]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/tree-log.c
Btrfs: tree logging unlink/rename fixes
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
b2950863 26#include "tree-log.h"
e02119d5
CM
27
28/* magic values for the inode_only field in btrfs_log_inode:
29 *
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
33 */
34#define LOG_INODE_ALL 0
35#define LOG_INODE_EXISTS 1
36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89#define LOG_WALK_PIN_ONLY 0
90#define LOG_WALK_REPLAY_INODES 1
91#define LOG_WALK_REPLAY_ALL 2
92
12fcfd22 93static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
94 struct btrfs_root *root, struct inode *inode,
95 int inode_only);
ec051c0f
YZ
96static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root,
98 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
99static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root,
101 struct btrfs_root *log,
102 struct btrfs_path *path,
103 u64 dirid, int del_all);
e02119d5
CM
104
105/*
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
108 *
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
112 *
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
118 *
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
122 *
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
126 */
127
e02119d5
CM
128/*
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
132 */
133static int start_log_trans(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root)
135{
136 int ret;
7237f183
YZ
137
138 mutex_lock(&root->log_mutex);
139 if (root->log_root) {
140 root->log_batch++;
141 atomic_inc(&root->log_writers);
142 mutex_unlock(&root->log_mutex);
143 return 0;
144 }
e02119d5
CM
145 mutex_lock(&root->fs_info->tree_log_mutex);
146 if (!root->fs_info->log_root_tree) {
147 ret = btrfs_init_log_root_tree(trans, root->fs_info);
148 BUG_ON(ret);
149 }
150 if (!root->log_root) {
151 ret = btrfs_add_log_tree(trans, root);
152 BUG_ON(ret);
153 }
e02119d5 154 mutex_unlock(&root->fs_info->tree_log_mutex);
7237f183
YZ
155 root->log_batch++;
156 atomic_inc(&root->log_writers);
157 mutex_unlock(&root->log_mutex);
e02119d5
CM
158 return 0;
159}
160
161/*
162 * returns 0 if there was a log transaction running and we were able
163 * to join, or returns -ENOENT if there were not transactions
164 * in progress
165 */
166static int join_running_log_trans(struct btrfs_root *root)
167{
168 int ret = -ENOENT;
169
170 smp_mb();
171 if (!root->log_root)
172 return -ENOENT;
173
7237f183 174 mutex_lock(&root->log_mutex);
e02119d5
CM
175 if (root->log_root) {
176 ret = 0;
7237f183 177 atomic_inc(&root->log_writers);
e02119d5 178 }
7237f183 179 mutex_unlock(&root->log_mutex);
e02119d5
CM
180 return ret;
181}
182
12fcfd22
CM
183/*
184 * This either makes the current running log transaction wait
185 * until you call btrfs_end_log_trans() or it makes any future
186 * log transactions wait until you call btrfs_end_log_trans()
187 */
188int btrfs_pin_log_trans(struct btrfs_root *root)
189{
190 int ret = -ENOENT;
191
192 mutex_lock(&root->log_mutex);
193 atomic_inc(&root->log_writers);
194 mutex_unlock(&root->log_mutex);
195 return ret;
196}
197
e02119d5
CM
198/*
199 * indicate we're done making changes to the log tree
200 * and wake up anyone waiting to do a sync
201 */
12fcfd22 202int btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 203{
7237f183
YZ
204 if (atomic_dec_and_test(&root->log_writers)) {
205 smp_mb();
206 if (waitqueue_active(&root->log_writer_wait))
207 wake_up(&root->log_writer_wait);
208 }
e02119d5
CM
209 return 0;
210}
211
212
213/*
214 * the walk control struct is used to pass state down the chain when
215 * processing the log tree. The stage field tells us which part
216 * of the log tree processing we are currently doing. The others
217 * are state fields used for that specific part
218 */
219struct walk_control {
220 /* should we free the extent on disk when done? This is used
221 * at transaction commit time while freeing a log tree
222 */
223 int free;
224
225 /* should we write out the extent buffer? This is used
226 * while flushing the log tree to disk during a sync
227 */
228 int write;
229
230 /* should we wait for the extent buffer io to finish? Also used
231 * while flushing the log tree to disk for a sync
232 */
233 int wait;
234
235 /* pin only walk, we record which extents on disk belong to the
236 * log trees
237 */
238 int pin;
239
240 /* what stage of the replay code we're currently in */
241 int stage;
242
243 /* the root we are currently replaying */
244 struct btrfs_root *replay_dest;
245
246 /* the trans handle for the current replay */
247 struct btrfs_trans_handle *trans;
248
249 /* the function that gets used to process blocks we find in the
250 * tree. Note the extent_buffer might not be up to date when it is
251 * passed in, and it must be checked or read if you need the data
252 * inside it
253 */
254 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
255 struct walk_control *wc, u64 gen);
256};
257
258/*
259 * process_func used to pin down extents, write them or wait on them
260 */
261static int process_one_buffer(struct btrfs_root *log,
262 struct extent_buffer *eb,
263 struct walk_control *wc, u64 gen)
264{
265 if (wc->pin) {
25179201 266 mutex_lock(&log->fs_info->pinned_mutex);
e02119d5
CM
267 btrfs_update_pinned_extents(log->fs_info->extent_root,
268 eb->start, eb->len, 1);
e02119d5
CM
269 }
270
271 if (btrfs_buffer_uptodate(eb, gen)) {
272 if (wc->write)
273 btrfs_write_tree_block(eb);
274 if (wc->wait)
275 btrfs_wait_tree_block_writeback(eb);
276 }
277 return 0;
278}
279
280/*
281 * Item overwrite used by replay and tree logging. eb, slot and key all refer
282 * to the src data we are copying out.
283 *
284 * root is the tree we are copying into, and path is a scratch
285 * path for use in this function (it should be released on entry and
286 * will be released on exit).
287 *
288 * If the key is already in the destination tree the existing item is
289 * overwritten. If the existing item isn't big enough, it is extended.
290 * If it is too large, it is truncated.
291 *
292 * If the key isn't in the destination yet, a new item is inserted.
293 */
294static noinline int overwrite_item(struct btrfs_trans_handle *trans,
295 struct btrfs_root *root,
296 struct btrfs_path *path,
297 struct extent_buffer *eb, int slot,
298 struct btrfs_key *key)
299{
300 int ret;
301 u32 item_size;
302 u64 saved_i_size = 0;
303 int save_old_i_size = 0;
304 unsigned long src_ptr;
305 unsigned long dst_ptr;
306 int overwrite_root = 0;
307
308 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
309 overwrite_root = 1;
310
311 item_size = btrfs_item_size_nr(eb, slot);
312 src_ptr = btrfs_item_ptr_offset(eb, slot);
313
314 /* look for the key in the destination tree */
315 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
316 if (ret == 0) {
317 char *src_copy;
318 char *dst_copy;
319 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
320 path->slots[0]);
321 if (dst_size != item_size)
322 goto insert;
323
324 if (item_size == 0) {
325 btrfs_release_path(root, path);
326 return 0;
327 }
328 dst_copy = kmalloc(item_size, GFP_NOFS);
329 src_copy = kmalloc(item_size, GFP_NOFS);
330
331 read_extent_buffer(eb, src_copy, src_ptr, item_size);
332
333 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
334 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
335 item_size);
336 ret = memcmp(dst_copy, src_copy, item_size);
337
338 kfree(dst_copy);
339 kfree(src_copy);
340 /*
341 * they have the same contents, just return, this saves
342 * us from cowing blocks in the destination tree and doing
343 * extra writes that may not have been done by a previous
344 * sync
345 */
346 if (ret == 0) {
347 btrfs_release_path(root, path);
348 return 0;
349 }
350
351 }
352insert:
353 btrfs_release_path(root, path);
354 /* try to insert the key into the destination tree */
355 ret = btrfs_insert_empty_item(trans, root, path,
356 key, item_size);
357
358 /* make sure any existing item is the correct size */
359 if (ret == -EEXIST) {
360 u32 found_size;
361 found_size = btrfs_item_size_nr(path->nodes[0],
362 path->slots[0]);
363 if (found_size > item_size) {
364 btrfs_truncate_item(trans, root, path, item_size, 1);
365 } else if (found_size < item_size) {
87b29b20
YZ
366 ret = btrfs_extend_item(trans, root, path,
367 item_size - found_size);
e02119d5
CM
368 BUG_ON(ret);
369 }
370 } else if (ret) {
371 BUG();
372 }
373 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
374 path->slots[0]);
375
376 /* don't overwrite an existing inode if the generation number
377 * was logged as zero. This is done when the tree logging code
378 * is just logging an inode to make sure it exists after recovery.
379 *
380 * Also, don't overwrite i_size on directories during replay.
381 * log replay inserts and removes directory items based on the
382 * state of the tree found in the subvolume, and i_size is modified
383 * as it goes
384 */
385 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
386 struct btrfs_inode_item *src_item;
387 struct btrfs_inode_item *dst_item;
388
389 src_item = (struct btrfs_inode_item *)src_ptr;
390 dst_item = (struct btrfs_inode_item *)dst_ptr;
391
392 if (btrfs_inode_generation(eb, src_item) == 0)
393 goto no_copy;
394
395 if (overwrite_root &&
396 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
397 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
398 save_old_i_size = 1;
399 saved_i_size = btrfs_inode_size(path->nodes[0],
400 dst_item);
401 }
402 }
403
404 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
405 src_ptr, item_size);
406
407 if (save_old_i_size) {
408 struct btrfs_inode_item *dst_item;
409 dst_item = (struct btrfs_inode_item *)dst_ptr;
410 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
411 }
412
413 /* make sure the generation is filled in */
414 if (key->type == BTRFS_INODE_ITEM_KEY) {
415 struct btrfs_inode_item *dst_item;
416 dst_item = (struct btrfs_inode_item *)dst_ptr;
417 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
418 btrfs_set_inode_generation(path->nodes[0], dst_item,
419 trans->transid);
420 }
421 }
422no_copy:
423 btrfs_mark_buffer_dirty(path->nodes[0]);
424 btrfs_release_path(root, path);
425 return 0;
426}
427
428/*
429 * simple helper to read an inode off the disk from a given root
430 * This can only be called for subvolume roots and not for the log
431 */
432static noinline struct inode *read_one_inode(struct btrfs_root *root,
433 u64 objectid)
434{
435 struct inode *inode;
436 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
437 if (inode->i_state & I_NEW) {
438 BTRFS_I(inode)->root = root;
439 BTRFS_I(inode)->location.objectid = objectid;
440 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
441 BTRFS_I(inode)->location.offset = 0;
442 btrfs_read_locked_inode(inode);
443 unlock_new_inode(inode);
444
445 }
446 if (is_bad_inode(inode)) {
447 iput(inode);
448 inode = NULL;
449 }
450 return inode;
451}
452
453/* replays a single extent in 'eb' at 'slot' with 'key' into the
454 * subvolume 'root'. path is released on entry and should be released
455 * on exit.
456 *
457 * extents in the log tree have not been allocated out of the extent
458 * tree yet. So, this completes the allocation, taking a reference
459 * as required if the extent already exists or creating a new extent
460 * if it isn't in the extent allocation tree yet.
461 *
462 * The extent is inserted into the file, dropping any existing extents
463 * from the file that overlap the new one.
464 */
465static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
466 struct btrfs_root *root,
467 struct btrfs_path *path,
468 struct extent_buffer *eb, int slot,
469 struct btrfs_key *key)
470{
471 int found_type;
472 u64 mask = root->sectorsize - 1;
473 u64 extent_end;
474 u64 alloc_hint;
475 u64 start = key->offset;
07d400a6 476 u64 saved_nbytes;
e02119d5
CM
477 struct btrfs_file_extent_item *item;
478 struct inode *inode = NULL;
479 unsigned long size;
480 int ret = 0;
481
482 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
483 found_type = btrfs_file_extent_type(eb, item);
484
d899e052
YZ
485 if (found_type == BTRFS_FILE_EXTENT_REG ||
486 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
487 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
488 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 489 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
490 extent_end = (start + size + mask) & ~mask;
491 } else {
492 ret = 0;
493 goto out;
494 }
495
496 inode = read_one_inode(root, key->objectid);
497 if (!inode) {
498 ret = -EIO;
499 goto out;
500 }
501
502 /*
503 * first check to see if we already have this extent in the
504 * file. This must be done before the btrfs_drop_extents run
505 * so we don't try to drop this extent.
