]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/tree-log.c
Btrfs: add initial tracepoint support for btrfs
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
e02119d5
CM
21#include "ctree.h"
22#include "transaction.h"
23#include "disk-io.h"
24#include "locking.h"
25#include "print-tree.h"
26#include "compat.h"
b2950863 27#include "tree-log.h"
e02119d5
CM
28
29/* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35#define LOG_INODE_ALL 0
36#define LOG_INODE_EXISTS 1
37
12fcfd22
CM
38/*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
e02119d5
CM
81/*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90#define LOG_WALK_PIN_ONLY 0
91#define LOG_WALK_REPLAY_INODES 1
92#define LOG_WALK_REPLAY_ALL 2
93
12fcfd22 94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
ec051c0f
YZ
97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
e02119d5
CM
105
106/*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
e02119d5
CM
129/*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136{
137 int ret;
4a500fd1 138 int err = 0;
7237f183
YZ
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
ff782e0a
JB
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
7237f183
YZ
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
ff782e0a
JB
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
e02119d5
CM
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
159 if (ret)
160 err = ret;
e02119d5 161 }
4a500fd1 162 if (err == 0 && !root->log_root) {
e02119d5 163 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
164 if (ret)
165 err = ret;
e02119d5 166 }
e02119d5 167 mutex_unlock(&root->fs_info->tree_log_mutex);
7237f183
YZ
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
4a500fd1 171 return err;
e02119d5
CM
172}
173
174/*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179static int join_running_log_trans(struct btrfs_root *root)
180{
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
7237f183 187 mutex_lock(&root->log_mutex);
e02119d5
CM
188 if (root->log_root) {
189 ret = 0;
7237f183 190 atomic_inc(&root->log_writers);
e02119d5 191 }
7237f183 192 mutex_unlock(&root->log_mutex);
e02119d5
CM
193 return ret;
194}
195
12fcfd22
CM
196/*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201int btrfs_pin_log_trans(struct btrfs_root *root)
202{
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
e02119d5
CM
211/*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
12fcfd22 215int btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 216{
7237f183
YZ
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
e02119d5
CM
222 return 0;
223}
224
225
226/*
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
231 */
232struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
235 */
236 int free;
237
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
240 */
241 int write;
242
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
245 */
246 int wait;
247
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
250 */
251 int pin;
252
253 /* what stage of the replay code we're currently in */
254 int stage;
255
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
258
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
261
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
266 */
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
269};
270
271/*
272 * process_func used to pin down extents, write them or wait on them
273 */
274static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
277{
04018de5 278 if (wc->pin)
11833d66
YZ
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
e02119d5
CM
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289}
290
291/*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310{
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(root, path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
346 }
e02119d5
CM
347
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
349
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
354
355 kfree(dst_copy);
356 kfree(src_copy);
357 /*
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
362 */
363 if (ret == 0) {
364 btrfs_release_path(root, path);
365 return 0;
366 }
367
368 }
369insert:
370 btrfs_release_path(root, path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
374
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
87b29b20
YZ
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
e02119d5
CM
385 BUG_ON(ret);
386 }
387 } else if (ret) {
4a500fd1 388 return ret;
e02119d5
CM
389 }
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
392
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
396 *
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
401 */
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
405
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
411
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
418 }
419 }
420
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
423
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 }
429
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
437 }
438 }
439no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(root, path);
442 return 0;
443}
444
445/*
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
448 */
449static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
451{
5d4f98a2 452 struct btrfs_key key;
e02119d5 453 struct inode *inode;
e02119d5 454
5d4f98a2
YZ
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
73f73415 458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
e02119d5
CM
462 iput(inode);
463 inode = NULL;
464 }
465 return inode;
466}
467
468/* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
471 *
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
476 *
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
479 */
480static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
485{
486 int found_type;
487 u64 mask = root->sectorsize - 1;
488 u64 extent_end;
489 u64 alloc_hint;
490 u64 start = key->offset;
07d400a6 491 u64 saved_nbytes;
e02119d5
CM
492 struct btrfs_file_extent_item *item;
493 struct inode *inode = NULL;
494 unsigned long size;
495 int ret = 0;
496
497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 found_type = btrfs_file_extent_type(eb, item);
499
d899e052
YZ
500 if (found_type == BTRFS_FILE_EXTENT_REG ||
501 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
502 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 504 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
505 extent_end = (start + size + mask) & ~mask;
506 } else {
507 ret = 0;
508 goto out;
509 }
510
511 inode = read_one_inode(root, key->objectid);
512 if (!inode) {
513 ret = -EIO;
514 goto out;
515 }
516
517 /*
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
521 */
522 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
523 start, 0);
524
d899e052
YZ
525 if (ret == 0 &&
526 (found_type == BTRFS_FILE_EXTENT_REG ||
527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
528 struct btrfs_file_extent_item cmp1;
529 struct btrfs_file_extent_item cmp2;
530 struct btrfs_file_extent_item *existing;
531 struct extent_buffer *leaf;
532
533 leaf = path->nodes[0];
534 existing = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_file_extent_item);
536
537 read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 sizeof(cmp1));
539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 sizeof(cmp2));
541
542 /*
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
545 */
546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 btrfs_release_path(root, path);
548 goto out;
549 }
550 }
551 btrfs_release_path(root, path);
552
07d400a6 553 saved_nbytes = inode_get_bytes(inode);
e02119d5 554 /* drop any overlapping extents */
920bbbfb
YZ
555 ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 &alloc_hint, 1);
e02119d5
CM
557 BUG_ON(ret);
558
07d400a6
YZ
559 if (found_type == BTRFS_FILE_EXTENT_REG ||
560 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 561 u64 offset;
07d400a6
YZ
562 unsigned long dest_offset;
563 struct btrfs_key ins;
564
565 ret = btrfs_insert_empty_item(trans, root, path, key,
566 sizeof(*item));
567 BUG_ON(ret);
568 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 path->slots[0]);
570 copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 (unsigned long)item, sizeof(*item));
572
573 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 576 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
577
578 if (ins.objectid > 0) {
579 u64 csum_start;
580 u64 csum_end;
581 LIST_HEAD(ordered_sums);
582 /*
583 * is this extent already allocated in the extent
584 * allocation tree? If so, just add a reference
585 */
586 ret = btrfs_lookup_extent(root, ins.objectid,
587 ins.offset);
588 if (ret == 0) {
589 ret = btrfs_inc_extent_ref(trans, root,
590 ins.objectid, ins.offset,
5d4f98a2
YZ
591 0, root->root_key.objectid,
592 key->objectid, offset);
07d400a6
YZ
593 } else {
594 /*
595 * insert the extent pointer in the extent
596 * allocation tree
597 */
5d4f98a2
YZ
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
07d400a6
YZ
601 BUG_ON(ret);
602 }
603 btrfs_release_path(root, path);
604
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
613 }
614
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
630 }
631 } else {
632 btrfs_release_path(root, path);
633 }
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
638 }
e02119d5 639
07d400a6 640 inode_set_bytes(inode, saved_nbytes);
e02119d5
CM
641 btrfs_update_inode(trans, root, inode);
642out:
643 if (inode)
644 iput(inode);
645 return ret;
646}
647
648/*
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
652 *
653 * This is a helper function to do the unlink of a specific directory
654 * item
655 */
656static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
661{
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
668
669 leaf = path->nodes[0];
670
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 674 if (!name)
675 return -ENOMEM;
676
e02119d5
CM
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(root, path);
679
680 inode = read_one_inode(root, location.objectid);
681 BUG_ON(!inode);
682
ec051c0f
YZ
683 ret = link_to_fixup_dir(trans, root, path, location.objectid);
684 BUG_ON(ret);
12fcfd22 685
e02119d5 686 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
ec051c0f 687 BUG_ON(ret);
e02119d5
CM
688 kfree(name);
689
690 iput(inode);
691 return ret;
692}
693
694/*
695 * helper function to see if a given name and sequence number found
696 * in an inode back reference are already in a directory and correctly
697 * point to this inode
698 */
699static noinline int inode_in_dir(struct btrfs_root *root,
700 struct btrfs_path *path,
701 u64 dirid, u64 objectid, u64 index,
702 const char *name, int name_len)
703{
704 struct btrfs_dir_item *di;
705 struct btrfs_key location;
706 int match = 0;
707
708 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
709 index, name, name_len, 0);
710 if (di && !IS_ERR(di)) {
711 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 if (location.objectid != objectid)
713 goto out;
714 } else
715 goto out;
716 btrfs_release_path(root, path);
717
718 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
719 if (di && !IS_ERR(di)) {
720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 if (location.objectid != objectid)
722 goto out;
723 } else
724 goto out;
725 match = 1;
726out:
727 btrfs_release_path(root, path);
728 return match;
729}
730
731/*
732 * helper function to check a log tree for a named back reference in
733 * an inode. This is used to decide if a back reference that is
734 * found in the subvolume conflicts with what we find in the log.
735 *
736 * inode backreferences may have multiple refs in a single item,
737 * during replay we process one reference at a time, and we don't
738 * want to delete valid links to a file from the subvolume if that
739 * link is also in the log.
740 */
741static noinline int backref_in_log(struct btrfs_root *log,
742 struct btrfs_key *key,
743 char *name, int namelen)
744{
745 struct btrfs_path *path;
746 struct btrfs_inode_ref *ref;
747 unsigned long ptr;
748 unsigned long ptr_end;
749 unsigned long name_ptr;
750 int found_name_len;
751 int item_size;
752 int ret;
753 int match = 0;
754
755 path = btrfs_alloc_path();
2a29edc6 756 if (!path)
757 return -ENOMEM;
758
e02119d5
CM
759 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
760 if (ret != 0)
761 goto out;
762
763 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
764 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
765 ptr_end = ptr + item_size;
766 while (ptr < ptr_end) {
767 ref = (struct btrfs_inode_ref *)ptr;
768 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
769 if (found_name_len == namelen) {
770 name_ptr = (unsigned long)(ref + 1);
771 ret = memcmp_extent_buffer(path->nodes[0], name,
772 name_ptr, namelen);
773 if (ret == 0) {
774 match = 1;
775 goto out;
776 }
777 }
778 ptr = (unsigned long)(ref + 1) + found_name_len;
779 }
780out:
781 btrfs_free_path(path);
782 return match;
783}
784
785
786/*
787 * replay one inode back reference item found in the log tree.
788 * eb, slot and key refer to the buffer and key found in the log tree.
789 * root is the destination we are replaying into, and path is for temp
790 * use by this function. (it should be released on return).
791 */
792static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root,
794 struct btrfs_root *log,
795 struct btrfs_path *path,
796 struct extent_buffer *eb, int slot,
797 struct btrfs_key *key)
798{
799 struct inode *dir;
800 int ret;
e02119d5
CM
801 struct btrfs_inode_ref *ref;
802 struct btrfs_dir_item *di;
803 struct inode *inode;
804 char *name;
805 int namelen;
806 unsigned long ref_ptr;
807 unsigned long ref_end;
808
e02119d5
CM
809 /*
810 * it is possible that we didn't log all the parent directories
811 * for a given inode. If we don't find the dir, just don't
812 * copy the back ref in. The link count fixup code will take
813 * care of the rest
814 */
815 dir = read_one_inode(root, key->offset);
816 if (!dir)
817 return -ENOENT;
818
819 inode = read_one_inode(root, key->objectid);
631c07c8 820 BUG_ON(!inode);
e02119d5
CM
821
822 ref_ptr = btrfs_item_ptr_offset(eb, slot);
823 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
824
825again:
826 ref = (struct btrfs_inode_ref *)ref_ptr;
827
828 namelen = btrfs_inode_ref_name_len(eb, ref);
829 name = kmalloc(namelen, GFP_NOFS);
830 BUG_ON(!name);
831
832 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
833
834 /* if we already have a perfect match, we're done */
835 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
836 btrfs_inode_ref_index(eb, ref),
837 name, namelen)) {
838 goto out;
839 }
840
841 /*
842 * look for a conflicting back reference in the metadata.
