]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/tree-log.c
btrfs: raid56: clear incompat block group flags after removing the last one
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
9678c543 11#include "ctree.h"
995946dd 12#include "tree-log.h"
e02119d5
CM
13#include "disk-io.h"
14#include "locking.h"
15#include "print-tree.h"
f186373f 16#include "backref.h"
ebb8765b 17#include "compression.h"
df2c95f3 18#include "qgroup.h"
900c9981 19#include "inode-map.h"
e02119d5
CM
20
21/* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27#define LOG_INODE_ALL 0
28#define LOG_INODE_EXISTS 1
781feef7 29#define LOG_OTHER_INODE 2
a3baaf0d 30#define LOG_OTHER_INODE_ALL 3
e02119d5 31
12fcfd22
CM
32/*
33 * directory trouble cases
34 *
35 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
36 * log, we must force a full commit before doing an fsync of the directory
37 * where the unlink was done.
38 * ---> record transid of last unlink/rename per directory
39 *
40 * mkdir foo/some_dir
41 * normal commit
42 * rename foo/some_dir foo2/some_dir
43 * mkdir foo/some_dir
44 * fsync foo/some_dir/some_file
45 *
46 * The fsync above will unlink the original some_dir without recording
47 * it in its new location (foo2). After a crash, some_dir will be gone
48 * unless the fsync of some_file forces a full commit
49 *
50 * 2) we must log any new names for any file or dir that is in the fsync
51 * log. ---> check inode while renaming/linking.
52 *
53 * 2a) we must log any new names for any file or dir during rename
54 * when the directory they are being removed from was logged.
55 * ---> check inode and old parent dir during rename
56 *
57 * 2a is actually the more important variant. With the extra logging
58 * a crash might unlink the old name without recreating the new one
59 *
60 * 3) after a crash, we must go through any directories with a link count
61 * of zero and redo the rm -rf
62 *
63 * mkdir f1/foo
64 * normal commit
65 * rm -rf f1/foo
66 * fsync(f1)
67 *
68 * The directory f1 was fully removed from the FS, but fsync was never
69 * called on f1, only its parent dir. After a crash the rm -rf must
70 * be replayed. This must be able to recurse down the entire
71 * directory tree. The inode link count fixup code takes care of the
72 * ugly details.
73 */
74
e02119d5
CM
75/*
76 * stages for the tree walking. The first
77 * stage (0) is to only pin down the blocks we find
78 * the second stage (1) is to make sure that all the inodes
79 * we find in the log are created in the subvolume.
80 *
81 * The last stage is to deal with directories and links and extents
82 * and all the other fun semantics
83 */
84#define LOG_WALK_PIN_ONLY 0
85#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
86#define LOG_WALK_REPLAY_DIR_INDEX 2
87#define LOG_WALK_REPLAY_ALL 3
e02119d5 88
12fcfd22 89static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 90 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
91 int inode_only,
92 const loff_t start,
8407f553
FM
93 const loff_t end,
94 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
95static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
98static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root,
100 struct btrfs_root *log,
101 struct btrfs_path *path,
102 u64 dirid, int del_all);
e02119d5
CM
103
104/*
105 * tree logging is a special write ahead log used to make sure that
106 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 *
108 * Full tree commits are expensive because they require commonly
109 * modified blocks to be recowed, creating many dirty pages in the
110 * extent tree an 4x-6x higher write load than ext3.
111 *
112 * Instead of doing a tree commit on every fsync, we use the
113 * key ranges and transaction ids to find items for a given file or directory
114 * that have changed in this transaction. Those items are copied into
115 * a special tree (one per subvolume root), that tree is written to disk
116 * and then the fsync is considered complete.
117 *
118 * After a crash, items are copied out of the log-tree back into the
119 * subvolume tree. Any file data extents found are recorded in the extent
120 * allocation tree, and the log-tree freed.
121 *
122 * The log tree is read three times, once to pin down all the extents it is
123 * using in ram and once, once to create all the inodes logged in the tree
124 * and once to do all the other items.
125 */
126
e02119d5
CM
127/*
128 * start a sub transaction and setup the log tree
129 * this increments the log tree writer count to make the people
130 * syncing the tree wait for us to finish
131 */
132static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
133 struct btrfs_root *root,
134 struct btrfs_log_ctx *ctx)
e02119d5 135{
0b246afa 136 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 137 int ret = 0;
7237f183
YZ
138
139 mutex_lock(&root->log_mutex);
34eb2a52 140
7237f183 141 if (root->log_root) {
4884b8e8 142 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
143 ret = -EAGAIN;
144 goto out;
145 }
34eb2a52 146
ff782e0a 147 if (!root->log_start_pid) {
27cdeb70 148 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 149 root->log_start_pid = current->pid;
ff782e0a 150 } else if (root->log_start_pid != current->pid) {
27cdeb70 151 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 152 }
34eb2a52 153 } else {
0b246afa
JM
154 mutex_lock(&fs_info->tree_log_mutex);
155 if (!fs_info->log_root_tree)
156 ret = btrfs_init_log_root_tree(trans, fs_info);
157 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
158 if (ret)
159 goto out;
ff782e0a 160
e02119d5 161 ret = btrfs_add_log_tree(trans, root);
4a500fd1 162 if (ret)
e87ac136 163 goto out;
34eb2a52
Z
164
165 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
166 root->log_start_pid = current->pid;
e02119d5 167 }
34eb2a52 168
2ecb7923 169 atomic_inc(&root->log_batch);
7237f183 170 atomic_inc(&root->log_writers);
8b050d35 171 if (ctx) {
34eb2a52 172 int index = root->log_transid % 2;
8b050d35 173 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 174 ctx->log_transid = root->log_transid;
8b050d35 175 }
34eb2a52 176
e87ac136 177out:
7237f183 178 mutex_unlock(&root->log_mutex);
e87ac136 179 return ret;
e02119d5
CM
180}
181
182/*
183 * returns 0 if there was a log transaction running and we were able
184 * to join, or returns -ENOENT if there were not transactions
185 * in progress
186 */
187static int join_running_log_trans(struct btrfs_root *root)
188{
189 int ret = -ENOENT;
190
191 smp_mb();
192 if (!root->log_root)
193 return -ENOENT;
194
7237f183 195 mutex_lock(&root->log_mutex);
e02119d5
CM
196 if (root->log_root) {
197 ret = 0;
7237f183 198 atomic_inc(&root->log_writers);
e02119d5 199 }
7237f183 200 mutex_unlock(&root->log_mutex);
e02119d5
CM
201 return ret;
202}
203
12fcfd22
CM
204/*
205 * This either makes the current running log transaction wait
206 * until you call btrfs_end_log_trans() or it makes any future
207 * log transactions wait until you call btrfs_end_log_trans()
208 */
45128b08 209void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 210{
12fcfd22
CM
211 mutex_lock(&root->log_mutex);
212 atomic_inc(&root->log_writers);
213 mutex_unlock(&root->log_mutex);
12fcfd22
CM
214}
215
e02119d5
CM
216/*
217 * indicate we're done making changes to the log tree
218 * and wake up anyone waiting to do a sync
219 */
143bede5 220void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 221{
7237f183 222 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
223 /* atomic_dec_and_test implies a barrier */
224 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 225 }
e02119d5
CM
226}
227
247462a5
DS
228static int btrfs_write_tree_block(struct extent_buffer *buf)
229{
230 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
231 buf->start + buf->len - 1);
232}
233
234static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
235{
236 filemap_fdatawait_range(buf->pages[0]->mapping,
237 buf->start, buf->start + buf->len - 1);
238}
e02119d5
CM
239
240/*
241 * the walk control struct is used to pass state down the chain when
242 * processing the log tree. The stage field tells us which part
243 * of the log tree processing we are currently doing. The others
244 * are state fields used for that specific part
245 */
246struct walk_control {
247 /* should we free the extent on disk when done? This is used
248 * at transaction commit time while freeing a log tree
249 */
250 int free;
251
252 /* should we write out the extent buffer? This is used
253 * while flushing the log tree to disk during a sync
254 */
255 int write;
256
257 /* should we wait for the extent buffer io to finish? Also used
258 * while flushing the log tree to disk for a sync
259 */
260 int wait;
261
262 /* pin only walk, we record which extents on disk belong to the
263 * log trees
264 */
265 int pin;
266
267 /* what stage of the replay code we're currently in */
268 int stage;
269
f2d72f42
FM
270 /*
271 * Ignore any items from the inode currently being processed. Needs
272 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
273 * the LOG_WALK_REPLAY_INODES stage.
274 */
275 bool ignore_cur_inode;
276
e02119d5
CM
277 /* the root we are currently replaying */
278 struct btrfs_root *replay_dest;
279
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle *trans;
282
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
286 * inside it
287 */
288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 289 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
290};
291
292/*
293 * process_func used to pin down extents, write them or wait on them
294 */
295static int process_one_buffer(struct btrfs_root *log,
296 struct extent_buffer *eb,
581c1760 297 struct walk_control *wc, u64 gen, int level)
e02119d5 298{
0b246afa 299 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
0b246afa 306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 307 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
2ff7e61e
JM
313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 317 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 318 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
4bc4bee4 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
364 if (ret < 0)
365 return ret;
366
e02119d5
CM
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
b3b4aa74 376 btrfs_release_path(path);
e02119d5
CM
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 381 if (!dst_copy || !src_copy) {
b3b4aa74 382 btrfs_release_path(path);
2a29edc6 383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
e02119d5
CM
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
b3b4aa74 404 btrfs_release_path(path);
e02119d5
CM
405 return 0;
406 }
407
4bc4bee4
JB
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
d555438b 415 u32 mode;
4bc4bee4
JB
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
d555438b 435 u32 mode;
4bc4bee4
JB
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
452 }
453insert:
b3b4aa74 454 btrfs_release_path(path);
e02119d5 455 /* try to insert the key into the destination tree */
df8d116f 456 path->skip_release_on_error = 1;
e02119d5
CM
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
df8d116f 459 path->skip_release_on_error = 0;
e02119d5
CM
460
461 /* make sure any existing item is the correct size */
df8d116f 462 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
463 u32 found_size;
464 found_size = btrfs_item_size_nr(path->nodes[0],
465 path->slots[0]);
143bede5 466 if (found_size > item_size)
78ac4f9e 467 btrfs_truncate_item(path, item_size, 1);
143bede5 468 else if (found_size < item_size)
c71dd880 469 btrfs_extend_item(path, item_size - found_size);
e02119d5 470 } else if (ret) {
4a500fd1 471 return ret;
e02119d5
CM
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
1a4bcf47
FM
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 494 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 495
2f2ff0ee
FM
496 /*
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
502 */
1a4bcf47 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 ino_size != 0) {
1a4bcf47 506 struct btrfs_map_token token;
1a4bcf47
FM
507
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
510 ino_size, &token);
511 }
e02119d5 512 goto no_copy;
1a4bcf47 513 }
e02119d5
CM
514
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 save_old_i_size = 1;
519 saved_i_size = btrfs_inode_size(path->nodes[0],
520 dst_item);
521 }
522 }
523
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 src_ptr, item_size);
526
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 }
532
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
539 trans->transid);
540 }
541 }
542no_copy:
543 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 544 btrfs_release_path(path);
e02119d5
CM
545 return 0;
546}
547
548/*
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
551 */
552static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 u64 objectid)
554{
5d4f98a2 555 struct btrfs_key key;
e02119d5 556 struct inode *inode;
e02119d5 557
5d4f98a2
YZ
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
560 key.offset = 0;
73f73415 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
2e19f1f9 562 if (IS_ERR(inode))
5d4f98a2 563 inode = NULL;
e02119d5
CM
564 return inode;
565}
566
567/* replays a single extent in 'eb' at 'slot' with 'key' into the
568 * subvolume 'root'. path is released on entry and should be released
569 * on exit.
570 *
571 * extents in the log tree have not been allocated out of the extent
572 * tree yet. So, this completes the allocation, taking a reference
573 * as required if the extent already exists or creating a new extent
574 * if it isn't in the extent allocation tree yet.
575 *
576 * The extent is inserted into the file, dropping any existing extents
577 * from the file that overlap the new one.
578 */
579static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_path *path,
582 struct extent_buffer *eb, int slot,
583 struct btrfs_key *key)
584{
0b246afa 585 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 586 int found_type;
e02119d5 587 u64 extent_end;
e02119d5 588 u64 start = key->offset;
4bc4bee4 589 u64 nbytes = 0;
e02119d5
CM
590 struct btrfs_file_extent_item *item;
591 struct inode *inode = NULL;
592 unsigned long size;
593 int ret = 0;
594
595 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
596 found_type = btrfs_file_extent_type(eb, item);
597
d899e052 598 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
599 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
600 nbytes = btrfs_file_extent_num_bytes(eb, item);
601 extent_end = start + nbytes;
602
603 /*
604 * We don't add to the inodes nbytes if we are prealloc or a
605 * hole.
606 */
607 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
608 nbytes = 0;
609 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 610 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 611 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 612 extent_end = ALIGN(start + size,
0b246afa 613 fs_info->sectorsize);
e02119d5
CM
614 } else {
615 ret = 0;
616 goto out;
617 }
618
619 inode = read_one_inode(root, key->objectid);
620 if (!inode) {
621 ret = -EIO;
622 goto out;
623 }
624
625 /*
626 * first check to see if we already have this extent in the
627 * file. This must be done before the btrfs_drop_extents run
628 * so we don't try to drop this extent.
629 */
f85b7379
DS
630 ret = btrfs_lookup_file_extent(trans, root, path,
631 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 632
d899e052
YZ
633 if (ret == 0 &&
634 (found_type == BTRFS_FILE_EXTENT_REG ||
635 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
636 struct btrfs_file_extent_item cmp1;
637 struct btrfs_file_extent_item cmp2;
638 struct btrfs_file_extent_item *existing;
639 struct extent_buffer *leaf;
640
641 leaf = path->nodes[0];
642 existing = btrfs_item_ptr(leaf, path->slots[0],
643 struct btrfs_file_extent_item);
644
645 read_extent_buffer(eb, &cmp1, (unsigned long)item,
646 sizeof(cmp1));
647 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
648 sizeof(cmp2));
649
650 /*
651 * we already have a pointer to this exact extent,
652 * we don't have to do anything
653 */
654 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 655 btrfs_release_path(path);
e02119d5
CM
656 goto out;
657 }
658 }
b3b4aa74 659 btrfs_release_path(path);
e02119d5
CM
660
661 /* drop any overlapping extents */
2671485d 662 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
663 if (ret)
664 goto out;
e02119d5 665
07d400a6
YZ
666 if (found_type == BTRFS_FILE_EXTENT_REG ||
667 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 668 u64 offset;
07d400a6
YZ
669 unsigned long dest_offset;
670 struct btrfs_key ins;
671
3168021c
FM
672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
673 btrfs_fs_incompat(fs_info, NO_HOLES))
674 goto update_inode;
675
07d400a6
YZ
676 ret = btrfs_insert_empty_item(trans, root, path, key,
677 sizeof(*item));
3650860b
JB
678 if (ret)
679 goto out;
07d400a6
YZ
680 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 path->slots[0]);
682 copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 (unsigned long)item, sizeof(*item));
684
685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 688 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 689
df2c95f3
QW
690 /*
691 * Manually record dirty extent, as here we did a shallow
692 * file extent item copy and skip normal backref update,
693 * but modifying extent tree all by ourselves.
694 * So need to manually record dirty extent for qgroup,
695 * as the owner of the file extent changed from log tree
696 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 */
a95f3aaf 698 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
699 btrfs_file_extent_disk_bytenr(eb, item),
700 btrfs_file_extent_disk_num_bytes(eb, item),
701 GFP_NOFS);
702 if (ret < 0)
703 goto out;
704
07d400a6 705 if (ins.objectid > 0) {
82fa113f 706 struct btrfs_ref ref = { 0 };
07d400a6
YZ
707 u64 csum_start;
708 u64 csum_end;
709 LIST_HEAD(ordered_sums);
82fa113f 710
07d400a6
YZ
711 /*
712 * is this extent already allocated in the extent
713 * allocation tree? If so, just add a reference
714 */
2ff7e61e 715 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
716 ins.offset);
717 if (ret == 0) {
82fa113f
QW
718 btrfs_init_generic_ref(&ref,
719 BTRFS_ADD_DELAYED_REF,
720 ins.objectid, ins.offset, 0);
721 btrfs_init_data_ref(&ref,
722 root->root_key.objectid,
b06c4bf5 723 key->objectid, offset);
82fa113f 724 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
725 if (ret)
726 goto out;
07d400a6
YZ
727 } else {
728 /*
729 * insert the extent pointer in the extent
730 * allocation tree
731 */
5d4f98a2 732 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 733 root->root_key.objectid,
5d4f98a2 734 key->objectid, offset, &ins);
b50c6e25
JB
735 if (ret)
736 goto out;
07d400a6 737 }
b3b4aa74 738 btrfs_release_path(path);
07d400a6
YZ
739
740 if (btrfs_file_extent_compression(eb, item)) {
741 csum_start = ins.objectid;
742 csum_end = csum_start + ins.offset;
743 } else {
744 csum_start = ins.objectid +
745 btrfs_file_extent_offset(eb, item);
746 csum_end = csum_start +
747 btrfs_file_extent_num_bytes(eb, item);
748 }
749
750 ret = btrfs_lookup_csums_range(root->log_root,
751 csum_start, csum_end - 1,
a2de733c 752 &ordered_sums, 0);
3650860b
JB
753 if (ret)
754 goto out;
b84b8390
FM
755 /*
756 * Now delete all existing cums in the csum root that
757 * cover our range. We do this because we can have an
758 * extent that is completely referenced by one file
759 * extent item and partially referenced by another
760 * file extent item (like after using the clone or
761 * extent_same ioctls). In this case if we end up doing
762 * the replay of the one that partially references the
763 * extent first, and we do not do the csum deletion
764 * below, we can get 2 csum items in the csum tree that
765 * overlap each other. For example, imagine our log has
766 * the two following file extent items:
767 *
768 * key (257 EXTENT_DATA 409600)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 20480 nr 20480 ram 102400
771 *
772 * key (257 EXTENT_DATA 819200)
773 * extent data disk byte 12845056 nr 102400
774 * extent data offset 0 nr 102400 ram 102400
775 *
776 * Where the second one fully references the 100K extent
777 * that starts at disk byte 12845056, and the log tree
778 * has a single csum item that covers the entire range
779 * of the extent:
780 *
781 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 *
783 * After the first file extent item is replayed, the
784 * csum tree gets the following csum item:
785 *
786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 *
788 * Which covers the 20K sub-range starting at offset 20K
789 * of our extent. Now when we replay the second file
790 * extent item, if we do not delete existing csum items
791 * that cover any of its blocks, we end up getting two
792 * csum items in our csum tree that overlap each other:
793 *
794 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 *
797 * Which is a problem, because after this anyone trying
798 * to lookup up for the checksum of any block of our
799 * extent starting at an offset of 40K or higher, will
800 * end up looking at the second csum item only, which
801 * does not contain the checksum for any block starting
802 * at offset 40K or higher of our extent.
803 */
07d400a6
YZ
804 while (!list_empty(&ordered_sums)) {
805 struct btrfs_ordered_sum *sums;
806 sums = list_entry(ordered_sums.next,
807 struct btrfs_ordered_sum,
808 list);
b84b8390 809 if (!ret)
0b246afa 810 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
811 sums->bytenr,
812 sums->len);
3650860b
JB
813 if (!ret)
814 ret = btrfs_csum_file_blocks(trans,
0b246afa 815 fs_info->csum_root, sums);
07d400a6
YZ
816 list_del(&sums->list);
817 kfree(sums);
818 }
3650860b
JB
819 if (ret)
820 goto out;
07d400a6 821 } else {
b3b4aa74 822 btrfs_release_path(path);
07d400a6
YZ
823 }
824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 /* inline extents are easy, we just overwrite them */
826 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
827 if (ret)
828 goto out;
07d400a6 829 }
e02119d5 830
4bc4bee4 831 inode_add_bytes(inode, nbytes);
3168021c 832update_inode:
b9959295 833 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
834out:
835 if (inode)
836 iput(inode);
837 return ret;
838}
839
840/*
841 * when cleaning up conflicts between the directory names in the
842 * subvolume, directory names in the log and directory names in the
843 * inode back references, we may have to unlink inodes from directories.
844 *
845 * This is a helper function to do the unlink of a specific directory
846 * item
847 */
848static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root,
850 struct btrfs_path *path,
207e7d92 851 struct btrfs_inode *dir,
e02119d5
CM
852 struct btrfs_dir_item *di)
853{
854 struct inode *inode;
855 char *name;
856 int name_len;
857 struct extent_buffer *leaf;
858 struct btrfs_key location;
859 int ret;
860
861 leaf = path->nodes[0];
862
863 btrfs_dir_item_key_to_cpu(leaf, di, &location);
864 name_len = btrfs_dir_name_len(leaf, di);
865 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 866 if (!name)
867 return -ENOMEM;
868
e02119d5 869 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 870 btrfs_release_path(path);
e02119d5
CM
871
872 inode = read_one_inode(root, location.objectid);
c00e9493 873 if (!inode) {
3650860b
JB
874 ret = -EIO;
875 goto out;
c00e9493 876 }
e02119d5 877
ec051c0f 878 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
879 if (ret)
880 goto out;
12fcfd22 881
207e7d92
NB
882 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
883 name_len);
3650860b
JB
884 if (ret)
885 goto out;
ada9af21 886 else
e5c304e6 887 ret = btrfs_run_delayed_items(trans);
3650860b 888out:
e02119d5 889 kfree(name);
e02119d5
CM
890 iput(inode);
891 return ret;
892}
893
894/*
895 * helper function to see if a given name and sequence number found
896 * in an inode back reference are already in a directory and correctly
897 * point to this inode
898 */
899static noinline int inode_in_dir(struct btrfs_root *root,
900 struct btrfs_path *path,
901 u64 dirid, u64 objectid, u64 index,
902 const char *name, int name_len)
903{
904 struct btrfs_dir_item *di;
905 struct btrfs_key location;
906 int match = 0;
907
908 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
909 index, name, name_len, 0);
910 if (di && !IS_ERR(di)) {
911 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
912 if (location.objectid != objectid)
913 goto out;
914 } else
915 goto out;
b3b4aa74 916 btrfs_release_path(path);
e02119d5
CM
917
918 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
919 if (di && !IS_ERR(di)) {
920 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 if (location.objectid != objectid)
922 goto out;
923 } else
924 goto out;
925 match = 1;
926out:
b3b4aa74 927 btrfs_release_path(path);
e02119d5
CM
928 return match;
929}
930
931/*
932 * helper function to check a log tree for a named back reference in
933 * an inode. This is used to decide if a back reference that is
934 * found in the subvolume conflicts with what we find in the log.
935 *
936 * inode backreferences may have multiple refs in a single item,
937 * during replay we process one reference at a time, and we don't
938 * want to delete valid links to a file from the subvolume if that
939 * link is also in the log.
