]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: fix missing hole after hole punching and fsync when using NO_HOLES
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047 97 .devs_increment = 1,
18d3abde 98 .ncopies = 1,
af902047
ZL
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047 106 .devs_increment = 1,
18d3abde 107 .ncopies = 1,
af902047
ZL
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
142static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
2b82032c 147
67a2c45e 148DEFINE_MUTEX(uuid_mutex);
8a4b83cc 149static LIST_HEAD(fs_uuids);
c73eccf7
AJ
150struct list_head *btrfs_get_fs_uuids(void)
151{
152 return &fs_uuids;
153}
8a4b83cc 154
2dfeca9b
DS
155/*
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
158 *
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
162 */
163static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
2208a378
ID
164{
165 struct btrfs_fs_devices *fs_devs;
166
78f2c9e6 167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
170
171 mutex_init(&fs_devs->device_list_mutex);
172
173 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 174 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
2208a378
ID
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378
ID
179
180 return fs_devs;
181}
182
e4404d6e
YZ
183static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184{
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
606686ee 191 rcu_string_free(device->name);
3065ae5b 192 bio_put(device->flush_bio);
e4404d6e
YZ
193 kfree(device);
194 }
195 kfree(fs_devices);
196}
197
b8b8ff59
LC
198static void btrfs_kobject_uevent(struct block_device *bdev,
199 enum kobject_action action)
200{
201 int ret;
202
203 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204 if (ret)
efe120a0 205 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
206 action,
207 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
208 &disk_to_dev(bdev->bd_disk)->kobj);
209}
210
143bede5 211void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
212{
213 struct btrfs_fs_devices *fs_devices;
8a4b83cc 214
2b82032c
YZ
215 while (!list_empty(&fs_uuids)) {
216 fs_devices = list_entry(fs_uuids.next,
217 struct btrfs_fs_devices, list);
218 list_del(&fs_devices->list);
e4404d6e 219 free_fs_devices(fs_devices);
8a4b83cc 220 }
8a4b83cc
CM
221}
222
12bd2fc0
ID
223static struct btrfs_device *__alloc_device(void)
224{
225 struct btrfs_device *dev;
226
78f2c9e6 227 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
228 if (!dev)
229 return ERR_PTR(-ENOMEM);
230
e0ae9994
DS
231 /*
232 * Preallocate a bio that's always going to be used for flushing device
233 * barriers and matches the device lifespan
234 */
235 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
236 if (!dev->flush_bio) {
237 kfree(dev);
238 return ERR_PTR(-ENOMEM);
239 }
e0ae9994 240
12bd2fc0
ID
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
9bcaaea7 251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
a1b32a59 257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 258{
8a4b83cc
CM
259 struct btrfs_fs_devices *fs_devices;
260
c6e30871 261 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266}
267
beaf8ab3
SB
268static int
269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272{
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
beaf8ab3
SB
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 284 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
beaf8ab3
SB
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303}
304
ffbd517d
CM
305static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307{
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317}
318
8b712842
CM
319/*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
143bede5 330static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 331{
0b246afa 332 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
333 struct bio *pending;
334 struct backing_dev_info *bdi;
ffbd517d 335 struct btrfs_pending_bios *pending_bios;
8b712842
CM
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
ffbd517d 339 unsigned long num_run;
d644d8a1 340 unsigned long batch_run = 0;
b765ead5 341 unsigned long last_waited = 0;
d84275c9 342 int force_reg = 0;
0e588859 343 int sync_pending = 0;
211588ad
CM
344 struct blk_plug plug;
345
346 /*
347 * this function runs all the bios we've collected for
348 * a particular device. We don't want to wander off to
349 * another device without first sending all of these down.
350 * So, setup a plug here and finish it off before we return
351 */
352 blk_start_plug(&plug);
8b712842 353
efa7c9f9 354 bdi = device->bdev->bd_bdi;
b64a2851 355
8b712842
CM
356loop:
357 spin_lock(&device->io_lock);
358
a6837051 359loop_lock:
d84275c9 360 num_run = 0;
ffbd517d 361
8b712842
CM
362 /* take all the bios off the list at once and process them
363 * later on (without the lock held). But, remember the
364 * tail and other pointers so the bios can be properly reinserted
365 * into the list if we hit congestion
366 */
d84275c9 367 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 368 pending_bios = &device->pending_sync_bios;
d84275c9
CM
369 force_reg = 1;
370 } else {
ffbd517d 371 pending_bios = &device->pending_bios;
d84275c9
CM
372 force_reg = 0;
373 }
ffbd517d
CM
374
375 pending = pending_bios->head;
376 tail = pending_bios->tail;
8b712842 377 WARN_ON(pending && !tail);
8b712842
CM
378
379 /*
380 * if pending was null this time around, no bios need processing
381 * at all and we can stop. Otherwise it'll loop back up again
382 * and do an additional check so no bios are missed.
383 *
384 * device->running_pending is used to synchronize with the
385 * schedule_bio code.
386 */
ffbd517d
CM
387 if (device->pending_sync_bios.head == NULL &&
388 device->pending_bios.head == NULL) {
8b712842
CM
389 again = 0;
390 device->running_pending = 0;
ffbd517d
CM
391 } else {
392 again = 1;
393 device->running_pending = 1;
8b712842 394 }
ffbd517d
CM
395
396 pending_bios->head = NULL;
397 pending_bios->tail = NULL;
398
8b712842
CM
399 spin_unlock(&device->io_lock);
400
d397712b 401 while (pending) {
ffbd517d
CM
402
403 rmb();
d84275c9
CM
404 /* we want to work on both lists, but do more bios on the
405 * sync list than the regular list
406 */
407 if ((num_run > 32 &&
408 pending_bios != &device->pending_sync_bios &&
409 device->pending_sync_bios.head) ||
410 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
411 device->pending_bios.head)) {
ffbd517d
CM
412 spin_lock(&device->io_lock);
413 requeue_list(pending_bios, pending, tail);
414 goto loop_lock;
415 }
416
8b712842
CM
417 cur = pending;
418 pending = pending->bi_next;
419 cur->bi_next = NULL;
b64a2851 420
dac56212 421 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 422
2ab1ba68
CM
423 /*
424 * if we're doing the sync list, record that our
425 * plug has some sync requests on it
426 *
427 * If we're doing the regular list and there are
428 * sync requests sitting around, unplug before
429 * we add more
430 */
431 if (pending_bios == &device->pending_sync_bios) {
432 sync_pending = 1;
433 } else if (sync_pending) {
434 blk_finish_plug(&plug);
435 blk_start_plug(&plug);
436 sync_pending = 0;
437 }
438
4e49ea4a 439 btrfsic_submit_bio(cur);
5ff7ba3a
CM
440 num_run++;
441 batch_run++;
853d8ec4
DS
442
443 cond_resched();
8b712842
CM
444
445 /*
446 * we made progress, there is more work to do and the bdi
447 * is now congested. Back off and let other work structs
448 * run instead
449 */
57fd5a5f 450 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 451 fs_info->fs_devices->open_devices > 1) {
b765ead5 452 struct io_context *ioc;
8b712842 453
b765ead5
CM
454 ioc = current->io_context;
455
456 /*
457 * the main goal here is that we don't want to
458 * block if we're going to be able to submit
459 * more requests without blocking.
460 *
461 * This code does two great things, it pokes into
462 * the elevator code from a filesystem _and_
463 * it makes assumptions about how batching works.
464 */
465 if (ioc && ioc->nr_batch_requests > 0 &&
466 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
467 (last_waited == 0 ||
468 ioc->last_waited == last_waited)) {
469 /*
470 * we want to go through our batch of
471 * requests and stop. So, we copy out
472 * the ioc->last_waited time and test
473 * against it before looping
474 */
475 last_waited = ioc->last_waited;
853d8ec4 476 cond_resched();
b765ead5
CM
477 continue;
478 }
8b712842 479 spin_lock(&device->io_lock);
ffbd517d 480 requeue_list(pending_bios, pending, tail);
a6837051 481 device->running_pending = 1;
8b712842
CM
482
483 spin_unlock(&device->io_lock);
a8c93d4e
QW
484 btrfs_queue_work(fs_info->submit_workers,
485 &device->work);
8b712842
CM
486 goto done;
487 }
488 }
ffbd517d 489
51684082
CM
490 cond_resched();
491 if (again)
492 goto loop;
493
494 spin_lock(&device->io_lock);
495 if (device->pending_bios.head || device->pending_sync_bios.head)
496 goto loop_lock;
497 spin_unlock(&device->io_lock);
498
8b712842 499done:
211588ad 500 blk_finish_plug(&plug);
8b712842
CM
501}
502
b2950863 503static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
504{
505 struct btrfs_device *device;
506
507 device = container_of(work, struct btrfs_device, work);
508 run_scheduled_bios(device);
509}
510
4fde46f0 511
c9162bdf 512static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
4fde46f0
AJ
513{
514 struct btrfs_fs_devices *fs_devs;
515 struct btrfs_device *dev;
516
517 if (!cur_dev->name)
518 return;
519
520 list_for_each_entry(fs_devs, &fs_uuids, list) {
521 int del = 1;
522
523 if (fs_devs->opened)
524 continue;
525 if (fs_devs->seeding)
526 continue;
527
528 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
529
530 if (dev == cur_dev)
531 continue;
532 if (!dev->name)
533 continue;
534
535 /*
536 * Todo: This won't be enough. What if the same device
537 * comes back (with new uuid and) with its mapper path?
538 * But for now, this does help as mostly an admin will
539 * either use mapper or non mapper path throughout.
540 */
541 rcu_read_lock();
542 del = strcmp(rcu_str_deref(dev->name),
543 rcu_str_deref(cur_dev->name));
544 rcu_read_unlock();
545 if (!del)
546 break;
547 }
548
549 if (!del) {
550 /* delete the stale device */
551 if (fs_devs->num_devices == 1) {
552 btrfs_sysfs_remove_fsid(fs_devs);
553 list_del(&fs_devs->list);
554 free_fs_devices(fs_devs);
6b2f4cac 555 break;
4fde46f0
AJ
556 } else {
557 fs_devs->num_devices--;
558 list_del(&dev->dev_list);
559 rcu_string_free(dev->name);
3065ae5b 560 bio_put(dev->flush_bio);
4fde46f0
AJ
561 kfree(dev);
562 }
563 break;
564 }
565 }
566}
567
60999ca4
DS
568/*
569 * Add new device to list of registered devices
570 *
571 * Returns:
572 * 1 - first time device is seen
573 * 0 - device already known
574 * < 0 - error
575 */
a1b32a59 576static noinline int device_list_add(const char *path,
8a4b83cc
CM
577 struct btrfs_super_block *disk_super,
578 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
579{
580 struct btrfs_device *device;
581 struct btrfs_fs_devices *fs_devices;
606686ee 582 struct rcu_string *name;
60999ca4 583 int ret = 0;
8a4b83cc
CM
584 u64 found_transid = btrfs_super_generation(disk_super);
585
586 fs_devices = find_fsid(disk_super->fsid);
587 if (!fs_devices) {
2208a378
ID
588 fs_devices = alloc_fs_devices(disk_super->fsid);
589 if (IS_ERR(fs_devices))
590 return PTR_ERR(fs_devices);
591
8a4b83cc 592 list_add(&fs_devices->list, &fs_uuids);
2208a378 593
8a4b83cc
CM
594 device = NULL;
595 } else {
34857e15
AJ
596 device = btrfs_find_device(fs_devices, devid,
597 disk_super->dev_item.uuid, NULL, false);
8a4b83cc 598 }
443f24fe 599
8a4b83cc 600 if (!device) {
2b82032c
YZ
601 if (fs_devices->opened)
602 return -EBUSY;
603
12bd2fc0
ID
604 device = btrfs_alloc_device(NULL, &devid,
605 disk_super->dev_item.uuid);
606 if (IS_ERR(device)) {
8a4b83cc 607 /* we can safely leave the fs_devices entry around */
12bd2fc0 608 return PTR_ERR(device);
8a4b83cc 609 }
606686ee
JB
610
611 name = rcu_string_strdup(path, GFP_NOFS);
612 if (!name) {
3065ae5b 613 bio_put(device->flush_bio);
8a4b83cc
CM
614 kfree(device);
615 return -ENOMEM;
616 }
606686ee 617 rcu_assign_pointer(device->name, name);
90519d66 618
e5e9a520 619 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 620 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 621 fs_devices->num_devices++;
e5e9a520
CM
622 mutex_unlock(&fs_devices->device_list_mutex);
623
60999ca4 624 ret = 1;
2b82032c 625 device->fs_devices = fs_devices;
606686ee 626 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
627 /*
628 * When FS is already mounted.
