]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/tree-log.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
ebb8765b 29#include "compression.h"
df2c95f3 30#include "qgroup.h"
e02119d5
CM
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
781feef7 40#define LOG_OTHER_INODE 2
e02119d5 41
12fcfd22
CM
42/*
43 * directory trouble cases
44 *
45 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
46 * log, we must force a full commit before doing an fsync of the directory
47 * where the unlink was done.
48 * ---> record transid of last unlink/rename per directory
49 *
50 * mkdir foo/some_dir
51 * normal commit
52 * rename foo/some_dir foo2/some_dir
53 * mkdir foo/some_dir
54 * fsync foo/some_dir/some_file
55 *
56 * The fsync above will unlink the original some_dir without recording
57 * it in its new location (foo2). After a crash, some_dir will be gone
58 * unless the fsync of some_file forces a full commit
59 *
60 * 2) we must log any new names for any file or dir that is in the fsync
61 * log. ---> check inode while renaming/linking.
62 *
63 * 2a) we must log any new names for any file or dir during rename
64 * when the directory they are being removed from was logged.
65 * ---> check inode and old parent dir during rename
66 *
67 * 2a is actually the more important variant. With the extra logging
68 * a crash might unlink the old name without recreating the new one
69 *
70 * 3) after a crash, we must go through any directories with a link count
71 * of zero and redo the rm -rf
72 *
73 * mkdir f1/foo
74 * normal commit
75 * rm -rf f1/foo
76 * fsync(f1)
77 *
78 * The directory f1 was fully removed from the FS, but fsync was never
79 * called on f1, only its parent dir. After a crash the rm -rf must
80 * be replayed. This must be able to recurse down the entire
81 * directory tree. The inode link count fixup code takes care of the
82 * ugly details.
83 */
84
e02119d5
CM
85/*
86 * stages for the tree walking. The first
87 * stage (0) is to only pin down the blocks we find
88 * the second stage (1) is to make sure that all the inodes
89 * we find in the log are created in the subvolume.
90 *
91 * The last stage is to deal with directories and links and extents
92 * and all the other fun semantics
93 */
94#define LOG_WALK_PIN_ONLY 0
95#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
96#define LOG_WALK_REPLAY_DIR_INDEX 2
97#define LOG_WALK_REPLAY_ALL 3
e02119d5 98
12fcfd22 99static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 100 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
101 int inode_only,
102 const loff_t start,
8407f553
FM
103 const loff_t end,
104 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
105static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
108static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_root *log,
111 struct btrfs_path *path,
112 u64 dirid, int del_all);
e02119d5
CM
113
114/*
115 * tree logging is a special write ahead log used to make sure that
116 * fsyncs and O_SYNCs can happen without doing full tree commits.
117 *
118 * Full tree commits are expensive because they require commonly
119 * modified blocks to be recowed, creating many dirty pages in the
120 * extent tree an 4x-6x higher write load than ext3.
121 *
122 * Instead of doing a tree commit on every fsync, we use the
123 * key ranges and transaction ids to find items for a given file or directory
124 * that have changed in this transaction. Those items are copied into
125 * a special tree (one per subvolume root), that tree is written to disk
126 * and then the fsync is considered complete.
127 *
128 * After a crash, items are copied out of the log-tree back into the
129 * subvolume tree. Any file data extents found are recorded in the extent
130 * allocation tree, and the log-tree freed.
131 *
132 * The log tree is read three times, once to pin down all the extents it is
133 * using in ram and once, once to create all the inodes logged in the tree
134 * and once to do all the other items.
135 */
136
e02119d5
CM
137/*
138 * start a sub transaction and setup the log tree
139 * this increments the log tree writer count to make the people
140 * syncing the tree wait for us to finish
141 */
142static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
143 struct btrfs_root *root,
144 struct btrfs_log_ctx *ctx)
e02119d5 145{
0b246afa 146 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 147 int ret = 0;
7237f183
YZ
148
149 mutex_lock(&root->log_mutex);
34eb2a52 150
7237f183 151 if (root->log_root) {
0b246afa 152 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
153 ret = -EAGAIN;
154 goto out;
155 }
34eb2a52 156
ff782e0a 157 if (!root->log_start_pid) {
27cdeb70 158 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 159 root->log_start_pid = current->pid;
ff782e0a 160 } else if (root->log_start_pid != current->pid) {
27cdeb70 161 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 162 }
34eb2a52 163 } else {
0b246afa
JM
164 mutex_lock(&fs_info->tree_log_mutex);
165 if (!fs_info->log_root_tree)
166 ret = btrfs_init_log_root_tree(trans, fs_info);
167 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
168 if (ret)
169 goto out;
ff782e0a 170
e02119d5 171 ret = btrfs_add_log_tree(trans, root);
4a500fd1 172 if (ret)
e87ac136 173 goto out;
34eb2a52
Z
174
175 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
176 root->log_start_pid = current->pid;
e02119d5 177 }
34eb2a52 178
2ecb7923 179 atomic_inc(&root->log_batch);
7237f183 180 atomic_inc(&root->log_writers);
8b050d35 181 if (ctx) {
34eb2a52 182 int index = root->log_transid % 2;
8b050d35 183 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 184 ctx->log_transid = root->log_transid;
8b050d35 185 }
34eb2a52 186
e87ac136 187out:
7237f183 188 mutex_unlock(&root->log_mutex);
e87ac136 189 return ret;
e02119d5
CM
190}
191
192/*
193 * returns 0 if there was a log transaction running and we were able
194 * to join, or returns -ENOENT if there were not transactions
195 * in progress
196 */
197static int join_running_log_trans(struct btrfs_root *root)
198{
199 int ret = -ENOENT;
200
201 smp_mb();
202 if (!root->log_root)
203 return -ENOENT;
204
7237f183 205 mutex_lock(&root->log_mutex);
e02119d5
CM
206 if (root->log_root) {
207 ret = 0;
7237f183 208 atomic_inc(&root->log_writers);
e02119d5 209 }
7237f183 210 mutex_unlock(&root->log_mutex);
e02119d5
CM
211 return ret;
212}
213
12fcfd22
CM
214/*
215 * This either makes the current running log transaction wait
216 * until you call btrfs_end_log_trans() or it makes any future
217 * log transactions wait until you call btrfs_end_log_trans()
218 */
219int btrfs_pin_log_trans(struct btrfs_root *root)
220{
221 int ret = -ENOENT;
222
223 mutex_lock(&root->log_mutex);
224 atomic_inc(&root->log_writers);
225 mutex_unlock(&root->log_mutex);
226 return ret;
227}
228
e02119d5
CM
229/*
230 * indicate we're done making changes to the log tree
231 * and wake up anyone waiting to do a sync
232 */
143bede5 233void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 234{
7237f183 235 if (atomic_dec_and_test(&root->log_writers)) {
779adf0f
DS
236 /*
237 * Implicit memory barrier after atomic_dec_and_test
238 */
7237f183
YZ
239 if (waitqueue_active(&root->log_writer_wait))
240 wake_up(&root->log_writer_wait);
241 }
e02119d5
CM
242}
243
244
245/*
246 * the walk control struct is used to pass state down the chain when
247 * processing the log tree. The stage field tells us which part
248 * of the log tree processing we are currently doing. The others
249 * are state fields used for that specific part
250 */
251struct walk_control {
252 /* should we free the extent on disk when done? This is used
253 * at transaction commit time while freeing a log tree
254 */
255 int free;
256
257 /* should we write out the extent buffer? This is used
258 * while flushing the log tree to disk during a sync
259 */
260 int write;
261
262 /* should we wait for the extent buffer io to finish? Also used
263 * while flushing the log tree to disk for a sync
264 */
265 int wait;
266
267 /* pin only walk, we record which extents on disk belong to the
268 * log trees
269 */
270 int pin;
271
272 /* what stage of the replay code we're currently in */
273 int stage;
274
275 /* the root we are currently replaying */
276 struct btrfs_root *replay_dest;
277
278 /* the trans handle for the current replay */
279 struct btrfs_trans_handle *trans;
280
281 /* the function that gets used to process blocks we find in the
282 * tree. Note the extent_buffer might not be up to date when it is
283 * passed in, and it must be checked or read if you need the data
284 * inside it
285 */
286 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
287 struct walk_control *wc, u64 gen);
288};
289
290/*
291 * process_func used to pin down extents, write them or wait on them
292 */
293static int process_one_buffer(struct btrfs_root *log,
294 struct extent_buffer *eb,
295 struct walk_control *wc, u64 gen)
296{
0b246afa 297 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
298 int ret = 0;
299
8c2a1a30
JB
300 /*
301 * If this fs is mixed then we need to be able to process the leaves to
302 * pin down any logged extents, so we have to read the block.
303 */
0b246afa 304 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8c2a1a30
JB
305 ret = btrfs_read_buffer(eb, gen);
306 if (ret)
307 return ret;
308 }
309
04018de5 310 if (wc->pin)
2ff7e61e
JM
311 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
312 eb->len);
e02119d5 313
b50c6e25 314 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 315 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 316 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
317 if (wc->write)
318 btrfs_write_tree_block(eb);
319 if (wc->wait)
320 btrfs_wait_tree_block_writeback(eb);
321 }
b50c6e25 322 return ret;
e02119d5
CM
323}
324
325/*
326 * Item overwrite used by replay and tree logging. eb, slot and key all refer
327 * to the src data we are copying out.
328 *
329 * root is the tree we are copying into, and path is a scratch
330 * path for use in this function (it should be released on entry and
331 * will be released on exit).
332 *
333 * If the key is already in the destination tree the existing item is
334 * overwritten. If the existing item isn't big enough, it is extended.
335 * If it is too large, it is truncated.
336 *
337 * If the key isn't in the destination yet, a new item is inserted.
338 */
339static noinline int overwrite_item(struct btrfs_trans_handle *trans,
340 struct btrfs_root *root,
341 struct btrfs_path *path,
342 struct extent_buffer *eb, int slot,
343 struct btrfs_key *key)
344{
2ff7e61e 345 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
346 int ret;
347 u32 item_size;
348 u64 saved_i_size = 0;
349 int save_old_i_size = 0;
350 unsigned long src_ptr;
351 unsigned long dst_ptr;
352 int overwrite_root = 0;
4bc4bee4 353 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
354
355 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
356 overwrite_root = 1;
357
358 item_size = btrfs_item_size_nr(eb, slot);
359 src_ptr = btrfs_item_ptr_offset(eb, slot);
360
361 /* look for the key in the destination tree */
362 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
363 if (ret < 0)
364 return ret;
365
e02119d5
CM
366 if (ret == 0) {
367 char *src_copy;
368 char *dst_copy;
369 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
370 path->slots[0]);
371 if (dst_size != item_size)
372 goto insert;
373
374 if (item_size == 0) {
b3b4aa74 375 btrfs_release_path(path);
e02119d5
CM
376 return 0;
377 }
378 dst_copy = kmalloc(item_size, GFP_NOFS);
379 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 380 if (!dst_copy || !src_copy) {
b3b4aa74 381 btrfs_release_path(path);
2a29edc6 382 kfree(dst_copy);
383 kfree(src_copy);
384 return -ENOMEM;
385 }
e02119d5
CM
386
387 read_extent_buffer(eb, src_copy, src_ptr, item_size);
388
389 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
390 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
391 item_size);
392 ret = memcmp(dst_copy, src_copy, item_size);
393
394 kfree(dst_copy);
395 kfree(src_copy);
396 /*
397 * they have the same contents, just return, this saves
398 * us from cowing blocks in the destination tree and doing
399 * extra writes that may not have been done by a previous
400 * sync
401 */
402 if (ret == 0) {
b3b4aa74 403 btrfs_release_path(path);
e02119d5
CM
404 return 0;
405 }
406
4bc4bee4
JB
407 /*
408 * We need to load the old nbytes into the inode so when we
409 * replay the extents we've logged we get the right nbytes.
410 */
411 if (inode_item) {
412 struct btrfs_inode_item *item;
413 u64 nbytes;
d555438b 414 u32 mode;
4bc4bee4
JB
415
416 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
417 struct btrfs_inode_item);
418 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
419 item = btrfs_item_ptr(eb, slot,
420 struct btrfs_inode_item);
421 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
422
423 /*
424 * If this is a directory we need to reset the i_size to
425 * 0 so that we can set it up properly when replaying
426 * the rest of the items in this log.
427 */
428 mode = btrfs_inode_mode(eb, item);
429 if (S_ISDIR(mode))
430 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
431 }
432 } else if (inode_item) {
433 struct btrfs_inode_item *item;
d555438b 434 u32 mode;
4bc4bee4
JB
435
436 /*
437 * New inode, set nbytes to 0 so that the nbytes comes out
438 * properly when we replay the extents.
439 */
440 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
441 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
442
443 /*
444 * If this is a directory we need to reset the i_size to 0 so
445 * that we can set it up properly when replaying the rest of
446 * the items in this log.
447 */
448 mode = btrfs_inode_mode(eb, item);
449 if (S_ISDIR(mode))
450 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
451 }
452insert:
b3b4aa74 453 btrfs_release_path(path);
e02119d5 454 /* try to insert the key into the destination tree */
df8d116f 455 path->skip_release_on_error = 1;
e02119d5
CM
456 ret = btrfs_insert_empty_item(trans, root, path,
457 key, item_size);
df8d116f 458 path->skip_release_on_error = 0;
e02119d5
CM
459
460 /* make sure any existing item is the correct size */
df8d116f 461 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
462 u32 found_size;
463 found_size = btrfs_item_size_nr(path->nodes[0],
464 path->slots[0]);
143bede5 465 if (found_size > item_size)
2ff7e61e 466 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 467 else if (found_size < item_size)
2ff7e61e 468 btrfs_extend_item(fs_info, path,
143bede5 469 item_size - found_size);
e02119d5 470 } else if (ret) {
4a500fd1 471 return ret;
e02119d5
CM
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
1a4bcf47
FM
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 494 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 495
2f2ff0ee
FM
496 /*
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
502 */
1a4bcf47 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 ino_size != 0) {
1a4bcf47 506 struct btrfs_map_token token;
1a4bcf47
FM
507
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
510 ino_size, &token);
511 }
e02119d5 512 goto no_copy;
1a4bcf47 513 }
e02119d5
CM
514
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 save_old_i_size = 1;
519 saved_i_size = btrfs_inode_size(path->nodes[0],
520 dst_item);
521 }
522 }
523
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 src_ptr, item_size);
526
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 }
532
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
539 trans->transid);
540 }
541 }
542no_copy:
543 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 544 btrfs_release_path(path);
e02119d5
CM
545 return 0;
546}
547
548/*
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
551 */
552static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 u64 objectid)
554{
5d4f98a2 555 struct btrfs_key key;
e02119d5 556 struct inode *inode;
e02119d5 557
5d4f98a2
YZ
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
560 key.offset = 0;
73f73415 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
562 if (IS_ERR(inode)) {
563 inode = NULL;
564 } else if (is_bad_inode(inode)) {
e02119d5
CM
565 iput(inode);
566 inode = NULL;
567 }
568 return inode;
569}
570
571/* replays a single extent in 'eb' at 'slot' with 'key' into the
572 * subvolume 'root'. path is released on entry and should be released
573 * on exit.
574 *
575 * extents in the log tree have not been allocated out of the extent
576 * tree yet. So, this completes the allocation, taking a reference
577 * as required if the extent already exists or creating a new extent
578 * if it isn't in the extent allocation tree yet.
579 *
580 * The extent is inserted into the file, dropping any existing extents
581 * from the file that overlap the new one.
582 */
583static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
584 struct btrfs_root *root,
585 struct btrfs_path *path,
586 struct extent_buffer *eb, int slot,
587 struct btrfs_key *key)
588{
0b246afa 589 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 590 int found_type;
e02119d5 591 u64 extent_end;
e02119d5 592 u64 start = key->offset;
4bc4bee4 593 u64 nbytes = 0;
e02119d5
CM
594 struct btrfs_file_extent_item *item;
595 struct inode *inode = NULL;
596 unsigned long size;
597 int ret = 0;
598
599 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
600 found_type = btrfs_file_extent_type(eb, item);
601
d899e052 602 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
603 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
604 nbytes = btrfs_file_extent_num_bytes(eb, item);
605 extent_end = start + nbytes;
606
607 /*
608 * We don't add to the inodes nbytes if we are prealloc or a
609 * hole.
610 */
611 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
612 nbytes = 0;
613 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 614 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 615 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 616 extent_end = ALIGN(start + size,
0b246afa 617 fs_info->sectorsize);
e02119d5
CM
618 } else {
619 ret = 0;
620 goto out;
621 }
622
623 inode = read_one_inode(root, key->objectid);
624 if (!inode) {
625 ret = -EIO;
626 goto out;
627 }
628
629 /*
630 * first check to see if we already have this extent in the
631 * file. This must be done before the btrfs_drop_extents run
632 * so we don't try to drop this extent.
633 */
f85b7379
DS
634 ret = btrfs_lookup_file_extent(trans, root, path,
635 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 636
d899e052
YZ
637 if (ret == 0 &&
638 (found_type == BTRFS_FILE_EXTENT_REG ||
639 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
640 struct btrfs_file_extent_item cmp1;
641 struct btrfs_file_extent_item cmp2;
642 struct btrfs_file_extent_item *existing;
643 struct extent_buffer *leaf;
644
645 leaf = path->nodes[0];
646 existing = btrfs_item_ptr(leaf, path->slots[0],
647 struct btrfs_file_extent_item);
648
649 read_extent_buffer(eb, &cmp1, (unsigned long)item,
650 sizeof(cmp1));
651 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
652 sizeof(cmp2));
653
654 /*
655 * we already have a pointer to this exact extent,
656 * we don't have to do anything
657 */
658 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 659 btrfs_release_path(path);
e02119d5
CM
660 goto out;
661 }
662 }
b3b4aa74 663 btrfs_release_path(path);
e02119d5
CM
664
665 /* drop any overlapping extents */
2671485d 666 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
667 if (ret)
668 goto out;
e02119d5 669
07d400a6
YZ
670 if (found_type == BTRFS_FILE_EXTENT_REG ||
671 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 672 u64 offset;
07d400a6
YZ
673 unsigned long dest_offset;
674 struct btrfs_key ins;
675
3168021c
FM
676 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
677 btrfs_fs_incompat(fs_info, NO_HOLES))
678 goto update_inode;
679
07d400a6
YZ
680 ret = btrfs_insert_empty_item(trans, root, path, key,
681 sizeof(*item));
3650860b
JB
682 if (ret)
683 goto out;
07d400a6
YZ
684 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
685 path->slots[0]);
686 copy_extent_buffer(path->nodes[0], eb, dest_offset,
687 (unsigned long)item, sizeof(*item));
688
689 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
690 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
691 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 692 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 693
df2c95f3
QW
694 /*
695 * Manually record dirty extent, as here we did a shallow
696 * file extent item copy and skip normal backref update,
697 * but modifying extent tree all by ourselves.
698 * So need to manually record dirty extent for qgroup,
699 * as the owner of the file extent changed from log tree
700 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
701 */
0b246afa 702 ret = btrfs_qgroup_trace_extent(trans, fs_info,
df2c95f3
QW
703 btrfs_file_extent_disk_bytenr(eb, item),
704 btrfs_file_extent_disk_num_bytes(eb, item),
705 GFP_NOFS);
706 if (ret < 0)
707 goto out;
708
07d400a6
YZ
709 if (ins.objectid > 0) {
710 u64 csum_start;
711 u64 csum_end;
712 LIST_HEAD(ordered_sums);
713 /*
714 * is this extent already allocated in the extent
715 * allocation tree? If so, just add a reference
716 */
2ff7e61e 717 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
718 ins.offset);
719 if (ret == 0) {
2ff7e61e 720 ret = btrfs_inc_extent_ref(trans, fs_info,
07d400a6 721 ins.objectid, ins.offset,
5d4f98a2 722 0, root->root_key.objectid,
b06c4bf5 723 key->objectid, offset);
b50c6e25
JB
724 if (ret)
725 goto out;
07d400a6
YZ
726 } else {
727 /*
728 * insert the extent pointer in the extent
729 * allocation tree
730 */
5d4f98a2 731 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e
JM
732 fs_info,
733 root->root_key.objectid,
5d4f98a2 734 key->objectid, offset, &ins);
b50c6e25
JB
735 if (ret)
736 goto out;
07d400a6 737 }
b3b4aa74 738 btrfs_release_path(path);
07d400a6
YZ
739
740 if (btrfs_file_extent_compression(eb, item)) {
741 csum_start = ins.objectid;
742 csum_end = csum_start + ins.offset;
743 } else {
744 csum_start = ins.objectid +
745 btrfs_file_extent_offset(eb, item);
746 csum_end = csum_start +
747 btrfs_file_extent_num_bytes(eb, item);
748 }
749
750 ret = btrfs_lookup_csums_range(root->log_root,
751 csum_start, csum_end - 1,
a2de733c 752 &ordered_sums, 0);
3650860b
JB
753 if (ret)
754 goto out;
b84b8390
FM
755 /*
756 * Now delete all existing cums in the csum root that
757 * cover our range. We do this because we can have an
758 * extent that is completely referenced by one file
759 * extent item and partially referenced by another
760 * file extent item (like after using the clone or
761 * extent_same ioctls). In this case if we end up doing
762 * the replay of the one that partially references the
763 * extent first, and we do not do the csum deletion
764 * below, we can get 2 csum items in the csum tree that
765 * overlap each other. For example, imagine our log has
766 * the two following file extent items:
767 *
768 * key (257 EXTENT_DATA 409600)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 20480 nr 20480 ram 102400
771 *
772 * key (257 EXTENT_DATA 819200)
773 * extent data disk byte 12845056 nr 102400
774 * extent data offset 0 nr 102400 ram 102400
775 *
776 * Where the second one fully references the 100K extent
777 * that starts at disk byte 12845056, and the log tree
778 * has a single csum item that covers the entire range
779 * of the extent:
780 *
781 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 *
783 * After the first file extent item is replayed, the
784 * csum tree gets the following csum item:
785 *
786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 *
788 * Which covers the 20K sub-range starting at offset 20K
789 * of our extent. Now when we replay the second file
790 * extent item, if we do not delete existing csum items
791 * that cover any of its blocks, we end up getting two
792 * csum items in our csum tree that overlap each other:
793 *
794 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 *
797 * Which is a problem, because after this anyone trying
798 * to lookup up for the checksum of any block of our
799 * extent starting at an offset of 40K or higher, will
800 * end up looking at the second csum item only, which
801 * does not contain the checksum for any block starting
802 * at offset 40K or higher of our extent.
803 */
07d400a6
YZ
804 while (!list_empty(&ordered_sums)) {
805 struct btrfs_ordered_sum *sums;
806 sums = list_entry(ordered_sums.next,
807 struct btrfs_ordered_sum,
808 list);
b84b8390 809 if (!ret)
0b246afa 810 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
811 sums->bytenr,
812 sums->len);
3650860b
JB
813 if (!ret)
814 ret = btrfs_csum_file_blocks(trans,
0b246afa 815 fs_info->csum_root, sums);
07d400a6
YZ
816 list_del(&sums->list);
817 kfree(sums);
818 }
3650860b
JB
819 if (ret)
820 goto out;
07d400a6 821 } else {
b3b4aa74 822 btrfs_release_path(path);
07d400a6
YZ
823 }
824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 /* inline extents are easy, we just overwrite them */
826 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
827 if (ret)
828 goto out;
07d400a6 829 }
e02119d5 830
4bc4bee4 831 inode_add_bytes(inode, nbytes);
3168021c 832update_inode:
b9959295 833 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
834out:
835 if (inode)
836 iput(inode);
837 return ret;
838}
839
840/*
841 * when cleaning up conflicts between the directory names in the
842 * subvolume, directory names in the log and directory names in the
843 * inode back references, we may have to unlink inodes from directories.
