]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/tree-log.c
Btrfs: fix fsync data loss after adding hard link to inode
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
995946dd 23#include "tree-log.h"
e02119d5
CM
24#include "disk-io.h"
25#include "locking.h"
26#include "print-tree.h"
f186373f 27#include "backref.h"
f186373f 28#include "hash.h"
e02119d5
CM
29
30/* magic values for the inode_only field in btrfs_log_inode:
31 *
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 * during log replay
35 */
36#define LOG_INODE_ALL 0
37#define LOG_INODE_EXISTS 1
38
12fcfd22
CM
39/*
40 * directory trouble cases
41 *
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
46 *
47 * mkdir foo/some_dir
48 * normal commit
49 * rename foo/some_dir foo2/some_dir
50 * mkdir foo/some_dir
51 * fsync foo/some_dir/some_file
52 *
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
56 *
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
59 *
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
63 *
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
66 *
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
69 *
70 * mkdir f1/foo
71 * normal commit
72 * rm -rf f1/foo
73 * fsync(f1)
74 *
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
79 * ugly details.
80 */
81
e02119d5
CM
82/*
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
87 *
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
90 */
91#define LOG_WALK_PIN_ONLY 0
92#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
93#define LOG_WALK_REPLAY_DIR_INDEX 2
94#define LOG_WALK_REPLAY_ALL 3
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
97 struct btrfs_root *root, struct inode *inode,
98 int inode_only,
99 const loff_t start,
8407f553
FM
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
8b050d35 143 int index;
e02119d5 144 int ret;
7237f183
YZ
145
146 mutex_lock(&root->log_mutex);
147 if (root->log_root) {
995946dd 148 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
50471a38
MX
149 ret = -EAGAIN;
150 goto out;
151 }
ff782e0a
JB
152 if (!root->log_start_pid) {
153 root->log_start_pid = current->pid;
27cdeb70 154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 155 } else if (root->log_start_pid != current->pid) {
27cdeb70 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a
JB
157 }
158
2ecb7923 159 atomic_inc(&root->log_batch);
7237f183 160 atomic_inc(&root->log_writers);
8b050d35
MX
161 if (ctx) {
162 index = root->log_transid % 2;
163 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 164 ctx->log_transid = root->log_transid;
8b050d35 165 }
7237f183
YZ
166 mutex_unlock(&root->log_mutex);
167 return 0;
168 }
e87ac136
MX
169
170 ret = 0;
e02119d5 171 mutex_lock(&root->fs_info->tree_log_mutex);
e87ac136 172 if (!root->fs_info->log_root_tree)
e02119d5 173 ret = btrfs_init_log_root_tree(trans, root->fs_info);
e87ac136
MX
174 mutex_unlock(&root->fs_info->tree_log_mutex);
175 if (ret)
176 goto out;
177
178 if (!root->log_root) {
e02119d5 179 ret = btrfs_add_log_tree(trans, root);
4a500fd1 180 if (ret)
e87ac136 181 goto out;
e02119d5 182 }
27cdeb70 183 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
e87ac136 184 root->log_start_pid = current->pid;
2ecb7923 185 atomic_inc(&root->log_batch);
7237f183 186 atomic_inc(&root->log_writers);
8b050d35
MX
187 if (ctx) {
188 index = root->log_transid % 2;
189 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 190 ctx->log_transid = root->log_transid;
8b050d35 191 }
e87ac136 192out:
7237f183 193 mutex_unlock(&root->log_mutex);
e87ac136 194 return ret;
e02119d5
CM
195}
196
197/*
198 * returns 0 if there was a log transaction running and we were able
199 * to join, or returns -ENOENT if there were not transactions
200 * in progress
201 */
202static int join_running_log_trans(struct btrfs_root *root)
203{
204 int ret = -ENOENT;
205
206 smp_mb();
207 if (!root->log_root)
208 return -ENOENT;
209
7237f183 210 mutex_lock(&root->log_mutex);
e02119d5
CM
211 if (root->log_root) {
212 ret = 0;
7237f183 213 atomic_inc(&root->log_writers);
e02119d5 214 }
7237f183 215 mutex_unlock(&root->log_mutex);
e02119d5
CM
216 return ret;
217}
218
12fcfd22
CM
219/*
220 * This either makes the current running log transaction wait
221 * until you call btrfs_end_log_trans() or it makes any future
222 * log transactions wait until you call btrfs_end_log_trans()
223 */
224int btrfs_pin_log_trans(struct btrfs_root *root)
225{
226 int ret = -ENOENT;
227
228 mutex_lock(&root->log_mutex);
229 atomic_inc(&root->log_writers);
230 mutex_unlock(&root->log_mutex);
231 return ret;
232}
233
e02119d5
CM
234/*
235 * indicate we're done making changes to the log tree
236 * and wake up anyone waiting to do a sync
237 */
143bede5 238void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 239{
7237f183
YZ
240 if (atomic_dec_and_test(&root->log_writers)) {
241 smp_mb();
242 if (waitqueue_active(&root->log_writer_wait))
243 wake_up(&root->log_writer_wait);
244 }
e02119d5
CM
245}
246
247
248/*
249 * the walk control struct is used to pass state down the chain when
250 * processing the log tree. The stage field tells us which part
251 * of the log tree processing we are currently doing. The others
252 * are state fields used for that specific part
253 */
254struct walk_control {
255 /* should we free the extent on disk when done? This is used
256 * at transaction commit time while freeing a log tree
257 */
258 int free;
259
260 /* should we write out the extent buffer? This is used
261 * while flushing the log tree to disk during a sync
262 */
263 int write;
264
265 /* should we wait for the extent buffer io to finish? Also used
266 * while flushing the log tree to disk for a sync
267 */
268 int wait;
269
270 /* pin only walk, we record which extents on disk belong to the
271 * log trees
272 */
273 int pin;
274
275 /* what stage of the replay code we're currently in */
276 int stage;
277
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
280
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
283
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
288 */
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen);
291};
292
293/*
294 * process_func used to pin down extents, write them or wait on them
295 */
296static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen)
299{
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
306 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
b50c6e25
JB
313 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
314 eb->start, eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
4bc4bee4 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
364 if (ret < 0)
365 return ret;
366
e02119d5
CM
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
b3b4aa74 376 btrfs_release_path(path);
e02119d5
CM
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 381 if (!dst_copy || !src_copy) {
b3b4aa74 382 btrfs_release_path(path);
2a29edc6 383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
e02119d5
CM
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
b3b4aa74 404 btrfs_release_path(path);
e02119d5
CM
405 return 0;
406 }
407
4bc4bee4
JB
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
d555438b 415 u32 mode;
4bc4bee4
JB
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
d555438b 435 u32 mode;
4bc4bee4
JB
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
452 }
453insert:
b3b4aa74 454 btrfs_release_path(path);
e02119d5 455 /* try to insert the key into the destination tree */
df8d116f 456 path->skip_release_on_error = 1;
e02119d5
CM
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
df8d116f 459 path->skip_release_on_error = 0;
e02119d5
CM
460
461 /* make sure any existing item is the correct size */
df8d116f 462 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
463 u32 found_size;
464 found_size = btrfs_item_size_nr(path->nodes[0],
465 path->slots[0]);
143bede5 466 if (found_size > item_size)
afe5fea7 467 btrfs_truncate_item(root, path, item_size, 1);
143bede5 468 else if (found_size < item_size)
4b90c680 469 btrfs_extend_item(root, path,
143bede5 470 item_size - found_size);
e02119d5 471 } else if (ret) {
4a500fd1 472 return ret;
e02119d5
CM
473 }
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
476
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
480 *
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
485 */
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
489
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
492
1a4bcf47
FM
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
495
496 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
497 S_ISREG(btrfs_inode_mode(dst_eb, dst_item))) {
498 struct btrfs_map_token token;
499 u64 ino_size = btrfs_inode_size(eb, src_item);
500
501 btrfs_init_map_token(&token);
502 btrfs_set_token_inode_size(dst_eb, dst_item,
503 ino_size, &token);
504 }
e02119d5 505 goto no_copy;
1a4bcf47 506 }
e02119d5
CM
507
508 if (overwrite_root &&
509 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
510 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
511 save_old_i_size = 1;
512 saved_i_size = btrfs_inode_size(path->nodes[0],
513 dst_item);
514 }
515 }
516
517 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
518 src_ptr, item_size);
519
520 if (save_old_i_size) {
521 struct btrfs_inode_item *dst_item;
522 dst_item = (struct btrfs_inode_item *)dst_ptr;
523 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
524 }
525
526 /* make sure the generation is filled in */
527 if (key->type == BTRFS_INODE_ITEM_KEY) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
531 btrfs_set_inode_generation(path->nodes[0], dst_item,
532 trans->transid);
533 }
534 }
535no_copy:
536 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 537 btrfs_release_path(path);
e02119d5
CM
538 return 0;
539}
540
541/*
542 * simple helper to read an inode off the disk from a given root
543 * This can only be called for subvolume roots and not for the log
544 */
545static noinline struct inode *read_one_inode(struct btrfs_root *root,
546 u64 objectid)
547{
5d4f98a2 548 struct btrfs_key key;
e02119d5 549 struct inode *inode;
e02119d5 550
5d4f98a2
YZ
551 key.objectid = objectid;
552 key.type = BTRFS_INODE_ITEM_KEY;
553 key.offset = 0;
73f73415 554 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
555 if (IS_ERR(inode)) {
556 inode = NULL;
557 } else if (is_bad_inode(inode)) {
e02119d5
CM
558 iput(inode);
559 inode = NULL;
560 }
561 return inode;
562}
563
564/* replays a single extent in 'eb' at 'slot' with 'key' into the
565 * subvolume 'root'. path is released on entry and should be released
566 * on exit.
567 *
568 * extents in the log tree have not been allocated out of the extent
569 * tree yet. So, this completes the allocation, taking a reference
570 * as required if the extent already exists or creating a new extent
571 * if it isn't in the extent allocation tree yet.
572 *
573 * The extent is inserted into the file, dropping any existing extents
574 * from the file that overlap the new one.
575 */
576static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
577 struct btrfs_root *root,
578 struct btrfs_path *path,
579 struct extent_buffer *eb, int slot,
580 struct btrfs_key *key)
581{
582 int found_type;
e02119d5 583 u64 extent_end;
e02119d5 584 u64 start = key->offset;
4bc4bee4 585 u64 nbytes = 0;
e02119d5
CM
586 struct btrfs_file_extent_item *item;
587 struct inode *inode = NULL;
588 unsigned long size;
589 int ret = 0;
590
591 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
592 found_type = btrfs_file_extent_type(eb, item);
593
d899e052 594 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
595 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
596 nbytes = btrfs_file_extent_num_bytes(eb, item);
597 extent_end = start + nbytes;
598
599 /*
600 * We don't add to the inodes nbytes if we are prealloc or a
601 * hole.
602 */
603 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
604 nbytes = 0;
605 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 606 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 607 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 608 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
609 } else {
610 ret = 0;
611 goto out;
612 }
613
614 inode = read_one_inode(root, key->objectid);
615 if (!inode) {
616 ret = -EIO;
617 goto out;
618 }
619
620 /*
621 * first check to see if we already have this extent in the
622 * file. This must be done before the btrfs_drop_extents run
623 * so we don't try to drop this extent.
624 */
33345d01 625 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
626 start, 0);
627
d899e052
YZ
628 if (ret == 0 &&
629 (found_type == BTRFS_FILE_EXTENT_REG ||
630 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
631 struct btrfs_file_extent_item cmp1;
632 struct btrfs_file_extent_item cmp2;
633 struct btrfs_file_extent_item *existing;
634 struct extent_buffer *leaf;
635
636 leaf = path->nodes[0];
637 existing = btrfs_item_ptr(leaf, path->slots[0],
638 struct btrfs_file_extent_item);
639
640 read_extent_buffer(eb, &cmp1, (unsigned long)item,
641 sizeof(cmp1));
642 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
643 sizeof(cmp2));
644
645 /*
646 * we already have a pointer to this exact extent,
647 * we don't have to do anything
648 */
649 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 650 btrfs_release_path(path);
e02119d5
CM
651 goto out;
652 }
653 }
b3b4aa74 654 btrfs_release_path(path);
e02119d5
CM
655
656 /* drop any overlapping extents */
2671485d 657 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
658 if (ret)
659 goto out;
e02119d5 660
07d400a6
YZ
661 if (found_type == BTRFS_FILE_EXTENT_REG ||
662 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 663 u64 offset;
07d400a6
YZ
664 unsigned long dest_offset;
665 struct btrfs_key ins;
666
667 ret = btrfs_insert_empty_item(trans, root, path, key,
668 sizeof(*item));
3650860b
JB
669 if (ret)
670 goto out;
07d400a6
YZ
671 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
672 path->slots[0]);
673 copy_extent_buffer(path->nodes[0], eb, dest_offset,
674 (unsigned long)item, sizeof(*item));
675
676 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
677 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
678 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 679 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
680
681 if (ins.objectid > 0) {
682 u64 csum_start;
683 u64 csum_end;
684 LIST_HEAD(ordered_sums);
685 /*
686 * is this extent already allocated in the extent
687 * allocation tree? If so, just add a reference
688 */
1a4ed8fd 689 ret = btrfs_lookup_data_extent(root, ins.objectid,
07d400a6
YZ
690 ins.offset);
691 if (ret == 0) {
692 ret = btrfs_inc_extent_ref(trans, root,
693 ins.objectid, ins.offset,
5d4f98a2 694 0, root->root_key.objectid,
66d7e7f0 695 key->objectid, offset, 0);
b50c6e25
JB
696 if (ret)
697 goto out;
07d400a6
YZ
698 } else {
699 /*
700 * insert the extent pointer in the extent
701 * allocation tree
702 */
5d4f98a2
YZ
703 ret = btrfs_alloc_logged_file_extent(trans,
704 root, root->root_key.objectid,
705 key->objectid, offset, &ins);
b50c6e25
JB
706 if (ret)
707 goto out;
07d400a6 708 }
b3b4aa74 709 btrfs_release_path(path);
07d400a6
YZ
710
711 if (btrfs_file_extent_compression(eb, item)) {
712 csum_start = ins.objectid;
713 csum_end = csum_start + ins.offset;
714 } else {
715 csum_start = ins.objectid +
716 btrfs_file_extent_offset(eb, item);
717 csum_end = csum_start +
718 btrfs_file_extent_num_bytes(eb, item);
719 }
720
721 ret = btrfs_lookup_csums_range(root->log_root,
722 csum_start, csum_end - 1,
a2de733c 723 &ordered_sums, 0);
3650860b
JB
724 if (ret)
725 goto out;
07d400a6
YZ
726 while (!list_empty(&ordered_sums)) {
727 struct btrfs_ordered_sum *sums;
728 sums = list_entry(ordered_sums.next,
729 struct btrfs_ordered_sum,
730 list);
3650860b
JB
731 if (!ret)
732 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
733 root->fs_info->csum_root,
734 sums);
07d400a6
YZ
735 list_del(&sums->list);
736 kfree(sums);
737 }
3650860b
JB
738 if (ret)
739 goto out;
07d400a6 740 } else {
b3b4aa74 741 btrfs_release_path(path);
07d400a6
YZ
742 }
743 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
744 /* inline extents are easy, we just overwrite them */
745 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
746 if (ret)
747 goto out;
07d400a6 748 }
e02119d5 749
4bc4bee4 750 inode_add_bytes(inode, nbytes);
b9959295 751 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
752out:
753 if (inode)
754 iput(inode);
755 return ret;
756}
757
758/*
759 * when cleaning up conflicts between the directory names in the
760 * subvolume, directory names in the log and directory names in the
761 * inode back references, we may have to unlink inodes from directories.
762 *
763 * This is a helper function to do the unlink of a specific directory
764 * item
765 */
766static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
767 struct btrfs_root *root,
768 struct btrfs_path *path,
769 struct inode *dir,
770 struct btrfs_dir_item *di)
771{
772 struct inode *inode;
773 char *name;
774 int name_len;
775 struct extent_buffer *leaf;
776 struct btrfs_key location;
777 int ret;
778
779 leaf = path->nodes[0];
780
781 btrfs_dir_item_key_to_cpu(leaf, di, &location);
782 name_len = btrfs_dir_name_len(leaf, di);
783 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 784 if (!name)
785 return -ENOMEM;
786
e02119d5 787 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 788 btrfs_release_path(path);
e02119d5
CM
789
790 inode = read_one_inode(root, location.objectid);
c00e9493 791 if (!inode) {
3650860b
JB
792 ret = -EIO;
793 goto out;
c00e9493 794 }
e02119d5 795
ec051c0f 796 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
797 if (ret)
798 goto out;
12fcfd22 799
e02119d5 800 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
801 if (ret)
802 goto out;
ada9af21
FDBM
803 else
804 ret = btrfs_run_delayed_items(trans, root);
3650860b 805out:
e02119d5 806 kfree(name);
e02119d5
CM
807 iput(inode);
808 return ret;
809}
810
811/*
812 * helper function to see if a given name and sequence number found
813 * in an inode back reference are already in a directory and correctly
814 * point to this inode
815 */
816static noinline int inode_in_dir(struct btrfs_root *root,
817 struct btrfs_path *path,
818 u64 dirid, u64 objectid, u64 index,
819 const char *name, int name_len)
820{
821 struct btrfs_dir_item *di;
822 struct btrfs_key location;
823 int match = 0;
824
825 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
826 index, name, name_len, 0);
827 if (di && !IS_ERR(di)) {
828 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
829 if (location.objectid != objectid)
830 goto out;
831 } else
832 goto out;
b3b4aa74 833 btrfs_release_path(path);
e02119d5
CM
834
835 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
836 if (di && !IS_ERR(di)) {
837 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
838 if (location.objectid != objectid)
839 goto out;
840 } else
841 goto out;
842 match = 1;
843out:
b3b4aa74 844 btrfs_release_path(path);
e02119d5
CM
845 return match;
846}
847
848/*
849 * helper function to check a log tree for a named back reference in
850 * an inode. This is used to decide if a back reference that is
851 * found in the subvolume conflicts with what we find in the log.