843 * if we find one we have to unlink that name of the file
844 * before we add our new link. Later on, we overwrite any
845 * existing back reference, and we don't want to create
846 * dangling pointers in the directory.
847 */
848conflict_again:
849 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
850 if (ret == 0) {
851 char *victim_name;
852 int victim_name_len;
853 struct btrfs_inode_ref *victim_ref;
854 unsigned long ptr;
855 unsigned long ptr_end;
856 struct extent_buffer *leaf = path->nodes[0];
857
858 /* are we trying to overwrite a back ref for the root directory
859 * if so, just jump out, we're done
860 */
861 if (key->objectid == key->offset)
862 goto out_nowrite;
863
864 /* check all the names in this back reference to see
865 * if they are in the log. if so, we allow them to stay
866 * otherwise they must be unlinked as a conflict
867 */
868 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
869 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 870 while (ptr < ptr_end) {
e02119d5
CM
871 victim_ref = (struct btrfs_inode_ref *)ptr;
872 victim_name_len = btrfs_inode_ref_name_len(leaf,
873 victim_ref);
874 victim_name = kmalloc(victim_name_len, GFP_NOFS);
875 BUG_ON(!victim_name);
876
877 read_extent_buffer(leaf, victim_name,
878 (unsigned long)(victim_ref + 1),
879 victim_name_len);
880
881 if (!backref_in_log(log, key, victim_name,
882 victim_name_len)) {
883 btrfs_inc_nlink(inode);
884 btrfs_release_path(root, path);
12fcfd22 885
e02119d5
CM
886 ret = btrfs_unlink_inode(trans, root, dir,
887 inode, victim_name,
888 victim_name_len);
889 kfree(victim_name);
890 btrfs_release_path(root, path);
891 goto conflict_again;
892 }
893 kfree(victim_name);
894 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
895 }
896 BUG_ON(ret);
897 }
898 btrfs_release_path(root, path);
899
900 /* look for a conflicting sequence number */
901 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
902 btrfs_inode_ref_index(eb, ref),
903 name, namelen, 0);
904 if (di && !IS_ERR(di)) {
905 ret = drop_one_dir_item(trans, root, path, dir, di);
906 BUG_ON(ret);
907 }
908 btrfs_release_path(root, path);
909
910
911 /* look for a conflicting name */
912 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
913 name, namelen, 0);
914 if (di && !IS_ERR(di)) {
915 ret = drop_one_dir_item(trans, root, path, dir, di);
916 BUG_ON(ret);
917 }
918 btrfs_release_path(root, path);
919
920 /* insert our name */
921 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
922 btrfs_inode_ref_index(eb, ref));
923 BUG_ON(ret);
924
925 btrfs_update_inode(trans, root, inode);
926
927out:
928 ref_ptr = (unsigned long)(ref + 1) + namelen;
929 kfree(name);
930 if (ref_ptr < ref_end)
931 goto again;
932
933 /* finally write the back reference in the inode */
934 ret = overwrite_item(trans, root, path, eb, slot, key);
935 BUG_ON(ret);
936
937out_nowrite:
938 btrfs_release_path(root, path);
939 iput(dir);
940 iput(inode);
941 return 0;
942}
943
c71bf099
YZ
944static int insert_orphan_item(struct btrfs_trans_handle *trans,
945 struct btrfs_root *root, u64 offset)
946{
947 int ret;
948 ret = btrfs_find_orphan_item(root, offset);
949 if (ret > 0)
950 ret = btrfs_insert_orphan_item(trans, root, offset);
951 return ret;
952}
953
954
e02119d5
CM
955/*
956 * There are a few corners where the link count of the file can't
957 * be properly maintained during replay. So, instead of adding
958 * lots of complexity to the log code, we just scan the backrefs
959 * for any file that has been through replay.
960 *
961 * The scan will update the link count on the inode to reflect the
962 * number of back refs found. If it goes down to zero, the iput
963 * will free the inode.
964 */
965static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
966 struct btrfs_root *root,
967 struct inode *inode)
968{
969 struct btrfs_path *path;
970 int ret;
971 struct btrfs_key key;
972 u64 nlink = 0;
973 unsigned long ptr;
974 unsigned long ptr_end;
975 int name_len;
976
977 key.objectid = inode->i_ino;
978 key.type = BTRFS_INODE_REF_KEY;
979 key.offset = (u64)-1;
980
981 path = btrfs_alloc_path();
2a29edc6 982 if (!path)
983 return -ENOMEM;
e02119d5 984
d397712b 985 while (1) {
e02119d5
CM
986 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
987 if (ret < 0)
988 break;
989 if (ret > 0) {
990 if (path->slots[0] == 0)
991 break;
992 path->slots[0]--;
993 }
994 btrfs_item_key_to_cpu(path->nodes[0], &key,
995 path->slots[0]);
996 if (key.objectid != inode->i_ino ||
997 key.type != BTRFS_INODE_REF_KEY)
998 break;
999 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1000 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1001 path->slots[0]);
d397712b 1002 while (ptr < ptr_end) {
e02119d5
CM
1003 struct btrfs_inode_ref *ref;
1004
1005 ref = (struct btrfs_inode_ref *)ptr;
1006 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1007 ref);
1008 ptr = (unsigned long)(ref + 1) + name_len;
1009 nlink++;
1010 }
1011
1012 if (key.offset == 0)
1013 break;
1014 key.offset--;
1015 btrfs_release_path(root, path);
1016 }
12fcfd22 1017 btrfs_release_path(root, path);
e02119d5
CM
1018 if (nlink != inode->i_nlink) {
1019 inode->i_nlink = nlink;
1020 btrfs_update_inode(trans, root, inode);
1021 }
8d5bf1cb 1022 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1023
c71bf099
YZ
1024 if (inode->i_nlink == 0) {
1025 if (S_ISDIR(inode->i_mode)) {
1026 ret = replay_dir_deletes(trans, root, NULL, path,
1027 inode->i_ino, 1);
1028 BUG_ON(ret);
1029 }
1030 ret = insert_orphan_item(trans, root, inode->i_ino);
12fcfd22
CM
1031 BUG_ON(ret);
1032 }
1033 btrfs_free_path(path);
1034
e02119d5
CM
1035 return 0;
1036}
1037
1038static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1039 struct btrfs_root *root,
1040 struct btrfs_path *path)
1041{
1042 int ret;
1043 struct btrfs_key key;
1044 struct inode *inode;
1045
1046 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1047 key.type = BTRFS_ORPHAN_ITEM_KEY;
1048 key.offset = (u64)-1;
d397712b 1049 while (1) {
e02119d5
CM
1050 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051 if (ret < 0)
1052 break;
1053
1054 if (ret == 1) {
1055 if (path->slots[0] == 0)
1056 break;
1057 path->slots[0]--;
1058 }
1059
1060 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1062 key.type != BTRFS_ORPHAN_ITEM_KEY)
1063 break;
1064
1065 ret = btrfs_del_item(trans, root, path);
1066 BUG_ON(ret);
1067
1068 btrfs_release_path(root, path);
1069 inode = read_one_inode(root, key.offset);
1070 BUG_ON(!inode);
1071
1072 ret = fixup_inode_link_count(trans, root, inode);
1073 BUG_ON(ret);
1074
1075 iput(inode);
1076
12fcfd22
CM
1077 /*
1078 * fixup on a directory may create new entries,
1079 * make sure we always look for the highset possible
1080 * offset
1081 */
1082 key.offset = (u64)-1;
e02119d5
CM
1083 }
1084 btrfs_release_path(root, path);
1085 return 0;
1086}
1087
1088
1089/*
1090 * record a given inode in the fixup dir so we can check its link
1091 * count when replay is done. The link count is incremented here
1092 * so the inode won't go away until we check it
1093 */
1094static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1095 struct btrfs_root *root,
1096 struct btrfs_path *path,
1097 u64 objectid)
1098{
1099 struct btrfs_key key;
1100 int ret = 0;
1101 struct inode *inode;
1102
1103 inode = read_one_inode(root, objectid);
1104 BUG_ON(!inode);
1105
1106 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1107 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1108 key.offset = objectid;
1109
1110 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1111
1112 btrfs_release_path(root, path);
1113 if (ret == 0) {
1114 btrfs_inc_nlink(inode);
1115 btrfs_update_inode(trans, root, inode);
1116 } else if (ret == -EEXIST) {
1117 ret = 0;
1118 } else {
1119 BUG();
1120 }
1121 iput(inode);
1122
1123 return ret;
1124}
1125
1126/*
1127 * when replaying the log for a directory, we only insert names
1128 * for inodes that actually exist. This means an fsync on a directory
1129 * does not implicitly fsync all the new files in it
1130 */
1131static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1132 struct btrfs_root *root,
1133 struct btrfs_path *path,
1134 u64 dirid, u64 index,
1135 char *name, int name_len, u8 type,
1136 struct btrfs_key *location)
1137{
1138 struct inode *inode;
1139 struct inode *dir;
1140 int ret;
1141
1142 inode = read_one_inode(root, location->objectid);
1143 if (!inode)
1144 return -ENOENT;
1145
1146 dir = read_one_inode(root, dirid);
1147 if (!dir) {
1148 iput(inode);
1149 return -EIO;
1150 }
1151 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1152
1153 /* FIXME, put inode into FIXUP list */
1154
1155 iput(inode);
1156 iput(dir);
1157 return ret;
1158}
1159
1160/*
1161 * take a single entry in a log directory item and replay it into
1162 * the subvolume.
1163 *
1164 * if a conflicting item exists in the subdirectory already,
1165 * the inode it points to is unlinked and put into the link count
1166 * fix up tree.
1167 *
1168 * If a name from the log points to a file or directory that does
1169 * not exist in the FS, it is skipped. fsyncs on directories
1170 * do not force down inodes inside that directory, just changes to the
1171 * names or unlinks in a directory.
