]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/tree-log.c
btrfs: reloc: clear DEAD_RELOC_TREE bit for orphan roots to prevent runaway balance
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
602cbe91 11#include "misc.h"
9678c543 12#include "ctree.h"
995946dd 13#include "tree-log.h"
e02119d5
CM
14#include "disk-io.h"
15#include "locking.h"
16#include "print-tree.h"
f186373f 17#include "backref.h"
ebb8765b 18#include "compression.h"
df2c95f3 19#include "qgroup.h"
900c9981 20#include "inode-map.h"
6787bb9f
NB
21#include "block-group.h"
22#include "space-info.h"
e02119d5
CM
23
24/* magic values for the inode_only field in btrfs_log_inode:
25 *
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
28 * during log replay
29 */
e13976cf
DS
30enum {
31 LOG_INODE_ALL,
32 LOG_INODE_EXISTS,
33 LOG_OTHER_INODE,
34 LOG_OTHER_INODE_ALL,
35};
e02119d5 36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
e13976cf
DS
89enum {
90 LOG_WALK_PIN_ONLY,
91 LOG_WALK_REPLAY_INODES,
92 LOG_WALK_REPLAY_DIR_INDEX,
93 LOG_WALK_REPLAY_ALL,
94};
e02119d5 95
12fcfd22 96static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 97 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 98 int inode_only,
7af59743
FM
99 const loff_t start,
100 const loff_t end,
8407f553 101 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
102static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
105static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
e02119d5
CM
110
111/*
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
114 *
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
118 *
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
124 *
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
128 *
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
132 */
133
e02119d5
CM
134/*
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
138 */
139static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
e02119d5 142{
0b246afa 143 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 144 int ret = 0;
7237f183
YZ
145
146 mutex_lock(&root->log_mutex);
34eb2a52 147
7237f183 148 if (root->log_root) {
4884b8e8 149 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
150 ret = -EAGAIN;
151 goto out;
152 }
34eb2a52 153
ff782e0a 154 if (!root->log_start_pid) {
27cdeb70 155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 156 root->log_start_pid = current->pid;
ff782e0a 157 } else if (root->log_start_pid != current->pid) {
27cdeb70 158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 159 }
34eb2a52 160 } else {
0b246afa
JM
161 mutex_lock(&fs_info->tree_log_mutex);
162 if (!fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, fs_info);
164 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
165 if (ret)
166 goto out;
ff782e0a 167
e02119d5 168 ret = btrfs_add_log_tree(trans, root);
4a500fd1 169 if (ret)
e87ac136 170 goto out;
34eb2a52
Z
171
172 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 root->log_start_pid = current->pid;
e02119d5 174 }
34eb2a52 175
2ecb7923 176 atomic_inc(&root->log_batch);
7237f183 177 atomic_inc(&root->log_writers);
8b050d35 178 if (ctx) {
34eb2a52 179 int index = root->log_transid % 2;
8b050d35 180 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 181 ctx->log_transid = root->log_transid;
8b050d35 182 }
34eb2a52 183
e87ac136 184out:
7237f183 185 mutex_unlock(&root->log_mutex);
e87ac136 186 return ret;
e02119d5
CM
187}
188
189/*
190 * returns 0 if there was a log transaction running and we were able
191 * to join, or returns -ENOENT if there were not transactions
192 * in progress
193 */
194static int join_running_log_trans(struct btrfs_root *root)
195{
196 int ret = -ENOENT;
197
7237f183 198 mutex_lock(&root->log_mutex);
e02119d5
CM
199 if (root->log_root) {
200 ret = 0;
7237f183 201 atomic_inc(&root->log_writers);
e02119d5 202 }
7237f183 203 mutex_unlock(&root->log_mutex);
e02119d5
CM
204 return ret;
205}
206
12fcfd22
CM
207/*
208 * This either makes the current running log transaction wait
209 * until you call btrfs_end_log_trans() or it makes any future
210 * log transactions wait until you call btrfs_end_log_trans()
211 */
45128b08 212void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 213{
12fcfd22
CM
214 mutex_lock(&root->log_mutex);
215 atomic_inc(&root->log_writers);
216 mutex_unlock(&root->log_mutex);
12fcfd22
CM
217}
218
e02119d5
CM
219/*
220 * indicate we're done making changes to the log tree
221 * and wake up anyone waiting to do a sync
222 */
143bede5 223void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 224{
7237f183 225 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
226 /* atomic_dec_and_test implies a barrier */
227 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 228 }
e02119d5
CM
229}
230
247462a5
DS
231static int btrfs_write_tree_block(struct extent_buffer *buf)
232{
233 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
234 buf->start + buf->len - 1);
235}
236
237static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
238{
239 filemap_fdatawait_range(buf->pages[0]->mapping,
240 buf->start, buf->start + buf->len - 1);
241}
e02119d5
CM
242
243/*
244 * the walk control struct is used to pass state down the chain when
245 * processing the log tree. The stage field tells us which part
246 * of the log tree processing we are currently doing. The others
247 * are state fields used for that specific part
248 */
249struct walk_control {
250 /* should we free the extent on disk when done? This is used
251 * at transaction commit time while freeing a log tree
252 */
253 int free;
254
255 /* should we write out the extent buffer? This is used
256 * while flushing the log tree to disk during a sync
257 */
258 int write;
259
260 /* should we wait for the extent buffer io to finish? Also used
261 * while flushing the log tree to disk for a sync
262 */
263 int wait;
264
265 /* pin only walk, we record which extents on disk belong to the
266 * log trees
267 */
268 int pin;
269
270 /* what stage of the replay code we're currently in */
271 int stage;
272
f2d72f42
FM
273 /*
274 * Ignore any items from the inode currently being processed. Needs
275 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
276 * the LOG_WALK_REPLAY_INODES stage.
277 */
278 bool ignore_cur_inode;
279
e02119d5
CM
280 /* the root we are currently replaying */
281 struct btrfs_root *replay_dest;
282
283 /* the trans handle for the current replay */
284 struct btrfs_trans_handle *trans;
285
286 /* the function that gets used to process blocks we find in the
287 * tree. Note the extent_buffer might not be up to date when it is
288 * passed in, and it must be checked or read if you need the data
289 * inside it
290 */
291 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 292 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
293};
294
295/*
296 * process_func used to pin down extents, write them or wait on them
297 */
298static int process_one_buffer(struct btrfs_root *log,
299 struct extent_buffer *eb,
581c1760 300 struct walk_control *wc, u64 gen, int level)
e02119d5 301{
0b246afa 302 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
303 int ret = 0;
304
8c2a1a30
JB
305 /*
306 * If this fs is mixed then we need to be able to process the leaves to
307 * pin down any logged extents, so we have to read the block.
308 */
0b246afa 309 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 310 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
311 if (ret)
312 return ret;
313 }
314
04018de5 315 if (wc->pin)
9fce5704 316 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb->start,
2ff7e61e 317 eb->len);
e02119d5 318
b50c6e25 319 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 320 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 321 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
322 if (wc->write)
323 btrfs_write_tree_block(eb);
324 if (wc->wait)
325 btrfs_wait_tree_block_writeback(eb);
326 }
b50c6e25 327 return ret;
e02119d5
CM
328}
329
330/*
331 * Item overwrite used by replay and tree logging. eb, slot and key all refer
332 * to the src data we are copying out.
333 *
334 * root is the tree we are copying into, and path is a scratch
335 * path for use in this function (it should be released on entry and
336 * will be released on exit).
337 *
338 * If the key is already in the destination tree the existing item is
339 * overwritten. If the existing item isn't big enough, it is extended.
340 * If it is too large, it is truncated.
341 *
342 * If the key isn't in the destination yet, a new item is inserted.
343 */
344static noinline int overwrite_item(struct btrfs_trans_handle *trans,
345 struct btrfs_root *root,
346 struct btrfs_path *path,
347 struct extent_buffer *eb, int slot,
348 struct btrfs_key *key)
349{
350 int ret;
351 u32 item_size;
352 u64 saved_i_size = 0;
353 int save_old_i_size = 0;
354 unsigned long src_ptr;
355 unsigned long dst_ptr;
356 int overwrite_root = 0;
4bc4bee4 357 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
358
359 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
360 overwrite_root = 1;
361
362 item_size = btrfs_item_size_nr(eb, slot);
363 src_ptr = btrfs_item_ptr_offset(eb, slot);
364
365 /* look for the key in the destination tree */
366 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
367 if (ret < 0)
368 return ret;
369
e02119d5
CM
370 if (ret == 0) {
371 char *src_copy;
372 char *dst_copy;
373 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
374 path->slots[0]);
375 if (dst_size != item_size)
376 goto insert;
377
378 if (item_size == 0) {
b3b4aa74 379 btrfs_release_path(path);
e02119d5
CM
380 return 0;
381 }
382 dst_copy = kmalloc(item_size, GFP_NOFS);
383 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 384 if (!dst_copy || !src_copy) {
b3b4aa74 385 btrfs_release_path(path);
2a29edc6 386 kfree(dst_copy);
387 kfree(src_copy);
388 return -ENOMEM;
389 }
e02119d5
CM
390
391 read_extent_buffer(eb, src_copy, src_ptr, item_size);
392
393 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
394 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
395 item_size);
396 ret = memcmp(dst_copy, src_copy, item_size);
397
398 kfree(dst_copy);
399 kfree(src_copy);
400 /*
401 * they have the same contents, just return, this saves
402 * us from cowing blocks in the destination tree and doing
403 * extra writes that may not have been done by a previous
404 * sync
405 */
406 if (ret == 0) {
b3b4aa74 407 btrfs_release_path(path);
e02119d5
CM
408 return 0;
409 }
410
4bc4bee4
JB
411 /*
412 * We need to load the old nbytes into the inode so when we
413 * replay the extents we've logged we get the right nbytes.
414 */
415 if (inode_item) {
416 struct btrfs_inode_item *item;
417 u64 nbytes;
d555438b 418 u32 mode;
4bc4bee4
JB
419
420 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
421 struct btrfs_inode_item);
422 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
423 item = btrfs_item_ptr(eb, slot,
424 struct btrfs_inode_item);
425 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
426
427 /*
428 * If this is a directory we need to reset the i_size to
429 * 0 so that we can set it up properly when replaying
430 * the rest of the items in this log.
431 */
432 mode = btrfs_inode_mode(eb, item);
433 if (S_ISDIR(mode))
434 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
435 }
436 } else if (inode_item) {
437 struct btrfs_inode_item *item;
d555438b 438 u32 mode;
4bc4bee4
JB
439
440 /*
441 * New inode, set nbytes to 0 so that the nbytes comes out
442 * properly when we replay the extents.
443 */
444 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
445 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
446
447 /*
448 * If this is a directory we need to reset the i_size to 0 so
449 * that we can set it up properly when replaying the rest of
450 * the items in this log.
451 */
452 mode = btrfs_inode_mode(eb, item);
453 if (S_ISDIR(mode))
454 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
455 }
456insert:
b3b4aa74 457 btrfs_release_path(path);
e02119d5 458 /* try to insert the key into the destination tree */
df8d116f 459 path->skip_release_on_error = 1;
e02119d5
CM
460 ret = btrfs_insert_empty_item(trans, root, path,
461 key, item_size);
df8d116f 462 path->skip_release_on_error = 0;
e02119d5
CM
463
464 /* make sure any existing item is the correct size */
df8d116f 465 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
466 u32 found_size;
467 found_size = btrfs_item_size_nr(path->nodes[0],
468 path->slots[0]);
143bede5 469 if (found_size > item_size)
78ac4f9e 470 btrfs_truncate_item(path, item_size, 1);
143bede5 471 else if (found_size < item_size)
c71dd880 472 btrfs_extend_item(path, item_size - found_size);
e02119d5 473 } else if (ret) {
4a500fd1 474 return ret;
e02119d5
CM
475 }
476 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
477 path->slots[0]);
478
479 /* don't overwrite an existing inode if the generation number
480 * was logged as zero. This is done when the tree logging code
481 * is just logging an inode to make sure it exists after recovery.
482 *
483 * Also, don't overwrite i_size on directories during replay.
484 * log replay inserts and removes directory items based on the
485 * state of the tree found in the subvolume, and i_size is modified
486 * as it goes
487 */
488 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
489 struct btrfs_inode_item *src_item;
490 struct btrfs_inode_item *dst_item;
491
492 src_item = (struct btrfs_inode_item *)src_ptr;
493 dst_item = (struct btrfs_inode_item *)dst_ptr;
494
1a4bcf47
FM
495 if (btrfs_inode_generation(eb, src_item) == 0) {
496 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 497 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 498
2f2ff0ee
FM
499 /*
500 * For regular files an ino_size == 0 is used only when
501 * logging that an inode exists, as part of a directory
502 * fsync, and the inode wasn't fsynced before. In this
503 * case don't set the size of the inode in the fs/subvol
504 * tree, otherwise we would be throwing valid data away.
505 */
1a4bcf47 506 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee 507 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
60d48e2e
DS
508 ino_size != 0)
509 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
e02119d5 510 goto no_copy;
1a4bcf47 511 }
e02119d5
CM
512
513 if (overwrite_root &&
514 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
515 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
516 save_old_i_size = 1;
517 saved_i_size = btrfs_inode_size(path->nodes[0],
518 dst_item);
519 }
520 }
521
522 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
523 src_ptr, item_size);
524
525 if (save_old_i_size) {
526 struct btrfs_inode_item *dst_item;
527 dst_item = (struct btrfs_inode_item *)dst_ptr;
528 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
529 }
530
531 /* make sure the generation is filled in */
532 if (key->type == BTRFS_INODE_ITEM_KEY) {
533 struct btrfs_inode_item *dst_item;
534 dst_item = (struct btrfs_inode_item *)dst_ptr;
535 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
536 btrfs_set_inode_generation(path->nodes[0], dst_item,
537 trans->transid);
538 }
539 }
540no_copy:
541 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 542 btrfs_release_path(path);
e02119d5
CM
543 return 0;
544}
545
546/*
547 * simple helper to read an inode off the disk from a given root
548 * This can only be called for subvolume roots and not for the log
549 */
550static noinline struct inode *read_one_inode(struct btrfs_root *root,
551 u64 objectid)
552{
5d4f98a2 553 struct btrfs_key key;
e02119d5 554 struct inode *inode;
e02119d5 555
5d4f98a2
YZ
556 key.objectid = objectid;
557 key.type = BTRFS_INODE_ITEM_KEY;
558 key.offset = 0;
4c66e0d4 559 inode = btrfs_iget(root->fs_info->sb, &key, root);
2e19f1f9 560 if (IS_ERR(inode))
5d4f98a2 561 inode = NULL;
e02119d5
CM
562 return inode;
563}
564
565/* replays a single extent in 'eb' at 'slot' with 'key' into the
566 * subvolume 'root'. path is released on entry and should be released
567 * on exit.
568 *
569 * extents in the log tree have not been allocated out of the extent
570 * tree yet. So, this completes the allocation, taking a reference
571 * as required if the extent already exists or creating a new extent
572 * if it isn't in the extent allocation tree yet.
573 *
574 * The extent is inserted into the file, dropping any existing extents
575 * from the file that overlap the new one.
576 */
577static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
578 struct btrfs_root *root,
579 struct btrfs_path *path,
580 struct extent_buffer *eb, int slot,
581 struct btrfs_key *key)
582{
0b246afa 583 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 584 int found_type;
e02119d5 585 u64 extent_end;
e02119d5 586 u64 start = key->offset;
4bc4bee4 587 u64 nbytes = 0;
e02119d5
CM
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
592
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
595
d899e052 596 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
600
601 /*
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
604 */
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 608 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 610 extent_end = ALIGN(start + size,
0b246afa 611 fs_info->sectorsize);
e02119d5
CM
612 } else {
613 ret = 0;
614 goto out;
615 }
616
617 inode = read_one_inode(root, key->objectid);
618 if (!inode) {
619 ret = -EIO;
620 goto out;
621 }
622
623 /*
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
627 */
f85b7379
DS
628 ret = btrfs_lookup_file_extent(trans, root, path,
629 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 630
d899e052
YZ
631 if (ret == 0 &&
632 (found_type == BTRFS_FILE_EXTENT_REG ||
633 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
634 struct btrfs_file_extent_item cmp1;
635 struct btrfs_file_extent_item cmp2;
636 struct btrfs_file_extent_item *existing;
637 struct extent_buffer *leaf;
638
639 leaf = path->nodes[0];
640 existing = btrfs_item_ptr(leaf, path->slots[0],
641 struct btrfs_file_extent_item);
642
643 read_extent_buffer(eb, &cmp1, (unsigned long)item,
644 sizeof(cmp1));
645 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
646 sizeof(cmp2));
647
648 /*
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
651 */
652 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 653 btrfs_release_path(path);
e02119d5
CM
654 goto out;
655 }
656 }
b3b4aa74 657 btrfs_release_path(path);
e02119d5
CM
658
659 /* drop any overlapping extents */
2671485d 660 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
661 if (ret)
662 goto out;
e02119d5 663
07d400a6
YZ
664 if (found_type == BTRFS_FILE_EXTENT_REG ||
665 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 666 u64 offset;
07d400a6
YZ
667 unsigned long dest_offset;
668 struct btrfs_key ins;
669
3168021c
FM
670 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
671 btrfs_fs_incompat(fs_info, NO_HOLES))
672 goto update_inode;
673
07d400a6
YZ
674 ret = btrfs_insert_empty_item(trans, root, path, key,
675 sizeof(*item));
3650860b
JB
676 if (ret)
677 goto out;
07d400a6
YZ
678 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
679 path->slots[0]);
680 copy_extent_buffer(path->nodes[0], eb, dest_offset,
681 (unsigned long)item, sizeof(*item));
682
683 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
684 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
685 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 686 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 687
df2c95f3
QW
688 /*
689 * Manually record dirty extent, as here we did a shallow
690 * file extent item copy and skip normal backref update,
691 * but modifying extent tree all by ourselves.
692 * So need to manually record dirty extent for qgroup,
693 * as the owner of the file extent changed from log tree
694 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
695 */
a95f3aaf 696 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
697 btrfs_file_extent_disk_bytenr(eb, item),
698 btrfs_file_extent_disk_num_bytes(eb, item),
699 GFP_NOFS);
700 if (ret < 0)
701 goto out;
702
07d400a6 703 if (ins.objectid > 0) {
82fa113f 704 struct btrfs_ref ref = { 0 };
07d400a6
YZ
705 u64 csum_start;
706 u64 csum_end;
707 LIST_HEAD(ordered_sums);
82fa113f 708
07d400a6
YZ
709 /*
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
712 */
2ff7e61e 713 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
714 ins.offset);
715 if (ret == 0) {
82fa113f
QW
716 btrfs_init_generic_ref(&ref,
717 BTRFS_ADD_DELAYED_REF,
718 ins.objectid, ins.offset, 0);
719 btrfs_init_data_ref(&ref,
720 root->root_key.objectid,
b06c4bf5 721 key->objectid, offset);
82fa113f 722 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
723 if (ret)
724 goto out;
07d400a6
YZ
725 } else {
726 /*
727 * insert the extent pointer in the extent
728 * allocation tree
729 */
5d4f98a2 730 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 731 root->root_key.objectid,
5d4f98a2 732 key->objectid, offset, &ins);
b50c6e25
JB
733 if (ret)
734 goto out;
07d400a6 735 }
b3b4aa74 736 btrfs_release_path(path);
07d400a6
YZ
737
738 if (btrfs_file_extent_compression(eb, item)) {
739 csum_start = ins.objectid;
740 csum_end = csum_start + ins.offset;
741 } else {
742 csum_start = ins.objectid +
743 btrfs_file_extent_offset(eb, item);
744 csum_end = csum_start +
745 btrfs_file_extent_num_bytes(eb, item);
746 }
747
748 ret = btrfs_lookup_csums_range(root->log_root,
749 csum_start, csum_end - 1,
a2de733c 750 &ordered_sums, 0);
3650860b
JB
751 if (ret)
752 goto out;
b84b8390
FM
753 /*
754 * Now delete all existing cums in the csum root that
755 * cover our range. We do this because we can have an
756 * extent that is completely referenced by one file
757 * extent item and partially referenced by another
758 * file extent item (like after using the clone or
759 * extent_same ioctls). In this case if we end up doing
760 * the replay of the one that partially references the
761 * extent first, and we do not do the csum deletion
762 * below, we can get 2 csum items in the csum tree that
763 * overlap each other. For example, imagine our log has
764 * the two following file extent items:
765 *
766 * key (257 EXTENT_DATA 409600)
767 * extent data disk byte 12845056 nr 102400
768 * extent data offset 20480 nr 20480 ram 102400
769 *
770 * key (257 EXTENT_DATA 819200)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 0 nr 102400 ram 102400
773 *
774 * Where the second one fully references the 100K extent
775 * that starts at disk byte 12845056, and the log tree
776 * has a single csum item that covers the entire range
777 * of the extent:
778 *
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 *
781 * After the first file extent item is replayed, the
782 * csum tree gets the following csum item:
783 *
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which covers the 20K sub-range starting at offset 20K
787 * of our extent. Now when we replay the second file
788 * extent item, if we do not delete existing csum items
789 * that cover any of its blocks, we end up getting two
790 * csum items in our csum tree that overlap each other:
791 *
792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
794 *
795 * Which is a problem, because after this anyone trying
796 * to lookup up for the checksum of any block of our
797 * extent starting at an offset of 40K or higher, will
798 * end up looking at the second csum item only, which
799 * does not contain the checksum for any block starting
800 * at offset 40K or higher of our extent.
801 */
07d400a6
YZ
802 while (!list_empty(&ordered_sums)) {
803 struct btrfs_ordered_sum *sums;
804 sums = list_entry(ordered_sums.next,
805 struct btrfs_ordered_sum,
806 list);
b84b8390 807 if (!ret)
40e046ac
FM
808 ret = btrfs_del_csums(trans,
809 fs_info->csum_root,
5b4aacef
JM
810 sums->bytenr,
811 sums->len);
3650860b
JB
812 if (!ret)
813 ret = btrfs_csum_file_blocks(trans,
0b246afa 814 fs_info->csum_root, sums);
07d400a6
YZ
815 list_del(&sums->list);
816 kfree(sums);
817 }
3650860b
JB
818 if (ret)
819 goto out;
07d400a6 820 } else {
b3b4aa74 821 btrfs_release_path(path);
07d400a6
YZ
822 }
823 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
824 /* inline extents are easy, we just overwrite them */
825 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
826 if (ret)
827 goto out;
07d400a6 828 }
e02119d5 829
9ddc959e
JB
830 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
831 extent_end - start);
832 if (ret)
833 goto out;
834
4bc4bee4 835 inode_add_bytes(inode, nbytes);
3168021c 836update_inode:
b9959295 837 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
838out:
839 if (inode)
840 iput(inode);
841 return ret;
842}
843
844/*
845 * when cleaning up conflicts between the directory names in the
846 * subvolume, directory names in the log and directory names in the
847 * inode back references, we may have to unlink inodes from directories.
848 *
849 * This is a helper function to do the unlink of a specific directory
850 * item
851 */
852static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
853 struct btrfs_root *root,
854 struct btrfs_path *path,
207e7d92 855 struct btrfs_inode *dir,
e02119d5
CM
856 struct btrfs_dir_item *di)
857{
858 struct inode *inode;
859 char *name;
860 int name_len;
861 struct extent_buffer *leaf;
862 struct btrfs_key location;
863 int ret;
864
865 leaf = path->nodes[0];
866
867 btrfs_dir_item_key_to_cpu(leaf, di, &location);
868 name_len = btrfs_dir_name_len(leaf, di);
869 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 870 if (!name)
871 return -ENOMEM;
872
e02119d5 873 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 874 btrfs_release_path(path);
e02119d5
CM
875
876 inode = read_one_inode(root, location.objectid);
c00e9493 877 if (!inode) {
3650860b
JB
878 ret = -EIO;
879 goto out;
c00e9493 880 }
e02119d5 881
ec051c0f 882 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
883 if (ret)
884 goto out;
12fcfd22 885
207e7d92
NB
886 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
887 name_len);
3650860b
JB
888 if (ret)
889 goto out;
ada9af21 890 else
e5c304e6 891 ret = btrfs_run_delayed_items(trans);
3650860b 892out:
e02119d5 893 kfree(name);
e02119d5
CM
894 iput(inode);
895 return ret;
896}
897
898/*
899 * helper function to see if a given name and sequence number found
900 * in an inode back reference are already in a directory and correctly
901 * point to this inode
902 */
903static noinline int inode_in_dir(struct btrfs_root *root,
904 struct btrfs_path *path,
905 u64 dirid, u64 objectid, u64 index,
906 const char *name, int name_len)
907{
908 struct btrfs_dir_item *di;
909 struct btrfs_key location;
910 int match = 0;
911
912 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
913 index, name, name_len, 0);
914 if (di && !IS_ERR(di)) {
915 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
916 if (location.objectid != objectid)
917 goto out;
918 } else
919 goto out;
b3b4aa74 920 btrfs_release_path(path);
e02119d5
CM
921
922 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
923 if (di && !IS_ERR(di)) {
924 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
925 if (location.objectid != objectid)
926 goto out;
927 } else
928 goto out;
929 match = 1;
930out:
b3b4aa74 931 btrfs_release_path(path);
e02119d5
CM
932 return match;
933}
934
935/*
936 * helper function to check a log tree for a named back reference in
937 * an inode. This is used to decide if a back reference that is
938 * found in the subvolume conflicts with what we find in the log.
