
3072 struct btrfs_path *path,
3073 u64 objectid, int max_key_type)
3074{
3075 int ret;
3076 struct btrfs_key key;
3077 struct btrfs_key found_key;
18ec90d6 3078 int start_slot;
e02119d5
CM
3079
3080 key.objectid = objectid;
3081 key.type = max_key_type;
3082 key.offset = (u64)-1;
3083
d397712b 3084 while (1) {
e02119d5 3085 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3086 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3087 if (ret < 0)
e02119d5
CM
3088 break;
3089
3090 if (path->slots[0] == 0)
3091 break;
3092
3093 path->slots[0]--;
3094 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3095 path->slots[0]);
3096
3097 if (found_key.objectid != objectid)
3098 break;
3099
18ec90d6
JB
3100 found_key.offset = 0;
3101 found_key.type = 0;
3102 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3103 &start_slot);
3104
3105 ret = btrfs_del_items(trans, log, path, start_slot,
3106 path->slots[0] - start_slot + 1);
3107 /*
3108 * If start slot isn't 0 then we don't need to re-search, we've
3109 * found the last guy with the objectid in this tree.
3110 */
3111 if (ret || start_slot != 0)
65a246c5 3112 break;
b3b4aa74 3113 btrfs_release_path(path);
e02119d5 3114 }
b3b4aa74 3115 btrfs_release_path(path);
5bdbeb21
JB
3116 if (ret > 0)
3117 ret = 0;
4a500fd1 3118 return ret;
e02119d5
CM
3119}
3120
94edf4ae
JB
3121static void fill_inode_item(struct btrfs_trans_handle *trans,
3122 struct extent_buffer *leaf,
3123 struct btrfs_inode_item *item,
3124 struct inode *inode, int log_inode_only)
3125{
0b1c6cca
JB
3126 struct btrfs_map_token token;
3127
3128 btrfs_init_map_token(&token);
94edf4ae
JB
3129
3130 if (log_inode_only) {
3131 /* set the generation to zero so the recover code
3132 * can tell the difference between an logging
3133 * just to say 'this inode exists' and a logging
3134 * to say 'update this inode with these values'
3135 */
0b1c6cca
JB
3136 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3137 btrfs_set_token_inode_size(leaf, item, 0, &token);
94edf4ae 3138 } else {
0b1c6cca
JB
3139 btrfs_set_token_inode_generation(leaf, item,
3140 BTRFS_I(inode)->generation,
3141 &token);
3142 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3143 }
3144
3145 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3146 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3147 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3148 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3149
3150 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3151 inode->i_atime.tv_sec, &token);
3152 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3153 inode->i_atime.tv_nsec, &token);
3154
3155 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3156 inode->i_mtime.tv_sec, &token);
3157 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3158 inode->i_mtime.tv_nsec, &token);
3159
3160 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3161 inode->i_ctime.tv_sec, &token);
3162 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3163 inode->i_ctime.tv_nsec, &token);
3164
3165 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3166 &token);
3167
3168 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3169 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3170 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3171 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3172 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3173}
3174
a95249b3
JB
3175static int log_inode_item(struct btrfs_trans_handle *trans,
3176 struct btrfs_root *log, struct btrfs_path *path,
3177 struct inode *inode)
3178{
3179 struct btrfs_inode_item *inode_item;
a95249b3
JB
3180 int ret;
3181
efd0c405
FDBM
3182 ret = btrfs_insert_empty_item(trans, log, path,
3183 &BTRFS_I(inode)->location,
a95249b3
JB
3184 sizeof(*inode_item));
3185 if (ret && ret != -EEXIST)
3186 return ret;
3187 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3188 struct btrfs_inode_item);
3189 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3190 btrfs_release_path(path);
3191 return 0;
3192}
3193
31ff1cd2 3194static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3195 struct inode *inode,
31ff1cd2
CM
3196 struct btrfs_path *dst_path,
3197 struct extent_buffer *src,
3198 int start_slot, int nr, int inode_only)
3199{
3200 unsigned long src_offset;
3201 unsigned long dst_offset;
d2794405 3202 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3203 struct btrfs_file_extent_item *extent;
3204 struct btrfs_inode_item *inode_item;
3205 int ret;
3206 struct btrfs_key *ins_keys;
3207 u32 *ins_sizes;
3208 char *ins_data;
3209 int i;
d20f7043 3210 struct list_head ordered_sums;
d2794405 3211 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
3212
3213 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3214
3215 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3216 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3217 if (!ins_data)
3218 return -ENOMEM;
3219
31ff1cd2
CM
3220 ins_sizes = (u32 *)ins_data;
3221 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3222
3223 for (i = 0; i < nr; i++) {
3224 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3225 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3226 }
3227 ret = btrfs_insert_empty_items(trans, log, dst_path,