1172 */
1173static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1174 struct btrfs_root *root,
1175 struct btrfs_path *path,
1176 struct extent_buffer *eb,
1177 struct btrfs_dir_item *di,
1178 struct btrfs_key *key)
1179{
1180 char *name;
1181 int name_len;
1182 struct btrfs_dir_item *dst_di;
1183 struct btrfs_key found_key;
1184 struct btrfs_key log_key;
1185 struct inode *dir;
e02119d5 1186 u8 log_type;
4bef0848 1187 int exists;
e02119d5
CM
1188 int ret;
1189
1190 dir = read_one_inode(root, key->objectid);
1191 BUG_ON(!dir);
1192
1193 name_len = btrfs_dir_name_len(eb, di);
1194 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 1195 if (!name)
1196 return -ENOMEM;
1197
e02119d5
CM
1198 log_type = btrfs_dir_type(eb, di);
1199 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200 name_len);
1201
1202 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1203 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204 if (exists == 0)
1205 exists = 1;
1206 else
1207 exists = 0;
1208 btrfs_release_path(root, path);
1209
e02119d5
CM
1210 if (key->type == BTRFS_DIR_ITEM_KEY) {
1211 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212 name, name_len, 1);
d397712b 1213 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1214 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215 key->objectid,
1216 key->offset, name,
1217 name_len, 1);
1218 } else {
1219 BUG();
1220 }
1221 if (!dst_di || IS_ERR(dst_di)) {
1222 /* we need a sequence number to insert, so we only
1223 * do inserts for the BTRFS_DIR_INDEX_KEY types
1224 */
1225 if (key->type != BTRFS_DIR_INDEX_KEY)
1226 goto out;
1227 goto insert;
1228 }
1229
1230 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231 /* the existing item matches the logged item */
1232 if (found_key.objectid == log_key.objectid &&
1233 found_key.type == log_key.type &&
1234 found_key.offset == log_key.offset &&
1235 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236 goto out;
1237 }
1238
1239 /*
1240 * don't drop the conflicting directory entry if the inode
1241 * for the new entry doesn't exist
1242 */
4bef0848 1243 if (!exists)
e02119d5
CM
1244 goto out;
1245
e02119d5
CM
1246 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247 BUG_ON(ret);
1248
1249 if (key->type == BTRFS_DIR_INDEX_KEY)
1250 goto insert;
1251out:
1252 btrfs_release_path(root, path);
1253 kfree(name);
1254 iput(dir);
1255 return 0;
1256
1257insert:
1258 btrfs_release_path(root, path);
1259 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260 name, name_len, log_type, &log_key);
1261
c293498b 1262 BUG_ON(ret && ret != -ENOENT);
e02119d5
CM
1263 goto out;
1264}
1265
1266/*
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1271 */
1272static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273 struct btrfs_root *root,
1274 struct btrfs_path *path,
1275 struct extent_buffer *eb, int slot,
1276 struct btrfs_key *key)
1277{
1278 int ret;
1279 u32 item_size = btrfs_item_size_nr(eb, slot);
1280 struct btrfs_dir_item *di;
1281 int name_len;
1282 unsigned long ptr;
1283 unsigned long ptr_end;
1284
1285 ptr = btrfs_item_ptr_offset(eb, slot);
1286 ptr_end = ptr + item_size;
d397712b 1287 while (ptr < ptr_end) {
e02119d5 1288 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1289 if (verify_dir_item(root, eb, di))
1290 return -EIO;
e02119d5
CM
1291 name_len = btrfs_dir_name_len(eb, di);
1292 ret = replay_one_name(trans, root, path, eb, di, key);
1293 BUG_ON(ret);
1294 ptr = (unsigned long)(di + 1);
1295 ptr += name_len;
1296 }
1297 return 0;
1298}
1299
1300/*
1301 * directory replay has two parts. There are the standard directory
1302 * items in the log copied from the subvolume, and range items
1303 * created in the log while the subvolume was logged.
1304 *
1305 * The range items tell us which parts of the key space the log
1306 * is authoritative for. During replay, if a key in the subvolume
1307 * directory is in a logged range item, but not actually in the log
1308 * that means it was deleted from the directory before the fsync
1309 * and should be removed.
1310 */
1311static noinline int find_dir_range(struct btrfs_root *root,
1312 struct btrfs_path *path,
1313 u64 dirid, int key_type,
1314 u64 *start_ret, u64 *end_ret)
1315{
1316 struct btrfs_key key;
1317 u64 found_end;
1318 struct btrfs_dir_log_item *item;
1319 int ret;
1320 int nritems;
1321
1322 if (*start_ret == (u64)-1)
1323 return 1;
1324
1325 key.objectid = dirid;
1326 key.type = key_type;
1327 key.offset = *start_ret;
1328
1329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1330 if (ret < 0)
1331 goto out;
1332 if (ret > 0) {
1333 if (path->slots[0] == 0)
1334 goto out;
1335 path->slots[0]--;
1336 }
1337 if (ret != 0)
1338 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1339
1340 if (key.type != key_type || key.objectid != dirid) {
1341 ret = 1;
1342 goto next;
1343 }
1344 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1345 struct btrfs_dir_log_item);
1346 found_end = btrfs_dir_log_end(path->nodes[0], item);
1347
1348 if (*start_ret >= key.offset && *start_ret <= found_end) {
1349 ret = 0;
1350 *start_ret = key.offset;
1351 *end_ret = found_end;
1352 goto out;
1353 }
1354 ret = 1;
1355next:
1356 /* check the next slot in the tree to see if it is a valid item */
1357 nritems = btrfs_header_nritems(path->nodes[0]);
1358 if (path->slots[0] >= nritems) {
1359 ret = btrfs_next_leaf(root, path);
1360 if (ret)
1361 goto out;
1362 } else {
1363 path->slots[0]++;
1364 }
1365
1366 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1367
1368 if (key.type != key_type || key.objectid != dirid) {
1369 ret = 1;
1370 goto out;
1371 }
1372 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1373 struct btrfs_dir_log_item);
1374 found_end = btrfs_dir_log_end(path->nodes[0], item);
1375 *start_ret = key.offset;
1376 *end_ret = found_end;
1377 ret = 0;
1378out:
1379 btrfs_release_path(root, path);
1380 return ret;
1381}
1382
1383/*
1384 * this looks for a given directory item in the log. If the directory
1385 * item is not in the log, the item is removed and the inode it points
1386 * to is unlinked
1387 */
1388static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1389 struct btrfs_root *root,
1390 struct btrfs_root *log,
1391 struct btrfs_path *path,
1392 struct btrfs_path *log_path,
1393 struct inode *dir,
1394 struct btrfs_key *dir_key)
1395{
1396 int ret;
1397 struct extent_buffer *eb;
1398 int slot;
1399 u32 item_size;
1400 struct btrfs_dir_item *di;
1401 struct btrfs_dir_item *log_di;
1402 int name_len;
1403 unsigned long ptr;
1404 unsigned long ptr_end;
1405 char *name;
1406 struct inode *inode;
1407 struct btrfs_key location;
1408
1409again:
1410 eb = path->nodes[0];
1411 slot = path->slots[0];
1412 item_size = btrfs_item_size_nr(eb, slot);
1413 ptr = btrfs_item_ptr_offset(eb, slot);
1414 ptr_end = ptr + item_size;
d397712b 1415 while (ptr < ptr_end) {
e02119d5 1416 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1417 if (verify_dir_item(root, eb, di)) {
1418 ret = -EIO;
1419 goto out;
1420 }
1421
e02119d5
CM
1422 name_len = btrfs_dir_name_len(eb, di);
1423 name = kmalloc(name_len, GFP_NOFS);
1424 if (!name) {
1425 ret = -ENOMEM;
1426 goto out;
1427 }
1428 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1429 name_len);
1430 log_di = NULL;
12fcfd22 1431 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1432 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1433 dir_key->objectid,
1434 name, name_len, 0);
12fcfd22 1435 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1436 log_di = btrfs_lookup_dir_index_item(trans, log,
1437 log_path,
1438 dir_key->objectid,
1439 dir_key->offset,
1440 name, name_len, 0);
1441 }
1442 if (!log_di || IS_ERR(log_di)) {
1443 btrfs_dir_item_key_to_cpu(eb, di, &location);
1444 btrfs_release_path(root, path);
1445 btrfs_release_path(log, log_path);
1446 inode = read_one_inode(root, location.objectid);
1447 BUG_ON(!inode);
1448
1449 ret = link_to_fixup_dir(trans, root,
1450 path, location.objectid);
1451 BUG_ON(ret);
1452 btrfs_inc_nlink(inode);
1453 ret = btrfs_unlink_inode(trans, root, dir, inode,
1454 name, name_len);
1455 BUG_ON(ret);
1456 kfree(name);
1457 iput(inode);
1458
1459 /* there might still be more names under this key
1460 * check and repeat if required
1461 */
1462 ret = btrfs_search_slot(NULL, root, dir_key, path,
1463 0, 0);
1464 if (ret == 0)
1465 goto again;
1466 ret = 0;
1467 goto out;
1468 }
1469 btrfs_release_path(log, log_path);
1470 kfree(name);
1471
1472 ptr = (unsigned long)(di + 1);
1473 ptr += name_len;
1474 }
1475 ret = 0;
1476out:
1477 btrfs_release_path(root, path);
1478 btrfs_release_path(log, log_path);
1479 return ret;
1480}
1481
1482/*
1483 * deletion replay happens before we copy any new directory items
1484 * out of the log or out of backreferences from inodes. It
1485 * scans the log to find ranges of keys that log is authoritative for,
1486 * and then scans the directory to find items in those ranges that are
1487 * not present in the log.
1488 *
1489 * Anything we don't find in the log is unlinked and removed from the
1490 * directory.
1491 */
1492static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1493 struct btrfs_root *root,
1494 struct btrfs_root *log,
1495 struct btrfs_path *path,
12fcfd22 1496 u64 dirid, int del_all)
e02119d5
CM
1497{
1498 u64 range_start;
1499 u64 range_end;
1500 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1501 int ret = 0;
1502 struct btrfs_key dir_key;
1503 struct btrfs_key found_key;
1504 struct btrfs_path *log_path;
1505 struct inode *dir;
1506
1507 dir_key.objectid = dirid;
1508 dir_key.type = BTRFS_DIR_ITEM_KEY;
1509 log_path = btrfs_alloc_path();
1510 if (!log_path)
1511 return -ENOMEM;
1512
1513 dir = read_one_inode(root, dirid);
1514 /* it isn't an error if the inode isn't there, that can happen
1515 * because we replay the deletes before we copy in the inode item
1516 * from the log
1517 */
1518 if (!dir) {
1519 btrfs_free_path(log_path);
1520 return 0;
1521 }
1522again:
1523 range_start = 0;
1524 range_end = 0;
d397712b 1525 while (1) {
12fcfd22
CM
1526 if (del_all)
1527 range_end = (u64)-1;
1528 else {
1529 ret = find_dir_range(log, path, dirid, key_type,
1530 &range_start, &range_end);
1531 if (ret != 0)
1532 break;
1533 }
e02119d5
CM
1534
1535 dir_key.offset = range_start;
d397712b 1536 while (1) {
e02119d5
CM
1537 int nritems;
1538 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1539 0, 0);
1540 if (ret < 0)
1541 goto out;
1542
1543 nritems = btrfs_header_nritems(path->nodes[0]);
1544 if (path->slots[0] >= nritems) {
1545 ret = btrfs_next_leaf(root, path);
1546 if (ret)
1547 break;
1548 }
1549 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1550 path->slots[0]);
1551 if (found_key.objectid != dirid ||
1552 found_key.type != dir_key.type)
1553 goto next_type;
1554
1555 if (found_key.offset > range_end)
1556 break;
1557
1558 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1559 log_path, dir,
1560 &found_key);
e02119d5
CM
1561 BUG_ON(ret);
1562 if (found_key.offset == (u64)-1)
1563 break;
1564 dir_key.offset = found_key.offset + 1;
1565 }
1566 btrfs_release_path(root, path);
1567 if (range_end == (u64)-1)
1568 break;
1569 range_start = range_end + 1;
1570 }
1571
1572next_type:
1573 ret = 0;
1574 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1575 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1576 dir_key.type = BTRFS_DIR_INDEX_KEY;
1577 btrfs_release_path(root, path);
1578 goto again;
1579 }
1580out:
1581 btrfs_release_path(root, path);
1582 btrfs_free_path(log_path);
1583 iput(dir);
1584 return ret;
1585}
1586
1587/*
1588 * the process_func used to replay items from the log tree. This
1589 * gets called in two different stages. The first stage just looks
1590 * for inodes and makes sure they are all copied into the subvolume.
