]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/tree-log.c
Btrfs: check if items are ordered when a leaf is marked dirty
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
c6adc9cc 21#include <linux/blkdev.h>
5dc562c5 22#include <linux/list_sort.h>
e02119d5
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "disk-io.h"
26#include "locking.h"
27#include "print-tree.h"
f186373f 28#include "backref.h"
b2950863 29#include "tree-log.h"
f186373f 30#include "hash.h"
e02119d5
CM
31
32/* magic values for the inode_only field in btrfs_log_inode:
33 *
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
36 * during log replay
37 */
38#define LOG_INODE_ALL 0
39#define LOG_INODE_EXISTS 1
40
12fcfd22
CM
41/*
42 * directory trouble cases
43 *
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
48 *
49 * mkdir foo/some_dir
50 * normal commit
51 * rename foo/some_dir foo2/some_dir
52 * mkdir foo/some_dir
53 * fsync foo/some_dir/some_file
54 *
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
58 *
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
61 *
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
65 *
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
68 *
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
71 *
72 * mkdir f1/foo
73 * normal commit
74 * rm -rf f1/foo
75 * fsync(f1)
76 *
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
81 * ugly details.
82 */
83
e02119d5
CM
84/*
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
89 *
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
92 */
93#define LOG_WALK_PIN_ONLY 0
94#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
95#define LOG_WALK_REPLAY_DIR_INDEX 2
96#define LOG_WALK_REPLAY_ALL 3
e02119d5 97
12fcfd22 98static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
99 struct btrfs_root *root, struct inode *inode,
100 int inode_only);
ec051c0f
YZ
101static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root,
103 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
104static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
105 struct btrfs_root *root,
106 struct btrfs_root *log,
107 struct btrfs_path *path,
108 u64 dirid, int del_all);
e02119d5
CM
109
110/*
111 * tree logging is a special write ahead log used to make sure that
112 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 *
114 * Full tree commits are expensive because they require commonly
115 * modified blocks to be recowed, creating many dirty pages in the
116 * extent tree an 4x-6x higher write load than ext3.
117 *
118 * Instead of doing a tree commit on every fsync, we use the
119 * key ranges and transaction ids to find items for a given file or directory
120 * that have changed in this transaction. Those items are copied into
121 * a special tree (one per subvolume root), that tree is written to disk
122 * and then the fsync is considered complete.
123 *
124 * After a crash, items are copied out of the log-tree back into the
125 * subvolume tree. Any file data extents found are recorded in the extent
126 * allocation tree, and the log-tree freed.
127 *
128 * The log tree is read three times, once to pin down all the extents it is
129 * using in ram and once, once to create all the inodes logged in the tree
130 * and once to do all the other items.
131 */
132
e02119d5
CM
133/*
134 * start a sub transaction and setup the log tree
135 * this increments the log tree writer count to make the people
136 * syncing the tree wait for us to finish
137 */
138static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
139 struct btrfs_root *root,
140 struct btrfs_log_ctx *ctx)
e02119d5 141{
8b050d35 142 int index;
e02119d5 143 int ret;
7237f183
YZ
144
145 mutex_lock(&root->log_mutex);
146 if (root->log_root) {
50471a38
MX
147 if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
148 trans->transid) {
149 ret = -EAGAIN;
150 goto out;
151 }
152
ff782e0a
JB
153 if (!root->log_start_pid) {
154 root->log_start_pid = current->pid;
27cdeb70 155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 156 } else if (root->log_start_pid != current->pid) {
27cdeb70 157 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a
JB
158 }
159
2ecb7923 160 atomic_inc(&root->log_batch);
7237f183 161 atomic_inc(&root->log_writers);
8b050d35
MX
162 if (ctx) {
163 index = root->log_transid % 2;
164 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 165 ctx->log_transid = root->log_transid;
8b050d35 166 }
7237f183
YZ
167 mutex_unlock(&root->log_mutex);
168 return 0;
169 }
e87ac136
MX
170
171 ret = 0;
e02119d5 172 mutex_lock(&root->fs_info->tree_log_mutex);
e87ac136 173 if (!root->fs_info->log_root_tree)
e02119d5 174 ret = btrfs_init_log_root_tree(trans, root->fs_info);
e87ac136
MX
175 mutex_unlock(&root->fs_info->tree_log_mutex);
176 if (ret)
177 goto out;
178
179 if (!root->log_root) {
e02119d5 180 ret = btrfs_add_log_tree(trans, root);
4a500fd1 181 if (ret)
e87ac136 182 goto out;
e02119d5 183 }
27cdeb70 184 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
e87ac136 185 root->log_start_pid = current->pid;
2ecb7923 186 atomic_inc(&root->log_batch);
7237f183 187 atomic_inc(&root->log_writers);
8b050d35
MX
188 if (ctx) {
189 index = root->log_transid % 2;
190 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 191 ctx->log_transid = root->log_transid;
8b050d35 192 }
e87ac136 193out:
7237f183 194 mutex_unlock(&root->log_mutex);
e87ac136 195 return ret;
e02119d5
CM
196}
197
198/*
199 * returns 0 if there was a log transaction running and we were able
200 * to join, or returns -ENOENT if there were not transactions
201 * in progress
202 */
203static int join_running_log_trans(struct btrfs_root *root)
204{
205 int ret = -ENOENT;
206
207 smp_mb();
208 if (!root->log_root)
209 return -ENOENT;
210
7237f183 211 mutex_lock(&root->log_mutex);
e02119d5
CM
212 if (root->log_root) {
213 ret = 0;
7237f183 214 atomic_inc(&root->log_writers);
e02119d5 215 }
7237f183 216 mutex_unlock(&root->log_mutex);
e02119d5
CM
217 return ret;
218}
219
12fcfd22
CM
220/*
221 * This either makes the current running log transaction wait
222 * until you call btrfs_end_log_trans() or it makes any future
223 * log transactions wait until you call btrfs_end_log_trans()
224 */
225int btrfs_pin_log_trans(struct btrfs_root *root)
226{
227 int ret = -ENOENT;
228
229 mutex_lock(&root->log_mutex);
230 atomic_inc(&root->log_writers);
231 mutex_unlock(&root->log_mutex);
232 return ret;
233}
234
e02119d5
CM
235/*
236 * indicate we're done making changes to the log tree
237 * and wake up anyone waiting to do a sync
238 */
143bede5 239void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 240{
7237f183
YZ
241 if (atomic_dec_and_test(&root->log_writers)) {
242 smp_mb();
243 if (waitqueue_active(&root->log_writer_wait))
244 wake_up(&root->log_writer_wait);
245 }
e02119d5
CM
246}
247
248
249/*
250 * the walk control struct is used to pass state down the chain when
251 * processing the log tree. The stage field tells us which part
252 * of the log tree processing we are currently doing. The others
253 * are state fields used for that specific part
254 */
255struct walk_control {
256 /* should we free the extent on disk when done? This is used
257 * at transaction commit time while freeing a log tree
258 */
259 int free;
260
261 /* should we write out the extent buffer? This is used
262 * while flushing the log tree to disk during a sync
263 */
264 int write;
265
266 /* should we wait for the extent buffer io to finish? Also used
267 * while flushing the log tree to disk for a sync
268 */
269 int wait;
270
271 /* pin only walk, we record which extents on disk belong to the
272 * log trees
273 */
274 int pin;
275
276 /* what stage of the replay code we're currently in */
277 int stage;
278
279 /* the root we are currently replaying */
280 struct btrfs_root *replay_dest;
281
282 /* the trans handle for the current replay */
283 struct btrfs_trans_handle *trans;
284
285 /* the function that gets used to process blocks we find in the
286 * tree. Note the extent_buffer might not be up to date when it is
287 * passed in, and it must be checked or read if you need the data
288 * inside it
289 */
290 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
291 struct walk_control *wc, u64 gen);
292};
293
294/*
295 * process_func used to pin down extents, write them or wait on them
296 */
297static int process_one_buffer(struct btrfs_root *log,
298 struct extent_buffer *eb,
299 struct walk_control *wc, u64 gen)
300{
b50c6e25
JB
301 int ret = 0;
302
8c2a1a30
JB
303 /*
304 * If this fs is mixed then we need to be able to process the leaves to
305 * pin down any logged extents, so we have to read the block.
306 */
307 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
308 ret = btrfs_read_buffer(eb, gen);
309 if (ret)
310 return ret;
311 }
312
04018de5 313 if (wc->pin)
b50c6e25
JB
314 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
315 eb->start, eb->len);
e02119d5 316
b50c6e25 317 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30
JB
318 if (wc->pin && btrfs_header_level(eb) == 0)
319 ret = btrfs_exclude_logged_extents(log, eb);
e02119d5
CM
320 if (wc->write)
321 btrfs_write_tree_block(eb);
322 if (wc->wait)
323 btrfs_wait_tree_block_writeback(eb);
324 }
b50c6e25 325 return ret;
e02119d5
CM
326}
327
328/*
329 * Item overwrite used by replay and tree logging. eb, slot and key all refer
330 * to the src data we are copying out.
331 *
332 * root is the tree we are copying into, and path is a scratch
333 * path for use in this function (it should be released on entry and
334 * will be released on exit).
335 *
336 * If the key is already in the destination tree the existing item is
337 * overwritten. If the existing item isn't big enough, it is extended.
338 * If it is too large, it is truncated.
339 *
340 * If the key isn't in the destination yet, a new item is inserted.
341 */
342static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 struct btrfs_root *root,
344 struct btrfs_path *path,
345 struct extent_buffer *eb, int slot,
346 struct btrfs_key *key)
347{
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
4bc4bee4 355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
356
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
359
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
362
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
365 if (ret < 0)
366 return ret;
367
e02119d5
CM
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
375
376 if (item_size == 0) {
b3b4aa74 377 btrfs_release_path(path);
e02119d5
CM
378 return 0;
379 }
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 382 if (!dst_copy || !src_copy) {
b3b4aa74 383 btrfs_release_path(path);
2a29edc6 384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
387 }
e02119d5
CM
388
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
390
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
395
396 kfree(dst_copy);
397 kfree(src_copy);
398 /*
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
403 */
404 if (ret == 0) {
b3b4aa74 405 btrfs_release_path(path);
e02119d5
CM
406 return 0;
407 }
408
4bc4bee4
JB
409 /*
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
412 */
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
d555438b 416 u32 mode;
4bc4bee4
JB
417
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
424
425 /*
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
429 */
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
433 }
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
d555438b 436 u32 mode;
4bc4bee4
JB
437
438 /*
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
441 */
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
444
445 /*
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
449 */
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
453 }
454insert:
b3b4aa74 455 btrfs_release_path(path);
e02119d5
CM
456 /* try to insert the key into the destination tree */
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
459
460 /* make sure any existing item is the correct size */
461 if (ret == -EEXIST) {
462 u32 found_size;
463 found_size = btrfs_item_size_nr(path->nodes[0],
464 path->slots[0]);
143bede5 465 if (found_size > item_size)
afe5fea7 466 btrfs_truncate_item(root, path, item_size, 1);
143bede5 467 else if (found_size < item_size)
4b90c680 468 btrfs_extend_item(root, path,
143bede5 469 item_size - found_size);
e02119d5 470 } else if (ret) {
4a500fd1 471 return ret;
e02119d5
CM
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
492 if (btrfs_inode_generation(eb, src_item) == 0)
493 goto no_copy;
494
495 if (overwrite_root &&
496 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
497 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
498 save_old_i_size = 1;
499 saved_i_size = btrfs_inode_size(path->nodes[0],
500 dst_item);
501 }
502 }
503
504 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
505 src_ptr, item_size);
506
507 if (save_old_i_size) {
508 struct btrfs_inode_item *dst_item;
509 dst_item = (struct btrfs_inode_item *)dst_ptr;
510 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
511 }
512
513 /* make sure the generation is filled in */
514 if (key->type == BTRFS_INODE_ITEM_KEY) {
515 struct btrfs_inode_item *dst_item;
516 dst_item = (struct btrfs_inode_item *)dst_ptr;
517 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
518 btrfs_set_inode_generation(path->nodes[0], dst_item,
519 trans->transid);
520 }
521 }
522no_copy:
523 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 524 btrfs_release_path(path);
e02119d5
CM
525 return 0;
526}
527
528/*
529 * simple helper to read an inode off the disk from a given root
530 * This can only be called for subvolume roots and not for the log
531 */
532static noinline struct inode *read_one_inode(struct btrfs_root *root,
533 u64 objectid)
534{
5d4f98a2 535 struct btrfs_key key;
e02119d5 536 struct inode *inode;
e02119d5 537
5d4f98a2
YZ
538 key.objectid = objectid;
539 key.type = BTRFS_INODE_ITEM_KEY;
540 key.offset = 0;
73f73415 541 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
542 if (IS_ERR(inode)) {
543 inode = NULL;
544 } else if (is_bad_inode(inode)) {
e02119d5
CM
545 iput(inode);
546 inode = NULL;
547 }
548 return inode;
549}
550
551/* replays a single extent in 'eb' at 'slot' with 'key' into the
552 * subvolume 'root'. path is released on entry and should be released
553 * on exit.
554 *
555 * extents in the log tree have not been allocated out of the extent
556 * tree yet. So, this completes the allocation, taking a reference
557 * as required if the extent already exists or creating a new extent
558 * if it isn't in the extent allocation tree yet.
559 *
560 * The extent is inserted into the file, dropping any existing extents
561 * from the file that overlap the new one.
562 */
563static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
564 struct btrfs_root *root,
565 struct btrfs_path *path,
566 struct extent_buffer *eb, int slot,
567 struct btrfs_key *key)
568{
569 int found_type;
e02119d5 570 u64 extent_end;
e02119d5 571 u64 start = key->offset;
4bc4bee4 572 u64 nbytes = 0;
e02119d5
CM
573 struct btrfs_file_extent_item *item;
574 struct inode *inode = NULL;
575 unsigned long size;
576 int ret = 0;
577
578 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
579 found_type = btrfs_file_extent_type(eb, item);
580
d899e052 581 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
582 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
583 nbytes = btrfs_file_extent_num_bytes(eb, item);
584 extent_end = start + nbytes;
585
586 /*
587 * We don't add to the inodes nbytes if we are prealloc or a
588 * hole.
589 */
590 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
591 nbytes = 0;
592 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 593 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 594 nbytes = btrfs_file_extent_ram_bytes(eb, item);
fda2832f 595 extent_end = ALIGN(start + size, root->sectorsize);
e02119d5
CM
596 } else {
597 ret = 0;
598 goto out;
599 }
600
601 inode = read_one_inode(root, key->objectid);
602 if (!inode) {
603 ret = -EIO;
604 goto out;
605 }
606
607 /*
608 * first check to see if we already have this extent in the
609 * file. This must be done before the btrfs_drop_extents run
610 * so we don't try to drop this extent.
611 */
33345d01 612 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
e02119d5
CM
613 start, 0);
614
d899e052
YZ
615 if (ret == 0 &&
616 (found_type == BTRFS_FILE_EXTENT_REG ||
617 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
618 struct btrfs_file_extent_item cmp1;
619 struct btrfs_file_extent_item cmp2;
620 struct btrfs_file_extent_item *existing;
621 struct extent_buffer *leaf;
622
623 leaf = path->nodes[0];
624 existing = btrfs_item_ptr(leaf, path->slots[0],
625 struct btrfs_file_extent_item);
626
627 read_extent_buffer(eb, &cmp1, (unsigned long)item,
628 sizeof(cmp1));
629 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
630 sizeof(cmp2));
631
632 /*
633 * we already have a pointer to this exact extent,
634 * we don't have to do anything
635 */
636 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 637 btrfs_release_path(path);
e02119d5
CM
638 goto out;
639 }
640 }
b3b4aa74 641 btrfs_release_path(path);
e02119d5
CM
642
643 /* drop any overlapping extents */
2671485d 644 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
645 if (ret)
646 goto out;
e02119d5 647
07d400a6
YZ
648 if (found_type == BTRFS_FILE_EXTENT_REG ||
649 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 650 u64 offset;
07d400a6
YZ
651 unsigned long dest_offset;
652 struct btrfs_key ins;
653
654 ret = btrfs_insert_empty_item(trans, root, path, key,
655 sizeof(*item));
3650860b
JB
656 if (ret)
657 goto out;
07d400a6
YZ
658 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
659 path->slots[0]);
660 copy_extent_buffer(path->nodes[0], eb, dest_offset,
661 (unsigned long)item, sizeof(*item));
662
663 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
664 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
665 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 666 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
667
668 if (ins.objectid > 0) {
669 u64 csum_start;
670 u64 csum_end;
671 LIST_HEAD(ordered_sums);
672 /*
673 * is this extent already allocated in the extent
674 * allocation tree? If so, just add a reference
675 */
676 ret = btrfs_lookup_extent(root, ins.objectid,
677 ins.offset);
678 if (ret == 0) {
679 ret = btrfs_inc_extent_ref(trans, root,
680 ins.objectid, ins.offset,
5d4f98a2 681 0, root->root_key.objectid,
66d7e7f0 682 key->objectid, offset, 0);
b50c6e25
JB
683 if (ret)
684 goto out;
07d400a6
YZ
685 } else {
686 /*
687 * insert the extent pointer in the extent
688 * allocation tree
689 */
5d4f98a2
YZ
690 ret = btrfs_alloc_logged_file_extent(trans,
691 root, root->root_key.objectid,
692 key->objectid, offset, &ins);
b50c6e25
JB
693 if (ret)
694 goto out;
07d400a6 695 }
b3b4aa74 696 btrfs_release_path(path);
07d400a6
YZ
697
698 if (btrfs_file_extent_compression(eb, item)) {
699 csum_start = ins.objectid;
700 csum_end = csum_start + ins.offset;
701 } else {
702 csum_start = ins.objectid +
703 btrfs_file_extent_offset(eb, item);
704 csum_end = csum_start +
705 btrfs_file_extent_num_bytes(eb, item);
706 }
707
708 ret = btrfs_lookup_csums_range(root->log_root,
709 csum_start, csum_end - 1,
a2de733c 710 &ordered_sums, 0);
3650860b
JB
711 if (ret)
712 goto out;
07d400a6
YZ
713 while (!list_empty(&ordered_sums)) {
714 struct btrfs_ordered_sum *sums;
715 sums = list_entry(ordered_sums.next,
716 struct btrfs_ordered_sum,
717 list);
3650860b
JB
718 if (!ret)
719 ret = btrfs_csum_file_blocks(trans,
07d400a6
YZ
720 root->fs_info->csum_root,
721 sums);
07d400a6
YZ
722 list_del(&sums->list);
723 kfree(sums);
724 }
3650860b
JB
725 if (ret)
726 goto out;
07d400a6 727 } else {
b3b4aa74 728 btrfs_release_path(path);
07d400a6
YZ
729 }
730 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
731 /* inline extents are easy, we just overwrite them */
732 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
733 if (ret)
734 goto out;
07d400a6 735 }
e02119d5 736
4bc4bee4 737 inode_add_bytes(inode, nbytes);
b9959295 738 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
739out:
740 if (inode)
741 iput(inode);
742 return ret;
743}
744
745/*
746 * when cleaning up conflicts between the directory names in the
747 * subvolume, directory names in the log and directory names in the
748 * inode back references, we may have to unlink inodes from directories.
