]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/tree-log.c
btrfs: merge __set_extent_bit and set_extent_bit
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
900c9981 20#include "inode-map.h"
6787bb9f
NB
21#include "block-group.h"
22#include "space-info.h"
e02119d5
CM
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
e13976cf
DS
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
e02119d5 36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
e13976cf
DS
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 97 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 98 int inode_only,
8407f553 99 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
100static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
103static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
e02119d5
CM
108
109/*
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
112 *
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
116 *
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
122 *
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
126 *
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
130 */
131
e02119d5
CM
132/*
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
136 */
137static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
138 struct btrfs_root *root,
139 struct btrfs_log_ctx *ctx)
e02119d5 140{
0b246afa 141 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 142 int ret = 0;
7237f183
YZ
143
144 mutex_lock(&root->log_mutex);
34eb2a52 145
7237f183 146 if (root->log_root) {
4884b8e8 147 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
148 ret = -EAGAIN;
149 goto out;
150 }
34eb2a52 151
ff782e0a 152 if (!root->log_start_pid) {
27cdeb70 153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 154 root->log_start_pid = current->pid;
ff782e0a 155 } else if (root->log_start_pid != current->pid) {
27cdeb70 156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 157 }
34eb2a52 158 } else {
0b246afa
JM
159 mutex_lock(&fs_info->tree_log_mutex);
160 if (!fs_info->log_root_tree)
161 ret = btrfs_init_log_root_tree(trans, fs_info);
162 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
163 if (ret)
164 goto out;
ff782e0a 165
e02119d5 166 ret = btrfs_add_log_tree(trans, root);
4a500fd1 167 if (ret)
e87ac136 168 goto out;
34eb2a52 169
e7a79811 170 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
34eb2a52
Z
171 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 root->log_start_pid = current->pid;
e02119d5 173 }
34eb2a52 174
2ecb7923 175 atomic_inc(&root->log_batch);
7237f183 176 atomic_inc(&root->log_writers);
75b463d2 177 if (ctx && !ctx->logging_new_name) {
34eb2a52 178 int index = root->log_transid % 2;
8b050d35 179 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 180 ctx->log_transid = root->log_transid;
8b050d35 181 }
34eb2a52 182
e87ac136 183out:
7237f183 184 mutex_unlock(&root->log_mutex);
e87ac136 185 return ret;
e02119d5
CM
186}
187
188/*
189 * returns 0 if there was a log transaction running and we were able
190 * to join, or returns -ENOENT if there were not transactions
191 * in progress
192 */
193static int join_running_log_trans(struct btrfs_root *root)
194{
195 int ret = -ENOENT;
196
e7a79811
FM
197 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
198 return ret;
199
7237f183 200 mutex_lock(&root->log_mutex);
e02119d5
CM
201 if (root->log_root) {
202 ret = 0;
7237f183 203 atomic_inc(&root->log_writers);
e02119d5 204 }
7237f183 205 mutex_unlock(&root->log_mutex);
e02119d5
CM
206 return ret;
207}
208
12fcfd22
CM
209/*
210 * This either makes the current running log transaction wait
211 * until you call btrfs_end_log_trans() or it makes any future
212 * log transactions wait until you call btrfs_end_log_trans()
213 */
45128b08 214void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 215{
12fcfd22 216 atomic_inc(&root->log_writers);
12fcfd22
CM
217}
218
e02119d5
CM
219/*
220 * indicate we're done making changes to the log tree
221 * and wake up anyone waiting to do a sync
222 */
143bede5 223void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 224{
7237f183 225 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
226 /* atomic_dec_and_test implies a barrier */
227 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 228 }
e02119d5
CM
229}
230
247462a5
DS
231static int btrfs_write_tree_block(struct extent_buffer *buf)
232{
233 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 buf->start + buf->len - 1);
235}
236
237static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238{
239 filemap_fdatawait_range(buf->pages[0]->mapping,
240 buf->start, buf->start + buf->len - 1);
241}
e02119d5
CM
242
243/*
244 * the walk control struct is used to pass state down the chain when
245 * processing the log tree. The stage field tells us which part
246 * of the log tree processing we are currently doing. The others
247 * are state fields used for that specific part
248 */
249struct walk_control {
250 /* should we free the extent on disk when done? This is used
251 * at transaction commit time while freeing a log tree
252 */
253 int free;
254
255 /* should we write out the extent buffer? This is used
256 * while flushing the log tree to disk during a sync
257 */
258 int write;
259
260 /* should we wait for the extent buffer io to finish? Also used
261 * while flushing the log tree to disk for a sync
262 */
263 int wait;
264
265 /* pin only walk, we record which extents on disk belong to the
266 * log trees
267 */
268 int pin;
269
270 /* what stage of the replay code we're currently in */
271 int stage;
272
f2d72f42
FM
273 /*
274 * Ignore any items from the inode currently being processed. Needs
275 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 * the LOG_WALK_REPLAY_INODES stage.
277 */
278 bool ignore_cur_inode;
279
e02119d5
CM
280 /* the root we are currently replaying */
281 struct btrfs_root *replay_dest;
282
283 /* the trans handle for the current replay */
284 struct btrfs_trans_handle *trans;
285
286 /* the function that gets used to process blocks we find in the
287 * tree. Note the extent_buffer might not be up to date when it is
288 * passed in, and it must be checked or read if you need the data
289 * inside it
290 */
291 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 292 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
293};
294
295/*
296 * process_func used to pin down extents, write them or wait on them
297 */
298static int process_one_buffer(struct btrfs_root *log,
299 struct extent_buffer *eb,
581c1760 300 struct walk_control *wc, u64 gen, int level)
e02119d5 301{
0b246afa 302 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
303 int ret = 0;
304
8c2a1a30
JB
305 /*
306 * If this fs is mixed then we need to be able to process the leaves to
307 * pin down any logged extents, so we have to read the block.
308 */
0b246afa 309 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 310 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
311 if (ret)
312 return ret;
313 }
314
04018de5 315 if (wc->pin)
9fce5704 316 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 317 eb->len);
e02119d5 318
b50c6e25 319 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 320 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 321 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
322 if (wc->write)
323 btrfs_write_tree_block(eb);
324 if (wc->wait)
325 btrfs_wait_tree_block_writeback(eb);
326 }
b50c6e25 327 return ret;
e02119d5
CM
328}
329
330/*
331 * Item overwrite used by replay and tree logging. eb, slot and key all refer
332 * to the src data we are copying out.
333 *
334 * root is the tree we are copying into, and path is a scratch
335 * path for use in this function (it should be released on entry and
336 * will be released on exit).
337 *
338 * If the key is already in the destination tree the existing item is
339 * overwritten. If the existing item isn't big enough, it is extended.
340 * If it is too large, it is truncated.
341 *
342 * If the key isn't in the destination yet, a new item is inserted.
343 */
344static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 struct btrfs_root *root,
346 struct btrfs_path *path,
347 struct extent_buffer *eb, int slot,
348 struct btrfs_key *key)
349{
350 int ret;
351 u32 item_size;
352 u64 saved_i_size = 0;
353 int save_old_i_size = 0;
354 unsigned long src_ptr;
355 unsigned long dst_ptr;
356 int overwrite_root = 0;
4bc4bee4 357 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
358
359 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 overwrite_root = 1;
361
362 item_size = btrfs_item_size_nr(eb, slot);
363 src_ptr = btrfs_item_ptr_offset(eb, slot);
364
365 /* look for the key in the destination tree */
366 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
367 if (ret < 0)
368 return ret;
369
e02119d5
CM
370 if (ret == 0) {
371 char *src_copy;
372 char *dst_copy;
373 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 path->slots[0]);
375 if (dst_size != item_size)
376 goto insert;
377
378 if (item_size == 0) {
b3b4aa74 379 btrfs_release_path(path);
e02119d5
CM
380 return 0;
381 }
382 dst_copy = kmalloc(item_size, GFP_NOFS);
383 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 384 if (!dst_copy || !src_copy) {
b3b4aa74 385 btrfs_release_path(path);
2a29edc6 386 kfree(dst_copy);
387 kfree(src_copy);
388 return -ENOMEM;
389 }
e02119d5
CM
390
391 read_extent_buffer(eb, src_copy, src_ptr, item_size);
392
393 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 item_size);
396 ret = memcmp(dst_copy, src_copy, item_size);
397
398 kfree(dst_copy);
399 kfree(src_copy);
400 /*
401 * they have the same contents, just return, this saves
402 * us from cowing blocks in the destination tree and doing
403 * extra writes that may not have been done by a previous
404 * sync
405 */
406 if (ret == 0) {
b3b4aa74 407 btrfs_release_path(path);
e02119d5
CM
408 return 0;
409 }
410
4bc4bee4
JB
411 /*
412 * We need to load the old nbytes into the inode so when we
413 * replay the extents we've logged we get the right nbytes.
414 */
415 if (inode_item) {
416 struct btrfs_inode_item *item;
417 u64 nbytes;
d555438b 418 u32 mode;
4bc4bee4
JB
419
420 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 struct btrfs_inode_item);
422 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 item = btrfs_item_ptr(eb, slot,
424 struct btrfs_inode_item);
425 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
426
427 /*
428 * If this is a directory we need to reset the i_size to
429 * 0 so that we can set it up properly when replaying
430 * the rest of the items in this log.
431 */
432 mode = btrfs_inode_mode(eb, item);
433 if (S_ISDIR(mode))
434 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
435 }
436 } else if (inode_item) {
437 struct btrfs_inode_item *item;
d555438b 438 u32 mode;
4bc4bee4
JB
439
440 /*
441 * New inode, set nbytes to 0 so that the nbytes comes out
442 * properly when we replay the extents.
443 */
444 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
446
447 /*
448 * If this is a directory we need to reset the i_size to 0 so
449 * that we can set it up properly when replaying the rest of
450 * the items in this log.
451 */
452 mode = btrfs_inode_mode(eb, item);
453 if (S_ISDIR(mode))
454 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
455 }
456insert:
b3b4aa74 457 btrfs_release_path(path);
e02119d5 458 /* try to insert the key into the destination tree */
df8d116f 459 path->skip_release_on_error = 1;
e02119d5
CM
460 ret = btrfs_insert_empty_item(trans, root, path,
461 key, item_size);
df8d116f 462 path->skip_release_on_error = 0;
e02119d5
CM
463
464 /* make sure any existing item is the correct size */
df8d116f 465 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
466 u32 found_size;
467 found_size = btrfs_item_size_nr(path->nodes[0],
468 path->slots[0]);
143bede5 469 if (found_size > item_size)
78ac4f9e 470 btrfs_truncate_item(path, item_size, 1);
143bede5 471 else if (found_size < item_size)
c71dd880 472 btrfs_extend_item(path, item_size - found_size);
e02119d5 473 } else if (ret) {
4a500fd1 474 return ret;
e02119d5
CM
475 }
476 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 path->slots[0]);
478
479 /* don't overwrite an existing inode if the generation number
480 * was logged as zero. This is done when the tree logging code
481 * is just logging an inode to make sure it exists after recovery.
482 *
483 * Also, don't overwrite i_size on directories during replay.
484 * log replay inserts and removes directory items based on the
485 * state of the tree found in the subvolume, and i_size is modified
486 * as it goes
487 */
488 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 struct btrfs_inode_item *src_item;
490 struct btrfs_inode_item *dst_item;
491
492 src_item = (struct btrfs_inode_item *)src_ptr;
493 dst_item = (struct btrfs_inode_item *)dst_ptr;
494
1a4bcf47
FM
495 if (btrfs_inode_generation(eb, src_item) == 0) {
496 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 497 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 498
2f2ff0ee
FM
499 /*
500 * For regular files an ino_size == 0 is used only when
501 * logging that an inode exists, as part of a directory
502 * fsync, and the inode wasn't fsynced before. In this
503 * case don't set the size of the inode in the fs/subvol
504 * tree, otherwise we would be throwing valid data away.
505 */
1a4bcf47 506 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 507 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
508 ino_size != 0)
509 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 510 goto no_copy;
1a4bcf47 511 }
e02119d5
CM
512
513 if (overwrite_root &&
514 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 save_old_i_size = 1;
517 saved_i_size = btrfs_inode_size(path->nodes[0],
518 dst_item);
519 }
520 }
521
522 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 src_ptr, item_size);
524
525 if (save_old_i_size) {
526 struct btrfs_inode_item *dst_item;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 }
530
531 /* make sure the generation is filled in */
532 if (key->type == BTRFS_INODE_ITEM_KEY) {
533 struct btrfs_inode_item *dst_item;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 btrfs_set_inode_generation(path->nodes[0], dst_item,
537 trans->transid);
538 }
539 }
540no_copy:
541 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 542 btrfs_release_path(path);
e02119d5
CM
543 return 0;
544}
545
546/*
547 * simple helper to read an inode off the disk from a given root
548 * This can only be called for subvolume roots and not for the log
549 */
550static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 u64 objectid)
552{
553 struct inode *inode;
e02119d5 554
0202e83f 555 inode = btrfs_iget(root->fs_info->sb, objectid, root);
2e19f1f9 556 if (IS_ERR(inode))
5d4f98a2 557 inode = NULL;
e02119d5
CM
558 return inode;
559}
560
561/* replays a single extent in 'eb' at 'slot' with 'key' into the
562 * subvolume 'root'. path is released on entry and should be released
563 * on exit.
564 *
565 * extents in the log tree have not been allocated out of the extent
566 * tree yet. So, this completes the allocation, taking a reference
567 * as required if the extent already exists or creating a new extent
568 * if it isn't in the extent allocation tree yet.
569 *
570 * The extent is inserted into the file, dropping any existing extents
571 * from the file that overlap the new one.
572 */
573static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
574 struct btrfs_root *root,
575 struct btrfs_path *path,
576 struct extent_buffer *eb, int slot,
577 struct btrfs_key *key)
578{
5893dfb9 579 struct btrfs_drop_extents_args drop_args = { 0 };
0b246afa 580 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 581 int found_type;
e02119d5 582 u64 extent_end;
e02119d5 583 u64 start = key->offset;
4bc4bee4 584 u64 nbytes = 0;
e02119d5
CM
585 struct btrfs_file_extent_item *item;
586 struct inode *inode = NULL;
587 unsigned long size;
588 int ret = 0;
589
590 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
591 found_type = btrfs_file_extent_type(eb, item);
592
d899e052 593 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
594 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
595 nbytes = btrfs_file_extent_num_bytes(eb, item);
596 extent_end = start + nbytes;
597
598 /*
599 * We don't add to the inodes nbytes if we are prealloc or a
600 * hole.
601 */
602 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
603 nbytes = 0;
604 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 605 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 606 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 607 extent_end = ALIGN(start + size,
0b246afa 608 fs_info->sectorsize);
e02119d5
CM
609 } else {
610 ret = 0;
611 goto out;
612 }
613
614 inode = read_one_inode(root, key->objectid);
615 if (!inode) {
616 ret = -EIO;
617 goto out;
618 }
619
620 /*
621 * first check to see if we already have this extent in the
622 * file. This must be done before the btrfs_drop_extents run
623 * so we don't try to drop this extent.
624 */
f85b7379
DS
625 ret = btrfs_lookup_file_extent(trans, root, path,
626 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 627
d899e052
YZ
628 if (ret == 0 &&
629 (found_type == BTRFS_FILE_EXTENT_REG ||
630 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
631 struct btrfs_file_extent_item cmp1;
632 struct btrfs_file_extent_item cmp2;
633 struct btrfs_file_extent_item *existing;
634 struct extent_buffer *leaf;
635
636 leaf = path->nodes[0];
637 existing = btrfs_item_ptr(leaf, path->slots[0],
638 struct btrfs_file_extent_item);
639
640 read_extent_buffer(eb, &cmp1, (unsigned long)item,
641 sizeof(cmp1));
642 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
643 sizeof(cmp2));
644
645 /*
646 * we already have a pointer to this exact extent,
647 * we don't have to do anything
648 */
649 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 650 btrfs_release_path(path);
e02119d5
CM
651 goto out;
652 }
653 }
b3b4aa74 654 btrfs_release_path(path);
e02119d5
CM
655
656 /* drop any overlapping extents */
5893dfb9
FM
657 drop_args.start = start;
658 drop_args.end = extent_end;
659 drop_args.drop_cache = true;
660 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
3650860b
JB
661 if (ret)
662 goto out;
e02119d5 663
07d400a6
YZ
664 if (found_type == BTRFS_FILE_EXTENT_REG ||
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 666 u64 offset;
07d400a6
YZ
667 unsigned long dest_offset;
668 struct btrfs_key ins;
669
3168021c
FM
670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
671 btrfs_fs_incompat(fs_info, NO_HOLES))
672 goto update_inode;
673
07d400a6
YZ
674 ret = btrfs_insert_empty_item(trans, root, path, key,
675 sizeof(*item));
3650860b
JB
676 if (ret)
677 goto out;
07d400a6
YZ
678 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 path->slots[0]);
680 copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 (unsigned long)item, sizeof(*item));
682
683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 686 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 687
df2c95f3
QW
688 /*
689 * Manually record dirty extent, as here we did a shallow
690 * file extent item copy and skip normal backref update,
691 * but modifying extent tree all by ourselves.
692 * So need to manually record dirty extent for qgroup,
693 * as the owner of the file extent changed from log tree
694 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 */
a95f3aaf 696 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
697 btrfs_file_extent_disk_bytenr(eb, item),
698 btrfs_file_extent_disk_num_bytes(eb, item),
699 GFP_NOFS);
700 if (ret < 0)
701 goto out;
702
07d400a6 703 if (ins.objectid > 0) {
82fa113f 704 struct btrfs_ref ref = { 0 };
07d400a6
YZ
705 u64 csum_start;
706 u64 csum_end;
707 LIST_HEAD(ordered_sums);
82fa113f 708
07d400a6
YZ
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
2ff7e61e 713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
714 ins.offset);
715 if (ret == 0) {
82fa113f
QW
716 btrfs_init_generic_ref(&ref,
717 BTRFS_ADD_DELAYED_REF,
718 ins.objectid, ins.offset, 0);
719 btrfs_init_data_ref(&ref,
720 root->root_key.objectid,
b06c4bf5 721 key->objectid, offset);
82fa113f 722 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
723 if (ret)
724 goto out;
07d400a6
YZ
725 } else {
726 /*
727 * insert the extent pointer in the extent
728 * allocation tree
729 */
5d4f98a2 730 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 731 root->root_key.objectid,
5d4f98a2 732 key->objectid, offset, &ins);
b50c6e25
JB
733 if (ret)
734 goto out;
07d400a6 735 }
b3b4aa74 736 btrfs_release_path(path);
07d400a6
YZ
737
738 if (btrfs_file_extent_compression(eb, item)) {
739 csum_start = ins.objectid;
740 csum_end = csum_start + ins.offset;
741 } else {
742 csum_start = ins.objectid +
743 btrfs_file_extent_offset(eb, item);
744 csum_end = csum_start +
745 btrfs_file_extent_num_bytes(eb, item);
746 }
747
748 ret = btrfs_lookup_csums_range(root->log_root,
749 csum_start, csum_end - 1,
a2de733c 750 &ordered_sums, 0);
3650860b
JB
751 if (ret)
752 goto out;
b84b8390
FM
753 /*
754 * Now delete all existing cums in the csum root that
755 * cover our range. We do this because we can have an
756 * extent that is completely referenced by one file
757 * extent item and partially referenced by another
758 * file extent item (like after using the clone or
759 * extent_same ioctls). In this case if we end up doing
760 * the replay of the one that partially references the
761 * extent first, and we do not do the csum deletion
762 * below, we can get 2 csum items in the csum tree that
763 * overlap each other. For example, imagine our log has
764 * the two following file extent items:
765 *
766 * key (257 EXTENT_DATA 409600)
767 * extent data disk byte 12845056 nr 102400
768 * extent data offset 20480 nr 20480 ram 102400
769 *
770 * key (257 EXTENT_DATA 819200)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 0 nr 102400 ram 102400
773 *
774 * Where the second one fully references the 100K extent
775 * that starts at disk byte 12845056, and the log tree
776 * has a single csum item that covers the entire range
777 * of the extent:
778 *
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 *
781 * After the first file extent item is replayed, the
782 * csum tree gets the following csum item:
783 *
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which covers the 20K sub-range starting at offset 20K
787 * of our extent. Now when we replay the second file
788 * extent item, if we do not delete existing csum items
789 * that cover any of its blocks, we end up getting two
790 * csum items in our csum tree that overlap each other:
791 *
792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 *
795 * Which is a problem, because after this anyone trying
796 * to lookup up for the checksum of any block of our
797 * extent starting at an offset of 40K or higher, will
798 * end up looking at the second csum item only, which
799 * does not contain the checksum for any block starting
800 * at offset 40K or higher of our extent.
801 */
07d400a6
YZ
802 while (!list_empty(&ordered_sums)) {
803 struct btrfs_ordered_sum *sums;
804 sums = list_entry(ordered_sums.next,
805 struct btrfs_ordered_sum,
806 list);
b84b8390 807 if (!ret)
40e046ac
FM
808 ret = btrfs_del_csums(trans,
809 fs_info->csum_root,
5b4aacef
JM
810 sums->bytenr,
811 sums->len);
3650860b
JB
812 if (!ret)
813 ret = btrfs_csum_file_blocks(trans,
0b246afa 814 fs_info->csum_root, sums);
07d400a6
YZ
815 list_del(&sums->list);
816 kfree(sums);
817 }
3650860b
JB
818 if (ret)
819 goto out;
07d400a6 820 } else {
b3b4aa74 821 btrfs_release_path(path);
07d400a6
YZ
822 }
823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
824 /* inline extents are easy, we just overwrite them */
825 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
826 if (ret)
827 goto out;
07d400a6 828 }
e02119d5 829
9ddc959e
JB
830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
831 extent_end - start);
832 if (ret)
833 goto out;
834
3168021c 835update_inode:
2766ff61 836 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
9a56fcd1 837 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
838out:
839 if (inode)
840 iput(inode);
841 return ret;
842}
843
844/*
845 * when cleaning up conflicts between the directory names in the
846 * subvolume, directory names in the log and directory names in the
847 * inode back references, we may have to unlink inodes from directories.
848 *
849 * This is a helper function to do the unlink of a specific directory
850 * item
851 */
852static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
853 struct btrfs_root *root,
854 struct btrfs_path *path,
207e7d92 855 struct btrfs_inode *dir,
e02119d5
CM
856 struct btrfs_dir_item *di)
857{
858 struct inode *inode;
859 char *name;
860 int name_len;
861 struct extent_buffer *leaf;
862 struct btrfs_key location;
863 int ret;
864
865 leaf = path->nodes[0];
866
867 btrfs_dir_item_key_to_cpu(leaf, di, &location);
868 name_len = btrfs_dir_name_len(leaf, di);
869 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 870 if (!name)
871 return -ENOMEM;
872
e02119d5 873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 874 btrfs_release_path(path);
e02119d5
CM
875
876 inode = read_one_inode(root, location.objectid);
c00e9493 877 if (!inode) {
3650860b
JB
878 ret = -EIO;
879 goto out;
c00e9493 880 }
e02119d5 881
ec051c0f 882 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
883 if (ret)
884 goto out;
12fcfd22 885
207e7d92
NB
886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
887 name_len);
3650860b
JB
888 if (ret)
889 goto out;
ada9af21 890 else
e5c304e6 891 ret = btrfs_run_delayed_items(trans);
3650860b 892out:
e02119d5 893 kfree(name);
e02119d5
CM
894 iput(inode);
895 return ret;
896}
897
898/*
899 * helper function to see if a given name and sequence number found
900 * in an inode back reference are already in a directory and correctly
901 * point to this inode
902 */
903static noinline int inode_in_dir(struct btrfs_root *root,
904 struct btrfs_path *path,
905 u64 dirid, u64 objectid, u64 index,
906 const char *name, int name_len)
907{
908 struct btrfs_dir_item *di;
909 struct btrfs_key location;
910 int match = 0;
911
912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 index, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
b3b4aa74 920 btrfs_release_path(path);
e02119d5
CM
921
922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
923 if (di && !IS_ERR(di)) {
924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 if (location.objectid != objectid)
926 goto out;
927 } else
928 goto out;
929 match = 1;
930out:
b3b4aa74 931 btrfs_release_path(path);
e02119d5
CM
932 return match;
933}
934
935/*
936 * helper function to check a log tree for a named back reference in
937 * an inode. This is used to decide if a back reference that is
938 * found in the subvolume conflicts with what we find in the log.
939 *
940 * inode backreferences may have multiple refs in a single item,
941 * during replay we process one reference at a time, and we don't
942 * want to delete valid links to a file from the subvolume if that
943 * link is also in the log.