844 *
845 * This is a helper function to do the unlink of a specific directory
846 * item
847 */
848static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root,
850 struct btrfs_path *path,
207e7d92 851 struct btrfs_inode *dir,
e02119d5
CM
852 struct btrfs_dir_item *di)
853{
2ff7e61e 854 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
855 struct inode *inode;
856 char *name;
857 int name_len;
858 struct extent_buffer *leaf;
859 struct btrfs_key location;
860 int ret;
861
862 leaf = path->nodes[0];
863
864 btrfs_dir_item_key_to_cpu(leaf, di, &location);
865 name_len = btrfs_dir_name_len(leaf, di);
866 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 867 if (!name)
868 return -ENOMEM;
869
e02119d5 870 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 871 btrfs_release_path(path);
e02119d5
CM
872
873 inode = read_one_inode(root, location.objectid);
c00e9493 874 if (!inode) {
3650860b
JB
875 ret = -EIO;
876 goto out;
c00e9493 877 }
e02119d5 878
ec051c0f 879 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
880 if (ret)
881 goto out;
12fcfd22 882
207e7d92
NB
883 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
884 name_len);
3650860b
JB
885 if (ret)
886 goto out;
ada9af21 887 else
2ff7e61e 888 ret = btrfs_run_delayed_items(trans, fs_info);
3650860b 889out:
e02119d5 890 kfree(name);
e02119d5
CM
891 iput(inode);
892 return ret;
893}
894
895/*
896 * helper function to see if a given name and sequence number found
897 * in an inode back reference are already in a directory and correctly
898 * point to this inode
899 */
900static noinline int inode_in_dir(struct btrfs_root *root,
901 struct btrfs_path *path,
902 u64 dirid, u64 objectid, u64 index,
903 const char *name, int name_len)
904{
905 struct btrfs_dir_item *di;
906 struct btrfs_key location;
907 int match = 0;
908
909 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
910 index, name, name_len, 0);
911 if (di && !IS_ERR(di)) {
912 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
913 if (location.objectid != objectid)
914 goto out;
915 } else
916 goto out;
b3b4aa74 917 btrfs_release_path(path);
e02119d5
CM
918
919 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
920 if (di && !IS_ERR(di)) {
921 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
922 if (location.objectid != objectid)
923 goto out;
924 } else
925 goto out;
926 match = 1;
927out:
b3b4aa74 928 btrfs_release_path(path);
e02119d5
CM
929 return match;
930}
931
932/*
933 * helper function to check a log tree for a named back reference in
934 * an inode. This is used to decide if a back reference that is
935 * found in the subvolume conflicts with what we find in the log.
936 *
937 * inode backreferences may have multiple refs in a single item,
938 * during replay we process one reference at a time, and we don't
939 * want to delete valid links to a file from the subvolume if that
940 * link is also in the log.
941 */
942static noinline int backref_in_log(struct btrfs_root *log,
943 struct btrfs_key *key,
f186373f 944 u64 ref_objectid,
df8d116f 945 const char *name, int namelen)
e02119d5
CM
946{
947 struct btrfs_path *path;
948 struct btrfs_inode_ref *ref;
949 unsigned long ptr;
950 unsigned long ptr_end;
951 unsigned long name_ptr;
952 int found_name_len;
953 int item_size;
954 int ret;
955 int match = 0;
956
957 path = btrfs_alloc_path();
2a29edc6 958 if (!path)
959 return -ENOMEM;
960
e02119d5
CM
961 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
962 if (ret != 0)
963 goto out;
964
e02119d5 965 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
966
967 if (key->type == BTRFS_INODE_EXTREF_KEY) {
968 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
969 name, namelen, NULL))
970 match = 1;
971
972 goto out;
973 }
974
975 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
976 ptr_end = ptr + item_size;
977 while (ptr < ptr_end) {
978 ref = (struct btrfs_inode_ref *)ptr;
979 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
980 if (found_name_len == namelen) {
981 name_ptr = (unsigned long)(ref + 1);
982 ret = memcmp_extent_buffer(path->nodes[0], name,
983 name_ptr, namelen);
984 if (ret == 0) {
985 match = 1;
986 goto out;
987 }
988 }
989 ptr = (unsigned long)(ref + 1) + found_name_len;
990 }
991out:
992 btrfs_free_path(path);
993 return match;
994}
995
5a1d7843 996static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 997 struct btrfs_root *root,
e02119d5 998 struct btrfs_path *path,
5a1d7843 999 struct btrfs_root *log_root,
94c91a1f
NB
1000 struct btrfs_inode *dir,
1001 struct btrfs_inode *inode,
f186373f
MF
1002 u64 inode_objectid, u64 parent_objectid,
1003 u64 ref_index, char *name, int namelen,
1004 int *search_done)
e02119d5 1005{
2ff7e61e 1006 struct btrfs_fs_info *fs_info = root->fs_info;
34f3e4f2 1007 int ret;
f186373f
MF
1008 char *victim_name;
1009 int victim_name_len;
1010 struct extent_buffer *leaf;
5a1d7843 1011 struct btrfs_dir_item *di;
f186373f
MF
1012 struct btrfs_key search_key;
1013 struct btrfs_inode_extref *extref;
c622ae60 1014
f186373f
MF
1015again:
1016 /* Search old style refs */
1017 search_key.objectid = inode_objectid;
1018 search_key.type = BTRFS_INODE_REF_KEY;
1019 search_key.offset = parent_objectid;
1020 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1021 if (ret == 0) {
e02119d5
CM
1022 struct btrfs_inode_ref *victim_ref;
1023 unsigned long ptr;
1024 unsigned long ptr_end;
f186373f
MF
1025
1026 leaf = path->nodes[0];
e02119d5
CM
1027
1028 /* are we trying to overwrite a back ref for the root directory
1029 * if so, just jump out, we're done
1030 */
f186373f 1031 if (search_key.objectid == search_key.offset)
5a1d7843 1032 return 1;
e02119d5
CM
1033
1034 /* check all the names in this back reference to see
1035 * if they are in the log. if so, we allow them to stay
1036 * otherwise they must be unlinked as a conflict
1037 */
1038 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1040 while (ptr < ptr_end) {
e02119d5
CM
1041 victim_ref = (struct btrfs_inode_ref *)ptr;
1042 victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 victim_ref);
1044 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1045 if (!victim_name)
1046 return -ENOMEM;
e02119d5
CM
1047
1048 read_extent_buffer(leaf, victim_name,
1049 (unsigned long)(victim_ref + 1),
1050 victim_name_len);
1051
f186373f
MF
1052 if (!backref_in_log(log_root, &search_key,
1053 parent_objectid,
1054 victim_name,
e02119d5 1055 victim_name_len)) {
94c91a1f 1056 inc_nlink(&inode->vfs_inode);
b3b4aa74 1057 btrfs_release_path(path);
12fcfd22 1058
94c91a1f 1059 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1060 victim_name, victim_name_len);
f186373f 1061 kfree(victim_name);
3650860b
JB
1062 if (ret)
1063 return ret;
2ff7e61e 1064 ret = btrfs_run_delayed_items(trans, fs_info);
ada9af21
FDBM
1065 if (ret)
1066 return ret;
f186373f
MF
1067 *search_done = 1;
1068 goto again;
e02119d5
CM
1069 }
1070 kfree(victim_name);
f186373f 1071
e02119d5
CM
1072 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 }
e02119d5 1074
c622ae60 1075 /*
1076 * NOTE: we have searched root tree and checked the
bb7ab3b9 1077 * corresponding ref, it does not need to check again.
c622ae60 1078 */
5a1d7843 1079 *search_done = 1;
e02119d5 1080 }
b3b4aa74 1081 btrfs_release_path(path);
e02119d5 1082
f186373f
MF
1083 /* Same search but for extended refs */
1084 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 inode_objectid, parent_objectid, 0,
1086 0);
1087 if (!IS_ERR_OR_NULL(extref)) {
1088 u32 item_size;
1089 u32 cur_offset = 0;
1090 unsigned long base;
1091 struct inode *victim_parent;
1092
1093 leaf = path->nodes[0];
1094
1095 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097
1098 while (cur_offset < item_size) {
dd9ef135 1099 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1100
1101 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102
1103 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 goto next;
1105
1106 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1107 if (!victim_name)
1108 return -ENOMEM;
f186373f
MF
1109 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 victim_name_len);
1111
1112 search_key.objectid = inode_objectid;
1113 search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 search_key.offset = btrfs_extref_hash(parent_objectid,
1115 victim_name,
1116 victim_name_len);
1117 ret = 0;
1118 if (!backref_in_log(log_root, &search_key,
1119 parent_objectid, victim_name,
1120 victim_name_len)) {
1121 ret = -ENOENT;
1122 victim_parent = read_one_inode(root,
94c91a1f 1123 parent_objectid);
f186373f 1124 if (victim_parent) {
94c91a1f 1125 inc_nlink(&inode->vfs_inode);
f186373f
MF
1126 btrfs_release_path(path);
1127
1128 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1129 BTRFS_I(victim_parent),
94c91a1f 1130 inode,
4ec5934e
NB
1131 victim_name,
1132 victim_name_len);
ada9af21
FDBM
1133 if (!ret)
1134 ret = btrfs_run_delayed_items(
2ff7e61e
JM
1135 trans,
1136 fs_info);
f186373f 1137 }
f186373f
MF
1138 iput(victim_parent);
1139 kfree(victim_name);
3650860b
JB
1140 if (ret)
1141 return ret;
f186373f
MF
1142 *search_done = 1;
1143 goto again;
1144 }
1145 kfree(victim_name);
3650860b
JB
1146 if (ret)
1147 return ret;
f186373f
MF
1148next:
1149 cur_offset += victim_name_len + sizeof(*extref);
1150 }
1151 *search_done = 1;
1152 }
1153 btrfs_release_path(path);
1154
34f3e4f2 1155 /* look for a conflicting sequence number */
94c91a1f 1156 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1157 ref_index, name, namelen, 0);
34f3e4f2 1158 if (di && !IS_ERR(di)) {
94c91a1f 1159 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1160 if (ret)
1161 return ret;
34f3e4f2 1162 }
1163 btrfs_release_path(path);
1164
1165 /* look for a conflicing name */
94c91a1f 1166 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1167 name, namelen, 0);
1168 if (di && !IS_ERR(di)) {
94c91a1f 1169 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1170 if (ret)
1171 return ret;
34f3e4f2 1172 }
1173 btrfs_release_path(path);
1174
5a1d7843
JS
1175 return 0;
1176}
e02119d5 1177
f186373f
MF
1178static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1179 u32 *namelen, char **name, u64 *index,
1180 u64 *parent_objectid)
1181{
1182 struct btrfs_inode_extref *extref;
1183
1184 extref = (struct btrfs_inode_extref *)ref_ptr;
1185
1186 *namelen = btrfs_inode_extref_name_len(eb, extref);
1187 *name = kmalloc(*namelen, GFP_NOFS);
1188 if (*name == NULL)
1189 return -ENOMEM;
1190
1191 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1192 *namelen);
1193
1194 *index = btrfs_inode_extref_index(eb, extref);
1195 if (parent_objectid)
1196 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1197
1198 return 0;
1199}
1200
1201static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1202 u32 *namelen, char **name, u64 *index)
1203{
1204 struct btrfs_inode_ref *ref;
1205
1206 ref = (struct btrfs_inode_ref *)ref_ptr;
1207
1208 *namelen = btrfs_inode_ref_name_len(eb, ref);
1209 *name = kmalloc(*namelen, GFP_NOFS);
1210 if (*name == NULL)
1211 return -ENOMEM;
1212
1213 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1214
1215 *index = btrfs_inode_ref_index(eb, ref);
1216
1217 return 0;
1218}
1219
5a1d7843
JS
1220/*
1221 * replay one inode back reference item found in the log tree.
1222 * eb, slot and key refer to the buffer and key found in the log tree.
1223 * root is the destination we are replaying into, and path is for temp
1224 * use by this function. (it should be released on return).
1225 */
1226static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1227 struct btrfs_root *root,
1228 struct btrfs_root *log,
1229 struct btrfs_path *path,
1230 struct extent_buffer *eb, int slot,
1231 struct btrfs_key *key)
1232{
03b2f08b
GB
1233 struct inode *dir = NULL;
1234 struct inode *inode = NULL;
5a1d7843
JS
1235 unsigned long ref_ptr;
1236 unsigned long ref_end;
03b2f08b 1237 char *name = NULL;
5a1d7843
JS
1238 int namelen;
1239 int ret;
1240 int search_done = 0;
f186373f
MF
1241 int log_ref_ver = 0;
1242 u64 parent_objectid;
1243 u64 inode_objectid;
f46dbe3d 1244 u64 ref_index = 0;
f186373f
MF
1245 int ref_struct_size;
1246
1247 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1248 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1249
1250 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1251 struct btrfs_inode_extref *r;
1252
1253 ref_struct_size = sizeof(struct btrfs_inode_extref);
1254 log_ref_ver = 1;
1255 r = (struct btrfs_inode_extref *)ref_ptr;
1256 parent_objectid = btrfs_inode_extref_parent(eb, r);
1257 } else {
1258 ref_struct_size = sizeof(struct btrfs_inode_ref);
1259 parent_objectid = key->offset;
1260 }
1261 inode_objectid = key->objectid;
e02119d5 1262
5a1d7843
JS
1263 /*
1264 * it is possible that we didn't log all the parent directories
1265 * for a given inode. If we don't find the dir, just don't
1266 * copy the back ref in. The link count fixup code will take
1267 * care of the rest
1268 */
f186373f 1269 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1270 if (!dir) {
1271 ret = -ENOENT;
1272 goto out;
1273 }
5a1d7843 1274
f186373f 1275 inode = read_one_inode(root, inode_objectid);
5a1d7843 1276 if (!inode) {
03b2f08b
GB
1277 ret = -EIO;
1278 goto out;
5a1d7843
JS
1279 }
1280
5a1d7843 1281 while (ref_ptr < ref_end) {
f186373f
MF
1282 if (log_ref_ver) {
1283 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1284 &ref_index, &parent_objectid);
1285 /*
1286 * parent object can change from one array
1287 * item to another.
1288 */
1289 if (!dir)
1290 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1291 if (!dir) {
1292 ret = -ENOENT;
1293 goto out;
1294 }
f186373f
MF
1295 } else {
1296 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1297 &ref_index);
1298 }
1299 if (ret)
03b2f08b 1300 goto out;
5a1d7843
JS
1301
1302 /* if we already have a perfect match, we're done */
f85b7379
DS
1303 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1304 btrfs_ino(BTRFS_I(inode)), ref_index,
1305 name, namelen)) {
5a1d7843
JS
1306 /*
1307 * look for a conflicting back reference in the
1308 * metadata. if we find one we have to unlink that name
1309 * of the file before we add our new link. Later on, we
1310 * overwrite any existing back reference, and we don't
1311 * want to create dangling pointers in the directory.
1312 */
1313
1314 if (!search_done) {
1315 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1316 BTRFS_I(dir),
d75eefdf 1317 BTRFS_I(inode),
f186373f
MF
1318 inode_objectid,
1319 parent_objectid,
1320 ref_index, name, namelen,
5a1d7843 1321 &search_done);
03b2f08b
GB
1322 if (ret) {
1323 if (ret == 1)
1324 ret = 0;
3650860b
JB
1325 goto out;
1326 }
5a1d7843
JS
1327 }
1328
1329 /* insert our name */
db0a669f
NB
1330 ret = btrfs_add_link(trans, BTRFS_I(dir),
1331 BTRFS_I(inode),
1332 name, namelen, 0, ref_index);
3650860b
JB
1333 if (ret)
1334 goto out;
5a1d7843
JS
1335
1336 btrfs_update_inode(trans, root, inode);
1337 }
1338
f186373f 1339 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1340 kfree(name);
03b2f08b 1341 name = NULL;
f186373f
MF
1342 if (log_ref_ver) {
1343 iput(dir);
1344 dir = NULL;
1345 }
5a1d7843 1346 }
e02119d5
CM
1347
1348 /* finally write the back reference in the inode */
1349 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1350out:
b3b4aa74 1351 btrfs_release_path(path);
03b2f08b 1352 kfree(name);
e02119d5
CM
1353 iput(dir);
1354 iput(inode);
3650860b 1355 return ret;
e02119d5
CM
1356}
1357
c71bf099 1358static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1359 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1360{
1361 int ret;
381cf658 1362
9c4f61f0
DS
1363 ret = btrfs_insert_orphan_item(trans, root, ino);
1364 if (ret == -EEXIST)
1365 ret = 0;
381cf658 1366
c71bf099
YZ
1367 return ret;
1368}
1369
f186373f 1370static int count_inode_extrefs(struct btrfs_root *root,
36283658 1371 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1372{
1373 int ret = 0;
1374 int name_len;
1375 unsigned int nlink = 0;
1376 u32 item_size;
1377 u32 cur_offset = 0;
36283658 1378 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1379 u64 offset = 0;
1380 unsigned long ptr;
1381 struct btrfs_inode_extref *extref;
1382 struct extent_buffer *leaf;
1383
1384 while (1) {
1385 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1386 &extref, &offset);
1387 if (ret)
1388 break;
c71bf099 1389
f186373f
MF
1390 leaf = path->nodes[0];
1391 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1392 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1393 cur_offset = 0;
f186373f
MF
1394
1395 while (cur_offset < item_size) {
1396 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1397 name_len = btrfs_inode_extref_name_len(leaf, extref);
1398
1399 nlink++;
1400
1401 cur_offset += name_len + sizeof(*extref);
1402 }
1403
1404 offset++;
1405 btrfs_release_path(path);
1406 }
1407 btrfs_release_path(path);
1408
2c2c452b 1409 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1410 return ret;
1411 return nlink;
1412}
1413
1414static int count_inode_refs(struct btrfs_root *root,
f329e319 1415 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1416{
e02119d5
CM
1417 int ret;
1418 struct btrfs_key key;
f186373f 1419 unsigned int nlink = 0;
e02119d5
CM
1420 unsigned long ptr;
1421 unsigned long ptr_end;
1422 int name_len;
f329e319 1423 u64 ino = btrfs_ino(inode);
e02119d5 1424
33345d01 1425 key.objectid = ino;
e02119d5
CM
1426 key.type = BTRFS_INODE_REF_KEY;
1427 key.offset = (u64)-1;
1428
d397712b 1429 while (1) {
e02119d5
CM
1430 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1431 if (ret < 0)
1432 break;
1433 if (ret > 0) {
1434 if (path->slots[0] == 0)
1435 break;
1436 path->slots[0]--;
1437 }
e93ae26f 1438process_slot:
e02119d5
CM
1439 btrfs_item_key_to_cpu(path->nodes[0], &key,
1440 path->slots[0]);
33345d01 1441 if (key.objectid != ino ||
e02119d5
CM
1442 key.type != BTRFS_INODE_REF_KEY)
1443 break;
1444 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1445 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1446 path->slots[0]);
d397712b 1447 while (ptr < ptr_end) {
e02119d5
CM
1448 struct btrfs_inode_ref *ref;
1449
1450 ref = (struct btrfs_inode_ref *)ptr;
1451 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1452 ref);
1453 ptr = (unsigned long)(ref + 1) + name_len;
1454 nlink++;
1455 }
1456
1457 if (key.offset == 0)
1458 break;
e93ae26f
FDBM
1459 if (path->slots[0] > 0) {
1460 path->slots[0]--;
1461 goto process_slot;
1462 }
e02119d5 1463 key.offset--;
b3b4aa74 1464 btrfs_release_path(path);
e02119d5 1465 }
b3b4aa74 1466 btrfs_release_path(path);
f186373f
MF
1467
1468 return nlink;
1469}
1470
1471/*
1472 * There are a few corners where the link count of the file can't
1473 * be properly maintained during replay. So, instead of adding
1474 * lots of complexity to the log code, we just scan the backrefs
1475 * for any file that has been through replay.
1476 *
1477 * The scan will update the link count on the inode to reflect the
1478 * number of back refs found. If it goes down to zero, the iput
1479 * will free the inode.
1480 */
1481static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1482 struct btrfs_root *root,
1483 struct inode *inode)
1484{
1485 struct btrfs_path *path;
1486 int ret;
1487 u64 nlink = 0;
4a0cc7ca 1488 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1489
1490 path = btrfs_alloc_path();
1491 if (!path)
1492 return -ENOMEM;
1493
f329e319 1494 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1495 if (ret < 0)
1496 goto out;
1497
1498 nlink = ret;
1499
36283658 1500 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1501 if (ret < 0)
1502 goto out;
1503
1504 nlink += ret;
1505
1506 ret = 0;
1507
e02119d5 1508 if (nlink != inode->i_nlink) {
bfe86848 1509 set_nlink(inode, nlink);
e02119d5
CM
1510 btrfs_update_inode(trans, root, inode);
1511 }
8d5bf1cb 1512 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1513
c71bf099
YZ
1514 if (inode->i_nlink == 0) {
1515 if (S_ISDIR(inode->i_mode)) {
1516 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1517 ino, 1);
3650860b
JB
1518 if (ret)
1519 goto out;
c71bf099 1520 }
33345d01 1521 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1522 }
12fcfd22 1523
f186373f
MF
1524out:
1525 btrfs_free_path(path);
1526 return ret;
e02119d5
CM
1527}
1528
1529static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1530 struct btrfs_root *root,
1531 struct btrfs_path *path)
1532{
1533 int ret;
1534 struct btrfs_key key;
1535 struct inode *inode;
1536
1537 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1538 key.type = BTRFS_ORPHAN_ITEM_KEY;
1539 key.offset = (u64)-1;
d397712b 1540 while (1) {
e02119d5
CM
1541 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1542 if (ret < 0)
1543 break;
1544
1545 if (ret == 1) {
1546 if (path->slots[0] == 0)
1547 break;
1548 path->slots[0]--;
1549 }
1550
1551 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1552 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1553 key.type != BTRFS_ORPHAN_ITEM_KEY)
1554 break;
1555
1556 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1557 if (ret)
1558 goto out;
e02119d5 1559
b3b4aa74 1560 btrfs_release_path(path);
e02119d5 1561 inode = read_one_inode(root, key.offset);
c00e9493
TI
1562 if (!inode)
1563 return -EIO;
e02119d5
CM
1564
1565 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1566 iput(inode);
3650860b
JB
1567 if (ret)
1568 goto out;
e02119d5 1569
12fcfd22
CM
1570 /*
1571 * fixup on a directory may create new entries,
1572 * make sure we always look for the highset possible
1573 * offset
1574 */
1575 key.offset = (u64)-1;
e02119d5 1576 }
65a246c5
TI
1577 ret = 0;
1578out:
b3b4aa74 1579 btrfs_release_path(path);
65a246c5 1580 return ret;
e02119d5
CM
1581}
1582
1583
1584/*
1585 * record a given inode in the fixup dir so we can check its link
1586 * count when replay is done. The link count is incremented here
1587 * so the inode won't go away until we check it
1588 */
1589static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1590 struct btrfs_root *root,
1591 struct btrfs_path *path,
1592 u64 objectid)
1593{
1594 struct btrfs_key key;
1595 int ret = 0;
1596 struct inode *inode;
1597
1598 inode = read_one_inode(root, objectid);
c00e9493
TI
1599 if (!inode)
1600 return -EIO;
e02119d5
CM
1601
1602 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1603 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1604 key.offset = objectid;
1605
1606 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1607
b3b4aa74 1608 btrfs_release_path(path);
e02119d5 1609 if (ret == 0) {
9bf7a489
JB
1610 if (!inode->i_nlink)
1611 set_nlink(inode, 1);
1612 else
8b558c5f 1613 inc_nlink(inode);
b9959295 1614 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1615 } else if (ret == -EEXIST) {
1616 ret = 0;
1617 } else {
3650860b 1618 BUG(); /* Logic Error */
e02119d5
CM
1619 }
1620 iput(inode);
1621
1622 return ret;
1623}
1624
1625/*
1626 * when replaying the log for a directory, we only insert names
1627 * for inodes that actually exist. This means an fsync on a directory
1628 * does not implicitly fsync all the new files in it
1629 */
1630static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1631 struct btrfs_root *root,
e02119d5 1632 u64 dirid, u64 index,
60d53eb3 1633 char *name, int name_len,
e02119d5
CM
1634 struct btrfs_key *location)
1635{
1636 struct inode *inode;
1637 struct inode *dir;
1638 int ret;
1639
1640 inode = read_one_inode(root, location->objectid);
1641 if (!inode)
1642 return -ENOENT;
1643
1644 dir = read_one_inode(root, dirid);
1645 if (!dir) {
1646 iput(inode);
1647 return -EIO;
1648 }
d555438b 1649
db0a669f
NB
1650 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1651 name_len, 1, index);
e02119d5
CM
1652
1653 /* FIXME, put inode into FIXUP list */
1654
1655 iput(inode);
1656 iput(dir);
1657 return ret;
1658}
1659
df8d116f
FM
1660/*
1661 * Return true if an inode reference exists in the log for the given name,
1662 * inode and parent inode.