939 *
940 * inode backreferences may have multiple refs in a single item,
941 * during replay we process one reference at a time, and we don't
942 * want to delete valid links to a file from the subvolume if that
943 * link is also in the log.
944 */
945static noinline int backref_in_log(struct btrfs_root *log,
946 struct btrfs_key *key,
f186373f 947 u64 ref_objectid,
df8d116f 948 const char *name, int namelen)
e02119d5
CM
949{
950 struct btrfs_path *path;
e02119d5 951 int ret;
e02119d5
CM
952
953 path = btrfs_alloc_path();
2a29edc6 954 if (!path)
955 return -ENOMEM;
956
e02119d5 957 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
d3316c82
NB
958 if (ret < 0) {
959 goto out;
960 } else if (ret == 1) {
89cbf5f6 961 ret = 0;
f186373f
MF
962 goto out;
963 }
964
89cbf5f6
NB
965 if (key->type == BTRFS_INODE_EXTREF_KEY)
966 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
967 path->slots[0],
968 ref_objectid,
969 name, namelen);
970 else
971 ret = !!btrfs_find_name_in_backref(path->nodes[0],
972 path->slots[0],
973 name, namelen);
e02119d5
CM
974out:
975 btrfs_free_path(path);
89cbf5f6 976 return ret;
e02119d5
CM
977}
978
5a1d7843 979static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 980 struct btrfs_root *root,
e02119d5 981 struct btrfs_path *path,
5a1d7843 982 struct btrfs_root *log_root,
94c91a1f
NB
983 struct btrfs_inode *dir,
984 struct btrfs_inode *inode,
f186373f
MF
985 u64 inode_objectid, u64 parent_objectid,
986 u64 ref_index, char *name, int namelen,
987 int *search_done)
e02119d5 988{
34f3e4f2 989 int ret;
f186373f
MF
990 char *victim_name;
991 int victim_name_len;
992 struct extent_buffer *leaf;
5a1d7843 993 struct btrfs_dir_item *di;
f186373f
MF
994 struct btrfs_key search_key;
995 struct btrfs_inode_extref *extref;
c622ae60 996
f186373f
MF
997again:
998 /* Search old style refs */
999 search_key.objectid = inode_objectid;
1000 search_key.type = BTRFS_INODE_REF_KEY;
1001 search_key.offset = parent_objectid;
1002 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1003 if (ret == 0) {
e02119d5
CM
1004 struct btrfs_inode_ref *victim_ref;
1005 unsigned long ptr;
1006 unsigned long ptr_end;
f186373f
MF
1007
1008 leaf = path->nodes[0];
e02119d5
CM
1009
1010 /* are we trying to overwrite a back ref for the root directory
1011 * if so, just jump out, we're done
1012 */
f186373f 1013 if (search_key.objectid == search_key.offset)
5a1d7843 1014 return 1;
e02119d5
CM
1015
1016 /* check all the names in this back reference to see
1017 * if they are in the log. if so, we allow them to stay
1018 * otherwise they must be unlinked as a conflict
1019 */
1020 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1021 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1022 while (ptr < ptr_end) {
e02119d5
CM
1023 victim_ref = (struct btrfs_inode_ref *)ptr;
1024 victim_name_len = btrfs_inode_ref_name_len(leaf,
1025 victim_ref);
1026 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1027 if (!victim_name)
1028 return -ENOMEM;
e02119d5
CM
1029
1030 read_extent_buffer(leaf, victim_name,
1031 (unsigned long)(victim_ref + 1),
1032 victim_name_len);
1033
d3316c82
NB
1034 ret = backref_in_log(log_root, &search_key,
1035 parent_objectid, victim_name,
1036 victim_name_len);
1037 if (ret < 0) {
1038 kfree(victim_name);
1039 return ret;
1040 } else if (!ret) {
94c91a1f 1041 inc_nlink(&inode->vfs_inode);
b3b4aa74 1042 btrfs_release_path(path);
12fcfd22 1043
94c91a1f 1044 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1045 victim_name, victim_name_len);
f186373f 1046 kfree(victim_name);
3650860b
JB
1047 if (ret)
1048 return ret;
e5c304e6 1049 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1050 if (ret)
1051 return ret;
f186373f
MF
1052 *search_done = 1;
1053 goto again;
e02119d5
CM
1054 }
1055 kfree(victim_name);
f186373f 1056
e02119d5
CM
1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1058 }
e02119d5 1059
c622ae60 1060 /*
1061 * NOTE: we have searched root tree and checked the
bb7ab3b9 1062 * corresponding ref, it does not need to check again.
c622ae60 1063 */
5a1d7843 1064 *search_done = 1;
e02119d5 1065 }
b3b4aa74 1066 btrfs_release_path(path);
e02119d5 1067
f186373f
MF
1068 /* Same search but for extended refs */
1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 inode_objectid, parent_objectid, 0,
1071 0);
1072 if (!IS_ERR_OR_NULL(extref)) {
1073 u32 item_size;
1074 u32 cur_offset = 0;
1075 unsigned long base;
1076 struct inode *victim_parent;
1077
1078 leaf = path->nodes[0];
1079
1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1082
1083 while (cur_offset < item_size) {
dd9ef135 1084 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1085
1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1087
1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 goto next;
1090
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1092 if (!victim_name)
1093 return -ENOMEM;
f186373f
MF
1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 victim_name_len);
1096
1097 search_key.objectid = inode_objectid;
1098 search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 search_key.offset = btrfs_extref_hash(parent_objectid,
1100 victim_name,
1101 victim_name_len);
d3316c82
NB
1102 ret = backref_in_log(log_root, &search_key,
1103 parent_objectid, victim_name,
1104 victim_name_len);
1105 if (ret < 0) {
1106 return ret;
1107 } else if (!ret) {
f186373f
MF
1108 ret = -ENOENT;
1109 victim_parent = read_one_inode(root,
94c91a1f 1110 parent_objectid);
f186373f 1111 if (victim_parent) {
94c91a1f 1112 inc_nlink(&inode->vfs_inode);
f186373f
MF
1113 btrfs_release_path(path);
1114
1115 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1116 BTRFS_I(victim_parent),
94c91a1f 1117 inode,
4ec5934e
NB
1118 victim_name,
1119 victim_name_len);
ada9af21
FDBM
1120 if (!ret)
1121 ret = btrfs_run_delayed_items(
e5c304e6 1122 trans);
f186373f 1123 }
f186373f
MF
1124 iput(victim_parent);
1125 kfree(victim_name);
3650860b
JB
1126 if (ret)
1127 return ret;
f186373f
MF
1128 *search_done = 1;
1129 goto again;
1130 }
1131 kfree(victim_name);
f186373f
MF
1132next:
1133 cur_offset += victim_name_len + sizeof(*extref);
1134 }
1135 *search_done = 1;
1136 }
1137 btrfs_release_path(path);
1138
34f3e4f2 1139 /* look for a conflicting sequence number */
94c91a1f 1140 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1141 ref_index, name, namelen, 0);
34f3e4f2 1142 if (di && !IS_ERR(di)) {
94c91a1f 1143 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1144 if (ret)
1145 return ret;
34f3e4f2 1146 }
1147 btrfs_release_path(path);
1148
52042d8e 1149 /* look for a conflicting name */
94c91a1f 1150 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1151 name, namelen, 0);
1152 if (di && !IS_ERR(di)) {
94c91a1f 1153 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1154 if (ret)
1155 return ret;
34f3e4f2 1156 }
1157 btrfs_release_path(path);
1158
5a1d7843
JS
1159 return 0;
1160}
e02119d5 1161
bae15d95
QW
1162static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1163 u32 *namelen, char **name, u64 *index,
1164 u64 *parent_objectid)
f186373f
MF
1165{
1166 struct btrfs_inode_extref *extref;
1167
1168 extref = (struct btrfs_inode_extref *)ref_ptr;
1169
1170 *namelen = btrfs_inode_extref_name_len(eb, extref);
1171 *name = kmalloc(*namelen, GFP_NOFS);
1172 if (*name == NULL)
1173 return -ENOMEM;
1174
1175 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1176 *namelen);
1177
1f250e92
FM
1178 if (index)
1179 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1180 if (parent_objectid)
1181 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1182
1183 return 0;
1184}
1185
bae15d95
QW
1186static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1187 u32 *namelen, char **name, u64 *index)
f186373f
MF
1188{
1189 struct btrfs_inode_ref *ref;
1190
1191 ref = (struct btrfs_inode_ref *)ref_ptr;
1192
1193 *namelen = btrfs_inode_ref_name_len(eb, ref);
1194 *name = kmalloc(*namelen, GFP_NOFS);
1195 if (*name == NULL)
1196 return -ENOMEM;
1197
1198 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1199
1f250e92
FM
1200 if (index)
1201 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1202
1203 return 0;
1204}
1205
1f250e92
FM
1206/*
1207 * Take an inode reference item from the log tree and iterate all names from the
1208 * inode reference item in the subvolume tree with the same key (if it exists).
1209 * For any name that is not in the inode reference item from the log tree, do a
1210 * proper unlink of that name (that is, remove its entry from the inode
1211 * reference item and both dir index keys).
1212 */
1213static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1214 struct btrfs_root *root,
1215 struct btrfs_path *path,
1216 struct btrfs_inode *inode,
1217 struct extent_buffer *log_eb,
1218 int log_slot,
1219 struct btrfs_key *key)
1220{
1221 int ret;
1222 unsigned long ref_ptr;
1223 unsigned long ref_end;
1224 struct extent_buffer *eb;
1225
1226again:
1227 btrfs_release_path(path);
1228 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1229 if (ret > 0) {
1230 ret = 0;
1231 goto out;
1232 }
1233 if (ret < 0)
1234 goto out;
1235
1236 eb = path->nodes[0];
1237 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1238 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1239 while (ref_ptr < ref_end) {
1240 char *name = NULL;
1241 int namelen;
1242 u64 parent_id;
1243
1244 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1245 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1246 NULL, &parent_id);
1247 } else {
1248 parent_id = key->offset;
1249 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1250 NULL);
1251 }
1252 if (ret)
1253 goto out;
1254
1255 if (key->type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1256 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1257 parent_id, name,
1258 namelen);
1f250e92 1259 else
9bb8407f
NB
1260 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1261 name, namelen);
1f250e92
FM
1262
1263 if (!ret) {
1264 struct inode *dir;
1265
1266 btrfs_release_path(path);
1267 dir = read_one_inode(root, parent_id);
1268 if (!dir) {
1269 ret = -ENOENT;
1270 kfree(name);
1271 goto out;
1272 }
1273 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1274 inode, name, namelen);
1275 kfree(name);
1276 iput(dir);
1277 if (ret)
1278 goto out;
1279 goto again;
1280 }
1281
1282 kfree(name);
1283 ref_ptr += namelen;
1284 if (key->type == BTRFS_INODE_EXTREF_KEY)
1285 ref_ptr += sizeof(struct btrfs_inode_extref);
1286 else
1287 ref_ptr += sizeof(struct btrfs_inode_ref);
1288 }
1289 ret = 0;
1290 out:
1291 btrfs_release_path(path);
1292 return ret;
1293}
1294
0d836392
FM
1295static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1296 const u8 ref_type, const char *name,
1297 const int namelen)
1298{
1299 struct btrfs_key key;
1300 struct btrfs_path *path;
1301 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1302 int ret;
1303
1304 path = btrfs_alloc_path();
1305 if (!path)
1306 return -ENOMEM;
1307
1308 key.objectid = btrfs_ino(BTRFS_I(inode));
1309 key.type = ref_type;
1310 if (key.type == BTRFS_INODE_REF_KEY)
1311 key.offset = parent_id;
1312 else
1313 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1314
1315 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1316 if (ret < 0)
1317 goto out;
1318 if (ret > 0) {
1319 ret = 0;
1320 goto out;
1321 }
1322 if (key.type == BTRFS_INODE_EXTREF_KEY)
6ff49c6a
NB
1323 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1324 path->slots[0], parent_id, name, namelen);
0d836392 1325 else
9bb8407f
NB
1326 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1327 name, namelen);
0d836392
FM
1328
1329out:
1330 btrfs_free_path(path);
1331 return ret;
1332}
1333
6b5fc433
FM
1334static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1335 struct inode *dir, struct inode *inode, const char *name,
1336 int namelen, u64 ref_index)
1337{
1338 struct btrfs_dir_item *dir_item;
1339 struct btrfs_key key;
1340 struct btrfs_path *path;
1341 struct inode *other_inode = NULL;
1342 int ret;
1343
1344 path = btrfs_alloc_path();
1345 if (!path)
1346 return -ENOMEM;
1347
1348 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1349 btrfs_ino(BTRFS_I(dir)),
1350 name, namelen, 0);
1351 if (!dir_item) {
1352 btrfs_release_path(path);
1353 goto add_link;
1354 } else if (IS_ERR(dir_item)) {
1355 ret = PTR_ERR(dir_item);
1356 goto out;
1357 }
1358
1359 /*
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1363 */
1364 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1365 btrfs_release_path(path);
1366 other_inode = read_one_inode(root, key.objectid);
1367 if (!other_inode) {
1368 ret = -ENOENT;
1369 goto out;
1370 }
1371 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1372 name, namelen);
1373 if (ret)
1374 goto out;
1375 /*
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1378 */
1379 if (other_inode->i_nlink == 0)
1380 inc_nlink(other_inode);
1381
1382 ret = btrfs_run_delayed_items(trans);
1383 if (ret)
1384 goto out;
1385add_link:
1386 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1387 name, namelen, 0, ref_index);
1388out:
1389 iput(other_inode);
1390 btrfs_free_path(path);
1391
1392 return ret;
1393}
1394
5a1d7843
JS
1395/*
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1400 */
1401static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1402 struct btrfs_root *root,
1403 struct btrfs_root *log,
1404 struct btrfs_path *path,
1405 struct extent_buffer *eb, int slot,
1406 struct btrfs_key *key)
1407{
03b2f08b
GB
1408 struct inode *dir = NULL;
1409 struct inode *inode = NULL;
5a1d7843
JS
1410 unsigned long ref_ptr;
1411 unsigned long ref_end;
03b2f08b 1412 char *name = NULL;
5a1d7843
JS
1413 int namelen;
1414 int ret;
1415 int search_done = 0;
f186373f
MF
1416 int log_ref_ver = 0;
1417 u64 parent_objectid;
1418 u64 inode_objectid;
f46dbe3d 1419 u64 ref_index = 0;
f186373f
MF
1420 int ref_struct_size;
1421
1422 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1423 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1424
1425 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1426 struct btrfs_inode_extref *r;
1427
1428 ref_struct_size = sizeof(struct btrfs_inode_extref);
1429 log_ref_ver = 1;
1430 r = (struct btrfs_inode_extref *)ref_ptr;
1431 parent_objectid = btrfs_inode_extref_parent(eb, r);
1432 } else {
1433 ref_struct_size = sizeof(struct btrfs_inode_ref);
1434 parent_objectid = key->offset;
1435 }
1436 inode_objectid = key->objectid;
e02119d5 1437
5a1d7843
JS
1438 /*
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1442 * care of the rest
1443 */
f186373f 1444 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1445 if (!dir) {
1446 ret = -ENOENT;
1447 goto out;
1448 }
5a1d7843 1449
f186373f 1450 inode = read_one_inode(root, inode_objectid);
5a1d7843 1451 if (!inode) {
03b2f08b
GB
1452 ret = -EIO;
1453 goto out;
5a1d7843
JS
1454 }
1455
5a1d7843 1456 while (ref_ptr < ref_end) {
f186373f 1457 if (log_ref_ver) {
bae15d95
QW
1458 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1459 &ref_index, &parent_objectid);
f186373f
MF
1460 /*
1461 * parent object can change from one array
1462 * item to another.
1463 */
1464 if (!dir)
1465 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1466 if (!dir) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
f186373f 1470 } else {
bae15d95
QW
1471 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1472 &ref_index);
f186373f
MF
1473 }
1474 if (ret)
03b2f08b 1475 goto out;
5a1d7843
JS
1476
1477 /* if we already have a perfect match, we're done */
f85b7379
DS
1478 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1479 btrfs_ino(BTRFS_I(inode)), ref_index,
1480 name, namelen)) {
5a1d7843
JS
1481 /*
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1487 */
1488
1489 if (!search_done) {
1490 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1491 BTRFS_I(dir),
d75eefdf 1492 BTRFS_I(inode),
f186373f
MF
1493 inode_objectid,
1494 parent_objectid,
1495 ref_index, name, namelen,
5a1d7843 1496 &search_done);
03b2f08b
GB
1497 if (ret) {
1498 if (ret == 1)
1499 ret = 0;
3650860b
JB
1500 goto out;
1501 }
5a1d7843
JS
1502 }
1503
0d836392
FM
1504 /*
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1511 */
1512 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1513 name, namelen);
1514 if (ret > 0) {
1515 ret = btrfs_unlink_inode(trans, root,
1516 BTRFS_I(dir),
1517 BTRFS_I(inode),
1518 name, namelen);
1519 /*
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1523 */
1524 if (!ret && inode->i_nlink == 0)
1525 inc_nlink(inode);
1526 }
1527 if (ret < 0)
1528 goto out;
1529
5a1d7843 1530 /* insert our name */
6b5fc433
FM
1531 ret = add_link(trans, root, dir, inode, name, namelen,
1532 ref_index);
3650860b
JB
1533 if (ret)
1534 goto out;
5a1d7843
JS
1535
1536 btrfs_update_inode(trans, root, inode);
1537 }
1538
f186373f 1539 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1540 kfree(name);
03b2f08b 1541 name = NULL;
f186373f
MF
1542 if (log_ref_ver) {
1543 iput(dir);
1544 dir = NULL;
1545 }
5a1d7843 1546 }
e02119d5 1547
1f250e92
FM
1548 /*
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1555 */
1556 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1557 key);
1558 if (ret)
1559 goto out;
1560
e02119d5
CM
1561 /* finally write the back reference in the inode */
1562 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1563out:
b3b4aa74 1564 btrfs_release_path(path);
03b2f08b 1565 kfree(name);
e02119d5
CM
1566 iput(dir);
1567 iput(inode);
3650860b 1568 return ret;
e02119d5
CM
1569}
1570
c71bf099 1571static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1572 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1573{
1574 int ret;
381cf658 1575
9c4f61f0
DS
1576 ret = btrfs_insert_orphan_item(trans, root, ino);
1577 if (ret == -EEXIST)
1578 ret = 0;
381cf658 1579
c71bf099
YZ
1580 return ret;
1581}
1582
f186373f 1583static int count_inode_extrefs(struct btrfs_root *root,
36283658 1584 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1585{
1586 int ret = 0;
1587 int name_len;
1588 unsigned int nlink = 0;
1589 u32 item_size;
1590 u32 cur_offset = 0;
36283658 1591 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1592 u64 offset = 0;
1593 unsigned long ptr;
1594 struct btrfs_inode_extref *extref;
1595 struct extent_buffer *leaf;
1596
1597 while (1) {
1598 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1599 &extref, &offset);
1600 if (ret)
1601 break;
c71bf099 1602
f186373f
MF
1603 leaf = path->nodes[0];
1604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1605 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1606 cur_offset = 0;
f186373f
MF
1607
1608 while (cur_offset < item_size) {
1609 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1610 name_len = btrfs_inode_extref_name_len(leaf, extref);
1611
1612 nlink++;
1613
1614 cur_offset += name_len + sizeof(*extref);
1615 }
1616
1617 offset++;
1618 btrfs_release_path(path);
1619 }
1620 btrfs_release_path(path);
1621
2c2c452b 1622 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1623 return ret;
1624 return nlink;
1625}
1626
1627static int count_inode_refs(struct btrfs_root *root,
f329e319 1628 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1629{
e02119d5
CM
1630 int ret;
1631 struct btrfs_key key;
f186373f 1632 unsigned int nlink = 0;
e02119d5
CM
1633 unsigned long ptr;
1634 unsigned long ptr_end;
1635 int name_len;
f329e319 1636 u64 ino = btrfs_ino(inode);
e02119d5 1637
33345d01 1638 key.objectid = ino;
e02119d5
CM
1639 key.type = BTRFS_INODE_REF_KEY;
1640 key.offset = (u64)-1;
1641
d397712b 1642 while (1) {
e02119d5
CM
1643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1644 if (ret < 0)
1645 break;
1646 if (ret > 0) {
1647 if (path->slots[0] == 0)
1648 break;
1649 path->slots[0]--;
1650 }
e93ae26f 1651process_slot:
e02119d5
CM
1652 btrfs_item_key_to_cpu(path->nodes[0], &key,
1653 path->slots[0]);
33345d01 1654 if (key.objectid != ino ||
e02119d5
CM
1655 key.type != BTRFS_INODE_REF_KEY)
1656 break;
1657 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1658 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1659 path->slots[0]);
d397712b 1660 while (ptr < ptr_end) {
e02119d5
CM
1661 struct btrfs_inode_ref *ref;
1662
1663 ref = (struct btrfs_inode_ref *)ptr;
1664 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1665 ref);
1666 ptr = (unsigned long)(ref + 1) + name_len;
1667 nlink++;
1668 }
1669
1670 if (key.offset == 0)
1671 break;
e93ae26f
FDBM
1672 if (path->slots[0] > 0) {
1673 path->slots[0]--;
1674 goto process_slot;
1675 }
e02119d5 1676 key.offset--;
b3b4aa74 1677 btrfs_release_path(path);
e02119d5 1678 }
b3b4aa74 1679 btrfs_release_path(path);
f186373f
MF
1680
1681 return nlink;
1682}
1683
1684/*
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay. So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1689 *
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found. If it goes down to zero, the iput
1692 * will free the inode.
1693 */
1694static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1695 struct btrfs_root *root,
1696 struct inode *inode)
1697{
1698 struct btrfs_path *path;
1699 int ret;
1700 u64 nlink = 0;
4a0cc7ca 1701 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1702
1703 path = btrfs_alloc_path();
1704 if (!path)
1705 return -ENOMEM;
1706
f329e319 1707 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1708 if (ret < 0)
1709 goto out;
1710
1711 nlink = ret;
1712
36283658 1713 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1714 if (ret < 0)
1715 goto out;
1716
1717 nlink += ret;
1718
1719 ret = 0;
1720
e02119d5 1721 if (nlink != inode->i_nlink) {
bfe86848 1722 set_nlink(inode, nlink);
e02119d5
CM
1723 btrfs_update_inode(trans, root, inode);
1724 }
8d5bf1cb 1725 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1726
c71bf099
YZ
1727 if (inode->i_nlink == 0) {
1728 if (S_ISDIR(inode->i_mode)) {
1729 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1730 ino, 1);
3650860b
JB
1731 if (ret)
1732 goto out;
c71bf099 1733 }
33345d01 1734 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1735 }
12fcfd22 1736
f186373f
MF
1737out:
1738 btrfs_free_path(path);
1739 return ret;
e02119d5
CM
1740}
1741
1742static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1743 struct btrfs_root *root,
1744 struct btrfs_path *path)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct inode *inode;
1749
1750 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1751 key.type = BTRFS_ORPHAN_ITEM_KEY;
1752 key.offset = (u64)-1;
d397712b 1753 while (1) {
e02119d5
CM
1754 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1755 if (ret < 0)
1756 break;
1757
1758 if (ret == 1) {
1759 if (path->slots[0] == 0)
1760 break;
1761 path->slots[0]--;
1762 }
1763
1764 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1765 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1766 key.type != BTRFS_ORPHAN_ITEM_KEY)
1767 break;
1768
1769 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1770 if (ret)
1771 goto out;
e02119d5 1772
b3b4aa74 1773 btrfs_release_path(path);
e02119d5 1774 inode = read_one_inode(root, key.offset);
c00e9493
TI
1775 if (!inode)
1776 return -EIO;
e02119d5
CM
1777
1778 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1779 iput(inode);
3650860b
JB
1780 if (ret)
1781 goto out;
e02119d5 1782
12fcfd22
CM
1783 /*
1784 * fixup on a directory may create new entries,
1785 * make sure we always look for the highset possible
1786 * offset
1787 */
1788 key.offset = (u64)-1;
e02119d5 1789 }
65a246c5
TI
1790 ret = 0;
1791out:
b3b4aa74 1792 btrfs_release_path(path);
65a246c5 1793 return ret;
e02119d5
CM
1794}
1795
1796
1797/*
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done. The link count is incremented here
1800 * so the inode won't go away until we check it
1801 */
1802static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_path *path,
1805 u64 objectid)
1806{
1807 struct btrfs_key key;
1808 int ret = 0;
1809 struct inode *inode;
1810
1811 inode = read_one_inode(root, objectid);
c00e9493
TI
1812 if (!inode)
1813 return -EIO;
e02119d5
CM
1814
1815 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1816 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1817 key.offset = objectid;
1818
1819 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1820
b3b4aa74 1821 btrfs_release_path(path);
e02119d5 1822 if (ret == 0) {
9bf7a489
JB
1823 if (!inode->i_nlink)
1824 set_nlink(inode, 1);
1825 else
8b558c5f 1826 inc_nlink(inode);
b9959295 1827 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1828 } else if (ret == -EEXIST) {
1829 ret = 0;
1830 } else {
3650860b 1831 BUG(); /* Logic Error */
e02119d5
CM
1832 }
1833 iput(inode);
1834
1835 return ret;
1836}
1837
1838/*
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist. This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1842 */
1843static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1844 struct btrfs_root *root,
e02119d5 1845 u64 dirid, u64 index,
60d53eb3 1846 char *name, int name_len,
e02119d5
CM
1847 struct btrfs_key *location)
1848{
1849 struct inode *inode;
1850 struct inode *dir;
1851 int ret;
1852
1853 inode = read_one_inode(root, location->objectid);
1854 if (!inode)
1855 return -ENOENT;
1856
1857 dir = read_one_inode(root, dirid);
1858 if (!dir) {
1859 iput(inode);
1860 return -EIO;
1861 }
d555438b 1862
db0a669f
NB
1863 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1864 name_len, 1, index);
e02119d5
CM
1865
1866 /* FIXME, put inode into FIXUP list */
1867
1868 iput(inode);
1869 iput(dir);
1870 return ret;
1871}
1872
1873/*
1874 * take a single entry in a log directory item and replay it into
1875 * the subvolume.