629 * 1. If you are here and if the device->name is NULL that
630 * means this device was missing at time of FS mount.
631 * 2. If you are here and if the device->name is different
632 * from 'path' that means either
633 * a. The same device disappeared and reappeared with
634 * different name. or
635 * b. The missing-disk-which-was-replaced, has
636 * reappeared now.
637 *
638 * We must allow 1 and 2a above. But 2b would be a spurious
639 * and unintentional.
640 *
641 * Further in case of 1 and 2a above, the disk at 'path'
642 * would have missed some transaction when it was away and
643 * in case of 2a the stale bdev has to be updated as well.
644 * 2b must not be allowed at all time.
645 */
646
647 /*
0f23ae74
CM
648 * For now, we do allow update to btrfs_fs_device through the
649 * btrfs dev scan cli after FS has been mounted. We're still
650 * tracking a problem where systems fail mount by subvolume id
651 * when we reject replacement on a mounted FS.
b96de000 652 */
0f23ae74 653 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
654 /*
655 * That is if the FS is _not_ mounted and if you
656 * are here, that means there is more than one
657 * disk with same uuid and devid.We keep the one
658 * with larger generation number or the last-in if
659 * generation are equal.
660 */
0f23ae74 661 return -EEXIST;
77bdae4d 662 }
b96de000 663
606686ee 664 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
665 if (!name)
666 return -ENOMEM;
606686ee
JB
667 rcu_string_free(device->name);
668 rcu_assign_pointer(device->name, name);
cd02dca5
CM
669 if (device->missing) {
670 fs_devices->missing_devices--;
671 device->missing = 0;
672 }
8a4b83cc
CM
673 }
674
77bdae4d
AJ
675 /*
676 * Unmount does not free the btrfs_device struct but would zero
677 * generation along with most of the other members. So just update
678 * it back. We need it to pick the disk with largest generation
679 * (as above).
680 */
681 if (!fs_devices->opened)
682 device->generation = found_transid;
683
4fde46f0
AJ
684 /*
685 * if there is new btrfs on an already registered device,
686 * then remove the stale device entry.
687 */
02feae3c
AJ
688 if (ret > 0)
689 btrfs_free_stale_device(device);
4fde46f0 690
8a4b83cc 691 *fs_devices_ret = fs_devices;
60999ca4
DS
692
693 return ret;
8a4b83cc
CM
694}
695
e4404d6e
YZ
696static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
697{
698 struct btrfs_fs_devices *fs_devices;
699 struct btrfs_device *device;
700 struct btrfs_device *orig_dev;
701
2208a378
ID
702 fs_devices = alloc_fs_devices(orig->fsid);
703 if (IS_ERR(fs_devices))
704 return fs_devices;
e4404d6e 705
adbbb863 706 mutex_lock(&orig->device_list_mutex);
02db0844 707 fs_devices->total_devices = orig->total_devices;
e4404d6e 708
46224705 709 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 710 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
711 struct rcu_string *name;
712
12bd2fc0
ID
713 device = btrfs_alloc_device(NULL, &orig_dev->devid,
714 orig_dev->uuid);
715 if (IS_ERR(device))
e4404d6e
YZ
716 goto error;
717
606686ee
JB
718 /*
719 * This is ok to do without rcu read locked because we hold the
720 * uuid mutex so nothing we touch in here is going to disappear.
721 */
e755f780 722 if (orig_dev->name) {
78f2c9e6
DS
723 name = rcu_string_strdup(orig_dev->name->str,
724 GFP_KERNEL);
e755f780 725 if (!name) {
3065ae5b 726 bio_put(device->flush_bio);
e755f780
AJ
727 kfree(device);
728 goto error;
729 }
730 rcu_assign_pointer(device->name, name);
fd2696f3 731 }
e4404d6e 732
e4404d6e
YZ
733 list_add(&device->dev_list, &fs_devices->devices);
734 device->fs_devices = fs_devices;
735 fs_devices->num_devices++;
736 }
adbbb863 737 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
738 return fs_devices;
739error:
adbbb863 740 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
741 free_fs_devices(fs_devices);
742 return ERR_PTR(-ENOMEM);
743}
744
9eaed21e 745void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 746{
c6e30871 747 struct btrfs_device *device, *next;
443f24fe 748 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 749
dfe25020
CM
750 mutex_lock(&uuid_mutex);
751again:
46224705 752 /* This is the initialized path, it is safe to release the devices. */
c6e30871 753 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 754 if (device->in_fs_metadata) {
63a212ab 755 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
756 (!latest_dev ||
757 device->generation > latest_dev->generation)) {
758 latest_dev = device;
a6b0d5c8 759 }
2b82032c 760 continue;
a6b0d5c8 761 }
2b82032c 762
8dabb742
SB
763 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
764 /*
765 * In the first step, keep the device which has
766 * the correct fsid and the devid that is used
767 * for the dev_replace procedure.
768 * In the second step, the dev_replace state is
769 * read from the device tree and it is known
770 * whether the procedure is really active or
771 * not, which means whether this device is
772 * used or whether it should be removed.
773 */
774 if (step == 0 || device->is_tgtdev_for_dev_replace) {
775 continue;
776 }
777 }
2b82032c 778 if (device->bdev) {
d4d77629 779 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
780 device->bdev = NULL;
781 fs_devices->open_devices--;
782 }
783 if (device->writeable) {
784 list_del_init(&device->dev_alloc_list);
785 device->writeable = 0;
8dabb742
SB
786 if (!device->is_tgtdev_for_dev_replace)
787 fs_devices->rw_devices--;
2b82032c 788 }
e4404d6e
YZ
789 list_del_init(&device->dev_list);
790 fs_devices->num_devices--;
606686ee 791 rcu_string_free(device->name);
3065ae5b 792 bio_put(device->flush_bio);
e4404d6e 793 kfree(device);
dfe25020 794 }
2b82032c
YZ
795
796 if (fs_devices->seed) {
797 fs_devices = fs_devices->seed;
2b82032c
YZ
798 goto again;
799 }
800
443f24fe 801 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 802
dfe25020 803 mutex_unlock(&uuid_mutex);
dfe25020 804}
a0af469b 805
1f78160c
XG
806static void __free_device(struct work_struct *work)
807{
808 struct btrfs_device *device;
809
810 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 811 rcu_string_free(device->name);
e0ae9994 812 bio_put(device->flush_bio);
1f78160c
XG
813 kfree(device);
814}
815
816static void free_device(struct rcu_head *head)
817{
818 struct btrfs_device *device;
819
820 device = container_of(head, struct btrfs_device, rcu);
821
822 INIT_WORK(&device->rcu_work, __free_device);
823 schedule_work(&device->rcu_work);
824}
825
14238819
AJ
826static void btrfs_close_bdev(struct btrfs_device *device)
827{
828 if (device->bdev && device->writeable) {
829 sync_blockdev(device->bdev);
830 invalidate_bdev(device->bdev);
831 }
832
833 if (device->bdev)
834 blkdev_put(device->bdev, device->mode);
835}
836
0ccd0528 837static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
838{
839 struct btrfs_fs_devices *fs_devices = device->fs_devices;
840 struct btrfs_device *new_device;
841 struct rcu_string *name;
842
843 if (device->bdev)
844 fs_devices->open_devices--;
845
846 if (device->writeable &&
847 device->devid != BTRFS_DEV_REPLACE_DEVID) {
848 list_del_init(&device->dev_alloc_list);
849 fs_devices->rw_devices--;
850 }
851
852 if (device->missing)
853 fs_devices->missing_devices--;
854
855 new_device = btrfs_alloc_device(NULL, &device->devid,
856 device->uuid);
857 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
858
859 /* Safe because we are under uuid_mutex */
860 if (device->name) {
861 name = rcu_string_strdup(device->name->str, GFP_NOFS);
862 BUG_ON(!name); /* -ENOMEM */
863 rcu_assign_pointer(new_device->name, name);
864 }
865
866 list_replace_rcu(&device->dev_list, &new_device->dev_list);
867 new_device->fs_devices = device->fs_devices;
f448341a
AJ
868}
869
2b82032c 870static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 871{
2037a093 872 struct btrfs_device *device, *tmp;
0ccd0528
AJ
873 struct list_head pending_put;
874
875 INIT_LIST_HEAD(&pending_put);
e4404d6e 876
2b82032c
YZ
877 if (--fs_devices->opened > 0)
878 return 0;
8a4b83cc 879
c9513edb 880 mutex_lock(&fs_devices->device_list_mutex);
2037a093 881 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
882 btrfs_prepare_close_one_device(device);
883 list_add(&device->dev_list, &pending_put);
8a4b83cc 884 }
c9513edb
XG
885 mutex_unlock(&fs_devices->device_list_mutex);
886
0ccd0528
AJ
887 /*
888 * btrfs_show_devname() is using the device_list_mutex,
889 * sometimes call to blkdev_put() leads vfs calling
890 * into this func. So do put outside of device_list_mutex,
891 * as of now.
892 */
893 while (!list_empty(&pending_put)) {
894 device = list_first_entry(&pending_put,
895 struct btrfs_device, dev_list);
896 list_del(&device->dev_list);
897 btrfs_close_bdev(device);
898 call_rcu(&device->rcu, free_device);
899 }
900
e4404d6e
YZ
901 WARN_ON(fs_devices->open_devices);
902 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
903 fs_devices->opened = 0;
904 fs_devices->seeding = 0;
2b82032c 905
8a4b83cc
CM
906 return 0;
907}
908
2b82032c
YZ
909int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
910{
e4404d6e 911 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
912 int ret;
913
914 mutex_lock(&uuid_mutex);
915 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
916 if (!fs_devices->opened) {
917 seed_devices = fs_devices->seed;
918 fs_devices->seed = NULL;
919 }
2b82032c 920 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
921
922 while (seed_devices) {
923 fs_devices = seed_devices;
924 seed_devices = fs_devices->seed;
925 __btrfs_close_devices(fs_devices);
926 free_fs_devices(fs_devices);
927 }
bc178622
ES
928 /*
929 * Wait for rcu kworkers under __btrfs_close_devices
930 * to finish all blkdev_puts so device is really
931 * free when umount is done.