852 *
853 * inode backreferences may have multiple refs in a single item,
854 * during replay we process one reference at a time, and we don't
855 * want to delete valid links to a file from the subvolume if that
856 * link is also in the log.
857 */
858static noinline int backref_in_log(struct btrfs_root *log,
859 struct btrfs_key *key,
f186373f 860 u64 ref_objectid,
df8d116f 861 const char *name, int namelen)
e02119d5
CM
862{
863 struct btrfs_path *path;
864 struct btrfs_inode_ref *ref;
865 unsigned long ptr;
866 unsigned long ptr_end;
867 unsigned long name_ptr;
868 int found_name_len;
869 int item_size;
870 int ret;
871 int match = 0;
872
873 path = btrfs_alloc_path();
2a29edc6 874 if (!path)
875 return -ENOMEM;
876
e02119d5
CM
877 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
878 if (ret != 0)
879 goto out;
880
e02119d5 881 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
882
883 if (key->type == BTRFS_INODE_EXTREF_KEY) {
884 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
885 name, namelen, NULL))
886 match = 1;
887
888 goto out;
889 }
890
891 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
892 ptr_end = ptr + item_size;
893 while (ptr < ptr_end) {
894 ref = (struct btrfs_inode_ref *)ptr;
895 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
896 if (found_name_len == namelen) {
897 name_ptr = (unsigned long)(ref + 1);
898 ret = memcmp_extent_buffer(path->nodes[0], name,
899 name_ptr, namelen);
900 if (ret == 0) {
901 match = 1;
902 goto out;
903 }
904 }
905 ptr = (unsigned long)(ref + 1) + found_name_len;
906 }
907out:
908 btrfs_free_path(path);
909 return match;
910}
911
5a1d7843 912static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 913 struct btrfs_root *root,
e02119d5 914 struct btrfs_path *path,
5a1d7843
JS
915 struct btrfs_root *log_root,
916 struct inode *dir, struct inode *inode,
5a1d7843 917 struct extent_buffer *eb,
f186373f
MF
918 u64 inode_objectid, u64 parent_objectid,
919 u64 ref_index, char *name, int namelen,
920 int *search_done)
e02119d5 921{
34f3e4f2 922 int ret;
f186373f
MF
923 char *victim_name;
924 int victim_name_len;
925 struct extent_buffer *leaf;
5a1d7843 926 struct btrfs_dir_item *di;
f186373f
MF
927 struct btrfs_key search_key;
928 struct btrfs_inode_extref *extref;
c622ae60 929
f186373f
MF
930again:
931 /* Search old style refs */
932 search_key.objectid = inode_objectid;
933 search_key.type = BTRFS_INODE_REF_KEY;
934 search_key.offset = parent_objectid;
935 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 936 if (ret == 0) {
e02119d5
CM
937 struct btrfs_inode_ref *victim_ref;
938 unsigned long ptr;
939 unsigned long ptr_end;
f186373f
MF
940
941 leaf = path->nodes[0];
e02119d5
CM
942
943 /* are we trying to overwrite a back ref for the root directory
944 * if so, just jump out, we're done
945 */
f186373f 946 if (search_key.objectid == search_key.offset)
5a1d7843 947 return 1;
e02119d5
CM
948
949 /* check all the names in this back reference to see
950 * if they are in the log. if so, we allow them to stay
951 * otherwise they must be unlinked as a conflict
952 */
953 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
954 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 955 while (ptr < ptr_end) {
e02119d5
CM
956 victim_ref = (struct btrfs_inode_ref *)ptr;
957 victim_name_len = btrfs_inode_ref_name_len(leaf,
958 victim_ref);
959 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
960 if (!victim_name)
961 return -ENOMEM;
e02119d5
CM
962
963 read_extent_buffer(leaf, victim_name,
964 (unsigned long)(victim_ref + 1),
965 victim_name_len);
966
f186373f
MF
967 if (!backref_in_log(log_root, &search_key,
968 parent_objectid,
969 victim_name,
e02119d5 970 victim_name_len)) {
8b558c5f 971 inc_nlink(inode);
b3b4aa74 972 btrfs_release_path(path);
12fcfd22 973
e02119d5
CM
974 ret = btrfs_unlink_inode(trans, root, dir,
975 inode, victim_name,
976 victim_name_len);
f186373f 977 kfree(victim_name);
3650860b
JB
978 if (ret)
979 return ret;
ada9af21
FDBM
980 ret = btrfs_run_delayed_items(trans, root);
981 if (ret)
982 return ret;
f186373f
MF
983 *search_done = 1;
984 goto again;
e02119d5
CM
985 }
986 kfree(victim_name);
f186373f 987
e02119d5
CM
988 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
989 }
e02119d5 990
c622ae60 991 /*
992 * NOTE: we have searched root tree and checked the
993 * coresponding ref, it does not need to check again.
994 */
5a1d7843 995 *search_done = 1;
e02119d5 996 }
b3b4aa74 997 btrfs_release_path(path);
e02119d5 998
f186373f
MF
999 /* Same search but for extended refs */
1000 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1001 inode_objectid, parent_objectid, 0,
1002 0);
1003 if (!IS_ERR_OR_NULL(extref)) {
1004 u32 item_size;
1005 u32 cur_offset = 0;
1006 unsigned long base;
1007 struct inode *victim_parent;
1008
1009 leaf = path->nodes[0];
1010
1011 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1012 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1013
1014 while (cur_offset < item_size) {
1015 extref = (struct btrfs_inode_extref *)base + cur_offset;
1016
1017 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1018
1019 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1020 goto next;
1021
1022 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1023 if (!victim_name)
1024 return -ENOMEM;
f186373f
MF
1025 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1026 victim_name_len);
1027
1028 search_key.objectid = inode_objectid;
1029 search_key.type = BTRFS_INODE_EXTREF_KEY;
1030 search_key.offset = btrfs_extref_hash(parent_objectid,
1031 victim_name,
1032 victim_name_len);
1033 ret = 0;
1034 if (!backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len)) {
1037 ret = -ENOENT;
1038 victim_parent = read_one_inode(root,
1039 parent_objectid);
1040 if (victim_parent) {
8b558c5f 1041 inc_nlink(inode);
f186373f
MF
1042 btrfs_release_path(path);
1043
1044 ret = btrfs_unlink_inode(trans, root,
1045 victim_parent,
1046 inode,
1047 victim_name,
1048 victim_name_len);
ada9af21
FDBM
1049 if (!ret)
1050 ret = btrfs_run_delayed_items(
1051 trans, root);
f186373f 1052 }
f186373f
MF
1053 iput(victim_parent);
1054 kfree(victim_name);
3650860b
JB
1055 if (ret)
1056 return ret;
f186373f
MF
1057 *search_done = 1;
1058 goto again;
1059 }
1060 kfree(victim_name);
3650860b
JB
1061 if (ret)
1062 return ret;
f186373f
MF
1063next:
1064 cur_offset += victim_name_len + sizeof(*extref);
1065 }
1066 *search_done = 1;
1067 }
1068 btrfs_release_path(path);
1069
34f3e4f2 1070 /* look for a conflicting sequence number */
1071 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1072 ref_index, name, namelen, 0);
34f3e4f2 1073 if (di && !IS_ERR(di)) {
1074 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1075 if (ret)
1076 return ret;
34f3e4f2 1077 }
1078 btrfs_release_path(path);
1079
1080 /* look for a conflicing name */
1081 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1082 name, namelen, 0);
1083 if (di && !IS_ERR(di)) {
1084 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1085 if (ret)
1086 return ret;
34f3e4f2 1087 }
1088 btrfs_release_path(path);
1089
5a1d7843
JS
1090 return 0;
1091}
e02119d5 1092
f186373f
MF
1093static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1094 u32 *namelen, char **name, u64 *index,
1095 u64 *parent_objectid)
1096{
1097 struct btrfs_inode_extref *extref;
1098
1099 extref = (struct btrfs_inode_extref *)ref_ptr;
1100
1101 *namelen = btrfs_inode_extref_name_len(eb, extref);
1102 *name = kmalloc(*namelen, GFP_NOFS);
1103 if (*name == NULL)
1104 return -ENOMEM;
1105
1106 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1107 *namelen);
1108
1109 *index = btrfs_inode_extref_index(eb, extref);
1110 if (parent_objectid)
1111 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1112
1113 return 0;
1114}
1115
1116static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1117 u32 *namelen, char **name, u64 *index)
1118{
1119 struct btrfs_inode_ref *ref;
1120
1121 ref = (struct btrfs_inode_ref *)ref_ptr;
1122
1123 *namelen = btrfs_inode_ref_name_len(eb, ref);
1124 *name = kmalloc(*namelen, GFP_NOFS);
1125 if (*name == NULL)
1126 return -ENOMEM;
1127
1128 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1129
1130 *index = btrfs_inode_ref_index(eb, ref);
1131
1132 return 0;
1133}
1134
5a1d7843
JS
1135/*
1136 * replay one inode back reference item found in the log tree.
1137 * eb, slot and key refer to the buffer and key found in the log tree.
1138 * root is the destination we are replaying into, and path is for temp
1139 * use by this function. (it should be released on return).
1140 */
1141static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1142 struct btrfs_root *root,
1143 struct btrfs_root *log,
1144 struct btrfs_path *path,
1145 struct extent_buffer *eb, int slot,
1146 struct btrfs_key *key)
1147{
03b2f08b
GB
1148 struct inode *dir = NULL;
1149 struct inode *inode = NULL;
5a1d7843
JS
1150 unsigned long ref_ptr;
1151 unsigned long ref_end;
03b2f08b 1152 char *name = NULL;
5a1d7843
JS
1153 int namelen;
1154 int ret;
1155 int search_done = 0;
f186373f
MF
1156 int log_ref_ver = 0;
1157 u64 parent_objectid;
1158 u64 inode_objectid;
f46dbe3d 1159 u64 ref_index = 0;
f186373f
MF
1160 int ref_struct_size;
1161
1162 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1163 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1164
1165 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1166 struct btrfs_inode_extref *r;
1167
1168 ref_struct_size = sizeof(struct btrfs_inode_extref);
1169 log_ref_ver = 1;
1170 r = (struct btrfs_inode_extref *)ref_ptr;
1171 parent_objectid = btrfs_inode_extref_parent(eb, r);
1172 } else {
1173 ref_struct_size = sizeof(struct btrfs_inode_ref);
1174 parent_objectid = key->offset;
1175 }
1176 inode_objectid = key->objectid;
e02119d5 1177
5a1d7843
JS
1178 /*
1179 * it is possible that we didn't log all the parent directories
1180 * for a given inode. If we don't find the dir, just don't
1181 * copy the back ref in. The link count fixup code will take
1182 * care of the rest
1183 */
f186373f 1184 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1185 if (!dir) {
1186 ret = -ENOENT;
1187 goto out;
1188 }
5a1d7843 1189
f186373f 1190 inode = read_one_inode(root, inode_objectid);
5a1d7843 1191 if (!inode) {
03b2f08b
GB
1192 ret = -EIO;
1193 goto out;
5a1d7843
JS
1194 }
1195
5a1d7843 1196 while (ref_ptr < ref_end) {
f186373f
MF
1197 if (log_ref_ver) {
1198 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1199 &ref_index, &parent_objectid);
1200 /*
1201 * parent object can change from one array
1202 * item to another.
1203 */
1204 if (!dir)
1205 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1206 if (!dir) {
1207 ret = -ENOENT;
1208 goto out;
1209 }
f186373f
MF
1210 } else {
1211 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1212 &ref_index);
1213 }
1214 if (ret)
03b2f08b 1215 goto out;
5a1d7843
JS
1216
1217 /* if we already have a perfect match, we're done */
1218 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1219 ref_index, name, namelen)) {
5a1d7843
JS
1220 /*
1221 * look for a conflicting back reference in the
1222 * metadata. if we find one we have to unlink that name
1223 * of the file before we add our new link. Later on, we
1224 * overwrite any existing back reference, and we don't
1225 * want to create dangling pointers in the directory.
1226 */
1227
1228 if (!search_done) {
1229 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1230 dir, inode, eb,
1231 inode_objectid,
1232 parent_objectid,
1233 ref_index, name, namelen,
5a1d7843 1234 &search_done);
03b2f08b
GB
1235 if (ret) {
1236 if (ret == 1)
1237 ret = 0;
3650860b
JB
1238 goto out;
1239 }
5a1d7843
JS
1240 }
1241
1242 /* insert our name */
1243 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1244 0, ref_index);
3650860b
JB
1245 if (ret)
1246 goto out;
5a1d7843
JS
1247
1248 btrfs_update_inode(trans, root, inode);
1249 }
1250
f186373f 1251 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1252 kfree(name);
03b2f08b 1253 name = NULL;
f186373f
MF
1254 if (log_ref_ver) {
1255 iput(dir);
1256 dir = NULL;
1257 }
5a1d7843 1258 }
e02119d5
CM
1259
1260 /* finally write the back reference in the inode */
1261 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1262out:
b3b4aa74 1263 btrfs_release_path(path);
03b2f08b 1264 kfree(name);
e02119d5
CM
1265 iput(dir);
1266 iput(inode);
3650860b 1267 return ret;
e02119d5
CM
1268}
1269
c71bf099 1270static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1271 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1272{
1273 int ret;
381cf658 1274
9c4f61f0
DS
1275 ret = btrfs_insert_orphan_item(trans, root, ino);
1276 if (ret == -EEXIST)
1277 ret = 0;
381cf658 1278
c71bf099
YZ
1279 return ret;
1280}
1281
f186373f
MF
1282static int count_inode_extrefs(struct btrfs_root *root,
1283 struct inode *inode, struct btrfs_path *path)
1284{
1285 int ret = 0;
1286 int name_len;
1287 unsigned int nlink = 0;
1288 u32 item_size;
1289 u32 cur_offset = 0;
1290 u64 inode_objectid = btrfs_ino(inode);
1291 u64 offset = 0;
1292 unsigned long ptr;
1293 struct btrfs_inode_extref *extref;
1294 struct extent_buffer *leaf;
1295
1296 while (1) {
1297 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1298 &extref, &offset);
1299 if (ret)
1300 break;
c71bf099 1301
f186373f
MF
1302 leaf = path->nodes[0];
1303 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1304 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1305 cur_offset = 0;
f186373f
MF
1306
1307 while (cur_offset < item_size) {
1308 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1309 name_len = btrfs_inode_extref_name_len(leaf, extref);
1310
1311 nlink++;
1312
1313 cur_offset += name_len + sizeof(*extref);
1314 }
1315
1316 offset++;
1317 btrfs_release_path(path);
1318 }
1319 btrfs_release_path(path);
1320
2c2c452b 1321 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1322 return ret;
1323 return nlink;
1324}
1325
1326static int count_inode_refs(struct btrfs_root *root,
1327 struct inode *inode, struct btrfs_path *path)
e02119d5 1328{
e02119d5
CM
1329 int ret;
1330 struct btrfs_key key;
f186373f 1331 unsigned int nlink = 0;
e02119d5
CM
1332 unsigned long ptr;
1333 unsigned long ptr_end;
1334 int name_len;
33345d01 1335 u64 ino = btrfs_ino(inode);
e02119d5 1336
33345d01 1337 key.objectid = ino;
e02119d5
CM
1338 key.type = BTRFS_INODE_REF_KEY;
1339 key.offset = (u64)-1;
1340
d397712b 1341 while (1) {
e02119d5
CM
1342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1343 if (ret < 0)
1344 break;
1345 if (ret > 0) {
1346 if (path->slots[0] == 0)
1347 break;
1348 path->slots[0]--;
1349 }
e93ae26f 1350process_slot:
e02119d5
CM
1351 btrfs_item_key_to_cpu(path->nodes[0], &key,
1352 path->slots[0]);
33345d01 1353 if (key.objectid != ino ||
e02119d5
CM
1354 key.type != BTRFS_INODE_REF_KEY)
1355 break;
1356 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1357 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1358 path->slots[0]);
d397712b 1359 while (ptr < ptr_end) {
e02119d5
CM
1360 struct btrfs_inode_ref *ref;
1361
1362 ref = (struct btrfs_inode_ref *)ptr;
1363 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1364 ref);
1365 ptr = (unsigned long)(ref + 1) + name_len;
1366 nlink++;
1367 }
1368
1369 if (key.offset == 0)
1370 break;
e93ae26f
FDBM
1371 if (path->slots[0] > 0) {
1372 path->slots[0]--;
1373 goto process_slot;
1374 }
e02119d5 1375 key.offset--;
b3b4aa74 1376 btrfs_release_path(path);
e02119d5 1377 }
b3b4aa74 1378 btrfs_release_path(path);
f186373f
MF
1379
1380 return nlink;
1381}
1382
1383/*
1384 * There are a few corners where the link count of the file can't
1385 * be properly maintained during replay. So, instead of adding
1386 * lots of complexity to the log code, we just scan the backrefs
1387 * for any file that has been through replay.
1388 *
1389 * The scan will update the link count on the inode to reflect the
1390 * number of back refs found. If it goes down to zero, the iput
1391 * will free the inode.