1663 */
1664static bool name_in_log_ref(struct btrfs_root *log_root,
1665 const char *name, const int name_len,
1666 const u64 dirid, const u64 ino)
1667{
1668 struct btrfs_key search_key;
1669
1670 search_key.objectid = ino;
1671 search_key.type = BTRFS_INODE_REF_KEY;
1672 search_key.offset = dirid;
1673 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1674 return true;
1675
1676 search_key.type = BTRFS_INODE_EXTREF_KEY;
1677 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1678 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1679 return true;
1680
1681 return false;
1682}
1683
e02119d5
CM
1684/*
1685 * take a single entry in a log directory item and replay it into
1686 * the subvolume.
1687 *
1688 * if a conflicting item exists in the subdirectory already,
1689 * the inode it points to is unlinked and put into the link count
1690 * fix up tree.
1691 *
1692 * If a name from the log points to a file or directory that does
1693 * not exist in the FS, it is skipped. fsyncs on directories
1694 * do not force down inodes inside that directory, just changes to the
1695 * names or unlinks in a directory.
bb53eda9
FM
1696 *
1697 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1698 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1699 */
1700static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1701 struct btrfs_root *root,
1702 struct btrfs_path *path,
1703 struct extent_buffer *eb,
1704 struct btrfs_dir_item *di,
1705 struct btrfs_key *key)
1706{
1707 char *name;
1708 int name_len;
1709 struct btrfs_dir_item *dst_di;
1710 struct btrfs_key found_key;
1711 struct btrfs_key log_key;
1712 struct inode *dir;
e02119d5 1713 u8 log_type;
4bef0848 1714 int exists;
3650860b 1715 int ret = 0;
d555438b 1716 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1717 bool name_added = false;
e02119d5
CM
1718
1719 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1720 if (!dir)
1721 return -EIO;
e02119d5
CM
1722
1723 name_len = btrfs_dir_name_len(eb, di);
1724 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1725 if (!name) {
1726 ret = -ENOMEM;
1727 goto out;
1728 }
2a29edc6 1729
e02119d5
CM
1730 log_type = btrfs_dir_type(eb, di);
1731 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1732 name_len);
1733
1734 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1735 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1736 if (exists == 0)
1737 exists = 1;
1738 else
1739 exists = 0;
b3b4aa74 1740 btrfs_release_path(path);
4bef0848 1741
e02119d5
CM
1742 if (key->type == BTRFS_DIR_ITEM_KEY) {
1743 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1744 name, name_len, 1);
d397712b 1745 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1746 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1747 key->objectid,
1748 key->offset, name,
1749 name_len, 1);
1750 } else {
3650860b
JB
1751 /* Corruption */
1752 ret = -EINVAL;
1753 goto out;
e02119d5 1754 }
c704005d 1755 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1756 /* we need a sequence number to insert, so we only
1757 * do inserts for the BTRFS_DIR_INDEX_KEY types
1758 */
1759 if (key->type != BTRFS_DIR_INDEX_KEY)
1760 goto out;
1761 goto insert;
1762 }
1763
1764 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1765 /* the existing item matches the logged item */
1766 if (found_key.objectid == log_key.objectid &&
1767 found_key.type == log_key.type &&
1768 found_key.offset == log_key.offset &&
1769 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1770 update_size = false;
e02119d5
CM
1771 goto out;
1772 }
1773
1774 /*
1775 * don't drop the conflicting directory entry if the inode
1776 * for the new entry doesn't exist
1777 */
4bef0848 1778 if (!exists)
e02119d5
CM
1779 goto out;
1780
207e7d92 1781 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1782 if (ret)
1783 goto out;
e02119d5
CM
1784
1785 if (key->type == BTRFS_DIR_INDEX_KEY)
1786 goto insert;
1787out:
b3b4aa74 1788 btrfs_release_path(path);
d555438b 1789 if (!ret && update_size) {
6ef06d27 1790 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1791 ret = btrfs_update_inode(trans, root, dir);
1792 }
e02119d5
CM
1793 kfree(name);
1794 iput(dir);
bb53eda9
FM
1795 if (!ret && name_added)
1796 ret = 1;
3650860b 1797 return ret;
e02119d5
CM
1798
1799insert:
df8d116f
FM
1800 if (name_in_log_ref(root->log_root, name, name_len,
1801 key->objectid, log_key.objectid)) {
1802 /* The dentry will be added later. */
1803 ret = 0;
1804 update_size = false;
1805 goto out;
1806 }
b3b4aa74 1807 btrfs_release_path(path);
60d53eb3
Z
1808 ret = insert_one_name(trans, root, key->objectid, key->offset,
1809 name, name_len, &log_key);
df8d116f 1810 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1811 goto out;
bb53eda9
FM
1812 if (!ret)
1813 name_added = true;
d555438b 1814 update_size = false;
3650860b 1815 ret = 0;
e02119d5
CM
1816 goto out;
1817}
1818
1819/*
1820 * find all the names in a directory item and reconcile them into
1821 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1822 * one name in a directory item, but the same code gets used for
1823 * both directory index types
1824 */
1825static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1826 struct btrfs_root *root,
1827 struct btrfs_path *path,
1828 struct extent_buffer *eb, int slot,
1829 struct btrfs_key *key)
1830{
2ff7e61e 1831 struct btrfs_fs_info *fs_info = root->fs_info;
bb53eda9 1832 int ret = 0;
e02119d5
CM
1833 u32 item_size = btrfs_item_size_nr(eb, slot);
1834 struct btrfs_dir_item *di;
1835 int name_len;
1836 unsigned long ptr;
1837 unsigned long ptr_end;
bb53eda9 1838 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1839
1840 ptr = btrfs_item_ptr_offset(eb, slot);
1841 ptr_end = ptr + item_size;
d397712b 1842 while (ptr < ptr_end) {
e02119d5 1843 di = (struct btrfs_dir_item *)ptr;
2ff7e61e 1844 if (verify_dir_item(fs_info, eb, di))
22a94d44 1845 return -EIO;
e02119d5
CM
1846 name_len = btrfs_dir_name_len(eb, di);
1847 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1848 if (ret < 0)
1849 break;
e02119d5
CM
1850 ptr = (unsigned long)(di + 1);
1851 ptr += name_len;
bb53eda9
FM
1852
1853 /*
1854 * If this entry refers to a non-directory (directories can not
1855 * have a link count > 1) and it was added in the transaction
1856 * that was not committed, make sure we fixup the link count of
1857 * the inode it the entry points to. Otherwise something like
1858 * the following would result in a directory pointing to an
1859 * inode with a wrong link that does not account for this dir
1860 * entry:
1861 *
1862 * mkdir testdir
1863 * touch testdir/foo
1864 * touch testdir/bar
1865 * sync
1866 *
1867 * ln testdir/bar testdir/bar_link
1868 * ln testdir/foo testdir/foo_link
1869 * xfs_io -c "fsync" testdir/bar
1870 *
1871 * <power failure>
1872 *
1873 * mount fs, log replay happens
1874 *
1875 * File foo would remain with a link count of 1 when it has two
1876 * entries pointing to it in the directory testdir. This would
1877 * make it impossible to ever delete the parent directory has
1878 * it would result in stale dentries that can never be deleted.
1879 */
1880 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1881 struct btrfs_key di_key;
1882
1883 if (!fixup_path) {
1884 fixup_path = btrfs_alloc_path();
1885 if (!fixup_path) {
1886 ret = -ENOMEM;
1887 break;
1888 }
1889 }
1890
1891 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1892 ret = link_to_fixup_dir(trans, root, fixup_path,
1893 di_key.objectid);
1894 if (ret)
1895 break;
1896 }
1897 ret = 0;
e02119d5 1898 }
bb53eda9
FM
1899 btrfs_free_path(fixup_path);
1900 return ret;
e02119d5
CM
1901}
1902
1903/*
1904 * directory replay has two parts. There are the standard directory
1905 * items in the log copied from the subvolume, and range items
1906 * created in the log while the subvolume was logged.
1907 *
1908 * The range items tell us which parts of the key space the log
1909 * is authoritative for. During replay, if a key in the subvolume
1910 * directory is in a logged range item, but not actually in the log
1911 * that means it was deleted from the directory before the fsync
1912 * and should be removed.
1913 */
1914static noinline int find_dir_range(struct btrfs_root *root,
1915 struct btrfs_path *path,
1916 u64 dirid, int key_type,
1917 u64 *start_ret, u64 *end_ret)
1918{
1919 struct btrfs_key key;
1920 u64 found_end;
1921 struct btrfs_dir_log_item *item;
1922 int ret;
1923 int nritems;
1924
1925 if (*start_ret == (u64)-1)
1926 return 1;
1927
1928 key.objectid = dirid;
1929 key.type = key_type;
1930 key.offset = *start_ret;
1931
1932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1933 if (ret < 0)
1934 goto out;
1935 if (ret > 0) {
1936 if (path->slots[0] == 0)
1937 goto out;
1938 path->slots[0]--;
1939 }
1940 if (ret != 0)
1941 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1942
1943 if (key.type != key_type || key.objectid != dirid) {
1944 ret = 1;
1945 goto next;
1946 }
1947 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1948 struct btrfs_dir_log_item);
1949 found_end = btrfs_dir_log_end(path->nodes[0], item);
1950
1951 if (*start_ret >= key.offset && *start_ret <= found_end) {
1952 ret = 0;
1953 *start_ret = key.offset;
1954 *end_ret = found_end;
1955 goto out;
1956 }
1957 ret = 1;
1958next:
1959 /* check the next slot in the tree to see if it is a valid item */
1960 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 1961 path->slots[0]++;
e02119d5
CM
1962 if (path->slots[0] >= nritems) {
1963 ret = btrfs_next_leaf(root, path);
1964 if (ret)
1965 goto out;
e02119d5
CM
1966 }
1967
1968 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1969
1970 if (key.type != key_type || key.objectid != dirid) {
1971 ret = 1;
1972 goto out;
1973 }
1974 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1975 struct btrfs_dir_log_item);
1976 found_end = btrfs_dir_log_end(path->nodes[0], item);
1977 *start_ret = key.offset;
1978 *end_ret = found_end;
1979 ret = 0;
1980out:
b3b4aa74 1981 btrfs_release_path(path);
e02119d5
CM
1982 return ret;
1983}
1984
1985/*
1986 * this looks for a given directory item in the log. If the directory
1987 * item is not in the log, the item is removed and the inode it points
1988 * to is unlinked
1989 */
1990static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1991 struct btrfs_root *root,
1992 struct btrfs_root *log,
1993 struct btrfs_path *path,
1994 struct btrfs_path *log_path,
1995 struct inode *dir,
1996 struct btrfs_key *dir_key)
1997{
2ff7e61e 1998 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
1999 int ret;
2000 struct extent_buffer *eb;
2001 int slot;
2002 u32 item_size;
2003 struct btrfs_dir_item *di;
2004 struct btrfs_dir_item *log_di;
2005 int name_len;
2006 unsigned long ptr;
2007 unsigned long ptr_end;
2008 char *name;
2009 struct inode *inode;
2010 struct btrfs_key location;
2011
2012again:
2013 eb = path->nodes[0];
2014 slot = path->slots[0];
2015 item_size = btrfs_item_size_nr(eb, slot);
2016 ptr = btrfs_item_ptr_offset(eb, slot);
2017 ptr_end = ptr + item_size;
d397712b 2018 while (ptr < ptr_end) {
e02119d5 2019 di = (struct btrfs_dir_item *)ptr;
2ff7e61e 2020 if (verify_dir_item(fs_info, eb, di)) {
22a94d44
JB
2021 ret = -EIO;
2022 goto out;
2023 }
2024
e02119d5
CM
2025 name_len = btrfs_dir_name_len(eb, di);
2026 name = kmalloc(name_len, GFP_NOFS);
2027 if (!name) {
2028 ret = -ENOMEM;
2029 goto out;
2030 }
2031 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2032 name_len);
2033 log_di = NULL;
12fcfd22 2034 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2035 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2036 dir_key->objectid,
2037 name, name_len, 0);
12fcfd22 2038 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2039 log_di = btrfs_lookup_dir_index_item(trans, log,
2040 log_path,
2041 dir_key->objectid,
2042 dir_key->offset,
2043 name, name_len, 0);
2044 }
269d040f 2045 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 2046 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2047 btrfs_release_path(path);
2048 btrfs_release_path(log_path);
e02119d5 2049 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2050 if (!inode) {
2051 kfree(name);
2052 return -EIO;
2053 }
e02119d5
CM
2054
2055 ret = link_to_fixup_dir(trans, root,
2056 path, location.objectid);
3650860b
JB
2057 if (ret) {
2058 kfree(name);
2059 iput(inode);
2060 goto out;
2061 }
2062
8b558c5f 2063 inc_nlink(inode);
4ec5934e
NB
2064 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2065 BTRFS_I(inode), name, name_len);
3650860b 2066 if (!ret)
2ff7e61e 2067 ret = btrfs_run_delayed_items(trans, fs_info);
e02119d5
CM
2068 kfree(name);
2069 iput(inode);
3650860b
JB
2070 if (ret)
2071 goto out;
e02119d5
CM
2072
2073 /* there might still be more names under this key
2074 * check and repeat if required
2075 */
2076 ret = btrfs_search_slot(NULL, root, dir_key, path,
2077 0, 0);
2078 if (ret == 0)
2079 goto again;
2080 ret = 0;
2081 goto out;
269d040f
FDBM
2082 } else if (IS_ERR(log_di)) {
2083 kfree(name);
2084 return PTR_ERR(log_di);
e02119d5 2085 }
b3b4aa74 2086 btrfs_release_path(log_path);
e02119d5
CM
2087 kfree(name);
2088
2089 ptr = (unsigned long)(di + 1);
2090 ptr += name_len;
2091 }
2092 ret = 0;
2093out:
b3b4aa74
DS
2094 btrfs_release_path(path);
2095 btrfs_release_path(log_path);
e02119d5
CM
2096 return ret;
2097}
2098
4f764e51
FM
2099static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_root *log,
2102 struct btrfs_path *path,
2103 const u64 ino)
2104{
2105 struct btrfs_key search_key;
2106 struct btrfs_path *log_path;
2107 int i;
2108 int nritems;
2109 int ret;
2110
2111 log_path = btrfs_alloc_path();
2112 if (!log_path)
2113 return -ENOMEM;
2114
2115 search_key.objectid = ino;
2116 search_key.type = BTRFS_XATTR_ITEM_KEY;
2117 search_key.offset = 0;
2118again:
2119 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2120 if (ret < 0)
2121 goto out;
2122process_leaf:
2123 nritems = btrfs_header_nritems(path->nodes[0]);
2124 for (i = path->slots[0]; i < nritems; i++) {
2125 struct btrfs_key key;
2126 struct btrfs_dir_item *di;
2127 struct btrfs_dir_item *log_di;
2128 u32 total_size;
2129 u32 cur;
2130
2131 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2132 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2133 ret = 0;
2134 goto out;
2135 }
2136
2137 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2138 total_size = btrfs_item_size_nr(path->nodes[0], i);
2139 cur = 0;
2140 while (cur < total_size) {
2141 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2142 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2143 u32 this_len = sizeof(*di) + name_len + data_len;
2144 char *name;
2145
2146 name = kmalloc(name_len, GFP_NOFS);
2147 if (!name) {
2148 ret = -ENOMEM;
2149 goto out;
2150 }
2151 read_extent_buffer(path->nodes[0], name,
2152 (unsigned long)(di + 1), name_len);
2153
2154 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2155 name, name_len, 0);
2156 btrfs_release_path(log_path);
2157 if (!log_di) {
2158 /* Doesn't exist in log tree, so delete it. */
2159 btrfs_release_path(path);
2160 di = btrfs_lookup_xattr(trans, root, path, ino,
2161 name, name_len, -1);
2162 kfree(name);
2163 if (IS_ERR(di)) {
2164 ret = PTR_ERR(di);
2165 goto out;
2166 }
2167 ASSERT(di);
2168 ret = btrfs_delete_one_dir_name(trans, root,
2169 path, di);
2170 if (ret)
2171 goto out;
2172 btrfs_release_path(path);
2173 search_key = key;
2174 goto again;
2175 }
2176 kfree(name);
2177 if (IS_ERR(log_di)) {
2178 ret = PTR_ERR(log_di);
2179 goto out;
2180 }
2181 cur += this_len;
2182 di = (struct btrfs_dir_item *)((char *)di + this_len);
2183 }
2184 }
2185 ret = btrfs_next_leaf(root, path);
2186 if (ret > 0)
2187 ret = 0;
2188 else if (ret == 0)
2189 goto process_leaf;
2190out:
2191 btrfs_free_path(log_path);
2192 btrfs_release_path(path);
2193 return ret;
2194}
2195
2196
e02119d5
CM
2197/*
2198 * deletion replay happens before we copy any new directory items
2199 * out of the log or out of backreferences from inodes. It
2200 * scans the log to find ranges of keys that log is authoritative for,
2201 * and then scans the directory to find items in those ranges that are
2202 * not present in the log.
2203 *
2204 * Anything we don't find in the log is unlinked and removed from the
2205 * directory.
2206 */
2207static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2208 struct btrfs_root *root,
2209 struct btrfs_root *log,
2210 struct btrfs_path *path,
12fcfd22 2211 u64 dirid, int del_all)
e02119d5
CM
2212{
2213 u64 range_start;
2214 u64 range_end;
2215 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2216 int ret = 0;
2217 struct btrfs_key dir_key;
2218 struct btrfs_key found_key;
2219 struct btrfs_path *log_path;
2220 struct inode *dir;
2221
2222 dir_key.objectid = dirid;
2223 dir_key.type = BTRFS_DIR_ITEM_KEY;
2224 log_path = btrfs_alloc_path();
2225 if (!log_path)
2226 return -ENOMEM;
2227
2228 dir = read_one_inode(root, dirid);
2229 /* it isn't an error if the inode isn't there, that can happen
2230 * because we replay the deletes before we copy in the inode item
2231 * from the log
2232 */
2233 if (!dir) {
2234 btrfs_free_path(log_path);
2235 return 0;
2236 }
2237again:
2238 range_start = 0;
2239 range_end = 0;
d397712b 2240 while (1) {
12fcfd22
CM
2241 if (del_all)
2242 range_end = (u64)-1;
2243 else {
2244 ret = find_dir_range(log, path, dirid, key_type,
2245 &range_start, &range_end);
2246 if (ret != 0)
2247 break;
2248 }
e02119d5
CM
2249
2250 dir_key.offset = range_start;
d397712b 2251 while (1) {
e02119d5
CM
2252 int nritems;
2253 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2254 0, 0);
2255 if (ret < 0)
2256 goto out;
2257
2258 nritems = btrfs_header_nritems(path->nodes[0]);
2259 if (path->slots[0] >= nritems) {
2260 ret = btrfs_next_leaf(root, path);
2261 if (ret)
2262 break;
2263 }
2264 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2265 path->slots[0]);
2266 if (found_key.objectid != dirid ||
2267 found_key.type != dir_key.type)
2268 goto next_type;
2269
2270 if (found_key.offset > range_end)
2271 break;
2272
2273 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2274 log_path, dir,
2275 &found_key);
3650860b
JB
2276 if (ret)
2277 goto out;
e02119d5
CM
2278 if (found_key.offset == (u64)-1)
2279 break;
2280 dir_key.offset = found_key.offset + 1;
2281 }
b3b4aa74 2282 btrfs_release_path(path);
e02119d5
CM
2283 if (range_end == (u64)-1)
2284 break;
2285 range_start = range_end + 1;
2286 }
2287
2288next_type:
2289 ret = 0;
2290 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2291 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2292 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2293 btrfs_release_path(path);
e02119d5
CM
2294 goto again;
2295 }
2296out:
b3b4aa74 2297 btrfs_release_path(path);
e02119d5
CM
2298 btrfs_free_path(log_path);
2299 iput(dir);
2300 return ret;
2301}
2302
2303/*
2304 * the process_func used to replay items from the log tree. This
2305 * gets called in two different stages. The first stage just looks
2306 * for inodes and makes sure they are all copied into the subvolume.
2307 *
2308 * The second stage copies all the other item types from the log into
2309 * the subvolume. The two stage approach is slower, but gets rid of
2310 * lots of complexity around inodes referencing other inodes that exist
2311 * only in the log (references come from either directory items or inode
2312 * back refs).