3228 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3229 if (ret) {
3230 kfree(ins_data);
3231 return ret;
3232 }
31ff1cd2 3233
5d4f98a2 3234 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3235 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3236 dst_path->slots[0]);
3237
3238 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3239
94edf4ae 3240 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3241 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3242 dst_path->slots[0],
3243 struct btrfs_inode_item);
94edf4ae
JB
3244 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3245 inode, inode_only == LOG_INODE_EXISTS);
3246 } else {
3247 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3248 src_offset, ins_sizes[i]);
31ff1cd2 3249 }
94edf4ae 3250
31ff1cd2
CM
3251 /* take a reference on file data extents so that truncates
3252 * or deletes of this inode don't have to relog the inode
3253 * again
3254 */
d2794405
LB
3255 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3256 !skip_csum) {
31ff1cd2
CM
3257 int found_type;
3258 extent = btrfs_item_ptr(src, start_slot + i,
3259 struct btrfs_file_extent_item);
3260
8e531cdf 3261 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3262 continue;
3263
31ff1cd2 3264 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3265 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3266 u64 ds, dl, cs, cl;
3267 ds = btrfs_file_extent_disk_bytenr(src,
3268 extent);
3269 /* ds == 0 is a hole */
3270 if (ds == 0)
3271 continue;
3272
3273 dl = btrfs_file_extent_disk_num_bytes(src,
3274 extent);
3275 cs = btrfs_file_extent_offset(src, extent);
3276 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3277 extent);
580afd76
CM
3278 if (btrfs_file_extent_compression(src,
3279 extent)) {
3280 cs = 0;
3281 cl = dl;
3282 }
5d4f98a2
YZ
3283
3284 ret = btrfs_lookup_csums_range(
3285 log->fs_info->csum_root,
3286 ds + cs, ds + cs + cl - 1,
a2de733c 3287 &ordered_sums, 0);
3650860b
JB
3288 if (ret) {
3289 btrfs_release_path(dst_path);
3290 kfree(ins_data);
3291 return ret;
3292 }
31ff1cd2
CM
3293 }
3294 }
31ff1cd2
CM
3295 }
3296
3297 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3298 btrfs_release_path(dst_path);
31ff1cd2 3299 kfree(ins_data);
d20f7043
CM
3300
3301 /*
3302 * we have to do this after the loop above to avoid changing the
3303 * log tree while trying to change the log tree.
3304 */
4a500fd1 3305 ret = 0;
d397712b 3306 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3307 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3308 struct btrfs_ordered_sum,
3309 list);
4a500fd1
YZ
3310 if (!ret)
3311 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3312 list_del(&sums->list);
3313 kfree(sums);
3314 }
4a500fd1 3315 return ret;
31ff1cd2
CM
3316}
3317
5dc562c5
JB
3318static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3319{
3320 struct extent_map *em1, *em2;
3321
3322 em1 = list_entry(a, struct extent_map, list);
3323 em2 = list_entry(b, struct extent_map, list);
3324
3325 if (em1->start < em2->start)
3326 return -1;
3327 else if (em1->start > em2->start)
3328 return 1;
3329 return 0;
3330}
3331
5dc562c5
JB
3332static int log_one_extent(struct btrfs_trans_handle *trans,
3333 struct inode *inode, struct btrfs_root *root,
70c8a91c 3334 struct extent_map *em, struct btrfs_path *path)
5dc562c5
JB
3335{
3336 struct btrfs_root *log = root->log_root;
70c8a91c
JB
3337 struct btrfs_file_extent_item *fi;
3338 struct extent_buffer *leaf;
2ab28f32 3339 struct btrfs_ordered_extent *ordered;
70c8a91c 3340 struct list_head ordered_sums;
0b1c6cca 3341 struct btrfs_map_token token;
5dc562c5 3342 struct btrfs_key key;
2ab28f32
JB
3343 u64 mod_start = em->mod_start;
3344 u64 mod_len = em->mod_len;
3345 u64 csum_offset;
3346 u64 csum_len;
70c8a91c
JB
3347 u64 extent_offset = em->start - em->orig_start;
3348 u64 block_len;
5dc562c5 3349 int ret;
2ab28f32 3350 int index = log->log_transid % 2;
70c8a91c 3351 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5dc562c5 3352
09a2a8f9
JB
3353 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3354 em->start + em->len, NULL, 0);
3355 if (ret)
3356 return ret;
3357
70c8a91c 3358 INIT_LIST_HEAD(&ordered_sums);
0b1c6cca 3359 btrfs_init_map_token(&token);
70c8a91c
JB
3360 key.objectid = btrfs_ino(inode);
3361 key.type = BTRFS_EXTENT_DATA_KEY;
3362 key.offset = em->start;
70c8a91c
JB
3363
3364 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*fi));
09a2a8f9 3365 if (ret)
70c8a91c 3366 return ret;
70c8a91c
JB
3367 leaf = path->nodes[0];
3368 fi = btrfs_item_ptr(leaf, path->slots[0],
3369 struct btrfs_file_extent_item);
124fe663 3370
0b1c6cca
JB
3371 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3372 &token);
70c8a91c
JB
3373 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3374 skip_csum = true;
0b1c6cca
JB
3375 btrfs_set_token_file_extent_type(leaf, fi,
3376 BTRFS_FILE_EXTENT_PREALLOC,
3377 &token);
70c8a91c 3378 } else {
0b1c6cca
JB
3379 btrfs_set_token_file_extent_type(leaf, fi,
3380 BTRFS_FILE_EXTENT_REG,
3381 &token);
ed9e8af8 3382 if (em->block_start == EXTENT_MAP_HOLE)
70c8a91c
JB
3383 skip_csum = true;
3384 }
3385
3386 block_len = max(em->block_len, em->orig_block_len);
3387 if (em->compress_type != BTRFS_COMPRESS_NONE) {
0b1c6cca
JB