749 *
750 * This is a helper function to do the unlink of a specific directory
751 * item
752 */
753static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
754 struct btrfs_root *root,
755 struct btrfs_path *path,
756 struct inode *dir,
757 struct btrfs_dir_item *di)
758{
759 struct inode *inode;
760 char *name;
761 int name_len;
762 struct extent_buffer *leaf;
763 struct btrfs_key location;
764 int ret;
765
766 leaf = path->nodes[0];
767
768 btrfs_dir_item_key_to_cpu(leaf, di, &location);
769 name_len = btrfs_dir_name_len(leaf, di);
770 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 771 if (!name)
772 return -ENOMEM;
773
e02119d5 774 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 775 btrfs_release_path(path);
e02119d5
CM
776
777 inode = read_one_inode(root, location.objectid);
c00e9493 778 if (!inode) {
3650860b
JB
779 ret = -EIO;
780 goto out;
c00e9493 781 }
e02119d5 782
ec051c0f 783 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
784 if (ret)
785 goto out;
12fcfd22 786
e02119d5 787 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3650860b
JB
788 if (ret)
789 goto out;
ada9af21
FDBM
790 else
791 ret = btrfs_run_delayed_items(trans, root);
3650860b 792out:
e02119d5 793 kfree(name);
e02119d5
CM
794 iput(inode);
795 return ret;
796}
797
798/*
799 * helper function to see if a given name and sequence number found
800 * in an inode back reference are already in a directory and correctly
801 * point to this inode
802 */
803static noinline int inode_in_dir(struct btrfs_root *root,
804 struct btrfs_path *path,
805 u64 dirid, u64 objectid, u64 index,
806 const char *name, int name_len)
807{
808 struct btrfs_dir_item *di;
809 struct btrfs_key location;
810 int match = 0;
811
812 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
813 index, name, name_len, 0);
814 if (di && !IS_ERR(di)) {
815 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
816 if (location.objectid != objectid)
817 goto out;
818 } else
819 goto out;
b3b4aa74 820 btrfs_release_path(path);
e02119d5
CM
821
822 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
823 if (di && !IS_ERR(di)) {
824 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
825 if (location.objectid != objectid)
826 goto out;
827 } else
828 goto out;
829 match = 1;
830out:
b3b4aa74 831 btrfs_release_path(path);
e02119d5
CM
832 return match;
833}
834
835/*
836 * helper function to check a log tree for a named back reference in
837 * an inode. This is used to decide if a back reference that is
838 * found in the subvolume conflicts with what we find in the log.
839 *
840 * inode backreferences may have multiple refs in a single item,
841 * during replay we process one reference at a time, and we don't
842 * want to delete valid links to a file from the subvolume if that
843 * link is also in the log.
844 */
845static noinline int backref_in_log(struct btrfs_root *log,
846 struct btrfs_key *key,
f186373f 847 u64 ref_objectid,
e02119d5
CM
848 char *name, int namelen)
849{
850 struct btrfs_path *path;
851 struct btrfs_inode_ref *ref;
852 unsigned long ptr;
853 unsigned long ptr_end;
854 unsigned long name_ptr;
855 int found_name_len;
856 int item_size;
857 int ret;
858 int match = 0;
859
860 path = btrfs_alloc_path();
2a29edc6 861 if (!path)
862 return -ENOMEM;
863
e02119d5
CM
864 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
865 if (ret != 0)
866 goto out;
867
e02119d5 868 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
869
870 if (key->type == BTRFS_INODE_EXTREF_KEY) {
871 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
872 name, namelen, NULL))
873 match = 1;
874
875 goto out;
876 }
877
878 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
879 ptr_end = ptr + item_size;
880 while (ptr < ptr_end) {
881 ref = (struct btrfs_inode_ref *)ptr;
882 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
883 if (found_name_len == namelen) {
884 name_ptr = (unsigned long)(ref + 1);
885 ret = memcmp_extent_buffer(path->nodes[0], name,
886 name_ptr, namelen);
887 if (ret == 0) {
888 match = 1;
889 goto out;
890 }
891 }
892 ptr = (unsigned long)(ref + 1) + found_name_len;
893 }
894out:
895 btrfs_free_path(path);
896 return match;
897}
898
5a1d7843 899static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 900 struct btrfs_root *root,
e02119d5 901 struct btrfs_path *path,
5a1d7843
JS
902 struct btrfs_root *log_root,
903 struct inode *dir, struct inode *inode,
5a1d7843 904 struct extent_buffer *eb,
f186373f
MF
905 u64 inode_objectid, u64 parent_objectid,
906 u64 ref_index, char *name, int namelen,
907 int *search_done)
e02119d5 908{
34f3e4f2 909 int ret;
f186373f
MF
910 char *victim_name;
911 int victim_name_len;
912 struct extent_buffer *leaf;
5a1d7843 913 struct btrfs_dir_item *di;
f186373f
MF
914 struct btrfs_key search_key;
915 struct btrfs_inode_extref *extref;
c622ae60 916
f186373f
MF
917again:
918 /* Search old style refs */
919 search_key.objectid = inode_objectid;
920 search_key.type = BTRFS_INODE_REF_KEY;
921 search_key.offset = parent_objectid;
922 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 923 if (ret == 0) {
e02119d5
CM
924 struct btrfs_inode_ref *victim_ref;
925 unsigned long ptr;
926 unsigned long ptr_end;
f186373f
MF
927
928 leaf = path->nodes[0];
e02119d5
CM
929
930 /* are we trying to overwrite a back ref for the root directory
931 * if so, just jump out, we're done
932 */
f186373f 933 if (search_key.objectid == search_key.offset)
5a1d7843 934 return 1;
e02119d5
CM
935
936 /* check all the names in this back reference to see
937 * if they are in the log. if so, we allow them to stay
938 * otherwise they must be unlinked as a conflict
939 */
940 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
941 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 942 while (ptr < ptr_end) {
e02119d5
CM
943 victim_ref = (struct btrfs_inode_ref *)ptr;
944 victim_name_len = btrfs_inode_ref_name_len(leaf,
945 victim_ref);
946 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
947 if (!victim_name)
948 return -ENOMEM;
e02119d5
CM
949
950 read_extent_buffer(leaf, victim_name,
951 (unsigned long)(victim_ref + 1),
952 victim_name_len);
953
f186373f
MF
954 if (!backref_in_log(log_root, &search_key,
955 parent_objectid,
956 victim_name,
e02119d5 957 victim_name_len)) {
8b558c5f 958 inc_nlink(inode);
b3b4aa74 959 btrfs_release_path(path);
12fcfd22 960
e02119d5
CM
961 ret = btrfs_unlink_inode(trans, root, dir,
962 inode, victim_name,
963 victim_name_len);
f186373f 964 kfree(victim_name);
3650860b
JB
965 if (ret)
966 return ret;
ada9af21
FDBM
967 ret = btrfs_run_delayed_items(trans, root);
968 if (ret)
969 return ret;
f186373f
MF
970 *search_done = 1;
971 goto again;
e02119d5
CM
972 }
973 kfree(victim_name);
f186373f 974
e02119d5
CM
975 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
976 }
e02119d5 977
c622ae60 978 /*
979 * NOTE: we have searched root tree and checked the
980 * coresponding ref, it does not need to check again.
981 */
5a1d7843 982 *search_done = 1;
e02119d5 983 }
b3b4aa74 984 btrfs_release_path(path);
e02119d5 985
f186373f
MF
986 /* Same search but for extended refs */
987 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
988 inode_objectid, parent_objectid, 0,
989 0);
990 if (!IS_ERR_OR_NULL(extref)) {
991 u32 item_size;
992 u32 cur_offset = 0;
993 unsigned long base;
994 struct inode *victim_parent;
995
996 leaf = path->nodes[0];
997
998 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
999 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1000
1001 while (cur_offset < item_size) {
1002 extref = (struct btrfs_inode_extref *)base + cur_offset;
1003
1004 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1005
1006 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1007 goto next;
1008
1009 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1010 if (!victim_name)
1011 return -ENOMEM;
f186373f
MF
1012 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1013 victim_name_len);
1014
1015 search_key.objectid = inode_objectid;
1016 search_key.type = BTRFS_INODE_EXTREF_KEY;
1017 search_key.offset = btrfs_extref_hash(parent_objectid,
1018 victim_name,
1019 victim_name_len);
1020 ret = 0;
1021 if (!backref_in_log(log_root, &search_key,
1022 parent_objectid, victim_name,
1023 victim_name_len)) {
1024 ret = -ENOENT;
1025 victim_parent = read_one_inode(root,
1026 parent_objectid);
1027 if (victim_parent) {
8b558c5f 1028 inc_nlink(inode);
f186373f
MF
1029 btrfs_release_path(path);
1030
1031 ret = btrfs_unlink_inode(trans, root,
1032 victim_parent,
1033 inode,
1034 victim_name,
1035 victim_name_len);
ada9af21
FDBM
1036 if (!ret)
1037 ret = btrfs_run_delayed_items(
1038 trans, root);
f186373f 1039 }
f186373f
MF
1040 iput(victim_parent);
1041 kfree(victim_name);
3650860b
JB
1042 if (ret)
1043 return ret;
f186373f
MF
1044 *search_done = 1;
1045 goto again;
1046 }
1047 kfree(victim_name);
3650860b
JB
1048 if (ret)
1049 return ret;
f186373f
MF
1050next:
1051 cur_offset += victim_name_len + sizeof(*extref);
1052 }
1053 *search_done = 1;
1054 }
1055 btrfs_release_path(path);
1056
34f3e4f2 1057 /* look for a conflicting sequence number */
1058 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1059 ref_index, name, namelen, 0);
34f3e4f2 1060 if (di && !IS_ERR(di)) {
1061 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1062 if (ret)
1063 return ret;
34f3e4f2 1064 }
1065 btrfs_release_path(path);
1066
1067 /* look for a conflicing name */
1068 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1069 name, namelen, 0);
1070 if (di && !IS_ERR(di)) {
1071 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1072 if (ret)
1073 return ret;
34f3e4f2 1074 }
1075 btrfs_release_path(path);
1076
5a1d7843
JS
1077 return 0;
1078}
e02119d5 1079
f186373f
MF
1080static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1081 u32 *namelen, char **name, u64 *index,
1082 u64 *parent_objectid)
1083{
1084 struct btrfs_inode_extref *extref;
1085
1086 extref = (struct btrfs_inode_extref *)ref_ptr;
1087
1088 *namelen = btrfs_inode_extref_name_len(eb, extref);
1089 *name = kmalloc(*namelen, GFP_NOFS);
1090 if (*name == NULL)
1091 return -ENOMEM;
1092
1093 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1094 *namelen);
1095
1096 *index = btrfs_inode_extref_index(eb, extref);
1097 if (parent_objectid)
1098 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1099
1100 return 0;
1101}
1102
1103static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1104 u32 *namelen, char **name, u64 *index)
1105{
1106 struct btrfs_inode_ref *ref;
1107
1108 ref = (struct btrfs_inode_ref *)ref_ptr;
1109
1110 *namelen = btrfs_inode_ref_name_len(eb, ref);
1111 *name = kmalloc(*namelen, GFP_NOFS);
1112 if (*name == NULL)
1113 return -ENOMEM;
1114
1115 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1116
1117 *index = btrfs_inode_ref_index(eb, ref);
1118
1119 return 0;
1120}
1121
5a1d7843
JS
1122/*
1123 * replay one inode back reference item found in the log tree.
1124 * eb, slot and key refer to the buffer and key found in the log tree.
1125 * root is the destination we are replaying into, and path is for temp
1126 * use by this function. (it should be released on return).
1127 */
1128static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1129 struct btrfs_root *root,
1130 struct btrfs_root *log,
1131 struct btrfs_path *path,
1132 struct extent_buffer *eb, int slot,
1133 struct btrfs_key *key)
1134{
03b2f08b
GB
1135 struct inode *dir = NULL;
1136 struct inode *inode = NULL;
5a1d7843
JS
1137 unsigned long ref_ptr;
1138 unsigned long ref_end;
03b2f08b 1139 char *name = NULL;
5a1d7843
JS
1140 int namelen;
1141 int ret;
1142 int search_done = 0;
f186373f
MF
1143 int log_ref_ver = 0;
1144 u64 parent_objectid;
1145 u64 inode_objectid;
f46dbe3d 1146 u64 ref_index = 0;
f186373f
MF
1147 int ref_struct_size;
1148
1149 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1150 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1151
1152 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1153 struct btrfs_inode_extref *r;
1154
1155 ref_struct_size = sizeof(struct btrfs_inode_extref);
1156 log_ref_ver = 1;
1157 r = (struct btrfs_inode_extref *)ref_ptr;
1158 parent_objectid = btrfs_inode_extref_parent(eb, r);
1159 } else {
1160 ref_struct_size = sizeof(struct btrfs_inode_ref);
1161 parent_objectid = key->offset;
1162 }
1163 inode_objectid = key->objectid;
e02119d5 1164
5a1d7843
JS
1165 /*
1166 * it is possible that we didn't log all the parent directories
1167 * for a given inode. If we don't find the dir, just don't
1168 * copy the back ref in. The link count fixup code will take
1169 * care of the rest
1170 */
f186373f 1171 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1172 if (!dir) {
1173 ret = -ENOENT;
1174 goto out;
1175 }
5a1d7843 1176
f186373f 1177 inode = read_one_inode(root, inode_objectid);
5a1d7843 1178 if (!inode) {
03b2f08b
GB
1179 ret = -EIO;
1180 goto out;
5a1d7843
JS
1181 }
1182
5a1d7843 1183 while (ref_ptr < ref_end) {
f186373f
MF
1184 if (log_ref_ver) {
1185 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1186 &ref_index, &parent_objectid);
1187 /*
1188 * parent object can change from one array
1189 * item to another.
1190 */
1191 if (!dir)
1192 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1193 if (!dir) {
1194 ret = -ENOENT;
1195 goto out;
1196 }
f186373f
MF
1197 } else {
1198 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1199 &ref_index);
1200 }
1201 if (ret)
03b2f08b 1202 goto out;
5a1d7843
JS
1203
1204 /* if we already have a perfect match, we're done */
1205 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
f186373f 1206 ref_index, name, namelen)) {
5a1d7843
JS
1207 /*
1208 * look for a conflicting back reference in the
1209 * metadata. if we find one we have to unlink that name
1210 * of the file before we add our new link. Later on, we
1211 * overwrite any existing back reference, and we don't
1212 * want to create dangling pointers in the directory.