944 */
945static noinline int backref_in_log(struct btrfs_root *log,
946 struct btrfs_key *key,
f186373f 947 u64 ref_objectid,
df8d116f 948 const char *name, int namelen)
e02119d5
CM
949{
950 struct btrfs_path *path;
e02119d5 951 int ret;
e02119d5
CM
952
953 path = btrfs_alloc_path();
2a29edc6 954 if (!path)
955 return -ENOMEM;
956
e02119d5 957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
958 if (ret < 0) {
959 goto out;
960 } else if (ret == 1) {
89cbf5f6 961 ret = 0;
f186373f
MF
962 goto out;
963 }
964
89cbf5f6
NB
965 if (key->type == BTRFS_INODE_EXTREF_KEY)
966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
967 path->slots[0],
968 ref_objectid,
969 name, namelen);
970 else
971 ret = !!btrfs_find_name_in_backref(path->nodes[0],
972 path->slots[0],
973 name, namelen);
e02119d5
CM
974out:
975 btrfs_free_path(path);
89cbf5f6 976 return ret;
e02119d5
CM
977}
978
5a1d7843 979static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 980 struct btrfs_root *root,
e02119d5 981 struct btrfs_path *path,
5a1d7843 982 struct btrfs_root *log_root,
94c91a1f
NB
983 struct btrfs_inode *dir,
984 struct btrfs_inode *inode,
f186373f
MF
985 u64 inode_objectid, u64 parent_objectid,
986 u64 ref_index, char *name, int namelen,
987 int *search_done)
e02119d5 988{
34f3e4f2 989 int ret;
f186373f
MF
990 char *victim_name;
991 int victim_name_len;
992 struct extent_buffer *leaf;
5a1d7843 993 struct btrfs_dir_item *di;
f186373f
MF
994 struct btrfs_key search_key;
995 struct btrfs_inode_extref *extref;
c622ae60 996
f186373f
MF
997again:
998 /* Search old style refs */
999 search_key.objectid = inode_objectid;
1000 search_key.type = BTRFS_INODE_REF_KEY;
1001 search_key.offset = parent_objectid;
1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1003 if (ret == 0) {
e02119d5
CM
1004 struct btrfs_inode_ref *victim_ref;
1005 unsigned long ptr;
1006 unsigned long ptr_end;
f186373f
MF
1007
1008 leaf = path->nodes[0];
e02119d5
CM
1009
1010 /* are we trying to overwrite a back ref for the root directory
1011 * if so, just jump out, we're done
1012 */
f186373f 1013 if (search_key.objectid == search_key.offset)
5a1d7843 1014 return 1;
e02119d5
CM
1015
1016 /* check all the names in this back reference to see
1017 * if they are in the log. if so, we allow them to stay
1018 * otherwise they must be unlinked as a conflict
1019 */
1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1022 while (ptr < ptr_end) {
e02119d5
CM
1023 victim_ref = (struct btrfs_inode_ref *)ptr;
1024 victim_name_len = btrfs_inode_ref_name_len(leaf,
1025 victim_ref);
1026 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1027 if (!victim_name)
1028 return -ENOMEM;
e02119d5
CM
1029
1030 read_extent_buffer(leaf, victim_name,
1031 (unsigned long)(victim_ref + 1),
1032 victim_name_len);
1033
d3316c82
NB
1034 ret = backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len);
1037 if (ret < 0) {
1038 kfree(victim_name);
1039 return ret;
1040 } else if (!ret) {
94c91a1f 1041 inc_nlink(&inode->vfs_inode);
b3b4aa74 1042 btrfs_release_path(path);
12fcfd22 1043
94c91a1f 1044 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1045 victim_name, victim_name_len);
f186373f 1046 kfree(victim_name);
3650860b
JB
1047 if (ret)
1048 return ret;
e5c304e6 1049 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1050 if (ret)
1051 return ret;
f186373f
MF
1052 *search_done = 1;
1053 goto again;
e02119d5
CM
1054 }
1055 kfree(victim_name);
f186373f 1056
e02119d5
CM
1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 }
e02119d5 1059
c622ae60 1060 /*
1061 * NOTE: we have searched root tree and checked the
bb7ab3b9 1062 * corresponding ref, it does not need to check again.
c622ae60 1063 */
5a1d7843 1064 *search_done = 1;
e02119d5 1065 }
b3b4aa74 1066 btrfs_release_path(path);
e02119d5 1067
f186373f
MF
1068 /* Same search but for extended refs */
1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 inode_objectid, parent_objectid, 0,
1071 0);
1072 if (!IS_ERR_OR_NULL(extref)) {
1073 u32 item_size;
1074 u32 cur_offset = 0;
1075 unsigned long base;
1076 struct inode *victim_parent;
1077
1078 leaf = path->nodes[0];
1079
1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082
1083 while (cur_offset < item_size) {
dd9ef135 1084 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1085
1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087
1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 goto next;
1090
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1092 if (!victim_name)
1093 return -ENOMEM;
f186373f
MF
1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 victim_name_len);
1096
1097 search_key.objectid = inode_objectid;
1098 search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 search_key.offset = btrfs_extref_hash(parent_objectid,
1100 victim_name,
1101 victim_name_len);
d3316c82
NB
1102 ret = backref_in_log(log_root, &search_key,
1103 parent_objectid, victim_name,
1104 victim_name_len);
1105 if (ret < 0) {
1106 return ret;
1107 } else if (!ret) {
f186373f
MF
1108 ret = -ENOENT;
1109 victim_parent = read_one_inode(root,
94c91a1f 1110 parent_objectid);
f186373f 1111 if (victim_parent) {
94c91a1f 1112 inc_nlink(&inode->vfs_inode);
f186373f
MF
1113 btrfs_release_path(path);
1114
1115 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1116 BTRFS_I(victim_parent),
94c91a1f 1117 inode,
4ec5934e
NB
1118 victim_name,
1119 victim_name_len);
ada9af21
FDBM
1120 if (!ret)
1121 ret = btrfs_run_delayed_items(
e5c304e6 1122 trans);
f186373f 1123 }
f186373f
MF
1124 iput(victim_parent);
1125 kfree(victim_name);
3650860b
JB
1126 if (ret)
1127 return ret;
f186373f
MF
1128 *search_done = 1;
1129 goto again;
1130 }
1131 kfree(victim_name);
f186373f
MF
1132next:
1133 cur_offset += victim_name_len + sizeof(*extref);
1134 }
1135 *search_done = 1;
1136 }
1137 btrfs_release_path(path);
1138
34f3e4f2 1139 /* look for a conflicting sequence number */
94c91a1f 1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1141 ref_index, name, namelen, 0);
34f3e4f2 1142 if (di && !IS_ERR(di)) {
94c91a1f 1143 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1144 if (ret)
1145 return ret;
34f3e4f2 1146 }
1147 btrfs_release_path(path);
1148
52042d8e 1149 /* look for a conflicting name */
94c91a1f 1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1151 name, namelen, 0);
1152 if (di && !IS_ERR(di)) {
94c91a1f 1153 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1154 if (ret)
1155 return ret;
34f3e4f2 1156 }
1157 btrfs_release_path(path);
1158
5a1d7843
JS
1159 return 0;
1160}
e02119d5 1161
bae15d95
QW
1162static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163 u32 *namelen, char **name, u64 *index,
1164 u64 *parent_objectid)
f186373f
MF
1165{
1166 struct btrfs_inode_extref *extref;
1167
1168 extref = (struct btrfs_inode_extref *)ref_ptr;
1169
1170 *namelen = btrfs_inode_extref_name_len(eb, extref);
1171 *name = kmalloc(*namelen, GFP_NOFS);
1172 if (*name == NULL)
1173 return -ENOMEM;
1174
1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176 *namelen);
1177
1f250e92
FM
1178 if (index)
1179 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1180 if (parent_objectid)
1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182
1183 return 0;
1184}
1185
bae15d95
QW
1186static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187 u32 *namelen, char **name, u64 *index)
f186373f
MF
1188{
1189 struct btrfs_inode_ref *ref;
1190
1191 ref = (struct btrfs_inode_ref *)ref_ptr;
1192
1193 *namelen = btrfs_inode_ref_name_len(eb, ref);
1194 *name = kmalloc(*namelen, GFP_NOFS);
1195 if (*name == NULL)
1196 return -ENOMEM;
1197
1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199
1f250e92
FM
1200 if (index)
1201 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1202
1203 return 0;
1204}
1205
1f250e92
FM
1206/*
1207 * Take an inode reference item from the log tree and iterate all names from the
1208 * inode reference item in the subvolume tree with the same key (if it exists).
1209 * For any name that is not in the inode reference item from the log tree, do a
1210 * proper unlink of that name (that is, remove its entry from the inode
1211 * reference item and both dir index keys).
1212 */
1213static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 struct btrfs_path *path,
1216 struct btrfs_inode *inode,
1217 struct extent_buffer *log_eb,
1218 int log_slot,
1219 struct btrfs_key *key)
1220{
1221 int ret;
1222 unsigned long ref_ptr;
1223 unsigned long ref_end;
1224 struct extent_buffer *eb;
1225
1226again:
1227 btrfs_release_path(path);
1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229 if (ret > 0) {
1230 ret = 0;
1231 goto out;
1232 }
1233 if (ret < 0)
1234 goto out;
1235
1236 eb = path->nodes[0];
1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239 while (ref_ptr < ref_end) {
1240 char *name = NULL;
1241 int namelen;
1242 u64 parent_id;
1243
1244 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 NULL, &parent_id);
1247 } else {
1248 parent_id = key->offset;
1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250 NULL);
1251 }
1252 if (ret)
1253 goto out;
1254
1255 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257 parent_id, name,
1258 namelen);
1f250e92 1259 else
9bb8407f
NB
1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261 name, namelen);
1f250e92
FM
1262
1263 if (!ret) {
1264 struct inode *dir;
1265
1266 btrfs_release_path(path);
1267 dir = read_one_inode(root, parent_id);
1268 if (!dir) {
1269 ret = -ENOENT;
1270 kfree(name);
1271 goto out;
1272 }
1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274 inode, name, namelen);
1275 kfree(name);
1276 iput(dir);
1277 if (ret)
1278 goto out;
1279 goto again;
1280 }
1281
1282 kfree(name);
1283 ref_ptr += namelen;
1284 if (key->type == BTRFS_INODE_EXTREF_KEY)
1285 ref_ptr += sizeof(struct btrfs_inode_extref);
1286 else
1287 ref_ptr += sizeof(struct btrfs_inode_ref);
1288 }
1289 ret = 0;
1290 out:
1291 btrfs_release_path(path);
1292 return ret;
1293}
1294
0d836392
FM
1295static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296 const u8 ref_type, const char *name,
1297 const int namelen)
1298{
1299 struct btrfs_key key;
1300 struct btrfs_path *path;
1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302 int ret;
1303
1304 path = btrfs_alloc_path();
1305 if (!path)
1306 return -ENOMEM;
1307
1308 key.objectid = btrfs_ino(BTRFS_I(inode));
1309 key.type = ref_type;
1310 if (key.type == BTRFS_INODE_REF_KEY)
1311 key.offset = parent_id;
1312 else
1313 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314
1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316 if (ret < 0)
1317 goto out;
1318 if (ret > 0) {
1319 ret = 0;
1320 goto out;
1321 }
1322 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324 path->slots[0], parent_id, name, namelen);
0d836392 1325 else
9bb8407f
NB
1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 name, namelen);
0d836392
FM
1328
1329out:
1330 btrfs_free_path(path);
1331 return ret;
1332}
1333
6b5fc433
FM
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 struct inode *dir, struct inode *inode, const char *name,
1336 int namelen, u64 ref_index)
1337{
1338 struct btrfs_dir_item *dir_item;
1339 struct btrfs_key key;
1340 struct btrfs_path *path;
1341 struct inode *other_inode = NULL;
1342 int ret;
1343
1344 path = btrfs_alloc_path();
1345 if (!path)
1346 return -ENOMEM;
1347
1348 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 btrfs_ino(BTRFS_I(dir)),
1350 name, namelen, 0);
1351 if (!dir_item) {
1352 btrfs_release_path(path);
1353 goto add_link;
1354 } else if (IS_ERR(dir_item)) {
1355 ret = PTR_ERR(dir_item);
1356 goto out;
1357 }
1358
1359 /*
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1363 */
1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 btrfs_release_path(path);
1366 other_inode = read_one_inode(root, key.objectid);
1367 if (!other_inode) {
1368 ret = -ENOENT;
1369 goto out;
1370 }
1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 name, namelen);
1373 if (ret)
1374 goto out;
1375 /*
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1378 */
1379 if (other_inode->i_nlink == 0)
1380 inc_nlink(other_inode);
1381
1382 ret = btrfs_run_delayed_items(trans);
1383 if (ret)
1384 goto out;
1385add_link:
1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 name, namelen, 0, ref_index);
1388out:
1389 iput(other_inode);
1390 btrfs_free_path(path);
1391
1392 return ret;
1393}
1394
5a1d7843
JS
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_root *log,
1404 struct btrfs_path *path,
1405 struct extent_buffer *eb, int slot,
1406 struct btrfs_key *key)
1407{
03b2f08b
GB
1408 struct inode *dir = NULL;
1409 struct inode *inode = NULL;
5a1d7843
JS
1410 unsigned long ref_ptr;
1411 unsigned long ref_end;
03b2f08b 1412 char *name = NULL;
5a1d7843
JS
1413 int namelen;
1414 int ret;
1415 int search_done = 0;
f186373f
MF
1416 int log_ref_ver = 0;
1417 u64 parent_objectid;
1418 u64 inode_objectid;
f46dbe3d 1419 u64 ref_index = 0;
f186373f
MF
1420 int ref_struct_size;
1421
1422 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 struct btrfs_inode_extref *r;
1427
1428 ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 log_ref_ver = 1;
1430 r = (struct btrfs_inode_extref *)ref_ptr;
1431 parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 } else {
1433 ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 parent_objectid = key->offset;
1435 }
1436 inode_objectid = key->objectid;
e02119d5 1437
5a1d7843
JS
1438 /*
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1442 * care of the rest
1443 */
f186373f 1444 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1445 if (!dir) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
5a1d7843 1449
f186373f 1450 inode = read_one_inode(root, inode_objectid);
5a1d7843 1451 if (!inode) {
03b2f08b
GB
1452 ret = -EIO;
1453 goto out;
5a1d7843
JS
1454 }
1455
5a1d7843 1456 while (ref_ptr < ref_end) {
f186373f 1457 if (log_ref_ver) {
bae15d95
QW
1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 &ref_index, &parent_objectid);
f186373f
MF
1460 /*
1461 * parent object can change from one array
1462 * item to another.
1463 */
1464 if (!dir)
1465 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1466 if (!dir) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
f186373f 1470 } else {
bae15d95
QW
1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 &ref_index);
f186373f
MF
1473 }
1474 if (ret)
03b2f08b 1475 goto out;
5a1d7843
JS
1476
1477 /* if we already have a perfect match, we're done */
f85b7379
DS
1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 btrfs_ino(BTRFS_I(inode)), ref_index,
1480 name, namelen)) {
5a1d7843
JS
1481 /*
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1487 */
1488
1489 if (!search_done) {
1490 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1491 BTRFS_I(dir),
d75eefdf 1492 BTRFS_I(inode),
f186373f
MF
1493 inode_objectid,
1494 parent_objectid,
1495 ref_index, name, namelen,
5a1d7843 1496 &search_done);
03b2f08b
GB
1497 if (ret) {
1498 if (ret == 1)
1499 ret = 0;
3650860b
JB
1500 goto out;
1501 }
5a1d7843
JS
1502 }
1503
0d836392
FM
1504 /*
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1511 */
1512 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 name, namelen);
1514 if (ret > 0) {
1515 ret = btrfs_unlink_inode(trans, root,
1516 BTRFS_I(dir),
1517 BTRFS_I(inode),
1518 name, namelen);
1519 /*
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1523 */
1524 if (!ret && inode->i_nlink == 0)
1525 inc_nlink(inode);
1526 }
1527 if (ret < 0)
1528 goto out;
1529
5a1d7843 1530 /* insert our name */
6b5fc433
FM
1531 ret = add_link(trans, root, dir, inode, name, namelen,
1532 ref_index);
3650860b
JB
1533 if (ret)
1534 goto out;
5a1d7843 1535
9a56fcd1 1536 btrfs_update_inode(trans, root, BTRFS_I(inode));
5a1d7843
JS
1537 }
1538
f186373f 1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1540 kfree(name);
03b2f08b 1541 name = NULL;
f186373f
MF
1542 if (log_ref_ver) {
1543 iput(dir);
1544 dir = NULL;
1545 }
5a1d7843 1546 }
e02119d5 1547
1f250e92
FM
1548 /*
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1555 */
1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 key);
1558 if (ret)
1559 goto out;
1560
e02119d5
CM
1561 /* finally write the back reference in the inode */
1562 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1563out:
b3b4aa74 1564 btrfs_release_path(path);
03b2f08b 1565 kfree(name);
e02119d5
CM
1566 iput(dir);
1567 iput(inode);
3650860b 1568 return ret;
e02119d5
CM
1569}
1570
f186373f 1571static int count_inode_extrefs(struct btrfs_root *root,
36283658 1572 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1573{
1574 int ret = 0;
1575 int name_len;
1576 unsigned int nlink = 0;
1577 u32 item_size;
1578 u32 cur_offset = 0;
36283658 1579 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1580 u64 offset = 0;
1581 unsigned long ptr;
1582 struct btrfs_inode_extref *extref;
1583 struct extent_buffer *leaf;
1584
1585 while (1) {
1586 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1587 &extref, &offset);
1588 if (ret)
1589 break;
c71bf099 1590
f186373f
MF
1591 leaf = path->nodes[0];
1592 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1593 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1594 cur_offset = 0;
f186373f
MF
1595
1596 while (cur_offset < item_size) {
1597 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1598 name_len = btrfs_inode_extref_name_len(leaf, extref);
1599
1600 nlink++;
1601
1602 cur_offset += name_len + sizeof(*extref);
1603 }
1604
1605 offset++;
1606 btrfs_release_path(path);
1607 }
1608 btrfs_release_path(path);
1609
2c2c452b 1610 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1611 return ret;
1612 return nlink;
1613}
1614
1615static int count_inode_refs(struct btrfs_root *root,
f329e319 1616 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1617{
e02119d5
CM
1618 int ret;
1619 struct btrfs_key key;
f186373f 1620 unsigned int nlink = 0;
e02119d5
CM
1621 unsigned long ptr;
1622 unsigned long ptr_end;
1623 int name_len;
f329e319 1624 u64 ino = btrfs_ino(inode);
e02119d5 1625
33345d01 1626 key.objectid = ino;
e02119d5
CM
1627 key.type = BTRFS_INODE_REF_KEY;
1628 key.offset = (u64)-1;
1629
d397712b 1630 while (1) {
e02119d5
CM
1631 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1632 if (ret < 0)
1633 break;
1634 if (ret > 0) {
1635 if (path->slots[0] == 0)
1636 break;
1637 path->slots[0]--;
1638 }
e93ae26f 1639process_slot:
e02119d5
CM
1640 btrfs_item_key_to_cpu(path->nodes[0], &key,
1641 path->slots[0]);
33345d01 1642 if (key.objectid != ino ||
e02119d5
CM
1643 key.type != BTRFS_INODE_REF_KEY)
1644 break;
1645 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1646 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1647 path->slots[0]);
d397712b 1648 while (ptr < ptr_end) {
e02119d5
CM
1649 struct btrfs_inode_ref *ref;
1650
1651 ref = (struct btrfs_inode_ref *)ptr;
1652 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1653 ref);
1654 ptr = (unsigned long)(ref + 1) + name_len;
1655 nlink++;
1656 }
1657
1658 if (key.offset == 0)
1659 break;
e93ae26f
FDBM
1660 if (path->slots[0] > 0) {
1661 path->slots[0]--;
1662 goto process_slot;
1663 }
e02119d5 1664 key.offset--;
b3b4aa74 1665 btrfs_release_path(path);
e02119d5 1666 }
b3b4aa74 1667 btrfs_release_path(path);
f186373f
MF
1668
1669 return nlink;
1670}
1671
1672/*
1673 * There are a few corners where the link count of the file can't
1674 * be properly maintained during replay. So, instead of adding
1675 * lots of complexity to the log code, we just scan the backrefs
1676 * for any file that has been through replay.
1677 *
1678 * The scan will update the link count on the inode to reflect the
1679 * number of back refs found. If it goes down to zero, the iput
1680 * will free the inode.
1681 */
1682static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1683 struct btrfs_root *root,
1684 struct inode *inode)
1685{
1686 struct btrfs_path *path;
1687 int ret;
1688 u64 nlink = 0;
4a0cc7ca 1689 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1690
1691 path = btrfs_alloc_path();
1692 if (!path)
1693 return -ENOMEM;
1694
f329e319 1695 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1696 if (ret < 0)
1697 goto out;
1698
1699 nlink = ret;
1700
36283658 1701 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1702 if (ret < 0)
1703 goto out;
1704
1705 nlink += ret;
1706
1707 ret = 0;
1708
e02119d5 1709 if (nlink != inode->i_nlink) {
bfe86848 1710 set_nlink(inode, nlink);
9a56fcd1 1711 btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5 1712 }
8d5bf1cb 1713 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1714
c71bf099
YZ
1715 if (inode->i_nlink == 0) {
1716 if (S_ISDIR(inode->i_mode)) {
1717 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1718 ino, 1);
3650860b
JB
1719 if (ret)
1720 goto out;
c71bf099 1721 }
ecdcf3c2
NB
1722 ret = btrfs_insert_orphan_item(trans, root, ino);
1723 if (ret == -EEXIST)
1724 ret = 0;
12fcfd22 1725 }
12fcfd22 1726
f186373f
MF
1727out:
1728 btrfs_free_path(path);
1729 return ret;
e02119d5
CM
1730}
1731
1732static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1733 struct btrfs_root *root,
1734 struct btrfs_path *path)
1735{
1736 int ret;
1737 struct btrfs_key key;
1738 struct inode *inode;
1739
1740 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1741 key.type = BTRFS_ORPHAN_ITEM_KEY;
1742 key.offset = (u64)-1;
d397712b 1743 while (1) {
e02119d5
CM
1744 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1745 if (ret < 0)
1746 break;
1747
1748 if (ret == 1) {
1749 if (path->slots[0] == 0)
1750 break;
1751 path->slots[0]--;
1752 }
1753
1754 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1755 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1756 key.type != BTRFS_ORPHAN_ITEM_KEY)
1757 break;
1758
1759 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1760 if (ret)
1761 goto out;
e02119d5 1762
b3b4aa74 1763 btrfs_release_path(path);
e02119d5 1764 inode = read_one_inode(root, key.offset);
c00e9493
TI
1765 if (!inode)
1766 return -EIO;
e02119d5
CM
1767
1768 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1769 iput(inode);
3650860b
JB
1770 if (ret)
1771 goto out;
e02119d5 1772
12fcfd22
CM
1773 /*
1774 * fixup on a directory may create new entries,
1775 * make sure we always look for the highset possible
1776 * offset
1777 */
1778 key.offset = (u64)-1;
e02119d5 1779 }
65a246c5
TI
1780 ret = 0;
1781out:
b3b4aa74 1782 btrfs_release_path(path);
65a246c5 1783 return ret;
e02119d5
CM
1784}
1785
1786
1787/*
1788 * record a given inode in the fixup dir so we can check its link
1789 * count when replay is done. The link count is incremented here
1790 * so the inode won't go away until we check it
1791 */
1792static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1793 struct btrfs_root *root,
1794 struct btrfs_path *path,
1795 u64 objectid)
1796{
1797 struct btrfs_key key;
1798 int ret = 0;
1799 struct inode *inode;
1800
1801 inode = read_one_inode(root, objectid);
c00e9493
TI
1802 if (!inode)
1803 return -EIO;
e02119d5
CM
1804
1805 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1806 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1807 key.offset = objectid;
1808
1809 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1810
b3b4aa74 1811 btrfs_release_path(path);
e02119d5 1812 if (ret == 0) {
9bf7a489
JB
1813 if (!inode->i_nlink)
1814 set_nlink(inode, 1);
1815 else
8b558c5f 1816 inc_nlink(inode);
9a56fcd1 1817 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
e02119d5
CM
1818 } else if (ret == -EEXIST) {
1819 ret = 0;
1820 } else {
3650860b 1821 BUG(); /* Logic Error */
e02119d5
CM
1822 }
1823 iput(inode);
1824
1825 return ret;
1826}
1827
1828/*
1829 * when replaying the log for a directory, we only insert names
1830 * for inodes that actually exist. This means an fsync on a directory
1831 * does not implicitly fsync all the new files in it
1832 */
1833static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1834 struct btrfs_root *root,
e02119d5 1835 u64 dirid, u64 index,
60d53eb3 1836 char *name, int name_len,
e02119d5
CM
1837 struct btrfs_key *location)
1838{
1839 struct inode *inode;
1840 struct inode *dir;
1841 int ret;
1842
1843 inode = read_one_inode(root, location->objectid);
1844 if (!inode)
1845 return -ENOENT;
1846
1847 dir = read_one_inode(root, dirid);
1848 if (!dir) {
1849 iput(inode);
1850 return -EIO;
1851 }
d555438b 1852
db0a669f
NB
1853 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1854 name_len, 1, index);
e02119d5
CM
1855
1856 /* FIXME, put inode into FIXUP list */
1857
1858 iput(inode);
1859 iput(dir);
1860 return ret;
1861}
1862
1863/*
1864 * take a single entry in a log directory item and replay it into
1865 * the subvolume.
1866 *
1867 * if a conflicting item exists in the subdirectory already,
1868 * the inode it points to is unlinked and put into the link count
1869 * fix up tree.