506 */
507 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
508 start, 0);
509
d899e052
YZ
510 if (ret == 0 &&
511 (found_type == BTRFS_FILE_EXTENT_REG ||
512 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
513 struct btrfs_file_extent_item cmp1;
514 struct btrfs_file_extent_item cmp2;
515 struct btrfs_file_extent_item *existing;
516 struct extent_buffer *leaf;
517
518 leaf = path->nodes[0];
519 existing = btrfs_item_ptr(leaf, path->slots[0],
520 struct btrfs_file_extent_item);
521
522 read_extent_buffer(eb, &cmp1, (unsigned long)item,
523 sizeof(cmp1));
524 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
525 sizeof(cmp2));
526
527 /*
528 * we already have a pointer to this exact extent,
529 * we don't have to do anything
530 */
531 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
532 btrfs_release_path(root, path);
533 goto out;
534 }
535 }
536 btrfs_release_path(root, path);
537
07d400a6 538 saved_nbytes = inode_get_bytes(inode);
e02119d5
CM
539 /* drop any overlapping extents */
540 ret = btrfs_drop_extents(trans, root, inode,
541 start, extent_end, start, &alloc_hint);
542 BUG_ON(ret);
543
07d400a6
YZ
544 if (found_type == BTRFS_FILE_EXTENT_REG ||
545 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
546 unsigned long dest_offset;
547 struct btrfs_key ins;
548
549 ret = btrfs_insert_empty_item(trans, root, path, key,
550 sizeof(*item));
551 BUG_ON(ret);
552 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
553 path->slots[0]);
554 copy_extent_buffer(path->nodes[0], eb, dest_offset,
555 (unsigned long)item, sizeof(*item));
556
557 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
558 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
559 ins.type = BTRFS_EXTENT_ITEM_KEY;
560
561 if (ins.objectid > 0) {
562 u64 csum_start;
563 u64 csum_end;
564 LIST_HEAD(ordered_sums);
565 /*
566 * is this extent already allocated in the extent
567 * allocation tree? If so, just add a reference
568 */
569 ret = btrfs_lookup_extent(root, ins.objectid,
570 ins.offset);
571 if (ret == 0) {
572 ret = btrfs_inc_extent_ref(trans, root,
573 ins.objectid, ins.offset,
574 path->nodes[0]->start,
575 root->root_key.objectid,
576 trans->transid, key->objectid);
577 } else {
578 /*
579 * insert the extent pointer in the extent
580 * allocation tree
581 */
582 ret = btrfs_alloc_logged_extent(trans, root,
583 path->nodes[0]->start,
584 root->root_key.objectid,
585 trans->transid, key->objectid,
586 &ins);
587 BUG_ON(ret);
588 }
589 btrfs_release_path(root, path);
590
591 if (btrfs_file_extent_compression(eb, item)) {
592 csum_start = ins.objectid;
593 csum_end = csum_start + ins.offset;
594 } else {
595 csum_start = ins.objectid +
596 btrfs_file_extent_offset(eb, item);
597 csum_end = csum_start +
598 btrfs_file_extent_num_bytes(eb, item);
599 }
600
601 ret = btrfs_lookup_csums_range(root->log_root,
602 csum_start, csum_end - 1,
603 &ordered_sums);
604 BUG_ON(ret);
605 while (!list_empty(&ordered_sums)) {
606 struct btrfs_ordered_sum *sums;
607 sums = list_entry(ordered_sums.next,
608 struct btrfs_ordered_sum,
609 list);
610 ret = btrfs_csum_file_blocks(trans,
611 root->fs_info->csum_root,
612 sums);
613 BUG_ON(ret);
614 list_del(&sums->list);
615 kfree(sums);
616 }
617 } else {
618 btrfs_release_path(root, path);
619 }
620 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
621 /* inline extents are easy, we just overwrite them */
622 ret = overwrite_item(trans, root, path, eb, slot, key);
623 BUG_ON(ret);
624 }
e02119d5 625
07d400a6 626 inode_set_bytes(inode, saved_nbytes);
e02119d5
CM
627 btrfs_update_inode(trans, root, inode);
628out:
629 if (inode)
630 iput(inode);
631 return ret;
632}
633
634/*
635 * when cleaning up conflicts between the directory names in the
636 * subvolume, directory names in the log and directory names in the
637 * inode back references, we may have to unlink inodes from directories.
638 *
639 * This is a helper function to do the unlink of a specific directory
640 * item
641 */
642static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct inode *dir,
646 struct btrfs_dir_item *di)
647{
648 struct inode *inode;
649 char *name;
650 int name_len;
651 struct extent_buffer *leaf;
652 struct btrfs_key location;
653 int ret;
654
655 leaf = path->nodes[0];
656
657 btrfs_dir_item_key_to_cpu(leaf, di, &location);
658 name_len = btrfs_dir_name_len(leaf, di);
659 name = kmalloc(name_len, GFP_NOFS);
660 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
661 btrfs_release_path(root, path);
662
663 inode = read_one_inode(root, location.objectid);
664 BUG_ON(!inode);
665
ec051c0f
YZ
666 ret = link_to_fixup_dir(trans, root, path, location.objectid);
667 BUG_ON(ret);
12fcfd22 668
e02119d5 669 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
ec051c0f 670 BUG_ON(ret);
e02119d5
CM
671 kfree(name);
672
673 iput(inode);
674 return ret;
675}
676
677/*
678 * helper function to see if a given name and sequence number found
679 * in an inode back reference are already in a directory and correctly
680 * point to this inode
681 */
682static noinline int inode_in_dir(struct btrfs_root *root,
683 struct btrfs_path *path,
684 u64 dirid, u64 objectid, u64 index,
685 const char *name, int name_len)
686{
687 struct btrfs_dir_item *di;
688 struct btrfs_key location;
689 int match = 0;
690
691 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
692 index, name, name_len, 0);
693 if (di && !IS_ERR(di)) {
694 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
695 if (location.objectid != objectid)
696 goto out;
697 } else
698 goto out;
699 btrfs_release_path(root, path);
700
701 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
702 if (di && !IS_ERR(di)) {
703 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
704 if (location.objectid != objectid)
705 goto out;
706 } else
707 goto out;
708 match = 1;
709out:
710 btrfs_release_path(root, path);
711 return match;
712}
713
714/*
715 * helper function to check a log tree for a named back reference in
716 * an inode. This is used to decide if a back reference that is
717 * found in the subvolume conflicts with what we find in the log.
718 *
719 * inode backreferences may have multiple refs in a single item,
720 * during replay we process one reference at a time, and we don't
721 * want to delete valid links to a file from the subvolume if that
722 * link is also in the log.
723 */
724static noinline int backref_in_log(struct btrfs_root *log,
725 struct btrfs_key *key,
726 char *name, int namelen)
727{
728 struct btrfs_path *path;
729 struct btrfs_inode_ref *ref;
730 unsigned long ptr;
731 unsigned long ptr_end;
732 unsigned long name_ptr;
733 int found_name_len;
734 int item_size;
735 int ret;
736 int match = 0;
737
738 path = btrfs_alloc_path();
739 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
740 if (ret != 0)
741 goto out;
742
743 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
744 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
745 ptr_end = ptr + item_size;
746 while (ptr < ptr_end) {
747 ref = (struct btrfs_inode_ref *)ptr;
748 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
749 if (found_name_len == namelen) {
750 name_ptr = (unsigned long)(ref + 1);
751 ret = memcmp_extent_buffer(path->nodes[0], name,
752 name_ptr, namelen);
753 if (ret == 0) {
754 match = 1;
755 goto out;
756 }
757 }
758 ptr = (unsigned long)(ref + 1) + found_name_len;
759 }
760out:
761 btrfs_free_path(path);
762 return match;
763}
764
765
766/*
767 * replay one inode back reference item found in the log tree.
768 * eb, slot and key refer to the buffer and key found in the log tree.
769 * root is the destination we are replaying into, and path is for temp
770 * use by this function. (it should be released on return).
771 */
772static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
773 struct btrfs_root *root,
774 struct btrfs_root *log,
775 struct btrfs_path *path,
776 struct extent_buffer *eb, int slot,
777 struct btrfs_key *key)
778{
779 struct inode *dir;
780 int ret;
781 struct btrfs_key location;
782 struct btrfs_inode_ref *ref;
783 struct btrfs_dir_item *di;
784 struct inode *inode;
785 char *name;
786 int namelen;
787 unsigned long ref_ptr;
788 unsigned long ref_end;
789
790 location.objectid = key->objectid;
791 location.type = BTRFS_INODE_ITEM_KEY;
792 location.offset = 0;
793
794 /*
795 * it is possible that we didn't log all the parent directories
796 * for a given inode. If we don't find the dir, just don't
797 * copy the back ref in. The link count fixup code will take
798 * care of the rest
799 */
800 dir = read_one_inode(root, key->offset);
801 if (!dir)
802 return -ENOENT;
803
804 inode = read_one_inode(root, key->objectid);
805 BUG_ON(!dir);
806
807 ref_ptr = btrfs_item_ptr_offset(eb, slot);
808 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
809
810again:
811 ref = (struct btrfs_inode_ref *)ref_ptr;
812
813 namelen = btrfs_inode_ref_name_len(eb, ref);
814 name = kmalloc(namelen, GFP_NOFS);
815 BUG_ON(!name);
816
817 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
818
819 /* if we already have a perfect match, we're done */
820 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
821 btrfs_inode_ref_index(eb, ref),
822 name, namelen)) {
823 goto out;
824 }
825
826 /*
827 * look for a conflicting back reference in the metadata.
828 * if we find one we have to unlink that name of the file
829 * before we add our new link. Later on, we overwrite any
830 * existing back reference, and we don't want to create
831 * dangling pointers in the directory.
832 */
833conflict_again:
834 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
835 if (ret == 0) {
836 char *victim_name;
837 int victim_name_len;
838 struct btrfs_inode_ref *victim_ref;
839 unsigned long ptr;
840 unsigned long ptr_end;
841 struct extent_buffer *leaf = path->nodes[0];
842
843 /* are we trying to overwrite a back ref for the root directory
844 * if so, just jump out, we're done
845 */
846 if (key->objectid == key->offset)
847 goto out_nowrite;
848
849 /* check all the names in this back reference to see
850 * if they are in the log. if so, we allow them to stay
851 * otherwise they must be unlinked as a conflict
852 */
853 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
854 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 855 while (ptr < ptr_end) {
e02119d5
CM
856 victim_ref = (struct btrfs_inode_ref *)ptr;
857 victim_name_len = btrfs_inode_ref_name_len(leaf,
858 victim_ref);
859 victim_name = kmalloc(victim_name_len, GFP_NOFS);
860 BUG_ON(!victim_name);
861
862 read_extent_buffer(leaf, victim_name,
863 (unsigned long)(victim_ref + 1),
864 victim_name_len);
865
866 if (!backref_in_log(log, key, victim_name,
867 victim_name_len)) {
868 btrfs_inc_nlink(inode);
869 btrfs_release_path(root, path);
12fcfd22 870
e02119d5
CM
871 ret = btrfs_unlink_inode(trans, root, dir,
872 inode, victim_name,
873 victim_name_len);
874 kfree(victim_name);
875 btrfs_release_path(root, path);
876 goto conflict_again;
877 }
878 kfree(victim_name);
879 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
880 }
881 BUG_ON(ret);
882 }
883 btrfs_release_path(root, path);
884
885 /* look for a conflicting sequence number */
886 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
887 btrfs_inode_ref_index(eb, ref),
888 name, namelen, 0);
889 if (di && !IS_ERR(di)) {
890 ret = drop_one_dir_item(trans, root, path, dir, di);
891 BUG_ON(ret);
892 }
893 btrfs_release_path(root, path);
894
895
896 /* look for a conflicting name */
897 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
898 name, namelen, 0);
899 if (di && !IS_ERR(di)) {
900 ret = drop_one_dir_item(trans, root, path, dir, di);
901 BUG_ON(ret);
902 }
903 btrfs_release_path(root, path);
904
905 /* insert our name */
906 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
907 btrfs_inode_ref_index(eb, ref));
908 BUG_ON(ret);
909
910 btrfs_update_inode(trans, root, inode);
911
912out:
913 ref_ptr = (unsigned long)(ref + 1) + namelen;
914 kfree(name);
915 if (ref_ptr < ref_end)
916 goto again;
917
918 /* finally write the back reference in the inode */
919 ret = overwrite_item(trans, root, path, eb, slot, key);
920 BUG_ON(ret);
921
922out_nowrite:
923 btrfs_release_path(root, path);
924 iput(dir);
925 iput(inode);
926 return 0;
927}
928
e02119d5
CM
929/*
930 * There are a few corners where the link count of the file can't
931 * be properly maintained during replay. So, instead of adding
932 * lots of complexity to the log code, we just scan the backrefs
933 * for any file that has been through replay.