940 */
941static noinline int backref_in_log(struct btrfs_root *log,
942 struct btrfs_key *key,
f186373f 943 u64 ref_objectid,
df8d116f 944 const char *name, int namelen)
e02119d5
CM
945{
946 struct btrfs_path *path;
947 struct btrfs_inode_ref *ref;
948 unsigned long ptr;
949 unsigned long ptr_end;
950 unsigned long name_ptr;
951 int found_name_len;
952 int item_size;
953 int ret;
954 int match = 0;
955
956 path = btrfs_alloc_path();
2a29edc6 957 if (!path)
958 return -ENOMEM;
959
e02119d5
CM
960 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
961 if (ret != 0)
962 goto out;
963
e02119d5 964 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
965
966 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1f250e92
FM
967 if (btrfs_find_name_in_ext_backref(path->nodes[0],
968 path->slots[0],
969 ref_objectid,
f186373f
MF
970 name, namelen, NULL))
971 match = 1;
972
973 goto out;
974 }
975
976 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
977 ptr_end = ptr + item_size;
978 while (ptr < ptr_end) {
979 ref = (struct btrfs_inode_ref *)ptr;
980 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
981 if (found_name_len == namelen) {
982 name_ptr = (unsigned long)(ref + 1);
983 ret = memcmp_extent_buffer(path->nodes[0], name,
984 name_ptr, namelen);
985 if (ret == 0) {
986 match = 1;
987 goto out;
988 }
989 }
990 ptr = (unsigned long)(ref + 1) + found_name_len;
991 }
992out:
993 btrfs_free_path(path);
994 return match;
995}
996
5a1d7843 997static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 998 struct btrfs_root *root,
e02119d5 999 struct btrfs_path *path,
5a1d7843 1000 struct btrfs_root *log_root,
94c91a1f
NB
1001 struct btrfs_inode *dir,
1002 struct btrfs_inode *inode,
f186373f
MF
1003 u64 inode_objectid, u64 parent_objectid,
1004 u64 ref_index, char *name, int namelen,
1005 int *search_done)
e02119d5 1006{
34f3e4f2 1007 int ret;
f186373f
MF
1008 char *victim_name;
1009 int victim_name_len;
1010 struct extent_buffer *leaf;
5a1d7843 1011 struct btrfs_dir_item *di;
f186373f
MF
1012 struct btrfs_key search_key;
1013 struct btrfs_inode_extref *extref;
c622ae60 1014
f186373f
MF
1015again:
1016 /* Search old style refs */
1017 search_key.objectid = inode_objectid;
1018 search_key.type = BTRFS_INODE_REF_KEY;
1019 search_key.offset = parent_objectid;
1020 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1021 if (ret == 0) {
e02119d5
CM
1022 struct btrfs_inode_ref *victim_ref;
1023 unsigned long ptr;
1024 unsigned long ptr_end;
f186373f
MF
1025
1026 leaf = path->nodes[0];
e02119d5
CM
1027
1028 /* are we trying to overwrite a back ref for the root directory
1029 * if so, just jump out, we're done
1030 */
f186373f 1031 if (search_key.objectid == search_key.offset)
5a1d7843 1032 return 1;
e02119d5
CM
1033
1034 /* check all the names in this back reference to see
1035 * if they are in the log. if so, we allow them to stay
1036 * otherwise they must be unlinked as a conflict
1037 */
1038 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1040 while (ptr < ptr_end) {
e02119d5
CM
1041 victim_ref = (struct btrfs_inode_ref *)ptr;
1042 victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 victim_ref);
1044 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1045 if (!victim_name)
1046 return -ENOMEM;
e02119d5
CM
1047
1048 read_extent_buffer(leaf, victim_name,
1049 (unsigned long)(victim_ref + 1),
1050 victim_name_len);
1051
f186373f
MF
1052 if (!backref_in_log(log_root, &search_key,
1053 parent_objectid,
1054 victim_name,
e02119d5 1055 victim_name_len)) {
94c91a1f 1056 inc_nlink(&inode->vfs_inode);
b3b4aa74 1057 btrfs_release_path(path);
12fcfd22 1058
94c91a1f 1059 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1060 victim_name, victim_name_len);
f186373f 1061 kfree(victim_name);
3650860b
JB
1062 if (ret)
1063 return ret;
e5c304e6 1064 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1065 if (ret)
1066 return ret;
f186373f
MF
1067 *search_done = 1;
1068 goto again;
e02119d5
CM
1069 }
1070 kfree(victim_name);
f186373f 1071
e02119d5
CM
1072 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 }
e02119d5 1074
c622ae60 1075 /*
1076 * NOTE: we have searched root tree and checked the
bb7ab3b9 1077 * corresponding ref, it does not need to check again.
c622ae60 1078 */
5a1d7843 1079 *search_done = 1;
e02119d5 1080 }
b3b4aa74 1081 btrfs_release_path(path);
e02119d5 1082
f186373f
MF
1083 /* Same search but for extended refs */
1084 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 inode_objectid, parent_objectid, 0,
1086 0);
1087 if (!IS_ERR_OR_NULL(extref)) {
1088 u32 item_size;
1089 u32 cur_offset = 0;
1090 unsigned long base;
1091 struct inode *victim_parent;
1092
1093 leaf = path->nodes[0];
1094
1095 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097
1098 while (cur_offset < item_size) {
dd9ef135 1099 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1100
1101 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102
1103 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 goto next;
1105
1106 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1107 if (!victim_name)
1108 return -ENOMEM;
f186373f
MF
1109 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 victim_name_len);
1111
1112 search_key.objectid = inode_objectid;
1113 search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 search_key.offset = btrfs_extref_hash(parent_objectid,
1115 victim_name,
1116 victim_name_len);
1117 ret = 0;
1118 if (!backref_in_log(log_root, &search_key,
1119 parent_objectid, victim_name,
1120 victim_name_len)) {
1121 ret = -ENOENT;
1122 victim_parent = read_one_inode(root,
94c91a1f 1123 parent_objectid);
f186373f 1124 if (victim_parent) {
94c91a1f 1125 inc_nlink(&inode->vfs_inode);
f186373f
MF
1126 btrfs_release_path(path);
1127
1128 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1129 BTRFS_I(victim_parent),
94c91a1f 1130 inode,
4ec5934e
NB
1131 victim_name,
1132 victim_name_len);
ada9af21
FDBM
1133 if (!ret)
1134 ret = btrfs_run_delayed_items(
e5c304e6 1135 trans);
f186373f 1136 }
f186373f
MF
1137 iput(victim_parent);
1138 kfree(victim_name);
3650860b
JB
1139 if (ret)
1140 return ret;
f186373f
MF
1141 *search_done = 1;
1142 goto again;
1143 }
1144 kfree(victim_name);
f186373f
MF
1145next:
1146 cur_offset += victim_name_len + sizeof(*extref);
1147 }
1148 *search_done = 1;
1149 }
1150 btrfs_release_path(path);
1151
34f3e4f2 1152 /* look for a conflicting sequence number */
94c91a1f 1153 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1154 ref_index, name, namelen, 0);
34f3e4f2 1155 if (di && !IS_ERR(di)) {
94c91a1f 1156 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1157 if (ret)
1158 return ret;
34f3e4f2 1159 }
1160 btrfs_release_path(path);
1161
52042d8e 1162 /* look for a conflicting name */
94c91a1f 1163 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1164 name, namelen, 0);
1165 if (di && !IS_ERR(di)) {
94c91a1f 1166 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1167 if (ret)
1168 return ret;
34f3e4f2 1169 }
1170 btrfs_release_path(path);
1171
5a1d7843
JS
1172 return 0;
1173}
e02119d5 1174
bae15d95
QW
1175static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1176 u32 *namelen, char **name, u64 *index,
1177 u64 *parent_objectid)
f186373f
MF
1178{
1179 struct btrfs_inode_extref *extref;
1180
1181 extref = (struct btrfs_inode_extref *)ref_ptr;
1182
1183 *namelen = btrfs_inode_extref_name_len(eb, extref);
1184 *name = kmalloc(*namelen, GFP_NOFS);
1185 if (*name == NULL)
1186 return -ENOMEM;
1187
1188 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1189 *namelen);
1190
1f250e92
FM
1191 if (index)
1192 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1193 if (parent_objectid)
1194 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1195
1196 return 0;
1197}
1198
bae15d95
QW
1199static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1200 u32 *namelen, char **name, u64 *index)
f186373f
MF
1201{
1202 struct btrfs_inode_ref *ref;
1203
1204 ref = (struct btrfs_inode_ref *)ref_ptr;
1205
1206 *namelen = btrfs_inode_ref_name_len(eb, ref);
1207 *name = kmalloc(*namelen, GFP_NOFS);
1208 if (*name == NULL)
1209 return -ENOMEM;
1210
1211 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1212
1f250e92
FM
1213 if (index)
1214 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1215
1216 return 0;
1217}
1218
1f250e92
FM
1219/*
1220 * Take an inode reference item from the log tree and iterate all names from the
1221 * inode reference item in the subvolume tree with the same key (if it exists).
1222 * For any name that is not in the inode reference item from the log tree, do a
1223 * proper unlink of that name (that is, remove its entry from the inode
1224 * reference item and both dir index keys).
1225 */
1226static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1227 struct btrfs_root *root,
1228 struct btrfs_path *path,
1229 struct btrfs_inode *inode,
1230 struct extent_buffer *log_eb,
1231 int log_slot,
1232 struct btrfs_key *key)
1233{
1234 int ret;
1235 unsigned long ref_ptr;
1236 unsigned long ref_end;
1237 struct extent_buffer *eb;
1238
1239again:
1240 btrfs_release_path(path);
1241 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1242 if (ret > 0) {
1243 ret = 0;
1244 goto out;
1245 }
1246 if (ret < 0)
1247 goto out;
1248
1249 eb = path->nodes[0];
1250 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1251 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1252 while (ref_ptr < ref_end) {
1253 char *name = NULL;
1254 int namelen;
1255 u64 parent_id;
1256
1257 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1258 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1259 NULL, &parent_id);
1260 } else {
1261 parent_id = key->offset;
1262 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1263 NULL);
1264 }
1265 if (ret)
1266 goto out;
1267
1268 if (key->type == BTRFS_INODE_EXTREF_KEY)
1269 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1270 parent_id, name,
1271 namelen, NULL);
1272 else
1273 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1274 namelen, NULL);
1275
1276 if (!ret) {
1277 struct inode *dir;
1278
1279 btrfs_release_path(path);
1280 dir = read_one_inode(root, parent_id);
1281 if (!dir) {
1282 ret = -ENOENT;
1283 kfree(name);
1284 goto out;
1285 }
1286 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1287 inode, name, namelen);
1288 kfree(name);
1289 iput(dir);
1290 if (ret)
1291 goto out;
1292 goto again;
1293 }
1294
1295 kfree(name);
1296 ref_ptr += namelen;
1297 if (key->type == BTRFS_INODE_EXTREF_KEY)
1298 ref_ptr += sizeof(struct btrfs_inode_extref);
1299 else
1300 ref_ptr += sizeof(struct btrfs_inode_ref);
1301 }
1302 ret = 0;
1303 out:
1304 btrfs_release_path(path);
1305 return ret;
1306}
1307
0d836392
FM
1308static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1309 const u8 ref_type, const char *name,
1310 const int namelen)
1311{
1312 struct btrfs_key key;
1313 struct btrfs_path *path;
1314 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1315 int ret;
1316
1317 path = btrfs_alloc_path();
1318 if (!path)
1319 return -ENOMEM;
1320
1321 key.objectid = btrfs_ino(BTRFS_I(inode));
1322 key.type = ref_type;
1323 if (key.type == BTRFS_INODE_REF_KEY)
1324 key.offset = parent_id;
1325 else
1326 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1327
1328 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1329 if (ret < 0)
1330 goto out;
1331 if (ret > 0) {
1332 ret = 0;
1333 goto out;
1334 }
1335 if (key.type == BTRFS_INODE_EXTREF_KEY)
1336 ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1337 path->slots[0], parent_id,
1338 name, namelen, NULL);
1339 else
1340 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341 name, namelen, NULL);
1342
1343out:
1344 btrfs_free_path(path);
1345 return ret;
1346}
1347
6b5fc433
FM
1348static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349 struct inode *dir, struct inode *inode, const char *name,
1350 int namelen, u64 ref_index)
1351{
1352 struct btrfs_dir_item *dir_item;
1353 struct btrfs_key key;
1354 struct btrfs_path *path;
1355 struct inode *other_inode = NULL;
1356 int ret;
1357
1358 path = btrfs_alloc_path();
1359 if (!path)
1360 return -ENOMEM;
1361
1362 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363 btrfs_ino(BTRFS_I(dir)),
1364 name, namelen, 0);
1365 if (!dir_item) {
1366 btrfs_release_path(path);
1367 goto add_link;
1368 } else if (IS_ERR(dir_item)) {
1369 ret = PTR_ERR(dir_item);
1370 goto out;
1371 }
1372
1373 /*
1374 * Our inode's dentry collides with the dentry of another inode which is
1375 * in the log but not yet processed since it has a higher inode number.
1376 * So delete that other dentry.
1377 */
1378 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379 btrfs_release_path(path);
1380 other_inode = read_one_inode(root, key.objectid);
1381 if (!other_inode) {
1382 ret = -ENOENT;
1383 goto out;
1384 }
1385 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386 name, namelen);
1387 if (ret)
1388 goto out;
1389 /*
1390 * If we dropped the link count to 0, bump it so that later the iput()
1391 * on the inode will not free it. We will fixup the link count later.
1392 */
1393 if (other_inode->i_nlink == 0)
1394 inc_nlink(other_inode);
1395
1396 ret = btrfs_run_delayed_items(trans);
1397 if (ret)
1398 goto out;
1399add_link:
1400 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401 name, namelen, 0, ref_index);
1402out:
1403 iput(other_inode);
1404 btrfs_free_path(path);
1405
1406 return ret;
1407}
1408
5a1d7843
JS
1409/*
1410 * replay one inode back reference item found in the log tree.
1411 * eb, slot and key refer to the buffer and key found in the log tree.
1412 * root is the destination we are replaying into, and path is for temp
1413 * use by this function. (it should be released on return).
1414 */
1415static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416 struct btrfs_root *root,
1417 struct btrfs_root *log,
1418 struct btrfs_path *path,
1419 struct extent_buffer *eb, int slot,
1420 struct btrfs_key *key)
1421{
03b2f08b
GB
1422 struct inode *dir = NULL;
1423 struct inode *inode = NULL;
5a1d7843
JS
1424 unsigned long ref_ptr;
1425 unsigned long ref_end;
03b2f08b 1426 char *name = NULL;
5a1d7843
JS
1427 int namelen;
1428 int ret;
1429 int search_done = 0;
f186373f
MF
1430 int log_ref_ver = 0;
1431 u64 parent_objectid;
1432 u64 inode_objectid;
f46dbe3d 1433 u64 ref_index = 0;
f186373f
MF
1434 int ref_struct_size;
1435
1436 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438
1439 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440 struct btrfs_inode_extref *r;
1441
1442 ref_struct_size = sizeof(struct btrfs_inode_extref);
1443 log_ref_ver = 1;
1444 r = (struct btrfs_inode_extref *)ref_ptr;
1445 parent_objectid = btrfs_inode_extref_parent(eb, r);
1446 } else {
1447 ref_struct_size = sizeof(struct btrfs_inode_ref);
1448 parent_objectid = key->offset;
1449 }
1450 inode_objectid = key->objectid;
e02119d5 1451
5a1d7843
JS
1452 /*
1453 * it is possible that we didn't log all the parent directories
1454 * for a given inode. If we don't find the dir, just don't
1455 * copy the back ref in. The link count fixup code will take
1456 * care of the rest
1457 */
f186373f 1458 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1459 if (!dir) {
1460 ret = -ENOENT;
1461 goto out;
1462 }
5a1d7843 1463
f186373f 1464 inode = read_one_inode(root, inode_objectid);
5a1d7843 1465 if (!inode) {
03b2f08b
GB
1466 ret = -EIO;
1467 goto out;
5a1d7843
JS
1468 }
1469
5a1d7843 1470 while (ref_ptr < ref_end) {
f186373f 1471 if (log_ref_ver) {
bae15d95
QW
1472 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473 &ref_index, &parent_objectid);
f186373f
MF
1474 /*
1475 * parent object can change from one array
1476 * item to another.
1477 */
1478 if (!dir)
1479 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1480 if (!dir) {
1481 ret = -ENOENT;
1482 goto out;
1483 }
f186373f 1484 } else {
bae15d95
QW
1485 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486 &ref_index);
f186373f
MF
1487 }
1488 if (ret)
03b2f08b 1489 goto out;
5a1d7843
JS
1490
1491 /* if we already have a perfect match, we're done */
f85b7379
DS
1492 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493 btrfs_ino(BTRFS_I(inode)), ref_index,
1494 name, namelen)) {
5a1d7843
JS
1495 /*
1496 * look for a conflicting back reference in the
1497 * metadata. if we find one we have to unlink that name
1498 * of the file before we add our new link. Later on, we
1499 * overwrite any existing back reference, and we don't
1500 * want to create dangling pointers in the directory.
1501 */
1502
1503 if (!search_done) {
1504 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1505 BTRFS_I(dir),
d75eefdf 1506 BTRFS_I(inode),
f186373f
MF
1507 inode_objectid,
1508 parent_objectid,
1509 ref_index, name, namelen,
5a1d7843 1510 &search_done);
03b2f08b
GB
1511 if (ret) {
1512 if (ret == 1)
1513 ret = 0;
3650860b
JB
1514 goto out;
1515 }
5a1d7843
JS
1516 }
1517
0d836392
FM
1518 /*
1519 * If a reference item already exists for this inode
1520 * with the same parent and name, but different index,
1521 * drop it and the corresponding directory index entries
1522 * from the parent before adding the new reference item
1523 * and dir index entries, otherwise we would fail with
1524 * -EEXIST returned from btrfs_add_link() below.
1525 */
1526 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 name, namelen);
1528 if (ret > 0) {
1529 ret = btrfs_unlink_inode(trans, root,
1530 BTRFS_I(dir),
1531 BTRFS_I(inode),
1532 name, namelen);
1533 /*
1534 * If we dropped the link count to 0, bump it so
1535 * that later the iput() on the inode will not
1536 * free it. We will fixup the link count later.
1537 */
1538 if (!ret && inode->i_nlink == 0)
1539 inc_nlink(inode);
1540 }
1541 if (ret < 0)
1542 goto out;
1543
5a1d7843 1544 /* insert our name */
6b5fc433
FM
1545 ret = add_link(trans, root, dir, inode, name, namelen,
1546 ref_index);
3650860b
JB
1547 if (ret)
1548 goto out;
5a1d7843
JS
1549
1550 btrfs_update_inode(trans, root, inode);
1551 }
1552
f186373f 1553 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1554 kfree(name);
03b2f08b 1555 name = NULL;
f186373f
MF
1556 if (log_ref_ver) {
1557 iput(dir);
1558 dir = NULL;
1559 }
5a1d7843 1560 }
e02119d5 1561
1f250e92
FM
1562 /*
1563 * Before we overwrite the inode reference item in the subvolume tree
1564 * with the item from the log tree, we must unlink all names from the
1565 * parent directory that are in the subvolume's tree inode reference
1566 * item, otherwise we end up with an inconsistent subvolume tree where
1567 * dir index entries exist for a name but there is no inode reference
1568 * item with the same name.
1569 */
1570 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571 key);
1572 if (ret)
1573 goto out;
1574
e02119d5
CM
1575 /* finally write the back reference in the inode */
1576 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1577out:
b3b4aa74 1578 btrfs_release_path(path);
03b2f08b 1579 kfree(name);
e02119d5
CM
1580 iput(dir);
1581 iput(inode);
3650860b 1582 return ret;
e02119d5
CM
1583}
1584
c71bf099 1585static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1586 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1587{
1588 int ret;
381cf658 1589
9c4f61f0
DS
1590 ret = btrfs_insert_orphan_item(trans, root, ino);
1591 if (ret == -EEXIST)
1592 ret = 0;
381cf658 1593
c71bf099
YZ
1594 return ret;
1595}
1596
f186373f 1597static int count_inode_extrefs(struct btrfs_root *root,
36283658 1598 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1599{
1600 int ret = 0;
1601 int name_len;
1602 unsigned int nlink = 0;
1603 u32 item_size;
1604 u32 cur_offset = 0;
36283658 1605 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1606 u64 offset = 0;
1607 unsigned long ptr;
1608 struct btrfs_inode_extref *extref;
1609 struct extent_buffer *leaf;
1610
1611 while (1) {
1612 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613 &extref, &offset);
1614 if (ret)
1615 break;
c71bf099 1616
f186373f
MF
1617 leaf = path->nodes[0];
1618 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1620 cur_offset = 0;
f186373f
MF
1621
1622 while (cur_offset < item_size) {
1623 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624 name_len = btrfs_inode_extref_name_len(leaf, extref);
1625
1626 nlink++;
1627
1628 cur_offset += name_len + sizeof(*extref);
1629 }
1630
1631 offset++;
1632 btrfs_release_path(path);
1633 }
1634 btrfs_release_path(path);
1635
2c2c452b 1636 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1637 return ret;
1638 return nlink;
1639}
1640
1641static int count_inode_refs(struct btrfs_root *root,
f329e319 1642 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1643{
e02119d5
CM
1644 int ret;
1645 struct btrfs_key key;
f186373f 1646 unsigned int nlink = 0;
e02119d5
CM
1647 unsigned long ptr;
1648 unsigned long ptr_end;
1649 int name_len;
f329e319 1650 u64 ino = btrfs_ino(inode);
e02119d5 1651
33345d01 1652 key.objectid = ino;
e02119d5
CM
1653 key.type = BTRFS_INODE_REF_KEY;
1654 key.offset = (u64)-1;
1655
d397712b 1656 while (1) {
e02119d5
CM
1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 if (ret < 0)
1659 break;
1660 if (ret > 0) {
1661 if (path->slots[0] == 0)
1662 break;
1663 path->slots[0]--;
1664 }
e93ae26f 1665process_slot:
e02119d5
CM
1666 btrfs_item_key_to_cpu(path->nodes[0], &key,
1667 path->slots[0]);
33345d01 1668 if (key.objectid != ino ||
e02119d5
CM
1669 key.type != BTRFS_INODE_REF_KEY)
1670 break;
1671 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673 path->slots[0]);
d397712b 1674 while (ptr < ptr_end) {
e02119d5
CM
1675 struct btrfs_inode_ref *ref;
1676
1677 ref = (struct btrfs_inode_ref *)ptr;
1678 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679 ref);
1680 ptr = (unsigned long)(ref + 1) + name_len;
1681 nlink++;
1682 }
1683
1684 if (key.offset == 0)
1685 break;
e93ae26f
FDBM
1686 if (path->slots[0] > 0) {
1687 path->slots[0]--;
1688 goto process_slot;
1689 }
e02119d5 1690 key.offset--;
b3b4aa74 1691 btrfs_release_path(path);
e02119d5 1692 }
b3b4aa74 1693 btrfs_release_path(path);
f186373f
MF
1694
1695 return nlink;
1696}
1697
1698/*
1699 * There are a few corners where the link count of the file can't
1700 * be properly maintained during replay. So, instead of adding
1701 * lots of complexity to the log code, we just scan the backrefs
1702 * for any file that has been through replay.
1703 *
1704 * The scan will update the link count on the inode to reflect the
1705 * number of back refs found. If it goes down to zero, the iput
1706 * will free the inode.
1707 */
1708static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709 struct btrfs_root *root,
1710 struct inode *inode)
1711{
1712 struct btrfs_path *path;
1713 int ret;
1714 u64 nlink = 0;
4a0cc7ca 1715 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1716
1717 path = btrfs_alloc_path();
1718 if (!path)
1719 return -ENOMEM;
1720
f329e319 1721 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1722 if (ret < 0)
1723 goto out;
1724
1725 nlink = ret;
1726
36283658 1727 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1728 if (ret < 0)
1729 goto out;
1730
1731 nlink += ret;
1732
1733 ret = 0;
1734
e02119d5 1735 if (nlink != inode->i_nlink) {
bfe86848 1736 set_nlink(inode, nlink);
e02119d5
CM
1737 btrfs_update_inode(trans, root, inode);
1738 }
8d5bf1cb 1739 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1740
c71bf099
YZ
1741 if (inode->i_nlink == 0) {
1742 if (S_ISDIR(inode->i_mode)) {
1743 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1744 ino, 1);
3650860b
JB
1745 if (ret)
1746 goto out;
c71bf099 1747 }
33345d01 1748 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1749 }
12fcfd22 1750
f186373f
MF
1751out:
1752 btrfs_free_path(path);
1753 return ret;
e02119d5
CM
1754}
1755
1756static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path)
1759{
1760 int ret;
1761 struct btrfs_key key;
1762 struct inode *inode;
1763
1764 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765 key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 key.offset = (u64)-1;
d397712b 1767 while (1) {
e02119d5
CM
1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 if (ret < 0)
1770 break;
1771
1772 if (ret == 1) {
1773 if (path->slots[0] == 0)
1774 break;
1775 path->slots[0]--;
1776 }
1777
1778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780 key.type != BTRFS_ORPHAN_ITEM_KEY)
1781 break;
1782
1783 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1784 if (ret)
1785 goto out;
e02119d5 1786
b3b4aa74 1787 btrfs_release_path(path);
e02119d5 1788 inode = read_one_inode(root, key.offset);
c00e9493
TI
1789 if (!inode)
1790 return -EIO;
e02119d5
CM
1791
1792 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1793 iput(inode);
3650860b
JB
1794 if (ret)
1795 goto out;
e02119d5 1796
12fcfd22
CM
1797 /*
1798 * fixup on a directory may create new entries,
1799 * make sure we always look for the highset possible
1800 * offset
1801 */
1802 key.offset = (u64)-1;
e02119d5 1803 }
65a246c5
TI
1804 ret = 0;
1805out:
b3b4aa74 1806 btrfs_release_path(path);
65a246c5 1807 return ret;
e02119d5
CM
1808}
1809
1810
1811/*
1812 * record a given inode in the fixup dir so we can check its link
1813 * count when replay is done. The link count is incremented here
1814 * so the inode won't go away until we check it
1815 */
1816static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817 struct btrfs_root *root,
1818 struct btrfs_path *path,
1819 u64 objectid)
1820{
1821 struct btrfs_key key;
1822 int ret = 0;
1823 struct inode *inode;
1824
1825 inode = read_one_inode(root, objectid);
c00e9493
TI
1826 if (!inode)
1827 return -EIO;
e02119d5
CM
1828
1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1830 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1831 key.offset = objectid;
1832
1833 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834
b3b4aa74 1835 btrfs_release_path(path);
e02119d5 1836 if (ret == 0) {
9bf7a489
JB
1837 if (!inode->i_nlink)
1838 set_nlink(inode, 1);
1839 else
8b558c5f 1840 inc_nlink(inode);
b9959295 1841 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1842 } else if (ret == -EEXIST) {
1843 ret = 0;
1844 } else {
3650860b 1845 BUG(); /* Logic Error */
e02119d5
CM
1846 }
1847 iput(inode);
1848
1849 return ret;
1850}
1851
1852/*
1853 * when replaying the log for a directory, we only insert names
1854 * for inodes that actually exist. This means an fsync on a directory
1855 * does not implicitly fsync all the new files in it
1856 */
1857static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
e02119d5 1859 u64 dirid, u64 index,
60d53eb3 1860 char *name, int name_len,
e02119d5
CM
1861 struct btrfs_key *location)
1862{
1863 struct inode *inode;
1864 struct inode *dir;
1865 int ret;
1866
1867 inode = read_one_inode(root, location->objectid);
1868 if (!inode)
1869 return -ENOENT;
1870
1871 dir = read_one_inode(root, dirid);
1872 if (!dir) {
1873 iput(inode);
1874 return -EIO;
1875 }
d555438b 1876
db0a669f
NB
1877 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 name_len, 1, index);
e02119d5
CM
1879
1880 /* FIXME, put inode into FIXUP list */
1881
1882 iput(inode);
1883 iput(dir);
1884 return ret;
1885}
1886
df8d116f
FM
1887/*
1888 * Return true if an inode reference exists in the log for the given name,
1889 * inode and parent inode.