3388 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3389 em->block_start,
3390 &token);
3391 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3392 &token);
70c8a91c 3393 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
0b1c6cca
JB
3394 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3395 em->block_start -
3396 extent_offset, &token);
3397 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3398 &token);
70c8a91c 3399 } else {
0b1c6cca
JB
3400 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3401 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3402 &token);
3403 }
3404
3405 btrfs_set_token_file_extent_offset(leaf, fi,
3406 em->start - em->orig_start,
3407 &token);
3408 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
cc95bef6 3409 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
0b1c6cca
JB
3410 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3411 &token);
3412 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3413 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
70c8a91c 3414 btrfs_mark_buffer_dirty(leaf);
0aa4a17d 3415
70c8a91c 3416 btrfs_release_path(path);
70c8a91c
JB
3417 if (ret) {
3418 return ret;
3419 }
0aa4a17d 3420
70c8a91c
JB
3421 if (skip_csum)
3422 return 0;
5dc562c5 3423
2ab28f32
JB
3424 /*
3425 * First check and see if our csums are on our outstanding ordered
3426 * extents.
3427 */
3428again:
3429 spin_lock_irq(&log->log_extents_lock[index]);
3430 list_for_each_entry(ordered, &log->logged_list[index], log_list) {
3431 struct btrfs_ordered_sum *sum;
3432
3433 if (!mod_len)
3434 break;
3435
3436 if (ordered->inode != inode)
3437 continue;
3438
3439 if (ordered->file_offset + ordered->len <= mod_start ||
3440 mod_start + mod_len <= ordered->file_offset)
3441 continue;
3442
3443 /*
3444 * We are going to copy all the csums on this ordered extent, so
3445 * go ahead and adjust mod_start and mod_len in case this
3446 * ordered extent has already been logged.
3447 */
3448 if (ordered->file_offset > mod_start) {
3449 if (ordered->file_offset + ordered->len >=
3450 mod_start + mod_len)
3451 mod_len = ordered->file_offset - mod_start;
3452 /*
3453 * If we have this case
3454 *
3455 * |--------- logged extent ---------|
3456 * |----- ordered extent ----|
3457 *
3458 * Just don't mess with mod_start and mod_len, we'll
3459 * just end up logging more csums than we need and it
3460 * will be ok.
3461 */
3462 } else {
3463 if (ordered->file_offset + ordered->len <
3464 mod_start + mod_len) {
3465 mod_len = (mod_start + mod_len) -
3466 (ordered->file_offset + ordered->len);
3467 mod_start = ordered->file_offset +
3468 ordered->len;
3469 } else {
3470 mod_len = 0;
3471 }
3472 }
3473
3474 /*
3475 * To keep us from looping for the above case of an ordered
3476 * extent that falls inside of the logged extent.
3477 */
3478 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3479 &ordered->flags))
3480 continue;
3481 atomic_inc(&ordered->refs);
3482 spin_unlock_irq(&log->log_extents_lock[index]);
3483 /*
3484 * we've dropped the lock, we must either break or
3485 * start over after this.
3486 */
3487
3488 wait_event(ordered->wait, ordered->csum_bytes_left == 0);
3489
3490 list_for_each_entry(sum, &ordered->list, list) {
3491 ret = btrfs_csum_file_blocks(trans, log, sum);
3492 if (ret) {
3493 btrfs_put_ordered_extent(ordered);
3494 goto unlocked;
3495 }
3496 }
3497 btrfs_put_ordered_extent(ordered);
3498 goto again;
3499
3500 }
3501 spin_unlock_irq(&log->log_extents_lock[index]);
3502unlocked:
3503
3504 if (!mod_len || ret)
3505 return ret;
3506
488111aa
FDBM
3507 if (em->compress_type) {
3508 csum_offset = 0;
3509 csum_len = block_len;
3510 } else {
3511 csum_offset = mod_start - em->start;
3512 csum_len = mod_len;
3513 }
2ab28f32 3514
70c8a91c
JB
3515 /* block start is already adjusted for the file extent offset. */
3516 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3517 em->block_start + csum_offset,
3518 em->block_start + csum_offset +
3519 csum_len - 1, &ordered_sums, 0);
3520 if (ret)
3521 return ret;
5dc562c5 3522
70c8a91c
JB
3523 while (!list_empty(&ordered_sums)) {
3524 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3525 struct btrfs_ordered_sum,
3526 list);
3527 if (!ret)
3528 ret = btrfs_csum_file_blocks(trans, log, sums);
3529 list_del(&sums->list);
3530 kfree(sums);
5dc562c5
JB
3531 }
3532
70c8a91c 3533 return ret;
5dc562c5
JB
3534}
3535
3536static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3537 struct btrfs_root *root,
3538 struct inode *inode,
70c8a91c 3539 struct btrfs_path *path)
5dc562c5 3540{
5dc562c5
JB
3541 struct extent_map *em, *n;
3542 struct list_head extents;
3543 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3544 u64 test_gen;
3545 int ret = 0;
2ab28f32 3546 int num = 0;
5dc562c5
JB
3547
3548 INIT_LIST_HEAD(&extents);
3549
5dc562c5
JB
3550 write_lock(&tree->lock);
3551 test_gen = root->fs_info->last_trans_committed;
3552
3553 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3554 list_del_init(&em->list);
2ab28f32
JB
3555
3556 /*
3557 * Just an arbitrary number, this can be really CPU intensive
3558 * once we start getting a lot of extents, and really once we
3559 * have a bunch of extents we just want to commit since it will
3560 * be faster.