1591 *
1592 * The second stage copies all the other item types from the log into
1593 * the subvolume. The two stage approach is slower, but gets rid of
1594 * lots of complexity around inodes referencing other inodes that exist
1595 * only in the log (references come from either directory items or inode
1596 * back refs).
1597 */
1598static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1599 struct walk_control *wc, u64 gen)
1600{
1601 int nritems;
1602 struct btrfs_path *path;
1603 struct btrfs_root *root = wc->replay_dest;
1604 struct btrfs_key key;
e02119d5
CM
1605 int level;
1606 int i;
1607 int ret;
1608
1609 btrfs_read_buffer(eb, gen);
1610
1611 level = btrfs_header_level(eb);
1612
1613 if (level != 0)
1614 return 0;
1615
1616 path = btrfs_alloc_path();
1617 BUG_ON(!path);
1618
1619 nritems = btrfs_header_nritems(eb);
1620 for (i = 0; i < nritems; i++) {
1621 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
1622
1623 /* inode keys are done during the first stage */
1624 if (key.type == BTRFS_INODE_ITEM_KEY &&
1625 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
1626 struct btrfs_inode_item *inode_item;
1627 u32 mode;
1628
1629 inode_item = btrfs_item_ptr(eb, i,
1630 struct btrfs_inode_item);
1631 mode = btrfs_inode_mode(eb, inode_item);
1632 if (S_ISDIR(mode)) {
1633 ret = replay_dir_deletes(wc->trans,
12fcfd22 1634 root, log, path, key.objectid, 0);
e02119d5
CM
1635 BUG_ON(ret);
1636 }
1637 ret = overwrite_item(wc->trans, root, path,
1638 eb, i, &key);
1639 BUG_ON(ret);
1640
c71bf099
YZ
1641 /* for regular files, make sure corresponding
1642 * orhpan item exist. extents past the new EOF
1643 * will be truncated later by orphan cleanup.
e02119d5
CM
1644 */
1645 if (S_ISREG(mode)) {
c71bf099
YZ
1646 ret = insert_orphan_item(wc->trans, root,
1647 key.objectid);
e02119d5 1648 BUG_ON(ret);
e02119d5 1649 }
c71bf099 1650
e02119d5
CM
1651 ret = link_to_fixup_dir(wc->trans, root,
1652 path, key.objectid);
1653 BUG_ON(ret);
1654 }
1655 if (wc->stage < LOG_WALK_REPLAY_ALL)
1656 continue;
1657
1658 /* these keys are simply copied */
1659 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1660 ret = overwrite_item(wc->trans, root, path,
1661 eb, i, &key);
1662 BUG_ON(ret);
1663 } else if (key.type == BTRFS_INODE_REF_KEY) {
1664 ret = add_inode_ref(wc->trans, root, log, path,
1665 eb, i, &key);
1666 BUG_ON(ret && ret != -ENOENT);
1667 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1668 ret = replay_one_extent(wc->trans, root, path,
1669 eb, i, &key);
1670 BUG_ON(ret);
e02119d5
CM
1671 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1672 key.type == BTRFS_DIR_INDEX_KEY) {
1673 ret = replay_one_dir_item(wc->trans, root, path,
1674 eb, i, &key);
1675 BUG_ON(ret);
1676 }
1677 }
1678 btrfs_free_path(path);
1679 return 0;
1680}
1681
d397712b 1682static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1683 struct btrfs_root *root,
1684 struct btrfs_path *path, int *level,
1685 struct walk_control *wc)
1686{
1687 u64 root_owner;
e02119d5
CM
1688 u64 bytenr;
1689 u64 ptr_gen;
1690 struct extent_buffer *next;
1691 struct extent_buffer *cur;
1692 struct extent_buffer *parent;
1693 u32 blocksize;
1694 int ret = 0;
1695
1696 WARN_ON(*level < 0);
1697 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1698
d397712b 1699 while (*level > 0) {
e02119d5
CM
1700 WARN_ON(*level < 0);
1701 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1702 cur = path->nodes[*level];
1703
1704 if (btrfs_header_level(cur) != *level)
1705 WARN_ON(1);
1706
1707 if (path->slots[*level] >=
1708 btrfs_header_nritems(cur))
1709 break;
1710
1711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1713 blocksize = btrfs_level_size(root, *level - 1);
1714
1715 parent = path->nodes[*level];
1716 root_owner = btrfs_header_owner(parent);
e02119d5
CM
1717
1718 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 1719 if (!next)
1720 return -ENOMEM;
e02119d5 1721
e02119d5 1722 if (*level == 1) {
4a500fd1
YZ
1723 wc->process_func(root, next, wc, ptr_gen);
1724
e02119d5
CM
1725 path->slots[*level]++;
1726 if (wc->free) {
1727 btrfs_read_buffer(next, ptr_gen);
1728
1729 btrfs_tree_lock(next);
1730 clean_tree_block(trans, root, next);
b4ce94de 1731 btrfs_set_lock_blocking(next);
e02119d5
CM
1732 btrfs_wait_tree_block_writeback(next);
1733 btrfs_tree_unlock(next);
1734
e02119d5
CM
1735 WARN_ON(root_owner !=
1736 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1737 ret = btrfs_free_reserved_extent(root,
1738 bytenr, blocksize);
e02119d5
CM
1739 BUG_ON(ret);
1740 }
1741 free_extent_buffer(next);
1742 continue;
1743 }
1744 btrfs_read_buffer(next, ptr_gen);
1745
1746 WARN_ON(*level <= 0);
1747 if (path->nodes[*level-1])
1748 free_extent_buffer(path->nodes[*level-1]);
1749 path->nodes[*level-1] = next;
1750 *level = btrfs_header_level(next);
1751 path->slots[*level] = 0;
1752 cond_resched();
1753 }
1754 WARN_ON(*level < 0);
1755 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1756
4a500fd1 1757 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
1758
1759 cond_resched();
1760 return 0;
1761}
1762
d397712b 1763static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1764 struct btrfs_root *root,
1765 struct btrfs_path *path, int *level,
1766 struct walk_control *wc)
1767{
1768 u64 root_owner;
e02119d5
CM
1769 int i;
1770 int slot;
1771 int ret;
1772
d397712b 1773 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 1774 slot = path->slots[i];
4a500fd1 1775 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
1776 path->slots[i]++;
1777 *level = i;
1778 WARN_ON(*level == 0);
1779 return 0;
1780 } else {
31840ae1
ZY
1781 struct extent_buffer *parent;
1782 if (path->nodes[*level] == root->node)
1783 parent = path->nodes[*level];
1784 else
1785 parent = path->nodes[*level + 1];
1786
1787 root_owner = btrfs_header_owner(parent);
e02119d5
CM
1788 wc->process_func(root, path->nodes[*level], wc,
1789 btrfs_header_generation(path->nodes[*level]));
1790 if (wc->free) {
1791 struct extent_buffer *next;
1792
1793 next = path->nodes[*level];
1794
1795 btrfs_tree_lock(next);
1796 clean_tree_block(trans, root, next);
b4ce94de 1797 btrfs_set_lock_blocking(next);
e02119d5
CM
1798 btrfs_wait_tree_block_writeback(next);
1799 btrfs_tree_unlock(next);
1800
e02119d5 1801 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1802 ret = btrfs_free_reserved_extent(root,
e02119d5 1803 path->nodes[*level]->start,
d00aff00 1804 path->nodes[*level]->len);
e02119d5
CM
1805 BUG_ON(ret);
1806 }
1807 free_extent_buffer(path->nodes[*level]);
1808 path->nodes[*level] = NULL;
1809 *level = i + 1;
1810 }
1811 }
1812 return 1;
1813}
1814
1815/*
1816 * drop the reference count on the tree rooted at 'snap'. This traverses
1817 * the tree freeing any blocks that have a ref count of zero after being
1818 * decremented.
1819 */
1820static int walk_log_tree(struct btrfs_trans_handle *trans,
1821 struct btrfs_root *log, struct walk_control *wc)
1822{
1823 int ret = 0;
1824 int wret;
1825 int level;
1826 struct btrfs_path *path;
1827 int i;
1828 int orig_level;
1829
1830 path = btrfs_alloc_path();
1831 BUG_ON(!path);
1832
1833 level = btrfs_header_level(log->node);
1834 orig_level = level;
1835 path->nodes[level] = log->node;
1836 extent_buffer_get(log->node);
1837 path->slots[level] = 0;
1838
d397712b 1839 while (1) {
e02119d5
CM
1840 wret = walk_down_log_tree(trans, log, path, &level, wc);
1841 if (wret > 0)
1842 break;
1843 if (wret < 0)
1844 ret = wret;
1845
1846 wret = walk_up_log_tree(trans, log, path, &level, wc);
1847 if (wret > 0)
1848 break;
1849 if (wret < 0)
1850 ret = wret;
1851 }
1852
1853 /* was the root node processed? if not, catch it here */
1854 if (path->nodes[orig_level]) {
1855 wc->process_func(log, path->nodes[orig_level], wc,
1856 btrfs_header_generation(path->nodes[orig_level]));
1857 if (wc->free) {
1858 struct extent_buffer *next;
1859
1860 next = path->nodes[orig_level];
1861
1862 btrfs_tree_lock(next);
1863 clean_tree_block(trans, log, next);
b4ce94de 1864 btrfs_set_lock_blocking(next);
e02119d5
CM
1865 btrfs_wait_tree_block_writeback(next);
1866 btrfs_tree_unlock(next);
1867
e02119d5
CM
1868 WARN_ON(log->root_key.objectid !=
1869 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1870 ret = btrfs_free_reserved_extent(log, next->start,
1871 next->len);
e02119d5
CM
1872 BUG_ON(ret);
1873 }
1874 }
1875
1876 for (i = 0; i <= orig_level; i++) {
1877 if (path->nodes[i]) {
1878 free_extent_buffer(path->nodes[i]);
1879 path->nodes[i] = NULL;
1880 }
1881 }
1882 btrfs_free_path(path);
e02119d5
CM
1883 return ret;
1884}
1885
7237f183
YZ
1886/*
1887 * helper function to update the item for a given subvolumes log root
1888 * in the tree of log roots
1889 */
1890static int update_log_root(struct btrfs_trans_handle *trans,
1891 struct btrfs_root *log)
1892{
1893 int ret;
1894
1895 if (log->log_transid == 1) {
1896 /* insert root item on the first sync */
1897 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1898 &log->root_key, &log->root_item);
1899 } else {
1900 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1901 &log->root_key, &log->root_item);
1902 }
1903 return ret;
1904}
1905
12fcfd22
CM
1906static int wait_log_commit(struct btrfs_trans_handle *trans,
1907 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
1908{
1909 DEFINE_WAIT(wait);
7237f183 1910 int index = transid % 2;
e02119d5 1911
7237f183
YZ
1912 /*
1913 * we only allow two pending log transactions at a time,
1914 * so we know that if ours is more than 2 older than the
1915 * current transaction, we're done
1916 */
e02119d5 1917 do {
7237f183
YZ
1918 prepare_to_wait(&root->log_commit_wait[index],
1919 &wait, TASK_UNINTERRUPTIBLE);
1920 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1921
1922 if (root->fs_info->last_trans_log_full_commit !=
1923 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
1924 atomic_read(&root->log_commit[index]))
1925 schedule();
12fcfd22 1926
7237f183
YZ
1927 finish_wait(&root->log_commit_wait[index], &wait);
1928 mutex_lock(&root->log_mutex);
1929 } while (root->log_transid < transid + 2 &&
1930 atomic_read(&root->log_commit[index]));
1931 return 0;
1932}
1933
12fcfd22
CM
1934static int wait_for_writer(struct btrfs_trans_handle *trans,
1935 struct btrfs_root *root)
7237f183
YZ
1936{
1937 DEFINE_WAIT(wait);
1938 while (atomic_read(&root->log_writers)) {
1939 prepare_to_wait(&root->log_writer_wait,
1940 &wait, TASK_UNINTERRUPTIBLE);
1941 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1942 if (root->fs_info->last_trans_log_full_commit !=
1943 trans->transid && atomic_read(&root->log_writers))
e02119d5 1944 schedule();
7237f183
YZ
1945 mutex_lock(&root->log_mutex);
1946 finish_wait(&root->log_writer_wait, &wait);
1947 }
e02119d5
CM
1948 return 0;
1949}
1950
1951/*
1952 * btrfs_sync_log does sends a given tree log down to the disk and
1953 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
1954 * you know that any inodes previously logged are safely on disk only
1955 * if it returns 0.
