]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/tree-log.c
Btrfs: add btrfs_trim_fs() to handle FITRIM
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
5a0e3ad6 20#include <linux/slab.h>
e02119d5
CM
21#include "ctree.h"
22#include "transaction.h"
23#include "disk-io.h"
24#include "locking.h"
25#include "print-tree.h"
26#include "compat.h"
b2950863 27#include "tree-log.h"
e02119d5
CM
28
29/* magic values for the inode_only field in btrfs_log_inode:
30 *
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
33 * during log replay
34 */
35#define LOG_INODE_ALL 0
36#define LOG_INODE_EXISTS 1
37
12fcfd22
CM
38/*
39 * directory trouble cases
40 *
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
45 *
46 * mkdir foo/some_dir
47 * normal commit
48 * rename foo/some_dir foo2/some_dir
49 * mkdir foo/some_dir
50 * fsync foo/some_dir/some_file
51 *
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
55 *
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
58 *
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
62 *
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
65 *
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
68 *
69 * mkdir f1/foo
70 * normal commit
71 * rm -rf f1/foo
72 * fsync(f1)
73 *
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
78 * ugly details.
79 */
80
e02119d5
CM
81/*
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
86 *
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
89 */
90#define LOG_WALK_PIN_ONLY 0
91#define LOG_WALK_REPLAY_INODES 1
92#define LOG_WALK_REPLAY_ALL 2
93
12fcfd22 94static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
95 struct btrfs_root *root, struct inode *inode,
96 int inode_only);
ec051c0f
YZ
97static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
100static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_root *log,
103 struct btrfs_path *path,
104 u64 dirid, int del_all);
e02119d5
CM
105
106/*
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
109 *
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
113 *
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
119 *
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
123 *
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
127 */
128
e02119d5
CM
129/*
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
133 */
134static int start_log_trans(struct btrfs_trans_handle *trans,
135 struct btrfs_root *root)
136{
137 int ret;
4a500fd1 138 int err = 0;
7237f183
YZ
139
140 mutex_lock(&root->log_mutex);
141 if (root->log_root) {
ff782e0a
JB
142 if (!root->log_start_pid) {
143 root->log_start_pid = current->pid;
144 root->log_multiple_pids = false;
145 } else if (root->log_start_pid != current->pid) {
146 root->log_multiple_pids = true;
147 }
148
7237f183
YZ
149 root->log_batch++;
150 atomic_inc(&root->log_writers);
151 mutex_unlock(&root->log_mutex);
152 return 0;
153 }
ff782e0a
JB
154 root->log_multiple_pids = false;
155 root->log_start_pid = current->pid;
e02119d5
CM
156 mutex_lock(&root->fs_info->tree_log_mutex);
157 if (!root->fs_info->log_root_tree) {
158 ret = btrfs_init_log_root_tree(trans, root->fs_info);
4a500fd1
YZ
159 if (ret)
160 err = ret;
e02119d5 161 }
4a500fd1 162 if (err == 0 && !root->log_root) {
e02119d5 163 ret = btrfs_add_log_tree(trans, root);
4a500fd1
YZ
164 if (ret)
165 err = ret;
e02119d5 166 }
e02119d5 167 mutex_unlock(&root->fs_info->tree_log_mutex);
7237f183
YZ
168 root->log_batch++;
169 atomic_inc(&root->log_writers);
170 mutex_unlock(&root->log_mutex);
4a500fd1 171 return err;
e02119d5
CM
172}
173
174/*
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
177 * in progress
178 */
179static int join_running_log_trans(struct btrfs_root *root)
180{
181 int ret = -ENOENT;
182
183 smp_mb();
184 if (!root->log_root)
185 return -ENOENT;
186
7237f183 187 mutex_lock(&root->log_mutex);
e02119d5
CM
188 if (root->log_root) {
189 ret = 0;
7237f183 190 atomic_inc(&root->log_writers);
e02119d5 191 }
7237f183 192 mutex_unlock(&root->log_mutex);
e02119d5
CM
193 return ret;
194}
195
12fcfd22
CM
196/*
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
200 */
201int btrfs_pin_log_trans(struct btrfs_root *root)
202{
203 int ret = -ENOENT;
204
205 mutex_lock(&root->log_mutex);
206 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
209}
210
e02119d5
CM
211/*
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
214 */
12fcfd22 215int btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 216{
7237f183
YZ
217 if (atomic_dec_and_test(&root->log_writers)) {
218 smp_mb();
219 if (waitqueue_active(&root->log_writer_wait))
220 wake_up(&root->log_writer_wait);
221 }
e02119d5
CM
222 return 0;
223}
224
225
226/*
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
231 */
232struct walk_control {
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
235 */
236 int free;
237
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
240 */
241 int write;
242
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
245 */
246 int wait;
247
248 /* pin only walk, we record which extents on disk belong to the
249 * log trees
250 */
251 int pin;
252
253 /* what stage of the replay code we're currently in */
254 int stage;
255
256 /* the root we are currently replaying */
257 struct btrfs_root *replay_dest;
258
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle *trans;
261
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
265 * inside it
266 */
267 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 struct walk_control *wc, u64 gen);
269};
270
271/*
272 * process_func used to pin down extents, write them or wait on them
273 */
274static int process_one_buffer(struct btrfs_root *log,
275 struct extent_buffer *eb,
276 struct walk_control *wc, u64 gen)
277{
04018de5 278 if (wc->pin)
11833d66
YZ
279 btrfs_pin_extent(log->fs_info->extent_root,
280 eb->start, eb->len, 0);
e02119d5
CM
281
282 if (btrfs_buffer_uptodate(eb, gen)) {
283 if (wc->write)
284 btrfs_write_tree_block(eb);
285 if (wc->wait)
286 btrfs_wait_tree_block_writeback(eb);
287 }
288 return 0;
289}
290
291/*
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
294 *
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
298 *
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
302 *
303 * If the key isn't in the destination yet, a new item is inserted.
304 */
305static noinline int overwrite_item(struct btrfs_trans_handle *trans,
306 struct btrfs_root *root,
307 struct btrfs_path *path,
308 struct extent_buffer *eb, int slot,
309 struct btrfs_key *key)
310{
311 int ret;
312 u32 item_size;
313 u64 saved_i_size = 0;
314 int save_old_i_size = 0;
315 unsigned long src_ptr;
316 unsigned long dst_ptr;
317 int overwrite_root = 0;
318
319 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
320 overwrite_root = 1;
321
322 item_size = btrfs_item_size_nr(eb, slot);
323 src_ptr = btrfs_item_ptr_offset(eb, slot);
324
325 /* look for the key in the destination tree */
326 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
327 if (ret == 0) {
328 char *src_copy;
329 char *dst_copy;
330 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
331 path->slots[0]);
332 if (dst_size != item_size)
333 goto insert;
334
335 if (item_size == 0) {
336 btrfs_release_path(root, path);
337 return 0;
338 }
339 dst_copy = kmalloc(item_size, GFP_NOFS);
340 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 341 if (!dst_copy || !src_copy) {
342 btrfs_release_path(root, path);
343 kfree(dst_copy);
344 kfree(src_copy);
345 return -ENOMEM;
346 }
e02119d5
CM
347
348 read_extent_buffer(eb, src_copy, src_ptr, item_size);
349
350 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
351 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
352 item_size);
353 ret = memcmp(dst_copy, src_copy, item_size);
354
355 kfree(dst_copy);
356 kfree(src_copy);
357 /*
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
361 * sync
362 */
363 if (ret == 0) {
364 btrfs_release_path(root, path);
365 return 0;
366 }
367
368 }
369insert:
370 btrfs_release_path(root, path);
371 /* try to insert the key into the destination tree */
372 ret = btrfs_insert_empty_item(trans, root, path,
373 key, item_size);
374
375 /* make sure any existing item is the correct size */
376 if (ret == -EEXIST) {
377 u32 found_size;
378 found_size = btrfs_item_size_nr(path->nodes[0],
379 path->slots[0]);
380 if (found_size > item_size) {
381 btrfs_truncate_item(trans, root, path, item_size, 1);
382 } else if (found_size < item_size) {
87b29b20
YZ
383 ret = btrfs_extend_item(trans, root, path,
384 item_size - found_size);
e02119d5
CM
385 BUG_ON(ret);
386 }
387 } else if (ret) {
4a500fd1 388 return ret;
e02119d5
CM
389 }
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
391 path->slots[0]);
392
393 /* don't overwrite an existing inode if the generation number
394 * was logged as zero. This is done when the tree logging code
395 * is just logging an inode to make sure it exists after recovery.
396 *
397 * Also, don't overwrite i_size on directories during replay.
398 * log replay inserts and removes directory items based on the
399 * state of the tree found in the subvolume, and i_size is modified
400 * as it goes
401 */
402 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
403 struct btrfs_inode_item *src_item;
404 struct btrfs_inode_item *dst_item;
405
406 src_item = (struct btrfs_inode_item *)src_ptr;
407 dst_item = (struct btrfs_inode_item *)dst_ptr;
408
409 if (btrfs_inode_generation(eb, src_item) == 0)
410 goto no_copy;
411
412 if (overwrite_root &&
413 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
414 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
415 save_old_i_size = 1;
416 saved_i_size = btrfs_inode_size(path->nodes[0],
417 dst_item);
418 }
419 }
420
421 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
422 src_ptr, item_size);
423
424 if (save_old_i_size) {
425 struct btrfs_inode_item *dst_item;
426 dst_item = (struct btrfs_inode_item *)dst_ptr;
427 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
428 }
429
430 /* make sure the generation is filled in */
431 if (key->type == BTRFS_INODE_ITEM_KEY) {
432 struct btrfs_inode_item *dst_item;
433 dst_item = (struct btrfs_inode_item *)dst_ptr;
434 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
435 btrfs_set_inode_generation(path->nodes[0], dst_item,
436 trans->transid);
437 }
438 }
439no_copy:
440 btrfs_mark_buffer_dirty(path->nodes[0]);
441 btrfs_release_path(root, path);
442 return 0;
443}
444
445/*
446 * simple helper to read an inode off the disk from a given root
447 * This can only be called for subvolume roots and not for the log
448 */
449static noinline struct inode *read_one_inode(struct btrfs_root *root,
450 u64 objectid)
451{
5d4f98a2 452 struct btrfs_key key;
e02119d5 453 struct inode *inode;
e02119d5 454
5d4f98a2
YZ
455 key.objectid = objectid;
456 key.type = BTRFS_INODE_ITEM_KEY;
457 key.offset = 0;
73f73415 458 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
459 if (IS_ERR(inode)) {
460 inode = NULL;
461 } else if (is_bad_inode(inode)) {
e02119d5
CM
462 iput(inode);
463 inode = NULL;
464 }
465 return inode;
466}
467
468/* replays a single extent in 'eb' at 'slot' with 'key' into the
469 * subvolume 'root'. path is released on entry and should be released
470 * on exit.
471 *
472 * extents in the log tree have not been allocated out of the extent
473 * tree yet. So, this completes the allocation, taking a reference
474 * as required if the extent already exists or creating a new extent
475 * if it isn't in the extent allocation tree yet.
476 *
477 * The extent is inserted into the file, dropping any existing extents
478 * from the file that overlap the new one.
479 */
480static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root,
482 struct btrfs_path *path,
483 struct extent_buffer *eb, int slot,
484 struct btrfs_key *key)
485{
486 int found_type;
487 u64 mask = root->sectorsize - 1;
488 u64 extent_end;
489 u64 alloc_hint;
490 u64 start = key->offset;
07d400a6 491 u64 saved_nbytes;
e02119d5
CM
492 struct btrfs_file_extent_item *item;
493 struct inode *inode = NULL;
494 unsigned long size;
495 int ret = 0;
496
497 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
498 found_type = btrfs_file_extent_type(eb, item);
499
d899e052
YZ
500 if (found_type == BTRFS_FILE_EXTENT_REG ||
501 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
502 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
503 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 504 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
505 extent_end = (start + size + mask) & ~mask;
506 } else {
507 ret = 0;
508 goto out;
509 }
510
511 inode = read_one_inode(root, key->objectid);
512 if (!inode) {
513 ret = -EIO;
514 goto out;
515 }
516
517 /*
518 * first check to see if we already have this extent in the
519 * file. This must be done before the btrfs_drop_extents run
520 * so we don't try to drop this extent.