2313 */
2314static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2315 struct walk_control *wc, u64 gen)
2316{
2317 int nritems;
2318 struct btrfs_path *path;
2319 struct btrfs_root *root = wc->replay_dest;
2320 struct btrfs_key key;
e02119d5
CM
2321 int level;
2322 int i;
2323 int ret;
2324
018642a1
TI
2325 ret = btrfs_read_buffer(eb, gen);
2326 if (ret)
2327 return ret;
e02119d5
CM
2328
2329 level = btrfs_header_level(eb);
2330
2331 if (level != 0)
2332 return 0;
2333
2334 path = btrfs_alloc_path();
1e5063d0
MF
2335 if (!path)
2336 return -ENOMEM;
e02119d5
CM
2337
2338 nritems = btrfs_header_nritems(eb);
2339 for (i = 0; i < nritems; i++) {
2340 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2341
2342 /* inode keys are done during the first stage */
2343 if (key.type == BTRFS_INODE_ITEM_KEY &&
2344 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2345 struct btrfs_inode_item *inode_item;
2346 u32 mode;
2347
2348 inode_item = btrfs_item_ptr(eb, i,
2349 struct btrfs_inode_item);
4f764e51
FM
2350 ret = replay_xattr_deletes(wc->trans, root, log,
2351 path, key.objectid);
2352 if (ret)
2353 break;
e02119d5
CM
2354 mode = btrfs_inode_mode(eb, inode_item);
2355 if (S_ISDIR(mode)) {
2356 ret = replay_dir_deletes(wc->trans,
12fcfd22 2357 root, log, path, key.objectid, 0);
b50c6e25
JB
2358 if (ret)
2359 break;
e02119d5
CM
2360 }
2361 ret = overwrite_item(wc->trans, root, path,
2362 eb, i, &key);
b50c6e25
JB
2363 if (ret)
2364 break;
e02119d5 2365
c71bf099 2366 /* for regular files, make sure corresponding
01327610 2367 * orphan item exist. extents past the new EOF
c71bf099 2368 * will be truncated later by orphan cleanup.
e02119d5
CM
2369 */
2370 if (S_ISREG(mode)) {
c71bf099
YZ
2371 ret = insert_orphan_item(wc->trans, root,
2372 key.objectid);
b50c6e25
JB
2373 if (ret)
2374 break;
e02119d5 2375 }
c71bf099 2376
e02119d5
CM
2377 ret = link_to_fixup_dir(wc->trans, root,
2378 path, key.objectid);
b50c6e25
JB
2379 if (ret)
2380 break;
e02119d5 2381 }
dd8e7217
JB
2382
2383 if (key.type == BTRFS_DIR_INDEX_KEY &&
2384 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2385 ret = replay_one_dir_item(wc->trans, root, path,
2386 eb, i, &key);
2387 if (ret)
2388 break;
2389 }
2390
e02119d5
CM
2391 if (wc->stage < LOG_WALK_REPLAY_ALL)
2392 continue;
2393
2394 /* these keys are simply copied */
2395 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2396 ret = overwrite_item(wc->trans, root, path,
2397 eb, i, &key);
b50c6e25
JB
2398 if (ret)
2399 break;
2da1c669
LB
2400 } else if (key.type == BTRFS_INODE_REF_KEY ||
2401 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2402 ret = add_inode_ref(wc->trans, root, log, path,
2403 eb, i, &key);
b50c6e25
JB
2404 if (ret && ret != -ENOENT)
2405 break;
2406 ret = 0;
e02119d5
CM
2407 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2408 ret = replay_one_extent(wc->trans, root, path,
2409 eb, i, &key);
b50c6e25
JB
2410 if (ret)
2411 break;
dd8e7217 2412 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2413 ret = replay_one_dir_item(wc->trans, root, path,
2414 eb, i, &key);
b50c6e25
JB
2415 if (ret)
2416 break;
e02119d5
CM
2417 }
2418 }
2419 btrfs_free_path(path);
b50c6e25 2420 return ret;
e02119d5
CM
2421}
2422
d397712b 2423static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2424 struct btrfs_root *root,
2425 struct btrfs_path *path, int *level,
2426 struct walk_control *wc)
2427{
0b246afa 2428 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2429 u64 root_owner;
e02119d5
CM
2430 u64 bytenr;
2431 u64 ptr_gen;
2432 struct extent_buffer *next;
2433 struct extent_buffer *cur;
2434 struct extent_buffer *parent;
2435 u32 blocksize;
2436 int ret = 0;
2437
2438 WARN_ON(*level < 0);
2439 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2440
d397712b 2441 while (*level > 0) {
e02119d5
CM
2442 WARN_ON(*level < 0);
2443 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2444 cur = path->nodes[*level];
2445
fae7f21c 2446 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2447
2448 if (path->slots[*level] >=
2449 btrfs_header_nritems(cur))
2450 break;
2451
2452 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2453 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
0b246afa 2454 blocksize = fs_info->nodesize;
e02119d5
CM
2455
2456 parent = path->nodes[*level];
2457 root_owner = btrfs_header_owner(parent);
e02119d5 2458
2ff7e61e 2459 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2460 if (IS_ERR(next))
2461 return PTR_ERR(next);
e02119d5 2462
e02119d5 2463 if (*level == 1) {
1e5063d0 2464 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2465 if (ret) {
2466 free_extent_buffer(next);
1e5063d0 2467 return ret;
b50c6e25 2468 }
4a500fd1 2469
e02119d5
CM
2470 path->slots[*level]++;
2471 if (wc->free) {
018642a1
TI
2472 ret = btrfs_read_buffer(next, ptr_gen);
2473 if (ret) {
2474 free_extent_buffer(next);
2475 return ret;
2476 }
e02119d5 2477
681ae509
JB
2478 if (trans) {
2479 btrfs_tree_lock(next);
2480 btrfs_set_lock_blocking(next);
7c302b49 2481 clean_tree_block(fs_info, next);
681ae509
JB
2482 btrfs_wait_tree_block_writeback(next);
2483 btrfs_tree_unlock(next);
2484 }
e02119d5 2485
e02119d5
CM
2486 WARN_ON(root_owner !=
2487 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2488 ret = btrfs_free_and_pin_reserved_extent(
2489 fs_info, bytenr,
2490 blocksize);
3650860b
JB
2491 if (ret) {
2492 free_extent_buffer(next);
2493 return ret;
2494 }
e02119d5
CM
2495 }
2496 free_extent_buffer(next);
2497 continue;
2498 }
018642a1
TI
2499 ret = btrfs_read_buffer(next, ptr_gen);
2500 if (ret) {
2501 free_extent_buffer(next);
2502 return ret;
2503 }
e02119d5
CM
2504
2505 WARN_ON(*level <= 0);
2506 if (path->nodes[*level-1])
2507 free_extent_buffer(path->nodes[*level-1]);
2508 path->nodes[*level-1] = next;
2509 *level = btrfs_header_level(next);
2510 path->slots[*level] = 0;
2511 cond_resched();
2512 }
2513 WARN_ON(*level < 0);
2514 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2515
4a500fd1 2516 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2517
2518 cond_resched();
2519 return 0;
2520}
2521
d397712b 2522static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2523 struct btrfs_root *root,
2524 struct btrfs_path *path, int *level,
2525 struct walk_control *wc)
2526{
0b246afa 2527 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2528 u64 root_owner;
e02119d5
CM
2529 int i;
2530 int slot;
2531 int ret;
2532
d397712b 2533 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2534 slot = path->slots[i];
4a500fd1 2535 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2536 path->slots[i]++;
2537 *level = i;
2538 WARN_ON(*level == 0);
2539 return 0;
2540 } else {
31840ae1
ZY
2541 struct extent_buffer *parent;
2542 if (path->nodes[*level] == root->node)
2543 parent = path->nodes[*level];
2544 else
2545 parent = path->nodes[*level + 1];
2546
2547 root_owner = btrfs_header_owner(parent);
1e5063d0 2548 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2549 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2550 if (ret)
2551 return ret;
2552
e02119d5
CM
2553 if (wc->free) {
2554 struct extent_buffer *next;
2555
2556 next = path->nodes[*level];
2557
681ae509
JB
2558 if (trans) {
2559 btrfs_tree_lock(next);
2560 btrfs_set_lock_blocking(next);
7c302b49 2561 clean_tree_block(fs_info, next);
681ae509
JB
2562 btrfs_wait_tree_block_writeback(next);
2563 btrfs_tree_unlock(next);
2564 }
e02119d5 2565
e02119d5 2566 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2567 ret = btrfs_free_and_pin_reserved_extent(
2568 fs_info,
e02119d5 2569 path->nodes[*level]->start,
d00aff00 2570 path->nodes[*level]->len);
3650860b
JB
2571 if (ret)
2572 return ret;
e02119d5
CM
2573 }
2574 free_extent_buffer(path->nodes[*level]);
2575 path->nodes[*level] = NULL;
2576 *level = i + 1;
2577 }
2578 }
2579 return 1;
2580}
2581
2582/*
2583 * drop the reference count on the tree rooted at 'snap'. This traverses
2584 * the tree freeing any blocks that have a ref count of zero after being
2585 * decremented.
2586 */
2587static int walk_log_tree(struct btrfs_trans_handle *trans,
2588 struct btrfs_root *log, struct walk_control *wc)
2589{
2ff7e61e 2590 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2591 int ret = 0;
2592 int wret;
2593 int level;
2594 struct btrfs_path *path;
e02119d5
CM
2595 int orig_level;
2596
2597 path = btrfs_alloc_path();
db5b493a
TI
2598 if (!path)
2599 return -ENOMEM;
e02119d5
CM
2600
2601 level = btrfs_header_level(log->node);
2602 orig_level = level;
2603 path->nodes[level] = log->node;
2604 extent_buffer_get(log->node);
2605 path->slots[level] = 0;
2606
d397712b 2607 while (1) {
e02119d5
CM
2608 wret = walk_down_log_tree(trans, log, path, &level, wc);
2609 if (wret > 0)
2610 break;
79787eaa 2611 if (wret < 0) {
e02119d5 2612 ret = wret;
79787eaa
JM
2613 goto out;
2614 }
e02119d5
CM
2615
2616 wret = walk_up_log_tree(trans, log, path, &level, wc);
2617 if (wret > 0)
2618 break;
79787eaa 2619 if (wret < 0) {
e02119d5 2620 ret = wret;
79787eaa
JM
2621 goto out;
2622 }
e02119d5
CM
2623 }
2624
2625 /* was the root node processed? if not, catch it here */
2626 if (path->nodes[orig_level]) {
79787eaa 2627 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2628 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2629 if (ret)
2630 goto out;
e02119d5
CM
2631 if (wc->free) {
2632 struct extent_buffer *next;
2633
2634 next = path->nodes[orig_level];
2635
681ae509
JB
2636 if (trans) {
2637 btrfs_tree_lock(next);
2638 btrfs_set_lock_blocking(next);
7c302b49 2639 clean_tree_block(fs_info, next);
681ae509
JB
2640 btrfs_wait_tree_block_writeback(next);
2641 btrfs_tree_unlock(next);
2642 }
e02119d5 2643
e02119d5
CM
2644 WARN_ON(log->root_key.objectid !=
2645 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2646 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2647 next->start, next->len);
3650860b
JB
2648 if (ret)
2649 goto out;
e02119d5
CM
2650 }
2651 }
2652
79787eaa 2653out:
e02119d5 2654 btrfs_free_path(path);
e02119d5
CM
2655 return ret;
2656}
2657
7237f183
YZ
2658/*
2659 * helper function to update the item for a given subvolumes log root
2660 * in the tree of log roots
2661 */
2662static int update_log_root(struct btrfs_trans_handle *trans,
2663 struct btrfs_root *log)
2664{
0b246afa 2665 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2666 int ret;
2667
2668 if (log->log_transid == 1) {
2669 /* insert root item on the first sync */
0b246afa 2670 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2671 &log->root_key, &log->root_item);
2672 } else {
0b246afa 2673 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2674 &log->root_key, &log->root_item);
2675 }
2676 return ret;
2677}
2678
60d53eb3 2679static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2680{
2681 DEFINE_WAIT(wait);
7237f183 2682 int index = transid % 2;
e02119d5 2683
7237f183
YZ
2684 /*
2685 * we only allow two pending log transactions at a time,
2686 * so we know that if ours is more than 2 older than the
2687 * current transaction, we're done
2688 */
e02119d5 2689 do {
7237f183
YZ
2690 prepare_to_wait(&root->log_commit_wait[index],
2691 &wait, TASK_UNINTERRUPTIBLE);
2692 mutex_unlock(&root->log_mutex);
12fcfd22 2693
d1433deb 2694 if (root->log_transid_committed < transid &&
7237f183
YZ
2695 atomic_read(&root->log_commit[index]))
2696 schedule();
12fcfd22 2697
7237f183
YZ
2698 finish_wait(&root->log_commit_wait[index], &wait);
2699 mutex_lock(&root->log_mutex);
d1433deb 2700 } while (root->log_transid_committed < transid &&
7237f183 2701 atomic_read(&root->log_commit[index]));
7237f183
YZ
2702}
2703
60d53eb3 2704static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2705{
2706 DEFINE_WAIT(wait);
8b050d35
MX
2707
2708 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2709 prepare_to_wait(&root->log_writer_wait,
2710 &wait, TASK_UNINTERRUPTIBLE);
2711 mutex_unlock(&root->log_mutex);
8b050d35 2712 if (atomic_read(&root->log_writers))
e02119d5 2713 schedule();
7237f183 2714 finish_wait(&root->log_writer_wait, &wait);
575849ec 2715 mutex_lock(&root->log_mutex);
7237f183 2716 }
e02119d5
CM
2717}
2718
8b050d35
MX
2719static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2720 struct btrfs_log_ctx *ctx)
2721{
2722 if (!ctx)
2723 return;
2724
2725 mutex_lock(&root->log_mutex);
2726 list_del_init(&ctx->list);
2727 mutex_unlock(&root->log_mutex);
2728}
2729
2730/*
2731 * Invoked in log mutex context, or be sure there is no other task which
2732 * can access the list.
2733 */
2734static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2735 int index, int error)
2736{
2737 struct btrfs_log_ctx *ctx;
570dd450 2738 struct btrfs_log_ctx *safe;
8b050d35 2739
570dd450
CM
2740 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2741 list_del_init(&ctx->list);
8b050d35 2742 ctx->log_ret = error;
570dd450 2743 }
8b050d35
MX
2744
2745 INIT_LIST_HEAD(&root->log_ctxs[index]);
2746}
2747
e02119d5
CM
2748/*
2749 * btrfs_sync_log does sends a given tree log down to the disk and
2750 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2751 * you know that any inodes previously logged are safely on disk only
2752 * if it returns 0.
2753 *
2754 * Any other return value means you need to call btrfs_commit_transaction.
2755 * Some of the edge cases for fsyncing directories that have had unlinks
2756 * or renames done in the past mean that sometimes the only safe
2757 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2758 * that has happened.
e02119d5
CM
2759 */
2760int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2761 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2762{
7237f183
YZ
2763 int index1;
2764 int index2;
8cef4e16 2765 int mark;
e02119d5 2766 int ret;
0b246afa 2767 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2768 struct btrfs_root *log = root->log_root;
0b246afa 2769 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 2770 int log_transid = 0;
8b050d35 2771 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2772 struct blk_plug plug;
e02119d5 2773
7237f183 2774 mutex_lock(&root->log_mutex);
d1433deb
MX
2775 log_transid = ctx->log_transid;
2776 if (root->log_transid_committed >= log_transid) {
2777 mutex_unlock(&root->log_mutex);
2778 return ctx->log_ret;
2779 }
2780
2781 index1 = log_transid % 2;
7237f183 2782 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2783 wait_log_commit(root, log_transid);
7237f183 2784 mutex_unlock(&root->log_mutex);
8b050d35 2785 return ctx->log_ret;
e02119d5 2786 }
d1433deb 2787 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2788 atomic_set(&root->log_commit[index1], 1);
2789
2790 /* wait for previous tree log sync to complete */
2791 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2792 wait_log_commit(root, log_transid - 1);
48cab2e0 2793
86df7eb9 2794 while (1) {
2ecb7923 2795 int batch = atomic_read(&root->log_batch);
cd354ad6 2796 /* when we're on an ssd, just kick the log commit out */
0b246afa 2797 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2798 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2799 mutex_unlock(&root->log_mutex);
2800 schedule_timeout_uninterruptible(1);
2801 mutex_lock(&root->log_mutex);
2802 }
60d53eb3 2803 wait_for_writer(root);
2ecb7923 2804 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2805 break;
2806 }
e02119d5 2807
12fcfd22 2808 /* bail out if we need to do a full commit */
0b246afa 2809 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22 2810 ret = -EAGAIN;
2ab28f32 2811 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2812 mutex_unlock(&root->log_mutex);
2813 goto out;
2814 }
2815
8cef4e16
YZ
2816 if (log_transid % 2 == 0)
2817 mark = EXTENT_DIRTY;
2818 else
2819 mark = EXTENT_NEW;
2820
690587d1
CM
2821 /* we start IO on all the marked extents here, but we don't actually
2822 * wait for them until later.
2823 */
c6adc9cc 2824 blk_start_plug(&plug);
2ff7e61e 2825 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 2826 if (ret) {
c6adc9cc 2827 blk_finish_plug(&plug);
66642832 2828 btrfs_abort_transaction(trans, ret);
2ab28f32 2829 btrfs_free_logged_extents(log, log_transid);
0b246afa 2830 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
2831 mutex_unlock(&root->log_mutex);
2832 goto out;
2833 }
7237f183 2834
5d4f98a2 2835 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2836
7237f183
YZ
2837 root->log_transid++;
2838 log->log_transid = root->log_transid;
ff782e0a 2839 root->log_start_pid = 0;
7237f183 2840 /*
8cef4e16
YZ
2841 * IO has been started, blocks of the log tree have WRITTEN flag set
2842 * in their headers. new modifications of the log will be written to
2843 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2844 */
2845 mutex_unlock(&root->log_mutex);
2846
28a23593 2847 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 2848
7237f183 2849 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2850 atomic_inc(&log_root_tree->log_batch);
7237f183 2851 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2852
2853 index2 = log_root_tree->log_transid % 2;
2854 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2855 root_log_ctx.log_transid = log_root_tree->log_transid;
2856
7237f183
YZ
2857 mutex_unlock(&log_root_tree->log_mutex);
2858
2859 ret = update_log_root(trans, log);
7237f183
YZ
2860
2861 mutex_lock(&log_root_tree->log_mutex);
2862 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
779adf0f
DS
2863 /*
2864 * Implicit memory barrier after atomic_dec_and_test
2865 */
7237f183
YZ
2866 if (waitqueue_active(&log_root_tree->log_writer_wait))
2867 wake_up(&log_root_tree->log_writer_wait);
2868 }
2869
4a500fd1 2870 if (ret) {
d1433deb
MX
2871 if (!list_empty(&root_log_ctx.list))
2872 list_del_init(&root_log_ctx.list);
2873
c6adc9cc 2874 blk_finish_plug(&plug);
0b246afa 2875 btrfs_set_log_full_commit(fs_info, trans);
995946dd 2876
79787eaa 2877 if (ret != -ENOSPC) {
66642832 2878 btrfs_abort_transaction(trans, ret);
79787eaa
JM
2879 mutex_unlock(&log_root_tree->log_mutex);
2880 goto out;
2881 }
bf89d38f 2882 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2883 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2884 mutex_unlock(&log_root_tree->log_mutex);
2885 ret = -EAGAIN;
2886 goto out;
2887 }
2888
d1433deb 2889 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 2890 blk_finish_plug(&plug);
cbd60aa7 2891 list_del_init(&root_log_ctx.list);
d1433deb
MX
2892 mutex_unlock(&log_root_tree->log_mutex);
2893 ret = root_log_ctx.log_ret;
2894 goto out;
2895 }
8b050d35 2896
d1433deb 2897 index2 = root_log_ctx.log_transid % 2;
7237f183 2898 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2899 blk_finish_plug(&plug);
bf89d38f 2900 ret = btrfs_wait_tree_log_extents(log, mark);
50d9aa99 2901 btrfs_wait_logged_extents(trans, log, log_transid);
60d53eb3 2902 wait_log_commit(log_root_tree,
d1433deb 2903 root_log_ctx.log_transid);
7237f183 2904 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2905 if (!ret)
2906 ret = root_log_ctx.log_ret;
7237f183
YZ
2907 goto out;
2908 }
d1433deb 2909 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2910 atomic_set(&log_root_tree->log_commit[index2], 1);
2911
12fcfd22 2912 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 2913 wait_log_commit(log_root_tree,
d1433deb 2914 root_log_ctx.log_transid - 1);
12fcfd22
CM
2915 }
2916
60d53eb3 2917 wait_for_writer(log_root_tree);
7237f183 2918
12fcfd22
CM
2919 /*
2920 * now that we've moved on to the tree of log tree roots,
2921 * check the full commit flag again
2922 */
0b246afa 2923 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 2924 blk_finish_plug(&plug);
bf89d38f 2925 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 2926 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2927 mutex_unlock(&log_root_tree->log_mutex);
2928 ret = -EAGAIN;
2929 goto out_wake_log_root;
2930 }
7237f183 2931
2ff7e61e 2932 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
2933 &log_root_tree->dirty_log_pages,
2934 EXTENT_DIRTY | EXTENT_NEW);
2935 blk_finish_plug(&plug);
79787eaa 2936 if (ret) {
0b246afa 2937 btrfs_set_log_full_commit(fs_info, trans);
66642832 2938 btrfs_abort_transaction(trans, ret);
2ab28f32 2939 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2940 mutex_unlock(&log_root_tree->log_mutex);
2941 goto out_wake_log_root;
2942 }
bf89d38f 2943 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 2944 if (!ret)
bf89d38f
JM
2945 ret = btrfs_wait_tree_log_extents(log_root_tree,
2946 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 2947 if (ret) {
0b246afa 2948 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
2949 btrfs_free_logged_extents(log, log_transid);
2950 mutex_unlock(&log_root_tree->log_mutex);
2951 goto out_wake_log_root;
2952 }
50d9aa99 2953 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2954
0b246afa
JM
2955 btrfs_set_super_log_root(fs_info->super_for_commit,
2956 log_root_tree->node->start);
2957 btrfs_set_super_log_root_level(fs_info->super_for_commit,
2958 btrfs_header_level(log_root_tree->node));
e02119d5 2959
7237f183 2960 log_root_tree->log_transid++;
7237f183
YZ
2961 mutex_unlock(&log_root_tree->log_mutex);
2962
2963 /*
2964 * nobody else is going to jump in and write the the ctree
2965 * super here because the log_commit atomic below is protecting
2966 * us. We must be called with a transaction handle pinning
2967 * the running transaction open, so a full commit can't hop
2968 * in and cause problems either.