1956 *
1957 * Any other return value means you need to call btrfs_commit_transaction.
1958 * Some of the edge cases for fsyncing directories that have had unlinks
1959 * or renames done in the past mean that sometimes the only safe
1960 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1961 * that has happened.
e02119d5
CM
1962 */
1963int btrfs_sync_log(struct btrfs_trans_handle *trans,
1964 struct btrfs_root *root)
1965{
7237f183
YZ
1966 int index1;
1967 int index2;
8cef4e16 1968 int mark;
e02119d5 1969 int ret;
e02119d5 1970 struct btrfs_root *log = root->log_root;
7237f183 1971 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 1972 unsigned long log_transid = 0;
e02119d5 1973
7237f183
YZ
1974 mutex_lock(&root->log_mutex);
1975 index1 = root->log_transid % 2;
1976 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 1977 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
1978 mutex_unlock(&root->log_mutex);
1979 return 0;
e02119d5 1980 }
7237f183
YZ
1981 atomic_set(&root->log_commit[index1], 1);
1982
1983 /* wait for previous tree log sync to complete */
1984 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 1985 wait_log_commit(trans, root, root->log_transid - 1);
e02119d5 1986
86df7eb9 1987 while (1) {
7237f183 1988 unsigned long batch = root->log_batch;
86df7eb9
YZ
1989 if (root->log_multiple_pids) {
1990 mutex_unlock(&root->log_mutex);
1991 schedule_timeout_uninterruptible(1);
1992 mutex_lock(&root->log_mutex);
1993 }
12fcfd22 1994 wait_for_writer(trans, root);
7237f183 1995 if (batch == root->log_batch)
e02119d5
CM
1996 break;
1997 }
e02119d5 1998
12fcfd22
CM
1999 /* bail out if we need to do a full commit */
2000 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2001 ret = -EAGAIN;
2002 mutex_unlock(&root->log_mutex);
2003 goto out;
2004 }
2005
8cef4e16
YZ
2006 log_transid = root->log_transid;
2007 if (log_transid % 2 == 0)
2008 mark = EXTENT_DIRTY;
2009 else
2010 mark = EXTENT_NEW;
2011
690587d1
CM
2012 /* we start IO on all the marked extents here, but we don't actually
2013 * wait for them until later.
2014 */
8cef4e16 2015 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5 2016 BUG_ON(ret);
7237f183 2017
5d4f98a2 2018 btrfs_set_root_node(&log->root_item, log->node);
7237f183
YZ
2019
2020 root->log_batch = 0;
2021 root->log_transid++;
2022 log->log_transid = root->log_transid;
ff782e0a 2023 root->log_start_pid = 0;
7237f183
YZ
2024 smp_mb();
2025 /*
8cef4e16
YZ
2026 * IO has been started, blocks of the log tree have WRITTEN flag set
2027 * in their headers. new modifications of the log will be written to
2028 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2029 */
2030 mutex_unlock(&root->log_mutex);
2031
2032 mutex_lock(&log_root_tree->log_mutex);
2033 log_root_tree->log_batch++;
2034 atomic_inc(&log_root_tree->log_writers);
2035 mutex_unlock(&log_root_tree->log_mutex);
2036
2037 ret = update_log_root(trans, log);
7237f183
YZ
2038
2039 mutex_lock(&log_root_tree->log_mutex);
2040 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2041 smp_mb();
2042 if (waitqueue_active(&log_root_tree->log_writer_wait))
2043 wake_up(&log_root_tree->log_writer_wait);
2044 }
2045
4a500fd1
YZ
2046 if (ret) {
2047 BUG_ON(ret != -ENOSPC);
2048 root->fs_info->last_trans_log_full_commit = trans->transid;
2049 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2050 mutex_unlock(&log_root_tree->log_mutex);
2051 ret = -EAGAIN;
2052 goto out;
2053 }
2054
7237f183
YZ
2055 index2 = log_root_tree->log_transid % 2;
2056 if (atomic_read(&log_root_tree->log_commit[index2])) {
8cef4e16 2057 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2058 wait_log_commit(trans, log_root_tree,
2059 log_root_tree->log_transid);
7237f183 2060 mutex_unlock(&log_root_tree->log_mutex);
b31eabd8 2061 ret = 0;
7237f183
YZ
2062 goto out;
2063 }
2064 atomic_set(&log_root_tree->log_commit[index2], 1);
2065
12fcfd22
CM
2066 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2067 wait_log_commit(trans, log_root_tree,
2068 log_root_tree->log_transid - 1);
2069 }
2070
2071 wait_for_writer(trans, log_root_tree);
7237f183 2072
12fcfd22
CM
2073 /*
2074 * now that we've moved on to the tree of log tree roots,
2075 * check the full commit flag again
2076 */
2077 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
8cef4e16 2078 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2079 mutex_unlock(&log_root_tree->log_mutex);
2080 ret = -EAGAIN;
2081 goto out_wake_log_root;
2082 }
7237f183
YZ
2083
2084 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
8cef4e16
YZ
2085 &log_root_tree->dirty_log_pages,
2086 EXTENT_DIRTY | EXTENT_NEW);
e02119d5 2087 BUG_ON(ret);
8cef4e16 2088 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5
CM
2089
2090 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
7237f183 2091 log_root_tree->node->start);
e02119d5 2092 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
7237f183 2093 btrfs_header_level(log_root_tree->node));
e02119d5 2094
7237f183
YZ
2095 log_root_tree->log_batch = 0;
2096 log_root_tree->log_transid++;
e02119d5 2097 smp_mb();
7237f183
YZ
2098
2099 mutex_unlock(&log_root_tree->log_mutex);
2100
2101 /*
2102 * nobody else is going to jump in and write the the ctree
2103 * super here because the log_commit atomic below is protecting
2104 * us. We must be called with a transaction handle pinning
2105 * the running transaction open, so a full commit can't hop
2106 * in and cause problems either.
2107 */
4722607d 2108 write_ctree_super(trans, root->fs_info->tree_root, 1);
12fcfd22 2109 ret = 0;
7237f183 2110
257c62e1
CM
2111 mutex_lock(&root->log_mutex);
2112 if (root->last_log_commit < log_transid)
2113 root->last_log_commit = log_transid;
2114 mutex_unlock(&root->log_mutex);
2115
12fcfd22 2116out_wake_log_root:
7237f183
YZ
2117 atomic_set(&log_root_tree->log_commit[index2], 0);
2118 smp_mb();
2119 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2120 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2121out:
7237f183
YZ
2122 atomic_set(&root->log_commit[index1], 0);
2123 smp_mb();
2124 if (waitqueue_active(&root->log_commit_wait[index1]))
2125 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2126 return ret;
e02119d5
CM
2127}
2128
4a500fd1
YZ
2129static void free_log_tree(struct btrfs_trans_handle *trans,
2130 struct btrfs_root *log)
e02119d5
CM
2131{
2132 int ret;
d0c803c4
CM
2133 u64 start;
2134 u64 end;
e02119d5
CM
2135 struct walk_control wc = {
2136 .free = 1,
2137 .process_func = process_one_buffer
2138 };
2139
e02119d5
CM
2140 ret = walk_log_tree(trans, log, &wc);
2141 BUG_ON(ret);
2142
d397712b 2143 while (1) {
d0c803c4 2144 ret = find_first_extent_bit(&log->dirty_log_pages,
8cef4e16 2145 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
d0c803c4
CM
2146 if (ret)
2147 break;
2148
8cef4e16
YZ
2149 clear_extent_bits(&log->dirty_log_pages, start, end,
2150 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2151 }
2152
7237f183
YZ
2153 free_extent_buffer(log->node);
2154 kfree(log);
4a500fd1
YZ
2155}
2156
2157/*
2158 * free all the extents used by the tree log. This should be called
2159 * at commit time of the full transaction
2160 */
2161int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2162{
2163 if (root->log_root) {
2164 free_log_tree(trans, root->log_root);
2165 root->log_root = NULL;
2166 }
2167 return 0;
2168}
2169
2170int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2171 struct btrfs_fs_info *fs_info)
2172{
2173 if (fs_info->log_root_tree) {
2174 free_log_tree(trans, fs_info->log_root_tree);
2175 fs_info->log_root_tree = NULL;
2176 }
e02119d5
CM
2177 return 0;
2178}
2179
e02119d5
CM
2180/*
2181 * If both a file and directory are logged, and unlinks or renames are
2182 * mixed in, we have a few interesting corners:
2183 *
2184 * create file X in dir Y
2185 * link file X to X.link in dir Y
2186 * fsync file X
2187 * unlink file X but leave X.link
2188 * fsync dir Y
2189 *
2190 * After a crash we would expect only X.link to exist. But file X
2191 * didn't get fsync'd again so the log has back refs for X and X.link.
2192 *
2193 * We solve this by removing directory entries and inode backrefs from the
2194 * log when a file that was logged in the current transaction is
2195 * unlinked. Any later fsync will include the updated log entries, and
2196 * we'll be able to reconstruct the proper directory items from backrefs.
2197 *
2198 * This optimizations allows us to avoid relogging the entire inode
2199 * or the entire directory.