1213 */
1214
1215 if (!search_done) {
1216 ret = __add_inode_ref(trans, root, path, log,
f186373f
MF
1217 dir, inode, eb,
1218 inode_objectid,
1219 parent_objectid,
1220 ref_index, name, namelen,
5a1d7843 1221 &search_done);
03b2f08b
GB
1222 if (ret) {
1223 if (ret == 1)
1224 ret = 0;
3650860b
JB
1225 goto out;
1226 }
5a1d7843
JS
1227 }
1228
1229 /* insert our name */
1230 ret = btrfs_add_link(trans, dir, inode, name, namelen,
f186373f 1231 0, ref_index);
3650860b
JB
1232 if (ret)
1233 goto out;
5a1d7843
JS
1234
1235 btrfs_update_inode(trans, root, inode);
1236 }
1237
f186373f 1238 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1239 kfree(name);
03b2f08b 1240 name = NULL;
f186373f
MF
1241 if (log_ref_ver) {
1242 iput(dir);
1243 dir = NULL;
1244 }
5a1d7843 1245 }
e02119d5
CM
1246
1247 /* finally write the back reference in the inode */
1248 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1249out:
b3b4aa74 1250 btrfs_release_path(path);
03b2f08b 1251 kfree(name);
e02119d5
CM
1252 iput(dir);
1253 iput(inode);
3650860b 1254 return ret;
e02119d5
CM
1255}
1256
c71bf099
YZ
1257static int insert_orphan_item(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root, u64 offset)
1259{
1260 int ret;
3f870c28
KN
1261 ret = btrfs_find_item(root, NULL, BTRFS_ORPHAN_OBJECTID,
1262 offset, BTRFS_ORPHAN_ITEM_KEY, NULL);
c71bf099
YZ
1263 if (ret > 0)
1264 ret = btrfs_insert_orphan_item(trans, root, offset);
1265 return ret;
1266}
1267
f186373f
MF
1268static int count_inode_extrefs(struct btrfs_root *root,
1269 struct inode *inode, struct btrfs_path *path)
1270{
1271 int ret = 0;
1272 int name_len;
1273 unsigned int nlink = 0;
1274 u32 item_size;
1275 u32 cur_offset = 0;
1276 u64 inode_objectid = btrfs_ino(inode);
1277 u64 offset = 0;
1278 unsigned long ptr;
1279 struct btrfs_inode_extref *extref;
1280 struct extent_buffer *leaf;
1281
1282 while (1) {
1283 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1284 &extref, &offset);
1285 if (ret)
1286 break;
c71bf099 1287
f186373f
MF
1288 leaf = path->nodes[0];
1289 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1290 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1291
1292 while (cur_offset < item_size) {
1293 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1294 name_len = btrfs_inode_extref_name_len(leaf, extref);
1295
1296 nlink++;
1297
1298 cur_offset += name_len + sizeof(*extref);
1299 }
1300
1301 offset++;
1302 btrfs_release_path(path);
1303 }
1304 btrfs_release_path(path);
1305
1306 if (ret < 0)
1307 return ret;
1308 return nlink;
1309}
1310
1311static int count_inode_refs(struct btrfs_root *root,
1312 struct inode *inode, struct btrfs_path *path)
e02119d5 1313{
e02119d5
CM
1314 int ret;
1315 struct btrfs_key key;
f186373f 1316 unsigned int nlink = 0;
e02119d5
CM
1317 unsigned long ptr;
1318 unsigned long ptr_end;
1319 int name_len;
33345d01 1320 u64 ino = btrfs_ino(inode);
e02119d5 1321
33345d01 1322 key.objectid = ino;
e02119d5
CM
1323 key.type = BTRFS_INODE_REF_KEY;
1324 key.offset = (u64)-1;
1325
d397712b 1326 while (1) {
e02119d5
CM
1327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1328 if (ret < 0)
1329 break;
1330 if (ret > 0) {
1331 if (path->slots[0] == 0)
1332 break;
1333 path->slots[0]--;
1334 }
e93ae26f 1335process_slot:
e02119d5
CM
1336 btrfs_item_key_to_cpu(path->nodes[0], &key,
1337 path->slots[0]);
33345d01 1338 if (key.objectid != ino ||
e02119d5
CM
1339 key.type != BTRFS_INODE_REF_KEY)
1340 break;
1341 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1342 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1343 path->slots[0]);
d397712b 1344 while (ptr < ptr_end) {
e02119d5
CM
1345 struct btrfs_inode_ref *ref;
1346
1347 ref = (struct btrfs_inode_ref *)ptr;
1348 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1349 ref);
1350 ptr = (unsigned long)(ref + 1) + name_len;
1351 nlink++;
1352 }
1353
1354 if (key.offset == 0)
1355 break;
e93ae26f
FDBM
1356 if (path->slots[0] > 0) {
1357 path->slots[0]--;
1358 goto process_slot;
1359 }
e02119d5 1360 key.offset--;
b3b4aa74 1361 btrfs_release_path(path);
e02119d5 1362 }
b3b4aa74 1363 btrfs_release_path(path);
f186373f
MF
1364
1365 return nlink;
1366}
1367
1368/*
1369 * There are a few corners where the link count of the file can't
1370 * be properly maintained during replay. So, instead of adding
1371 * lots of complexity to the log code, we just scan the backrefs
1372 * for any file that has been through replay.
1373 *
1374 * The scan will update the link count on the inode to reflect the
1375 * number of back refs found. If it goes down to zero, the iput
1376 * will free the inode.
1377 */
1378static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1379 struct btrfs_root *root,
1380 struct inode *inode)
1381{
1382 struct btrfs_path *path;
1383 int ret;
1384 u64 nlink = 0;
1385 u64 ino = btrfs_ino(inode);
1386
1387 path = btrfs_alloc_path();
1388 if (!path)
1389 return -ENOMEM;
1390
1391 ret = count_inode_refs(root, inode, path);
1392 if (ret < 0)
1393 goto out;
1394
1395 nlink = ret;
1396
1397 ret = count_inode_extrefs(root, inode, path);
1398 if (ret == -ENOENT)
1399 ret = 0;
1400
1401 if (ret < 0)
1402 goto out;
1403
1404 nlink += ret;
1405
1406 ret = 0;
1407
e02119d5 1408 if (nlink != inode->i_nlink) {
bfe86848 1409 set_nlink(inode, nlink);
e02119d5
CM
1410 btrfs_update_inode(trans, root, inode);
1411 }
8d5bf1cb 1412 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1413
c71bf099
YZ
1414 if (inode->i_nlink == 0) {
1415 if (S_ISDIR(inode->i_mode)) {
1416 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1417 ino, 1);
3650860b
JB
1418 if (ret)
1419 goto out;
c71bf099 1420 }
33345d01 1421 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1422 }
12fcfd22 1423
f186373f
MF
1424out:
1425 btrfs_free_path(path);
1426 return ret;
e02119d5
CM
1427}
1428
1429static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1430 struct btrfs_root *root,
1431 struct btrfs_path *path)
1432{
1433 int ret;
1434 struct btrfs_key key;
1435 struct inode *inode;
1436
1437 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1438 key.type = BTRFS_ORPHAN_ITEM_KEY;
1439 key.offset = (u64)-1;
d397712b 1440 while (1) {
e02119d5
CM
1441 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1442 if (ret < 0)
1443 break;
1444
1445 if (ret == 1) {
1446 if (path->slots[0] == 0)
1447 break;
1448 path->slots[0]--;
1449 }
1450
1451 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1452 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1453 key.type != BTRFS_ORPHAN_ITEM_KEY)
1454 break;
1455
1456 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1457 if (ret)
1458 goto out;
e02119d5 1459
b3b4aa74 1460 btrfs_release_path(path);
e02119d5 1461 inode = read_one_inode(root, key.offset);
c00e9493
TI
1462 if (!inode)
1463 return -EIO;
e02119d5
CM
1464
1465 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1466 iput(inode);
3650860b
JB
1467 if (ret)
1468 goto out;
e02119d5 1469
12fcfd22
CM
1470 /*
1471 * fixup on a directory may create new entries,
1472 * make sure we always look for the highset possible
1473 * offset
1474 */
1475 key.offset = (u64)-1;
e02119d5 1476 }
65a246c5
TI
1477 ret = 0;
1478out:
b3b4aa74 1479 btrfs_release_path(path);
65a246c5 1480 return ret;
e02119d5
CM
1481}
1482
1483
1484/*
1485 * record a given inode in the fixup dir so we can check its link
1486 * count when replay is done. The link count is incremented here
1487 * so the inode won't go away until we check it
1488 */
1489static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1490 struct btrfs_root *root,
1491 struct btrfs_path *path,
1492 u64 objectid)
1493{
1494 struct btrfs_key key;
1495 int ret = 0;
1496 struct inode *inode;
1497
1498 inode = read_one_inode(root, objectid);
c00e9493
TI
1499 if (!inode)
1500 return -EIO;
e02119d5
CM
1501
1502 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1503 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1504 key.offset = objectid;
1505
1506 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1507
b3b4aa74 1508 btrfs_release_path(path);
e02119d5 1509 if (ret == 0) {
9bf7a489
JB
1510 if (!inode->i_nlink)
1511 set_nlink(inode, 1);
1512 else
8b558c5f 1513 inc_nlink(inode);
b9959295 1514 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1515 } else if (ret == -EEXIST) {
1516 ret = 0;
1517 } else {
3650860b 1518 BUG(); /* Logic Error */
e02119d5
CM
1519 }
1520 iput(inode);
1521
1522 return ret;
1523}
1524
1525/*
1526 * when replaying the log for a directory, we only insert names
1527 * for inodes that actually exist. This means an fsync on a directory
1528 * does not implicitly fsync all the new files in it
1529 */
1530static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *root,
1532 struct btrfs_path *path,
1533 u64 dirid, u64 index,
1534 char *name, int name_len, u8 type,
1535 struct btrfs_key *location)
1536{
1537 struct inode *inode;
1538 struct inode *dir;
1539 int ret;
1540
1541 inode = read_one_inode(root, location->objectid);
1542 if (!inode)
1543 return -ENOENT;
1544
1545 dir = read_one_inode(root, dirid);
1546 if (!dir) {
1547 iput(inode);
1548 return -EIO;
1549 }
d555438b 1550
e02119d5
CM
1551 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1552
1553 /* FIXME, put inode into FIXUP list */
1554
1555 iput(inode);
1556 iput(dir);
1557 return ret;
1558}
1559
1560/*
1561 * take a single entry in a log directory item and replay it into
1562 * the subvolume.
1563 *
1564 * if a conflicting item exists in the subdirectory already,
1565 * the inode it points to is unlinked and put into the link count
1566 * fix up tree.
1567 *
1568 * If a name from the log points to a file or directory that does
1569 * not exist in the FS, it is skipped. fsyncs on directories
1570 * do not force down inodes inside that directory, just changes to the
1571 * names or unlinks in a directory.
1572 */
1573static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1574 struct btrfs_root *root,
1575 struct btrfs_path *path,
1576 struct extent_buffer *eb,
1577 struct btrfs_dir_item *di,
1578 struct btrfs_key *key)
1579{
1580 char *name;
1581 int name_len;
1582 struct btrfs_dir_item *dst_di;
1583 struct btrfs_key found_key;
1584 struct btrfs_key log_key;
1585 struct inode *dir;
e02119d5 1586 u8 log_type;
4bef0848 1587 int exists;
3650860b 1588 int ret = 0;
d555438b 1589 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
e02119d5
CM
1590
1591 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1592 if (!dir)
1593 return -EIO;
e02119d5
CM
1594
1595 name_len = btrfs_dir_name_len(eb, di);
1596 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1597 if (!name) {
1598 ret = -ENOMEM;
1599 goto out;
1600 }
2a29edc6 1601
e02119d5
CM
1602 log_type = btrfs_dir_type(eb, di);
1603 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1604 name_len);
1605
1606 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1607 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1608 if (exists == 0)
1609 exists = 1;
1610 else
1611 exists = 0;
b3b4aa74 1612 btrfs_release_path(path);
4bef0848 1613
e02119d5
CM
1614 if (key->type == BTRFS_DIR_ITEM_KEY) {
1615 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1616 name, name_len, 1);
d397712b 1617 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1618 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1619 key->objectid,
1620 key->offset, name,
1621 name_len, 1);
1622 } else {
3650860b
JB
1623 /* Corruption */
1624 ret = -EINVAL;
1625 goto out;
e02119d5 1626 }
c704005d 1627 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1628 /* we need a sequence number to insert, so we only
1629 * do inserts for the BTRFS_DIR_INDEX_KEY types
1630 */
1631 if (key->type != BTRFS_DIR_INDEX_KEY)
1632 goto out;
1633 goto insert;
1634 }
1635
1636 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1637 /* the existing item matches the logged item */
1638 if (found_key.objectid == log_key.objectid &&
1639 found_key.type == log_key.type &&
1640 found_key.offset == log_key.offset &&
1641 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1642 goto out;
1643 }
1644
1645 /*
1646 * don't drop the conflicting directory entry if the inode
1647 * for the new entry doesn't exist
1648 */
4bef0848 1649 if (!exists)
e02119d5
CM
1650 goto out;
1651
e02119d5 1652 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
3650860b
JB
1653 if (ret)
1654 goto out;
e02119d5
CM
1655
1656 if (key->type == BTRFS_DIR_INDEX_KEY)
1657 goto insert;
1658out:
b3b4aa74 1659 btrfs_release_path(path);
d555438b
JB
1660 if (!ret && update_size) {
1661 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1662 ret = btrfs_update_inode(trans, root, dir);
1663 }
e02119d5
CM
1664 kfree(name);
1665 iput(dir);
3650860b 1666 return ret;
e02119d5
CM
1667
1668insert:
b3b4aa74 1669 btrfs_release_path(path);
e02119d5
CM
1670 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1671 name, name_len, log_type, &log_key);
3650860b
JB
1672 if (ret && ret != -ENOENT)
1673 goto out;
d555438b 1674 update_size = false;
3650860b 1675 ret = 0;
e02119d5
CM
1676 goto out;
1677}
1678
1679/*
1680 * find all the names in a directory item and reconcile them into
1681 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1682 * one name in a directory item, but the same code gets used for
1683 * both directory index types
1684 */
1685static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1686 struct btrfs_root *root,
1687 struct btrfs_path *path,
1688 struct extent_buffer *eb, int slot,
1689 struct btrfs_key *key)
1690{
1691 int ret;
1692 u32 item_size = btrfs_item_size_nr(eb, slot);
1693 struct btrfs_dir_item *di;
1694 int name_len;
1695 unsigned long ptr;
1696 unsigned long ptr_end;
1697
1698 ptr = btrfs_item_ptr_offset(eb, slot);
1699 ptr_end = ptr + item_size;
d397712b 1700 while (ptr < ptr_end) {
e02119d5 1701 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1702 if (verify_dir_item(root, eb, di))
1703 return -EIO;
e02119d5
CM
1704 name_len = btrfs_dir_name_len(eb, di);
1705 ret = replay_one_name(trans, root, path, eb, di, key);
3650860b
JB
1706 if (ret)
1707 return ret;
e02119d5
CM
1708 ptr = (unsigned long)(di + 1);
1709 ptr += name_len;
1710 }
1711 return 0;
1712}
1713
1714/*
1715 * directory replay has two parts. There are the standard directory
1716 * items in the log copied from the subvolume, and range items
1717 * created in the log while the subvolume was logged.
1718 *
1719 * The range items tell us which parts of the key space the log
1720 * is authoritative for. During replay, if a key in the subvolume
1721 * directory is in a logged range item, but not actually in the log
1722 * that means it was deleted from the directory before the fsync
1723 * and should be removed.
1724 */
1725static noinline int find_dir_range(struct btrfs_root *root,
1726 struct btrfs_path *path,
1727 u64 dirid, int key_type,
1728 u64 *start_ret, u64 *end_ret)
1729{
1730 struct btrfs_key key;
1731 u64 found_end;
1732 struct btrfs_dir_log_item *item;
1733 int ret;
1734 int nritems;
1735
1736 if (*start_ret == (u64)-1)
1737 return 1;
1738
1739 key.objectid = dirid;
1740 key.type = key_type;
1741 key.offset = *start_ret;
1742
1743 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1744 if (ret < 0)
1745 goto out;
1746 if (ret > 0) {
1747 if (path->slots[0] == 0)
1748 goto out;
1749 path->slots[0]--;
1750 }
1751 if (ret != 0)
1752 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1753
1754 if (key.type != key_type || key.objectid != dirid) {
1755 ret = 1;
1756 goto next;
1757 }
1758 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1759 struct btrfs_dir_log_item);
1760 found_end = btrfs_dir_log_end(path->nodes[0], item);
1761
1762 if (*start_ret >= key.offset && *start_ret <= found_end) {
1763 ret = 0;
1764 *start_ret = key.offset;
1765 *end_ret = found_end;
1766 goto out;
1767 }
1768 ret = 1;
1769next:
1770 /* check the next slot in the tree to see if it is a valid item */
1771 nritems = btrfs_header_nritems(path->nodes[0]);
1772 if (path->slots[0] >= nritems) {
1773 ret = btrfs_next_leaf(root, path);
1774 if (ret)
1775 goto out;
1776 } else {
1777 path->slots[0]++;
1778 }
1779
1780 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1781
1782 if (key.type != key_type || key.objectid != dirid) {
1783 ret = 1;
1784 goto out;
1785 }
1786 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787 struct btrfs_dir_log_item);
1788 found_end = btrfs_dir_log_end(path->nodes[0], item);
1789 *start_ret = key.offset;
1790 *end_ret = found_end;
1791 ret = 0;
1792out:
b3b4aa74 1793 btrfs_release_path(path);
e02119d5
CM
1794 return ret;
1795}
1796
1797/*
1798 * this looks for a given directory item in the log. If the directory
1799 * item is not in the log, the item is removed and the inode it points
1800 * to is unlinked
1801 */
1802static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1803 struct btrfs_root *root,
1804 struct btrfs_root *log,
1805 struct btrfs_path *path,
1806 struct btrfs_path *log_path,
1807 struct inode *dir,
1808 struct btrfs_key *dir_key)
1809{
1810 int ret;
1811 struct extent_buffer *eb;
1812 int slot;
1813 u32 item_size;
1814 struct btrfs_dir_item *di;
1815 struct btrfs_dir_item *log_di;
1816 int name_len;
1817 unsigned long ptr;
1818 unsigned long ptr_end;
1819 char *name;
1820 struct inode *inode;
1821 struct btrfs_key location;
1822
1823again:
1824 eb = path->nodes[0];
1825 slot = path->slots[0];
1826 item_size = btrfs_item_size_nr(eb, slot);
1827 ptr = btrfs_item_ptr_offset(eb, slot);
1828 ptr_end = ptr + item_size;
d397712b 1829 while (ptr < ptr_end) {
e02119d5 1830 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1831 if (verify_dir_item(root, eb, di)) {
1832 ret = -EIO;
1833 goto out;
1834 }
1835
e02119d5
CM
1836 name_len = btrfs_dir_name_len(eb, di);
1837 name = kmalloc(name_len, GFP_NOFS);
1838 if (!name) {
1839 ret = -ENOMEM;
1840 goto out;
1841 }
1842 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1843 name_len);
1844 log_di = NULL;
12fcfd22 1845 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1846 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1847 dir_key->objectid,
1848 name, name_len, 0);
12fcfd22 1849 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1850 log_di = btrfs_lookup_dir_index_item(trans, log,
1851 log_path,
1852 dir_key->objectid,
1853 dir_key->offset,
1854 name, name_len, 0);
1855 }
269d040f 1856 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 1857 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
1858 btrfs_release_path(path);
1859 btrfs_release_path(log_path);
e02119d5 1860 inode = read_one_inode(root, location.objectid);
c00e9493
TI
1861 if (!inode) {
1862 kfree(name);
1863 return -EIO;
1864 }
e02119d5
CM
1865
1866 ret = link_to_fixup_dir(trans, root,
1867 path, location.objectid);
3650860b
JB
1868 if (ret) {
1869 kfree(name);
1870 iput(inode);
1871 goto out;
1872 }
1873
8b558c5f 1874 inc_nlink(inode);
e02119d5
CM
1875 ret = btrfs_unlink_inode(trans, root, dir, inode,
1876 name, name_len);
3650860b 1877 if (!ret)
ada9af21 1878 ret = btrfs_run_delayed_items(trans, root);
e02119d5
CM
1879 kfree(name);
1880 iput(inode);
3650860b
JB
1881 if (ret)
1882 goto out;
e02119d5
CM
1883
1884 /* there might still be more names under this key
1885 * check and repeat if required
1886 */
1887 ret = btrfs_search_slot(NULL, root, dir_key, path,
1888 0, 0);
1889 if (ret == 0)
1890 goto again;
1891 ret = 0;
1892 goto out;
269d040f
FDBM
1893 } else if (IS_ERR(log_di)) {
1894 kfree(name);
1895 return PTR_ERR(log_di);
e02119d5 1896 }
b3b4aa74 1897 btrfs_release_path(log_path);
e02119d5
CM
1898 kfree(name);
1899
1900 ptr = (unsigned long)(di + 1);
1901 ptr += name_len;
1902 }
1903 ret = 0;
1904out:
b3b4aa74
DS
1905 btrfs_release_path(path);
1906 btrfs_release_path(log_path);
e02119d5
CM
1907 return ret;
1908}
1909
1910/*
1911 * deletion replay happens before we copy any new directory items
1912 * out of the log or out of backreferences from inodes. It
1913 * scans the log to find ranges of keys that log is authoritative for,
1914 * and then scans the directory to find items in those ranges that are
1915 * not present in the log.