2969 */
eece6a9c 2970 ret = write_all_supers(fs_info, 1);
5af3e8cc 2971 if (ret) {
0b246afa 2972 btrfs_set_log_full_commit(fs_info, trans);
66642832 2973 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
2974 goto out_wake_log_root;
2975 }
7237f183 2976
257c62e1
CM
2977 mutex_lock(&root->log_mutex);
2978 if (root->last_log_commit < log_transid)
2979 root->last_log_commit = log_transid;
2980 mutex_unlock(&root->log_mutex);
2981
12fcfd22 2982out_wake_log_root:
570dd450 2983 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
2984 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2985
d1433deb 2986 log_root_tree->log_transid_committed++;
7237f183 2987 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2988 mutex_unlock(&log_root_tree->log_mutex);
2989
33a9eca7
DS
2990 /*
2991 * The barrier before waitqueue_active is implied by mutex_unlock
2992 */
7237f183
YZ
2993 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2994 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2995out:
d1433deb 2996 mutex_lock(&root->log_mutex);
570dd450 2997 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 2998 root->log_transid_committed++;
7237f183 2999 atomic_set(&root->log_commit[index1], 0);
d1433deb 3000 mutex_unlock(&root->log_mutex);
8b050d35 3001
33a9eca7
DS
3002 /*
3003 * The barrier before waitqueue_active is implied by mutex_unlock
3004 */
7237f183
YZ
3005 if (waitqueue_active(&root->log_commit_wait[index1]))
3006 wake_up(&root->log_commit_wait[index1]);
b31eabd8 3007 return ret;
e02119d5
CM
3008}
3009
4a500fd1
YZ
3010static void free_log_tree(struct btrfs_trans_handle *trans,
3011 struct btrfs_root *log)
e02119d5
CM
3012{
3013 int ret;
d0c803c4
CM
3014 u64 start;
3015 u64 end;
e02119d5
CM
3016 struct walk_control wc = {
3017 .free = 1,
3018 .process_func = process_one_buffer
3019 };
3020
681ae509
JB
3021 ret = walk_log_tree(trans, log, &wc);
3022 /* I don't think this can happen but just in case */
3023 if (ret)
66642832 3024 btrfs_abort_transaction(trans, ret);
e02119d5 3025
d397712b 3026 while (1) {
d0c803c4 3027 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
3028 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3029 NULL);
d0c803c4
CM
3030 if (ret)
3031 break;
3032
8cef4e16 3033 clear_extent_bits(&log->dirty_log_pages, start, end,
91166212 3034 EXTENT_DIRTY | EXTENT_NEW);
d0c803c4
CM
3035 }
3036
2ab28f32
JB
3037 /*
3038 * We may have short-circuited the log tree with the full commit logic
3039 * and left ordered extents on our list, so clear these out to keep us
3040 * from leaking inodes and memory.
3041 */
3042 btrfs_free_logged_extents(log, 0);
3043 btrfs_free_logged_extents(log, 1);
3044
7237f183
YZ
3045 free_extent_buffer(log->node);
3046 kfree(log);
4a500fd1
YZ
3047}
3048
3049/*
3050 * free all the extents used by the tree log. This should be called
3051 * at commit time of the full transaction
3052 */
3053int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3054{
3055 if (root->log_root) {
3056 free_log_tree(trans, root->log_root);
3057 root->log_root = NULL;
3058 }
3059 return 0;
3060}
3061
3062int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3063 struct btrfs_fs_info *fs_info)
3064{
3065 if (fs_info->log_root_tree) {
3066 free_log_tree(trans, fs_info->log_root_tree);
3067 fs_info->log_root_tree = NULL;
3068 }
e02119d5
CM
3069 return 0;
3070}
3071
e02119d5
CM
3072/*
3073 * If both a file and directory are logged, and unlinks or renames are
3074 * mixed in, we have a few interesting corners:
3075 *
3076 * create file X in dir Y
3077 * link file X to X.link in dir Y
3078 * fsync file X
3079 * unlink file X but leave X.link
3080 * fsync dir Y
3081 *
3082 * After a crash we would expect only X.link to exist. But file X
3083 * didn't get fsync'd again so the log has back refs for X and X.link.
3084 *
3085 * We solve this by removing directory entries and inode backrefs from the
3086 * log when a file that was logged in the current transaction is
3087 * unlinked. Any later fsync will include the updated log entries, and
3088 * we'll be able to reconstruct the proper directory items from backrefs.
3089 *
3090 * This optimizations allows us to avoid relogging the entire inode
3091 * or the entire directory.
3092 */
3093int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3094 struct btrfs_root *root,
3095 const char *name, int name_len,
49f34d1f 3096 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3097{
3098 struct btrfs_root *log;
3099 struct btrfs_dir_item *di;
3100 struct btrfs_path *path;
3101 int ret;
4a500fd1 3102 int err = 0;
e02119d5 3103 int bytes_del = 0;
49f34d1f 3104 u64 dir_ino = btrfs_ino(dir);
e02119d5 3105
49f34d1f 3106 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3107 return 0;
3108
e02119d5
CM
3109 ret = join_running_log_trans(root);
3110 if (ret)
3111 return 0;
3112
49f34d1f 3113 mutex_lock(&dir->log_mutex);
e02119d5
CM
3114
3115 log = root->log_root;
3116 path = btrfs_alloc_path();
a62f44a5
TI
3117 if (!path) {
3118 err = -ENOMEM;
3119 goto out_unlock;
3120 }
2a29edc6 3121
33345d01 3122 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3123 name, name_len, -1);
4a500fd1
YZ
3124 if (IS_ERR(di)) {
3125 err = PTR_ERR(di);
3126 goto fail;
3127 }
3128 if (di) {
e02119d5
CM
3129 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3130 bytes_del += name_len;
3650860b
JB
3131 if (ret) {
3132 err = ret;
3133 goto fail;
3134 }
e02119d5 3135 }
b3b4aa74 3136 btrfs_release_path(path);
33345d01 3137 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3138 index, name, name_len, -1);
4a500fd1
YZ
3139 if (IS_ERR(di)) {
3140 err = PTR_ERR(di);
3141 goto fail;
3142 }
3143 if (di) {
e02119d5
CM
3144 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3145 bytes_del += name_len;
3650860b
JB
3146 if (ret) {
3147 err = ret;
3148 goto fail;
3149 }
e02119d5
CM
3150 }
3151
3152 /* update the directory size in the log to reflect the names
3153 * we have removed
3154 */
3155 if (bytes_del) {
3156 struct btrfs_key key;
3157
33345d01 3158 key.objectid = dir_ino;
e02119d5
CM
3159 key.offset = 0;
3160 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3161 btrfs_release_path(path);
e02119d5
CM
3162
3163 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3164 if (ret < 0) {
3165 err = ret;
3166 goto fail;
3167 }
e02119d5
CM
3168 if (ret == 0) {
3169 struct btrfs_inode_item *item;
3170 u64 i_size;
3171
3172 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3173 struct btrfs_inode_item);
3174 i_size = btrfs_inode_size(path->nodes[0], item);
3175 if (i_size > bytes_del)
3176 i_size -= bytes_del;
3177 else
3178 i_size = 0;
3179 btrfs_set_inode_size(path->nodes[0], item, i_size);
3180 btrfs_mark_buffer_dirty(path->nodes[0]);
3181 } else
3182 ret = 0;
b3b4aa74 3183 btrfs_release_path(path);
e02119d5 3184 }
4a500fd1 3185fail:
e02119d5 3186 btrfs_free_path(path);
a62f44a5 3187out_unlock:
49f34d1f 3188 mutex_unlock(&dir->log_mutex);
4a500fd1 3189 if (ret == -ENOSPC) {
995946dd 3190 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3191 ret = 0;
79787eaa 3192 } else if (ret < 0)
66642832 3193 btrfs_abort_transaction(trans, ret);
79787eaa 3194
12fcfd22 3195 btrfs_end_log_trans(root);
e02119d5 3196
411fc6bc 3197 return err;
e02119d5
CM
3198}
3199
3200/* see comments for btrfs_del_dir_entries_in_log */
3201int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3202 struct btrfs_root *root,
3203 const char *name, int name_len,
a491abb2 3204 struct btrfs_inode *inode, u64 dirid)
e02119d5 3205{
0b246afa 3206 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3207 struct btrfs_root *log;
3208 u64 index;
3209 int ret;
3210
a491abb2 3211 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3212 return 0;
3213
e02119d5
CM
3214 ret = join_running_log_trans(root);
3215 if (ret)
3216 return 0;
3217 log = root->log_root;
a491abb2 3218 mutex_lock(&inode->log_mutex);
e02119d5 3219
a491abb2 3220 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3221 dirid, &index);
a491abb2 3222 mutex_unlock(&inode->log_mutex);
4a500fd1 3223 if (ret == -ENOSPC) {
0b246afa 3224 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3225 ret = 0;
79787eaa 3226 } else if (ret < 0 && ret != -ENOENT)
66642832 3227 btrfs_abort_transaction(trans, ret);
12fcfd22 3228 btrfs_end_log_trans(root);
e02119d5 3229
e02119d5
CM
3230 return ret;
3231}
3232
3233/*
3234 * creates a range item in the log for 'dirid'. first_offset and
3235 * last_offset tell us which parts of the key space the log should
3236 * be considered authoritative for.
3237 */
3238static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3239 struct btrfs_root *log,
3240 struct btrfs_path *path,
3241 int key_type, u64 dirid,
3242 u64 first_offset, u64 last_offset)
3243{
3244 int ret;
3245 struct btrfs_key key;
3246 struct btrfs_dir_log_item *item;
3247
3248 key.objectid = dirid;
3249 key.offset = first_offset;
3250 if (key_type == BTRFS_DIR_ITEM_KEY)
3251 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3252 else
3253 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3254 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3255 if (ret)
3256 return ret;
e02119d5
CM
3257
3258 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3259 struct btrfs_dir_log_item);
3260 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3261 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3262 btrfs_release_path(path);
e02119d5
CM
3263 return 0;
3264}
3265
3266/*
3267 * log all the items included in the current transaction for a given
3268 * directory. This also creates the range items in the log tree required
3269 * to replay anything deleted before the fsync
3270 */
3271static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3272 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3273 struct btrfs_path *path,
3274 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3275 struct btrfs_log_ctx *ctx,
e02119d5
CM
3276 u64 min_offset, u64 *last_offset_ret)
3277{
3278 struct btrfs_key min_key;
e02119d5
CM
3279 struct btrfs_root *log = root->log_root;
3280 struct extent_buffer *src;
4a500fd1 3281 int err = 0;
e02119d5
CM
3282 int ret;
3283 int i;
3284 int nritems;
3285 u64 first_offset = min_offset;
3286 u64 last_offset = (u64)-1;
684a5773 3287 u64 ino = btrfs_ino(inode);
e02119d5
CM
3288
3289 log = root->log_root;
e02119d5 3290
33345d01 3291 min_key.objectid = ino;
e02119d5
CM
3292 min_key.type = key_type;
3293 min_key.offset = min_offset;
3294
6174d3cb 3295 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3296
3297 /*
3298 * we didn't find anything from this transaction, see if there
3299 * is anything at all
3300 */
33345d01
LZ
3301 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3302 min_key.objectid = ino;
e02119d5
CM
3303 min_key.type = key_type;
3304 min_key.offset = (u64)-1;
b3b4aa74 3305 btrfs_release_path(path);
e02119d5
CM
3306 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3307 if (ret < 0) {
b3b4aa74 3308 btrfs_release_path(path);
e02119d5
CM
3309 return ret;
3310 }
33345d01 3311 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3312
3313 /* if ret == 0 there are items for this type,
3314 * create a range to tell us the last key of this type.
3315 * otherwise, there are no items in this directory after
3316 * *min_offset, and we create a range to indicate that.
3317 */
3318 if (ret == 0) {
3319 struct btrfs_key tmp;
3320 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3321 path->slots[0]);
d397712b 3322 if (key_type == tmp.type)
e02119d5 3323 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3324 }
3325 goto done;
3326 }
3327
3328 /* go backward to find any previous key */
33345d01 3329 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3330 if (ret == 0) {
3331 struct btrfs_key tmp;
3332 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3333 if (key_type == tmp.type) {
3334 first_offset = tmp.offset;
3335 ret = overwrite_item(trans, log, dst_path,
3336 path->nodes[0], path->slots[0],
3337 &tmp);
4a500fd1
YZ
3338 if (ret) {
3339 err = ret;
3340 goto done;
3341 }
e02119d5
CM
3342 }
3343 }
b3b4aa74 3344 btrfs_release_path(path);
e02119d5
CM
3345
3346 /* find the first key from this transaction again */
3347 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3348 if (WARN_ON(ret != 0))
e02119d5 3349 goto done;
e02119d5
CM
3350
3351 /*
3352 * we have a block from this transaction, log every item in it
3353 * from our directory
3354 */
d397712b 3355 while (1) {
e02119d5
CM
3356 struct btrfs_key tmp;
3357 src = path->nodes[0];
3358 nritems = btrfs_header_nritems(src);
3359 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3360 struct btrfs_dir_item *di;
3361
e02119d5
CM
3362 btrfs_item_key_to_cpu(src, &min_key, i);
3363
33345d01 3364 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3365 goto done;
3366 ret = overwrite_item(trans, log, dst_path, src, i,
3367 &min_key);
4a500fd1
YZ
3368 if (ret) {
3369 err = ret;
3370 goto done;
3371 }
2f2ff0ee
FM
3372
3373 /*
3374 * We must make sure that when we log a directory entry,
3375 * the corresponding inode, after log replay, has a
3376 * matching link count. For example:
3377 *
3378 * touch foo
3379 * mkdir mydir
3380 * sync
3381 * ln foo mydir/bar
3382 * xfs_io -c "fsync" mydir
3383 * <crash>
3384 * <mount fs and log replay>
3385 *
3386 * Would result in a fsync log that when replayed, our
3387 * file inode would have a link count of 1, but we get
3388 * two directory entries pointing to the same inode.
3389 * After removing one of the names, it would not be
3390 * possible to remove the other name, which resulted
3391 * always in stale file handle errors, and would not
3392 * be possible to rmdir the parent directory, since
3393 * its i_size could never decrement to the value
3394 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3395 */
3396 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3397 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3398 if (ctx &&
3399 (btrfs_dir_transid(src, di) == trans->transid ||
3400 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3401 tmp.type != BTRFS_ROOT_ITEM_KEY)
3402 ctx->log_new_dentries = true;
e02119d5
CM
3403 }
3404 path->slots[0] = nritems;
3405
3406 /*
3407 * look ahead to the next item and see if it is also
3408 * from this directory and from this transaction
3409 */
3410 ret = btrfs_next_leaf(root, path);
3411 if (ret == 1) {
3412 last_offset = (u64)-1;
3413 goto done;
3414 }
3415 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3416 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3417 last_offset = (u64)-1;
3418 goto done;
3419 }
3420 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3421 ret = overwrite_item(trans, log, dst_path,
3422 path->nodes[0], path->slots[0],
3423 &tmp);
4a500fd1
YZ
3424 if (ret)
3425 err = ret;
3426 else
3427 last_offset = tmp.offset;
e02119d5
CM
3428 goto done;
3429 }
3430 }
3431done:
b3b4aa74
DS
3432 btrfs_release_path(path);
3433 btrfs_release_path(dst_path);
e02119d5 3434
4a500fd1
YZ
3435 if (err == 0) {
3436 *last_offset_ret = last_offset;
3437 /*
3438 * insert the log range keys to indicate where the log
3439 * is valid
3440 */
3441 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3442 ino, first_offset, last_offset);
4a500fd1
YZ
3443 if (ret)
3444 err = ret;
3445 }
3446 return err;
e02119d5
CM
3447}
3448
3449/*
3450 * logging directories is very similar to logging inodes, We find all the items
3451 * from the current transaction and write them to the log.
3452 *
3453 * The recovery code scans the directory in the subvolume, and if it finds a
3454 * key in the range logged that is not present in the log tree, then it means
3455 * that dir entry was unlinked during the transaction.
3456 *
3457 * In order for that scan to work, we must include one key smaller than
3458 * the smallest logged by this transaction and one key larger than the largest
3459 * key logged by this transaction.
3460 */
3461static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3462 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3463 struct btrfs_path *path,
2f2ff0ee
FM
3464 struct btrfs_path *dst_path,
3465 struct btrfs_log_ctx *ctx)
e02119d5
CM
3466{
3467 u64 min_key;
3468 u64 max_key;
3469 int ret;
3470 int key_type = BTRFS_DIR_ITEM_KEY;
3471
3472again:
3473 min_key = 0;
3474 max_key = 0;
d397712b 3475 while (1) {
dbf39ea4
NB
3476 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3477 ctx, min_key, &max_key);
4a500fd1
YZ
3478 if (ret)
3479 return ret;
e02119d5
CM
3480 if (max_key == (u64)-1)
3481 break;
3482 min_key = max_key + 1;
3483 }
3484
3485 if (key_type == BTRFS_DIR_ITEM_KEY) {
3486 key_type = BTRFS_DIR_INDEX_KEY;
3487 goto again;
3488 }
3489 return 0;
3490}
3491
3492/*
3493 * a helper function to drop items from the log before we relog an
3494 * inode. max_key_type indicates the highest item type to remove.
3495 * This cannot be run for file data extents because it does not
3496 * free the extents they point to.
3497 */
3498static int drop_objectid_items(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *log,
3500 struct btrfs_path *path,
3501 u64 objectid, int max_key_type)
3502{
3503 int ret;
3504 struct btrfs_key key;
3505 struct btrfs_key found_key;
18ec90d6 3506 int start_slot;
e02119d5
CM
3507
3508 key.objectid = objectid;
3509 key.type = max_key_type;
3510 key.offset = (u64)-1;
3511
d397712b 3512 while (1) {
e02119d5 3513 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3514 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3515 if (ret < 0)
e02119d5
CM
3516 break;
3517
3518 if (path->slots[0] == 0)
3519 break;
3520
3521 path->slots[0]--;
3522 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3523 path->slots[0]);
3524
3525 if (found_key.objectid != objectid)
3526 break;
3527
18ec90d6
JB
3528 found_key.offset = 0;
3529 found_key.type = 0;
3530 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3531 &start_slot);
3532
3533 ret = btrfs_del_items(trans, log, path, start_slot,
3534 path->slots[0] - start_slot + 1);
3535 /*
3536 * If start slot isn't 0 then we don't need to re-search, we've
3537 * found the last guy with the objectid in this tree.
3538 */
3539 if (ret || start_slot != 0)
65a246c5 3540 break;
b3b4aa74 3541 btrfs_release_path(path);
e02119d5 3542 }
b3b4aa74 3543 btrfs_release_path(path);
5bdbeb21
JB
3544 if (ret > 0)
3545 ret = 0;
4a500fd1 3546 return ret;
e02119d5
CM
3547}
3548
94edf4ae
JB
3549static void fill_inode_item(struct btrfs_trans_handle *trans,
3550 struct extent_buffer *leaf,
3551 struct btrfs_inode_item *item,
1a4bcf47
FM
3552 struct inode *inode, int log_inode_only,
3553 u64 logged_isize)
94edf4ae 3554{
0b1c6cca
JB
3555 struct btrfs_map_token token;
3556
3557 btrfs_init_map_token(&token);
94edf4ae
JB
3558
3559 if (log_inode_only) {
3560 /* set the generation to zero so the recover code
3561 * can tell the difference between an logging
3562 * just to say 'this inode exists' and a logging
3563 * to say 'update this inode with these values'
3564 */
0b1c6cca 3565 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3566 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3567 } else {
0b1c6cca
JB
3568 btrfs_set_token_inode_generation(leaf, item,
3569 BTRFS_I(inode)->generation,
3570 &token);
3571 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3572 }
3573
3574 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3575 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3576 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3577 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3578
a937b979 3579 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3580 inode->i_atime.tv_sec, &token);
a937b979 3581 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3582 inode->i_atime.tv_nsec, &token);
3583
a937b979 3584 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3585 inode->i_mtime.tv_sec, &token);
a937b979 3586 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3587 inode->i_mtime.tv_nsec, &token);
3588
a937b979 3589 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3590 inode->i_ctime.tv_sec, &token);
a937b979 3591 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3592 inode->i_ctime.tv_nsec, &token);
3593
3594 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3595 &token);
3596
3597 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3598 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3599 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3600 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3601 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3602}
3603
a95249b3
JB
3604static int log_inode_item(struct btrfs_trans_handle *trans,
3605 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3606 struct btrfs_inode *inode)
a95249b3
JB
3607{
3608 struct btrfs_inode_item *inode_item;
a95249b3
JB
3609 int ret;
3610
efd0c405 3611 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3612 &inode->location, sizeof(*inode_item));
a95249b3
JB
3613 if (ret && ret != -EEXIST)
3614 return ret;
3615 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3616 struct btrfs_inode_item);
6d889a3b
NB
3617 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3618 0, 0);
a95249b3
JB
3619 btrfs_release_path(path);
3620 return 0;
3621}
3622
31ff1cd2 3623static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3624 struct btrfs_inode *inode,
31ff1cd2 3625 struct btrfs_path *dst_path,
16e7549f 3626 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3627 int start_slot, int nr, int inode_only,
3628 u64 logged_isize)
31ff1cd2 3629{
44d70e19 3630 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
31ff1cd2
CM
3631 unsigned long src_offset;
3632 unsigned long dst_offset;
44d70e19 3633 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3634 struct btrfs_file_extent_item *extent;
3635 struct btrfs_inode_item *inode_item;
16e7549f
JB
3636 struct extent_buffer *src = src_path->nodes[0];
3637 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3638 int ret;
3639 struct btrfs_key *ins_keys;
3640 u32 *ins_sizes;
3641 char *ins_data;
3642 int i;
d20f7043 3643 struct list_head ordered_sums;
44d70e19 3644 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3645 bool has_extents = false;
74121f7c 3646 bool need_find_last_extent = true;
16e7549f 3647 bool done = false;
d20f7043
CM
3648
3649 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3650
3651 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3652 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3653 if (!ins_data)
3654 return -ENOMEM;
3655
16e7549f
JB
3656 first_key.objectid = (u64)-1;
3657
31ff1cd2
CM
3658 ins_sizes = (u32 *)ins_data;
3659 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3660
3661 for (i = 0; i < nr; i++) {
3662 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3663 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3664 }
3665 ret = btrfs_insert_empty_items(trans, log, dst_path,
3666 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3667 if (ret) {
3668 kfree(ins_data);
3669 return ret;
3670 }
31ff1cd2 3671
5d4f98a2 3672 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3673 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3674 dst_path->slots[0]);
3675
3676 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3677
16e7549f
JB
3678 if ((i == (nr - 1)))
3679 last_key = ins_keys[i];
3680
94edf4ae 3681 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3682 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3683 dst_path->slots[0],
3684 struct btrfs_inode_item);
94edf4ae 3685 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3686 &inode->vfs_inode,
3687 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3688 logged_isize);
94edf4ae
JB
3689 } else {
3690 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3691 src_offset, ins_sizes[i]);
31ff1cd2 3692 }
94edf4ae 3693
16e7549f
JB
3694 /*
3695 * We set need_find_last_extent here in case we know we were
3696 * processing other items and then walk into the first extent in
3697 * the inode. If we don't hit an extent then nothing changes,
3698 * we'll do the last search the next time around.