2200 */
2201int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2202 struct btrfs_root *root,
2203 const char *name, int name_len,
2204 struct inode *dir, u64 index)
2205{
2206 struct btrfs_root *log;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_path *path;
2209 int ret;
4a500fd1 2210 int err = 0;
e02119d5
CM
2211 int bytes_del = 0;
2212
3a5f1d45
CM
2213 if (BTRFS_I(dir)->logged_trans < trans->transid)
2214 return 0;
2215
e02119d5
CM
2216 ret = join_running_log_trans(root);
2217 if (ret)
2218 return 0;
2219
2220 mutex_lock(&BTRFS_I(dir)->log_mutex);
2221
2222 log = root->log_root;
2223 path = btrfs_alloc_path();
2a29edc6 2224 if (!path)
2225 return -ENOMEM;
2226
e02119d5
CM
2227 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2228 name, name_len, -1);
4a500fd1
YZ
2229 if (IS_ERR(di)) {
2230 err = PTR_ERR(di);
2231 goto fail;
2232 }
2233 if (di) {
e02119d5
CM
2234 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2235 bytes_del += name_len;
2236 BUG_ON(ret);
2237 }
2238 btrfs_release_path(log, path);
2239 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2240 index, name, name_len, -1);
4a500fd1
YZ
2241 if (IS_ERR(di)) {
2242 err = PTR_ERR(di);
2243 goto fail;
2244 }
2245 if (di) {
e02119d5
CM
2246 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2247 bytes_del += name_len;
2248 BUG_ON(ret);
2249 }
2250
2251 /* update the directory size in the log to reflect the names
2252 * we have removed
2253 */
2254 if (bytes_del) {
2255 struct btrfs_key key;
2256
2257 key.objectid = dir->i_ino;
2258 key.offset = 0;
2259 key.type = BTRFS_INODE_ITEM_KEY;
2260 btrfs_release_path(log, path);
2261
2262 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2263 if (ret < 0) {
2264 err = ret;
2265 goto fail;
2266 }
e02119d5
CM
2267 if (ret == 0) {
2268 struct btrfs_inode_item *item;
2269 u64 i_size;
2270
2271 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2272 struct btrfs_inode_item);
2273 i_size = btrfs_inode_size(path->nodes[0], item);
2274 if (i_size > bytes_del)
2275 i_size -= bytes_del;
2276 else
2277 i_size = 0;
2278 btrfs_set_inode_size(path->nodes[0], item, i_size);
2279 btrfs_mark_buffer_dirty(path->nodes[0]);
2280 } else
2281 ret = 0;
2282 btrfs_release_path(log, path);
2283 }
4a500fd1 2284fail:
e02119d5
CM
2285 btrfs_free_path(path);
2286 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2287 if (ret == -ENOSPC) {
2288 root->fs_info->last_trans_log_full_commit = trans->transid;
2289 ret = 0;
2290 }
12fcfd22 2291 btrfs_end_log_trans(root);
e02119d5 2292
411fc6bc 2293 return err;
e02119d5
CM
2294}
2295
2296/* see comments for btrfs_del_dir_entries_in_log */
2297int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2298 struct btrfs_root *root,
2299 const char *name, int name_len,
2300 struct inode *inode, u64 dirid)
2301{
2302 struct btrfs_root *log;
2303 u64 index;
2304 int ret;
2305
3a5f1d45
CM
2306 if (BTRFS_I(inode)->logged_trans < trans->transid)
2307 return 0;
2308
e02119d5
CM
2309 ret = join_running_log_trans(root);
2310 if (ret)
2311 return 0;
2312 log = root->log_root;
2313 mutex_lock(&BTRFS_I(inode)->log_mutex);
2314
2315 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2316 dirid, &index);
2317 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2318 if (ret == -ENOSPC) {
2319 root->fs_info->last_trans_log_full_commit = trans->transid;
2320 ret = 0;
2321 }
12fcfd22 2322 btrfs_end_log_trans(root);
e02119d5 2323
e02119d5
CM
2324 return ret;
2325}
2326
2327/*
2328 * creates a range item in the log for 'dirid'. first_offset and
2329 * last_offset tell us which parts of the key space the log should
2330 * be considered authoritative for.
2331 */
2332static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2333 struct btrfs_root *log,
2334 struct btrfs_path *path,
2335 int key_type, u64 dirid,
2336 u64 first_offset, u64 last_offset)
2337{
2338 int ret;
2339 struct btrfs_key key;
2340 struct btrfs_dir_log_item *item;
2341
2342 key.objectid = dirid;
2343 key.offset = first_offset;
2344 if (key_type == BTRFS_DIR_ITEM_KEY)
2345 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2346 else
2347 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2348 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2349 if (ret)
2350 return ret;
e02119d5
CM
2351
2352 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2353 struct btrfs_dir_log_item);
2354 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2355 btrfs_mark_buffer_dirty(path->nodes[0]);
2356 btrfs_release_path(log, path);
2357 return 0;
2358}
2359
2360/*
2361 * log all the items included in the current transaction for a given
2362 * directory. This also creates the range items in the log tree required
2363 * to replay anything deleted before the fsync
2364 */
2365static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2366 struct btrfs_root *root, struct inode *inode,
2367 struct btrfs_path *path,
2368 struct btrfs_path *dst_path, int key_type,
2369 u64 min_offset, u64 *last_offset_ret)
2370{
2371 struct btrfs_key min_key;
2372 struct btrfs_key max_key;
2373 struct btrfs_root *log = root->log_root;
2374 struct extent_buffer *src;
4a500fd1 2375 int err = 0;
e02119d5
CM
2376 int ret;
2377 int i;
2378 int nritems;
2379 u64 first_offset = min_offset;
2380 u64 last_offset = (u64)-1;
2381
2382 log = root->log_root;
2383 max_key.objectid = inode->i_ino;
2384 max_key.offset = (u64)-1;
2385 max_key.type = key_type;
2386
2387 min_key.objectid = inode->i_ino;
2388 min_key.type = key_type;
2389 min_key.offset = min_offset;
2390
2391 path->keep_locks = 1;
2392
2393 ret = btrfs_search_forward(root, &min_key, &max_key,
2394 path, 0, trans->transid);
2395
2396 /*
2397 * we didn't find anything from this transaction, see if there
2398 * is anything at all
2399 */
2400 if (ret != 0 || min_key.objectid != inode->i_ino ||
2401 min_key.type != key_type) {
2402 min_key.objectid = inode->i_ino;
2403 min_key.type = key_type;
2404 min_key.offset = (u64)-1;
2405 btrfs_release_path(root, path);
2406 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2407 if (ret < 0) {
2408 btrfs_release_path(root, path);
2409 return ret;
2410 }
2411 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2412
2413 /* if ret == 0 there are items for this type,
2414 * create a range to tell us the last key of this type.
2415 * otherwise, there are no items in this directory after
2416 * *min_offset, and we create a range to indicate that.
2417 */
2418 if (ret == 0) {
2419 struct btrfs_key tmp;
2420 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2421 path->slots[0]);
d397712b 2422 if (key_type == tmp.type)
e02119d5 2423 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2424 }
2425 goto done;
2426 }
2427
2428 /* go backward to find any previous key */
2429 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2430 if (ret == 0) {
2431 struct btrfs_key tmp;
2432 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2433 if (key_type == tmp.type) {
2434 first_offset = tmp.offset;
2435 ret = overwrite_item(trans, log, dst_path,
2436 path->nodes[0], path->slots[0],
2437 &tmp);
4a500fd1
YZ
2438 if (ret) {
2439 err = ret;
2440 goto done;
2441 }
e02119d5
CM
2442 }
2443 }
2444 btrfs_release_path(root, path);
2445
2446 /* find the first key from this transaction again */
2447 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2448 if (ret != 0) {
2449 WARN_ON(1);
2450 goto done;
2451 }
2452
2453 /*
2454 * we have a block from this transaction, log every item in it
2455 * from our directory
2456 */
d397712b 2457 while (1) {
e02119d5
CM
2458 struct btrfs_key tmp;
2459 src = path->nodes[0];
2460 nritems = btrfs_header_nritems(src);
2461 for (i = path->slots[0]; i < nritems; i++) {
2462 btrfs_item_key_to_cpu(src, &min_key, i);
2463
2464 if (min_key.objectid != inode->i_ino ||
2465 min_key.type != key_type)
2466 goto done;
2467 ret = overwrite_item(trans, log, dst_path, src, i,
2468 &min_key);
4a500fd1
YZ
2469 if (ret) {
2470 err = ret;
2471 goto done;
2472 }
e02119d5
CM
2473 }
2474 path->slots[0] = nritems;
2475
2476 /*
2477 * look ahead to the next item and see if it is also
2478 * from this directory and from this transaction
2479 */
2480 ret = btrfs_next_leaf(root, path);
2481 if (ret == 1) {
2482 last_offset = (u64)-1;
2483 goto done;
2484 }
2485 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2486 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2487 last_offset = (u64)-1;
2488 goto done;
2489 }
2490 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2491 ret = overwrite_item(trans, log, dst_path,
2492 path->nodes[0], path->slots[0],
2493 &tmp);
4a500fd1
YZ
2494 if (ret)
2495 err = ret;
2496 else
2497 last_offset = tmp.offset;
e02119d5
CM
2498 goto done;
2499 }
2500 }
2501done:
e02119d5
CM
2502 btrfs_release_path(root, path);
2503 btrfs_release_path(log, dst_path);
2504
4a500fd1
YZ
2505 if (err == 0) {
2506 *last_offset_ret = last_offset;
2507 /*
2508 * insert the log range keys to indicate where the log
2509 * is valid
2510 */
2511 ret = insert_dir_log_key(trans, log, path, key_type,
2512 inode->i_ino, first_offset,
2513 last_offset);
2514 if (ret)
2515 err = ret;
2516 }
2517 return err;
e02119d5
CM
2518}
2519
2520/*
2521 * logging directories is very similar to logging inodes, We find all the items
2522 * from the current transaction and write them to the log.
2523 *
2524 * The recovery code scans the directory in the subvolume, and if it finds a
2525 * key in the range logged that is not present in the log tree, then it means
2526 * that dir entry was unlinked during the transaction.
2527 *
2528 * In order for that scan to work, we must include one key smaller than
2529 * the smallest logged by this transaction and one key larger than the largest
2530 * key logged by this transaction.
2531 */
2532static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2533 struct btrfs_root *root, struct inode *inode,
2534 struct btrfs_path *path,
2535 struct btrfs_path *dst_path)
2536{
2537 u64 min_key;
2538 u64 max_key;
2539 int ret;
2540 int key_type = BTRFS_DIR_ITEM_KEY;
2541
2542again:
2543 min_key = 0;
2544 max_key = 0;
d397712b 2545 while (1) {
e02119d5
CM
2546 ret = log_dir_items(trans, root, inode, path,
2547 dst_path, key_type, min_key,
2548 &max_key);
4a500fd1
YZ
2549 if (ret)
2550 return ret;
e02119d5
CM
2551 if (max_key == (u64)-1)
2552 break;
2553 min_key = max_key + 1;
2554 }
2555
2556 if (key_type == BTRFS_DIR_ITEM_KEY) {
2557 key_type = BTRFS_DIR_INDEX_KEY;
2558 goto again;
2559 }
2560 return 0;
2561}
2562
2563/*
2564 * a helper function to drop items from the log before we relog an
2565 * inode. max_key_type indicates the highest item type to remove.
2566 * This cannot be run for file data extents because it does not
2567 * free the extents they point to.