521 */
522 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
523 start, 0);
524
d899e052
YZ
525 if (ret == 0 &&
526 (found_type == BTRFS_FILE_EXTENT_REG ||
527 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
528 struct btrfs_file_extent_item cmp1;
529 struct btrfs_file_extent_item cmp2;
530 struct btrfs_file_extent_item *existing;
531 struct extent_buffer *leaf;
532
533 leaf = path->nodes[0];
534 existing = btrfs_item_ptr(leaf, path->slots[0],
535 struct btrfs_file_extent_item);
536
537 read_extent_buffer(eb, &cmp1, (unsigned long)item,
538 sizeof(cmp1));
539 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
540 sizeof(cmp2));
541
542 /*
543 * we already have a pointer to this exact extent,
544 * we don't have to do anything
545 */
546 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
547 btrfs_release_path(root, path);
548 goto out;
549 }
550 }
551 btrfs_release_path(root, path);
552
07d400a6 553 saved_nbytes = inode_get_bytes(inode);
e02119d5 554 /* drop any overlapping extents */
920bbbfb
YZ
555 ret = btrfs_drop_extents(trans, inode, start, extent_end,
556 &alloc_hint, 1);
e02119d5
CM
557 BUG_ON(ret);
558
07d400a6
YZ
559 if (found_type == BTRFS_FILE_EXTENT_REG ||
560 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 561 u64 offset;
07d400a6
YZ
562 unsigned long dest_offset;
563 struct btrfs_key ins;
564
565 ret = btrfs_insert_empty_item(trans, root, path, key,
566 sizeof(*item));
567 BUG_ON(ret);
568 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
569 path->slots[0]);
570 copy_extent_buffer(path->nodes[0], eb, dest_offset,
571 (unsigned long)item, sizeof(*item));
572
573 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
574 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
575 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 576 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
577
578 if (ins.objectid > 0) {
579 u64 csum_start;
580 u64 csum_end;
581 LIST_HEAD(ordered_sums);
582 /*
583 * is this extent already allocated in the extent
584 * allocation tree? If so, just add a reference
585 */
586 ret = btrfs_lookup_extent(root, ins.objectid,
587 ins.offset);
588 if (ret == 0) {
589 ret = btrfs_inc_extent_ref(trans, root,
590 ins.objectid, ins.offset,
5d4f98a2
YZ
591 0, root->root_key.objectid,
592 key->objectid, offset);
07d400a6
YZ
593 } else {
594 /*
595 * insert the extent pointer in the extent
596 * allocation tree
597 */
5d4f98a2
YZ
598 ret = btrfs_alloc_logged_file_extent(trans,
599 root, root->root_key.objectid,
600 key->objectid, offset, &ins);
07d400a6
YZ
601 BUG_ON(ret);
602 }
603 btrfs_release_path(root, path);
604
605 if (btrfs_file_extent_compression(eb, item)) {
606 csum_start = ins.objectid;
607 csum_end = csum_start + ins.offset;
608 } else {
609 csum_start = ins.objectid +
610 btrfs_file_extent_offset(eb, item);
611 csum_end = csum_start +
612 btrfs_file_extent_num_bytes(eb, item);
613 }
614
615 ret = btrfs_lookup_csums_range(root->log_root,
616 csum_start, csum_end - 1,
617 &ordered_sums);
618 BUG_ON(ret);
619 while (!list_empty(&ordered_sums)) {
620 struct btrfs_ordered_sum *sums;
621 sums = list_entry(ordered_sums.next,
622 struct btrfs_ordered_sum,
623 list);
624 ret = btrfs_csum_file_blocks(trans,
625 root->fs_info->csum_root,
626 sums);
627 BUG_ON(ret);
628 list_del(&sums->list);
629 kfree(sums);
630 }
631 } else {
632 btrfs_release_path(root, path);
633 }
634 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 /* inline extents are easy, we just overwrite them */
636 ret = overwrite_item(trans, root, path, eb, slot, key);
637 BUG_ON(ret);
638 }
e02119d5 639
07d400a6 640 inode_set_bytes(inode, saved_nbytes);
e02119d5
CM
641 btrfs_update_inode(trans, root, inode);
642out:
643 if (inode)
644 iput(inode);
645 return ret;
646}
647
648/*
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
652 *
653 * This is a helper function to do the unlink of a specific directory
654 * item
655 */
656static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path,
659 struct inode *dir,
660 struct btrfs_dir_item *di)
661{
662 struct inode *inode;
663 char *name;
664 int name_len;
665 struct extent_buffer *leaf;
666 struct btrfs_key location;
667 int ret;
668
669 leaf = path->nodes[0];
670
671 btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 name_len = btrfs_dir_name_len(leaf, di);
673 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 674 if (!name)
675 return -ENOMEM;
676
e02119d5
CM
677 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
678 btrfs_release_path(root, path);
679
680 inode = read_one_inode(root, location.objectid);
681 BUG_ON(!inode);
682
ec051c0f
YZ
683 ret = link_to_fixup_dir(trans, root, path, location.objectid);
684 BUG_ON(ret);
12fcfd22 685
e02119d5 686 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
ec051c0f 687 BUG_ON(ret);
e02119d5
CM
688 kfree(name);
689
690 iput(inode);
691 return ret;
692}
693
694/*
695 * helper function to see if a given name and sequence number found
696 * in an inode back reference are already in a directory and correctly
697 * point to this inode
698 */
699static noinline int inode_in_dir(struct btrfs_root *root,
700 struct btrfs_path *path,
701 u64 dirid, u64 objectid, u64 index,
702 const char *name, int name_len)
703{
704 struct btrfs_dir_item *di;
705 struct btrfs_key location;
706 int match = 0;
707
708 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
709 index, name, name_len, 0);
710 if (di && !IS_ERR(di)) {
711 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
712 if (location.objectid != objectid)
713 goto out;
714 } else
715 goto out;
716 btrfs_release_path(root, path);
717
718 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
719 if (di && !IS_ERR(di)) {
720 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
721 if (location.objectid != objectid)
722 goto out;
723 } else
724 goto out;
725 match = 1;
726out:
727 btrfs_release_path(root, path);
728 return match;
729}
730
731/*
732 * helper function to check a log tree for a named back reference in
733 * an inode. This is used to decide if a back reference that is
734 * found in the subvolume conflicts with what we find in the log.
735 *
736 * inode backreferences may have multiple refs in a single item,
737 * during replay we process one reference at a time, and we don't
738 * want to delete valid links to a file from the subvolume if that
739 * link is also in the log.
740 */
741static noinline int backref_in_log(struct btrfs_root *log,
742 struct btrfs_key *key,
743 char *name, int namelen)
744{
745 struct btrfs_path *path;
746 struct btrfs_inode_ref *ref;
747 unsigned long ptr;
748 unsigned long ptr_end;
749 unsigned long name_ptr;
750 int found_name_len;
751 int item_size;
752 int ret;
753 int match = 0;
754
755 path = btrfs_alloc_path();
2a29edc6 756 if (!path)
757 return -ENOMEM;
758
e02119d5
CM
759 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
760 if (ret != 0)
761 goto out;
762
763 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
764 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
765 ptr_end = ptr + item_size;
766 while (ptr < ptr_end) {
767 ref = (struct btrfs_inode_ref *)ptr;
768 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
769 if (found_name_len == namelen) {
770 name_ptr = (unsigned long)(ref + 1);
771 ret = memcmp_extent_buffer(path->nodes[0], name,
772 name_ptr, namelen);
773 if (ret == 0) {
774 match = 1;
775 goto out;
776 }
777 }
778 ptr = (unsigned long)(ref + 1) + found_name_len;
779 }
780out:
781 btrfs_free_path(path);
782 return match;
783}
784
785
786/*
787 * replay one inode back reference item found in the log tree.
788 * eb, slot and key refer to the buffer and key found in the log tree.
789 * root is the destination we are replaying into, and path is for temp
790 * use by this function. (it should be released on return).
791 */
792static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root,
794 struct btrfs_root *log,
795 struct btrfs_path *path,
796 struct extent_buffer *eb, int slot,
797 struct btrfs_key *key)
798{
799 struct inode *dir;
800 int ret;
e02119d5
CM
801 struct btrfs_inode_ref *ref;
802 struct btrfs_dir_item *di;
803 struct inode *inode;
804 char *name;
805 int namelen;
806 unsigned long ref_ptr;
807 unsigned long ref_end;
808
e02119d5
CM
809 /*
810 * it is possible that we didn't log all the parent directories
811 * for a given inode. If we don't find the dir, just don't
812 * copy the back ref in. The link count fixup code will take
813 * care of the rest
814 */
815 dir = read_one_inode(root, key->offset);
816 if (!dir)
817 return -ENOENT;
818
819 inode = read_one_inode(root, key->objectid);
631c07c8 820 BUG_ON(!inode);
e02119d5
CM
821
822 ref_ptr = btrfs_item_ptr_offset(eb, slot);
823 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
824
825again:
826 ref = (struct btrfs_inode_ref *)ref_ptr;
827
828 namelen = btrfs_inode_ref_name_len(eb, ref);
829 name = kmalloc(namelen, GFP_NOFS);
830 BUG_ON(!name);
831
832 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
833
834 /* if we already have a perfect match, we're done */
835 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
836 btrfs_inode_ref_index(eb, ref),
837 name, namelen)) {
838 goto out;
839 }
840
841 /*
842 * look for a conflicting back reference in the metadata.
843 * if we find one we have to unlink that name of the file
844 * before we add our new link. Later on, we overwrite any
845 * existing back reference, and we don't want to create
846 * dangling pointers in the directory.
847 */
848conflict_again:
849 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
850 if (ret == 0) {
851 char *victim_name;
852 int victim_name_len;
853 struct btrfs_inode_ref *victim_ref;
854 unsigned long ptr;
855 unsigned long ptr_end;
856 struct extent_buffer *leaf = path->nodes[0];
857
858 /* are we trying to overwrite a back ref for the root directory
859 * if so, just jump out, we're done
860 */
861 if (key->objectid == key->offset)
862 goto out_nowrite;
863
864 /* check all the names in this back reference to see
865 * if they are in the log. if so, we allow them to stay
866 * otherwise they must be unlinked as a conflict
867 */
868 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
869 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 870 while (ptr < ptr_end) {
e02119d5
CM
871 victim_ref = (struct btrfs_inode_ref *)ptr;
872 victim_name_len = btrfs_inode_ref_name_len(leaf,
873 victim_ref);
874 victim_name = kmalloc(victim_name_len, GFP_NOFS);
875 BUG_ON(!victim_name);
876
877 read_extent_buffer(leaf, victim_name,
878 (unsigned long)(victim_ref + 1),
879 victim_name_len);
880
881 if (!backref_in_log(log, key, victim_name,
882 victim_name_len)) {
883 btrfs_inc_nlink(inode);
884 btrfs_release_path(root, path);
12fcfd22 885
e02119d5
CM
886 ret = btrfs_unlink_inode(trans, root, dir,
887 inode, victim_name,
888 victim_name_len);
889 kfree(victim_name);
890 btrfs_release_path(root, path);
891 goto conflict_again;
892 }
893 kfree(victim_name);
894 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
895 }
896 BUG_ON(ret);
897 }
898 btrfs_release_path(root, path);
899
900 /* look for a conflicting sequence number */
901 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
902 btrfs_inode_ref_index(eb, ref),
903 name, namelen, 0);
904 if (di && !IS_ERR(di)) {
905 ret = drop_one_dir_item(trans, root, path, dir, di);
906 BUG_ON(ret);
907 }
908 btrfs_release_path(root, path);
909
910
911 /* look for a conflicting name */
912 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
913 name, namelen, 0);
914 if (di && !IS_ERR(di)) {
915 ret = drop_one_dir_item(trans, root, path, dir, di);
916 BUG_ON(ret);
917 }
918 btrfs_release_path(root, path);
919
920 /* insert our name */
921 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
922 btrfs_inode_ref_index(eb, ref));
923 BUG_ON(ret);
924
925 btrfs_update_inode(trans, root, inode);
926
927out:
928 ref_ptr = (unsigned long)(ref + 1) + namelen;
929 kfree(name);
930 if (ref_ptr < ref_end)
931 goto again;
932
933 /* finally write the back reference in the inode */
934 ret = overwrite_item(trans, root, path, eb, slot, key);
935 BUG_ON(ret);
936
937out_nowrite:
938 btrfs_release_path(root, path);
939 iput(dir);
940 iput(inode);
941 return 0;
942}
943
c71bf099
YZ
944static int insert_orphan_item(struct btrfs_trans_handle *trans,
945 struct btrfs_root *root, u64 offset)
946{
947 int ret;
948 ret = btrfs_find_orphan_item(root, offset);
949 if (ret > 0)
950 ret = btrfs_insert_orphan_item(trans, root, offset);
951 return ret;
952}
953
954
e02119d5
CM
955/*
956 * There are a few corners where the link count of the file can't
957 * be properly maintained during replay. So, instead of adding
958 * lots of complexity to the log code, we just scan the backrefs
959 * for any file that has been through replay.
960 *
961 * The scan will update the link count on the inode to reflect the
962 * number of back refs found. If it goes down to zero, the iput
963 * will free the inode.