3561 */
3562 if (++num > 32768) {
3563 list_del_init(&tree->modified_extents);
3564 ret = -EFBIG;
3565 goto process;
3566 }
3567
5dc562c5
JB
3568 if (em->generation <= test_gen)
3569 continue;
ff44c6e3
JB
3570 /* Need a ref to keep it from getting evicted from cache */
3571 atomic_inc(&em->refs);
3572 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3573 list_add_tail(&em->list, &extents);
2ab28f32 3574 num++;
5dc562c5
JB
3575 }
3576
3577 list_sort(NULL, &extents, extent_cmp);
3578
2ab28f32 3579process:
5dc562c5
JB
3580 while (!list_empty(&extents)) {
3581 em = list_entry(extents.next, struct extent_map, list);
3582
3583 list_del_init(&em->list);
3584
3585 /*
3586 * If we had an error we just need to delete everybody from our
3587 * private list.
3588 */
ff44c6e3 3589 if (ret) {
201a9038 3590 clear_em_logging(tree, em);
ff44c6e3 3591 free_extent_map(em);
5dc562c5 3592 continue;
ff44c6e3
JB
3593 }
3594
3595 write_unlock(&tree->lock);
5dc562c5 3596
70c8a91c 3597 ret = log_one_extent(trans, inode, root, em, path);
ff44c6e3 3598 write_lock(&tree->lock);
201a9038
JB
3599 clear_em_logging(tree, em);
3600 free_extent_map(em);
5dc562c5 3601 }
ff44c6e3
JB
3602 WARN_ON(!list_empty(&extents));
3603 write_unlock(&tree->lock);
5dc562c5 3604
5dc562c5 3605 btrfs_release_path(path);
5dc562c5
JB
3606 return ret;
3607}
3608
e02119d5
CM
3609/* log a single inode in the tree log.
3610 * At least one parent directory for this inode must exist in the tree
3611 * or be logged already.
3612 *
3613 * Any items from this inode changed by the current transaction are copied
3614 * to the log tree. An extra reference is taken on any extents in this
3615 * file, allowing us to avoid a whole pile of corner cases around logging
3616 * blocks that have been removed from the tree.
3617 *
3618 * See LOG_INODE_ALL and related defines for a description of what inode_only
3619 * does.
3620 *
3621 * This handles both files and directories.
3622 */
12fcfd22 3623static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
3624 struct btrfs_root *root, struct inode *inode,
3625 int inode_only)
3626{
3627 struct btrfs_path *path;
3628 struct btrfs_path *dst_path;
3629 struct btrfs_key min_key;
3630 struct btrfs_key max_key;
3631 struct btrfs_root *log = root->log_root;
31ff1cd2 3632 struct extent_buffer *src = NULL;
4a500fd1 3633 int err = 0;
e02119d5 3634 int ret;
3a5f1d45 3635 int nritems;
31ff1cd2
CM
3636 int ins_start_slot = 0;
3637 int ins_nr;
5dc562c5 3638 bool fast_search = false;
33345d01 3639 u64 ino = btrfs_ino(inode);
e02119d5 3640
e02119d5 3641 path = btrfs_alloc_path();
5df67083
TI
3642 if (!path)
3643 return -ENOMEM;
e02119d5 3644 dst_path = btrfs_alloc_path();
5df67083
TI
3645 if (!dst_path) {
3646 btrfs_free_path(path);
3647 return -ENOMEM;
3648 }
e02119d5 3649
33345d01 3650 min_key.objectid = ino;
e02119d5
CM
3651 min_key.type = BTRFS_INODE_ITEM_KEY;
3652 min_key.offset = 0;
3653
33345d01 3654 max_key.objectid = ino;
12fcfd22 3655
12fcfd22 3656
5dc562c5 3657 /* today the code can only do partial logging of directories */
5269b67e
MX
3658 if (S_ISDIR(inode->i_mode) ||
3659 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3660 &BTRFS_I(inode)->runtime_flags) &&
3661 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
3662 max_key.type = BTRFS_XATTR_ITEM_KEY;
3663 else
3664 max_key.type = (u8)-1;
3665 max_key.offset = (u64)-1;
3666
94edf4ae
JB
3667 /* Only run delayed items if we are a dir or a new file */
3668 if (S_ISDIR(inode->i_mode) ||
3669 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3670 ret = btrfs_commit_inode_delayed_items(trans, inode);
3671 if (ret) {
3672 btrfs_free_path(path);
3673 btrfs_free_path(dst_path);
3674 return ret;
3675 }
16cdcec7
MX
3676 }
3677
e02119d5
CM
3678 mutex_lock(&BTRFS_I(inode)->log_mutex);
3679
2ab28f32
JB
3680 btrfs_get_logged_extents(log, inode);
3681
e02119d5
CM
3682 /*
3683 * a brute force approach to making sure we get the most uptodate
3684 * copies of everything.