934 *
935 * The scan will update the link count on the inode to reflect the
936 * number of back refs found. If it goes down to zero, the iput
937 * will free the inode.
938 */
939static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
940 struct btrfs_root *root,
941 struct inode *inode)
942{
943 struct btrfs_path *path;
944 int ret;
945 struct btrfs_key key;
946 u64 nlink = 0;
947 unsigned long ptr;
948 unsigned long ptr_end;
949 int name_len;
950
951 key.objectid = inode->i_ino;
952 key.type = BTRFS_INODE_REF_KEY;
953 key.offset = (u64)-1;
954
955 path = btrfs_alloc_path();
956
d397712b 957 while (1) {
e02119d5
CM
958 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
959 if (ret < 0)
960 break;
961 if (ret > 0) {
962 if (path->slots[0] == 0)
963 break;
964 path->slots[0]--;
965 }
966 btrfs_item_key_to_cpu(path->nodes[0], &key,
967 path->slots[0]);
968 if (key.objectid != inode->i_ino ||
969 key.type != BTRFS_INODE_REF_KEY)
970 break;
971 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
972 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
973 path->slots[0]);
d397712b 974 while (ptr < ptr_end) {
e02119d5
CM
975 struct btrfs_inode_ref *ref;
976
977 ref = (struct btrfs_inode_ref *)ptr;
978 name_len = btrfs_inode_ref_name_len(path->nodes[0],
979 ref);
980 ptr = (unsigned long)(ref + 1) + name_len;
981 nlink++;
982 }
983
984 if (key.offset == 0)
985 break;
986 key.offset--;
987 btrfs_release_path(root, path);
988 }
12fcfd22 989 btrfs_release_path(root, path);
e02119d5
CM
990 if (nlink != inode->i_nlink) {
991 inode->i_nlink = nlink;
992 btrfs_update_inode(trans, root, inode);
993 }
8d5bf1cb 994 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 995
12fcfd22
CM
996 if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) {
997 ret = replay_dir_deletes(trans, root, NULL, path,
998 inode->i_ino, 1);
999 BUG_ON(ret);
1000 }
1001 btrfs_free_path(path);
1002
e02119d5
CM
1003 return 0;
1004}
1005
1006static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1007 struct btrfs_root *root,
1008 struct btrfs_path *path)
1009{
1010 int ret;
1011 struct btrfs_key key;
1012 struct inode *inode;
1013
1014 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1015 key.type = BTRFS_ORPHAN_ITEM_KEY;
1016 key.offset = (u64)-1;
d397712b 1017 while (1) {
e02119d5
CM
1018 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1019 if (ret < 0)
1020 break;
1021
1022 if (ret == 1) {
1023 if (path->slots[0] == 0)
1024 break;
1025 path->slots[0]--;
1026 }
1027
1028 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1029 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1030 key.type != BTRFS_ORPHAN_ITEM_KEY)
1031 break;
1032
1033 ret = btrfs_del_item(trans, root, path);
1034 BUG_ON(ret);
1035
1036 btrfs_release_path(root, path);
1037 inode = read_one_inode(root, key.offset);
1038 BUG_ON(!inode);
1039
1040 ret = fixup_inode_link_count(trans, root, inode);
1041 BUG_ON(ret);
1042
1043 iput(inode);
1044
12fcfd22
CM
1045 /*
1046 * fixup on a directory may create new entries,
1047 * make sure we always look for the highset possible
1048 * offset
1049 */
1050 key.offset = (u64)-1;
e02119d5
CM
1051 }
1052 btrfs_release_path(root, path);
1053 return 0;
1054}
1055
1056
1057/*
1058 * record a given inode in the fixup dir so we can check its link
1059 * count when replay is done. The link count is incremented here
1060 * so the inode won't go away until we check it
1061 */
1062static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1063 struct btrfs_root *root,
1064 struct btrfs_path *path,
1065 u64 objectid)
1066{
1067 struct btrfs_key key;
1068 int ret = 0;
1069 struct inode *inode;
1070
1071 inode = read_one_inode(root, objectid);
1072 BUG_ON(!inode);
1073
1074 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1075 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1076 key.offset = objectid;
1077
1078 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1079
1080 btrfs_release_path(root, path);
1081 if (ret == 0) {
1082 btrfs_inc_nlink(inode);
1083 btrfs_update_inode(trans, root, inode);
1084 } else if (ret == -EEXIST) {
1085 ret = 0;
1086 } else {
1087 BUG();
1088 }
1089 iput(inode);
1090
1091 return ret;
1092}
1093
1094/*
1095 * when replaying the log for a directory, we only insert names
1096 * for inodes that actually exist. This means an fsync on a directory
1097 * does not implicitly fsync all the new files in it
1098 */
1099static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1100 struct btrfs_root *root,
1101 struct btrfs_path *path,
1102 u64 dirid, u64 index,
1103 char *name, int name_len, u8 type,
1104 struct btrfs_key *location)
1105{
1106 struct inode *inode;
1107 struct inode *dir;
1108 int ret;
1109
1110 inode = read_one_inode(root, location->objectid);
1111 if (!inode)
1112 return -ENOENT;
1113
1114 dir = read_one_inode(root, dirid);
1115 if (!dir) {
1116 iput(inode);
1117 return -EIO;
1118 }
1119 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1120
1121 /* FIXME, put inode into FIXUP list */
1122
1123 iput(inode);
1124 iput(dir);
1125 return ret;
1126}
1127
1128/*
1129 * take a single entry in a log directory item and replay it into
1130 * the subvolume.
1131 *
1132 * if a conflicting item exists in the subdirectory already,
1133 * the inode it points to is unlinked and put into the link count
1134 * fix up tree.
1135 *
1136 * If a name from the log points to a file or directory that does
1137 * not exist in the FS, it is skipped. fsyncs on directories
1138 * do not force down inodes inside that directory, just changes to the
1139 * names or unlinks in a directory.
1140 */
1141static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1142 struct btrfs_root *root,
1143 struct btrfs_path *path,
1144 struct extent_buffer *eb,
1145 struct btrfs_dir_item *di,
1146 struct btrfs_key *key)
1147{
1148 char *name;
1149 int name_len;
1150 struct btrfs_dir_item *dst_di;
1151 struct btrfs_key found_key;
1152 struct btrfs_key log_key;
1153 struct inode *dir;
e02119d5 1154 u8 log_type;
4bef0848 1155 int exists;
e02119d5
CM
1156 int ret;
1157
1158 dir = read_one_inode(root, key->objectid);
1159 BUG_ON(!dir);
1160
1161 name_len = btrfs_dir_name_len(eb, di);
1162 name = kmalloc(name_len, GFP_NOFS);
1163 log_type = btrfs_dir_type(eb, di);
1164 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1165 name_len);
1166
1167 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1168 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1169 if (exists == 0)
1170 exists = 1;
1171 else
1172 exists = 0;
1173 btrfs_release_path(root, path);
1174
e02119d5
CM
1175 if (key->type == BTRFS_DIR_ITEM_KEY) {
1176 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1177 name, name_len, 1);
d397712b 1178 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1179 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1180 key->objectid,
1181 key->offset, name,
1182 name_len, 1);
1183 } else {
1184 BUG();
1185 }
1186 if (!dst_di || IS_ERR(dst_di)) {
1187 /* we need a sequence number to insert, so we only
1188 * do inserts for the BTRFS_DIR_INDEX_KEY types
1189 */
1190 if (key->type != BTRFS_DIR_INDEX_KEY)
1191 goto out;
1192 goto insert;
1193 }
1194
1195 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1196 /* the existing item matches the logged item */
1197 if (found_key.objectid == log_key.objectid &&
1198 found_key.type == log_key.type &&
1199 found_key.offset == log_key.offset &&
1200 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1201 goto out;
1202 }
1203
1204 /*
1205 * don't drop the conflicting directory entry if the inode
1206 * for the new entry doesn't exist
1207 */
4bef0848 1208 if (!exists)
e02119d5
CM
1209 goto out;
1210
e02119d5
CM
1211 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1212 BUG_ON(ret);
1213
1214 if (key->type == BTRFS_DIR_INDEX_KEY)
1215 goto insert;
1216out:
1217 btrfs_release_path(root, path);
1218 kfree(name);
1219 iput(dir);
1220 return 0;
1221
1222insert:
1223 btrfs_release_path(root, path);
1224 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1225 name, name_len, log_type, &log_key);
1226
1227 if (ret && ret != -ENOENT)
1228 BUG();
1229 goto out;
1230}
1231
1232/*
1233 * find all the names in a directory item and reconcile them into
1234 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1235 * one name in a directory item, but the same code gets used for
1236 * both directory index types
1237 */
1238static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1239 struct btrfs_root *root,
1240 struct btrfs_path *path,
1241 struct extent_buffer *eb, int slot,
1242 struct btrfs_key *key)
1243{
1244 int ret;
1245 u32 item_size = btrfs_item_size_nr(eb, slot);
1246 struct btrfs_dir_item *di;
1247 int name_len;
1248 unsigned long ptr;
1249 unsigned long ptr_end;
1250
1251 ptr = btrfs_item_ptr_offset(eb, slot);
1252 ptr_end = ptr + item_size;
d397712b 1253 while (ptr < ptr_end) {
e02119d5
CM
1254 di = (struct btrfs_dir_item *)ptr;
1255 name_len = btrfs_dir_name_len(eb, di);
1256 ret = replay_one_name(trans, root, path, eb, di, key);
1257 BUG_ON(ret);
1258 ptr = (unsigned long)(di + 1);
1259 ptr += name_len;
1260 }
1261 return 0;
1262}
1263
1264/*
1265 * directory replay has two parts. There are the standard directory
1266 * items in the log copied from the subvolume, and range items
1267 * created in the log while the subvolume was logged.
1268 *
1269 * The range items tell us which parts of the key space the log
1270 * is authoritative for. During replay, if a key in the subvolume
1271 * directory is in a logged range item, but not actually in the log
1272 * that means it was deleted from the directory before the fsync
1273 * and should be removed.