964 */
965static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
966 struct btrfs_root *root,
967 struct inode *inode)
968{
969 struct btrfs_path *path;
970 int ret;
971 struct btrfs_key key;
972 u64 nlink = 0;
973 unsigned long ptr;
974 unsigned long ptr_end;
975 int name_len;
976
977 key.objectid = inode->i_ino;
978 key.type = BTRFS_INODE_REF_KEY;
979 key.offset = (u64)-1;
980
981 path = btrfs_alloc_path();
2a29edc6 982 if (!path)
983 return -ENOMEM;
e02119d5 984
d397712b 985 while (1) {
e02119d5
CM
986 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
987 if (ret < 0)
988 break;
989 if (ret > 0) {
990 if (path->slots[0] == 0)
991 break;
992 path->slots[0]--;
993 }
994 btrfs_item_key_to_cpu(path->nodes[0], &key,
995 path->slots[0]);
996 if (key.objectid != inode->i_ino ||
997 key.type != BTRFS_INODE_REF_KEY)
998 break;
999 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1000 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1001 path->slots[0]);
d397712b 1002 while (ptr < ptr_end) {
e02119d5
CM
1003 struct btrfs_inode_ref *ref;
1004
1005 ref = (struct btrfs_inode_ref *)ptr;
1006 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1007 ref);
1008 ptr = (unsigned long)(ref + 1) + name_len;
1009 nlink++;
1010 }
1011
1012 if (key.offset == 0)
1013 break;
1014 key.offset--;
1015 btrfs_release_path(root, path);
1016 }
12fcfd22 1017 btrfs_release_path(root, path);
e02119d5
CM
1018 if (nlink != inode->i_nlink) {
1019 inode->i_nlink = nlink;
1020 btrfs_update_inode(trans, root, inode);
1021 }
8d5bf1cb 1022 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1023
c71bf099
YZ
1024 if (inode->i_nlink == 0) {
1025 if (S_ISDIR(inode->i_mode)) {
1026 ret = replay_dir_deletes(trans, root, NULL, path,
1027 inode->i_ino, 1);
1028 BUG_ON(ret);
1029 }
1030 ret = insert_orphan_item(trans, root, inode->i_ino);
12fcfd22
CM
1031 BUG_ON(ret);
1032 }
1033 btrfs_free_path(path);
1034
e02119d5
CM
1035 return 0;
1036}
1037
1038static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1039 struct btrfs_root *root,
1040 struct btrfs_path *path)
1041{
1042 int ret;
1043 struct btrfs_key key;
1044 struct inode *inode;
1045
1046 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1047 key.type = BTRFS_ORPHAN_ITEM_KEY;
1048 key.offset = (u64)-1;
d397712b 1049 while (1) {
e02119d5
CM
1050 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1051 if (ret < 0)
1052 break;
1053
1054 if (ret == 1) {
1055 if (path->slots[0] == 0)
1056 break;
1057 path->slots[0]--;
1058 }
1059
1060 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1061 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1062 key.type != BTRFS_ORPHAN_ITEM_KEY)
1063 break;
1064
1065 ret = btrfs_del_item(trans, root, path);
1066 BUG_ON(ret);
1067
1068 btrfs_release_path(root, path);
1069 inode = read_one_inode(root, key.offset);
1070 BUG_ON(!inode);
1071
1072 ret = fixup_inode_link_count(trans, root, inode);
1073 BUG_ON(ret);
1074
1075 iput(inode);
1076
12fcfd22
CM
1077 /*
1078 * fixup on a directory may create new entries,
1079 * make sure we always look for the highset possible
1080 * offset
1081 */
1082 key.offset = (u64)-1;
e02119d5
CM
1083 }
1084 btrfs_release_path(root, path);
1085 return 0;
1086}
1087
1088
1089/*
1090 * record a given inode in the fixup dir so we can check its link
1091 * count when replay is done. The link count is incremented here
1092 * so the inode won't go away until we check it
1093 */
1094static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1095 struct btrfs_root *root,
1096 struct btrfs_path *path,
1097 u64 objectid)
1098{
1099 struct btrfs_key key;
1100 int ret = 0;
1101 struct inode *inode;
1102
1103 inode = read_one_inode(root, objectid);
1104 BUG_ON(!inode);
1105
1106 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1107 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1108 key.offset = objectid;
1109
1110 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1111
1112 btrfs_release_path(root, path);
1113 if (ret == 0) {
1114 btrfs_inc_nlink(inode);
1115 btrfs_update_inode(trans, root, inode);
1116 } else if (ret == -EEXIST) {
1117 ret = 0;
1118 } else {
1119 BUG();
1120 }
1121 iput(inode);
1122
1123 return ret;
1124}
1125
1126/*
1127 * when replaying the log for a directory, we only insert names
1128 * for inodes that actually exist. This means an fsync on a directory
1129 * does not implicitly fsync all the new files in it
1130 */
1131static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1132 struct btrfs_root *root,
1133 struct btrfs_path *path,
1134 u64 dirid, u64 index,
1135 char *name, int name_len, u8 type,
1136 struct btrfs_key *location)
1137{
1138 struct inode *inode;
1139 struct inode *dir;
1140 int ret;
1141
1142 inode = read_one_inode(root, location->objectid);
1143 if (!inode)
1144 return -ENOENT;
1145
1146 dir = read_one_inode(root, dirid);
1147 if (!dir) {
1148 iput(inode);
1149 return -EIO;
1150 }
1151 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1152
1153 /* FIXME, put inode into FIXUP list */
1154
1155 iput(inode);
1156 iput(dir);
1157 return ret;
1158}
1159
1160/*
1161 * take a single entry in a log directory item and replay it into
1162 * the subvolume.
1163 *
1164 * if a conflicting item exists in the subdirectory already,
1165 * the inode it points to is unlinked and put into the link count
1166 * fix up tree.
1167 *
1168 * If a name from the log points to a file or directory that does
1169 * not exist in the FS, it is skipped. fsyncs on directories
1170 * do not force down inodes inside that directory, just changes to the
1171 * names or unlinks in a directory.
1172 */
1173static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1174 struct btrfs_root *root,
1175 struct btrfs_path *path,
1176 struct extent_buffer *eb,
1177 struct btrfs_dir_item *di,
1178 struct btrfs_key *key)
1179{
1180 char *name;
1181 int name_len;
1182 struct btrfs_dir_item *dst_di;
1183 struct btrfs_key found_key;
1184 struct btrfs_key log_key;
1185 struct inode *dir;
e02119d5 1186 u8 log_type;
4bef0848 1187 int exists;
e02119d5
CM
1188 int ret;
1189
1190 dir = read_one_inode(root, key->objectid);
1191 BUG_ON(!dir);
1192
1193 name_len = btrfs_dir_name_len(eb, di);
1194 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 1195 if (!name)
1196 return -ENOMEM;
1197
e02119d5
CM
1198 log_type = btrfs_dir_type(eb, di);
1199 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1200 name_len);
1201
1202 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1203 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1204 if (exists == 0)
1205 exists = 1;
1206 else
1207 exists = 0;
1208 btrfs_release_path(root, path);
1209
e02119d5
CM
1210 if (key->type == BTRFS_DIR_ITEM_KEY) {
1211 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1212 name, name_len, 1);
d397712b 1213 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1214 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1215 key->objectid,
1216 key->offset, name,
1217 name_len, 1);
1218 } else {
1219 BUG();
1220 }
1221 if (!dst_di || IS_ERR(dst_di)) {
1222 /* we need a sequence number to insert, so we only
1223 * do inserts for the BTRFS_DIR_INDEX_KEY types
1224 */
1225 if (key->type != BTRFS_DIR_INDEX_KEY)
1226 goto out;
1227 goto insert;
1228 }
1229
1230 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1231 /* the existing item matches the logged item */
1232 if (found_key.objectid == log_key.objectid &&
1233 found_key.type == log_key.type &&
1234 found_key.offset == log_key.offset &&
1235 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1236 goto out;
1237 }
1238
1239 /*
1240 * don't drop the conflicting directory entry if the inode
1241 * for the new entry doesn't exist
1242 */
4bef0848 1243 if (!exists)
e02119d5
CM
1244 goto out;
1245
e02119d5
CM
1246 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1247 BUG_ON(ret);
1248
1249 if (key->type == BTRFS_DIR_INDEX_KEY)
1250 goto insert;
1251out:
1252 btrfs_release_path(root, path);
1253 kfree(name);
1254 iput(dir);
1255 return 0;
1256
1257insert:
1258 btrfs_release_path(root, path);
1259 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1260 name, name_len, log_type, &log_key);
1261
c293498b 1262 BUG_ON(ret && ret != -ENOENT);
e02119d5
CM
1263 goto out;
1264}
1265
1266/*
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1271 */
1272static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1273 struct btrfs_root *root,
1274 struct btrfs_path *path,
1275 struct extent_buffer *eb, int slot,
1276 struct btrfs_key *key)
1277{
1278 int ret;
1279 u32 item_size = btrfs_item_size_nr(eb, slot);
1280 struct btrfs_dir_item *di;
1281 int name_len;
1282 unsigned long ptr;
1283 unsigned long ptr_end;
1284
1285 ptr = btrfs_item_ptr_offset(eb, slot);
1286 ptr_end = ptr + item_size;
d397712b 1287 while (ptr < ptr_end) {
e02119d5 1288 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1289 if (verify_dir_item(root, eb, di))
1290 return -EIO;
e02119d5
CM
1291 name_len = btrfs_dir_name_len(eb, di);
1292 ret = replay_one_name(trans, root, path, eb, di, key);
1293 BUG_ON(ret);
1294 ptr = (unsigned long)(di + 1);
1295 ptr += name_len;
1296 }
1297 return 0;
1298}
1299
1300/*
1301 * directory replay has two parts. There are the standard directory
1302 * items in the log copied from the subvolume, and range items
1303 * created in the log while the subvolume was logged.
1304 *
1305 * The range items tell us which parts of the key space the log
1306 * is authoritative for. During replay, if a key in the subvolume
1307 * directory is in a logged range item, but not actually in the log
1308 * that means it was deleted from the directory before the fsync
1309 * and should be removed.