1870 *
1871 * If a name from the log points to a file or directory that does
1872 * not exist in the FS, it is skipped. fsyncs on directories
1873 * do not force down inodes inside that directory, just changes to the
1874 * names or unlinks in a directory.
bb53eda9
FM
1875 *
1876 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1877 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1878 */
1879static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1880 struct btrfs_root *root,
1881 struct btrfs_path *path,
1882 struct extent_buffer *eb,
1883 struct btrfs_dir_item *di,
1884 struct btrfs_key *key)
1885{
1886 char *name;
1887 int name_len;
1888 struct btrfs_dir_item *dst_di;
1889 struct btrfs_key found_key;
1890 struct btrfs_key log_key;
1891 struct inode *dir;
e02119d5 1892 u8 log_type;
4bef0848 1893 int exists;
3650860b 1894 int ret = 0;
d555438b 1895 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1896 bool name_added = false;
e02119d5
CM
1897
1898 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1899 if (!dir)
1900 return -EIO;
e02119d5
CM
1901
1902 name_len = btrfs_dir_name_len(eb, di);
1903 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1904 if (!name) {
1905 ret = -ENOMEM;
1906 goto out;
1907 }
2a29edc6 1908
e02119d5
CM
1909 log_type = btrfs_dir_type(eb, di);
1910 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1911 name_len);
1912
1913 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1914 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1915 if (exists == 0)
1916 exists = 1;
1917 else
1918 exists = 0;
b3b4aa74 1919 btrfs_release_path(path);
4bef0848 1920
e02119d5
CM
1921 if (key->type == BTRFS_DIR_ITEM_KEY) {
1922 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1923 name, name_len, 1);
d397712b 1924 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1925 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1926 key->objectid,
1927 key->offset, name,
1928 name_len, 1);
1929 } else {
3650860b
JB
1930 /* Corruption */
1931 ret = -EINVAL;
1932 goto out;
e02119d5 1933 }
c704005d 1934 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1935 /* we need a sequence number to insert, so we only
1936 * do inserts for the BTRFS_DIR_INDEX_KEY types
1937 */
1938 if (key->type != BTRFS_DIR_INDEX_KEY)
1939 goto out;
1940 goto insert;
1941 }
1942
1943 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1944 /* the existing item matches the logged item */
1945 if (found_key.objectid == log_key.objectid &&
1946 found_key.type == log_key.type &&
1947 found_key.offset == log_key.offset &&
1948 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1949 update_size = false;
e02119d5
CM
1950 goto out;
1951 }
1952
1953 /*
1954 * don't drop the conflicting directory entry if the inode
1955 * for the new entry doesn't exist
1956 */
4bef0848 1957 if (!exists)
e02119d5
CM
1958 goto out;
1959
207e7d92 1960 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1961 if (ret)
1962 goto out;
e02119d5
CM
1963
1964 if (key->type == BTRFS_DIR_INDEX_KEY)
1965 goto insert;
1966out:
b3b4aa74 1967 btrfs_release_path(path);
d555438b 1968 if (!ret && update_size) {
6ef06d27 1969 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
9a56fcd1 1970 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
d555438b 1971 }
e02119d5
CM
1972 kfree(name);
1973 iput(dir);
bb53eda9
FM
1974 if (!ret && name_added)
1975 ret = 1;
3650860b 1976 return ret;
e02119d5
CM
1977
1978insert:
725af92a
NB
1979 /*
1980 * Check if the inode reference exists in the log for the given name,
1981 * inode and parent inode
1982 */
1983 found_key.objectid = log_key.objectid;
1984 found_key.type = BTRFS_INODE_REF_KEY;
1985 found_key.offset = key->objectid;
1986 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1987 if (ret < 0) {
1988 goto out;
1989 } else if (ret) {
1990 /* The dentry will be added later. */
1991 ret = 0;
1992 update_size = false;
1993 goto out;
1994 }
1995
1996 found_key.objectid = log_key.objectid;
1997 found_key.type = BTRFS_INODE_EXTREF_KEY;
1998 found_key.offset = key->objectid;
1999 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2000 name_len);
2001 if (ret < 0) {
2002 goto out;
2003 } else if (ret) {
df8d116f
FM
2004 /* The dentry will be added later. */
2005 ret = 0;
2006 update_size = false;
2007 goto out;
2008 }
b3b4aa74 2009 btrfs_release_path(path);
60d53eb3
Z
2010 ret = insert_one_name(trans, root, key->objectid, key->offset,
2011 name, name_len, &log_key);
df8d116f 2012 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2013 goto out;
bb53eda9
FM
2014 if (!ret)
2015 name_added = true;
d555438b 2016 update_size = false;
3650860b 2017 ret = 0;
e02119d5
CM
2018 goto out;
2019}
2020
2021/*
2022 * find all the names in a directory item and reconcile them into
2023 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2024 * one name in a directory item, but the same code gets used for
2025 * both directory index types
2026 */
2027static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 struct btrfs_path *path,
2030 struct extent_buffer *eb, int slot,
2031 struct btrfs_key *key)
2032{
bb53eda9 2033 int ret = 0;
e02119d5
CM
2034 u32 item_size = btrfs_item_size_nr(eb, slot);
2035 struct btrfs_dir_item *di;
2036 int name_len;
2037 unsigned long ptr;
2038 unsigned long ptr_end;
bb53eda9 2039 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2040
2041 ptr = btrfs_item_ptr_offset(eb, slot);
2042 ptr_end = ptr + item_size;
d397712b 2043 while (ptr < ptr_end) {
e02119d5
CM
2044 di = (struct btrfs_dir_item *)ptr;
2045 name_len = btrfs_dir_name_len(eb, di);
2046 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2047 if (ret < 0)
2048 break;
e02119d5
CM
2049 ptr = (unsigned long)(di + 1);
2050 ptr += name_len;
bb53eda9
FM
2051
2052 /*
2053 * If this entry refers to a non-directory (directories can not
2054 * have a link count > 1) and it was added in the transaction
2055 * that was not committed, make sure we fixup the link count of
2056 * the inode it the entry points to. Otherwise something like
2057 * the following would result in a directory pointing to an
2058 * inode with a wrong link that does not account for this dir
2059 * entry:
2060 *
2061 * mkdir testdir
2062 * touch testdir/foo
2063 * touch testdir/bar
2064 * sync
2065 *
2066 * ln testdir/bar testdir/bar_link
2067 * ln testdir/foo testdir/foo_link
2068 * xfs_io -c "fsync" testdir/bar
2069 *
2070 * <power failure>
2071 *
2072 * mount fs, log replay happens
2073 *
2074 * File foo would remain with a link count of 1 when it has two
2075 * entries pointing to it in the directory testdir. This would
2076 * make it impossible to ever delete the parent directory has
2077 * it would result in stale dentries that can never be deleted.
2078 */
2079 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2080 struct btrfs_key di_key;
2081
2082 if (!fixup_path) {
2083 fixup_path = btrfs_alloc_path();
2084 if (!fixup_path) {
2085 ret = -ENOMEM;
2086 break;
2087 }
2088 }
2089
2090 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2091 ret = link_to_fixup_dir(trans, root, fixup_path,
2092 di_key.objectid);
2093 if (ret)
2094 break;
2095 }
2096 ret = 0;
e02119d5 2097 }
bb53eda9
FM
2098 btrfs_free_path(fixup_path);
2099 return ret;
e02119d5
CM
2100}
2101
2102/*
2103 * directory replay has two parts. There are the standard directory
2104 * items in the log copied from the subvolume, and range items
2105 * created in the log while the subvolume was logged.
2106 *
2107 * The range items tell us which parts of the key space the log
2108 * is authoritative for. During replay, if a key in the subvolume
2109 * directory is in a logged range item, but not actually in the log
2110 * that means it was deleted from the directory before the fsync
2111 * and should be removed.
2112 */
2113static noinline int find_dir_range(struct btrfs_root *root,
2114 struct btrfs_path *path,
2115 u64 dirid, int key_type,
2116 u64 *start_ret, u64 *end_ret)
2117{
2118 struct btrfs_key key;
2119 u64 found_end;
2120 struct btrfs_dir_log_item *item;
2121 int ret;
2122 int nritems;
2123
2124 if (*start_ret == (u64)-1)
2125 return 1;
2126
2127 key.objectid = dirid;
2128 key.type = key_type;
2129 key.offset = *start_ret;
2130
2131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2132 if (ret < 0)
2133 goto out;
2134 if (ret > 0) {
2135 if (path->slots[0] == 0)
2136 goto out;
2137 path->slots[0]--;
2138 }
2139 if (ret != 0)
2140 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2141
2142 if (key.type != key_type || key.objectid != dirid) {
2143 ret = 1;
2144 goto next;
2145 }
2146 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2147 struct btrfs_dir_log_item);
2148 found_end = btrfs_dir_log_end(path->nodes[0], item);
2149
2150 if (*start_ret >= key.offset && *start_ret <= found_end) {
2151 ret = 0;
2152 *start_ret = key.offset;
2153 *end_ret = found_end;
2154 goto out;
2155 }
2156 ret = 1;
2157next:
2158 /* check the next slot in the tree to see if it is a valid item */
2159 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2160 path->slots[0]++;
e02119d5
CM
2161 if (path->slots[0] >= nritems) {
2162 ret = btrfs_next_leaf(root, path);
2163 if (ret)
2164 goto out;
e02119d5
CM
2165 }
2166
2167 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2168
2169 if (key.type != key_type || key.objectid != dirid) {
2170 ret = 1;
2171 goto out;
2172 }
2173 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2174 struct btrfs_dir_log_item);
2175 found_end = btrfs_dir_log_end(path->nodes[0], item);
2176 *start_ret = key.offset;
2177 *end_ret = found_end;
2178 ret = 0;
2179out:
b3b4aa74 2180 btrfs_release_path(path);
e02119d5
CM
2181 return ret;
2182}
2183
2184/*
2185 * this looks for a given directory item in the log. If the directory
2186 * item is not in the log, the item is removed and the inode it points
2187 * to is unlinked
2188 */
2189static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 struct btrfs_root *log,
2192 struct btrfs_path *path,
2193 struct btrfs_path *log_path,
2194 struct inode *dir,
2195 struct btrfs_key *dir_key)
2196{
2197 int ret;
2198 struct extent_buffer *eb;
2199 int slot;
2200 u32 item_size;
2201 struct btrfs_dir_item *di;
2202 struct btrfs_dir_item *log_di;
2203 int name_len;
2204 unsigned long ptr;
2205 unsigned long ptr_end;
2206 char *name;
2207 struct inode *inode;
2208 struct btrfs_key location;
2209
2210again:
2211 eb = path->nodes[0];
2212 slot = path->slots[0];
2213 item_size = btrfs_item_size_nr(eb, slot);
2214 ptr = btrfs_item_ptr_offset(eb, slot);
2215 ptr_end = ptr + item_size;
d397712b 2216 while (ptr < ptr_end) {
e02119d5
CM
2217 di = (struct btrfs_dir_item *)ptr;
2218 name_len = btrfs_dir_name_len(eb, di);
2219 name = kmalloc(name_len, GFP_NOFS);
2220 if (!name) {
2221 ret = -ENOMEM;
2222 goto out;
2223 }
2224 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2225 name_len);
2226 log_di = NULL;
12fcfd22 2227 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2228 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2229 dir_key->objectid,
2230 name, name_len, 0);
12fcfd22 2231 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2232 log_di = btrfs_lookup_dir_index_item(trans, log,
2233 log_path,
2234 dir_key->objectid,
2235 dir_key->offset,
2236 name, name_len, 0);
2237 }
8d9e220c 2238 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2239 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2240 btrfs_release_path(path);
2241 btrfs_release_path(log_path);
e02119d5 2242 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2243 if (!inode) {
2244 kfree(name);
2245 return -EIO;
2246 }
e02119d5
CM
2247
2248 ret = link_to_fixup_dir(trans, root,
2249 path, location.objectid);
3650860b
JB
2250 if (ret) {
2251 kfree(name);
2252 iput(inode);
2253 goto out;
2254 }
2255
8b558c5f 2256 inc_nlink(inode);
4ec5934e
NB
2257 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2258 BTRFS_I(inode), name, name_len);
3650860b 2259 if (!ret)
e5c304e6 2260 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2261 kfree(name);
2262 iput(inode);
3650860b
JB
2263 if (ret)
2264 goto out;
e02119d5
CM
2265
2266 /* there might still be more names under this key
2267 * check and repeat if required
2268 */
2269 ret = btrfs_search_slot(NULL, root, dir_key, path,
2270 0, 0);
2271 if (ret == 0)
2272 goto again;
2273 ret = 0;
2274 goto out;
269d040f
FDBM
2275 } else if (IS_ERR(log_di)) {
2276 kfree(name);
2277 return PTR_ERR(log_di);
e02119d5 2278 }
b3b4aa74 2279 btrfs_release_path(log_path);
e02119d5
CM
2280 kfree(name);
2281
2282 ptr = (unsigned long)(di + 1);
2283 ptr += name_len;
2284 }
2285 ret = 0;
2286out:
b3b4aa74
DS
2287 btrfs_release_path(path);
2288 btrfs_release_path(log_path);
e02119d5
CM
2289 return ret;
2290}
2291
4f764e51
FM
2292static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2293 struct btrfs_root *root,
2294 struct btrfs_root *log,
2295 struct btrfs_path *path,
2296 const u64 ino)
2297{
2298 struct btrfs_key search_key;
2299 struct btrfs_path *log_path;
2300 int i;
2301 int nritems;
2302 int ret;
2303
2304 log_path = btrfs_alloc_path();
2305 if (!log_path)
2306 return -ENOMEM;
2307
2308 search_key.objectid = ino;
2309 search_key.type = BTRFS_XATTR_ITEM_KEY;
2310 search_key.offset = 0;
2311again:
2312 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2313 if (ret < 0)
2314 goto out;
2315process_leaf:
2316 nritems = btrfs_header_nritems(path->nodes[0]);
2317 for (i = path->slots[0]; i < nritems; i++) {
2318 struct btrfs_key key;
2319 struct btrfs_dir_item *di;
2320 struct btrfs_dir_item *log_di;
2321 u32 total_size;
2322 u32 cur;
2323
2324 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2325 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2326 ret = 0;
2327 goto out;
2328 }
2329
2330 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2331 total_size = btrfs_item_size_nr(path->nodes[0], i);
2332 cur = 0;
2333 while (cur < total_size) {
2334 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2335 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2336 u32 this_len = sizeof(*di) + name_len + data_len;
2337 char *name;
2338
2339 name = kmalloc(name_len, GFP_NOFS);
2340 if (!name) {
2341 ret = -ENOMEM;
2342 goto out;
2343 }
2344 read_extent_buffer(path->nodes[0], name,
2345 (unsigned long)(di + 1), name_len);
2346
2347 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2348 name, name_len, 0);
2349 btrfs_release_path(log_path);
2350 if (!log_di) {
2351 /* Doesn't exist in log tree, so delete it. */
2352 btrfs_release_path(path);
2353 di = btrfs_lookup_xattr(trans, root, path, ino,
2354 name, name_len, -1);
2355 kfree(name);
2356 if (IS_ERR(di)) {
2357 ret = PTR_ERR(di);
2358 goto out;
2359 }
2360 ASSERT(di);
2361 ret = btrfs_delete_one_dir_name(trans, root,
2362 path, di);
2363 if (ret)
2364 goto out;
2365 btrfs_release_path(path);
2366 search_key = key;
2367 goto again;
2368 }
2369 kfree(name);
2370 if (IS_ERR(log_di)) {
2371 ret = PTR_ERR(log_di);
2372 goto out;
2373 }
2374 cur += this_len;
2375 di = (struct btrfs_dir_item *)((char *)di + this_len);
2376 }
2377 }
2378 ret = btrfs_next_leaf(root, path);
2379 if (ret > 0)
2380 ret = 0;
2381 else if (ret == 0)
2382 goto process_leaf;
2383out:
2384 btrfs_free_path(log_path);
2385 btrfs_release_path(path);
2386 return ret;
2387}
2388
2389
e02119d5
CM
2390/*
2391 * deletion replay happens before we copy any new directory items
2392 * out of the log or out of backreferences from inodes. It
2393 * scans the log to find ranges of keys that log is authoritative for,
2394 * and then scans the directory to find items in those ranges that are
2395 * not present in the log.
2396 *
2397 * Anything we don't find in the log is unlinked and removed from the
2398 * directory.
2399 */
2400static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2401 struct btrfs_root *root,
2402 struct btrfs_root *log,
2403 struct btrfs_path *path,
12fcfd22 2404 u64 dirid, int del_all)
e02119d5
CM
2405{
2406 u64 range_start;
2407 u64 range_end;
2408 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2409 int ret = 0;
2410 struct btrfs_key dir_key;
2411 struct btrfs_key found_key;
2412 struct btrfs_path *log_path;
2413 struct inode *dir;
2414
2415 dir_key.objectid = dirid;
2416 dir_key.type = BTRFS_DIR_ITEM_KEY;
2417 log_path = btrfs_alloc_path();
2418 if (!log_path)
2419 return -ENOMEM;
2420
2421 dir = read_one_inode(root, dirid);
2422 /* it isn't an error if the inode isn't there, that can happen
2423 * because we replay the deletes before we copy in the inode item
2424 * from the log
2425 */
2426 if (!dir) {
2427 btrfs_free_path(log_path);
2428 return 0;
2429 }
2430again:
2431 range_start = 0;
2432 range_end = 0;
d397712b 2433 while (1) {
12fcfd22
CM
2434 if (del_all)
2435 range_end = (u64)-1;
2436 else {
2437 ret = find_dir_range(log, path, dirid, key_type,
2438 &range_start, &range_end);
2439 if (ret != 0)
2440 break;
2441 }
e02119d5
CM
2442
2443 dir_key.offset = range_start;
d397712b 2444 while (1) {
e02119d5
CM
2445 int nritems;
2446 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2447 0, 0);
2448 if (ret < 0)
2449 goto out;
2450
2451 nritems = btrfs_header_nritems(path->nodes[0]);
2452 if (path->slots[0] >= nritems) {
2453 ret = btrfs_next_leaf(root, path);
b98def7c 2454 if (ret == 1)
e02119d5 2455 break;
b98def7c
LB
2456 else if (ret < 0)
2457 goto out;
e02119d5
CM
2458 }
2459 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2460 path->slots[0]);
2461 if (found_key.objectid != dirid ||
2462 found_key.type != dir_key.type)
2463 goto next_type;
2464
2465 if (found_key.offset > range_end)
2466 break;
2467
2468 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2469 log_path, dir,
2470 &found_key);
3650860b
JB
2471 if (ret)
2472 goto out;
e02119d5
CM
2473 if (found_key.offset == (u64)-1)
2474 break;
2475 dir_key.offset = found_key.offset + 1;
2476 }
b3b4aa74 2477 btrfs_release_path(path);
e02119d5
CM
2478 if (range_end == (u64)-1)
2479 break;
2480 range_start = range_end + 1;
2481 }
2482
2483next_type:
2484 ret = 0;
2485 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2486 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2487 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2488 btrfs_release_path(path);
e02119d5
CM
2489 goto again;
2490 }
2491out:
b3b4aa74 2492 btrfs_release_path(path);
e02119d5
CM
2493 btrfs_free_path(log_path);
2494 iput(dir);
2495 return ret;
2496}
2497
2498/*
2499 * the process_func used to replay items from the log tree. This
2500 * gets called in two different stages. The first stage just looks
2501 * for inodes and makes sure they are all copied into the subvolume.
2502 *
2503 * The second stage copies all the other item types from the log into
2504 * the subvolume. The two stage approach is slower, but gets rid of
2505 * lots of complexity around inodes referencing other inodes that exist
2506 * only in the log (references come from either directory items or inode
2507 * back refs).
2508 */
2509static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2510 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2511{
2512 int nritems;
2513 struct btrfs_path *path;
2514 struct btrfs_root *root = wc->replay_dest;
2515 struct btrfs_key key;
e02119d5
CM
2516 int i;
2517 int ret;
2518
581c1760 2519 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2520 if (ret)
2521 return ret;
e02119d5
CM
2522
2523 level = btrfs_header_level(eb);
2524
2525 if (level != 0)
2526 return 0;
2527
2528 path = btrfs_alloc_path();
1e5063d0
MF
2529 if (!path)
2530 return -ENOMEM;
e02119d5
CM
2531
2532 nritems = btrfs_header_nritems(eb);
2533 for (i = 0; i < nritems; i++) {
2534 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2535
2536 /* inode keys are done during the first stage */
2537 if (key.type == BTRFS_INODE_ITEM_KEY &&
2538 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2539 struct btrfs_inode_item *inode_item;
2540 u32 mode;
2541
2542 inode_item = btrfs_item_ptr(eb, i,
2543 struct btrfs_inode_item);
f2d72f42
FM
2544 /*
2545 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2546 * and never got linked before the fsync, skip it, as
2547 * replaying it is pointless since it would be deleted
2548 * later. We skip logging tmpfiles, but it's always
2549 * possible we are replaying a log created with a kernel
2550 * that used to log tmpfiles.
2551 */
2552 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2553 wc->ignore_cur_inode = true;
2554 continue;
2555 } else {
2556 wc->ignore_cur_inode = false;
2557 }
4f764e51
FM
2558 ret = replay_xattr_deletes(wc->trans, root, log,
2559 path, key.objectid);
2560 if (ret)
2561 break;
e02119d5
CM
2562 mode = btrfs_inode_mode(eb, inode_item);
2563 if (S_ISDIR(mode)) {
2564 ret = replay_dir_deletes(wc->trans,
12fcfd22 2565 root, log, path, key.objectid, 0);
b50c6e25
JB
2566 if (ret)
2567 break;
e02119d5
CM
2568 }
2569 ret = overwrite_item(wc->trans, root, path,
2570 eb, i, &key);
b50c6e25
JB
2571 if (ret)
2572 break;
e02119d5 2573
471d557a
FM
2574 /*
2575 * Before replaying extents, truncate the inode to its
2576 * size. We need to do it now and not after log replay
2577 * because before an fsync we can have prealloc extents
2578 * added beyond the inode's i_size. If we did it after,
2579 * through orphan cleanup for example, we would drop
2580 * those prealloc extents just after replaying them.