1392 */
1393static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1394 struct btrfs_root *root,
1395 struct inode *inode)
1396{
1397 struct btrfs_path *path;
1398 int ret;
1399 u64 nlink = 0;
1400 u64 ino = btrfs_ino(inode);
1401
1402 path = btrfs_alloc_path();
1403 if (!path)
1404 return -ENOMEM;
1405
1406 ret = count_inode_refs(root, inode, path);
1407 if (ret < 0)
1408 goto out;
1409
1410 nlink = ret;
1411
1412 ret = count_inode_extrefs(root, inode, path);
f186373f
MF
1413 if (ret < 0)
1414 goto out;
1415
1416 nlink += ret;
1417
1418 ret = 0;
1419
e02119d5 1420 if (nlink != inode->i_nlink) {
bfe86848 1421 set_nlink(inode, nlink);
e02119d5
CM
1422 btrfs_update_inode(trans, root, inode);
1423 }
8d5bf1cb 1424 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1425
c71bf099
YZ
1426 if (inode->i_nlink == 0) {
1427 if (S_ISDIR(inode->i_mode)) {
1428 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1429 ino, 1);
3650860b
JB
1430 if (ret)
1431 goto out;
c71bf099 1432 }
33345d01 1433 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1434 }
12fcfd22 1435
f186373f
MF
1436out:
1437 btrfs_free_path(path);
1438 return ret;
e02119d5
CM
1439}
1440
1441static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1442 struct btrfs_root *root,
1443 struct btrfs_path *path)
1444{
1445 int ret;
1446 struct btrfs_key key;
1447 struct inode *inode;
1448
1449 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1450 key.type = BTRFS_ORPHAN_ITEM_KEY;
1451 key.offset = (u64)-1;
d397712b 1452 while (1) {
e02119d5
CM
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 if (ret < 0)
1455 break;
1456
1457 if (ret == 1) {
1458 if (path->slots[0] == 0)
1459 break;
1460 path->slots[0]--;
1461 }
1462
1463 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1464 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1465 key.type != BTRFS_ORPHAN_ITEM_KEY)
1466 break;
1467
1468 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1469 if (ret)
1470 goto out;
e02119d5 1471
b3b4aa74 1472 btrfs_release_path(path);
e02119d5 1473 inode = read_one_inode(root, key.offset);
c00e9493
TI
1474 if (!inode)
1475 return -EIO;
e02119d5
CM
1476
1477 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1478 iput(inode);
3650860b
JB
1479 if (ret)
1480 goto out;
e02119d5 1481
12fcfd22
CM
1482 /*
1483 * fixup on a directory may create new entries,
1484 * make sure we always look for the highset possible
1485 * offset
1486 */
1487 key.offset = (u64)-1;
e02119d5 1488 }
65a246c5
TI
1489 ret = 0;
1490out:
b3b4aa74 1491 btrfs_release_path(path);
65a246c5 1492 return ret;
e02119d5
CM
1493}
1494
1495
1496/*
1497 * record a given inode in the fixup dir so we can check its link
1498 * count when replay is done. The link count is incremented here
1499 * so the inode won't go away until we check it
1500 */
1501static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1502 struct btrfs_root *root,
1503 struct btrfs_path *path,
1504 u64 objectid)
1505{
1506 struct btrfs_key key;
1507 int ret = 0;
1508 struct inode *inode;
1509
1510 inode = read_one_inode(root, objectid);
c00e9493
TI
1511 if (!inode)
1512 return -EIO;
e02119d5
CM
1513
1514 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1515 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1516 key.offset = objectid;
1517
1518 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1519
b3b4aa74 1520 btrfs_release_path(path);
e02119d5 1521 if (ret == 0) {
9bf7a489
JB
1522 if (!inode->i_nlink)
1523 set_nlink(inode, 1);
1524 else
8b558c5f 1525 inc_nlink(inode);
b9959295 1526 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1527 } else if (ret == -EEXIST) {
1528 ret = 0;
1529 } else {
3650860b 1530 BUG(); /* Logic Error */
e02119d5
CM
1531 }
1532 iput(inode);
1533
1534 return ret;
1535}
1536
1537/*
1538 * when replaying the log for a directory, we only insert names
1539 * for inodes that actually exist. This means an fsync on a directory
1540 * does not implicitly fsync all the new files in it
1541 */
1542static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1543 struct btrfs_root *root,
1544 struct btrfs_path *path,
1545 u64 dirid, u64 index,
1546 char *name, int name_len, u8 type,
1547 struct btrfs_key *location)
1548{
1549 struct inode *inode;
1550 struct inode *dir;
1551 int ret;
1552
1553 inode = read_one_inode(root, location->objectid);
1554 if (!inode)
1555 return -ENOENT;
1556
1557 dir = read_one_inode(root, dirid);
1558 if (!dir) {
1559 iput(inode);
1560 return -EIO;
1561 }
d555438b 1562
e02119d5
CM
1563 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1564
1565 /* FIXME, put inode into FIXUP list */
1566
1567 iput(inode);
1568 iput(dir);
1569 return ret;
1570}
1571
df8d116f
FM
1572/*
1573 * Return true if an inode reference exists in the log for the given name,
1574 * inode and parent inode.
1575 */
1576static bool name_in_log_ref(struct btrfs_root *log_root,
1577 const char *name, const int name_len,
1578 const u64 dirid, const u64 ino)
1579{
1580 struct btrfs_key search_key;
1581
1582 search_key.objectid = ino;
1583 search_key.type = BTRFS_INODE_REF_KEY;
1584 search_key.offset = dirid;
1585 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1586 return true;
1587
1588 search_key.type = BTRFS_INODE_EXTREF_KEY;
1589 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1590 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1591 return true;
1592
1593 return false;
1594}
1595
e02119d5
CM
1596/*
1597 * take a single entry in a log directory item and replay it into
1598 * the subvolume.
1599 *
1600 * if a conflicting item exists in the subdirectory already,
1601 * the inode it points to is unlinked and put into the link count
1602 * fix up tree.
1603 *
1604 * If a name from the log points to a file or directory that does
1605 * not exist in the FS, it is skipped. fsyncs on directories
1606 * do not force down inodes inside that directory, just changes to the
1607 * names or unlinks in a directory.
1608 */
1609static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1610 struct btrfs_root *root,
1611 struct btrfs_path *path,
1612 struct extent_buffer *eb,
1613 struct btrfs_dir_item *di,
1614 struct btrfs_key *key)
1615{
1616 char *name;
1617 int name_len;
1618 struct btrfs_dir_item *dst_di;
1619 struct btrfs_key found_key;
1620 struct btrfs_key log_key;
1621 struct inode *dir;
e02119d5 1622 u8 log_type;
4bef0848 1623 int exists;
3650860b 1624 int ret = 0;
d555438b 1625 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1626
1627 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1628 if (!dir)
1629 return -EIO;
e02119d5
CM
1630
1631 name_len = btrfs_dir_name_len(eb, di);
1632 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1633 if (!name) {
1634 ret = -ENOMEM;
1635 goto out;
1636 }
2a29edc6 1637
e02119d5
CM
1638 log_type = btrfs_dir_type(eb, di);
1639 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1640 name_len);
1641
1642 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1643 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1644 if (exists == 0)
1645 exists = 1;
1646 else
1647 exists = 0;
b3b4aa74 1648 btrfs_release_path(path);
4bef0848 1649
e02119d5
CM
1650 if (key->type == BTRFS_DIR_ITEM_KEY) {
1651 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1652 name, name_len, 1);
d397712b 1653 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1654 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1655 key->objectid,
1656 key->offset, name,
1657 name_len, 1);
1658 } else {
3650860b
JB
1659 /* Corruption */
1660 ret = -EINVAL;
1661 goto out;
e02119d5 1662 }
c704005d 1663 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1664 /* we need a sequence number to insert, so we only
1665 * do inserts for the BTRFS_DIR_INDEX_KEY types
1666 */
1667 if (key->type != BTRFS_DIR_INDEX_KEY)
1668 goto out;
1669 goto insert;
1670 }
1671
1672 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1673 /* the existing item matches the logged item */
1674 if (found_key.objectid == log_key.objectid &&
1675 found_key.type == log_key.type &&
1676 found_key.offset == log_key.offset &&
1677 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1678 update_size = false;
e02119d5
CM
1679 goto out;
1680 }
1681
1682 /*
1683 * don't drop the conflicting directory entry if the inode
1684 * for the new entry doesn't exist
1685 */
4bef0848 1686 if (!exists)
e02119d5
CM
1687 goto out;
1688
e02119d5 1689 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1690 if (ret)
1691 goto out;
e02119d5
CM
1692
1693 if (key->type == BTRFS_DIR_INDEX_KEY)
1694 goto insert;
1695out:
b3b4aa74 1696 btrfs_release_path(path);
d555438b
JB
1697 if (!ret && update_size) {
1698 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1699 ret = btrfs_update_inode(trans, root, dir);
1700 }
e02119d5
CM
1701 kfree(name);
1702 iput(dir);
3650860b 1703 return ret;
e02119d5
CM
1704
1705insert:
df8d116f
FM
1706 if (name_in_log_ref(root->log_root, name, name_len,
1707 key->objectid, log_key.objectid)) {
1708 /* The dentry will be added later. */
1709 ret = 0;
1710 update_size = false;
1711 goto out;
1712 }
b3b4aa74 1713 btrfs_release_path(path);
e02119d5
CM
1714 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1715 name, name_len, log_type, &log_key);
df8d116f 1716 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1717 goto out;
d555438b 1718 update_size = false;
3650860b 1719 ret = 0;
e02119d5
CM
1720 goto out;
1721}
1722
1723/*
1724 * find all the names in a directory item and reconcile them into
1725 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1726 * one name in a directory item, but the same code gets used for
1727 * both directory index types
1728 */
1729static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1730 struct btrfs_root *root,
1731 struct btrfs_path *path,
1732 struct extent_buffer *eb, int slot,
1733 struct btrfs_key *key)
1734{
1735 int ret;
1736 u32 item_size = btrfs_item_size_nr(eb, slot);
1737 struct btrfs_dir_item *di;
1738 int name_len;
1739 unsigned long ptr;
1740 unsigned long ptr_end;
1741
1742 ptr = btrfs_item_ptr_offset(eb, slot);
1743 ptr_end = ptr + item_size;
d397712b 1744 while (ptr < ptr_end) {
e02119d5 1745 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1746 if (verify_dir_item(root, eb, di))
1747 return -EIO;
e02119d5
CM
1748 name_len = btrfs_dir_name_len(eb, di);
1749 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1750 if (ret)
1751 return ret;
e02119d5
CM
1752 ptr = (unsigned long)(di + 1);
1753 ptr += name_len;
1754 }
1755 return 0;
1756}
1757
1758/*
1759 * directory replay has two parts. There are the standard directory
1760 * items in the log copied from the subvolume, and range items
1761 * created in the log while the subvolume was logged.
1762 *
1763 * The range items tell us which parts of the key space the log
1764 * is authoritative for. During replay, if a key in the subvolume
1765 * directory is in a logged range item, but not actually in the log
1766 * that means it was deleted from the directory before the fsync
1767 * and should be removed.
1768 */
1769static noinline int find_dir_range(struct btrfs_root *root,
1770 struct btrfs_path *path,
1771 u64 dirid, int key_type,
1772 u64 *start_ret, u64 *end_ret)
1773{
1774 struct btrfs_key key;
1775 u64 found_end;
1776 struct btrfs_dir_log_item *item;
1777 int ret;
1778 int nritems;
1779
1780 if (*start_ret == (u64)-1)
1781 return 1;
1782
1783 key.objectid = dirid;
1784 key.type = key_type;
1785 key.offset = *start_ret;
1786
1787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1788 if (ret < 0)
1789 goto out;
1790 if (ret > 0) {
1791 if (path->slots[0] == 0)
1792 goto out;
1793 path->slots[0]--;
1794 }
1795 if (ret != 0)
1796 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1797
1798 if (key.type != key_type || key.objectid != dirid) {
1799 ret = 1;
1800 goto next;
1801 }
1802 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1803 struct btrfs_dir_log_item);
1804 found_end = btrfs_dir_log_end(path->nodes[0], item);
1805
1806 if (*start_ret >= key.offset && *start_ret <= found_end) {
1807 ret = 0;
1808 *start_ret = key.offset;
1809 *end_ret = found_end;
1810 goto out;
1811 }
1812 ret = 1;
1813next:
1814 /* check the next slot in the tree to see if it is a valid item */
1815 nritems = btrfs_header_nritems(path->nodes[0]);
1816 if (path->slots[0] >= nritems) {
1817 ret = btrfs_next_leaf(root, path);
1818 if (ret)
1819 goto out;
1820 } else {
1821 path->slots[0]++;
1822 }
1823
1824 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1825
1826 if (key.type != key_type || key.objectid != dirid) {
1827 ret = 1;
1828 goto out;
1829 }
1830 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1831 struct btrfs_dir_log_item);
1832 found_end = btrfs_dir_log_end(path->nodes[0], item);
1833 *start_ret = key.offset;
1834 *end_ret = found_end;
1835 ret = 0;
1836out:
b3b4aa74 1837 btrfs_release_path(path);
e02119d5
CM
1838 return ret;
1839}
1840
1841/*
1842 * this looks for a given directory item in the log. If the directory
1843 * item is not in the log, the item is removed and the inode it points
1844 * to is unlinked
1845 */
1846static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_root *log,
1849 struct btrfs_path *path,
1850 struct btrfs_path *log_path,
1851 struct inode *dir,
1852 struct btrfs_key *dir_key)
1853{
1854 int ret;
1855 struct extent_buffer *eb;
1856 int slot;
1857 u32 item_size;
1858 struct btrfs_dir_item *di;
1859 struct btrfs_dir_item *log_di;
1860 int name_len;
1861 unsigned long ptr;
1862 unsigned long ptr_end;
1863 char *name;
1864 struct inode *inode;
1865 struct btrfs_key location;
1866
1867again:
1868 eb = path->nodes[0];
1869 slot = path->slots[0];
1870 item_size = btrfs_item_size_nr(eb, slot);
1871 ptr = btrfs_item_ptr_offset(eb, slot);
1872 ptr_end = ptr + item_size;
d397712b 1873 while (ptr < ptr_end) {
e02119d5 1874 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1875 if (verify_dir_item(root, eb, di)) {
1876 ret = -EIO;
1877 goto out;
1878 }
1879
e02119d5
CM
1880 name_len = btrfs_dir_name_len(eb, di);
1881 name = kmalloc(name_len, GFP_NOFS);
1882 if (!name) {
1883 ret = -ENOMEM;
1884 goto out;
1885 }
1886 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1887 name_len);
1888 log_di = NULL;
12fcfd22 1889 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1890 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1891 dir_key->objectid,
1892 name, name_len, 0);
12fcfd22 1893 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1894 log_di = btrfs_lookup_dir_index_item(trans, log,
1895 log_path,
1896 dir_key->objectid,
1897 dir_key->offset,
1898 name, name_len, 0);
1899 }
269d040f 1900 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1901 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1902 btrfs_release_path(path);
1903 btrfs_release_path(log_path);
e02119d5 1904 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1905 if (!inode) {
1906 kfree(name);
1907 return -EIO;
1908 }
e02119d5
CM
1909
1910 ret = link_to_fixup_dir(trans, root,
1911 path, location.objectid);
3650860b
JB
1912 if (ret) {
1913 kfree(name);
1914 iput(inode);
1915 goto out;
1916 }
1917
8b558c5f 1918 inc_nlink(inode);
e02119d5
CM
1919 ret = btrfs_unlink_inode(trans, root, dir, inode,
1920 name, name_len);
3650860b 1921 if (!ret)
ada9af21 1922 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1923 kfree(name);
1924 iput(inode);
3650860b
JB
1925 if (ret)
1926 goto out;
e02119d5
CM
1927
1928 /* there might still be more names under this key
1929 * check and repeat if required
1930 */
1931 ret = btrfs_search_slot(NULL, root, dir_key, path,
1932 0, 0);
1933 if (ret == 0)
1934 goto again;
1935 ret = 0;
1936 goto out;
269d040f
FDBM
1937 } else if (IS_ERR(log_di)) {
1938 kfree(name);
1939 return PTR_ERR(log_di);
e02119d5 1940 }
b3b4aa74 1941 btrfs_release_path(log_path);
e02119d5
CM
1942 kfree(name);
1943
1944 ptr = (unsigned long)(di + 1);
1945 ptr += name_len;
1946 }
1947 ret = 0;
1948out:
b3b4aa74
DS
1949 btrfs_release_path(path);
1950 btrfs_release_path(log_path);
e02119d5
CM
1951 return ret;
1952}
1953
1954/*
1955 * deletion replay happens before we copy any new directory items
1956 * out of the log or out of backreferences from inodes. It
1957 * scans the log to find ranges of keys that log is authoritative for,
1958 * and then scans the directory to find items in those ranges that are
1959 * not present in the log.
1960 *
1961 * Anything we don't find in the log is unlinked and removed from the
1962 * directory.
1963 */
1964static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1965 struct btrfs_root *root,
1966 struct btrfs_root *log,
1967 struct btrfs_path *path,
12fcfd22 1968 u64 dirid, int del_all)
e02119d5
CM
1969{
1970 u64 range_start;
1971 u64 range_end;
1972 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1973 int ret = 0;
1974 struct btrfs_key dir_key;
1975 struct btrfs_key found_key;
1976 struct btrfs_path *log_path;
1977 struct inode *dir;
1978
1979 dir_key.objectid = dirid;
1980 dir_key.type = BTRFS_DIR_ITEM_KEY;
1981 log_path = btrfs_alloc_path();
1982 if (!log_path)
1983 return -ENOMEM;
1984
1985 dir = read_one_inode(root, dirid);
1986 /* it isn't an error if the inode isn't there, that can happen
1987 * because we replay the deletes before we copy in the inode item
1988 * from the log
1989 */
1990 if (!dir) {
1991 btrfs_free_path(log_path);
1992 return 0;
1993 }
1994again:
1995 range_start = 0;
1996 range_end = 0;
d397712b 1997 while (1) {
12fcfd22
CM
1998 if (del_all)
1999 range_end = (u64)-1;
2000 else {
2001 ret = find_dir_range(log, path, dirid, key_type,
2002 &range_start, &range_end);
2003 if (ret != 0)
2004 break;
2005 }
e02119d5
CM
2006
2007 dir_key.offset = range_start;
d397712b 2008 while (1) {
e02119d5
CM
2009 int nritems;
2010 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2011 0, 0);
2012 if (ret < 0)
2013 goto out;
2014
2015 nritems = btrfs_header_nritems(path->nodes[0]);
2016 if (path->slots[0] >= nritems) {
2017 ret = btrfs_next_leaf(root, path);
2018 if (ret)
2019 break;
2020 }
2021 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2022 path->slots[0]);
2023 if (found_key.objectid != dirid ||
2024 found_key.type != dir_key.type)
2025 goto next_type;
2026
2027 if (found_key.offset > range_end)
2028 break;
2029
2030 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2031 log_path, dir,
2032 &found_key);
3650860b
JB
2033 if (ret)
2034 goto out;
e02119d5
CM
2035 if (found_key.offset == (u64)-1)
2036 break;
2037 dir_key.offset = found_key.offset + 1;
2038 }
b3b4aa74 2039 btrfs_release_path(path);
e02119d5
CM
2040 if (range_end == (u64)-1)
2041 break;
2042 range_start = range_end + 1;
2043 }
2044
2045next_type:
2046 ret = 0;
2047 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2048 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2049 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2050 btrfs_release_path(path);
e02119d5
CM
2051 goto again;
2052 }
2053out:
b3b4aa74 2054 btrfs_release_path(path);
e02119d5
CM
2055 btrfs_free_path(log_path);
2056 iput(dir);
2057 return ret;
2058}
2059
2060/*
2061 * the process_func used to replay items from the log tree. This
2062 * gets called in two different stages. The first stage just looks
2063 * for inodes and makes sure they are all copied into the subvolume.