1310 */
1311static noinline int find_dir_range(struct btrfs_root *root,
1312 struct btrfs_path *path,
1313 u64 dirid, int key_type,
1314 u64 *start_ret, u64 *end_ret)
1315{
1316 struct btrfs_key key;
1317 u64 found_end;
1318 struct btrfs_dir_log_item *item;
1319 int ret;
1320 int nritems;
1321
1322 if (*start_ret == (u64)-1)
1323 return 1;
1324
1325 key.objectid = dirid;
1326 key.type = key_type;
1327 key.offset = *start_ret;
1328
1329 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1330 if (ret < 0)
1331 goto out;
1332 if (ret > 0) {
1333 if (path->slots[0] == 0)
1334 goto out;
1335 path->slots[0]--;
1336 }
1337 if (ret != 0)
1338 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1339
1340 if (key.type != key_type || key.objectid != dirid) {
1341 ret = 1;
1342 goto next;
1343 }
1344 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1345 struct btrfs_dir_log_item);
1346 found_end = btrfs_dir_log_end(path->nodes[0], item);
1347
1348 if (*start_ret >= key.offset && *start_ret <= found_end) {
1349 ret = 0;
1350 *start_ret = key.offset;
1351 *end_ret = found_end;
1352 goto out;
1353 }
1354 ret = 1;
1355next:
1356 /* check the next slot in the tree to see if it is a valid item */
1357 nritems = btrfs_header_nritems(path->nodes[0]);
1358 if (path->slots[0] >= nritems) {
1359 ret = btrfs_next_leaf(root, path);
1360 if (ret)
1361 goto out;
1362 } else {
1363 path->slots[0]++;
1364 }
1365
1366 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1367
1368 if (key.type != key_type || key.objectid != dirid) {
1369 ret = 1;
1370 goto out;
1371 }
1372 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1373 struct btrfs_dir_log_item);
1374 found_end = btrfs_dir_log_end(path->nodes[0], item);
1375 *start_ret = key.offset;
1376 *end_ret = found_end;
1377 ret = 0;
1378out:
1379 btrfs_release_path(root, path);
1380 return ret;
1381}
1382
1383/*
1384 * this looks for a given directory item in the log. If the directory
1385 * item is not in the log, the item is removed and the inode it points
1386 * to is unlinked
1387 */
1388static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1389 struct btrfs_root *root,
1390 struct btrfs_root *log,
1391 struct btrfs_path *path,
1392 struct btrfs_path *log_path,
1393 struct inode *dir,
1394 struct btrfs_key *dir_key)
1395{
1396 int ret;
1397 struct extent_buffer *eb;
1398 int slot;
1399 u32 item_size;
1400 struct btrfs_dir_item *di;
1401 struct btrfs_dir_item *log_di;
1402 int name_len;
1403 unsigned long ptr;
1404 unsigned long ptr_end;
1405 char *name;
1406 struct inode *inode;
1407 struct btrfs_key location;
1408
1409again:
1410 eb = path->nodes[0];
1411 slot = path->slots[0];
1412 item_size = btrfs_item_size_nr(eb, slot);
1413 ptr = btrfs_item_ptr_offset(eb, slot);
1414 ptr_end = ptr + item_size;
d397712b 1415 while (ptr < ptr_end) {
e02119d5 1416 di = (struct btrfs_dir_item *)ptr;
22a94d44
JB
1417 if (verify_dir_item(root, eb, di)) {
1418 ret = -EIO;
1419 goto out;
1420 }
1421
e02119d5
CM
1422 name_len = btrfs_dir_name_len(eb, di);
1423 name = kmalloc(name_len, GFP_NOFS);
1424 if (!name) {
1425 ret = -ENOMEM;
1426 goto out;
1427 }
1428 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1429 name_len);
1430 log_di = NULL;
12fcfd22 1431 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1432 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1433 dir_key->objectid,
1434 name, name_len, 0);
12fcfd22 1435 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1436 log_di = btrfs_lookup_dir_index_item(trans, log,
1437 log_path,
1438 dir_key->objectid,
1439 dir_key->offset,
1440 name, name_len, 0);
1441 }
1442 if (!log_di || IS_ERR(log_di)) {
1443 btrfs_dir_item_key_to_cpu(eb, di, &location);
1444 btrfs_release_path(root, path);
1445 btrfs_release_path(log, log_path);
1446 inode = read_one_inode(root, location.objectid);
1447 BUG_ON(!inode);
1448
1449 ret = link_to_fixup_dir(trans, root,
1450 path, location.objectid);
1451 BUG_ON(ret);
1452 btrfs_inc_nlink(inode);
1453 ret = btrfs_unlink_inode(trans, root, dir, inode,
1454 name, name_len);
1455 BUG_ON(ret);
1456 kfree(name);
1457 iput(inode);
1458
1459 /* there might still be more names under this key
1460 * check and repeat if required
1461 */
1462 ret = btrfs_search_slot(NULL, root, dir_key, path,
1463 0, 0);
1464 if (ret == 0)
1465 goto again;
1466 ret = 0;
1467 goto out;
1468 }
1469 btrfs_release_path(log, log_path);
1470 kfree(name);
1471
1472 ptr = (unsigned long)(di + 1);
1473 ptr += name_len;
1474 }
1475 ret = 0;
1476out:
1477 btrfs_release_path(root, path);
1478 btrfs_release_path(log, log_path);
1479 return ret;
1480}
1481
1482/*
1483 * deletion replay happens before we copy any new directory items
1484 * out of the log or out of backreferences from inodes. It
1485 * scans the log to find ranges of keys that log is authoritative for,
1486 * and then scans the directory to find items in those ranges that are
1487 * not present in the log.
1488 *
1489 * Anything we don't find in the log is unlinked and removed from the
1490 * directory.
1491 */
1492static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1493 struct btrfs_root *root,
1494 struct btrfs_root *log,
1495 struct btrfs_path *path,
12fcfd22 1496 u64 dirid, int del_all)
e02119d5
CM
1497{
1498 u64 range_start;
1499 u64 range_end;
1500 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1501 int ret = 0;
1502 struct btrfs_key dir_key;
1503 struct btrfs_key found_key;
1504 struct btrfs_path *log_path;
1505 struct inode *dir;
1506
1507 dir_key.objectid = dirid;
1508 dir_key.type = BTRFS_DIR_ITEM_KEY;
1509 log_path = btrfs_alloc_path();
1510 if (!log_path)
1511 return -ENOMEM;
1512
1513 dir = read_one_inode(root, dirid);
1514 /* it isn't an error if the inode isn't there, that can happen
1515 * because we replay the deletes before we copy in the inode item
1516 * from the log
1517 */
1518 if (!dir) {
1519 btrfs_free_path(log_path);
1520 return 0;
1521 }
1522again:
1523 range_start = 0;
1524 range_end = 0;
d397712b 1525 while (1) {
12fcfd22
CM
1526 if (del_all)
1527 range_end = (u64)-1;
1528 else {
1529 ret = find_dir_range(log, path, dirid, key_type,
1530 &range_start, &range_end);
1531 if (ret != 0)
1532 break;
1533 }
e02119d5
CM
1534
1535 dir_key.offset = range_start;
d397712b 1536 while (1) {
e02119d5
CM
1537 int nritems;
1538 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1539 0, 0);
1540 if (ret < 0)
1541 goto out;
1542
1543 nritems = btrfs_header_nritems(path->nodes[0]);
1544 if (path->slots[0] >= nritems) {
1545 ret = btrfs_next_leaf(root, path);
1546 if (ret)
1547 break;
1548 }
1549 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1550 path->slots[0]);
1551 if (found_key.objectid != dirid ||
1552 found_key.type != dir_key.type)
1553 goto next_type;
1554
1555 if (found_key.offset > range_end)
1556 break;
1557
1558 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1559 log_path, dir,
1560 &found_key);
e02119d5
CM
1561 BUG_ON(ret);
1562 if (found_key.offset == (u64)-1)
1563 break;
1564 dir_key.offset = found_key.offset + 1;
1565 }
1566 btrfs_release_path(root, path);
1567 if (range_end == (u64)-1)
1568 break;
1569 range_start = range_end + 1;
1570 }
1571
1572next_type:
1573 ret = 0;
1574 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1575 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1576 dir_key.type = BTRFS_DIR_INDEX_KEY;
1577 btrfs_release_path(root, path);
1578 goto again;
1579 }
1580out:
1581 btrfs_release_path(root, path);
1582 btrfs_free_path(log_path);
1583 iput(dir);
1584 return ret;
1585}
1586
1587/*
1588 * the process_func used to replay items from the log tree. This
1589 * gets called in two different stages. The first stage just looks
1590 * for inodes and makes sure they are all copied into the subvolume.
1591 *
1592 * The second stage copies all the other item types from the log into
1593 * the subvolume. The two stage approach is slower, but gets rid of
1594 * lots of complexity around inodes referencing other inodes that exist
1595 * only in the log (references come from either directory items or inode
1596 * back refs).
1597 */
1598static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1599 struct walk_control *wc, u64 gen)
1600{
1601 int nritems;
1602 struct btrfs_path *path;
1603 struct btrfs_root *root = wc->replay_dest;
1604 struct btrfs_key key;
e02119d5
CM
1605 int level;
1606 int i;
1607 int ret;
1608
1609 btrfs_read_buffer(eb, gen);
1610
1611 level = btrfs_header_level(eb);
1612
1613 if (level != 0)
1614 return 0;
1615
1616 path = btrfs_alloc_path();
1617 BUG_ON(!path);
1618
1619 nritems = btrfs_header_nritems(eb);
1620 for (i = 0; i < nritems; i++) {
1621 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
1622
1623 /* inode keys are done during the first stage */
1624 if (key.type == BTRFS_INODE_ITEM_KEY &&
1625 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
1626 struct btrfs_inode_item *inode_item;
1627 u32 mode;
1628
1629 inode_item = btrfs_item_ptr(eb, i,
1630 struct btrfs_inode_item);
1631 mode = btrfs_inode_mode(eb, inode_item);
1632 if (S_ISDIR(mode)) {
1633 ret = replay_dir_deletes(wc->trans,
12fcfd22 1634 root, log, path, key.objectid, 0);
e02119d5
CM
1635 BUG_ON(ret);
1636 }
1637 ret = overwrite_item(wc->trans, root, path,
1638 eb, i, &key);
1639 BUG_ON(ret);
1640
c71bf099
YZ
1641 /* for regular files, make sure corresponding
1642 * orhpan item exist. extents past the new EOF
1643 * will be truncated later by orphan cleanup.
e02119d5
CM
1644 */
1645 if (S_ISREG(mode)) {
c71bf099
YZ
1646 ret = insert_orphan_item(wc->trans, root,
1647 key.objectid);
e02119d5 1648 BUG_ON(ret);
e02119d5 1649 }
c71bf099 1650
e02119d5
CM
1651 ret = link_to_fixup_dir(wc->trans, root,
1652 path, key.objectid);
1653 BUG_ON(ret);
1654 }
1655 if (wc->stage < LOG_WALK_REPLAY_ALL)
1656 continue;
1657
1658 /* these keys are simply copied */
1659 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1660 ret = overwrite_item(wc->trans, root, path,
1661 eb, i, &key);
1662 BUG_ON(ret);
1663 } else if (key.type == BTRFS_INODE_REF_KEY) {
1664 ret = add_inode_ref(wc->trans, root, log, path,
1665 eb, i, &key);
1666 BUG_ON(ret && ret != -ENOENT);
1667 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1668 ret = replay_one_extent(wc->trans, root, path,
1669 eb, i, &key);
1670 BUG_ON(ret);
e02119d5
CM
1671 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1672 key.type == BTRFS_DIR_INDEX_KEY) {
1673 ret = replay_one_dir_item(wc->trans, root, path,
1674 eb, i, &key);
1675 BUG_ON(ret);
1676 }
1677 }
1678 btrfs_free_path(path);
1679 return 0;
1680}
1681
d397712b 1682static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1683 struct btrfs_root *root,
1684 struct btrfs_path *path, int *level,
1685 struct walk_control *wc)
1686{
1687 u64 root_owner;
e02119d5
CM
1688 u64 bytenr;
1689 u64 ptr_gen;
1690 struct extent_buffer *next;
1691 struct extent_buffer *cur;
1692 struct extent_buffer *parent;
1693 u32 blocksize;
1694 int ret = 0;
1695
1696 WARN_ON(*level < 0);
1697 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1698
d397712b 1699 while (*level > 0) {
e02119d5
CM
1700 WARN_ON(*level < 0);
1701 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1702 cur = path->nodes[*level];
1703
1704 if (btrfs_header_level(cur) != *level)
1705 WARN_ON(1);
1706
1707 if (path->slots[*level] >=
1708 btrfs_header_nritems(cur))
1709 break;
1710
1711 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1712 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1713 blocksize = btrfs_level_size(root, *level - 1);
1714
1715 parent = path->nodes[*level];
1716 root_owner = btrfs_header_owner(parent);
e02119d5
CM
1717
1718 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
2a29edc6 1719 if (!next)
1720 return -ENOMEM;
e02119d5 1721
e02119d5 1722 if (*level == 1) {
4a500fd1
YZ
1723 wc->process_func(root, next, wc, ptr_gen);
1724
e02119d5
CM
1725 path->slots[*level]++;
1726 if (wc->free) {
1727 btrfs_read_buffer(next, ptr_gen);
1728
1729 btrfs_tree_lock(next);
1730 clean_tree_block(trans, root, next);
b4ce94de 1731 btrfs_set_lock_blocking(next);
e02119d5
CM
1732 btrfs_wait_tree_block_writeback(next);
1733 btrfs_tree_unlock(next);
1734
e02119d5
CM
1735 WARN_ON(root_owner !=
1736 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1737 ret = btrfs_free_reserved_extent(root,
1738 bytenr, blocksize);
e02119d5
CM
1739 BUG_ON(ret);
1740 }
1741 free_extent_buffer(next);
1742 continue;
1743 }
1744 btrfs_read_buffer(next, ptr_gen);
1745
1746 WARN_ON(*level <= 0);
1747 if (path->nodes[*level-1])
1748 free_extent_buffer(path->nodes[*level-1]);
1749 path->nodes[*level-1] = next;
1750 *level = btrfs_header_level(next);
1751 path->slots[*level] = 0;
1752 cond_resched();
1753 }
1754 WARN_ON(*level < 0);
1755 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1756
4a500fd1 1757 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
1758
1759 cond_resched();
1760 return 0;
1761}
1762
d397712b 1763static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1764 struct btrfs_root *root,
1765 struct btrfs_path *path, int *level,
1766 struct walk_control *wc)
1767{
1768 u64 root_owner;
e02119d5
CM
1769 int i;
1770 int slot;
1771 int ret;
1772
d397712b 1773 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 1774 slot = path->slots[i];
4a500fd1 1775 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
1776 path->slots[i]++;
1777 *level = i;
1778 WARN_ON(*level == 0);
1779 return 0;
1780 } else {
31840ae1
ZY
1781 struct extent_buffer *parent;
1782 if (path->nodes[*level] == root->node)
1783 parent = path->nodes[*level];
1784 else
1785 parent = path->nodes[*level + 1];
1786
1787 root_owner = btrfs_header_owner(parent);
e02119d5
CM
1788 wc->process_func(root, path->nodes[*level], wc,
1789 btrfs_header_generation(path->nodes[*level]));
1790 if (wc->free) {
1791 struct extent_buffer *next;
1792
1793 next = path->nodes[*level];
1794
1795 btrfs_tree_lock(next);
1796 clean_tree_block(trans, root, next);
b4ce94de 1797 btrfs_set_lock_blocking(next);
e02119d5
CM
1798 btrfs_wait_tree_block_writeback(next);
1799 btrfs_tree_unlock(next);
1800
e02119d5 1801 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1802 ret = btrfs_free_reserved_extent(root,
e02119d5 1803 path->nodes[*level]->start,
d00aff00 1804 path->nodes[*level]->len);
e02119d5
CM
1805 BUG_ON(ret);
1806 }
1807 free_extent_buffer(path->nodes[*level]);
1808 path->nodes[*level] = NULL;
1809 *level = i + 1;
1810 }
1811 }
1812 return 1;
1813}
1814
1815/*
1816 * drop the reference count on the tree rooted at 'snap'. This traverses
1817 * the tree freeing any blocks that have a ref count of zero after being
1818 * decremented.