932 */
933 rcu_barrier();
2b82032c
YZ
934 return ret;
935}
936
e4404d6e
YZ
937static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
938 fmode_t flags, void *holder)
8a4b83cc 939{
d5e2003c 940 struct request_queue *q;
8a4b83cc
CM
941 struct block_device *bdev;
942 struct list_head *head = &fs_devices->devices;
8a4b83cc 943 struct btrfs_device *device;
443f24fe 944 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
945 struct buffer_head *bh;
946 struct btrfs_super_block *disk_super;
a0af469b 947 u64 devid;
2b82032c 948 int seeding = 1;
a0af469b 949 int ret = 0;
8a4b83cc 950
d4d77629
TH
951 flags |= FMODE_EXCL;
952
c6e30871 953 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
954 if (device->bdev)
955 continue;
dfe25020
CM
956 if (!device->name)
957 continue;
958
f63e0cca
ES
959 /* Just open everything we can; ignore failures here */
960 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
961 &bdev, &bh))
beaf8ab3 962 continue;
a0af469b
CM
963
964 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 965 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
966 if (devid != device->devid)
967 goto error_brelse;
968
2b82032c
YZ
969 if (memcmp(device->uuid, disk_super->dev_item.uuid,
970 BTRFS_UUID_SIZE))
971 goto error_brelse;
972
973 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
974 if (!latest_dev ||
975 device->generation > latest_dev->generation)
976 latest_dev = device;
a0af469b 977
2b82032c
YZ
978 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
979 device->writeable = 0;
980 } else {
981 device->writeable = !bdev_read_only(bdev);
982 seeding = 0;
983 }
984
d5e2003c 985 q = bdev_get_queue(bdev);
90180da4 986 if (blk_queue_discard(q))
d5e2003c 987 device->can_discard = 1;
e884f4f0
AJ
988 if (!blk_queue_nonrot(q))
989 fs_devices->rotating = 1;
d5e2003c 990
8a4b83cc 991 device->bdev = bdev;
dfe25020 992 device->in_fs_metadata = 0;
15916de8
CM
993 device->mode = flags;
994
a0af469b 995 fs_devices->open_devices++;
55e50e45
ID
996 if (device->writeable &&
997 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
998 fs_devices->rw_devices++;
999 list_add(&device->dev_alloc_list,
1000 &fs_devices->alloc_list);
1001 }
4f6c9328 1002 brelse(bh);
a0af469b 1003 continue;
a061fc8d 1004
a0af469b
CM
1005error_brelse:
1006 brelse(bh);
d4d77629 1007 blkdev_put(bdev, flags);
a0af469b 1008 continue;
8a4b83cc 1009 }
a0af469b 1010 if (fs_devices->open_devices == 0) {
20bcd649 1011 ret = -EINVAL;
a0af469b
CM
1012 goto out;
1013 }
2b82032c
YZ
1014 fs_devices->seeding = seeding;
1015 fs_devices->opened = 1;
443f24fe 1016 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1017 fs_devices->total_rw_bytes = 0;
a0af469b 1018out:
2b82032c
YZ
1019 return ret;
1020}
1021
1022int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1023 fmode_t flags, void *holder)
2b82032c
YZ
1024{
1025 int ret;
1026
590d1e29
DS
1027 lockdep_assert_held(&uuid_mutex);
1028
2b82032c 1029 if (fs_devices->opened) {
e4404d6e
YZ
1030 fs_devices->opened++;
1031 ret = 0;
2b82032c 1032 } else {
15916de8 1033 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1034 }
8a4b83cc
CM
1035 return ret;
1036}
1037
c9162bdf 1038static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1039{
1040 kunmap(page);
1041 put_page(page);
1042}
1043
c9162bdf
OS
1044static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1045 struct page **page,
1046 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1047{
1048 void *p;
1049 pgoff_t index;
1050
1051 /* make sure our super fits in the device */
1052 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1053 return 1;
1054
1055 /* make sure our super fits in the page */
1056 if (sizeof(**disk_super) > PAGE_SIZE)
1057 return 1;
1058
1059 /* make sure our super doesn't straddle pages on disk */
1060 index = bytenr >> PAGE_SHIFT;
1061 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1062 return 1;
1063
1064 /* pull in the page with our super */
1065 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1066 index, GFP_KERNEL);
1067
1068 if (IS_ERR_OR_NULL(*page))
1069 return 1;
1070
1071 p = kmap(*page);
1072
1073 /* align our pointer to the offset of the super block */
1074 *disk_super = p + (bytenr & ~PAGE_MASK);
1075
1076 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1077 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1078 btrfs_release_disk_super(*page);
1079 return 1;
1080 }
1081
1082 if ((*disk_super)->label[0] &&
1083 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1084 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1085
1086 return 0;
1087}
1088
6f60cbd3
DS
1089/*
1090 * Look for a btrfs signature on a device. This may be called out of the mount path
1091 * and we are not allowed to call set_blocksize during the scan. The superblock
1092 * is read via pagecache
1093 */
97288f2c 1094int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1095 struct btrfs_fs_devices **fs_devices_ret)
1096{
1097 struct btrfs_super_block *disk_super;
1098 struct block_device *bdev;
6f60cbd3 1099 struct page *page;
6f60cbd3 1100 int ret = -EINVAL;
8a4b83cc 1101 u64 devid;
f2984462 1102 u64 transid;
02db0844 1103 u64 total_devices;
6f60cbd3 1104 u64 bytenr;
8a4b83cc 1105
6f60cbd3
DS
1106 /*
1107 * we would like to check all the supers, but that would make
1108 * a btrfs mount succeed after a mkfs from a different FS.
1109 * So, we need to add a special mount option to scan for
1110 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1111 */
1112 bytenr = btrfs_sb_offset(0);
d4d77629 1113 flags |= FMODE_EXCL;
10f6327b 1114 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1115
1116 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1117 if (IS_ERR(bdev)) {
1118 ret = PTR_ERR(bdev);
beaf8ab3 1119 goto error;
6f60cbd3
DS
1120 }
1121
6cf86a00 1122 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1123 goto error_bdev_put;
1124
a343832f 1125 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1126 transid = btrfs_super_generation(disk_super);
02db0844 1127 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1128
8a4b83cc 1129 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1130 if (ret > 0) {
1131 if (disk_super->label[0]) {
62e85577 1132 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1133 } else {
62e85577 1134 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1135 }
1136
62e85577 1137 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1138 ret = 0;
1139 }
02db0844
JB
1140 if (!ret && fs_devices_ret)
1141 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1142
6cf86a00 1143 btrfs_release_disk_super(page);
6f60cbd3
DS
1144
1145error_bdev_put:
d4d77629 1146 blkdev_put(bdev, flags);
8a4b83cc 1147error:
beaf8ab3 1148 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1149 return ret;
1150}
0b86a832 1151
6d07bcec
MX
1152/* helper to account the used device space in the range */
1153int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1154 u64 end, u64 *length)
1155{
1156 struct btrfs_key key;
fb456252 1157 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1158 struct btrfs_dev_extent *dev_extent;
1159 struct btrfs_path *path;
1160 u64 extent_end;
1161 int ret;
1162 int slot;
1163 struct extent_buffer *l;
1164
1165 *length = 0;
1166
63a212ab 1167 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1168 return 0;
1169
1170 path = btrfs_alloc_path();
1171 if (!path)
1172 return -ENOMEM;
e4058b54 1173 path->reada = READA_FORWARD;
6d07bcec
MX
1174
1175 key.objectid = device->devid;
1176 key.offset = start;
1177 key.type = BTRFS_DEV_EXTENT_KEY;
1178
1179 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1180 if (ret < 0)
1181 goto out;
1182 if (ret > 0) {
1183 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1184 if (ret < 0)
1185 goto out;
1186 }
1187
1188 while (1) {
1189 l = path->nodes[0];
1190 slot = path->slots[0];
1191 if (slot >= btrfs_header_nritems(l)) {
1192 ret = btrfs_next_leaf(root, path);
1193 if (ret == 0)
1194 continue;
1195 if (ret < 0)
1196 goto out;
1197
1198 break;
1199 }
1200 btrfs_item_key_to_cpu(l, &key, slot);
1201
1202 if (key.objectid < device->devid)
1203 goto next;
1204
1205 if (key.objectid > device->devid)
1206 break;
1207
962a298f 1208 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1209 goto next;
1210
1211 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1212 extent_end = key.offset + btrfs_dev_extent_length(l,
1213 dev_extent);
1214 if (key.offset <= start && extent_end > end) {
1215 *length = end - start + 1;
1216 break;
1217 } else if (key.offset <= start && extent_end > start)
1218 *length += extent_end - start;
1219 else if (key.offset > start && extent_end <= end)
1220 *length += extent_end - key.offset;
1221 else if (key.offset > start && key.offset <= end) {
1222 *length += end - key.offset + 1;
1223 break;
1224 } else if (key.offset > end)
1225 break;
1226
1227next:
1228 path->slots[0]++;
1229 }
1230 ret = 0;
1231out:
1232 btrfs_free_path(path);
1233 return ret;
1234}
1235
499f377f 1236static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1237 struct btrfs_device *device,
1238 u64 *start, u64 len)
1239{
fb456252 1240 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1241 struct extent_map *em;
499f377f 1242 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1243 int ret = 0;
1b984508 1244 u64 physical_start = *start;
6df9a95e 1245
499f377f
JM
1246 if (transaction)
1247 search_list = &transaction->pending_chunks;
04216820
FM
1248again:
1249 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1250 struct map_lookup *map;
1251 int i;
1252
95617d69 1253 map = em->map_lookup;
6df9a95e 1254 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1255 u64 end;
1256
6df9a95e
JB
1257 if (map->stripes[i].dev != device)
1258 continue;
1b984508 1259 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1260 map->stripes[i].physical + em->orig_block_len <=
1b984508 1261 physical_start)
6df9a95e 1262 continue;
c152b63e
FM
1263 /*
1264 * Make sure that while processing the pinned list we do
1265 * not override our *start with a lower value, because
1266 * we can have pinned chunks that fall within this
1267 * device hole and that have lower physical addresses
1268 * than the pending chunks we processed before. If we
1269 * do not take this special care we can end up getting
1270 * 2 pending chunks that start at the same physical
1271 * device offsets because the end offset of a pinned
1272 * chunk can be equal to the start offset of some
1273 * pending chunk.
1274 */
1275 end = map->stripes[i].physical + em->orig_block_len;
1276 if (end > *start) {
1277 *start = end;
1278 ret = 1;
1279 }
6df9a95e
JB
1280 }
1281 }
499f377f
JM
1282 if (search_list != &fs_info->pinned_chunks) {
1283 search_list = &fs_info->pinned_chunks;
04216820
FM
1284 goto again;
1285 }
6df9a95e
JB
1286
1287 return ret;
1288}
1289
1290
0b86a832 1291/*
499f377f
JM
1292 * find_free_dev_extent_start - find free space in the specified device
1293 * @device: the device which we search the free space in
1294 * @num_bytes: the size of the free space that we need
1295 * @search_start: the position from which to begin the search
1296 * @start: store the start of the free space.
1297 * @len: the size of the free space. that we find, or the size
1298 * of the max free space if we don't find suitable free space
7bfc837d 1299 *
0b86a832
CM
1300 * this uses a pretty simple search, the expectation is that it is
1301 * called very infrequently and that a given device has a small number
1302 * of extents
7bfc837d
MX
1303 *
1304 * @start is used to store the start of the free space if we find. But if we
1305 * don't find suitable free space, it will be used to store the start position
1306 * of the max free space.
1307 *
1308 * @len is used to store the size of the free space that we find.
1309 * But if we don't find suitable free space, it is used to store the size of
1310 * the max free space.
0b86a832 1311 */
499f377f
JM
1312int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1313 struct btrfs_device *device, u64 num_bytes,
1314 u64 search_start, u64 *start, u64 *len)
0b86a832 1315{
0b246afa
JM
1316 struct btrfs_fs_info *fs_info = device->fs_info;
1317 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1318 struct btrfs_key key;
7bfc837d 1319 struct btrfs_dev_extent *dev_extent;
2b82032c 1320 struct btrfs_path *path;
7bfc837d
MX
1321 u64 hole_size;
1322 u64 max_hole_start;
1323 u64 max_hole_size;
1324 u64 extent_end;
0b86a832
CM
1325 u64 search_end = device->total_bytes;
1326 int ret;
7bfc837d 1327 int slot;
0b86a832 1328 struct extent_buffer *l;
8cdc7c5b
FM
1329
1330 /*
1331 * We don't want to overwrite the superblock on the drive nor any area
1332 * used by the boot loader (grub for example), so we make sure to start
1333 * at an offset of at least 1MB.