1890 */
1891static bool name_in_log_ref(struct btrfs_root *log_root,
1892 const char *name, const int name_len,
1893 const u64 dirid, const u64 ino)
1894{
1895 struct btrfs_key search_key;
1896
1897 search_key.objectid = ino;
1898 search_key.type = BTRFS_INODE_REF_KEY;
1899 search_key.offset = dirid;
1900 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901 return true;
1902
1903 search_key.type = BTRFS_INODE_EXTREF_KEY;
1904 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906 return true;
1907
1908 return false;
1909}
1910
e02119d5
CM
1911/*
1912 * take a single entry in a log directory item and replay it into
1913 * the subvolume.
1914 *
1915 * if a conflicting item exists in the subdirectory already,
1916 * the inode it points to is unlinked and put into the link count
1917 * fix up tree.
1918 *
1919 * If a name from the log points to a file or directory that does
1920 * not exist in the FS, it is skipped. fsyncs on directories
1921 * do not force down inodes inside that directory, just changes to the
1922 * names or unlinks in a directory.
bb53eda9
FM
1923 *
1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1926 */
1927static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct extent_buffer *eb,
1931 struct btrfs_dir_item *di,
1932 struct btrfs_key *key)
1933{
1934 char *name;
1935 int name_len;
1936 struct btrfs_dir_item *dst_di;
1937 struct btrfs_key found_key;
1938 struct btrfs_key log_key;
1939 struct inode *dir;
e02119d5 1940 u8 log_type;
4bef0848 1941 int exists;
3650860b 1942 int ret = 0;
d555438b 1943 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1944 bool name_added = false;
e02119d5
CM
1945
1946 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1947 if (!dir)
1948 return -EIO;
e02119d5
CM
1949
1950 name_len = btrfs_dir_name_len(eb, di);
1951 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1952 if (!name) {
1953 ret = -ENOMEM;
1954 goto out;
1955 }
2a29edc6 1956
e02119d5
CM
1957 log_type = btrfs_dir_type(eb, di);
1958 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959 name_len);
1960
1961 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1962 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963 if (exists == 0)
1964 exists = 1;
1965 else
1966 exists = 0;
b3b4aa74 1967 btrfs_release_path(path);
4bef0848 1968
e02119d5
CM
1969 if (key->type == BTRFS_DIR_ITEM_KEY) {
1970 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971 name, name_len, 1);
d397712b 1972 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1973 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974 key->objectid,
1975 key->offset, name,
1976 name_len, 1);
1977 } else {
3650860b
JB
1978 /* Corruption */
1979 ret = -EINVAL;
1980 goto out;
e02119d5 1981 }
c704005d 1982 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1983 /* we need a sequence number to insert, so we only
1984 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985 */
1986 if (key->type != BTRFS_DIR_INDEX_KEY)
1987 goto out;
1988 goto insert;
1989 }
1990
1991 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992 /* the existing item matches the logged item */
1993 if (found_key.objectid == log_key.objectid &&
1994 found_key.type == log_key.type &&
1995 found_key.offset == log_key.offset &&
1996 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1997 update_size = false;
e02119d5
CM
1998 goto out;
1999 }
2000
2001 /*
2002 * don't drop the conflicting directory entry if the inode
2003 * for the new entry doesn't exist
2004 */
4bef0848 2005 if (!exists)
e02119d5
CM
2006 goto out;
2007
207e7d92 2008 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
2009 if (ret)
2010 goto out;
e02119d5
CM
2011
2012 if (key->type == BTRFS_DIR_INDEX_KEY)
2013 goto insert;
2014out:
b3b4aa74 2015 btrfs_release_path(path);
d555438b 2016 if (!ret && update_size) {
6ef06d27 2017 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
2018 ret = btrfs_update_inode(trans, root, dir);
2019 }
e02119d5
CM
2020 kfree(name);
2021 iput(dir);
bb53eda9
FM
2022 if (!ret && name_added)
2023 ret = 1;
3650860b 2024 return ret;
e02119d5
CM
2025
2026insert:
df8d116f
FM
2027 if (name_in_log_ref(root->log_root, name, name_len,
2028 key->objectid, log_key.objectid)) {
2029 /* The dentry will be added later. */
2030 ret = 0;
2031 update_size = false;
2032 goto out;
2033 }
b3b4aa74 2034 btrfs_release_path(path);
60d53eb3
Z
2035 ret = insert_one_name(trans, root, key->objectid, key->offset,
2036 name, name_len, &log_key);
df8d116f 2037 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2038 goto out;
bb53eda9
FM
2039 if (!ret)
2040 name_added = true;
d555438b 2041 update_size = false;
3650860b 2042 ret = 0;
e02119d5
CM
2043 goto out;
2044}
2045
2046/*
2047 * find all the names in a directory item and reconcile them into
2048 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2049 * one name in a directory item, but the same code gets used for
2050 * both directory index types
2051 */
2052static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053 struct btrfs_root *root,
2054 struct btrfs_path *path,
2055 struct extent_buffer *eb, int slot,
2056 struct btrfs_key *key)
2057{
bb53eda9 2058 int ret = 0;
e02119d5
CM
2059 u32 item_size = btrfs_item_size_nr(eb, slot);
2060 struct btrfs_dir_item *di;
2061 int name_len;
2062 unsigned long ptr;
2063 unsigned long ptr_end;
bb53eda9 2064 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2065
2066 ptr = btrfs_item_ptr_offset(eb, slot);
2067 ptr_end = ptr + item_size;
d397712b 2068 while (ptr < ptr_end) {
e02119d5
CM
2069 di = (struct btrfs_dir_item *)ptr;
2070 name_len = btrfs_dir_name_len(eb, di);
2071 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2072 if (ret < 0)
2073 break;
e02119d5
CM
2074 ptr = (unsigned long)(di + 1);
2075 ptr += name_len;
bb53eda9
FM
2076
2077 /*
2078 * If this entry refers to a non-directory (directories can not
2079 * have a link count > 1) and it was added in the transaction
2080 * that was not committed, make sure we fixup the link count of
2081 * the inode it the entry points to. Otherwise something like
2082 * the following would result in a directory pointing to an
2083 * inode with a wrong link that does not account for this dir
2084 * entry:
2085 *
2086 * mkdir testdir
2087 * touch testdir/foo
2088 * touch testdir/bar
2089 * sync
2090 *
2091 * ln testdir/bar testdir/bar_link
2092 * ln testdir/foo testdir/foo_link
2093 * xfs_io -c "fsync" testdir/bar
2094 *
2095 * <power failure>
2096 *
2097 * mount fs, log replay happens
2098 *
2099 * File foo would remain with a link count of 1 when it has two
2100 * entries pointing to it in the directory testdir. This would
2101 * make it impossible to ever delete the parent directory has
2102 * it would result in stale dentries that can never be deleted.
2103 */
2104 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105 struct btrfs_key di_key;
2106
2107 if (!fixup_path) {
2108 fixup_path = btrfs_alloc_path();
2109 if (!fixup_path) {
2110 ret = -ENOMEM;
2111 break;
2112 }
2113 }
2114
2115 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116 ret = link_to_fixup_dir(trans, root, fixup_path,
2117 di_key.objectid);
2118 if (ret)
2119 break;
2120 }
2121 ret = 0;
e02119d5 2122 }
bb53eda9
FM
2123 btrfs_free_path(fixup_path);
2124 return ret;
e02119d5
CM
2125}
2126
2127/*
2128 * directory replay has two parts. There are the standard directory
2129 * items in the log copied from the subvolume, and range items
2130 * created in the log while the subvolume was logged.
2131 *
2132 * The range items tell us which parts of the key space the log
2133 * is authoritative for. During replay, if a key in the subvolume
2134 * directory is in a logged range item, but not actually in the log
2135 * that means it was deleted from the directory before the fsync
2136 * and should be removed.
2137 */
2138static noinline int find_dir_range(struct btrfs_root *root,
2139 struct btrfs_path *path,
2140 u64 dirid, int key_type,
2141 u64 *start_ret, u64 *end_ret)
2142{
2143 struct btrfs_key key;
2144 u64 found_end;
2145 struct btrfs_dir_log_item *item;
2146 int ret;
2147 int nritems;
2148
2149 if (*start_ret == (u64)-1)
2150 return 1;
2151
2152 key.objectid = dirid;
2153 key.type = key_type;
2154 key.offset = *start_ret;
2155
2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 if (ret < 0)
2158 goto out;
2159 if (ret > 0) {
2160 if (path->slots[0] == 0)
2161 goto out;
2162 path->slots[0]--;
2163 }
2164 if (ret != 0)
2165 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166
2167 if (key.type != key_type || key.objectid != dirid) {
2168 ret = 1;
2169 goto next;
2170 }
2171 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172 struct btrfs_dir_log_item);
2173 found_end = btrfs_dir_log_end(path->nodes[0], item);
2174
2175 if (*start_ret >= key.offset && *start_ret <= found_end) {
2176 ret = 0;
2177 *start_ret = key.offset;
2178 *end_ret = found_end;
2179 goto out;
2180 }
2181 ret = 1;
2182next:
2183 /* check the next slot in the tree to see if it is a valid item */
2184 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2185 path->slots[0]++;
e02119d5
CM
2186 if (path->slots[0] >= nritems) {
2187 ret = btrfs_next_leaf(root, path);
2188 if (ret)
2189 goto out;
e02119d5
CM
2190 }
2191
2192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193
2194 if (key.type != key_type || key.objectid != dirid) {
2195 ret = 1;
2196 goto out;
2197 }
2198 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199 struct btrfs_dir_log_item);
2200 found_end = btrfs_dir_log_end(path->nodes[0], item);
2201 *start_ret = key.offset;
2202 *end_ret = found_end;
2203 ret = 0;
2204out:
b3b4aa74 2205 btrfs_release_path(path);
e02119d5
CM
2206 return ret;
2207}
2208
2209/*
2210 * this looks for a given directory item in the log. If the directory
2211 * item is not in the log, the item is removed and the inode it points
2212 * to is unlinked
2213 */
2214static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct btrfs_root *log,
2217 struct btrfs_path *path,
2218 struct btrfs_path *log_path,
2219 struct inode *dir,
2220 struct btrfs_key *dir_key)
2221{
2222 int ret;
2223 struct extent_buffer *eb;
2224 int slot;
2225 u32 item_size;
2226 struct btrfs_dir_item *di;
2227 struct btrfs_dir_item *log_di;
2228 int name_len;
2229 unsigned long ptr;
2230 unsigned long ptr_end;
2231 char *name;
2232 struct inode *inode;
2233 struct btrfs_key location;
2234
2235again:
2236 eb = path->nodes[0];
2237 slot = path->slots[0];
2238 item_size = btrfs_item_size_nr(eb, slot);
2239 ptr = btrfs_item_ptr_offset(eb, slot);
2240 ptr_end = ptr + item_size;
d397712b 2241 while (ptr < ptr_end) {
e02119d5
CM
2242 di = (struct btrfs_dir_item *)ptr;
2243 name_len = btrfs_dir_name_len(eb, di);
2244 name = kmalloc(name_len, GFP_NOFS);
2245 if (!name) {
2246 ret = -ENOMEM;
2247 goto out;
2248 }
2249 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250 name_len);
2251 log_di = NULL;
12fcfd22 2252 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2253 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254 dir_key->objectid,
2255 name, name_len, 0);
12fcfd22 2256 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2257 log_di = btrfs_lookup_dir_index_item(trans, log,
2258 log_path,
2259 dir_key->objectid,
2260 dir_key->offset,
2261 name, name_len, 0);
2262 }
8d9e220c 2263 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2264 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2265 btrfs_release_path(path);
2266 btrfs_release_path(log_path);
e02119d5 2267 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2268 if (!inode) {
2269 kfree(name);
2270 return -EIO;
2271 }
e02119d5
CM
2272
2273 ret = link_to_fixup_dir(trans, root,
2274 path, location.objectid);
3650860b
JB
2275 if (ret) {
2276 kfree(name);
2277 iput(inode);
2278 goto out;
2279 }
2280
8b558c5f 2281 inc_nlink(inode);
4ec5934e
NB
2282 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283 BTRFS_I(inode), name, name_len);
3650860b 2284 if (!ret)
e5c304e6 2285 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2286 kfree(name);
2287 iput(inode);
3650860b
JB
2288 if (ret)
2289 goto out;
e02119d5
CM
2290
2291 /* there might still be more names under this key
2292 * check and repeat if required
2293 */
2294 ret = btrfs_search_slot(NULL, root, dir_key, path,
2295 0, 0);
2296 if (ret == 0)
2297 goto again;
2298 ret = 0;
2299 goto out;
269d040f
FDBM
2300 } else if (IS_ERR(log_di)) {
2301 kfree(name);
2302 return PTR_ERR(log_di);
e02119d5 2303 }
b3b4aa74 2304 btrfs_release_path(log_path);
e02119d5
CM
2305 kfree(name);
2306
2307 ptr = (unsigned long)(di + 1);
2308 ptr += name_len;
2309 }
2310 ret = 0;
2311out:
b3b4aa74
DS
2312 btrfs_release_path(path);
2313 btrfs_release_path(log_path);
e02119d5
CM
2314 return ret;
2315}
2316
4f764e51
FM
2317static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318 struct btrfs_root *root,
2319 struct btrfs_root *log,
2320 struct btrfs_path *path,
2321 const u64 ino)
2322{
2323 struct btrfs_key search_key;
2324 struct btrfs_path *log_path;
2325 int i;
2326 int nritems;
2327 int ret;
2328
2329 log_path = btrfs_alloc_path();
2330 if (!log_path)
2331 return -ENOMEM;
2332
2333 search_key.objectid = ino;
2334 search_key.type = BTRFS_XATTR_ITEM_KEY;
2335 search_key.offset = 0;
2336again:
2337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338 if (ret < 0)
2339 goto out;
2340process_leaf:
2341 nritems = btrfs_header_nritems(path->nodes[0]);
2342 for (i = path->slots[0]; i < nritems; i++) {
2343 struct btrfs_key key;
2344 struct btrfs_dir_item *di;
2345 struct btrfs_dir_item *log_di;
2346 u32 total_size;
2347 u32 cur;
2348
2349 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351 ret = 0;
2352 goto out;
2353 }
2354
2355 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356 total_size = btrfs_item_size_nr(path->nodes[0], i);
2357 cur = 0;
2358 while (cur < total_size) {
2359 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361 u32 this_len = sizeof(*di) + name_len + data_len;
2362 char *name;
2363
2364 name = kmalloc(name_len, GFP_NOFS);
2365 if (!name) {
2366 ret = -ENOMEM;
2367 goto out;
2368 }
2369 read_extent_buffer(path->nodes[0], name,
2370 (unsigned long)(di + 1), name_len);
2371
2372 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373 name, name_len, 0);
2374 btrfs_release_path(log_path);
2375 if (!log_di) {
2376 /* Doesn't exist in log tree, so delete it. */
2377 btrfs_release_path(path);
2378 di = btrfs_lookup_xattr(trans, root, path, ino,
2379 name, name_len, -1);
2380 kfree(name);
2381 if (IS_ERR(di)) {
2382 ret = PTR_ERR(di);
2383 goto out;
2384 }
2385 ASSERT(di);
2386 ret = btrfs_delete_one_dir_name(trans, root,
2387 path, di);
2388 if (ret)
2389 goto out;
2390 btrfs_release_path(path);
2391 search_key = key;
2392 goto again;
2393 }
2394 kfree(name);
2395 if (IS_ERR(log_di)) {
2396 ret = PTR_ERR(log_di);
2397 goto out;
2398 }
2399 cur += this_len;
2400 di = (struct btrfs_dir_item *)((char *)di + this_len);
2401 }
2402 }
2403 ret = btrfs_next_leaf(root, path);
2404 if (ret > 0)
2405 ret = 0;
2406 else if (ret == 0)
2407 goto process_leaf;
2408out:
2409 btrfs_free_path(log_path);
2410 btrfs_release_path(path);
2411 return ret;
2412}
2413
2414
e02119d5
CM
2415/*
2416 * deletion replay happens before we copy any new directory items
2417 * out of the log or out of backreferences from inodes. It
2418 * scans the log to find ranges of keys that log is authoritative for,
2419 * and then scans the directory to find items in those ranges that are
2420 * not present in the log.
2421 *
2422 * Anything we don't find in the log is unlinked and removed from the
2423 * directory.
2424 */
2425static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426 struct btrfs_root *root,
2427 struct btrfs_root *log,
2428 struct btrfs_path *path,
12fcfd22 2429 u64 dirid, int del_all)
e02119d5
CM
2430{
2431 u64 range_start;
2432 u64 range_end;
2433 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434 int ret = 0;
2435 struct btrfs_key dir_key;
2436 struct btrfs_key found_key;
2437 struct btrfs_path *log_path;
2438 struct inode *dir;
2439
2440 dir_key.objectid = dirid;
2441 dir_key.type = BTRFS_DIR_ITEM_KEY;
2442 log_path = btrfs_alloc_path();
2443 if (!log_path)
2444 return -ENOMEM;
2445
2446 dir = read_one_inode(root, dirid);
2447 /* it isn't an error if the inode isn't there, that can happen
2448 * because we replay the deletes before we copy in the inode item
2449 * from the log
2450 */
2451 if (!dir) {
2452 btrfs_free_path(log_path);
2453 return 0;
2454 }
2455again:
2456 range_start = 0;
2457 range_end = 0;
d397712b 2458 while (1) {
12fcfd22
CM
2459 if (del_all)
2460 range_end = (u64)-1;
2461 else {
2462 ret = find_dir_range(log, path, dirid, key_type,
2463 &range_start, &range_end);
2464 if (ret != 0)
2465 break;
2466 }
e02119d5
CM
2467
2468 dir_key.offset = range_start;
d397712b 2469 while (1) {
e02119d5
CM
2470 int nritems;
2471 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472 0, 0);
2473 if (ret < 0)
2474 goto out;
2475
2476 nritems = btrfs_header_nritems(path->nodes[0]);
2477 if (path->slots[0] >= nritems) {
2478 ret = btrfs_next_leaf(root, path);
b98def7c 2479 if (ret == 1)
e02119d5 2480 break;
b98def7c
LB
2481 else if (ret < 0)
2482 goto out;
e02119d5
CM
2483 }
2484 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485 path->slots[0]);
2486 if (found_key.objectid != dirid ||
2487 found_key.type != dir_key.type)
2488 goto next_type;
2489
2490 if (found_key.offset > range_end)
2491 break;
2492
2493 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2494 log_path, dir,
2495 &found_key);
3650860b
JB
2496 if (ret)
2497 goto out;
e02119d5
CM
2498 if (found_key.offset == (u64)-1)
2499 break;
2500 dir_key.offset = found_key.offset + 1;
2501 }
b3b4aa74 2502 btrfs_release_path(path);
e02119d5
CM
2503 if (range_end == (u64)-1)
2504 break;
2505 range_start = range_end + 1;
2506 }
2507
2508next_type:
2509 ret = 0;
2510 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2513 btrfs_release_path(path);
e02119d5
CM
2514 goto again;
2515 }
2516out:
b3b4aa74 2517 btrfs_release_path(path);
e02119d5
CM
2518 btrfs_free_path(log_path);
2519 iput(dir);
2520 return ret;
2521}
2522
2523/*
2524 * the process_func used to replay items from the log tree. This
2525 * gets called in two different stages. The first stage just looks
2526 * for inodes and makes sure they are all copied into the subvolume.
2527 *
2528 * The second stage copies all the other item types from the log into
2529 * the subvolume. The two stage approach is slower, but gets rid of
2530 * lots of complexity around inodes referencing other inodes that exist
2531 * only in the log (references come from either directory items or inode
2532 * back refs).
2533 */
2534static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2535 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2536{
2537 int nritems;
2538 struct btrfs_path *path;
2539 struct btrfs_root *root = wc->replay_dest;
2540 struct btrfs_key key;
e02119d5
CM
2541 int i;
2542 int ret;
2543
581c1760 2544 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2545 if (ret)
2546 return ret;
e02119d5
CM
2547
2548 level = btrfs_header_level(eb);
2549
2550 if (level != 0)
2551 return 0;
2552
2553 path = btrfs_alloc_path();
1e5063d0
MF
2554 if (!path)
2555 return -ENOMEM;
e02119d5
CM
2556
2557 nritems = btrfs_header_nritems(eb);
2558 for (i = 0; i < nritems; i++) {
2559 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2560
2561 /* inode keys are done during the first stage */
2562 if (key.type == BTRFS_INODE_ITEM_KEY &&
2563 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2564 struct btrfs_inode_item *inode_item;
2565 u32 mode;
2566
2567 inode_item = btrfs_item_ptr(eb, i,
2568 struct btrfs_inode_item);
f2d72f42
FM
2569 /*
2570 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571 * and never got linked before the fsync, skip it, as
2572 * replaying it is pointless since it would be deleted
2573 * later. We skip logging tmpfiles, but it's always
2574 * possible we are replaying a log created with a kernel
2575 * that used to log tmpfiles.