1819 */
1820static int walk_log_tree(struct btrfs_trans_handle *trans,
1821 struct btrfs_root *log, struct walk_control *wc)
1822{
1823 int ret = 0;
1824 int wret;
1825 int level;
1826 struct btrfs_path *path;
1827 int i;
1828 int orig_level;
1829
1830 path = btrfs_alloc_path();
db5b493a
TI
1831 if (!path)
1832 return -ENOMEM;
e02119d5
CM
1833
1834 level = btrfs_header_level(log->node);
1835 orig_level = level;
1836 path->nodes[level] = log->node;
1837 extent_buffer_get(log->node);
1838 path->slots[level] = 0;
1839
d397712b 1840 while (1) {
e02119d5
CM
1841 wret = walk_down_log_tree(trans, log, path, &level, wc);
1842 if (wret > 0)
1843 break;
1844 if (wret < 0)
1845 ret = wret;
1846
1847 wret = walk_up_log_tree(trans, log, path, &level, wc);
1848 if (wret > 0)
1849 break;
1850 if (wret < 0)
1851 ret = wret;
1852 }
1853
1854 /* was the root node processed? if not, catch it here */
1855 if (path->nodes[orig_level]) {
1856 wc->process_func(log, path->nodes[orig_level], wc,
1857 btrfs_header_generation(path->nodes[orig_level]));
1858 if (wc->free) {
1859 struct extent_buffer *next;
1860
1861 next = path->nodes[orig_level];
1862
1863 btrfs_tree_lock(next);
1864 clean_tree_block(trans, log, next);
b4ce94de 1865 btrfs_set_lock_blocking(next);
e02119d5
CM
1866 btrfs_wait_tree_block_writeback(next);
1867 btrfs_tree_unlock(next);
1868
e02119d5
CM
1869 WARN_ON(log->root_key.objectid !=
1870 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1871 ret = btrfs_free_reserved_extent(log, next->start,
1872 next->len);
e02119d5
CM
1873 BUG_ON(ret);
1874 }
1875 }
1876
1877 for (i = 0; i <= orig_level; i++) {
1878 if (path->nodes[i]) {
1879 free_extent_buffer(path->nodes[i]);
1880 path->nodes[i] = NULL;
1881 }
1882 }
1883 btrfs_free_path(path);
e02119d5
CM
1884 return ret;
1885}
1886
7237f183
YZ
1887/*
1888 * helper function to update the item for a given subvolumes log root
1889 * in the tree of log roots
1890 */
1891static int update_log_root(struct btrfs_trans_handle *trans,
1892 struct btrfs_root *log)
1893{
1894 int ret;
1895
1896 if (log->log_transid == 1) {
1897 /* insert root item on the first sync */
1898 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1899 &log->root_key, &log->root_item);
1900 } else {
1901 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1902 &log->root_key, &log->root_item);
1903 }
1904 return ret;
1905}
1906
12fcfd22
CM
1907static int wait_log_commit(struct btrfs_trans_handle *trans,
1908 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
1909{
1910 DEFINE_WAIT(wait);
7237f183 1911 int index = transid % 2;
e02119d5 1912
7237f183
YZ
1913 /*
1914 * we only allow two pending log transactions at a time,
1915 * so we know that if ours is more than 2 older than the
1916 * current transaction, we're done
1917 */
e02119d5 1918 do {
7237f183
YZ
1919 prepare_to_wait(&root->log_commit_wait[index],
1920 &wait, TASK_UNINTERRUPTIBLE);
1921 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1922
1923 if (root->fs_info->last_trans_log_full_commit !=
1924 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
1925 atomic_read(&root->log_commit[index]))
1926 schedule();
12fcfd22 1927
7237f183
YZ
1928 finish_wait(&root->log_commit_wait[index], &wait);
1929 mutex_lock(&root->log_mutex);
1930 } while (root->log_transid < transid + 2 &&
1931 atomic_read(&root->log_commit[index]));
1932 return 0;
1933}
1934
12fcfd22
CM
1935static int wait_for_writer(struct btrfs_trans_handle *trans,
1936 struct btrfs_root *root)
7237f183
YZ
1937{
1938 DEFINE_WAIT(wait);
1939 while (atomic_read(&root->log_writers)) {
1940 prepare_to_wait(&root->log_writer_wait,
1941 &wait, TASK_UNINTERRUPTIBLE);
1942 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1943 if (root->fs_info->last_trans_log_full_commit !=
1944 trans->transid && atomic_read(&root->log_writers))
e02119d5 1945 schedule();
7237f183
YZ
1946 mutex_lock(&root->log_mutex);
1947 finish_wait(&root->log_writer_wait, &wait);
1948 }
e02119d5
CM
1949 return 0;
1950}
1951
1952/*
1953 * btrfs_sync_log does sends a given tree log down to the disk and
1954 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
1955 * you know that any inodes previously logged are safely on disk only
1956 * if it returns 0.
1957 *
1958 * Any other return value means you need to call btrfs_commit_transaction.
1959 * Some of the edge cases for fsyncing directories that have had unlinks
1960 * or renames done in the past mean that sometimes the only safe
1961 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1962 * that has happened.
e02119d5
CM
1963 */
1964int btrfs_sync_log(struct btrfs_trans_handle *trans,
1965 struct btrfs_root *root)
1966{
7237f183
YZ
1967 int index1;
1968 int index2;
8cef4e16 1969 int mark;
e02119d5 1970 int ret;
e02119d5 1971 struct btrfs_root *log = root->log_root;
7237f183 1972 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
8cef4e16 1973 unsigned long log_transid = 0;
e02119d5 1974
7237f183
YZ
1975 mutex_lock(&root->log_mutex);
1976 index1 = root->log_transid % 2;
1977 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 1978 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
1979 mutex_unlock(&root->log_mutex);
1980 return 0;
e02119d5 1981 }
7237f183
YZ
1982 atomic_set(&root->log_commit[index1], 1);
1983
1984 /* wait for previous tree log sync to complete */
1985 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 1986 wait_log_commit(trans, root, root->log_transid - 1);
e02119d5 1987
86df7eb9 1988 while (1) {
7237f183 1989 unsigned long batch = root->log_batch;
86df7eb9
YZ
1990 if (root->log_multiple_pids) {
1991 mutex_unlock(&root->log_mutex);
1992 schedule_timeout_uninterruptible(1);
1993 mutex_lock(&root->log_mutex);
1994 }
12fcfd22 1995 wait_for_writer(trans, root);
7237f183 1996 if (batch == root->log_batch)
e02119d5
CM
1997 break;
1998 }
e02119d5 1999
12fcfd22
CM
2000 /* bail out if we need to do a full commit */
2001 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2002 ret = -EAGAIN;
2003 mutex_unlock(&root->log_mutex);
2004 goto out;
2005 }
2006
8cef4e16
YZ
2007 log_transid = root->log_transid;
2008 if (log_transid % 2 == 0)
2009 mark = EXTENT_DIRTY;
2010 else
2011 mark = EXTENT_NEW;
2012
690587d1
CM
2013 /* we start IO on all the marked extents here, but we don't actually
2014 * wait for them until later.
2015 */
8cef4e16 2016 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5 2017 BUG_ON(ret);
7237f183 2018
5d4f98a2 2019 btrfs_set_root_node(&log->root_item, log->node);
7237f183
YZ
2020
2021 root->log_batch = 0;
2022 root->log_transid++;
2023 log->log_transid = root->log_transid;
ff782e0a 2024 root->log_start_pid = 0;
7237f183
YZ
2025 smp_mb();
2026 /*
8cef4e16
YZ
2027 * IO has been started, blocks of the log tree have WRITTEN flag set
2028 * in their headers. new modifications of the log will be written to
2029 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2030 */
2031 mutex_unlock(&root->log_mutex);
2032
2033 mutex_lock(&log_root_tree->log_mutex);
2034 log_root_tree->log_batch++;
2035 atomic_inc(&log_root_tree->log_writers);
2036 mutex_unlock(&log_root_tree->log_mutex);
2037
2038 ret = update_log_root(trans, log);
7237f183
YZ
2039
2040 mutex_lock(&log_root_tree->log_mutex);
2041 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2042 smp_mb();
2043 if (waitqueue_active(&log_root_tree->log_writer_wait))
2044 wake_up(&log_root_tree->log_writer_wait);
2045 }
2046
4a500fd1
YZ
2047 if (ret) {
2048 BUG_ON(ret != -ENOSPC);
2049 root->fs_info->last_trans_log_full_commit = trans->transid;
2050 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2051 mutex_unlock(&log_root_tree->log_mutex);
2052 ret = -EAGAIN;
2053 goto out;
2054 }
2055
7237f183
YZ
2056 index2 = log_root_tree->log_transid % 2;
2057 if (atomic_read(&log_root_tree->log_commit[index2])) {
8cef4e16 2058 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2059 wait_log_commit(trans, log_root_tree,
2060 log_root_tree->log_transid);
7237f183 2061 mutex_unlock(&log_root_tree->log_mutex);
b31eabd8 2062 ret = 0;
7237f183
YZ
2063 goto out;
2064 }
2065 atomic_set(&log_root_tree->log_commit[index2], 1);
2066
12fcfd22
CM
2067 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2068 wait_log_commit(trans, log_root_tree,
2069 log_root_tree->log_transid - 1);
2070 }
2071
2072 wait_for_writer(trans, log_root_tree);
7237f183 2073
12fcfd22
CM
2074 /*
2075 * now that we've moved on to the tree of log tree roots,
2076 * check the full commit flag again
2077 */
2078 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
8cef4e16 2079 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
12fcfd22
CM
2080 mutex_unlock(&log_root_tree->log_mutex);
2081 ret = -EAGAIN;
2082 goto out_wake_log_root;
2083 }
7237f183
YZ
2084
2085 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
8cef4e16
YZ
2086 &log_root_tree->dirty_log_pages,
2087 EXTENT_DIRTY | EXTENT_NEW);
e02119d5 2088 BUG_ON(ret);
8cef4e16 2089 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
e02119d5
CM
2090
2091 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
7237f183 2092 log_root_tree->node->start);
e02119d5 2093 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
7237f183 2094 btrfs_header_level(log_root_tree->node));
e02119d5 2095
7237f183
YZ
2096 log_root_tree->log_batch = 0;
2097 log_root_tree->log_transid++;
e02119d5 2098 smp_mb();
7237f183
YZ
2099
2100 mutex_unlock(&log_root_tree->log_mutex);
2101
2102 /*
2103 * nobody else is going to jump in and write the the ctree
2104 * super here because the log_commit atomic below is protecting
2105 * us. We must be called with a transaction handle pinning
2106 * the running transaction open, so a full commit can't hop
2107 * in and cause problems either.