1334 */
0d0c71b3 1335 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1336
6df9a95e
JB
1337 path = btrfs_alloc_path();
1338 if (!path)
1339 return -ENOMEM;
f2ab7618 1340
7bfc837d
MX
1341 max_hole_start = search_start;
1342 max_hole_size = 0;
1343
f2ab7618 1344again:
63a212ab 1345 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1346 ret = -ENOSPC;
6df9a95e 1347 goto out;
7bfc837d
MX
1348 }
1349
e4058b54 1350 path->reada = READA_FORWARD;
6df9a95e
JB
1351 path->search_commit_root = 1;
1352 path->skip_locking = 1;
7bfc837d 1353
0b86a832
CM
1354 key.objectid = device->devid;
1355 key.offset = search_start;
1356 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1357
125ccb0a 1358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1359 if (ret < 0)
7bfc837d 1360 goto out;
1fcbac58
YZ
1361 if (ret > 0) {
1362 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1363 if (ret < 0)
7bfc837d 1364 goto out;
1fcbac58 1365 }
7bfc837d 1366
0b86a832
CM
1367 while (1) {
1368 l = path->nodes[0];
1369 slot = path->slots[0];
1370 if (slot >= btrfs_header_nritems(l)) {
1371 ret = btrfs_next_leaf(root, path);
1372 if (ret == 0)
1373 continue;
1374 if (ret < 0)
7bfc837d
MX
1375 goto out;
1376
1377 break;
0b86a832
CM
1378 }
1379 btrfs_item_key_to_cpu(l, &key, slot);
1380
1381 if (key.objectid < device->devid)
1382 goto next;
1383
1384 if (key.objectid > device->devid)
7bfc837d 1385 break;
0b86a832 1386
962a298f 1387 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1388 goto next;
9779b72f 1389
7bfc837d
MX
1390 if (key.offset > search_start) {
1391 hole_size = key.offset - search_start;
9779b72f 1392
6df9a95e
JB
1393 /*
1394 * Have to check before we set max_hole_start, otherwise
1395 * we could end up sending back this offset anyway.
1396 */
499f377f 1397 if (contains_pending_extent(transaction, device,
6df9a95e 1398 &search_start,
1b984508
FL
1399 hole_size)) {
1400 if (key.offset >= search_start) {
1401 hole_size = key.offset - search_start;
1402 } else {
1403 WARN_ON_ONCE(1);
1404 hole_size = 0;
1405 }
1406 }
6df9a95e 1407
7bfc837d
MX
1408 if (hole_size > max_hole_size) {
1409 max_hole_start = search_start;
1410 max_hole_size = hole_size;
1411 }
9779b72f 1412
7bfc837d
MX
1413 /*
1414 * If this free space is greater than which we need,
1415 * it must be the max free space that we have found
1416 * until now, so max_hole_start must point to the start
1417 * of this free space and the length of this free space
1418 * is stored in max_hole_size. Thus, we return
1419 * max_hole_start and max_hole_size and go back to the
1420 * caller.
1421 */
1422 if (hole_size >= num_bytes) {
1423 ret = 0;
1424 goto out;
0b86a832
CM
1425 }
1426 }
0b86a832 1427
0b86a832 1428 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1429 extent_end = key.offset + btrfs_dev_extent_length(l,
1430 dev_extent);
1431 if (extent_end > search_start)
1432 search_start = extent_end;
0b86a832
CM
1433next:
1434 path->slots[0]++;
1435 cond_resched();
1436 }
0b86a832 1437
38c01b96 1438 /*
1439 * At this point, search_start should be the end of
1440 * allocated dev extents, and when shrinking the device,
1441 * search_end may be smaller than search_start.
1442 */
f2ab7618 1443 if (search_end > search_start) {
38c01b96 1444 hole_size = search_end - search_start;
1445
499f377f 1446 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1447 hole_size)) {
1448 btrfs_release_path(path);
1449 goto again;
1450 }
0b86a832 1451
f2ab7618
ZL
1452 if (hole_size > max_hole_size) {
1453 max_hole_start = search_start;
1454 max_hole_size = hole_size;
1455 }
6df9a95e
JB
1456 }
1457
7bfc837d 1458 /* See above. */
f2ab7618 1459 if (max_hole_size < num_bytes)
7bfc837d
MX
1460 ret = -ENOSPC;
1461 else
1462 ret = 0;
1463
1464out:
2b82032c 1465 btrfs_free_path(path);
7bfc837d 1466 *start = max_hole_start;
b2117a39 1467 if (len)
7bfc837d 1468 *len = max_hole_size;
0b86a832
CM
1469 return ret;
1470}
1471
499f377f
JM
1472int find_free_dev_extent(struct btrfs_trans_handle *trans,
1473 struct btrfs_device *device, u64 num_bytes,
1474 u64 *start, u64 *len)
1475{
499f377f 1476 /* FIXME use last free of some kind */
499f377f 1477 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1478 num_bytes, 0, start, len);
499f377f
JM
1479}
1480
b2950863 1481static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1482 struct btrfs_device *device,
2196d6e8 1483 u64 start, u64 *dev_extent_len)
8f18cf13 1484{
0b246afa
JM
1485 struct btrfs_fs_info *fs_info = device->fs_info;
1486 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1487 int ret;
1488 struct btrfs_path *path;
8f18cf13 1489 struct btrfs_key key;
a061fc8d
CM
1490 struct btrfs_key found_key;
1491 struct extent_buffer *leaf = NULL;
1492 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1493
1494 path = btrfs_alloc_path();
1495 if (!path)
1496 return -ENOMEM;
1497
1498 key.objectid = device->devid;
1499 key.offset = start;
1500 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1501again:
8f18cf13 1502 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1503 if (ret > 0) {
1504 ret = btrfs_previous_item(root, path, key.objectid,
1505 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1506 if (ret)
1507 goto out;
a061fc8d
CM
1508 leaf = path->nodes[0];
1509 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1510 extent = btrfs_item_ptr(leaf, path->slots[0],
1511 struct btrfs_dev_extent);
1512 BUG_ON(found_key.offset > start || found_key.offset +
1513 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1514 key = found_key;
1515 btrfs_release_path(path);
1516 goto again;
a061fc8d
CM
1517 } else if (ret == 0) {
1518 leaf = path->nodes[0];
1519 extent = btrfs_item_ptr(leaf, path->slots[0],
1520 struct btrfs_dev_extent);
79787eaa 1521 } else {
0b246afa 1522 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1523 goto out;
a061fc8d 1524 }
8f18cf13 1525
2196d6e8
MX
1526 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1527
8f18cf13 1528 ret = btrfs_del_item(trans, root, path);
79787eaa 1529 if (ret) {
0b246afa
JM
1530 btrfs_handle_fs_error(fs_info, ret,
1531 "Failed to remove dev extent item");
13212b54 1532 } else {
3204d33c 1533 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1534 }
b0b802d7 1535out:
8f18cf13
CM
1536 btrfs_free_path(path);
1537 return ret;
1538}
1539
48a3b636
ES
1540static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1541 struct btrfs_device *device,
48a3b636 1542 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1543{
1544 int ret;
1545 struct btrfs_path *path;
0b246afa
JM
1546 struct btrfs_fs_info *fs_info = device->fs_info;
1547 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1548 struct btrfs_dev_extent *extent;
1549 struct extent_buffer *leaf;
1550 struct btrfs_key key;
1551
dfe25020 1552 WARN_ON(!device->in_fs_metadata);
63a212ab 1553 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1554 path = btrfs_alloc_path();
1555 if (!path)
1556 return -ENOMEM;
1557
0b86a832 1558 key.objectid = device->devid;
2b82032c 1559 key.offset = start;
0b86a832
CM
1560 key.type = BTRFS_DEV_EXTENT_KEY;
1561 ret = btrfs_insert_empty_item(trans, root, path, &key,
1562 sizeof(*extent));
2cdcecbc
MF
1563 if (ret)
1564 goto out;
0b86a832
CM
1565
1566 leaf = path->nodes[0];
1567 extent = btrfs_item_ptr(leaf, path->slots[0],
1568 struct btrfs_dev_extent);
b5d9071c
NB
1569 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1570 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1571 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1572 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1573 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1574
0b86a832
CM
1575 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1576 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1577out:
0b86a832
CM
1578 btrfs_free_path(path);
1579 return ret;
1580}
1581
6df9a95e 1582static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1583{
6df9a95e
JB
1584 struct extent_map_tree *em_tree;
1585 struct extent_map *em;
1586 struct rb_node *n;
1587 u64 ret = 0;
0b86a832 1588
6df9a95e
JB
1589 em_tree = &fs_info->mapping_tree.map_tree;
1590 read_lock(&em_tree->lock);
1591 n = rb_last(&em_tree->map);
1592 if (n) {
1593 em = rb_entry(n, struct extent_map, rb_node);
1594 ret = em->start + em->len;
0b86a832 1595 }
6df9a95e
JB
1596 read_unlock(&em_tree->lock);
1597
0b86a832
CM
1598 return ret;
1599}
1600
53f10659
ID
1601static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1602 u64 *devid_ret)
0b86a832
CM
1603{
1604 int ret;
1605 struct btrfs_key key;
1606 struct btrfs_key found_key;
2b82032c
YZ
1607 struct btrfs_path *path;
1608
2b82032c
YZ
1609 path = btrfs_alloc_path();
1610 if (!path)
1611 return -ENOMEM;
0b86a832
CM
1612
1613 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1614 key.type = BTRFS_DEV_ITEM_KEY;
1615 key.offset = (u64)-1;
1616
53f10659 1617 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1618 if (ret < 0)
1619 goto error;
1620
79787eaa 1621 BUG_ON(ret == 0); /* Corruption */
0b86a832 1622
53f10659
ID
1623 ret = btrfs_previous_item(fs_info->chunk_root, path,
1624 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1625 BTRFS_DEV_ITEM_KEY);
1626 if (ret) {
53f10659 1627 *devid_ret = 1;
0b86a832
CM
1628 } else {
1629 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1630 path->slots[0]);
53f10659 1631 *devid_ret = found_key.offset + 1;
0b86a832
CM
1632 }
1633 ret = 0;
1634error:
2b82032c 1635 btrfs_free_path(path);
0b86a832
CM
1636 return ret;
1637}
1638
1639/*
1640 * the device information is stored in the chunk root
1641 * the btrfs_device struct should be fully filled in
1642 */
48a3b636 1643static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1644 struct btrfs_fs_info *fs_info,
48a3b636 1645 struct btrfs_device *device)
0b86a832 1646{
5b4aacef 1647 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1648 int ret;
1649 struct btrfs_path *path;
1650 struct btrfs_dev_item *dev_item;
1651 struct extent_buffer *leaf;
1652 struct btrfs_key key;
1653 unsigned long ptr;
0b86a832 1654
0b86a832
CM
1655 path = btrfs_alloc_path();
1656 if (!path)
1657 return -ENOMEM;
1658
0b86a832
CM
1659 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1660 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1661 key.offset = device->devid;
0b86a832
CM
1662
1663 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1664 sizeof(*dev_item));
0b86a832
CM
1665 if (ret)
1666 goto out;
1667
1668 leaf = path->nodes[0];
1669 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1670
1671 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1672 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1673 btrfs_set_device_type(leaf, dev_item, device->type);
1674 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1675 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1676 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1677 btrfs_set_device_total_bytes(leaf, dev_item,
1678 btrfs_device_get_disk_total_bytes(device));
1679 btrfs_set_device_bytes_used(leaf, dev_item,
1680 btrfs_device_get_bytes_used(device));
e17cade2
CM
1681 btrfs_set_device_group(leaf, dev_item, 0);
1682 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1683 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1684 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1685
410ba3a2 1686 ptr = btrfs_device_uuid(dev_item);
e17cade2 1687 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1688 ptr = btrfs_device_fsid(dev_item);
44880fdc 1689 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
0b86a832 1690 btrfs_mark_buffer_dirty(leaf);
0b86a832 1691
2b82032c 1692 ret = 0;
0b86a832
CM
1693out:
1694 btrfs_free_path(path);
1695 return ret;
1696}
8f18cf13 1697
5a1972bd
QW
1698/*
1699 * Function to update ctime/mtime for a given device path.