1916 *
1917 * Anything we don't find in the log is unlinked and removed from the
1918 * directory.
1919 */
1920static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1921 struct btrfs_root *root,
1922 struct btrfs_root *log,
1923 struct btrfs_path *path,
12fcfd22 1924 u64 dirid, int del_all)
e02119d5
CM
1925{
1926 u64 range_start;
1927 u64 range_end;
1928 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1929 int ret = 0;
1930 struct btrfs_key dir_key;
1931 struct btrfs_key found_key;
1932 struct btrfs_path *log_path;
1933 struct inode *dir;
1934
1935 dir_key.objectid = dirid;
1936 dir_key.type = BTRFS_DIR_ITEM_KEY;
1937 log_path = btrfs_alloc_path();
1938 if (!log_path)
1939 return -ENOMEM;
1940
1941 dir = read_one_inode(root, dirid);
1942 /* it isn't an error if the inode isn't there, that can happen
1943 * because we replay the deletes before we copy in the inode item
1944 * from the log
1945 */
1946 if (!dir) {
1947 btrfs_free_path(log_path);
1948 return 0;
1949 }
1950again:
1951 range_start = 0;
1952 range_end = 0;
d397712b 1953 while (1) {
12fcfd22
CM
1954 if (del_all)
1955 range_end = (u64)-1;
1956 else {
1957 ret = find_dir_range(log, path, dirid, key_type,
1958 &range_start, &range_end);
1959 if (ret != 0)
1960 break;
1961 }
e02119d5
CM
1962
1963 dir_key.offset = range_start;
d397712b 1964 while (1) {
e02119d5
CM
1965 int nritems;
1966 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1967 0, 0);
1968 if (ret < 0)
1969 goto out;
1970
1971 nritems = btrfs_header_nritems(path->nodes[0]);
1972 if (path->slots[0] >= nritems) {
1973 ret = btrfs_next_leaf(root, path);
1974 if (ret)
1975 break;
1976 }
1977 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1978 path->slots[0]);
1979 if (found_key.objectid != dirid ||
1980 found_key.type != dir_key.type)
1981 goto next_type;
1982
1983 if (found_key.offset > range_end)
1984 break;
1985
1986 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1987 log_path, dir,
1988 &found_key);
3650860b
JB
1989 if (ret)
1990 goto out;
e02119d5
CM
1991 if (found_key.offset == (u64)-1)
1992 break;
1993 dir_key.offset = found_key.offset + 1;
1994 }
b3b4aa74 1995 btrfs_release_path(path);
e02119d5
CM
1996 if (range_end == (u64)-1)
1997 break;
1998 range_start = range_end + 1;
1999 }
2000
2001next_type:
2002 ret = 0;
2003 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2004 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2005 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2006 btrfs_release_path(path);
e02119d5
CM
2007 goto again;
2008 }
2009out:
b3b4aa74 2010 btrfs_release_path(path);
e02119d5
CM
2011 btrfs_free_path(log_path);
2012 iput(dir);
2013 return ret;
2014}
2015
2016/*
2017 * the process_func used to replay items from the log tree. This
2018 * gets called in two different stages. The first stage just looks
2019 * for inodes and makes sure they are all copied into the subvolume.
2020 *
2021 * The second stage copies all the other item types from the log into
2022 * the subvolume. The two stage approach is slower, but gets rid of
2023 * lots of complexity around inodes referencing other inodes that exist
2024 * only in the log (references come from either directory items or inode
2025 * back refs).
2026 */
2027static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2028 struct walk_control *wc, u64 gen)
2029{
2030 int nritems;
2031 struct btrfs_path *path;
2032 struct btrfs_root *root = wc->replay_dest;
2033 struct btrfs_key key;
e02119d5
CM
2034 int level;
2035 int i;
2036 int ret;
2037
018642a1
TI
2038 ret = btrfs_read_buffer(eb, gen);
2039 if (ret)
2040 return ret;
e02119d5
CM
2041
2042 level = btrfs_header_level(eb);
2043
2044 if (level != 0)
2045 return 0;
2046
2047 path = btrfs_alloc_path();
1e5063d0
MF
2048 if (!path)
2049 return -ENOMEM;
e02119d5
CM
2050
2051 nritems = btrfs_header_nritems(eb);
2052 for (i = 0; i < nritems; i++) {
2053 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2054
2055 /* inode keys are done during the first stage */
2056 if (key.type == BTRFS_INODE_ITEM_KEY &&
2057 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2058 struct btrfs_inode_item *inode_item;
2059 u32 mode;
2060
2061 inode_item = btrfs_item_ptr(eb, i,
2062 struct btrfs_inode_item);
2063 mode = btrfs_inode_mode(eb, inode_item);
2064 if (S_ISDIR(mode)) {
2065 ret = replay_dir_deletes(wc->trans,
12fcfd22 2066 root, log, path, key.objectid, 0);
b50c6e25
JB
2067 if (ret)
2068 break;
e02119d5
CM
2069 }
2070 ret = overwrite_item(wc->trans, root, path,
2071 eb, i, &key);
b50c6e25
JB
2072 if (ret)
2073 break;
e02119d5 2074
c71bf099
YZ
2075 /* for regular files, make sure corresponding
2076 * orhpan item exist. extents past the new EOF
2077 * will be truncated later by orphan cleanup.
e02119d5
CM
2078 */
2079 if (S_ISREG(mode)) {
c71bf099
YZ
2080 ret = insert_orphan_item(wc->trans, root,
2081 key.objectid);
b50c6e25
JB
2082 if (ret)
2083 break;
e02119d5 2084 }
c71bf099 2085
e02119d5
CM
2086 ret = link_to_fixup_dir(wc->trans, root,
2087 path, key.objectid);
b50c6e25
JB
2088 if (ret)
2089 break;
e02119d5 2090 }
dd8e7217
JB
2091
2092 if (key.type == BTRFS_DIR_INDEX_KEY &&
2093 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2094 ret = replay_one_dir_item(wc->trans, root, path,
2095 eb, i, &key);
2096 if (ret)
2097 break;
2098 }
2099
e02119d5
CM
2100 if (wc->stage < LOG_WALK_REPLAY_ALL)
2101 continue;
2102
2103 /* these keys are simply copied */
2104 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2105 ret = overwrite_item(wc->trans, root, path,
2106 eb, i, &key);
b50c6e25
JB
2107 if (ret)
2108 break;
2da1c669
LB
2109 } else if (key.type == BTRFS_INODE_REF_KEY ||
2110 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2111 ret = add_inode_ref(wc->trans, root, log, path,
2112 eb, i, &key);
b50c6e25
JB
2113 if (ret && ret != -ENOENT)
2114 break;
2115 ret = 0;
e02119d5
CM
2116 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2117 ret = replay_one_extent(wc->trans, root, path,
2118 eb, i, &key);
b50c6e25
JB
2119 if (ret)
2120 break;
dd8e7217 2121 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2122 ret = replay_one_dir_item(wc->trans, root, path,
2123 eb, i, &key);
b50c6e25
JB
2124 if (ret)
2125 break;
e02119d5
CM
2126 }
2127 }
2128 btrfs_free_path(path);
b50c6e25 2129 return ret;
e02119d5
CM
2130}
2131
d397712b 2132static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2133 struct btrfs_root *root,
2134 struct btrfs_path *path, int *level,
2135 struct walk_control *wc)
2136{
2137 u64 root_owner;
e02119d5
CM
2138 u64 bytenr;
2139 u64 ptr_gen;
2140 struct extent_buffer *next;
2141 struct extent_buffer *cur;
2142 struct extent_buffer *parent;
2143 u32 blocksize;
2144 int ret = 0;
2145
2146 WARN_ON(*level < 0);
2147 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2148
d397712b 2149 while (*level > 0) {
e02119d5
CM
2150 WARN_ON(*level < 0);
2151 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2152 cur = path->nodes[*level];
2153
fae7f21c 2154 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2155
2156 if (path->slots[*level] >=
2157 btrfs_header_nritems(cur))
2158 break;
2159
2160 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2161 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2162 blocksize = btrfs_level_size(root, *level - 1);
2163
2164 parent = path->nodes[*level];
2165 root_owner = btrfs_header_owner(parent);
e02119d5
CM
2166
2167 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 2168 if (!next)
2169 return -ENOMEM;
e02119d5 2170
e02119d5 2171 if (*level == 1) {
1e5063d0 2172 ret = wc->process_func(root, next, wc, ptr_gen);
b50c6e25
JB
2173 if (ret) {
2174 free_extent_buffer(next);
1e5063d0 2175 return ret;
b50c6e25 2176 }
4a500fd1 2177
e02119d5
CM
2178 path->slots[*level]++;
2179 if (wc->free) {
018642a1
TI
2180 ret = btrfs_read_buffer(next, ptr_gen);
2181 if (ret) {
2182 free_extent_buffer(next);
2183 return ret;
2184 }
e02119d5 2185
681ae509
JB
2186 if (trans) {
2187 btrfs_tree_lock(next);
2188 btrfs_set_lock_blocking(next);
2189 clean_tree_block(trans, root, next);
2190 btrfs_wait_tree_block_writeback(next);
2191 btrfs_tree_unlock(next);
2192 }
e02119d5 2193
e02119d5
CM
2194 WARN_ON(root_owner !=
2195 BTRFS_TREE_LOG_OBJECTID);
e688b725 2196 ret = btrfs_free_and_pin_reserved_extent(root,
d00aff00 2197 bytenr, blocksize);
3650860b
JB
2198 if (ret) {
2199 free_extent_buffer(next);
2200 return ret;
2201 }
e02119d5
CM
2202 }
2203 free_extent_buffer(next);
2204 continue;
2205 }
018642a1
TI
2206 ret = btrfs_read_buffer(next, ptr_gen);
2207 if (ret) {
2208 free_extent_buffer(next);
2209 return ret;
2210 }
e02119d5
CM
2211
2212 WARN_ON(*level <= 0);
2213 if (path->nodes[*level-1])
2214 free_extent_buffer(path->nodes[*level-1]);
2215 path->nodes[*level-1] = next;
2216 *level = btrfs_header_level(next);
2217 path->slots[*level] = 0;
2218 cond_resched();
2219 }
2220 WARN_ON(*level < 0);
2221 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2222
4a500fd1 2223 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2224
2225 cond_resched();
2226 return 0;
2227}
2228
d397712b 2229static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2230 struct btrfs_root *root,
2231 struct btrfs_path *path, int *level,
2232 struct walk_control *wc)
2233{
2234 u64 root_owner;
e02119d5
CM
2235 int i;
2236 int slot;
2237 int ret;
2238
d397712b 2239 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2240 slot = path->slots[i];
4a500fd1 2241 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2242 path->slots[i]++;
2243 *level = i;
2244 WARN_ON(*level == 0);
2245 return 0;
2246 } else {
31840ae1
ZY
2247 struct extent_buffer *parent;
2248 if (path->nodes[*level] == root->node)
2249 parent = path->nodes[*level];
2250 else
2251 parent = path->nodes[*level + 1];
2252
2253 root_owner = btrfs_header_owner(parent);
1e5063d0 2254 ret = wc->process_func(root, path->nodes[*level], wc,
e02119d5 2255 btrfs_header_generation(path->nodes[*level]));
1e5063d0
MF
2256 if (ret)
2257 return ret;
2258
e02119d5
CM
2259 if (wc->free) {
2260 struct extent_buffer *next;
2261
2262 next = path->nodes[*level];
2263
681ae509
JB
2264 if (trans) {
2265 btrfs_tree_lock(next);
2266 btrfs_set_lock_blocking(next);
2267 clean_tree_block(trans, root, next);
2268 btrfs_wait_tree_block_writeback(next);
2269 btrfs_tree_unlock(next);
2270 }
e02119d5 2271
e02119d5 2272 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
e688b725 2273 ret = btrfs_free_and_pin_reserved_extent(root,
e02119d5 2274 path->nodes[*level]->start,
d00aff00 2275 path->nodes[*level]->len);
3650860b
JB
2276 if (ret)
2277 return ret;
e02119d5
CM
2278 }
2279 free_extent_buffer(path->nodes[*level]);
2280 path->nodes[*level] = NULL;
2281 *level = i + 1;
2282 }
2283 }
2284 return 1;
2285}
2286
2287/*
2288 * drop the reference count on the tree rooted at 'snap'. This traverses
2289 * the tree freeing any blocks that have a ref count of zero after being
2290 * decremented.
2291 */
2292static int walk_log_tree(struct btrfs_trans_handle *trans,
2293 struct btrfs_root *log, struct walk_control *wc)
2294{
2295 int ret = 0;
2296 int wret;
2297 int level;
2298 struct btrfs_path *path;
e02119d5
CM
2299 int orig_level;
2300
2301 path = btrfs_alloc_path();
db5b493a
TI
2302 if (!path)
2303 return -ENOMEM;
e02119d5
CM
2304
2305 level = btrfs_header_level(log->node);
2306 orig_level = level;
2307 path->nodes[level] = log->node;
2308 extent_buffer_get(log->node);
2309 path->slots[level] = 0;
2310
d397712b 2311 while (1) {
e02119d5
CM
2312 wret = walk_down_log_tree(trans, log, path, &level, wc);
2313 if (wret > 0)
2314 break;
79787eaa 2315 if (wret < 0) {
e02119d5 2316 ret = wret;
79787eaa
JM
2317 goto out;
2318 }
e02119d5
CM
2319
2320 wret = walk_up_log_tree(trans, log, path, &level, wc);
2321 if (wret > 0)
2322 break;
79787eaa 2323 if (wret < 0) {
e02119d5 2324 ret = wret;
79787eaa
JM
2325 goto out;
2326 }
e02119d5
CM
2327 }
2328
2329 /* was the root node processed? if not, catch it here */
2330 if (path->nodes[orig_level]) {
79787eaa 2331 ret = wc->process_func(log, path->nodes[orig_level], wc,
e02119d5 2332 btrfs_header_generation(path->nodes[orig_level]));
79787eaa
JM
2333 if (ret)
2334 goto out;
e02119d5
CM
2335 if (wc->free) {
2336 struct extent_buffer *next;
2337
2338 next = path->nodes[orig_level];
2339
681ae509
JB
2340 if (trans) {
2341 btrfs_tree_lock(next);
2342 btrfs_set_lock_blocking(next);
2343 clean_tree_block(trans, log, next);
2344 btrfs_wait_tree_block_writeback(next);
2345 btrfs_tree_unlock(next);
2346 }
e02119d5 2347
e02119d5
CM
2348 WARN_ON(log->root_key.objectid !=
2349 BTRFS_TREE_LOG_OBJECTID);
e688b725 2350 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
d00aff00 2351 next->len);
3650860b
JB
2352 if (ret)
2353 goto out;
e02119d5
CM
2354 }
2355 }
2356
79787eaa 2357out:
e02119d5 2358 btrfs_free_path(path);
e02119d5
CM
2359 return ret;
2360}
2361
7237f183
YZ
2362/*
2363 * helper function to update the item for a given subvolumes log root
2364 * in the tree of log roots
2365 */
2366static int update_log_root(struct btrfs_trans_handle *trans,
2367 struct btrfs_root *log)
2368{
2369 int ret;
2370
2371 if (log->log_transid == 1) {
2372 /* insert root item on the first sync */
2373 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2374 &log->root_key, &log->root_item);
2375 } else {
2376 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2377 &log->root_key, &log->root_item);
2378 }
2379 return ret;
2380}
2381
8b050d35
MX
2382static void wait_log_commit(struct btrfs_trans_handle *trans,
2383 struct btrfs_root *root, int transid)
e02119d5
CM
2384{
2385 DEFINE_WAIT(wait);
7237f183 2386 int index = transid % 2;
e02119d5 2387
7237f183
YZ
2388 /*
2389 * we only allow two pending log transactions at a time,
2390 * so we know that if ours is more than 2 older than the
2391 * current transaction, we're done
2392 */
e02119d5 2393 do {
7237f183
YZ
2394 prepare_to_wait(&root->log_commit_wait[index],
2395 &wait, TASK_UNINTERRUPTIBLE);
2396 mutex_unlock(&root->log_mutex);
12fcfd22 2397
d1433deb 2398 if (root->log_transid_committed < transid &&
7237f183
YZ
2399 atomic_read(&root->log_commit[index]))
2400 schedule();
12fcfd22 2401
7237f183
YZ
2402 finish_wait(&root->log_commit_wait[index], &wait);
2403 mutex_lock(&root->log_mutex);
d1433deb 2404 } while (root->log_transid_committed < transid &&
7237f183 2405 atomic_read(&root->log_commit[index]));
7237f183
YZ
2406}
2407
143bede5
JM
2408static void wait_for_writer(struct btrfs_trans_handle *trans,
2409 struct btrfs_root *root)
7237f183
YZ
2410{
2411 DEFINE_WAIT(wait);
8b050d35
MX
2412
2413 while (atomic_read(&root->log_writers)) {
7237f183
YZ
2414 prepare_to_wait(&root->log_writer_wait,
2415 &wait, TASK_UNINTERRUPTIBLE);
2416 mutex_unlock(&root->log_mutex);
8b050d35 2417 if (atomic_read(&root->log_writers))
e02119d5 2418 schedule();
7237f183
YZ
2419 mutex_lock(&root->log_mutex);
2420 finish_wait(&root->log_writer_wait, &wait);
2421 }
e02119d5
CM
2422}
2423
8b050d35
MX
2424static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2425 struct btrfs_log_ctx *ctx)
2426{
2427 if (!ctx)
2428 return;
2429
2430 mutex_lock(&root->log_mutex);
2431 list_del_init(&ctx->list);
2432 mutex_unlock(&root->log_mutex);
2433}
2434
2435/*
2436 * Invoked in log mutex context, or be sure there is no other task which
2437 * can access the list.