e02119d5
CM
2581 */
2582 if (S_ISREG(mode)) {
5893dfb9 2583 struct btrfs_drop_extents_args drop_args = { 0 };
471d557a
FM
2584 struct inode *inode;
2585 u64 from;
2586
2587 inode = read_one_inode(root, key.objectid);
2588 if (!inode) {
2589 ret = -EIO;
2590 break;
2591 }
2592 from = ALIGN(i_size_read(inode),
2593 root->fs_info->sectorsize);
5893dfb9
FM
2594 drop_args.start = from;
2595 drop_args.end = (u64)-1;
2596 drop_args.drop_cache = true;
2597 ret = btrfs_drop_extents(wc->trans, root,
2598 BTRFS_I(inode),
2599 &drop_args);
471d557a 2600 if (!ret) {
2766ff61
FM
2601 inode_sub_bytes(inode,
2602 drop_args.bytes_found);
f2d72f42 2603 /* Update the inode's nbytes. */
471d557a 2604 ret = btrfs_update_inode(wc->trans,
9a56fcd1 2605 root, BTRFS_I(inode));
471d557a
FM
2606 }
2607 iput(inode);
b50c6e25
JB
2608 if (ret)
2609 break;
e02119d5 2610 }
c71bf099 2611
e02119d5
CM
2612 ret = link_to_fixup_dir(wc->trans, root,
2613 path, key.objectid);
b50c6e25
JB
2614 if (ret)
2615 break;
e02119d5 2616 }
dd8e7217 2617
f2d72f42
FM
2618 if (wc->ignore_cur_inode)
2619 continue;
2620
dd8e7217
JB
2621 if (key.type == BTRFS_DIR_INDEX_KEY &&
2622 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2623 ret = replay_one_dir_item(wc->trans, root, path,
2624 eb, i, &key);
2625 if (ret)
2626 break;
2627 }
2628
e02119d5
CM
2629 if (wc->stage < LOG_WALK_REPLAY_ALL)
2630 continue;
2631
2632 /* these keys are simply copied */
2633 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2634 ret = overwrite_item(wc->trans, root, path,
2635 eb, i, &key);
b50c6e25
JB
2636 if (ret)
2637 break;
2da1c669
LB
2638 } else if (key.type == BTRFS_INODE_REF_KEY ||
2639 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2640 ret = add_inode_ref(wc->trans, root, log, path,
2641 eb, i, &key);
b50c6e25
JB
2642 if (ret && ret != -ENOENT)
2643 break;
2644 ret = 0;
e02119d5
CM
2645 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2646 ret = replay_one_extent(wc->trans, root, path,
2647 eb, i, &key);
b50c6e25
JB
2648 if (ret)
2649 break;
dd8e7217 2650 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2651 ret = replay_one_dir_item(wc->trans, root, path,
2652 eb, i, &key);
b50c6e25
JB
2653 if (ret)
2654 break;
e02119d5
CM
2655 }
2656 }
2657 btrfs_free_path(path);
b50c6e25 2658 return ret;
e02119d5
CM
2659}
2660
6787bb9f
NB
2661/*
2662 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2663 */
2664static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2665{
2666 struct btrfs_block_group *cache;
2667
2668 cache = btrfs_lookup_block_group(fs_info, start);
2669 if (!cache) {
2670 btrfs_err(fs_info, "unable to find block group for %llu", start);
2671 return;
2672 }
2673
2674 spin_lock(&cache->space_info->lock);
2675 spin_lock(&cache->lock);
2676 cache->reserved -= fs_info->nodesize;
2677 cache->space_info->bytes_reserved -= fs_info->nodesize;
2678 spin_unlock(&cache->lock);
2679 spin_unlock(&cache->space_info->lock);
2680
2681 btrfs_put_block_group(cache);
2682}
2683
d397712b 2684static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2685 struct btrfs_root *root,
2686 struct btrfs_path *path, int *level,
2687 struct walk_control *wc)
2688{
0b246afa 2689 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2690 u64 bytenr;
2691 u64 ptr_gen;
2692 struct extent_buffer *next;
2693 struct extent_buffer *cur;
e02119d5
CM
2694 u32 blocksize;
2695 int ret = 0;
2696
d397712b 2697 while (*level > 0) {
581c1760
QW
2698 struct btrfs_key first_key;
2699
e02119d5
CM
2700 cur = path->nodes[*level];
2701
fae7f21c 2702 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2703
2704 if (path->slots[*level] >=
2705 btrfs_header_nritems(cur))
2706 break;
2707
2708 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2709 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2710 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2711 blocksize = fs_info->nodesize;
e02119d5 2712
3fbaf258
JB
2713 next = btrfs_find_create_tree_block(fs_info, bytenr,
2714 btrfs_header_owner(cur),
2715 *level - 1);
c871b0f2
LB
2716 if (IS_ERR(next))
2717 return PTR_ERR(next);
e02119d5 2718
e02119d5 2719 if (*level == 1) {
581c1760
QW
2720 ret = wc->process_func(root, next, wc, ptr_gen,
2721 *level - 1);
b50c6e25
JB
2722 if (ret) {
2723 free_extent_buffer(next);
1e5063d0 2724 return ret;
b50c6e25 2725 }
4a500fd1 2726
e02119d5
CM
2727 path->slots[*level]++;
2728 if (wc->free) {
581c1760
QW
2729 ret = btrfs_read_buffer(next, ptr_gen,
2730 *level - 1, &first_key);
018642a1
TI
2731 if (ret) {
2732 free_extent_buffer(next);
2733 return ret;
2734 }
e02119d5 2735
681ae509
JB
2736 if (trans) {
2737 btrfs_tree_lock(next);
6a884d7d 2738 btrfs_clean_tree_block(next);
681ae509
JB
2739 btrfs_wait_tree_block_writeback(next);
2740 btrfs_tree_unlock(next);
7bfc1007 2741 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2742 bytenr, blocksize);
2743 if (ret) {
2744 free_extent_buffer(next);
2745 return ret;
2746 }
1846430c
LB
2747 } else {
2748 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2749 clear_extent_buffer_dirty(next);
10e958d5 2750 unaccount_log_buffer(fs_info, bytenr);
3650860b 2751 }
e02119d5
CM
2752 }
2753 free_extent_buffer(next);
2754 continue;
2755 }
581c1760 2756 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2757 if (ret) {
2758 free_extent_buffer(next);
2759 return ret;
2760 }
e02119d5 2761
e02119d5
CM
2762 if (path->nodes[*level-1])
2763 free_extent_buffer(path->nodes[*level-1]);
2764 path->nodes[*level-1] = next;
2765 *level = btrfs_header_level(next);
2766 path->slots[*level] = 0;
2767 cond_resched();
2768 }
4a500fd1 2769 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2770
2771 cond_resched();
2772 return 0;
2773}
2774
d397712b 2775static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2776 struct btrfs_root *root,
2777 struct btrfs_path *path, int *level,
2778 struct walk_control *wc)
2779{
0b246afa 2780 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2781 int i;
2782 int slot;
2783 int ret;
2784
d397712b 2785 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2786 slot = path->slots[i];
4a500fd1 2787 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2788 path->slots[i]++;
2789 *level = i;
2790 WARN_ON(*level == 0);
2791 return 0;
2792 } else {
1e5063d0 2793 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2794 btrfs_header_generation(path->nodes[*level]),
2795 *level);
1e5063d0
MF
2796 if (ret)
2797 return ret;
2798
e02119d5
CM
2799 if (wc->free) {
2800 struct extent_buffer *next;
2801
2802 next = path->nodes[*level];
2803
681ae509
JB
2804 if (trans) {
2805 btrfs_tree_lock(next);
6a884d7d 2806 btrfs_clean_tree_block(next);
681ae509
JB
2807 btrfs_wait_tree_block_writeback(next);
2808 btrfs_tree_unlock(next);
7bfc1007 2809 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2810 path->nodes[*level]->start,
2811 path->nodes[*level]->len);
2812 if (ret)
2813 return ret;
1846430c
LB
2814 } else {
2815 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2816 clear_extent_buffer_dirty(next);
e02119d5 2817
10e958d5
NB
2818 unaccount_log_buffer(fs_info,
2819 path->nodes[*level]->start);
2820 }
e02119d5
CM
2821 }
2822 free_extent_buffer(path->nodes[*level]);
2823 path->nodes[*level] = NULL;
2824 *level = i + 1;
2825 }
2826 }
2827 return 1;
2828}
2829
2830/*
2831 * drop the reference count on the tree rooted at 'snap'. This traverses
2832 * the tree freeing any blocks that have a ref count of zero after being
2833 * decremented.
2834 */
2835static int walk_log_tree(struct btrfs_trans_handle *trans,
2836 struct btrfs_root *log, struct walk_control *wc)
2837{
2ff7e61e 2838 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2839 int ret = 0;
2840 int wret;
2841 int level;
2842 struct btrfs_path *path;
e02119d5
CM
2843 int orig_level;
2844
2845 path = btrfs_alloc_path();
db5b493a
TI
2846 if (!path)
2847 return -ENOMEM;
e02119d5
CM
2848
2849 level = btrfs_header_level(log->node);
2850 orig_level = level;
2851 path->nodes[level] = log->node;
67439dad 2852 atomic_inc(&log->node->refs);
e02119d5
CM
2853 path->slots[level] = 0;
2854
d397712b 2855 while (1) {
e02119d5
CM
2856 wret = walk_down_log_tree(trans, log, path, &level, wc);
2857 if (wret > 0)
2858 break;
79787eaa 2859 if (wret < 0) {
e02119d5 2860 ret = wret;
79787eaa
JM
2861 goto out;
2862 }
e02119d5
CM
2863
2864 wret = walk_up_log_tree(trans, log, path, &level, wc);
2865 if (wret > 0)
2866 break;
79787eaa 2867 if (wret < 0) {
e02119d5 2868 ret = wret;
79787eaa
JM
2869 goto out;
2870 }
e02119d5
CM
2871 }
2872
2873 /* was the root node processed? if not, catch it here */
2874 if (path->nodes[orig_level]) {
79787eaa 2875 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2876 btrfs_header_generation(path->nodes[orig_level]),
2877 orig_level);
79787eaa
JM
2878 if (ret)
2879 goto out;
e02119d5
CM
2880 if (wc->free) {
2881 struct extent_buffer *next;
2882
2883 next = path->nodes[orig_level];
2884
681ae509
JB
2885 if (trans) {
2886 btrfs_tree_lock(next);
6a884d7d 2887 btrfs_clean_tree_block(next);
681ae509
JB
2888 btrfs_wait_tree_block_writeback(next);
2889 btrfs_tree_unlock(next);
7bfc1007 2890 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2891 next->start, next->len);
2892 if (ret)
2893 goto out;
1846430c
LB
2894 } else {
2895 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2896 clear_extent_buffer_dirty(next);
10e958d5 2897 unaccount_log_buffer(fs_info, next->start);
681ae509 2898 }
e02119d5
CM
2899 }
2900 }
2901
79787eaa 2902out:
e02119d5 2903 btrfs_free_path(path);
e02119d5
CM
2904 return ret;
2905}
2906
7237f183
YZ
2907/*
2908 * helper function to update the item for a given subvolumes log root
2909 * in the tree of log roots
2910 */
2911static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2912 struct btrfs_root *log,
2913 struct btrfs_root_item *root_item)
7237f183 2914{
0b246afa 2915 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2916 int ret;
2917
2918 if (log->log_transid == 1) {
2919 /* insert root item on the first sync */
0b246afa 2920 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2921 &log->root_key, root_item);
7237f183 2922 } else {
0b246afa 2923 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2924 &log->root_key, root_item);
7237f183
YZ
2925 }
2926 return ret;
2927}
2928
60d53eb3 2929static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2930{
2931 DEFINE_WAIT(wait);
7237f183 2932 int index = transid % 2;
e02119d5 2933
7237f183
YZ
2934 /*
2935 * we only allow two pending log transactions at a time,
2936 * so we know that if ours is more than 2 older than the
2937 * current transaction, we're done
2938 */
49e83f57 2939 for (;;) {
7237f183
YZ
2940 prepare_to_wait(&root->log_commit_wait[index],
2941 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2942
49e83f57
LB
2943 if (!(root->log_transid_committed < transid &&
2944 atomic_read(&root->log_commit[index])))
2945 break;
12fcfd22 2946
49e83f57
LB
2947 mutex_unlock(&root->log_mutex);
2948 schedule();
7237f183 2949 mutex_lock(&root->log_mutex);
49e83f57
LB
2950 }
2951 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2952}
2953
60d53eb3 2954static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2955{
2956 DEFINE_WAIT(wait);
8b050d35 2957
49e83f57
LB
2958 for (;;) {
2959 prepare_to_wait(&root->log_writer_wait, &wait,
2960 TASK_UNINTERRUPTIBLE);
2961 if (!atomic_read(&root->log_writers))
2962 break;
2963
7237f183 2964 mutex_unlock(&root->log_mutex);
49e83f57 2965 schedule();
575849ec 2966 mutex_lock(&root->log_mutex);
7237f183 2967 }
49e83f57 2968 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2969}
2970
8b050d35
MX
2971static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2972 struct btrfs_log_ctx *ctx)
2973{
2974 if (!ctx)
2975 return;
2976
2977 mutex_lock(&root->log_mutex);
2978 list_del_init(&ctx->list);
2979 mutex_unlock(&root->log_mutex);
2980}
2981
2982/*
2983 * Invoked in log mutex context, or be sure there is no other task which
2984 * can access the list.
2985 */
2986static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2987 int index, int error)
2988{
2989 struct btrfs_log_ctx *ctx;
570dd450 2990 struct btrfs_log_ctx *safe;
8b050d35 2991
570dd450
CM
2992 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2993 list_del_init(&ctx->list);
8b050d35 2994 ctx->log_ret = error;
570dd450 2995 }
8b050d35
MX
2996
2997 INIT_LIST_HEAD(&root->log_ctxs[index]);
2998}
2999
e02119d5
CM
3000/*
3001 * btrfs_sync_log does sends a given tree log down to the disk and
3002 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3003 * you know that any inodes previously logged are safely on disk only
3004 * if it returns 0.
3005 *
3006 * Any other return value means you need to call btrfs_commit_transaction.
3007 * Some of the edge cases for fsyncing directories that have had unlinks
3008 * or renames done in the past mean that sometimes the only safe
3009 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3010 * that has happened.
e02119d5
CM
3011 */
3012int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3013 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3014{
7237f183
YZ
3015 int index1;
3016 int index2;
8cef4e16 3017 int mark;
e02119d5 3018 int ret;
0b246afa 3019 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3020 struct btrfs_root *log = root->log_root;
0b246afa 3021 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3022 struct btrfs_root_item new_root_item;
bb14a59b 3023 int log_transid = 0;
8b050d35 3024 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3025 struct blk_plug plug;
e02119d5 3026
7237f183 3027 mutex_lock(&root->log_mutex);
d1433deb
MX
3028 log_transid = ctx->log_transid;
3029 if (root->log_transid_committed >= log_transid) {
3030 mutex_unlock(&root->log_mutex);
3031 return ctx->log_ret;
3032 }
3033
3034 index1 = log_transid % 2;
7237f183 3035 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3036 wait_log_commit(root, log_transid);
7237f183 3037 mutex_unlock(&root->log_mutex);
8b050d35 3038 return ctx->log_ret;
e02119d5 3039 }
d1433deb 3040 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3041 atomic_set(&root->log_commit[index1], 1);
3042
3043 /* wait for previous tree log sync to complete */
3044 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3045 wait_log_commit(root, log_transid - 1);
48cab2e0 3046
86df7eb9 3047 while (1) {
2ecb7923 3048 int batch = atomic_read(&root->log_batch);
cd354ad6 3049 /* when we're on an ssd, just kick the log commit out */
0b246afa 3050 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3051 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3052 mutex_unlock(&root->log_mutex);
3053 schedule_timeout_uninterruptible(1);
3054 mutex_lock(&root->log_mutex);
3055 }
60d53eb3 3056 wait_for_writer(root);
2ecb7923 3057 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3058 break;
3059 }
e02119d5 3060
12fcfd22 3061 /* bail out if we need to do a full commit */
4884b8e8 3062 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3063 ret = -EAGAIN;
3064 mutex_unlock(&root->log_mutex);
3065 goto out;
3066 }
3067
8cef4e16
YZ
3068 if (log_transid % 2 == 0)
3069 mark = EXTENT_DIRTY;
3070 else
3071 mark = EXTENT_NEW;
3072
690587d1
CM
3073 /* we start IO on all the marked extents here, but we don't actually
3074 * wait for them until later.
3075 */
c6adc9cc 3076 blk_start_plug(&plug);
2ff7e61e 3077 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 3078 if (ret) {
c6adc9cc 3079 blk_finish_plug(&plug);
66642832 3080 btrfs_abort_transaction(trans, ret);
90787766 3081 btrfs_set_log_full_commit(trans);
79787eaa
JM
3082 mutex_unlock(&root->log_mutex);
3083 goto out;
3084 }
7237f183 3085
4203e968
JB
3086 /*
3087 * We _must_ update under the root->log_mutex in order to make sure we
3088 * have a consistent view of the log root we are trying to commit at
3089 * this moment.
3090 *
3091 * We _must_ copy this into a local copy, because we are not holding the
3092 * log_root_tree->log_mutex yet. This is important because when we
3093 * commit the log_root_tree we must have a consistent view of the
3094 * log_root_tree when we update the super block to point at the
3095 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3096 * with the commit and possibly point at the new block which we may not
3097 * have written out.
3098 */
5d4f98a2 3099 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3100 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3101
7237f183
YZ
3102 root->log_transid++;
3103 log->log_transid = root->log_transid;
ff782e0a 3104 root->log_start_pid = 0;
7237f183 3105 /*
8cef4e16
YZ
3106 * IO has been started, blocks of the log tree have WRITTEN flag set
3107 * in their headers. new modifications of the log will be written to
3108 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3109 */
3110 mutex_unlock(&root->log_mutex);
3111
28a23593 3112 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 3113
7237f183 3114 mutex_lock(&log_root_tree->log_mutex);
d1433deb
MX
3115
3116 index2 = log_root_tree->log_transid % 2;
3117 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3118 root_log_ctx.log_transid = log_root_tree->log_transid;
3119
4203e968
JB
3120 /*
3121 * Now we are safe to update the log_root_tree because we're under the
3122 * log_mutex, and we're a current writer so we're holding the commit
3123 * open until we drop the log_mutex.
3124 */
3125 ret = update_log_root(trans, log, &new_root_item);
4a500fd1 3126 if (ret) {
d1433deb
MX
3127 if (!list_empty(&root_log_ctx.list))
3128 list_del_init(&root_log_ctx.list);
3129
c6adc9cc 3130 blk_finish_plug(&plug);
90787766 3131 btrfs_set_log_full_commit(trans);
995946dd 3132
79787eaa 3133 if (ret != -ENOSPC) {
66642832 3134 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3135 mutex_unlock(&log_root_tree->log_mutex);
3136 goto out;
3137 }
bf89d38f 3138 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 ret = -EAGAIN;
3141 goto out;
3142 }
3143
d1433deb 3144 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3145 blk_finish_plug(&plug);
cbd60aa7 3146 list_del_init(&root_log_ctx.list);
d1433deb
MX
3147 mutex_unlock(&log_root_tree->log_mutex);
3148 ret = root_log_ctx.log_ret;
3149 goto out;
3150 }
8b050d35 3151
d1433deb 3152 index2 = root_log_ctx.log_transid % 2;
7237f183 3153 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3154 blk_finish_plug(&plug);
bf89d38f 3155 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3156 wait_log_commit(log_root_tree,
d1433deb 3157 root_log_ctx.log_transid);
7237f183 3158 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3159 if (!ret)
3160 ret = root_log_ctx.log_ret;
7237f183
YZ
3161 goto out;
3162 }
d1433deb 3163 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3164 atomic_set(&log_root_tree->log_commit[index2], 1);
3165
12fcfd22 3166 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3167 wait_log_commit(log_root_tree,
d1433deb 3168 root_log_ctx.log_transid - 1);
12fcfd22
CM
3169 }
3170
12fcfd22
CM
3171 /*
3172 * now that we've moved on to the tree of log tree roots,
3173 * check the full commit flag again
3174 */
4884b8e8 3175 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3176 blk_finish_plug(&plug);
bf89d38f 3177 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3178 mutex_unlock(&log_root_tree->log_mutex);
3179 ret = -EAGAIN;
3180 goto out_wake_log_root;
3181 }
7237f183 3182
2ff7e61e 3183 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3184 &log_root_tree->dirty_log_pages,
3185 EXTENT_DIRTY | EXTENT_NEW);
3186 blk_finish_plug(&plug);
79787eaa 3187 if (ret) {
90787766 3188 btrfs_set_log_full_commit(trans);
66642832 3189 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3190 mutex_unlock(&log_root_tree->log_mutex);
3191 goto out_wake_log_root;
3192 }
bf89d38f 3193 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3194 if (!ret)
bf89d38f
JM
3195 ret = btrfs_wait_tree_log_extents(log_root_tree,
3196 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3197 if (ret) {
90787766 3198 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3199 mutex_unlock(&log_root_tree->log_mutex);
3200 goto out_wake_log_root;
3201 }
e02119d5 3202
0b246afa
JM
3203 btrfs_set_super_log_root(fs_info->super_for_commit,
3204 log_root_tree->node->start);
3205 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3206 btrfs_header_level(log_root_tree->node));
e02119d5 3207
7237f183 3208 log_root_tree->log_transid++;
7237f183
YZ
3209 mutex_unlock(&log_root_tree->log_mutex);
3210
3211 /*
52042d8e 3212 * Nobody else is going to jump in and write the ctree
7237f183
YZ
3213 * super here because the log_commit atomic below is protecting
3214 * us. We must be called with a transaction handle pinning
3215 * the running transaction open, so a full commit can't hop
3216 * in and cause problems either.
3217 */
eece6a9c 3218 ret = write_all_supers(fs_info, 1);
5af3e8cc 3219 if (ret) {
90787766 3220 btrfs_set_log_full_commit(trans);
66642832 3221 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3222 goto out_wake_log_root;
3223 }
7237f183 3224
257c62e1
CM
3225 mutex_lock(&root->log_mutex);
3226 if (root->last_log_commit < log_transid)
3227 root->last_log_commit = log_transid;
3228 mutex_unlock(&root->log_mutex);
3229
12fcfd22 3230out_wake_log_root:
570dd450 3231 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3232 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3233
d1433deb 3234 log_root_tree->log_transid_committed++;
7237f183 3235 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3236 mutex_unlock(&log_root_tree->log_mutex);
3237
33a9eca7 3238 /*
093258e6
DS
3239 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3240 * all the updates above are seen by the woken threads. It might not be
3241 * necessary, but proving that seems to be hard.
33a9eca7 3242 */
093258e6 3243 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3244out:
d1433deb 3245 mutex_lock(&root->log_mutex);
570dd450 3246 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3247 root->log_transid_committed++;
7237f183 3248 atomic_set(&root->log_commit[index1], 0);
d1433deb 3249 mutex_unlock(&root->log_mutex);
8b050d35 3250
33a9eca7 3251 /*
093258e6
DS
3252 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3253 * all the updates above are seen by the woken threads. It might not be
3254 * necessary, but proving that seems to be hard.
33a9eca7 3255 */
093258e6 3256 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3257 return ret;
e02119d5
CM
3258}
3259
4a500fd1
YZ
3260static void free_log_tree(struct btrfs_trans_handle *trans,
3261 struct btrfs_root *log)
e02119d5
CM
3262{
3263 int ret;
e02119d5
CM
3264 struct walk_control wc = {
3265 .free = 1,
3266 .process_func = process_one_buffer
3267 };
3268
681ae509 3269 ret = walk_log_tree(trans, log, &wc);
374b0e2d
JM
3270 if (ret) {
3271 if (trans)
3272 btrfs_abort_transaction(trans, ret);
3273 else
3274 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3275 }
e02119d5 3276
59b0713a
FM
3277 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3278 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
e289f03e 3279 extent_io_tree_release(&log->log_csum_range);
00246528 3280 btrfs_put_root(log);
4a500fd1
YZ
3281}
3282
3283/*
3284 * free all the extents used by the tree log. This should be called
3285 * at commit time of the full transaction
3286 */
3287int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3288{
3289 if (root->log_root) {
3290 free_log_tree(trans, root->log_root);
3291 root->log_root = NULL;
e7a79811 3292 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
4a500fd1
YZ
3293 }
3294 return 0;
3295}
3296
3297int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3298 struct btrfs_fs_info *fs_info)
3299{
3300 if (fs_info->log_root_tree) {
3301 free_log_tree(trans, fs_info->log_root_tree);
3302 fs_info->log_root_tree = NULL;
3303 }
e02119d5
CM
3304 return 0;
3305}
3306
803f0f64
FM
3307/*
3308 * Check if an inode was logged in the current transaction. We can't always rely
3309 * on an inode's logged_trans value, because it's an in-memory only field and
3310 * therefore not persisted. This means that its value is lost if the inode gets
3311 * evicted and loaded again from disk (in which case it has a value of 0, and
3312 * certainly it is smaller then any possible transaction ID), when that happens
3313 * the full_sync flag is set in the inode's runtime flags, so on that case we
3314 * assume eviction happened and ignore the logged_trans value, assuming the
3315 * worst case, that the inode was logged before in the current transaction.
3316 */
3317static bool inode_logged(struct btrfs_trans_handle *trans,
3318 struct btrfs_inode *inode)
3319{
3320 if (inode->logged_trans == trans->transid)
3321 return true;
3322
3323 if (inode->last_trans == trans->transid &&
3324 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3325 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3326 return true;
3327
3328 return false;
3329}
3330
e02119d5
CM
3331/*
3332 * If both a file and directory are logged, and unlinks or renames are
3333 * mixed in, we have a few interesting corners:
3334 *
3335 * create file X in dir Y
3336 * link file X to X.link in dir Y
3337 * fsync file X
3338 * unlink file X but leave X.link
3339 * fsync dir Y
3340 *
3341 * After a crash we would expect only X.link to exist. But file X
3342 * didn't get fsync'd again so the log has back refs for X and X.link.
3343 *
3344 * We solve this by removing directory entries and inode backrefs from the
3345 * log when a file that was logged in the current transaction is
3346 * unlinked. Any later fsync will include the updated log entries, and
3347 * we'll be able to reconstruct the proper directory items from backrefs.
3348 *
3349 * This optimizations allows us to avoid relogging the entire inode
3350 * or the entire directory.