1700 * Mainly used for ctime/mtime based probe like libblkid.
1701 */
da353f6b 1702static void update_dev_time(const char *path_name)
5a1972bd
QW
1703{
1704 struct file *filp;
1705
1706 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1707 if (IS_ERR(filp))
5a1972bd
QW
1708 return;
1709 file_update_time(filp);
1710 filp_close(filp, NULL);
5a1972bd
QW
1711}
1712
5b4aacef 1713static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1714 struct btrfs_device *device)
1715{
5b4aacef 1716 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1717 int ret;
1718 struct btrfs_path *path;
a061fc8d 1719 struct btrfs_key key;
a061fc8d
CM
1720 struct btrfs_trans_handle *trans;
1721
a061fc8d
CM
1722 path = btrfs_alloc_path();
1723 if (!path)
1724 return -ENOMEM;
1725
a22285a6 1726 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1727 if (IS_ERR(trans)) {
1728 btrfs_free_path(path);
1729 return PTR_ERR(trans);
1730 }
a061fc8d
CM
1731 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1732 key.type = BTRFS_DEV_ITEM_KEY;
1733 key.offset = device->devid;
1734
1735 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1736 if (ret) {
1737 if (ret > 0)
1738 ret = -ENOENT;
1739 btrfs_abort_transaction(trans, ret);
1740 btrfs_end_transaction(trans);
a061fc8d
CM
1741 goto out;
1742 }
1743
1744 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1745 if (ret) {
1746 btrfs_abort_transaction(trans, ret);
1747 btrfs_end_transaction(trans);
1748 }
1749
a061fc8d
CM
1750out:
1751 btrfs_free_path(path);
5e9f2ad5
NB
1752 if (!ret)
1753 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1754 return ret;
1755}
1756
3cc31a0d
DS
1757/*
1758 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1759 * filesystem. It's up to the caller to adjust that number regarding eg. device
1760 * replace.
1761 */
1762static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1763 u64 num_devices)
a061fc8d 1764{
a061fc8d 1765 u64 all_avail;
de98ced9 1766 unsigned seq;
418775a2 1767 int i;
a061fc8d 1768
de98ced9 1769 do {
bd45ffbc 1770 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1771
bd45ffbc
AJ
1772 all_avail = fs_info->avail_data_alloc_bits |
1773 fs_info->avail_system_alloc_bits |
1774 fs_info->avail_metadata_alloc_bits;
1775 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1776
418775a2
DS
1777 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1778 if (!(all_avail & btrfs_raid_group[i]))
1779 continue;
a061fc8d 1780
418775a2
DS
1781 if (num_devices < btrfs_raid_array[i].devs_min) {
1782 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1783
418775a2
DS
1784 if (ret)
1785 return ret;
1786 }
53b381b3
DW
1787 }
1788
bd45ffbc 1789 return 0;
f1fa7f26
AJ
1790}
1791
c9162bdf
OS
1792static struct btrfs_device * btrfs_find_next_active_device(
1793 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1794{
2b82032c 1795 struct btrfs_device *next_device;
88acff64
AJ
1796
1797 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1798 if (next_device != device &&
1799 !next_device->missing && next_device->bdev)
1800 return next_device;
1801 }
1802
1803 return NULL;
1804}
1805
1806/*
1807 * Helper function to check if the given device is part of s_bdev / latest_bdev
1808 * and replace it with the provided or the next active device, in the context
1809 * where this function called, there should be always be another device (or
1810 * this_dev) which is active.
1811 */
1812void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1813 struct btrfs_device *device, struct btrfs_device *this_dev)
1814{
1815 struct btrfs_device *next_device;
1816
1817 if (this_dev)
1818 next_device = this_dev;
1819 else
1820 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1821 device);
1822 ASSERT(next_device);
1823
1824 if (fs_info->sb->s_bdev &&
1825 (fs_info->sb->s_bdev == device->bdev))
1826 fs_info->sb->s_bdev = next_device->bdev;
1827
1828 if (fs_info->fs_devices->latest_bdev == device->bdev)
1829 fs_info->fs_devices->latest_bdev = next_device->bdev;
1830}
1831
da353f6b
DS
1832int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1833 u64 devid)
f1fa7f26
AJ
1834{
1835 struct btrfs_device *device;
1f78160c 1836 struct btrfs_fs_devices *cur_devices;
2b82032c 1837 u64 num_devices;
a061fc8d
CM
1838 int ret = 0;
1839
a061fc8d
CM
1840 mutex_lock(&uuid_mutex);
1841
0b246afa
JM
1842 num_devices = fs_info->fs_devices->num_devices;
1843 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1844 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1845 WARN_ON(num_devices < 1);
1846 num_devices--;
1847 }
0b246afa 1848 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1849
0b246afa 1850 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1851 if (ret)
a061fc8d 1852 goto out;
a061fc8d 1853
2ff7e61e
JM
1854 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1855 &device);
24fc572f 1856 if (ret)
53b381b3 1857 goto out;
dfe25020 1858
63a212ab 1859 if (device->is_tgtdev_for_dev_replace) {
183860f6 1860 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1861 goto out;
63a212ab
SB
1862 }
1863
0b246afa 1864 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1865 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1866 goto out;
2b82032c
YZ
1867 }
1868
1869 if (device->writeable) {
34441361 1870 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1871 list_del_init(&device->dev_alloc_list);
c3929c36 1872 device->fs_devices->rw_devices--;
34441361 1873 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1874 }
a061fc8d 1875
d7901554 1876 mutex_unlock(&uuid_mutex);
a061fc8d 1877 ret = btrfs_shrink_device(device, 0);
d7901554 1878 mutex_lock(&uuid_mutex);
a061fc8d 1879 if (ret)
9b3517e9 1880 goto error_undo;
a061fc8d 1881
63a212ab
SB
1882 /*
1883 * TODO: the superblock still includes this device in its num_devices
1884 * counter although write_all_supers() is not locked out. This
1885 * could give a filesystem state which requires a degraded mount.
1886 */
0b246afa 1887 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1888 if (ret)
9b3517e9 1889 goto error_undo;
a061fc8d 1890
2b82032c 1891 device->in_fs_metadata = 0;
0b246afa 1892 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1893
1894 /*
1895 * the device list mutex makes sure that we don't change
1896 * the device list while someone else is writing out all
d7306801
FDBM
1897 * the device supers. Whoever is writing all supers, should
1898 * lock the device list mutex before getting the number of
1899 * devices in the super block (super_copy). Conversely,
1900 * whoever updates the number of devices in the super block
1901 * (super_copy) should hold the device list mutex.
e5e9a520 1902 */
1f78160c
XG
1903
1904 cur_devices = device->fs_devices;
0b246afa 1905 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1906 list_del_rcu(&device->dev_list);
e5e9a520 1907
e4404d6e 1908 device->fs_devices->num_devices--;
02db0844 1909 device->fs_devices->total_devices--;
2b82032c 1910
cd02dca5 1911 if (device->missing)
3a7d55c8 1912 device->fs_devices->missing_devices--;
cd02dca5 1913
0b246afa 1914 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1915
0bfaa9c5 1916 if (device->bdev) {
e4404d6e 1917 device->fs_devices->open_devices--;
0bfaa9c5 1918 /* remove sysfs entry */
0b246afa 1919 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1920 }
99994cde 1921
0b246afa
JM
1922 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1923 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1924 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1925
cea67ab9
JM
1926 /*
1927 * at this point, the device is zero sized and detached from
1928 * the devices list. All that's left is to zero out the old
1929 * supers and free the device.
1930 */
1931 if (device->writeable)
1932 btrfs_scratch_superblocks(device->bdev, device->name->str);
1933
1934 btrfs_close_bdev(device);
1935 call_rcu(&device->rcu, free_device);
1936
1f78160c 1937 if (cur_devices->open_devices == 0) {
e4404d6e 1938 struct btrfs_fs_devices *fs_devices;
0b246afa 1939 fs_devices = fs_info->fs_devices;
e4404d6e 1940 while (fs_devices) {
8321cf25
RS
1941 if (fs_devices->seed == cur_devices) {
1942 fs_devices->seed = cur_devices->seed;
e4404d6e 1943 break;
8321cf25 1944 }
e4404d6e 1945 fs_devices = fs_devices->seed;
2b82032c 1946 }
1f78160c 1947 cur_devices->seed = NULL;
1f78160c 1948 __btrfs_close_devices(cur_devices);
1f78160c 1949 free_fs_devices(cur_devices);
2b82032c
YZ
1950 }
1951
a061fc8d
CM
1952out:
1953 mutex_unlock(&uuid_mutex);
a061fc8d 1954 return ret;
24fc572f 1955
9b3517e9
ID
1956error_undo:
1957 if (device->writeable) {
34441361 1958 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 1959 list_add(&device->dev_alloc_list,
0b246afa 1960 &fs_info->fs_devices->alloc_list);
c3929c36 1961 device->fs_devices->rw_devices++;
34441361 1962 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 1963 }
24fc572f 1964 goto out;
a061fc8d
CM
1965}
1966
084b6e7c
QW
1967void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1968 struct btrfs_device *srcdev)
e93c89c1 1969{
d51908ce
AJ
1970 struct btrfs_fs_devices *fs_devices;
1971
e93c89c1 1972 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1973
25e8e911
AJ
1974 /*
1975 * in case of fs with no seed, srcdev->fs_devices will point
1976 * to fs_devices of fs_info. However when the dev being replaced is
1977 * a seed dev it will point to the seed's local fs_devices. In short
1978 * srcdev will have its correct fs_devices in both the cases.
1979 */
1980 fs_devices = srcdev->fs_devices;
d51908ce 1981
e93c89c1 1982 list_del_rcu(&srcdev->dev_list);
619c47f3 1983 list_del(&srcdev->dev_alloc_list);
d51908ce 1984 fs_devices->num_devices--;
82372bc8 1985 if (srcdev->missing)
d51908ce 1986 fs_devices->missing_devices--;
e93c89c1 1987
48b3b9d4 1988 if (srcdev->writeable)
82372bc8 1989 fs_devices->rw_devices--;
1357272f 1990
82372bc8 1991 if (srcdev->bdev)
d51908ce 1992 fs_devices->open_devices--;
084b6e7c
QW
1993}
1994
1995void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1996 struct btrfs_device *srcdev)
1997{
1998 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 1999
48b3b9d4
AJ
2000 if (srcdev->writeable) {
2001 /* zero out the old super if it is writable */
2002 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2003 }
14238819
AJ
2004
2005 btrfs_close_bdev(srcdev);
e93c89c1 2006 call_rcu(&srcdev->rcu, free_device);
94d5f0c2 2007
94d5f0c2
AJ
2008 /* if this is no devs we rather delete the fs_devices */
2009 if (!fs_devices->num_devices) {
2010 struct btrfs_fs_devices *tmp_fs_devices;
2011
6dd38f81
AJ
2012 /*
2013 * On a mounted FS, num_devices can't be zero unless it's a
2014 * seed. In case of a seed device being replaced, the replace
2015 * target added to the sprout FS, so there will be no more
2016 * device left under the seed FS.