3685 */
3686 if (S_ISDIR(inode->i_mode)) {
3687 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3688
3689 if (inode_only == LOG_INODE_EXISTS)
3690 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 3691 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 3692 } else {
5dc562c5
JB
3693 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3694 &BTRFS_I(inode)->runtime_flags)) {
e9976151
JB
3695 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3696 &BTRFS_I(inode)->runtime_flags);
5dc562c5
JB
3697 ret = btrfs_truncate_inode_items(trans, log,
3698 inode, 0, 0);
a95249b3
JB
3699 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3700 &BTRFS_I(inode)->runtime_flags)) {
183f37fa
LB
3701 if (inode_only == LOG_INODE_ALL)
3702 fast_search = true;
a95249b3 3703 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 3704 ret = drop_objectid_items(trans, log, path, ino,
e9976151 3705 max_key.type);
a95249b3
JB
3706 } else {
3707 if (inode_only == LOG_INODE_ALL)
3708 fast_search = true;
3709 ret = log_inode_item(trans, log, dst_path, inode);
3710 if (ret) {
3711 err = ret;
3712 goto out_unlock;
3713 }
3714 goto log_extents;
5dc562c5 3715 }
a95249b3 3716
e02119d5 3717 }
4a500fd1
YZ
3718 if (ret) {
3719 err = ret;
3720 goto out_unlock;
3721 }
e02119d5
CM
3722 path->keep_locks = 1;
3723
d397712b 3724 while (1) {
31ff1cd2 3725 ins_nr = 0;
6174d3cb 3726 ret = btrfs_search_forward(root, &min_key,
de78b51a 3727 path, trans->transid);
e02119d5
CM
3728 if (ret != 0)
3729 break;
3a5f1d45 3730again:
31ff1cd2 3731 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 3732 if (min_key.objectid != ino)
e02119d5
CM
3733 break;
3734 if (min_key.type > max_key.type)
3735 break;
31ff1cd2 3736
e02119d5 3737 src = path->nodes[0];
31ff1cd2
CM
3738 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3739 ins_nr++;
3740 goto next_slot;
3741 } else if (!ins_nr) {
3742 ins_start_slot = path->slots[0];
3743 ins_nr = 1;
3744 goto next_slot;
e02119d5
CM
3745 }
3746
d2794405 3747 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
31ff1cd2 3748 ins_nr, inode_only);
4a500fd1
YZ
3749 if (ret) {
3750 err = ret;
3751 goto out_unlock;
3752 }
31ff1cd2
CM
3753 ins_nr = 1;
3754 ins_start_slot = path->slots[0];
3755next_slot:
e02119d5 3756
3a5f1d45
CM
3757 nritems = btrfs_header_nritems(path->nodes[0]);
3758 path->slots[0]++;
3759 if (path->slots[0] < nritems) {
3760 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
3761 path->slots[0]);
3762 goto again;
3763 }
31ff1cd2 3764 if (ins_nr) {
d2794405 3765 ret = copy_items(trans, inode, dst_path, src,
31ff1cd2
CM
3766 ins_start_slot,
3767 ins_nr, inode_only);
4a500fd1
YZ
3768 if (ret) {
3769 err = ret;
3770 goto out_unlock;
3771 }
31ff1cd2
CM
3772 ins_nr = 0;
3773 }
b3b4aa74 3774 btrfs_release_path(path);
3a5f1d45 3775
3d41d702 3776 if (min_key.offset < (u64)-1) {
e02119d5 3777 min_key.offset++;
3d41d702 3778 } else if (min_key.type < max_key.type) {
e02119d5 3779 min_key.type++;
3d41d702
FDBM
3780 min_key.offset = 0;
3781 } else {
e02119d5 3782 break;
3d41d702 3783 }
e02119d5 3784 }
31ff1cd2 3785 if (ins_nr) {
d2794405 3786 ret = copy_items(trans, inode, dst_path, src, ins_start_slot,
31ff1cd2 3787 ins_nr, inode_only);
4a500fd1
YZ
3788 if (ret) {
3789 err = ret;
3790 goto out_unlock;
3791 }
31ff1cd2
CM
3792 ins_nr = 0;
3793 }
5dc562c5 3794
a95249b3 3795log_extents:
f3b15ccd
JB
3796 btrfs_release_path(path);
3797 btrfs_release_path(dst_path);
5dc562c5 3798 if (fast_search) {
70c8a91c 3799 ret = btrfs_log_changed_extents(trans, root, inode, dst_path);
5dc562c5
JB
3800 if (ret) {
3801 err = ret;
3802 goto out_unlock;
3803 }
06d3d22b
LB
3804 } else {
3805 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3806 struct extent_map *em, *n;
3807
bbe14267 3808 write_lock(&tree->lock);
06d3d22b
LB
3809 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
3810 list_del_init(&em->list);
bbe14267 3811 write_unlock(&tree->lock);
5dc562c5
JB
3812 }
3813
9623f9a3 3814 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 3815 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
3816 if (ret) {
3817 err = ret;
3818 goto out_unlock;
3819 }
e02119d5 3820 }
3a5f1d45 3821 BTRFS_I(inode)->logged_trans = trans->transid;
46d8bc34 3822 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 3823out_unlock:
2ab28f32
JB
3824 if (err)
3825 btrfs_free_logged_extents(log, log->log_transid);
e02119d5