3351 */
3352int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3353 struct btrfs_root *root,
3354 const char *name, int name_len,
49f34d1f 3355 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3356{
3357 struct btrfs_root *log;
3358 struct btrfs_dir_item *di;
3359 struct btrfs_path *path;
3360 int ret;
4a500fd1 3361 int err = 0;
e02119d5 3362 int bytes_del = 0;
49f34d1f 3363 u64 dir_ino = btrfs_ino(dir);
e02119d5 3364
803f0f64 3365 if (!inode_logged(trans, dir))
3a5f1d45
CM
3366 return 0;
3367
e02119d5
CM
3368 ret = join_running_log_trans(root);
3369 if (ret)
3370 return 0;
3371
49f34d1f 3372 mutex_lock(&dir->log_mutex);
e02119d5
CM
3373
3374 log = root->log_root;
3375 path = btrfs_alloc_path();
a62f44a5
TI
3376 if (!path) {
3377 err = -ENOMEM;
3378 goto out_unlock;
3379 }
2a29edc6 3380
33345d01 3381 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3382 name, name_len, -1);
4a500fd1
YZ
3383 if (IS_ERR(di)) {
3384 err = PTR_ERR(di);
3385 goto fail;
3386 }
3387 if (di) {
e02119d5
CM
3388 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3389 bytes_del += name_len;
3650860b
JB
3390 if (ret) {
3391 err = ret;
3392 goto fail;
3393 }
e02119d5 3394 }
b3b4aa74 3395 btrfs_release_path(path);
33345d01 3396 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3397 index, name, name_len, -1);
4a500fd1
YZ
3398 if (IS_ERR(di)) {
3399 err = PTR_ERR(di);
3400 goto fail;
3401 }
3402 if (di) {
e02119d5
CM
3403 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3404 bytes_del += name_len;
3650860b
JB
3405 if (ret) {
3406 err = ret;
3407 goto fail;
3408 }
e02119d5
CM
3409 }
3410
3411 /* update the directory size in the log to reflect the names
3412 * we have removed
3413 */
3414 if (bytes_del) {
3415 struct btrfs_key key;
3416
33345d01 3417 key.objectid = dir_ino;
e02119d5
CM
3418 key.offset = 0;
3419 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3420 btrfs_release_path(path);
e02119d5
CM
3421
3422 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3423 if (ret < 0) {
3424 err = ret;
3425 goto fail;
3426 }
e02119d5
CM
3427 if (ret == 0) {
3428 struct btrfs_inode_item *item;
3429 u64 i_size;
3430
3431 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3432 struct btrfs_inode_item);
3433 i_size = btrfs_inode_size(path->nodes[0], item);
3434 if (i_size > bytes_del)
3435 i_size -= bytes_del;
3436 else
3437 i_size = 0;
3438 btrfs_set_inode_size(path->nodes[0], item, i_size);
3439 btrfs_mark_buffer_dirty(path->nodes[0]);
3440 } else
3441 ret = 0;
b3b4aa74 3442 btrfs_release_path(path);
e02119d5 3443 }
4a500fd1 3444fail:
e02119d5 3445 btrfs_free_path(path);
a62f44a5 3446out_unlock:
49f34d1f 3447 mutex_unlock(&dir->log_mutex);
fb2fecba 3448 if (err == -ENOSPC) {
90787766 3449 btrfs_set_log_full_commit(trans);
fb2fecba
JB
3450 err = 0;
3451 } else if (err < 0 && err != -ENOENT) {
3452 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3453 btrfs_abort_transaction(trans, err);
3454 }
79787eaa 3455
12fcfd22 3456 btrfs_end_log_trans(root);
e02119d5 3457
411fc6bc 3458 return err;
e02119d5
CM
3459}
3460
3461/* see comments for btrfs_del_dir_entries_in_log */
3462int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3463 struct btrfs_root *root,
3464 const char *name, int name_len,
a491abb2 3465 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3466{
3467 struct btrfs_root *log;
3468 u64 index;
3469 int ret;
3470
803f0f64 3471 if (!inode_logged(trans, inode))
3a5f1d45
CM
3472 return 0;
3473
e02119d5
CM
3474 ret = join_running_log_trans(root);
3475 if (ret)
3476 return 0;
3477 log = root->log_root;
a491abb2 3478 mutex_lock(&inode->log_mutex);
e02119d5 3479
a491abb2 3480 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3481 dirid, &index);
a491abb2 3482 mutex_unlock(&inode->log_mutex);
4a500fd1 3483 if (ret == -ENOSPC) {
90787766 3484 btrfs_set_log_full_commit(trans);
4a500fd1 3485 ret = 0;
79787eaa 3486 } else if (ret < 0 && ret != -ENOENT)
66642832 3487 btrfs_abort_transaction(trans, ret);
12fcfd22 3488 btrfs_end_log_trans(root);
e02119d5 3489
e02119d5
CM
3490 return ret;
3491}
3492
3493/*
3494 * creates a range item in the log for 'dirid'. first_offset and
3495 * last_offset tell us which parts of the key space the log should
3496 * be considered authoritative for.
3497 */
3498static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3499 struct btrfs_root *log,
3500 struct btrfs_path *path,
3501 int key_type, u64 dirid,
3502 u64 first_offset, u64 last_offset)
3503{
3504 int ret;
3505 struct btrfs_key key;
3506 struct btrfs_dir_log_item *item;
3507
3508 key.objectid = dirid;
3509 key.offset = first_offset;
3510 if (key_type == BTRFS_DIR_ITEM_KEY)
3511 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3512 else
3513 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3514 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3515 if (ret)
3516 return ret;
e02119d5
CM
3517
3518 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3519 struct btrfs_dir_log_item);
3520 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3521 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3522 btrfs_release_path(path);
e02119d5
CM
3523 return 0;
3524}
3525
3526/*
3527 * log all the items included in the current transaction for a given
3528 * directory. This also creates the range items in the log tree required
3529 * to replay anything deleted before the fsync
3530 */
3531static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3532 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3533 struct btrfs_path *path,
3534 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3535 struct btrfs_log_ctx *ctx,
e02119d5
CM
3536 u64 min_offset, u64 *last_offset_ret)
3537{
3538 struct btrfs_key min_key;
e02119d5
CM
3539 struct btrfs_root *log = root->log_root;
3540 struct extent_buffer *src;
4a500fd1 3541 int err = 0;
e02119d5
CM
3542 int ret;
3543 int i;
3544 int nritems;
3545 u64 first_offset = min_offset;
3546 u64 last_offset = (u64)-1;
684a5773 3547 u64 ino = btrfs_ino(inode);
e02119d5
CM
3548
3549 log = root->log_root;
e02119d5 3550
33345d01 3551 min_key.objectid = ino;
e02119d5
CM
3552 min_key.type = key_type;
3553 min_key.offset = min_offset;
3554
6174d3cb 3555 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3556
3557 /*
3558 * we didn't find anything from this transaction, see if there
3559 * is anything at all
3560 */
33345d01
LZ
3561 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3562 min_key.objectid = ino;
e02119d5
CM
3563 min_key.type = key_type;
3564 min_key.offset = (u64)-1;
b3b4aa74 3565 btrfs_release_path(path);
e02119d5
CM
3566 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3567 if (ret < 0) {
b3b4aa74 3568 btrfs_release_path(path);
e02119d5
CM
3569 return ret;
3570 }
33345d01 3571 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3572
3573 /* if ret == 0 there are items for this type,
3574 * create a range to tell us the last key of this type.
3575 * otherwise, there are no items in this directory after
3576 * *min_offset, and we create a range to indicate that.
3577 */
3578 if (ret == 0) {
3579 struct btrfs_key tmp;
3580 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3581 path->slots[0]);
d397712b 3582 if (key_type == tmp.type)
e02119d5 3583 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3584 }
3585 goto done;
3586 }
3587
3588 /* go backward to find any previous key */
33345d01 3589 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3590 if (ret == 0) {
3591 struct btrfs_key tmp;
3592 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3593 if (key_type == tmp.type) {
3594 first_offset = tmp.offset;
3595 ret = overwrite_item(trans, log, dst_path,
3596 path->nodes[0], path->slots[0],
3597 &tmp);
4a500fd1
YZ
3598 if (ret) {
3599 err = ret;
3600 goto done;
3601 }
e02119d5
CM
3602 }
3603 }
b3b4aa74 3604 btrfs_release_path(path);
e02119d5 3605
2cc83342
JB
3606 /*
3607 * Find the first key from this transaction again. See the note for
3608 * log_new_dir_dentries, if we're logging a directory recursively we
3609 * won't be holding its i_mutex, which means we can modify the directory
3610 * while we're logging it. If we remove an entry between our first
3611 * search and this search we'll not find the key again and can just
3612 * bail.
3613 */
bb56f02f 3614search:
e02119d5 3615 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3616 if (ret != 0)
e02119d5 3617 goto done;
e02119d5
CM
3618
3619 /*
3620 * we have a block from this transaction, log every item in it
3621 * from our directory
3622 */
d397712b 3623 while (1) {
e02119d5
CM
3624 struct btrfs_key tmp;
3625 src = path->nodes[0];
3626 nritems = btrfs_header_nritems(src);
3627 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3628 struct btrfs_dir_item *di;
3629
e02119d5
CM
3630 btrfs_item_key_to_cpu(src, &min_key, i);
3631
33345d01 3632 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5 3633 goto done;
bb56f02f
FM
3634
3635 if (need_resched()) {
3636 btrfs_release_path(path);
3637 cond_resched();
3638 goto search;
3639 }
3640
e02119d5
CM
3641 ret = overwrite_item(trans, log, dst_path, src, i,
3642 &min_key);
4a500fd1
YZ
3643 if (ret) {
3644 err = ret;
3645 goto done;
3646 }
2f2ff0ee
FM
3647
3648 /*
3649 * We must make sure that when we log a directory entry,
3650 * the corresponding inode, after log replay, has a
3651 * matching link count. For example:
3652 *
3653 * touch foo
3654 * mkdir mydir
3655 * sync
3656 * ln foo mydir/bar
3657 * xfs_io -c "fsync" mydir
3658 * <crash>
3659 * <mount fs and log replay>
3660 *
3661 * Would result in a fsync log that when replayed, our
3662 * file inode would have a link count of 1, but we get
3663 * two directory entries pointing to the same inode.
3664 * After removing one of the names, it would not be
3665 * possible to remove the other name, which resulted
3666 * always in stale file handle errors, and would not
3667 * be possible to rmdir the parent directory, since
3668 * its i_size could never decrement to the value
3669 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3670 */
3671 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3672 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3673 if (ctx &&
3674 (btrfs_dir_transid(src, di) == trans->transid ||
3675 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3676 tmp.type != BTRFS_ROOT_ITEM_KEY)
3677 ctx->log_new_dentries = true;
e02119d5
CM
3678 }
3679 path->slots[0] = nritems;
3680
3681 /*
3682 * look ahead to the next item and see if it is also
3683 * from this directory and from this transaction
3684 */
3685 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3686 if (ret) {
3687 if (ret == 1)
3688 last_offset = (u64)-1;
3689 else
3690 err = ret;
e02119d5
CM
3691 goto done;
3692 }
3693 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3694 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3695 last_offset = (u64)-1;
3696 goto done;
3697 }
3698 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3699 ret = overwrite_item(trans, log, dst_path,
3700 path->nodes[0], path->slots[0],
3701 &tmp);
4a500fd1
YZ
3702 if (ret)
3703 err = ret;
3704 else
3705 last_offset = tmp.offset;
e02119d5
CM
3706 goto done;
3707 }
3708 }
3709done:
b3b4aa74
DS
3710 btrfs_release_path(path);
3711 btrfs_release_path(dst_path);
e02119d5 3712
4a500fd1
YZ
3713 if (err == 0) {
3714 *last_offset_ret = last_offset;
3715 /*
3716 * insert the log range keys to indicate where the log
3717 * is valid
3718 */
3719 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3720 ino, first_offset, last_offset);
4a500fd1
YZ
3721 if (ret)
3722 err = ret;
3723 }
3724 return err;
e02119d5
CM
3725}
3726
3727/*
3728 * logging directories is very similar to logging inodes, We find all the items
3729 * from the current transaction and write them to the log.
3730 *
3731 * The recovery code scans the directory in the subvolume, and if it finds a
3732 * key in the range logged that is not present in the log tree, then it means
3733 * that dir entry was unlinked during the transaction.
3734 *
3735 * In order for that scan to work, we must include one key smaller than
3736 * the smallest logged by this transaction and one key larger than the largest
3737 * key logged by this transaction.
3738 */
3739static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3740 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3741 struct btrfs_path *path,
2f2ff0ee
FM
3742 struct btrfs_path *dst_path,
3743 struct btrfs_log_ctx *ctx)
e02119d5
CM
3744{
3745 u64 min_key;
3746 u64 max_key;
3747 int ret;
3748 int key_type = BTRFS_DIR_ITEM_KEY;
3749
3750again:
3751 min_key = 0;
3752 max_key = 0;
d397712b 3753 while (1) {
dbf39ea4
NB
3754 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3755 ctx, min_key, &max_key);
4a500fd1
YZ
3756 if (ret)
3757 return ret;
e02119d5
CM
3758 if (max_key == (u64)-1)
3759 break;
3760 min_key = max_key + 1;
3761 }
3762
3763 if (key_type == BTRFS_DIR_ITEM_KEY) {
3764 key_type = BTRFS_DIR_INDEX_KEY;
3765 goto again;
3766 }
3767 return 0;
3768}
3769
3770/*
3771 * a helper function to drop items from the log before we relog an
3772 * inode. max_key_type indicates the highest item type to remove.
3773 * This cannot be run for file data extents because it does not
3774 * free the extents they point to.
3775 */
3776static int drop_objectid_items(struct btrfs_trans_handle *trans,
3777 struct btrfs_root *log,
3778 struct btrfs_path *path,
3779 u64 objectid, int max_key_type)
3780{
3781 int ret;
3782 struct btrfs_key key;
3783 struct btrfs_key found_key;
18ec90d6 3784 int start_slot;
e02119d5
CM
3785
3786 key.objectid = objectid;
3787 key.type = max_key_type;
3788 key.offset = (u64)-1;
3789
d397712b 3790 while (1) {
e02119d5 3791 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3792 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3793 if (ret < 0)
e02119d5
CM
3794 break;
3795
3796 if (path->slots[0] == 0)
3797 break;
3798
3799 path->slots[0]--;
3800 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3801 path->slots[0]);
3802
3803 if (found_key.objectid != objectid)
3804 break;
3805
18ec90d6
JB
3806 found_key.offset = 0;
3807 found_key.type = 0;
e3b83361 3808 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
3809 if (ret < 0)
3810 break;
18ec90d6
JB
3811
3812 ret = btrfs_del_items(trans, log, path, start_slot,
3813 path->slots[0] - start_slot + 1);
3814 /*
3815 * If start slot isn't 0 then we don't need to re-search, we've
3816 * found the last guy with the objectid in this tree.
3817 */
3818 if (ret || start_slot != 0)
65a246c5 3819 break;
b3b4aa74 3820 btrfs_release_path(path);
e02119d5 3821 }
b3b4aa74 3822 btrfs_release_path(path);
5bdbeb21
JB
3823 if (ret > 0)
3824 ret = 0;
4a500fd1 3825 return ret;
e02119d5
CM
3826}
3827
94edf4ae
JB
3828static void fill_inode_item(struct btrfs_trans_handle *trans,
3829 struct extent_buffer *leaf,
3830 struct btrfs_inode_item *item,
1a4bcf47
FM
3831 struct inode *inode, int log_inode_only,
3832 u64 logged_isize)
94edf4ae 3833{
0b1c6cca
JB
3834 struct btrfs_map_token token;
3835
c82f823c 3836 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
3837
3838 if (log_inode_only) {
3839 /* set the generation to zero so the recover code
3840 * can tell the difference between an logging
3841 * just to say 'this inode exists' and a logging
3842 * to say 'update this inode with these values'
3843 */
cc4c13d5
DS
3844 btrfs_set_token_inode_generation(&token, item, 0);
3845 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 3846 } else {
cc4c13d5
DS
3847 btrfs_set_token_inode_generation(&token, item,
3848 BTRFS_I(inode)->generation);
3849 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
3850 }
3851
cc4c13d5
DS
3852 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3853 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3854 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3855 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3856
3857 btrfs_set_token_timespec_sec(&token, &item->atime,
3858 inode->i_atime.tv_sec);
3859 btrfs_set_token_timespec_nsec(&token, &item->atime,
3860 inode->i_atime.tv_nsec);
3861
3862 btrfs_set_token_timespec_sec(&token, &item->mtime,
3863 inode->i_mtime.tv_sec);
3864 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3865 inode->i_mtime.tv_nsec);
3866
3867 btrfs_set_token_timespec_sec(&token, &item->ctime,
3868 inode->i_ctime.tv_sec);
3869 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3870 inode->i_ctime.tv_nsec);
3871
3872 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3873
3874 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3875 btrfs_set_token_inode_transid(&token, item, trans->transid);
3876 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3877 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3878 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
3879}
3880
a95249b3
JB
3881static int log_inode_item(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3883 struct btrfs_inode *inode)
a95249b3
JB
3884{
3885 struct btrfs_inode_item *inode_item;
a95249b3
JB
3886 int ret;
3887
efd0c405 3888 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3889 &inode->location, sizeof(*inode_item));
a95249b3
JB
3890 if (ret && ret != -EEXIST)
3891 return ret;
3892 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3893 struct btrfs_inode_item);
6d889a3b
NB
3894 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3895 0, 0);
a95249b3
JB
3896 btrfs_release_path(path);
3897 return 0;
3898}
3899
40e046ac 3900static int log_csums(struct btrfs_trans_handle *trans,
3ebac17c 3901 struct btrfs_inode *inode,
40e046ac
FM
3902 struct btrfs_root *log_root,
3903 struct btrfs_ordered_sum *sums)
3904{
e289f03e
FM
3905 const u64 lock_end = sums->bytenr + sums->len - 1;
3906 struct extent_state *cached_state = NULL;
40e046ac
FM
3907 int ret;
3908
3ebac17c
FM
3909 /*
3910 * If this inode was not used for reflink operations in the current
3911 * transaction with new extents, then do the fast path, no need to
3912 * worry about logging checksum items with overlapping ranges.
3913 */
3914 if (inode->last_reflink_trans < trans->transid)
3915 return btrfs_csum_file_blocks(trans, log_root, sums);
3916
e289f03e
FM
3917 /*
3918 * Serialize logging for checksums. This is to avoid racing with the
3919 * same checksum being logged by another task that is logging another
3920 * file which happens to refer to the same extent as well. Such races
3921 * can leave checksum items in the log with overlapping ranges.
3922 */
3923 ret = lock_extent_bits(&log_root->log_csum_range, sums->bytenr,
3924 lock_end, &cached_state);
3925 if (ret)
3926 return ret;
40e046ac
FM
3927 /*
3928 * Due to extent cloning, we might have logged a csum item that covers a
3929 * subrange of a cloned extent, and later we can end up logging a csum
3930 * item for a larger subrange of the same extent or the entire range.
3931 * This would leave csum items in the log tree that cover the same range
3932 * and break the searches for checksums in the log tree, resulting in
3933 * some checksums missing in the fs/subvolume tree. So just delete (or
3934 * trim and adjust) any existing csum items in the log for this range.
3935 */
3936 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
e289f03e
FM
3937 if (!ret)
3938 ret = btrfs_csum_file_blocks(trans, log_root, sums);
40e046ac 3939
e289f03e
FM
3940 unlock_extent_cached(&log_root->log_csum_range, sums->bytenr, lock_end,
3941 &cached_state);
3942
3943 return ret;
40e046ac
FM
3944}
3945
31ff1cd2 3946static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3947 struct btrfs_inode *inode,
31ff1cd2 3948 struct btrfs_path *dst_path,
0e56315c 3949 struct btrfs_path *src_path,
1a4bcf47
FM
3950 int start_slot, int nr, int inode_only,
3951 u64 logged_isize)
31ff1cd2 3952{
3ffbd68c 3953 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
3954 unsigned long src_offset;
3955 unsigned long dst_offset;
44d70e19 3956 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3957 struct btrfs_file_extent_item *extent;
3958 struct btrfs_inode_item *inode_item;
16e7549f 3959 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
3960 int ret;
3961 struct btrfs_key *ins_keys;
3962 u32 *ins_sizes;
3963 char *ins_data;
3964 int i;
d20f7043 3965 struct list_head ordered_sums;
44d70e19 3966 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
3967
3968 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3969
3970 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3971 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3972 if (!ins_data)
3973 return -ENOMEM;
3974
31ff1cd2
CM
3975 ins_sizes = (u32 *)ins_data;
3976 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3977
3978 for (i = 0; i < nr; i++) {
3979 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3980 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3981 }
3982 ret = btrfs_insert_empty_items(trans, log, dst_path,
3983 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3984 if (ret) {
3985 kfree(ins_data);
3986 return ret;
3987 }
31ff1cd2 3988
5d4f98a2 3989 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3990 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3991 dst_path->slots[0]);
3992
3993 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3994
94edf4ae 3995 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3996 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3997 dst_path->slots[0],
3998 struct btrfs_inode_item);
94edf4ae 3999 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
4000 &inode->vfs_inode,
4001 inode_only == LOG_INODE_EXISTS,
1a4bcf47 4002 logged_isize);
94edf4ae
JB
4003 } else {
4004 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4005 src_offset, ins_sizes[i]);
31ff1cd2 4006 }
94edf4ae 4007
31ff1cd2
CM
4008 /* take a reference on file data extents so that truncates
4009 * or deletes of this inode don't have to relog the inode
4010 * again
4011 */
962a298f 4012 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4013 !skip_csum) {
31ff1cd2
CM
4014 int found_type;
4015 extent = btrfs_item_ptr(src, start_slot + i,
4016 struct btrfs_file_extent_item);
4017
8e531cdf 4018 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4019 continue;
4020
31ff1cd2 4021 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4022 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4023 u64 ds, dl, cs, cl;
4024 ds = btrfs_file_extent_disk_bytenr(src,
4025 extent);
4026 /* ds == 0 is a hole */
4027 if (ds == 0)
4028 continue;
4029
4030 dl = btrfs_file_extent_disk_num_bytes(src,
4031 extent);
4032 cs = btrfs_file_extent_offset(src, extent);
4033 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4034 extent);
580afd76
CM
4035 if (btrfs_file_extent_compression(src,
4036 extent)) {
4037 cs = 0;
4038 cl = dl;
4039 }
5d4f98a2
YZ
4040
4041 ret = btrfs_lookup_csums_range(
0b246afa 4042 fs_info->csum_root,
5d4f98a2 4043 ds + cs, ds + cs + cl - 1,
a2de733c 4044 &ordered_sums, 0);
4f26433e
FM
4045 if (ret)
4046 break;
31ff1cd2
CM
4047 }
4048 }
31ff1cd2
CM
4049 }
4050
4051 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4052 btrfs_release_path(dst_path);
31ff1cd2 4053 kfree(ins_data);
d20f7043
CM
4054
4055 /*
4056 * we have to do this after the loop above to avoid changing the
4057 * log tree while trying to change the log tree.
4058 */
d397712b 4059 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4060 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4061 struct btrfs_ordered_sum,
4062 list);
4a500fd1 4063 if (!ret)
3ebac17c 4064 ret = log_csums(trans, inode, log, sums);
d20f7043
CM
4065 list_del(&sums->list);
4066 kfree(sums);
4067 }
16e7549f 4068
4a500fd1 4069 return ret;
31ff1cd2
CM
4070}
4071
5dc562c5
JB
4072static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4073{
4074 struct extent_map *em1, *em2;
4075
4076 em1 = list_entry(a, struct extent_map, list);
4077 em2 = list_entry(b, struct extent_map, list);
4078
4079 if (em1->start < em2->start)
4080 return -1;
4081 else if (em1->start > em2->start)
4082 return 1;
4083 return 0;
4084}
4085
e7175a69
JB
4086static int log_extent_csums(struct btrfs_trans_handle *trans,
4087 struct btrfs_inode *inode,
a9ecb653 4088 struct btrfs_root *log_root,
48778179
FM
4089 const struct extent_map *em,
4090 struct btrfs_log_ctx *ctx)
5dc562c5 4091{
48778179 4092 struct btrfs_ordered_extent *ordered;
2ab28f32
JB
4093 u64 csum_offset;
4094 u64 csum_len;
48778179
FM
4095 u64 mod_start = em->mod_start;
4096 u64 mod_len = em->mod_len;
8407f553
FM
4097 LIST_HEAD(ordered_sums);
4098 int ret = 0;
0aa4a17d 4099
e7175a69
JB
4100 if (inode->flags & BTRFS_INODE_NODATASUM ||
4101 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4102 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4103 return 0;
5dc562c5 4104
48778179
FM
4105 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4106 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4107 const u64 mod_end = mod_start + mod_len;
4108 struct btrfs_ordered_sum *sums;
4109
4110 if (mod_len == 0)
4111 break;
4112
4113 if (ordered_end <= mod_start)
4114 continue;
4115 if (mod_end <= ordered->file_offset)
4116 break;
4117
4118 /*
4119 * We are going to copy all the csums on this ordered extent, so
4120 * go ahead and adjust mod_start and mod_len in case this ordered
4121 * extent has already been logged.
4122 */
4123 if (ordered->file_offset > mod_start) {
4124 if (ordered_end >= mod_end)
4125 mod_len = ordered->file_offset - mod_start;
4126 /*
4127 * If we have this case
4128 *
4129 * |--------- logged extent ---------|
4130 * |----- ordered extent ----|
4131 *
4132 * Just don't mess with mod_start and mod_len, we'll
4133 * just end up logging more csums than we need and it
4134 * will be ok.
4135 */
4136 } else {
4137 if (ordered_end < mod_end) {
4138 mod_len = mod_end - ordered_end;
4139 mod_start = ordered_end;
4140 } else {
4141 mod_len = 0;
4142 }
4143 }
4144
4145 /*
4146 * To keep us from looping for the above case of an ordered
4147 * extent that falls inside of the logged extent.