2064 *
2065 * The second stage copies all the other item types from the log into
2066 * the subvolume. The two stage approach is slower, but gets rid of
2067 * lots of complexity around inodes referencing other inodes that exist
2068 * only in the log (references come from either directory items or inode
2069 * back refs).
2070 */
2071static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2072 struct walk_control *wc, u64 gen)
2073{
2074 int nritems;
2075 struct btrfs_path *path;
2076 struct btrfs_root *root = wc->replay_dest;
2077 struct btrfs_key key;
e02119d5
CM
2078 int level;
2079 int i;
2080 int ret;
2081
018642a1
TI
2082 ret = btrfs_read_buffer(eb, gen);
2083 if (ret)
2084 return ret;
e02119d5
CM
2085
2086 level = btrfs_header_level(eb);
2087
2088 if (level != 0)
2089 return 0;
2090
2091 path = btrfs_alloc_path();
1e5063d0
MF
2092 if (!path)
2093 return -ENOMEM;
e02119d5
CM
2094
2095 nritems = btrfs_header_nritems(eb);
2096 for (i = 0; i < nritems; i++) {
2097 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2098
2099 /* inode keys are done during the first stage */
2100 if (key.type == BTRFS_INODE_ITEM_KEY &&
2101 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2102 struct btrfs_inode_item *inode_item;
2103 u32 mode;
2104
2105 inode_item = btrfs_item_ptr(eb, i,
2106 struct btrfs_inode_item);
2107 mode = btrfs_inode_mode(eb, inode_item);
2108 if (S_ISDIR(mode)) {
2109 ret = replay_dir_deletes(wc->trans,
12fcfd22 2110 root, log, path, key.objectid, 0);
b50c6e25
JB
2111 if (ret)
2112 break;
e02119d5
CM
2113 }
2114 ret = overwrite_item(wc->trans, root, path,
2115 eb, i, &key);
b50c6e25
JB
2116 if (ret)
2117 break;
e02119d5 2118
c71bf099
YZ
2119 /* for regular files, make sure corresponding
2120 * orhpan item exist. extents past the new EOF
2121 * will be truncated later by orphan cleanup.
e02119d5
CM
2122 */
2123 if (S_ISREG(mode)) {
c71bf099
YZ
2124 ret = insert_orphan_item(wc->trans, root,
2125 key.objectid);
b50c6e25
JB
2126 if (ret)
2127 break;
e02119d5 2128 }
c71bf099 2129
e02119d5
CM
2130 ret = link_to_fixup_dir(wc->trans, root,
2131 path, key.objectid);
b50c6e25
JB
2132 if (ret)
2133 break;
e02119d5 2134 }
dd8e7217
JB
2135
2136 if (key.type == BTRFS_DIR_INDEX_KEY &&
2137 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2138 ret = replay_one_dir_item(wc->trans, root, path,
2139 eb, i, &key);
2140 if (ret)
2141 break;
2142 }
2143
e02119d5
CM
2144 if (wc->stage < LOG_WALK_REPLAY_ALL)
2145 continue;
2146
2147 /* these keys are simply copied */
2148 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2149 ret = overwrite_item(wc->trans, root, path,
2150 eb, i, &key);
b50c6e25
JB
2151 if (ret)
2152 break;
2da1c669
LB
2153 } else if (key.type == BTRFS_INODE_REF_KEY ||
2154 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2155 ret = add_inode_ref(wc->trans, root, log, path,
2156 eb, i, &key);
b50c6e25
JB
2157 if (ret && ret != -ENOENT)
2158 break;
2159 ret = 0;
e02119d5
CM
2160 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2161 ret = replay_one_extent(wc->trans, root, path,
2162 eb, i, &key);
b50c6e25
JB
2163 if (ret)
2164 break;
dd8e7217 2165 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2166 ret = replay_one_dir_item(wc->trans, root, path,
2167 eb, i, &key);
b50c6e25
JB
2168 if (ret)
2169 break;
e02119d5
CM
2170 }
2171 }
2172 btrfs_free_path(path);
b50c6e25 2173 return ret;
e02119d5
CM
2174}
2175
d397712b 2176static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2177 struct btrfs_root *root,
2178 struct btrfs_path *path, int *level,
2179 struct walk_control *wc)
2180{
2181 u64 root_owner;
e02119d5
CM
2182 u64 bytenr;
2183 u64 ptr_gen;
2184 struct extent_buffer *next;
2185 struct extent_buffer *cur;
2186 struct extent_buffer *parent;
2187 u32 blocksize;
2188 int ret = 0;
2189
2190 WARN_ON(*level < 0);
2191 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2192
d397712b 2193 while (*level > 0) {
e02119d5
CM
2194 WARN_ON(*level < 0);
2195 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2196 cur = path->nodes[*level];
2197
fae7f21c 2198 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2199
2200 if (path->slots[*level] >=
2201 btrfs_header_nritems(cur))
2202 break;
2203
2204 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2205 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
707e8a07 2206 blocksize = root->nodesize;
e02119d5
CM
2207
2208 parent = path->nodes[*level];
2209 root_owner = btrfs_header_owner(parent);
e02119d5 2210
a83fffb7 2211 next = btrfs_find_create_tree_block(root, bytenr);
2a29edc6 2212 if (!next)
2213 return -ENOMEM;
e02119d5 2214
e02119d5 2215 if (*level == 1) {
1e5063d0 2216 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2217 if (ret) {
2218 free_extent_buffer(next);
1e5063d0 2219 return ret;
b50c6e25 2220 }
4a500fd1 2221
e02119d5
CM
2222 path->slots[*level]++;
2223 if (wc->free) {
018642a1
TI
2224 ret = btrfs_read_buffer(next, ptr_gen);
2225 if (ret) {
2226 free_extent_buffer(next);
2227 return ret;
2228 }
e02119d5 2229
681ae509
JB
2230 if (trans) {
2231 btrfs_tree_lock(next);
2232 btrfs_set_lock_blocking(next);
2233 clean_tree_block(trans, root, next);
2234 btrfs_wait_tree_block_writeback(next);
2235 btrfs_tree_unlock(next);
2236 }
e02119d5 2237
e02119d5
CM
2238 WARN_ON(root_owner !=
2239 BTRFS_TREE_LOG_OBJECTID);
e688b725 2240 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2241 bytenr, blocksize);
3650860b
JB
2242 if (ret) {
2243 free_extent_buffer(next);
2244 return ret;
2245 }
e02119d5
CM
2246 }
2247 free_extent_buffer(next);
2248 continue;
2249 }
018642a1
TI
2250 ret = btrfs_read_buffer(next, ptr_gen);
2251 if (ret) {
2252 free_extent_buffer(next);
2253 return ret;
2254 }
e02119d5
CM
2255
2256 WARN_ON(*level <= 0);
2257 if (path->nodes[*level-1])
2258 free_extent_buffer(path->nodes[*level-1]);
2259 path->nodes[*level-1] = next;
2260 *level = btrfs_header_level(next);
2261 path->slots[*level] = 0;
2262 cond_resched();
2263 }
2264 WARN_ON(*level < 0);
2265 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2266
4a500fd1 2267 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2268
2269 cond_resched();
2270 return 0;
2271}
2272
d397712b 2273static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2274 struct btrfs_root *root,
2275 struct btrfs_path *path, int *level,
2276 struct walk_control *wc)
2277{
2278 u64 root_owner;
e02119d5
CM
2279 int i;
2280 int slot;
2281 int ret;
2282
d397712b 2283 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2284 slot = path->slots[i];
4a500fd1 2285 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2286 path->slots[i]++;
2287 *level = i;
2288 WARN_ON(*level == 0);
2289 return 0;
2290 } else {
31840ae1
ZY
2291 struct extent_buffer *parent;
2292 if (path->nodes[*level] == root->node)
2293 parent = path->nodes[*level];
2294 else
2295 parent = path->nodes[*level + 1];
2296
2297 root_owner = btrfs_header_owner(parent);
1e5063d0 2298 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2299 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2300 if (ret)
2301 return ret;
2302
e02119d5
CM
2303 if (wc->free) {
2304 struct extent_buffer *next;
2305
2306 next = path->nodes[*level];
2307
681ae509
JB
2308 if (trans) {
2309 btrfs_tree_lock(next);
2310 btrfs_set_lock_blocking(next);
2311 clean_tree_block(trans, root, next);
2312 btrfs_wait_tree_block_writeback(next);
2313 btrfs_tree_unlock(next);
2314 }
e02119d5 2315
e02119d5 2316 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2317 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2318 path->nodes[*level]->start,
d00aff00 2319 path->nodes[*level]->len);
3650860b
JB
2320 if (ret)
2321 return ret;
e02119d5
CM
2322 }
2323 free_extent_buffer(path->nodes[*level]);
2324 path->nodes[*level] = NULL;
2325 *level = i + 1;
2326 }
2327 }
2328 return 1;
2329}
2330
2331/*
2332 * drop the reference count on the tree rooted at 'snap'. This traverses
2333 * the tree freeing any blocks that have a ref count of zero after being
2334 * decremented.
2335 */
2336static int walk_log_tree(struct btrfs_trans_handle *trans,
2337 struct btrfs_root *log, struct walk_control *wc)
2338{
2339 int ret = 0;
2340 int wret;
2341 int level;
2342 struct btrfs_path *path;
e02119d5
CM
2343 int orig_level;
2344
2345 path = btrfs_alloc_path();
db5b493a
TI
2346 if (!path)
2347 return -ENOMEM;
e02119d5
CM
2348
2349 level = btrfs_header_level(log->node);
2350 orig_level = level;
2351 path->nodes[level] = log->node;
2352 extent_buffer_get(log->node);
2353 path->slots[level] = 0;
2354
d397712b 2355 while (1) {
e02119d5
CM
2356 wret = walk_down_log_tree(trans, log, path, &level, wc);
2357 if (wret > 0)
2358 break;
79787eaa 2359 if (wret < 0) {
e02119d5 2360 ret = wret;
79787eaa
JM
2361 goto out;
2362 }
e02119d5
CM
2363
2364 wret = walk_up_log_tree(trans, log, path, &level, wc);
2365 if (wret > 0)
2366 break;
79787eaa 2367 if (wret < 0) {
e02119d5 2368 ret = wret;
79787eaa
JM
2369 goto out;
2370 }
e02119d5
CM
2371 }
2372
2373 /* was the root node processed? if not, catch it here */
2374 if (path->nodes[orig_level]) {
79787eaa 2375 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2376 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2377 if (ret)
2378 goto out;
e02119d5
CM
2379 if (wc->free) {
2380 struct extent_buffer *next;
2381
2382 next = path->nodes[orig_level];
2383
681ae509
JB
2384 if (trans) {
2385 btrfs_tree_lock(next);
2386 btrfs_set_lock_blocking(next);
2387 clean_tree_block(trans, log, next);
2388 btrfs_wait_tree_block_writeback(next);
2389 btrfs_tree_unlock(next);
2390 }
e02119d5 2391
e02119d5
CM
2392 WARN_ON(log->root_key.objectid !=
2393 BTRFS_TREE_LOG_OBJECTID);
e688b725 2394 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2395 next->len);
3650860b
JB
2396 if (ret)
2397 goto out;
e02119d5
CM
2398 }
2399 }
2400
79787eaa 2401out:
e02119d5 2402 btrfs_free_path(path);
e02119d5
CM
2403 return ret;
2404}
2405
7237f183
YZ
2406/*
2407 * helper function to update the item for a given subvolumes log root
2408 * in the tree of log roots
2409 */
2410static int update_log_root(struct btrfs_trans_handle *trans,
2411 struct btrfs_root *log)
2412{
2413 int ret;
2414
2415 if (log->log_transid == 1) {
2416 /* insert root item on the first sync */
2417 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2418 &log->root_key, &log->root_item);
2419 } else {
2420 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2421 &log->root_key, &log->root_item);
2422 }
2423 return ret;
2424}
2425
8b050d35
MX
2426static void wait_log_commit(struct btrfs_trans_handle *trans,
2427 struct btrfs_root *root, int transid)
e02119d5
CM
2428{
2429 DEFINE_WAIT(wait);
7237f183 2430 int index = transid % 2;
e02119d5 2431
7237f183
YZ
2432 /*
2433 * we only allow two pending log transactions at a time,
2434 * so we know that if ours is more than 2 older than the
2435 * current transaction, we're done
2436 */
e02119d5 2437 do {
7237f183
YZ
2438 prepare_to_wait(&root->log_commit_wait[index],
2439 &wait, TASK_UNINTERRUPTIBLE);
2440 mutex_unlock(&root->log_mutex);
12fcfd22 2441
d1433deb 2442 if (root->log_transid_committed < transid &&
7237f183
YZ
2443 atomic_read(&root->log_commit[index]))
2444 schedule();
12fcfd22 2445
7237f183
YZ
2446 finish_wait(&root->log_commit_wait[index], &wait);
2447 mutex_lock(&root->log_mutex);
d1433deb 2448 } while (root->log_transid_committed < transid &&
7237f183 2449 atomic_read(&root->log_commit[index]));
7237f183
YZ
2450}
2451
143bede5
JM
2452static void wait_for_writer(struct btrfs_trans_handle *trans,
2453 struct btrfs_root *root)
7237f183
YZ
2454{
2455 DEFINE_WAIT(wait);
8b050d35
MX
2456
2457 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2458 prepare_to_wait(&root->log_writer_wait,
2459 &wait, TASK_UNINTERRUPTIBLE);
2460 mutex_unlock(&root->log_mutex);
8b050d35 2461 if (atomic_read(&root->log_writers))
e02119d5 2462 schedule();
7237f183 2463 finish_wait(&root->log_writer_wait, &wait);
575849ec 2464 mutex_lock(&root->log_mutex);
7237f183 2465 }
e02119d5
CM
2466}
2467
8b050d35
MX
2468static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2469 struct btrfs_log_ctx *ctx)
2470{
2471 if (!ctx)
2472 return;
2473
2474 mutex_lock(&root->log_mutex);
2475 list_del_init(&ctx->list);
2476 mutex_unlock(&root->log_mutex);
2477}
2478
2479/*
2480 * Invoked in log mutex context, or be sure there is no other task which
2481 * can access the list.
2482 */
2483static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2484 int index, int error)
2485{
2486 struct btrfs_log_ctx *ctx;
2487
2488 if (!error) {
2489 INIT_LIST_HEAD(&root->log_ctxs[index]);
2490 return;
2491 }
2492
2493 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2494 ctx->log_ret = error;
2495
2496 INIT_LIST_HEAD(&root->log_ctxs[index]);
2497}
2498
e02119d5
CM
2499/*
2500 * btrfs_sync_log does sends a given tree log down to the disk and
2501 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2502 * you know that any inodes previously logged are safely on disk only
2503 * if it returns 0.
2504 *
2505 * Any other return value means you need to call btrfs_commit_transaction.
2506 * Some of the edge cases for fsyncing directories that have had unlinks
2507 * or renames done in the past mean that sometimes the only safe
2508 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2509 * that has happened.
e02119d5
CM
2510 */
2511int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2512 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2513{
7237f183
YZ
2514 int index1;
2515 int index2;
8cef4e16 2516 int mark;
e02119d5 2517 int ret;
e02119d5 2518 struct btrfs_root *log = root->log_root;
7237f183 2519 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
bb14a59b 2520 int log_transid = 0;
8b050d35 2521 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2522 struct blk_plug plug;
e02119d5 2523
7237f183 2524 mutex_lock(&root->log_mutex);
d1433deb
MX
2525 log_transid = ctx->log_transid;
2526 if (root->log_transid_committed >= log_transid) {
2527 mutex_unlock(&root->log_mutex);
2528 return ctx->log_ret;
2529 }
2530
2531 index1 = log_transid % 2;
7237f183 2532 if (atomic_read(&root->log_commit[index1])) {
d1433deb 2533 wait_log_commit(trans, root, log_transid);
7237f183 2534 mutex_unlock(&root->log_mutex);
8b050d35 2535 return ctx->log_ret;
e02119d5 2536 }
d1433deb 2537 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2538 atomic_set(&root->log_commit[index1], 1);
2539
2540 /* wait for previous tree log sync to complete */
2541 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
d1433deb 2542 wait_log_commit(trans, root, log_transid - 1);
48cab2e0 2543
86df7eb9 2544 while (1) {
2ecb7923 2545 int batch = atomic_read(&root->log_batch);
cd354ad6 2546 /* when we're on an ssd, just kick the log commit out */
27cdeb70
MX
2547 if (!btrfs_test_opt(root, SSD) &&
2548 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2549 mutex_unlock(&root->log_mutex);
2550 schedule_timeout_uninterruptible(1);
2551 mutex_lock(&root->log_mutex);
2552 }
12fcfd22 2553 wait_for_writer(trans, root);
2ecb7923 2554 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2555 break;
2556 }
e02119d5 2557
12fcfd22 2558 /* bail out if we need to do a full commit */
995946dd 2559 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
12fcfd22 2560 ret = -EAGAIN;
2ab28f32 2561 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2562 mutex_unlock(&root->log_mutex);
2563 goto out;
2564 }
2565
8cef4e16
YZ
2566 if (log_transid % 2 == 0)
2567 mark = EXTENT_DIRTY;
2568 else
2569 mark = EXTENT_NEW;
2570
690587d1
CM
2571 /* we start IO on all the marked extents here, but we don't actually
2572 * wait for them until later.