1876 *
1877 * if a conflicting item exists in the subdirectory already,
1878 * the inode it points to is unlinked and put into the link count
1879 * fix up tree.
1880 *
1881 * If a name from the log points to a file or directory that does
1882 * not exist in the FS, it is skipped. fsyncs on directories
1883 * do not force down inodes inside that directory, just changes to the
1884 * names or unlinks in a directory.
bb53eda9
FM
1885 *
1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1888 */
1889static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1890 struct btrfs_root *root,
1891 struct btrfs_path *path,
1892 struct extent_buffer *eb,
1893 struct btrfs_dir_item *di,
1894 struct btrfs_key *key)
1895{
1896 char *name;
1897 int name_len;
1898 struct btrfs_dir_item *dst_di;
1899 struct btrfs_key found_key;
1900 struct btrfs_key log_key;
1901 struct inode *dir;
e02119d5 1902 u8 log_type;
4bef0848 1903 int exists;
3650860b 1904 int ret = 0;
d555438b 1905 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1906 bool name_added = false;
e02119d5
CM
1907
1908 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1909 if (!dir)
1910 return -EIO;
e02119d5
CM
1911
1912 name_len = btrfs_dir_name_len(eb, di);
1913 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1914 if (!name) {
1915 ret = -ENOMEM;
1916 goto out;
1917 }
2a29edc6 1918
e02119d5
CM
1919 log_type = btrfs_dir_type(eb, di);
1920 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1921 name_len);
1922
1923 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1924 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1925 if (exists == 0)
1926 exists = 1;
1927 else
1928 exists = 0;
b3b4aa74 1929 btrfs_release_path(path);
4bef0848 1930
e02119d5
CM
1931 if (key->type == BTRFS_DIR_ITEM_KEY) {
1932 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1933 name, name_len, 1);
d397712b 1934 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1935 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1936 key->objectid,
1937 key->offset, name,
1938 name_len, 1);
1939 } else {
3650860b
JB
1940 /* Corruption */
1941 ret = -EINVAL;
1942 goto out;
e02119d5 1943 }
c704005d 1944 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1945 /* we need a sequence number to insert, so we only
1946 * do inserts for the BTRFS_DIR_INDEX_KEY types
1947 */
1948 if (key->type != BTRFS_DIR_INDEX_KEY)
1949 goto out;
1950 goto insert;
1951 }
1952
1953 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1954 /* the existing item matches the logged item */
1955 if (found_key.objectid == log_key.objectid &&
1956 found_key.type == log_key.type &&
1957 found_key.offset == log_key.offset &&
1958 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1959 update_size = false;
e02119d5
CM
1960 goto out;
1961 }
1962
1963 /*
1964 * don't drop the conflicting directory entry if the inode
1965 * for the new entry doesn't exist
1966 */
4bef0848 1967 if (!exists)
e02119d5
CM
1968 goto out;
1969
207e7d92 1970 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1971 if (ret)
1972 goto out;
e02119d5
CM
1973
1974 if (key->type == BTRFS_DIR_INDEX_KEY)
1975 goto insert;
1976out:
b3b4aa74 1977 btrfs_release_path(path);
d555438b 1978 if (!ret && update_size) {
6ef06d27 1979 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1980 ret = btrfs_update_inode(trans, root, dir);
1981 }
e02119d5
CM
1982 kfree(name);
1983 iput(dir);
bb53eda9
FM
1984 if (!ret && name_added)
1985 ret = 1;
3650860b 1986 return ret;
e02119d5
CM
1987
1988insert:
725af92a
NB
1989 /*
1990 * Check if the inode reference exists in the log for the given name,
1991 * inode and parent inode
1992 */
1993 found_key.objectid = log_key.objectid;
1994 found_key.type = BTRFS_INODE_REF_KEY;
1995 found_key.offset = key->objectid;
1996 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1997 if (ret < 0) {
1998 goto out;
1999 } else if (ret) {
2000 /* The dentry will be added later. */
2001 ret = 0;
2002 update_size = false;
2003 goto out;
2004 }
2005
2006 found_key.objectid = log_key.objectid;
2007 found_key.type = BTRFS_INODE_EXTREF_KEY;
2008 found_key.offset = key->objectid;
2009 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2010 name_len);
2011 if (ret < 0) {
2012 goto out;
2013 } else if (ret) {
df8d116f
FM
2014 /* The dentry will be added later. */
2015 ret = 0;
2016 update_size = false;
2017 goto out;
2018 }
b3b4aa74 2019 btrfs_release_path(path);
60d53eb3
Z
2020 ret = insert_one_name(trans, root, key->objectid, key->offset,
2021 name, name_len, &log_key);
df8d116f 2022 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2023 goto out;
bb53eda9
FM
2024 if (!ret)
2025 name_added = true;
d555438b 2026 update_size = false;
3650860b 2027 ret = 0;
e02119d5
CM
2028 goto out;
2029}
2030
2031/*
2032 * find all the names in a directory item and reconcile them into
2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2034 * one name in a directory item, but the same code gets used for
2035 * both directory index types
2036 */
2037static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2038 struct btrfs_root *root,
2039 struct btrfs_path *path,
2040 struct extent_buffer *eb, int slot,
2041 struct btrfs_key *key)
2042{
bb53eda9 2043 int ret = 0;
e02119d5
CM
2044 u32 item_size = btrfs_item_size_nr(eb, slot);
2045 struct btrfs_dir_item *di;
2046 int name_len;
2047 unsigned long ptr;
2048 unsigned long ptr_end;
bb53eda9 2049 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2050
2051 ptr = btrfs_item_ptr_offset(eb, slot);
2052 ptr_end = ptr + item_size;
d397712b 2053 while (ptr < ptr_end) {
e02119d5
CM
2054 di = (struct btrfs_dir_item *)ptr;
2055 name_len = btrfs_dir_name_len(eb, di);
2056 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2057 if (ret < 0)
2058 break;
e02119d5
CM
2059 ptr = (unsigned long)(di + 1);
2060 ptr += name_len;
bb53eda9
FM
2061
2062 /*
2063 * If this entry refers to a non-directory (directories can not
2064 * have a link count > 1) and it was added in the transaction
2065 * that was not committed, make sure we fixup the link count of
2066 * the inode it the entry points to. Otherwise something like
2067 * the following would result in a directory pointing to an
2068 * inode with a wrong link that does not account for this dir
2069 * entry:
2070 *
2071 * mkdir testdir
2072 * touch testdir/foo
2073 * touch testdir/bar
2074 * sync
2075 *
2076 * ln testdir/bar testdir/bar_link
2077 * ln testdir/foo testdir/foo_link
2078 * xfs_io -c "fsync" testdir/bar
2079 *
2080 * <power failure>
2081 *
2082 * mount fs, log replay happens
2083 *
2084 * File foo would remain with a link count of 1 when it has two
2085 * entries pointing to it in the directory testdir. This would
2086 * make it impossible to ever delete the parent directory has
2087 * it would result in stale dentries that can never be deleted.
2088 */
2089 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2090 struct btrfs_key di_key;
2091
2092 if (!fixup_path) {
2093 fixup_path = btrfs_alloc_path();
2094 if (!fixup_path) {
2095 ret = -ENOMEM;
2096 break;
2097 }
2098 }
2099
2100 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2101 ret = link_to_fixup_dir(trans, root, fixup_path,
2102 di_key.objectid);
2103 if (ret)
2104 break;
2105 }
2106 ret = 0;
e02119d5 2107 }
bb53eda9
FM
2108 btrfs_free_path(fixup_path);
2109 return ret;
e02119d5
CM
2110}
2111
2112/*
2113 * directory replay has two parts. There are the standard directory
2114 * items in the log copied from the subvolume, and range items
2115 * created in the log while the subvolume was logged.
2116 *
2117 * The range items tell us which parts of the key space the log
2118 * is authoritative for. During replay, if a key in the subvolume
2119 * directory is in a logged range item, but not actually in the log
2120 * that means it was deleted from the directory before the fsync
2121 * and should be removed.
2122 */
2123static noinline int find_dir_range(struct btrfs_root *root,
2124 struct btrfs_path *path,
2125 u64 dirid, int key_type,
2126 u64 *start_ret, u64 *end_ret)
2127{
2128 struct btrfs_key key;
2129 u64 found_end;
2130 struct btrfs_dir_log_item *item;
2131 int ret;
2132 int nritems;
2133
2134 if (*start_ret == (u64)-1)
2135 return 1;
2136
2137 key.objectid = dirid;
2138 key.type = key_type;
2139 key.offset = *start_ret;
2140
2141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2142 if (ret < 0)
2143 goto out;
2144 if (ret > 0) {
2145 if (path->slots[0] == 0)
2146 goto out;
2147 path->slots[0]--;
2148 }
2149 if (ret != 0)
2150 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2151
2152 if (key.type != key_type || key.objectid != dirid) {
2153 ret = 1;
2154 goto next;
2155 }
2156 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2157 struct btrfs_dir_log_item);
2158 found_end = btrfs_dir_log_end(path->nodes[0], item);
2159
2160 if (*start_ret >= key.offset && *start_ret <= found_end) {
2161 ret = 0;
2162 *start_ret = key.offset;
2163 *end_ret = found_end;
2164 goto out;
2165 }
2166 ret = 1;
2167next:
2168 /* check the next slot in the tree to see if it is a valid item */
2169 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2170 path->slots[0]++;
e02119d5
CM
2171 if (path->slots[0] >= nritems) {
2172 ret = btrfs_next_leaf(root, path);
2173 if (ret)
2174 goto out;
e02119d5
CM
2175 }
2176
2177 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2178
2179 if (key.type != key_type || key.objectid != dirid) {
2180 ret = 1;
2181 goto out;
2182 }
2183 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2184 struct btrfs_dir_log_item);
2185 found_end = btrfs_dir_log_end(path->nodes[0], item);
2186 *start_ret = key.offset;
2187 *end_ret = found_end;
2188 ret = 0;
2189out:
b3b4aa74 2190 btrfs_release_path(path);
e02119d5
CM
2191 return ret;
2192}
2193
2194/*
2195 * this looks for a given directory item in the log. If the directory
2196 * item is not in the log, the item is removed and the inode it points
2197 * to is unlinked
2198 */
2199static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2200 struct btrfs_root *root,
2201 struct btrfs_root *log,
2202 struct btrfs_path *path,
2203 struct btrfs_path *log_path,
2204 struct inode *dir,
2205 struct btrfs_key *dir_key)
2206{
2207 int ret;
2208 struct extent_buffer *eb;
2209 int slot;
2210 u32 item_size;
2211 struct btrfs_dir_item *di;
2212 struct btrfs_dir_item *log_di;
2213 int name_len;
2214 unsigned long ptr;
2215 unsigned long ptr_end;
2216 char *name;
2217 struct inode *inode;
2218 struct btrfs_key location;
2219
2220again:
2221 eb = path->nodes[0];
2222 slot = path->slots[0];
2223 item_size = btrfs_item_size_nr(eb, slot);
2224 ptr = btrfs_item_ptr_offset(eb, slot);
2225 ptr_end = ptr + item_size;
d397712b 2226 while (ptr < ptr_end) {
e02119d5
CM
2227 di = (struct btrfs_dir_item *)ptr;
2228 name_len = btrfs_dir_name_len(eb, di);
2229 name = kmalloc(name_len, GFP_NOFS);
2230 if (!name) {
2231 ret = -ENOMEM;
2232 goto out;
2233 }
2234 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2235 name_len);
2236 log_di = NULL;
12fcfd22 2237 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2238 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2239 dir_key->objectid,
2240 name, name_len, 0);
12fcfd22 2241 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2242 log_di = btrfs_lookup_dir_index_item(trans, log,
2243 log_path,
2244 dir_key->objectid,
2245 dir_key->offset,
2246 name, name_len, 0);
2247 }
8d9e220c 2248 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2249 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2250 btrfs_release_path(path);
2251 btrfs_release_path(log_path);
e02119d5 2252 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2253 if (!inode) {
2254 kfree(name);
2255 return -EIO;
2256 }
e02119d5
CM
2257
2258 ret = link_to_fixup_dir(trans, root,
2259 path, location.objectid);
3650860b
JB
2260 if (ret) {
2261 kfree(name);
2262 iput(inode);
2263 goto out;
2264 }
2265
8b558c5f 2266 inc_nlink(inode);
4ec5934e
NB
2267 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2268 BTRFS_I(inode), name, name_len);
3650860b 2269 if (!ret)
e5c304e6 2270 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2271 kfree(name);
2272 iput(inode);
3650860b
JB
2273 if (ret)
2274 goto out;
e02119d5
CM
2275
2276 /* there might still be more names under this key
2277 * check and repeat if required
2278 */
2279 ret = btrfs_search_slot(NULL, root, dir_key, path,
2280 0, 0);
2281 if (ret == 0)
2282 goto again;
2283 ret = 0;
2284 goto out;
269d040f
FDBM
2285 } else if (IS_ERR(log_di)) {
2286 kfree(name);
2287 return PTR_ERR(log_di);
e02119d5 2288 }
b3b4aa74 2289 btrfs_release_path(log_path);
e02119d5
CM
2290 kfree(name);
2291
2292 ptr = (unsigned long)(di + 1);
2293 ptr += name_len;
2294 }
2295 ret = 0;
2296out:
b3b4aa74
DS
2297 btrfs_release_path(path);
2298 btrfs_release_path(log_path);
e02119d5
CM
2299 return ret;
2300}
2301
4f764e51
FM
2302static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2303 struct btrfs_root *root,
2304 struct btrfs_root *log,
2305 struct btrfs_path *path,
2306 const u64 ino)
2307{
2308 struct btrfs_key search_key;
2309 struct btrfs_path *log_path;
2310 int i;
2311 int nritems;
2312 int ret;
2313
2314 log_path = btrfs_alloc_path();
2315 if (!log_path)
2316 return -ENOMEM;
2317
2318 search_key.objectid = ino;
2319 search_key.type = BTRFS_XATTR_ITEM_KEY;
2320 search_key.offset = 0;
2321again:
2322 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2323 if (ret < 0)
2324 goto out;
2325process_leaf:
2326 nritems = btrfs_header_nritems(path->nodes[0]);
2327 for (i = path->slots[0]; i < nritems; i++) {
2328 struct btrfs_key key;
2329 struct btrfs_dir_item *di;
2330 struct btrfs_dir_item *log_di;
2331 u32 total_size;
2332 u32 cur;
2333
2334 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2335 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2336 ret = 0;
2337 goto out;
2338 }
2339
2340 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2341 total_size = btrfs_item_size_nr(path->nodes[0], i);
2342 cur = 0;
2343 while (cur < total_size) {
2344 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2345 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2346 u32 this_len = sizeof(*di) + name_len + data_len;
2347 char *name;
2348
2349 name = kmalloc(name_len, GFP_NOFS);
2350 if (!name) {
2351 ret = -ENOMEM;
2352 goto out;
2353 }
2354 read_extent_buffer(path->nodes[0], name,
2355 (unsigned long)(di + 1), name_len);
2356
2357 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2358 name, name_len, 0);
2359 btrfs_release_path(log_path);
2360 if (!log_di) {
2361 /* Doesn't exist in log tree, so delete it. */
2362 btrfs_release_path(path);
2363 di = btrfs_lookup_xattr(trans, root, path, ino,
2364 name, name_len, -1);
2365 kfree(name);
2366 if (IS_ERR(di)) {
2367 ret = PTR_ERR(di);
2368 goto out;
2369 }
2370 ASSERT(di);
2371 ret = btrfs_delete_one_dir_name(trans, root,
2372 path, di);
2373 if (ret)
2374 goto out;
2375 btrfs_release_path(path);
2376 search_key = key;
2377 goto again;
2378 }
2379 kfree(name);
2380 if (IS_ERR(log_di)) {
2381 ret = PTR_ERR(log_di);
2382 goto out;
2383 }
2384 cur += this_len;
2385 di = (struct btrfs_dir_item *)((char *)di + this_len);
2386 }
2387 }
2388 ret = btrfs_next_leaf(root, path);
2389 if (ret > 0)
2390 ret = 0;
2391 else if (ret == 0)
2392 goto process_leaf;
2393out:
2394 btrfs_free_path(log_path);
2395 btrfs_release_path(path);
2396 return ret;
2397}
2398
2399
e02119d5
CM
2400/*
2401 * deletion replay happens before we copy any new directory items
2402 * out of the log or out of backreferences from inodes. It
2403 * scans the log to find ranges of keys that log is authoritative for,
2404 * and then scans the directory to find items in those ranges that are
2405 * not present in the log.
2406 *
2407 * Anything we don't find in the log is unlinked and removed from the
2408 * directory.
2409 */
2410static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2411 struct btrfs_root *root,
2412 struct btrfs_root *log,
2413 struct btrfs_path *path,
12fcfd22 2414 u64 dirid, int del_all)
e02119d5
CM
2415{
2416 u64 range_start;
2417 u64 range_end;
2418 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2419 int ret = 0;
2420 struct btrfs_key dir_key;
2421 struct btrfs_key found_key;
2422 struct btrfs_path *log_path;
2423 struct inode *dir;
2424
2425 dir_key.objectid = dirid;
2426 dir_key.type = BTRFS_DIR_ITEM_KEY;
2427 log_path = btrfs_alloc_path();
2428 if (!log_path)
2429 return -ENOMEM;
2430
2431 dir = read_one_inode(root, dirid);
2432 /* it isn't an error if the inode isn't there, that can happen
2433 * because we replay the deletes before we copy in the inode item
2434 * from the log
2435 */
2436 if (!dir) {
2437 btrfs_free_path(log_path);
2438 return 0;
2439 }
2440again:
2441 range_start = 0;
2442 range_end = 0;
d397712b 2443 while (1) {
12fcfd22
CM
2444 if (del_all)
2445 range_end = (u64)-1;
2446 else {
2447 ret = find_dir_range(log, path, dirid, key_type,
2448 &range_start, &range_end);
2449 if (ret != 0)
2450 break;
2451 }
e02119d5
CM
2452
2453 dir_key.offset = range_start;
d397712b 2454 while (1) {
e02119d5
CM
2455 int nritems;
2456 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2457 0, 0);
2458 if (ret < 0)
2459 goto out;
2460
2461 nritems = btrfs_header_nritems(path->nodes[0]);
2462 if (path->slots[0] >= nritems) {
2463 ret = btrfs_next_leaf(root, path);
b98def7c 2464 if (ret == 1)
e02119d5 2465 break;
b98def7c
LB
2466 else if (ret < 0)
2467 goto out;
e02119d5
CM
2468 }
2469 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2470 path->slots[0]);
2471 if (found_key.objectid != dirid ||
2472 found_key.type != dir_key.type)
2473 goto next_type;
2474
2475 if (found_key.offset > range_end)
2476 break;
2477
2478 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2479 log_path, dir,
2480 &found_key);
3650860b
JB
2481 if (ret)
2482 goto out;
e02119d5
CM
2483 if (found_key.offset == (u64)-1)
2484 break;
2485 dir_key.offset = found_key.offset + 1;
2486 }
b3b4aa74 2487 btrfs_release_path(path);
e02119d5
CM
2488 if (range_end == (u64)-1)
2489 break;
2490 range_start = range_end + 1;
2491 }
2492
2493next_type:
2494 ret = 0;
2495 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2496 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2497 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2498 btrfs_release_path(path);
e02119d5
CM
2499 goto again;
2500 }
2501out:
b3b4aa74 2502 btrfs_release_path(path);
e02119d5
CM
2503 btrfs_free_path(log_path);
2504 iput(dir);
2505 return ret;
2506}
2507
2508/*
2509 * the process_func used to replay items from the log tree. This
2510 * gets called in two different stages. The first stage just looks
2511 * for inodes and makes sure they are all copied into the subvolume.
2512 *
2513 * The second stage copies all the other item types from the log into
2514 * the subvolume. The two stage approach is slower, but gets rid of
2515 * lots of complexity around inodes referencing other inodes that exist
2516 * only in the log (references come from either directory items or inode
2517 * back refs).
2518 */
2519static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2520 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2521{
2522 int nritems;
2523 struct btrfs_path *path;
2524 struct btrfs_root *root = wc->replay_dest;
2525 struct btrfs_key key;
e02119d5
CM
2526 int i;
2527 int ret;
2528
581c1760 2529 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2530 if (ret)
2531 return ret;
e02119d5
CM
2532
2533 level = btrfs_header_level(eb);
2534
2535 if (level != 0)
2536 return 0;
2537
2538 path = btrfs_alloc_path();
1e5063d0
MF
2539 if (!path)
2540 return -ENOMEM;
e02119d5
CM
2541
2542 nritems = btrfs_header_nritems(eb);
2543 for (i = 0; i < nritems; i++) {
2544 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2545
2546 /* inode keys are done during the first stage */
2547 if (key.type == BTRFS_INODE_ITEM_KEY &&
2548 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2549 struct btrfs_inode_item *inode_item;
2550 u32 mode;
2551
2552 inode_item = btrfs_item_ptr(eb, i,
2553 struct btrfs_inode_item);
f2d72f42
FM
2554 /*
2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556 * and never got linked before the fsync, skip it, as
2557 * replaying it is pointless since it would be deleted
2558 * later. We skip logging tmpfiles, but it's always
2559 * possible we are replaying a log created with a kernel
2560 * that used to log tmpfiles.