2438 */
2439static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2440 int index, int error)
2441{
2442 struct btrfs_log_ctx *ctx;
2443
2444 if (!error) {
2445 INIT_LIST_HEAD(&root->log_ctxs[index]);
2446 return;
2447 }
2448
2449 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2450 ctx->log_ret = error;
2451
2452 INIT_LIST_HEAD(&root->log_ctxs[index]);
2453}
2454
e02119d5
CM
2455/*
2456 * btrfs_sync_log does sends a given tree log down to the disk and
2457 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2458 * you know that any inodes previously logged are safely on disk only
2459 * if it returns 0.
2460 *
2461 * Any other return value means you need to call btrfs_commit_transaction.
2462 * Some of the edge cases for fsyncing directories that have had unlinks
2463 * or renames done in the past mean that sometimes the only safe
2464 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2465 * that has happened.
e02119d5
CM
2466 */
2467int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2468 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2469{
7237f183
YZ
2470 int index1;
2471 int index2;
8cef4e16 2472 int mark;
e02119d5 2473 int ret;
e02119d5 2474 struct btrfs_root *log = root->log_root;
7237f183 2475 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
bb14a59b 2476 int log_transid = 0;
8b050d35 2477 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2478 struct blk_plug plug;
e02119d5 2479
7237f183 2480 mutex_lock(&root->log_mutex);
d1433deb
MX
2481 log_transid = ctx->log_transid;
2482 if (root->log_transid_committed >= log_transid) {
2483 mutex_unlock(&root->log_mutex);
2484 return ctx->log_ret;
2485 }
2486
2487 index1 = log_transid % 2;
7237f183 2488 if (atomic_read(&root->log_commit[index1])) {
d1433deb 2489 wait_log_commit(trans, root, log_transid);
7237f183 2490 mutex_unlock(&root->log_mutex);
8b050d35 2491 return ctx->log_ret;
e02119d5 2492 }
d1433deb 2493 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2494 atomic_set(&root->log_commit[index1], 1);
2495
2496 /* wait for previous tree log sync to complete */
2497 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
d1433deb 2498 wait_log_commit(trans, root, log_transid - 1);
48cab2e0 2499
86df7eb9 2500 while (1) {
2ecb7923 2501 int batch = atomic_read(&root->log_batch);
cd354ad6 2502 /* when we're on an ssd, just kick the log commit out */
27cdeb70
MX
2503 if (!btrfs_test_opt(root, SSD) &&
2504 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2505 mutex_unlock(&root->log_mutex);
2506 schedule_timeout_uninterruptible(1);
2507 mutex_lock(&root->log_mutex);
2508 }
12fcfd22 2509 wait_for_writer(trans, root);
2ecb7923 2510 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2511 break;
2512 }
e02119d5 2513
12fcfd22 2514 /* bail out if we need to do a full commit */
5c902ba6
MX
2515 if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
2516 trans->transid) {
12fcfd22 2517 ret = -EAGAIN;
2ab28f32 2518 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2519 mutex_unlock(&root->log_mutex);
2520 goto out;
2521 }
2522
8cef4e16
YZ
2523 if (log_transid % 2 == 0)
2524 mark = EXTENT_DIRTY;
2525 else
2526 mark = EXTENT_NEW;
2527
690587d1
CM
2528 /* we start IO on all the marked extents here, but we don't actually
2529 * wait for them until later.
2530 */
c6adc9cc 2531 blk_start_plug(&plug);
8cef4e16 2532 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
79787eaa 2533 if (ret) {
c6adc9cc 2534 blk_finish_plug(&plug);
79787eaa 2535 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2536 btrfs_free_logged_extents(log, log_transid);
50471a38
MX
2537 ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2538 trans->transid;
79787eaa
JM
2539 mutex_unlock(&root->log_mutex);
2540 goto out;
2541 }
7237f183 2542
5d4f98a2 2543 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2544
7237f183
YZ
2545 root->log_transid++;
2546 log->log_transid = root->log_transid;
ff782e0a 2547 root->log_start_pid = 0;
7237f183 2548 /*
8cef4e16
YZ
2549 * IO has been started, blocks of the log tree have WRITTEN flag set
2550 * in their headers. new modifications of the log will be written to
2551 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2552 */
2553 mutex_unlock(&root->log_mutex);
2554
d1433deb
MX
2555 btrfs_init_log_ctx(&root_log_ctx);
2556
7237f183 2557 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2558 atomic_inc(&log_root_tree->log_batch);
7237f183 2559 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2560
2561 index2 = log_root_tree->log_transid % 2;
2562 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2563 root_log_ctx.log_transid = log_root_tree->log_transid;
2564
7237f183
YZ
2565 mutex_unlock(&log_root_tree->log_mutex);
2566
2567 ret = update_log_root(trans, log);
7237f183
YZ
2568
2569 mutex_lock(&log_root_tree->log_mutex);
2570 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2571 smp_mb();
2572 if (waitqueue_active(&log_root_tree->log_writer_wait))
2573 wake_up(&log_root_tree->log_writer_wait);
2574 }
2575
4a500fd1 2576 if (ret) {
d1433deb
MX
2577 if (!list_empty(&root_log_ctx.list))
2578 list_del_init(&root_log_ctx.list);
2579
c6adc9cc 2580 blk_finish_plug(&plug);
50471a38
MX
2581 ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2582 trans->transid;
79787eaa
JM
2583 if (ret != -ENOSPC) {
2584 btrfs_abort_transaction(trans, root, ret);
2585 mutex_unlock(&log_root_tree->log_mutex);
2586 goto out;
2587 }
4a500fd1 2588 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2589 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
2590 mutex_unlock(&log_root_tree->log_mutex);
2591 ret = -EAGAIN;
2592 goto out;
2593 }
2594
d1433deb
MX
2595 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2596 mutex_unlock(&log_root_tree->log_mutex);
2597 ret = root_log_ctx.log_ret;
2598 goto out;
2599 }
8b050d35 2600
d1433deb 2601 index2 = root_log_ctx.log_transid % 2;
7237f183 2602 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 2603 blk_finish_plug(&plug);
8cef4e16 2604 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
8b050d35 2605 wait_log_commit(trans, log_root_tree,
d1433deb 2606 root_log_ctx.log_transid);
2ab28f32 2607 btrfs_free_logged_extents(log, log_transid);
7237f183 2608 mutex_unlock(&log_root_tree->log_mutex);
8b050d35 2609 ret = root_log_ctx.log_ret;
7237f183
YZ
2610 goto out;
2611 }
d1433deb 2612 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
2613 atomic_set(&log_root_tree->log_commit[index2], 1);
2614
12fcfd22
CM
2615 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2616 wait_log_commit(trans, log_root_tree,
d1433deb 2617 root_log_ctx.log_transid - 1);
12fcfd22
CM
2618 }
2619
2620 wait_for_writer(trans, log_root_tree);
7237f183 2621
12fcfd22
CM
2622 /*
2623 * now that we've moved on to the tree of log tree roots,
2624 * check the full commit flag again
2625 */
5c902ba6
MX
2626 if (ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) ==
2627 trans->transid) {
c6adc9cc 2628 blk_finish_plug(&plug);
8cef4e16 2629 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2ab28f32 2630 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2631 mutex_unlock(&log_root_tree->log_mutex);
2632 ret = -EAGAIN;
2633 goto out_wake_log_root;
2634 }
7237f183 2635
c6adc9cc
MX
2636 ret = btrfs_write_marked_extents(log_root_tree,
2637 &log_root_tree->dirty_log_pages,
2638 EXTENT_DIRTY | EXTENT_NEW);
2639 blk_finish_plug(&plug);
79787eaa 2640 if (ret) {
50471a38
MX
2641 ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2642 trans->transid;
79787eaa 2643 btrfs_abort_transaction(trans, root, ret);
2ab28f32 2644 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
2645 mutex_unlock(&log_root_tree->log_mutex);
2646 goto out_wake_log_root;
2647 }
8cef4e16 2648 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
c6adc9cc
MX
2649 btrfs_wait_marked_extents(log_root_tree,
2650 &log_root_tree->dirty_log_pages,
2651 EXTENT_NEW | EXTENT_DIRTY);
2ab28f32 2652 btrfs_wait_logged_extents(log, log_transid);
e02119d5 2653
6c41761f 2654 btrfs_set_super_log_root(root->fs_info->super_for_commit,
7237f183 2655 log_root_tree->node->start);
6c41761f 2656 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
7237f183 2657 btrfs_header_level(log_root_tree->node));
e02119d5 2658
7237f183 2659 log_root_tree->log_transid++;
7237f183
YZ
2660 mutex_unlock(&log_root_tree->log_mutex);
2661
2662 /*
2663 * nobody else is going to jump in and write the the ctree
2664 * super here because the log_commit atomic below is protecting
2665 * us. We must be called with a transaction handle pinning
2666 * the running transaction open, so a full commit can't hop
2667 * in and cause problems either.
2668 */
5af3e8cc 2669 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
5af3e8cc 2670 if (ret) {
50471a38
MX
2671 ACCESS_ONCE(root->fs_info->last_trans_log_full_commit) =
2672 trans->transid;
5af3e8cc
SB
2673 btrfs_abort_transaction(trans, root, ret);
2674 goto out_wake_log_root;
2675 }
7237f183 2676
257c62e1
CM
2677 mutex_lock(&root->log_mutex);
2678 if (root->last_log_commit < log_transid)
2679 root->last_log_commit = log_transid;
2680 mutex_unlock(&root->log_mutex);
2681
12fcfd22 2682out_wake_log_root:
8b050d35
MX
2683 /*
2684 * We needn't get log_mutex here because we are sure all
2685 * the other tasks are blocked.
2686 */
2687 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2688
d1433deb
MX
2689 mutex_lock(&log_root_tree->log_mutex);
2690 log_root_tree->log_transid_committed++;
7237f183 2691 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
2692 mutex_unlock(&log_root_tree->log_mutex);
2693
7237f183
YZ
2694 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2695 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2696out:
8b050d35
MX
2697 /* See above. */
2698 btrfs_remove_all_log_ctxs(root, index1, ret);
2699
d1433deb
MX
2700 mutex_lock(&root->log_mutex);
2701 root->log_transid_committed++;
7237f183 2702 atomic_set(&root->log_commit[index1], 0);
d1433deb 2703 mutex_unlock(&root->log_mutex);
8b050d35 2704
7237f183
YZ
2705 if (waitqueue_active(&root->log_commit_wait[index1]))
2706 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2707 return ret;
e02119d5
CM
2708}
2709
4a500fd1
YZ
2710static void free_log_tree(struct btrfs_trans_handle *trans,
2711 struct btrfs_root *log)
e02119d5
CM
2712{
2713 int ret;
d0c803c4
CM
2714 u64 start;
2715 u64 end;
e02119d5
CM
2716 struct walk_control wc = {
2717 .free = 1,
2718 .process_func = process_one_buffer
2719 };
2720
681ae509
JB
2721 ret = walk_log_tree(trans, log, &wc);
2722 /* I don't think this can happen but just in case */
2723 if (ret)
2724 btrfs_abort_transaction(trans, log, ret);
e02119d5 2725
d397712b 2726 while (1) {
d0c803c4 2727 ret = find_first_extent_bit(&log->dirty_log_pages,
e6138876
JB
2728 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2729 NULL);
d0c803c4
CM
2730 if (ret)
2731 break;
2732
8cef4e16
YZ
2733 clear_extent_bits(&log->dirty_log_pages, start, end,
2734 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2735 }
2736
2ab28f32
JB
2737 /*
2738 * We may have short-circuited the log tree with the full commit logic
2739 * and left ordered extents on our list, so clear these out to keep us
2740 * from leaking inodes and memory.
2741 */
2742 btrfs_free_logged_extents(log, 0);
2743 btrfs_free_logged_extents(log, 1);
2744
7237f183
YZ
2745 free_extent_buffer(log->node);
2746 kfree(log);
4a500fd1
YZ
2747}
2748
2749/*
2750 * free all the extents used by the tree log. This should be called
2751 * at commit time of the full transaction
2752 */
2753int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2754{
2755 if (root->log_root) {
2756 free_log_tree(trans, root->log_root);
2757 root->log_root = NULL;
2758 }
2759 return 0;
2760}
2761
2762int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2763 struct btrfs_fs_info *fs_info)
2764{
2765 if (fs_info->log_root_tree) {
2766 free_log_tree(trans, fs_info->log_root_tree);
2767 fs_info->log_root_tree = NULL;
2768 }
e02119d5
CM
2769 return 0;
2770}
2771
e02119d5
CM
2772/*
2773 * If both a file and directory are logged, and unlinks or renames are
2774 * mixed in, we have a few interesting corners:
2775 *
2776 * create file X in dir Y
2777 * link file X to X.link in dir Y
2778 * fsync file X
2779 * unlink file X but leave X.link
2780 * fsync dir Y
2781 *
2782 * After a crash we would expect only X.link to exist. But file X
2783 * didn't get fsync'd again so the log has back refs for X and X.link.
2784 *
2785 * We solve this by removing directory entries and inode backrefs from the
2786 * log when a file that was logged in the current transaction is
2787 * unlinked. Any later fsync will include the updated log entries, and
2788 * we'll be able to reconstruct the proper directory items from backrefs.
2789 *
2790 * This optimizations allows us to avoid relogging the entire inode
2791 * or the entire directory.
2792 */
2793int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2794 struct btrfs_root *root,
2795 const char *name, int name_len,
2796 struct inode *dir, u64 index)
2797{
2798 struct btrfs_root *log;
2799 struct btrfs_dir_item *di;
2800 struct btrfs_path *path;
2801 int ret;
4a500fd1 2802 int err = 0;
e02119d5 2803 int bytes_del = 0;
33345d01 2804 u64 dir_ino = btrfs_ino(dir);
e02119d5 2805
3a5f1d45
CM
2806 if (BTRFS_I(dir)->logged_trans < trans->transid)
2807 return 0;
2808
e02119d5
CM
2809 ret = join_running_log_trans(root);
2810 if (ret)
2811 return 0;
2812
2813 mutex_lock(&BTRFS_I(dir)->log_mutex);
2814
2815 log = root->log_root;
2816 path = btrfs_alloc_path();
a62f44a5
TI
2817 if (!path) {
2818 err = -ENOMEM;
2819 goto out_unlock;
2820 }
2a29edc6 2821
33345d01 2822 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 2823 name, name_len, -1);
4a500fd1
YZ
2824 if (IS_ERR(di)) {
2825 err = PTR_ERR(di);
2826 goto fail;
2827 }
2828 if (di) {
e02119d5
CM
2829 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2830 bytes_del += name_len;
3650860b
JB
2831 if (ret) {
2832 err = ret;
2833 goto fail;
2834 }
e02119d5 2835 }
b3b4aa74 2836 btrfs_release_path(path);
33345d01 2837 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 2838 index, name, name_len, -1);
4a500fd1
YZ
2839 if (IS_ERR(di)) {
2840 err = PTR_ERR(di);
2841 goto fail;
2842 }
2843 if (di) {
e02119d5
CM
2844 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2845 bytes_del += name_len;
3650860b
JB
2846 if (ret) {
2847 err = ret;
2848 goto fail;
2849 }
e02119d5
CM
2850 }
2851
2852 /* update the directory size in the log to reflect the names
2853 * we have removed
2854 */
2855 if (bytes_del) {
2856 struct btrfs_key key;
2857
33345d01 2858 key.objectid = dir_ino;
e02119d5
CM
2859 key.offset = 0;
2860 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 2861 btrfs_release_path(path);
e02119d5
CM
2862
2863 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2864 if (ret < 0) {
2865 err = ret;
2866 goto fail;
2867 }
e02119d5
CM
2868 if (ret == 0) {
2869 struct btrfs_inode_item *item;
2870 u64 i_size;
2871
2872 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2873 struct btrfs_inode_item);
2874 i_size = btrfs_inode_size(path->nodes[0], item);
2875 if (i_size > bytes_del)
2876 i_size -= bytes_del;
2877 else
2878 i_size = 0;
2879 btrfs_set_inode_size(path->nodes[0], item, i_size);
2880 btrfs_mark_buffer_dirty(path->nodes[0]);
2881 } else
2882 ret = 0;
b3b4aa74 2883 btrfs_release_path(path);
e02119d5 2884 }
4a500fd1 2885fail:
e02119d5 2886 btrfs_free_path(path);
a62f44a5 2887out_unlock:
e02119d5 2888 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2889 if (ret == -ENOSPC) {
2890 root->fs_info->last_trans_log_full_commit = trans->transid;
2891 ret = 0;
79787eaa
JM
2892 } else if (ret < 0)
2893 btrfs_abort_transaction(trans, root, ret);
2894
12fcfd22 2895 btrfs_end_log_trans(root);
e02119d5 2896
411fc6bc 2897 return err;
e02119d5
CM
2898}
2899
2900/* see comments for btrfs_del_dir_entries_in_log */
2901int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2902 struct btrfs_root *root,
2903 const char *name, int name_len,
2904 struct inode *inode, u64 dirid)
2905{
2906 struct btrfs_root *log;
2907 u64 index;
2908 int ret;
2909
3a5f1d45
CM
2910 if (BTRFS_I(inode)->logged_trans < trans->transid)
2911 return 0;
2912
e02119d5
CM
2913 ret = join_running_log_trans(root);
2914 if (ret)
2915 return 0;
2916 log = root->log_root;
2917 mutex_lock(&BTRFS_I(inode)->log_mutex);
2918
33345d01 2919 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5
CM
2920 dirid, &index);
2921 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2922 if (ret == -ENOSPC) {
2923 root->fs_info->last_trans_log_full_commit = trans->transid;
2924 ret = 0;
79787eaa
JM
2925 } else if (ret < 0 && ret != -ENOENT)
2926 btrfs_abort_transaction(trans, root, ret);
12fcfd22 2927 btrfs_end_log_trans(root);
e02119d5 2928
e02119d5
CM
2929 return ret;
2930}
2931
2932/*
2933 * creates a range item in the log for 'dirid'. first_offset and
2934 * last_offset tell us which parts of the key space the log should
2935 * be considered authoritative for.