2108 */
4722607d 2109 write_ctree_super(trans, root->fs_info->tree_root, 1);
12fcfd22 2110 ret = 0;
7237f183 2111
257c62e1
CM
2112 mutex_lock(&root->log_mutex);
2113 if (root->last_log_commit < log_transid)
2114 root->last_log_commit = log_transid;
2115 mutex_unlock(&root->log_mutex);
2116
12fcfd22 2117out_wake_log_root:
7237f183
YZ
2118 atomic_set(&log_root_tree->log_commit[index2], 0);
2119 smp_mb();
2120 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2121 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2122out:
7237f183
YZ
2123 atomic_set(&root->log_commit[index1], 0);
2124 smp_mb();
2125 if (waitqueue_active(&root->log_commit_wait[index1]))
2126 wake_up(&root->log_commit_wait[index1]);
b31eabd8 2127 return ret;
e02119d5
CM
2128}
2129
4a500fd1
YZ
2130static void free_log_tree(struct btrfs_trans_handle *trans,
2131 struct btrfs_root *log)
e02119d5
CM
2132{
2133 int ret;
d0c803c4
CM
2134 u64 start;
2135 u64 end;
e02119d5
CM
2136 struct walk_control wc = {
2137 .free = 1,
2138 .process_func = process_one_buffer
2139 };
2140
e02119d5
CM
2141 ret = walk_log_tree(trans, log, &wc);
2142 BUG_ON(ret);
2143
d397712b 2144 while (1) {
d0c803c4 2145 ret = find_first_extent_bit(&log->dirty_log_pages,
8cef4e16 2146 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW);
d0c803c4
CM
2147 if (ret)
2148 break;
2149
8cef4e16
YZ
2150 clear_extent_bits(&log->dirty_log_pages, start, end,
2151 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
d0c803c4
CM
2152 }
2153
7237f183
YZ
2154 free_extent_buffer(log->node);
2155 kfree(log);
4a500fd1
YZ
2156}
2157
2158/*
2159 * free all the extents used by the tree log. This should be called
2160 * at commit time of the full transaction
2161 */
2162int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2163{
2164 if (root->log_root) {
2165 free_log_tree(trans, root->log_root);
2166 root->log_root = NULL;
2167 }
2168 return 0;
2169}
2170
2171int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
2172 struct btrfs_fs_info *fs_info)
2173{
2174 if (fs_info->log_root_tree) {
2175 free_log_tree(trans, fs_info->log_root_tree);
2176 fs_info->log_root_tree = NULL;
2177 }
e02119d5
CM
2178 return 0;
2179}
2180
e02119d5
CM
2181/*
2182 * If both a file and directory are logged, and unlinks or renames are
2183 * mixed in, we have a few interesting corners:
2184 *
2185 * create file X in dir Y
2186 * link file X to X.link in dir Y
2187 * fsync file X
2188 * unlink file X but leave X.link
2189 * fsync dir Y
2190 *
2191 * After a crash we would expect only X.link to exist. But file X
2192 * didn't get fsync'd again so the log has back refs for X and X.link.
2193 *
2194 * We solve this by removing directory entries and inode backrefs from the
2195 * log when a file that was logged in the current transaction is
2196 * unlinked. Any later fsync will include the updated log entries, and
2197 * we'll be able to reconstruct the proper directory items from backrefs.
2198 *
2199 * This optimizations allows us to avoid relogging the entire inode
2200 * or the entire directory.
2201 */
2202int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2203 struct btrfs_root *root,
2204 const char *name, int name_len,
2205 struct inode *dir, u64 index)
2206{
2207 struct btrfs_root *log;
2208 struct btrfs_dir_item *di;
2209 struct btrfs_path *path;
2210 int ret;
4a500fd1 2211 int err = 0;
e02119d5
CM
2212 int bytes_del = 0;
2213
3a5f1d45
CM
2214 if (BTRFS_I(dir)->logged_trans < trans->transid)
2215 return 0;
2216
e02119d5
CM
2217 ret = join_running_log_trans(root);
2218 if (ret)
2219 return 0;
2220
2221 mutex_lock(&BTRFS_I(dir)->log_mutex);
2222
2223 log = root->log_root;
2224 path = btrfs_alloc_path();
2a29edc6 2225 if (!path)
2226 return -ENOMEM;
2227
e02119d5
CM
2228 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2229 name, name_len, -1);
4a500fd1
YZ
2230 if (IS_ERR(di)) {
2231 err = PTR_ERR(di);
2232 goto fail;
2233 }
2234 if (di) {
e02119d5
CM
2235 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2236 bytes_del += name_len;
2237 BUG_ON(ret);
2238 }
2239 btrfs_release_path(log, path);
2240 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2241 index, name, name_len, -1);
4a500fd1
YZ
2242 if (IS_ERR(di)) {
2243 err = PTR_ERR(di);
2244 goto fail;
2245 }
2246 if (di) {
e02119d5
CM
2247 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2248 bytes_del += name_len;
2249 BUG_ON(ret);
2250 }
2251
2252 /* update the directory size in the log to reflect the names
2253 * we have removed
2254 */
2255 if (bytes_del) {
2256 struct btrfs_key key;
2257
2258 key.objectid = dir->i_ino;
2259 key.offset = 0;
2260 key.type = BTRFS_INODE_ITEM_KEY;
2261 btrfs_release_path(log, path);
2262
2263 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
2264 if (ret < 0) {
2265 err = ret;
2266 goto fail;
2267 }
e02119d5
CM
2268 if (ret == 0) {
2269 struct btrfs_inode_item *item;
2270 u64 i_size;
2271
2272 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2273 struct btrfs_inode_item);
2274 i_size = btrfs_inode_size(path->nodes[0], item);
2275 if (i_size > bytes_del)
2276 i_size -= bytes_del;
2277 else
2278 i_size = 0;
2279 btrfs_set_inode_size(path->nodes[0], item, i_size);
2280 btrfs_mark_buffer_dirty(path->nodes[0]);
2281 } else
2282 ret = 0;
2283 btrfs_release_path(log, path);
2284 }
4a500fd1 2285fail:
e02119d5
CM
2286 btrfs_free_path(path);
2287 mutex_unlock(&BTRFS_I(dir)->log_mutex);
4a500fd1
YZ
2288 if (ret == -ENOSPC) {
2289 root->fs_info->last_trans_log_full_commit = trans->transid;
2290 ret = 0;
2291 }
12fcfd22 2292 btrfs_end_log_trans(root);
e02119d5 2293
411fc6bc 2294 return err;
e02119d5
CM
2295}
2296
2297/* see comments for btrfs_del_dir_entries_in_log */
2298int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2299 struct btrfs_root *root,
2300 const char *name, int name_len,
2301 struct inode *inode, u64 dirid)
2302{
2303 struct btrfs_root *log;
2304 u64 index;
2305 int ret;
2306
3a5f1d45
CM
2307 if (BTRFS_I(inode)->logged_trans < trans->transid)
2308 return 0;
2309
e02119d5
CM
2310 ret = join_running_log_trans(root);
2311 if (ret)
2312 return 0;
2313 log = root->log_root;
2314 mutex_lock(&BTRFS_I(inode)->log_mutex);
2315
2316 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2317 dirid, &index);
2318 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4a500fd1
YZ
2319 if (ret == -ENOSPC) {
2320 root->fs_info->last_trans_log_full_commit = trans->transid;
2321 ret = 0;
2322 }
12fcfd22 2323 btrfs_end_log_trans(root);
e02119d5 2324
e02119d5
CM
2325 return ret;
2326}
2327
2328/*
2329 * creates a range item in the log for 'dirid'. first_offset and
2330 * last_offset tell us which parts of the key space the log should
2331 * be considered authoritative for.
2332 */
2333static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *log,
2335 struct btrfs_path *path,
2336 int key_type, u64 dirid,
2337 u64 first_offset, u64 last_offset)
2338{
2339 int ret;
2340 struct btrfs_key key;
2341 struct btrfs_dir_log_item *item;
2342
2343 key.objectid = dirid;
2344 key.offset = first_offset;
2345 if (key_type == BTRFS_DIR_ITEM_KEY)
2346 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2347 else
2348 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2349 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
2350 if (ret)
2351 return ret;
e02119d5
CM
2352
2353 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2354 struct btrfs_dir_log_item);
2355 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2356 btrfs_mark_buffer_dirty(path->nodes[0]);
2357 btrfs_release_path(log, path);
2358 return 0;
2359}
2360
2361/*
2362 * log all the items included in the current transaction for a given
2363 * directory. This also creates the range items in the log tree required
2364 * to replay anything deleted before the fsync
2365 */
2366static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2367 struct btrfs_root *root, struct inode *inode,
2368 struct btrfs_path *path,
2369 struct btrfs_path *dst_path, int key_type,
2370 u64 min_offset, u64 *last_offset_ret)
2371{
2372 struct btrfs_key min_key;
2373 struct btrfs_key max_key;
2374 struct btrfs_root *log = root->log_root;
2375 struct extent_buffer *src;
4a500fd1 2376 int err = 0;
e02119d5
CM
2377 int ret;
2378 int i;
2379 int nritems;
2380 u64 first_offset = min_offset;
2381 u64 last_offset = (u64)-1;
2382
2383 log = root->log_root;
2384 max_key.objectid = inode->i_ino;
2385 max_key.offset = (u64)-1;
2386 max_key.type = key_type;
2387
2388 min_key.objectid = inode->i_ino;
2389 min_key.type = key_type;
2390 min_key.offset = min_offset;
2391
2392 path->keep_locks = 1;
2393
2394 ret = btrfs_search_forward(root, &min_key, &max_key,
2395 path, 0, trans->transid);
2396
2397 /*
2398 * we didn't find anything from this transaction, see if there
2399 * is anything at all
2400 */
2401 if (ret != 0 || min_key.objectid != inode->i_ino ||
2402 min_key.type != key_type) {
2403 min_key.objectid = inode->i_ino;
2404 min_key.type = key_type;
2405 min_key.offset = (u64)-1;
2406 btrfs_release_path(root, path);
2407 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2408 if (ret < 0) {
2409 btrfs_release_path(root, path);
2410 return ret;
2411 }
2412 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2413
2414 /* if ret == 0 there are items for this type,
2415 * create a range to tell us the last key of this type.
2416 * otherwise, there are no items in this directory after
2417 * *min_offset, and we create a range to indicate that.
2418 */
2419 if (ret == 0) {
2420 struct btrfs_key tmp;
2421 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2422 path->slots[0]);
d397712b 2423 if (key_type == tmp.type)
e02119d5 2424 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2425 }
2426 goto done;
2427 }
2428
2429 /* go backward to find any previous key */
2430 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2431 if (ret == 0) {
2432 struct btrfs_key tmp;
2433 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2434 if (key_type == tmp.type) {
2435 first_offset = tmp.offset;
2436 ret = overwrite_item(trans, log, dst_path,
2437 path->nodes[0], path->slots[0],
2438 &tmp);
4a500fd1
YZ
2439 if (ret) {
2440 err = ret;
2441 goto done;
2442 }
e02119d5
CM
2443 }
2444 }
2445 btrfs_release_path(root, path);
2446
2447 /* find the first key from this transaction again */
2448 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2449 if (ret != 0) {
2450 WARN_ON(1);
2451 goto done;
2452 }
2453
2454 /*
2455 * we have a block from this transaction, log every item in it
2456 * from our directory
2457 */
d397712b 2458 while (1) {
e02119d5
CM
2459 struct btrfs_key tmp;
2460 src = path->nodes[0];
2461 nritems = btrfs_header_nritems(src);
2462 for (i = path->slots[0]; i < nritems; i++) {
2463 btrfs_item_key_to_cpu(src, &min_key, i);
2464
2465 if (min_key.objectid != inode->i_ino ||
2466 min_key.type != key_type)
2467 goto done;
2468 ret = overwrite_item(trans, log, dst_path, src, i,
2469 &min_key);
4a500fd1
YZ
2470 if (ret) {
2471 err = ret;
2472 goto done;
2473 }
e02119d5
CM
2474 }
2475 path->slots[0] = nritems;
2476
2477 /*
2478 * look ahead to the next item and see if it is also
2479 * from this directory and from this transaction
2480 */
2481 ret = btrfs_next_leaf(root, path);
2482 if (ret == 1) {
2483 last_offset = (u64)-1;
2484 goto done;
2485 }
2486 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2487 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2488 last_offset = (u64)-1;
2489 goto done;
2490 }
2491 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2492 ret = overwrite_item(trans, log, dst_path,
2493 path->nodes[0], path->slots[0],
2494 &tmp);
4a500fd1
YZ
2495 if (ret)
2496 err = ret;
2497 else
2498 last_offset = tmp.offset;
e02119d5
CM
2499 goto done;
2500 }
2501 }
2502done:
e02119d5
CM
2503 btrfs_release_path(root, path);
2504 btrfs_release_path(log, dst_path);
2505
4a500fd1
YZ
2506 if (err == 0) {
2507 *last_offset_ret = last_offset;
2508 /*
2509 * insert the log range keys to indicate where the log
2510 * is valid
2511 */
2512 ret = insert_dir_log_key(trans, log, path, key_type,
2513 inode->i_ino, first_offset,
2514 last_offset);
2515 if (ret)
2516 err = ret;
2517 }
2518 return err;
e02119d5
CM
2519}
2520
2521/*
2522 * logging directories is very similar to logging inodes, We find all the items
2523 * from the current transaction and write them to the log.
2524 *
2525 * The recovery code scans the directory in the subvolume, and if it finds a
2526 * key in the range logged that is not present in the log tree, then it means
2527 * that dir entry was unlinked during the transaction.