1274 */
1275static noinline int find_dir_range(struct btrfs_root *root,
1276 struct btrfs_path *path,
1277 u64 dirid, int key_type,
1278 u64 *start_ret, u64 *end_ret)
1279{
1280 struct btrfs_key key;
1281 u64 found_end;
1282 struct btrfs_dir_log_item *item;
1283 int ret;
1284 int nritems;
1285
1286 if (*start_ret == (u64)-1)
1287 return 1;
1288
1289 key.objectid = dirid;
1290 key.type = key_type;
1291 key.offset = *start_ret;
1292
1293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1294 if (ret < 0)
1295 goto out;
1296 if (ret > 0) {
1297 if (path->slots[0] == 0)
1298 goto out;
1299 path->slots[0]--;
1300 }
1301 if (ret != 0)
1302 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1303
1304 if (key.type != key_type || key.objectid != dirid) {
1305 ret = 1;
1306 goto next;
1307 }
1308 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1309 struct btrfs_dir_log_item);
1310 found_end = btrfs_dir_log_end(path->nodes[0], item);
1311
1312 if (*start_ret >= key.offset && *start_ret <= found_end) {
1313 ret = 0;
1314 *start_ret = key.offset;
1315 *end_ret = found_end;
1316 goto out;
1317 }
1318 ret = 1;
1319next:
1320 /* check the next slot in the tree to see if it is a valid item */
1321 nritems = btrfs_header_nritems(path->nodes[0]);
1322 if (path->slots[0] >= nritems) {
1323 ret = btrfs_next_leaf(root, path);
1324 if (ret)
1325 goto out;
1326 } else {
1327 path->slots[0]++;
1328 }
1329
1330 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1331
1332 if (key.type != key_type || key.objectid != dirid) {
1333 ret = 1;
1334 goto out;
1335 }
1336 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1337 struct btrfs_dir_log_item);
1338 found_end = btrfs_dir_log_end(path->nodes[0], item);
1339 *start_ret = key.offset;
1340 *end_ret = found_end;
1341 ret = 0;
1342out:
1343 btrfs_release_path(root, path);
1344 return ret;
1345}
1346
1347/*
1348 * this looks for a given directory item in the log. If the directory
1349 * item is not in the log, the item is removed and the inode it points
1350 * to is unlinked
1351 */
1352static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1353 struct btrfs_root *root,
1354 struct btrfs_root *log,
1355 struct btrfs_path *path,
1356 struct btrfs_path *log_path,
1357 struct inode *dir,
1358 struct btrfs_key *dir_key)
1359{
1360 int ret;
1361 struct extent_buffer *eb;
1362 int slot;
1363 u32 item_size;
1364 struct btrfs_dir_item *di;
1365 struct btrfs_dir_item *log_di;
1366 int name_len;
1367 unsigned long ptr;
1368 unsigned long ptr_end;
1369 char *name;
1370 struct inode *inode;
1371 struct btrfs_key location;
1372
1373again:
1374 eb = path->nodes[0];
1375 slot = path->slots[0];
1376 item_size = btrfs_item_size_nr(eb, slot);
1377 ptr = btrfs_item_ptr_offset(eb, slot);
1378 ptr_end = ptr + item_size;
d397712b 1379 while (ptr < ptr_end) {
e02119d5
CM
1380 di = (struct btrfs_dir_item *)ptr;
1381 name_len = btrfs_dir_name_len(eb, di);
1382 name = kmalloc(name_len, GFP_NOFS);
1383 if (!name) {
1384 ret = -ENOMEM;
1385 goto out;
1386 }
1387 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1388 name_len);
1389 log_di = NULL;
12fcfd22 1390 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1391 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1392 dir_key->objectid,
1393 name, name_len, 0);
12fcfd22 1394 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1395 log_di = btrfs_lookup_dir_index_item(trans, log,
1396 log_path,
1397 dir_key->objectid,
1398 dir_key->offset,
1399 name, name_len, 0);
1400 }
1401 if (!log_di || IS_ERR(log_di)) {
1402 btrfs_dir_item_key_to_cpu(eb, di, &location);
1403 btrfs_release_path(root, path);
1404 btrfs_release_path(log, log_path);
1405 inode = read_one_inode(root, location.objectid);
1406 BUG_ON(!inode);
1407
1408 ret = link_to_fixup_dir(trans, root,
1409 path, location.objectid);
1410 BUG_ON(ret);
1411 btrfs_inc_nlink(inode);
1412 ret = btrfs_unlink_inode(trans, root, dir, inode,
1413 name, name_len);
1414 BUG_ON(ret);
1415 kfree(name);
1416 iput(inode);
1417
1418 /* there might still be more names under this key
1419 * check and repeat if required
1420 */
1421 ret = btrfs_search_slot(NULL, root, dir_key, path,
1422 0, 0);
1423 if (ret == 0)
1424 goto again;
1425 ret = 0;
1426 goto out;
1427 }
1428 btrfs_release_path(log, log_path);
1429 kfree(name);
1430
1431 ptr = (unsigned long)(di + 1);
1432 ptr += name_len;
1433 }
1434 ret = 0;
1435out:
1436 btrfs_release_path(root, path);
1437 btrfs_release_path(log, log_path);
1438 return ret;
1439}
1440
1441/*
1442 * deletion replay happens before we copy any new directory items
1443 * out of the log or out of backreferences from inodes. It
1444 * scans the log to find ranges of keys that log is authoritative for,
1445 * and then scans the directory to find items in those ranges that are
1446 * not present in the log.
1447 *
1448 * Anything we don't find in the log is unlinked and removed from the
1449 * directory.
1450 */
1451static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1452 struct btrfs_root *root,
1453 struct btrfs_root *log,
1454 struct btrfs_path *path,
12fcfd22 1455 u64 dirid, int del_all)
e02119d5
CM
1456{
1457 u64 range_start;
1458 u64 range_end;
1459 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1460 int ret = 0;
1461 struct btrfs_key dir_key;
1462 struct btrfs_key found_key;
1463 struct btrfs_path *log_path;
1464 struct inode *dir;
1465
1466 dir_key.objectid = dirid;
1467 dir_key.type = BTRFS_DIR_ITEM_KEY;
1468 log_path = btrfs_alloc_path();
1469 if (!log_path)
1470 return -ENOMEM;
1471
1472 dir = read_one_inode(root, dirid);
1473 /* it isn't an error if the inode isn't there, that can happen
1474 * because we replay the deletes before we copy in the inode item
1475 * from the log
1476 */
1477 if (!dir) {
1478 btrfs_free_path(log_path);
1479 return 0;
1480 }
1481again:
1482 range_start = 0;
1483 range_end = 0;
d397712b 1484 while (1) {
12fcfd22
CM
1485 if (del_all)
1486 range_end = (u64)-1;
1487 else {
1488 ret = find_dir_range(log, path, dirid, key_type,
1489 &range_start, &range_end);
1490 if (ret != 0)
1491 break;
1492 }
e02119d5
CM
1493
1494 dir_key.offset = range_start;
d397712b 1495 while (1) {
e02119d5
CM
1496 int nritems;
1497 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1498 0, 0);
1499 if (ret < 0)
1500 goto out;
1501
1502 nritems = btrfs_header_nritems(path->nodes[0]);
1503 if (path->slots[0] >= nritems) {
1504 ret = btrfs_next_leaf(root, path);
1505 if (ret)
1506 break;
1507 }
1508 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1509 path->slots[0]);
1510 if (found_key.objectid != dirid ||
1511 found_key.type != dir_key.type)
1512 goto next_type;
1513
1514 if (found_key.offset > range_end)
1515 break;
1516
1517 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1518 log_path, dir,
1519 &found_key);
e02119d5
CM
1520 BUG_ON(ret);
1521 if (found_key.offset == (u64)-1)
1522 break;
1523 dir_key.offset = found_key.offset + 1;
1524 }
1525 btrfs_release_path(root, path);
1526 if (range_end == (u64)-1)
1527 break;
1528 range_start = range_end + 1;
1529 }
1530
1531next_type:
1532 ret = 0;
1533 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1534 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1535 dir_key.type = BTRFS_DIR_INDEX_KEY;
1536 btrfs_release_path(root, path);
1537 goto again;
1538 }
1539out:
1540 btrfs_release_path(root, path);
1541 btrfs_free_path(log_path);
1542 iput(dir);
1543 return ret;
1544}
1545
1546/*
1547 * the process_func used to replay items from the log tree. This
1548 * gets called in two different stages. The first stage just looks
1549 * for inodes and makes sure they are all copied into the subvolume.
1550 *
1551 * The second stage copies all the other item types from the log into
1552 * the subvolume. The two stage approach is slower, but gets rid of
1553 * lots of complexity around inodes referencing other inodes that exist
1554 * only in the log (references come from either directory items or inode
1555 * back refs).
1556 */
1557static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1558 struct walk_control *wc, u64 gen)
1559{
1560 int nritems;
1561 struct btrfs_path *path;
1562 struct btrfs_root *root = wc->replay_dest;
1563 struct btrfs_key key;
1564 u32 item_size;
1565 int level;
1566 int i;
1567 int ret;
1568
1569 btrfs_read_buffer(eb, gen);
1570
1571 level = btrfs_header_level(eb);
1572
1573 if (level != 0)
1574 return 0;
1575
1576 path = btrfs_alloc_path();
1577 BUG_ON(!path);
1578
1579 nritems = btrfs_header_nritems(eb);
1580 for (i = 0; i < nritems; i++) {
1581 btrfs_item_key_to_cpu(eb, &key, i);
1582 item_size = btrfs_item_size_nr(eb, i);
1583
1584 /* inode keys are done during the first stage */
1585 if (key.type == BTRFS_INODE_ITEM_KEY &&
1586 wc->stage == LOG_WALK_REPLAY_INODES) {
1587 struct inode *inode;
1588 struct btrfs_inode_item *inode_item;
1589 u32 mode;
1590
1591 inode_item = btrfs_item_ptr(eb, i,
1592 struct btrfs_inode_item);
1593 mode = btrfs_inode_mode(eb, inode_item);
1594 if (S_ISDIR(mode)) {
1595 ret = replay_dir_deletes(wc->trans,
12fcfd22 1596 root, log, path, key.objectid, 0);
e02119d5
CM
1597 BUG_ON(ret);
1598 }
1599 ret = overwrite_item(wc->trans, root, path,
1600 eb, i, &key);
1601 BUG_ON(ret);
1602
1603 /* for regular files, truncate away
1604 * extents past the new EOF
1605 */
1606 if (S_ISREG(mode)) {
1607 inode = read_one_inode(root,
1608 key.objectid);
1609 BUG_ON(!inode);
1610
1611 ret = btrfs_truncate_inode_items(wc->trans,
1612 root, inode, inode->i_size,
1613 BTRFS_EXTENT_DATA_KEY);
1614 BUG_ON(ret);
a74ac322
CM
1615
1616 /* if the nlink count is zero here, the iput
1617 * will free the inode. We bump it to make
1618 * sure it doesn't get freed until the link
1619 * count fixup is done
1620 */
1621 if (inode->i_nlink == 0) {
1622 btrfs_inc_nlink(inode);
1623 btrfs_update_inode(wc->trans,
1624 root, inode);
1625 }
e02119d5
CM
1626 iput(inode);
1627 }
1628 ret = link_to_fixup_dir(wc->trans, root,
1629 path, key.objectid);
1630 BUG_ON(ret);
1631 }
1632 if (wc->stage < LOG_WALK_REPLAY_ALL)
1633 continue;
1634
1635 /* these keys are simply copied */
1636 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1637 ret = overwrite_item(wc->trans, root, path,
1638 eb, i, &key);
1639 BUG_ON(ret);
1640 } else if (key.type == BTRFS_INODE_REF_KEY) {
1641 ret = add_inode_ref(wc->trans, root, log, path,
1642 eb, i, &key);
1643 BUG_ON(ret && ret != -ENOENT);
1644 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1645 ret = replay_one_extent(wc->trans, root, path,
1646 eb, i, &key);
1647 BUG_ON(ret);
e02119d5
CM
1648 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1649 key.type == BTRFS_DIR_INDEX_KEY) {
1650 ret = replay_one_dir_item(wc->trans, root, path,
1651 eb, i, &key);
1652 BUG_ON(ret);
1653 }
1654 }
1655 btrfs_free_path(path);
1656 return 0;
1657}
1658
d397712b 1659static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1660 struct btrfs_root *root,
1661 struct btrfs_path *path, int *level,
1662 struct walk_control *wc)
1663{
1664 u64 root_owner;
1665 u64 root_gen;
1666 u64 bytenr;
1667 u64 ptr_gen;
1668 struct extent_buffer *next;
1669 struct extent_buffer *cur;
1670 struct extent_buffer *parent;
1671 u32 blocksize;
1672 int ret = 0;
1673
1674 WARN_ON(*level < 0);
1675 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1676
d397712b 1677 while (*level > 0) {
e02119d5