2576 */
2577 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578 wc->ignore_cur_inode = true;
2579 continue;
2580 } else {
2581 wc->ignore_cur_inode = false;
2582 }
4f764e51
FM
2583 ret = replay_xattr_deletes(wc->trans, root, log,
2584 path, key.objectid);
2585 if (ret)
2586 break;
e02119d5
CM
2587 mode = btrfs_inode_mode(eb, inode_item);
2588 if (S_ISDIR(mode)) {
2589 ret = replay_dir_deletes(wc->trans,
12fcfd22 2590 root, log, path, key.objectid, 0);
b50c6e25
JB
2591 if (ret)
2592 break;
e02119d5
CM
2593 }
2594 ret = overwrite_item(wc->trans, root, path,
2595 eb, i, &key);
b50c6e25
JB
2596 if (ret)
2597 break;
e02119d5 2598
471d557a
FM
2599 /*
2600 * Before replaying extents, truncate the inode to its
2601 * size. We need to do it now and not after log replay
2602 * because before an fsync we can have prealloc extents
2603 * added beyond the inode's i_size. If we did it after,
2604 * through orphan cleanup for example, we would drop
2605 * those prealloc extents just after replaying them.
e02119d5
CM
2606 */
2607 if (S_ISREG(mode)) {
471d557a
FM
2608 struct inode *inode;
2609 u64 from;
2610
2611 inode = read_one_inode(root, key.objectid);
2612 if (!inode) {
2613 ret = -EIO;
2614 break;
2615 }
2616 from = ALIGN(i_size_read(inode),
2617 root->fs_info->sectorsize);
2618 ret = btrfs_drop_extents(wc->trans, root, inode,
2619 from, (u64)-1, 1);
471d557a 2620 if (!ret) {
f2d72f42 2621 /* Update the inode's nbytes. */
471d557a
FM
2622 ret = btrfs_update_inode(wc->trans,
2623 root, inode);
2624 }
2625 iput(inode);
b50c6e25
JB
2626 if (ret)
2627 break;
e02119d5 2628 }
c71bf099 2629
e02119d5
CM
2630 ret = link_to_fixup_dir(wc->trans, root,
2631 path, key.objectid);
b50c6e25
JB
2632 if (ret)
2633 break;
e02119d5 2634 }
dd8e7217 2635
f2d72f42
FM
2636 if (wc->ignore_cur_inode)
2637 continue;
2638
dd8e7217
JB
2639 if (key.type == BTRFS_DIR_INDEX_KEY &&
2640 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641 ret = replay_one_dir_item(wc->trans, root, path,
2642 eb, i, &key);
2643 if (ret)
2644 break;
2645 }
2646
e02119d5
CM
2647 if (wc->stage < LOG_WALK_REPLAY_ALL)
2648 continue;
2649
2650 /* these keys are simply copied */
2651 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652 ret = overwrite_item(wc->trans, root, path,
2653 eb, i, &key);
b50c6e25
JB
2654 if (ret)
2655 break;
2da1c669
LB
2656 } else if (key.type == BTRFS_INODE_REF_KEY ||
2657 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2658 ret = add_inode_ref(wc->trans, root, log, path,
2659 eb, i, &key);
b50c6e25
JB
2660 if (ret && ret != -ENOENT)
2661 break;
2662 ret = 0;
e02119d5
CM
2663 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664 ret = replay_one_extent(wc->trans, root, path,
2665 eb, i, &key);
b50c6e25
JB
2666 if (ret)
2667 break;
dd8e7217 2668 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2669 ret = replay_one_dir_item(wc->trans, root, path,
2670 eb, i, &key);
b50c6e25
JB
2671 if (ret)
2672 break;
e02119d5
CM
2673 }
2674 }
2675 btrfs_free_path(path);
b50c6e25 2676 return ret;
e02119d5
CM
2677}
2678
d397712b 2679static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2680 struct btrfs_root *root,
2681 struct btrfs_path *path, int *level,
2682 struct walk_control *wc)
2683{
0b246afa 2684 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2685 u64 root_owner;
e02119d5
CM
2686 u64 bytenr;
2687 u64 ptr_gen;
2688 struct extent_buffer *next;
2689 struct extent_buffer *cur;
2690 struct extent_buffer *parent;
2691 u32 blocksize;
2692 int ret = 0;
2693
2694 WARN_ON(*level < 0);
2695 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696
d397712b 2697 while (*level > 0) {
581c1760
QW
2698 struct btrfs_key first_key;
2699
e02119d5
CM
2700 WARN_ON(*level < 0);
2701 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702 cur = path->nodes[*level];
2703
fae7f21c 2704 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2705
2706 if (path->slots[*level] >=
2707 btrfs_header_nritems(cur))
2708 break;
2709
2710 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2712 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2713 blocksize = fs_info->nodesize;
e02119d5
CM
2714
2715 parent = path->nodes[*level];
2716 root_owner = btrfs_header_owner(parent);
e02119d5 2717
2ff7e61e 2718 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2719 if (IS_ERR(next))
2720 return PTR_ERR(next);
e02119d5 2721
e02119d5 2722 if (*level == 1) {
581c1760
QW
2723 ret = wc->process_func(root, next, wc, ptr_gen,
2724 *level - 1);
b50c6e25
JB
2725 if (ret) {
2726 free_extent_buffer(next);
1e5063d0 2727 return ret;
b50c6e25 2728 }
4a500fd1 2729
e02119d5
CM
2730 path->slots[*level]++;
2731 if (wc->free) {
581c1760
QW
2732 ret = btrfs_read_buffer(next, ptr_gen,
2733 *level - 1, &first_key);
018642a1
TI
2734 if (ret) {
2735 free_extent_buffer(next);
2736 return ret;
2737 }
e02119d5 2738
681ae509
JB
2739 if (trans) {
2740 btrfs_tree_lock(next);
8bead258 2741 btrfs_set_lock_blocking_write(next);
6a884d7d 2742 btrfs_clean_tree_block(next);
681ae509
JB
2743 btrfs_wait_tree_block_writeback(next);
2744 btrfs_tree_unlock(next);
1846430c
LB
2745 } else {
2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 clear_extent_buffer_dirty(next);
681ae509 2748 }
e02119d5 2749
e02119d5
CM
2750 WARN_ON(root_owner !=
2751 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2752 ret = btrfs_free_and_pin_reserved_extent(
2753 fs_info, bytenr,
2754 blocksize);
3650860b
JB
2755 if (ret) {
2756 free_extent_buffer(next);
2757 return ret;
2758 }
e02119d5
CM
2759 }
2760 free_extent_buffer(next);
2761 continue;
2762 }
581c1760 2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2764 if (ret) {
2765 free_extent_buffer(next);
2766 return ret;
2767 }
e02119d5
CM
2768
2769 WARN_ON(*level <= 0);
2770 if (path->nodes[*level-1])
2771 free_extent_buffer(path->nodes[*level-1]);
2772 path->nodes[*level-1] = next;
2773 *level = btrfs_header_level(next);
2774 path->slots[*level] = 0;
2775 cond_resched();
2776 }
2777 WARN_ON(*level < 0);
2778 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779
4a500fd1 2780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2781
2782 cond_resched();
2783 return 0;
2784}
2785
d397712b 2786static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2787 struct btrfs_root *root,
2788 struct btrfs_path *path, int *level,
2789 struct walk_control *wc)
2790{
0b246afa 2791 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2792 u64 root_owner;
e02119d5
CM
2793 int i;
2794 int slot;
2795 int ret;
2796
d397712b 2797 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2798 slot = path->slots[i];
4a500fd1 2799 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2800 path->slots[i]++;
2801 *level = i;
2802 WARN_ON(*level == 0);
2803 return 0;
2804 } else {
31840ae1
ZY
2805 struct extent_buffer *parent;
2806 if (path->nodes[*level] == root->node)
2807 parent = path->nodes[*level];
2808 else
2809 parent = path->nodes[*level + 1];
2810
2811 root_owner = btrfs_header_owner(parent);
1e5063d0 2812 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2813 btrfs_header_generation(path->nodes[*level]),
2814 *level);
1e5063d0
MF
2815 if (ret)
2816 return ret;
2817
e02119d5
CM
2818 if (wc->free) {
2819 struct extent_buffer *next;
2820
2821 next = path->nodes[*level];
2822
681ae509
JB
2823 if (trans) {
2824 btrfs_tree_lock(next);
8bead258 2825 btrfs_set_lock_blocking_write(next);
6a884d7d 2826 btrfs_clean_tree_block(next);
681ae509
JB
2827 btrfs_wait_tree_block_writeback(next);
2828 btrfs_tree_unlock(next);
1846430c
LB
2829 } else {
2830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831 clear_extent_buffer_dirty(next);
681ae509 2832 }
e02119d5 2833
e02119d5 2834 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2835 ret = btrfs_free_and_pin_reserved_extent(
2836 fs_info,
e02119d5 2837 path->nodes[*level]->start,
d00aff00 2838 path->nodes[*level]->len);
3650860b
JB
2839 if (ret)
2840 return ret;
e02119d5
CM
2841 }
2842 free_extent_buffer(path->nodes[*level]);
2843 path->nodes[*level] = NULL;
2844 *level = i + 1;
2845 }
2846 }
2847 return 1;
2848}
2849
2850/*
2851 * drop the reference count on the tree rooted at 'snap'. This traverses
2852 * the tree freeing any blocks that have a ref count of zero after being
2853 * decremented.
2854 */
2855static int walk_log_tree(struct btrfs_trans_handle *trans,
2856 struct btrfs_root *log, struct walk_control *wc)
2857{
2ff7e61e 2858 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2859 int ret = 0;
2860 int wret;
2861 int level;
2862 struct btrfs_path *path;
e02119d5
CM
2863 int orig_level;
2864
2865 path = btrfs_alloc_path();
db5b493a
TI
2866 if (!path)
2867 return -ENOMEM;
e02119d5
CM
2868
2869 level = btrfs_header_level(log->node);
2870 orig_level = level;
2871 path->nodes[level] = log->node;
2872 extent_buffer_get(log->node);
2873 path->slots[level] = 0;
2874
d397712b 2875 while (1) {
e02119d5
CM
2876 wret = walk_down_log_tree(trans, log, path, &level, wc);
2877 if (wret > 0)
2878 break;
79787eaa 2879 if (wret < 0) {
e02119d5 2880 ret = wret;
79787eaa
JM
2881 goto out;
2882 }
e02119d5
CM
2883
2884 wret = walk_up_log_tree(trans, log, path, &level, wc);
2885 if (wret > 0)
2886 break;
79787eaa 2887 if (wret < 0) {
e02119d5 2888 ret = wret;
79787eaa
JM
2889 goto out;
2890 }
e02119d5
CM
2891 }
2892
2893 /* was the root node processed? if not, catch it here */
2894 if (path->nodes[orig_level]) {
79787eaa 2895 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2896 btrfs_header_generation(path->nodes[orig_level]),
2897 orig_level);
79787eaa
JM
2898 if (ret)
2899 goto out;
e02119d5
CM
2900 if (wc->free) {
2901 struct extent_buffer *next;
2902
2903 next = path->nodes[orig_level];
2904
681ae509
JB
2905 if (trans) {
2906 btrfs_tree_lock(next);
8bead258 2907 btrfs_set_lock_blocking_write(next);
6a884d7d 2908 btrfs_clean_tree_block(next);
681ae509
JB
2909 btrfs_wait_tree_block_writeback(next);
2910 btrfs_tree_unlock(next);
1846430c
LB
2911 } else {
2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 clear_extent_buffer_dirty(next);
681ae509 2914 }
e02119d5 2915
e02119d5
CM
2916 WARN_ON(log->root_key.objectid !=
2917 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2918 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919 next->start, next->len);
3650860b
JB
2920 if (ret)
2921 goto out;
e02119d5
CM
2922 }
2923 }
2924
79787eaa 2925out:
e02119d5 2926 btrfs_free_path(path);
e02119d5
CM
2927 return ret;
2928}
2929
7237f183
YZ
2930/*
2931 * helper function to update the item for a given subvolumes log root
2932 * in the tree of log roots
2933 */
2934static int update_log_root(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *log)
2936{
0b246afa 2937 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2938 int ret;
2939
2940 if (log->log_transid == 1) {
2941 /* insert root item on the first sync */
0b246afa 2942 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2943 &log->root_key, &log->root_item);
2944 } else {
0b246afa 2945 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2946 &log->root_key, &log->root_item);
2947 }
2948 return ret;
2949}
2950
60d53eb3 2951static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2952{
2953 DEFINE_WAIT(wait);
7237f183 2954 int index = transid % 2;
e02119d5 2955
7237f183
YZ
2956 /*
2957 * we only allow two pending log transactions at a time,
2958 * so we know that if ours is more than 2 older than the
2959 * current transaction, we're done
2960 */
49e83f57 2961 for (;;) {
7237f183
YZ
2962 prepare_to_wait(&root->log_commit_wait[index],
2963 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2964
49e83f57
LB
2965 if (!(root->log_transid_committed < transid &&
2966 atomic_read(&root->log_commit[index])))
2967 break;
12fcfd22 2968
49e83f57
LB
2969 mutex_unlock(&root->log_mutex);
2970 schedule();
7237f183 2971 mutex_lock(&root->log_mutex);
49e83f57
LB
2972 }
2973 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2974}
2975
60d53eb3 2976static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2977{
2978 DEFINE_WAIT(wait);
8b050d35 2979
49e83f57
LB
2980 for (;;) {
2981 prepare_to_wait(&root->log_writer_wait, &wait,
2982 TASK_UNINTERRUPTIBLE);
2983 if (!atomic_read(&root->log_writers))
2984 break;
2985
7237f183 2986 mutex_unlock(&root->log_mutex);
49e83f57 2987 schedule();
575849ec 2988 mutex_lock(&root->log_mutex);
7237f183 2989 }
49e83f57 2990 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2991}
2992
8b050d35
MX
2993static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2994 struct btrfs_log_ctx *ctx)
2995{
2996 if (!ctx)
2997 return;
2998
2999 mutex_lock(&root->log_mutex);
3000 list_del_init(&ctx->list);
3001 mutex_unlock(&root->log_mutex);
3002}
3003
3004/*
3005 * Invoked in log mutex context, or be sure there is no other task which
3006 * can access the list.
3007 */
3008static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3009 int index, int error)
3010{
3011 struct btrfs_log_ctx *ctx;
570dd450 3012 struct btrfs_log_ctx *safe;
8b050d35 3013
570dd450
CM
3014 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3015 list_del_init(&ctx->list);
8b050d35 3016 ctx->log_ret = error;
570dd450 3017 }
8b050d35
MX
3018
3019 INIT_LIST_HEAD(&root->log_ctxs[index]);
3020}
3021
e02119d5
CM
3022/*
3023 * btrfs_sync_log does sends a given tree log down to the disk and
3024 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3025 * you know that any inodes previously logged are safely on disk only
3026 * if it returns 0.
3027 *
3028 * Any other return value means you need to call btrfs_commit_transaction.
3029 * Some of the edge cases for fsyncing directories that have had unlinks
3030 * or renames done in the past mean that sometimes the only safe
3031 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3032 * that has happened.
e02119d5
CM
3033 */
3034int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3035 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3036{
7237f183
YZ
3037 int index1;
3038 int index2;
8cef4e16 3039 int mark;
e02119d5 3040 int ret;
0b246afa 3041 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3042 struct btrfs_root *log = root->log_root;
0b246afa 3043 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 3044 int log_transid = 0;
8b050d35 3045 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3046 struct blk_plug plug;
e02119d5 3047
7237f183 3048 mutex_lock(&root->log_mutex);
d1433deb
MX
3049 log_transid = ctx->log_transid;
3050 if (root->log_transid_committed >= log_transid) {
3051 mutex_unlock(&root->log_mutex);
3052 return ctx->log_ret;
3053 }
3054
3055 index1 = log_transid % 2;
7237f183 3056 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3057 wait_log_commit(root, log_transid);
7237f183 3058 mutex_unlock(&root->log_mutex);
8b050d35 3059 return ctx->log_ret;
e02119d5 3060 }
d1433deb 3061 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3062 atomic_set(&root->log_commit[index1], 1);
3063
3064 /* wait for previous tree log sync to complete */
3065 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3066 wait_log_commit(root, log_transid - 1);
48cab2e0 3067
86df7eb9 3068 while (1) {
2ecb7923 3069 int batch = atomic_read(&root->log_batch);
cd354ad6 3070 /* when we're on an ssd, just kick the log commit out */
0b246afa 3071 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3072 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3073 mutex_unlock(&root->log_mutex);
3074 schedule_timeout_uninterruptible(1);
3075 mutex_lock(&root->log_mutex);
3076 }
60d53eb3 3077 wait_for_writer(root);
2ecb7923 3078 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3079 break;
3080 }
e02119d5 3081
12fcfd22 3082 /* bail out if we need to do a full commit */
4884b8e8 3083 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3084 ret = -EAGAIN;
3085 mutex_unlock(&root->log_mutex);
3086 goto out;
3087 }
3088
8cef4e16
YZ
3089 if (log_transid % 2 == 0)
3090 mark = EXTENT_DIRTY;
3091 else
3092 mark = EXTENT_NEW;
3093
690587d1
CM
3094 /* we start IO on all the marked extents here, but we don't actually
3095 * wait for them until later.
3096 */
c6adc9cc 3097 blk_start_plug(&plug);
2ff7e61e 3098 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 3099 if (ret) {
c6adc9cc 3100 blk_finish_plug(&plug);
66642832 3101 btrfs_abort_transaction(trans, ret);
90787766 3102 btrfs_set_log_full_commit(trans);
79787eaa
JM
3103 mutex_unlock(&root->log_mutex);
3104 goto out;
3105 }
7237f183 3106
5d4f98a2 3107 btrfs_set_root_node(&log->root_item, log->node);
7237f183 3108
7237f183
YZ
3109 root->log_transid++;
3110 log->log_transid = root->log_transid;
ff782e0a 3111 root->log_start_pid = 0;
06989c79
FM
3112 /*
3113 * Update or create log root item under the root's log_mutex to prevent
3114 * races with concurrent log syncs that can lead to failure to update
3115 * log root item because it was not created yet.
3116 */
3117 ret = update_log_root(trans, log);
7237f183 3118 /*
8cef4e16
YZ
3119 * IO has been started, blocks of the log tree have WRITTEN flag set
3120 * in their headers. new modifications of the log will be written to
3121 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3122 */
3123 mutex_unlock(&root->log_mutex);
3124
28a23593 3125 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 3126
7237f183 3127 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 3128 atomic_inc(&log_root_tree->log_batch);
7237f183 3129 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
3130
3131 index2 = log_root_tree->log_transid % 2;
3132 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3133 root_log_ctx.log_transid = log_root_tree->log_transid;
3134
7237f183
YZ
3135 mutex_unlock(&log_root_tree->log_mutex);
3136
7237f183
YZ
3137 mutex_lock(&log_root_tree->log_mutex);
3138 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
093258e6
DS
3139 /* atomic_dec_and_test implies a barrier */
3140 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
7237f183
YZ
3141 }
3142
4a500fd1 3143 if (ret) {
d1433deb
MX
3144 if (!list_empty(&root_log_ctx.list))
3145 list_del_init(&root_log_ctx.list);
3146
c6adc9cc 3147 blk_finish_plug(&plug);
90787766 3148 btrfs_set_log_full_commit(trans);
995946dd 3149
79787eaa 3150 if (ret != -ENOSPC) {
66642832 3151 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3152 mutex_unlock(&log_root_tree->log_mutex);
3153 goto out;
3154 }
bf89d38f 3155 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3156 mutex_unlock(&log_root_tree->log_mutex);
3157 ret = -EAGAIN;
3158 goto out;
3159 }
3160
d1433deb 3161 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3162 blk_finish_plug(&plug);
cbd60aa7 3163 list_del_init(&root_log_ctx.list);
d1433deb
MX
3164 mutex_unlock(&log_root_tree->log_mutex);
3165 ret = root_log_ctx.log_ret;
3166 goto out;
3167 }
8b050d35 3168
d1433deb 3169 index2 = root_log_ctx.log_transid % 2;
7237f183 3170 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3171 blk_finish_plug(&plug);
bf89d38f 3172 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3173 wait_log_commit(log_root_tree,
d1433deb 3174 root_log_ctx.log_transid);
7237f183 3175 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3176 if (!ret)
3177 ret = root_log_ctx.log_ret;
7237f183
YZ
3178 goto out;
3179 }
d1433deb 3180 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3181 atomic_set(&log_root_tree->log_commit[index2], 1);
3182
12fcfd22 3183 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3184 wait_log_commit(log_root_tree,
d1433deb 3185 root_log_ctx.log_transid - 1);
12fcfd22
CM
3186 }
3187
60d53eb3 3188 wait_for_writer(log_root_tree);
7237f183 3189
12fcfd22
CM
3190 /*
3191 * now that we've moved on to the tree of log tree roots,
3192 * check the full commit flag again
3193 */
4884b8e8 3194 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3195 blk_finish_plug(&plug);
bf89d38f 3196 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3197 mutex_unlock(&log_root_tree->log_mutex);
3198 ret = -EAGAIN;
3199 goto out_wake_log_root;
3200 }
7237f183 3201
2ff7e61e 3202 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3203 &log_root_tree->dirty_log_pages,
3204 EXTENT_DIRTY | EXTENT_NEW);
3205 blk_finish_plug(&plug);
79787eaa 3206 if (ret) {
90787766 3207 btrfs_set_log_full_commit(trans);
66642832 3208 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3209 mutex_unlock(&log_root_tree->log_mutex);
3210 goto out_wake_log_root;
3211 }
bf89d38f 3212 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3213 if (!ret)
bf89d38f
JM
3214 ret = btrfs_wait_tree_log_extents(log_root_tree,
3215 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3216 if (ret) {
90787766 3217 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3218 mutex_unlock(&log_root_tree->log_mutex);
3219 goto out_wake_log_root;
3220 }
e02119d5 3221
0b246afa
JM
3222 btrfs_set_super_log_root(fs_info->super_for_commit,
3223 log_root_tree->node->start);
3224 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3225 btrfs_header_level(log_root_tree->node));
e02119d5 3226
7237f183 3227 log_root_tree->log_transid++;
7237f183
YZ
3228 mutex_unlock(&log_root_tree->log_mutex);
3229
3230 /*
52042d8e 3231 * Nobody else is going to jump in and write the ctree
7237f183
YZ
3232 * super here because the log_commit atomic below is protecting
3233 * us. We must be called with a transaction handle pinning
3234 * the running transaction open, so a full commit can't hop
3235 * in and cause problems either.
3236 */
eece6a9c 3237 ret = write_all_supers(fs_info, 1);
5af3e8cc 3238 if (ret) {
90787766 3239 btrfs_set_log_full_commit(trans);
66642832 3240 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3241 goto out_wake_log_root;
3242 }
7237f183 3243
257c62e1
CM
3244 mutex_lock(&root->log_mutex);
3245 if (root->last_log_commit < log_transid)
3246 root->last_log_commit = log_transid;
3247 mutex_unlock(&root->log_mutex);
3248
12fcfd22 3249out_wake_log_root:
570dd450 3250 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3251 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3252
d1433deb 3253 log_root_tree->log_transid_committed++;
7237f183 3254 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3255 mutex_unlock(&log_root_tree->log_mutex);
3256
33a9eca7 3257 /*
093258e6
DS
3258 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3259 * all the updates above are seen by the woken threads. It might not be
3260 * necessary, but proving that seems to be hard.
33a9eca7 3261 */
093258e6 3262 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3263out:
d1433deb 3264 mutex_lock(&root->log_mutex);
570dd450 3265 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3266 root->log_transid_committed++;
7237f183 3267 atomic_set(&root->log_commit[index1], 0);
d1433deb 3268 mutex_unlock(&root->log_mutex);
8b050d35 3269
33a9eca7 3270 /*
093258e6
DS
3271 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3272 * all the updates above are seen by the woken threads. It might not be
3273 * necessary, but proving that seems to be hard.
33a9eca7 3274 */
093258e6 3275 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3276 return ret;
e02119d5
CM
3277}
3278
4a500fd1
YZ
3279static void free_log_tree(struct btrfs_trans_handle *trans,
3280 struct btrfs_root *log)
e02119d5
CM
3281{
3282 int ret;
e02119d5
CM
3283 struct walk_control wc = {
3284 .free = 1,
3285 .process_func = process_one_buffer
3286 };
3287
681ae509 3288 ret = walk_log_tree(trans, log, &wc);
374b0e2d
JM
3289 if (ret) {
3290 if (trans)
3291 btrfs_abort_transaction(trans, ret);
3292 else
3293 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3294 }
e02119d5 3295
59b0713a
FM
3296 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3297 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
7237f183
YZ
3298 free_extent_buffer(log->node);
3299 kfree(log);
4a500fd1
YZ
3300}
3301
3302/*
3303 * free all the extents used by the tree log. This should be called
3304 * at commit time of the full transaction
3305 */
3306int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3307{
3308 if (root->log_root) {
3309 free_log_tree(trans, root->log_root);
3310 root->log_root = NULL;
3311 }
3312 return 0;
3313}
3314
3315int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3316 struct btrfs_fs_info *fs_info)
3317{
3318 if (fs_info->log_root_tree) {
3319 free_log_tree(trans, fs_info->log_root_tree);
3320 fs_info->log_root_tree = NULL;
3321 }
e02119d5
CM
3322 return 0;
3323}
3324
e02119d5
CM
3325/*
3326 * If both a file and directory are logged, and unlinks or renames are
3327 * mixed in, we have a few interesting corners:
3328 *
3329 * create file X in dir Y
3330 * link file X to X.link in dir Y
3331 * fsync file X
3332 * unlink file X but leave X.link
3333 * fsync dir Y
3334 *
3335 * After a crash we would expect only X.link to exist. But file X
3336 * didn't get fsync'd again so the log has back refs for X and X.link.
3337 *
3338 * We solve this by removing directory entries and inode backrefs from the
3339 * log when a file that was logged in the current transaction is
3340 * unlinked. Any later fsync will include the updated log entries, and
3341 * we'll be able to reconstruct the proper directory items from backrefs.
3342 *
3343 * This optimizations allows us to avoid relogging the entire inode
3344 * or the entire directory.