2561 */
2562 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2563 wc->ignore_cur_inode = true;
2564 continue;
2565 } else {
2566 wc->ignore_cur_inode = false;
2567 }
4f764e51
FM
2568 ret = replay_xattr_deletes(wc->trans, root, log,
2569 path, key.objectid);
2570 if (ret)
2571 break;
e02119d5
CM
2572 mode = btrfs_inode_mode(eb, inode_item);
2573 if (S_ISDIR(mode)) {
2574 ret = replay_dir_deletes(wc->trans,
12fcfd22 2575 root, log, path, key.objectid, 0);
b50c6e25
JB
2576 if (ret)
2577 break;
e02119d5
CM
2578 }
2579 ret = overwrite_item(wc->trans, root, path,
2580 eb, i, &key);
b50c6e25
JB
2581 if (ret)
2582 break;
e02119d5 2583
471d557a
FM
2584 /*
2585 * Before replaying extents, truncate the inode to its
2586 * size. We need to do it now and not after log replay
2587 * because before an fsync we can have prealloc extents
2588 * added beyond the inode's i_size. If we did it after,
2589 * through orphan cleanup for example, we would drop
2590 * those prealloc extents just after replaying them.
e02119d5
CM
2591 */
2592 if (S_ISREG(mode)) {
471d557a
FM
2593 struct inode *inode;
2594 u64 from;
2595
2596 inode = read_one_inode(root, key.objectid);
2597 if (!inode) {
2598 ret = -EIO;
2599 break;
2600 }
2601 from = ALIGN(i_size_read(inode),
2602 root->fs_info->sectorsize);
2603 ret = btrfs_drop_extents(wc->trans, root, inode,
2604 from, (u64)-1, 1);
471d557a 2605 if (!ret) {
f2d72f42 2606 /* Update the inode's nbytes. */
471d557a
FM
2607 ret = btrfs_update_inode(wc->trans,
2608 root, inode);
2609 }
2610 iput(inode);
b50c6e25
JB
2611 if (ret)
2612 break;
e02119d5 2613 }
c71bf099 2614
e02119d5
CM
2615 ret = link_to_fixup_dir(wc->trans, root,
2616 path, key.objectid);
b50c6e25
JB
2617 if (ret)
2618 break;
e02119d5 2619 }
dd8e7217 2620
f2d72f42
FM
2621 if (wc->ignore_cur_inode)
2622 continue;
2623
dd8e7217
JB
2624 if (key.type == BTRFS_DIR_INDEX_KEY &&
2625 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2626 ret = replay_one_dir_item(wc->trans, root, path,
2627 eb, i, &key);
2628 if (ret)
2629 break;
2630 }
2631
e02119d5
CM
2632 if (wc->stage < LOG_WALK_REPLAY_ALL)
2633 continue;
2634
2635 /* these keys are simply copied */
2636 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2637 ret = overwrite_item(wc->trans, root, path,
2638 eb, i, &key);
b50c6e25
JB
2639 if (ret)
2640 break;
2da1c669
LB
2641 } else if (key.type == BTRFS_INODE_REF_KEY ||
2642 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2643 ret = add_inode_ref(wc->trans, root, log, path,
2644 eb, i, &key);
b50c6e25
JB
2645 if (ret && ret != -ENOENT)
2646 break;
2647 ret = 0;
e02119d5
CM
2648 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2649 ret = replay_one_extent(wc->trans, root, path,
2650 eb, i, &key);
b50c6e25
JB
2651 if (ret)
2652 break;
dd8e7217 2653 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2654 ret = replay_one_dir_item(wc->trans, root, path,
2655 eb, i, &key);
b50c6e25
JB
2656 if (ret)
2657 break;
e02119d5
CM
2658 }
2659 }
2660 btrfs_free_path(path);
b50c6e25 2661 return ret;
e02119d5
CM
2662}
2663
6787bb9f
NB
2664/*
2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2666 */
2667static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2668{
2669 struct btrfs_block_group *cache;
2670
2671 cache = btrfs_lookup_block_group(fs_info, start);
2672 if (!cache) {
2673 btrfs_err(fs_info, "unable to find block group for %llu", start);
2674 return;
2675 }
2676
2677 spin_lock(&cache->space_info->lock);
2678 spin_lock(&cache->lock);
2679 cache->reserved -= fs_info->nodesize;
2680 cache->space_info->bytes_reserved -= fs_info->nodesize;
2681 spin_unlock(&cache->lock);
2682 spin_unlock(&cache->space_info->lock);
2683
2684 btrfs_put_block_group(cache);
2685}
2686
d397712b 2687static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2688 struct btrfs_root *root,
2689 struct btrfs_path *path, int *level,
2690 struct walk_control *wc)
2691{
0b246afa 2692 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2693 u64 bytenr;
2694 u64 ptr_gen;
2695 struct extent_buffer *next;
2696 struct extent_buffer *cur;
e02119d5
CM
2697 u32 blocksize;
2698 int ret = 0;
2699
d397712b 2700 while (*level > 0) {
581c1760
QW
2701 struct btrfs_key first_key;
2702
e02119d5
CM
2703 cur = path->nodes[*level];
2704
fae7f21c 2705 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2706
2707 if (path->slots[*level] >=
2708 btrfs_header_nritems(cur))
2709 break;
2710
2711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2713 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2714 blocksize = fs_info->nodesize;
e02119d5 2715
2ff7e61e 2716 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2717 if (IS_ERR(next))
2718 return PTR_ERR(next);
e02119d5 2719
e02119d5 2720 if (*level == 1) {
581c1760
QW
2721 ret = wc->process_func(root, next, wc, ptr_gen,
2722 *level - 1);
b50c6e25
JB
2723 if (ret) {
2724 free_extent_buffer(next);
1e5063d0 2725 return ret;
b50c6e25 2726 }
4a500fd1 2727
e02119d5
CM
2728 path->slots[*level]++;
2729 if (wc->free) {
581c1760
QW
2730 ret = btrfs_read_buffer(next, ptr_gen,
2731 *level - 1, &first_key);
018642a1
TI
2732 if (ret) {
2733 free_extent_buffer(next);
2734 return ret;
2735 }
e02119d5 2736
681ae509
JB
2737 if (trans) {
2738 btrfs_tree_lock(next);
8bead258 2739 btrfs_set_lock_blocking_write(next);
6a884d7d 2740 btrfs_clean_tree_block(next);
681ae509
JB
2741 btrfs_wait_tree_block_writeback(next);
2742 btrfs_tree_unlock(next);
7bfc1007 2743 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2744 bytenr, blocksize);
2745 if (ret) {
2746 free_extent_buffer(next);
2747 return ret;
2748 }
1846430c
LB
2749 } else {
2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2751 clear_extent_buffer_dirty(next);
10e958d5 2752 unaccount_log_buffer(fs_info, bytenr);
3650860b 2753 }
e02119d5
CM
2754 }
2755 free_extent_buffer(next);
2756 continue;
2757 }
581c1760 2758 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2759 if (ret) {
2760 free_extent_buffer(next);
2761 return ret;
2762 }
e02119d5 2763
e02119d5
CM
2764 if (path->nodes[*level-1])
2765 free_extent_buffer(path->nodes[*level-1]);
2766 path->nodes[*level-1] = next;
2767 *level = btrfs_header_level(next);
2768 path->slots[*level] = 0;
2769 cond_resched();
2770 }
4a500fd1 2771 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2772
2773 cond_resched();
2774 return 0;
2775}
2776
d397712b 2777static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2778 struct btrfs_root *root,
2779 struct btrfs_path *path, int *level,
2780 struct walk_control *wc)
2781{
0b246afa 2782 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
2783 int i;
2784 int slot;
2785 int ret;
2786
d397712b 2787 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2788 slot = path->slots[i];
4a500fd1 2789 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2790 path->slots[i]++;
2791 *level = i;
2792 WARN_ON(*level == 0);
2793 return 0;
2794 } else {
1e5063d0 2795 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2796 btrfs_header_generation(path->nodes[*level]),
2797 *level);
1e5063d0
MF
2798 if (ret)
2799 return ret;
2800
e02119d5
CM
2801 if (wc->free) {
2802 struct extent_buffer *next;
2803
2804 next = path->nodes[*level];
2805
681ae509
JB
2806 if (trans) {
2807 btrfs_tree_lock(next);
8bead258 2808 btrfs_set_lock_blocking_write(next);
6a884d7d 2809 btrfs_clean_tree_block(next);
681ae509
JB
2810 btrfs_wait_tree_block_writeback(next);
2811 btrfs_tree_unlock(next);
7bfc1007 2812 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2813 path->nodes[*level]->start,
2814 path->nodes[*level]->len);
2815 if (ret)
2816 return ret;
1846430c
LB
2817 } else {
2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2819 clear_extent_buffer_dirty(next);
e02119d5 2820
10e958d5
NB
2821 unaccount_log_buffer(fs_info,
2822 path->nodes[*level]->start);
2823 }
e02119d5
CM
2824 }
2825 free_extent_buffer(path->nodes[*level]);
2826 path->nodes[*level] = NULL;
2827 *level = i + 1;
2828 }
2829 }
2830 return 1;
2831}
2832
2833/*
2834 * drop the reference count on the tree rooted at 'snap'. This traverses
2835 * the tree freeing any blocks that have a ref count of zero after being
2836 * decremented.
2837 */
2838static int walk_log_tree(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *log, struct walk_control *wc)
2840{
2ff7e61e 2841 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2842 int ret = 0;
2843 int wret;
2844 int level;
2845 struct btrfs_path *path;
e02119d5
CM
2846 int orig_level;
2847
2848 path = btrfs_alloc_path();
db5b493a
TI
2849 if (!path)
2850 return -ENOMEM;
e02119d5
CM
2851
2852 level = btrfs_header_level(log->node);
2853 orig_level = level;
2854 path->nodes[level] = log->node;
67439dad 2855 atomic_inc(&log->node->refs);
e02119d5
CM
2856 path->slots[level] = 0;
2857
d397712b 2858 while (1) {
e02119d5
CM
2859 wret = walk_down_log_tree(trans, log, path, &level, wc);
2860 if (wret > 0)
2861 break;
79787eaa 2862 if (wret < 0) {
e02119d5 2863 ret = wret;
79787eaa
JM
2864 goto out;
2865 }
e02119d5
CM
2866
2867 wret = walk_up_log_tree(trans, log, path, &level, wc);
2868 if (wret > 0)
2869 break;
79787eaa 2870 if (wret < 0) {
e02119d5 2871 ret = wret;
79787eaa
JM
2872 goto out;
2873 }
e02119d5
CM
2874 }
2875
2876 /* was the root node processed? if not, catch it here */
2877 if (path->nodes[orig_level]) {
79787eaa 2878 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2879 btrfs_header_generation(path->nodes[orig_level]),
2880 orig_level);
79787eaa
JM
2881 if (ret)
2882 goto out;
e02119d5
CM
2883 if (wc->free) {
2884 struct extent_buffer *next;
2885
2886 next = path->nodes[orig_level];
2887
681ae509
JB
2888 if (trans) {
2889 btrfs_tree_lock(next);
8bead258 2890 btrfs_set_lock_blocking_write(next);
6a884d7d 2891 btrfs_clean_tree_block(next);
681ae509
JB
2892 btrfs_wait_tree_block_writeback(next);
2893 btrfs_tree_unlock(next);
7bfc1007 2894 ret = btrfs_pin_reserved_extent(trans,
10e958d5
NB
2895 next->start, next->len);
2896 if (ret)
2897 goto out;
1846430c
LB
2898 } else {
2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2900 clear_extent_buffer_dirty(next);
10e958d5 2901 unaccount_log_buffer(fs_info, next->start);
681ae509 2902 }
e02119d5
CM
2903 }
2904 }
2905
79787eaa 2906out:
e02119d5 2907 btrfs_free_path(path);
e02119d5
CM
2908 return ret;
2909}
2910
7237f183
YZ
2911/*
2912 * helper function to update the item for a given subvolumes log root
2913 * in the tree of log roots
2914 */
2915static int update_log_root(struct btrfs_trans_handle *trans,
4203e968
JB
2916 struct btrfs_root *log,
2917 struct btrfs_root_item *root_item)
7237f183 2918{
0b246afa 2919 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2920 int ret;
2921
2922 if (log->log_transid == 1) {
2923 /* insert root item on the first sync */
0b246afa 2924 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
4203e968 2925 &log->root_key, root_item);
7237f183 2926 } else {
0b246afa 2927 ret = btrfs_update_root(trans, fs_info->log_root_tree,
4203e968 2928 &log->root_key, root_item);
7237f183
YZ
2929 }
2930 return ret;
2931}
2932
60d53eb3 2933static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2934{
2935 DEFINE_WAIT(wait);
7237f183 2936 int index = transid % 2;
e02119d5 2937
7237f183
YZ
2938 /*
2939 * we only allow two pending log transactions at a time,
2940 * so we know that if ours is more than 2 older than the
2941 * current transaction, we're done
2942 */
49e83f57 2943 for (;;) {
7237f183
YZ
2944 prepare_to_wait(&root->log_commit_wait[index],
2945 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2946
49e83f57
LB
2947 if (!(root->log_transid_committed < transid &&
2948 atomic_read(&root->log_commit[index])))
2949 break;
12fcfd22 2950
49e83f57
LB
2951 mutex_unlock(&root->log_mutex);
2952 schedule();
7237f183 2953 mutex_lock(&root->log_mutex);
49e83f57
LB
2954 }
2955 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2956}
2957
60d53eb3 2958static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2959{
2960 DEFINE_WAIT(wait);
8b050d35 2961
49e83f57
LB
2962 for (;;) {
2963 prepare_to_wait(&root->log_writer_wait, &wait,
2964 TASK_UNINTERRUPTIBLE);
2965 if (!atomic_read(&root->log_writers))
2966 break;
2967
7237f183 2968 mutex_unlock(&root->log_mutex);
49e83f57 2969 schedule();
575849ec 2970 mutex_lock(&root->log_mutex);
7237f183 2971 }
49e83f57 2972 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2973}
2974
8b050d35
MX
2975static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2976 struct btrfs_log_ctx *ctx)
2977{
2978 if (!ctx)
2979 return;
2980
2981 mutex_lock(&root->log_mutex);
2982 list_del_init(&ctx->list);
2983 mutex_unlock(&root->log_mutex);
2984}
2985
2986/*
2987 * Invoked in log mutex context, or be sure there is no other task which
2988 * can access the list.
2989 */
2990static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2991 int index, int error)
2992{
2993 struct btrfs_log_ctx *ctx;
570dd450 2994 struct btrfs_log_ctx *safe;
8b050d35 2995
570dd450
CM
2996 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2997 list_del_init(&ctx->list);
8b050d35 2998 ctx->log_ret = error;
570dd450 2999 }
8b050d35
MX
3000
3001 INIT_LIST_HEAD(&root->log_ctxs[index]);
3002}
3003
e02119d5
CM
3004/*
3005 * btrfs_sync_log does sends a given tree log down to the disk and
3006 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3007 * you know that any inodes previously logged are safely on disk only
3008 * if it returns 0.
3009 *
3010 * Any other return value means you need to call btrfs_commit_transaction.
3011 * Some of the edge cases for fsyncing directories that have had unlinks
3012 * or renames done in the past mean that sometimes the only safe
3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3014 * that has happened.
e02119d5
CM
3015 */
3016int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3017 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3018{
7237f183
YZ
3019 int index1;
3020 int index2;
8cef4e16 3021 int mark;
e02119d5 3022 int ret;
0b246afa 3023 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3024 struct btrfs_root *log = root->log_root;
0b246afa 3025 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
4203e968 3026 struct btrfs_root_item new_root_item;
bb14a59b 3027 int log_transid = 0;
8b050d35 3028 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3029 struct blk_plug plug;
e02119d5 3030
7237f183 3031 mutex_lock(&root->log_mutex);
d1433deb
MX
3032 log_transid = ctx->log_transid;
3033 if (root->log_transid_committed >= log_transid) {
3034 mutex_unlock(&root->log_mutex);
3035 return ctx->log_ret;
3036 }
3037
3038 index1 = log_transid % 2;
7237f183 3039 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3040 wait_log_commit(root, log_transid);
7237f183 3041 mutex_unlock(&root->log_mutex);
8b050d35 3042 return ctx->log_ret;
e02119d5 3043 }
d1433deb 3044 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3045 atomic_set(&root->log_commit[index1], 1);
3046
3047 /* wait for previous tree log sync to complete */
3048 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3049 wait_log_commit(root, log_transid - 1);
48cab2e0 3050
86df7eb9 3051 while (1) {
2ecb7923 3052 int batch = atomic_read(&root->log_batch);
cd354ad6 3053 /* when we're on an ssd, just kick the log commit out */
0b246afa 3054 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3056 mutex_unlock(&root->log_mutex);
3057 schedule_timeout_uninterruptible(1);
3058 mutex_lock(&root->log_mutex);
3059 }
60d53eb3 3060 wait_for_writer(root);
2ecb7923 3061 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3062 break;
3063 }
e02119d5 3064
12fcfd22 3065 /* bail out if we need to do a full commit */
4884b8e8 3066 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3067 ret = -EAGAIN;
3068 mutex_unlock(&root->log_mutex);
3069 goto out;
3070 }
3071
8cef4e16
YZ
3072 if (log_transid % 2 == 0)
3073 mark = EXTENT_DIRTY;
3074 else
3075 mark = EXTENT_NEW;
3076
690587d1
CM
3077 /* we start IO on all the marked extents here, but we don't actually
3078 * wait for them until later.
3079 */
c6adc9cc 3080 blk_start_plug(&plug);
2ff7e61e 3081 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 3082 if (ret) {
c6adc9cc 3083 blk_finish_plug(&plug);
66642832 3084 btrfs_abort_transaction(trans, ret);
90787766 3085 btrfs_set_log_full_commit(trans);
79787eaa
JM
3086 mutex_unlock(&root->log_mutex);
3087 goto out;
3088 }
7237f183 3089
4203e968
JB
3090 /*
3091 * We _must_ update under the root->log_mutex in order to make sure we
3092 * have a consistent view of the log root we are trying to commit at
3093 * this moment.
3094 *
3095 * We _must_ copy this into a local copy, because we are not holding the
3096 * log_root_tree->log_mutex yet. This is important because when we
3097 * commit the log_root_tree we must have a consistent view of the
3098 * log_root_tree when we update the super block to point at the
3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3100 * with the commit and possibly point at the new block which we may not
3101 * have written out.
3102 */
5d4f98a2 3103 btrfs_set_root_node(&log->root_item, log->node);
4203e968 3104 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
7237f183 3105
7237f183
YZ
3106 root->log_transid++;
3107 log->log_transid = root->log_transid;
ff782e0a 3108 root->log_start_pid = 0;
7237f183 3109 /*
8cef4e16
YZ
3110 * IO has been started, blocks of the log tree have WRITTEN flag set
3111 * in their headers. new modifications of the log will be written to
3112 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3113 */
3114 mutex_unlock(&root->log_mutex);
3115
28a23593 3116 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 3117
7237f183 3118 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 3119 atomic_inc(&log_root_tree->log_batch);
7237f183 3120 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
3121
3122 index2 = log_root_tree->log_transid % 2;
3123 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3124 root_log_ctx.log_transid = log_root_tree->log_transid;
3125
7237f183
YZ
3126 mutex_unlock(&log_root_tree->log_mutex);
3127
7237f183 3128 mutex_lock(&log_root_tree->log_mutex);
4203e968
JB
3129
3130 /*
3131 * Now we are safe to update the log_root_tree because we're under the
3132 * log_mutex, and we're a current writer so we're holding the commit
3133 * open until we drop the log_mutex.
3134 */
3135 ret = update_log_root(trans, log, &new_root_item);
3136
7237f183 3137 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
093258e6
DS
3138 /* atomic_dec_and_test implies a barrier */
3139 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
7237f183
YZ
3140 }
3141
4a500fd1 3142 if (ret) {
d1433deb
MX
3143 if (!list_empty(&root_log_ctx.list))
3144 list_del_init(&root_log_ctx.list);
3145
c6adc9cc 3146 blk_finish_plug(&plug);
90787766 3147 btrfs_set_log_full_commit(trans);
995946dd 3148
79787eaa 3149 if (ret != -ENOSPC) {
66642832 3150 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3151 mutex_unlock(&log_root_tree->log_mutex);
3152 goto out;
3153 }
bf89d38f 3154 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3155 mutex_unlock(&log_root_tree->log_mutex);
3156 ret = -EAGAIN;
3157 goto out;
3158 }
3159
d1433deb 3160 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3161 blk_finish_plug(&plug);
cbd60aa7 3162 list_del_init(&root_log_ctx.list);
d1433deb
MX
3163 mutex_unlock(&log_root_tree->log_mutex);
3164 ret = root_log_ctx.log_ret;
3165 goto out;
3166 }
8b050d35 3167
d1433deb 3168 index2 = root_log_ctx.log_transid % 2;
7237f183 3169 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3170 blk_finish_plug(&plug);
bf89d38f 3171 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3172 wait_log_commit(log_root_tree,
d1433deb 3173 root_log_ctx.log_transid);
7237f183 3174 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3175 if (!ret)
3176 ret = root_log_ctx.log_ret;
7237f183
YZ
3177 goto out;
3178 }
d1433deb 3179 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3180 atomic_set(&log_root_tree->log_commit[index2], 1);
3181
12fcfd22 3182 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3183 wait_log_commit(log_root_tree,
d1433deb 3184 root_log_ctx.log_transid - 1);
12fcfd22
CM
3185 }
3186
60d53eb3 3187 wait_for_writer(log_root_tree);
7237f183 3188
12fcfd22
CM
3189 /*
3190 * now that we've moved on to the tree of log tree roots,
3191 * check the full commit flag again
3192 */
4884b8e8 3193 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3194 blk_finish_plug(&plug);
bf89d38f 3195 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3196 mutex_unlock(&log_root_tree->log_mutex);
3197 ret = -EAGAIN;
3198 goto out_wake_log_root;
3199 }
7237f183 3200
2ff7e61e 3201 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3202 &log_root_tree->dirty_log_pages,
3203 EXTENT_DIRTY | EXTENT_NEW);
3204 blk_finish_plug(&plug);
79787eaa 3205 if (ret) {
90787766 3206 btrfs_set_log_full_commit(trans);
66642832 3207 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3208 mutex_unlock(&log_root_tree->log_mutex);
3209 goto out_wake_log_root;
3210 }
bf89d38f 3211 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3212 if (!ret)
bf89d38f
JM
3213 ret = btrfs_wait_tree_log_extents(log_root_tree,
3214 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3215 if (ret) {
90787766 3216 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3217 mutex_unlock(&log_root_tree->log_mutex);
3218 goto out_wake_log_root;
3219 }
e02119d5 3220
0b246afa
JM
3221 btrfs_set_super_log_root(fs_info->super_for_commit,
3222 log_root_tree->node->start);
3223 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3224 btrfs_header_level(log_root_tree->node));
e02119d5 3225
7237f183 3226 log_root_tree->log_transid++;
7237f183
YZ
3227 mutex_unlock(&log_root_tree->log_mutex);
3228
3229 /*
52042d8e 3230 * Nobody else is going to jump in and write the ctree
7237f183
YZ
3231 * super here because the log_commit atomic below is protecting
3232 * us. We must be called with a transaction handle pinning
3233 * the running transaction open, so a full commit can't hop
3234 * in and cause problems either.
3235 */
eece6a9c 3236 ret = write_all_supers(fs_info, 1);
5af3e8cc 3237 if (ret) {
90787766 3238 btrfs_set_log_full_commit(trans);
66642832 3239 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3240 goto out_wake_log_root;
3241 }
7237f183 3242
257c62e1
CM
3243 mutex_lock(&root->log_mutex);
3244 if (root->last_log_commit < log_transid)
3245 root->last_log_commit = log_transid;
3246 mutex_unlock(&root->log_mutex);
3247
12fcfd22 3248out_wake_log_root:
570dd450 3249 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3250 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3251
d1433deb 3252 log_root_tree->log_transid_committed++;
7237f183 3253 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3254 mutex_unlock(&log_root_tree->log_mutex);
3255
33a9eca7 3256 /*
093258e6
DS
3257 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3258 * all the updates above are seen by the woken threads. It might not be
3259 * necessary, but proving that seems to be hard.
33a9eca7 3260 */
093258e6 3261 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3262out:
d1433deb 3263 mutex_lock(&root->log_mutex);
570dd450 3264 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3265 root->log_transid_committed++;
7237f183 3266 atomic_set(&root->log_commit[index1], 0);
d1433deb 3267 mutex_unlock(&root->log_mutex);
8b050d35 3268
33a9eca7 3269 /*
093258e6
DS
3270 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3271 * all the updates above are seen by the woken threads. It might not be
3272 * necessary, but proving that seems to be hard.
33a9eca7 3273 */
093258e6 3274 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3275 return ret;
e02119d5
CM
3276}
3277
4a500fd1
YZ
3278static void free_log_tree(struct btrfs_trans_handle *trans,
3279 struct btrfs_root *log)
e02119d5
CM
3280{
3281 int ret;
e02119d5
CM
3282 struct walk_control wc = {
3283 .free = 1,
3284 .process_func = process_one_buffer
3285 };
3286
681ae509 3287 ret = walk_log_tree(trans, log, &wc);
374b0e2d
JM
3288 if (ret) {
3289 if (trans)
3290 btrfs_abort_transaction(trans, ret);
3291 else
3292 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3293 }
e02119d5 3294
59b0713a
FM
3295 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3296 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
00246528 3297 btrfs_put_root(log);
4a500fd1
YZ
3298}
3299
3300/*
3301 * free all the extents used by the tree log. This should be called
3302 * at commit time of the full transaction
3303 */
3304int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3305{
3306 if (root->log_root) {
3307 free_log_tree(trans, root->log_root);
3308 root->log_root = NULL;
3309 }
3310 return 0;
3311}
3312
3313int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3314 struct btrfs_fs_info *fs_info)
3315{
3316 if (fs_info->log_root_tree) {
3317 free_log_tree(trans, fs_info->log_root_tree);
3318 fs_info->log_root_tree = NULL;
3319 }
e02119d5
CM
3320 return 0;
3321}
3322
803f0f64
FM
3323/*
3324 * Check if an inode was logged in the current transaction. We can't always rely
3325 * on an inode's logged_trans value, because it's an in-memory only field and
3326 * therefore not persisted. This means that its value is lost if the inode gets
3327 * evicted and loaded again from disk (in which case it has a value of 0, and
3328 * certainly it is smaller then any possible transaction ID), when that happens
3329 * the full_sync flag is set in the inode's runtime flags, so on that case we
3330 * assume eviction happened and ignore the logged_trans value, assuming the
3331 * worst case, that the inode was logged before in the current transaction.
3332 */
3333static bool inode_logged(struct btrfs_trans_handle *trans,
3334 struct btrfs_inode *inode)
3335{
3336 if (inode->logged_trans == trans->transid)
3337 return true;
3338
3339 if (inode->last_trans == trans->transid &&
3340 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3341 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3342 return true;
3343
3344 return false;
3345}
3346
e02119d5
CM
3347/*
3348 * If both a file and directory are logged, and unlinks or renames are
3349 * mixed in, we have a few interesting corners:
3350 *
3351 * create file X in dir Y
3352 * link file X to X.link in dir Y
3353 * fsync file X
3354 * unlink file X but leave X.link
3355 * fsync dir Y
3356 *
3357 * After a crash we would expect only X.link to exist. But file X
3358 * didn't get fsync'd again so the log has back refs for X and X.link.
3359 *
3360 * We solve this by removing directory entries and inode backrefs from the
3361 * log when a file that was logged in the current transaction is
3362 * unlinked. Any later fsync will include the updated log entries, and
3363 * we'll be able to reconstruct the proper directory items from backrefs.
3364 *
3365 * This optimizations allows us to avoid relogging the entire inode
3366 * or the entire directory.