2017 */
2018 ASSERT(fs_devices->seeding);
2019
94d5f0c2
AJ
2020 tmp_fs_devices = fs_info->fs_devices;
2021 while (tmp_fs_devices) {
2022 if (tmp_fs_devices->seed == fs_devices) {
2023 tmp_fs_devices->seed = fs_devices->seed;
2024 break;
2025 }
2026 tmp_fs_devices = tmp_fs_devices->seed;
2027 }
2028 fs_devices->seed = NULL;
8bef8401
AJ
2029 __btrfs_close_devices(fs_devices);
2030 free_fs_devices(fs_devices);
94d5f0c2 2031 }
e93c89c1
SB
2032}
2033
2034void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2035 struct btrfs_device *tgtdev)
2036{
67a2c45e 2037 mutex_lock(&uuid_mutex);
e93c89c1
SB
2038 WARN_ON(!tgtdev);
2039 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2040
32576040 2041 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2042
779bf3fe 2043 if (tgtdev->bdev)
e93c89c1 2044 fs_info->fs_devices->open_devices--;
779bf3fe 2045
e93c89c1 2046 fs_info->fs_devices->num_devices--;
e93c89c1 2047
88acff64 2048 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2049
e93c89c1 2050 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2051
2052 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2053 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2054
2055 /*
2056 * The update_dev_time() with in btrfs_scratch_superblocks()
2057 * may lead to a call to btrfs_show_devname() which will try
2058 * to hold device_list_mutex. And here this device
2059 * is already out of device list, so we don't have to hold
2060 * the device_list_mutex lock.
2061 */
2062 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2063
2064 btrfs_close_bdev(tgtdev);
779bf3fe 2065 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2066}
2067
2ff7e61e 2068static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2069 const char *device_path,
48a3b636 2070 struct btrfs_device **device)
7ba15b7d
SB
2071{
2072 int ret = 0;
2073 struct btrfs_super_block *disk_super;
2074 u64 devid;
2075 u8 *dev_uuid;
2076 struct block_device *bdev;
2077 struct buffer_head *bh;
2078
2079 *device = NULL;
2080 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2081 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2082 if (ret)
2083 return ret;
2084 disk_super = (struct btrfs_super_block *)bh->b_data;
2085 devid = btrfs_stack_device_id(&disk_super->dev_item);
2086 dev_uuid = disk_super->dev_item.uuid;
2f05c56f 2087 *device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
34857e15 2088 disk_super->fsid, true);
7ba15b7d
SB
2089 brelse(bh);
2090 if (!*device)
2091 ret = -ENOENT;
2092 blkdev_put(bdev, FMODE_READ);
2093 return ret;
2094}
2095
2ff7e61e 2096int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2097 const char *device_path,
7ba15b7d
SB
2098 struct btrfs_device **device)
2099{
2100 *device = NULL;
2101 if (strcmp(device_path, "missing") == 0) {
2102 struct list_head *devices;
2103 struct btrfs_device *tmp;
2104
0b246afa 2105 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2106 /*
2107 * It is safe to read the devices since the volume_mutex
2108 * is held by the caller.
2109 */
2110 list_for_each_entry(tmp, devices, dev_list) {
2111 if (tmp->in_fs_metadata && !tmp->bdev) {
2112 *device = tmp;
2113 break;
2114 }
2115 }
2116
d74a6259
AJ
2117 if (!*device)
2118 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2119
2120 return 0;
2121 } else {
2ff7e61e 2122 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2123 }
2124}
2125
5c5c0df0
DS
2126/*
2127 * Lookup a device given by device id, or the path if the id is 0.
2128 */
2ff7e61e 2129int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2130 const char *devpath,
2131 struct btrfs_device **device)
24e0474b
AJ
2132{
2133 int ret;
2134
5c5c0df0 2135 if (devid) {
24e0474b 2136 ret = 0;
2f05c56f 2137 *device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
34857e15 2138 NULL, true);
24e0474b
AJ
2139 if (!*device)
2140 ret = -ENOENT;
2141 } else {
5c5c0df0 2142 if (!devpath || !devpath[0])
b3d1b153
AJ
2143 return -EINVAL;
2144
2ff7e61e 2145 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2146 device);
2147 }
2148 return ret;
2149}
2150
2b82032c
YZ
2151/*
2152 * does all the dirty work required for changing file system's UUID.
2153 */
2ff7e61e 2154static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2155{
0b246afa 2156 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2157 struct btrfs_fs_devices *old_devices;
e4404d6e 2158 struct btrfs_fs_devices *seed_devices;
0b246afa 2159 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2160 struct btrfs_device *device;
2161 u64 super_flags;
2162
2163 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2164 if (!fs_devices->seeding)
2b82032c
YZ
2165 return -EINVAL;
2166
2dfeca9b 2167 seed_devices = alloc_fs_devices(NULL);
2208a378
ID
2168 if (IS_ERR(seed_devices))
2169 return PTR_ERR(seed_devices);
2b82032c 2170
e4404d6e
YZ
2171 old_devices = clone_fs_devices(fs_devices);
2172 if (IS_ERR(old_devices)) {
2173 kfree(seed_devices);
2174 return PTR_ERR(old_devices);
2b82032c 2175 }
e4404d6e 2176
2b82032c
YZ
2177 list_add(&old_devices->list, &fs_uuids);
2178
e4404d6e
YZ
2179 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2180 seed_devices->opened = 1;
2181 INIT_LIST_HEAD(&seed_devices->devices);
2182 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2183 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2184
0b246afa 2185 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2186 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2187 synchronize_rcu);
2196d6e8
MX
2188 list_for_each_entry(device, &seed_devices->devices, dev_list)
2189 device->fs_devices = seed_devices;
c9513edb 2190
34441361 2191 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2192 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2193 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2194
2b82032c
YZ
2195 fs_devices->seeding = 0;
2196 fs_devices->num_devices = 0;
2197 fs_devices->open_devices = 0;
69611ac8 2198 fs_devices->missing_devices = 0;
69611ac8 2199 fs_devices->rotating = 0;
e4404d6e 2200 fs_devices->seed = seed_devices;
2b82032c
YZ
2201
2202 generate_random_uuid(fs_devices->fsid);
0b246afa 2203 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2204 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2205 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2206
2b82032c
YZ
2207 super_flags = btrfs_super_flags(disk_super) &
2208 ~BTRFS_SUPER_FLAG_SEEDING;
2209 btrfs_set_super_flags(disk_super, super_flags);
2210
2211 return 0;
2212}
2213
2214/*
01327610 2215 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2216 */
2217static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2218 struct btrfs_fs_info *fs_info)
2b82032c 2219{
5b4aacef 2220 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2221 struct btrfs_path *path;
2222 struct extent_buffer *leaf;
2223 struct btrfs_dev_item *dev_item;
2224 struct btrfs_device *device;
2225 struct btrfs_key key;
44880fdc 2226 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2227 u8 dev_uuid[BTRFS_UUID_SIZE];
2228 u64 devid;
2229 int ret;
2230
2231 path = btrfs_alloc_path();
2232 if (!path)
2233 return -ENOMEM;
2234
2b82032c
YZ
2235 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2236 key.offset = 0;
2237 key.type = BTRFS_DEV_ITEM_KEY;
2238
2239 while (1) {
2240 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2241 if (ret < 0)
2242 goto error;
2243
2244 leaf = path->nodes[0];
2245next_slot:
2246 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2247 ret = btrfs_next_leaf(root, path);
2248 if (ret > 0)
2249 break;
2250 if (ret < 0)
2251 goto error;
2252 leaf = path->nodes[0];
2253 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2254 btrfs_release_path(path);
2b82032c
YZ
2255 continue;
2256 }
2257
2258 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2259 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2260 key.type != BTRFS_DEV_ITEM_KEY)
2261 break;
2262
2263 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2264 struct btrfs_dev_item);
2265 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2266 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2267 BTRFS_UUID_SIZE);
1473b24e 2268 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2269 BTRFS_FSID_SIZE);
2f05c56f 2270 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
34857e15 2271 fs_uuid, true);
79787eaa 2272 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2273
2274 if (device->fs_devices->seeding) {
2275 btrfs_set_device_generation(leaf, dev_item,
2276 device->generation);
2277 btrfs_mark_buffer_dirty(leaf);
2278 }
2279
2280 path->slots[0]++;
2281 goto next_slot;
2282 }
2283 ret = 0;
2284error:
2285 btrfs_free_path(path);
2286 return ret;
2287}
2288
da353f6b 2289int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2290{
5112febb 2291 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2292 struct request_queue *q;
788f20eb
CM
2293 struct btrfs_trans_handle *trans;
2294 struct btrfs_device *device;
2295 struct block_device *bdev;
788f20eb 2296 struct list_head *devices;
0b246afa 2297 struct super_block *sb = fs_info->sb;
606686ee 2298 struct rcu_string *name;
3c1dbdf5 2299 u64 tmp;
2b82032c 2300 int seeding_dev = 0;
788f20eb 2301 int ret = 0;
7132a262 2302 bool unlocked = false;
788f20eb 2303
bc98a42c 2304 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
f8c5d0b4 2305 return -EROFS;
788f20eb 2306
a5d16333 2307 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2308 fs_info->bdev_holder);
7f59203a
JB
2309 if (IS_ERR(bdev))
2310 return PTR_ERR(bdev);
a2135011 2311
0b246afa 2312 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2313 seeding_dev = 1;
2314 down_write(&sb->s_umount);
2315 mutex_lock(&uuid_mutex);
2316 }
2317
8c8bee1d 2318 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2319
0b246afa 2320 devices = &fs_info->fs_devices->devices;
d25628bd 2321
0b246afa 2322 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2323 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2324 if (device->bdev == bdev) {
2325 ret = -EEXIST;
d25628bd 2326 mutex_unlock(
0b246afa 2327 &fs_info->fs_devices->device_list_mutex);
2b82032c 2328 goto error;
788f20eb
CM
2329 }
2330 }
0b246afa 2331 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2332
0b246afa 2333 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2334 if (IS_ERR(device)) {
788f20eb 2335 /* we can safely leave the fs_devices entry around */
12bd2fc0 2336 ret = PTR_ERR(device);
2b82032c 2337 goto error;
788f20eb
CM
2338 }
2339
78f2c9e6 2340 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2341 if (!name) {
3065ae5b 2342 bio_put(device->flush_bio);
788f20eb 2343 kfree(device);
2b82032c
YZ
2344 ret = -ENOMEM;
2345 goto error;
788f20eb 2346 }
606686ee 2347 rcu_assign_pointer(device->name, name);
2b82032c 2348
a22285a6 2349 trans = btrfs_start_transaction(root, 0);
98d5dc13 2350 if (IS_ERR(trans)) {
606686ee 2351 rcu_string_free(device->name);
3065ae5b 2352 bio_put(device->flush_bio);
98d5dc13
TI
2353 kfree(device);
2354 ret = PTR_ERR(trans);
2355 goto error;
2356 }
2357
d5e2003c
JB
2358 q = bdev_get_queue(bdev);
2359 if (blk_queue_discard(q))
2360 device->can_discard = 1;
2b82032c 2361 device->writeable = 1;
2b82032c 2362 device->generation = trans->transid;
0b246afa
JM
2363 device->io_width = fs_info->sectorsize;
2364 device->io_align = fs_info->sectorsize;
2365 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2366 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2367 fs_info->sectorsize);
2cc3c559 2368 device->disk_total_bytes = device->total_bytes;
935e5cc9 2369 device->commit_total_bytes = device->total_bytes;
fb456252 2370 device->fs_info = fs_info;
788f20eb 2371 device->bdev = bdev;
dfe25020 2372 device->in_fs_metadata = 1;
63a212ab 2373 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2374 device->mode = FMODE_EXCL;
27087f37 2375 device->dev_stats_valid = 1;
9f6d2510 2376 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2377
2b82032c 2378 if (seeding_dev) {
1751e8a6 2379 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2380 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2381 if (ret) {
2382 btrfs_abort_transaction(trans, ret);
2383 goto error_trans;
2384 }