4148 */
4149 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4150 continue;
4151
4152 list_for_each_entry(sums, &ordered->list, list) {
4153 ret = log_csums(trans, inode, log_root, sums);
4154 if (ret)
4155 return ret;
4156 }
4157 }
4158
4159 /* We're done, found all csums in the ordered extents. */
4160 if (mod_len == 0)
4161 return 0;
4162
e7175a69 4163 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4164 if (em->compress_type) {
4165 csum_offset = 0;
8407f553 4166 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4167 } else {
48778179
FM
4168 csum_offset = mod_start - em->start;
4169 csum_len = mod_len;
488111aa 4170 }
2ab28f32 4171
70c8a91c 4172 /* block start is already adjusted for the file extent offset. */
a9ecb653 4173 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4174 em->block_start + csum_offset,
4175 em->block_start + csum_offset +
4176 csum_len - 1, &ordered_sums, 0);
4177 if (ret)
4178 return ret;
5dc562c5 4179
70c8a91c
JB
4180 while (!list_empty(&ordered_sums)) {
4181 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4182 struct btrfs_ordered_sum,
4183 list);
4184 if (!ret)
3ebac17c 4185 ret = log_csums(trans, inode, log_root, sums);
70c8a91c
JB
4186 list_del(&sums->list);
4187 kfree(sums);
5dc562c5
JB
4188 }
4189
70c8a91c 4190 return ret;
5dc562c5
JB
4191}
4192
8407f553 4193static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4194 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4195 const struct extent_map *em,
4196 struct btrfs_path *path,
8407f553
FM
4197 struct btrfs_log_ctx *ctx)
4198{
5893dfb9 4199 struct btrfs_drop_extents_args drop_args = { 0 };
8407f553
FM
4200 struct btrfs_root *log = root->log_root;
4201 struct btrfs_file_extent_item *fi;
4202 struct extent_buffer *leaf;
4203 struct btrfs_map_token token;
4204 struct btrfs_key key;
4205 u64 extent_offset = em->start - em->orig_start;
4206 u64 block_len;
4207 int ret;
8407f553 4208
48778179 4209 ret = log_extent_csums(trans, inode, log, em, ctx);
8407f553
FM
4210 if (ret)
4211 return ret;
4212
5893dfb9
FM
4213 drop_args.path = path;
4214 drop_args.start = em->start;
4215 drop_args.end = em->start + em->len;
4216 drop_args.replace_extent = true;
4217 drop_args.extent_item_size = sizeof(*fi);
4218 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
8407f553
FM
4219 if (ret)
4220 return ret;
4221
5893dfb9 4222 if (!drop_args.extent_inserted) {
9d122629 4223 key.objectid = btrfs_ino(inode);
8407f553
FM
4224 key.type = BTRFS_EXTENT_DATA_KEY;
4225 key.offset = em->start;
4226
4227 ret = btrfs_insert_empty_item(trans, log, path, &key,
4228 sizeof(*fi));
4229 if (ret)
4230 return ret;
4231 }
4232 leaf = path->nodes[0];
c82f823c 4233 btrfs_init_map_token(&token, leaf);
8407f553
FM
4234 fi = btrfs_item_ptr(leaf, path->slots[0],
4235 struct btrfs_file_extent_item);
4236
cc4c13d5 4237 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
8407f553 4238 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
cc4c13d5
DS
4239 btrfs_set_token_file_extent_type(&token, fi,
4240 BTRFS_FILE_EXTENT_PREALLOC);
8407f553 4241 else
cc4c13d5
DS
4242 btrfs_set_token_file_extent_type(&token, fi,
4243 BTRFS_FILE_EXTENT_REG);
8407f553
FM
4244
4245 block_len = max(em->block_len, em->orig_block_len);
4246 if (em->compress_type != BTRFS_COMPRESS_NONE) {
cc4c13d5
DS
4247 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4248 em->block_start);
4249 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4250 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
cc4c13d5 4251 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
8407f553 4252 em->block_start -
cc4c13d5
DS
4253 extent_offset);
4254 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4255 } else {
cc4c13d5
DS
4256 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4257 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
8407f553
FM
4258 }
4259
cc4c13d5
DS
4260 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4261 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4262 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4263 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4264 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4265 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
8407f553
FM
4266 btrfs_mark_buffer_dirty(leaf);
4267
4268 btrfs_release_path(path);
4269
4270 return ret;
4271}
4272
31d11b83
FM
4273/*
4274 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4275 * lose them after doing a fast fsync and replaying the log. We scan the
4276 * subvolume's root instead of iterating the inode's extent map tree because
4277 * otherwise we can log incorrect extent items based on extent map conversion.
4278 * That can happen due to the fact that extent maps are merged when they
4279 * are not in the extent map tree's list of modified extents.
4280 */
4281static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4282 struct btrfs_inode *inode,
4283 struct btrfs_path *path)
4284{
4285 struct btrfs_root *root = inode->root;
4286 struct btrfs_key key;
4287 const u64 i_size = i_size_read(&inode->vfs_inode);
4288 const u64 ino = btrfs_ino(inode);
4289 struct btrfs_path *dst_path = NULL;
0e56315c 4290 bool dropped_extents = false;
f135cea3
FM
4291 u64 truncate_offset = i_size;
4292 struct extent_buffer *leaf;
4293 int slot;
31d11b83
FM
4294 int ins_nr = 0;
4295 int start_slot;
4296 int ret;
4297
4298 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4299 return 0;
4300
4301 key.objectid = ino;
4302 key.type = BTRFS_EXTENT_DATA_KEY;
4303 key.offset = i_size;
4304 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4305 if (ret < 0)
4306 goto out;
4307
f135cea3
FM
4308 /*
4309 * We must check if there is a prealloc extent that starts before the
4310 * i_size and crosses the i_size boundary. This is to ensure later we
4311 * truncate down to the end of that extent and not to the i_size, as
4312 * otherwise we end up losing part of the prealloc extent after a log
4313 * replay and with an implicit hole if there is another prealloc extent
4314 * that starts at an offset beyond i_size.
4315 */
4316 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4317 if (ret < 0)
4318 goto out;
4319
4320 if (ret == 0) {
4321 struct btrfs_file_extent_item *ei;
4322
4323 leaf = path->nodes[0];
4324 slot = path->slots[0];
4325 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4326
4327 if (btrfs_file_extent_type(leaf, ei) ==
4328 BTRFS_FILE_EXTENT_PREALLOC) {
4329 u64 extent_end;
4330
4331 btrfs_item_key_to_cpu(leaf, &key, slot);
4332 extent_end = key.offset +
4333 btrfs_file_extent_num_bytes(leaf, ei);
4334
4335 if (extent_end > i_size)
4336 truncate_offset = extent_end;
4337 }
4338 } else {
4339 ret = 0;
4340 }
4341
31d11b83 4342 while (true) {
f135cea3
FM
4343 leaf = path->nodes[0];
4344 slot = path->slots[0];
31d11b83
FM
4345
4346 if (slot >= btrfs_header_nritems(leaf)) {
4347 if (ins_nr > 0) {
4348 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4349 start_slot, ins_nr, 1, 0);
31d11b83
FM
4350 if (ret < 0)
4351 goto out;
4352 ins_nr = 0;
4353 }
4354 ret = btrfs_next_leaf(root, path);
4355 if (ret < 0)
4356 goto out;
4357 if (ret > 0) {
4358 ret = 0;
4359 break;
4360 }
4361 continue;
4362 }
4363
4364 btrfs_item_key_to_cpu(leaf, &key, slot);
4365 if (key.objectid > ino)
4366 break;
4367 if (WARN_ON_ONCE(key.objectid < ino) ||
4368 key.type < BTRFS_EXTENT_DATA_KEY ||
4369 key.offset < i_size) {
4370 path->slots[0]++;
4371 continue;
4372 }
0e56315c 4373 if (!dropped_extents) {
31d11b83
FM
4374 /*
4375 * Avoid logging extent items logged in past fsync calls
4376 * and leading to duplicate keys in the log tree.
4377 */
4378 do {
4379 ret = btrfs_truncate_inode_items(trans,
4380 root->log_root,
50743398 4381 inode, truncate_offset,
31d11b83
FM
4382 BTRFS_EXTENT_DATA_KEY);
4383 } while (ret == -EAGAIN);
4384 if (ret)
4385 goto out;
0e56315c 4386 dropped_extents = true;
31d11b83
FM
4387 }
4388 if (ins_nr == 0)
4389 start_slot = slot;
4390 ins_nr++;
4391 path->slots[0]++;
4392 if (!dst_path) {
4393 dst_path = btrfs_alloc_path();
4394 if (!dst_path) {
4395 ret = -ENOMEM;
4396 goto out;
4397 }
4398 }
4399 }
0bc2d3c0 4400 if (ins_nr > 0)
0e56315c 4401 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4402 start_slot, ins_nr, 1, 0);
31d11b83
FM
4403out:
4404 btrfs_release_path(path);
4405 btrfs_free_path(dst_path);
4406 return ret;
4407}
4408
5dc562c5
JB
4409static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4410 struct btrfs_root *root,
9d122629 4411 struct btrfs_inode *inode,
827463c4 4412 struct btrfs_path *path,
48778179 4413 struct btrfs_log_ctx *ctx)
5dc562c5 4414{
48778179
FM
4415 struct btrfs_ordered_extent *ordered;
4416 struct btrfs_ordered_extent *tmp;
5dc562c5
JB
4417 struct extent_map *em, *n;
4418 struct list_head extents;
9d122629 4419 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4420 u64 test_gen;
4421 int ret = 0;
2ab28f32 4422 int num = 0;
5dc562c5
JB
4423
4424 INIT_LIST_HEAD(&extents);
4425
5dc562c5
JB
4426 write_lock(&tree->lock);
4427 test_gen = root->fs_info->last_trans_committed;
4428
4429 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4430 list_del_init(&em->list);
2ab28f32
JB
4431 /*
4432 * Just an arbitrary number, this can be really CPU intensive
4433 * once we start getting a lot of extents, and really once we
4434 * have a bunch of extents we just want to commit since it will
4435 * be faster.
4436 */
4437 if (++num > 32768) {
4438 list_del_init(&tree->modified_extents);
4439 ret = -EFBIG;
4440 goto process;
4441 }
4442
5dc562c5
JB
4443 if (em->generation <= test_gen)
4444 continue;
8c6c5928 4445
31d11b83
FM
4446 /* We log prealloc extents beyond eof later. */
4447 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4448 em->start >= i_size_read(&inode->vfs_inode))
4449 continue;
4450
ff44c6e3 4451 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4452 refcount_inc(&em->refs);
ff44c6e3 4453 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4454 list_add_tail(&em->list, &extents);
2ab28f32 4455 num++;
5dc562c5
JB
4456 }
4457
4458 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4459process:
5dc562c5
JB
4460 while (!list_empty(&extents)) {
4461 em = list_entry(extents.next, struct extent_map, list);
4462
4463 list_del_init(&em->list);
4464
4465 /*
4466 * If we had an error we just need to delete everybody from our
4467 * private list.
4468 */
ff44c6e3 4469 if (ret) {
201a9038 4470 clear_em_logging(tree, em);
ff44c6e3 4471 free_extent_map(em);
5dc562c5 4472 continue;
ff44c6e3
JB
4473 }
4474
4475 write_unlock(&tree->lock);
5dc562c5 4476
a2120a47 4477 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4478 write_lock(&tree->lock);
201a9038
JB
4479 clear_em_logging(tree, em);
4480 free_extent_map(em);
5dc562c5 4481 }
ff44c6e3
JB
4482 WARN_ON(!list_empty(&extents));
4483 write_unlock(&tree->lock);
5dc562c5 4484
5dc562c5 4485 btrfs_release_path(path);
31d11b83
FM
4486 if (!ret)
4487 ret = btrfs_log_prealloc_extents(trans, inode, path);
48778179
FM
4488 if (ret)
4489 return ret;
31d11b83 4490
48778179
FM
4491 /*
4492 * We have logged all extents successfully, now make sure the commit of
4493 * the current transaction waits for the ordered extents to complete
4494 * before it commits and wipes out the log trees, otherwise we would
4495 * lose data if an ordered extents completes after the transaction
4496 * commits and a power failure happens after the transaction commit.
4497 */
4498 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
4499 list_del_init(&ordered->log_list);
4500 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
4501
4502 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4503 spin_lock_irq(&inode->ordered_tree.lock);
4504 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
4505 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
4506 atomic_inc(&trans->transaction->pending_ordered);
4507 }
4508 spin_unlock_irq(&inode->ordered_tree.lock);
4509 }
4510 btrfs_put_ordered_extent(ordered);
4511 }
4512
4513 return 0;
5dc562c5
JB
4514}
4515
481b01c0 4516static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4517 struct btrfs_path *path, u64 *size_ret)
4518{
4519 struct btrfs_key key;
4520 int ret;
4521
481b01c0 4522 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4523 key.type = BTRFS_INODE_ITEM_KEY;
4524 key.offset = 0;
4525
4526 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4527 if (ret < 0) {
4528 return ret;
4529 } else if (ret > 0) {
2f2ff0ee 4530 *size_ret = 0;
1a4bcf47
FM
4531 } else {
4532 struct btrfs_inode_item *item;
4533
4534 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4535 struct btrfs_inode_item);
4536 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4537 /*
4538 * If the in-memory inode's i_size is smaller then the inode
4539 * size stored in the btree, return the inode's i_size, so
4540 * that we get a correct inode size after replaying the log
4541 * when before a power failure we had a shrinking truncate
4542 * followed by addition of a new name (rename / new hard link).
4543 * Otherwise return the inode size from the btree, to avoid
4544 * data loss when replaying a log due to previously doing a
4545 * write that expands the inode's size and logging a new name
4546 * immediately after.
4547 */
4548 if (*size_ret > inode->vfs_inode.i_size)
4549 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4550 }
4551
4552 btrfs_release_path(path);
4553 return 0;
4554}
4555
36283bf7
FM
4556/*
4557 * At the moment we always log all xattrs. This is to figure out at log replay
4558 * time which xattrs must have their deletion replayed. If a xattr is missing
4559 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4560 * because if a xattr is deleted, the inode is fsynced and a power failure
4561 * happens, causing the log to be replayed the next time the fs is mounted,
4562 * we want the xattr to not exist anymore (same behaviour as other filesystems
4563 * with a journal, ext3/4, xfs, f2fs, etc).
4564 */
4565static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4566 struct btrfs_root *root,
1a93c36a 4567 struct btrfs_inode *inode,
36283bf7
FM
4568 struct btrfs_path *path,
4569 struct btrfs_path *dst_path)
4570{
4571 int ret;
4572 struct btrfs_key key;
1a93c36a 4573 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4574 int ins_nr = 0;
4575 int start_slot = 0;
4576
4577 key.objectid = ino;
4578 key.type = BTRFS_XATTR_ITEM_KEY;
4579 key.offset = 0;
4580
4581 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4582 if (ret < 0)
4583 return ret;
4584
4585 while (true) {
4586 int slot = path->slots[0];
4587 struct extent_buffer *leaf = path->nodes[0];
4588 int nritems = btrfs_header_nritems(leaf);
4589
4590 if (slot >= nritems) {
4591 if (ins_nr > 0) {
1a93c36a 4592 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4593 start_slot, ins_nr, 1, 0);
36283bf7
FM
4594 if (ret < 0)
4595 return ret;
4596 ins_nr = 0;
4597 }
4598 ret = btrfs_next_leaf(root, path);
4599 if (ret < 0)
4600 return ret;
4601 else if (ret > 0)
4602 break;
4603 continue;
4604 }
4605
4606 btrfs_item_key_to_cpu(leaf, &key, slot);
4607 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4608 break;
4609
4610 if (ins_nr == 0)
4611 start_slot = slot;
4612 ins_nr++;
4613 path->slots[0]++;
4614 cond_resched();
4615 }
4616 if (ins_nr > 0) {
1a93c36a 4617 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4618 start_slot, ins_nr, 1, 0);
36283bf7
FM
4619 if (ret < 0)
4620 return ret;
4621 }
4622
4623 return 0;
4624}
4625
a89ca6f2 4626/*
0e56315c
FM
4627 * When using the NO_HOLES feature if we punched a hole that causes the
4628 * deletion of entire leafs or all the extent items of the first leaf (the one
4629 * that contains the inode item and references) we may end up not processing
4630 * any extents, because there are no leafs with a generation matching the
4631 * current transaction that have extent items for our inode. So we need to find
4632 * if any holes exist and then log them. We also need to log holes after any
4633 * truncate operation that changes the inode's size.
a89ca6f2 4634 */
0e56315c
FM
4635static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4636 struct btrfs_root *root,
4637 struct btrfs_inode *inode,
7af59743 4638 struct btrfs_path *path)
a89ca6f2 4639{
0b246afa 4640 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 4641 struct btrfs_key key;
a0308dd7
NB
4642 const u64 ino = btrfs_ino(inode);
4643 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 4644 u64 prev_extent_end = 0;
0e56315c 4645 int ret;
a89ca6f2 4646
0e56315c 4647 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
4648 return 0;
4649
4650 key.objectid = ino;
4651 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 4652 key.offset = 0;
a89ca6f2
FM
4653
4654 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
4655 if (ret < 0)
4656 return ret;
4657
0e56315c 4658 while (true) {
0e56315c 4659 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 4660
0e56315c
FM
4661 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4662 ret = btrfs_next_leaf(root, path);
4663 if (ret < 0)
4664 return ret;
4665 if (ret > 0) {
4666 ret = 0;
4667 break;
4668 }
4669 leaf = path->nodes[0];
4670 }
4671
4672 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4673 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4674 break;
4675
4676 /* We have a hole, log it. */
4677 if (prev_extent_end < key.offset) {
7af59743 4678 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
4679
4680 /*
4681 * Release the path to avoid deadlocks with other code
4682 * paths that search the root while holding locks on
4683 * leafs from the log root.
4684 */
4685 btrfs_release_path(path);
4686 ret = btrfs_insert_file_extent(trans, root->log_root,
4687 ino, prev_extent_end, 0,
4688 0, hole_len, 0, hole_len,
4689 0, 0, 0);
4690 if (ret < 0)
4691 return ret;
4692
4693 /*
4694 * Search for the same key again in the root. Since it's
4695 * an extent item and we are holding the inode lock, the
4696 * key must still exist. If it doesn't just emit warning
4697 * and return an error to fall back to a transaction
4698 * commit.
4699 */
4700 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4701 if (ret < 0)
4702 return ret;
4703 if (WARN_ON(ret > 0))
4704 return -ENOENT;
4705 leaf = path->nodes[0];
4706 }
a89ca6f2 4707
7af59743 4708 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
4709 path->slots[0]++;
4710 cond_resched();
a89ca6f2 4711 }
a89ca6f2 4712
7af59743 4713 if (prev_extent_end < i_size) {
0e56315c 4714 u64 hole_len;
a89ca6f2 4715
0e56315c 4716 btrfs_release_path(path);
7af59743 4717 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
4718 ret = btrfs_insert_file_extent(trans, root->log_root,
4719 ino, prev_extent_end, 0, 0,
4720 hole_len, 0, hole_len,
4721 0, 0, 0);
4722 if (ret < 0)
4723 return ret;
4724 }
4725
4726 return 0;
a89ca6f2
FM
4727}
4728
56f23fdb
FM
4729/*
4730 * When we are logging a new inode X, check if it doesn't have a reference that
4731 * matches the reference from some other inode Y created in a past transaction
4732 * and that was renamed in the current transaction. If we don't do this, then at
4733 * log replay time we can lose inode Y (and all its files if it's a directory):
4734 *
4735 * mkdir /mnt/x
4736 * echo "hello world" > /mnt/x/foobar
4737 * sync
4738 * mv /mnt/x /mnt/y
4739 * mkdir /mnt/x # or touch /mnt/x
4740 * xfs_io -c fsync /mnt/x
4741 * <power fail>
4742 * mount fs, trigger log replay
4743 *
4744 * After the log replay procedure, we would lose the first directory and all its
4745 * files (file foobar).
4746 * For the case where inode Y is not a directory we simply end up losing it:
4747 *
4748 * echo "123" > /mnt/foo
4749 * sync
4750 * mv /mnt/foo /mnt/bar
4751 * echo "abc" > /mnt/foo
4752 * xfs_io -c fsync /mnt/foo
4753 * <power fail>
4754 *
4755 * We also need this for cases where a snapshot entry is replaced by some other
4756 * entry (file or directory) otherwise we end up with an unreplayable log due to
4757 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4758 * if it were a regular entry:
4759 *
4760 * mkdir /mnt/x
4761 * btrfs subvolume snapshot /mnt /mnt/x/snap
4762 * btrfs subvolume delete /mnt/x/snap
4763 * rmdir /mnt/x
4764 * mkdir /mnt/x
4765 * fsync /mnt/x or fsync some new file inside it
4766 * <power fail>
4767 *
4768 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4769 * the same transaction.
4770 */
4771static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4772 const int slot,
4773 const struct btrfs_key *key,
4791c8f1 4774 struct btrfs_inode *inode,
a3baaf0d 4775 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4776{
4777 int ret;
4778 struct btrfs_path *search_path;
4779 char *name = NULL;
4780 u32 name_len = 0;
4781 u32 item_size = btrfs_item_size_nr(eb, slot);
4782 u32 cur_offset = 0;
4783 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4784
4785 search_path = btrfs_alloc_path();
4786 if (!search_path)
4787 return -ENOMEM;
4788 search_path->search_commit_root = 1;
4789 search_path->skip_locking = 1;
4790
4791 while (cur_offset < item_size) {
4792 u64 parent;
4793 u32 this_name_len;
4794 u32 this_len;
4795 unsigned long name_ptr;
4796 struct btrfs_dir_item *di;
4797
4798 if (key->type == BTRFS_INODE_REF_KEY) {
4799 struct btrfs_inode_ref *iref;
4800
4801 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4802 parent = key->offset;
4803 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4804 name_ptr = (unsigned long)(iref + 1);
4805 this_len = sizeof(*iref) + this_name_len;
4806 } else {
4807 struct btrfs_inode_extref *extref;
4808
4809 extref = (struct btrfs_inode_extref *)(ptr +
4810 cur_offset);
4811 parent = btrfs_inode_extref_parent(eb, extref);
4812 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4813 name_ptr = (unsigned long)&extref->name;
4814 this_len = sizeof(*extref) + this_name_len;
4815 }
4816
4817 if (this_name_len > name_len) {
4818 char *new_name;
4819
4820 new_name = krealloc(name, this_name_len, GFP_NOFS);
4821 if (!new_name) {
4822 ret = -ENOMEM;
4823 goto out;
4824 }
4825 name_len = this_name_len;
4826 name = new_name;
4827 }
4828
4829 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4830 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4831 parent, name, this_name_len, 0);
56f23fdb 4832 if (di && !IS_ERR(di)) {
44f714da
FM
4833 struct btrfs_key di_key;
4834
4835 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4836 di, &di_key);
4837 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4838 if (di_key.objectid != key->objectid) {
4839 ret = 1;
4840 *other_ino = di_key.objectid;
a3baaf0d 4841 *other_parent = parent;
6b5fc433
FM
4842 } else {
4843 ret = 0;
4844 }
44f714da
FM
4845 } else {
4846 ret = -EAGAIN;
4847 }
56f23fdb
FM
4848 goto out;
4849 } else if (IS_ERR(di)) {
4850 ret = PTR_ERR(di);
4851 goto out;
4852 }
4853 btrfs_release_path(search_path);
4854
4855 cur_offset += this_len;
4856 }
4857 ret = 0;
4858out:
4859 btrfs_free_path(search_path);
4860 kfree(name);
4861 return ret;
4862}
4863
6b5fc433
FM
4864struct btrfs_ino_list {
4865 u64 ino;
a3baaf0d 4866 u64 parent;
6b5fc433
FM
4867 struct list_head list;
4868};
4869
4870static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4871 struct btrfs_root *root,
4872 struct btrfs_path *path,
4873 struct btrfs_log_ctx *ctx,
a3baaf0d 4874 u64 ino, u64 parent)
6b5fc433
FM
4875{
4876 struct btrfs_ino_list *ino_elem;
4877 LIST_HEAD(inode_list);
4878 int ret = 0;
4879
4880 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4881 if (!ino_elem)
4882 return -ENOMEM;
4883 ino_elem->ino = ino;
a3baaf0d 4884 ino_elem->parent = parent;
6b5fc433
FM
4885 list_add_tail(&ino_elem->list, &inode_list);
4886
4887 while (!list_empty(&inode_list)) {
4888 struct btrfs_fs_info *fs_info = root->fs_info;
4889 struct btrfs_key key;
4890 struct inode *inode;
4891
4892 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4893 list);
4894 ino = ino_elem->ino;
a3baaf0d 4895 parent = ino_elem->parent;
6b5fc433
FM
4896 list_del(&ino_elem->list);
4897 kfree(ino_elem);
4898 if (ret)
4899 continue;
4900
4901 btrfs_release_path(path);
4902
0202e83f 4903 inode = btrfs_iget(fs_info->sb, ino, root);
6b5fc433
FM
4904 /*
4905 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4906 * deleted in the current transaction, we need to log its parent
4907 * directory.
6b5fc433
FM
4908 */
4909 if (IS_ERR(inode)) {
4910 ret = PTR_ERR(inode);
a3baaf0d 4911 if (ret == -ENOENT) {
0202e83f 4912 inode = btrfs_iget(fs_info->sb, parent, root);
a3baaf0d
FM
4913 if (IS_ERR(inode)) {
4914 ret = PTR_ERR(inode);
4915 } else {
4916 ret = btrfs_log_inode(trans, root,
4917 BTRFS_I(inode),
4918 LOG_OTHER_INODE_ALL,
48778179 4919 ctx);
410f954c 4920 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
4921 }
4922 }
6b5fc433
FM
4923 continue;
4924 }
b5e4ff9d
FM
4925 /*
4926 * If the inode was already logged skip it - otherwise we can
4927 * hit an infinite loop. Example:
4928 *
4929 * From the commit root (previous transaction) we have the
4930 * following inodes:
4931 *
4932 * inode 257 a directory
4933 * inode 258 with references "zz" and "zz_link" on inode 257
4934 * inode 259 with reference "a" on inode 257
4935 *
4936 * And in the current (uncommitted) transaction we have:
4937 *
4938 * inode 257 a directory, unchanged
4939 * inode 258 with references "a" and "a2" on inode 257
4940 * inode 259 with reference "zz_link" on inode 257
4941 * inode 261 with reference "zz" on inode 257
4942 *
4943 * When logging inode 261 the following infinite loop could
4944 * happen if we don't skip already logged inodes:
4945 *
4946 * - we detect inode 258 as a conflicting inode, with inode 261
4947 * on reference "zz", and log it;
4948 *
4949 * - we detect inode 259 as a conflicting inode, with inode 258
4950 * on reference "a", and log it;
4951 *
4952 * - we detect inode 258 as a conflicting inode, with inode 259
4953 * on reference "zz_link", and log it - again! After this we
4954 * repeat the above steps forever.