3367 */
3368int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3369 struct btrfs_root *root,
3370 const char *name, int name_len,
49f34d1f 3371 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3372{
3373 struct btrfs_root *log;
3374 struct btrfs_dir_item *di;
3375 struct btrfs_path *path;
3376 int ret;
4a500fd1 3377 int err = 0;
e02119d5 3378 int bytes_del = 0;
49f34d1f 3379 u64 dir_ino = btrfs_ino(dir);
e02119d5 3380
803f0f64 3381 if (!inode_logged(trans, dir))
3a5f1d45
CM
3382 return 0;
3383
e02119d5
CM
3384 ret = join_running_log_trans(root);
3385 if (ret)
3386 return 0;
3387
49f34d1f 3388 mutex_lock(&dir->log_mutex);
e02119d5
CM
3389
3390 log = root->log_root;
3391 path = btrfs_alloc_path();
a62f44a5
TI
3392 if (!path) {
3393 err = -ENOMEM;
3394 goto out_unlock;
3395 }
2a29edc6 3396
33345d01 3397 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3398 name, name_len, -1);
4a500fd1
YZ
3399 if (IS_ERR(di)) {
3400 err = PTR_ERR(di);
3401 goto fail;
3402 }
3403 if (di) {
e02119d5
CM
3404 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3405 bytes_del += name_len;
3650860b
JB
3406 if (ret) {
3407 err = ret;
3408 goto fail;
3409 }
e02119d5 3410 }
b3b4aa74 3411 btrfs_release_path(path);
33345d01 3412 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3413 index, name, name_len, -1);
4a500fd1
YZ
3414 if (IS_ERR(di)) {
3415 err = PTR_ERR(di);
3416 goto fail;
3417 }
3418 if (di) {
e02119d5
CM
3419 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3420 bytes_del += name_len;
3650860b
JB
3421 if (ret) {
3422 err = ret;
3423 goto fail;
3424 }
e02119d5
CM
3425 }
3426
3427 /* update the directory size in the log to reflect the names
3428 * we have removed
3429 */
3430 if (bytes_del) {
3431 struct btrfs_key key;
3432
33345d01 3433 key.objectid = dir_ino;
e02119d5
CM
3434 key.offset = 0;
3435 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3436 btrfs_release_path(path);
e02119d5
CM
3437
3438 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3439 if (ret < 0) {
3440 err = ret;
3441 goto fail;
3442 }
e02119d5
CM
3443 if (ret == 0) {
3444 struct btrfs_inode_item *item;
3445 u64 i_size;
3446
3447 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3448 struct btrfs_inode_item);
3449 i_size = btrfs_inode_size(path->nodes[0], item);
3450 if (i_size > bytes_del)
3451 i_size -= bytes_del;
3452 else
3453 i_size = 0;
3454 btrfs_set_inode_size(path->nodes[0], item, i_size);
3455 btrfs_mark_buffer_dirty(path->nodes[0]);
3456 } else
3457 ret = 0;
b3b4aa74 3458 btrfs_release_path(path);
e02119d5 3459 }
4a500fd1 3460fail:
e02119d5 3461 btrfs_free_path(path);
a62f44a5 3462out_unlock:
49f34d1f 3463 mutex_unlock(&dir->log_mutex);
4a500fd1 3464 if (ret == -ENOSPC) {
90787766 3465 btrfs_set_log_full_commit(trans);
4a500fd1 3466 ret = 0;
79787eaa 3467 } else if (ret < 0)
66642832 3468 btrfs_abort_transaction(trans, ret);
79787eaa 3469
12fcfd22 3470 btrfs_end_log_trans(root);
e02119d5 3471
411fc6bc 3472 return err;
e02119d5
CM
3473}
3474
3475/* see comments for btrfs_del_dir_entries_in_log */
3476int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3477 struct btrfs_root *root,
3478 const char *name, int name_len,
a491abb2 3479 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3480{
3481 struct btrfs_root *log;
3482 u64 index;
3483 int ret;
3484
803f0f64 3485 if (!inode_logged(trans, inode))
3a5f1d45
CM
3486 return 0;
3487
e02119d5
CM
3488 ret = join_running_log_trans(root);
3489 if (ret)
3490 return 0;
3491 log = root->log_root;
a491abb2 3492 mutex_lock(&inode->log_mutex);
e02119d5 3493
a491abb2 3494 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3495 dirid, &index);
a491abb2 3496 mutex_unlock(&inode->log_mutex);
4a500fd1 3497 if (ret == -ENOSPC) {
90787766 3498 btrfs_set_log_full_commit(trans);
4a500fd1 3499 ret = 0;
79787eaa 3500 } else if (ret < 0 && ret != -ENOENT)
66642832 3501 btrfs_abort_transaction(trans, ret);
12fcfd22 3502 btrfs_end_log_trans(root);
e02119d5 3503
e02119d5
CM
3504 return ret;
3505}
3506
3507/*
3508 * creates a range item in the log for 'dirid'. first_offset and
3509 * last_offset tell us which parts of the key space the log should
3510 * be considered authoritative for.
3511 */
3512static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3513 struct btrfs_root *log,
3514 struct btrfs_path *path,
3515 int key_type, u64 dirid,
3516 u64 first_offset, u64 last_offset)
3517{
3518 int ret;
3519 struct btrfs_key key;
3520 struct btrfs_dir_log_item *item;
3521
3522 key.objectid = dirid;
3523 key.offset = first_offset;
3524 if (key_type == BTRFS_DIR_ITEM_KEY)
3525 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3526 else
3527 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3528 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3529 if (ret)
3530 return ret;
e02119d5
CM
3531
3532 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3533 struct btrfs_dir_log_item);
3534 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3535 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3536 btrfs_release_path(path);
e02119d5
CM
3537 return 0;
3538}
3539
3540/*
3541 * log all the items included in the current transaction for a given
3542 * directory. This also creates the range items in the log tree required
3543 * to replay anything deleted before the fsync
3544 */
3545static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3546 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3547 struct btrfs_path *path,
3548 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3549 struct btrfs_log_ctx *ctx,
e02119d5
CM
3550 u64 min_offset, u64 *last_offset_ret)
3551{
3552 struct btrfs_key min_key;
e02119d5
CM
3553 struct btrfs_root *log = root->log_root;
3554 struct extent_buffer *src;
4a500fd1 3555 int err = 0;
e02119d5
CM
3556 int ret;
3557 int i;
3558 int nritems;
3559 u64 first_offset = min_offset;
3560 u64 last_offset = (u64)-1;
684a5773 3561 u64 ino = btrfs_ino(inode);
e02119d5
CM
3562
3563 log = root->log_root;
e02119d5 3564
33345d01 3565 min_key.objectid = ino;
e02119d5
CM
3566 min_key.type = key_type;
3567 min_key.offset = min_offset;
3568
6174d3cb 3569 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3570
3571 /*
3572 * we didn't find anything from this transaction, see if there
3573 * is anything at all
3574 */
33345d01
LZ
3575 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3576 min_key.objectid = ino;
e02119d5
CM
3577 min_key.type = key_type;
3578 min_key.offset = (u64)-1;
b3b4aa74 3579 btrfs_release_path(path);
e02119d5
CM
3580 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3581 if (ret < 0) {
b3b4aa74 3582 btrfs_release_path(path);
e02119d5
CM
3583 return ret;
3584 }
33345d01 3585 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3586
3587 /* if ret == 0 there are items for this type,
3588 * create a range to tell us the last key of this type.
3589 * otherwise, there are no items in this directory after
3590 * *min_offset, and we create a range to indicate that.
3591 */
3592 if (ret == 0) {
3593 struct btrfs_key tmp;
3594 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3595 path->slots[0]);
d397712b 3596 if (key_type == tmp.type)
e02119d5 3597 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3598 }
3599 goto done;
3600 }
3601
3602 /* go backward to find any previous key */
33345d01 3603 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3604 if (ret == 0) {
3605 struct btrfs_key tmp;
3606 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3607 if (key_type == tmp.type) {
3608 first_offset = tmp.offset;
3609 ret = overwrite_item(trans, log, dst_path,
3610 path->nodes[0], path->slots[0],
3611 &tmp);
4a500fd1
YZ
3612 if (ret) {
3613 err = ret;
3614 goto done;
3615 }
e02119d5
CM
3616 }
3617 }
b3b4aa74 3618 btrfs_release_path(path);
e02119d5 3619
2cc83342
JB
3620 /*
3621 * Find the first key from this transaction again. See the note for
3622 * log_new_dir_dentries, if we're logging a directory recursively we
3623 * won't be holding its i_mutex, which means we can modify the directory
3624 * while we're logging it. If we remove an entry between our first
3625 * search and this search we'll not find the key again and can just
3626 * bail.
3627 */
e02119d5 3628 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3629 if (ret != 0)
e02119d5 3630 goto done;
e02119d5
CM
3631
3632 /*
3633 * we have a block from this transaction, log every item in it
3634 * from our directory
3635 */
d397712b 3636 while (1) {
e02119d5
CM
3637 struct btrfs_key tmp;
3638 src = path->nodes[0];
3639 nritems = btrfs_header_nritems(src);
3640 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3641 struct btrfs_dir_item *di;
3642
e02119d5
CM
3643 btrfs_item_key_to_cpu(src, &min_key, i);
3644
33345d01 3645 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3646 goto done;
3647 ret = overwrite_item(trans, log, dst_path, src, i,
3648 &min_key);
4a500fd1
YZ
3649 if (ret) {
3650 err = ret;
3651 goto done;
3652 }
2f2ff0ee
FM
3653
3654 /*
3655 * We must make sure that when we log a directory entry,
3656 * the corresponding inode, after log replay, has a
3657 * matching link count. For example:
3658 *
3659 * touch foo
3660 * mkdir mydir
3661 * sync
3662 * ln foo mydir/bar
3663 * xfs_io -c "fsync" mydir
3664 * <crash>
3665 * <mount fs and log replay>
3666 *
3667 * Would result in a fsync log that when replayed, our
3668 * file inode would have a link count of 1, but we get
3669 * two directory entries pointing to the same inode.
3670 * After removing one of the names, it would not be
3671 * possible to remove the other name, which resulted
3672 * always in stale file handle errors, and would not
3673 * be possible to rmdir the parent directory, since
3674 * its i_size could never decrement to the value
3675 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3676 */
3677 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3678 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3679 if (ctx &&
3680 (btrfs_dir_transid(src, di) == trans->transid ||
3681 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3682 tmp.type != BTRFS_ROOT_ITEM_KEY)
3683 ctx->log_new_dentries = true;
e02119d5
CM
3684 }
3685 path->slots[0] = nritems;
3686
3687 /*
3688 * look ahead to the next item and see if it is also
3689 * from this directory and from this transaction
3690 */
3691 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3692 if (ret) {
3693 if (ret == 1)
3694 last_offset = (u64)-1;
3695 else
3696 err = ret;
e02119d5
CM
3697 goto done;
3698 }
3699 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3700 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3701 last_offset = (u64)-1;
3702 goto done;
3703 }
3704 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3705 ret = overwrite_item(trans, log, dst_path,
3706 path->nodes[0], path->slots[0],
3707 &tmp);
4a500fd1
YZ
3708 if (ret)
3709 err = ret;
3710 else
3711 last_offset = tmp.offset;
e02119d5
CM
3712 goto done;
3713 }
3714 }
3715done:
b3b4aa74
DS
3716 btrfs_release_path(path);
3717 btrfs_release_path(dst_path);
e02119d5 3718
4a500fd1
YZ
3719 if (err == 0) {
3720 *last_offset_ret = last_offset;
3721 /*
3722 * insert the log range keys to indicate where the log
3723 * is valid
3724 */
3725 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3726 ino, first_offset, last_offset);
4a500fd1
YZ
3727 if (ret)
3728 err = ret;
3729 }
3730 return err;
e02119d5
CM
3731}
3732
3733/*
3734 * logging directories is very similar to logging inodes, We find all the items
3735 * from the current transaction and write them to the log.
3736 *
3737 * The recovery code scans the directory in the subvolume, and if it finds a
3738 * key in the range logged that is not present in the log tree, then it means
3739 * that dir entry was unlinked during the transaction.
3740 *
3741 * In order for that scan to work, we must include one key smaller than
3742 * the smallest logged by this transaction and one key larger than the largest
3743 * key logged by this transaction.
3744 */
3745static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3746 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3747 struct btrfs_path *path,
2f2ff0ee
FM
3748 struct btrfs_path *dst_path,
3749 struct btrfs_log_ctx *ctx)
e02119d5
CM
3750{
3751 u64 min_key;
3752 u64 max_key;
3753 int ret;
3754 int key_type = BTRFS_DIR_ITEM_KEY;
3755
3756again:
3757 min_key = 0;
3758 max_key = 0;
d397712b 3759 while (1) {
dbf39ea4
NB
3760 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3761 ctx, min_key, &max_key);
4a500fd1
YZ
3762 if (ret)
3763 return ret;
e02119d5
CM
3764 if (max_key == (u64)-1)
3765 break;
3766 min_key = max_key + 1;
3767 }
3768
3769 if (key_type == BTRFS_DIR_ITEM_KEY) {
3770 key_type = BTRFS_DIR_INDEX_KEY;
3771 goto again;
3772 }
3773 return 0;
3774}
3775
3776/*
3777 * a helper function to drop items from the log before we relog an
3778 * inode. max_key_type indicates the highest item type to remove.
3779 * This cannot be run for file data extents because it does not
3780 * free the extents they point to.
3781 */
3782static int drop_objectid_items(struct btrfs_trans_handle *trans,
3783 struct btrfs_root *log,
3784 struct btrfs_path *path,
3785 u64 objectid, int max_key_type)
3786{
3787 int ret;
3788 struct btrfs_key key;
3789 struct btrfs_key found_key;
18ec90d6 3790 int start_slot;
e02119d5
CM
3791
3792 key.objectid = objectid;
3793 key.type = max_key_type;
3794 key.offset = (u64)-1;
3795
d397712b 3796 while (1) {
e02119d5 3797 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3798 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3799 if (ret < 0)
e02119d5
CM
3800 break;
3801
3802 if (path->slots[0] == 0)
3803 break;
3804
3805 path->slots[0]--;
3806 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3807 path->slots[0]);
3808
3809 if (found_key.objectid != objectid)
3810 break;
3811
18ec90d6
JB
3812 found_key.offset = 0;
3813 found_key.type = 0;
e3b83361 3814 ret = btrfs_bin_search(path->nodes[0], &found_key, &start_slot);
cbca7d59
FM
3815 if (ret < 0)
3816 break;
18ec90d6
JB
3817
3818 ret = btrfs_del_items(trans, log, path, start_slot,
3819 path->slots[0] - start_slot + 1);
3820 /*
3821 * If start slot isn't 0 then we don't need to re-search, we've
3822 * found the last guy with the objectid in this tree.
3823 */
3824 if (ret || start_slot != 0)
65a246c5 3825 break;
b3b4aa74 3826 btrfs_release_path(path);
e02119d5 3827 }
b3b4aa74 3828 btrfs_release_path(path);
5bdbeb21
JB
3829 if (ret > 0)
3830 ret = 0;
4a500fd1 3831 return ret;
e02119d5
CM
3832}
3833
94edf4ae
JB
3834static void fill_inode_item(struct btrfs_trans_handle *trans,
3835 struct extent_buffer *leaf,
3836 struct btrfs_inode_item *item,
1a4bcf47
FM
3837 struct inode *inode, int log_inode_only,
3838 u64 logged_isize)
94edf4ae 3839{
0b1c6cca
JB
3840 struct btrfs_map_token token;
3841
c82f823c 3842 btrfs_init_map_token(&token, leaf);
94edf4ae
JB
3843
3844 if (log_inode_only) {
3845 /* set the generation to zero so the recover code
3846 * can tell the difference between an logging
3847 * just to say 'this inode exists' and a logging
3848 * to say 'update this inode with these values'
3849 */
cc4c13d5
DS
3850 btrfs_set_token_inode_generation(&token, item, 0);
3851 btrfs_set_token_inode_size(&token, item, logged_isize);
94edf4ae 3852 } else {
cc4c13d5
DS
3853 btrfs_set_token_inode_generation(&token, item,
3854 BTRFS_I(inode)->generation);
3855 btrfs_set_token_inode_size(&token, item, inode->i_size);
0b1c6cca
JB
3856 }
3857
cc4c13d5
DS
3858 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3859 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3860 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3861 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3862
3863 btrfs_set_token_timespec_sec(&token, &item->atime,
3864 inode->i_atime.tv_sec);
3865 btrfs_set_token_timespec_nsec(&token, &item->atime,
3866 inode->i_atime.tv_nsec);
3867
3868 btrfs_set_token_timespec_sec(&token, &item->mtime,
3869 inode->i_mtime.tv_sec);
3870 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3871 inode->i_mtime.tv_nsec);
3872
3873 btrfs_set_token_timespec_sec(&token, &item->ctime,
3874 inode->i_ctime.tv_sec);
3875 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3876 inode->i_ctime.tv_nsec);
3877
3878 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3879
3880 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3881 btrfs_set_token_inode_transid(&token, item, trans->transid);
3882 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3883 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3884 btrfs_set_token_inode_block_group(&token, item, 0);
94edf4ae
JB
3885}
3886
a95249b3
JB
3887static int log_inode_item(struct btrfs_trans_handle *trans,
3888 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3889 struct btrfs_inode *inode)
a95249b3
JB
3890{
3891 struct btrfs_inode_item *inode_item;
a95249b3
JB
3892 int ret;
3893
efd0c405 3894 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3895 &inode->location, sizeof(*inode_item));
a95249b3
JB
3896 if (ret && ret != -EEXIST)
3897 return ret;
3898 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3899 struct btrfs_inode_item);
6d889a3b
NB
3900 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3901 0, 0);
a95249b3
JB
3902 btrfs_release_path(path);
3903 return 0;
3904}
3905
40e046ac
FM
3906static int log_csums(struct btrfs_trans_handle *trans,
3907 struct btrfs_root *log_root,
3908 struct btrfs_ordered_sum *sums)
3909{
3910 int ret;
3911
3912 /*
3913 * Due to extent cloning, we might have logged a csum item that covers a
3914 * subrange of a cloned extent, and later we can end up logging a csum
3915 * item for a larger subrange of the same extent or the entire range.
3916 * This would leave csum items in the log tree that cover the same range
3917 * and break the searches for checksums in the log tree, resulting in
3918 * some checksums missing in the fs/subvolume tree. So just delete (or
3919 * trim and adjust) any existing csum items in the log for this range.
3920 */
3921 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3922 if (ret)
3923 return ret;
3924
3925 return btrfs_csum_file_blocks(trans, log_root, sums);
3926}
3927
31ff1cd2 3928static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3929 struct btrfs_inode *inode,
31ff1cd2 3930 struct btrfs_path *dst_path,
0e56315c 3931 struct btrfs_path *src_path,
1a4bcf47
FM
3932 int start_slot, int nr, int inode_only,
3933 u64 logged_isize)
31ff1cd2 3934{
3ffbd68c 3935 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
3936 unsigned long src_offset;
3937 unsigned long dst_offset;
44d70e19 3938 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3939 struct btrfs_file_extent_item *extent;
3940 struct btrfs_inode_item *inode_item;
16e7549f 3941 struct extent_buffer *src = src_path->nodes[0];
31ff1cd2
CM
3942 int ret;
3943 struct btrfs_key *ins_keys;
3944 u32 *ins_sizes;
3945 char *ins_data;
3946 int i;
d20f7043 3947 struct list_head ordered_sums;
44d70e19 3948 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
d20f7043
CM
3949
3950 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3951
3952 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3953 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3954 if (!ins_data)
3955 return -ENOMEM;
3956
31ff1cd2
CM
3957 ins_sizes = (u32 *)ins_data;
3958 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3959
3960 for (i = 0; i < nr; i++) {
3961 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3962 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3963 }
3964 ret = btrfs_insert_empty_items(trans, log, dst_path,
3965 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3966 if (ret) {
3967 kfree(ins_data);
3968 return ret;
3969 }
31ff1cd2 3970
5d4f98a2 3971 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3972 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3973 dst_path->slots[0]);
3974
3975 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3976
94edf4ae 3977 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3978 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3979 dst_path->slots[0],
3980 struct btrfs_inode_item);
94edf4ae 3981 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3982 &inode->vfs_inode,
3983 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3984 logged_isize);
94edf4ae
JB
3985 } else {
3986 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3987 src_offset, ins_sizes[i]);
31ff1cd2 3988 }
94edf4ae 3989
31ff1cd2
CM
3990 /* take a reference on file data extents so that truncates
3991 * or deletes of this inode don't have to relog the inode
3992 * again
3993 */
962a298f 3994 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3995 !skip_csum) {
31ff1cd2
CM
3996 int found_type;
3997 extent = btrfs_item_ptr(src, start_slot + i,
3998 struct btrfs_file_extent_item);
3999
8e531cdf 4000 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4001 continue;
4002
31ff1cd2 4003 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4004 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4005 u64 ds, dl, cs, cl;
4006 ds = btrfs_file_extent_disk_bytenr(src,
4007 extent);
4008 /* ds == 0 is a hole */
4009 if (ds == 0)
4010 continue;
4011
4012 dl = btrfs_file_extent_disk_num_bytes(src,
4013 extent);
4014 cs = btrfs_file_extent_offset(src, extent);
4015 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4016 extent);
580afd76
CM
4017 if (btrfs_file_extent_compression(src,
4018 extent)) {
4019 cs = 0;
4020 cl = dl;
4021 }
5d4f98a2
YZ
4022
4023 ret = btrfs_lookup_csums_range(
0b246afa 4024 fs_info->csum_root,
5d4f98a2 4025 ds + cs, ds + cs + cl - 1,
a2de733c 4026 &ordered_sums, 0);
3650860b
JB
4027 if (ret) {
4028 btrfs_release_path(dst_path);
4029 kfree(ins_data);
4030 return ret;
4031 }
31ff1cd2
CM
4032 }
4033 }
31ff1cd2
CM
4034 }
4035
4036 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4037 btrfs_release_path(dst_path);
31ff1cd2 4038 kfree(ins_data);
d20f7043
CM
4039
4040 /*
4041 * we have to do this after the loop above to avoid changing the
4042 * log tree while trying to change the log tree.
4043 */
4a500fd1 4044 ret = 0;
d397712b 4045 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4046 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4047 struct btrfs_ordered_sum,
4048 list);
4a500fd1 4049 if (!ret)
40e046ac 4050 ret = log_csums(trans, log, sums);
d20f7043
CM
4051 list_del(&sums->list);
4052 kfree(sums);
4053 }
16e7549f 4054
4a500fd1 4055 return ret;
31ff1cd2
CM
4056}
4057
5dc562c5
JB
4058static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4059{
4060 struct extent_map *em1, *em2;
4061
4062 em1 = list_entry(a, struct extent_map, list);
4063 em2 = list_entry(b, struct extent_map, list);
4064
4065 if (em1->start < em2->start)
4066 return -1;
4067 else if (em1->start > em2->start)
4068 return 1;
4069 return 0;
4070}
4071
e7175a69
JB
4072static int log_extent_csums(struct btrfs_trans_handle *trans,
4073 struct btrfs_inode *inode,
a9ecb653 4074 struct btrfs_root *log_root,
e7175a69 4075 const struct extent_map *em)
5dc562c5 4076{
2ab28f32
JB
4077 u64 csum_offset;
4078 u64 csum_len;
8407f553
FM
4079 LIST_HEAD(ordered_sums);
4080 int ret = 0;
0aa4a17d 4081
e7175a69
JB
4082 if (inode->flags & BTRFS_INODE_NODATASUM ||
4083 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4084 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4085 return 0;
5dc562c5 4086
e7175a69 4087 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4088 if (em->compress_type) {
4089 csum_offset = 0;
8407f553 4090 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4091 } else {
e7175a69
JB
4092 csum_offset = em->mod_start - em->start;
4093 csum_len = em->mod_len;
488111aa 4094 }
2ab28f32 4095
70c8a91c 4096 /* block start is already adjusted for the file extent offset. */
a9ecb653 4097 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4098 em->block_start + csum_offset,
4099 em->block_start + csum_offset +
4100 csum_len - 1, &ordered_sums, 0);
4101 if (ret)
4102 return ret;
5dc562c5 4103
70c8a91c
JB
4104 while (!list_empty(&ordered_sums)) {
4105 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4106 struct btrfs_ordered_sum,
4107 list);
4108 if (!ret)
40e046ac 4109 ret = log_csums(trans, log_root, sums);
70c8a91c
JB
4110 list_del(&sums->list);
4111 kfree(sums);
5dc562c5
JB
4112 }
4113
70c8a91c 4114 return ret;
5dc562c5
JB
4115}
4116
8407f553 4117static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4118 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4119 const struct extent_map *em,
4120 struct btrfs_path *path,
8407f553
FM
4121 struct btrfs_log_ctx *ctx)
4122{
4123 struct btrfs_root *log = root->log_root;
4124 struct btrfs_file_extent_item *fi;
4125 struct extent_buffer *leaf;
4126 struct btrfs_map_token token;
4127 struct btrfs_key key;
4128 u64 extent_offset = em->start - em->orig_start;
4129 u64 block_len;
4130 int ret;
4131 int extent_inserted = 0;
8407f553 4132
a9ecb653 4133 ret = log_extent_csums(trans, inode, log, em);
8407f553
FM
4134 if (ret)
4135 return ret;
4136
9d122629 4137 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4138 em->start + em->len, NULL, 0, 1,
4139 sizeof(*fi), &extent_inserted);
4140 if (ret)
4141 return ret;
4142
4143 if (!extent_inserted) {
9d122629 4144 key.objectid = btrfs_ino(inode);
8407f553
FM
4145 key.type = BTRFS_EXTENT_DATA_KEY;
4146 key.offset = em->start;
4147
4148 ret = btrfs_insert_empty_item(trans, log, path, &key,
4149 sizeof(*fi));
4150 if (ret)
4151 return ret;
4152 }
4153 leaf = path->nodes[0];
c82f823c 4154 btrfs_init_map_token(&token, leaf);
8407f553
FM
4155 fi = btrfs_item_ptr(leaf, path->slots[0],
4156 struct btrfs_file_extent_item);
4157
cc4c13d5 4158 btrfs_set_token_file_extent_generation(&token, fi, trans->transid);
8407f553 4159 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
cc4c13d5
DS
4160 btrfs_set_token_file_extent_type(&token, fi,
4161 BTRFS_FILE_EXTENT_PREALLOC);
8407f553 4162 else
cc4c13d5
DS
4163 btrfs_set_token_file_extent_type(&token, fi,
4164 BTRFS_FILE_EXTENT_REG);
8407f553
FM
4165
4166 block_len = max(em->block_len, em->orig_block_len);
4167 if (em->compress_type != BTRFS_COMPRESS_NONE) {
cc4c13d5
DS
4168 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
4169 em->block_start);
4170 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4171 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
cc4c13d5 4172 btrfs_set_token_file_extent_disk_bytenr(&token, fi,
8407f553 4173 em->block_start -
cc4c13d5
DS
4174 extent_offset);
4175 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, block_len);
8407f553 4176 } else {
cc4c13d5
DS
4177 btrfs_set_token_file_extent_disk_bytenr(&token, fi, 0);
4178 btrfs_set_token_file_extent_disk_num_bytes(&token, fi, 0);
8407f553
FM
4179 }
4180
cc4c13d5
DS
4181 btrfs_set_token_file_extent_offset(&token, fi, extent_offset);
4182 btrfs_set_token_file_extent_num_bytes(&token, fi, em->len);
4183 btrfs_set_token_file_extent_ram_bytes(&token, fi, em->ram_bytes);
4184 btrfs_set_token_file_extent_compression(&token, fi, em->compress_type);
4185 btrfs_set_token_file_extent_encryption(&token, fi, 0);
4186 btrfs_set_token_file_extent_other_encoding(&token, fi, 0);
8407f553
FM
4187 btrfs_mark_buffer_dirty(leaf);
4188
4189 btrfs_release_path(path);
4190
4191 return ret;
4192}
4193
31d11b83
FM
4194/*
4195 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4196 * lose them after doing a fast fsync and replaying the log. We scan the
4197 * subvolume's root instead of iterating the inode's extent map tree because
4198 * otherwise we can log incorrect extent items based on extent map conversion.