3699 */
3700 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3701 has_extents = true;
74121f7c 3702 if (first_key.objectid == (u64)-1)
16e7549f
JB
3703 first_key = ins_keys[i];
3704 } else {
3705 need_find_last_extent = false;
3706 }
3707
31ff1cd2
CM
3708 /* take a reference on file data extents so that truncates
3709 * or deletes of this inode don't have to relog the inode
3710 * again
3711 */
962a298f 3712 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3713 !skip_csum) {
31ff1cd2
CM
3714 int found_type;
3715 extent = btrfs_item_ptr(src, start_slot + i,
3716 struct btrfs_file_extent_item);
3717
8e531cdf 3718 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3719 continue;
3720
31ff1cd2 3721 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3722 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3723 u64 ds, dl, cs, cl;
3724 ds = btrfs_file_extent_disk_bytenr(src,
3725 extent);
3726 /* ds == 0 is a hole */
3727 if (ds == 0)
3728 continue;
3729
3730 dl = btrfs_file_extent_disk_num_bytes(src,
3731 extent);
3732 cs = btrfs_file_extent_offset(src, extent);
3733 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3734 extent);
580afd76
CM
3735 if (btrfs_file_extent_compression(src,
3736 extent)) {
3737 cs = 0;
3738 cl = dl;
3739 }
5d4f98a2
YZ
3740
3741 ret = btrfs_lookup_csums_range(
0b246afa 3742 fs_info->csum_root,
5d4f98a2 3743 ds + cs, ds + cs + cl - 1,
a2de733c 3744 &ordered_sums, 0);
3650860b
JB
3745 if (ret) {
3746 btrfs_release_path(dst_path);
3747 kfree(ins_data);
3748 return ret;
3749 }
31ff1cd2
CM
3750 }
3751 }
31ff1cd2
CM
3752 }
3753
3754 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3755 btrfs_release_path(dst_path);
31ff1cd2 3756 kfree(ins_data);
d20f7043
CM
3757
3758 /*
3759 * we have to do this after the loop above to avoid changing the
3760 * log tree while trying to change the log tree.
3761 */
4a500fd1 3762 ret = 0;
d397712b 3763 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3764 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3765 struct btrfs_ordered_sum,
3766 list);
4a500fd1
YZ
3767 if (!ret)
3768 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3769 list_del(&sums->list);
3770 kfree(sums);
3771 }
16e7549f
JB
3772
3773 if (!has_extents)
3774 return ret;
3775
74121f7c
FM
3776 if (need_find_last_extent && *last_extent == first_key.offset) {
3777 /*
3778 * We don't have any leafs between our current one and the one
3779 * we processed before that can have file extent items for our
3780 * inode (and have a generation number smaller than our current
3781 * transaction id).
3782 */
3783 need_find_last_extent = false;
3784 }
3785
16e7549f
JB
3786 /*
3787 * Because we use btrfs_search_forward we could skip leaves that were
3788 * not modified and then assume *last_extent is valid when it really
3789 * isn't. So back up to the previous leaf and read the end of the last
3790 * extent before we go and fill in holes.
3791 */
3792 if (need_find_last_extent) {
3793 u64 len;
3794
44d70e19 3795 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
3796 if (ret < 0)
3797 return ret;
3798 if (ret)
3799 goto fill_holes;
3800 if (src_path->slots[0])
3801 src_path->slots[0]--;
3802 src = src_path->nodes[0];
3803 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 3804 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3805 key.type != BTRFS_EXTENT_DATA_KEY)
3806 goto fill_holes;
3807 extent = btrfs_item_ptr(src, src_path->slots[0],
3808 struct btrfs_file_extent_item);
3809 if (btrfs_file_extent_type(src, extent) ==
3810 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3811 len = btrfs_file_extent_inline_len(src,
3812 src_path->slots[0],
3813 extent);
16e7549f 3814 *last_extent = ALIGN(key.offset + len,
0b246afa 3815 fs_info->sectorsize);
16e7549f
JB
3816 } else {
3817 len = btrfs_file_extent_num_bytes(src, extent);
3818 *last_extent = key.offset + len;
3819 }
3820 }
3821fill_holes:
3822 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3823 * things could have happened
3824 *
3825 * 1) A merge could have happened, so we could currently be on a leaf
3826 * that holds what we were copying in the first place.
3827 * 2) A split could have happened, and now not all of the items we want
3828 * are on the same leaf.
3829 *
3830 * So we need to adjust how we search for holes, we need to drop the
3831 * path and re-search for the first extent key we found, and then walk
3832 * forward until we hit the last one we copied.
3833 */
3834 if (need_find_last_extent) {
3835 /* btrfs_prev_leaf could return 1 without releasing the path */
3836 btrfs_release_path(src_path);
f85b7379
DS
3837 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3838 src_path, 0, 0);
16e7549f
JB
3839 if (ret < 0)
3840 return ret;
3841 ASSERT(ret == 0);
3842 src = src_path->nodes[0];
3843 i = src_path->slots[0];
3844 } else {
3845 i = start_slot;
3846 }
3847
3848 /*
3849 * Ok so here we need to go through and fill in any holes we may have
3850 * to make sure that holes are punched for those areas in case they had
3851 * extents previously.
3852 */
3853 while (!done) {
3854 u64 offset, len;
3855 u64 extent_end;
3856
3857 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 3858 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
3859 if (ret < 0)
3860 return ret;
3861 ASSERT(ret == 0);
3862 src = src_path->nodes[0];
3863 i = 0;
3864 }
3865
3866 btrfs_item_key_to_cpu(src, &key, i);
3867 if (!btrfs_comp_cpu_keys(&key, &last_key))
3868 done = true;
44d70e19 3869 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3870 key.type != BTRFS_EXTENT_DATA_KEY) {
3871 i++;
3872 continue;
3873 }
3874 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3875 if (btrfs_file_extent_type(src, extent) ==
3876 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3877 len = btrfs_file_extent_inline_len(src, i, extent);
da17066c 3878 extent_end = ALIGN(key.offset + len,
0b246afa 3879 fs_info->sectorsize);
16e7549f
JB
3880 } else {
3881 len = btrfs_file_extent_num_bytes(src, extent);
3882 extent_end = key.offset + len;
3883 }
3884 i++;
3885
3886 if (*last_extent == key.offset) {
3887 *last_extent = extent_end;
3888 continue;
3889 }
3890 offset = *last_extent;
3891 len = key.offset - *last_extent;
44d70e19 3892 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 3893 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
3894 if (ret)
3895 break;
74121f7c 3896 *last_extent = extent_end;
16e7549f
JB
3897 }
3898 /*
3899 * Need to let the callers know we dropped the path so they should
3900 * re-search.
3901 */
3902 if (!ret && need_find_last_extent)
3903 ret = 1;
4a500fd1 3904 return ret;
31ff1cd2
CM
3905}
3906
5dc562c5
JB
3907static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3908{
3909 struct extent_map *em1, *em2;
3910
3911 em1 = list_entry(a, struct extent_map, list);
3912 em2 = list_entry(b, struct extent_map, list);
3913
3914 if (em1->start < em2->start)
3915 return -1;
3916 else if (em1->start > em2->start)
3917 return 1;
3918 return 0;
3919}
3920
8407f553
FM
3921static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3922 struct inode *inode,
3923 struct btrfs_root *root,
3924 const struct extent_map *em,
3925 const struct list_head *logged_list,
3926 bool *ordered_io_error)
5dc562c5 3927{
0b246afa 3928 struct btrfs_fs_info *fs_info = root->fs_info;
2ab28f32 3929 struct btrfs_ordered_extent *ordered;
8407f553 3930 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3931 u64 mod_start = em->mod_start;
3932 u64 mod_len = em->mod_len;
8407f553 3933 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3934 u64 csum_offset;
3935 u64 csum_len;
8407f553
FM
3936 LIST_HEAD(ordered_sums);
3937 int ret = 0;
0aa4a17d 3938
8407f553 3939 *ordered_io_error = false;
0aa4a17d 3940
8407f553
FM
3941 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3942 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3943 return 0;
5dc562c5 3944
2ab28f32 3945 /*
8407f553
FM
3946 * Wait far any ordered extent that covers our extent map. If it
3947 * finishes without an error, first check and see if our csums are on
3948 * our outstanding ordered extents.
2ab28f32 3949 */
827463c4 3950 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3951 struct btrfs_ordered_sum *sum;
3952
3953 if (!mod_len)
3954 break;
3955
2ab28f32
JB
3956 if (ordered->file_offset + ordered->len <= mod_start ||
3957 mod_start + mod_len <= ordered->file_offset)
3958 continue;
3959
8407f553
FM
3960 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3961 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3962 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3963 const u64 start = ordered->file_offset;
3964 const u64 end = ordered->file_offset + ordered->len - 1;
3965
3966 WARN_ON(ordered->inode != inode);
3967 filemap_fdatawrite_range(inode->i_mapping, start, end);
3968 }
3969
3970 wait_event(ordered->wait,
3971 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3972 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3973
3974 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3975 /*
3976 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3977 * i_mapping flags, so that the next fsync won't get
3978 * an outdated io error too.
3979 */
f0312210 3980 filemap_check_errors(inode->i_mapping);
8407f553
FM
3981 *ordered_io_error = true;
3982 break;
3983 }
2ab28f32
JB
3984 /*
3985 * We are going to copy all the csums on this ordered extent, so
3986 * go ahead and adjust mod_start and mod_len in case this
3987 * ordered extent has already been logged.
3988 */
3989 if (ordered->file_offset > mod_start) {
3990 if (ordered->file_offset + ordered->len >=
3991 mod_start + mod_len)
3992 mod_len = ordered->file_offset - mod_start;
3993 /*
3994 * If we have this case
3995 *
3996 * |--------- logged extent ---------|
3997 * |----- ordered extent ----|
3998 *
3999 * Just don't mess with mod_start and mod_len, we'll
4000 * just end up logging more csums than we need and it
4001 * will be ok.
4002 */
4003 } else {
4004 if (ordered->file_offset + ordered->len <
4005 mod_start + mod_len) {
4006 mod_len = (mod_start + mod_len) -
4007 (ordered->file_offset + ordered->len);
4008 mod_start = ordered->file_offset +
4009 ordered->len;
4010 } else {
4011 mod_len = 0;
4012 }
4013 }
4014
8407f553
FM
4015 if (skip_csum)
4016 continue;
4017
2ab28f32
JB
4018 /*
4019 * To keep us from looping for the above case of an ordered
4020 * extent that falls inside of the logged extent.
4021 */
4022 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4023 &ordered->flags))
4024 continue;
2ab28f32 4025
2ab28f32
JB
4026 list_for_each_entry(sum, &ordered->list, list) {
4027 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 4028 if (ret)
8407f553 4029 break;
2ab28f32 4030 }
2ab28f32 4031 }
2ab28f32 4032
8407f553 4033 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
4034 return ret;
4035
488111aa
FDBM
4036 if (em->compress_type) {
4037 csum_offset = 0;
8407f553 4038 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
4039 } else {
4040 csum_offset = mod_start - em->start;
4041 csum_len = mod_len;
4042 }
2ab28f32 4043
70c8a91c 4044 /* block start is already adjusted for the file extent offset. */
0b246afa 4045 ret = btrfs_lookup_csums_range(fs_info->csum_root,
70c8a91c
JB
4046 em->block_start + csum_offset,
4047 em->block_start + csum_offset +
4048 csum_len - 1, &ordered_sums, 0);
4049 if (ret)
4050 return ret;
5dc562c5 4051
70c8a91c
JB
4052 while (!list_empty(&ordered_sums)) {
4053 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4054 struct btrfs_ordered_sum,
4055 list);
4056 if (!ret)
4057 ret = btrfs_csum_file_blocks(trans, log, sums);
4058 list_del(&sums->list);
4059 kfree(sums);
5dc562c5
JB
4060 }
4061
70c8a91c 4062 return ret;
5dc562c5
JB
4063}
4064
8407f553 4065static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4066 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4067 const struct extent_map *em,
4068 struct btrfs_path *path,
4069 const struct list_head *logged_list,
4070 struct btrfs_log_ctx *ctx)
4071{
4072 struct btrfs_root *log = root->log_root;
4073 struct btrfs_file_extent_item *fi;
4074 struct extent_buffer *leaf;
4075 struct btrfs_map_token token;
4076 struct btrfs_key key;
4077 u64 extent_offset = em->start - em->orig_start;
4078 u64 block_len;
4079 int ret;
4080 int extent_inserted = 0;
4081 bool ordered_io_err = false;
4082
f85b7379
DS
4083 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4084 logged_list, &ordered_io_err);
8407f553
FM
4085 if (ret)
4086 return ret;
4087
4088 if (ordered_io_err) {
4089 ctx->io_err = -EIO;
4090 return 0;
4091 }
4092
4093 btrfs_init_map_token(&token);
4094
9d122629 4095 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4096 em->start + em->len, NULL, 0, 1,
4097 sizeof(*fi), &extent_inserted);
4098 if (ret)
4099 return ret;
4100
4101 if (!extent_inserted) {
9d122629 4102 key.objectid = btrfs_ino(inode);
8407f553
FM
4103 key.type = BTRFS_EXTENT_DATA_KEY;
4104 key.offset = em->start;
4105
4106 ret = btrfs_insert_empty_item(trans, log, path, &key,
4107 sizeof(*fi));
4108 if (ret)
4109 return ret;
4110 }
4111 leaf = path->nodes[0];
4112 fi = btrfs_item_ptr(leaf, path->slots[0],
4113 struct btrfs_file_extent_item);
4114
50d9aa99 4115 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4116 &token);
4117 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4118 btrfs_set_token_file_extent_type(leaf, fi,
4119 BTRFS_FILE_EXTENT_PREALLOC,
4120 &token);
4121 else
4122 btrfs_set_token_file_extent_type(leaf, fi,
4123 BTRFS_FILE_EXTENT_REG,
4124 &token);
4125
4126 block_len = max(em->block_len, em->orig_block_len);
4127 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4128 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4129 em->block_start,
4130 &token);
4131 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4132 &token);
4133 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4134 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4135 em->block_start -
4136 extent_offset, &token);
4137 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4138 &token);
4139 } else {
4140 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4141 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4142 &token);
4143 }
4144
4145 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4146 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4147 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4148 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4149 &token);
4150 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4151 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4152 btrfs_mark_buffer_dirty(leaf);
4153
4154 btrfs_release_path(path);
4155
4156 return ret;
4157}
4158
5dc562c5
JB
4159static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4160 struct btrfs_root *root,
9d122629 4161 struct btrfs_inode *inode,
827463c4 4162 struct btrfs_path *path,
8407f553 4163 struct list_head *logged_list,
de0ee0ed
FM
4164 struct btrfs_log_ctx *ctx,
4165 const u64 start,
4166 const u64 end)
5dc562c5 4167{
5dc562c5
JB
4168 struct extent_map *em, *n;
4169 struct list_head extents;
9d122629 4170 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4171 u64 test_gen;
4172 int ret = 0;
2ab28f32 4173 int num = 0;
5dc562c5
JB
4174
4175 INIT_LIST_HEAD(&extents);
4176
9d122629 4177 down_write(&inode->dio_sem);
5dc562c5
JB
4178 write_lock(&tree->lock);
4179 test_gen = root->fs_info->last_trans_committed;
4180
4181 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4182 list_del_init(&em->list);
2ab28f32
JB
4183
4184 /*
4185 * Just an arbitrary number, this can be really CPU intensive
4186 * once we start getting a lot of extents, and really once we
4187 * have a bunch of extents we just want to commit since it will
4188 * be faster.
4189 */
4190 if (++num > 32768) {
4191 list_del_init(&tree->modified_extents);
4192 ret = -EFBIG;
4193 goto process;
4194 }
4195
5dc562c5
JB
4196 if (em->generation <= test_gen)
4197 continue;
ff44c6e3
JB
4198 /* Need a ref to keep it from getting evicted from cache */
4199 atomic_inc(&em->refs);
4200 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4201 list_add_tail(&em->list, &extents);
2ab28f32 4202 num++;
5dc562c5
JB
4203 }
4204
4205 list_sort(NULL, &extents, extent_cmp);
9d122629 4206 btrfs_get_logged_extents(inode, logged_list, start, end);
de0ee0ed 4207 /*
5f9a8a51
FM
4208 * Some ordered extents started by fsync might have completed
4209 * before we could collect them into the list logged_list, which
4210 * means they're gone, not in our logged_list nor in the inode's
4211 * ordered tree. We want the application/user space to know an
4212 * error happened while attempting to persist file data so that
4213 * it can take proper action. If such error happened, we leave
4214 * without writing to the log tree and the fsync must report the
4215 * file data write error and not commit the current transaction.
de0ee0ed 4216 */
9d122629 4217 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
5f9a8a51
FM
4218 if (ret)
4219 ctx->io_err = ret;
2ab28f32 4220process:
5dc562c5
JB
4221 while (!list_empty(&extents)) {
4222 em = list_entry(extents.next, struct extent_map, list);
4223
4224 list_del_init(&em->list);
4225
4226 /*
4227 * If we had an error we just need to delete everybody from our
4228 * private list.
4229 */
ff44c6e3 4230 if (ret) {
201a9038 4231 clear_em_logging(tree, em);
ff44c6e3 4232 free_extent_map(em);
5dc562c5 4233 continue;
ff44c6e3
JB
4234 }
4235
4236 write_unlock(&tree->lock);
5dc562c5 4237
8407f553
FM
4238 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4239 ctx);
ff44c6e3 4240 write_lock(&tree->lock);
201a9038
JB
4241 clear_em_logging(tree, em);
4242 free_extent_map(em);
5dc562c5 4243 }
ff44c6e3
JB
4244 WARN_ON(!list_empty(&extents));
4245 write_unlock(&tree->lock);
9d122629 4246 up_write(&inode->dio_sem);
5dc562c5 4247
5dc562c5 4248 btrfs_release_path(path);
5dc562c5
JB
4249 return ret;
4250}
4251
481b01c0 4252static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4253 struct btrfs_path *path, u64 *size_ret)
4254{
4255 struct btrfs_key key;
4256 int ret;
4257
481b01c0 4258 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4259 key.type = BTRFS_INODE_ITEM_KEY;
4260 key.offset = 0;
4261
4262 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4263 if (ret < 0) {
4264 return ret;
4265 } else if (ret > 0) {
2f2ff0ee 4266 *size_ret = 0;
1a4bcf47
FM
4267 } else {
4268 struct btrfs_inode_item *item;
4269
4270 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4271 struct btrfs_inode_item);
4272 *size_ret = btrfs_inode_size(path->nodes[0], item);
4273 }
4274
4275 btrfs_release_path(path);
4276 return 0;
4277}
4278
36283bf7
FM
4279/*
4280 * At the moment we always log all xattrs. This is to figure out at log replay
4281 * time which xattrs must have their deletion replayed. If a xattr is missing
4282 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4283 * because if a xattr is deleted, the inode is fsynced and a power failure
4284 * happens, causing the log to be replayed the next time the fs is mounted,
4285 * we want the xattr to not exist anymore (same behaviour as other filesystems
4286 * with a journal, ext3/4, xfs, f2fs, etc).
4287 */
4288static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4289 struct btrfs_root *root,
1a93c36a 4290 struct btrfs_inode *inode,
36283bf7
FM
4291 struct btrfs_path *path,
4292 struct btrfs_path *dst_path)
4293{
4294 int ret;
4295 struct btrfs_key key;
1a93c36a 4296 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4297 int ins_nr = 0;
4298 int start_slot = 0;
4299
4300 key.objectid = ino;
4301 key.type = BTRFS_XATTR_ITEM_KEY;
4302 key.offset = 0;
4303
4304 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4305 if (ret < 0)
4306 return ret;
4307
4308 while (true) {
4309 int slot = path->slots[0];
4310 struct extent_buffer *leaf = path->nodes[0];
4311 int nritems = btrfs_header_nritems(leaf);
4312
4313 if (slot >= nritems) {
4314 if (ins_nr > 0) {
4315 u64 last_extent = 0;
4316
1a93c36a 4317 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4318 &last_extent, start_slot,
4319 ins_nr, 1, 0);
4320 /* can't be 1, extent items aren't processed */
4321 ASSERT(ret <= 0);
4322 if (ret < 0)
4323 return ret;
4324 ins_nr = 0;
4325 }
4326 ret = btrfs_next_leaf(root, path);
4327 if (ret < 0)
4328 return ret;
4329 else if (ret > 0)
4330 break;
4331 continue;
4332 }
4333
4334 btrfs_item_key_to_cpu(leaf, &key, slot);
4335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4336 break;
4337
4338 if (ins_nr == 0)
4339 start_slot = slot;
4340 ins_nr++;
4341 path->slots[0]++;
4342 cond_resched();
4343 }
4344 if (ins_nr > 0) {
4345 u64 last_extent = 0;
4346
1a93c36a 4347 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4348 &last_extent, start_slot,
4349 ins_nr, 1, 0);
4350 /* can't be 1, extent items aren't processed */
4351 ASSERT(ret <= 0);
4352 if (ret < 0)
4353 return ret;
4354 }
4355
4356 return 0;
4357}
4358
a89ca6f2
FM
4359/*
4360 * If the no holes feature is enabled we need to make sure any hole between the
4361 * last extent and the i_size of our inode is explicitly marked in the log. This
4362 * is to make sure that doing something like:
4363 *
4364 * 1) create file with 128Kb of data
4365 * 2) truncate file to 64Kb
4366 * 3) truncate file to 256Kb
4367 * 4) fsync file
4368 * 5) <crash/power failure>
4369 * 6) mount fs and trigger log replay
4370 *
4371 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4372 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4373 * file correspond to a hole. The presence of explicit holes in a log tree is
4374 * what guarantees that log replay will remove/adjust file extent items in the
4375 * fs/subvol tree.
4376 *
4377 * Here we do not need to care about holes between extents, that is already done
4378 * by copy_items(). We also only need to do this in the full sync path, where we
4379 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4380 * lookup the list of modified extent maps and if any represents a hole, we
4381 * insert a corresponding extent representing a hole in the log tree.
4382 */
4383static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4384 struct btrfs_root *root,
a0308dd7 4385 struct btrfs_inode *inode,
a89ca6f2
FM
4386 struct btrfs_path *path)
4387{
0b246afa 4388 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4389 int ret;
4390 struct btrfs_key key;
4391 u64 hole_start;
4392 u64 hole_size;
4393 struct extent_buffer *leaf;
4394 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4395 const u64 ino = btrfs_ino(inode);
4396 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4397
0b246afa 4398 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4399 return 0;
4400
4401 key.objectid = ino;
4402 key.type = BTRFS_EXTENT_DATA_KEY;
4403 key.offset = (u64)-1;
4404
4405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4406 ASSERT(ret != 0);
4407 if (ret < 0)
4408 return ret;
4409
4410 ASSERT(path->slots[0] > 0);
4411 path->slots[0]--;
4412 leaf = path->nodes[0];
4413 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4414
4415 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4416 /* inode does not have any extents */
4417 hole_start = 0;
4418 hole_size = i_size;
4419 } else {
4420 struct btrfs_file_extent_item *extent;
4421 u64 len;
4422
4423 /*
4424 * If there's an extent beyond i_size, an explicit hole was
4425 * already inserted by copy_items().