4955 */
4956 spin_lock(&BTRFS_I(inode)->lock);
4957 /*
4958 * Check the inode's logged_trans only instead of
4959 * btrfs_inode_in_log(). This is because the last_log_commit of
4960 * the inode is not updated when we only log that it exists and
260db43c 4961 * it has the full sync bit set (see btrfs_log_inode()).
b5e4ff9d
FM
4962 */
4963 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4964 spin_unlock(&BTRFS_I(inode)->lock);
4965 btrfs_add_delayed_iput(inode);
4966 continue;
4967 }
4968 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
4969 /*
4970 * We are safe logging the other inode without acquiring its
4971 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4972 * are safe against concurrent renames of the other inode as
4973 * well because during a rename we pin the log and update the
4974 * log with the new name before we unpin it.
4975 */
4976 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
48778179 4977 LOG_OTHER_INODE, ctx);
6b5fc433 4978 if (ret) {
410f954c 4979 btrfs_add_delayed_iput(inode);
6b5fc433
FM
4980 continue;
4981 }
4982
4983 key.objectid = ino;
4984 key.type = BTRFS_INODE_REF_KEY;
4985 key.offset = 0;
4986 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4987 if (ret < 0) {
410f954c 4988 btrfs_add_delayed_iput(inode);
6b5fc433
FM
4989 continue;
4990 }
4991
4992 while (true) {
4993 struct extent_buffer *leaf = path->nodes[0];
4994 int slot = path->slots[0];
4995 u64 other_ino = 0;
a3baaf0d 4996 u64 other_parent = 0;
6b5fc433
FM
4997
4998 if (slot >= btrfs_header_nritems(leaf)) {
4999 ret = btrfs_next_leaf(root, path);
5000 if (ret < 0) {
5001 break;
5002 } else if (ret > 0) {
5003 ret = 0;
5004 break;
5005 }
5006 continue;
5007 }
5008
5009 btrfs_item_key_to_cpu(leaf, &key, slot);
5010 if (key.objectid != ino ||
5011 (key.type != BTRFS_INODE_REF_KEY &&
5012 key.type != BTRFS_INODE_EXTREF_KEY)) {
5013 ret = 0;
5014 break;
5015 }
5016
5017 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5018 BTRFS_I(inode), &other_ino,
5019 &other_parent);
6b5fc433
FM
5020 if (ret < 0)
5021 break;
5022 if (ret > 0) {
5023 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5024 if (!ino_elem) {
5025 ret = -ENOMEM;
5026 break;
5027 }
5028 ino_elem->ino = other_ino;
a3baaf0d 5029 ino_elem->parent = other_parent;
6b5fc433
FM
5030 list_add_tail(&ino_elem->list, &inode_list);
5031 ret = 0;
5032 }
5033 path->slots[0]++;
5034 }
410f954c 5035 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5036 }
5037
5038 return ret;
5039}
5040
da447009
FM
5041static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5042 struct btrfs_inode *inode,
5043 struct btrfs_key *min_key,
5044 const struct btrfs_key *max_key,
5045 struct btrfs_path *path,
5046 struct btrfs_path *dst_path,
5047 const u64 logged_isize,
5048 const bool recursive_logging,
5049 const int inode_only,
5050 struct btrfs_log_ctx *ctx,
5051 bool *need_log_inode_item)
5052{
5053 struct btrfs_root *root = inode->root;
5054 int ins_start_slot = 0;
5055 int ins_nr = 0;
5056 int ret;
5057
5058 while (1) {
5059 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5060 if (ret < 0)
5061 return ret;
5062 if (ret > 0) {
5063 ret = 0;
5064 break;
5065 }
5066again:
5067 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5068 if (min_key->objectid != max_key->objectid)
5069 break;
5070 if (min_key->type > max_key->type)
5071 break;
5072
5073 if (min_key->type == BTRFS_INODE_ITEM_KEY)
5074 *need_log_inode_item = false;
5075
5076 if ((min_key->type == BTRFS_INODE_REF_KEY ||
5077 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5078 inode->generation == trans->transid &&
5079 !recursive_logging) {
5080 u64 other_ino = 0;
5081 u64 other_parent = 0;
5082
5083 ret = btrfs_check_ref_name_override(path->nodes[0],
5084 path->slots[0], min_key, inode,
5085 &other_ino, &other_parent);
5086 if (ret < 0) {
5087 return ret;
5088 } else if (ret > 0 && ctx &&
5089 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5090 if (ins_nr > 0) {
5091 ins_nr++;
5092 } else {
5093 ins_nr = 1;
5094 ins_start_slot = path->slots[0];
5095 }
5096 ret = copy_items(trans, inode, dst_path, path,
5097 ins_start_slot, ins_nr,
5098 inode_only, logged_isize);
5099 if (ret < 0)
5100 return ret;
5101 ins_nr = 0;
5102
5103 ret = log_conflicting_inodes(trans, root, path,
5104 ctx, other_ino, other_parent);
5105 if (ret)
5106 return ret;
5107 btrfs_release_path(path);
5108 goto next_key;
5109 }
5110 }
5111
5112 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5113 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5114 if (ins_nr == 0)
5115 goto next_slot;
5116 ret = copy_items(trans, inode, dst_path, path,
5117 ins_start_slot,
5118 ins_nr, inode_only, logged_isize);
5119 if (ret < 0)
5120 return ret;
5121 ins_nr = 0;
5122 goto next_slot;
5123 }
5124
5125 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5126 ins_nr++;
5127 goto next_slot;
5128 } else if (!ins_nr) {
5129 ins_start_slot = path->slots[0];
5130 ins_nr = 1;
5131 goto next_slot;
5132 }
5133
5134 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5135 ins_nr, inode_only, logged_isize);
5136 if (ret < 0)
5137 return ret;
5138 ins_nr = 1;
5139 ins_start_slot = path->slots[0];
5140next_slot:
5141 path->slots[0]++;
5142 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5143 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5144 path->slots[0]);
5145 goto again;
5146 }
5147 if (ins_nr) {
5148 ret = copy_items(trans, inode, dst_path, path,
5149 ins_start_slot, ins_nr, inode_only,
5150 logged_isize);
5151 if (ret < 0)
5152 return ret;
5153 ins_nr = 0;
5154 }
5155 btrfs_release_path(path);
5156next_key:
5157 if (min_key->offset < (u64)-1) {
5158 min_key->offset++;
5159 } else if (min_key->type < max_key->type) {
5160 min_key->type++;
5161 min_key->offset = 0;
5162 } else {
5163 break;
5164 }
5165 }
5166 if (ins_nr)
5167 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5168 ins_nr, inode_only, logged_isize);
5169
5170 return ret;
5171}
5172
e02119d5
CM
5173/* log a single inode in the tree log.
5174 * At least one parent directory for this inode must exist in the tree
5175 * or be logged already.
5176 *
5177 * Any items from this inode changed by the current transaction are copied
5178 * to the log tree. An extra reference is taken on any extents in this
5179 * file, allowing us to avoid a whole pile of corner cases around logging
5180 * blocks that have been removed from the tree.
5181 *
5182 * See LOG_INODE_ALL and related defines for a description of what inode_only
5183 * does.
5184 *
5185 * This handles both files and directories.
5186 */
12fcfd22 5187static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5188 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 5189 int inode_only,
8407f553 5190 struct btrfs_log_ctx *ctx)
e02119d5
CM
5191{
5192 struct btrfs_path *path;
5193 struct btrfs_path *dst_path;
5194 struct btrfs_key min_key;
5195 struct btrfs_key max_key;
5196 struct btrfs_root *log = root->log_root;
4a500fd1 5197 int err = 0;
8c8648dd 5198 int ret = 0;
5dc562c5 5199 bool fast_search = false;
a59108a7
NB
5200 u64 ino = btrfs_ino(inode);
5201 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5202 u64 logged_isize = 0;
e4545de5 5203 bool need_log_inode_item = true;
9a8fca62 5204 bool xattrs_logged = false;
a3baaf0d 5205 bool recursive_logging = false;
e02119d5 5206
e02119d5 5207 path = btrfs_alloc_path();
5df67083
TI
5208 if (!path)
5209 return -ENOMEM;
e02119d5 5210 dst_path = btrfs_alloc_path();
5df67083
TI
5211 if (!dst_path) {
5212 btrfs_free_path(path);
5213 return -ENOMEM;
5214 }
e02119d5 5215
33345d01 5216 min_key.objectid = ino;
e02119d5
CM
5217 min_key.type = BTRFS_INODE_ITEM_KEY;
5218 min_key.offset = 0;
5219
33345d01 5220 max_key.objectid = ino;
12fcfd22 5221
12fcfd22 5222
5dc562c5 5223 /* today the code can only do partial logging of directories */
a59108a7 5224 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5225 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5226 &inode->runtime_flags) &&
781feef7 5227 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5228 max_key.type = BTRFS_XATTR_ITEM_KEY;
5229 else
5230 max_key.type = (u8)-1;
5231 max_key.offset = (u64)-1;
5232
2c2c452b 5233 /*
5aa7d1a7
FM
5234 * Only run delayed items if we are a directory. We want to make sure
5235 * all directory indexes hit the fs/subvolume tree so we can find them
5236 * and figure out which index ranges have to be logged.
5237 *
8c8648dd
FM
5238 * Otherwise commit the delayed inode only if the full sync flag is set,
5239 * as we want to make sure an up to date version is in the subvolume
5240 * tree so copy_inode_items_to_log() / copy_items() can find it and copy
5241 * it to the log tree. For a non full sync, we always log the inode item
5242 * based on the in-memory struct btrfs_inode which is always up to date.
2c2c452b 5243 */
5aa7d1a7 5244 if (S_ISDIR(inode->vfs_inode.i_mode))
a59108a7 5245 ret = btrfs_commit_inode_delayed_items(trans, inode);
8c8648dd 5246 else if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
a59108a7 5247 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5248
5249 if (ret) {
5250 btrfs_free_path(path);
5251 btrfs_free_path(dst_path);
5252 return ret;
16cdcec7
MX
5253 }
5254
a3baaf0d
FM
5255 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5256 recursive_logging = true;
5257 if (inode_only == LOG_OTHER_INODE)
5258 inode_only = LOG_INODE_EXISTS;
5259 else
5260 inode_only = LOG_INODE_ALL;
a59108a7 5261 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5262 } else {
a59108a7 5263 mutex_lock(&inode->log_mutex);
781feef7 5264 }
e02119d5
CM
5265
5266 /*
5267 * a brute force approach to making sure we get the most uptodate
5268 * copies of everything.
5269 */
a59108a7 5270 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5271 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5272
4f764e51
FM
5273 if (inode_only == LOG_INODE_EXISTS)
5274 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5275 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5276 } else {
1a4bcf47
FM
5277 if (inode_only == LOG_INODE_EXISTS) {
5278 /*
5279 * Make sure the new inode item we write to the log has
5280 * the same isize as the current one (if it exists).
5281 * This is necessary to prevent data loss after log
5282 * replay, and also to prevent doing a wrong expanding
5283 * truncate - for e.g. create file, write 4K into offset
5284 * 0, fsync, write 4K into offset 4096, add hard link,
5285 * fsync some other file (to sync log), power fail - if
5286 * we use the inode's current i_size, after log replay
5287 * we get a 8Kb file, with the last 4Kb extent as a hole
5288 * (zeroes), as if an expanding truncate happened,
5289 * instead of getting a file of 4Kb only.
5290 */
a59108a7 5291 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5292 if (err)
5293 goto out_unlock;
5294 }
a742994a 5295 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5296 &inode->runtime_flags)) {
a742994a 5297 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5298 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5299 ret = drop_objectid_items(trans, log, path, ino,
5300 max_key.type);
5301 } else {
5302 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5303 &inode->runtime_flags);
a742994a 5304 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5305 &inode->runtime_flags);
28ed1345
CM
5306 while(1) {
5307 ret = btrfs_truncate_inode_items(trans,
50743398 5308 log, inode, 0, 0);
28ed1345
CM
5309 if (ret != -EAGAIN)
5310 break;
5311 }
a742994a 5312 }
4f764e51 5313 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5314 &inode->runtime_flags) ||
6cfab851 5315 inode_only == LOG_INODE_EXISTS) {
4f764e51 5316 if (inode_only == LOG_INODE_ALL)
183f37fa 5317 fast_search = true;
4f764e51 5318 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5319 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5320 max_key.type);
a95249b3
JB
5321 } else {
5322 if (inode_only == LOG_INODE_ALL)
5323 fast_search = true;
a95249b3 5324 goto log_extents;
5dc562c5 5325 }
a95249b3 5326
e02119d5 5327 }
4a500fd1
YZ
5328 if (ret) {
5329 err = ret;
5330 goto out_unlock;
5331 }
e02119d5 5332
da447009
FM
5333 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5334 path, dst_path, logged_isize,
7af59743
FM
5335 recursive_logging, inode_only, ctx,
5336 &need_log_inode_item);
da447009
FM
5337 if (err)
5338 goto out_unlock;
5dc562c5 5339
36283bf7
FM
5340 btrfs_release_path(path);
5341 btrfs_release_path(dst_path);
a59108a7 5342 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5343 if (err)
5344 goto out_unlock;
9a8fca62 5345 xattrs_logged = true;
a89ca6f2
FM
5346 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5347 btrfs_release_path(path);
5348 btrfs_release_path(dst_path);
7af59743 5349 err = btrfs_log_holes(trans, root, inode, path);
a89ca6f2
FM
5350 if (err)
5351 goto out_unlock;
5352 }
a95249b3 5353log_extents:
f3b15ccd
JB
5354 btrfs_release_path(path);
5355 btrfs_release_path(dst_path);
e4545de5 5356 if (need_log_inode_item) {
a59108a7 5357 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5358 if (!err && !xattrs_logged) {
5359 err = btrfs_log_all_xattrs(trans, root, inode, path,
5360 dst_path);
5361 btrfs_release_path(path);
5362 }
e4545de5
FM
5363 if (err)
5364 goto out_unlock;
5365 }
5dc562c5 5366 if (fast_search) {
a59108a7 5367 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
48778179 5368 ctx);
5dc562c5
JB
5369 if (ret) {
5370 err = ret;
5371 goto out_unlock;
5372 }
d006a048 5373 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5374 struct extent_map *em, *n;
5375
49dae1bc 5376 write_lock(&em_tree->lock);
48778179
FM
5377 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
5378 list_del_init(&em->list);
49dae1bc 5379 write_unlock(&em_tree->lock);
5dc562c5
JB
5380 }
5381
a59108a7
NB
5382 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5383 ret = log_directory_changes(trans, root, inode, path, dst_path,
5384 ctx);
4a500fd1
YZ
5385 if (ret) {
5386 err = ret;
5387 goto out_unlock;
5388 }
e02119d5 5389 }
49dae1bc 5390
d1d832a0 5391 /*
75b463d2
FM
5392 * If we are logging that an ancestor inode exists as part of logging a
5393 * new name from a link or rename operation, don't mark the inode as
5394 * logged - otherwise if an explicit fsync is made against an ancestor,
5395 * the fsync considers the inode in the log and doesn't sync the log,
5396 * resulting in the ancestor missing after a power failure unless the
5397 * log was synced as part of an fsync against any other unrelated inode.
5398 * So keep it simple for this case and just don't flag the ancestors as
5399 * logged.
d1d832a0 5400 */
75b463d2
FM
5401 if (!ctx ||
5402 !(S_ISDIR(inode->vfs_inode.i_mode) && ctx->logging_new_name &&
5403 &inode->vfs_inode != ctx->inode)) {
5404 spin_lock(&inode->lock);
5405 inode->logged_trans = trans->transid;
5406 /*
5407 * Don't update last_log_commit if we logged that an inode exists
5408 * after it was loaded to memory (full_sync bit set).
5409 * This is to prevent data loss when we do a write to the inode,
5410 * then the inode gets evicted after all delalloc was flushed,
5411 * then we log it exists (due to a rename for example) and then
5412 * fsync it. This last fsync would do nothing (not logging the
5413 * extents previously written).
5414 */
5415 if (inode_only != LOG_INODE_EXISTS ||
5416 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5417 inode->last_log_commit = inode->last_sub_trans;
5418 spin_unlock(&inode->lock);
5419 }
4a500fd1 5420out_unlock:
a59108a7 5421 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5422
5423 btrfs_free_path(path);
5424 btrfs_free_path(dst_path);
4a500fd1 5425 return err;
e02119d5
CM
5426}
5427
2be63d5c
FM
5428/*
5429 * Check if we must fallback to a transaction commit when logging an inode.
5430 * This must be called after logging the inode and is used only in the context
5431 * when fsyncing an inode requires the need to log some other inode - in which
5432 * case we can't lock the i_mutex of each other inode we need to log as that
5433 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5434 * log inodes up or down in the hierarchy) or rename operations for example. So
5435 * we take the log_mutex of the inode after we have logged it and then check for
5436 * its last_unlink_trans value - this is safe because any task setting
5437 * last_unlink_trans must take the log_mutex and it must do this before it does
5438 * the actual unlink operation, so if we do this check before a concurrent task
5439 * sets last_unlink_trans it means we've logged a consistent version/state of
5440 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5441 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5442 * we logged the inode or it might have also done the unlink).
5443 */
5444static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5445 struct btrfs_inode *inode)
2be63d5c 5446{
ab1717b2 5447 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5448 bool ret = false;
5449
ab1717b2
NB
5450 mutex_lock(&inode->log_mutex);
5451 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5452 /*
5453 * Make sure any commits to the log are forced to be full
5454 * commits.
5455 */
90787766 5456 btrfs_set_log_full_commit(trans);
2be63d5c
FM
5457 ret = true;
5458 }
ab1717b2 5459 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5460
5461 return ret;
5462}
5463
12fcfd22
CM
5464/*
5465 * follow the dentry parent pointers up the chain and see if any
5466 * of the directories in it require a full commit before they can
5467 * be logged. Returns zero if nothing special needs to be done or 1 if
5468 * a full commit is required.
5469 */
5470static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5471 struct btrfs_inode *inode,
12fcfd22
CM
5472 struct dentry *parent,
5473 struct super_block *sb,
5474 u64 last_committed)
e02119d5 5475{
12fcfd22 5476 int ret = 0;
6a912213 5477 struct dentry *old_parent = NULL;
e02119d5 5478
af4176b4
CM
5479 /*
5480 * for regular files, if its inode is already on disk, we don't
5481 * have to worry about the parents at all. This is because
5482 * we can use the last_unlink_trans field to record renames
5483 * and other fun in this file.
5484 */
aefa6115
NB
5485 if (S_ISREG(inode->vfs_inode.i_mode) &&
5486 inode->generation <= last_committed &&
5487 inode->last_unlink_trans <= last_committed)
5488 goto out;
af4176b4 5489
aefa6115 5490 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5491 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5492 goto out;
aefa6115 5493 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5494 }
5495
5496 while (1) {
aefa6115 5497 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5498 ret = 1;
5499 break;
5500 }
5501
fc64005c 5502 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5503 break;
5504
44f714da 5505 if (IS_ROOT(parent)) {
aefa6115
NB
5506 inode = BTRFS_I(d_inode(parent));
5507 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5508 ret = 1;
12fcfd22 5509 break;
44f714da 5510 }
12fcfd22 5511
6a912213
JB
5512 parent = dget_parent(parent);
5513 dput(old_parent);
5514 old_parent = parent;
aefa6115 5515 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5516
5517 }
6a912213 5518 dput(old_parent);
12fcfd22 5519out:
e02119d5
CM
5520 return ret;
5521}
5522
2f2ff0ee
FM
5523struct btrfs_dir_list {
5524 u64 ino;
5525 struct list_head list;
5526};
5527
5528/*
5529 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5530 * details about the why it is needed.
5531 * This is a recursive operation - if an existing dentry corresponds to a
5532 * directory, that directory's new entries are logged too (same behaviour as
5533 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5534 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5535 * complains about the following circular lock dependency / possible deadlock:
5536 *
5537 * CPU0 CPU1
5538 * ---- ----
5539 * lock(&type->i_mutex_dir_key#3/2);
5540 * lock(sb_internal#2);
5541 * lock(&type->i_mutex_dir_key#3/2);
5542 * lock(&sb->s_type->i_mutex_key#14);
5543 *
5544 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5545 * sb_start_intwrite() in btrfs_start_transaction().
5546 * Not locking i_mutex of the inodes is still safe because:
5547 *
5548 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5549 * that while logging the inode new references (names) are added or removed
5550 * from the inode, leaving the logged inode item with a link count that does
5551 * not match the number of logged inode reference items. This is fine because
5552 * at log replay time we compute the real number of links and correct the
5553 * link count in the inode item (see replay_one_buffer() and
5554 * link_to_fixup_dir());
5555 *
5556 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5557 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5558 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5559 * has a size that doesn't match the sum of the lengths of all the logged
5560 * names. This does not result in a problem because if a dir_item key is
5561 * logged but its matching dir_index key is not logged, at log replay time we
5562 * don't use it to replay the respective name (see replay_one_name()). On the
5563 * other hand if only the dir_index key ends up being logged, the respective
5564 * name is added to the fs/subvol tree with both the dir_item and dir_index
5565 * keys created (see replay_one_name()).
5566 * The directory's inode item with a wrong i_size is not a problem as well,
5567 * since we don't use it at log replay time to set the i_size in the inode
5568 * item of the fs/subvol tree (see overwrite_item()).
5569 */
5570static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5571 struct btrfs_root *root,
51cc0d32 5572 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5573 struct btrfs_log_ctx *ctx)
5574{
0b246afa 5575 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5576 struct btrfs_root *log = root->log_root;
5577 struct btrfs_path *path;
5578 LIST_HEAD(dir_list);
5579 struct btrfs_dir_list *dir_elem;
5580 int ret = 0;
5581
5582 path = btrfs_alloc_path();
5583 if (!path)
5584 return -ENOMEM;
5585
5586 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5587 if (!dir_elem) {
5588 btrfs_free_path(path);
5589 return -ENOMEM;
5590 }
51cc0d32 5591 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5592 list_add_tail(&dir_elem->list, &dir_list);
5593
5594 while (!list_empty(&dir_list)) {
5595 struct extent_buffer *leaf;
5596 struct btrfs_key min_key;
5597 int nritems;
5598 int i;
5599
5600 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5601 list);
5602 if (ret)
5603 goto next_dir_inode;
5604
5605 min_key.objectid = dir_elem->ino;
5606 min_key.type = BTRFS_DIR_ITEM_KEY;
5607 min_key.offset = 0;
5608again:
5609 btrfs_release_path(path);
5610 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5611 if (ret < 0) {
5612 goto next_dir_inode;
5613 } else if (ret > 0) {
5614 ret = 0;
5615 goto next_dir_inode;
5616 }
5617
5618process_leaf:
5619 leaf = path->nodes[0];
5620 nritems = btrfs_header_nritems(leaf);
5621 for (i = path->slots[0]; i < nritems; i++) {
5622 struct btrfs_dir_item *di;
5623 struct btrfs_key di_key;
5624 struct inode *di_inode;
5625 struct btrfs_dir_list *new_dir_elem;
5626 int log_mode = LOG_INODE_EXISTS;
5627 int type;
5628
5629 btrfs_item_key_to_cpu(leaf, &min_key, i);
5630 if (min_key.objectid != dir_elem->ino ||
5631 min_key.type != BTRFS_DIR_ITEM_KEY)
5632 goto next_dir_inode;
5633
5634 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5635 type = btrfs_dir_type(leaf, di);
5636 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5637 type != BTRFS_FT_DIR)
5638 continue;
5639 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5640 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5641 continue;
5642
ec125cfb 5643 btrfs_release_path(path);
0202e83f 5644 di_inode = btrfs_iget(fs_info->sb, di_key.objectid, root);
2f2ff0ee
FM
5645 if (IS_ERR(di_inode)) {
5646 ret = PTR_ERR(di_inode);
5647 goto next_dir_inode;
5648 }
5649
0f8939b8 5650 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
410f954c 5651 btrfs_add_delayed_iput(di_inode);
ec125cfb 5652 break;
2f2ff0ee
FM
5653 }
5654
5655 ctx->log_new_dentries = false;
3f9749f6 5656 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5657 log_mode = LOG_INODE_ALL;
a59108a7 5658 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
48778179 5659 log_mode, ctx);
2be63d5c 5660 if (!ret &&
ab1717b2 5661 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5662 ret = 1;
410f954c 5663 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5664 if (ret)
5665 goto next_dir_inode;
5666 if (ctx->log_new_dentries) {
5667 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5668 GFP_NOFS);
5669 if (!new_dir_elem) {
5670 ret = -ENOMEM;
5671 goto next_dir_inode;
5672 }
5673 new_dir_elem->ino = di_key.objectid;
5674 list_add_tail(&new_dir_elem->list, &dir_list);
5675 }
5676 break;
5677 }
5678 if (i == nritems) {
5679 ret = btrfs_next_leaf(log, path);
5680 if (ret < 0) {
5681 goto next_dir_inode;
5682 } else if (ret > 0) {
5683 ret = 0;
5684 goto next_dir_inode;
5685 }
5686 goto process_leaf;
5687 }
5688 if (min_key.offset < (u64)-1) {
5689 min_key.offset++;
5690 goto again;
5691 }
5692next_dir_inode:
5693 list_del(&dir_elem->list);
5694 kfree(dir_elem);
5695 }
5696
5697 btrfs_free_path(path);
5698 return ret;
5699}
5700
18aa0922 5701static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5702 struct btrfs_inode *inode,
18aa0922
FM
5703 struct btrfs_log_ctx *ctx)
5704{
3ffbd68c 5705 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5706 int ret;
5707 struct btrfs_path *path;
5708 struct btrfs_key key;
d0a0b78d
NB
5709 struct btrfs_root *root = inode->root;
5710 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5711
5712 path = btrfs_alloc_path();
5713 if (!path)
5714 return -ENOMEM;
5715 path->skip_locking = 1;
5716 path->search_commit_root = 1;
5717
5718 key.objectid = ino;
5719 key.type = BTRFS_INODE_REF_KEY;
5720 key.offset = 0;
5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5722 if (ret < 0)
5723 goto out;
5724
5725 while (true) {
5726 struct extent_buffer *leaf = path->nodes[0];
5727 int slot = path->slots[0];
5728 u32 cur_offset = 0;
5729 u32 item_size;
5730 unsigned long ptr;
5731
5732 if (slot >= btrfs_header_nritems(leaf)) {
5733 ret = btrfs_next_leaf(root, path);
5734 if (ret < 0)
5735 goto out;
5736 else if (ret > 0)
5737 break;
5738 continue;
5739 }
5740
5741 btrfs_item_key_to_cpu(leaf, &key, slot);
5742 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5743 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5744 break;
5745
5746 item_size = btrfs_item_size_nr(leaf, slot);
5747 ptr = btrfs_item_ptr_offset(leaf, slot);
5748 while (cur_offset < item_size) {
5749 struct btrfs_key inode_key;
5750 struct inode *dir_inode;
5751
5752 inode_key.type = BTRFS_INODE_ITEM_KEY;
5753 inode_key.offset = 0;
5754
5755 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5756 struct btrfs_inode_extref *extref;
5757
5758 extref = (struct btrfs_inode_extref *)
5759 (ptr + cur_offset);
5760 inode_key.objectid = btrfs_inode_extref_parent(
5761 leaf, extref);
5762 cur_offset += sizeof(*extref);
5763 cur_offset += btrfs_inode_extref_name_len(leaf,
5764 extref);
5765 } else {
5766 inode_key.objectid = key.offset;
5767 cur_offset = item_size;
5768 }
5769
0202e83f
DS
5770 dir_inode = btrfs_iget(fs_info->sb, inode_key.objectid,
5771 root);
0f375eed
FM
5772 /*
5773 * If the parent inode was deleted, return an error to
5774 * fallback to a transaction commit. This is to prevent
5775 * getting an inode that was moved from one parent A to
5776 * a parent B, got its former parent A deleted and then
5777 * it got fsync'ed, from existing at both parents after
5778 * a log replay (and the old parent still existing).