4199 * That can happen due to the fact that extent maps are merged when they
4200 * are not in the extent map tree's list of modified extents.
4201 */
4202static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4203 struct btrfs_inode *inode,
4204 struct btrfs_path *path)
4205{
4206 struct btrfs_root *root = inode->root;
4207 struct btrfs_key key;
4208 const u64 i_size = i_size_read(&inode->vfs_inode);
4209 const u64 ino = btrfs_ino(inode);
4210 struct btrfs_path *dst_path = NULL;
0e56315c 4211 bool dropped_extents = false;
f135cea3
FM
4212 u64 truncate_offset = i_size;
4213 struct extent_buffer *leaf;
4214 int slot;
31d11b83
FM
4215 int ins_nr = 0;
4216 int start_slot;
4217 int ret;
4218
4219 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4220 return 0;
4221
4222 key.objectid = ino;
4223 key.type = BTRFS_EXTENT_DATA_KEY;
4224 key.offset = i_size;
4225 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4226 if (ret < 0)
4227 goto out;
4228
f135cea3
FM
4229 /*
4230 * We must check if there is a prealloc extent that starts before the
4231 * i_size and crosses the i_size boundary. This is to ensure later we
4232 * truncate down to the end of that extent and not to the i_size, as
4233 * otherwise we end up losing part of the prealloc extent after a log
4234 * replay and with an implicit hole if there is another prealloc extent
4235 * that starts at an offset beyond i_size.
4236 */
4237 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4238 if (ret < 0)
4239 goto out;
4240
4241 if (ret == 0) {
4242 struct btrfs_file_extent_item *ei;
4243
4244 leaf = path->nodes[0];
4245 slot = path->slots[0];
4246 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4247
4248 if (btrfs_file_extent_type(leaf, ei) ==
4249 BTRFS_FILE_EXTENT_PREALLOC) {
4250 u64 extent_end;
4251
4252 btrfs_item_key_to_cpu(leaf, &key, slot);
4253 extent_end = key.offset +
4254 btrfs_file_extent_num_bytes(leaf, ei);
4255
4256 if (extent_end > i_size)
4257 truncate_offset = extent_end;
4258 }
4259 } else {
4260 ret = 0;
4261 }
4262
31d11b83 4263 while (true) {
f135cea3
FM
4264 leaf = path->nodes[0];
4265 slot = path->slots[0];
31d11b83
FM
4266
4267 if (slot >= btrfs_header_nritems(leaf)) {
4268 if (ins_nr > 0) {
4269 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4270 start_slot, ins_nr, 1, 0);
31d11b83
FM
4271 if (ret < 0)
4272 goto out;
4273 ins_nr = 0;
4274 }
4275 ret = btrfs_next_leaf(root, path);
4276 if (ret < 0)
4277 goto out;
4278 if (ret > 0) {
4279 ret = 0;
4280 break;
4281 }
4282 continue;
4283 }
4284
4285 btrfs_item_key_to_cpu(leaf, &key, slot);
4286 if (key.objectid > ino)
4287 break;
4288 if (WARN_ON_ONCE(key.objectid < ino) ||
4289 key.type < BTRFS_EXTENT_DATA_KEY ||
4290 key.offset < i_size) {
4291 path->slots[0]++;
4292 continue;
4293 }
0e56315c 4294 if (!dropped_extents) {
31d11b83
FM
4295 /*
4296 * Avoid logging extent items logged in past fsync calls
4297 * and leading to duplicate keys in the log tree.
4298 */
4299 do {
4300 ret = btrfs_truncate_inode_items(trans,
4301 root->log_root,
4302 &inode->vfs_inode,
f135cea3 4303 truncate_offset,
31d11b83
FM
4304 BTRFS_EXTENT_DATA_KEY);
4305 } while (ret == -EAGAIN);
4306 if (ret)
4307 goto out;
0e56315c 4308 dropped_extents = true;
31d11b83
FM
4309 }
4310 if (ins_nr == 0)
4311 start_slot = slot;
4312 ins_nr++;
4313 path->slots[0]++;
4314 if (!dst_path) {
4315 dst_path = btrfs_alloc_path();
4316 if (!dst_path) {
4317 ret = -ENOMEM;
4318 goto out;
4319 }
4320 }
4321 }
0bc2d3c0 4322 if (ins_nr > 0)
0e56315c 4323 ret = copy_items(trans, inode, dst_path, path,
31d11b83 4324 start_slot, ins_nr, 1, 0);
31d11b83
FM
4325out:
4326 btrfs_release_path(path);
4327 btrfs_free_path(dst_path);
4328 return ret;
4329}
4330
5dc562c5
JB
4331static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4332 struct btrfs_root *root,
9d122629 4333 struct btrfs_inode *inode,
827463c4 4334 struct btrfs_path *path,
de0ee0ed
FM
4335 struct btrfs_log_ctx *ctx,
4336 const u64 start,
4337 const u64 end)
5dc562c5 4338{
5dc562c5
JB
4339 struct extent_map *em, *n;
4340 struct list_head extents;
9d122629 4341 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4342 u64 test_gen;
4343 int ret = 0;
2ab28f32 4344 int num = 0;
5dc562c5
JB
4345
4346 INIT_LIST_HEAD(&extents);
4347
5dc562c5
JB
4348 write_lock(&tree->lock);
4349 test_gen = root->fs_info->last_trans_committed;
4350
4351 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
008c6753
FM
4352 /*
4353 * Skip extents outside our logging range. It's important to do
4354 * it for correctness because if we don't ignore them, we may
4355 * log them before their ordered extent completes, and therefore
4356 * we could log them without logging their respective checksums
4357 * (the checksum items are added to the csum tree at the very
4358 * end of btrfs_finish_ordered_io()). Also leave such extents
4359 * outside of our range in the list, since we may have another
4360 * ranged fsync in the near future that needs them. If an extent
4361 * outside our range corresponds to a hole, log it to avoid
4362 * leaving gaps between extents (fsck will complain when we are
4363 * not using the NO_HOLES feature).
4364 */
4365 if ((em->start > end || em->start + em->len <= start) &&
4366 em->block_start != EXTENT_MAP_HOLE)
4367 continue;
4368
5dc562c5 4369 list_del_init(&em->list);
2ab28f32
JB
4370 /*
4371 * Just an arbitrary number, this can be really CPU intensive
4372 * once we start getting a lot of extents, and really once we
4373 * have a bunch of extents we just want to commit since it will
4374 * be faster.
4375 */
4376 if (++num > 32768) {
4377 list_del_init(&tree->modified_extents);
4378 ret = -EFBIG;
4379 goto process;
4380 }
4381
5dc562c5
JB
4382 if (em->generation <= test_gen)
4383 continue;
8c6c5928 4384
31d11b83
FM
4385 /* We log prealloc extents beyond eof later. */
4386 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4387 em->start >= i_size_read(&inode->vfs_inode))
4388 continue;
4389
ff44c6e3 4390 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4391 refcount_inc(&em->refs);
ff44c6e3 4392 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4393 list_add_tail(&em->list, &extents);
2ab28f32 4394 num++;
5dc562c5
JB
4395 }
4396
4397 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4398process:
5dc562c5
JB
4399 while (!list_empty(&extents)) {
4400 em = list_entry(extents.next, struct extent_map, list);
4401
4402 list_del_init(&em->list);
4403
4404 /*
4405 * If we had an error we just need to delete everybody from our
4406 * private list.
4407 */
ff44c6e3 4408 if (ret) {
201a9038 4409 clear_em_logging(tree, em);
ff44c6e3 4410 free_extent_map(em);
5dc562c5 4411 continue;
ff44c6e3
JB
4412 }
4413
4414 write_unlock(&tree->lock);
5dc562c5 4415
a2120a47 4416 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4417 write_lock(&tree->lock);
201a9038
JB
4418 clear_em_logging(tree, em);
4419 free_extent_map(em);
5dc562c5 4420 }
ff44c6e3
JB
4421 WARN_ON(!list_empty(&extents));
4422 write_unlock(&tree->lock);
5dc562c5 4423
5dc562c5 4424 btrfs_release_path(path);
31d11b83
FM
4425 if (!ret)
4426 ret = btrfs_log_prealloc_extents(trans, inode, path);
4427
5dc562c5
JB
4428 return ret;
4429}
4430
481b01c0 4431static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4432 struct btrfs_path *path, u64 *size_ret)
4433{
4434 struct btrfs_key key;
4435 int ret;
4436
481b01c0 4437 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4438 key.type = BTRFS_INODE_ITEM_KEY;
4439 key.offset = 0;
4440
4441 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4442 if (ret < 0) {
4443 return ret;
4444 } else if (ret > 0) {
2f2ff0ee 4445 *size_ret = 0;
1a4bcf47
FM
4446 } else {
4447 struct btrfs_inode_item *item;
4448
4449 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4450 struct btrfs_inode_item);
4451 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4452 /*
4453 * If the in-memory inode's i_size is smaller then the inode
4454 * size stored in the btree, return the inode's i_size, so
4455 * that we get a correct inode size after replaying the log
4456 * when before a power failure we had a shrinking truncate
4457 * followed by addition of a new name (rename / new hard link).
4458 * Otherwise return the inode size from the btree, to avoid
4459 * data loss when replaying a log due to previously doing a
4460 * write that expands the inode's size and logging a new name
4461 * immediately after.
4462 */
4463 if (*size_ret > inode->vfs_inode.i_size)
4464 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4465 }
4466
4467 btrfs_release_path(path);
4468 return 0;
4469}
4470
36283bf7
FM
4471/*
4472 * At the moment we always log all xattrs. This is to figure out at log replay
4473 * time which xattrs must have their deletion replayed. If a xattr is missing
4474 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4475 * because if a xattr is deleted, the inode is fsynced and a power failure
4476 * happens, causing the log to be replayed the next time the fs is mounted,
4477 * we want the xattr to not exist anymore (same behaviour as other filesystems
4478 * with a journal, ext3/4, xfs, f2fs, etc).
4479 */
4480static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4481 struct btrfs_root *root,
1a93c36a 4482 struct btrfs_inode *inode,
36283bf7
FM
4483 struct btrfs_path *path,
4484 struct btrfs_path *dst_path)
4485{
4486 int ret;
4487 struct btrfs_key key;
1a93c36a 4488 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4489 int ins_nr = 0;
4490 int start_slot = 0;
4491
4492 key.objectid = ino;
4493 key.type = BTRFS_XATTR_ITEM_KEY;
4494 key.offset = 0;
4495
4496 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4497 if (ret < 0)
4498 return ret;
4499
4500 while (true) {
4501 int slot = path->slots[0];
4502 struct extent_buffer *leaf = path->nodes[0];
4503 int nritems = btrfs_header_nritems(leaf);
4504
4505 if (slot >= nritems) {
4506 if (ins_nr > 0) {
1a93c36a 4507 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4508 start_slot, ins_nr, 1, 0);
36283bf7
FM
4509 if (ret < 0)
4510 return ret;
4511 ins_nr = 0;
4512 }
4513 ret = btrfs_next_leaf(root, path);
4514 if (ret < 0)
4515 return ret;
4516 else if (ret > 0)
4517 break;
4518 continue;
4519 }
4520
4521 btrfs_item_key_to_cpu(leaf, &key, slot);
4522 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4523 break;
4524
4525 if (ins_nr == 0)
4526 start_slot = slot;
4527 ins_nr++;
4528 path->slots[0]++;
4529 cond_resched();
4530 }
4531 if (ins_nr > 0) {
1a93c36a 4532 ret = copy_items(trans, inode, dst_path, path,
0e56315c 4533 start_slot, ins_nr, 1, 0);
36283bf7
FM
4534 if (ret < 0)
4535 return ret;
4536 }
4537
4538 return 0;
4539}
4540
a89ca6f2 4541/*
0e56315c
FM
4542 * When using the NO_HOLES feature if we punched a hole that causes the
4543 * deletion of entire leafs or all the extent items of the first leaf (the one
4544 * that contains the inode item and references) we may end up not processing
4545 * any extents, because there are no leafs with a generation matching the
4546 * current transaction that have extent items for our inode. So we need to find
4547 * if any holes exist and then log them. We also need to log holes after any
4548 * truncate operation that changes the inode's size.
a89ca6f2 4549 */
0e56315c
FM
4550static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4551 struct btrfs_root *root,
4552 struct btrfs_inode *inode,
7af59743 4553 struct btrfs_path *path)
a89ca6f2 4554{
0b246afa 4555 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2 4556 struct btrfs_key key;
a0308dd7
NB
4557 const u64 ino = btrfs_ino(inode);
4558 const u64 i_size = i_size_read(&inode->vfs_inode);
7af59743 4559 u64 prev_extent_end = 0;
0e56315c 4560 int ret;
a89ca6f2 4561
0e56315c 4562 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
a89ca6f2
FM
4563 return 0;
4564
4565 key.objectid = ino;
4566 key.type = BTRFS_EXTENT_DATA_KEY;
7af59743 4567 key.offset = 0;
a89ca6f2
FM
4568
4569 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
a89ca6f2
FM
4570 if (ret < 0)
4571 return ret;
4572
0e56315c 4573 while (true) {
0e56315c 4574 struct extent_buffer *leaf = path->nodes[0];
a89ca6f2 4575
0e56315c
FM
4576 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4577 ret = btrfs_next_leaf(root, path);
4578 if (ret < 0)
4579 return ret;
4580 if (ret > 0) {
4581 ret = 0;
4582 break;
4583 }
4584 leaf = path->nodes[0];
4585 }
4586
4587 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4588 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4589 break;
4590
4591 /* We have a hole, log it. */
4592 if (prev_extent_end < key.offset) {
7af59743 4593 const u64 hole_len = key.offset - prev_extent_end;
0e56315c
FM
4594
4595 /*
4596 * Release the path to avoid deadlocks with other code
4597 * paths that search the root while holding locks on
4598 * leafs from the log root.
4599 */
4600 btrfs_release_path(path);
4601 ret = btrfs_insert_file_extent(trans, root->log_root,
4602 ino, prev_extent_end, 0,
4603 0, hole_len, 0, hole_len,
4604 0, 0, 0);
4605 if (ret < 0)
4606 return ret;
4607
4608 /*
4609 * Search for the same key again in the root. Since it's
4610 * an extent item and we are holding the inode lock, the
4611 * key must still exist. If it doesn't just emit warning
4612 * and return an error to fall back to a transaction
4613 * commit.
4614 */
4615 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4616 if (ret < 0)
4617 return ret;
4618 if (WARN_ON(ret > 0))
4619 return -ENOENT;
4620 leaf = path->nodes[0];
4621 }
a89ca6f2 4622
7af59743 4623 prev_extent_end = btrfs_file_extent_end(path);
0e56315c
FM
4624 path->slots[0]++;
4625 cond_resched();
a89ca6f2 4626 }
a89ca6f2 4627
7af59743 4628 if (prev_extent_end < i_size) {
0e56315c 4629 u64 hole_len;
a89ca6f2 4630
0e56315c 4631 btrfs_release_path(path);
7af59743 4632 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
0e56315c
FM
4633 ret = btrfs_insert_file_extent(trans, root->log_root,
4634 ino, prev_extent_end, 0, 0,
4635 hole_len, 0, hole_len,
4636 0, 0, 0);
4637 if (ret < 0)
4638 return ret;
4639 }
4640
4641 return 0;
a89ca6f2
FM
4642}
4643
56f23fdb
FM
4644/*
4645 * When we are logging a new inode X, check if it doesn't have a reference that
4646 * matches the reference from some other inode Y created in a past transaction
4647 * and that was renamed in the current transaction. If we don't do this, then at
4648 * log replay time we can lose inode Y (and all its files if it's a directory):
4649 *
4650 * mkdir /mnt/x
4651 * echo "hello world" > /mnt/x/foobar
4652 * sync
4653 * mv /mnt/x /mnt/y
4654 * mkdir /mnt/x # or touch /mnt/x
4655 * xfs_io -c fsync /mnt/x
4656 * <power fail>
4657 * mount fs, trigger log replay
4658 *
4659 * After the log replay procedure, we would lose the first directory and all its
4660 * files (file foobar).
4661 * For the case where inode Y is not a directory we simply end up losing it:
4662 *
4663 * echo "123" > /mnt/foo
4664 * sync
4665 * mv /mnt/foo /mnt/bar
4666 * echo "abc" > /mnt/foo
4667 * xfs_io -c fsync /mnt/foo
4668 * <power fail>
4669 *
4670 * We also need this for cases where a snapshot entry is replaced by some other
4671 * entry (file or directory) otherwise we end up with an unreplayable log due to
4672 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4673 * if it were a regular entry:
4674 *
4675 * mkdir /mnt/x
4676 * btrfs subvolume snapshot /mnt /mnt/x/snap
4677 * btrfs subvolume delete /mnt/x/snap
4678 * rmdir /mnt/x
4679 * mkdir /mnt/x
4680 * fsync /mnt/x or fsync some new file inside it
4681 * <power fail>
4682 *
4683 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4684 * the same transaction.
4685 */
4686static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4687 const int slot,
4688 const struct btrfs_key *key,
4791c8f1 4689 struct btrfs_inode *inode,
a3baaf0d 4690 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4691{
4692 int ret;
4693 struct btrfs_path *search_path;
4694 char *name = NULL;
4695 u32 name_len = 0;
4696 u32 item_size = btrfs_item_size_nr(eb, slot);
4697 u32 cur_offset = 0;
4698 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4699
4700 search_path = btrfs_alloc_path();
4701 if (!search_path)
4702 return -ENOMEM;
4703 search_path->search_commit_root = 1;
4704 search_path->skip_locking = 1;
4705
4706 while (cur_offset < item_size) {
4707 u64 parent;
4708 u32 this_name_len;
4709 u32 this_len;
4710 unsigned long name_ptr;
4711 struct btrfs_dir_item *di;
4712
4713 if (key->type == BTRFS_INODE_REF_KEY) {
4714 struct btrfs_inode_ref *iref;
4715
4716 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4717 parent = key->offset;
4718 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4719 name_ptr = (unsigned long)(iref + 1);
4720 this_len = sizeof(*iref) + this_name_len;
4721 } else {
4722 struct btrfs_inode_extref *extref;
4723
4724 extref = (struct btrfs_inode_extref *)(ptr +
4725 cur_offset);
4726 parent = btrfs_inode_extref_parent(eb, extref);
4727 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4728 name_ptr = (unsigned long)&extref->name;
4729 this_len = sizeof(*extref) + this_name_len;
4730 }
4731
4732 if (this_name_len > name_len) {
4733 char *new_name;
4734
4735 new_name = krealloc(name, this_name_len, GFP_NOFS);
4736 if (!new_name) {
4737 ret = -ENOMEM;
4738 goto out;
4739 }
4740 name_len = this_name_len;
4741 name = new_name;
4742 }
4743
4744 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4745 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4746 parent, name, this_name_len, 0);
56f23fdb 4747 if (di && !IS_ERR(di)) {
44f714da
FM
4748 struct btrfs_key di_key;
4749
4750 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4751 di, &di_key);
4752 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4753 if (di_key.objectid != key->objectid) {
4754 ret = 1;
4755 *other_ino = di_key.objectid;
a3baaf0d 4756 *other_parent = parent;
6b5fc433
FM
4757 } else {
4758 ret = 0;
4759 }
44f714da
FM
4760 } else {
4761 ret = -EAGAIN;
4762 }
56f23fdb
FM
4763 goto out;
4764 } else if (IS_ERR(di)) {
4765 ret = PTR_ERR(di);
4766 goto out;
4767 }
4768 btrfs_release_path(search_path);
4769
4770 cur_offset += this_len;
4771 }
4772 ret = 0;
4773out:
4774 btrfs_free_path(search_path);
4775 kfree(name);
4776 return ret;
4777}
4778
6b5fc433
FM
4779struct btrfs_ino_list {
4780 u64 ino;
a3baaf0d 4781 u64 parent;
6b5fc433
FM
4782 struct list_head list;
4783};
4784
4785static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4786 struct btrfs_root *root,
4787 struct btrfs_path *path,
4788 struct btrfs_log_ctx *ctx,
a3baaf0d 4789 u64 ino, u64 parent)
6b5fc433
FM
4790{
4791 struct btrfs_ino_list *ino_elem;
4792 LIST_HEAD(inode_list);
4793 int ret = 0;
4794
4795 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4796 if (!ino_elem)
4797 return -ENOMEM;
4798 ino_elem->ino = ino;
a3baaf0d 4799 ino_elem->parent = parent;
6b5fc433
FM
4800 list_add_tail(&ino_elem->list, &inode_list);
4801
4802 while (!list_empty(&inode_list)) {
4803 struct btrfs_fs_info *fs_info = root->fs_info;
4804 struct btrfs_key key;
4805 struct inode *inode;
4806
4807 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4808 list);
4809 ino = ino_elem->ino;
a3baaf0d 4810 parent = ino_elem->parent;
6b5fc433
FM
4811 list_del(&ino_elem->list);
4812 kfree(ino_elem);
4813 if (ret)
4814 continue;
4815
4816 btrfs_release_path(path);
4817
4818 key.objectid = ino;
4819 key.type = BTRFS_INODE_ITEM_KEY;
4820 key.offset = 0;
4c66e0d4 4821 inode = btrfs_iget(fs_info->sb, &key, root);
6b5fc433
FM
4822 /*
4823 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4824 * deleted in the current transaction, we need to log its parent
4825 * directory.
6b5fc433
FM
4826 */
4827 if (IS_ERR(inode)) {
4828 ret = PTR_ERR(inode);
a3baaf0d
FM
4829 if (ret == -ENOENT) {
4830 key.objectid = parent;
4c66e0d4 4831 inode = btrfs_iget(fs_info->sb, &key, root);
a3baaf0d
FM
4832 if (IS_ERR(inode)) {
4833 ret = PTR_ERR(inode);
4834 } else {
4835 ret = btrfs_log_inode(trans, root,
4836 BTRFS_I(inode),
4837 LOG_OTHER_INODE_ALL,
4838 0, LLONG_MAX, ctx);
410f954c 4839 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
4840 }
4841 }
6b5fc433
FM
4842 continue;
4843 }
b5e4ff9d
FM
4844 /*
4845 * If the inode was already logged skip it - otherwise we can
4846 * hit an infinite loop. Example:
4847 *
4848 * From the commit root (previous transaction) we have the
4849 * following inodes:
4850 *
4851 * inode 257 a directory
4852 * inode 258 with references "zz" and "zz_link" on inode 257
4853 * inode 259 with reference "a" on inode 257
4854 *
4855 * And in the current (uncommitted) transaction we have:
4856 *
4857 * inode 257 a directory, unchanged
4858 * inode 258 with references "a" and "a2" on inode 257
4859 * inode 259 with reference "zz_link" on inode 257
4860 * inode 261 with reference "zz" on inode 257
4861 *
4862 * When logging inode 261 the following infinite loop could
4863 * happen if we don't skip already logged inodes:
4864 *
4865 * - we detect inode 258 as a conflicting inode, with inode 261
4866 * on reference "zz", and log it;
4867 *
4868 * - we detect inode 259 as a conflicting inode, with inode 258
4869 * on reference "a", and log it;
4870 *
4871 * - we detect inode 258 as a conflicting inode, with inode 259
4872 * on reference "zz_link", and log it - again! After this we
4873 * repeat the above steps forever.