2568 */
2569static int drop_objectid_items(struct btrfs_trans_handle *trans,
2570 struct btrfs_root *log,
2571 struct btrfs_path *path,
2572 u64 objectid, int max_key_type)
2573{
2574 int ret;
2575 struct btrfs_key key;
2576 struct btrfs_key found_key;
2577
2578 key.objectid = objectid;
2579 key.type = max_key_type;
2580 key.offset = (u64)-1;
2581
d397712b 2582 while (1) {
e02119d5 2583 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4a500fd1
YZ
2584 BUG_ON(ret == 0);
2585 if (ret < 0)
e02119d5
CM
2586 break;
2587
2588 if (path->slots[0] == 0)
2589 break;
2590
2591 path->slots[0]--;
2592 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2593 path->slots[0]);
2594
2595 if (found_key.objectid != objectid)
2596 break;
2597
2598 ret = btrfs_del_item(trans, log, path);
2599 BUG_ON(ret);
2600 btrfs_release_path(log, path);
2601 }
2602 btrfs_release_path(log, path);
4a500fd1 2603 return ret;
e02119d5
CM
2604}
2605
31ff1cd2
CM
2606static noinline int copy_items(struct btrfs_trans_handle *trans,
2607 struct btrfs_root *log,
2608 struct btrfs_path *dst_path,
2609 struct extent_buffer *src,
2610 int start_slot, int nr, int inode_only)
2611{
2612 unsigned long src_offset;
2613 unsigned long dst_offset;
2614 struct btrfs_file_extent_item *extent;
2615 struct btrfs_inode_item *inode_item;
2616 int ret;
2617 struct btrfs_key *ins_keys;
2618 u32 *ins_sizes;
2619 char *ins_data;
2620 int i;
d20f7043
CM
2621 struct list_head ordered_sums;
2622
2623 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
2624
2625 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2626 nr * sizeof(u32), GFP_NOFS);
2a29edc6 2627 if (!ins_data)
2628 return -ENOMEM;
2629
31ff1cd2
CM
2630 ins_sizes = (u32 *)ins_data;
2631 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2632
2633 for (i = 0; i < nr; i++) {
2634 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2635 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2636 }
2637 ret = btrfs_insert_empty_items(trans, log, dst_path,
2638 ins_keys, ins_sizes, nr);
4a500fd1
YZ
2639 if (ret) {
2640 kfree(ins_data);
2641 return ret;
2642 }
31ff1cd2 2643
5d4f98a2 2644 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
2645 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2646 dst_path->slots[0]);
2647
2648 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2649
2650 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2651 src_offset, ins_sizes[i]);
2652
2653 if (inode_only == LOG_INODE_EXISTS &&
2654 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2655 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2656 dst_path->slots[0],
2657 struct btrfs_inode_item);
2658 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2659
2660 /* set the generation to zero so the recover code
2661 * can tell the difference between an logging
2662 * just to say 'this inode exists' and a logging
2663 * to say 'update this inode with these values'
2664 */
2665 btrfs_set_inode_generation(dst_path->nodes[0],
2666 inode_item, 0);
2667 }
2668 /* take a reference on file data extents so that truncates
2669 * or deletes of this inode don't have to relog the inode
2670 * again
2671 */
2672 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2673 int found_type;
2674 extent = btrfs_item_ptr(src, start_slot + i,
2675 struct btrfs_file_extent_item);
2676
2677 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2678 if (found_type == BTRFS_FILE_EXTENT_REG ||
2679 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2
YZ
2680 u64 ds, dl, cs, cl;
2681 ds = btrfs_file_extent_disk_bytenr(src,
2682 extent);
2683 /* ds == 0 is a hole */
2684 if (ds == 0)
2685 continue;
2686
2687 dl = btrfs_file_extent_disk_num_bytes(src,
2688 extent);
2689 cs = btrfs_file_extent_offset(src, extent);
2690 cl = btrfs_file_extent_num_bytes(src,
a419aef8 2691 extent);
580afd76
CM
2692 if (btrfs_file_extent_compression(src,
2693 extent)) {
2694 cs = 0;
2695 cl = dl;
2696 }
5d4f98a2
YZ
2697
2698 ret = btrfs_lookup_csums_range(
2699 log->fs_info->csum_root,
2700 ds + cs, ds + cs + cl - 1,
2701 &ordered_sums);
2702 BUG_ON(ret);
31ff1cd2
CM
2703 }
2704 }
31ff1cd2
CM
2705 }
2706
2707 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2708 btrfs_release_path(log, dst_path);
2709 kfree(ins_data);
d20f7043
CM
2710
2711 /*
2712 * we have to do this after the loop above to avoid changing the
2713 * log tree while trying to change the log tree.
2714 */
4a500fd1 2715 ret = 0;
d397712b 2716 while (!list_empty(&ordered_sums)) {
d20f7043
CM
2717 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2718 struct btrfs_ordered_sum,
2719 list);
4a500fd1
YZ
2720 if (!ret)
2721 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
2722 list_del(&sums->list);
2723 kfree(sums);
2724 }
4a500fd1 2725 return ret;
31ff1cd2
CM
2726}
2727
e02119d5
CM
2728/* log a single inode in the tree log.
2729 * At least one parent directory for this inode must exist in the tree
2730 * or be logged already.
2731 *
2732 * Any items from this inode changed by the current transaction are copied
2733 * to the log tree. An extra reference is taken on any extents in this
2734 * file, allowing us to avoid a whole pile of corner cases around logging
2735 * blocks that have been removed from the tree.
2736 *
2737 * See LOG_INODE_ALL and related defines for a description of what inode_only
2738 * does.
2739 *
2740 * This handles both files and directories.
2741 */
12fcfd22 2742static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
2743 struct btrfs_root *root, struct inode *inode,
2744 int inode_only)
2745{
2746 struct btrfs_path *path;
2747 struct btrfs_path *dst_path;
2748 struct btrfs_key min_key;
2749 struct btrfs_key max_key;
2750 struct btrfs_root *log = root->log_root;
31ff1cd2 2751 struct extent_buffer *src = NULL;
4a500fd1 2752 int err = 0;
e02119d5 2753 int ret;
3a5f1d45 2754 int nritems;
31ff1cd2
CM
2755 int ins_start_slot = 0;
2756 int ins_nr;
e02119d5
CM
2757
2758 log = root->log_root;
2759
2760 path = btrfs_alloc_path();
5df67083
TI
2761 if (!path)
2762 return -ENOMEM;
e02119d5 2763 dst_path = btrfs_alloc_path();
5df67083
TI
2764 if (!dst_path) {
2765 btrfs_free_path(path);
2766 return -ENOMEM;
2767 }
e02119d5
CM
2768
2769 min_key.objectid = inode->i_ino;
2770 min_key.type = BTRFS_INODE_ITEM_KEY;
2771 min_key.offset = 0;
2772
2773 max_key.objectid = inode->i_ino;
12fcfd22
CM
2774
2775 /* today the code can only do partial logging of directories */
2776 if (!S_ISDIR(inode->i_mode))
2777 inode_only = LOG_INODE_ALL;
2778
e02119d5
CM
2779 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2780 max_key.type = BTRFS_XATTR_ITEM_KEY;
2781 else
2782 max_key.type = (u8)-1;
2783 max_key.offset = (u64)-1;
2784
e02119d5
CM
2785 mutex_lock(&BTRFS_I(inode)->log_mutex);
2786
2787 /*
2788 * a brute force approach to making sure we get the most uptodate
2789 * copies of everything.
2790 */
2791 if (S_ISDIR(inode->i_mode)) {
2792 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2793
2794 if (inode_only == LOG_INODE_EXISTS)
2795 max_key_type = BTRFS_XATTR_ITEM_KEY;
2796 ret = drop_objectid_items(trans, log, path,
2797 inode->i_ino, max_key_type);
2798 } else {
2799 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2800 }
4a500fd1
YZ
2801 if (ret) {
2802 err = ret;
2803 goto out_unlock;
2804 }
e02119d5
CM
2805 path->keep_locks = 1;
2806
d397712b 2807 while (1) {
31ff1cd2 2808 ins_nr = 0;
e02119d5
CM
2809 ret = btrfs_search_forward(root, &min_key, &max_key,
2810 path, 0, trans->transid);
2811 if (ret != 0)
2812 break;
3a5f1d45 2813again:
31ff1cd2 2814 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2815 if (min_key.objectid != inode->i_ino)
2816 break;
2817 if (min_key.type > max_key.type)
2818 break;
31ff1cd2 2819
e02119d5 2820 src = path->nodes[0];
31ff1cd2
CM
2821 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2822 ins_nr++;
2823 goto next_slot;
2824 } else if (!ins_nr) {
2825 ins_start_slot = path->slots[0];
2826 ins_nr = 1;
2827 goto next_slot;
e02119d5
CM
2828 }
2829
31ff1cd2
CM
2830 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2831 ins_nr, inode_only);
4a500fd1
YZ
2832 if (ret) {
2833 err = ret;
2834 goto out_unlock;
2835 }
31ff1cd2
CM
2836 ins_nr = 1;
2837 ins_start_slot = path->slots[0];
2838next_slot:
e02119d5 2839
3a5f1d45
CM
2840 nritems = btrfs_header_nritems(path->nodes[0]);
2841 path->slots[0]++;
2842 if (path->slots[0] < nritems) {
2843 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2844 path->slots[0]);
2845 goto again;
2846 }
31ff1cd2
CM
2847 if (ins_nr) {
2848 ret = copy_items(trans, log, dst_path, src,
2849 ins_start_slot,
2850 ins_nr, inode_only);
4a500fd1
YZ
2851 if (ret) {
2852 err = ret;
2853 goto out_unlock;
2854 }
31ff1cd2
CM
2855 ins_nr = 0;
2856 }
3a5f1d45
CM
2857 btrfs_release_path(root, path);
2858
e02119d5
CM
2859 if (min_key.offset < (u64)-1)
2860 min_key.offset++;
2861 else if (min_key.type < (u8)-1)
2862 min_key.type++;
2863 else if (min_key.objectid < (u64)-1)
2864 min_key.objectid++;
2865 else
2866 break;
2867 }
31ff1cd2
CM
2868 if (ins_nr) {
2869 ret = copy_items(trans, log, dst_path, src,
2870 ins_start_slot,
2871 ins_nr, inode_only);
4a500fd1
YZ
2872 if (ret) {
2873 err = ret;
2874 goto out_unlock;
2875 }
31ff1cd2
CM
2876 ins_nr = 0;
2877 }
2878 WARN_ON(ins_nr);
9623f9a3 2879 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2880 btrfs_release_path(root, path);
2881 btrfs_release_path(log, dst_path);
2882 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
2883 if (ret) {
2884 err = ret;
2885 goto out_unlock;
2886 }
e02119d5 2887 }
3a5f1d45 2888 BTRFS_I(inode)->logged_trans = trans->transid;
4a500fd1 2889out_unlock:
e02119d5
CM
2890 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2891
2892 btrfs_free_path(path);
2893 btrfs_free_path(dst_path);
4a500fd1 2894 return err;
e02119d5
CM
2895}
2896
12fcfd22
CM
2897/*
2898 * follow the dentry parent pointers up the chain and see if any
2899 * of the directories in it require a full commit before they can
2900 * be logged. Returns zero if nothing special needs to be done or 1 if
2901 * a full commit is required.
2902 */
2903static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2904 struct inode *inode,
2905 struct dentry *parent,
2906 struct super_block *sb,
2907 u64 last_committed)
e02119d5 2908{
12fcfd22
CM
2909 int ret = 0;
2910 struct btrfs_root *root;
6a912213 2911 struct dentry *old_parent = NULL;
e02119d5 2912
af4176b4
CM
2913 /*
2914 * for regular files, if its inode is already on disk, we don't
2915 * have to worry about the parents at all. This is because
2916 * we can use the last_unlink_trans field to record renames
2917 * and other fun in this file.