2573 */
c6adc9cc 2574 blk_start_plug(&plug);
8cef4e16 2575 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2576 if (ret) {
c6adc9cc 2577 blk_finish_plug(&plug);
79787eaa 2578 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2579 btrfs_free_logged_extents(log, log_transid);
995946dd 2580 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa
JM
2581 mutex_unlock(&root->log_mutex);
2582 goto out;
2583 }
7237f183 2584
5d4f98a2 2585 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2586
7237f183
YZ
2587 root->log_transid++;
2588 log->log_transid = root->log_transid;
ff782e0a 2589 root->log_start_pid = 0;
7237f183 2590 /*
8cef4e16
YZ
2591 * IO has been started, blocks of the log tree have WRITTEN flag set
2592 * in their headers. new modifications of the log will be written to
2593 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2594 */
2595 mutex_unlock(&root->log_mutex);
2596
d1433deb
MX
2597 btrfs_init_log_ctx(&root_log_ctx);
2598
7237f183 2599 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2600 atomic_inc(&log_root_tree->log_batch);
7237f183 2601 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2602
2603 index2 = log_root_tree->log_transid % 2;
2604 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2605 root_log_ctx.log_transid = log_root_tree->log_transid;
2606
7237f183
YZ
2607 mutex_unlock(&log_root_tree->log_mutex);
2608
2609 ret = update_log_root(trans, log);
7237f183
YZ
2610
2611 mutex_lock(&log_root_tree->log_mutex);
2612 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2613 smp_mb();
2614 if (waitqueue_active(&log_root_tree->log_writer_wait))
2615 wake_up(&log_root_tree->log_writer_wait);
2616 }
2617
4a500fd1 2618 if (ret) {
d1433deb
MX
2619 if (!list_empty(&root_log_ctx.list))
2620 list_del_init(&root_log_ctx.list);
2621
c6adc9cc 2622 blk_finish_plug(&plug);
995946dd
MX
2623 btrfs_set_log_full_commit(root->fs_info, trans);
2624
79787eaa
JM
2625 if (ret != -ENOSPC) {
2626 btrfs_abort_transaction(trans, root, ret);
2627 mutex_unlock(&log_root_tree->log_mutex);
2628 goto out;
2629 }
4a500fd1 2630 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2631 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2632 mutex_unlock(&log_root_tree->log_mutex);
2633 ret = -EAGAIN;
2634 goto out;
2635 }
2636
d1433deb
MX
2637 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2638 mutex_unlock(&log_root_tree->log_mutex);
2639 ret = root_log_ctx.log_ret;
2640 goto out;
2641 }
8b050d35 2642
d1433deb 2643 index2 = root_log_ctx.log_transid % 2;
7237f183 2644 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2645 blk_finish_plug(&plug);
5ab5e44a
FM
2646 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2647 mark);
50d9aa99 2648 btrfs_wait_logged_extents(trans, log, log_transid);
8b050d35 2649 wait_log_commit(trans, log_root_tree,
d1433deb 2650 root_log_ctx.log_transid);
7237f183 2651 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
2652 if (!ret)
2653 ret = root_log_ctx.log_ret;
7237f183
YZ
2654 goto out;
2655 }
d1433deb 2656 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2657 atomic_set(&log_root_tree->log_commit[index2], 1);
2658
12fcfd22
CM
2659 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2660 wait_log_commit(trans, log_root_tree,
d1433deb 2661 root_log_ctx.log_transid - 1);
12fcfd22
CM
2662 }
2663
2664 wait_for_writer(trans, log_root_tree);
7237f183 2665
12fcfd22
CM
2666 /*
2667 * now that we've moved on to the tree of log tree roots,
2668 * check the full commit flag again
2669 */
995946dd 2670 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
c6adc9cc 2671 blk_finish_plug(&plug);
8cef4e16 2672 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2673 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2674 mutex_unlock(&log_root_tree->log_mutex);
2675 ret = -EAGAIN;
2676 goto out_wake_log_root;
2677 }
7237f183 2678
c6adc9cc
MX
2679 ret = btrfs_write_marked_extents(log_root_tree,
2680 &log_root_tree->dirty_log_pages,
2681 EXTENT_DIRTY | EXTENT_NEW);
2682 blk_finish_plug(&plug);
79787eaa 2683 if (ret) {
995946dd 2684 btrfs_set_log_full_commit(root->fs_info, trans);
79787eaa 2685 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2686 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2687 mutex_unlock(&log_root_tree->log_mutex);
2688 goto out_wake_log_root;
2689 }
5ab5e44a
FM
2690 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2691 if (!ret)
2692 ret = btrfs_wait_marked_extents(log_root_tree,
2693 &log_root_tree->dirty_log_pages,
2694 EXTENT_NEW | EXTENT_DIRTY);
2695 if (ret) {
2696 btrfs_set_log_full_commit(root->fs_info, trans);
2697 btrfs_free_logged_extents(log, log_transid);
2698 mutex_unlock(&log_root_tree->log_mutex);
2699 goto out_wake_log_root;
2700 }
50d9aa99 2701 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 2702
6c41761f 2703 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2704 log_root_tree->node->start);
6c41761f 2705 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2706 btrfs_header_level(log_root_tree->node));
e02119d5 2707
7237f183 2708 log_root_tree->log_transid++;
7237f183
YZ
2709 mutex_unlock(&log_root_tree->log_mutex);
2710
2711 /*
2712 * nobody else is going to jump in and write the the ctree
2713 * super here because the log_commit atomic below is protecting
2714 * us. We must be called with a transaction handle pinning
2715 * the running transaction open, so a full commit can't hop
2716 * in and cause problems either.
2717 */
5af3e8cc 2718 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc 2719 if (ret) {
995946dd 2720 btrfs_set_log_full_commit(root->fs_info, trans);
5af3e8cc
SB
2721 btrfs_abort_transaction(trans, root, ret);
2722 goto out_wake_log_root;
2723 }
7237f183 2724
257c62e1
CM
2725 mutex_lock(&root->log_mutex);
2726 if (root->last_log_commit < log_transid)
2727 root->last_log_commit = log_transid;
2728 mutex_unlock(&root->log_mutex);
2729
12fcfd22 2730out_wake_log_root:
8b050d35
MX
2731 /*
2732 * We needn't get log_mutex here because we are sure all
2733 * the other tasks are blocked.
2734 */
2735 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2736
d1433deb
MX
2737 mutex_lock(&log_root_tree->log_mutex);
2738 log_root_tree->log_transid_committed++;
7237f183 2739 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2740 mutex_unlock(&log_root_tree->log_mutex);
2741
7237f183
YZ
2742 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2743 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2744out:
8b050d35
MX
2745 /* See above. */
2746 btrfs_remove_all_log_ctxs(root, index1, ret);
2747
d1433deb
MX
2748 mutex_lock(&root->log_mutex);
2749 root->log_transid_committed++;
7237f183 2750 atomic_set(&root->log_commit[index1], 0);
d1433deb 2751 mutex_unlock(&root->log_mutex);
8b050d35 2752
7237f183
YZ
2753 if (waitqueue_active(&root->log_commit_wait[index1]))
2754 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2755 return ret;
e02119d5
CM
2756}
2757
4a500fd1
YZ
2758static void free_log_tree(struct btrfs_trans_handle *trans,
2759 struct btrfs_root *log)
e02119d5
CM
2760{
2761 int ret;
d0c803c4
CM
2762 u64 start;
2763 u64 end;
e02119d5
CM
2764 struct walk_control wc = {
2765 .free = 1,
2766 .process_func = process_one_buffer
2767 };
2768
681ae509
JB
2769 ret = walk_log_tree(trans, log, &wc);
2770 /* I don't think this can happen but just in case */
2771 if (ret)
2772 btrfs_abort_transaction(trans, log, ret);
e02119d5 2773
d397712b 2774 while (1) {
d0c803c4 2775 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2776 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2777 NULL);
d0c803c4
CM
2778 if (ret)
2779 break;
2780
8cef4e16
YZ
2781 clear_extent_bits(&log->dirty_log_pages, start, end,
2782 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2783 }
2784
2ab28f32
JB
2785 /*
2786 * We may have short-circuited the log tree with the full commit logic
2787 * and left ordered extents on our list, so clear these out to keep us
2788 * from leaking inodes and memory.
2789 */
2790 btrfs_free_logged_extents(log, 0);
2791 btrfs_free_logged_extents(log, 1);
2792
7237f183
YZ
2793 free_extent_buffer(log->node);
2794 kfree(log);
4a500fd1
YZ
2795}
2796
2797/*
2798 * free all the extents used by the tree log. This should be called
2799 * at commit time of the full transaction
2800 */
2801int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2802{
2803 if (root->log_root) {
2804 free_log_tree(trans, root->log_root);
2805 root->log_root = NULL;
2806 }
2807 return 0;
2808}
2809
2810int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2811 struct btrfs_fs_info *fs_info)
2812{
2813 if (fs_info->log_root_tree) {
2814 free_log_tree(trans, fs_info->log_root_tree);
2815 fs_info->log_root_tree = NULL;
2816 }
e02119d5
CM
2817 return 0;
2818}
2819
e02119d5
CM
2820/*
2821 * If both a file and directory are logged, and unlinks or renames are
2822 * mixed in, we have a few interesting corners:
2823 *
2824 * create file X in dir Y
2825 * link file X to X.link in dir Y
2826 * fsync file X
2827 * unlink file X but leave X.link
2828 * fsync dir Y
2829 *
2830 * After a crash we would expect only X.link to exist. But file X
2831 * didn't get fsync'd again so the log has back refs for X and X.link.
2832 *
2833 * We solve this by removing directory entries and inode backrefs from the
2834 * log when a file that was logged in the current transaction is
2835 * unlinked. Any later fsync will include the updated log entries, and
2836 * we'll be able to reconstruct the proper directory items from backrefs.
2837 *
2838 * This optimizations allows us to avoid relogging the entire inode
2839 * or the entire directory.
2840 */
2841int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2842 struct btrfs_root *root,
2843 const char *name, int name_len,
2844 struct inode *dir, u64 index)
2845{
2846 struct btrfs_root *log;
2847 struct btrfs_dir_item *di;
2848 struct btrfs_path *path;
2849 int ret;
4a500fd1 2850 int err = 0;
e02119d5 2851 int bytes_del = 0;
33345d01 2852 u64 dir_ino = btrfs_ino(dir);
e02119d5 2853
3a5f1d45
CM
2854 if (BTRFS_I(dir)->logged_trans < trans->transid)
2855 return 0;
2856
e02119d5
CM
2857 ret = join_running_log_trans(root);
2858 if (ret)
2859 return 0;
2860
2861 mutex_lock(&BTRFS_I(dir)->log_mutex);
2862
2863 log = root->log_root;
2864 path = btrfs_alloc_path();
a62f44a5
TI
2865 if (!path) {
2866 err = -ENOMEM;
2867 goto out_unlock;
2868 }
2a29edc6 2869
33345d01 2870 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2871 name, name_len, -1);
4a500fd1
YZ
2872 if (IS_ERR(di)) {
2873 err = PTR_ERR(di);
2874 goto fail;
2875 }
2876 if (di) {
e02119d5
CM
2877 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2878 bytes_del += name_len;
3650860b
JB
2879 if (ret) {
2880 err = ret;
2881 goto fail;
2882 }
e02119d5 2883 }
b3b4aa74 2884 btrfs_release_path(path);
33345d01 2885 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2886 index, name, name_len, -1);
4a500fd1
YZ
2887 if (IS_ERR(di)) {
2888 err = PTR_ERR(di);
2889 goto fail;
2890 }
2891 if (di) {
e02119d5
CM
2892 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2893 bytes_del += name_len;
3650860b
JB
2894 if (ret) {
2895 err = ret;
2896 goto fail;
2897 }
e02119d5
CM
2898 }
2899
2900 /* update the directory size in the log to reflect the names
2901 * we have removed
2902 */
2903 if (bytes_del) {
2904 struct btrfs_key key;
2905
33345d01 2906 key.objectid = dir_ino;
e02119d5
CM
2907 key.offset = 0;
2908 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2909 btrfs_release_path(path);
e02119d5
CM
2910
2911 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2912 if (ret < 0) {
2913 err = ret;
2914 goto fail;
2915 }
e02119d5
CM
2916 if (ret == 0) {
2917 struct btrfs_inode_item *item;
2918 u64 i_size;
2919
2920 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2921 struct btrfs_inode_item);
2922 i_size = btrfs_inode_size(path->nodes[0], item);
2923 if (i_size > bytes_del)
2924 i_size -= bytes_del;
2925 else
2926 i_size = 0;
2927 btrfs_set_inode_size(path->nodes[0], item, i_size);
2928 btrfs_mark_buffer_dirty(path->nodes[0]);
2929 } else
2930 ret = 0;
b3b4aa74 2931 btrfs_release_path(path);
e02119d5 2932 }
4a500fd1 2933fail:
e02119d5 2934 btrfs_free_path(path);
a62f44a5 2935out_unlock:
e02119d5 2936 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1 2937 if (ret == -ENOSPC) {
995946dd 2938 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 2939 ret = 0;
79787eaa
JM
2940 } else if (ret < 0)
2941 btrfs_abort_transaction(trans, root, ret);
2942
12fcfd22 2943 btrfs_end_log_trans(root);
e02119d5 2944
411fc6bc 2945 return err;
e02119d5
CM
2946}
2947
2948/* see comments for btrfs_del_dir_entries_in_log */
2949int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2950 struct btrfs_root *root,
2951 const char *name, int name_len,
2952 struct inode *inode, u64 dirid)
2953{
2954 struct btrfs_root *log;
2955 u64 index;
2956 int ret;
2957
3a5f1d45
CM
2958 if (BTRFS_I(inode)->logged_trans < trans->transid)
2959 return 0;
2960
e02119d5
CM
2961 ret = join_running_log_trans(root);
2962 if (ret)
2963 return 0;
2964 log = root->log_root;
2965 mutex_lock(&BTRFS_I(inode)->log_mutex);
2966
33345d01 2967 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2968 dirid, &index);
2969 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1 2970 if (ret == -ENOSPC) {
995946dd 2971 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 2972 ret = 0;
79787eaa
JM
2973 } else if (ret < 0 && ret != -ENOENT)
2974 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2975 btrfs_end_log_trans(root);
e02119d5 2976
e02119d5
CM
2977 return ret;
2978}
2979
2980/*
2981 * creates a range item in the log for 'dirid'. first_offset and
2982 * last_offset tell us which parts of the key space the log should
2983 * be considered authoritative for.
2984 */
2985static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *log,
2987 struct btrfs_path *path,
2988 int key_type, u64 dirid,
2989 u64 first_offset, u64 last_offset)
2990{
2991 int ret;
2992 struct btrfs_key key;
2993 struct btrfs_dir_log_item *item;
2994
2995 key.objectid = dirid;
2996 key.offset = first_offset;
2997 if (key_type == BTRFS_DIR_ITEM_KEY)
2998 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2999 else
3000 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3001 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3002 if (ret)
3003 return ret;
e02119d5
CM
3004
3005 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3006 struct btrfs_dir_log_item);
3007 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3008 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3009 btrfs_release_path(path);
e02119d5
CM
3010 return 0;
3011}
3012
3013/*
3014 * log all the items included in the current transaction for a given
3015 * directory. This also creates the range items in the log tree required
3016 * to replay anything deleted before the fsync
3017 */
3018static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3019 struct btrfs_root *root, struct inode *inode,
3020 struct btrfs_path *path,
3021 struct btrfs_path *dst_path, int key_type,
3022 u64 min_offset, u64 *last_offset_ret)
3023{
3024 struct btrfs_key min_key;
e02119d5
CM
3025 struct btrfs_root *log = root->log_root;
3026 struct extent_buffer *src;
4a500fd1 3027 int err = 0;
e02119d5
CM
3028 int ret;
3029 int i;
3030 int nritems;
3031 u64 first_offset = min_offset;
3032 u64 last_offset = (u64)-1;
33345d01 3033 u64 ino = btrfs_ino(inode);
e02119d5
CM
3034
3035 log = root->log_root;
e02119d5 3036
33345d01 3037 min_key.objectid = ino;
e02119d5
CM
3038 min_key.type = key_type;
3039 min_key.offset = min_offset;
3040
6174d3cb 3041 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3042
3043 /*
3044 * we didn't find anything from this transaction, see if there
3045 * is anything at all
3046 */
33345d01
LZ
3047 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3048 min_key.objectid = ino;
e02119d5
CM
3049 min_key.type = key_type;
3050 min_key.offset = (u64)-1;
b3b4aa74 3051 btrfs_release_path(path);
e02119d5
CM
3052 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3053 if (ret < 0) {
b3b4aa74 3054 btrfs_release_path(path);
e02119d5
CM
3055 return ret;
3056 }
33345d01 3057 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3058
3059 /* if ret == 0 there are items for this type,
3060 * create a range to tell us the last key of this type.
3061 * otherwise, there are no items in this directory after
3062 * *min_offset, and we create a range to indicate that.