CM
3826 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3827
3828 btrfs_free_path(path);
3829 btrfs_free_path(dst_path);
4a500fd1 3830 return err;
e02119d5
CM
3831}
3832
12fcfd22
CM
3833/*
3834 * follow the dentry parent pointers up the chain and see if any
3835 * of the directories in it require a full commit before they can
3836 * be logged. Returns zero if nothing special needs to be done or 1 if
3837 * a full commit is required.
3838 */
3839static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
3840 struct inode *inode,
3841 struct dentry *parent,
3842 struct super_block *sb,
3843 u64 last_committed)
e02119d5 3844{
12fcfd22
CM
3845 int ret = 0;
3846 struct btrfs_root *root;
6a912213 3847 struct dentry *old_parent = NULL;
de2b530b 3848 struct inode *orig_inode = inode;
e02119d5 3849
af4176b4
CM
3850 /*
3851 * for regular files, if its inode is already on disk, we don't
3852 * have to worry about the parents at all. This is because
3853 * we can use the last_unlink_trans field to record renames
3854 * and other fun in this file.
3855 */
3856 if (S_ISREG(inode->i_mode) &&
3857 BTRFS_I(inode)->generation <= last_committed &&
3858 BTRFS_I(inode)->last_unlink_trans <= last_committed)
3859 goto out;
3860
12fcfd22
CM
3861 if (!S_ISDIR(inode->i_mode)) {
3862 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3863 goto out;
3864 inode = parent->d_inode;
3865 }
3866
3867 while (1) {
de2b530b
JB
3868 /*
3869 * If we are logging a directory then we start with our inode,
3870 * not our parents inode, so we need to skipp setting the
3871 * logged_trans so that further down in the log code we don't
3872 * think this inode has already been logged.
3873 */
3874 if (inode != orig_inode)
3875 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
3876 smp_mb();
3877
3878 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
3879 root = BTRFS_I(inode)->root;
3880
3881 /*
3882 * make sure any commits to the log are forced
3883 * to be full commits
3884 */
3885 root->fs_info->last_trans_log_full_commit =
3886 trans->transid;
3887 ret = 1;
3888 break;
3889 }
3890
3891 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
3892 break;
3893
76dda93c 3894 if (IS_ROOT(parent))
12fcfd22
CM
3895 break;
3896
6a912213
JB
3897 parent = dget_parent(parent);
3898 dput(old_parent);
3899 old_parent = parent;
12fcfd22
CM
3900 inode = parent->d_inode;
3901
3902 }
6a912213 3903 dput(old_parent);
12fcfd22 3904out:
e02119d5
CM
3905 return ret;
3906}
3907
3908/*
3909 * helper function around btrfs_log_inode to make sure newly created
3910 * parent directories also end up in the log. A minimal inode and backref
3911 * only logging is done of any parent directories that are older than
3912 * the last committed transaction
3913 */
48a3b636
ES
3914static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
3915 struct btrfs_root *root, struct inode *inode,
3916 struct dentry *parent, int exists_only)
e02119d5 3917{
12fcfd22 3918 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 3919 struct super_block *sb;
6a912213 3920 struct dentry *old_parent = NULL;
12fcfd22
CM
3921 int ret = 0;
3922 u64 last_committed = root->fs_info->last_trans_committed;
3923
3924 sb = inode->i_sb;
3925
3a5e1404
SW
3926 if (btrfs_test_opt(root, NOTREELOG)) {
3927 ret = 1;
3928 goto end_no_trans;
3929 }
3930
12fcfd22
CM
3931 if (root->fs_info->last_trans_log_full_commit >
3932 root->fs_info->last_trans_committed) {
3933 ret = 1;
3934 goto end_no_trans;
3935 }
3936
76dda93c
YZ
3937 if (root != BTRFS_I(inode)->root ||
3938 btrfs_root_refs(&root->root_item) == 0) {
3939 ret = 1;
3940 goto end_no_trans;
3941 }
3942
12fcfd22
CM
3943 ret = check_parent_dirs_for_sync(trans, inode, parent,
3944 sb, last_committed);
3945 if (ret)
3946 goto end_no_trans;
e02119d5 3947
22ee6985 3948 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
3949 ret = BTRFS_NO_LOG_SYNC;
3950 goto end_no_trans;
3951 }
3952
4a500fd1
YZ
3953 ret = start_log_trans(trans, root);
3954 if (ret)
3955 goto end_trans;
e02119d5 3956
12fcfd22 3957 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3958 if (ret)
3959 goto end_trans;
12fcfd22 3960
af4176b4
CM
3961 /*
3962 * for regular files, if its inode is already on disk, we don't
3963 * have to worry about the parents at all. This is because
3964 * we can use the last_unlink_trans field to record renames
3965 * and other fun in this file.