CM
1678 WARN_ON(*level < 0);
1679 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1680 cur = path->nodes[*level];
1681
1682 if (btrfs_header_level(cur) != *level)
1683 WARN_ON(1);
1684
1685 if (path->slots[*level] >=
1686 btrfs_header_nritems(cur))
1687 break;
1688
1689 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1690 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1691 blocksize = btrfs_level_size(root, *level - 1);
1692
1693 parent = path->nodes[*level];
1694 root_owner = btrfs_header_owner(parent);
1695 root_gen = btrfs_header_generation(parent);
1696
1697 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1698
1699 wc->process_func(root, next, wc, ptr_gen);
1700
1701 if (*level == 1) {
1702 path->slots[*level]++;
1703 if (wc->free) {
1704 btrfs_read_buffer(next, ptr_gen);
1705
1706 btrfs_tree_lock(next);
1707 clean_tree_block(trans, root, next);
b4ce94de 1708 btrfs_set_lock_blocking(next);
e02119d5
CM
1709 btrfs_wait_tree_block_writeback(next);
1710 btrfs_tree_unlock(next);
1711
1712 ret = btrfs_drop_leaf_ref(trans, root, next);
1713 BUG_ON(ret);
1714
1715 WARN_ON(root_owner !=
1716 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1717 ret = btrfs_free_reserved_extent(root,
1718 bytenr, blocksize);
e02119d5
CM
1719 BUG_ON(ret);
1720 }
1721 free_extent_buffer(next);
1722 continue;
1723 }
1724 btrfs_read_buffer(next, ptr_gen);
1725
1726 WARN_ON(*level <= 0);
1727 if (path->nodes[*level-1])
1728 free_extent_buffer(path->nodes[*level-1]);
1729 path->nodes[*level-1] = next;
1730 *level = btrfs_header_level(next);
1731 path->slots[*level] = 0;
1732 cond_resched();
1733 }
1734 WARN_ON(*level < 0);
1735 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1736
d397712b 1737 if (path->nodes[*level] == root->node)
e02119d5 1738 parent = path->nodes[*level];
d397712b 1739 else
e02119d5 1740 parent = path->nodes[*level + 1];
d397712b 1741
e02119d5
CM
1742 bytenr = path->nodes[*level]->start;
1743
1744 blocksize = btrfs_level_size(root, *level);
1745 root_owner = btrfs_header_owner(parent);
1746 root_gen = btrfs_header_generation(parent);
1747
1748 wc->process_func(root, path->nodes[*level], wc,
1749 btrfs_header_generation(path->nodes[*level]));
1750
1751 if (wc->free) {
1752 next = path->nodes[*level];
1753 btrfs_tree_lock(next);
1754 clean_tree_block(trans, root, next);
b4ce94de 1755 btrfs_set_lock_blocking(next);
e02119d5
CM
1756 btrfs_wait_tree_block_writeback(next);
1757 btrfs_tree_unlock(next);
1758
1759 if (*level == 0) {
1760 ret = btrfs_drop_leaf_ref(trans, root, next);
1761 BUG_ON(ret);
1762 }
1763 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1764 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
e02119d5
CM
1765 BUG_ON(ret);
1766 }
1767 free_extent_buffer(path->nodes[*level]);
1768 path->nodes[*level] = NULL;
1769 *level += 1;
1770
1771 cond_resched();
1772 return 0;
1773}
1774
d397712b 1775static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1776 struct btrfs_root *root,
1777 struct btrfs_path *path, int *level,
1778 struct walk_control *wc)
1779{
1780 u64 root_owner;
1781 u64 root_gen;
1782 int i;
1783 int slot;
1784 int ret;
1785
d397712b 1786 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5
CM
1787 slot = path->slots[i];
1788 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1789 struct extent_buffer *node;
1790 node = path->nodes[i];
1791 path->slots[i]++;
1792 *level = i;
1793 WARN_ON(*level == 0);
1794 return 0;
1795 } else {
31840ae1
ZY
1796 struct extent_buffer *parent;
1797 if (path->nodes[*level] == root->node)
1798 parent = path->nodes[*level];
1799 else
1800 parent = path->nodes[*level + 1];
1801
1802 root_owner = btrfs_header_owner(parent);
1803 root_gen = btrfs_header_generation(parent);
e02119d5
CM
1804 wc->process_func(root, path->nodes[*level], wc,
1805 btrfs_header_generation(path->nodes[*level]));
1806 if (wc->free) {
1807 struct extent_buffer *next;
1808
1809 next = path->nodes[*level];
1810
1811 btrfs_tree_lock(next);
1812 clean_tree_block(trans, root, next);
b4ce94de 1813 btrfs_set_lock_blocking(next);
e02119d5
CM
1814 btrfs_wait_tree_block_writeback(next);
1815 btrfs_tree_unlock(next);
1816
1817 if (*level == 0) {
1818 ret = btrfs_drop_leaf_ref(trans, root,
1819 next);
1820 BUG_ON(ret);
1821 }
1822
1823 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1824 ret = btrfs_free_reserved_extent(root,
e02119d5 1825 path->nodes[*level]->start,
d00aff00 1826 path->nodes[*level]->len);
e02119d5
CM
1827 BUG_ON(ret);
1828 }
1829 free_extent_buffer(path->nodes[*level]);
1830 path->nodes[*level] = NULL;
1831 *level = i + 1;
1832 }
1833 }
1834 return 1;
1835}
1836
1837/*
1838 * drop the reference count on the tree rooted at 'snap'. This traverses
1839 * the tree freeing any blocks that have a ref count of zero after being
1840 * decremented.
1841 */
1842static int walk_log_tree(struct btrfs_trans_handle *trans,
1843 struct btrfs_root *log, struct walk_control *wc)
1844{
1845 int ret = 0;
1846 int wret;
1847 int level;
1848 struct btrfs_path *path;
1849 int i;
1850 int orig_level;
1851
1852 path = btrfs_alloc_path();
1853 BUG_ON(!path);
1854
1855 level = btrfs_header_level(log->node);
1856 orig_level = level;
1857 path->nodes[level] = log->node;
1858 extent_buffer_get(log->node);
1859 path->slots[level] = 0;
1860
d397712b 1861 while (1) {
e02119d5
CM
1862 wret = walk_down_log_tree(trans, log, path, &level, wc);
1863 if (wret > 0)
1864 break;
1865 if (wret < 0)
1866 ret = wret;
1867
1868 wret = walk_up_log_tree(trans, log, path, &level, wc);
1869 if (wret > 0)
1870 break;
1871 if (wret < 0)
1872 ret = wret;
1873 }
1874
1875 /* was the root node processed? if not, catch it here */
1876 if (path->nodes[orig_level]) {
1877 wc->process_func(log, path->nodes[orig_level], wc,
1878 btrfs_header_generation(path->nodes[orig_level]));
1879 if (wc->free) {
1880 struct extent_buffer *next;
1881
1882 next = path->nodes[orig_level];
1883
1884 btrfs_tree_lock(next);
1885 clean_tree_block(trans, log, next);
b4ce94de 1886 btrfs_set_lock_blocking(next);
e02119d5
CM
1887 btrfs_wait_tree_block_writeback(next);
1888 btrfs_tree_unlock(next);
1889
1890 if (orig_level == 0) {
1891 ret = btrfs_drop_leaf_ref(trans, log,
1892 next);
1893 BUG_ON(ret);
1894 }
1895 WARN_ON(log->root_key.objectid !=
1896 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1897 ret = btrfs_free_reserved_extent(log, next->start,
1898 next->len);
e02119d5
CM
1899 BUG_ON(ret);
1900 }
1901 }
1902
1903 for (i = 0; i <= orig_level; i++) {
1904 if (path->nodes[i]) {
1905 free_extent_buffer(path->nodes[i]);
1906 path->nodes[i] = NULL;
1907 }
1908 }
1909 btrfs_free_path(path);
e02119d5
CM
1910 return ret;
1911}
1912
7237f183
YZ
1913/*
1914 * helper function to update the item for a given subvolumes log root
1915 * in the tree of log roots
1916 */
1917static int update_log_root(struct btrfs_trans_handle *trans,
1918 struct btrfs_root *log)
1919{
1920 int ret;
1921
1922 if (log->log_transid == 1) {
1923 /* insert root item on the first sync */
1924 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1925 &log->root_key, &log->root_item);
1926 } else {
1927 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1928 &log->root_key, &log->root_item);
1929 }
1930 return ret;
1931}
1932
12fcfd22
CM
1933static int wait_log_commit(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
1935{
1936 DEFINE_WAIT(wait);
7237f183 1937 int index = transid % 2;
e02119d5 1938
7237f183
YZ
1939 /*
1940 * we only allow two pending log transactions at a time,
1941 * so we know that if ours is more than 2 older than the
1942 * current transaction, we're done
1943 */
e02119d5 1944 do {
7237f183
YZ
1945 prepare_to_wait(&root->log_commit_wait[index],
1946 &wait, TASK_UNINTERRUPTIBLE);
1947 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1948
1949 if (root->fs_info->last_trans_log_full_commit !=
1950 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
1951 atomic_read(&root->log_commit[index]))
1952 schedule();
12fcfd22 1953
7237f183
YZ
1954 finish_wait(&root->log_commit_wait[index], &wait);
1955 mutex_lock(&root->log_mutex);
1956 } while (root->log_transid < transid + 2 &&
1957 atomic_read(&root->log_commit[index]));
1958 return 0;
1959}
1960
12fcfd22
CM
1961static int wait_for_writer(struct btrfs_trans_handle *trans,
1962 struct btrfs_root *root)
7237f183
YZ
1963{
1964 DEFINE_WAIT(wait);
1965 while (atomic_read(&root->log_writers)) {
1966 prepare_to_wait(&root->log_writer_wait,
1967 &wait, TASK_UNINTERRUPTIBLE);
1968 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1969 if (root->fs_info->last_trans_log_full_commit !=
1970 trans->transid && atomic_read(&root->log_writers))
e02119d5 1971 schedule();
7237f183
YZ
1972 mutex_lock(&root->log_mutex);
1973 finish_wait(&root->log_writer_wait, &wait);
1974 }
e02119d5
CM
1975 return 0;
1976}
1977
1978/*
1979 * btrfs_sync_log does sends a given tree log down to the disk and
1980 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
1981 * you know that any inodes previously logged are safely on disk only
1982 * if it returns 0.
1983 *
1984 * Any other return value means you need to call btrfs_commit_transaction.
1985 * Some of the edge cases for fsyncing directories that have had unlinks
1986 * or renames done in the past mean that sometimes the only safe
1987 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1988 * that has happened.
e02119d5
CM
1989 */
1990int btrfs_sync_log(struct btrfs_trans_handle *trans,
1991 struct btrfs_root *root)
1992{
7237f183
YZ
1993 int index1;
1994 int index2;
e02119d5 1995 int ret;
e02119d5 1996 struct btrfs_root *log = root->log_root;
7237f183 1997 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
e02119d5 1998
7237f183
YZ
1999 mutex_lock(&root->log_mutex);
2000 index1 = root->log_transid % 2;
2001 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 2002 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
2003 mutex_unlock(&root->log_mutex);
2004 return 0;
e02119d5 2005 }
7237f183
YZ
2006 atomic_set(&root->log_commit[index1], 1);
2007
2008 /* wait for previous tree log sync to complete */
2009 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 2010 wait_log_commit(trans, root, root->log_transid - 1);
e02119d5 2011
d397712b 2012 while (1) {
7237f183
YZ
2013 unsigned long batch = root->log_batch;
2014 mutex_unlock(&root->log_mutex);
e02119d5 2015 schedule_timeout_uninterruptible(1);
7237f183 2016 mutex_lock(&root->log_mutex);
12fcfd22
CM
2017
2018 wait_for_writer(trans, root);
7237f183 2019 if (batch == root->log_batch)
e02119d5
CM
2020 break;
2021 }
e02119d5 2022
12fcfd22
CM
2023 /* bail out if we need to do a full commit */
2024 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2025 ret = -EAGAIN;
2026 mutex_unlock(&root->log_mutex);
2027 goto out;
2028 }
2029
d0c803c4 2030 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
e02119d5 2031 BUG_ON(ret);
7237f183
YZ
2032
2033 btrfs_set_root_bytenr(&log->root_item, log->node->start);
2034 btrfs_set_root_generation(&log->root_item, trans->transid);
2035 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2036
2037 root->log_batch = 0;
2038 root->log_transid++;
2039 log->log_transid = root->log_transid;
2040 smp_mb();
2041 /*
2042 * log tree has been flushed to disk, new modifications of
2043 * the log will be written to new positions. so it's safe to
2044 * allow log writers to go in.