3063 */
3064 if (ret == 0) {
3065 struct btrfs_key tmp;
3066 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3067 path->slots[0]);
d397712b 3068 if (key_type == tmp.type)
e02119d5 3069 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3070 }
3071 goto done;
3072 }
3073
3074 /* go backward to find any previous key */
33345d01 3075 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3076 if (ret == 0) {
3077 struct btrfs_key tmp;
3078 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3079 if (key_type == tmp.type) {
3080 first_offset = tmp.offset;
3081 ret = overwrite_item(trans, log, dst_path,
3082 path->nodes[0], path->slots[0],
3083 &tmp);
4a500fd1
YZ
3084 if (ret) {
3085 err = ret;
3086 goto done;
3087 }
e02119d5
CM
3088 }
3089 }
b3b4aa74 3090 btrfs_release_path(path);
e02119d5
CM
3091
3092 /* find the first key from this transaction again */
3093 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3094 if (WARN_ON(ret != 0))
e02119d5 3095 goto done;
e02119d5
CM
3096
3097 /*
3098 * we have a block from this transaction, log every item in it
3099 * from our directory
3100 */
d397712b 3101 while (1) {
e02119d5
CM
3102 struct btrfs_key tmp;
3103 src = path->nodes[0];
3104 nritems = btrfs_header_nritems(src);
3105 for (i = path->slots[0]; i < nritems; i++) {
3106 btrfs_item_key_to_cpu(src, &min_key, i);
3107
33345d01 3108 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3109 goto done;
3110 ret = overwrite_item(trans, log, dst_path, src, i,
3111 &min_key);
4a500fd1
YZ
3112 if (ret) {
3113 err = ret;
3114 goto done;
3115 }
e02119d5
CM
3116 }
3117 path->slots[0] = nritems;
3118
3119 /*
3120 * look ahead to the next item and see if it is also
3121 * from this directory and from this transaction
3122 */
3123 ret = btrfs_next_leaf(root, path);
3124 if (ret == 1) {
3125 last_offset = (u64)-1;
3126 goto done;
3127 }
3128 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3129 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3130 last_offset = (u64)-1;
3131 goto done;
3132 }
3133 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3134 ret = overwrite_item(trans, log, dst_path,
3135 path->nodes[0], path->slots[0],
3136 &tmp);
4a500fd1
YZ
3137 if (ret)
3138 err = ret;
3139 else
3140 last_offset = tmp.offset;
e02119d5
CM
3141 goto done;
3142 }
3143 }
3144done:
b3b4aa74
DS
3145 btrfs_release_path(path);
3146 btrfs_release_path(dst_path);
e02119d5 3147
4a500fd1
YZ
3148 if (err == 0) {
3149 *last_offset_ret = last_offset;
3150 /*
3151 * insert the log range keys to indicate where the log
3152 * is valid
3153 */
3154 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3155 ino, first_offset, last_offset);
4a500fd1
YZ
3156 if (ret)
3157 err = ret;
3158 }
3159 return err;
e02119d5
CM
3160}
3161
3162/*
3163 * logging directories is very similar to logging inodes, We find all the items
3164 * from the current transaction and write them to the log.
3165 *
3166 * The recovery code scans the directory in the subvolume, and if it finds a
3167 * key in the range logged that is not present in the log tree, then it means
3168 * that dir entry was unlinked during the transaction.
3169 *
3170 * In order for that scan to work, we must include one key smaller than
3171 * the smallest logged by this transaction and one key larger than the largest
3172 * key logged by this transaction.
3173 */
3174static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3175 struct btrfs_root *root, struct inode *inode,
3176 struct btrfs_path *path,
3177 struct btrfs_path *dst_path)
3178{
3179 u64 min_key;
3180 u64 max_key;
3181 int ret;
3182 int key_type = BTRFS_DIR_ITEM_KEY;
3183
3184again:
3185 min_key = 0;
3186 max_key = 0;
d397712b 3187 while (1) {
e02119d5
CM
3188 ret = log_dir_items(trans, root, inode, path,
3189 dst_path, key_type, min_key,
3190 &max_key);
4a500fd1
YZ
3191 if (ret)
3192 return ret;
e02119d5
CM
3193 if (max_key == (u64)-1)
3194 break;
3195 min_key = max_key + 1;
3196 }
3197
3198 if (key_type == BTRFS_DIR_ITEM_KEY) {
3199 key_type = BTRFS_DIR_INDEX_KEY;
3200 goto again;
3201 }
3202 return 0;
3203}
3204
3205/*
3206 * a helper function to drop items from the log before we relog an
3207 * inode. max_key_type indicates the highest item type to remove.
3208 * This cannot be run for file data extents because it does not
3209 * free the extents they point to.
3210 */
3211static int drop_objectid_items(struct btrfs_trans_handle *trans,
3212 struct btrfs_root *log,
3213 struct btrfs_path *path,
3214 u64 objectid, int max_key_type)
3215{
3216 int ret;
3217 struct btrfs_key key;
3218 struct btrfs_key found_key;
18ec90d6 3219 int start_slot;
e02119d5
CM
3220
3221 key.objectid = objectid;
3222 key.type = max_key_type;
3223 key.offset = (u64)-1;
3224
d397712b 3225 while (1) {
e02119d5 3226 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3227 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3228 if (ret < 0)
e02119d5
CM
3229 break;
3230
3231 if (path->slots[0] == 0)
3232 break;
3233
3234 path->slots[0]--;
3235 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3236 path->slots[0]);
3237
3238 if (found_key.objectid != objectid)
3239 break;
3240
18ec90d6
JB
3241 found_key.offset = 0;
3242 found_key.type = 0;
3243 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3244 &start_slot);
3245
3246 ret = btrfs_del_items(trans, log, path, start_slot,
3247 path->slots[0] - start_slot + 1);
3248 /*
3249 * If start slot isn't 0 then we don't need to re-search, we've
3250 * found the last guy with the objectid in this tree.
3251 */
3252 if (ret || start_slot != 0)
65a246c5 3253 break;
b3b4aa74 3254 btrfs_release_path(path);
e02119d5 3255 }
b3b4aa74 3256 btrfs_release_path(path);
5bdbeb21
JB
3257 if (ret > 0)
3258 ret = 0;
4a500fd1 3259 return ret;
e02119d5
CM
3260}
3261
94edf4ae
JB
3262static void fill_inode_item(struct btrfs_trans_handle *trans,
3263 struct extent_buffer *leaf,
3264 struct btrfs_inode_item *item,
1a4bcf47
FM
3265 struct inode *inode, int log_inode_only,
3266 u64 logged_isize)
94edf4ae 3267{
0b1c6cca
JB
3268 struct btrfs_map_token token;
3269
3270 btrfs_init_map_token(&token);
94edf4ae
JB
3271
3272 if (log_inode_only) {
3273 /* set the generation to zero so the recover code
3274 * can tell the difference between an logging
3275 * just to say 'this inode exists' and a logging
3276 * to say 'update this inode with these values'
3277 */
0b1c6cca 3278 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3279 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3280 } else {
0b1c6cca
JB
3281 btrfs_set_token_inode_generation(leaf, item,
3282 BTRFS_I(inode)->generation,
3283 &token);
3284 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3285 }
3286
3287 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3288 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3289 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3290 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3291
a937b979 3292 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3293 inode->i_atime.tv_sec, &token);
a937b979 3294 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3295 inode->i_atime.tv_nsec, &token);
3296
a937b979 3297 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3298 inode->i_mtime.tv_sec, &token);
a937b979 3299 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3300 inode->i_mtime.tv_nsec, &token);
3301
a937b979 3302 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3303 inode->i_ctime.tv_sec, &token);
a937b979 3304 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3305 inode->i_ctime.tv_nsec, &token);
3306
3307 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3308 &token);
3309
3310 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3311 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3312 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3313 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3314 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3315}
3316
a95249b3
JB
3317static int log_inode_item(struct btrfs_trans_handle *trans,
3318 struct btrfs_root *log, struct btrfs_path *path,
3319 struct inode *inode)
3320{
3321 struct btrfs_inode_item *inode_item;
a95249b3
JB
3322 int ret;
3323
efd0c405
FDBM
3324 ret = btrfs_insert_empty_item(trans, log, path,
3325 &BTRFS_I(inode)->location,
a95249b3
JB
3326 sizeof(*inode_item));
3327 if (ret && ret != -EEXIST)
3328 return ret;
3329 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3330 struct btrfs_inode_item);
1a4bcf47 3331 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
a95249b3
JB
3332 btrfs_release_path(path);
3333 return 0;
3334}
3335
31ff1cd2 3336static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3337 struct inode *inode,
31ff1cd2 3338 struct btrfs_path *dst_path,
16e7549f 3339 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3340 int start_slot, int nr, int inode_only,
3341 u64 logged_isize)
31ff1cd2
CM
3342{
3343 unsigned long src_offset;
3344 unsigned long dst_offset;
d2794405 3345 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3346 struct btrfs_file_extent_item *extent;
3347 struct btrfs_inode_item *inode_item;
16e7549f
JB
3348 struct extent_buffer *src = src_path->nodes[0];
3349 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3350 int ret;
3351 struct btrfs_key *ins_keys;
3352 u32 *ins_sizes;
3353 char *ins_data;
3354 int i;
d20f7043 3355 struct list_head ordered_sums;
d2794405 3356 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f 3357 bool has_extents = false;
74121f7c 3358 bool need_find_last_extent = true;
16e7549f 3359 bool done = false;
d20f7043
CM
3360
3361 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3362
3363 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3364 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3365 if (!ins_data)
3366 return -ENOMEM;
3367
16e7549f
JB
3368 first_key.objectid = (u64)-1;
3369
31ff1cd2
CM
3370 ins_sizes = (u32 *)ins_data;
3371 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3372
3373 for (i = 0; i < nr; i++) {
3374 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3375 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3376 }
3377 ret = btrfs_insert_empty_items(trans, log, dst_path,
3378 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3379 if (ret) {
3380 kfree(ins_data);
3381 return ret;
3382 }
31ff1cd2 3383
5d4f98a2 3384 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3385 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3386 dst_path->slots[0]);
3387
3388 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3389
16e7549f
JB
3390 if ((i == (nr - 1)))
3391 last_key = ins_keys[i];
3392
94edf4ae 3393 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3394 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3395 dst_path->slots[0],
3396 struct btrfs_inode_item);
94edf4ae 3397 fill_inode_item(trans, dst_path->nodes[0], inode_item,
1a4bcf47
FM
3398 inode, inode_only == LOG_INODE_EXISTS,
3399 logged_isize);
94edf4ae
JB
3400 } else {
3401 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3402 src_offset, ins_sizes[i]);
31ff1cd2 3403 }
94edf4ae 3404
16e7549f
JB
3405 /*
3406 * We set need_find_last_extent here in case we know we were
3407 * processing other items and then walk into the first extent in
3408 * the inode. If we don't hit an extent then nothing changes,
3409 * we'll do the last search the next time around.
3410 */
3411 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3412 has_extents = true;
74121f7c 3413 if (first_key.objectid == (u64)-1)
16e7549f
JB
3414 first_key = ins_keys[i];
3415 } else {
3416 need_find_last_extent = false;
3417 }
3418
31ff1cd2
CM
3419 /* take a reference on file data extents so that truncates
3420 * or deletes of this inode don't have to relog the inode
3421 * again
3422 */
962a298f 3423 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3424 !skip_csum) {
31ff1cd2
CM
3425 int found_type;
3426 extent = btrfs_item_ptr(src, start_slot + i,
3427 struct btrfs_file_extent_item);
3428
8e531cdf 3429 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3430 continue;
3431
31ff1cd2 3432 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3433 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3434 u64 ds, dl, cs, cl;
3435 ds = btrfs_file_extent_disk_bytenr(src,
3436 extent);
3437 /* ds == 0 is a hole */
3438 if (ds == 0)
3439 continue;
3440
3441 dl = btrfs_file_extent_disk_num_bytes(src,
3442 extent);
3443 cs = btrfs_file_extent_offset(src, extent);
3444 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3445 extent);
580afd76
CM
3446 if (btrfs_file_extent_compression(src,
3447 extent)) {
3448 cs = 0;
3449 cl = dl;
3450 }
5d4f98a2
YZ
3451
3452 ret = btrfs_lookup_csums_range(
3453 log->fs_info->csum_root,
3454 ds + cs, ds + cs + cl - 1,
a2de733c 3455 &ordered_sums, 0);
3650860b
JB
3456 if (ret) {
3457 btrfs_release_path(dst_path);
3458 kfree(ins_data);
3459 return ret;
3460 }
31ff1cd2
CM
3461 }
3462 }
31ff1cd2
CM
3463 }
3464
3465 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3466 btrfs_release_path(dst_path);
31ff1cd2 3467 kfree(ins_data);
d20f7043
CM
3468
3469 /*
3470 * we have to do this after the loop above to avoid changing the
3471 * log tree while trying to change the log tree.
3472 */
4a500fd1 3473 ret = 0;
d397712b 3474 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3475 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3476 struct btrfs_ordered_sum,
3477 list);
4a500fd1
YZ
3478 if (!ret)
3479 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3480 list_del(&sums->list);
3481 kfree(sums);
3482 }
16e7549f
JB
3483
3484 if (!has_extents)
3485 return ret;
3486
74121f7c
FM
3487 if (need_find_last_extent && *last_extent == first_key.offset) {
3488 /*
3489 * We don't have any leafs between our current one and the one
3490 * we processed before that can have file extent items for our
3491 * inode (and have a generation number smaller than our current
3492 * transaction id).
3493 */
3494 need_find_last_extent = false;
3495 }
3496
16e7549f
JB
3497 /*
3498 * Because we use btrfs_search_forward we could skip leaves that were
3499 * not modified and then assume *last_extent is valid when it really
3500 * isn't. So back up to the previous leaf and read the end of the last
3501 * extent before we go and fill in holes.
3502 */
3503 if (need_find_last_extent) {
3504 u64 len;
3505
3506 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3507 if (ret < 0)
3508 return ret;
3509 if (ret)
3510 goto fill_holes;
3511 if (src_path->slots[0])
3512 src_path->slots[0]--;
3513 src = src_path->nodes[0];
3514 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3515 if (key.objectid != btrfs_ino(inode) ||
3516 key.type != BTRFS_EXTENT_DATA_KEY)
3517 goto fill_holes;
3518 extent = btrfs_item_ptr(src, src_path->slots[0],
3519 struct btrfs_file_extent_item);
3520 if (btrfs_file_extent_type(src, extent) ==
3521 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3522 len = btrfs_file_extent_inline_len(src,
3523 src_path->slots[0],
3524 extent);
16e7549f
JB
3525 *last_extent = ALIGN(key.offset + len,
3526 log->sectorsize);
3527 } else {
3528 len = btrfs_file_extent_num_bytes(src, extent);
3529 *last_extent = key.offset + len;
3530 }
3531 }
3532fill_holes:
3533 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3534 * things could have happened
3535 *
3536 * 1) A merge could have happened, so we could currently be on a leaf
3537 * that holds what we were copying in the first place.
3538 * 2) A split could have happened, and now not all of the items we want
3539 * are on the same leaf.
3540 *
3541 * So we need to adjust how we search for holes, we need to drop the
3542 * path and re-search for the first extent key we found, and then walk
3543 * forward until we hit the last one we copied.
3544 */
3545 if (need_find_last_extent) {
3546 /* btrfs_prev_leaf could return 1 without releasing the path */
3547 btrfs_release_path(src_path);
3548 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3549 src_path, 0, 0);
3550 if (ret < 0)
3551 return ret;
3552 ASSERT(ret == 0);
3553 src = src_path->nodes[0];
3554 i = src_path->slots[0];
3555 } else {
3556 i = start_slot;
3557 }
3558
3559 /*
3560 * Ok so here we need to go through and fill in any holes we may have
3561 * to make sure that holes are punched for those areas in case they had
3562 * extents previously.
3563 */
3564 while (!done) {
3565 u64 offset, len;
3566 u64 extent_end;
3567
3568 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3569 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3570 if (ret < 0)
3571 return ret;
3572 ASSERT(ret == 0);
3573 src = src_path->nodes[0];
3574 i = 0;
3575 }
3576
3577 btrfs_item_key_to_cpu(src, &key, i);
3578 if (!btrfs_comp_cpu_keys(&key, &last_key))
3579 done = true;
3580 if (key.objectid != btrfs_ino(inode) ||
3581 key.type != BTRFS_EXTENT_DATA_KEY) {
3582 i++;
3583 continue;
3584 }
3585 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3586 if (btrfs_file_extent_type(src, extent) ==
3587 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3588 len = btrfs_file_extent_inline_len(src, i, extent);
16e7549f
JB
3589 extent_end = ALIGN(key.offset + len, log->sectorsize);
3590 } else {
3591 len = btrfs_file_extent_num_bytes(src, extent);
3592 extent_end = key.offset + len;
3593 }
3594 i++;
3595
3596 if (*last_extent == key.offset) {
3597 *last_extent = extent_end;
3598 continue;
3599 }
3600 offset = *last_extent;
3601 len = key.offset - *last_extent;
3602 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3603 offset, 0, 0, len, 0, len, 0,
3604 0, 0);
3605 if (ret)
3606 break;
74121f7c 3607 *last_extent = extent_end;
16e7549f
JB
3608 }
3609 /*
3610 * Need to let the callers know we dropped the path so they should
3611 * re-search.
3612 */
3613 if (!ret && need_find_last_extent)
3614 ret = 1;
4a500fd1 3615 return ret;
31ff1cd2
CM
3616}
3617
5dc562c5
JB
3618static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3619{
3620 struct extent_map *em1, *em2;
3621
3622 em1 = list_entry(a, struct extent_map, list);
3623 em2 = list_entry(b, struct extent_map, list);
3624
3625 if (em1->start < em2->start)
3626 return -1;
3627 else if (em1->start > em2->start)
3628 return 1;
3629 return 0;
3630}
3631
8407f553
FM
3632static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3633 struct inode *inode,
3634 struct btrfs_root *root,
3635 const struct extent_map *em,
3636 const struct list_head *logged_list,
3637 bool *ordered_io_error)
5dc562c5 3638{
2ab28f32 3639 struct btrfs_ordered_extent *ordered;
8407f553 3640 struct btrfs_root *log = root->log_root;
2ab28f32
JB
3641 u64 mod_start = em->mod_start;
3642 u64 mod_len = em->mod_len;
8407f553 3643 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
3644 u64 csum_offset;
3645 u64 csum_len;
8407f553
FM
3646 LIST_HEAD(ordered_sums);
3647 int ret = 0;
0aa4a17d 3648
8407f553 3649 *ordered_io_error = false;
0aa4a17d 3650
8407f553
FM
3651 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3652 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 3653 return 0;
5dc562c5 3654
2ab28f32 3655 /*
8407f553
FM
3656 * Wait far any ordered extent that covers our extent map. If it
3657 * finishes without an error, first check and see if our csums are on
3658 * our outstanding ordered extents.