2528 *
2529 * In order for that scan to work, we must include one key smaller than
2530 * the smallest logged by this transaction and one key larger than the largest
2531 * key logged by this transaction.
2532 */
2533static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2534 struct btrfs_root *root, struct inode *inode,
2535 struct btrfs_path *path,
2536 struct btrfs_path *dst_path)
2537{
2538 u64 min_key;
2539 u64 max_key;
2540 int ret;
2541 int key_type = BTRFS_DIR_ITEM_KEY;
2542
2543again:
2544 min_key = 0;
2545 max_key = 0;
d397712b 2546 while (1) {
e02119d5
CM
2547 ret = log_dir_items(trans, root, inode, path,
2548 dst_path, key_type, min_key,
2549 &max_key);
4a500fd1
YZ
2550 if (ret)
2551 return ret;
e02119d5
CM
2552 if (max_key == (u64)-1)
2553 break;
2554 min_key = max_key + 1;
2555 }
2556
2557 if (key_type == BTRFS_DIR_ITEM_KEY) {
2558 key_type = BTRFS_DIR_INDEX_KEY;
2559 goto again;
2560 }
2561 return 0;
2562}
2563
2564/*
2565 * a helper function to drop items from the log before we relog an
2566 * inode. max_key_type indicates the highest item type to remove.
2567 * This cannot be run for file data extents because it does not
2568 * free the extents they point to.
2569 */
2570static int drop_objectid_items(struct btrfs_trans_handle *trans,
2571 struct btrfs_root *log,
2572 struct btrfs_path *path,
2573 u64 objectid, int max_key_type)
2574{
2575 int ret;
2576 struct btrfs_key key;
2577 struct btrfs_key found_key;
2578
2579 key.objectid = objectid;
2580 key.type = max_key_type;
2581 key.offset = (u64)-1;
2582
d397712b 2583 while (1) {
e02119d5 2584 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4a500fd1
YZ
2585 BUG_ON(ret == 0);
2586 if (ret < 0)
e02119d5
CM
2587 break;
2588
2589 if (path->slots[0] == 0)
2590 break;
2591
2592 path->slots[0]--;
2593 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2594 path->slots[0]);
2595
2596 if (found_key.objectid != objectid)
2597 break;
2598
2599 ret = btrfs_del_item(trans, log, path);
2600 BUG_ON(ret);
2601 btrfs_release_path(log, path);
2602 }
2603 btrfs_release_path(log, path);
4a500fd1 2604 return ret;
e02119d5
CM
2605}
2606
31ff1cd2
CM
2607static noinline int copy_items(struct btrfs_trans_handle *trans,
2608 struct btrfs_root *log,
2609 struct btrfs_path *dst_path,
2610 struct extent_buffer *src,
2611 int start_slot, int nr, int inode_only)
2612{
2613 unsigned long src_offset;
2614 unsigned long dst_offset;
2615 struct btrfs_file_extent_item *extent;
2616 struct btrfs_inode_item *inode_item;
2617 int ret;
2618 struct btrfs_key *ins_keys;
2619 u32 *ins_sizes;
2620 char *ins_data;
2621 int i;
d20f7043
CM
2622 struct list_head ordered_sums;
2623
2624 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
2625
2626 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2627 nr * sizeof(u32), GFP_NOFS);
2a29edc6 2628 if (!ins_data)
2629 return -ENOMEM;
2630
31ff1cd2
CM
2631 ins_sizes = (u32 *)ins_data;
2632 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2633
2634 for (i = 0; i < nr; i++) {
2635 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2636 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2637 }
2638 ret = btrfs_insert_empty_items(trans, log, dst_path,
2639 ins_keys, ins_sizes, nr);
4a500fd1
YZ
2640 if (ret) {
2641 kfree(ins_data);
2642 return ret;
2643 }
31ff1cd2 2644
5d4f98a2 2645 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
2646 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2647 dst_path->slots[0]);
2648
2649 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2650
2651 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2652 src_offset, ins_sizes[i]);
2653
2654 if (inode_only == LOG_INODE_EXISTS &&
2655 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2656 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2657 dst_path->slots[0],
2658 struct btrfs_inode_item);
2659 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2660
2661 /* set the generation to zero so the recover code
2662 * can tell the difference between an logging
2663 * just to say 'this inode exists' and a logging
2664 * to say 'update this inode with these values'
2665 */
2666 btrfs_set_inode_generation(dst_path->nodes[0],
2667 inode_item, 0);
2668 }
2669 /* take a reference on file data extents so that truncates
2670 * or deletes of this inode don't have to relog the inode
2671 * again
2672 */
2673 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2674 int found_type;
2675 extent = btrfs_item_ptr(src, start_slot + i,
2676 struct btrfs_file_extent_item);
2677
2678 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2679 if (found_type == BTRFS_FILE_EXTENT_REG ||
2680 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2
YZ
2681 u64 ds, dl, cs, cl;
2682 ds = btrfs_file_extent_disk_bytenr(src,
2683 extent);
2684 /* ds == 0 is a hole */
2685 if (ds == 0)
2686 continue;
2687
2688 dl = btrfs_file_extent_disk_num_bytes(src,
2689 extent);
2690 cs = btrfs_file_extent_offset(src, extent);
2691 cl = btrfs_file_extent_num_bytes(src,
a419aef8 2692 extent);
580afd76
CM
2693 if (btrfs_file_extent_compression(src,
2694 extent)) {
2695 cs = 0;
2696 cl = dl;
2697 }
5d4f98a2
YZ
2698
2699 ret = btrfs_lookup_csums_range(
2700 log->fs_info->csum_root,
2701 ds + cs, ds + cs + cl - 1,
2702 &ordered_sums);
2703 BUG_ON(ret);
31ff1cd2
CM
2704 }
2705 }
31ff1cd2
CM
2706 }
2707
2708 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2709 btrfs_release_path(log, dst_path);
2710 kfree(ins_data);
d20f7043
CM
2711
2712 /*
2713 * we have to do this after the loop above to avoid changing the
2714 * log tree while trying to change the log tree.
2715 */
4a500fd1 2716 ret = 0;
d397712b 2717 while (!list_empty(&ordered_sums)) {
d20f7043
CM
2718 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2719 struct btrfs_ordered_sum,
2720 list);
4a500fd1
YZ
2721 if (!ret)
2722 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
2723 list_del(&sums->list);
2724 kfree(sums);
2725 }
4a500fd1 2726 return ret;
31ff1cd2
CM
2727}
2728
e02119d5
CM
2729/* log a single inode in the tree log.
2730 * At least one parent directory for this inode must exist in the tree
2731 * or be logged already.
2732 *
2733 * Any items from this inode changed by the current transaction are copied
2734 * to the log tree. An extra reference is taken on any extents in this
2735 * file, allowing us to avoid a whole pile of corner cases around logging
2736 * blocks that have been removed from the tree.
2737 *
2738 * See LOG_INODE_ALL and related defines for a description of what inode_only
2739 * does.
2740 *
2741 * This handles both files and directories.
2742 */
12fcfd22 2743static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
2744 struct btrfs_root *root, struct inode *inode,
2745 int inode_only)
2746{
2747 struct btrfs_path *path;
2748 struct btrfs_path *dst_path;
2749 struct btrfs_key min_key;
2750 struct btrfs_key max_key;
2751 struct btrfs_root *log = root->log_root;
31ff1cd2 2752 struct extent_buffer *src = NULL;
4a500fd1 2753 int err = 0;
e02119d5 2754 int ret;
3a5f1d45 2755 int nritems;
31ff1cd2
CM
2756 int ins_start_slot = 0;
2757 int ins_nr;
e02119d5
CM
2758
2759 log = root->log_root;
2760
2761 path = btrfs_alloc_path();
5df67083
TI
2762 if (!path)
2763 return -ENOMEM;
e02119d5 2764 dst_path = btrfs_alloc_path();
5df67083
TI
2765 if (!dst_path) {
2766 btrfs_free_path(path);
2767 return -ENOMEM;
2768 }
e02119d5
CM
2769
2770 min_key.objectid = inode->i_ino;
2771 min_key.type = BTRFS_INODE_ITEM_KEY;
2772 min_key.offset = 0;
2773
2774 max_key.objectid = inode->i_ino;
12fcfd22
CM
2775
2776 /* today the code can only do partial logging of directories */
2777 if (!S_ISDIR(inode->i_mode))
2778 inode_only = LOG_INODE_ALL;
2779
e02119d5
CM
2780 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2781 max_key.type = BTRFS_XATTR_ITEM_KEY;
2782 else
2783 max_key.type = (u8)-1;
2784 max_key.offset = (u64)-1;
2785
e02119d5
CM
2786 mutex_lock(&BTRFS_I(inode)->log_mutex);
2787
2788 /*
2789 * a brute force approach to making sure we get the most uptodate
2790 * copies of everything.
2791 */
2792 if (S_ISDIR(inode->i_mode)) {
2793 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2794
2795 if (inode_only == LOG_INODE_EXISTS)
2796 max_key_type = BTRFS_XATTR_ITEM_KEY;
2797 ret = drop_objectid_items(trans, log, path,
2798 inode->i_ino, max_key_type);
2799 } else {
2800 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2801 }
4a500fd1
YZ
2802 if (ret) {
2803 err = ret;
2804 goto out_unlock;
2805 }
e02119d5
CM
2806 path->keep_locks = 1;
2807
d397712b 2808 while (1) {
31ff1cd2 2809 ins_nr = 0;
e02119d5
CM
2810 ret = btrfs_search_forward(root, &min_key, &max_key,
2811 path, 0, trans->transid);
2812 if (ret != 0)
2813 break;
3a5f1d45 2814again:
31ff1cd2 2815 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2816 if (min_key.objectid != inode->i_ino)
2817 break;
2818 if (min_key.type > max_key.type)
2819 break;
31ff1cd2 2820
e02119d5 2821 src = path->nodes[0];
31ff1cd2
CM
2822 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2823 ins_nr++;
2824 goto next_slot;
2825 } else if (!ins_nr) {
2826 ins_start_slot = path->slots[0];
2827 ins_nr = 1;
2828 goto next_slot;
e02119d5
CM
2829 }
2830
31ff1cd2
CM
2831 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2832 ins_nr, inode_only);
4a500fd1
YZ
2833 if (ret) {
2834 err = ret;
2835 goto out_unlock;
2836 }
31ff1cd2
CM
2837 ins_nr = 1;
2838 ins_start_slot = path->slots[0];
2839next_slot:
e02119d5 2840
3a5f1d45
CM
2841 nritems = btrfs_header_nritems(path->nodes[0]);
2842 path->slots[0]++;
2843 if (path->slots[0] < nritems) {
2844 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2845 path->slots[0]);
2846 goto again;
2847 }
31ff1cd2
CM
2848 if (ins_nr) {
2849 ret = copy_items(trans, log, dst_path, src,
2850 ins_start_slot,
2851 ins_nr, inode_only);
4a500fd1
YZ
2852 if (ret) {
2853 err = ret;
2854 goto out_unlock;
2855 }
31ff1cd2
CM
2856 ins_nr = 0;
2857 }
3a5f1d45
CM
2858 btrfs_release_path(root, path);
2859
e02119d5
CM
2860 if (min_key.offset < (u64)-1)
2861 min_key.offset++;
2862 else if (min_key.type < (u8)-1)
2863 min_key.type++;
2864 else if (min_key.objectid < (u64)-1)
2865 min_key.objectid++;
2866 else
2867 break;
2868 }
31ff1cd2
CM
2869 if (ins_nr) {
2870 ret = copy_items(trans, log, dst_path, src,
2871 ins_start_slot,
2872 ins_nr, inode_only);
4a500fd1
YZ
2873 if (ret) {
2874 err = ret;
2875 goto out_unlock;
2876 }
31ff1cd2
CM
2877 ins_nr = 0;
2878 }
2879 WARN_ON(ins_nr);
9623f9a3 2880 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2881 btrfs_release_path(root, path);
2882 btrfs_release_path(log, dst_path);
2883 ret = log_directory_changes(trans, root, inode, path, dst_path);
4a500fd1
YZ
2884 if (ret) {
2885 err = ret;
2886 goto out_unlock;
2887 }
e02119d5 2888 }
3a5f1d45 2889 BTRFS_I(inode)->logged_trans = trans->transid;
4a500fd1 2890out_unlock:
e02119d5
CM
2891 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2892
2893 btrfs_free_path(path);
2894 btrfs_free_path(dst_path);
4a500fd1 2895 return err;
e02119d5
CM
2896}
2897
12fcfd22
CM
2898/*
2899 * follow the dentry parent pointers up the chain and see if any
2900 * of the directories in it require a full commit before they can
2901 * be logged. Returns zero if nothing special needs to be done or 1 if
2902 * a full commit is required.