3966 */
3967 if (S_ISREG(inode->i_mode) &&
3968 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
3969 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3970 ret = 0;
3971 goto end_trans;
3972 }
af4176b4
CM
3973
3974 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
3975 while (1) {
3976 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
3977 break;
3978
12fcfd22 3979 inode = parent->d_inode;
76dda93c
YZ
3980 if (root != BTRFS_I(inode)->root)
3981 break;
3982
12fcfd22
CM
3983 if (BTRFS_I(inode)->generation >
3984 root->fs_info->last_trans_committed) {
3985 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3986 if (ret)
3987 goto end_trans;
12fcfd22 3988 }
76dda93c 3989 if (IS_ROOT(parent))
e02119d5 3990 break;
12fcfd22 3991
6a912213
JB
3992 parent = dget_parent(parent);
3993 dput(old_parent);
3994 old_parent = parent;
e02119d5 3995 }
12fcfd22 3996 ret = 0;
4a500fd1 3997end_trans:
6a912213 3998 dput(old_parent);
4a500fd1 3999 if (ret < 0) {
4a500fd1
YZ
4000 root->fs_info->last_trans_log_full_commit = trans->transid;
4001 ret = 1;
4002 }
12fcfd22
CM
4003 btrfs_end_log_trans(root);
4004end_no_trans:
4005 return ret;
e02119d5
CM
4006}
4007
4008/*
4009 * it is not safe to log dentry if the chunk root has added new
4010 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4011 * If this returns 1, you must commit the transaction to safely get your
4012 * data on disk.
4013 */
4014int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
4015 struct btrfs_root *root, struct dentry *dentry)
4016{
6a912213
JB
4017 struct dentry *parent = dget_parent(dentry);
4018 int ret;
4019
4020 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
4021 dput(parent);
4022
4023 return ret;
e02119d5
CM
4024}
4025
4026/*
4027 * should be called during mount to recover any replay any log trees
4028 * from the FS
4029 */
4030int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4031{
4032 int ret;
4033 struct btrfs_path *path;
4034 struct btrfs_trans_handle *trans;
4035 struct btrfs_key key;
4036 struct btrfs_key found_key;
4037 struct btrfs_key tmp_key;
4038 struct btrfs_root *log;
4039 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4040 struct walk_control wc = {
4041 .process_func = process_one_buffer,
4042 .stage = 0,
4043 };
4044
e02119d5 4045 path = btrfs_alloc_path();
db5b493a
TI
4046 if (!path)
4047 return -ENOMEM;
4048
4049 fs_info->log_root_recovering = 1;
e02119d5 4050
4a500fd1 4051 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4052 if (IS_ERR(trans)) {
4053 ret = PTR_ERR(trans);
4054 goto error;
4055 }
e02119d5
CM
4056
4057 wc.trans = trans;
4058 wc.pin = 1;
4059
db5b493a 4060 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4061 if (ret) {
4062 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4063 "recovering log root tree.");
4064 goto error;
4065 }
e02119d5
CM
4066
4067again:
4068 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4069 key.offset = (u64)-1;
4070 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4071
d397712b 4072 while (1) {
e02119d5 4073 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4074
4075 if (ret < 0) {
4076 btrfs_error(fs_info, ret,
4077 "Couldn't find tree log root.");
4078 goto error;
4079 }
e02119d5
CM
4080 if (ret > 0) {
4081 if (path->slots[0] == 0)
4082 break;
4083 path->slots[0]--;
4084 }
4085 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4086 path->slots[0]);
b3b4aa74 4087 btrfs_release_path(path);
e02119d5
CM
4088 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4089 break;
4090
cb517eab 4091 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4092 if (IS_ERR(log)) {
4093 ret = PTR_ERR(log);
4094 btrfs_error(fs_info, ret,
4095 "Couldn't read tree log root.");
4096 goto error;
4097 }
e02119d5
CM
4098
4099 tmp_key.objectid = found_key.offset;
4100 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4101 tmp_key.offset = (u64)-1;
4102
4103 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4104 if (IS_ERR(wc.replay_dest)) {
4105 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4106 free_extent_buffer(log->node);
4107 free_extent_buffer(log->commit_root);
4108 kfree(log);
79787eaa
JM
4109 btrfs_error(fs_info, ret, "Couldn't read target root "
4110 "for tree log recovery.");
4111 goto error;
4112 }
e02119d5 4113
07d400a6 4114 wc.replay_dest->log_root = log;
5d4f98a2 4115 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4116 ret = walk_log_tree(trans, log, &wc);
e02119d5 4117
b50c6e25 4118 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4119 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4120 path);