2b82032c 2385 }
788f20eb 2386
0b246afa 2387 device->fs_devices = fs_info->fs_devices;
e5e9a520 2388
0b246afa 2389 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2390 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2391 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2392 list_add(&device->dev_alloc_list,
0b246afa
JM
2393 &fs_info->fs_devices->alloc_list);
2394 fs_info->fs_devices->num_devices++;
2395 fs_info->fs_devices->open_devices++;
2396 fs_info->fs_devices->rw_devices++;
2397 fs_info->fs_devices->total_devices++;
2398 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2399
a5ed45f8 2400 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2401
e884f4f0 2402 if (!blk_queue_nonrot(q))
0b246afa 2403 fs_info->fs_devices->rotating = 1;
c289811c 2404
0b246afa
JM
2405 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2406 btrfs_set_super_total_bytes(fs_info->super_copy,
7dfb8be1 2407 round_down(tmp + device->total_bytes, fs_info->sectorsize));
788f20eb 2408
0b246afa
JM
2409 tmp = btrfs_super_num_devices(fs_info->super_copy);
2410 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2411
2412 /* add sysfs device entry */
0b246afa 2413 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2414
2196d6e8
MX
2415 /*
2416 * we've got more storage, clear any full flags on the space
2417 * infos
2418 */
0b246afa 2419 btrfs_clear_space_info_full(fs_info);
2196d6e8 2420
34441361 2421 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2422 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2423
2b82032c 2424 if (seeding_dev) {
34441361 2425 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2426 ret = init_first_rw_device(trans, fs_info);
34441361 2427 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2428 if (ret) {
66642832 2429 btrfs_abort_transaction(trans, ret);
d31c32f6 2430 goto error_sysfs;
005d6427 2431 }
2196d6e8
MX
2432 }
2433
0b246afa 2434 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2435 if (ret) {
66642832 2436 btrfs_abort_transaction(trans, ret);
d31c32f6 2437 goto error_sysfs;
2196d6e8
MX
2438 }
2439
2440 if (seeding_dev) {
2441 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2442
0b246afa 2443 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2444 if (ret) {
66642832 2445 btrfs_abort_transaction(trans, ret);
d31c32f6 2446 goto error_sysfs;
005d6427 2447 }
b2373f25
AJ
2448
2449 /* Sprouting would change fsid of the mounted root,
2450 * so rename the fsid on the sysfs
2451 */
2452 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2453 fs_info->fsid);
2454 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2455 btrfs_warn(fs_info,
2456 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2457 }
2458
3a45bb20 2459 ret = btrfs_commit_transaction(trans);
a2135011 2460
2b82032c
YZ
2461 if (seeding_dev) {
2462 mutex_unlock(&uuid_mutex);
2463 up_write(&sb->s_umount);
7132a262 2464 unlocked = true;
788f20eb 2465
79787eaa
JM
2466 if (ret) /* transaction commit */
2467 return ret;
2468
2ff7e61e 2469 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2470 if (ret < 0)
0b246afa 2471 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2472 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2473 trans = btrfs_attach_transaction(root);
2474 if (IS_ERR(trans)) {
2475 if (PTR_ERR(trans) == -ENOENT)
2476 return 0;
7132a262
AJ
2477 ret = PTR_ERR(trans);
2478 trans = NULL;
2479 goto error_sysfs;
671415b7 2480 }
3a45bb20 2481 ret = btrfs_commit_transaction(trans);
2b82032c 2482 }
c9e9f97b 2483
5a1972bd
QW
2484 /* Update ctime/mtime for libblkid */
2485 update_dev_time(device_path);
2b82032c 2486 return ret;
79787eaa 2487
d31c32f6
AJ
2488error_sysfs:
2489 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2490error_trans:
0af2c4bf 2491 if (seeding_dev)
1751e8a6 2492 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2493 if (trans)
2494 btrfs_end_transaction(trans);
606686ee 2495 rcu_string_free(device->name);
3065ae5b 2496 bio_put(device->flush_bio);
79787eaa 2497 kfree(device);
2b82032c 2498error:
e525fd89 2499 blkdev_put(bdev, FMODE_EXCL);
7132a262 2500 if (seeding_dev && !unlocked) {
2b82032c
YZ
2501 mutex_unlock(&uuid_mutex);
2502 up_write(&sb->s_umount);
2503 }
c9e9f97b 2504 return ret;
788f20eb
CM
2505}
2506
2ff7e61e 2507int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2508 const char *device_path,
1c43366d 2509 struct btrfs_device *srcdev,
e93c89c1
SB
2510 struct btrfs_device **device_out)
2511{
2512 struct request_queue *q;
2513 struct btrfs_device *device;
2514 struct block_device *bdev;
e93c89c1
SB
2515 struct list_head *devices;
2516 struct rcu_string *name;
12bd2fc0 2517 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2518 int ret = 0;
2519
2520 *device_out = NULL;
1c43366d
MX
2521 if (fs_info->fs_devices->seeding) {
2522 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2523 return -EINVAL;
1c43366d 2524 }
e93c89c1
SB
2525
2526 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2527 fs_info->bdev_holder);
1c43366d
MX
2528 if (IS_ERR(bdev)) {
2529 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2530 return PTR_ERR(bdev);
1c43366d 2531 }
e93c89c1
SB
2532
2533 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2534
2535 devices = &fs_info->fs_devices->devices;
2536 list_for_each_entry(device, devices, dev_list) {
2537 if (device->bdev == bdev) {
5d163e0e
JM
2538 btrfs_err(fs_info,
2539 "target device is in the filesystem!");
e93c89c1
SB
2540 ret = -EEXIST;
2541 goto error;
2542 }
2543 }
2544
1c43366d 2545
7cc8e58d
MX
2546 if (i_size_read(bdev->bd_inode) <
2547 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2548 btrfs_err(fs_info,
2549 "target device is smaller than source device!");
1c43366d
MX
2550 ret = -EINVAL;
2551 goto error;
2552 }
2553
2554
12bd2fc0
ID
2555 device = btrfs_alloc_device(NULL, &devid, NULL);
2556 if (IS_ERR(device)) {
2557 ret = PTR_ERR(device);
e93c89c1
SB
2558 goto error;
2559 }
2560
6165572c 2561 name = rcu_string_strdup(device_path, GFP_KERNEL);
e93c89c1 2562 if (!name) {
3065ae5b 2563 bio_put(device->flush_bio);
e93c89c1
SB
2564 kfree(device);
2565 ret = -ENOMEM;
2566 goto error;
2567 }
2568 rcu_assign_pointer(device->name, name);
2569
2570 q = bdev_get_queue(bdev);
2571 if (blk_queue_discard(q))
2572 device->can_discard = 1;
0b246afa 2573 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2574 device->writeable = 1;
e93c89c1 2575 device->generation = 0;
0b246afa
JM
2576 device->io_width = fs_info->sectorsize;
2577 device->io_align = fs_info->sectorsize;
2578 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2579 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2580 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2581 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2582 ASSERT(list_empty(&srcdev->resized_list));
2583 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2584 device->commit_bytes_used = device->bytes_used;
fb456252 2585 device->fs_info = fs_info;
e93c89c1
SB
2586 device->bdev = bdev;
2587 device->in_fs_metadata = 1;
2588 device->is_tgtdev_for_dev_replace = 1;
2589 device->mode = FMODE_EXCL;
27087f37 2590 device->dev_stats_valid = 1;
9f6d2510 2591 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
e93c89c1
SB
2592 device->fs_devices = fs_info->fs_devices;
2593 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2594 fs_info->fs_devices->num_devices++;
2595 fs_info->fs_devices->open_devices++;
0b246afa 2596 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2597
2598 *device_out = device;
2599 return ret;
2600
2601error:
2602 blkdev_put(bdev, FMODE_EXCL);
2603 return ret;
2604}
2605
2606void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2607 struct btrfs_device *tgtdev)
2608{
da17066c
JM
2609 u32 sectorsize = fs_info->sectorsize;
2610
e93c89c1 2611 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2612 tgtdev->io_width = sectorsize;
2613 tgtdev->io_align = sectorsize;
2614 tgtdev->sector_size = sectorsize;
fb456252 2615 tgtdev->fs_info = fs_info;
e93c89c1
SB
2616 tgtdev->in_fs_metadata = 1;
2617}
2618
d397712b
CM
2619static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2620 struct btrfs_device *device)
0b86a832
CM
2621{
2622 int ret;
2623 struct btrfs_path *path;
0b246afa 2624 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2625 struct btrfs_dev_item *dev_item;
2626 struct extent_buffer *leaf;
2627 struct btrfs_key key;
2628
0b86a832
CM
2629 path = btrfs_alloc_path();
2630 if (!path)
2631 return -ENOMEM;
2632
2633 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2634 key.type = BTRFS_DEV_ITEM_KEY;
2635 key.offset = device->devid;
2636
2637 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2638 if (ret < 0)
2639 goto out;
2640
2641 if (ret > 0) {
2642 ret = -ENOENT;
2643 goto out;
2644 }
2645
2646 leaf = path->nodes[0];
2647 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2648
2649 btrfs_set_device_id(leaf, dev_item, device->devid);
2650 btrfs_set_device_type(leaf, dev_item, device->type);
2651 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2652 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2653 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2654 btrfs_set_device_total_bytes(leaf, dev_item,
2655 btrfs_device_get_disk_total_bytes(device));
2656 btrfs_set_device_bytes_used(leaf, dev_item,
2657 btrfs_device_get_bytes_used(device));
0b86a832
CM
2658 btrfs_mark_buffer_dirty(leaf);
2659
2660out:
2661 btrfs_free_path(path);
2662 return ret;
2663}
2664
2196d6e8 2665int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2666 struct btrfs_device *device, u64 new_size)
2667{
0b246afa
JM
2668 struct btrfs_fs_info *fs_info = device->fs_info;
2669 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2670 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2671 u64 old_total;
2672 u64 diff;
8f18cf13 2673
2b82032c
YZ
2674 if (!device->writeable)
2675 return -EACCES;
2196d6e8 2676
7dfb8be1
NB
2677 new_size = round_down(new_size, fs_info->sectorsize);
2678
34441361 2679 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2680 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2681 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2682
63a212ab 2683 if (new_size <= device->total_bytes ||
2196d6e8 2684 device->is_tgtdev_for_dev_replace) {
34441361 2685 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2686 return -EINVAL;
2196d6e8 2687 }
2b82032c 2688
0b246afa 2689 fs_devices = fs_info->fs_devices;
2b82032c 2690
7dfb8be1
NB
2691 btrfs_set_super_total_bytes(super_copy,
2692 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2693 device->fs_devices->total_rw_bytes += diff;
2694
7cc8e58d
MX
2695 btrfs_device_set_total_bytes(device, new_size);
2696 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2697 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2698 if (list_empty(&device->resized_list))
2699 list_add_tail(&device->resized_list,
2700 &fs_devices->resized_devices);
34441361 2701 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2702
8f18cf13
CM
2703 return btrfs_update_device(trans, device);
2704}
2705
2706static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
408fbf19 2707 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2708{
5b4aacef 2709 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2710 int ret;
2711 struct btrfs_path *path;
2712 struct btrfs_key key;
2713
8f18cf13
CM
2714 path = btrfs_alloc_path();
2715 if (!path)
2716 return -ENOMEM;
2717
408fbf19 2718 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2719 key.offset = chunk_offset;
2720 key.type = BTRFS_CHUNK_ITEM_KEY;
2721
2722 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2723 if (ret < 0)
2724 goto out;
2725 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2726 btrfs_handle_fs_error(fs_info, -ENOENT,
2727 "Failed lookup while freeing chunk.");
79787eaa
JM
2728 ret = -ENOENT;
2729 goto out;
2730 }
8f18cf13
CM
2731
2732 ret = btrfs_del_item(trans, root, path);
79787eaa 2733 if (ret < 0)
0b246afa
JM
2734 btrfs_handle_fs_error(fs_info, ret,
2735 "Failed to delete chunk item.");
79787eaa 2736out:
8f18cf13 2737 btrfs_free_path(path);
65a246c5 2738 return ret;
8f18cf13
CM
2739}
2740