2903 */
2904static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2905 struct inode *inode,
2906 struct dentry *parent,
2907 struct super_block *sb,
2908 u64 last_committed)
e02119d5 2909{
12fcfd22
CM
2910 int ret = 0;
2911 struct btrfs_root *root;
6a912213 2912 struct dentry *old_parent = NULL;
e02119d5 2913
af4176b4
CM
2914 /*
2915 * for regular files, if its inode is already on disk, we don't
2916 * have to worry about the parents at all. This is because
2917 * we can use the last_unlink_trans field to record renames
2918 * and other fun in this file.
2919 */
2920 if (S_ISREG(inode->i_mode) &&
2921 BTRFS_I(inode)->generation <= last_committed &&
2922 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2923 goto out;
2924
12fcfd22
CM
2925 if (!S_ISDIR(inode->i_mode)) {
2926 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2927 goto out;
2928 inode = parent->d_inode;
2929 }
2930
2931 while (1) {
2932 BTRFS_I(inode)->logged_trans = trans->transid;
2933 smp_mb();
2934
2935 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2936 root = BTRFS_I(inode)->root;
2937
2938 /*
2939 * make sure any commits to the log are forced
2940 * to be full commits
2941 */
2942 root->fs_info->last_trans_log_full_commit =
2943 trans->transid;
2944 ret = 1;
2945 break;
2946 }
2947
2948 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2949 break;
2950
76dda93c 2951 if (IS_ROOT(parent))
12fcfd22
CM
2952 break;
2953
6a912213
JB
2954 parent = dget_parent(parent);
2955 dput(old_parent);
2956 old_parent = parent;
12fcfd22
CM
2957 inode = parent->d_inode;
2958
2959 }
6a912213 2960 dput(old_parent);
12fcfd22 2961out:
e02119d5
CM
2962 return ret;
2963}
2964
257c62e1
CM
2965static int inode_in_log(struct btrfs_trans_handle *trans,
2966 struct inode *inode)
2967{
2968 struct btrfs_root *root = BTRFS_I(inode)->root;
2969 int ret = 0;
2970
2971 mutex_lock(&root->log_mutex);
2972 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2973 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2974 ret = 1;
2975 mutex_unlock(&root->log_mutex);
2976 return ret;
2977}
2978
2979
e02119d5
CM
2980/*
2981 * helper function around btrfs_log_inode to make sure newly created
2982 * parent directories also end up in the log. A minimal inode and backref
2983 * only logging is done of any parent directories that are older than
2984 * the last committed transaction
2985 */
12fcfd22
CM
2986int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2987 struct btrfs_root *root, struct inode *inode,
2988 struct dentry *parent, int exists_only)
e02119d5 2989{
12fcfd22 2990 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 2991 struct super_block *sb;
6a912213 2992 struct dentry *old_parent = NULL;
12fcfd22
CM
2993 int ret = 0;
2994 u64 last_committed = root->fs_info->last_trans_committed;
2995
2996 sb = inode->i_sb;
2997
3a5e1404
SW
2998 if (btrfs_test_opt(root, NOTREELOG)) {
2999 ret = 1;
3000 goto end_no_trans;
3001 }
3002
12fcfd22
CM
3003 if (root->fs_info->last_trans_log_full_commit >
3004 root->fs_info->last_trans_committed) {
3005 ret = 1;
3006 goto end_no_trans;
3007 }
3008
76dda93c
YZ
3009 if (root != BTRFS_I(inode)->root ||
3010 btrfs_root_refs(&root->root_item) == 0) {
3011 ret = 1;
3012 goto end_no_trans;
3013 }
3014
12fcfd22
CM
3015 ret = check_parent_dirs_for_sync(trans, inode, parent,
3016 sb, last_committed);
3017 if (ret)
3018 goto end_no_trans;
e02119d5 3019
257c62e1
CM
3020 if (inode_in_log(trans, inode)) {
3021 ret = BTRFS_NO_LOG_SYNC;
3022 goto end_no_trans;
3023 }
3024
4a500fd1
YZ
3025 ret = start_log_trans(trans, root);
3026 if (ret)
3027 goto end_trans;
e02119d5 3028
12fcfd22 3029 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3030 if (ret)
3031 goto end_trans;
12fcfd22 3032
af4176b4
CM
3033 /*
3034 * for regular files, if its inode is already on disk, we don't
3035 * have to worry about the parents at all. This is because
3036 * we can use the last_unlink_trans field to record renames
3037 * and other fun in this file.
3038 */
3039 if (S_ISREG(inode->i_mode) &&
3040 BTRFS_I(inode)->generation <= last_committed &&
4a500fd1
YZ
3041 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
3042 ret = 0;
3043 goto end_trans;
3044 }
af4176b4
CM
3045
3046 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
3047 while (1) {
3048 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
3049 break;
3050
12fcfd22 3051 inode = parent->d_inode;
76dda93c
YZ
3052 if (root != BTRFS_I(inode)->root)
3053 break;
3054
12fcfd22
CM
3055 if (BTRFS_I(inode)->generation >
3056 root->fs_info->last_trans_committed) {
3057 ret = btrfs_log_inode(trans, root, inode, inode_only);
4a500fd1
YZ
3058 if (ret)
3059 goto end_trans;
12fcfd22 3060 }
76dda93c 3061 if (IS_ROOT(parent))
e02119d5 3062 break;
12fcfd22 3063
6a912213
JB
3064 parent = dget_parent(parent);
3065 dput(old_parent);
3066 old_parent = parent;
e02119d5 3067 }
12fcfd22 3068 ret = 0;
4a500fd1 3069end_trans:
6a912213 3070 dput(old_parent);
4a500fd1
YZ
3071 if (ret < 0) {
3072 BUG_ON(ret != -ENOSPC);
3073 root->fs_info->last_trans_log_full_commit = trans->transid;
3074 ret = 1;
3075 }
12fcfd22
CM
3076 btrfs_end_log_trans(root);
3077end_no_trans:
3078 return ret;
e02119d5
CM
3079}
3080
3081/*
3082 * it is not safe to log dentry if the chunk root has added new
3083 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3084 * If this returns 1, you must commit the transaction to safely get your
3085 * data on disk.
3086 */
3087int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
3088 struct btrfs_root *root, struct dentry *dentry)
3089{
6a912213
JB
3090 struct dentry *parent = dget_parent(dentry);
3091 int ret;
3092
3093 ret = btrfs_log_inode_parent(trans, root, dentry->d_inode, parent, 0);
3094 dput(parent);
3095
3096 return ret;
e02119d5
CM
3097}
3098
3099/*
3100 * should be called during mount to recover any replay any log trees
3101 * from the FS
3102 */
3103int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
3104{
3105 int ret;
3106 struct btrfs_path *path;
3107 struct btrfs_trans_handle *trans;
3108 struct btrfs_key key;
3109 struct btrfs_key found_key;
3110 struct btrfs_key tmp_key;
3111 struct btrfs_root *log;
3112 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3113 struct walk_control wc = {
3114 .process_func = process_one_buffer,
3115 .stage = 0,
3116 };
3117
e02119d5 3118 path = btrfs_alloc_path();
db5b493a
TI
3119 if (!path)
3120 return -ENOMEM;
3121
3122 fs_info->log_root_recovering = 1;
e02119d5 3123
4a500fd1 3124 trans = btrfs_start_transaction(fs_info->tree_root, 0);
98d5dc13 3125 BUG_ON(IS_ERR(trans));
e02119d5
CM
3126
3127 wc.trans = trans;
3128 wc.pin = 1;
3129
db5b493a
TI
3130 ret = walk_log_tree(trans, log_root_tree, &wc);
3131 BUG_ON(ret);
e02119d5
CM
3132
3133again:
3134 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3135 key.offset = (u64)-1;
3136 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3137
d397712b 3138 while (1) {
e02119d5
CM
3139 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3140 if (ret < 0)
3141 break;
3142 if (ret > 0) {
3143 if (path->slots[0] == 0)
3144 break;
3145 path->slots[0]--;
3146 }
3147 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3148 path->slots[0]);
3149 btrfs_release_path(log_root_tree, path);
3150 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3151 break;
3152
3153 log = btrfs_read_fs_root_no_radix(log_root_tree,
3154 &found_key);
db5b493a 3155 BUG_ON(IS_ERR(log));
e02119d5
CM
3156
3157 tmp_key.objectid = found_key.offset;
3158 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3159 tmp_key.offset = (u64)-1;
3160
3161 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
e02119d5
CM
3162 BUG_ON(!wc.replay_dest);
3163
07d400a6 3164 wc.replay_dest->log_root = log;
5d4f98a2 3165 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5
CM
3166 ret = walk_log_tree(trans, log, &wc);
3167 BUG_ON(ret);
3168
3169 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3170 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3171 path);
3172 BUG_ON(ret);
3173 }
3174
3175 key.offset = found_key.offset - 1;
07d400a6 3176 wc.replay_dest->log_root = NULL;
e02119d5 3177 free_extent_buffer(log->node);
b263c2c8 3178 free_extent_buffer(log->commit_root);
e02119d5
CM
3179 kfree(log);
3180
3181 if (found_key.offset == 0)
3182 break;
3183 }
3184 btrfs_release_path(log_root_tree, path);
3185
3186 /* step one is to pin it all, step two is to replay just inodes */
3187 if (wc.pin) {
3188 wc.pin = 0;
3189 wc.process_func = replay_one_buffer;
3190 wc.stage = LOG_WALK_REPLAY_INODES;
3191 goto again;
3192 }
3193 /* step three is to replay everything */
3194 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3195 wc.stage++;
3196 goto again;
3197 }
3198
3199 btrfs_free_path(path);
3200
3201 free_extent_buffer(log_root_tree->node);
3202 log_root_tree->log_root = NULL;
3203 fs_info->log_root_recovering = 0;
3204
3205 /* step 4: commit the transaction, which also unpins the blocks */
3206 btrfs_commit_transaction(trans, fs_info->tree_root);
3207
3208 kfree(log_root_tree);
3209 return 0;
3210}
12fcfd22
CM
3211
3212/*
3213 * there are some corner cases where we want to force a full
3214 * commit instead of allowing a directory to be logged.
3215 *
3216 * They revolve around files there were unlinked from the directory, and
3217 * this function updates the parent directory so that a full commit is
3218 * properly done if it is fsync'd later after the unlinks are done.
3219 */
3220void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3221 struct inode *dir, struct inode *inode,
3222 int for_rename)
3223{
af4176b4
CM
3224 /*
3225 * when we're logging a file, if it hasn't been renamed
3226 * or unlinked, and its inode is fully committed on disk,
3227 * we don't have to worry about walking up the directory chain
3228 * to log its parents.
3229 *
3230 * So, we use the last_unlink_trans field to put this transid
3231 * into the file. When the file is logged we check it and
3232 * don't log the parents if the file is fully on disk.
3233 */
3234 if (S_ISREG(inode->i_mode))
3235 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3236
12fcfd22
CM
3237 /*
3238 * if this directory was already logged any new
3239 * names for this file/dir will get recorded
3240 */
3241 smp_mb();
3242 if (BTRFS_I(dir)->logged_trans == trans->transid)
3243 return;
3244
3245 /*
3246 * if the inode we're about to unlink was logged,
3247 * the log will be properly updated for any new names
3248 */
3249 if (BTRFS_I(inode)->logged_trans == trans->transid)
3250 return;
3251
3252 /*
3253 * when renaming files across directories, if the directory
3254 * there we're unlinking from gets fsync'd later on, there's
3255 * no way to find the destination directory later and fsync it
3256 * properly. So, we have to be conservative and force commits
3257 * so the new name gets discovered.
3258 */
3259 if (for_rename)
3260 goto record;
3261
3262 /* we can safely do the unlink without any special recording */
3263 return;
3264
3265record:
3266 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3267}
3268
3269/*
3270 * Call this after adding a new name for a file and it will properly
3271 * update the log to reflect the new name.
3272 *
3273 * It will return zero if all goes well, and it will return 1 if a
3274 * full transaction commit is required.
3275 */
3276int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3277 struct inode *inode, struct inode *old_dir,
3278 struct dentry *parent)
3279{
3280 struct btrfs_root * root = BTRFS_I(inode)->root;
3281
af4176b4
CM
3282 /*
3283 * this will force the logging code to walk the dentry chain
3284 * up for the file
3285 */
3286 if (S_ISREG(inode->i_mode))
3287 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3288
12fcfd22
CM
3289 /*
3290 * if this inode hasn't been logged and directory we're renaming it
3291 * from hasn't been logged, we don't need to log it
3292 */
3293 if (BTRFS_I(inode)->logged_trans <=
3294 root->fs_info->last_trans_committed &&
3295 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3296 root->fs_info->last_trans_committed))
3297 return 0;
3298
3299 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3300}
3301