2936 */
2937static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2938 struct btrfs_root *log,
2939 struct btrfs_path *path,
2940 int key_type, u64 dirid,
2941 u64 first_offset, u64 last_offset)
2942{
2943 int ret;
2944 struct btrfs_key key;
2945 struct btrfs_dir_log_item *item;
2946
2947 key.objectid = dirid;
2948 key.offset = first_offset;
2949 if (key_type == BTRFS_DIR_ITEM_KEY)
2950 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2951 else
2952 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2953 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2954 if (ret)
2955 return ret;
e02119d5
CM
2956
2957 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2958 struct btrfs_dir_log_item);
2959 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2960 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 2961 btrfs_release_path(path);
e02119d5
CM
2962 return 0;
2963}
2964
2965/*
2966 * log all the items included in the current transaction for a given
2967 * directory. This also creates the range items in the log tree required
2968 * to replay anything deleted before the fsync
2969 */
2970static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2971 struct btrfs_root *root, struct inode *inode,
2972 struct btrfs_path *path,
2973 struct btrfs_path *dst_path, int key_type,
2974 u64 min_offset, u64 *last_offset_ret)
2975{
2976 struct btrfs_key min_key;
e02119d5
CM
2977 struct btrfs_root *log = root->log_root;
2978 struct extent_buffer *src;
4a500fd1 2979 int err = 0;
e02119d5
CM
2980 int ret;
2981 int i;
2982 int nritems;
2983 u64 first_offset = min_offset;
2984 u64 last_offset = (u64)-1;
33345d01 2985 u64 ino = btrfs_ino(inode);
e02119d5
CM
2986
2987 log = root->log_root;
e02119d5 2988
33345d01 2989 min_key.objectid = ino;
e02119d5
CM
2990 min_key.type = key_type;
2991 min_key.offset = min_offset;
2992
2993 path->keep_locks = 1;
2994
6174d3cb 2995 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
2996
2997 /*
2998 * we didn't find anything from this transaction, see if there
2999 * is anything at all
3000 */
33345d01
LZ
3001 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3002 min_key.objectid = ino;
e02119d5
CM
3003 min_key.type = key_type;
3004 min_key.offset = (u64)-1;
b3b4aa74 3005 btrfs_release_path(path);
e02119d5
CM
3006 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3007 if (ret < 0) {
b3b4aa74 3008 btrfs_release_path(path);
e02119d5
CM
3009 return ret;
3010 }
33345d01 3011 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3012
3013 /* if ret == 0 there are items for this type,
3014 * create a range to tell us the last key of this type.
3015 * otherwise, there are no items in this directory after
3016 * *min_offset, and we create a range to indicate that.
3017 */
3018 if (ret == 0) {
3019 struct btrfs_key tmp;
3020 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3021 path->slots[0]);
d397712b 3022 if (key_type == tmp.type)
e02119d5 3023 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3024 }
3025 goto done;
3026 }
3027
3028 /* go backward to find any previous key */
33345d01 3029 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3030 if (ret == 0) {
3031 struct btrfs_key tmp;
3032 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3033 if (key_type == tmp.type) {
3034 first_offset = tmp.offset;
3035 ret = overwrite_item(trans, log, dst_path,
3036 path->nodes[0], path->slots[0],
3037 &tmp);
4a500fd1
YZ
3038 if (ret) {
3039 err = ret;
3040 goto done;
3041 }
e02119d5
CM
3042 }
3043 }
b3b4aa74 3044 btrfs_release_path(path);
e02119d5
CM
3045
3046 /* find the first key from this transaction again */
3047 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3048 if (WARN_ON(ret != 0))
e02119d5 3049 goto done;
e02119d5
CM
3050
3051 /*
3052 * we have a block from this transaction, log every item in it
3053 * from our directory
3054 */
d397712b 3055 while (1) {
e02119d5
CM
3056 struct btrfs_key tmp;
3057 src = path->nodes[0];
3058 nritems = btrfs_header_nritems(src);
3059 for (i = path->slots[0]; i < nritems; i++) {
3060 btrfs_item_key_to_cpu(src, &min_key, i);
3061
33345d01 3062 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3063 goto done;
3064 ret = overwrite_item(trans, log, dst_path, src, i,
3065 &min_key);
4a500fd1
YZ
3066 if (ret) {
3067 err = ret;
3068 goto done;
3069 }
e02119d5
CM
3070 }
3071 path->slots[0] = nritems;
3072
3073 /*
3074 * look ahead to the next item and see if it is also
3075 * from this directory and from this transaction
3076 */
3077 ret = btrfs_next_leaf(root, path);
3078 if (ret == 1) {
3079 last_offset = (u64)-1;
3080 goto done;
3081 }
3082 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3083 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3084 last_offset = (u64)-1;
3085 goto done;
3086 }
3087 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3088 ret = overwrite_item(trans, log, dst_path,
3089 path->nodes[0], path->slots[0],
3090 &tmp);
4a500fd1
YZ
3091 if (ret)
3092 err = ret;
3093 else
3094 last_offset = tmp.offset;
e02119d5
CM
3095 goto done;
3096 }
3097 }
3098done:
b3b4aa74
DS
3099 btrfs_release_path(path);
3100 btrfs_release_path(dst_path);
e02119d5 3101
4a500fd1
YZ
3102 if (err == 0) {
3103 *last_offset_ret = last_offset;
3104 /*
3105 * insert the log range keys to indicate where the log
3106 * is valid
3107 */
3108 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3109 ino, first_offset, last_offset);
4a500fd1
YZ
3110 if (ret)
3111 err = ret;
3112 }
3113 return err;
e02119d5
CM
3114}
3115
3116/*
3117 * logging directories is very similar to logging inodes, We find all the items
3118 * from the current transaction and write them to the log.
3119 *
3120 * The recovery code scans the directory in the subvolume, and if it finds a
3121 * key in the range logged that is not present in the log tree, then it means
3122 * that dir entry was unlinked during the transaction.
3123 *
3124 * In order for that scan to work, we must include one key smaller than
3125 * the smallest logged by this transaction and one key larger than the largest
3126 * key logged by this transaction.
3127 */
3128static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3129 struct btrfs_root *root, struct inode *inode,
3130 struct btrfs_path *path,
3131 struct btrfs_path *dst_path)
3132{
3133 u64 min_key;
3134 u64 max_key;
3135 int ret;
3136 int key_type = BTRFS_DIR_ITEM_KEY;
3137
3138again:
3139 min_key = 0;
3140 max_key = 0;
d397712b 3141 while (1) {
e02119d5
CM
3142 ret = log_dir_items(trans, root, inode, path,
3143 dst_path, key_type, min_key,
3144 &max_key);
4a500fd1
YZ
3145 if (ret)
3146 return ret;
e02119d5
CM
3147 if (max_key == (u64)-1)
3148 break;
3149 min_key = max_key + 1;
3150 }
3151
3152 if (key_type == BTRFS_DIR_ITEM_KEY) {
3153 key_type = BTRFS_DIR_INDEX_KEY;
3154 goto again;
3155 }
3156 return 0;
3157}
3158
3159/*
3160 * a helper function to drop items from the log before we relog an
3161 * inode. max_key_type indicates the highest item type to remove.
3162 * This cannot be run for file data extents because it does not
3163 * free the extents they point to.
3164 */
3165static int drop_objectid_items(struct btrfs_trans_handle *trans,
3166 struct btrfs_root *log,
3167 struct btrfs_path *path,
3168 u64 objectid, int max_key_type)
3169{
3170 int ret;
3171 struct btrfs_key key;
3172 struct btrfs_key found_key;
18ec90d6 3173 int start_slot;
e02119d5
CM
3174
3175 key.objectid = objectid;
3176 key.type = max_key_type;
3177 key.offset = (u64)-1;
3178
d397712b 3179 while (1) {
e02119d5 3180 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3181 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3182 if (ret < 0)
e02119d5
CM
3183 break;
3184
3185 if (path->slots[0] == 0)
3186 break;
3187
3188 path->slots[0]--;
3189 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3190 path->slots[0]);
3191
3192 if (found_key.objectid != objectid)
3193 break;
3194
18ec90d6
JB
3195 found_key.offset = 0;
3196 found_key.type = 0;
3197 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3198 &start_slot);
3199
3200 ret = btrfs_del_items(trans, log, path, start_slot,
3201 path->slots[0] - start_slot + 1);
3202 /*
3203 * If start slot isn't 0 then we don't need to re-search, we've
3204 * found the last guy with the objectid in this tree.
3205 */
3206 if (ret || start_slot != 0)
65a246c5 3207 break;
b3b4aa74 3208 btrfs_release_path(path);
e02119d5 3209 }
b3b4aa74 3210 btrfs_release_path(path);
5bdbeb21
JB
3211 if (ret > 0)
3212 ret = 0;
4a500fd1 3213 return ret;
e02119d5
CM
3214}
3215
94edf4ae
JB
3216static void fill_inode_item(struct btrfs_trans_handle *trans,
3217 struct extent_buffer *leaf,
3218 struct btrfs_inode_item *item,
3219 struct inode *inode, int log_inode_only)
3220{
0b1c6cca
JB
3221 struct btrfs_map_token token;
3222
3223 btrfs_init_map_token(&token);
94edf4ae
JB
3224
3225 if (log_inode_only) {
3226 /* set the generation to zero so the recover code
3227 * can tell the difference between an logging
3228 * just to say 'this inode exists' and a logging
3229 * to say 'update this inode with these values'
3230 */
0b1c6cca
JB
3231 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3232 btrfs_set_token_inode_size(leaf, item, 0, &token);
94edf4ae 3233 } else {
0b1c6cca
JB
3234 btrfs_set_token_inode_generation(leaf, item,
3235 BTRFS_I(inode)->generation,
3236 &token);
3237 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3238 }
3239
3240 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3241 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3242 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3243 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3244
3245 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3246 inode->i_atime.tv_sec, &token);
3247 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3248 inode->i_atime.tv_nsec, &token);
3249
3250 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3251 inode->i_mtime.tv_sec, &token);
3252 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3253 inode->i_mtime.tv_nsec, &token);
3254
3255 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3256 inode->i_ctime.tv_sec, &token);
3257 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3258 inode->i_ctime.tv_nsec, &token);
3259
3260 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3261 &token);
3262
3263 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3264 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3265 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3266 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3267 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3268}
3269
a95249b3
JB
3270static int log_inode_item(struct btrfs_trans_handle *trans,
3271 struct btrfs_root *log, struct btrfs_path *path,
3272 struct inode *inode)
3273{
3274 struct btrfs_inode_item *inode_item;
a95249b3
JB
3275 int ret;
3276
efd0c405
FDBM
3277 ret = btrfs_insert_empty_item(trans, log, path,
3278 &BTRFS_I(inode)->location,
a95249b3
JB
3279 sizeof(*inode_item));
3280 if (ret && ret != -EEXIST)
3281 return ret;
3282 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3283 struct btrfs_inode_item);
3284 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0);
3285 btrfs_release_path(path);
3286 return 0;
3287}
3288
31ff1cd2 3289static noinline int copy_items(struct btrfs_trans_handle *trans,
d2794405 3290 struct inode *inode,
31ff1cd2 3291 struct btrfs_path *dst_path,
16e7549f 3292 struct btrfs_path *src_path, u64 *last_extent,
31ff1cd2
CM
3293 int start_slot, int nr, int inode_only)
3294{
3295 unsigned long src_offset;
3296 unsigned long dst_offset;
d2794405 3297 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
31ff1cd2
CM
3298 struct btrfs_file_extent_item *extent;
3299 struct btrfs_inode_item *inode_item;
16e7549f
JB
3300 struct extent_buffer *src = src_path->nodes[0];
3301 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3302 int ret;
3303 struct btrfs_key *ins_keys;
3304 u32 *ins_sizes;
3305 char *ins_data;
3306 int i;
d20f7043 3307 struct list_head ordered_sums;
d2794405 3308 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
16e7549f
JB
3309 bool has_extents = false;
3310 bool need_find_last_extent = (*last_extent == 0);
3311 bool done = false;
d20f7043
CM
3312
3313 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3314
3315 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3316 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3317 if (!ins_data)
3318 return -ENOMEM;
3319
16e7549f
JB
3320 first_key.objectid = (u64)-1;
3321
31ff1cd2
CM
3322 ins_sizes = (u32 *)ins_data;
3323 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3324
3325 for (i = 0; i < nr; i++) {
3326 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3327 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3328 }
3329 ret = btrfs_insert_empty_items(trans, log, dst_path,
3330 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3331 if (ret) {
3332 kfree(ins_data);
3333 return ret;
3334 }
31ff1cd2 3335
5d4f98a2 3336 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3337 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3338 dst_path->slots[0]);
3339
3340 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3341
16e7549f
JB
3342 if ((i == (nr - 1)))
3343 last_key = ins_keys[i];
3344
94edf4ae 3345 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3346 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3347 dst_path->slots[0],
3348 struct btrfs_inode_item);
94edf4ae
JB
3349 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3350 inode, inode_only == LOG_INODE_EXISTS);
3351 } else {
3352 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3353 src_offset, ins_sizes[i]);
31ff1cd2 3354 }
94edf4ae 3355
16e7549f
JB
3356 /*
3357 * We set need_find_last_extent here in case we know we were
3358 * processing other items and then walk into the first extent in
3359 * the inode. If we don't hit an extent then nothing changes,
3360 * we'll do the last search the next time around.
3361 */
3362 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3363 has_extents = true;
3364 if (need_find_last_extent &&
3365 first_key.objectid == (u64)-1)
3366 first_key = ins_keys[i];
3367 } else {
3368 need_find_last_extent = false;
3369 }
3370
31ff1cd2
CM
3371 /* take a reference on file data extents so that truncates
3372 * or deletes of this inode don't have to relog the inode
3373 * again
3374 */
d2794405
LB
3375 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY &&
3376 !skip_csum) {
31ff1cd2
CM
3377 int found_type;
3378 extent = btrfs_item_ptr(src, start_slot + i,
3379 struct btrfs_file_extent_item);
3380
8e531cdf 3381 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3382 continue;
3383
31ff1cd2 3384 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3385 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3386 u64 ds, dl, cs, cl;
3387 ds = btrfs_file_extent_disk_bytenr(src,
3388 extent);
3389 /* ds == 0 is a hole */
3390 if (ds == 0)
3391 continue;
3392
3393 dl = btrfs_file_extent_disk_num_bytes(src,
3394 extent);
3395 cs = btrfs_file_extent_offset(src, extent);
3396 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3397 extent);
580afd76
CM
3398 if (btrfs_file_extent_compression(src,
3399 extent)) {
3400 cs = 0;
3401 cl = dl;
3402 }
5d4f98a2
YZ
3403
3404 ret = btrfs_lookup_csums_range(
3405 log->fs_info->csum_root,
3406 ds + cs, ds + cs + cl - 1,
a2de733c 3407 &ordered_sums, 0);
3650860b
JB
3408 if (ret) {
3409 btrfs_release_path(dst_path);
3410 kfree(ins_data);
3411 return ret;
3412 }
31ff1cd2
CM
3413 }
3414 }
31ff1cd2
CM
3415 }
3416
3417 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3418 btrfs_release_path(dst_path);
31ff1cd2 3419 kfree(ins_data);
d20f7043
CM
3420
3421 /*
3422 * we have to do this after the loop above to avoid changing the
3423 * log tree while trying to change the log tree.
3424 */
4a500fd1 3425 ret = 0;
d397712b 3426 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3427 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3428 struct btrfs_ordered_sum,
3429 list);
4a500fd1
YZ
3430 if (!ret)
3431 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3432 list_del(&sums->list);
3433 kfree(sums);
3434 }
16e7549f
JB
3435
3436 if (!has_extents)
3437 return ret;
3438
3439 /*
3440 * Because we use btrfs_search_forward we could skip leaves that were
3441 * not modified and then assume *last_extent is valid when it really
3442 * isn't. So back up to the previous leaf and read the end of the last
3443 * extent before we go and fill in holes.
3444 */
3445 if (need_find_last_extent) {
3446 u64 len;
3447
3448 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3449 if (ret < 0)
3450 return ret;
3451 if (ret)
3452 goto fill_holes;
3453 if (src_path->slots[0])
3454 src_path->slots[0]--;
3455 src = src_path->nodes[0];
3456 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3457 if (key.objectid != btrfs_ino(inode) ||
3458 key.type != BTRFS_EXTENT_DATA_KEY)
3459 goto fill_holes;
3460 extent = btrfs_item_ptr(src, src_path->slots[0],
3461 struct btrfs_file_extent_item);
3462 if (btrfs_file_extent_type(src, extent) ==
3463 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3464 len = btrfs_file_extent_inline_len(src,
3465 src_path->slots[0],
3466 extent);
16e7549f
JB
3467 *last_extent = ALIGN(key.offset + len,
3468 log->sectorsize);
3469 } else {
3470 len = btrfs_file_extent_num_bytes(src, extent);
3471 *last_extent = key.offset + len;
3472 }
3473 }
3474fill_holes:
3475 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3476 * things could have happened
3477 *
3478 * 1) A merge could have happened, so we could currently be on a leaf
3479 * that holds what we were copying in the first place.