4874 */
4875 spin_lock(&BTRFS_I(inode)->lock);
4876 /*
4877 * Check the inode's logged_trans only instead of
4878 * btrfs_inode_in_log(). This is because the last_log_commit of
4879 * the inode is not updated when we only log that it exists and
4880 * and it has the full sync bit set (see btrfs_log_inode()).
4881 */
4882 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4883 spin_unlock(&BTRFS_I(inode)->lock);
4884 btrfs_add_delayed_iput(inode);
4885 continue;
4886 }
4887 spin_unlock(&BTRFS_I(inode)->lock);
6b5fc433
FM
4888 /*
4889 * We are safe logging the other inode without acquiring its
4890 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4891 * are safe against concurrent renames of the other inode as
4892 * well because during a rename we pin the log and update the
4893 * log with the new name before we unpin it.
4894 */
4895 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4896 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4897 if (ret) {
410f954c 4898 btrfs_add_delayed_iput(inode);
6b5fc433
FM
4899 continue;
4900 }
4901
4902 key.objectid = ino;
4903 key.type = BTRFS_INODE_REF_KEY;
4904 key.offset = 0;
4905 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4906 if (ret < 0) {
410f954c 4907 btrfs_add_delayed_iput(inode);
6b5fc433
FM
4908 continue;
4909 }
4910
4911 while (true) {
4912 struct extent_buffer *leaf = path->nodes[0];
4913 int slot = path->slots[0];
4914 u64 other_ino = 0;
a3baaf0d 4915 u64 other_parent = 0;
6b5fc433
FM
4916
4917 if (slot >= btrfs_header_nritems(leaf)) {
4918 ret = btrfs_next_leaf(root, path);
4919 if (ret < 0) {
4920 break;
4921 } else if (ret > 0) {
4922 ret = 0;
4923 break;
4924 }
4925 continue;
4926 }
4927
4928 btrfs_item_key_to_cpu(leaf, &key, slot);
4929 if (key.objectid != ino ||
4930 (key.type != BTRFS_INODE_REF_KEY &&
4931 key.type != BTRFS_INODE_EXTREF_KEY)) {
4932 ret = 0;
4933 break;
4934 }
4935
4936 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
4937 BTRFS_I(inode), &other_ino,
4938 &other_parent);
6b5fc433
FM
4939 if (ret < 0)
4940 break;
4941 if (ret > 0) {
4942 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4943 if (!ino_elem) {
4944 ret = -ENOMEM;
4945 break;
4946 }
4947 ino_elem->ino = other_ino;
a3baaf0d 4948 ino_elem->parent = other_parent;
6b5fc433
FM
4949 list_add_tail(&ino_elem->list, &inode_list);
4950 ret = 0;
4951 }
4952 path->slots[0]++;
4953 }
410f954c 4954 btrfs_add_delayed_iput(inode);
6b5fc433
FM
4955 }
4956
4957 return ret;
4958}
4959
da447009
FM
4960static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
4961 struct btrfs_inode *inode,
4962 struct btrfs_key *min_key,
4963 const struct btrfs_key *max_key,
4964 struct btrfs_path *path,
4965 struct btrfs_path *dst_path,
4966 const u64 logged_isize,
4967 const bool recursive_logging,
4968 const int inode_only,
4969 struct btrfs_log_ctx *ctx,
4970 bool *need_log_inode_item)
4971{
4972 struct btrfs_root *root = inode->root;
4973 int ins_start_slot = 0;
4974 int ins_nr = 0;
4975 int ret;
4976
4977 while (1) {
4978 ret = btrfs_search_forward(root, min_key, path, trans->transid);
4979 if (ret < 0)
4980 return ret;
4981 if (ret > 0) {
4982 ret = 0;
4983 break;
4984 }
4985again:
4986 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
4987 if (min_key->objectid != max_key->objectid)
4988 break;
4989 if (min_key->type > max_key->type)
4990 break;
4991
4992 if (min_key->type == BTRFS_INODE_ITEM_KEY)
4993 *need_log_inode_item = false;
4994
4995 if ((min_key->type == BTRFS_INODE_REF_KEY ||
4996 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
4997 inode->generation == trans->transid &&
4998 !recursive_logging) {
4999 u64 other_ino = 0;
5000 u64 other_parent = 0;
5001
5002 ret = btrfs_check_ref_name_override(path->nodes[0],
5003 path->slots[0], min_key, inode,
5004 &other_ino, &other_parent);
5005 if (ret < 0) {
5006 return ret;
5007 } else if (ret > 0 && ctx &&
5008 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5009 if (ins_nr > 0) {
5010 ins_nr++;
5011 } else {
5012 ins_nr = 1;
5013 ins_start_slot = path->slots[0];
5014 }
5015 ret = copy_items(trans, inode, dst_path, path,
5016 ins_start_slot, ins_nr,
5017 inode_only, logged_isize);
5018 if (ret < 0)
5019 return ret;
5020 ins_nr = 0;
5021
5022 ret = log_conflicting_inodes(trans, root, path,
5023 ctx, other_ino, other_parent);
5024 if (ret)
5025 return ret;
5026 btrfs_release_path(path);
5027 goto next_key;
5028 }
5029 }
5030
5031 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5032 if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5033 if (ins_nr == 0)
5034 goto next_slot;
5035 ret = copy_items(trans, inode, dst_path, path,
5036 ins_start_slot,
5037 ins_nr, inode_only, logged_isize);
5038 if (ret < 0)
5039 return ret;
5040 ins_nr = 0;
5041 goto next_slot;
5042 }
5043
5044 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5045 ins_nr++;
5046 goto next_slot;
5047 } else if (!ins_nr) {
5048 ins_start_slot = path->slots[0];
5049 ins_nr = 1;
5050 goto next_slot;
5051 }
5052
5053 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5054 ins_nr, inode_only, logged_isize);
5055 if (ret < 0)
5056 return ret;
5057 ins_nr = 1;
5058 ins_start_slot = path->slots[0];
5059next_slot:
5060 path->slots[0]++;
5061 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5062 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5063 path->slots[0]);
5064 goto again;
5065 }
5066 if (ins_nr) {
5067 ret = copy_items(trans, inode, dst_path, path,
5068 ins_start_slot, ins_nr, inode_only,
5069 logged_isize);
5070 if (ret < 0)
5071 return ret;
5072 ins_nr = 0;
5073 }
5074 btrfs_release_path(path);
5075next_key:
5076 if (min_key->offset < (u64)-1) {
5077 min_key->offset++;
5078 } else if (min_key->type < max_key->type) {
5079 min_key->type++;
5080 min_key->offset = 0;
5081 } else {
5082 break;
5083 }
5084 }
5085 if (ins_nr)
5086 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5087 ins_nr, inode_only, logged_isize);
5088
5089 return ret;
5090}
5091
e02119d5
CM
5092/* log a single inode in the tree log.
5093 * At least one parent directory for this inode must exist in the tree
5094 * or be logged already.
5095 *
5096 * Any items from this inode changed by the current transaction are copied
5097 * to the log tree. An extra reference is taken on any extents in this
5098 * file, allowing us to avoid a whole pile of corner cases around logging
5099 * blocks that have been removed from the tree.
5100 *
5101 * See LOG_INODE_ALL and related defines for a description of what inode_only
5102 * does.
5103 *
5104 * This handles both files and directories.
5105 */
12fcfd22 5106static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5107 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc 5108 int inode_only,
7af59743
FM
5109 const loff_t start,
5110 const loff_t end,
8407f553 5111 struct btrfs_log_ctx *ctx)
e02119d5 5112{
0b246afa 5113 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
5114 struct btrfs_path *path;
5115 struct btrfs_path *dst_path;
5116 struct btrfs_key min_key;
5117 struct btrfs_key max_key;
5118 struct btrfs_root *log = root->log_root;
4a500fd1 5119 int err = 0;
e02119d5 5120 int ret;
5dc562c5 5121 bool fast_search = false;
a59108a7
NB
5122 u64 ino = btrfs_ino(inode);
5123 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5124 u64 logged_isize = 0;
e4545de5 5125 bool need_log_inode_item = true;
9a8fca62 5126 bool xattrs_logged = false;
a3baaf0d 5127 bool recursive_logging = false;
e02119d5 5128
e02119d5 5129 path = btrfs_alloc_path();
5df67083
TI
5130 if (!path)
5131 return -ENOMEM;
e02119d5 5132 dst_path = btrfs_alloc_path();
5df67083
TI
5133 if (!dst_path) {
5134 btrfs_free_path(path);
5135 return -ENOMEM;
5136 }
e02119d5 5137
33345d01 5138 min_key.objectid = ino;
e02119d5
CM
5139 min_key.type = BTRFS_INODE_ITEM_KEY;
5140 min_key.offset = 0;
5141
33345d01 5142 max_key.objectid = ino;
12fcfd22 5143
12fcfd22 5144
5dc562c5 5145 /* today the code can only do partial logging of directories */
a59108a7 5146 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5147 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5148 &inode->runtime_flags) &&
781feef7 5149 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5150 max_key.type = BTRFS_XATTR_ITEM_KEY;
5151 else
5152 max_key.type = (u8)-1;
5153 max_key.offset = (u64)-1;
5154
2c2c452b
FM
5155 /*
5156 * Only run delayed items if we are a dir or a new file.
5157 * Otherwise commit the delayed inode only, which is needed in
5158 * order for the log replay code to mark inodes for link count
5159 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5160 */
a59108a7
NB
5161 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5162 inode->generation > fs_info->last_trans_committed)
5163 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 5164 else
a59108a7 5165 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5166
5167 if (ret) {
5168 btrfs_free_path(path);
5169 btrfs_free_path(dst_path);
5170 return ret;
16cdcec7
MX
5171 }
5172
a3baaf0d
FM
5173 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5174 recursive_logging = true;
5175 if (inode_only == LOG_OTHER_INODE)
5176 inode_only = LOG_INODE_EXISTS;
5177 else
5178 inode_only = LOG_INODE_ALL;
a59108a7 5179 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5180 } else {
a59108a7 5181 mutex_lock(&inode->log_mutex);
781feef7 5182 }
e02119d5
CM
5183
5184 /*
5185 * a brute force approach to making sure we get the most uptodate
5186 * copies of everything.
5187 */
a59108a7 5188 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5189 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5190
4f764e51
FM
5191 if (inode_only == LOG_INODE_EXISTS)
5192 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5193 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5194 } else {
1a4bcf47
FM
5195 if (inode_only == LOG_INODE_EXISTS) {
5196 /*
5197 * Make sure the new inode item we write to the log has
5198 * the same isize as the current one (if it exists).
5199 * This is necessary to prevent data loss after log
5200 * replay, and also to prevent doing a wrong expanding
5201 * truncate - for e.g. create file, write 4K into offset
5202 * 0, fsync, write 4K into offset 4096, add hard link,
5203 * fsync some other file (to sync log), power fail - if
5204 * we use the inode's current i_size, after log replay
5205 * we get a 8Kb file, with the last 4Kb extent as a hole
5206 * (zeroes), as if an expanding truncate happened,
5207 * instead of getting a file of 4Kb only.
5208 */
a59108a7 5209 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5210 if (err)
5211 goto out_unlock;
5212 }
a742994a 5213 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5214 &inode->runtime_flags)) {
a742994a 5215 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5216 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5217 ret = drop_objectid_items(trans, log, path, ino,
5218 max_key.type);
5219 } else {
5220 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5221 &inode->runtime_flags);
a742994a 5222 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5223 &inode->runtime_flags);
28ed1345
CM
5224 while(1) {
5225 ret = btrfs_truncate_inode_items(trans,
a59108a7 5226 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
5227 if (ret != -EAGAIN)
5228 break;
5229 }
a742994a 5230 }
4f764e51 5231 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5232 &inode->runtime_flags) ||
6cfab851 5233 inode_only == LOG_INODE_EXISTS) {
4f764e51 5234 if (inode_only == LOG_INODE_ALL)
183f37fa 5235 fast_search = true;
4f764e51 5236 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5237 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5238 max_key.type);
a95249b3
JB
5239 } else {
5240 if (inode_only == LOG_INODE_ALL)
5241 fast_search = true;
a95249b3 5242 goto log_extents;
5dc562c5 5243 }
a95249b3 5244
e02119d5 5245 }
4a500fd1
YZ
5246 if (ret) {
5247 err = ret;
5248 goto out_unlock;
5249 }
e02119d5 5250
da447009
FM
5251 err = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
5252 path, dst_path, logged_isize,
7af59743
FM
5253 recursive_logging, inode_only, ctx,
5254 &need_log_inode_item);
da447009
FM
5255 if (err)
5256 goto out_unlock;
5dc562c5 5257
36283bf7
FM
5258 btrfs_release_path(path);
5259 btrfs_release_path(dst_path);
a59108a7 5260 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5261 if (err)
5262 goto out_unlock;
9a8fca62 5263 xattrs_logged = true;
a89ca6f2
FM
5264 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5265 btrfs_release_path(path);
5266 btrfs_release_path(dst_path);
7af59743 5267 err = btrfs_log_holes(trans, root, inode, path);
a89ca6f2
FM
5268 if (err)
5269 goto out_unlock;
5270 }
a95249b3 5271log_extents:
f3b15ccd
JB
5272 btrfs_release_path(path);
5273 btrfs_release_path(dst_path);
e4545de5 5274 if (need_log_inode_item) {
a59108a7 5275 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5276 if (!err && !xattrs_logged) {
5277 err = btrfs_log_all_xattrs(trans, root, inode, path,
5278 dst_path);
5279 btrfs_release_path(path);
5280 }
e4545de5
FM
5281 if (err)
5282 goto out_unlock;
5283 }
5dc562c5 5284 if (fast_search) {
a59108a7 5285 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
a2120a47 5286 ctx, start, end);
5dc562c5
JB
5287 if (ret) {
5288 err = ret;
5289 goto out_unlock;
5290 }
d006a048 5291 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5292 struct extent_map *em, *n;
5293
49dae1bc
FM
5294 write_lock(&em_tree->lock);
5295 /*
5296 * We can't just remove every em if we're called for a ranged
5297 * fsync - that is, one that doesn't cover the whole possible
5298 * file range (0 to LLONG_MAX). This is because we can have
5299 * em's that fall outside the range we're logging and therefore
5300 * their ordered operations haven't completed yet
5301 * (btrfs_finish_ordered_io() not invoked yet). This means we
5302 * didn't get their respective file extent item in the fs/subvol
5303 * tree yet, and need to let the next fast fsync (one which
5304 * consults the list of modified extent maps) find the em so
5305 * that it logs a matching file extent item and waits for the
5306 * respective ordered operation to complete (if it's still
5307 * running).
5308 *
5309 * Removing every em outside the range we're logging would make
5310 * the next fast fsync not log their matching file extent items,
5311 * therefore making us lose data after a log replay.
5312 */
5313 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5314 list) {
5315 const u64 mod_end = em->mod_start + em->mod_len - 1;
5316
5317 if (em->mod_start >= start && mod_end <= end)
5318 list_del_init(&em->list);
5319 }
5320 write_unlock(&em_tree->lock);
5dc562c5
JB
5321 }
5322
a59108a7
NB
5323 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5324 ret = log_directory_changes(trans, root, inode, path, dst_path,
5325 ctx);
4a500fd1
YZ
5326 if (ret) {
5327 err = ret;
5328 goto out_unlock;
5329 }
e02119d5 5330 }
49dae1bc 5331
d1d832a0
FM
5332 /*
5333 * Don't update last_log_commit if we logged that an inode exists after
5334 * it was loaded to memory (full_sync bit set).
5335 * This is to prevent data loss when we do a write to the inode, then
5336 * the inode gets evicted after all delalloc was flushed, then we log
5337 * it exists (due to a rename for example) and then fsync it. This last
5338 * fsync would do nothing (not logging the extents previously written).
5339 */
a59108a7
NB
5340 spin_lock(&inode->lock);
5341 inode->logged_trans = trans->transid;
d1d832a0
FM
5342 if (inode_only != LOG_INODE_EXISTS ||
5343 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5344 inode->last_log_commit = inode->last_sub_trans;
a59108a7 5345 spin_unlock(&inode->lock);
4a500fd1 5346out_unlock:
a59108a7 5347 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5348
5349 btrfs_free_path(path);
5350 btrfs_free_path(dst_path);
4a500fd1 5351 return err;
e02119d5
CM
5352}
5353
2be63d5c
FM
5354/*
5355 * Check if we must fallback to a transaction commit when logging an inode.
5356 * This must be called after logging the inode and is used only in the context
5357 * when fsyncing an inode requires the need to log some other inode - in which
5358 * case we can't lock the i_mutex of each other inode we need to log as that
5359 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5360 * log inodes up or down in the hierarchy) or rename operations for example. So
5361 * we take the log_mutex of the inode after we have logged it and then check for
5362 * its last_unlink_trans value - this is safe because any task setting
5363 * last_unlink_trans must take the log_mutex and it must do this before it does
5364 * the actual unlink operation, so if we do this check before a concurrent task
5365 * sets last_unlink_trans it means we've logged a consistent version/state of
5366 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5367 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5368 * we logged the inode or it might have also done the unlink).
5369 */
5370static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5371 struct btrfs_inode *inode)
2be63d5c 5372{
ab1717b2 5373 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5374 bool ret = false;
5375
ab1717b2
NB
5376 mutex_lock(&inode->log_mutex);
5377 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5378 /*
5379 * Make sure any commits to the log are forced to be full
5380 * commits.
5381 */
90787766 5382 btrfs_set_log_full_commit(trans);
2be63d5c
FM
5383 ret = true;
5384 }
ab1717b2 5385 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5386
5387 return ret;
5388}
5389
12fcfd22
CM
5390/*
5391 * follow the dentry parent pointers up the chain and see if any
5392 * of the directories in it require a full commit before they can
5393 * be logged. Returns zero if nothing special needs to be done or 1 if
5394 * a full commit is required.
5395 */
5396static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5397 struct btrfs_inode *inode,
12fcfd22
CM
5398 struct dentry *parent,
5399 struct super_block *sb,
5400 u64 last_committed)
e02119d5 5401{
12fcfd22 5402 int ret = 0;
6a912213 5403 struct dentry *old_parent = NULL;
e02119d5 5404
af4176b4
CM
5405 /*
5406 * for regular files, if its inode is already on disk, we don't
5407 * have to worry about the parents at all. This is because
5408 * we can use the last_unlink_trans field to record renames
5409 * and other fun in this file.
5410 */
aefa6115
NB
5411 if (S_ISREG(inode->vfs_inode.i_mode) &&
5412 inode->generation <= last_committed &&
5413 inode->last_unlink_trans <= last_committed)
5414 goto out;
af4176b4 5415
aefa6115 5416 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5417 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5418 goto out;
aefa6115 5419 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5420 }
5421
5422 while (1) {
aefa6115 5423 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5424 ret = 1;
5425 break;
5426 }
5427
fc64005c 5428 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5429 break;
5430
44f714da 5431 if (IS_ROOT(parent)) {
aefa6115
NB
5432 inode = BTRFS_I(d_inode(parent));
5433 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5434 ret = 1;
12fcfd22 5435 break;
44f714da 5436 }
12fcfd22 5437
6a912213
JB
5438 parent = dget_parent(parent);
5439 dput(old_parent);
5440 old_parent = parent;
aefa6115 5441 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5442
5443 }
6a912213 5444 dput(old_parent);
12fcfd22 5445out:
e02119d5
CM
5446 return ret;
5447}
5448
2f2ff0ee
FM
5449struct btrfs_dir_list {
5450 u64 ino;
5451 struct list_head list;
5452};
5453
5454/*
5455 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5456 * details about the why it is needed.
5457 * This is a recursive operation - if an existing dentry corresponds to a
5458 * directory, that directory's new entries are logged too (same behaviour as
5459 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5460 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5461 * complains about the following circular lock dependency / possible deadlock:
5462 *
5463 * CPU0 CPU1
5464 * ---- ----
5465 * lock(&type->i_mutex_dir_key#3/2);
5466 * lock(sb_internal#2);
5467 * lock(&type->i_mutex_dir_key#3/2);
5468 * lock(&sb->s_type->i_mutex_key#14);
5469 *
5470 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5471 * sb_start_intwrite() in btrfs_start_transaction().
5472 * Not locking i_mutex of the inodes is still safe because:
5473 *
5474 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5475 * that while logging the inode new references (names) are added or removed
5476 * from the inode, leaving the logged inode item with a link count that does
5477 * not match the number of logged inode reference items. This is fine because
5478 * at log replay time we compute the real number of links and correct the
5479 * link count in the inode item (see replay_one_buffer() and
5480 * link_to_fixup_dir());
5481 *
5482 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5483 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5484 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5485 * has a size that doesn't match the sum of the lengths of all the logged
5486 * names. This does not result in a problem because if a dir_item key is
5487 * logged but its matching dir_index key is not logged, at log replay time we
5488 * don't use it to replay the respective name (see replay_one_name()). On the
5489 * other hand if only the dir_index key ends up being logged, the respective
5490 * name is added to the fs/subvol tree with both the dir_item and dir_index
5491 * keys created (see replay_one_name()).
5492 * The directory's inode item with a wrong i_size is not a problem as well,
5493 * since we don't use it at log replay time to set the i_size in the inode
5494 * item of the fs/subvol tree (see overwrite_item()).
5495 */
5496static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5497 struct btrfs_root *root,
51cc0d32 5498 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5499 struct btrfs_log_ctx *ctx)
5500{
0b246afa 5501 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5502 struct btrfs_root *log = root->log_root;
5503 struct btrfs_path *path;
5504 LIST_HEAD(dir_list);
5505 struct btrfs_dir_list *dir_elem;
5506 int ret = 0;
5507
5508 path = btrfs_alloc_path();
5509 if (!path)
5510 return -ENOMEM;
5511
5512 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5513 if (!dir_elem) {
5514 btrfs_free_path(path);
5515 return -ENOMEM;
5516 }
51cc0d32 5517 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5518 list_add_tail(&dir_elem->list, &dir_list);
5519
5520 while (!list_empty(&dir_list)) {
5521 struct extent_buffer *leaf;
5522 struct btrfs_key min_key;
5523 int nritems;
5524 int i;
5525
5526 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5527 list);
5528 if (ret)
5529 goto next_dir_inode;
5530
5531 min_key.objectid = dir_elem->ino;
5532 min_key.type = BTRFS_DIR_ITEM_KEY;
5533 min_key.offset = 0;
5534again:
5535 btrfs_release_path(path);
5536 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5537 if (ret < 0) {
5538 goto next_dir_inode;
5539 } else if (ret > 0) {
5540 ret = 0;
5541 goto next_dir_inode;
5542 }
5543
5544process_leaf:
5545 leaf = path->nodes[0];
5546 nritems = btrfs_header_nritems(leaf);
5547 for (i = path->slots[0]; i < nritems; i++) {
5548 struct btrfs_dir_item *di;
5549 struct btrfs_key di_key;
5550 struct inode *di_inode;
5551 struct btrfs_dir_list *new_dir_elem;
5552 int log_mode = LOG_INODE_EXISTS;
5553 int type;
5554
5555 btrfs_item_key_to_cpu(leaf, &min_key, i);
5556 if (min_key.objectid != dir_elem->ino ||
5557 min_key.type != BTRFS_DIR_ITEM_KEY)
5558 goto next_dir_inode;
5559
5560 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5561 type = btrfs_dir_type(leaf, di);
5562 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5563 type != BTRFS_FT_DIR)
5564 continue;
5565 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5566 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5567 continue;
5568
ec125cfb 5569 btrfs_release_path(path);
4c66e0d4 5570 di_inode = btrfs_iget(fs_info->sb, &di_key, root);
2f2ff0ee
FM
5571 if (IS_ERR(di_inode)) {
5572 ret = PTR_ERR(di_inode);
5573 goto next_dir_inode;
5574 }
5575
0f8939b8 5576 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
410f954c 5577 btrfs_add_delayed_iput(di_inode);
ec125cfb 5578 break;
2f2ff0ee
FM
5579 }
5580
5581 ctx->log_new_dentries = false;
3f9749f6 5582 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5583 log_mode = LOG_INODE_ALL;
a59108a7 5584 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5585 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5586 if (!ret &&
ab1717b2 5587 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5588 ret = 1;
410f954c 5589 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5590 if (ret)
5591 goto next_dir_inode;
5592 if (ctx->log_new_dentries) {
5593 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5594 GFP_NOFS);
5595 if (!new_dir_elem) {
5596 ret = -ENOMEM;
5597 goto next_dir_inode;
5598 }
5599 new_dir_elem->ino = di_key.objectid;
5600 list_add_tail(&new_dir_elem->list, &dir_list);
5601 }
5602 break;
5603 }
5604 if (i == nritems) {
5605 ret = btrfs_next_leaf(log, path);
5606 if (ret < 0) {
5607 goto next_dir_inode;
5608 } else if (ret > 0) {
5609 ret = 0;
5610 goto next_dir_inode;
5611 }
5612 goto process_leaf;
5613 }
5614 if (min_key.offset < (u64)-1) {
5615 min_key.offset++;
5616 goto again;
5617 }
5618next_dir_inode:
5619 list_del(&dir_elem->list);
5620 kfree(dir_elem);
5621 }
5622
5623 btrfs_free_path(path);
5624 return ret;
5625}
5626
18aa0922 5627static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5628 struct btrfs_inode *inode,
18aa0922
FM
5629 struct btrfs_log_ctx *ctx)
5630{
3ffbd68c 5631 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5632 int ret;
5633 struct btrfs_path *path;
5634 struct btrfs_key key;
d0a0b78d
NB
5635 struct btrfs_root *root = inode->root;
5636 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5637
5638 path = btrfs_alloc_path();
5639 if (!path)
5640 return -ENOMEM;
5641 path->skip_locking = 1;
5642 path->search_commit_root = 1;
5643
5644 key.objectid = ino;
5645 key.type = BTRFS_INODE_REF_KEY;
5646 key.offset = 0;
5647 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5648 if (ret < 0)
5649 goto out;
5650
5651 while (true) {
5652 struct extent_buffer *leaf = path->nodes[0];
5653 int slot = path->slots[0];
5654 u32 cur_offset = 0;
5655 u32 item_size;
5656 unsigned long ptr;
5657
5658 if (slot >= btrfs_header_nritems(leaf)) {
5659 ret = btrfs_next_leaf(root, path);
5660 if (ret < 0)
5661 goto out;
5662 else if (ret > 0)
5663 break;
5664 continue;
5665 }
5666
5667 btrfs_item_key_to_cpu(leaf, &key, slot);
5668 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5669 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5670 break;
5671
5672 item_size = btrfs_item_size_nr(leaf, slot);
5673 ptr = btrfs_item_ptr_offset(leaf, slot);
5674 while (cur_offset < item_size) {
5675 struct btrfs_key inode_key;
5676 struct inode *dir_inode;
5677
5678 inode_key.type = BTRFS_INODE_ITEM_KEY;
5679 inode_key.offset = 0;
5680
5681 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5682 struct btrfs_inode_extref *extref;
5683
5684 extref = (struct btrfs_inode_extref *)
5685 (ptr + cur_offset);
5686 inode_key.objectid = btrfs_inode_extref_parent(
5687 leaf, extref);
5688 cur_offset += sizeof(*extref);
5689 cur_offset += btrfs_inode_extref_name_len(leaf,
5690 extref);
5691 } else {
5692 inode_key.objectid = key.offset;
5693 cur_offset = item_size;
5694 }
5695
4c66e0d4 5696 dir_inode = btrfs_iget(fs_info->sb, &inode_key, root);
0f375eed
FM
5697 /*
5698 * If the parent inode was deleted, return an error to
5699 * fallback to a transaction commit. This is to prevent
5700 * getting an inode that was moved from one parent A to
5701 * a parent B, got its former parent A deleted and then
5702 * it got fsync'ed, from existing at both parents after
5703 * a log replay (and the old parent still existing).