3345 */
3346int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3347 struct btrfs_root *root,
3348 const char *name, int name_len,
49f34d1f 3349 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3350{
3351 struct btrfs_root *log;
3352 struct btrfs_dir_item *di;
3353 struct btrfs_path *path;
3354 int ret;
4a500fd1 3355 int err = 0;
e02119d5 3356 int bytes_del = 0;
49f34d1f 3357 u64 dir_ino = btrfs_ino(dir);
e02119d5 3358
49f34d1f 3359 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3360 return 0;
3361
e02119d5
CM
3362 ret = join_running_log_trans(root);
3363 if (ret)
3364 return 0;
3365
49f34d1f 3366 mutex_lock(&dir->log_mutex);
e02119d5
CM
3367
3368 log = root->log_root;
3369 path = btrfs_alloc_path();
a62f44a5
TI
3370 if (!path) {
3371 err = -ENOMEM;
3372 goto out_unlock;
3373 }
2a29edc6 3374
33345d01 3375 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3376 name, name_len, -1);
4a500fd1
YZ
3377 if (IS_ERR(di)) {
3378 err = PTR_ERR(di);
3379 goto fail;
3380 }
3381 if (di) {
e02119d5
CM
3382 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3383 bytes_del += name_len;
3650860b
JB
3384 if (ret) {
3385 err = ret;
3386 goto fail;
3387 }
e02119d5 3388 }
b3b4aa74 3389 btrfs_release_path(path);
33345d01 3390 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3391 index, name, name_len, -1);
4a500fd1
YZ
3392 if (IS_ERR(di)) {
3393 err = PTR_ERR(di);
3394 goto fail;
3395 }
3396 if (di) {
e02119d5
CM
3397 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3398 bytes_del += name_len;
3650860b
JB
3399 if (ret) {
3400 err = ret;
3401 goto fail;
3402 }
e02119d5
CM
3403 }
3404
3405 /* update the directory size in the log to reflect the names
3406 * we have removed
3407 */
3408 if (bytes_del) {
3409 struct btrfs_key key;
3410
33345d01 3411 key.objectid = dir_ino;
e02119d5
CM
3412 key.offset = 0;
3413 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3414 btrfs_release_path(path);
e02119d5
CM
3415
3416 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3417 if (ret < 0) {
3418 err = ret;
3419 goto fail;
3420 }
e02119d5
CM
3421 if (ret == 0) {
3422 struct btrfs_inode_item *item;
3423 u64 i_size;
3424
3425 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3426 struct btrfs_inode_item);
3427 i_size = btrfs_inode_size(path->nodes[0], item);
3428 if (i_size > bytes_del)
3429 i_size -= bytes_del;
3430 else
3431 i_size = 0;
3432 btrfs_set_inode_size(path->nodes[0], item, i_size);
3433 btrfs_mark_buffer_dirty(path->nodes[0]);
3434 } else
3435 ret = 0;
b3b4aa74 3436 btrfs_release_path(path);
e02119d5 3437 }
4a500fd1 3438fail:
e02119d5 3439 btrfs_free_path(path);
a62f44a5 3440out_unlock:
49f34d1f 3441 mutex_unlock(&dir->log_mutex);
4a500fd1 3442 if (ret == -ENOSPC) {
90787766 3443 btrfs_set_log_full_commit(trans);
4a500fd1 3444 ret = 0;
79787eaa 3445 } else if (ret < 0)
66642832 3446 btrfs_abort_transaction(trans, ret);
79787eaa 3447
12fcfd22 3448 btrfs_end_log_trans(root);
e02119d5 3449
411fc6bc 3450 return err;
e02119d5
CM
3451}
3452
3453/* see comments for btrfs_del_dir_entries_in_log */
3454int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3455 struct btrfs_root *root,
3456 const char *name, int name_len,
a491abb2 3457 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3458{
3459 struct btrfs_root *log;
3460 u64 index;
3461 int ret;
3462
a491abb2 3463 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3464 return 0;
3465
e02119d5
CM
3466 ret = join_running_log_trans(root);
3467 if (ret)
3468 return 0;
3469 log = root->log_root;
a491abb2 3470 mutex_lock(&inode->log_mutex);
e02119d5 3471
a491abb2 3472 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3473 dirid, &index);
a491abb2 3474 mutex_unlock(&inode->log_mutex);
4a500fd1 3475 if (ret == -ENOSPC) {
90787766 3476 btrfs_set_log_full_commit(trans);
4a500fd1 3477 ret = 0;
79787eaa 3478 } else if (ret < 0 && ret != -ENOENT)
66642832 3479 btrfs_abort_transaction(trans, ret);
12fcfd22 3480 btrfs_end_log_trans(root);
e02119d5 3481
e02119d5
CM
3482 return ret;
3483}
3484
3485/*
3486 * creates a range item in the log for 'dirid'. first_offset and
3487 * last_offset tell us which parts of the key space the log should
3488 * be considered authoritative for.
3489 */
3490static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3491 struct btrfs_root *log,
3492 struct btrfs_path *path,
3493 int key_type, u64 dirid,
3494 u64 first_offset, u64 last_offset)
3495{
3496 int ret;
3497 struct btrfs_key key;
3498 struct btrfs_dir_log_item *item;
3499
3500 key.objectid = dirid;
3501 key.offset = first_offset;
3502 if (key_type == BTRFS_DIR_ITEM_KEY)
3503 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3504 else
3505 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3506 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3507 if (ret)
3508 return ret;
e02119d5
CM
3509
3510 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3511 struct btrfs_dir_log_item);
3512 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3513 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3514 btrfs_release_path(path);
e02119d5
CM
3515 return 0;
3516}
3517
3518/*
3519 * log all the items included in the current transaction for a given
3520 * directory. This also creates the range items in the log tree required
3521 * to replay anything deleted before the fsync
3522 */
3523static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3524 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3525 struct btrfs_path *path,
3526 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3527 struct btrfs_log_ctx *ctx,
e02119d5
CM
3528 u64 min_offset, u64 *last_offset_ret)
3529{
3530 struct btrfs_key min_key;
e02119d5
CM
3531 struct btrfs_root *log = root->log_root;
3532 struct extent_buffer *src;
4a500fd1 3533 int err = 0;
e02119d5
CM
3534 int ret;
3535 int i;
3536 int nritems;
3537 u64 first_offset = min_offset;
3538 u64 last_offset = (u64)-1;
684a5773 3539 u64 ino = btrfs_ino(inode);
e02119d5
CM
3540
3541 log = root->log_root;
e02119d5 3542
33345d01 3543 min_key.objectid = ino;
e02119d5
CM
3544 min_key.type = key_type;
3545 min_key.offset = min_offset;
3546
6174d3cb 3547 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3548
3549 /*
3550 * we didn't find anything from this transaction, see if there
3551 * is anything at all
3552 */
33345d01
LZ
3553 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3554 min_key.objectid = ino;
e02119d5
CM
3555 min_key.type = key_type;
3556 min_key.offset = (u64)-1;
b3b4aa74 3557 btrfs_release_path(path);
e02119d5
CM
3558 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3559 if (ret < 0) {
b3b4aa74 3560 btrfs_release_path(path);
e02119d5
CM
3561 return ret;
3562 }
33345d01 3563 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3564
3565 /* if ret == 0 there are items for this type,
3566 * create a range to tell us the last key of this type.
3567 * otherwise, there are no items in this directory after
3568 * *min_offset, and we create a range to indicate that.
3569 */
3570 if (ret == 0) {
3571 struct btrfs_key tmp;
3572 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3573 path->slots[0]);
d397712b 3574 if (key_type == tmp.type)
e02119d5 3575 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3576 }
3577 goto done;
3578 }
3579
3580 /* go backward to find any previous key */
33345d01 3581 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3582 if (ret == 0) {
3583 struct btrfs_key tmp;
3584 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3585 if (key_type == tmp.type) {
3586 first_offset = tmp.offset;
3587 ret = overwrite_item(trans, log, dst_path,
3588 path->nodes[0], path->slots[0],
3589 &tmp);
4a500fd1
YZ
3590 if (ret) {
3591 err = ret;
3592 goto done;
3593 }
e02119d5
CM
3594 }
3595 }
b3b4aa74 3596 btrfs_release_path(path);
e02119d5 3597
2cc83342
JB
3598 /*
3599 * Find the first key from this transaction again. See the note for
3600 * log_new_dir_dentries, if we're logging a directory recursively we
3601 * won't be holding its i_mutex, which means we can modify the directory
3602 * while we're logging it. If we remove an entry between our first
3603 * search and this search we'll not find the key again and can just
3604 * bail.
3605 */
e02119d5 3606 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3607 if (ret != 0)
e02119d5 3608 goto done;
e02119d5
CM
3609
3610 /*
3611 * we have a block from this transaction, log every item in it
3612 * from our directory
3613 */
d397712b 3614 while (1) {
e02119d5
CM
3615 struct btrfs_key tmp;
3616 src = path->nodes[0];
3617 nritems = btrfs_header_nritems(src);
3618 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3619 struct btrfs_dir_item *di;
3620
e02119d5
CM
3621 btrfs_item_key_to_cpu(src, &min_key, i);
3622
33345d01 3623 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3624 goto done;
3625 ret = overwrite_item(trans, log, dst_path, src, i,
3626 &min_key);
4a500fd1
YZ
3627 if (ret) {
3628 err = ret;
3629 goto done;
3630 }
2f2ff0ee
FM
3631
3632 /*
3633 * We must make sure that when we log a directory entry,
3634 * the corresponding inode, after log replay, has a
3635 * matching link count. For example:
3636 *
3637 * touch foo
3638 * mkdir mydir
3639 * sync
3640 * ln foo mydir/bar
3641 * xfs_io -c "fsync" mydir
3642 * <crash>
3643 * <mount fs and log replay>
3644 *
3645 * Would result in a fsync log that when replayed, our
3646 * file inode would have a link count of 1, but we get
3647 * two directory entries pointing to the same inode.
3648 * After removing one of the names, it would not be
3649 * possible to remove the other name, which resulted
3650 * always in stale file handle errors, and would not
3651 * be possible to rmdir the parent directory, since
3652 * its i_size could never decrement to the value
3653 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3654 */
3655 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3656 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3657 if (ctx &&
3658 (btrfs_dir_transid(src, di) == trans->transid ||
3659 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3660 tmp.type != BTRFS_ROOT_ITEM_KEY)
3661 ctx->log_new_dentries = true;
e02119d5
CM
3662 }
3663 path->slots[0] = nritems;
3664
3665 /*
3666 * look ahead to the next item and see if it is also
3667 * from this directory and from this transaction
3668 */
3669 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3670 if (ret) {
3671 if (ret == 1)
3672 last_offset = (u64)-1;
3673 else
3674 err = ret;
e02119d5
CM
3675 goto done;
3676 }
3677 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3678 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3679 last_offset = (u64)-1;
3680 goto done;
3681 }
3682 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3683 ret = overwrite_item(trans, log, dst_path,
3684 path->nodes[0], path->slots[0],
3685 &tmp);
4a500fd1
YZ
3686 if (ret)
3687 err = ret;
3688 else
3689 last_offset = tmp.offset;
e02119d5
CM
3690 goto done;
3691 }
3692 }
3693done:
b3b4aa74
DS
3694 btrfs_release_path(path);
3695 btrfs_release_path(dst_path);
e02119d5 3696
4a500fd1
YZ
3697 if (err == 0) {
3698 *last_offset_ret = last_offset;
3699 /*
3700 * insert the log range keys to indicate where the log
3701 * is valid
3702 */
3703 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3704 ino, first_offset, last_offset);
4a500fd1
YZ
3705 if (ret)
3706 err = ret;
3707 }
3708 return err;
e02119d5
CM
3709}
3710
3711/*
3712 * logging directories is very similar to logging inodes, We find all the items
3713 * from the current transaction and write them to the log.
3714 *
3715 * The recovery code scans the directory in the subvolume, and if it finds a
3716 * key in the range logged that is not present in the log tree, then it means
3717 * that dir entry was unlinked during the transaction.
3718 *
3719 * In order for that scan to work, we must include one key smaller than
3720 * the smallest logged by this transaction and one key larger than the largest
3721 * key logged by this transaction.
3722 */
3723static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3724 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3725 struct btrfs_path *path,
2f2ff0ee
FM
3726 struct btrfs_path *dst_path,
3727 struct btrfs_log_ctx *ctx)
e02119d5
CM
3728{
3729 u64 min_key;
3730 u64 max_key;
3731 int ret;
3732 int key_type = BTRFS_DIR_ITEM_KEY;
3733
3734again:
3735 min_key = 0;
3736 max_key = 0;
d397712b 3737 while (1) {
dbf39ea4
NB
3738 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3739 ctx, min_key, &max_key);
4a500fd1
YZ
3740 if (ret)
3741 return ret;
e02119d5
CM
3742 if (max_key == (u64)-1)
3743 break;
3744 min_key = max_key + 1;
3745 }
3746
3747 if (key_type == BTRFS_DIR_ITEM_KEY) {
3748 key_type = BTRFS_DIR_INDEX_KEY;
3749 goto again;
3750 }
3751 return 0;
3752}
3753
3754/*
3755 * a helper function to drop items from the log before we relog an
3756 * inode. max_key_type indicates the highest item type to remove.
3757 * This cannot be run for file data extents because it does not
3758 * free the extents they point to.
3759 */
3760static int drop_objectid_items(struct btrfs_trans_handle *trans,
3761 struct btrfs_root *log,
3762 struct btrfs_path *path,
3763 u64 objectid, int max_key_type)
3764{
3765 int ret;
3766 struct btrfs_key key;
3767 struct btrfs_key found_key;
18ec90d6 3768 int start_slot;
e02119d5
CM
3769
3770 key.objectid = objectid;
3771 key.type = max_key_type;
3772 key.offset = (u64)-1;
3773
d397712b 3774 while (1) {
e02119d5 3775 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3776 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3777 if (ret < 0)
e02119d5
CM
3778 break;
3779
3780 if (path->slots[0] == 0)
3781 break;
3782
3783 path->slots[0]--;
3784 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3785 path->slots[0]);
3786
3787 if (found_key.objectid != objectid)
3788 break;
3789
18ec90d6
JB
3790 found_key.offset = 0;
3791 found_key.type = 0;
3792 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3793 &start_slot);
cbca7d59
FM
3794 if (ret < 0)
3795 break;
18ec90d6
JB
3796
3797 ret = btrfs_del_items(trans, log, path, start_slot,
3798 path->slots[0] - start_slot + 1);
3799 /*
3800 * If start slot isn't 0 then we don't need to re-search, we've
3801 * found the last guy with the objectid in this tree.
3802 */
3803 if (ret || start_slot != 0)
65a246c5 3804 break;
b3b4aa74 3805 btrfs_release_path(path);
e02119d5 3806 }
b3b4aa74 3807 btrfs_release_path(path);
5bdbeb21
JB
3808 if (ret > 0)
3809 ret = 0;
4a500fd1 3810 return ret;
e02119d5
CM
3811}
3812
94edf4ae
JB
3813static void fill_inode_item(struct btrfs_trans_handle *trans,
3814 struct extent_buffer *leaf,
3815 struct btrfs_inode_item *item,
1a4bcf47
FM
3816 struct inode *inode, int log_inode_only,
3817 u64 logged_isize)
94edf4ae 3818{
0b1c6cca
JB
3819 struct btrfs_map_token token;
3820
3821 btrfs_init_map_token(&token);
94edf4ae
JB
3822
3823 if (log_inode_only) {
3824 /* set the generation to zero so the recover code
3825 * can tell the difference between an logging
3826 * just to say 'this inode exists' and a logging
3827 * to say 'update this inode with these values'
3828 */
0b1c6cca 3829 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3830 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3831 } else {
0b1c6cca
JB
3832 btrfs_set_token_inode_generation(leaf, item,
3833 BTRFS_I(inode)->generation,
3834 &token);
3835 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3836 }
3837
3838 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3839 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3840 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3841 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3842
a937b979 3843 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3844 inode->i_atime.tv_sec, &token);
a937b979 3845 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3846 inode->i_atime.tv_nsec, &token);
3847
a937b979 3848 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3849 inode->i_mtime.tv_sec, &token);
a937b979 3850 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3851 inode->i_mtime.tv_nsec, &token);
3852
a937b979 3853 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3854 inode->i_ctime.tv_sec, &token);
a937b979 3855 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3856 inode->i_ctime.tv_nsec, &token);
3857
3858 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3859 &token);
3860
c7f88c4e
JL
3861 btrfs_set_token_inode_sequence(leaf, item,
3862 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3863 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3864 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3865 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3866 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3867}
3868
a95249b3
JB
3869static int log_inode_item(struct btrfs_trans_handle *trans,
3870 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3871 struct btrfs_inode *inode)
a95249b3
JB
3872{
3873 struct btrfs_inode_item *inode_item;
a95249b3
JB
3874 int ret;
3875
efd0c405 3876 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3877 &inode->location, sizeof(*inode_item));
a95249b3
JB
3878 if (ret && ret != -EEXIST)
3879 return ret;
3880 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3881 struct btrfs_inode_item);
6d889a3b
NB
3882 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3883 0, 0);
a95249b3
JB
3884 btrfs_release_path(path);
3885 return 0;
3886}
3887
31ff1cd2 3888static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3889 struct btrfs_inode *inode,
31ff1cd2 3890 struct btrfs_path *dst_path,
16e7549f 3891 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3892 int start_slot, int nr, int inode_only,
3893 u64 logged_isize)
31ff1cd2 3894{
3ffbd68c 3895 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
3896 unsigned long src_offset;
3897 unsigned long dst_offset;
44d70e19 3898 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3899 struct btrfs_file_extent_item *extent;
3900 struct btrfs_inode_item *inode_item;
16e7549f
JB
3901 struct extent_buffer *src = src_path->nodes[0];
3902 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3903 int ret;
3904 struct btrfs_key *ins_keys;
3905 u32 *ins_sizes;
3906 char *ins_data;
3907 int i;
d20f7043 3908 struct list_head ordered_sums;
44d70e19 3909 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3910 bool has_extents = false;
74121f7c 3911 bool need_find_last_extent = true;
16e7549f 3912 bool done = false;
d20f7043
CM
3913
3914 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3915
3916 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3917 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3918 if (!ins_data)
3919 return -ENOMEM;
3920
16e7549f
JB
3921 first_key.objectid = (u64)-1;
3922
31ff1cd2
CM
3923 ins_sizes = (u32 *)ins_data;
3924 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3925
3926 for (i = 0; i < nr; i++) {
3927 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3928 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3929 }
3930 ret = btrfs_insert_empty_items(trans, log, dst_path,
3931 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3932 if (ret) {
3933 kfree(ins_data);
3934 return ret;
3935 }
31ff1cd2 3936
5d4f98a2 3937 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3938 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3939 dst_path->slots[0]);
3940
3941 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3942
0dde10be 3943 if (i == nr - 1)
16e7549f
JB
3944 last_key = ins_keys[i];
3945
94edf4ae 3946 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3947 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3948 dst_path->slots[0],
3949 struct btrfs_inode_item);
94edf4ae 3950 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3951 &inode->vfs_inode,
3952 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3953 logged_isize);
94edf4ae
JB
3954 } else {
3955 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3956 src_offset, ins_sizes[i]);
31ff1cd2 3957 }
94edf4ae 3958
16e7549f
JB
3959 /*
3960 * We set need_find_last_extent here in case we know we were
3961 * processing other items and then walk into the first extent in
3962 * the inode. If we don't hit an extent then nothing changes,
3963 * we'll do the last search the next time around.
3964 */
3965 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3966 has_extents = true;
74121f7c 3967 if (first_key.objectid == (u64)-1)
16e7549f
JB
3968 first_key = ins_keys[i];
3969 } else {
3970 need_find_last_extent = false;
3971 }
3972
31ff1cd2
CM
3973 /* take a reference on file data extents so that truncates
3974 * or deletes of this inode don't have to relog the inode
3975 * again
3976 */
962a298f 3977 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3978 !skip_csum) {
31ff1cd2
CM
3979 int found_type;
3980 extent = btrfs_item_ptr(src, start_slot + i,
3981 struct btrfs_file_extent_item);
3982
8e531cdf 3983 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3984 continue;
3985
31ff1cd2 3986 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3987 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3988 u64 ds, dl, cs, cl;
3989 ds = btrfs_file_extent_disk_bytenr(src,
3990 extent);
3991 /* ds == 0 is a hole */
3992 if (ds == 0)
3993 continue;
3994
3995 dl = btrfs_file_extent_disk_num_bytes(src,
3996 extent);
3997 cs = btrfs_file_extent_offset(src, extent);
3998 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3999 extent);
580afd76
CM
4000 if (btrfs_file_extent_compression(src,
4001 extent)) {
4002 cs = 0;
4003 cl = dl;
4004 }
5d4f98a2
YZ
4005
4006 ret = btrfs_lookup_csums_range(
0b246afa 4007 fs_info->csum_root,
5d4f98a2 4008 ds + cs, ds + cs + cl - 1,
a2de733c 4009 &ordered_sums, 0);
3650860b
JB
4010 if (ret) {
4011 btrfs_release_path(dst_path);
4012 kfree(ins_data);
4013 return ret;
4014 }
31ff1cd2
CM
4015 }
4016 }
31ff1cd2
CM
4017 }
4018
4019 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4020 btrfs_release_path(dst_path);
31ff1cd2 4021 kfree(ins_data);
d20f7043
CM
4022
4023 /*
4024 * we have to do this after the loop above to avoid changing the
4025 * log tree while trying to change the log tree.
4026 */
4a500fd1 4027 ret = 0;
d397712b 4028 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4029 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4030 struct btrfs_ordered_sum,
4031 list);
4a500fd1
YZ
4032 if (!ret)
4033 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
4034 list_del(&sums->list);
4035 kfree(sums);
4036 }
16e7549f
JB
4037
4038 if (!has_extents)
4039 return ret;
4040
74121f7c
FM
4041 if (need_find_last_extent && *last_extent == first_key.offset) {
4042 /*
4043 * We don't have any leafs between our current one and the one
4044 * we processed before that can have file extent items for our
4045 * inode (and have a generation number smaller than our current
4046 * transaction id).
4047 */
4048 need_find_last_extent = false;
4049 }
4050
16e7549f
JB
4051 /*
4052 * Because we use btrfs_search_forward we could skip leaves that were
4053 * not modified and then assume *last_extent is valid when it really
4054 * isn't. So back up to the previous leaf and read the end of the last
4055 * extent before we go and fill in holes.
4056 */
4057 if (need_find_last_extent) {
4058 u64 len;
4059
44d70e19 4060 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
4061 if (ret < 0)
4062 return ret;
4063 if (ret)
4064 goto fill_holes;
4065 if (src_path->slots[0])
4066 src_path->slots[0]--;
4067 src = src_path->nodes[0];
4068 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 4069 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4070 key.type != BTRFS_EXTENT_DATA_KEY)
4071 goto fill_holes;
4072 extent = btrfs_item_ptr(src, src_path->slots[0],
4073 struct btrfs_file_extent_item);
4074 if (btrfs_file_extent_type(src, extent) ==
4075 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4076 len = btrfs_file_extent_ram_bytes(src, extent);
16e7549f 4077 *last_extent = ALIGN(key.offset + len,
0b246afa 4078 fs_info->sectorsize);
16e7549f
JB
4079 } else {
4080 len = btrfs_file_extent_num_bytes(src, extent);
4081 *last_extent = key.offset + len;
4082 }
4083 }
4084fill_holes:
4085 /* So we did prev_leaf, now we need to move to the next leaf, but a few
4086 * things could have happened
4087 *
4088 * 1) A merge could have happened, so we could currently be on a leaf
4089 * that holds what we were copying in the first place.
4090 * 2) A split could have happened, and now not all of the items we want
4091 * are on the same leaf.
4092 *
4093 * So we need to adjust how we search for holes, we need to drop the
4094 * path and re-search for the first extent key we found, and then walk
4095 * forward until we hit the last one we copied.
4096 */
4097 if (need_find_last_extent) {
4098 /* btrfs_prev_leaf could return 1 without releasing the path */
4099 btrfs_release_path(src_path);
f85b7379
DS
4100 ret = btrfs_search_slot(NULL, inode->root, &first_key,
4101 src_path, 0, 0);
16e7549f
JB
4102 if (ret < 0)
4103 return ret;
4104 ASSERT(ret == 0);
4105 src = src_path->nodes[0];
4106 i = src_path->slots[0];
4107 } else {
4108 i = start_slot;
4109 }
4110
4111 /*
4112 * Ok so here we need to go through and fill in any holes we may have
4113 * to make sure that holes are punched for those areas in case they had
4114 * extents previously.
4115 */
4116 while (!done) {
4117 u64 offset, len;
4118 u64 extent_end;
4119
4120 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 4121 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
4122 if (ret < 0)
4123 return ret;
4124 ASSERT(ret == 0);
4125 src = src_path->nodes[0];
4126 i = 0;
8434ec46 4127 need_find_last_extent = true;
16e7549f
JB
4128 }
4129
4130 btrfs_item_key_to_cpu(src, &key, i);
4131 if (!btrfs_comp_cpu_keys(&key, &last_key))
4132 done = true;
44d70e19 4133 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4134 key.type != BTRFS_EXTENT_DATA_KEY) {
4135 i++;
4136 continue;
4137 }
4138 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4139 if (btrfs_file_extent_type(src, extent) ==
4140 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4141 len = btrfs_file_extent_ram_bytes(src, extent);
da17066c 4142 extent_end = ALIGN(key.offset + len,
0b246afa 4143 fs_info->sectorsize);
16e7549f
JB
4144 } else {
4145 len = btrfs_file_extent_num_bytes(src, extent);
4146 extent_end = key.offset + len;
4147 }
4148 i++;
4149
4150 if (*last_extent == key.offset) {
4151 *last_extent = extent_end;
4152 continue;
4153 }
4154 offset = *last_extent;
4155 len = key.offset - *last_extent;
44d70e19 4156 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 4157 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
4158 if (ret)
4159 break;
74121f7c 4160 *last_extent = extent_end;
16e7549f 4161 }
4ee3fad3
FM
4162
4163 /*
4164 * Check if there is a hole between the last extent found in our leaf
4165 * and the first extent in the next leaf. If there is one, we need to
4166 * log an explicit hole so that at replay time we can punch the hole.
4167 */
4168 if (ret == 0 &&
4169 key.objectid == btrfs_ino(inode) &&
4170 key.type == BTRFS_EXTENT_DATA_KEY &&
4171 i == btrfs_header_nritems(src_path->nodes[0])) {
4172 ret = btrfs_next_leaf(inode->root, src_path);
4173 need_find_last_extent = true;
4174 if (ret > 0) {
4175 ret = 0;
4176 } else if (ret == 0) {
4177 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4178 src_path->slots[0]);
4179 if (key.objectid == btrfs_ino(inode) &&
4180 key.type == BTRFS_EXTENT_DATA_KEY &&
4181 *last_extent < key.offset) {
4182 const u64 len = key.offset - *last_extent;
4183
4184 ret = btrfs_insert_file_extent(trans, log,
4185 btrfs_ino(inode),
4186 *last_extent, 0,
4187 0, len, 0, len,
4188 0, 0, 0);
ebb92906 4189 *last_extent += len;
4ee3fad3
FM
4190 }
4191 }
4192 }
16e7549f
JB
4193 /*
4194 * Need to let the callers know we dropped the path so they should
4195 * re-search.