2045 */
2046 mutex_unlock(&root->log_mutex);
2047
2048 mutex_lock(&log_root_tree->log_mutex);
2049 log_root_tree->log_batch++;
2050 atomic_inc(&log_root_tree->log_writers);
2051 mutex_unlock(&log_root_tree->log_mutex);
2052
2053 ret = update_log_root(trans, log);
2054 BUG_ON(ret);
2055
2056 mutex_lock(&log_root_tree->log_mutex);
2057 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2058 smp_mb();
2059 if (waitqueue_active(&log_root_tree->log_writer_wait))
2060 wake_up(&log_root_tree->log_writer_wait);
2061 }
2062
2063 index2 = log_root_tree->log_transid % 2;
2064 if (atomic_read(&log_root_tree->log_commit[index2])) {
12fcfd22
CM
2065 wait_log_commit(trans, log_root_tree,
2066 log_root_tree->log_transid);
7237f183
YZ
2067 mutex_unlock(&log_root_tree->log_mutex);
2068 goto out;
2069 }
2070 atomic_set(&log_root_tree->log_commit[index2], 1);
2071
12fcfd22
CM
2072 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2073 wait_log_commit(trans, log_root_tree,
2074 log_root_tree->log_transid - 1);
2075 }
2076
2077 wait_for_writer(trans, log_root_tree);
7237f183 2078
12fcfd22
CM
2079 /*
2080 * now that we've moved on to the tree of log tree roots,
2081 * check the full commit flag again
2082 */
2083 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2084 mutex_unlock(&log_root_tree->log_mutex);
2085 ret = -EAGAIN;
2086 goto out_wake_log_root;
2087 }
7237f183
YZ
2088
2089 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2090 &log_root_tree->dirty_log_pages);
e02119d5
CM
2091 BUG_ON(ret);
2092
2093 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
7237f183 2094 log_root_tree->node->start);
e02119d5 2095 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
7237f183 2096 btrfs_header_level(log_root_tree->node));
e02119d5 2097
7237f183
YZ
2098 log_root_tree->log_batch = 0;
2099 log_root_tree->log_transid++;
e02119d5 2100 smp_mb();
7237f183
YZ
2101
2102 mutex_unlock(&log_root_tree->log_mutex);
2103
2104 /*
2105 * nobody else is going to jump in and write the the ctree
2106 * super here because the log_commit atomic below is protecting
2107 * us. We must be called with a transaction handle pinning
2108 * the running transaction open, so a full commit can't hop
2109 * in and cause problems either.
2110 */
2111 write_ctree_super(trans, root->fs_info->tree_root, 2);
12fcfd22 2112 ret = 0;
7237f183 2113
12fcfd22 2114out_wake_log_root:
7237f183
YZ
2115 atomic_set(&log_root_tree->log_commit[index2], 0);
2116 smp_mb();
2117 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2118 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2119out:
7237f183
YZ
2120 atomic_set(&root->log_commit[index1], 0);
2121 smp_mb();
2122 if (waitqueue_active(&root->log_commit_wait[index1]))
2123 wake_up(&root->log_commit_wait[index1]);
e02119d5 2124 return 0;
e02119d5
CM
2125}
2126
12fcfd22
CM
2127/*
2128 * free all the extents used by the tree log. This should be called
e02119d5
CM
2129 * at commit time of the full transaction
2130 */
2131int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2132{
2133 int ret;
2134 struct btrfs_root *log;
2135 struct key;
d0c803c4
CM
2136 u64 start;
2137 u64 end;
e02119d5
CM
2138 struct walk_control wc = {
2139 .free = 1,
2140 .process_func = process_one_buffer
2141 };
2142
07d400a6 2143 if (!root->log_root || root->fs_info->log_root_recovering)
e02119d5
CM
2144 return 0;
2145
2146 log = root->log_root;
2147 ret = walk_log_tree(trans, log, &wc);
2148 BUG_ON(ret);
2149
d397712b 2150 while (1) {
d0c803c4
CM
2151 ret = find_first_extent_bit(&log->dirty_log_pages,
2152 0, &start, &end, EXTENT_DIRTY);
2153 if (ret)
2154 break;
2155
2156 clear_extent_dirty(&log->dirty_log_pages,
2157 start, end, GFP_NOFS);
2158 }
2159
7237f183
YZ
2160 if (log->log_transid > 0) {
2161 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2162 &log->root_key);
2163 BUG_ON(ret);
2164 }
e02119d5 2165 root->log_root = NULL;
7237f183
YZ
2166 free_extent_buffer(log->node);
2167 kfree(log);
e02119d5
CM
2168 return 0;
2169}
2170
e02119d5
CM
2171/*
2172 * If both a file and directory are logged, and unlinks or renames are
2173 * mixed in, we have a few interesting corners:
2174 *
2175 * create file X in dir Y
2176 * link file X to X.link in dir Y
2177 * fsync file X
2178 * unlink file X but leave X.link
2179 * fsync dir Y
2180 *
2181 * After a crash we would expect only X.link to exist. But file X
2182 * didn't get fsync'd again so the log has back refs for X and X.link.
2183 *
2184 * We solve this by removing directory entries and inode backrefs from the
2185 * log when a file that was logged in the current transaction is
2186 * unlinked. Any later fsync will include the updated log entries, and
2187 * we'll be able to reconstruct the proper directory items from backrefs.
2188 *
2189 * This optimizations allows us to avoid relogging the entire inode
2190 * or the entire directory.
2191 */
2192int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2193 struct btrfs_root *root,
2194 const char *name, int name_len,
2195 struct inode *dir, u64 index)
2196{
2197 struct btrfs_root *log;
2198 struct btrfs_dir_item *di;
2199 struct btrfs_path *path;
2200 int ret;
2201 int bytes_del = 0;
2202
3a5f1d45
CM
2203 if (BTRFS_I(dir)->logged_trans < trans->transid)
2204 return 0;
2205
e02119d5
CM
2206 ret = join_running_log_trans(root);
2207 if (ret)
2208 return 0;
2209
2210 mutex_lock(&BTRFS_I(dir)->log_mutex);
2211
2212 log = root->log_root;
2213 path = btrfs_alloc_path();
2214 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2215 name, name_len, -1);
2216 if (di && !IS_ERR(di)) {
2217 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2218 bytes_del += name_len;
2219 BUG_ON(ret);
2220 }
2221 btrfs_release_path(log, path);
2222 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2223 index, name, name_len, -1);
2224 if (di && !IS_ERR(di)) {
2225 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2226 bytes_del += name_len;
2227 BUG_ON(ret);
2228 }
2229
2230 /* update the directory size in the log to reflect the names
2231 * we have removed
2232 */
2233 if (bytes_del) {
2234 struct btrfs_key key;
2235
2236 key.objectid = dir->i_ino;
2237 key.offset = 0;
2238 key.type = BTRFS_INODE_ITEM_KEY;
2239 btrfs_release_path(log, path);
2240
2241 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2242 if (ret == 0) {
2243 struct btrfs_inode_item *item;
2244 u64 i_size;
2245
2246 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2247 struct btrfs_inode_item);
2248 i_size = btrfs_inode_size(path->nodes[0], item);
2249 if (i_size > bytes_del)
2250 i_size -= bytes_del;
2251 else
2252 i_size = 0;
2253 btrfs_set_inode_size(path->nodes[0], item, i_size);
2254 btrfs_mark_buffer_dirty(path->nodes[0]);
2255 } else
2256 ret = 0;
2257 btrfs_release_path(log, path);
2258 }
2259
2260 btrfs_free_path(path);
2261 mutex_unlock(&BTRFS_I(dir)->log_mutex);
12fcfd22 2262 btrfs_end_log_trans(root);
e02119d5
CM
2263
2264 return 0;
2265}
2266
2267/* see comments for btrfs_del_dir_entries_in_log */
2268int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2269 struct btrfs_root *root,
2270 const char *name, int name_len,
2271 struct inode *inode, u64 dirid)
2272{
2273 struct btrfs_root *log;
2274 u64 index;
2275 int ret;
2276
3a5f1d45
CM
2277 if (BTRFS_I(inode)->logged_trans < trans->transid)
2278 return 0;
2279
e02119d5
CM
2280 ret = join_running_log_trans(root);
2281 if (ret)
2282 return 0;
2283 log = root->log_root;
2284 mutex_lock(&BTRFS_I(inode)->log_mutex);
2285
2286 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2287 dirid, &index);
2288 mutex_unlock(&BTRFS_I(inode)->log_mutex);
12fcfd22 2289 btrfs_end_log_trans(root);
e02119d5 2290
e02119d5
CM
2291 return ret;
2292}
2293
2294/*
2295 * creates a range item in the log for 'dirid'. first_offset and
2296 * last_offset tell us which parts of the key space the log should
2297 * be considered authoritative for.
2298 */
2299static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2300 struct btrfs_root *log,
2301 struct btrfs_path *path,
2302 int key_type, u64 dirid,
2303 u64 first_offset, u64 last_offset)
2304{
2305 int ret;
2306 struct btrfs_key key;
2307 struct btrfs_dir_log_item *item;
2308
2309 key.objectid = dirid;
2310 key.offset = first_offset;
2311 if (key_type == BTRFS_DIR_ITEM_KEY)
2312 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2313 else
2314 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2315 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2316 BUG_ON(ret);
2317
2318 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2319 struct btrfs_dir_log_item);
2320 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2321 btrfs_mark_buffer_dirty(path->nodes[0]);
2322 btrfs_release_path(log, path);
2323 return 0;
2324}
2325
2326/*
2327 * log all the items included in the current transaction for a given
2328 * directory. This also creates the range items in the log tree required
2329 * to replay anything deleted before the fsync
2330 */
2331static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2332 struct btrfs_root *root, struct inode *inode,
2333 struct btrfs_path *path,
2334 struct btrfs_path *dst_path, int key_type,
2335 u64 min_offset, u64 *last_offset_ret)
2336{
2337 struct btrfs_key min_key;
2338 struct btrfs_key max_key;
2339 struct btrfs_root *log = root->log_root;
2340 struct extent_buffer *src;
2341 int ret;
2342 int i;
2343 int nritems;
2344 u64 first_offset = min_offset;
2345 u64 last_offset = (u64)-1;
2346
2347 log = root->log_root;
2348 max_key.objectid = inode->i_ino;
2349 max_key.offset = (u64)-1;
2350 max_key.type = key_type;
2351
2352 min_key.objectid = inode->i_ino;
2353 min_key.type = key_type;
2354 min_key.offset = min_offset;
2355
2356 path->keep_locks = 1;
2357
2358 ret = btrfs_search_forward(root, &min_key, &max_key,
2359 path, 0, trans->transid);
2360
2361 /*
2362 * we didn't find anything from this transaction, see if there
2363 * is anything at all
2364 */
2365 if (ret != 0 || min_key.objectid != inode->i_ino ||
2366 min_key.type != key_type) {
2367 min_key.objectid = inode->i_ino;
2368 min_key.type = key_type;
2369 min_key.offset = (u64)-1;
2370 btrfs_release_path(root, path);
2371 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2372 if (ret < 0) {
2373 btrfs_release_path(root, path);
2374 return ret;
2375 }
2376 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2377
2378 /* if ret == 0 there are items for this type,
2379 * create a range to tell us the last key of this type.