2918 */
2919 if (S_ISREG(inode->i_mode) &&
2920 BTRFS_I(inode)->generation <= last_committed &&
2921 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2922 goto out;
2923
12fcfd22
CM
2924 if (!S_ISDIR(inode->i_mode)) {
2925 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2926 goto out;
2927 inode = parent->d_inode;
2928 }
2929
2930 while (1) {
2931 BTRFS_I(inode)->logged_trans = trans->transid;
2932 smp_mb();
2933
2934 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2935 root = BTRFS_I(inode)->root;
2936
2937 /*
2938 * make sure any commits to the log are forced
2939 * to be full commits
2940 */
2941 root->fs_info->last_trans_log_full_commit =
2942 trans->transid;
2943 ret = 1;
2944 break;
2945 }
2946
2947 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2948 break;
2949
76dda93c 2950 if (IS_ROOT(parent))
12fcfd22
CM
2951 break;
2952
6a912213
JB
2953 parent = dget_parent(parent);
2954 dput(old_parent);
2955 old_parent = parent;
12fcfd22
CM
2956 inode = parent->d_inode;
2957
2958 }
6a912213 2959 dput(old_parent);
12fcfd22 2960out:
e02119d5
CM
2961 return ret;
2962}
2963
257c62e1
CM
2964static int inode_in_log(struct btrfs_trans_handle *trans,
2965 struct inode *inode)
2966{
2967 struct btrfs_root *root = BTRFS_I(inode)->root;
2968 int ret = 0;
2969
2970 mutex_lock(&root->log_mutex);
2971 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2972 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2973 ret = 1;
2974 mutex_unlock(&root->log_mutex);
2975 return ret;
2976}
2977
2978
e02119d5
CM
2979/*
2980 * helper function around btrfs_log_inode to make sure newly created
2981 * parent directories also end up in the log. A minimal inode and backref
2982 * only logging is done of any parent directories that are older than
2983 * the last committed transaction
2984 */
12fcfd22
CM
2985int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *root, struct inode *inode,
2987 struct dentry *parent, int exists_only)
e02119d5 2988{
12fcfd22 2989 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 2990 struct super_block *sb;
6a912213 2991 struct dentry *old_parent = NULL;
12fcfd22
CM
2992 int ret = 0;
2993 u64 last_committed = root->fs_info->last_trans_committed;
2994
2995 sb = inode->i_sb;
2996
3a5e1404
SW
2997 if (btrfs_test_opt(root, NOTREELOG)) {
2998 ret = 1;
2999 goto end_no_trans;
3000 }
3001
12fcfd22
CM
3002 if (root->fs_info->last_trans_log_full_commit >
3003 root->fs_info->last_trans_committed) {
3004 ret = 1;
3005 goto end_no_trans;
3006 }
3007
76dda93c
YZ
3008 if (root != BTRFS_I(inode)->root ||
3009 btrfs_root_refs(&root->root_item) == 0) {
3010 ret = 1;
3011 goto end_no_trans;
3012 }
3013
12fcfd22
CM
3014 ret = check_parent_dirs_for_sync(trans, inode, parent,
3015 sb, last_committed);
3016 if (ret)
3017 goto end_no_trans;
e02119d5 3018
257c62e1
CM
3019 if (inode_in_log(trans, inode)) {
3020 ret = BTRFS_NO_LOG_SYNC;
3021 goto end_no_trans;
3022 }
3023
4a500fd1
YZ
3024 ret = start_log_trans(trans, root);
3025 if (ret)
3026 goto end_trans;
e02119d5 3027
12fcfd22 3028 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3029 if (ret)
3030 goto end_trans;
12fcfd22 3031
af4176b4
CM
3032 /*
3033 * for regular files, if its inode is already on disk, we don't
3034 * have to worry about the parents at all. This is because
3035 * we can use the last_unlink_trans field to record renames
3036 * and other fun in this file.
3037 */
3038 if (S_ISREG(inode->i_mode) &&
3039 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
3040 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3041 ret = 0;
3042 goto end_trans;
3043 }
af4176b4
CM
3044
3045 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
3046 while (1) {
3047 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
3048 break;
3049
12fcfd22 3050 inode = parent->d_inode;
76dda93c
YZ
3051 if (root != BTRFS_I(inode)->root)
3052 break;
3053
12fcfd22
CM
3054 if (BTRFS_I(inode)->generation >
3055 root->fs_info->last_trans_committed) {
3056 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3057 if (ret)
3058 goto end_trans;
12fcfd22 3059 }
76dda93c 3060 if (IS_ROOT(parent))
e02119d5 3061 break;
12fcfd22 3062
6a912213
JB
3063 parent = dget_parent(parent);
3064 dput(old_parent);
3065 old_parent = parent;
e02119d5 3066 }
12fcfd22 3067 ret = 0;
4a500fd1 3068end_trans:
6a912213 3069 dput(old_parent);
4a500fd1
YZ
3070 if (ret < 0) {
3071 BUG_ON(ret != -ENOSPC);
3072 root->fs_info->last_trans_log_full_commit = trans->transid;
3073 ret = 1;
3074 }
12fcfd22
CM
3075 btrfs_end_log_trans(root);
3076end_no_trans:
3077 return ret;
e02119d5
CM
3078}
3079
3080/*
3081 * it is not safe to log dentry if the chunk root has added new
3082 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3083 * If this returns 1, you must commit the transaction to safely get your
3084 * data on disk.
3085 */
3086int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3087 struct btrfs_root *root, struct dentry *dentry)
3088{
6a912213
JB
3089 struct dentry *parent = dget_parent(dentry);
3090 int ret;
3091
3092 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3093 dput(parent);
3094
3095 return ret;
e02119d5
CM
3096}
3097
3098/*
3099 * should be called during mount to recover any replay any log trees
3100 * from the FS
3101 */
3102int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3103{
3104 int ret;
3105 struct btrfs_path *path;
3106 struct btrfs_trans_handle *trans;
3107 struct btrfs_key key;
3108 struct btrfs_key found_key;
3109 struct btrfs_key tmp_key;
3110 struct btrfs_root *log;
3111 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3112 struct walk_control wc = {
3113 .process_func = process_one_buffer,
3114 .stage = 0,
3115 };
3116
3117 fs_info->log_root_recovering = 1;
3118 path = btrfs_alloc_path();
3119 BUG_ON(!path);
3120
4a500fd1 3121 trans = btrfs_start_transaction(fs_info->tree_root, 0);
98d5dc13 3122 BUG_ON(IS_ERR(trans));
e02119d5
CM
3123
3124 wc.trans = trans;
3125 wc.pin = 1;
3126
3127 walk_log_tree(trans, log_root_tree, &wc);
3128
3129again:
3130 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3131 key.offset = (u64)-1;
3132 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3133
d397712b 3134 while (1) {
e02119d5
CM
3135 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3136 if (ret < 0)
3137 break;
3138 if (ret > 0) {
3139 if (path->slots[0] == 0)
3140 break;
3141 path->slots[0]--;
3142 }
3143 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3144 path->slots[0]);
3145 btrfs_release_path(log_root_tree, path);
3146 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3147 break;
3148
3149 log = btrfs_read_fs_root_no_radix(log_root_tree,
3150 &found_key);
3151 BUG_ON(!log);
3152
3153
3154 tmp_key.objectid = found_key.offset;
3155 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3156 tmp_key.offset = (u64)-1;
3157
3158 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
e02119d5
CM
3159 BUG_ON(!wc.replay_dest);
3160
07d400a6 3161 wc.replay_dest->log_root = log;
5d4f98a2 3162 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5
CM
3163 ret = walk_log_tree(trans, log, &wc);
3164 BUG_ON(ret);
3165
3166 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3167 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3168 path);
3169 BUG_ON(ret);
3170 }
3171
3172 key.offset = found_key.offset - 1;
07d400a6 3173 wc.replay_dest->log_root = NULL;
e02119d5 3174 free_extent_buffer(log->node);
b263c2c8 3175 free_extent_buffer(log->commit_root);
e02119d5
CM
3176 kfree(log);
3177
3178 if (found_key.offset == 0)
3179 break;
3180 }
3181 btrfs_release_path(log_root_tree, path);
3182
3183 /* step one is to pin it all, step two is to replay just inodes */
3184 if (wc.pin) {
3185 wc.pin = 0;
3186 wc.process_func = replay_one_buffer;
3187 wc.stage = LOG_WALK_REPLAY_INODES;
3188 goto again;
3189 }
3190 /* step three is to replay everything */
3191 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3192 wc.stage++;
3193 goto again;
3194 }
3195
3196 btrfs_free_path(path);
3197
3198 free_extent_buffer(log_root_tree->node);
3199 log_root_tree->log_root = NULL;
3200 fs_info->log_root_recovering = 0;
3201
3202 /* step 4: commit the transaction, which also unpins the blocks */
3203 btrfs_commit_transaction(trans, fs_info->tree_root);
3204
3205 kfree(log_root_tree);
3206 return 0;
3207}
12fcfd22
CM
3208
3209/*
3210 * there are some corner cases where we want to force a full
3211 * commit instead of allowing a directory to be logged.
3212 *
3213 * They revolve around files there were unlinked from the directory, and
3214 * this function updates the parent directory so that a full commit is
3215 * properly done if it is fsync'd later after the unlinks are done.
3216 */
3217void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3218 struct inode *dir, struct inode *inode,
3219 int for_rename)
3220{
af4176b4
CM
3221 /*
3222 * when we're logging a file, if it hasn't been renamed
3223 * or unlinked, and its inode is fully committed on disk,
3224 * we don't have to worry about walking up the directory chain
3225 * to log its parents.
3226 *
3227 * So, we use the last_unlink_trans field to put this transid
3228 * into the file. When the file is logged we check it and
3229 * don't log the parents if the file is fully on disk.
3230 */
3231 if (S_ISREG(inode->i_mode))
3232 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3233
12fcfd22
CM
3234 /*
3235 * if this directory was already logged any new
3236 * names for this file/dir will get recorded
3237 */
3238 smp_mb();
3239 if (BTRFS_I(dir)->logged_trans == trans->transid)
3240 return;
3241
3242 /*
3243 * if the inode we're about to unlink was logged,
3244 * the log will be properly updated for any new names
3245 */
3246 if (BTRFS_I(inode)->logged_trans == trans->transid)
3247 return;
3248
3249 /*
3250 * when renaming files across directories, if the directory
3251 * there we're unlinking from gets fsync'd later on, there's
3252 * no way to find the destination directory later and fsync it
3253 * properly. So, we have to be conservative and force commits
3254 * so the new name gets discovered.
3255 */
3256 if (for_rename)
3257 goto record;
3258
3259 /* we can safely do the unlink without any special recording */
3260 return;
3261
3262record:
3263 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3264}
3265
3266/*
3267 * Call this after adding a new name for a file and it will properly
3268 * update the log to reflect the new name.
3269 *
3270 * It will return zero if all goes well, and it will return 1 if a
3271 * full transaction commit is required.
3272 */
3273int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3274 struct inode *inode, struct inode *old_dir,
3275 struct dentry *parent)
3276{
3277 struct btrfs_root * root = BTRFS_I(inode)->root;
3278
af4176b4
CM
3279 /*
3280 * this will force the logging code to walk the dentry chain
3281 * up for the file
3282 */
3283 if (S_ISREG(inode->i_mode))
3284 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3285
12fcfd22
CM
3286 /*
3287 * if this inode hasn't been logged and directory we're renaming it
3288 * from hasn't been logged, we don't need to log it
3289 */
3290 if (BTRFS_I(inode)->logged_trans <=
3291 root->fs_info->last_trans_committed &&
3292 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3293 root->fs_info->last_trans_committed))
3294 return 0;
3295
3296 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3297}
3298