5779 * Example:
5780 *
5781 * mkdir /mnt/A
5782 * mkdir /mnt/B
5783 * touch /mnt/B/bar
5784 * sync
5785 * mv /mnt/B/bar /mnt/A/bar
5786 * mv -T /mnt/A /mnt/B
5787 * fsync /mnt/B/bar
5788 * <power fail>
5789 *
5790 * If we ignore the old parent B which got deleted,
5791 * after a log replay we would have file bar linked
5792 * at both parents and the old parent B would still
5793 * exist.
5794 */
5795 if (IS_ERR(dir_inode)) {
5796 ret = PTR_ERR(dir_inode);
5797 goto out;
5798 }
18aa0922 5799
657ed1aa
FM
5800 if (ctx)
5801 ctx->log_new_dentries = false;
a59108a7 5802 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
48778179 5803 LOG_INODE_ALL, ctx);
2be63d5c 5804 if (!ret &&
ab1717b2 5805 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5806 ret = 1;
657ed1aa
FM
5807 if (!ret && ctx && ctx->log_new_dentries)
5808 ret = log_new_dir_dentries(trans, root,
f85b7379 5809 BTRFS_I(dir_inode), ctx);
410f954c 5810 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5811 if (ret)
5812 goto out;
5813 }
5814 path->slots[0]++;
5815 }
5816 ret = 0;
5817out:
5818 btrfs_free_path(path);
5819 return ret;
5820}
5821
b8aa330d
FM
5822static int log_new_ancestors(struct btrfs_trans_handle *trans,
5823 struct btrfs_root *root,
5824 struct btrfs_path *path,
5825 struct btrfs_log_ctx *ctx)
5826{
5827 struct btrfs_key found_key;
5828
5829 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5830
5831 while (true) {
5832 struct btrfs_fs_info *fs_info = root->fs_info;
5833 const u64 last_committed = fs_info->last_trans_committed;
5834 struct extent_buffer *leaf = path->nodes[0];
5835 int slot = path->slots[0];
5836 struct btrfs_key search_key;
5837 struct inode *inode;
0202e83f 5838 u64 ino;
b8aa330d
FM
5839 int ret = 0;
5840
5841 btrfs_release_path(path);
5842
0202e83f
DS
5843 ino = found_key.offset;
5844
b8aa330d
FM
5845 search_key.objectid = found_key.offset;
5846 search_key.type = BTRFS_INODE_ITEM_KEY;
5847 search_key.offset = 0;
0202e83f 5848 inode = btrfs_iget(fs_info->sb, ino, root);
b8aa330d
FM
5849 if (IS_ERR(inode))
5850 return PTR_ERR(inode);
5851
5852 if (BTRFS_I(inode)->generation > last_committed)
5853 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
48778179 5854 LOG_INODE_EXISTS, ctx);
410f954c 5855 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5856 if (ret)
5857 return ret;
5858
5859 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5860 break;
5861
5862 search_key.type = BTRFS_INODE_REF_KEY;
5863 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5864 if (ret < 0)
5865 return ret;
5866
5867 leaf = path->nodes[0];
5868 slot = path->slots[0];
5869 if (slot >= btrfs_header_nritems(leaf)) {
5870 ret = btrfs_next_leaf(root, path);
5871 if (ret < 0)
5872 return ret;
5873 else if (ret > 0)
5874 return -ENOENT;
5875 leaf = path->nodes[0];
5876 slot = path->slots[0];
5877 }
5878
5879 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5880 if (found_key.objectid != search_key.objectid ||
5881 found_key.type != BTRFS_INODE_REF_KEY)
5882 return -ENOENT;
5883 }
5884 return 0;
5885}
5886
5887static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5888 struct btrfs_inode *inode,
5889 struct dentry *parent,
5890 struct btrfs_log_ctx *ctx)
5891{
5892 struct btrfs_root *root = inode->root;
5893 struct btrfs_fs_info *fs_info = root->fs_info;
5894 struct dentry *old_parent = NULL;
5895 struct super_block *sb = inode->vfs_inode.i_sb;
5896 int ret = 0;
5897
5898 while (true) {
5899 if (!parent || d_really_is_negative(parent) ||
5900 sb != parent->d_sb)
5901 break;
5902
5903 inode = BTRFS_I(d_inode(parent));
5904 if (root != inode->root)
5905 break;
5906
5907 if (inode->generation > fs_info->last_trans_committed) {
5908 ret = btrfs_log_inode(trans, root, inode,
48778179 5909 LOG_INODE_EXISTS, ctx);
b8aa330d
FM
5910 if (ret)
5911 break;
5912 }
5913 if (IS_ROOT(parent))
5914 break;
5915
5916 parent = dget_parent(parent);
5917 dput(old_parent);
5918 old_parent = parent;
5919 }
5920 dput(old_parent);
5921
5922 return ret;
5923}
5924
5925static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5926 struct btrfs_inode *inode,
5927 struct dentry *parent,
5928 struct btrfs_log_ctx *ctx)
5929{
5930 struct btrfs_root *root = inode->root;
5931 const u64 ino = btrfs_ino(inode);
5932 struct btrfs_path *path;
5933 struct btrfs_key search_key;
5934 int ret;
5935
5936 /*
5937 * For a single hard link case, go through a fast path that does not
5938 * need to iterate the fs/subvolume tree.
5939 */
5940 if (inode->vfs_inode.i_nlink < 2)
5941 return log_new_ancestors_fast(trans, inode, parent, ctx);
5942
5943 path = btrfs_alloc_path();
5944 if (!path)
5945 return -ENOMEM;
5946
5947 search_key.objectid = ino;
5948 search_key.type = BTRFS_INODE_REF_KEY;
5949 search_key.offset = 0;
5950again:
5951 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5952 if (ret < 0)
5953 goto out;
5954 if (ret == 0)
5955 path->slots[0]++;
5956
5957 while (true) {
5958 struct extent_buffer *leaf = path->nodes[0];
5959 int slot = path->slots[0];
5960 struct btrfs_key found_key;
5961
5962 if (slot >= btrfs_header_nritems(leaf)) {
5963 ret = btrfs_next_leaf(root, path);
5964 if (ret < 0)
5965 goto out;
5966 else if (ret > 0)
5967 break;
5968 continue;
5969 }
5970
5971 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5972 if (found_key.objectid != ino ||
5973 found_key.type > BTRFS_INODE_EXTREF_KEY)
5974 break;
5975
5976 /*
5977 * Don't deal with extended references because they are rare
5978 * cases and too complex to deal with (we would need to keep
5979 * track of which subitem we are processing for each item in
5980 * this loop, etc). So just return some error to fallback to
5981 * a transaction commit.
5982 */
5983 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5984 ret = -EMLINK;
5985 goto out;
5986 }
5987
5988 /*
5989 * Logging ancestors needs to do more searches on the fs/subvol
5990 * tree, so it releases the path as needed to avoid deadlocks.
5991 * Keep track of the last inode ref key and resume from that key
5992 * after logging all new ancestors for the current hard link.
5993 */
5994 memcpy(&search_key, &found_key, sizeof(search_key));
5995
5996 ret = log_new_ancestors(trans, root, path, ctx);
5997 if (ret)
5998 goto out;
5999 btrfs_release_path(path);
6000 goto again;
6001 }
6002 ret = 0;
6003out:
6004 btrfs_free_path(path);
6005 return ret;
6006}
6007
e02119d5
CM
6008/*
6009 * helper function around btrfs_log_inode to make sure newly created
6010 * parent directories also end up in the log. A minimal inode and backref
6011 * only logging is done of any parent directories that are older than
6012 * the last committed transaction
6013 */
48a3b636 6014static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6015 struct btrfs_inode *inode,
49dae1bc 6016 struct dentry *parent,
41a1eada 6017 int inode_only,
8b050d35 6018 struct btrfs_log_ctx *ctx)
e02119d5 6019{
f882274b 6020 struct btrfs_root *root = inode->root;
0b246afa 6021 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 6022 struct super_block *sb;
12fcfd22 6023 int ret = 0;
0b246afa 6024 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 6025 bool log_dentries = false;
12fcfd22 6026
19df27a9 6027 sb = inode->vfs_inode.i_sb;
12fcfd22 6028
0b246afa 6029 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6030 ret = 1;
6031 goto end_no_trans;
6032 }
6033
995946dd
MX
6034 /*
6035 * The prev transaction commit doesn't complete, we need do
6036 * full commit by ourselves.
6037 */
0b246afa
JM
6038 if (fs_info->last_trans_log_full_commit >
6039 fs_info->last_trans_committed) {
12fcfd22
CM
6040 ret = 1;
6041 goto end_no_trans;
6042 }
6043
f882274b 6044 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6045 ret = 1;
6046 goto end_no_trans;
6047 }
6048
19df27a9
NB
6049 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6050 last_committed);
12fcfd22
CM
6051 if (ret)
6052 goto end_no_trans;
e02119d5 6053
f2d72f42
FM
6054 /*
6055 * Skip already logged inodes or inodes corresponding to tmpfiles
6056 * (since logging them is pointless, a link count of 0 means they
6057 * will never be accessible).
6058 */
6059 if (btrfs_inode_in_log(inode, trans->transid) ||
6060 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6061 ret = BTRFS_NO_LOG_SYNC;
6062 goto end_no_trans;
6063 }
6064
8b050d35 6065 ret = start_log_trans(trans, root, ctx);
4a500fd1 6066 if (ret)
e87ac136 6067 goto end_no_trans;
e02119d5 6068
48778179 6069 ret = btrfs_log_inode(trans, root, inode, inode_only, ctx);
4a500fd1
YZ
6070 if (ret)
6071 goto end_trans;
12fcfd22 6072
af4176b4
CM
6073 /*
6074 * for regular files, if its inode is already on disk, we don't
6075 * have to worry about the parents at all. This is because
6076 * we can use the last_unlink_trans field to record renames
6077 * and other fun in this file.
6078 */
19df27a9
NB
6079 if (S_ISREG(inode->vfs_inode.i_mode) &&
6080 inode->generation <= last_committed &&
6081 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
6082 ret = 0;
6083 goto end_trans;
6084 }
af4176b4 6085
19df27a9 6086 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
6087 log_dentries = true;
6088
18aa0922 6089 /*
01327610 6090 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6091 * inodes are fully logged. This is to prevent leaving dangling
6092 * directory index entries in directories that were our parents but are
6093 * not anymore. Not doing this results in old parent directory being
6094 * impossible to delete after log replay (rmdir will always fail with
6095 * error -ENOTEMPTY).
6096 *
6097 * Example 1:
6098 *
6099 * mkdir testdir
6100 * touch testdir/foo
6101 * ln testdir/foo testdir/bar
6102 * sync
6103 * unlink testdir/bar
6104 * xfs_io -c fsync testdir/foo
6105 * <power failure>
6106 * mount fs, triggers log replay
6107 *
6108 * If we don't log the parent directory (testdir), after log replay the
6109 * directory still has an entry pointing to the file inode using the bar
6110 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6111 * the file inode has a link count of 1.
6112 *
6113 * Example 2:
6114 *
6115 * mkdir testdir
6116 * touch foo
6117 * ln foo testdir/foo2
6118 * ln foo testdir/foo3
6119 * sync
6120 * unlink testdir/foo3
6121 * xfs_io -c fsync foo
6122 * <power failure>
6123 * mount fs, triggers log replay
6124 *
6125 * Similar as the first example, after log replay the parent directory
6126 * testdir still has an entry pointing to the inode file with name foo3
6127 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6128 * and has a link count of 2.
6129 */
19df27a9 6130 if (inode->last_unlink_trans > last_committed) {
b8aa330d 6131 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6132 if (ret)
6133 goto end_trans;
6134 }
6135
b8aa330d
FM
6136 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6137 if (ret)
41bd6067 6138 goto end_trans;
76dda93c 6139
2f2ff0ee 6140 if (log_dentries)
b8aa330d 6141 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6142 else
6143 ret = 0;
4a500fd1
YZ
6144end_trans:
6145 if (ret < 0) {
90787766 6146 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6147 ret = 1;
6148 }
8b050d35
MX
6149
6150 if (ret)
6151 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6152 btrfs_end_log_trans(root);
6153end_no_trans:
6154 return ret;
e02119d5
CM
6155}
6156
6157/*
6158 * it is not safe to log dentry if the chunk root has added new
6159 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6160 * If this returns 1, you must commit the transaction to safely get your
6161 * data on disk.
6162 */
6163int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6164 struct dentry *dentry,
8b050d35 6165 struct btrfs_log_ctx *ctx)
e02119d5 6166{
6a912213
JB
6167 struct dentry *parent = dget_parent(dentry);
6168 int ret;
6169
f882274b 6170 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
48778179 6171 LOG_INODE_ALL, ctx);
6a912213
JB
6172 dput(parent);
6173
6174 return ret;
e02119d5
CM
6175}
6176
6177/*
6178 * should be called during mount to recover any replay any log trees
6179 * from the FS
6180 */
6181int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6182{
6183 int ret;
6184 struct btrfs_path *path;
6185 struct btrfs_trans_handle *trans;
6186 struct btrfs_key key;
6187 struct btrfs_key found_key;
e02119d5
CM
6188 struct btrfs_root *log;
6189 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6190 struct walk_control wc = {
6191 .process_func = process_one_buffer,
430a6626 6192 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6193 };
6194
e02119d5 6195 path = btrfs_alloc_path();
db5b493a
TI
6196 if (!path)
6197 return -ENOMEM;
6198
afcdd129 6199 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6200
4a500fd1 6201 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6202 if (IS_ERR(trans)) {
6203 ret = PTR_ERR(trans);
6204 goto error;
6205 }
e02119d5
CM
6206
6207 wc.trans = trans;
6208 wc.pin = 1;
6209
db5b493a 6210 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6211 if (ret) {
5d163e0e
JM
6212 btrfs_handle_fs_error(fs_info, ret,
6213 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6214 goto error;
6215 }
e02119d5
CM
6216
6217again:
6218 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6219 key.offset = (u64)-1;
962a298f 6220 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6221
d397712b 6222 while (1) {
e02119d5 6223 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6224
6225 if (ret < 0) {
34d97007 6226 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6227 "Couldn't find tree log root.");
6228 goto error;
6229 }
e02119d5
CM
6230 if (ret > 0) {
6231 if (path->slots[0] == 0)
6232 break;
6233 path->slots[0]--;
6234 }
6235 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6236 path->slots[0]);
b3b4aa74 6237 btrfs_release_path(path);
e02119d5
CM
6238 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6239 break;
6240
62a2c73e 6241 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6242 if (IS_ERR(log)) {
6243 ret = PTR_ERR(log);
34d97007 6244 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6245 "Couldn't read tree log root.");
6246 goto error;
6247 }
e02119d5 6248
56e9357a
DS
6249 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
6250 true);
79787eaa
JM
6251 if (IS_ERR(wc.replay_dest)) {
6252 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6253
6254 /*
6255 * We didn't find the subvol, likely because it was
6256 * deleted. This is ok, simply skip this log and go to
6257 * the next one.
6258 *
6259 * We need to exclude the root because we can't have
6260 * other log replays overwriting this log as we'll read
6261 * it back in a few more times. This will keep our
6262 * block from being modified, and we'll just bail for
6263 * each subsequent pass.
6264 */
6265 if (ret == -ENOENT)
9fce5704 6266 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6267 log->node->start,
6268 log->node->len);
00246528 6269 btrfs_put_root(log);
9bc574de
JB
6270
6271 if (!ret)
6272 goto next;
5d163e0e
JM
6273 btrfs_handle_fs_error(fs_info, ret,
6274 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6275 goto error;
6276 }
e02119d5 6277
07d400a6 6278 wc.replay_dest->log_root = log;
5d4f98a2 6279 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 6280 ret = walk_log_tree(trans, log, &wc);
e02119d5 6281
b50c6e25 6282 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6283 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6284 path);
e02119d5
CM
6285 }
6286
900c9981
LB
6287 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6288 struct btrfs_root *root = wc.replay_dest;
6289
6290 btrfs_release_path(path);
6291
6292 /*
6293 * We have just replayed everything, and the highest
6294 * objectid of fs roots probably has changed in case
6295 * some inode_item's got replayed.
6296 *
6297 * root->objectid_mutex is not acquired as log replay
6298 * could only happen during mount.
6299 */
6300 ret = btrfs_find_highest_objectid(root,
6301 &root->highest_objectid);
6302 }
6303
07d400a6 6304 wc.replay_dest->log_root = NULL;
00246528 6305 btrfs_put_root(wc.replay_dest);
00246528 6306 btrfs_put_root(log);
e02119d5 6307
b50c6e25
JB
6308 if (ret)
6309 goto error;
9bc574de 6310next:
e02119d5
CM
6311 if (found_key.offset == 0)
6312 break;
9bc574de 6313 key.offset = found_key.offset - 1;
e02119d5 6314 }
b3b4aa74 6315 btrfs_release_path(path);
e02119d5
CM
6316
6317 /* step one is to pin it all, step two is to replay just inodes */
6318 if (wc.pin) {
6319 wc.pin = 0;
6320 wc.process_func = replay_one_buffer;
6321 wc.stage = LOG_WALK_REPLAY_INODES;
6322 goto again;
6323 }
6324 /* step three is to replay everything */
6325 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6326 wc.stage++;
6327 goto again;
6328 }
6329
6330 btrfs_free_path(path);
6331
abefa55a 6332 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6333 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6334 if (ret)
6335 return ret;
6336
e02119d5 6337 log_root_tree->log_root = NULL;
afcdd129 6338 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6339 btrfs_put_root(log_root_tree);
79787eaa 6340
abefa55a 6341 return 0;
79787eaa 6342error:
b50c6e25 6343 if (wc.trans)
3a45bb20 6344 btrfs_end_transaction(wc.trans);
79787eaa
JM
6345 btrfs_free_path(path);
6346 return ret;
e02119d5 6347}
12fcfd22
CM
6348
6349/*
6350 * there are some corner cases where we want to force a full
6351 * commit instead of allowing a directory to be logged.
6352 *
6353 * They revolve around files there were unlinked from the directory, and
6354 * this function updates the parent directory so that a full commit is
6355 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6356 *
6357 * Must be called before the unlink operations (updates to the subvolume tree,
6358 * inodes, etc) are done.
12fcfd22
CM
6359 */
6360void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6361 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6362 int for_rename)
6363{
af4176b4
CM
6364 /*
6365 * when we're logging a file, if it hasn't been renamed
6366 * or unlinked, and its inode is fully committed on disk,
6367 * we don't have to worry about walking up the directory chain
6368 * to log its parents.
6369 *
6370 * So, we use the last_unlink_trans field to put this transid
6371 * into the file. When the file is logged we check it and
6372 * don't log the parents if the file is fully on disk.
6373 */
4176bdbf
NB
6374 mutex_lock(&inode->log_mutex);
6375 inode->last_unlink_trans = trans->transid;
6376 mutex_unlock(&inode->log_mutex);
af4176b4 6377
12fcfd22
CM
6378 /*
6379 * if this directory was already logged any new
6380 * names for this file/dir will get recorded
6381 */
4176bdbf 6382 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6383 return;
6384
6385 /*
6386 * if the inode we're about to unlink was logged,
6387 * the log will be properly updated for any new names
6388 */
4176bdbf 6389 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6390 return;
6391
6392 /*
6393 * when renaming files across directories, if the directory
6394 * there we're unlinking from gets fsync'd later on, there's
6395 * no way to find the destination directory later and fsync it
6396 * properly. So, we have to be conservative and force commits
6397 * so the new name gets discovered.
6398 */
6399 if (for_rename)
6400 goto record;
6401
6402 /* we can safely do the unlink without any special recording */
6403 return;
6404
6405record:
4176bdbf
NB
6406 mutex_lock(&dir->log_mutex);
6407 dir->last_unlink_trans = trans->transid;
6408 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6409}
6410
6411/*
6412 * Make sure that if someone attempts to fsync the parent directory of a deleted
6413 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6414 * that after replaying the log tree of the parent directory's root we will not
6415 * see the snapshot anymore and at log replay time we will not see any log tree
6416 * corresponding to the deleted snapshot's root, which could lead to replaying
6417 * it after replaying the log tree of the parent directory (which would replay
6418 * the snapshot delete operation).
2be63d5c
FM
6419 *
6420 * Must be called before the actual snapshot destroy operation (updates to the
6421 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6422 */
6423void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6424 struct btrfs_inode *dir)
1ec9a1ae 6425{
43663557
NB
6426 mutex_lock(&dir->log_mutex);
6427 dir->last_unlink_trans = trans->transid;
6428 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6429}
6430
6431/*
6432 * Call this after adding a new name for a file and it will properly
6433 * update the log to reflect the new name.
12fcfd22 6434 */
75b463d2 6435void btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6436 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
75b463d2 6437 struct dentry *parent)
12fcfd22 6438{
3ffbd68c 6439 struct btrfs_fs_info *fs_info = trans->fs_info;
75b463d2 6440 struct btrfs_log_ctx ctx;
12fcfd22 6441
af4176b4
CM
6442 /*
6443 * this will force the logging code to walk the dentry chain
6444 * up for the file
6445 */
9a6509c4 6446 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6447 inode->last_unlink_trans = trans->transid;
af4176b4 6448
12fcfd22
CM
6449 /*
6450 * if this inode hasn't been logged and directory we're renaming it
6451 * from hasn't been logged, we don't need to log it
6452 */
9ca5fbfb
NB
6453 if (inode->logged_trans <= fs_info->last_trans_committed &&
6454 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
75b463d2 6455 return;
12fcfd22 6456
75b463d2
FM
6457 btrfs_init_log_ctx(&ctx, &inode->vfs_inode);
6458 ctx.logging_new_name = true;
6459 /*
6460 * We don't care about the return value. If we fail to log the new name
6461 * then we know the next attempt to sync the log will fallback to a full
6462 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
6463 * we don't need to worry about getting a log committed that has an
6464 * inconsistent state after a rename operation.
6465 */
48778179 6466 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
12fcfd22
CM
6467}
6468