2380 * otherwise, there are no items in this directory after
2381 * *min_offset, and we create a range to indicate that.
2382 */
2383 if (ret == 0) {
2384 struct btrfs_key tmp;
2385 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2386 path->slots[0]);
d397712b 2387 if (key_type == tmp.type)
e02119d5 2388 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2389 }
2390 goto done;
2391 }
2392
2393 /* go backward to find any previous key */
2394 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2395 if (ret == 0) {
2396 struct btrfs_key tmp;
2397 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2398 if (key_type == tmp.type) {
2399 first_offset = tmp.offset;
2400 ret = overwrite_item(trans, log, dst_path,
2401 path->nodes[0], path->slots[0],
2402 &tmp);
2403 }
2404 }
2405 btrfs_release_path(root, path);
2406
2407 /* find the first key from this transaction again */
2408 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2409 if (ret != 0) {
2410 WARN_ON(1);
2411 goto done;
2412 }
2413
2414 /*
2415 * we have a block from this transaction, log every item in it
2416 * from our directory
2417 */
d397712b 2418 while (1) {
e02119d5
CM
2419 struct btrfs_key tmp;
2420 src = path->nodes[0];
2421 nritems = btrfs_header_nritems(src);
2422 for (i = path->slots[0]; i < nritems; i++) {
2423 btrfs_item_key_to_cpu(src, &min_key, i);
2424
2425 if (min_key.objectid != inode->i_ino ||
2426 min_key.type != key_type)
2427 goto done;
2428 ret = overwrite_item(trans, log, dst_path, src, i,
2429 &min_key);
2430 BUG_ON(ret);
2431 }
2432 path->slots[0] = nritems;
2433
2434 /*
2435 * look ahead to the next item and see if it is also
2436 * from this directory and from this transaction
2437 */
2438 ret = btrfs_next_leaf(root, path);
2439 if (ret == 1) {
2440 last_offset = (u64)-1;
2441 goto done;
2442 }
2443 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2444 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2445 last_offset = (u64)-1;
2446 goto done;
2447 }
2448 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2449 ret = overwrite_item(trans, log, dst_path,
2450 path->nodes[0], path->slots[0],
2451 &tmp);
2452
2453 BUG_ON(ret);
2454 last_offset = tmp.offset;
2455 goto done;
2456 }
2457 }
2458done:
2459 *last_offset_ret = last_offset;
2460 btrfs_release_path(root, path);
2461 btrfs_release_path(log, dst_path);
2462
2463 /* insert the log range keys to indicate where the log is valid */
2464 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2465 first_offset, last_offset);
2466 BUG_ON(ret);
2467 return 0;
2468}
2469
2470/*
2471 * logging directories is very similar to logging inodes, We find all the items
2472 * from the current transaction and write them to the log.
2473 *
2474 * The recovery code scans the directory in the subvolume, and if it finds a
2475 * key in the range logged that is not present in the log tree, then it means
2476 * that dir entry was unlinked during the transaction.
2477 *
2478 * In order for that scan to work, we must include one key smaller than
2479 * the smallest logged by this transaction and one key larger than the largest
2480 * key logged by this transaction.
2481 */
2482static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2483 struct btrfs_root *root, struct inode *inode,
2484 struct btrfs_path *path,
2485 struct btrfs_path *dst_path)
2486{
2487 u64 min_key;
2488 u64 max_key;
2489 int ret;
2490 int key_type = BTRFS_DIR_ITEM_KEY;
2491
2492again:
2493 min_key = 0;
2494 max_key = 0;
d397712b 2495 while (1) {
e02119d5
CM
2496 ret = log_dir_items(trans, root, inode, path,
2497 dst_path, key_type, min_key,
2498 &max_key);
2499 BUG_ON(ret);
2500 if (max_key == (u64)-1)
2501 break;
2502 min_key = max_key + 1;
2503 }
2504
2505 if (key_type == BTRFS_DIR_ITEM_KEY) {
2506 key_type = BTRFS_DIR_INDEX_KEY;
2507 goto again;
2508 }
2509 return 0;
2510}
2511
2512/*
2513 * a helper function to drop items from the log before we relog an
2514 * inode. max_key_type indicates the highest item type to remove.
2515 * This cannot be run for file data extents because it does not
2516 * free the extents they point to.
2517 */
2518static int drop_objectid_items(struct btrfs_trans_handle *trans,
2519 struct btrfs_root *log,
2520 struct btrfs_path *path,
2521 u64 objectid, int max_key_type)
2522{
2523 int ret;
2524 struct btrfs_key key;
2525 struct btrfs_key found_key;
2526
2527 key.objectid = objectid;
2528 key.type = max_key_type;
2529 key.offset = (u64)-1;
2530
d397712b 2531 while (1) {
e02119d5
CM
2532 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2533
2534 if (ret != 1)
2535 break;
2536
2537 if (path->slots[0] == 0)
2538 break;
2539
2540 path->slots[0]--;
2541 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2542 path->slots[0]);
2543
2544 if (found_key.objectid != objectid)
2545 break;
2546
2547 ret = btrfs_del_item(trans, log, path);
2548 BUG_ON(ret);
2549 btrfs_release_path(log, path);
2550 }
2551 btrfs_release_path(log, path);
2552 return 0;
2553}
2554
31ff1cd2
CM
2555static noinline int copy_items(struct btrfs_trans_handle *trans,
2556 struct btrfs_root *log,
2557 struct btrfs_path *dst_path,
2558 struct extent_buffer *src,
2559 int start_slot, int nr, int inode_only)
2560{
2561 unsigned long src_offset;
2562 unsigned long dst_offset;
2563 struct btrfs_file_extent_item *extent;
2564 struct btrfs_inode_item *inode_item;
2565 int ret;
2566 struct btrfs_key *ins_keys;
2567 u32 *ins_sizes;
2568 char *ins_data;
2569 int i;
d20f7043
CM
2570 struct list_head ordered_sums;
2571
2572 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
2573
2574 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2575 nr * sizeof(u32), GFP_NOFS);
2576 ins_sizes = (u32 *)ins_data;
2577 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2578
2579 for (i = 0; i < nr; i++) {
2580 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2581 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2582 }
2583 ret = btrfs_insert_empty_items(trans, log, dst_path,
2584 ins_keys, ins_sizes, nr);
2585 BUG_ON(ret);
2586
2587 for (i = 0; i < nr; i++) {
2588 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2589 dst_path->slots[0]);
2590
2591 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2592
2593 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2594 src_offset, ins_sizes[i]);
2595
2596 if (inode_only == LOG_INODE_EXISTS &&
2597 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2598 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2599 dst_path->slots[0],
2600 struct btrfs_inode_item);
2601 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2602
2603 /* set the generation to zero so the recover code
2604 * can tell the difference between an logging
2605 * just to say 'this inode exists' and a logging
2606 * to say 'update this inode with these values'
2607 */
2608 btrfs_set_inode_generation(dst_path->nodes[0],
2609 inode_item, 0);
2610 }
2611 /* take a reference on file data extents so that truncates
2612 * or deletes of this inode don't have to relog the inode
2613 * again
2614 */
2615 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2616 int found_type;
2617 extent = btrfs_item_ptr(src, start_slot + i,
2618 struct btrfs_file_extent_item);
2619
2620 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2621 if (found_type == BTRFS_FILE_EXTENT_REG ||
2622 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
31ff1cd2
CM
2623 u64 ds = btrfs_file_extent_disk_bytenr(src,
2624 extent);
2625 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2626 extent);
d20f7043
CM
2627 u64 cs = btrfs_file_extent_offset(src, extent);
2628 u64 cl = btrfs_file_extent_num_bytes(src,
2629 extent);;
580afd76
CM
2630 if (btrfs_file_extent_compression(src,
2631 extent)) {
2632 cs = 0;
2633 cl = dl;
2634 }
31ff1cd2
CM
2635 /* ds == 0 is a hole */
2636 if (ds != 0) {
2637 ret = btrfs_inc_extent_ref(trans, log,
2638 ds, dl,
31840ae1 2639 dst_path->nodes[0]->start,
31ff1cd2 2640 BTRFS_TREE_LOG_OBJECTID,
31840ae1 2641 trans->transid,
3bb1a1bc 2642 ins_keys[i].objectid);
31ff1cd2 2643 BUG_ON(ret);
07d400a6
YZ
2644 ret = btrfs_lookup_csums_range(
2645 log->fs_info->csum_root,
2646 ds + cs, ds + cs + cl - 1,
2647 &ordered_sums);
d20f7043 2648 BUG_ON(ret);
31ff1cd2
CM
2649 }
2650 }
2651 }
2652 dst_path->slots[0]++;
2653 }
2654
2655 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2656 btrfs_release_path(log, dst_path);
2657 kfree(ins_data);
d20f7043
CM
2658
2659 /*
2660 * we have to do this after the loop above to avoid changing the
2661 * log tree while trying to change the log tree.
2662 */
d397712b 2663 while (!list_empty(&ordered_sums)) {
d20f7043
CM
2664 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2665 struct btrfs_ordered_sum,
2666 list);
2667 ret = btrfs_csum_file_blocks(trans, log, sums);
2668 BUG_ON(ret);
2669 list_del(&sums->list);
2670 kfree(sums);
2671 }
31ff1cd2
CM
2672 return 0;
2673}
2674
e02119d5
CM
2675/* log a single inode in the tree log.
2676 * At least one parent directory for this inode must exist in the tree
2677 * or be logged already.
2678 *
2679 * Any items from this inode changed by the current transaction are copied
2680 * to the log tree. An extra reference is taken on any extents in this
2681 * file, allowing us to avoid a whole pile of corner cases around logging
2682 * blocks that have been removed from the tree.
2683 *
2684 * See LOG_INODE_ALL and related defines for a description of what inode_only
2685 * does.
2686 *
2687 * This handles both files and directories.
2688 */
12fcfd22 2689static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
2690 struct btrfs_root *root, struct inode *inode,
2691 int inode_only)
2692{
2693 struct btrfs_path *path;
2694 struct btrfs_path *dst_path;
2695 struct btrfs_key min_key;
2696 struct btrfs_key max_key;
2697 struct btrfs_root *log = root->log_root;
31ff1cd2 2698 struct extent_buffer *src = NULL;
e02119d5
CM
2699 u32 size;
2700 int ret;
3a5f1d45 2701 int nritems;
31ff1cd2
CM
2702 int ins_start_slot = 0;
2703 int ins_nr;
e02119d5
CM
2704
2705 log = root->log_root;
2706
2707 path = btrfs_alloc_path();
2708 dst_path = btrfs_alloc_path();
2709
2710 min_key.objectid = inode->i_ino;
2711 min_key.type = BTRFS_INODE_ITEM_KEY;
2712 min_key.offset = 0;
2713
2714 max_key.objectid = inode->i_ino;
12fcfd22
CM
2715
2716 /* today the code can only do partial logging of directories */
2717 if (!S_ISDIR(inode->i_mode))
2718 inode_only = LOG_INODE_ALL;
2719
e02119d5
CM
2720 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2721 max_key.type = BTRFS_XATTR_ITEM_KEY;
2722 else
2723 max_key.type = (u8)-1;
2724 max_key.offset = (u64)-1;
2725
e02119d5
CM
2726 mutex_lock(&BTRFS_I(inode)->log_mutex);
2727
2728 /*
2729 * a brute force approach to making sure we get the most uptodate
2730 * copies of everything.