3480 * 2) A split could have happened, and now not all of the items we want
3481 * are on the same leaf.
3482 *
3483 * So we need to adjust how we search for holes, we need to drop the
3484 * path and re-search for the first extent key we found, and then walk
3485 * forward until we hit the last one we copied.
3486 */
3487 if (need_find_last_extent) {
3488 /* btrfs_prev_leaf could return 1 without releasing the path */
3489 btrfs_release_path(src_path);
3490 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3491 src_path, 0, 0);
3492 if (ret < 0)
3493 return ret;
3494 ASSERT(ret == 0);
3495 src = src_path->nodes[0];
3496 i = src_path->slots[0];
3497 } else {
3498 i = start_slot;
3499 }
3500
3501 /*
3502 * Ok so here we need to go through and fill in any holes we may have
3503 * to make sure that holes are punched for those areas in case they had
3504 * extents previously.
3505 */
3506 while (!done) {
3507 u64 offset, len;
3508 u64 extent_end;
3509
3510 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3511 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3512 if (ret < 0)
3513 return ret;
3514 ASSERT(ret == 0);
3515 src = src_path->nodes[0];
3516 i = 0;
3517 }
3518
3519 btrfs_item_key_to_cpu(src, &key, i);
3520 if (!btrfs_comp_cpu_keys(&key, &last_key))
3521 done = true;
3522 if (key.objectid != btrfs_ino(inode) ||
3523 key.type != BTRFS_EXTENT_DATA_KEY) {
3524 i++;
3525 continue;
3526 }
3527 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3528 if (btrfs_file_extent_type(src, extent) ==
3529 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 3530 len = btrfs_file_extent_inline_len(src, i, extent);
16e7549f
JB
3531 extent_end = ALIGN(key.offset + len, log->sectorsize);
3532 } else {
3533 len = btrfs_file_extent_num_bytes(src, extent);
3534 extent_end = key.offset + len;
3535 }
3536 i++;
3537
3538 if (*last_extent == key.offset) {
3539 *last_extent = extent_end;
3540 continue;
3541 }
3542 offset = *last_extent;
3543 len = key.offset - *last_extent;
3544 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3545 offset, 0, 0, len, 0, len, 0,
3546 0, 0);
3547 if (ret)
3548 break;
3549 *last_extent = offset + len;
3550 }
3551 /*
3552 * Need to let the callers know we dropped the path so they should
3553 * re-search.
3554 */
3555 if (!ret && need_find_last_extent)
3556 ret = 1;
4a500fd1 3557 return ret;
31ff1cd2
CM
3558}
3559
5dc562c5
JB
3560static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3561{
3562 struct extent_map *em1, *em2;
3563
3564 em1 = list_entry(a, struct extent_map, list);
3565 em2 = list_entry(b, struct extent_map, list);
3566
3567 if (em1->start < em2->start)
3568 return -1;
3569 else if (em1->start > em2->start)
3570 return 1;
3571 return 0;
3572}
3573
5dc562c5
JB
3574static int log_one_extent(struct btrfs_trans_handle *trans,
3575 struct inode *inode, struct btrfs_root *root,
827463c4
MX
3576 struct extent_map *em, struct btrfs_path *path,
3577 struct list_head *logged_list)
5dc562c5
JB
3578{
3579 struct btrfs_root *log = root->log_root;
70c8a91c
JB
3580 struct btrfs_file_extent_item *fi;
3581 struct extent_buffer *leaf;
2ab28f32 3582 struct btrfs_ordered_extent *ordered;
70c8a91c 3583 struct list_head ordered_sums;
0b1c6cca 3584 struct btrfs_map_token token;
5dc562c5 3585 struct btrfs_key key;
2ab28f32
JB
3586 u64 mod_start = em->mod_start;
3587 u64 mod_len = em->mod_len;
3588 u64 csum_offset;
3589 u64 csum_len;
70c8a91c
JB
3590 u64 extent_offset = em->start - em->orig_start;
3591 u64 block_len;
5dc562c5 3592 int ret;
70c8a91c 3593 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1acae57b 3594 int extent_inserted = 0;
09a2a8f9 3595
70c8a91c 3596 INIT_LIST_HEAD(&ordered_sums);
0b1c6cca 3597 btrfs_init_map_token(&token);
70c8a91c 3598
1acae57b
FDBM
3599 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
3600 em->start + em->len, NULL, 0, 1,
3601 sizeof(*fi), &extent_inserted);
09a2a8f9 3602 if (ret)
70c8a91c 3603 return ret;
1acae57b
FDBM
3604
3605 if (!extent_inserted) {
3606 key.objectid = btrfs_ino(inode);
3607 key.type = BTRFS_EXTENT_DATA_KEY;
3608 key.offset = em->start;
3609
3610 ret = btrfs_insert_empty_item(trans, log, path, &key,
3611 sizeof(*fi));
3612 if (ret)
3613 return ret;
3614 }
70c8a91c
JB
3615 leaf = path->nodes[0];
3616 fi = btrfs_item_ptr(leaf, path->slots[0],
3617 struct btrfs_file_extent_item);
124fe663 3618
0b1c6cca
JB
3619 btrfs_set_token_file_extent_generation(leaf, fi, em->generation,
3620 &token);
70c8a91c
JB
3621 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3622 skip_csum = true;
0b1c6cca
JB
3623 btrfs_set_token_file_extent_type(leaf, fi,
3624 BTRFS_FILE_EXTENT_PREALLOC,
3625 &token);
70c8a91c 3626 } else {
0b1c6cca
JB
3627 btrfs_set_token_file_extent_type(leaf, fi,
3628 BTRFS_FILE_EXTENT_REG,
3629 &token);
ed9e8af8 3630 if (em->block_start == EXTENT_MAP_HOLE)
70c8a91c
JB
3631 skip_csum = true;
3632 }
3633
3634 block_len = max(em->block_len, em->orig_block_len);
3635 if (em->compress_type != BTRFS_COMPRESS_NONE) {
0b1c6cca
JB
3636 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3637 em->block_start,
3638 &token);
3639 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3640 &token);
70c8a91c 3641 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
0b1c6cca
JB
3642 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
3643 em->block_start -
3644 extent_offset, &token);
3645 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
3646 &token);
70c8a91c 3647 } else {
0b1c6cca
JB
3648 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
3649 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
3650 &token);
3651 }
3652
3653 btrfs_set_token_file_extent_offset(leaf, fi,
3654 em->start - em->orig_start,
3655 &token);
3656 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
cc95bef6 3657 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
0b1c6cca
JB
3658 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
3659 &token);
3660 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
3661 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
70c8a91c 3662 btrfs_mark_buffer_dirty(leaf);
0aa4a17d 3663
70c8a91c 3664 btrfs_release_path(path);
70c8a91c
JB
3665 if (ret) {
3666 return ret;
3667 }
0aa4a17d 3668
70c8a91c
JB
3669 if (skip_csum)
3670 return 0;
5dc562c5 3671
2ab28f32
JB
3672 /*
3673 * First check and see if our csums are on our outstanding ordered
3674 * extents.
3675 */
827463c4 3676 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
3677 struct btrfs_ordered_sum *sum;
3678
3679 if (!mod_len)
3680 break;
3681
2ab28f32
JB
3682 if (ordered->file_offset + ordered->len <= mod_start ||
3683 mod_start + mod_len <= ordered->file_offset)
3684 continue;
3685
3686 /*
3687 * We are going to copy all the csums on this ordered extent, so
3688 * go ahead and adjust mod_start and mod_len in case this
3689 * ordered extent has already been logged.
3690 */
3691 if (ordered->file_offset > mod_start) {
3692 if (ordered->file_offset + ordered->len >=
3693 mod_start + mod_len)
3694 mod_len = ordered->file_offset - mod_start;
3695 /*
3696 * If we have this case
3697 *
3698 * |--------- logged extent ---------|
3699 * |----- ordered extent ----|
3700 *
3701 * Just don't mess with mod_start and mod_len, we'll
3702 * just end up logging more csums than we need and it
3703 * will be ok.
3704 */
3705 } else {
3706 if (ordered->file_offset + ordered->len <
3707 mod_start + mod_len) {
3708 mod_len = (mod_start + mod_len) -
3709 (ordered->file_offset + ordered->len);
3710 mod_start = ordered->file_offset +
3711 ordered->len;
3712 } else {
3713 mod_len = 0;
3714 }
3715 }
3716
3717 /*
3718 * To keep us from looping for the above case of an ordered
3719 * extent that falls inside of the logged extent.
3720 */
3721 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3722 &ordered->flags))
3723 continue;
2ab28f32 3724
23c671a5
MX
3725 if (ordered->csum_bytes_left) {
3726 btrfs_start_ordered_extent(inode, ordered, 0);
3727 wait_event(ordered->wait,
3728 ordered->csum_bytes_left == 0);
3729 }
2ab28f32
JB
3730
3731 list_for_each_entry(sum, &ordered->list, list) {
3732 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 3733 if (ret)
2ab28f32 3734 goto unlocked;
2ab28f32 3735 }
2ab28f32
JB
3736
3737 }
2ab28f32
JB
3738unlocked:
3739
3740 if (!mod_len || ret)
3741 return ret;
3742
488111aa
FDBM
3743 if (em->compress_type) {
3744 csum_offset = 0;
3745 csum_len = block_len;
3746 } else {
3747 csum_offset = mod_start - em->start;
3748 csum_len = mod_len;
3749 }
2ab28f32 3750
70c8a91c
JB
3751 /* block start is already adjusted for the file extent offset. */
3752 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
3753 em->block_start + csum_offset,
3754 em->block_start + csum_offset +
3755 csum_len - 1, &ordered_sums, 0);
3756 if (ret)
3757 return ret;
5dc562c5 3758
70c8a91c
JB
3759 while (!list_empty(&ordered_sums)) {
3760 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3761 struct btrfs_ordered_sum,
3762 list);
3763 if (!ret)
3764 ret = btrfs_csum_file_blocks(trans, log, sums);
3765 list_del(&sums->list);
3766 kfree(sums);
5dc562c5
JB
3767 }
3768
70c8a91c 3769 return ret;
5dc562c5
JB
3770}
3771
3772static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
3773 struct btrfs_root *root,
3774 struct inode *inode,
827463c4
MX
3775 struct btrfs_path *path,
3776 struct list_head *logged_list)
5dc562c5 3777{
5dc562c5
JB
3778 struct extent_map *em, *n;
3779 struct list_head extents;
3780 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
3781 u64 test_gen;
3782 int ret = 0;
2ab28f32 3783 int num = 0;
5dc562c5
JB
3784
3785 INIT_LIST_HEAD(&extents);
3786
5dc562c5
JB
3787 write_lock(&tree->lock);
3788 test_gen = root->fs_info->last_trans_committed;
3789
3790 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
3791 list_del_init(&em->list);
2ab28f32
JB
3792
3793 /*
3794 * Just an arbitrary number, this can be really CPU intensive
3795 * once we start getting a lot of extents, and really once we
3796 * have a bunch of extents we just want to commit since it will
3797 * be faster.
3798 */
3799 if (++num > 32768) {
3800 list_del_init(&tree->modified_extents);
3801 ret = -EFBIG;
3802 goto process;
3803 }
3804
5dc562c5
JB
3805 if (em->generation <= test_gen)
3806 continue;
ff44c6e3
JB
3807 /* Need a ref to keep it from getting evicted from cache */
3808 atomic_inc(&em->refs);
3809 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 3810 list_add_tail(&em->list, &extents);
2ab28f32 3811 num++;
5dc562c5
JB
3812 }
3813
3814 list_sort(NULL, &extents, extent_cmp);
3815
2ab28f32 3816process:
5dc562c5
JB
3817 while (!list_empty(&extents)) {
3818 em = list_entry(extents.next, struct extent_map, list);
3819
3820 list_del_init(&em->list);
3821
3822 /*
3823 * If we had an error we just need to delete everybody from our
3824 * private list.
3825 */
ff44c6e3 3826 if (ret) {
201a9038 3827 clear_em_logging(tree, em);
ff44c6e3 3828 free_extent_map(em);
5dc562c5 3829 continue;
ff44c6e3
JB
3830 }
3831
3832 write_unlock(&tree->lock);
5dc562c5 3833
827463c4 3834 ret = log_one_extent(trans, inode, root, em, path, logged_list);
ff44c6e3 3835 write_lock(&tree->lock);
201a9038
JB
3836 clear_em_logging(tree, em);
3837 free_extent_map(em);
5dc562c5 3838 }
ff44c6e3
JB
3839 WARN_ON(!list_empty(&extents));
3840 write_unlock(&tree->lock);
5dc562c5 3841
5dc562c5 3842 btrfs_release_path(path);
5dc562c5
JB
3843 return ret;
3844}
3845
e02119d5
CM
3846/* log a single inode in the tree log.
3847 * At least one parent directory for this inode must exist in the tree
3848 * or be logged already.
3849 *
3850 * Any items from this inode changed by the current transaction are copied
3851 * to the log tree. An extra reference is taken on any extents in this
3852 * file, allowing us to avoid a whole pile of corner cases around logging
3853 * blocks that have been removed from the tree.
3854 *
3855 * See LOG_INODE_ALL and related defines for a description of what inode_only
3856 * does.
3857 *
3858 * This handles both files and directories.
3859 */
12fcfd22 3860static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
3861 struct btrfs_root *root, struct inode *inode,
3862 int inode_only)
3863{
3864 struct btrfs_path *path;
3865 struct btrfs_path *dst_path;
3866 struct btrfs_key min_key;
3867 struct btrfs_key max_key;
3868 struct btrfs_root *log = root->log_root;
31ff1cd2 3869 struct extent_buffer *src = NULL;
827463c4 3870 LIST_HEAD(logged_list);
16e7549f 3871 u64 last_extent = 0;
4a500fd1 3872 int err = 0;
e02119d5 3873 int ret;
3a5f1d45 3874 int nritems;
31ff1cd2
CM
3875 int ins_start_slot = 0;
3876 int ins_nr;
5dc562c5 3877 bool fast_search = false;
33345d01 3878 u64 ino = btrfs_ino(inode);
e02119d5 3879
e02119d5 3880 path = btrfs_alloc_path();
5df67083
TI
3881 if (!path)
3882 return -ENOMEM;
e02119d5 3883 dst_path = btrfs_alloc_path();
5df67083
TI
3884 if (!dst_path) {
3885 btrfs_free_path(path);
3886 return -ENOMEM;
3887 }
e02119d5 3888
33345d01 3889 min_key.objectid = ino;
e02119d5
CM
3890 min_key.type = BTRFS_INODE_ITEM_KEY;
3891 min_key.offset = 0;
3892
33345d01 3893 max_key.objectid = ino;
12fcfd22 3894
12fcfd22 3895
5dc562c5 3896 /* today the code can only do partial logging of directories */
5269b67e
MX
3897 if (S_ISDIR(inode->i_mode) ||
3898 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3899 &BTRFS_I(inode)->runtime_flags) &&
3900 inode_only == LOG_INODE_EXISTS))
e02119d5
CM
3901 max_key.type = BTRFS_XATTR_ITEM_KEY;
3902 else
3903 max_key.type = (u8)-1;
3904 max_key.offset = (u64)-1;
3905
94edf4ae
JB
3906 /* Only run delayed items if we are a dir or a new file */
3907 if (S_ISDIR(inode->i_mode) ||
3908 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed) {
3909 ret = btrfs_commit_inode_delayed_items(trans, inode);
3910 if (ret) {
3911 btrfs_free_path(path);
3912 btrfs_free_path(dst_path);
3913 return ret;
3914 }
16cdcec7
MX
3915 }
3916
e02119d5
CM
3917 mutex_lock(&BTRFS_I(inode)->log_mutex);
3918
827463c4 3919 btrfs_get_logged_extents(inode, &logged_list);
2ab28f32 3920
e02119d5
CM
3921 /*
3922 * a brute force approach to making sure we get the most uptodate
3923 * copies of everything.