4196 */
4197 if (!ret && need_find_last_extent)
4198 ret = 1;
4a500fd1 4199 return ret;
31ff1cd2
CM
4200}
4201
5dc562c5
JB
4202static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4203{
4204 struct extent_map *em1, *em2;
4205
4206 em1 = list_entry(a, struct extent_map, list);
4207 em2 = list_entry(b, struct extent_map, list);
4208
4209 if (em1->start < em2->start)
4210 return -1;
4211 else if (em1->start > em2->start)
4212 return 1;
4213 return 0;
4214}
4215
e7175a69
JB
4216static int log_extent_csums(struct btrfs_trans_handle *trans,
4217 struct btrfs_inode *inode,
a9ecb653 4218 struct btrfs_root *log_root,
e7175a69 4219 const struct extent_map *em)
5dc562c5 4220{
2ab28f32
JB
4221 u64 csum_offset;
4222 u64 csum_len;
8407f553
FM
4223 LIST_HEAD(ordered_sums);
4224 int ret = 0;
0aa4a17d 4225
e7175a69
JB
4226 if (inode->flags & BTRFS_INODE_NODATASUM ||
4227 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4228 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4229 return 0;
5dc562c5 4230
e7175a69 4231 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4232 if (em->compress_type) {
4233 csum_offset = 0;
8407f553 4234 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4235 } else {
e7175a69
JB
4236 csum_offset = em->mod_start - em->start;
4237 csum_len = em->mod_len;
488111aa 4238 }
2ab28f32 4239
70c8a91c 4240 /* block start is already adjusted for the file extent offset. */
a9ecb653 4241 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4242 em->block_start + csum_offset,
4243 em->block_start + csum_offset +
4244 csum_len - 1, &ordered_sums, 0);
4245 if (ret)
4246 return ret;
5dc562c5 4247
70c8a91c
JB
4248 while (!list_empty(&ordered_sums)) {
4249 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4250 struct btrfs_ordered_sum,
4251 list);
4252 if (!ret)
a9ecb653 4253 ret = btrfs_csum_file_blocks(trans, log_root, sums);
70c8a91c
JB
4254 list_del(&sums->list);
4255 kfree(sums);
5dc562c5
JB
4256 }
4257
70c8a91c 4258 return ret;
5dc562c5
JB
4259}
4260
8407f553 4261static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4262 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4263 const struct extent_map *em,
4264 struct btrfs_path *path,
8407f553
FM
4265 struct btrfs_log_ctx *ctx)
4266{
4267 struct btrfs_root *log = root->log_root;
4268 struct btrfs_file_extent_item *fi;
4269 struct extent_buffer *leaf;
4270 struct btrfs_map_token token;
4271 struct btrfs_key key;
4272 u64 extent_offset = em->start - em->orig_start;
4273 u64 block_len;
4274 int ret;
4275 int extent_inserted = 0;
8407f553 4276
a9ecb653 4277 ret = log_extent_csums(trans, inode, log, em);
8407f553
FM
4278 if (ret)
4279 return ret;
4280
8407f553
FM
4281 btrfs_init_map_token(&token);
4282
9d122629 4283 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4284 em->start + em->len, NULL, 0, 1,
4285 sizeof(*fi), &extent_inserted);
4286 if (ret)
4287 return ret;
4288
4289 if (!extent_inserted) {
9d122629 4290 key.objectid = btrfs_ino(inode);
8407f553
FM
4291 key.type = BTRFS_EXTENT_DATA_KEY;
4292 key.offset = em->start;
4293
4294 ret = btrfs_insert_empty_item(trans, log, path, &key,
4295 sizeof(*fi));
4296 if (ret)
4297 return ret;
4298 }
4299 leaf = path->nodes[0];
4300 fi = btrfs_item_ptr(leaf, path->slots[0],
4301 struct btrfs_file_extent_item);
4302
50d9aa99 4303 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4304 &token);
4305 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4306 btrfs_set_token_file_extent_type(leaf, fi,
4307 BTRFS_FILE_EXTENT_PREALLOC,
4308 &token);
4309 else
4310 btrfs_set_token_file_extent_type(leaf, fi,
4311 BTRFS_FILE_EXTENT_REG,
4312 &token);
4313
4314 block_len = max(em->block_len, em->orig_block_len);
4315 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4316 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4317 em->block_start,
4318 &token);
4319 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4320 &token);
4321 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4322 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4323 em->block_start -
4324 extent_offset, &token);
4325 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4326 &token);
4327 } else {
4328 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4329 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4330 &token);
4331 }
4332
4333 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4334 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4335 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4336 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4337 &token);
4338 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4339 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4340 btrfs_mark_buffer_dirty(leaf);
4341
4342 btrfs_release_path(path);
4343
4344 return ret;
4345}
4346
31d11b83
FM
4347/*
4348 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4349 * lose them after doing a fast fsync and replaying the log. We scan the
4350 * subvolume's root instead of iterating the inode's extent map tree because
4351 * otherwise we can log incorrect extent items based on extent map conversion.
4352 * That can happen due to the fact that extent maps are merged when they
4353 * are not in the extent map tree's list of modified extents.
4354 */
4355static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4356 struct btrfs_inode *inode,
4357 struct btrfs_path *path)
4358{
4359 struct btrfs_root *root = inode->root;
4360 struct btrfs_key key;
4361 const u64 i_size = i_size_read(&inode->vfs_inode);
4362 const u64 ino = btrfs_ino(inode);
4363 struct btrfs_path *dst_path = NULL;
4364 u64 last_extent = (u64)-1;
4365 int ins_nr = 0;
4366 int start_slot;
4367 int ret;
4368
4369 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4370 return 0;
4371
4372 key.objectid = ino;
4373 key.type = BTRFS_EXTENT_DATA_KEY;
4374 key.offset = i_size;
4375 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4376 if (ret < 0)
4377 goto out;
4378
4379 while (true) {
4380 struct extent_buffer *leaf = path->nodes[0];
4381 int slot = path->slots[0];
4382
4383 if (slot >= btrfs_header_nritems(leaf)) {
4384 if (ins_nr > 0) {
4385 ret = copy_items(trans, inode, dst_path, path,
4386 &last_extent, start_slot,
4387 ins_nr, 1, 0);
4388 if (ret < 0)
4389 goto out;
4390 ins_nr = 0;
4391 }
4392 ret = btrfs_next_leaf(root, path);
4393 if (ret < 0)
4394 goto out;
4395 if (ret > 0) {
4396 ret = 0;
4397 break;
4398 }
4399 continue;
4400 }
4401
4402 btrfs_item_key_to_cpu(leaf, &key, slot);
4403 if (key.objectid > ino)
4404 break;
4405 if (WARN_ON_ONCE(key.objectid < ino) ||
4406 key.type < BTRFS_EXTENT_DATA_KEY ||
4407 key.offset < i_size) {
4408 path->slots[0]++;
4409 continue;
4410 }
4411 if (last_extent == (u64)-1) {
4412 last_extent = key.offset;
4413 /*
4414 * Avoid logging extent items logged in past fsync calls
4415 * and leading to duplicate keys in the log tree.
4416 */
4417 do {
4418 ret = btrfs_truncate_inode_items(trans,
4419 root->log_root,
4420 &inode->vfs_inode,
4421 i_size,
4422 BTRFS_EXTENT_DATA_KEY);
4423 } while (ret == -EAGAIN);
4424 if (ret)
4425 goto out;
4426 }
4427 if (ins_nr == 0)
4428 start_slot = slot;
4429 ins_nr++;
4430 path->slots[0]++;
4431 if (!dst_path) {
4432 dst_path = btrfs_alloc_path();
4433 if (!dst_path) {
4434 ret = -ENOMEM;
4435 goto out;
4436 }
4437 }
4438 }
4439 if (ins_nr > 0) {
4440 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4441 start_slot, ins_nr, 1, 0);
4442 if (ret > 0)
4443 ret = 0;
4444 }
4445out:
4446 btrfs_release_path(path);
4447 btrfs_free_path(dst_path);
4448 return ret;
4449}
4450
5dc562c5
JB
4451static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4452 struct btrfs_root *root,
9d122629 4453 struct btrfs_inode *inode,
827463c4 4454 struct btrfs_path *path,
de0ee0ed
FM
4455 struct btrfs_log_ctx *ctx,
4456 const u64 start,
4457 const u64 end)
5dc562c5 4458{
5dc562c5
JB
4459 struct extent_map *em, *n;
4460 struct list_head extents;
9d122629 4461 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4462 u64 test_gen;
4463 int ret = 0;
2ab28f32 4464 int num = 0;
5dc562c5
JB
4465
4466 INIT_LIST_HEAD(&extents);
4467
5dc562c5
JB
4468 write_lock(&tree->lock);
4469 test_gen = root->fs_info->last_trans_committed;
4470
4471 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
008c6753
FM
4472 /*
4473 * Skip extents outside our logging range. It's important to do
4474 * it for correctness because if we don't ignore them, we may
4475 * log them before their ordered extent completes, and therefore
4476 * we could log them without logging their respective checksums
4477 * (the checksum items are added to the csum tree at the very
4478 * end of btrfs_finish_ordered_io()). Also leave such extents
4479 * outside of our range in the list, since we may have another
4480 * ranged fsync in the near future that needs them. If an extent
4481 * outside our range corresponds to a hole, log it to avoid
4482 * leaving gaps between extents (fsck will complain when we are
4483 * not using the NO_HOLES feature).
4484 */
4485 if ((em->start > end || em->start + em->len <= start) &&
4486 em->block_start != EXTENT_MAP_HOLE)
4487 continue;
4488
5dc562c5 4489 list_del_init(&em->list);
2ab28f32
JB
4490 /*
4491 * Just an arbitrary number, this can be really CPU intensive
4492 * once we start getting a lot of extents, and really once we
4493 * have a bunch of extents we just want to commit since it will
4494 * be faster.
4495 */
4496 if (++num > 32768) {
4497 list_del_init(&tree->modified_extents);
4498 ret = -EFBIG;
4499 goto process;
4500 }
4501
5dc562c5
JB
4502 if (em->generation <= test_gen)
4503 continue;
8c6c5928 4504
31d11b83
FM
4505 /* We log prealloc extents beyond eof later. */
4506 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4507 em->start >= i_size_read(&inode->vfs_inode))
4508 continue;
4509
ff44c6e3 4510 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4511 refcount_inc(&em->refs);
ff44c6e3 4512 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4513 list_add_tail(&em->list, &extents);
2ab28f32 4514 num++;
5dc562c5
JB
4515 }
4516
4517 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4518process:
5dc562c5
JB
4519 while (!list_empty(&extents)) {
4520 em = list_entry(extents.next, struct extent_map, list);
4521
4522 list_del_init(&em->list);
4523
4524 /*
4525 * If we had an error we just need to delete everybody from our
4526 * private list.
4527 */
ff44c6e3 4528 if (ret) {
201a9038 4529 clear_em_logging(tree, em);
ff44c6e3 4530 free_extent_map(em);
5dc562c5 4531 continue;
ff44c6e3
JB
4532 }
4533
4534 write_unlock(&tree->lock);
5dc562c5 4535
a2120a47 4536 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4537 write_lock(&tree->lock);
201a9038
JB
4538 clear_em_logging(tree, em);
4539 free_extent_map(em);
5dc562c5 4540 }
ff44c6e3
JB
4541 WARN_ON(!list_empty(&extents));
4542 write_unlock(&tree->lock);
5dc562c5 4543
5dc562c5 4544 btrfs_release_path(path);
31d11b83
FM
4545 if (!ret)
4546 ret = btrfs_log_prealloc_extents(trans, inode, path);
4547
5dc562c5
JB
4548 return ret;
4549}
4550
481b01c0 4551static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4552 struct btrfs_path *path, u64 *size_ret)
4553{
4554 struct btrfs_key key;
4555 int ret;
4556
481b01c0 4557 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4558 key.type = BTRFS_INODE_ITEM_KEY;
4559 key.offset = 0;
4560
4561 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4562 if (ret < 0) {
4563 return ret;
4564 } else if (ret > 0) {
2f2ff0ee 4565 *size_ret = 0;
1a4bcf47
FM
4566 } else {
4567 struct btrfs_inode_item *item;
4568
4569 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4570 struct btrfs_inode_item);
4571 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4572 /*
4573 * If the in-memory inode's i_size is smaller then the inode
4574 * size stored in the btree, return the inode's i_size, so
4575 * that we get a correct inode size after replaying the log
4576 * when before a power failure we had a shrinking truncate
4577 * followed by addition of a new name (rename / new hard link).
4578 * Otherwise return the inode size from the btree, to avoid
4579 * data loss when replaying a log due to previously doing a
4580 * write that expands the inode's size and logging a new name
4581 * immediately after.
4582 */
4583 if (*size_ret > inode->vfs_inode.i_size)
4584 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4585 }
4586
4587 btrfs_release_path(path);
4588 return 0;
4589}
4590
36283bf7
FM
4591/*
4592 * At the moment we always log all xattrs. This is to figure out at log replay
4593 * time which xattrs must have their deletion replayed. If a xattr is missing
4594 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4595 * because if a xattr is deleted, the inode is fsynced and a power failure
4596 * happens, causing the log to be replayed the next time the fs is mounted,
4597 * we want the xattr to not exist anymore (same behaviour as other filesystems
4598 * with a journal, ext3/4, xfs, f2fs, etc).
4599 */
4600static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4601 struct btrfs_root *root,
1a93c36a 4602 struct btrfs_inode *inode,
36283bf7
FM
4603 struct btrfs_path *path,
4604 struct btrfs_path *dst_path)
4605{
4606 int ret;
4607 struct btrfs_key key;
1a93c36a 4608 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4609 int ins_nr = 0;
4610 int start_slot = 0;
4611
4612 key.objectid = ino;
4613 key.type = BTRFS_XATTR_ITEM_KEY;
4614 key.offset = 0;
4615
4616 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4617 if (ret < 0)
4618 return ret;
4619
4620 while (true) {
4621 int slot = path->slots[0];
4622 struct extent_buffer *leaf = path->nodes[0];
4623 int nritems = btrfs_header_nritems(leaf);
4624
4625 if (slot >= nritems) {
4626 if (ins_nr > 0) {
4627 u64 last_extent = 0;
4628
1a93c36a 4629 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4630 &last_extent, start_slot,
4631 ins_nr, 1, 0);
4632 /* can't be 1, extent items aren't processed */
4633 ASSERT(ret <= 0);
4634 if (ret < 0)
4635 return ret;
4636 ins_nr = 0;
4637 }
4638 ret = btrfs_next_leaf(root, path);
4639 if (ret < 0)
4640 return ret;
4641 else if (ret > 0)
4642 break;
4643 continue;
4644 }
4645
4646 btrfs_item_key_to_cpu(leaf, &key, slot);
4647 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4648 break;
4649
4650 if (ins_nr == 0)
4651 start_slot = slot;
4652 ins_nr++;
4653 path->slots[0]++;
4654 cond_resched();
4655 }
4656 if (ins_nr > 0) {
4657 u64 last_extent = 0;
4658
1a93c36a 4659 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4660 &last_extent, start_slot,
4661 ins_nr, 1, 0);
4662 /* can't be 1, extent items aren't processed */
4663 ASSERT(ret <= 0);
4664 if (ret < 0)
4665 return ret;
4666 }
4667
4668 return 0;
4669}
4670
a89ca6f2
FM
4671/*
4672 * If the no holes feature is enabled we need to make sure any hole between the
4673 * last extent and the i_size of our inode is explicitly marked in the log. This
4674 * is to make sure that doing something like:
4675 *
4676 * 1) create file with 128Kb of data
4677 * 2) truncate file to 64Kb
4678 * 3) truncate file to 256Kb
4679 * 4) fsync file
4680 * 5) <crash/power failure>
4681 * 6) mount fs and trigger log replay
4682 *
4683 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4684 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4685 * file correspond to a hole. The presence of explicit holes in a log tree is
4686 * what guarantees that log replay will remove/adjust file extent items in the
4687 * fs/subvol tree.
4688 *
4689 * Here we do not need to care about holes between extents, that is already done
4690 * by copy_items(). We also only need to do this in the full sync path, where we
4691 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4692 * lookup the list of modified extent maps and if any represents a hole, we
4693 * insert a corresponding extent representing a hole in the log tree.
4694 */
4695static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4696 struct btrfs_root *root,
a0308dd7 4697 struct btrfs_inode *inode,
a89ca6f2
FM
4698 struct btrfs_path *path)
4699{
0b246afa 4700 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4701 int ret;
4702 struct btrfs_key key;
4703 u64 hole_start;
4704 u64 hole_size;
4705 struct extent_buffer *leaf;
4706 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4707 const u64 ino = btrfs_ino(inode);
4708 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4709
0b246afa 4710 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4711 return 0;
4712
4713 key.objectid = ino;
4714 key.type = BTRFS_EXTENT_DATA_KEY;
4715 key.offset = (u64)-1;
4716
4717 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4718 ASSERT(ret != 0);
4719 if (ret < 0)
4720 return ret;
4721
4722 ASSERT(path->slots[0] > 0);
4723 path->slots[0]--;
4724 leaf = path->nodes[0];
4725 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4726
4727 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4728 /* inode does not have any extents */
4729 hole_start = 0;
4730 hole_size = i_size;
4731 } else {
4732 struct btrfs_file_extent_item *extent;
4733 u64 len;
4734
4735 /*
4736 * If there's an extent beyond i_size, an explicit hole was
4737 * already inserted by copy_items().
4738 */
4739 if (key.offset >= i_size)
4740 return 0;
4741
4742 extent = btrfs_item_ptr(leaf, path->slots[0],
4743 struct btrfs_file_extent_item);
4744
4745 if (btrfs_file_extent_type(leaf, extent) ==
0ccc3876 4746 BTRFS_FILE_EXTENT_INLINE)
a89ca6f2 4747 return 0;
a89ca6f2
FM
4748
4749 len = btrfs_file_extent_num_bytes(leaf, extent);
4750 /* Last extent goes beyond i_size, no need to log a hole. */
4751 if (key.offset + len > i_size)
4752 return 0;
4753 hole_start = key.offset + len;
4754 hole_size = i_size - hole_start;
4755 }
4756 btrfs_release_path(path);
4757
4758 /* Last extent ends at i_size. */
4759 if (hole_size == 0)
4760 return 0;
4761
0b246afa 4762 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4763 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4764 hole_size, 0, hole_size, 0, 0, 0);
4765 return ret;
4766}
4767
56f23fdb
FM
4768/*
4769 * When we are logging a new inode X, check if it doesn't have a reference that
4770 * matches the reference from some other inode Y created in a past transaction
4771 * and that was renamed in the current transaction. If we don't do this, then at
4772 * log replay time we can lose inode Y (and all its files if it's a directory):
4773 *
4774 * mkdir /mnt/x
4775 * echo "hello world" > /mnt/x/foobar
4776 * sync
4777 * mv /mnt/x /mnt/y
4778 * mkdir /mnt/x # or touch /mnt/x
4779 * xfs_io -c fsync /mnt/x
4780 * <power fail>
4781 * mount fs, trigger log replay
4782 *
4783 * After the log replay procedure, we would lose the first directory and all its
4784 * files (file foobar).
4785 * For the case where inode Y is not a directory we simply end up losing it:
4786 *
4787 * echo "123" > /mnt/foo
4788 * sync
4789 * mv /mnt/foo /mnt/bar
4790 * echo "abc" > /mnt/foo
4791 * xfs_io -c fsync /mnt/foo
4792 * <power fail>
4793 *
4794 * We also need this for cases where a snapshot entry is replaced by some other
4795 * entry (file or directory) otherwise we end up with an unreplayable log due to
4796 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4797 * if it were a regular entry:
4798 *
4799 * mkdir /mnt/x
4800 * btrfs subvolume snapshot /mnt /mnt/x/snap
4801 * btrfs subvolume delete /mnt/x/snap
4802 * rmdir /mnt/x
4803 * mkdir /mnt/x
4804 * fsync /mnt/x or fsync some new file inside it
4805 * <power fail>
4806 *
4807 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4808 * the same transaction.
4809 */
4810static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4811 const int slot,
4812 const struct btrfs_key *key,
4791c8f1 4813 struct btrfs_inode *inode,
a3baaf0d 4814 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4815{
4816 int ret;
4817 struct btrfs_path *search_path;
4818 char *name = NULL;
4819 u32 name_len = 0;
4820 u32 item_size = btrfs_item_size_nr(eb, slot);
4821 u32 cur_offset = 0;
4822 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4823
4824 search_path = btrfs_alloc_path();
4825 if (!search_path)
4826 return -ENOMEM;
4827 search_path->search_commit_root = 1;
4828 search_path->skip_locking = 1;
4829
4830 while (cur_offset < item_size) {
4831 u64 parent;
4832 u32 this_name_len;
4833 u32 this_len;
4834 unsigned long name_ptr;
4835 struct btrfs_dir_item *di;
4836
4837 if (key->type == BTRFS_INODE_REF_KEY) {
4838 struct btrfs_inode_ref *iref;
4839
4840 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4841 parent = key->offset;
4842 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4843 name_ptr = (unsigned long)(iref + 1);
4844 this_len = sizeof(*iref) + this_name_len;
4845 } else {
4846 struct btrfs_inode_extref *extref;
4847
4848 extref = (struct btrfs_inode_extref *)(ptr +
4849 cur_offset);
4850 parent = btrfs_inode_extref_parent(eb, extref);
4851 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4852 name_ptr = (unsigned long)&extref->name;
4853 this_len = sizeof(*extref) + this_name_len;
4854 }
4855
4856 if (this_name_len > name_len) {
4857 char *new_name;
4858
4859 new_name = krealloc(name, this_name_len, GFP_NOFS);
4860 if (!new_name) {
4861 ret = -ENOMEM;
4862 goto out;
4863 }
4864 name_len = this_name_len;
4865 name = new_name;
4866 }
4867
4868 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4869 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4870 parent, name, this_name_len, 0);
56f23fdb 4871 if (di && !IS_ERR(di)) {
44f714da
FM
4872 struct btrfs_key di_key;
4873
4874 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4875 di, &di_key);
4876 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4877 if (di_key.objectid != key->objectid) {
4878 ret = 1;
4879 *other_ino = di_key.objectid;
a3baaf0d 4880 *other_parent = parent;
6b5fc433
FM
4881 } else {
4882 ret = 0;
4883 }
44f714da
FM
4884 } else {
4885 ret = -EAGAIN;
4886 }
56f23fdb
FM
4887 goto out;
4888 } else if (IS_ERR(di)) {
4889 ret = PTR_ERR(di);
4890 goto out;
4891 }
4892 btrfs_release_path(search_path);
4893
4894 cur_offset += this_len;
4895 }
4896 ret = 0;
4897out:
4898 btrfs_free_path(search_path);
4899 kfree(name);
4900 return ret;
4901}
4902
6b5fc433
FM
4903struct btrfs_ino_list {
4904 u64 ino;
a3baaf0d 4905 u64 parent;
6b5fc433
FM
4906 struct list_head list;
4907};
4908
4909static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4910 struct btrfs_root *root,
4911 struct btrfs_path *path,
4912 struct btrfs_log_ctx *ctx,
a3baaf0d 4913 u64 ino, u64 parent)
6b5fc433
FM
4914{
4915 struct btrfs_ino_list *ino_elem;
4916 LIST_HEAD(inode_list);
4917 int ret = 0;
4918
4919 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4920 if (!ino_elem)
4921 return -ENOMEM;
4922 ino_elem->ino = ino;
a3baaf0d 4923 ino_elem->parent = parent;
6b5fc433
FM
4924 list_add_tail(&ino_elem->list, &inode_list);
4925
4926 while (!list_empty(&inode_list)) {
4927 struct btrfs_fs_info *fs_info = root->fs_info;
4928 struct btrfs_key key;
4929 struct inode *inode;
4930
4931 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4932 list);
4933 ino = ino_elem->ino;
a3baaf0d 4934 parent = ino_elem->parent;
6b5fc433
FM
4935 list_del(&ino_elem->list);
4936 kfree(ino_elem);
4937 if (ret)
4938 continue;
4939
4940 btrfs_release_path(path);
4941
4942 key.objectid = ino;
4943 key.type = BTRFS_INODE_ITEM_KEY;
4944 key.offset = 0;
4945 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4946 /*
4947 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4948 * deleted in the current transaction, we need to log its parent
4949 * directory.