2ab28f32 3659 */
827463c4 3660 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3661 struct btrfs_ordered_sum *sum;
3662
3663 if (!mod_len)
3664 break;
3665
2ab28f32
JB
3666 if (ordered->file_offset + ordered->len <= mod_start ||
3667 mod_start + mod_len <= ordered->file_offset)
3668 continue;
3669
8407f553
FM
3670 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3671 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3672 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3673 const u64 start = ordered->file_offset;
3674 const u64 end = ordered->file_offset + ordered->len - 1;
3675
3676 WARN_ON(ordered->inode != inode);
3677 filemap_fdatawrite_range(inode->i_mapping, start, end);
3678 }
3679
3680 wait_event(ordered->wait,
3681 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3682 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3683
3684 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
3685 /*
3686 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3687 * i_mapping flags, so that the next fsync won't get
3688 * an outdated io error too.
3689 */
3690 btrfs_inode_check_errors(inode);
8407f553
FM
3691 *ordered_io_error = true;
3692 break;
3693 }
2ab28f32
JB
3694 /*
3695 * We are going to copy all the csums on this ordered extent, so
3696 * go ahead and adjust mod_start and mod_len in case this
3697 * ordered extent has already been logged.
3698 */
3699 if (ordered->file_offset > mod_start) {
3700 if (ordered->file_offset + ordered->len >=
3701 mod_start + mod_len)
3702 mod_len = ordered->file_offset - mod_start;
3703 /*
3704 * If we have this case
3705 *
3706 * |--------- logged extent ---------|
3707 * |----- ordered extent ----|
3708 *
3709 * Just don't mess with mod_start and mod_len, we'll
3710 * just end up logging more csums than we need and it
3711 * will be ok.
3712 */
3713 } else {
3714 if (ordered->file_offset + ordered->len <
3715 mod_start + mod_len) {
3716 mod_len = (mod_start + mod_len) -
3717 (ordered->file_offset + ordered->len);
3718 mod_start = ordered->file_offset +
3719 ordered->len;
3720 } else {
3721 mod_len = 0;
3722 }
3723 }
3724
8407f553
FM
3725 if (skip_csum)
3726 continue;
3727
2ab28f32
JB
3728 /*
3729 * To keep us from looping for the above case of an ordered
3730 * extent that falls inside of the logged extent.
3731 */
3732 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3733 &ordered->flags))
3734 continue;
2ab28f32 3735
23c671a5
MX
3736 if (ordered->csum_bytes_left) {
3737 btrfs_start_ordered_extent(inode, ordered, 0);
3738 wait_event(ordered->wait,
3739 ordered->csum_bytes_left == 0);
3740 }
2ab28f32
JB
3741
3742 list_for_each_entry(sum, &ordered->list, list) {
3743 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 3744 if (ret)
8407f553 3745 break;
2ab28f32 3746 }
2ab28f32 3747 }
2ab28f32 3748
8407f553 3749 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
3750 return ret;
3751
488111aa
FDBM
3752 if (em->compress_type) {
3753 csum_offset = 0;
8407f553 3754 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
3755 } else {
3756 csum_offset = mod_start - em->start;
3757 csum_len = mod_len;
3758 }
2ab28f32 3759
70c8a91c
JB
3760 /* block start is already adjusted for the file extent offset. */
3761 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3762 em->block_start + csum_offset,
3763 em->block_start + csum_offset +
3764 csum_len - 1, &ordered_sums, 0);
3765 if (ret)
3766 return ret;
5dc562c5 3767
70c8a91c
JB
3768 while (!list_empty(&ordered_sums)) {
3769 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3770 struct btrfs_ordered_sum,
3771 list);
3772 if (!ret)
3773 ret = btrfs_csum_file_blocks(trans, log, sums);
3774 list_del(&sums->list);
3775 kfree(sums);
5dc562c5
JB
3776 }
3777
70c8a91c 3778 return ret;
5dc562c5
JB
3779}
3780
8407f553
FM
3781static int log_one_extent(struct btrfs_trans_handle *trans,
3782 struct inode *inode, struct btrfs_root *root,
3783 const struct extent_map *em,
3784 struct btrfs_path *path,
3785 const struct list_head *logged_list,
3786 struct btrfs_log_ctx *ctx)
3787{
3788 struct btrfs_root *log = root->log_root;
3789 struct btrfs_file_extent_item *fi;
3790 struct extent_buffer *leaf;
3791 struct btrfs_map_token token;
3792 struct btrfs_key key;
3793 u64 extent_offset = em->start - em->orig_start;
3794 u64 block_len;
3795 int ret;
3796 int extent_inserted = 0;
3797 bool ordered_io_err = false;
3798
3799 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
3800 &ordered_io_err);
3801 if (ret)
3802 return ret;
3803
3804 if (ordered_io_err) {
3805 ctx->io_err = -EIO;
3806 return 0;
3807 }
3808
3809 btrfs_init_map_token(&token);
3810
3811 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3812 em->start + em->len, NULL, 0, 1,
3813 sizeof(*fi), &extent_inserted);
3814 if (ret)
3815 return ret;
3816
3817 if (!extent_inserted) {
3818 key.objectid = btrfs_ino(inode);
3819 key.type = BTRFS_EXTENT_DATA_KEY;
3820 key.offset = em->start;
3821
3822 ret = btrfs_insert_empty_item(trans, log, path, &key,
3823 sizeof(*fi));
3824 if (ret)
3825 return ret;
3826 }
3827 leaf = path->nodes[0];
3828 fi = btrfs_item_ptr(leaf, path->slots[0],
3829 struct btrfs_file_extent_item);
3830
50d9aa99 3831 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
3832 &token);
3833 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3834 btrfs_set_token_file_extent_type(leaf, fi,
3835 BTRFS_FILE_EXTENT_PREALLOC,
3836 &token);
3837 else
3838 btrfs_set_token_file_extent_type(leaf, fi,
3839 BTRFS_FILE_EXTENT_REG,
3840 &token);
3841
3842 block_len = max(em->block_len, em->orig_block_len);
3843 if (em->compress_type != BTRFS_COMPRESS_NONE) {
3844 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3845 em->block_start,
3846 &token);
3847 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3848 &token);
3849 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
3850 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3851 em->block_start -
3852 extent_offset, &token);
3853 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3854 &token);
3855 } else {
3856 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3857 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3858 &token);
3859 }
3860
3861 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
3862 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
3863 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
3864 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3865 &token);
3866 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3867 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
3868 btrfs_mark_buffer_dirty(leaf);
3869
3870 btrfs_release_path(path);
3871
3872 return ret;
3873}
3874
5dc562c5
JB
3875static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3876 struct btrfs_root *root,
3877 struct inode *inode,
827463c4 3878 struct btrfs_path *path,
8407f553
FM
3879 struct list_head *logged_list,
3880 struct btrfs_log_ctx *ctx)
5dc562c5 3881{
5dc562c5
JB
3882 struct extent_map *em, *n;
3883 struct list_head extents;
3884 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3885 u64 test_gen;
3886 int ret = 0;
2ab28f32 3887 int num = 0;
5dc562c5
JB
3888
3889 INIT_LIST_HEAD(&extents);
3890
5dc562c5
JB
3891 write_lock(&tree->lock);
3892 test_gen = root->fs_info->last_trans_committed;
3893
3894 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3895 list_del_init(&em->list);
2ab28f32
JB
3896
3897 /*
3898 * Just an arbitrary number, this can be really CPU intensive
3899 * once we start getting a lot of extents, and really once we
3900 * have a bunch of extents we just want to commit since it will
3901 * be faster.
3902 */
3903 if (++num > 32768) {
3904 list_del_init(&tree->modified_extents);
3905 ret = -EFBIG;
3906 goto process;
3907 }
3908
5dc562c5
JB
3909 if (em->generation <= test_gen)
3910 continue;
ff44c6e3
JB
3911 /* Need a ref to keep it from getting evicted from cache */
3912 atomic_inc(&em->refs);
3913 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3914 list_add_tail(&em->list, &extents);
2ab28f32 3915 num++;
5dc562c5
JB
3916 }
3917
3918 list_sort(NULL, &extents, extent_cmp);
3919
2ab28f32 3920process:
5dc562c5
JB
3921 while (!list_empty(&extents)) {
3922 em = list_entry(extents.next, struct extent_map, list);
3923
3924 list_del_init(&em->list);
3925
3926 /*
3927 * If we had an error we just need to delete everybody from our
3928 * private list.
3929 */
ff44c6e3 3930 if (ret) {
201a9038 3931 clear_em_logging(tree, em);
ff44c6e3 3932 free_extent_map(em);
5dc562c5 3933 continue;
ff44c6e3
JB
3934 }
3935
3936 write_unlock(&tree->lock);
5dc562c5 3937
8407f553
FM
3938 ret = log_one_extent(trans, inode, root, em, path, logged_list,
3939 ctx);
ff44c6e3 3940 write_lock(&tree->lock);
201a9038
JB
3941 clear_em_logging(tree, em);
3942 free_extent_map(em);
5dc562c5 3943 }
ff44c6e3
JB
3944 WARN_ON(!list_empty(&extents));
3945 write_unlock(&tree->lock);
5dc562c5 3946
5dc562c5 3947 btrfs_release_path(path);
5dc562c5
JB
3948 return ret;
3949}
3950
1a4bcf47
FM
3951static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
3952 struct btrfs_path *path, u64 *size_ret)
3953{
3954 struct btrfs_key key;
3955 int ret;
3956
3957 key.objectid = btrfs_ino(inode);
3958 key.type = BTRFS_INODE_ITEM_KEY;
3959 key.offset = 0;
3960
3961 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
3962 if (ret < 0) {
3963 return ret;
3964 } else if (ret > 0) {
3965 *size_ret = i_size_read(inode);
3966 } else {
3967 struct btrfs_inode_item *item;
3968
3969 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3970 struct btrfs_inode_item);
3971 *size_ret = btrfs_inode_size(path->nodes[0], item);
3972 }
3973
3974 btrfs_release_path(path);
3975 return 0;
3976}
3977
e02119d5
CM
3978/* log a single inode in the tree log.
3979 * At least one parent directory for this inode must exist in the tree
3980 * or be logged already.
3981 *
3982 * Any items from this inode changed by the current transaction are copied
3983 * to the log tree. An extra reference is taken on any extents in this
3984 * file, allowing us to avoid a whole pile of corner cases around logging
3985 * blocks that have been removed from the tree.
3986 *
3987 * See LOG_INODE_ALL and related defines for a description of what inode_only
3988 * does.
3989 *
3990 * This handles both files and directories.
3991 */
12fcfd22 3992static int btrfs_log_inode(struct btrfs_trans_handle *trans,
49dae1bc
FM
3993 struct btrfs_root *root, struct inode *inode,
3994 int inode_only,
3995 const loff_t start,
8407f553
FM
3996 const loff_t end,
3997 struct btrfs_log_ctx *ctx)
e02119d5
CM
3998{
3999 struct btrfs_path *path;
4000 struct btrfs_path *dst_path;
4001 struct btrfs_key min_key;
4002 struct btrfs_key max_key;
4003 struct btrfs_root *log = root->log_root;
31ff1cd2 4004 struct extent_buffer *src = NULL;
827463c4 4005 LIST_HEAD(logged_list);
16e7549f 4006 u64 last_extent = 0;
4a500fd1 4007 int err = 0;
e02119d5 4008 int ret;
3a5f1d45 4009 int nritems;
31ff1cd2
CM
4010 int ins_start_slot = 0;
4011 int ins_nr;
5dc562c5 4012 bool fast_search = false;
33345d01 4013 u64 ino = btrfs_ino(inode);
49dae1bc 4014 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1a4bcf47 4015 u64 logged_isize = 0;
e02119d5 4016
e02119d5 4017 path = btrfs_alloc_path();
5df67083
TI
4018 if (!path)
4019 return -ENOMEM;
e02119d5 4020 dst_path = btrfs_alloc_path();
5df67083
TI
4021 if (!dst_path) {
4022 btrfs_free_path(path);
4023 return -ENOMEM;
4024 }
e02119d5 4025
33345d01 4026 min_key.objectid = ino;
e02119d5
CM
4027 min_key.type = BTRFS_INODE_ITEM_KEY;
4028 min_key.offset = 0;
4029
33345d01 4030 max_key.objectid = ino;
12fcfd22 4031
12fcfd22 4032
5dc562c5 4033 /* today the code can only do partial logging of directories */
5269b67e
MX
4034 if (S_ISDIR(inode->i_mode) ||
4035 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4036 &BTRFS_I(inode)->runtime_flags) &&
4037 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
4038 max_key.type = BTRFS_XATTR_ITEM_KEY;
4039 else
4040 max_key.type = (u8)-1;
4041 max_key.offset = (u64)-1;
4042
2c2c452b
FM
4043 /*
4044 * Only run delayed items if we are a dir or a new file.
4045 * Otherwise commit the delayed inode only, which is needed in
4046 * order for the log replay code to mark inodes for link count
4047 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4048 */
94edf4ae 4049 if (S_ISDIR(inode->i_mode) ||
2c2c452b 4050 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
94edf4ae 4051 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b
FM
4052 else
4053 ret = btrfs_commit_inode_delayed_inode(inode);
4054
4055 if (ret) {
4056 btrfs_free_path(path);
4057 btrfs_free_path(dst_path);
4058 return ret;
16cdcec7
MX
4059 }
4060
e02119d5
CM
4061 mutex_lock(&BTRFS_I(inode)->log_mutex);
4062
0870295b 4063 btrfs_get_logged_extents(inode, &logged_list, start, end);
2ab28f32 4064
e02119d5
CM
4065 /*
4066 * a brute force approach to making sure we get the most uptodate
4067 * copies of everything.
4068 */
4069 if (S_ISDIR(inode->i_mode)) {
4070 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4071
4072 if (inode_only == LOG_INODE_EXISTS)
4073 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4074 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4075 } else {
1a4bcf47
FM
4076 if (inode_only == LOG_INODE_EXISTS) {
4077 /*
4078 * Make sure the new inode item we write to the log has
4079 * the same isize as the current one (if it exists).
4080 * This is necessary to prevent data loss after log
4081 * replay, and also to prevent doing a wrong expanding
4082 * truncate - for e.g. create file, write 4K into offset
4083 * 0, fsync, write 4K into offset 4096, add hard link,
4084 * fsync some other file (to sync log), power fail - if
4085 * we use the inode's current i_size, after log replay
4086 * we get a 8Kb file, with the last 4Kb extent as a hole
4087 * (zeroes), as if an expanding truncate happened,
4088 * instead of getting a file of 4Kb only.
4089 */
4090 err = logged_inode_size(log, inode, path,
4091 &logged_isize);
4092 if (err)
4093 goto out_unlock;
4094 }
5dc562c5
JB
4095 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4096 &BTRFS_I(inode)->runtime_flags)) {
e9976151
JB
4097 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4098 &BTRFS_I(inode)->runtime_flags);
5dc562c5
JB
4099 ret = btrfs_truncate_inode_items(trans, log,
4100 inode, 0, 0);
a95249b3 4101 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6cfab851
JB
4102 &BTRFS_I(inode)->runtime_flags) ||
4103 inode_only == LOG_INODE_EXISTS) {
183f37fa
LB
4104 if (inode_only == LOG_INODE_ALL)
4105 fast_search = true;
a95249b3 4106 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4107 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4108 max_key.type);
a95249b3
JB
4109 } else {
4110 if (inode_only == LOG_INODE_ALL)
4111 fast_search = true;
4112 ret = log_inode_item(trans, log, dst_path, inode);
4113 if (ret) {
4114 err = ret;
4115 goto out_unlock;
4116 }
4117 goto log_extents;
5dc562c5 4118 }
a95249b3 4119
e02119d5 4120 }
4a500fd1
YZ
4121 if (ret) {
4122 err = ret;
4123 goto out_unlock;
4124 }
e02119d5 4125
d397712b 4126 while (1) {
31ff1cd2 4127 ins_nr = 0;
6174d3cb 4128 ret = btrfs_search_forward(root, &min_key,
de78b51a 4129 path, trans->transid);
e02119d5
CM
4130 if (ret != 0)
4131 break;
3a5f1d45 4132again:
31ff1cd2 4133 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4134 if (min_key.objectid != ino)
e02119d5
CM
4135 break;
4136 if (min_key.type > max_key.type)
4137 break;
31ff1cd2 4138
e02119d5 4139 src = path->nodes[0];
31ff1cd2
CM
4140 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4141 ins_nr++;
4142 goto next_slot;
4143 } else if (!ins_nr) {
4144 ins_start_slot = path->slots[0];
4145 ins_nr = 1;
4146 goto next_slot;
e02119d5
CM
4147 }
4148
16e7549f 4149 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4150 ins_start_slot, ins_nr, inode_only,
4151 logged_isize);
16e7549f 4152 if (ret < 0) {
4a500fd1
YZ
4153 err = ret;
4154 goto out_unlock;
a71db86e
RV
4155 }
4156 if (ret) {
16e7549f
JB
4157 ins_nr = 0;
4158 btrfs_release_path(path);
4159 continue;
4a500fd1 4160 }
31ff1cd2
CM
4161 ins_nr = 1;
4162 ins_start_slot = path->slots[0];
4163next_slot:
e02119d5 4164
3a5f1d45
CM
4165 nritems = btrfs_header_nritems(path->nodes[0]);
4166 path->slots[0]++;
4167 if (path->slots[0] < nritems) {
4168 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4169 path->slots[0]);
4170 goto again;
4171 }
31ff1cd2 4172 if (ins_nr) {
16e7549f
JB
4173 ret = copy_items(trans, inode, dst_path, path,
4174 &last_extent, ins_start_slot,
1a4bcf47 4175 ins_nr, inode_only, logged_isize);
16e7549f 4176 if (ret < 0) {
4a500fd1
YZ
4177 err = ret;
4178 goto out_unlock;
4179 }
16e7549f 4180 ret = 0;
31ff1cd2
CM
4181 ins_nr = 0;
4182 }
b3b4aa74 4183 btrfs_release_path(path);
3a5f1d45 4184
3d41d702 4185 if (min_key.offset < (u64)-1) {
e02119d5 4186 min_key.offset++;
3d41d702 4187 } else if (min_key.type < max_key.type) {
e02119d5 4188 min_key.type++;
3d41d702
FDBM
4189 min_key.offset = 0;
4190 } else {
e02119d5 4191 break;
3d41d702 4192 }
e02119d5 4193 }
31ff1cd2 4194 if (ins_nr) {
16e7549f 4195 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
4196 ins_start_slot, ins_nr, inode_only,
4197 logged_isize);
16e7549f 4198 if (ret < 0) {
4a500fd1
YZ
4199 err = ret;
4200 goto out_unlock;
4201 }
16e7549f 4202 ret = 0;
31ff1cd2
CM
4203 ins_nr = 0;
4204 }
5dc562c5 4205
a95249b3 4206log_extents:
f3b15ccd
JB
4207 btrfs_release_path(path);
4208 btrfs_release_path(dst_path);
5dc562c5 4209 if (fast_search) {
b38ef71c
FM
4210 /*
4211 * Some ordered extents started by fsync might have completed
4212 * before we collected the ordered extents in logged_list, which
4213 * means they're gone, not in our logged_list nor in the inode's
4214 * ordered tree. We want the application/user space to know an
4215 * error happened while attempting to persist file data so that
4216 * it can take proper action. If such error happened, we leave
4217 * without writing to the log tree and the fsync must report the
4218 * file data write error and not commit the current transaction.