4426 */
4427 if (key.offset >= i_size)
4428 return 0;
4429
4430 extent = btrfs_item_ptr(leaf, path->slots[0],
4431 struct btrfs_file_extent_item);
4432
4433 if (btrfs_file_extent_type(leaf, extent) ==
4434 BTRFS_FILE_EXTENT_INLINE) {
4435 len = btrfs_file_extent_inline_len(leaf,
4436 path->slots[0],
4437 extent);
4438 ASSERT(len == i_size);
4439 return 0;
4440 }
4441
4442 len = btrfs_file_extent_num_bytes(leaf, extent);
4443 /* Last extent goes beyond i_size, no need to log a hole. */
4444 if (key.offset + len > i_size)
4445 return 0;
4446 hole_start = key.offset + len;
4447 hole_size = i_size - hole_start;
4448 }
4449 btrfs_release_path(path);
4450
4451 /* Last extent ends at i_size. */
4452 if (hole_size == 0)
4453 return 0;
4454
0b246afa 4455 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4456 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4457 hole_size, 0, hole_size, 0, 0, 0);
4458 return ret;
4459}
4460
56f23fdb
FM
4461/*
4462 * When we are logging a new inode X, check if it doesn't have a reference that
4463 * matches the reference from some other inode Y created in a past transaction
4464 * and that was renamed in the current transaction. If we don't do this, then at
4465 * log replay time we can lose inode Y (and all its files if it's a directory):
4466 *
4467 * mkdir /mnt/x
4468 * echo "hello world" > /mnt/x/foobar
4469 * sync
4470 * mv /mnt/x /mnt/y
4471 * mkdir /mnt/x # or touch /mnt/x
4472 * xfs_io -c fsync /mnt/x
4473 * <power fail>
4474 * mount fs, trigger log replay
4475 *
4476 * After the log replay procedure, we would lose the first directory and all its
4477 * files (file foobar).
4478 * For the case where inode Y is not a directory we simply end up losing it:
4479 *
4480 * echo "123" > /mnt/foo
4481 * sync
4482 * mv /mnt/foo /mnt/bar
4483 * echo "abc" > /mnt/foo
4484 * xfs_io -c fsync /mnt/foo
4485 * <power fail>
4486 *
4487 * We also need this for cases where a snapshot entry is replaced by some other
4488 * entry (file or directory) otherwise we end up with an unreplayable log due to
4489 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4490 * if it were a regular entry:
4491 *
4492 * mkdir /mnt/x
4493 * btrfs subvolume snapshot /mnt /mnt/x/snap
4494 * btrfs subvolume delete /mnt/x/snap
4495 * rmdir /mnt/x
4496 * mkdir /mnt/x
4497 * fsync /mnt/x or fsync some new file inside it
4498 * <power fail>
4499 *
4500 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4501 * the same transaction.
4502 */
4503static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4504 const int slot,
4505 const struct btrfs_key *key,
4791c8f1 4506 struct btrfs_inode *inode,
44f714da 4507 u64 *other_ino)
56f23fdb
FM
4508{
4509 int ret;
4510 struct btrfs_path *search_path;
4511 char *name = NULL;
4512 u32 name_len = 0;
4513 u32 item_size = btrfs_item_size_nr(eb, slot);
4514 u32 cur_offset = 0;
4515 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4516
4517 search_path = btrfs_alloc_path();
4518 if (!search_path)
4519 return -ENOMEM;
4520 search_path->search_commit_root = 1;
4521 search_path->skip_locking = 1;
4522
4523 while (cur_offset < item_size) {
4524 u64 parent;
4525 u32 this_name_len;
4526 u32 this_len;
4527 unsigned long name_ptr;
4528 struct btrfs_dir_item *di;
4529
4530 if (key->type == BTRFS_INODE_REF_KEY) {
4531 struct btrfs_inode_ref *iref;
4532
4533 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4534 parent = key->offset;
4535 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4536 name_ptr = (unsigned long)(iref + 1);
4537 this_len = sizeof(*iref) + this_name_len;
4538 } else {
4539 struct btrfs_inode_extref *extref;
4540
4541 extref = (struct btrfs_inode_extref *)(ptr +
4542 cur_offset);
4543 parent = btrfs_inode_extref_parent(eb, extref);
4544 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4545 name_ptr = (unsigned long)&extref->name;
4546 this_len = sizeof(*extref) + this_name_len;
4547 }
4548
4549 if (this_name_len > name_len) {
4550 char *new_name;
4551
4552 new_name = krealloc(name, this_name_len, GFP_NOFS);
4553 if (!new_name) {
4554 ret = -ENOMEM;
4555 goto out;
4556 }
4557 name_len = this_name_len;
4558 name = new_name;
4559 }
4560
4561 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4562 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4563 parent, name, this_name_len, 0);
56f23fdb 4564 if (di && !IS_ERR(di)) {
44f714da
FM
4565 struct btrfs_key di_key;
4566
4567 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4568 di, &di_key);
4569 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4570 ret = 1;
4571 *other_ino = di_key.objectid;
4572 } else {
4573 ret = -EAGAIN;
4574 }
56f23fdb
FM
4575 goto out;
4576 } else if (IS_ERR(di)) {
4577 ret = PTR_ERR(di);
4578 goto out;
4579 }
4580 btrfs_release_path(search_path);
4581
4582 cur_offset += this_len;
4583 }
4584 ret = 0;
4585out:
4586 btrfs_free_path(search_path);
4587 kfree(name);
4588 return ret;
4589}
4590
e02119d5
CM
4591/* log a single inode in the tree log.
4592 * At least one parent directory for this inode must exist in the tree
4593 * or be logged already.
4594 *
4595 * Any items from this inode changed by the current transaction are copied
4596 * to the log tree. An extra reference is taken on any extents in this
4597 * file, allowing us to avoid a whole pile of corner cases around logging
4598 * blocks that have been removed from the tree.
4599 *
4600 * See LOG_INODE_ALL and related defines for a description of what inode_only
4601 * does.
4602 *
4603 * This handles both files and directories.
4604 */
12fcfd22 4605static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 4606 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
4607 int inode_only,
4608 const loff_t start,
8407f553
FM
4609 const loff_t end,
4610 struct btrfs_log_ctx *ctx)
e02119d5 4611{
0b246afa 4612 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
4613 struct btrfs_path *path;
4614 struct btrfs_path *dst_path;
4615 struct btrfs_key min_key;
4616 struct btrfs_key max_key;
4617 struct btrfs_root *log = root->log_root;
31ff1cd2 4618 struct extent_buffer *src = NULL;
827463c4 4619 LIST_HEAD(logged_list);
16e7549f 4620 u64 last_extent = 0;
4a500fd1 4621 int err = 0;
e02119d5 4622 int ret;
3a5f1d45 4623 int nritems;
31ff1cd2
CM
4624 int ins_start_slot = 0;
4625 int ins_nr;
5dc562c5 4626 bool fast_search = false;
a59108a7
NB
4627 u64 ino = btrfs_ino(inode);
4628 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 4629 u64 logged_isize = 0;
e4545de5 4630 bool need_log_inode_item = true;
e02119d5 4631
e02119d5 4632 path = btrfs_alloc_path();
5df67083
TI
4633 if (!path)
4634 return -ENOMEM;
e02119d5 4635 dst_path = btrfs_alloc_path();
5df67083
TI
4636 if (!dst_path) {
4637 btrfs_free_path(path);
4638 return -ENOMEM;
4639 }
e02119d5 4640
33345d01 4641 min_key.objectid = ino;
e02119d5
CM
4642 min_key.type = BTRFS_INODE_ITEM_KEY;
4643 min_key.offset = 0;
4644
33345d01 4645 max_key.objectid = ino;
12fcfd22 4646
12fcfd22 4647
5dc562c5 4648 /* today the code can only do partial logging of directories */
a59108a7 4649 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 4650 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4651 &inode->runtime_flags) &&
781feef7 4652 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
4653 max_key.type = BTRFS_XATTR_ITEM_KEY;
4654 else
4655 max_key.type = (u8)-1;
4656 max_key.offset = (u64)-1;
4657
2c2c452b
FM
4658 /*
4659 * Only run delayed items if we are a dir or a new file.
4660 * Otherwise commit the delayed inode only, which is needed in
4661 * order for the log replay code to mark inodes for link count
4662 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4663 */
a59108a7
NB
4664 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4665 inode->generation > fs_info->last_trans_committed)
4666 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 4667 else
a59108a7 4668 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
4669
4670 if (ret) {
4671 btrfs_free_path(path);
4672 btrfs_free_path(dst_path);
4673 return ret;
16cdcec7
MX
4674 }
4675
781feef7
LB
4676 if (inode_only == LOG_OTHER_INODE) {
4677 inode_only = LOG_INODE_EXISTS;
a59108a7 4678 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 4679 } else {
a59108a7 4680 mutex_lock(&inode->log_mutex);
781feef7 4681 }
e02119d5
CM
4682
4683 /*
4684 * a brute force approach to making sure we get the most uptodate
4685 * copies of everything.
4686 */
a59108a7 4687 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
4688 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4689
4f764e51
FM
4690 if (inode_only == LOG_INODE_EXISTS)
4691 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4692 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4693 } else {
1a4bcf47
FM
4694 if (inode_only == LOG_INODE_EXISTS) {
4695 /*
4696 * Make sure the new inode item we write to the log has
4697 * the same isize as the current one (if it exists).
4698 * This is necessary to prevent data loss after log
4699 * replay, and also to prevent doing a wrong expanding
4700 * truncate - for e.g. create file, write 4K into offset
4701 * 0, fsync, write 4K into offset 4096, add hard link,
4702 * fsync some other file (to sync log), power fail - if
4703 * we use the inode's current i_size, after log replay
4704 * we get a 8Kb file, with the last 4Kb extent as a hole
4705 * (zeroes), as if an expanding truncate happened,
4706 * instead of getting a file of 4Kb only.
4707 */
a59108a7 4708 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
4709 if (err)
4710 goto out_unlock;
4711 }
a742994a 4712 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4713 &inode->runtime_flags)) {
a742994a 4714 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4715 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4716 ret = drop_objectid_items(trans, log, path, ino,
4717 max_key.type);
4718 } else {
4719 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4720 &inode->runtime_flags);
a742994a 4721 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4722 &inode->runtime_flags);
28ed1345
CM
4723 while(1) {
4724 ret = btrfs_truncate_inode_items(trans,
a59108a7 4725 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
4726 if (ret != -EAGAIN)
4727 break;
4728 }
a742994a 4729 }
4f764e51 4730 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4731 &inode->runtime_flags) ||
6cfab851 4732 inode_only == LOG_INODE_EXISTS) {
4f764e51 4733 if (inode_only == LOG_INODE_ALL)
183f37fa 4734 fast_search = true;
4f764e51 4735 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4736 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4737 max_key.type);
a95249b3
JB
4738 } else {
4739 if (inode_only == LOG_INODE_ALL)
4740 fast_search = true;
a95249b3 4741 goto log_extents;
5dc562c5 4742 }
a95249b3 4743
e02119d5 4744 }
4a500fd1
YZ
4745 if (ret) {
4746 err = ret;
4747 goto out_unlock;
4748 }
e02119d5 4749
d397712b 4750 while (1) {
31ff1cd2 4751 ins_nr = 0;
6174d3cb 4752 ret = btrfs_search_forward(root, &min_key,
de78b51a 4753 path, trans->transid);
fb770ae4
LB
4754 if (ret < 0) {
4755 err = ret;
4756 goto out_unlock;
4757 }
e02119d5
CM
4758 if (ret != 0)
4759 break;
3a5f1d45 4760again:
31ff1cd2 4761 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4762 if (min_key.objectid != ino)
e02119d5
CM
4763 break;
4764 if (min_key.type > max_key.type)
4765 break;
31ff1cd2 4766
e4545de5
FM
4767 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4768 need_log_inode_item = false;
4769
56f23fdb
FM
4770 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4771 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
a59108a7 4772 inode->generation == trans->transid) {
44f714da
FM
4773 u64 other_ino = 0;
4774
56f23fdb 4775 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7
NB
4776 path->slots[0], &min_key, inode,
4777 &other_ino);
56f23fdb
FM
4778 if (ret < 0) {
4779 err = ret;
4780 goto out_unlock;
28a23593 4781 } else if (ret > 0 && ctx &&
4a0cc7ca 4782 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
4783 struct btrfs_key inode_key;
4784 struct inode *other_inode;
4785
4786 if (ins_nr > 0) {
4787 ins_nr++;
4788 } else {
4789 ins_nr = 1;
4790 ins_start_slot = path->slots[0];
4791 }
a59108a7 4792 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
4793 &last_extent, ins_start_slot,
4794 ins_nr, inode_only,
4795 logged_isize);
4796 if (ret < 0) {
4797 err = ret;
4798 goto out_unlock;
4799 }
4800 ins_nr = 0;
4801 btrfs_release_path(path);
4802 inode_key.objectid = other_ino;
4803 inode_key.type = BTRFS_INODE_ITEM_KEY;
4804 inode_key.offset = 0;
0b246afa 4805 other_inode = btrfs_iget(fs_info->sb,
44f714da
FM
4806 &inode_key, root,
4807 NULL);
4808 /*
4809 * If the other inode that had a conflicting dir
4810 * entry was deleted in the current transaction,
4811 * we don't need to do more work nor fallback to
4812 * a transaction commit.
4813 */
4814 if (IS_ERR(other_inode) &&
4815 PTR_ERR(other_inode) == -ENOENT) {
4816 goto next_key;
4817 } else if (IS_ERR(other_inode)) {
4818 err = PTR_ERR(other_inode);
4819 goto out_unlock;
4820 }
4821 /*
4822 * We are safe logging the other inode without
4823 * acquiring its i_mutex as long as we log with
4824 * the LOG_INODE_EXISTS mode. We're safe against
4825 * concurrent renames of the other inode as well
4826 * because during a rename we pin the log and
4827 * update the log with the new name before we
4828 * unpin it.
4829 */
a59108a7
NB
4830 err = btrfs_log_inode(trans, root,
4831 BTRFS_I(other_inode),
4832 LOG_OTHER_INODE, 0, LLONG_MAX,
4833 ctx);
44f714da
FM
4834 iput(other_inode);
4835 if (err)
4836 goto out_unlock;
4837 else
4838 goto next_key;
56f23fdb
FM
4839 }
4840 }
4841
36283bf7
FM
4842 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4843 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4844 if (ins_nr == 0)
4845 goto next_slot;
a59108a7 4846 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4847 &last_extent, ins_start_slot,
4848 ins_nr, inode_only, logged_isize);
4849 if (ret < 0) {
4850 err = ret;
4851 goto out_unlock;
4852 }
4853 ins_nr = 0;
4854 if (ret) {
4855 btrfs_release_path(path);
4856 continue;
4857 }
4858 goto next_slot;
4859 }
4860
e02119d5 4861 src = path->nodes[0];
31ff1cd2
CM
4862 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4863 ins_nr++;
4864 goto next_slot;
4865 } else if (!ins_nr) {
4866 ins_start_slot = path->slots[0];
4867 ins_nr = 1;
4868 goto next_slot;
e02119d5
CM
4869 }
4870
a59108a7 4871 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4872 ins_start_slot, ins_nr, inode_only,
4873 logged_isize);
16e7549f 4874 if (ret < 0) {
4a500fd1
YZ
4875 err = ret;
4876 goto out_unlock;
a71db86e
RV
4877 }
4878 if (ret) {
16e7549f
JB
4879 ins_nr = 0;
4880 btrfs_release_path(path);
4881 continue;
4a500fd1 4882 }
31ff1cd2
CM
4883 ins_nr = 1;
4884 ins_start_slot = path->slots[0];
4885next_slot:
e02119d5 4886
3a5f1d45
CM
4887 nritems = btrfs_header_nritems(path->nodes[0]);
4888 path->slots[0]++;
4889 if (path->slots[0] < nritems) {
4890 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4891 path->slots[0]);
4892 goto again;
4893 }
31ff1cd2 4894 if (ins_nr) {
a59108a7 4895 ret = copy_items(trans, inode, dst_path, path,
16e7549f 4896 &last_extent, ins_start_slot,
1a4bcf47 4897 ins_nr, inode_only, logged_isize);
16e7549f 4898 if (ret < 0) {
4a500fd1
YZ
4899 err = ret;
4900 goto out_unlock;
4901 }
16e7549f 4902 ret = 0;
31ff1cd2
CM
4903 ins_nr = 0;
4904 }
b3b4aa74 4905 btrfs_release_path(path);
44f714da 4906next_key:
3d41d702 4907 if (min_key.offset < (u64)-1) {
e02119d5 4908 min_key.offset++;
3d41d702 4909 } else if (min_key.type < max_key.type) {
e02119d5 4910 min_key.type++;
3d41d702
FDBM
4911 min_key.offset = 0;
4912 } else {
e02119d5 4913 break;
3d41d702 4914 }
e02119d5 4915 }
31ff1cd2 4916 if (ins_nr) {
a59108a7 4917 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4918 ins_start_slot, ins_nr, inode_only,
4919 logged_isize);
16e7549f 4920 if (ret < 0) {
4a500fd1
YZ
4921 err = ret;
4922 goto out_unlock;
4923 }
16e7549f 4924 ret = 0;
31ff1cd2
CM
4925 ins_nr = 0;
4926 }
5dc562c5 4927
36283bf7
FM
4928 btrfs_release_path(path);
4929 btrfs_release_path(dst_path);
a59108a7 4930 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
4931 if (err)
4932 goto out_unlock;
a89ca6f2
FM
4933 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4934 btrfs_release_path(path);
4935 btrfs_release_path(dst_path);
a59108a7 4936 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
4937 if (err)
4938 goto out_unlock;
4939 }
a95249b3 4940log_extents:
f3b15ccd
JB
4941 btrfs_release_path(path);
4942 btrfs_release_path(dst_path);
e4545de5 4943 if (need_log_inode_item) {
a59108a7 4944 err = log_inode_item(trans, log, dst_path, inode);
e4545de5
FM
4945 if (err)
4946 goto out_unlock;
4947 }
5dc562c5 4948 if (fast_search) {
a59108a7 4949 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
de0ee0ed 4950 &logged_list, ctx, start, end);
5dc562c5
JB
4951 if (ret) {
4952 err = ret;
4953 goto out_unlock;
4954 }
d006a048 4955 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4956 struct extent_map *em, *n;
4957
49dae1bc
FM
4958 write_lock(&em_tree->lock);
4959 /*
4960 * We can't just remove every em if we're called for a ranged
4961 * fsync - that is, one that doesn't cover the whole possible
4962 * file range (0 to LLONG_MAX). This is because we can have
4963 * em's that fall outside the range we're logging and therefore
4964 * their ordered operations haven't completed yet
4965 * (btrfs_finish_ordered_io() not invoked yet). This means we
4966 * didn't get their respective file extent item in the fs/subvol
4967 * tree yet, and need to let the next fast fsync (one which
4968 * consults the list of modified extent maps) find the em so
4969 * that it logs a matching file extent item and waits for the
4970 * respective ordered operation to complete (if it's still
4971 * running).
4972 *
4973 * Removing every em outside the range we're logging would make
4974 * the next fast fsync not log their matching file extent items,
4975 * therefore making us lose data after a log replay.
4976 */
4977 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4978 list) {
4979 const u64 mod_end = em->mod_start + em->mod_len - 1;
4980
4981 if (em->mod_start >= start && mod_end <= end)
4982 list_del_init(&em->list);
4983 }
4984 write_unlock(&em_tree->lock);
5dc562c5
JB
4985 }
4986
a59108a7
NB
4987 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
4988 ret = log_directory_changes(trans, root, inode, path, dst_path,
4989 ctx);
4a500fd1
YZ
4990 if (ret) {
4991 err = ret;
4992 goto out_unlock;
4993 }
e02119d5 4994 }
49dae1bc 4995
a59108a7
NB
4996 spin_lock(&inode->lock);
4997 inode->logged_trans = trans->transid;
4998 inode->last_log_commit = inode->last_sub_trans;
4999 spin_unlock(&inode->lock);
4a500fd1 5000out_unlock:
827463c4
MX
5001 if (unlikely(err))
5002 btrfs_put_logged_extents(&logged_list);
5003 else
5004 btrfs_submit_logged_extents(&logged_list, log);
a59108a7 5005 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5006
5007 btrfs_free_path(path);
5008 btrfs_free_path(dst_path);
4a500fd1 5009 return err;
e02119d5
CM
5010}
5011
2be63d5c
FM
5012/*
5013 * Check if we must fallback to a transaction commit when logging an inode.
5014 * This must be called after logging the inode and is used only in the context
5015 * when fsyncing an inode requires the need to log some other inode - in which
5016 * case we can't lock the i_mutex of each other inode we need to log as that
5017 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5018 * log inodes up or down in the hierarchy) or rename operations for example. So
5019 * we take the log_mutex of the inode after we have logged it and then check for
5020 * its last_unlink_trans value - this is safe because any task setting
5021 * last_unlink_trans must take the log_mutex and it must do this before it does
5022 * the actual unlink operation, so if we do this check before a concurrent task
5023 * sets last_unlink_trans it means we've logged a consistent version/state of
5024 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5025 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5026 * we logged the inode or it might have also done the unlink).
5027 */
5028static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5029 struct btrfs_inode *inode)
2be63d5c 5030{
ab1717b2 5031 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5032 bool ret = false;
5033
ab1717b2
NB
5034 mutex_lock(&inode->log_mutex);
5035 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5036 /*
5037 * Make sure any commits to the log are forced to be full
5038 * commits.
5039 */
5040 btrfs_set_log_full_commit(fs_info, trans);
5041 ret = true;
5042 }
ab1717b2 5043 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5044
5045 return ret;
5046}
5047
12fcfd22
CM
5048/*
5049 * follow the dentry parent pointers up the chain and see if any
5050 * of the directories in it require a full commit before they can
5051 * be logged. Returns zero if nothing special needs to be done or 1 if
5052 * a full commit is required.
5053 */
5054static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5055 struct btrfs_inode *inode,
12fcfd22
CM
5056 struct dentry *parent,
5057 struct super_block *sb,
5058 u64 last_committed)
e02119d5 5059{
12fcfd22 5060 int ret = 0;
6a912213 5061 struct dentry *old_parent = NULL;
aefa6115 5062 struct btrfs_inode *orig_inode = inode;
e02119d5 5063
af4176b4
CM
5064 /*
5065 * for regular files, if its inode is already on disk, we don't
5066 * have to worry about the parents at all. This is because
5067 * we can use the last_unlink_trans field to record renames
5068 * and other fun in this file.
5069 */
aefa6115
NB
5070 if (S_ISREG(inode->vfs_inode.i_mode) &&
5071 inode->generation <= last_committed &&
5072 inode->last_unlink_trans <= last_committed)
5073 goto out;
af4176b4 5074
aefa6115 5075 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5076 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5077 goto out;
aefa6115 5078 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5079 }
5080
5081 while (1) {
de2b530b
JB
5082 /*
5083 * If we are logging a directory then we start with our inode,
01327610 5084 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5085 * logged_trans so that further down in the log code we don't
5086 * think this inode has already been logged.
5087 */
5088 if (inode != orig_inode)
aefa6115 5089 inode->logged_trans = trans->transid;
12fcfd22
CM
5090 smp_mb();
5091
aefa6115 5092 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5093 ret = 1;
5094 break;
5095 }
5096
fc64005c 5097 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5098 break;
5099
44f714da 5100 if (IS_ROOT(parent)) {
aefa6115
NB
5101 inode = BTRFS_I(d_inode(parent));
5102 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5103 ret = 1;
12fcfd22 5104 break;
44f714da 5105 }
12fcfd22 5106
6a912213
JB
5107 parent = dget_parent(parent);
5108 dput(old_parent);
5109 old_parent = parent;
aefa6115 5110 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5111
5112 }
6a912213 5113 dput(old_parent);
12fcfd22 5114out:
e02119d5
CM
5115 return ret;
5116}
5117
2f2ff0ee
FM
5118struct btrfs_dir_list {
5119 u64 ino;
5120 struct list_head list;
5121};
5122
5123/*
5124 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5125 * details about the why it is needed.