e02119d5
CM
4121 }
4122
4123 key.offset = found_key.offset - 1;
07d400a6 4124 wc.replay_dest->log_root = NULL;
e02119d5 4125 free_extent_buffer(log->node);
b263c2c8 4126 free_extent_buffer(log->commit_root);
e02119d5
CM
4127 kfree(log);
4128
b50c6e25
JB
4129 if (ret)
4130 goto error;
4131
e02119d5
CM
4132 if (found_key.offset == 0)
4133 break;
4134 }
b3b4aa74 4135 btrfs_release_path(path);
e02119d5
CM
4136
4137 /* step one is to pin it all, step two is to replay just inodes */
4138 if (wc.pin) {
4139 wc.pin = 0;
4140 wc.process_func = replay_one_buffer;
4141 wc.stage = LOG_WALK_REPLAY_INODES;
4142 goto again;
4143 }
4144 /* step three is to replay everything */
4145 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4146 wc.stage++;
4147 goto again;
4148 }
4149
4150 btrfs_free_path(path);
4151
abefa55a
JB
4152 /* step 4: commit the transaction, which also unpins the blocks */
4153 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4154 if (ret)
4155 return ret;
4156
e02119d5
CM
4157 free_extent_buffer(log_root_tree->node);
4158 log_root_tree->log_root = NULL;
4159 fs_info->log_root_recovering = 0;
e02119d5 4160 kfree(log_root_tree);
79787eaa 4161
abefa55a 4162 return 0;
79787eaa 4163error:
b50c6e25
JB
4164 if (wc.trans)
4165 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4166 btrfs_free_path(path);
4167 return ret;
e02119d5 4168}
12fcfd22
CM
4169
4170/*
4171 * there are some corner cases where we want to force a full
4172 * commit instead of allowing a directory to be logged.
4173 *
4174 * They revolve around files there were unlinked from the directory, and
4175 * this function updates the parent directory so that a full commit is
4176 * properly done if it is fsync'd later after the unlinks are done.
4177 */
4178void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4179 struct inode *dir, struct inode *inode,
4180 int for_rename)
4181{
af4176b4
CM
4182 /*
4183 * when we're logging a file, if it hasn't been renamed
4184 * or unlinked, and its inode is fully committed on disk,
4185 * we don't have to worry about walking up the directory chain
4186 * to log its parents.
4187 *
4188 * So, we use the last_unlink_trans field to put this transid
4189 * into the file. When the file is logged we check it and
4190 * don't log the parents if the file is fully on disk.
4191 */
4192 if (S_ISREG(inode->i_mode))
4193 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4194
12fcfd22
CM
4195 /*
4196 * if this directory was already logged any new
4197 * names for this file/dir will get recorded
4198 */
4199 smp_mb();
4200 if (BTRFS_I(dir)->logged_trans == trans->transid)
4201 return;
4202
4203 /*
4204 * if the inode we're about to unlink was logged,
4205 * the log will be properly updated for any new names
4206 */
4207 if (BTRFS_I(inode)->logged_trans == trans->transid)
4208 return;
4209
4210 /*
4211 * when renaming files across directories, if the directory
4212 * there we're unlinking from gets fsync'd later on, there's
4213 * no way to find the destination directory later and fsync it
4214 * properly. So, we have to be conservative and force commits
4215 * so the new name gets discovered.
4216 */
4217 if (for_rename)
4218 goto record;
4219
4220 /* we can safely do the unlink without any special recording */
4221 return;
4222
4223record:
4224 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4225}
4226
4227/*
4228 * Call this after adding a new name for a file and it will properly
4229 * update the log to reflect the new name.
4230 *
4231 * It will return zero if all goes well, and it will return 1 if a
4232 * full transaction commit is required.
4233 */
4234int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4235 struct inode *inode, struct inode *old_dir,
4236 struct dentry *parent)
4237{
4238 struct btrfs_root * root = BTRFS_I(inode)->root;
4239
af4176b4
CM
4240 /*
4241 * this will force the logging code to walk the dentry chain
4242 * up for the file
4243 */
4244 if (S_ISREG(inode->i_mode))
4245 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4246
12fcfd22
CM
4247 /*
4248 * if this inode hasn't been logged and directory we're renaming it
4249 * from hasn't been logged, we don't need to log it
4250 */
4251 if (BTRFS_I(inode)->logged_trans <=
4252 root->fs_info->last_trans_committed &&
4253 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4254 root->fs_info->last_trans_committed))
4255 return 0;
4256
4257 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
4258}
4259