2731 */
2732 if (S_ISDIR(inode->i_mode)) {
2733 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2734
2735 if (inode_only == LOG_INODE_EXISTS)
2736 max_key_type = BTRFS_XATTR_ITEM_KEY;
2737 ret = drop_objectid_items(trans, log, path,
2738 inode->i_ino, max_key_type);
2739 } else {
2740 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2741 }
2742 BUG_ON(ret);
2743 path->keep_locks = 1;
2744
d397712b 2745 while (1) {
31ff1cd2 2746 ins_nr = 0;
e02119d5
CM
2747 ret = btrfs_search_forward(root, &min_key, &max_key,
2748 path, 0, trans->transid);
2749 if (ret != 0)
2750 break;
3a5f1d45 2751again:
31ff1cd2 2752 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2753 if (min_key.objectid != inode->i_ino)
2754 break;
2755 if (min_key.type > max_key.type)
2756 break;
31ff1cd2 2757
e02119d5
CM
2758 src = path->nodes[0];
2759 size = btrfs_item_size_nr(src, path->slots[0]);
31ff1cd2
CM
2760 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2761 ins_nr++;
2762 goto next_slot;
2763 } else if (!ins_nr) {
2764 ins_start_slot = path->slots[0];
2765 ins_nr = 1;
2766 goto next_slot;
e02119d5
CM
2767 }
2768
31ff1cd2
CM
2769 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2770 ins_nr, inode_only);
2771 BUG_ON(ret);
2772 ins_nr = 1;
2773 ins_start_slot = path->slots[0];
2774next_slot:
e02119d5 2775
3a5f1d45
CM
2776 nritems = btrfs_header_nritems(path->nodes[0]);
2777 path->slots[0]++;
2778 if (path->slots[0] < nritems) {
2779 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2780 path->slots[0]);
2781 goto again;
2782 }
31ff1cd2
CM
2783 if (ins_nr) {
2784 ret = copy_items(trans, log, dst_path, src,
2785 ins_start_slot,
2786 ins_nr, inode_only);
2787 BUG_ON(ret);
2788 ins_nr = 0;
2789 }
3a5f1d45
CM
2790 btrfs_release_path(root, path);
2791
e02119d5
CM
2792 if (min_key.offset < (u64)-1)
2793 min_key.offset++;
2794 else if (min_key.type < (u8)-1)
2795 min_key.type++;
2796 else if (min_key.objectid < (u64)-1)
2797 min_key.objectid++;
2798 else
2799 break;
2800 }
31ff1cd2
CM
2801 if (ins_nr) {
2802 ret = copy_items(trans, log, dst_path, src,
2803 ins_start_slot,
2804 ins_nr, inode_only);
2805 BUG_ON(ret);
2806 ins_nr = 0;
2807 }
2808 WARN_ON(ins_nr);
9623f9a3 2809 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2810 btrfs_release_path(root, path);
2811 btrfs_release_path(log, dst_path);
2812 ret = log_directory_changes(trans, root, inode, path, dst_path);
2813 BUG_ON(ret);
2814 }
3a5f1d45 2815 BTRFS_I(inode)->logged_trans = trans->transid;
e02119d5
CM
2816 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2817
2818 btrfs_free_path(path);
2819 btrfs_free_path(dst_path);
e02119d5
CM
2820 return 0;
2821}
2822
12fcfd22
CM
2823/*
2824 * follow the dentry parent pointers up the chain and see if any
2825 * of the directories in it require a full commit before they can
2826 * be logged. Returns zero if nothing special needs to be done or 1 if
2827 * a full commit is required.
2828 */
2829static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2830 struct inode *inode,
2831 struct dentry *parent,
2832 struct super_block *sb,
2833 u64 last_committed)
e02119d5 2834{
12fcfd22
CM
2835 int ret = 0;
2836 struct btrfs_root *root;
e02119d5 2837
12fcfd22
CM
2838 if (!S_ISDIR(inode->i_mode)) {
2839 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2840 goto out;
2841 inode = parent->d_inode;
2842 }
2843
2844 while (1) {
2845 BTRFS_I(inode)->logged_trans = trans->transid;
2846 smp_mb();
2847
2848 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2849 root = BTRFS_I(inode)->root;
2850
2851 /*
2852 * make sure any commits to the log are forced
2853 * to be full commits
2854 */
2855 root->fs_info->last_trans_log_full_commit =
2856 trans->transid;
2857 ret = 1;
2858 break;
2859 }
2860
2861 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2862 break;
2863
2864 if (parent == sb->s_root)
2865 break;
2866
2867 parent = parent->d_parent;
2868 inode = parent->d_inode;
2869
2870 }
2871out:
e02119d5
CM
2872 return ret;
2873}
2874
2875/*
2876 * helper function around btrfs_log_inode to make sure newly created
2877 * parent directories also end up in the log. A minimal inode and backref
2878 * only logging is done of any parent directories that are older than
2879 * the last committed transaction
2880 */
12fcfd22
CM
2881int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2882 struct btrfs_root *root, struct inode *inode,
2883 struct dentry *parent, int exists_only)
e02119d5 2884{
12fcfd22 2885 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 2886 struct super_block *sb;
12fcfd22
CM
2887 int ret = 0;
2888 u64 last_committed = root->fs_info->last_trans_committed;
2889
2890 sb = inode->i_sb;
2891
2892 if (root->fs_info->last_trans_log_full_commit >
2893 root->fs_info->last_trans_committed) {
2894 ret = 1;
2895 goto end_no_trans;
2896 }
2897
2898 ret = check_parent_dirs_for_sync(trans, inode, parent,
2899 sb, last_committed);
2900 if (ret)
2901 goto end_no_trans;
e02119d5
CM
2902
2903 start_log_trans(trans, root);
e02119d5 2904
12fcfd22
CM
2905 ret = btrfs_log_inode(trans, root, inode, inode_only);
2906 BUG_ON(ret);
2907 inode_only = LOG_INODE_EXISTS;
2908
2909 while (1) {
2910 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
2911 break;
2912
12fcfd22
CM
2913 inode = parent->d_inode;
2914 if (BTRFS_I(inode)->generation >
2915 root->fs_info->last_trans_committed) {
2916 ret = btrfs_log_inode(trans, root, inode, inode_only);
2917 BUG_ON(ret);
2918 }
2919 if (parent == sb->s_root)
e02119d5 2920 break;
12fcfd22
CM
2921
2922 parent = parent->d_parent;
e02119d5 2923 }
12fcfd22
CM
2924 ret = 0;
2925 btrfs_end_log_trans(root);
2926end_no_trans:
2927 return ret;
e02119d5
CM
2928}
2929
2930/*
2931 * it is not safe to log dentry if the chunk root has added new
2932 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2933 * If this returns 1, you must commit the transaction to safely get your
2934 * data on disk.
2935 */
2936int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root, struct dentry *dentry)
2938{
12fcfd22
CM
2939 return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2940 dentry->d_parent, 0);
e02119d5
CM
2941}
2942
2943/*
2944 * should be called during mount to recover any replay any log trees
2945 * from the FS
2946 */
2947int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2948{
2949 int ret;
2950 struct btrfs_path *path;
2951 struct btrfs_trans_handle *trans;
2952 struct btrfs_key key;
2953 struct btrfs_key found_key;
2954 struct btrfs_key tmp_key;
2955 struct btrfs_root *log;
2956 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
8d5bf1cb 2957 u64 highest_inode;
e02119d5
CM
2958 struct walk_control wc = {
2959 .process_func = process_one_buffer,
2960 .stage = 0,
2961 };
2962
2963 fs_info->log_root_recovering = 1;
2964 path = btrfs_alloc_path();
2965 BUG_ON(!path);
2966
2967 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2968
2969 wc.trans = trans;
2970 wc.pin = 1;
2971
2972 walk_log_tree(trans, log_root_tree, &wc);
2973
2974again:
2975 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2976 key.offset = (u64)-1;
2977 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2978
d397712b 2979 while (1) {
e02119d5
CM
2980 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2981 if (ret < 0)
2982 break;
2983 if (ret > 0) {
2984 if (path->slots[0] == 0)
2985 break;
2986 path->slots[0]--;
2987 }
2988 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2989 path->slots[0]);
2990 btrfs_release_path(log_root_tree, path);
2991 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2992 break;
2993
2994 log = btrfs_read_fs_root_no_radix(log_root_tree,
2995 &found_key);
2996 BUG_ON(!log);
2997
2998
2999 tmp_key.objectid = found_key.offset;
3000 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3001 tmp_key.offset = (u64)-1;
3002
3003 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
e02119d5
CM
3004 BUG_ON(!wc.replay_dest);
3005
07d400a6 3006 wc.replay_dest->log_root = log;
24562425 3007 mutex_lock(&fs_info->trans_mutex);
e02119d5 3008 btrfs_record_root_in_trans(wc.replay_dest);
24562425 3009 mutex_unlock(&fs_info->trans_mutex);
e02119d5
CM
3010 ret = walk_log_tree(trans, log, &wc);
3011 BUG_ON(ret);
3012
3013 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3014 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3015 path);
3016 BUG_ON(ret);
3017 }
8d5bf1cb
CM
3018 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
3019 if (ret == 0) {
3020 wc.replay_dest->highest_inode = highest_inode;
3021 wc.replay_dest->last_inode_alloc = highest_inode;
3022 }
e02119d5
CM
3023
3024 key.offset = found_key.offset - 1;
07d400a6 3025 wc.replay_dest->log_root = NULL;
e02119d5
CM
3026 free_extent_buffer(log->node);
3027 kfree(log);
3028
3029 if (found_key.offset == 0)
3030 break;
3031 }
3032 btrfs_release_path(log_root_tree, path);
3033
3034 /* step one is to pin it all, step two is to replay just inodes */
3035 if (wc.pin) {
3036 wc.pin = 0;
3037 wc.process_func = replay_one_buffer;
3038 wc.stage = LOG_WALK_REPLAY_INODES;
3039 goto again;
3040 }
3041 /* step three is to replay everything */
3042 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3043 wc.stage++;
3044 goto again;
3045 }
3046
3047 btrfs_free_path(path);
3048
3049 free_extent_buffer(log_root_tree->node);
3050 log_root_tree->log_root = NULL;
3051 fs_info->log_root_recovering = 0;
3052
3053 /* step 4: commit the transaction, which also unpins the blocks */
3054 btrfs_commit_transaction(trans, fs_info->tree_root);
3055
3056 kfree(log_root_tree);
3057 return 0;
3058}
12fcfd22
CM
3059
3060/*
3061 * there are some corner cases where we want to force a full
3062 * commit instead of allowing a directory to be logged.
3063 *
3064 * They revolve around files there were unlinked from the directory, and
3065 * this function updates the parent directory so that a full commit is
3066 * properly done if it is fsync'd later after the unlinks are done.
3067 */
3068void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3069 struct inode *dir, struct inode *inode,
3070 int for_rename)
3071{
3072 /*
3073 * if this directory was already logged any new
3074 * names for this file/dir will get recorded
3075 */
3076 smp_mb();
3077 if (BTRFS_I(dir)->logged_trans == trans->transid)
3078 return;
3079
3080 /*
3081 * if the inode we're about to unlink was logged,
3082 * the log will be properly updated for any new names
3083 */
3084 if (BTRFS_I(inode)->logged_trans == trans->transid)
3085 return;
3086
3087 /*
3088 * when renaming files across directories, if the directory
3089 * there we're unlinking from gets fsync'd later on, there's
3090 * no way to find the destination directory later and fsync it
3091 * properly. So, we have to be conservative and force commits
3092 * so the new name gets discovered.
3093 */
3094 if (for_rename)
3095 goto record;
3096
3097 /* we can safely do the unlink without any special recording */
3098 return;
3099
3100record:
3101 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3102}
3103
3104/*
3105 * Call this after adding a new name for a file and it will properly
3106 * update the log to reflect the new name.
3107 *
3108 * It will return zero if all goes well, and it will return 1 if a
3109 * full transaction commit is required.
3110 */
3111int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3112 struct inode *inode, struct inode *old_dir,
3113 struct dentry *parent)
3114{
3115 struct btrfs_root * root = BTRFS_I(inode)->root;
3116
3117 /*
3118 * if this inode hasn't been logged and directory we're renaming it
3119 * from hasn't been logged, we don't need to log it
3120 */
3121 if (BTRFS_I(inode)->logged_trans <=
3122 root->fs_info->last_trans_committed &&
3123 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3124 root->fs_info->last_trans_committed))
3125 return 0;
3126
3127 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3128}
3129