5126 * This is a recursive operation - if an existing dentry corresponds to a
5127 * directory, that directory's new entries are logged too (same behaviour as
5128 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5129 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5130 * complains about the following circular lock dependency / possible deadlock:
5131 *
5132 * CPU0 CPU1
5133 * ---- ----
5134 * lock(&type->i_mutex_dir_key#3/2);
5135 * lock(sb_internal#2);
5136 * lock(&type->i_mutex_dir_key#3/2);
5137 * lock(&sb->s_type->i_mutex_key#14);
5138 *
5139 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5140 * sb_start_intwrite() in btrfs_start_transaction().
5141 * Not locking i_mutex of the inodes is still safe because:
5142 *
5143 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5144 * that while logging the inode new references (names) are added or removed
5145 * from the inode, leaving the logged inode item with a link count that does
5146 * not match the number of logged inode reference items. This is fine because
5147 * at log replay time we compute the real number of links and correct the
5148 * link count in the inode item (see replay_one_buffer() and
5149 * link_to_fixup_dir());
5150 *
5151 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5152 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5153 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5154 * has a size that doesn't match the sum of the lengths of all the logged
5155 * names. This does not result in a problem because if a dir_item key is
5156 * logged but its matching dir_index key is not logged, at log replay time we
5157 * don't use it to replay the respective name (see replay_one_name()). On the
5158 * other hand if only the dir_index key ends up being logged, the respective
5159 * name is added to the fs/subvol tree with both the dir_item and dir_index
5160 * keys created (see replay_one_name()).
5161 * The directory's inode item with a wrong i_size is not a problem as well,
5162 * since we don't use it at log replay time to set the i_size in the inode
5163 * item of the fs/subvol tree (see overwrite_item()).
5164 */
5165static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5166 struct btrfs_root *root,
51cc0d32 5167 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5168 struct btrfs_log_ctx *ctx)
5169{
0b246afa 5170 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5171 struct btrfs_root *log = root->log_root;
5172 struct btrfs_path *path;
5173 LIST_HEAD(dir_list);
5174 struct btrfs_dir_list *dir_elem;
5175 int ret = 0;
5176
5177 path = btrfs_alloc_path();
5178 if (!path)
5179 return -ENOMEM;
5180
5181 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5182 if (!dir_elem) {
5183 btrfs_free_path(path);
5184 return -ENOMEM;
5185 }
51cc0d32 5186 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5187 list_add_tail(&dir_elem->list, &dir_list);
5188
5189 while (!list_empty(&dir_list)) {
5190 struct extent_buffer *leaf;
5191 struct btrfs_key min_key;
5192 int nritems;
5193 int i;
5194
5195 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5196 list);
5197 if (ret)
5198 goto next_dir_inode;
5199
5200 min_key.objectid = dir_elem->ino;
5201 min_key.type = BTRFS_DIR_ITEM_KEY;
5202 min_key.offset = 0;
5203again:
5204 btrfs_release_path(path);
5205 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5206 if (ret < 0) {
5207 goto next_dir_inode;
5208 } else if (ret > 0) {
5209 ret = 0;
5210 goto next_dir_inode;
5211 }
5212
5213process_leaf:
5214 leaf = path->nodes[0];
5215 nritems = btrfs_header_nritems(leaf);
5216 for (i = path->slots[0]; i < nritems; i++) {
5217 struct btrfs_dir_item *di;
5218 struct btrfs_key di_key;
5219 struct inode *di_inode;
5220 struct btrfs_dir_list *new_dir_elem;
5221 int log_mode = LOG_INODE_EXISTS;
5222 int type;
5223
5224 btrfs_item_key_to_cpu(leaf, &min_key, i);
5225 if (min_key.objectid != dir_elem->ino ||
5226 min_key.type != BTRFS_DIR_ITEM_KEY)
5227 goto next_dir_inode;
5228
5229 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5230 type = btrfs_dir_type(leaf, di);
5231 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5232 type != BTRFS_FT_DIR)
5233 continue;
5234 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5235 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5236 continue;
5237
ec125cfb 5238 btrfs_release_path(path);
0b246afa 5239 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5240 if (IS_ERR(di_inode)) {
5241 ret = PTR_ERR(di_inode);
5242 goto next_dir_inode;
5243 }
5244
0f8939b8 5245 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5246 iput(di_inode);
ec125cfb 5247 break;
2f2ff0ee
FM
5248 }
5249
5250 ctx->log_new_dentries = false;
3f9749f6 5251 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5252 log_mode = LOG_INODE_ALL;
a59108a7 5253 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5254 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5255 if (!ret &&
ab1717b2 5256 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5257 ret = 1;
2f2ff0ee
FM
5258 iput(di_inode);
5259 if (ret)
5260 goto next_dir_inode;
5261 if (ctx->log_new_dentries) {
5262 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5263 GFP_NOFS);
5264 if (!new_dir_elem) {
5265 ret = -ENOMEM;
5266 goto next_dir_inode;
5267 }
5268 new_dir_elem->ino = di_key.objectid;
5269 list_add_tail(&new_dir_elem->list, &dir_list);
5270 }
5271 break;
5272 }
5273 if (i == nritems) {
5274 ret = btrfs_next_leaf(log, path);
5275 if (ret < 0) {
5276 goto next_dir_inode;
5277 } else if (ret > 0) {
5278 ret = 0;
5279 goto next_dir_inode;
5280 }
5281 goto process_leaf;
5282 }
5283 if (min_key.offset < (u64)-1) {
5284 min_key.offset++;
5285 goto again;
5286 }
5287next_dir_inode:
5288 list_del(&dir_elem->list);
5289 kfree(dir_elem);
5290 }
5291
5292 btrfs_free_path(path);
5293 return ret;
5294}
5295
18aa0922 5296static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5297 struct btrfs_inode *inode,
18aa0922
FM
5298 struct btrfs_log_ctx *ctx)
5299{
d0a0b78d 5300 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
18aa0922
FM
5301 int ret;
5302 struct btrfs_path *path;
5303 struct btrfs_key key;
d0a0b78d
NB
5304 struct btrfs_root *root = inode->root;
5305 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5306
5307 path = btrfs_alloc_path();
5308 if (!path)
5309 return -ENOMEM;
5310 path->skip_locking = 1;
5311 path->search_commit_root = 1;
5312
5313 key.objectid = ino;
5314 key.type = BTRFS_INODE_REF_KEY;
5315 key.offset = 0;
5316 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5317 if (ret < 0)
5318 goto out;
5319
5320 while (true) {
5321 struct extent_buffer *leaf = path->nodes[0];
5322 int slot = path->slots[0];
5323 u32 cur_offset = 0;
5324 u32 item_size;
5325 unsigned long ptr;
5326
5327 if (slot >= btrfs_header_nritems(leaf)) {
5328 ret = btrfs_next_leaf(root, path);
5329 if (ret < 0)
5330 goto out;
5331 else if (ret > 0)
5332 break;
5333 continue;
5334 }
5335
5336 btrfs_item_key_to_cpu(leaf, &key, slot);
5337 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5338 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5339 break;
5340
5341 item_size = btrfs_item_size_nr(leaf, slot);
5342 ptr = btrfs_item_ptr_offset(leaf, slot);
5343 while (cur_offset < item_size) {
5344 struct btrfs_key inode_key;
5345 struct inode *dir_inode;
5346
5347 inode_key.type = BTRFS_INODE_ITEM_KEY;
5348 inode_key.offset = 0;
5349
5350 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5351 struct btrfs_inode_extref *extref;
5352
5353 extref = (struct btrfs_inode_extref *)
5354 (ptr + cur_offset);
5355 inode_key.objectid = btrfs_inode_extref_parent(
5356 leaf, extref);
5357 cur_offset += sizeof(*extref);
5358 cur_offset += btrfs_inode_extref_name_len(leaf,
5359 extref);
5360 } else {
5361 inode_key.objectid = key.offset;
5362 cur_offset = item_size;
5363 }
5364
0b246afa 5365 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922
FM
5366 root, NULL);
5367 /* If parent inode was deleted, skip it. */
5368 if (IS_ERR(dir_inode))
5369 continue;
5370
657ed1aa
FM
5371 if (ctx)
5372 ctx->log_new_dentries = false;
a59108a7 5373 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5374 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5375 if (!ret &&
ab1717b2 5376 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5377 ret = 1;
657ed1aa
FM
5378 if (!ret && ctx && ctx->log_new_dentries)
5379 ret = log_new_dir_dentries(trans, root,
f85b7379 5380 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5381 iput(dir_inode);
5382 if (ret)
5383 goto out;
5384 }
5385 path->slots[0]++;
5386 }
5387 ret = 0;
5388out:
5389 btrfs_free_path(path);
5390 return ret;
5391}
5392
e02119d5
CM
5393/*
5394 * helper function around btrfs_log_inode to make sure newly created
5395 * parent directories also end up in the log. A minimal inode and backref
5396 * only logging is done of any parent directories that are older than
5397 * the last committed transaction
5398 */
48a3b636 5399static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9
NB
5400 struct btrfs_root *root,
5401 struct btrfs_inode *inode,
49dae1bc
FM
5402 struct dentry *parent,
5403 const loff_t start,
5404 const loff_t end,
5405 int exists_only,
8b050d35 5406 struct btrfs_log_ctx *ctx)
e02119d5 5407{
0b246afa 5408 struct btrfs_fs_info *fs_info = root->fs_info;
12fcfd22 5409 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 5410 struct super_block *sb;
6a912213 5411 struct dentry *old_parent = NULL;
12fcfd22 5412 int ret = 0;
0b246afa 5413 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5414 bool log_dentries = false;
19df27a9 5415 struct btrfs_inode *orig_inode = inode;
12fcfd22 5416
19df27a9 5417 sb = inode->vfs_inode.i_sb;
12fcfd22 5418
0b246afa 5419 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5420 ret = 1;
5421 goto end_no_trans;
5422 }
5423
995946dd
MX
5424 /*
5425 * The prev transaction commit doesn't complete, we need do
5426 * full commit by ourselves.
5427 */
0b246afa
JM
5428 if (fs_info->last_trans_log_full_commit >
5429 fs_info->last_trans_committed) {
12fcfd22
CM
5430 ret = 1;
5431 goto end_no_trans;
5432 }
5433
19df27a9 5434 if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5435 ret = 1;
5436 goto end_no_trans;
5437 }
5438
19df27a9
NB
5439 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5440 last_committed);
12fcfd22
CM
5441 if (ret)
5442 goto end_no_trans;
e02119d5 5443
19df27a9 5444 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
5445 ret = BTRFS_NO_LOG_SYNC;
5446 goto end_no_trans;
5447 }
5448
8b050d35 5449 ret = start_log_trans(trans, root, ctx);
4a500fd1 5450 if (ret)
e87ac136 5451 goto end_no_trans;
e02119d5 5452
19df27a9 5453 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5454 if (ret)
5455 goto end_trans;
12fcfd22 5456
af4176b4
CM
5457 /*
5458 * for regular files, if its inode is already on disk, we don't
5459 * have to worry about the parents at all. This is because
5460 * we can use the last_unlink_trans field to record renames
5461 * and other fun in this file.
5462 */
19df27a9
NB
5463 if (S_ISREG(inode->vfs_inode.i_mode) &&
5464 inode->generation <= last_committed &&
5465 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5466 ret = 0;
5467 goto end_trans;
5468 }
af4176b4 5469
19df27a9 5470 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5471 log_dentries = true;
5472
18aa0922 5473 /*
01327610 5474 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5475 * inodes are fully logged. This is to prevent leaving dangling
5476 * directory index entries in directories that were our parents but are
5477 * not anymore. Not doing this results in old parent directory being
5478 * impossible to delete after log replay (rmdir will always fail with
5479 * error -ENOTEMPTY).
5480 *
5481 * Example 1:
5482 *
5483 * mkdir testdir
5484 * touch testdir/foo
5485 * ln testdir/foo testdir/bar
5486 * sync
5487 * unlink testdir/bar
5488 * xfs_io -c fsync testdir/foo
5489 * <power failure>
5490 * mount fs, triggers log replay
5491 *
5492 * If we don't log the parent directory (testdir), after log replay the
5493 * directory still has an entry pointing to the file inode using the bar
5494 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5495 * the file inode has a link count of 1.
5496 *
5497 * Example 2:
5498 *
5499 * mkdir testdir
5500 * touch foo
5501 * ln foo testdir/foo2
5502 * ln foo testdir/foo3
5503 * sync
5504 * unlink testdir/foo3
5505 * xfs_io -c fsync foo
5506 * <power failure>
5507 * mount fs, triggers log replay
5508 *
5509 * Similar as the first example, after log replay the parent directory
5510 * testdir still has an entry pointing to the inode file with name foo3
5511 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5512 * and has a link count of 2.
5513 */
19df27a9 5514 if (inode->last_unlink_trans > last_committed) {
18aa0922
FM
5515 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5516 if (ret)
5517 goto end_trans;
5518 }
5519
12fcfd22 5520 while (1) {
fc64005c 5521 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5522 break;
5523
19df27a9
NB
5524 inode = BTRFS_I(d_inode(parent));
5525 if (root != inode->root)
76dda93c
YZ
5526 break;
5527
19df27a9
NB
5528 if (inode->generation > last_committed) {
5529 ret = btrfs_log_inode(trans, root, inode,
5530 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
4a500fd1
YZ
5531 if (ret)
5532 goto end_trans;
12fcfd22 5533 }
76dda93c 5534 if (IS_ROOT(parent))
e02119d5 5535 break;
12fcfd22 5536
6a912213
JB
5537 parent = dget_parent(parent);
5538 dput(old_parent);
5539 old_parent = parent;
e02119d5 5540 }
2f2ff0ee 5541 if (log_dentries)
19df27a9 5542 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
2f2ff0ee
FM
5543 else
5544 ret = 0;
4a500fd1 5545end_trans:
6a912213 5546 dput(old_parent);
4a500fd1 5547 if (ret < 0) {
0b246afa 5548 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5549 ret = 1;
5550 }
8b050d35
MX
5551
5552 if (ret)
5553 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5554 btrfs_end_log_trans(root);
5555end_no_trans:
5556 return ret;
e02119d5
CM
5557}
5558
5559/*
5560 * it is not safe to log dentry if the chunk root has added new
5561 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5562 * If this returns 1, you must commit the transaction to safely get your
5563 * data on disk.
5564 */
5565int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 5566 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
5567 const loff_t start,
5568 const loff_t end,
8b050d35 5569 struct btrfs_log_ctx *ctx)
e02119d5 5570{
6a912213
JB
5571 struct dentry *parent = dget_parent(dentry);
5572 int ret;
5573
19df27a9
NB
5574 ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5575 parent, start, end, 0, ctx);
6a912213
JB
5576 dput(parent);
5577
5578 return ret;
e02119d5
CM
5579}
5580
5581/*
5582 * should be called during mount to recover any replay any log trees
5583 * from the FS
5584 */
5585int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5586{
5587 int ret;
5588 struct btrfs_path *path;
5589 struct btrfs_trans_handle *trans;
5590 struct btrfs_key key;
5591 struct btrfs_key found_key;
5592 struct btrfs_key tmp_key;
5593 struct btrfs_root *log;
5594 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5595 struct walk_control wc = {
5596 .process_func = process_one_buffer,
5597 .stage = 0,
5598 };
5599
e02119d5 5600 path = btrfs_alloc_path();
db5b493a
TI
5601 if (!path)
5602 return -ENOMEM;
5603
afcdd129 5604 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5605
4a500fd1 5606 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5607 if (IS_ERR(trans)) {
5608 ret = PTR_ERR(trans);
5609 goto error;
5610 }
e02119d5
CM
5611
5612 wc.trans = trans;
5613 wc.pin = 1;
5614
db5b493a 5615 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 5616 if (ret) {
5d163e0e
JM
5617 btrfs_handle_fs_error(fs_info, ret,
5618 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
5619 goto error;
5620 }
e02119d5
CM
5621
5622again:
5623 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5624 key.offset = (u64)-1;
962a298f 5625 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5626
d397712b 5627 while (1) {
e02119d5 5628 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5629
5630 if (ret < 0) {
34d97007 5631 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5632 "Couldn't find tree log root.");
5633 goto error;
5634 }
e02119d5
CM
5635 if (ret > 0) {
5636 if (path->slots[0] == 0)
5637 break;
5638 path->slots[0]--;
5639 }
5640 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5641 path->slots[0]);
b3b4aa74 5642 btrfs_release_path(path);
e02119d5
CM
5643 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5644 break;
5645
cb517eab 5646 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5647 if (IS_ERR(log)) {
5648 ret = PTR_ERR(log);
34d97007 5649 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5650 "Couldn't read tree log root.");
5651 goto error;
5652 }
e02119d5
CM
5653
5654 tmp_key.objectid = found_key.offset;
5655 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5656 tmp_key.offset = (u64)-1;
5657
5658 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5659 if (IS_ERR(wc.replay_dest)) {
5660 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5661 free_extent_buffer(log->node);
5662 free_extent_buffer(log->commit_root);
5663 kfree(log);
5d163e0e
JM
5664 btrfs_handle_fs_error(fs_info, ret,
5665 "Couldn't read target root for tree log recovery.");
79787eaa
JM
5666 goto error;
5667 }
e02119d5 5668
07d400a6 5669 wc.replay_dest->log_root = log;
5d4f98a2 5670 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5671 ret = walk_log_tree(trans, log, &wc);
e02119d5 5672
b50c6e25 5673 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5674 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5675 path);
e02119d5
CM
5676 }
5677
5678 key.offset = found_key.offset - 1;
07d400a6 5679 wc.replay_dest->log_root = NULL;
e02119d5 5680 free_extent_buffer(log->node);
b263c2c8 5681 free_extent_buffer(log->commit_root);
e02119d5
CM
5682 kfree(log);
5683
b50c6e25
JB
5684 if (ret)
5685 goto error;
5686
e02119d5
CM
5687 if (found_key.offset == 0)
5688 break;
5689 }
b3b4aa74 5690 btrfs_release_path(path);
e02119d5
CM
5691
5692 /* step one is to pin it all, step two is to replay just inodes */
5693 if (wc.pin) {
5694 wc.pin = 0;
5695 wc.process_func = replay_one_buffer;
5696 wc.stage = LOG_WALK_REPLAY_INODES;
5697 goto again;
5698 }
5699 /* step three is to replay everything */
5700 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5701 wc.stage++;
5702 goto again;
5703 }
5704
5705 btrfs_free_path(path);
5706
abefa55a 5707 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 5708 ret = btrfs_commit_transaction(trans);
abefa55a
JB
5709 if (ret)
5710 return ret;
5711
e02119d5
CM
5712 free_extent_buffer(log_root_tree->node);
5713 log_root_tree->log_root = NULL;
afcdd129 5714 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5715 kfree(log_root_tree);
79787eaa 5716
abefa55a 5717 return 0;
79787eaa 5718error:
b50c6e25 5719 if (wc.trans)
3a45bb20 5720 btrfs_end_transaction(wc.trans);
79787eaa
JM
5721 btrfs_free_path(path);
5722 return ret;
e02119d5 5723}
12fcfd22
CM
5724
5725/*
5726 * there are some corner cases where we want to force a full
5727 * commit instead of allowing a directory to be logged.
5728 *
5729 * They revolve around files there were unlinked from the directory, and
5730 * this function updates the parent directory so that a full commit is
5731 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
5732 *
5733 * Must be called before the unlink operations (updates to the subvolume tree,
5734 * inodes, etc) are done.
12fcfd22
CM
5735 */
5736void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 5737 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
5738 int for_rename)
5739{
af4176b4
CM
5740 /*
5741 * when we're logging a file, if it hasn't been renamed
5742 * or unlinked, and its inode is fully committed on disk,
5743 * we don't have to worry about walking up the directory chain
5744 * to log its parents.
5745 *
5746 * So, we use the last_unlink_trans field to put this transid
5747 * into the file. When the file is logged we check it and
5748 * don't log the parents if the file is fully on disk.
5749 */
4176bdbf
NB
5750 mutex_lock(&inode->log_mutex);
5751 inode->last_unlink_trans = trans->transid;
5752 mutex_unlock(&inode->log_mutex);
af4176b4 5753
12fcfd22
CM
5754 /*
5755 * if this directory was already logged any new
5756 * names for this file/dir will get recorded
5757 */
5758 smp_mb();
4176bdbf 5759 if (dir->logged_trans == trans->transid)
12fcfd22
CM
5760 return;
5761
5762 /*
5763 * if the inode we're about to unlink was logged,
5764 * the log will be properly updated for any new names
5765 */
4176bdbf 5766 if (inode->logged_trans == trans->transid)
12fcfd22
CM
5767 return;
5768
5769 /*
5770 * when renaming files across directories, if the directory
5771 * there we're unlinking from gets fsync'd later on, there's
5772 * no way to find the destination directory later and fsync it
5773 * properly. So, we have to be conservative and force commits
5774 * so the new name gets discovered.
5775 */
5776 if (for_rename)
5777 goto record;
5778
5779 /* we can safely do the unlink without any special recording */
5780 return;
5781
5782record:
4176bdbf
NB
5783 mutex_lock(&dir->log_mutex);
5784 dir->last_unlink_trans = trans->transid;
5785 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
5786}
5787
5788/*
5789 * Make sure that if someone attempts to fsync the parent directory of a deleted
5790 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5791 * that after replaying the log tree of the parent directory's root we will not
5792 * see the snapshot anymore and at log replay time we will not see any log tree
5793 * corresponding to the deleted snapshot's root, which could lead to replaying
5794 * it after replaying the log tree of the parent directory (which would replay
5795 * the snapshot delete operation).
2be63d5c
FM
5796 *
5797 * Must be called before the actual snapshot destroy operation (updates to the
5798 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
5799 */
5800void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 5801 struct btrfs_inode *dir)
1ec9a1ae 5802{
43663557
NB
5803 mutex_lock(&dir->log_mutex);
5804 dir->last_unlink_trans = trans->transid;
5805 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
5806}
5807
5808/*
5809 * Call this after adding a new name for a file and it will properly
5810 * update the log to reflect the new name.
5811 *
5812 * It will return zero if all goes well, and it will return 1 if a
5813 * full transaction commit is required.
5814 */
5815int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 5816 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
12fcfd22
CM
5817 struct dentry *parent)
5818{
9ca5fbfb 5819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
f85b7379 5820 struct btrfs_root *root = inode->root;
12fcfd22 5821
af4176b4
CM
5822 /*
5823 * this will force the logging code to walk the dentry chain
5824 * up for the file
5825 */
9ca5fbfb
NB
5826 if (S_ISREG(inode->vfs_inode.i_mode))
5827 inode->last_unlink_trans = trans->transid;
af4176b4 5828
12fcfd22
CM
5829 /*
5830 * if this inode hasn't been logged and directory we're renaming it
5831 * from hasn't been logged, we don't need to log it
5832 */
9ca5fbfb
NB
5833 if (inode->logged_trans <= fs_info->last_trans_committed &&
5834 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
12fcfd22
CM
5835 return 0;
5836
19df27a9 5837 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
49dae1bc 5838 LLONG_MAX, 1, NULL);
12fcfd22
CM
5839}
5840