6b5fc433
FM
4950 */
4951 if (IS_ERR(inode)) {
4952 ret = PTR_ERR(inode);
a3baaf0d
FM
4953 if (ret == -ENOENT) {
4954 key.objectid = parent;
4955 inode = btrfs_iget(fs_info->sb, &key, root,
4956 NULL);
4957 if (IS_ERR(inode)) {
4958 ret = PTR_ERR(inode);
4959 } else {
4960 ret = btrfs_log_inode(trans, root,
4961 BTRFS_I(inode),
4962 LOG_OTHER_INODE_ALL,
4963 0, LLONG_MAX, ctx);
4964 iput(inode);
4965 }
4966 }
6b5fc433
FM
4967 continue;
4968 }
4969 /*
4970 * We are safe logging the other inode without acquiring its
4971 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4972 * are safe against concurrent renames of the other inode as
4973 * well because during a rename we pin the log and update the
4974 * log with the new name before we unpin it.
4975 */
4976 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4977 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4978 if (ret) {
4979 iput(inode);
4980 continue;
4981 }
4982
4983 key.objectid = ino;
4984 key.type = BTRFS_INODE_REF_KEY;
4985 key.offset = 0;
4986 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4987 if (ret < 0) {
4988 iput(inode);
4989 continue;
4990 }
4991
4992 while (true) {
4993 struct extent_buffer *leaf = path->nodes[0];
4994 int slot = path->slots[0];
4995 u64 other_ino = 0;
a3baaf0d 4996 u64 other_parent = 0;
6b5fc433
FM
4997
4998 if (slot >= btrfs_header_nritems(leaf)) {
4999 ret = btrfs_next_leaf(root, path);
5000 if (ret < 0) {
5001 break;
5002 } else if (ret > 0) {
5003 ret = 0;
5004 break;
5005 }
5006 continue;
5007 }
5008
5009 btrfs_item_key_to_cpu(leaf, &key, slot);
5010 if (key.objectid != ino ||
5011 (key.type != BTRFS_INODE_REF_KEY &&
5012 key.type != BTRFS_INODE_EXTREF_KEY)) {
5013 ret = 0;
5014 break;
5015 }
5016
5017 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5018 BTRFS_I(inode), &other_ino,
5019 &other_parent);
6b5fc433
FM
5020 if (ret < 0)
5021 break;
5022 if (ret > 0) {
5023 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5024 if (!ino_elem) {
5025 ret = -ENOMEM;
5026 break;
5027 }
5028 ino_elem->ino = other_ino;
a3baaf0d 5029 ino_elem->parent = other_parent;
6b5fc433
FM
5030 list_add_tail(&ino_elem->list, &inode_list);
5031 ret = 0;
5032 }
5033 path->slots[0]++;
5034 }
5035 iput(inode);
5036 }
5037
5038 return ret;
5039}
5040
e02119d5
CM
5041/* log a single inode in the tree log.
5042 * At least one parent directory for this inode must exist in the tree
5043 * or be logged already.
5044 *
5045 * Any items from this inode changed by the current transaction are copied
5046 * to the log tree. An extra reference is taken on any extents in this
5047 * file, allowing us to avoid a whole pile of corner cases around logging
5048 * blocks that have been removed from the tree.
5049 *
5050 * See LOG_INODE_ALL and related defines for a description of what inode_only
5051 * does.
5052 *
5053 * This handles both files and directories.
5054 */
12fcfd22 5055static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5056 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
5057 int inode_only,
5058 const loff_t start,
8407f553
FM
5059 const loff_t end,
5060 struct btrfs_log_ctx *ctx)
e02119d5 5061{
0b246afa 5062 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
5063 struct btrfs_path *path;
5064 struct btrfs_path *dst_path;
5065 struct btrfs_key min_key;
5066 struct btrfs_key max_key;
5067 struct btrfs_root *log = root->log_root;
16e7549f 5068 u64 last_extent = 0;
4a500fd1 5069 int err = 0;
e02119d5 5070 int ret;
3a5f1d45 5071 int nritems;
31ff1cd2
CM
5072 int ins_start_slot = 0;
5073 int ins_nr;
5dc562c5 5074 bool fast_search = false;
a59108a7
NB
5075 u64 ino = btrfs_ino(inode);
5076 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5077 u64 logged_isize = 0;
e4545de5 5078 bool need_log_inode_item = true;
9a8fca62 5079 bool xattrs_logged = false;
a3baaf0d 5080 bool recursive_logging = false;
e02119d5 5081
e02119d5 5082 path = btrfs_alloc_path();
5df67083
TI
5083 if (!path)
5084 return -ENOMEM;
e02119d5 5085 dst_path = btrfs_alloc_path();
5df67083
TI
5086 if (!dst_path) {
5087 btrfs_free_path(path);
5088 return -ENOMEM;
5089 }
e02119d5 5090
33345d01 5091 min_key.objectid = ino;
e02119d5
CM
5092 min_key.type = BTRFS_INODE_ITEM_KEY;
5093 min_key.offset = 0;
5094
33345d01 5095 max_key.objectid = ino;
12fcfd22 5096
12fcfd22 5097
5dc562c5 5098 /* today the code can only do partial logging of directories */
a59108a7 5099 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5100 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5101 &inode->runtime_flags) &&
781feef7 5102 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5103 max_key.type = BTRFS_XATTR_ITEM_KEY;
5104 else
5105 max_key.type = (u8)-1;
5106 max_key.offset = (u64)-1;
5107
2c2c452b
FM
5108 /*
5109 * Only run delayed items if we are a dir or a new file.
5110 * Otherwise commit the delayed inode only, which is needed in
5111 * order for the log replay code to mark inodes for link count
5112 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5113 */
a59108a7
NB
5114 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5115 inode->generation > fs_info->last_trans_committed)
5116 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 5117 else
a59108a7 5118 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5119
5120 if (ret) {
5121 btrfs_free_path(path);
5122 btrfs_free_path(dst_path);
5123 return ret;
16cdcec7
MX
5124 }
5125
a3baaf0d
FM
5126 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5127 recursive_logging = true;
5128 if (inode_only == LOG_OTHER_INODE)
5129 inode_only = LOG_INODE_EXISTS;
5130 else
5131 inode_only = LOG_INODE_ALL;
a59108a7 5132 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5133 } else {
a59108a7 5134 mutex_lock(&inode->log_mutex);
781feef7 5135 }
e02119d5
CM
5136
5137 /*
5138 * a brute force approach to making sure we get the most uptodate
5139 * copies of everything.
5140 */
a59108a7 5141 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5142 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5143
4f764e51
FM
5144 if (inode_only == LOG_INODE_EXISTS)
5145 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5146 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5147 } else {
1a4bcf47
FM
5148 if (inode_only == LOG_INODE_EXISTS) {
5149 /*
5150 * Make sure the new inode item we write to the log has
5151 * the same isize as the current one (if it exists).
5152 * This is necessary to prevent data loss after log
5153 * replay, and also to prevent doing a wrong expanding
5154 * truncate - for e.g. create file, write 4K into offset
5155 * 0, fsync, write 4K into offset 4096, add hard link,
5156 * fsync some other file (to sync log), power fail - if
5157 * we use the inode's current i_size, after log replay
5158 * we get a 8Kb file, with the last 4Kb extent as a hole
5159 * (zeroes), as if an expanding truncate happened,
5160 * instead of getting a file of 4Kb only.
5161 */
a59108a7 5162 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5163 if (err)
5164 goto out_unlock;
5165 }
a742994a 5166 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5167 &inode->runtime_flags)) {
a742994a 5168 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5169 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5170 ret = drop_objectid_items(trans, log, path, ino,
5171 max_key.type);
5172 } else {
5173 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5174 &inode->runtime_flags);
a742994a 5175 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5176 &inode->runtime_flags);
28ed1345
CM
5177 while(1) {
5178 ret = btrfs_truncate_inode_items(trans,
a59108a7 5179 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
5180 if (ret != -EAGAIN)
5181 break;
5182 }
a742994a 5183 }
4f764e51 5184 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5185 &inode->runtime_flags) ||
6cfab851 5186 inode_only == LOG_INODE_EXISTS) {
4f764e51 5187 if (inode_only == LOG_INODE_ALL)
183f37fa 5188 fast_search = true;
4f764e51 5189 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5190 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5191 max_key.type);
a95249b3
JB
5192 } else {
5193 if (inode_only == LOG_INODE_ALL)
5194 fast_search = true;
a95249b3 5195 goto log_extents;
5dc562c5 5196 }
a95249b3 5197
e02119d5 5198 }
4a500fd1
YZ
5199 if (ret) {
5200 err = ret;
5201 goto out_unlock;
5202 }
e02119d5 5203
d397712b 5204 while (1) {
31ff1cd2 5205 ins_nr = 0;
6174d3cb 5206 ret = btrfs_search_forward(root, &min_key,
de78b51a 5207 path, trans->transid);
fb770ae4
LB
5208 if (ret < 0) {
5209 err = ret;
5210 goto out_unlock;
5211 }
e02119d5
CM
5212 if (ret != 0)
5213 break;
3a5f1d45 5214again:
31ff1cd2 5215 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 5216 if (min_key.objectid != ino)
e02119d5
CM
5217 break;
5218 if (min_key.type > max_key.type)
5219 break;
31ff1cd2 5220
e4545de5
FM
5221 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5222 need_log_inode_item = false;
5223
56f23fdb
FM
5224 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5225 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
6b5fc433
FM
5226 inode->generation == trans->transid &&
5227 !recursive_logging) {
44f714da 5228 u64 other_ino = 0;
a3baaf0d 5229 u64 other_parent = 0;
44f714da 5230
56f23fdb 5231 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7 5232 path->slots[0], &min_key, inode,
a3baaf0d 5233 &other_ino, &other_parent);
56f23fdb
FM
5234 if (ret < 0) {
5235 err = ret;
5236 goto out_unlock;
28a23593 5237 } else if (ret > 0 && ctx &&
4a0cc7ca 5238 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
5239 if (ins_nr > 0) {
5240 ins_nr++;
5241 } else {
5242 ins_nr = 1;
5243 ins_start_slot = path->slots[0];
5244 }
a59108a7 5245 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
5246 &last_extent, ins_start_slot,
5247 ins_nr, inode_only,
5248 logged_isize);
5249 if (ret < 0) {
5250 err = ret;
5251 goto out_unlock;
5252 }
5253 ins_nr = 0;
6b5fc433
FM
5254
5255 err = log_conflicting_inodes(trans, root, path,
a3baaf0d 5256 ctx, other_ino, other_parent);
44f714da
FM
5257 if (err)
5258 goto out_unlock;
6b5fc433
FM
5259 btrfs_release_path(path);
5260 goto next_key;
56f23fdb
FM
5261 }
5262 }
5263
36283bf7
FM
5264 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5265 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5266 if (ins_nr == 0)
5267 goto next_slot;
a59108a7 5268 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
5269 &last_extent, ins_start_slot,
5270 ins_nr, inode_only, logged_isize);
5271 if (ret < 0) {
5272 err = ret;
5273 goto out_unlock;
5274 }
5275 ins_nr = 0;
5276 if (ret) {
5277 btrfs_release_path(path);
5278 continue;
5279 }
5280 goto next_slot;
5281 }
5282
31ff1cd2
CM
5283 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5284 ins_nr++;
5285 goto next_slot;
5286 } else if (!ins_nr) {
5287 ins_start_slot = path->slots[0];
5288 ins_nr = 1;
5289 goto next_slot;
e02119d5
CM
5290 }
5291
a59108a7 5292 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5293 ins_start_slot, ins_nr, inode_only,
5294 logged_isize);
16e7549f 5295 if (ret < 0) {
4a500fd1
YZ
5296 err = ret;
5297 goto out_unlock;
a71db86e
RV
5298 }
5299 if (ret) {
16e7549f
JB
5300 ins_nr = 0;
5301 btrfs_release_path(path);
5302 continue;
4a500fd1 5303 }
31ff1cd2
CM
5304 ins_nr = 1;
5305 ins_start_slot = path->slots[0];
5306next_slot:
e02119d5 5307
3a5f1d45
CM
5308 nritems = btrfs_header_nritems(path->nodes[0]);
5309 path->slots[0]++;
5310 if (path->slots[0] < nritems) {
5311 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5312 path->slots[0]);
5313 goto again;
5314 }
31ff1cd2 5315 if (ins_nr) {
a59108a7 5316 ret = copy_items(trans, inode, dst_path, path,
16e7549f 5317 &last_extent, ins_start_slot,
1a4bcf47 5318 ins_nr, inode_only, logged_isize);
16e7549f 5319 if (ret < 0) {
4a500fd1
YZ
5320 err = ret;
5321 goto out_unlock;
5322 }
16e7549f 5323 ret = 0;
31ff1cd2
CM
5324 ins_nr = 0;
5325 }
b3b4aa74 5326 btrfs_release_path(path);
44f714da 5327next_key:
3d41d702 5328 if (min_key.offset < (u64)-1) {
e02119d5 5329 min_key.offset++;
3d41d702 5330 } else if (min_key.type < max_key.type) {
e02119d5 5331 min_key.type++;
3d41d702
FDBM
5332 min_key.offset = 0;
5333 } else {
e02119d5 5334 break;
3d41d702 5335 }
e02119d5 5336 }
31ff1cd2 5337 if (ins_nr) {
a59108a7 5338 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5339 ins_start_slot, ins_nr, inode_only,
5340 logged_isize);
16e7549f 5341 if (ret < 0) {
4a500fd1
YZ
5342 err = ret;
5343 goto out_unlock;
5344 }
16e7549f 5345 ret = 0;
31ff1cd2
CM
5346 ins_nr = 0;
5347 }
5dc562c5 5348
36283bf7
FM
5349 btrfs_release_path(path);
5350 btrfs_release_path(dst_path);
a59108a7 5351 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5352 if (err)
5353 goto out_unlock;
9a8fca62 5354 xattrs_logged = true;
a89ca6f2
FM
5355 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5356 btrfs_release_path(path);
5357 btrfs_release_path(dst_path);
a59108a7 5358 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
5359 if (err)
5360 goto out_unlock;
5361 }
a95249b3 5362log_extents:
f3b15ccd
JB
5363 btrfs_release_path(path);
5364 btrfs_release_path(dst_path);
e4545de5 5365 if (need_log_inode_item) {
a59108a7 5366 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5367 if (!err && !xattrs_logged) {
5368 err = btrfs_log_all_xattrs(trans, root, inode, path,
5369 dst_path);
5370 btrfs_release_path(path);
5371 }
e4545de5
FM
5372 if (err)
5373 goto out_unlock;
5374 }
5dc562c5 5375 if (fast_search) {
a59108a7 5376 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
a2120a47 5377 ctx, start, end);
5dc562c5
JB
5378 if (ret) {
5379 err = ret;
5380 goto out_unlock;
5381 }
d006a048 5382 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5383 struct extent_map *em, *n;
5384
49dae1bc
FM
5385 write_lock(&em_tree->lock);
5386 /*
5387 * We can't just remove every em if we're called for a ranged
5388 * fsync - that is, one that doesn't cover the whole possible
5389 * file range (0 to LLONG_MAX). This is because we can have
5390 * em's that fall outside the range we're logging and therefore
5391 * their ordered operations haven't completed yet
5392 * (btrfs_finish_ordered_io() not invoked yet). This means we
5393 * didn't get their respective file extent item in the fs/subvol
5394 * tree yet, and need to let the next fast fsync (one which
5395 * consults the list of modified extent maps) find the em so
5396 * that it logs a matching file extent item and waits for the
5397 * respective ordered operation to complete (if it's still
5398 * running).
5399 *
5400 * Removing every em outside the range we're logging would make
5401 * the next fast fsync not log their matching file extent items,
5402 * therefore making us lose data after a log replay.
5403 */
5404 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5405 list) {
5406 const u64 mod_end = em->mod_start + em->mod_len - 1;
5407
5408 if (em->mod_start >= start && mod_end <= end)
5409 list_del_init(&em->list);
5410 }
5411 write_unlock(&em_tree->lock);
5dc562c5
JB
5412 }
5413
a59108a7
NB
5414 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5415 ret = log_directory_changes(trans, root, inode, path, dst_path,
5416 ctx);
4a500fd1
YZ
5417 if (ret) {
5418 err = ret;
5419 goto out_unlock;
5420 }
e02119d5 5421 }
49dae1bc 5422
a59108a7
NB
5423 spin_lock(&inode->lock);
5424 inode->logged_trans = trans->transid;
5425 inode->last_log_commit = inode->last_sub_trans;
5426 spin_unlock(&inode->lock);
4a500fd1 5427out_unlock:
a59108a7 5428 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5429
5430 btrfs_free_path(path);
5431 btrfs_free_path(dst_path);
4a500fd1 5432 return err;
e02119d5
CM
5433}
5434
2be63d5c
FM
5435/*
5436 * Check if we must fallback to a transaction commit when logging an inode.
5437 * This must be called after logging the inode and is used only in the context
5438 * when fsyncing an inode requires the need to log some other inode - in which
5439 * case we can't lock the i_mutex of each other inode we need to log as that
5440 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5441 * log inodes up or down in the hierarchy) or rename operations for example. So
5442 * we take the log_mutex of the inode after we have logged it and then check for
5443 * its last_unlink_trans value - this is safe because any task setting
5444 * last_unlink_trans must take the log_mutex and it must do this before it does
5445 * the actual unlink operation, so if we do this check before a concurrent task
5446 * sets last_unlink_trans it means we've logged a consistent version/state of
5447 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5448 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5449 * we logged the inode or it might have also done the unlink).
5450 */
5451static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5452 struct btrfs_inode *inode)
2be63d5c 5453{
ab1717b2 5454 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5455 bool ret = false;
5456
ab1717b2
NB
5457 mutex_lock(&inode->log_mutex);
5458 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5459 /*
5460 * Make sure any commits to the log are forced to be full
5461 * commits.
5462 */
90787766 5463 btrfs_set_log_full_commit(trans);
2be63d5c
FM
5464 ret = true;
5465 }
ab1717b2 5466 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5467
5468 return ret;
5469}
5470
12fcfd22
CM
5471/*
5472 * follow the dentry parent pointers up the chain and see if any
5473 * of the directories in it require a full commit before they can
5474 * be logged. Returns zero if nothing special needs to be done or 1 if
5475 * a full commit is required.
5476 */
5477static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5478 struct btrfs_inode *inode,
12fcfd22
CM
5479 struct dentry *parent,
5480 struct super_block *sb,
5481 u64 last_committed)
e02119d5 5482{
12fcfd22 5483 int ret = 0;
6a912213 5484 struct dentry *old_parent = NULL;
e02119d5 5485
af4176b4
CM
5486 /*
5487 * for regular files, if its inode is already on disk, we don't
5488 * have to worry about the parents at all. This is because
5489 * we can use the last_unlink_trans field to record renames
5490 * and other fun in this file.
5491 */
aefa6115
NB
5492 if (S_ISREG(inode->vfs_inode.i_mode) &&
5493 inode->generation <= last_committed &&
5494 inode->last_unlink_trans <= last_committed)
5495 goto out;
af4176b4 5496
aefa6115 5497 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5498 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5499 goto out;
aefa6115 5500 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5501 }
5502
5503 while (1) {
aefa6115 5504 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5505 ret = 1;
5506 break;
5507 }
5508
fc64005c 5509 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5510 break;
5511
44f714da 5512 if (IS_ROOT(parent)) {
aefa6115
NB
5513 inode = BTRFS_I(d_inode(parent));
5514 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5515 ret = 1;
12fcfd22 5516 break;
44f714da 5517 }
12fcfd22 5518
6a912213
JB
5519 parent = dget_parent(parent);
5520 dput(old_parent);
5521 old_parent = parent;
aefa6115 5522 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5523
5524 }
6a912213 5525 dput(old_parent);
12fcfd22 5526out:
e02119d5
CM
5527 return ret;
5528}
5529
2f2ff0ee
FM
5530struct btrfs_dir_list {
5531 u64 ino;
5532 struct list_head list;
5533};
5534
5535/*
5536 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5537 * details about the why it is needed.
5538 * This is a recursive operation - if an existing dentry corresponds to a
5539 * directory, that directory's new entries are logged too (same behaviour as
5540 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5541 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5542 * complains about the following circular lock dependency / possible deadlock:
5543 *
5544 * CPU0 CPU1
5545 * ---- ----
5546 * lock(&type->i_mutex_dir_key#3/2);
5547 * lock(sb_internal#2);
5548 * lock(&type->i_mutex_dir_key#3/2);
5549 * lock(&sb->s_type->i_mutex_key#14);
5550 *
5551 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5552 * sb_start_intwrite() in btrfs_start_transaction().
5553 * Not locking i_mutex of the inodes is still safe because:
5554 *
5555 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5556 * that while logging the inode new references (names) are added or removed
5557 * from the inode, leaving the logged inode item with a link count that does
5558 * not match the number of logged inode reference items. This is fine because
5559 * at log replay time we compute the real number of links and correct the
5560 * link count in the inode item (see replay_one_buffer() and
5561 * link_to_fixup_dir());
5562 *
5563 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5564 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5565 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5566 * has a size that doesn't match the sum of the lengths of all the logged
5567 * names. This does not result in a problem because if a dir_item key is
5568 * logged but its matching dir_index key is not logged, at log replay time we
5569 * don't use it to replay the respective name (see replay_one_name()). On the
5570 * other hand if only the dir_index key ends up being logged, the respective
5571 * name is added to the fs/subvol tree with both the dir_item and dir_index
5572 * keys created (see replay_one_name()).
5573 * The directory's inode item with a wrong i_size is not a problem as well,
5574 * since we don't use it at log replay time to set the i_size in the inode
5575 * item of the fs/subvol tree (see overwrite_item()).
5576 */
5577static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5578 struct btrfs_root *root,
51cc0d32 5579 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5580 struct btrfs_log_ctx *ctx)
5581{
0b246afa 5582 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5583 struct btrfs_root *log = root->log_root;
5584 struct btrfs_path *path;
5585 LIST_HEAD(dir_list);
5586 struct btrfs_dir_list *dir_elem;
5587 int ret = 0;
5588
5589 path = btrfs_alloc_path();
5590 if (!path)
5591 return -ENOMEM;
5592
5593 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5594 if (!dir_elem) {
5595 btrfs_free_path(path);
5596 return -ENOMEM;
5597 }
51cc0d32 5598 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5599 list_add_tail(&dir_elem->list, &dir_list);
5600
5601 while (!list_empty(&dir_list)) {
5602 struct extent_buffer *leaf;
5603 struct btrfs_key min_key;
5604 int nritems;
5605 int i;
5606
5607 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5608 list);
5609 if (ret)
5610 goto next_dir_inode;
5611
5612 min_key.objectid = dir_elem->ino;
5613 min_key.type = BTRFS_DIR_ITEM_KEY;
5614 min_key.offset = 0;
5615again:
5616 btrfs_release_path(path);
5617 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5618 if (ret < 0) {
5619 goto next_dir_inode;
5620 } else if (ret > 0) {
5621 ret = 0;
5622 goto next_dir_inode;
5623 }
5624
5625process_leaf:
5626 leaf = path->nodes[0];
5627 nritems = btrfs_header_nritems(leaf);
5628 for (i = path->slots[0]; i < nritems; i++) {
5629 struct btrfs_dir_item *di;
5630 struct btrfs_key di_key;
5631 struct inode *di_inode;
5632 struct btrfs_dir_list *new_dir_elem;
5633 int log_mode = LOG_INODE_EXISTS;
5634 int type;
5635
5636 btrfs_item_key_to_cpu(leaf, &min_key, i);
5637 if (min_key.objectid != dir_elem->ino ||
5638 min_key.type != BTRFS_DIR_ITEM_KEY)
5639 goto next_dir_inode;
5640
5641 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5642 type = btrfs_dir_type(leaf, di);
5643 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5644 type != BTRFS_FT_DIR)
5645 continue;
5646 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5647 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5648 continue;
5649
ec125cfb 5650 btrfs_release_path(path);
0b246afa 5651 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5652 if (IS_ERR(di_inode)) {
5653 ret = PTR_ERR(di_inode);
5654 goto next_dir_inode;
5655 }
5656
0f8939b8 5657 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5658 iput(di_inode);
ec125cfb 5659 break;
2f2ff0ee
FM
5660 }
5661
5662 ctx->log_new_dentries = false;
3f9749f6 5663 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5664 log_mode = LOG_INODE_ALL;
a59108a7 5665 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5666 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5667 if (!ret &&
ab1717b2 5668 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5669 ret = 1;
2f2ff0ee
FM
5670 iput(di_inode);
5671 if (ret)
5672 goto next_dir_inode;
5673 if (ctx->log_new_dentries) {
5674 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5675 GFP_NOFS);
5676 if (!new_dir_elem) {
5677 ret = -ENOMEM;
5678 goto next_dir_inode;
5679 }
5680 new_dir_elem->ino = di_key.objectid;
5681 list_add_tail(&new_dir_elem->list, &dir_list);
5682 }
5683 break;
5684 }
5685 if (i == nritems) {
5686 ret = btrfs_next_leaf(log, path);
5687 if (ret < 0) {
5688 goto next_dir_inode;
5689 } else if (ret > 0) {
5690 ret = 0;
5691 goto next_dir_inode;
5692 }
5693 goto process_leaf;
5694 }
5695 if (min_key.offset < (u64)-1) {
5696 min_key.offset++;
5697 goto again;
5698 }
5699next_dir_inode:
5700 list_del(&dir_elem->list);
5701 kfree(dir_elem);
5702 }
5703
5704 btrfs_free_path(path);
5705 return ret;
5706}
5707
18aa0922 5708static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5709 struct btrfs_inode *inode,
18aa0922
FM
5710 struct btrfs_log_ctx *ctx)
5711{
3ffbd68c 5712 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5713 int ret;
5714 struct btrfs_path *path;
5715 struct btrfs_key key;
d0a0b78d
NB
5716 struct btrfs_root *root = inode->root;
5717 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5718
5719 path = btrfs_alloc_path();
5720 if (!path)
5721 return -ENOMEM;
5722 path->skip_locking = 1;
5723 path->search_commit_root = 1;
5724
5725 key.objectid = ino;
5726 key.type = BTRFS_INODE_REF_KEY;
5727 key.offset = 0;
5728 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5729 if (ret < 0)
5730 goto out;
5731
5732 while (true) {
5733 struct extent_buffer *leaf = path->nodes[0];
5734 int slot = path->slots[0];
5735 u32 cur_offset = 0;
5736 u32 item_size;
5737 unsigned long ptr;
5738
5739 if (slot >= btrfs_header_nritems(leaf)) {
5740 ret = btrfs_next_leaf(root, path);
5741 if (ret < 0)
5742 goto out;
5743 else if (ret > 0)
5744 break;
5745 continue;
5746 }
5747
5748 btrfs_item_key_to_cpu(leaf, &key, slot);
5749 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5750 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5751 break;
5752
5753 item_size = btrfs_item_size_nr(leaf, slot);
5754 ptr = btrfs_item_ptr_offset(leaf, slot);
5755 while (cur_offset < item_size) {
5756 struct btrfs_key inode_key;
5757 struct inode *dir_inode;
5758
5759 inode_key.type = BTRFS_INODE_ITEM_KEY;
5760 inode_key.offset = 0;
5761
5762 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5763 struct btrfs_inode_extref *extref;
5764
5765 extref = (struct btrfs_inode_extref *)
5766 (ptr + cur_offset);
5767 inode_key.objectid = btrfs_inode_extref_parent(
5768 leaf, extref);
5769 cur_offset += sizeof(*extref);
5770 cur_offset += btrfs_inode_extref_name_len(leaf,
5771 extref);
5772 } else {
5773 inode_key.objectid = key.offset;
5774 cur_offset = item_size;
5775 }
5776
0b246afa 5777 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922 5778 root, NULL);
0f375eed
FM
5779 /*
5780 * If the parent inode was deleted, return an error to
5781 * fallback to a transaction commit. This is to prevent
5782 * getting an inode that was moved from one parent A to
5783 * a parent B, got its former parent A deleted and then
5784 * it got fsync'ed, from existing at both parents after
5785 * a log replay (and the old parent still existing).