4219 */
4220 err = btrfs_inode_check_errors(inode);
4221 if (err) {
4222 ctx->io_err = err;
4223 goto out_unlock;
4224 }
827463c4 4225 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
8407f553 4226 &logged_list, ctx);
5dc562c5
JB
4227 if (ret) {
4228 err = ret;
4229 goto out_unlock;
4230 }
d006a048 4231 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4232 struct extent_map *em, *n;
4233
49dae1bc
FM
4234 write_lock(&em_tree->lock);
4235 /*
4236 * We can't just remove every em if we're called for a ranged
4237 * fsync - that is, one that doesn't cover the whole possible
4238 * file range (0 to LLONG_MAX). This is because we can have
4239 * em's that fall outside the range we're logging and therefore
4240 * their ordered operations haven't completed yet
4241 * (btrfs_finish_ordered_io() not invoked yet). This means we
4242 * didn't get their respective file extent item in the fs/subvol
4243 * tree yet, and need to let the next fast fsync (one which
4244 * consults the list of modified extent maps) find the em so
4245 * that it logs a matching file extent item and waits for the
4246 * respective ordered operation to complete (if it's still
4247 * running).
4248 *
4249 * Removing every em outside the range we're logging would make
4250 * the next fast fsync not log their matching file extent items,
4251 * therefore making us lose data after a log replay.
4252 */
4253 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4254 list) {
4255 const u64 mod_end = em->mod_start + em->mod_len - 1;
4256
4257 if (em->mod_start >= start && mod_end <= end)
4258 list_del_init(&em->list);
4259 }
4260 write_unlock(&em_tree->lock);
5dc562c5
JB
4261 }
4262
9623f9a3 4263 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 4264 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
4265 if (ret) {
4266 err = ret;
4267 goto out_unlock;
4268 }
e02119d5 4269 }
49dae1bc 4270
125c4cf9
FM
4271 BTRFS_I(inode)->logged_trans = trans->transid;
4272 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 4273out_unlock:
827463c4
MX
4274 if (unlikely(err))
4275 btrfs_put_logged_extents(&logged_list);
4276 else
4277 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4278 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4279
4280 btrfs_free_path(path);
4281 btrfs_free_path(dst_path);
4a500fd1 4282 return err;
e02119d5
CM
4283}
4284
12fcfd22
CM
4285/*
4286 * follow the dentry parent pointers up the chain and see if any
4287 * of the directories in it require a full commit before they can
4288 * be logged. Returns zero if nothing special needs to be done or 1 if
4289 * a full commit is required.
4290 */
4291static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4292 struct inode *inode,
4293 struct dentry *parent,
4294 struct super_block *sb,
4295 u64 last_committed)
e02119d5 4296{
12fcfd22
CM
4297 int ret = 0;
4298 struct btrfs_root *root;
6a912213 4299 struct dentry *old_parent = NULL;
de2b530b 4300 struct inode *orig_inode = inode;
e02119d5 4301
af4176b4
CM
4302 /*
4303 * for regular files, if its inode is already on disk, we don't
4304 * have to worry about the parents at all. This is because
4305 * we can use the last_unlink_trans field to record renames
4306 * and other fun in this file.
4307 */
4308 if (S_ISREG(inode->i_mode) &&
4309 BTRFS_I(inode)->generation <= last_committed &&
4310 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4311 goto out;
4312
12fcfd22
CM
4313 if (!S_ISDIR(inode->i_mode)) {
4314 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4315 goto out;
4316 inode = parent->d_inode;
4317 }
4318
4319 while (1) {
de2b530b
JB
4320 /*
4321 * If we are logging a directory then we start with our inode,
4322 * not our parents inode, so we need to skipp setting the
4323 * logged_trans so that further down in the log code we don't
4324 * think this inode has already been logged.
4325 */
4326 if (inode != orig_inode)
4327 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
4328 smp_mb();
4329
4330 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4331 root = BTRFS_I(inode)->root;
4332
4333 /*
4334 * make sure any commits to the log are forced
4335 * to be full commits
4336 */
995946dd 4337 btrfs_set_log_full_commit(root->fs_info, trans);
12fcfd22
CM
4338 ret = 1;
4339 break;
4340 }
4341
4342 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4343 break;
4344
76dda93c 4345 if (IS_ROOT(parent))
12fcfd22
CM
4346 break;
4347
6a912213
JB
4348 parent = dget_parent(parent);
4349 dput(old_parent);
4350 old_parent = parent;
12fcfd22
CM
4351 inode = parent->d_inode;
4352
4353 }
6a912213 4354 dput(old_parent);
12fcfd22 4355out:
e02119d5
CM
4356 return ret;
4357}
4358
4359/*
4360 * helper function around btrfs_log_inode to make sure newly created
4361 * parent directories also end up in the log. A minimal inode and backref
4362 * only logging is done of any parent directories that are older than
4363 * the last committed transaction
4364 */
48a3b636
ES
4365static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4366 struct btrfs_root *root, struct inode *inode,
49dae1bc
FM
4367 struct dentry *parent,
4368 const loff_t start,
4369 const loff_t end,
4370 int exists_only,
8b050d35 4371 struct btrfs_log_ctx *ctx)
e02119d5 4372{
12fcfd22 4373 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 4374 struct super_block *sb;
6a912213 4375 struct dentry *old_parent = NULL;
12fcfd22
CM
4376 int ret = 0;
4377 u64 last_committed = root->fs_info->last_trans_committed;
d36808e0
FM
4378 const struct dentry * const first_parent = parent;
4379 const bool did_unlink = (BTRFS_I(inode)->last_unlink_trans >
4380 last_committed);
12fcfd22
CM
4381
4382 sb = inode->i_sb;
4383
3a5e1404
SW
4384 if (btrfs_test_opt(root, NOTREELOG)) {
4385 ret = 1;
4386 goto end_no_trans;
4387 }
4388
995946dd
MX
4389 /*
4390 * The prev transaction commit doesn't complete, we need do
4391 * full commit by ourselves.
4392 */
12fcfd22
CM
4393 if (root->fs_info->last_trans_log_full_commit >
4394 root->fs_info->last_trans_committed) {
4395 ret = 1;
4396 goto end_no_trans;
4397 }
4398
76dda93c
YZ
4399 if (root != BTRFS_I(inode)->root ||
4400 btrfs_root_refs(&root->root_item) == 0) {
4401 ret = 1;
4402 goto end_no_trans;
4403 }
4404
12fcfd22
CM
4405 ret = check_parent_dirs_for_sync(trans, inode, parent,
4406 sb, last_committed);
4407 if (ret)
4408 goto end_no_trans;
e02119d5 4409
22ee6985 4410 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
4411 ret = BTRFS_NO_LOG_SYNC;
4412 goto end_no_trans;
4413 }
4414
8b050d35 4415 ret = start_log_trans(trans, root, ctx);
4a500fd1 4416 if (ret)
e87ac136 4417 goto end_no_trans;
e02119d5 4418
8407f553 4419 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
4420 if (ret)
4421 goto end_trans;
12fcfd22 4422
af4176b4
CM
4423 /*
4424 * for regular files, if its inode is already on disk, we don't
4425 * have to worry about the parents at all. This is because
4426 * we can use the last_unlink_trans field to record renames
4427 * and other fun in this file.
4428 */
4429 if (S_ISREG(inode->i_mode) &&
4430 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
4431 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4432 ret = 0;
4433 goto end_trans;
4434 }
af4176b4 4435
12fcfd22
CM
4436 while (1) {
4437 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
4438 break;
4439
12fcfd22 4440 inode = parent->d_inode;
76dda93c
YZ
4441 if (root != BTRFS_I(inode)->root)
4442 break;
4443
d36808e0
FM
4444 /*
4445 * On unlink we must make sure our immediate parent directory
4446 * inode is fully logged. This is to prevent leaving dangling
4447 * directory index entries and a wrong directory inode's i_size.
4448 * Not doing so can result in a directory being impossible to
4449 * delete after log replay (rmdir will always fail with error
4450 * -ENOTEMPTY).
4451 */
4452 if (did_unlink && parent == first_parent)
4453 inode_only = LOG_INODE_ALL;
4454 else
4455 inode_only = LOG_INODE_EXISTS;
4456
12fcfd22 4457 if (BTRFS_I(inode)->generation >
d36808e0
FM
4458 root->fs_info->last_trans_committed ||
4459 inode_only == LOG_INODE_ALL) {
49dae1bc 4460 ret = btrfs_log_inode(trans, root, inode, inode_only,
8407f553 4461 0, LLONG_MAX, ctx);
4a500fd1
YZ
4462 if (ret)
4463 goto end_trans;
12fcfd22 4464 }
76dda93c 4465 if (IS_ROOT(parent))
e02119d5 4466 break;
12fcfd22 4467
6a912213
JB
4468 parent = dget_parent(parent);
4469 dput(old_parent);
4470 old_parent = parent;
e02119d5 4471 }
12fcfd22 4472 ret = 0;
4a500fd1 4473end_trans:
6a912213 4474 dput(old_parent);
4a500fd1 4475 if (ret < 0) {
995946dd 4476 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1
YZ
4477 ret = 1;
4478 }
8b050d35
MX
4479
4480 if (ret)
4481 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
4482 btrfs_end_log_trans(root);
4483end_no_trans:
4484 return ret;
e02119d5
CM
4485}
4486
4487/*
4488 * it is not safe to log dentry if the chunk root has added new
4489 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4490 * If this returns 1, you must commit the transaction to safely get your
4491 * data on disk.
4492 */
4493int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35 4494 struct btrfs_root *root, struct dentry *dentry,
49dae1bc
FM
4495 const loff_t start,
4496 const loff_t end,
8b050d35 4497 struct btrfs_log_ctx *ctx)
e02119d5 4498{
6a912213
JB
4499 struct dentry *parent = dget_parent(dentry);
4500 int ret;
4501
8b050d35 4502 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
49dae1bc 4503 start, end, 0, ctx);
6a912213
JB
4504 dput(parent);
4505
4506 return ret;
e02119d5
CM
4507}
4508
4509/*
4510 * should be called during mount to recover any replay any log trees
4511 * from the FS
4512 */
4513int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4514{
4515 int ret;
4516 struct btrfs_path *path;
4517 struct btrfs_trans_handle *trans;
4518 struct btrfs_key key;
4519 struct btrfs_key found_key;
4520 struct btrfs_key tmp_key;
4521 struct btrfs_root *log;
4522 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4523 struct walk_control wc = {
4524 .process_func = process_one_buffer,
4525 .stage = 0,
4526 };
4527
e02119d5 4528 path = btrfs_alloc_path();
db5b493a
TI
4529 if (!path)
4530 return -ENOMEM;
4531
4532 fs_info->log_root_recovering = 1;
e02119d5 4533
4a500fd1 4534 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4535 if (IS_ERR(trans)) {
4536 ret = PTR_ERR(trans);
4537 goto error;
4538 }
e02119d5
CM
4539
4540 wc.trans = trans;
4541 wc.pin = 1;
4542
db5b493a 4543 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4544 if (ret) {
4545 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4546 "recovering log root tree.");
4547 goto error;
4548 }
e02119d5
CM
4549
4550again:
4551 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4552 key.offset = (u64)-1;
962a298f 4553 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 4554
d397712b 4555 while (1) {
e02119d5 4556 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4557
4558 if (ret < 0) {
4559 btrfs_error(fs_info, ret,
4560 "Couldn't find tree log root.");
4561 goto error;
4562 }
e02119d5
CM
4563 if (ret > 0) {
4564 if (path->slots[0] == 0)
4565 break;
4566 path->slots[0]--;
4567 }
4568 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4569 path->slots[0]);
b3b4aa74 4570 btrfs_release_path(path);
e02119d5
CM
4571 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4572 break;
4573
cb517eab 4574 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4575 if (IS_ERR(log)) {
4576 ret = PTR_ERR(log);
4577 btrfs_error(fs_info, ret,
4578 "Couldn't read tree log root.");
4579 goto error;
4580 }
e02119d5
CM
4581
4582 tmp_key.objectid = found_key.offset;
4583 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4584 tmp_key.offset = (u64)-1;
4585
4586 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4587 if (IS_ERR(wc.replay_dest)) {
4588 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4589 free_extent_buffer(log->node);
4590 free_extent_buffer(log->commit_root);
4591 kfree(log);
79787eaa
JM
4592 btrfs_error(fs_info, ret, "Couldn't read target root "
4593 "for tree log recovery.");
4594 goto error;
4595 }
e02119d5 4596
07d400a6 4597 wc.replay_dest->log_root = log;
5d4f98a2 4598 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4599 ret = walk_log_tree(trans, log, &wc);
e02119d5 4600
b50c6e25 4601 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4602 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4603 path);
e02119d5
CM
4604 }
4605
4606 key.offset = found_key.offset - 1;
07d400a6 4607 wc.replay_dest->log_root = NULL;
e02119d5 4608 free_extent_buffer(log->node);
b263c2c8 4609 free_extent_buffer(log->commit_root);
e02119d5
CM
4610 kfree(log);
4611
b50c6e25
JB
4612 if (ret)
4613 goto error;
4614
e02119d5
CM
4615 if (found_key.offset == 0)
4616 break;
4617 }
b3b4aa74 4618 btrfs_release_path(path);
e02119d5
CM
4619
4620 /* step one is to pin it all, step two is to replay just inodes */
4621 if (wc.pin) {
4622 wc.pin = 0;
4623 wc.process_func = replay_one_buffer;
4624 wc.stage = LOG_WALK_REPLAY_INODES;
4625 goto again;
4626 }
4627 /* step three is to replay everything */
4628 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4629 wc.stage++;
4630 goto again;
4631 }
4632
4633 btrfs_free_path(path);
4634
abefa55a
JB
4635 /* step 4: commit the transaction, which also unpins the blocks */
4636 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4637 if (ret)
4638 return ret;
4639
e02119d5
CM
4640 free_extent_buffer(log_root_tree->node);
4641 log_root_tree->log_root = NULL;
4642 fs_info->log_root_recovering = 0;
e02119d5 4643 kfree(log_root_tree);
79787eaa 4644
abefa55a 4645 return 0;
79787eaa 4646error:
b50c6e25
JB
4647 if (wc.trans)
4648 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4649 btrfs_free_path(path);
4650 return ret;
e02119d5 4651}
12fcfd22
CM
4652
4653/*
4654 * there are some corner cases where we want to force a full
4655 * commit instead of allowing a directory to be logged.
4656 *
4657 * They revolve around files there were unlinked from the directory, and
4658 * this function updates the parent directory so that a full commit is
4659 * properly done if it is fsync'd later after the unlinks are done.
4660 */
4661void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4662 struct inode *dir, struct inode *inode,
4663 int for_rename)
4664{
af4176b4
CM
4665 /*
4666 * when we're logging a file, if it hasn't been renamed
4667 * or unlinked, and its inode is fully committed on disk,
4668 * we don't have to worry about walking up the directory chain
4669 * to log its parents.
4670 *
4671 * So, we use the last_unlink_trans field to put this transid
4672 * into the file. When the file is logged we check it and
4673 * don't log the parents if the file is fully on disk.
4674 */
4675 if (S_ISREG(inode->i_mode))
4676 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4677
12fcfd22
CM
4678 /*
4679 * if this directory was already logged any new
4680 * names for this file/dir will get recorded
4681 */
4682 smp_mb();
4683 if (BTRFS_I(dir)->logged_trans == trans->transid)
4684 return;
4685
4686 /*
4687 * if the inode we're about to unlink was logged,
4688 * the log will be properly updated for any new names
4689 */
4690 if (BTRFS_I(inode)->logged_trans == trans->transid)
4691 return;
4692
4693 /*
4694 * when renaming files across directories, if the directory
4695 * there we're unlinking from gets fsync'd later on, there's
4696 * no way to find the destination directory later and fsync it
4697 * properly. So, we have to be conservative and force commits
4698 * so the new name gets discovered.
4699 */
4700 if (for_rename)
4701 goto record;
4702
4703 /* we can safely do the unlink without any special recording */
4704 return;
4705
4706record:
4707 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4708}
4709
4710/*
4711 * Call this after adding a new name for a file and it will properly
4712 * update the log to reflect the new name.
4713 *
4714 * It will return zero if all goes well, and it will return 1 if a
4715 * full transaction commit is required.
4716 */
4717int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4718 struct inode *inode, struct inode *old_dir,
4719 struct dentry *parent)
4720{
4721 struct btrfs_root * root = BTRFS_I(inode)->root;
4722
af4176b4
CM
4723 /*
4724 * this will force the logging code to walk the dentry chain
4725 * up for the file
4726 */
4727 if (S_ISREG(inode->i_mode))
4728 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4729
12fcfd22
CM
4730 /*
4731 * if this inode hasn't been logged and directory we're renaming it
4732 * from hasn't been logged, we don't need to log it
4733 */
4734 if (BTRFS_I(inode)->logged_trans <=
4735 root->fs_info->last_trans_committed &&
4736 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4737 root->fs_info->last_trans_committed))
4738 return 0;
4739
49dae1bc
FM
4740 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
4741 LLONG_MAX, 1, NULL);
12fcfd22
CM
4742}
4743