5704 * Example:
5705 *
5706 * mkdir /mnt/A
5707 * mkdir /mnt/B
5708 * touch /mnt/B/bar
5709 * sync
5710 * mv /mnt/B/bar /mnt/A/bar
5711 * mv -T /mnt/A /mnt/B
5712 * fsync /mnt/B/bar
5713 * <power fail>
5714 *
5715 * If we ignore the old parent B which got deleted,
5716 * after a log replay we would have file bar linked
5717 * at both parents and the old parent B would still
5718 * exist.
5719 */
5720 if (IS_ERR(dir_inode)) {
5721 ret = PTR_ERR(dir_inode);
5722 goto out;
5723 }
18aa0922 5724
657ed1aa
FM
5725 if (ctx)
5726 ctx->log_new_dentries = false;
a59108a7 5727 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5728 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5729 if (!ret &&
ab1717b2 5730 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5731 ret = 1;
657ed1aa
FM
5732 if (!ret && ctx && ctx->log_new_dentries)
5733 ret = log_new_dir_dentries(trans, root,
f85b7379 5734 BTRFS_I(dir_inode), ctx);
410f954c 5735 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5736 if (ret)
5737 goto out;
5738 }
5739 path->slots[0]++;
5740 }
5741 ret = 0;
5742out:
5743 btrfs_free_path(path);
5744 return ret;
5745}
5746
b8aa330d
FM
5747static int log_new_ancestors(struct btrfs_trans_handle *trans,
5748 struct btrfs_root *root,
5749 struct btrfs_path *path,
5750 struct btrfs_log_ctx *ctx)
5751{
5752 struct btrfs_key found_key;
5753
5754 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5755
5756 while (true) {
5757 struct btrfs_fs_info *fs_info = root->fs_info;
5758 const u64 last_committed = fs_info->last_trans_committed;
5759 struct extent_buffer *leaf = path->nodes[0];
5760 int slot = path->slots[0];
5761 struct btrfs_key search_key;
5762 struct inode *inode;
5763 int ret = 0;
5764
5765 btrfs_release_path(path);
5766
5767 search_key.objectid = found_key.offset;
5768 search_key.type = BTRFS_INODE_ITEM_KEY;
5769 search_key.offset = 0;
4c66e0d4 5770 inode = btrfs_iget(fs_info->sb, &search_key, root);
b8aa330d
FM
5771 if (IS_ERR(inode))
5772 return PTR_ERR(inode);
5773
5774 if (BTRFS_I(inode)->generation > last_committed)
5775 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5776 LOG_INODE_EXISTS,
5777 0, LLONG_MAX, ctx);
410f954c 5778 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5779 if (ret)
5780 return ret;
5781
5782 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5783 break;
5784
5785 search_key.type = BTRFS_INODE_REF_KEY;
5786 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5787 if (ret < 0)
5788 return ret;
5789
5790 leaf = path->nodes[0];
5791 slot = path->slots[0];
5792 if (slot >= btrfs_header_nritems(leaf)) {
5793 ret = btrfs_next_leaf(root, path);
5794 if (ret < 0)
5795 return ret;
5796 else if (ret > 0)
5797 return -ENOENT;
5798 leaf = path->nodes[0];
5799 slot = path->slots[0];
5800 }
5801
5802 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5803 if (found_key.objectid != search_key.objectid ||
5804 found_key.type != BTRFS_INODE_REF_KEY)
5805 return -ENOENT;
5806 }
5807 return 0;
5808}
5809
5810static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5811 struct btrfs_inode *inode,
5812 struct dentry *parent,
5813 struct btrfs_log_ctx *ctx)
5814{
5815 struct btrfs_root *root = inode->root;
5816 struct btrfs_fs_info *fs_info = root->fs_info;
5817 struct dentry *old_parent = NULL;
5818 struct super_block *sb = inode->vfs_inode.i_sb;
5819 int ret = 0;
5820
5821 while (true) {
5822 if (!parent || d_really_is_negative(parent) ||
5823 sb != parent->d_sb)
5824 break;
5825
5826 inode = BTRFS_I(d_inode(parent));
5827 if (root != inode->root)
5828 break;
5829
5830 if (inode->generation > fs_info->last_trans_committed) {
5831 ret = btrfs_log_inode(trans, root, inode,
5832 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5833 if (ret)
5834 break;
5835 }
5836 if (IS_ROOT(parent))
5837 break;
5838
5839 parent = dget_parent(parent);
5840 dput(old_parent);
5841 old_parent = parent;
5842 }
5843 dput(old_parent);
5844
5845 return ret;
5846}
5847
5848static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5849 struct btrfs_inode *inode,
5850 struct dentry *parent,
5851 struct btrfs_log_ctx *ctx)
5852{
5853 struct btrfs_root *root = inode->root;
5854 const u64 ino = btrfs_ino(inode);
5855 struct btrfs_path *path;
5856 struct btrfs_key search_key;
5857 int ret;
5858
5859 /*
5860 * For a single hard link case, go through a fast path that does not
5861 * need to iterate the fs/subvolume tree.
5862 */
5863 if (inode->vfs_inode.i_nlink < 2)
5864 return log_new_ancestors_fast(trans, inode, parent, ctx);
5865
5866 path = btrfs_alloc_path();
5867 if (!path)
5868 return -ENOMEM;
5869
5870 search_key.objectid = ino;
5871 search_key.type = BTRFS_INODE_REF_KEY;
5872 search_key.offset = 0;
5873again:
5874 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5875 if (ret < 0)
5876 goto out;
5877 if (ret == 0)
5878 path->slots[0]++;
5879
5880 while (true) {
5881 struct extent_buffer *leaf = path->nodes[0];
5882 int slot = path->slots[0];
5883 struct btrfs_key found_key;
5884
5885 if (slot >= btrfs_header_nritems(leaf)) {
5886 ret = btrfs_next_leaf(root, path);
5887 if (ret < 0)
5888 goto out;
5889 else if (ret > 0)
5890 break;
5891 continue;
5892 }
5893
5894 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5895 if (found_key.objectid != ino ||
5896 found_key.type > BTRFS_INODE_EXTREF_KEY)
5897 break;
5898
5899 /*
5900 * Don't deal with extended references because they are rare
5901 * cases and too complex to deal with (we would need to keep
5902 * track of which subitem we are processing for each item in
5903 * this loop, etc). So just return some error to fallback to
5904 * a transaction commit.
5905 */
5906 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5907 ret = -EMLINK;
5908 goto out;
5909 }
5910
5911 /*
5912 * Logging ancestors needs to do more searches on the fs/subvol
5913 * tree, so it releases the path as needed to avoid deadlocks.
5914 * Keep track of the last inode ref key and resume from that key
5915 * after logging all new ancestors for the current hard link.
5916 */
5917 memcpy(&search_key, &found_key, sizeof(search_key));
5918
5919 ret = log_new_ancestors(trans, root, path, ctx);
5920 if (ret)
5921 goto out;
5922 btrfs_release_path(path);
5923 goto again;
5924 }
5925 ret = 0;
5926out:
5927 btrfs_free_path(path);
5928 return ret;
5929}
5930
e02119d5
CM
5931/*
5932 * helper function around btrfs_log_inode to make sure newly created
5933 * parent directories also end up in the log. A minimal inode and backref
5934 * only logging is done of any parent directories that are older than
5935 * the last committed transaction
5936 */
48a3b636 5937static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 5938 struct btrfs_inode *inode,
49dae1bc
FM
5939 struct dentry *parent,
5940 const loff_t start,
5941 const loff_t end,
41a1eada 5942 int inode_only,
8b050d35 5943 struct btrfs_log_ctx *ctx)
e02119d5 5944{
f882274b 5945 struct btrfs_root *root = inode->root;
0b246afa 5946 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 5947 struct super_block *sb;
12fcfd22 5948 int ret = 0;
0b246afa 5949 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5950 bool log_dentries = false;
12fcfd22 5951
19df27a9 5952 sb = inode->vfs_inode.i_sb;
12fcfd22 5953
0b246afa 5954 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5955 ret = 1;
5956 goto end_no_trans;
5957 }
5958
995946dd
MX
5959 /*
5960 * The prev transaction commit doesn't complete, we need do
5961 * full commit by ourselves.
5962 */
0b246afa
JM
5963 if (fs_info->last_trans_log_full_commit >
5964 fs_info->last_trans_committed) {
12fcfd22
CM
5965 ret = 1;
5966 goto end_no_trans;
5967 }
5968
f882274b 5969 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5970 ret = 1;
5971 goto end_no_trans;
5972 }
5973
19df27a9
NB
5974 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5975 last_committed);
12fcfd22
CM
5976 if (ret)
5977 goto end_no_trans;
e02119d5 5978
f2d72f42
FM
5979 /*
5980 * Skip already logged inodes or inodes corresponding to tmpfiles
5981 * (since logging them is pointless, a link count of 0 means they
5982 * will never be accessible).
5983 */
5984 if (btrfs_inode_in_log(inode, trans->transid) ||
5985 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
5986 ret = BTRFS_NO_LOG_SYNC;
5987 goto end_no_trans;
5988 }
5989
8b050d35 5990 ret = start_log_trans(trans, root, ctx);
4a500fd1 5991 if (ret)
e87ac136 5992 goto end_no_trans;
e02119d5 5993
19df27a9 5994 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5995 if (ret)
5996 goto end_trans;
12fcfd22 5997
af4176b4
CM
5998 /*
5999 * for regular files, if its inode is already on disk, we don't
6000 * have to worry about the parents at all. This is because
6001 * we can use the last_unlink_trans field to record renames
6002 * and other fun in this file.
6003 */
19df27a9
NB
6004 if (S_ISREG(inode->vfs_inode.i_mode) &&
6005 inode->generation <= last_committed &&
6006 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
6007 ret = 0;
6008 goto end_trans;
6009 }
af4176b4 6010
19df27a9 6011 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
6012 log_dentries = true;
6013
18aa0922 6014 /*
01327610 6015 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6016 * inodes are fully logged. This is to prevent leaving dangling
6017 * directory index entries in directories that were our parents but are
6018 * not anymore. Not doing this results in old parent directory being
6019 * impossible to delete after log replay (rmdir will always fail with
6020 * error -ENOTEMPTY).
6021 *
6022 * Example 1:
6023 *
6024 * mkdir testdir
6025 * touch testdir/foo
6026 * ln testdir/foo testdir/bar
6027 * sync
6028 * unlink testdir/bar
6029 * xfs_io -c fsync testdir/foo
6030 * <power failure>
6031 * mount fs, triggers log replay
6032 *
6033 * If we don't log the parent directory (testdir), after log replay the
6034 * directory still has an entry pointing to the file inode using the bar
6035 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6036 * the file inode has a link count of 1.
6037 *
6038 * Example 2:
6039 *
6040 * mkdir testdir
6041 * touch foo
6042 * ln foo testdir/foo2
6043 * ln foo testdir/foo3
6044 * sync
6045 * unlink testdir/foo3
6046 * xfs_io -c fsync foo
6047 * <power failure>
6048 * mount fs, triggers log replay
6049 *
6050 * Similar as the first example, after log replay the parent directory
6051 * testdir still has an entry pointing to the inode file with name foo3
6052 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6053 * and has a link count of 2.
6054 */
19df27a9 6055 if (inode->last_unlink_trans > last_committed) {
b8aa330d 6056 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6057 if (ret)
6058 goto end_trans;
6059 }
6060
b8aa330d
FM
6061 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6062 if (ret)
41bd6067 6063 goto end_trans;
76dda93c 6064
2f2ff0ee 6065 if (log_dentries)
b8aa330d 6066 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6067 else
6068 ret = 0;
4a500fd1
YZ
6069end_trans:
6070 if (ret < 0) {
90787766 6071 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6072 ret = 1;
6073 }
8b050d35
MX
6074
6075 if (ret)
6076 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6077 btrfs_end_log_trans(root);
6078end_no_trans:
6079 return ret;
e02119d5
CM
6080}
6081
6082/*
6083 * it is not safe to log dentry if the chunk root has added new
6084 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6085 * If this returns 1, you must commit the transaction to safely get your
6086 * data on disk.
6087 */
6088int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6089 struct dentry *dentry,
49dae1bc
FM
6090 const loff_t start,
6091 const loff_t end,
8b050d35 6092 struct btrfs_log_ctx *ctx)
e02119d5 6093{
6a912213
JB
6094 struct dentry *parent = dget_parent(dentry);
6095 int ret;
6096
f882274b
NB
6097 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6098 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
6099 dput(parent);
6100
6101 return ret;
e02119d5
CM
6102}
6103
6104/*
6105 * should be called during mount to recover any replay any log trees
6106 * from the FS
6107 */
6108int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6109{
6110 int ret;
6111 struct btrfs_path *path;
6112 struct btrfs_trans_handle *trans;
6113 struct btrfs_key key;
6114 struct btrfs_key found_key;
6115 struct btrfs_key tmp_key;
6116 struct btrfs_root *log;
6117 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6118 struct walk_control wc = {
6119 .process_func = process_one_buffer,
430a6626 6120 .stage = LOG_WALK_PIN_ONLY,
e02119d5
CM
6121 };
6122
e02119d5 6123 path = btrfs_alloc_path();
db5b493a
TI
6124 if (!path)
6125 return -ENOMEM;
6126
afcdd129 6127 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6128
4a500fd1 6129 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6130 if (IS_ERR(trans)) {
6131 ret = PTR_ERR(trans);
6132 goto error;
6133 }
e02119d5
CM
6134
6135 wc.trans = trans;
6136 wc.pin = 1;
6137
db5b493a 6138 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6139 if (ret) {
5d163e0e
JM
6140 btrfs_handle_fs_error(fs_info, ret,
6141 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6142 goto error;
6143 }
e02119d5
CM
6144
6145again:
6146 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6147 key.offset = (u64)-1;
962a298f 6148 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6149
d397712b 6150 while (1) {
e02119d5 6151 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6152
6153 if (ret < 0) {
34d97007 6154 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6155 "Couldn't find tree log root.");
6156 goto error;
6157 }
e02119d5
CM
6158 if (ret > 0) {
6159 if (path->slots[0] == 0)
6160 break;
6161 path->slots[0]--;
6162 }
6163 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6164 path->slots[0]);
b3b4aa74 6165 btrfs_release_path(path);
e02119d5
CM
6166 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6167 break;
6168
62a2c73e 6169 log = btrfs_read_tree_root(log_root_tree, &found_key);
79787eaa
JM
6170 if (IS_ERR(log)) {
6171 ret = PTR_ERR(log);
34d97007 6172 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6173 "Couldn't read tree log root.");
6174 goto error;
6175 }
e02119d5
CM
6176
6177 tmp_key.objectid = found_key.offset;
6178 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6179 tmp_key.offset = (u64)-1;
6180
3619c94f 6181 wc.replay_dest = btrfs_get_fs_root(fs_info, &tmp_key, true);
79787eaa
JM
6182 if (IS_ERR(wc.replay_dest)) {
6183 ret = PTR_ERR(wc.replay_dest);
9bc574de
JB
6184
6185 /*
6186 * We didn't find the subvol, likely because it was
6187 * deleted. This is ok, simply skip this log and go to
6188 * the next one.
6189 *
6190 * We need to exclude the root because we can't have
6191 * other log replays overwriting this log as we'll read
6192 * it back in a few more times. This will keep our
6193 * block from being modified, and we'll just bail for
6194 * each subsequent pass.
6195 */
6196 if (ret == -ENOENT)
9fce5704 6197 ret = btrfs_pin_extent_for_log_replay(trans,
9bc574de
JB
6198 log->node->start,
6199 log->node->len);
00246528 6200 btrfs_put_root(log);
9bc574de
JB
6201
6202 if (!ret)
6203 goto next;
5d163e0e
JM
6204 btrfs_handle_fs_error(fs_info, ret,
6205 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6206 goto error;
6207 }
e02119d5 6208
07d400a6 6209 wc.replay_dest->log_root = log;
5d4f98a2 6210 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 6211 ret = walk_log_tree(trans, log, &wc);
e02119d5 6212
b50c6e25 6213 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6214 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6215 path);
e02119d5
CM
6216 }
6217
900c9981
LB
6218 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6219 struct btrfs_root *root = wc.replay_dest;
6220
6221 btrfs_release_path(path);
6222
6223 /*
6224 * We have just replayed everything, and the highest
6225 * objectid of fs roots probably has changed in case
6226 * some inode_item's got replayed.
6227 *
6228 * root->objectid_mutex is not acquired as log replay
6229 * could only happen during mount.
6230 */
6231 ret = btrfs_find_highest_objectid(root,
6232 &root->highest_objectid);
6233 }
6234
07d400a6 6235 wc.replay_dest->log_root = NULL;
00246528 6236 btrfs_put_root(wc.replay_dest);
00246528 6237 btrfs_put_root(log);
e02119d5 6238
b50c6e25
JB
6239 if (ret)
6240 goto error;
9bc574de 6241next:
e02119d5
CM
6242 if (found_key.offset == 0)
6243 break;
9bc574de 6244 key.offset = found_key.offset - 1;
e02119d5 6245 }
b3b4aa74 6246 btrfs_release_path(path);
e02119d5
CM
6247
6248 /* step one is to pin it all, step two is to replay just inodes */
6249 if (wc.pin) {
6250 wc.pin = 0;
6251 wc.process_func = replay_one_buffer;
6252 wc.stage = LOG_WALK_REPLAY_INODES;
6253 goto again;
6254 }
6255 /* step three is to replay everything */
6256 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6257 wc.stage++;
6258 goto again;
6259 }
6260
6261 btrfs_free_path(path);
6262
abefa55a 6263 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6264 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6265 if (ret)
6266 return ret;
6267
e02119d5 6268 log_root_tree->log_root = NULL;
afcdd129 6269 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
00246528 6270 btrfs_put_root(log_root_tree);
79787eaa 6271
abefa55a 6272 return 0;
79787eaa 6273error:
b50c6e25 6274 if (wc.trans)
3a45bb20 6275 btrfs_end_transaction(wc.trans);
79787eaa
JM
6276 btrfs_free_path(path);
6277 return ret;
e02119d5 6278}
12fcfd22
CM
6279
6280/*
6281 * there are some corner cases where we want to force a full
6282 * commit instead of allowing a directory to be logged.
6283 *
6284 * They revolve around files there were unlinked from the directory, and
6285 * this function updates the parent directory so that a full commit is
6286 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6287 *
6288 * Must be called before the unlink operations (updates to the subvolume tree,
6289 * inodes, etc) are done.
12fcfd22
CM
6290 */
6291void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6292 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6293 int for_rename)
6294{
af4176b4
CM
6295 /*
6296 * when we're logging a file, if it hasn't been renamed
6297 * or unlinked, and its inode is fully committed on disk,
6298 * we don't have to worry about walking up the directory chain
6299 * to log its parents.
6300 *
6301 * So, we use the last_unlink_trans field to put this transid
6302 * into the file. When the file is logged we check it and
6303 * don't log the parents if the file is fully on disk.
6304 */
4176bdbf
NB
6305 mutex_lock(&inode->log_mutex);
6306 inode->last_unlink_trans = trans->transid;
6307 mutex_unlock(&inode->log_mutex);
af4176b4 6308
12fcfd22
CM
6309 /*
6310 * if this directory was already logged any new
6311 * names for this file/dir will get recorded
6312 */
4176bdbf 6313 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6314 return;
6315
6316 /*
6317 * if the inode we're about to unlink was logged,
6318 * the log will be properly updated for any new names
6319 */
4176bdbf 6320 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6321 return;
6322
6323 /*
6324 * when renaming files across directories, if the directory
6325 * there we're unlinking from gets fsync'd later on, there's
6326 * no way to find the destination directory later and fsync it
6327 * properly. So, we have to be conservative and force commits
6328 * so the new name gets discovered.
6329 */
6330 if (for_rename)
6331 goto record;
6332
6333 /* we can safely do the unlink without any special recording */
6334 return;
6335
6336record:
4176bdbf
NB
6337 mutex_lock(&dir->log_mutex);
6338 dir->last_unlink_trans = trans->transid;
6339 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6340}
6341
6342/*
6343 * Make sure that if someone attempts to fsync the parent directory of a deleted
6344 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6345 * that after replaying the log tree of the parent directory's root we will not
6346 * see the snapshot anymore and at log replay time we will not see any log tree
6347 * corresponding to the deleted snapshot's root, which could lead to replaying
6348 * it after replaying the log tree of the parent directory (which would replay
6349 * the snapshot delete operation).
2be63d5c
FM
6350 *
6351 * Must be called before the actual snapshot destroy operation (updates to the
6352 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6353 */
6354void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6355 struct btrfs_inode *dir)
1ec9a1ae 6356{
43663557
NB
6357 mutex_lock(&dir->log_mutex);
6358 dir->last_unlink_trans = trans->transid;
6359 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6360}
6361
6362/*
6363 * Call this after adding a new name for a file and it will properly
6364 * update the log to reflect the new name.
6365 *
d4682ba0
FM
6366 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6367 * true (because it's not used).
6368 *
6369 * Return value depends on whether @sync_log is true or false.
6370 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6371 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6372 * otherwise.
6373 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6374 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6375 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6376 * committed (without attempting to sync the log).
12fcfd22
CM
6377 */
6378int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6379 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
d4682ba0
FM
6380 struct dentry *parent,
6381 bool sync_log, struct btrfs_log_ctx *ctx)
12fcfd22 6382{
3ffbd68c 6383 struct btrfs_fs_info *fs_info = trans->fs_info;
d4682ba0 6384 int ret;
12fcfd22 6385
af4176b4
CM
6386 /*
6387 * this will force the logging code to walk the dentry chain
6388 * up for the file
6389 */
9a6509c4 6390 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6391 inode->last_unlink_trans = trans->transid;
af4176b4 6392
12fcfd22
CM
6393 /*
6394 * if this inode hasn't been logged and directory we're renaming it
6395 * from hasn't been logged, we don't need to log it
6396 */
9ca5fbfb
NB
6397 if (inode->logged_trans <= fs_info->last_trans_committed &&
6398 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
d4682ba0
FM
6399 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6400 BTRFS_DONT_NEED_LOG_SYNC;
6401
6402 if (sync_log) {
6403 struct btrfs_log_ctx ctx2;
6404
6405 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6406 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6407 LOG_INODE_EXISTS, &ctx2);
6408 if (ret == BTRFS_NO_LOG_SYNC)
6409 return BTRFS_DONT_NEED_TRANS_COMMIT;
6410 else if (ret)
6411 return BTRFS_NEED_TRANS_COMMIT;
6412
6413 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6414 if (ret)
6415 return BTRFS_NEED_TRANS_COMMIT;
6416 return BTRFS_DONT_NEED_TRANS_COMMIT;
6417 }
6418
6419 ASSERT(ctx);
6420 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6421 LOG_INODE_EXISTS, ctx);
6422 if (ret == BTRFS_NO_LOG_SYNC)
6423 return BTRFS_DONT_NEED_LOG_SYNC;
6424 else if (ret)
6425 return BTRFS_NEED_TRANS_COMMIT;
12fcfd22 6426
d4682ba0 6427 return BTRFS_NEED_LOG_SYNC;
12fcfd22
CM
6428}
6429