5786 * Example:
5787 *
5788 * mkdir /mnt/A
5789 * mkdir /mnt/B
5790 * touch /mnt/B/bar
5791 * sync
5792 * mv /mnt/B/bar /mnt/A/bar
5793 * mv -T /mnt/A /mnt/B
5794 * fsync /mnt/B/bar
5795 * <power fail>
5796 *
5797 * If we ignore the old parent B which got deleted,
5798 * after a log replay we would have file bar linked
5799 * at both parents and the old parent B would still
5800 * exist.
5801 */
5802 if (IS_ERR(dir_inode)) {
5803 ret = PTR_ERR(dir_inode);
5804 goto out;
5805 }
18aa0922 5806
657ed1aa
FM
5807 if (ctx)
5808 ctx->log_new_dentries = false;
a59108a7 5809 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5810 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5811 if (!ret &&
ab1717b2 5812 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5813 ret = 1;
657ed1aa
FM
5814 if (!ret && ctx && ctx->log_new_dentries)
5815 ret = log_new_dir_dentries(trans, root,
f85b7379 5816 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5817 iput(dir_inode);
5818 if (ret)
5819 goto out;
5820 }
5821 path->slots[0]++;
5822 }
5823 ret = 0;
5824out:
5825 btrfs_free_path(path);
5826 return ret;
5827}
5828
b8aa330d
FM
5829static int log_new_ancestors(struct btrfs_trans_handle *trans,
5830 struct btrfs_root *root,
5831 struct btrfs_path *path,
5832 struct btrfs_log_ctx *ctx)
5833{
5834 struct btrfs_key found_key;
5835
5836 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5837
5838 while (true) {
5839 struct btrfs_fs_info *fs_info = root->fs_info;
5840 const u64 last_committed = fs_info->last_trans_committed;
5841 struct extent_buffer *leaf = path->nodes[0];
5842 int slot = path->slots[0];
5843 struct btrfs_key search_key;
5844 struct inode *inode;
5845 int ret = 0;
5846
5847 btrfs_release_path(path);
5848
5849 search_key.objectid = found_key.offset;
5850 search_key.type = BTRFS_INODE_ITEM_KEY;
5851 search_key.offset = 0;
5852 inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5853 if (IS_ERR(inode))
5854 return PTR_ERR(inode);
5855
5856 if (BTRFS_I(inode)->generation > last_committed)
5857 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5858 LOG_INODE_EXISTS,
5859 0, LLONG_MAX, ctx);
5860 iput(inode);
5861 if (ret)
5862 return ret;
5863
5864 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5865 break;
5866
5867 search_key.type = BTRFS_INODE_REF_KEY;
5868 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5869 if (ret < 0)
5870 return ret;
5871
5872 leaf = path->nodes[0];
5873 slot = path->slots[0];
5874 if (slot >= btrfs_header_nritems(leaf)) {
5875 ret = btrfs_next_leaf(root, path);
5876 if (ret < 0)
5877 return ret;
5878 else if (ret > 0)
5879 return -ENOENT;
5880 leaf = path->nodes[0];
5881 slot = path->slots[0];
5882 }
5883
5884 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5885 if (found_key.objectid != search_key.objectid ||
5886 found_key.type != BTRFS_INODE_REF_KEY)
5887 return -ENOENT;
5888 }
5889 return 0;
5890}
5891
5892static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5893 struct btrfs_inode *inode,
5894 struct dentry *parent,
5895 struct btrfs_log_ctx *ctx)
5896{
5897 struct btrfs_root *root = inode->root;
5898 struct btrfs_fs_info *fs_info = root->fs_info;
5899 struct dentry *old_parent = NULL;
5900 struct super_block *sb = inode->vfs_inode.i_sb;
5901 int ret = 0;
5902
5903 while (true) {
5904 if (!parent || d_really_is_negative(parent) ||
5905 sb != parent->d_sb)
5906 break;
5907
5908 inode = BTRFS_I(d_inode(parent));
5909 if (root != inode->root)
5910 break;
5911
5912 if (inode->generation > fs_info->last_trans_committed) {
5913 ret = btrfs_log_inode(trans, root, inode,
5914 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5915 if (ret)
5916 break;
5917 }
5918 if (IS_ROOT(parent))
5919 break;
5920
5921 parent = dget_parent(parent);
5922 dput(old_parent);
5923 old_parent = parent;
5924 }
5925 dput(old_parent);
5926
5927 return ret;
5928}
5929
5930static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5931 struct btrfs_inode *inode,
5932 struct dentry *parent,
5933 struct btrfs_log_ctx *ctx)
5934{
5935 struct btrfs_root *root = inode->root;
5936 const u64 ino = btrfs_ino(inode);
5937 struct btrfs_path *path;
5938 struct btrfs_key search_key;
5939 int ret;
5940
5941 /*
5942 * For a single hard link case, go through a fast path that does not
5943 * need to iterate the fs/subvolume tree.
5944 */
5945 if (inode->vfs_inode.i_nlink < 2)
5946 return log_new_ancestors_fast(trans, inode, parent, ctx);
5947
5948 path = btrfs_alloc_path();
5949 if (!path)
5950 return -ENOMEM;
5951
5952 search_key.objectid = ino;
5953 search_key.type = BTRFS_INODE_REF_KEY;
5954 search_key.offset = 0;
5955again:
5956 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5957 if (ret < 0)
5958 goto out;
5959 if (ret == 0)
5960 path->slots[0]++;
5961
5962 while (true) {
5963 struct extent_buffer *leaf = path->nodes[0];
5964 int slot = path->slots[0];
5965 struct btrfs_key found_key;
5966
5967 if (slot >= btrfs_header_nritems(leaf)) {
5968 ret = btrfs_next_leaf(root, path);
5969 if (ret < 0)
5970 goto out;
5971 else if (ret > 0)
5972 break;
5973 continue;
5974 }
5975
5976 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5977 if (found_key.objectid != ino ||
5978 found_key.type > BTRFS_INODE_EXTREF_KEY)
5979 break;
5980
5981 /*
5982 * Don't deal with extended references because they are rare
5983 * cases and too complex to deal with (we would need to keep
5984 * track of which subitem we are processing for each item in
5985 * this loop, etc). So just return some error to fallback to
5986 * a transaction commit.
5987 */
5988 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5989 ret = -EMLINK;
5990 goto out;
5991 }
5992
5993 /*
5994 * Logging ancestors needs to do more searches on the fs/subvol
5995 * tree, so it releases the path as needed to avoid deadlocks.
5996 * Keep track of the last inode ref key and resume from that key
5997 * after logging all new ancestors for the current hard link.
5998 */
5999 memcpy(&search_key, &found_key, sizeof(search_key));
6000
6001 ret = log_new_ancestors(trans, root, path, ctx);
6002 if (ret)
6003 goto out;
6004 btrfs_release_path(path);
6005 goto again;
6006 }
6007 ret = 0;
6008out:
6009 btrfs_free_path(path);
6010 return ret;
6011}
6012
e02119d5
CM
6013/*
6014 * helper function around btrfs_log_inode to make sure newly created
6015 * parent directories also end up in the log. A minimal inode and backref
6016 * only logging is done of any parent directories that are older than
6017 * the last committed transaction
6018 */
48a3b636 6019static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6020 struct btrfs_inode *inode,
49dae1bc
FM
6021 struct dentry *parent,
6022 const loff_t start,
6023 const loff_t end,
41a1eada 6024 int inode_only,
8b050d35 6025 struct btrfs_log_ctx *ctx)
e02119d5 6026{
f882274b 6027 struct btrfs_root *root = inode->root;
0b246afa 6028 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 6029 struct super_block *sb;
12fcfd22 6030 int ret = 0;
0b246afa 6031 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 6032 bool log_dentries = false;
12fcfd22 6033
19df27a9 6034 sb = inode->vfs_inode.i_sb;
12fcfd22 6035
0b246afa 6036 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6037 ret = 1;
6038 goto end_no_trans;
6039 }
6040
995946dd
MX
6041 /*
6042 * The prev transaction commit doesn't complete, we need do
6043 * full commit by ourselves.
6044 */
0b246afa
JM
6045 if (fs_info->last_trans_log_full_commit >
6046 fs_info->last_trans_committed) {
12fcfd22
CM
6047 ret = 1;
6048 goto end_no_trans;
6049 }
6050
f882274b 6051 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6052 ret = 1;
6053 goto end_no_trans;
6054 }
6055
19df27a9
NB
6056 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6057 last_committed);
12fcfd22
CM
6058 if (ret)
6059 goto end_no_trans;
e02119d5 6060
f2d72f42
FM
6061 /*
6062 * Skip already logged inodes or inodes corresponding to tmpfiles
6063 * (since logging them is pointless, a link count of 0 means they
6064 * will never be accessible).
6065 */
6066 if (btrfs_inode_in_log(inode, trans->transid) ||
6067 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6068 ret = BTRFS_NO_LOG_SYNC;
6069 goto end_no_trans;
6070 }
6071
8b050d35 6072 ret = start_log_trans(trans, root, ctx);
4a500fd1 6073 if (ret)
e87ac136 6074 goto end_no_trans;
e02119d5 6075
19df27a9 6076 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
6077 if (ret)
6078 goto end_trans;
12fcfd22 6079
af4176b4
CM
6080 /*
6081 * for regular files, if its inode is already on disk, we don't
6082 * have to worry about the parents at all. This is because
6083 * we can use the last_unlink_trans field to record renames
6084 * and other fun in this file.
6085 */
19df27a9
NB
6086 if (S_ISREG(inode->vfs_inode.i_mode) &&
6087 inode->generation <= last_committed &&
6088 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
6089 ret = 0;
6090 goto end_trans;
6091 }
af4176b4 6092
19df27a9 6093 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
6094 log_dentries = true;
6095
18aa0922 6096 /*
01327610 6097 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6098 * inodes are fully logged. This is to prevent leaving dangling
6099 * directory index entries in directories that were our parents but are
6100 * not anymore. Not doing this results in old parent directory being
6101 * impossible to delete after log replay (rmdir will always fail with
6102 * error -ENOTEMPTY).
6103 *
6104 * Example 1:
6105 *
6106 * mkdir testdir
6107 * touch testdir/foo
6108 * ln testdir/foo testdir/bar
6109 * sync
6110 * unlink testdir/bar
6111 * xfs_io -c fsync testdir/foo
6112 * <power failure>
6113 * mount fs, triggers log replay
6114 *
6115 * If we don't log the parent directory (testdir), after log replay the
6116 * directory still has an entry pointing to the file inode using the bar
6117 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6118 * the file inode has a link count of 1.
6119 *
6120 * Example 2:
6121 *
6122 * mkdir testdir
6123 * touch foo
6124 * ln foo testdir/foo2
6125 * ln foo testdir/foo3
6126 * sync
6127 * unlink testdir/foo3
6128 * xfs_io -c fsync foo
6129 * <power failure>
6130 * mount fs, triggers log replay
6131 *
6132 * Similar as the first example, after log replay the parent directory
6133 * testdir still has an entry pointing to the inode file with name foo3
6134 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6135 * and has a link count of 2.
6136 */
19df27a9 6137 if (inode->last_unlink_trans > last_committed) {
b8aa330d 6138 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6139 if (ret)
6140 goto end_trans;
6141 }
6142
b8aa330d
FM
6143 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6144 if (ret)
41bd6067 6145 goto end_trans;
76dda93c 6146
2f2ff0ee 6147 if (log_dentries)
b8aa330d 6148 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6149 else
6150 ret = 0;
4a500fd1
YZ
6151end_trans:
6152 if (ret < 0) {
90787766 6153 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6154 ret = 1;
6155 }
8b050d35
MX
6156
6157 if (ret)
6158 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6159 btrfs_end_log_trans(root);
6160end_no_trans:
6161 return ret;
e02119d5
CM
6162}
6163
6164/*
6165 * it is not safe to log dentry if the chunk root has added new
6166 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6167 * If this returns 1, you must commit the transaction to safely get your
6168 * data on disk.
6169 */
6170int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6171 struct dentry *dentry,
49dae1bc
FM
6172 const loff_t start,
6173 const loff_t end,
8b050d35 6174 struct btrfs_log_ctx *ctx)
e02119d5 6175{
6a912213
JB
6176 struct dentry *parent = dget_parent(dentry);
6177 int ret;
6178
f882274b
NB
6179 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6180 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
6181 dput(parent);
6182
6183 return ret;
e02119d5
CM
6184}
6185
6186/*
6187 * should be called during mount to recover any replay any log trees
6188 * from the FS
6189 */
6190int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6191{
6192 int ret;
6193 struct btrfs_path *path;
6194 struct btrfs_trans_handle *trans;
6195 struct btrfs_key key;
6196 struct btrfs_key found_key;
6197 struct btrfs_key tmp_key;
6198 struct btrfs_root *log;
6199 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6200 struct walk_control wc = {
6201 .process_func = process_one_buffer,
6202 .stage = 0,
6203 };
6204
e02119d5 6205 path = btrfs_alloc_path();
db5b493a
TI
6206 if (!path)
6207 return -ENOMEM;
6208
afcdd129 6209 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6210
4a500fd1 6211 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6212 if (IS_ERR(trans)) {
6213 ret = PTR_ERR(trans);
6214 goto error;
6215 }
e02119d5
CM
6216
6217 wc.trans = trans;
6218 wc.pin = 1;
6219
db5b493a 6220 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6221 if (ret) {
5d163e0e
JM
6222 btrfs_handle_fs_error(fs_info, ret,
6223 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6224 goto error;
6225 }
e02119d5
CM
6226
6227again:
6228 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6229 key.offset = (u64)-1;
962a298f 6230 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6231
d397712b 6232 while (1) {
e02119d5 6233 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6234
6235 if (ret < 0) {
34d97007 6236 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6237 "Couldn't find tree log root.");
6238 goto error;
6239 }
e02119d5
CM
6240 if (ret > 0) {
6241 if (path->slots[0] == 0)
6242 break;
6243 path->slots[0]--;
6244 }
6245 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6246 path->slots[0]);
b3b4aa74 6247 btrfs_release_path(path);
e02119d5
CM
6248 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6249 break;
6250
cb517eab 6251 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
6252 if (IS_ERR(log)) {
6253 ret = PTR_ERR(log);
34d97007 6254 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6255 "Couldn't read tree log root.");
6256 goto error;
6257 }
e02119d5
CM
6258
6259 tmp_key.objectid = found_key.offset;
6260 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6261 tmp_key.offset = (u64)-1;
6262
6263 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
6264 if (IS_ERR(wc.replay_dest)) {
6265 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
6266 free_extent_buffer(log->node);
6267 free_extent_buffer(log->commit_root);
6268 kfree(log);
5d163e0e
JM
6269 btrfs_handle_fs_error(fs_info, ret,
6270 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6271 goto error;
6272 }
e02119d5 6273
07d400a6 6274 wc.replay_dest->log_root = log;
5d4f98a2 6275 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 6276 ret = walk_log_tree(trans, log, &wc);
e02119d5 6277
b50c6e25 6278 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6279 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6280 path);
e02119d5
CM
6281 }
6282
900c9981
LB
6283 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6284 struct btrfs_root *root = wc.replay_dest;
6285
6286 btrfs_release_path(path);
6287
6288 /*
6289 * We have just replayed everything, and the highest
6290 * objectid of fs roots probably has changed in case
6291 * some inode_item's got replayed.
6292 *
6293 * root->objectid_mutex is not acquired as log replay
6294 * could only happen during mount.
6295 */
6296 ret = btrfs_find_highest_objectid(root,
6297 &root->highest_objectid);
6298 }
6299
e02119d5 6300 key.offset = found_key.offset - 1;
07d400a6 6301 wc.replay_dest->log_root = NULL;
e02119d5 6302 free_extent_buffer(log->node);
b263c2c8 6303 free_extent_buffer(log->commit_root);
e02119d5
CM
6304 kfree(log);
6305
b50c6e25
JB
6306 if (ret)
6307 goto error;
6308
e02119d5
CM
6309 if (found_key.offset == 0)
6310 break;
6311 }
b3b4aa74 6312 btrfs_release_path(path);
e02119d5
CM
6313
6314 /* step one is to pin it all, step two is to replay just inodes */
6315 if (wc.pin) {
6316 wc.pin = 0;
6317 wc.process_func = replay_one_buffer;
6318 wc.stage = LOG_WALK_REPLAY_INODES;
6319 goto again;
6320 }
6321 /* step three is to replay everything */
6322 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6323 wc.stage++;
6324 goto again;
6325 }
6326
6327 btrfs_free_path(path);
6328
abefa55a 6329 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6330 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6331 if (ret)
6332 return ret;
6333
e02119d5
CM
6334 free_extent_buffer(log_root_tree->node);
6335 log_root_tree->log_root = NULL;
afcdd129 6336 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6337 kfree(log_root_tree);
79787eaa 6338
abefa55a 6339 return 0;
79787eaa 6340error:
b50c6e25 6341 if (wc.trans)
3a45bb20 6342 btrfs_end_transaction(wc.trans);
79787eaa
JM
6343 btrfs_free_path(path);
6344 return ret;
e02119d5 6345}
12fcfd22
CM
6346
6347/*
6348 * there are some corner cases where we want to force a full
6349 * commit instead of allowing a directory to be logged.
6350 *
6351 * They revolve around files there were unlinked from the directory, and
6352 * this function updates the parent directory so that a full commit is
6353 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6354 *
6355 * Must be called before the unlink operations (updates to the subvolume tree,
6356 * inodes, etc) are done.
12fcfd22
CM
6357 */
6358void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6359 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6360 int for_rename)
6361{
af4176b4
CM
6362 /*
6363 * when we're logging a file, if it hasn't been renamed
6364 * or unlinked, and its inode is fully committed on disk,
6365 * we don't have to worry about walking up the directory chain
6366 * to log its parents.
6367 *
6368 * So, we use the last_unlink_trans field to put this transid
6369 * into the file. When the file is logged we check it and
6370 * don't log the parents if the file is fully on disk.
6371 */
4176bdbf
NB
6372 mutex_lock(&inode->log_mutex);
6373 inode->last_unlink_trans = trans->transid;
6374 mutex_unlock(&inode->log_mutex);
af4176b4 6375
12fcfd22
CM
6376 /*
6377 * if this directory was already logged any new
6378 * names for this file/dir will get recorded
6379 */
4176bdbf 6380 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6381 return;
6382
6383 /*
6384 * if the inode we're about to unlink was logged,
6385 * the log will be properly updated for any new names
6386 */
4176bdbf 6387 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6388 return;
6389
6390 /*
6391 * when renaming files across directories, if the directory
6392 * there we're unlinking from gets fsync'd later on, there's
6393 * no way to find the destination directory later and fsync it
6394 * properly. So, we have to be conservative and force commits
6395 * so the new name gets discovered.
6396 */
6397 if (for_rename)
6398 goto record;
6399
6400 /* we can safely do the unlink without any special recording */
6401 return;
6402
6403record:
4176bdbf
NB
6404 mutex_lock(&dir->log_mutex);
6405 dir->last_unlink_trans = trans->transid;
6406 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6407}
6408
6409/*
6410 * Make sure that if someone attempts to fsync the parent directory of a deleted
6411 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6412 * that after replaying the log tree of the parent directory's root we will not
6413 * see the snapshot anymore and at log replay time we will not see any log tree
6414 * corresponding to the deleted snapshot's root, which could lead to replaying
6415 * it after replaying the log tree of the parent directory (which would replay
6416 * the snapshot delete operation).
2be63d5c
FM
6417 *
6418 * Must be called before the actual snapshot destroy operation (updates to the
6419 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6420 */
6421void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6422 struct btrfs_inode *dir)
1ec9a1ae 6423{
43663557
NB
6424 mutex_lock(&dir->log_mutex);
6425 dir->last_unlink_trans = trans->transid;
6426 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6427}
6428
6429/*
6430 * Call this after adding a new name for a file and it will properly
6431 * update the log to reflect the new name.
6432 *
d4682ba0
FM
6433 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6434 * true (because it's not used).
6435 *
6436 * Return value depends on whether @sync_log is true or false.
6437 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6438 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6439 * otherwise.
6440 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6441 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6442 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6443 * committed (without attempting to sync the log).
12fcfd22
CM
6444 */
6445int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6446 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
d4682ba0
FM
6447 struct dentry *parent,
6448 bool sync_log, struct btrfs_log_ctx *ctx)
12fcfd22 6449{
3ffbd68c 6450 struct btrfs_fs_info *fs_info = trans->fs_info;
d4682ba0 6451 int ret;
12fcfd22 6452
af4176b4
CM
6453 /*
6454 * this will force the logging code to walk the dentry chain
6455 * up for the file
6456 */
9a6509c4 6457 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6458 inode->last_unlink_trans = trans->transid;
af4176b4 6459
12fcfd22
CM
6460 /*
6461 * if this inode hasn't been logged and directory we're renaming it
6462 * from hasn't been logged, we don't need to log it
6463 */
9ca5fbfb
NB
6464 if (inode->logged_trans <= fs_info->last_trans_committed &&
6465 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
d4682ba0
FM
6466 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6467 BTRFS_DONT_NEED_LOG_SYNC;
6468
6469 if (sync_log) {
6470 struct btrfs_log_ctx ctx2;
6471
6472 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6473 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6474 LOG_INODE_EXISTS, &ctx2);
6475 if (ret == BTRFS_NO_LOG_SYNC)
6476 return BTRFS_DONT_NEED_TRANS_COMMIT;
6477 else if (ret)
6478 return BTRFS_NEED_TRANS_COMMIT;
6479
6480 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6481 if (ret)
6482 return BTRFS_NEED_TRANS_COMMIT;
6483 return BTRFS_DONT_NEED_TRANS_COMMIT;
6484 }
6485
6486 ASSERT(ctx);
6487 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6488 LOG_INODE_EXISTS, ctx);
6489 if (ret == BTRFS_NO_LOG_SYNC)
6490 return BTRFS_DONT_NEED_LOG_SYNC;
6491 else if (ret)
6492 return BTRFS_NEED_TRANS_COMMIT;
12fcfd22 6493
d4682ba0 6494 return BTRFS_NEED_LOG_SYNC;
12fcfd22
CM
6495}
6496