3924 */
3925 if (S_ISDIR(inode->i_mode)) {
3926 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
3927
3928 if (inode_only == LOG_INODE_EXISTS)
3929 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 3930 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 3931 } else {
5dc562c5
JB
3932 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3933 &BTRFS_I(inode)->runtime_flags)) {
e9976151
JB
3934 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
3935 &BTRFS_I(inode)->runtime_flags);
5dc562c5
JB
3936 ret = btrfs_truncate_inode_items(trans, log,
3937 inode, 0, 0);
a95249b3 3938 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6cfab851
JB
3939 &BTRFS_I(inode)->runtime_flags) ||
3940 inode_only == LOG_INODE_EXISTS) {
183f37fa
LB
3941 if (inode_only == LOG_INODE_ALL)
3942 fast_search = true;
a95249b3 3943 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 3944 ret = drop_objectid_items(trans, log, path, ino,
e9976151 3945 max_key.type);
a95249b3
JB
3946 } else {
3947 if (inode_only == LOG_INODE_ALL)
3948 fast_search = true;
3949 ret = log_inode_item(trans, log, dst_path, inode);
3950 if (ret) {
3951 err = ret;
3952 goto out_unlock;
3953 }
3954 goto log_extents;
5dc562c5 3955 }
a95249b3 3956
e02119d5 3957 }
4a500fd1
YZ
3958 if (ret) {
3959 err = ret;
3960 goto out_unlock;
3961 }
e02119d5
CM
3962 path->keep_locks = 1;
3963
d397712b 3964 while (1) {
31ff1cd2 3965 ins_nr = 0;
6174d3cb 3966 ret = btrfs_search_forward(root, &min_key,
de78b51a 3967 path, trans->transid);
e02119d5
CM
3968 if (ret != 0)
3969 break;
3a5f1d45 3970again:
31ff1cd2 3971 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 3972 if (min_key.objectid != ino)
e02119d5
CM
3973 break;
3974 if (min_key.type > max_key.type)
3975 break;
31ff1cd2 3976
e02119d5 3977 src = path->nodes[0];
31ff1cd2
CM
3978 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
3979 ins_nr++;
3980 goto next_slot;
3981 } else if (!ins_nr) {
3982 ins_start_slot = path->slots[0];
3983 ins_nr = 1;
3984 goto next_slot;
e02119d5
CM
3985 }
3986
16e7549f
JB
3987 ret = copy_items(trans, inode, dst_path, path, &last_extent,
3988 ins_start_slot, ins_nr, inode_only);
3989 if (ret < 0) {
4a500fd1
YZ
3990 err = ret;
3991 goto out_unlock;
16e7549f
JB
3992 } if (ret) {
3993 ins_nr = 0;
3994 btrfs_release_path(path);
3995 continue;
4a500fd1 3996 }
31ff1cd2
CM
3997 ins_nr = 1;
3998 ins_start_slot = path->slots[0];
3999next_slot:
e02119d5 4000
3a5f1d45
CM
4001 nritems = btrfs_header_nritems(path->nodes[0]);
4002 path->slots[0]++;
4003 if (path->slots[0] < nritems) {
4004 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4005 path->slots[0]);
4006 goto again;
4007 }
31ff1cd2 4008 if (ins_nr) {
16e7549f
JB
4009 ret = copy_items(trans, inode, dst_path, path,
4010 &last_extent, ins_start_slot,
31ff1cd2 4011 ins_nr, inode_only);
16e7549f 4012 if (ret < 0) {
4a500fd1
YZ
4013 err = ret;
4014 goto out_unlock;
4015 }
16e7549f 4016 ret = 0;
31ff1cd2
CM
4017 ins_nr = 0;
4018 }
b3b4aa74 4019 btrfs_release_path(path);
3a5f1d45 4020
3d41d702 4021 if (min_key.offset < (u64)-1) {
e02119d5 4022 min_key.offset++;
3d41d702 4023 } else if (min_key.type < max_key.type) {
e02119d5 4024 min_key.type++;
3d41d702
FDBM
4025 min_key.offset = 0;
4026 } else {
e02119d5 4027 break;
3d41d702 4028 }
e02119d5 4029 }
31ff1cd2 4030 if (ins_nr) {
16e7549f
JB
4031 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4032 ins_start_slot, ins_nr, inode_only);
4033 if (ret < 0) {
4a500fd1
YZ
4034 err = ret;
4035 goto out_unlock;
4036 }
16e7549f 4037 ret = 0;
31ff1cd2
CM
4038 ins_nr = 0;
4039 }
5dc562c5 4040
a95249b3 4041log_extents:
f3b15ccd
JB
4042 btrfs_release_path(path);
4043 btrfs_release_path(dst_path);
5dc562c5 4044 if (fast_search) {
827463c4
MX
4045 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4046 &logged_list);
5dc562c5
JB
4047 if (ret) {
4048 err = ret;
4049 goto out_unlock;
4050 }
d006a048 4051 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
4052 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4053 struct extent_map *em, *n;
4054
bbe14267 4055 write_lock(&tree->lock);
06d3d22b
LB
4056 list_for_each_entry_safe(em, n, &tree->modified_extents, list)
4057 list_del_init(&em->list);
bbe14267 4058 write_unlock(&tree->lock);
5dc562c5
JB
4059 }
4060
9623f9a3 4061 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5 4062 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
4063 if (ret) {
4064 err = ret;
4065 goto out_unlock;
4066 }
e02119d5 4067 }
3a5f1d45 4068 BTRFS_I(inode)->logged_trans = trans->transid;
46d8bc34 4069 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4a500fd1 4070out_unlock:
827463c4
MX
4071 if (unlikely(err))
4072 btrfs_put_logged_extents(&logged_list);
4073 else
4074 btrfs_submit_logged_extents(&logged_list, log);
e02119d5
CM
4075 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4076
4077 btrfs_free_path(path);
4078 btrfs_free_path(dst_path);
4a500fd1 4079 return err;
e02119d5
CM
4080}
4081
12fcfd22
CM
4082/*
4083 * follow the dentry parent pointers up the chain and see if any
4084 * of the directories in it require a full commit before they can
4085 * be logged. Returns zero if nothing special needs to be done or 1 if
4086 * a full commit is required.
4087 */
4088static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4089 struct inode *inode,
4090 struct dentry *parent,
4091 struct super_block *sb,
4092 u64 last_committed)
e02119d5 4093{
12fcfd22
CM
4094 int ret = 0;
4095 struct btrfs_root *root;
6a912213 4096 struct dentry *old_parent = NULL;
de2b530b 4097 struct inode *orig_inode = inode;
e02119d5 4098
af4176b4
CM
4099 /*
4100 * for regular files, if its inode is already on disk, we don't
4101 * have to worry about the parents at all. This is because
4102 * we can use the last_unlink_trans field to record renames
4103 * and other fun in this file.
4104 */
4105 if (S_ISREG(inode->i_mode) &&
4106 BTRFS_I(inode)->generation <= last_committed &&
4107 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4108 goto out;
4109
12fcfd22
CM
4110 if (!S_ISDIR(inode->i_mode)) {
4111 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4112 goto out;
4113 inode = parent->d_inode;
4114 }
4115
4116 while (1) {
de2b530b
JB
4117 /*
4118 * If we are logging a directory then we start with our inode,
4119 * not our parents inode, so we need to skipp setting the
4120 * logged_trans so that further down in the log code we don't
4121 * think this inode has already been logged.
4122 */
4123 if (inode != orig_inode)
4124 BTRFS_I(inode)->logged_trans = trans->transid;
12fcfd22
CM
4125 smp_mb();
4126
4127 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4128 root = BTRFS_I(inode)->root;
4129
4130 /*
4131 * make sure any commits to the log are forced
4132 * to be full commits
4133 */
4134 root->fs_info->last_trans_log_full_commit =
4135 trans->transid;
4136 ret = 1;
4137 break;
4138 }
4139
4140 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
4141 break;
4142
76dda93c 4143 if (IS_ROOT(parent))
12fcfd22
CM
4144 break;
4145
6a912213
JB
4146 parent = dget_parent(parent);
4147 dput(old_parent);
4148 old_parent = parent;
12fcfd22
CM
4149 inode = parent->d_inode;
4150
4151 }
6a912213 4152 dput(old_parent);
12fcfd22 4153out:
e02119d5
CM
4154 return ret;
4155}
4156
4157/*
4158 * helper function around btrfs_log_inode to make sure newly created
4159 * parent directories also end up in the log. A minimal inode and backref
4160 * only logging is done of any parent directories that are older than
4161 * the last committed transaction
4162 */
48a3b636
ES
4163static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
4164 struct btrfs_root *root, struct inode *inode,
8b050d35
MX
4165 struct dentry *parent, int exists_only,
4166 struct btrfs_log_ctx *ctx)
e02119d5 4167{
12fcfd22 4168 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 4169 struct super_block *sb;
6a912213 4170 struct dentry *old_parent = NULL;
12fcfd22
CM
4171 int ret = 0;
4172 u64 last_committed = root->fs_info->last_trans_committed;
4173
4174 sb = inode->i_sb;
4175
3a5e1404
SW
4176 if (btrfs_test_opt(root, NOTREELOG)) {
4177 ret = 1;
4178 goto end_no_trans;
4179 }
4180
12fcfd22
CM
4181 if (root->fs_info->last_trans_log_full_commit >
4182 root->fs_info->last_trans_committed) {
4183 ret = 1;
4184 goto end_no_trans;
4185 }
4186
76dda93c
YZ
4187 if (root != BTRFS_I(inode)->root ||
4188 btrfs_root_refs(&root->root_item) == 0) {
4189 ret = 1;
4190 goto end_no_trans;
4191 }
4192
12fcfd22
CM
4193 ret = check_parent_dirs_for_sync(trans, inode, parent,
4194 sb, last_committed);
4195 if (ret)
4196 goto end_no_trans;
e02119d5 4197
22ee6985 4198 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
4199 ret = BTRFS_NO_LOG_SYNC;
4200 goto end_no_trans;
4201 }
4202
8b050d35 4203 ret = start_log_trans(trans, root, ctx);
4a500fd1 4204 if (ret)
e87ac136 4205 goto end_no_trans;
e02119d5 4206
12fcfd22 4207 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
4208 if (ret)
4209 goto end_trans;
12fcfd22 4210
af4176b4
CM
4211 /*
4212 * for regular files, if its inode is already on disk, we don't
4213 * have to worry about the parents at all. This is because
4214 * we can use the last_unlink_trans field to record renames
4215 * and other fun in this file.
4216 */
4217 if (S_ISREG(inode->i_mode) &&
4218 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
4219 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
4220 ret = 0;
4221 goto end_trans;
4222 }
af4176b4
CM
4223
4224 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
4225 while (1) {
4226 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
4227 break;
4228
12fcfd22 4229 inode = parent->d_inode;
76dda93c
YZ
4230 if (root != BTRFS_I(inode)->root)
4231 break;
4232
12fcfd22
CM
4233 if (BTRFS_I(inode)->generation >
4234 root->fs_info->last_trans_committed) {
4235 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
4236 if (ret)
4237 goto end_trans;
12fcfd22 4238 }
76dda93c 4239 if (IS_ROOT(parent))
e02119d5 4240 break;
12fcfd22 4241
6a912213
JB
4242 parent = dget_parent(parent);
4243 dput(old_parent);
4244 old_parent = parent;
e02119d5 4245 }
12fcfd22 4246 ret = 0;
4a500fd1 4247end_trans:
6a912213 4248 dput(old_parent);
4a500fd1 4249 if (ret < 0) {
4a500fd1
YZ
4250 root->fs_info->last_trans_log_full_commit = trans->transid;
4251 ret = 1;
4252 }
8b050d35
MX
4253
4254 if (ret)
4255 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
4256 btrfs_end_log_trans(root);
4257end_no_trans:
4258 return ret;
e02119d5
CM
4259}
4260
4261/*
4262 * it is not safe to log dentry if the chunk root has added new
4263 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
4264 * If this returns 1, you must commit the transaction to safely get your
4265 * data on disk.
4266 */
4267int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
8b050d35
MX
4268 struct btrfs_root *root, struct dentry *dentry,
4269 struct btrfs_log_ctx *ctx)
e02119d5 4270{
6a912213
JB
4271 struct dentry *parent = dget_parent(dentry);
4272 int ret;
4273
8b050d35
MX
4274 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent,
4275 0, ctx);
6a912213
JB
4276 dput(parent);
4277
4278 return ret;
e02119d5
CM
4279}
4280
4281/*
4282 * should be called during mount to recover any replay any log trees
4283 * from the FS
4284 */
4285int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
4286{
4287 int ret;
4288 struct btrfs_path *path;
4289 struct btrfs_trans_handle *trans;
4290 struct btrfs_key key;
4291 struct btrfs_key found_key;
4292 struct btrfs_key tmp_key;
4293 struct btrfs_root *log;
4294 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
4295 struct walk_control wc = {
4296 .process_func = process_one_buffer,
4297 .stage = 0,
4298 };
4299
e02119d5 4300 path = btrfs_alloc_path();
db5b493a
TI
4301 if (!path)
4302 return -ENOMEM;
4303
4304 fs_info->log_root_recovering = 1;
e02119d5 4305
4a500fd1 4306 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
4307 if (IS_ERR(trans)) {
4308 ret = PTR_ERR(trans);
4309 goto error;
4310 }
e02119d5
CM
4311
4312 wc.trans = trans;
4313 wc.pin = 1;
4314
db5b493a 4315 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa
JM
4316 if (ret) {
4317 btrfs_error(fs_info, ret, "Failed to pin buffers while "
4318 "recovering log root tree.");
4319 goto error;
4320 }
e02119d5
CM
4321
4322again:
4323 key.objectid = BTRFS_TREE_LOG_OBJECTID;
4324 key.offset = (u64)-1;
4325 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
4326
d397712b 4327 while (1) {
e02119d5 4328 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
4329
4330 if (ret < 0) {
4331 btrfs_error(fs_info, ret,
4332 "Couldn't find tree log root.");
4333 goto error;
4334 }
e02119d5
CM
4335 if (ret > 0) {
4336 if (path->slots[0] == 0)
4337 break;
4338 path->slots[0]--;
4339 }
4340 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4341 path->slots[0]);
b3b4aa74 4342 btrfs_release_path(path);
e02119d5
CM
4343 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4344 break;
4345
cb517eab 4346 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
4347 if (IS_ERR(log)) {
4348 ret = PTR_ERR(log);
4349 btrfs_error(fs_info, ret,
4350 "Couldn't read tree log root.");
4351 goto error;
4352 }
e02119d5
CM
4353
4354 tmp_key.objectid = found_key.offset;
4355 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
4356 tmp_key.offset = (u64)-1;
4357
4358 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
4359 if (IS_ERR(wc.replay_dest)) {
4360 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
4361 free_extent_buffer(log->node);
4362 free_extent_buffer(log->commit_root);
4363 kfree(log);
79787eaa
JM
4364 btrfs_error(fs_info, ret, "Couldn't read target root "
4365 "for tree log recovery.");
4366 goto error;
4367 }
e02119d5 4368
07d400a6 4369 wc.replay_dest->log_root = log;
5d4f98a2 4370 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 4371 ret = walk_log_tree(trans, log, &wc);
e02119d5 4372
b50c6e25 4373 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
4374 ret = fixup_inode_link_counts(trans, wc.replay_dest,
4375 path);
e02119d5
CM
4376 }
4377
4378 key.offset = found_key.offset - 1;
07d400a6 4379 wc.replay_dest->log_root = NULL;
e02119d5 4380 free_extent_buffer(log->node);
b263c2c8 4381 free_extent_buffer(log->commit_root);
e02119d5
CM
4382 kfree(log);
4383
b50c6e25
JB
4384 if (ret)
4385 goto error;
4386
e02119d5
CM
4387 if (found_key.offset == 0)
4388 break;
4389 }
b3b4aa74 4390 btrfs_release_path(path);
e02119d5
CM
4391
4392 /* step one is to pin it all, step two is to replay just inodes */
4393 if (wc.pin) {
4394 wc.pin = 0;
4395 wc.process_func = replay_one_buffer;
4396 wc.stage = LOG_WALK_REPLAY_INODES;
4397 goto again;
4398 }
4399 /* step three is to replay everything */
4400 if (wc.stage < LOG_WALK_REPLAY_ALL) {
4401 wc.stage++;
4402 goto again;
4403 }
4404
4405 btrfs_free_path(path);
4406
abefa55a
JB
4407 /* step 4: commit the transaction, which also unpins the blocks */
4408 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
4409 if (ret)
4410 return ret;
4411
e02119d5
CM
4412 free_extent_buffer(log_root_tree->node);
4413 log_root_tree->log_root = NULL;
4414 fs_info->log_root_recovering = 0;
e02119d5 4415 kfree(log_root_tree);
79787eaa 4416
abefa55a 4417 return 0;
79787eaa 4418error:
b50c6e25
JB
4419 if (wc.trans)
4420 btrfs_end_transaction(wc.trans, fs_info->tree_root);
79787eaa
JM
4421 btrfs_free_path(path);
4422 return ret;
e02119d5 4423}
12fcfd22
CM
4424
4425/*
4426 * there are some corner cases where we want to force a full
4427 * commit instead of allowing a directory to be logged.
4428 *
4429 * They revolve around files there were unlinked from the directory, and
4430 * this function updates the parent directory so that a full commit is
4431 * properly done if it is fsync'd later after the unlinks are done.
4432 */
4433void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4434 struct inode *dir, struct inode *inode,
4435 int for_rename)
4436{
af4176b4
CM
4437 /*
4438 * when we're logging a file, if it hasn't been renamed
4439 * or unlinked, and its inode is fully committed on disk,
4440 * we don't have to worry about walking up the directory chain
4441 * to log its parents.
4442 *
4443 * So, we use the last_unlink_trans field to put this transid
4444 * into the file. When the file is logged we check it and
4445 * don't log the parents if the file is fully on disk.
4446 */
4447 if (S_ISREG(inode->i_mode))
4448 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4449
12fcfd22
CM
4450 /*
4451 * if this directory was already logged any new
4452 * names for this file/dir will get recorded
4453 */
4454 smp_mb();
4455 if (BTRFS_I(dir)->logged_trans == trans->transid)
4456 return;
4457
4458 /*
4459 * if the inode we're about to unlink was logged,
4460 * the log will be properly updated for any new names
4461 */
4462 if (BTRFS_I(inode)->logged_trans == trans->transid)
4463 return;
4464
4465 /*
4466 * when renaming files across directories, if the directory
4467 * there we're unlinking from gets fsync'd later on, there's
4468 * no way to find the destination directory later and fsync it
4469 * properly. So, we have to be conservative and force commits
4470 * so the new name gets discovered.
4471 */
4472 if (for_rename)
4473 goto record;
4474
4475 /* we can safely do the unlink without any special recording */
4476 return;
4477
4478record:
4479 BTRFS_I(dir)->last_unlink_trans = trans->transid;
4480}
4481
4482/*
4483 * Call this after adding a new name for a file and it will properly
4484 * update the log to reflect the new name.
4485 *
4486 * It will return zero if all goes well, and it will return 1 if a
4487 * full transaction commit is required.
4488 */
4489int btrfs_log_new_name(struct btrfs_trans_handle *trans,
4490 struct inode *inode, struct inode *old_dir,
4491 struct dentry *parent)
4492{
4493 struct btrfs_root * root = BTRFS_I(inode)->root;
4494
af4176b4
CM
4495 /*
4496 * this will force the logging code to walk the dentry chain
4497 * up for the file
4498 */
4499 if (S_ISREG(inode->i_mode))
4500 BTRFS_I(inode)->last_unlink_trans = trans->transid;
4501
12fcfd22
CM
4502 /*
4503 * if this inode hasn't been logged and directory we're renaming it
4504 * from hasn't been logged, we don't need to log it
4505 */
4506 if (BTRFS_I(inode)->logged_trans <=
4507 root->fs_info->last_trans_committed &&
4508 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
4509 root->fs_info->last_trans_committed))
4510 return 0;
4511
8b050d35 4512 return btrfs_log_inode_parent(trans, root, inode, parent, 1, NULL);
12fcfd22
CM
4513}
4514