408fbf19 2741static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2742{
0b246afa 2743 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2744 struct btrfs_disk_key *disk_key;
2745 struct btrfs_chunk *chunk;
2746 u8 *ptr;
2747 int ret = 0;
2748 u32 num_stripes;
2749 u32 array_size;
2750 u32 len = 0;
2751 u32 cur;
2752 struct btrfs_key key;
2753
34441361 2754 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2755 array_size = btrfs_super_sys_array_size(super_copy);
2756
2757 ptr = super_copy->sys_chunk_array;
2758 cur = 0;
2759
2760 while (cur < array_size) {
2761 disk_key = (struct btrfs_disk_key *)ptr;
2762 btrfs_disk_key_to_cpu(&key, disk_key);
2763
2764 len = sizeof(*disk_key);
2765
2766 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2767 chunk = (struct btrfs_chunk *)(ptr + len);
2768 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2769 len += btrfs_chunk_item_size(num_stripes);
2770 } else {
2771 ret = -EIO;
2772 break;
2773 }
408fbf19 2774 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2775 key.offset == chunk_offset) {
2776 memmove(ptr, ptr + len, array_size - (cur + len));
2777 array_size -= len;
2778 btrfs_set_super_sys_array_size(super_copy, array_size);
2779 } else {
2780 ptr += len;
2781 cur += len;
2782 }
2783 }
34441361 2784 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2785 return ret;
2786}
2787
592d92ee
LB
2788static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2789 u64 logical, u64 length)
2790{
2791 struct extent_map_tree *em_tree;
2792 struct extent_map *em;
2793
2794 em_tree = &fs_info->mapping_tree.map_tree;
2795 read_lock(&em_tree->lock);
2796 em = lookup_extent_mapping(em_tree, logical, length);
2797 read_unlock(&em_tree->lock);
2798
2799 if (!em) {
2800 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2801 logical, length);
2802 return ERR_PTR(-EINVAL);
2803 }
2804
2805 if (em->start > logical || em->start + em->len < logical) {
2806 btrfs_crit(fs_info,
2807 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2808 logical, length, em->start, em->start + em->len);
2809 free_extent_map(em);
2810 return ERR_PTR(-EINVAL);
2811 }
2812
2813 /* callers are responsible for dropping em's ref. */
2814 return em;
2815}
2816
47ab2a6c 2817int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2818 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2819{
8f18cf13
CM
2820 struct extent_map *em;
2821 struct map_lookup *map;
2196d6e8 2822 u64 dev_extent_len = 0;
47ab2a6c 2823 int i, ret = 0;
0b246afa 2824 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2825
592d92ee
LB
2826 em = get_chunk_map(fs_info, chunk_offset, 1);
2827 if (IS_ERR(em)) {
47ab2a6c
JB
2828 /*
2829 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2830 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2831 * do anything we still error out.
2832 */
2833 ASSERT(0);
592d92ee 2834 return PTR_ERR(em);
47ab2a6c 2835 }
95617d69 2836 map = em->map_lookup;
34441361 2837 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2838 check_system_chunk(trans, fs_info, map->type);
34441361 2839 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2840
57ba4cb8
FM
2841 /*
2842 * Take the device list mutex to prevent races with the final phase of
2843 * a device replace operation that replaces the device object associated
2844 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2845 */
2846 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2847 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2848 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2849 ret = btrfs_free_dev_extent(trans, device,
2850 map->stripes[i].physical,
2851 &dev_extent_len);
47ab2a6c 2852 if (ret) {
57ba4cb8 2853 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2854 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2855 goto out;
2856 }
a061fc8d 2857
2196d6e8 2858 if (device->bytes_used > 0) {
34441361 2859 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2860 btrfs_device_set_bytes_used(device,
2861 device->bytes_used - dev_extent_len);
a5ed45f8 2862 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2863 btrfs_clear_space_info_full(fs_info);
34441361 2864 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2865 }
a061fc8d 2866
dfe25020
CM
2867 if (map->stripes[i].dev) {
2868 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2869 if (ret) {
57ba4cb8 2870 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2871 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2872 goto out;
2873 }
dfe25020 2874 }
8f18cf13 2875 }
57ba4cb8
FM
2876 mutex_unlock(&fs_devices->device_list_mutex);
2877
408fbf19 2878 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
47ab2a6c 2879 if (ret) {
66642832 2880 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2881 goto out;
2882 }
8f18cf13 2883
6bccf3ab 2884 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2885
8f18cf13 2886 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2887 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2888 if (ret) {
66642832 2889 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2890 goto out;
2891 }
8f18cf13
CM
2892 }
2893
6bccf3ab 2894 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2895 if (ret) {
66642832 2896 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2897 goto out;
2898 }
2b82032c 2899
47ab2a6c 2900out:
2b82032c
YZ
2901 /* once for us */
2902 free_extent_map(em);
47ab2a6c
JB
2903 return ret;
2904}
2b82032c 2905
5b4aacef 2906static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2907{
5b4aacef 2908 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2909 struct btrfs_trans_handle *trans;
47ab2a6c 2910 int ret;
2b82032c 2911
67c5e7d4
FM
2912 /*
2913 * Prevent races with automatic removal of unused block groups.
2914 * After we relocate and before we remove the chunk with offset
2915 * chunk_offset, automatic removal of the block group can kick in,
2916 * resulting in a failure when calling btrfs_remove_chunk() below.
2917 *
2918 * Make sure to acquire this mutex before doing a tree search (dev
2919 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2920 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2921 * we release the path used to search the chunk/dev tree and before
2922 * the current task acquires this mutex and calls us.
2923 */
0b246afa 2924 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2925
0b246afa 2926 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2927 if (ret)
2928 return -ENOSPC;
2929
2930 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2931 btrfs_scrub_pause(fs_info);
0b246afa 2932 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2933 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2934 if (ret)
2935 return ret;
2936
19c4d2f9
CM
2937 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2938 chunk_offset);
2939 if (IS_ERR(trans)) {
2940 ret = PTR_ERR(trans);
2941 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2942 return ret;
2943 }
2944
47ab2a6c 2945 /*
19c4d2f9
CM
2946 * step two, delete the device extents and the
2947 * chunk tree entries
47ab2a6c 2948 */
5b4aacef 2949 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2950 btrfs_end_transaction(trans);
19c4d2f9 2951 return ret;
2b82032c
YZ
2952}
2953
2ff7e61e 2954static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2955{
0b246afa 2956 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2957 struct btrfs_path *path;
2958 struct extent_buffer *leaf;
2959 struct btrfs_chunk *chunk;
2960 struct btrfs_key key;
2961 struct btrfs_key found_key;
2b82032c 2962 u64 chunk_type;
ba1bf481
JB
2963 bool retried = false;
2964 int failed = 0;
2b82032c
YZ
2965 int ret;
2966
2967 path = btrfs_alloc_path();
2968 if (!path)
2969 return -ENOMEM;
2970
ba1bf481 2971again:
2b82032c
YZ
2972 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2973 key.offset = (u64)-1;
2974 key.type = BTRFS_CHUNK_ITEM_KEY;
2975
2976 while (1) {
0b246afa 2977 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2978 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2979 if (ret < 0) {
0b246afa 2980 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2981 goto error;
67c5e7d4 2982 }
79787eaa 2983 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2984
2985 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2986 key.type);
67c5e7d4 2987 if (ret)
0b246afa 2988 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2989 if (ret < 0)
2990 goto error;
2991 if (ret > 0)
2992 break;
1a40e23b 2993
2b82032c
YZ
2994 leaf = path->nodes[0];
2995 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2996
2b82032c
YZ
2997 chunk = btrfs_item_ptr(leaf, path->slots[0],
2998 struct btrfs_chunk);
2999 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3000 btrfs_release_path(path);
8f18cf13 3001
2b82032c 3002 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3003 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3004 if (ret == -ENOSPC)
3005 failed++;
14586651
HS
3006 else
3007 BUG_ON(ret);
2b82032c 3008 }
0b246afa 3009 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3010
2b82032c
YZ
3011 if (found_key.offset == 0)
3012 break;
3013 key.offset = found_key.offset - 1;
3014 }
3015 ret = 0;
ba1bf481
JB
3016 if (failed && !retried) {
3017 failed = 0;
3018 retried = true;
3019 goto again;
fae7f21c 3020 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3021 ret = -ENOSPC;
3022 }
2b82032c
YZ
3023error:
3024 btrfs_free_path(path);
3025 return ret;
8f18cf13
CM
3026}
3027
6bccf3ab 3028static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3029 struct btrfs_balance_control *bctl)
3030{
6bccf3ab 3031 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3032 struct btrfs_trans_handle *trans;
3033 struct btrfs_balance_item *item;
3034 struct btrfs_disk_balance_args disk_bargs;
3035 struct btrfs_path *path;
3036 struct extent_buffer *leaf;
3037 struct btrfs_key key;
3038 int ret, err;
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOMEM;
3043
3044 trans = btrfs_start_transaction(root, 0);
3045 if (IS_ERR(trans)) {
3046 btrfs_free_path(path);
3047 return PTR_ERR(trans);
3048 }
3049
3050 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3051 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3052 key.offset = 0;
3053
3054 ret = btrfs_insert_empty_item(trans, root, path, &key,
3055 sizeof(*item));
3056 if (ret)
3057 goto out;
3058
3059 leaf = path->nodes[0];
3060 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3061
b159fa28 3062 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3063
3064 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3065 btrfs_set_balance_data(leaf, item, &disk_bargs);
3066 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3067 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3068 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3069 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3070
3071 btrfs_set_balance_flags(leaf, item, bctl->flags);
3072
3073 btrfs_mark_buffer_dirty(leaf);
3074out:
3075 btrfs_free_path(path);
3a45bb20 3076 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3077 if (err && !ret)
3078 ret = err;
3079 return ret;
3080}
3081
6bccf3ab 3082static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3083{
6bccf3ab 3084 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3085 struct btrfs_trans_handle *trans;
3086 struct btrfs_path *path;
3087 struct btrfs_key key;
3088 int ret, err;
3089
3090 path = btrfs_alloc_path();
3091 if (!path)
3092 return -ENOMEM;
3093
3094 trans = btrfs_start_transaction(root, 0);
3095 if (IS_ERR(trans)) {
3096 btrfs_free_path(path);
3097 return PTR_ERR(trans);
3098 }
3099
3100 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3101 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3102 key.offset = 0;
3103
3104 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3105 if (ret < 0)
3106 goto out;
3107 if (ret > 0) {
3108 ret = -ENOENT;
3109 goto out;
3110 }
3111
3112 ret = btrfs_del_item(trans, root, path);
3113out:
3114 btrfs_free_path(path);
3a45bb20 3115 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3116 if (err && !ret)
3117 ret = err;
3118 return ret;
3119}
3120
59641015
ID
3121/*
3122 * This is a heuristic used to reduce the number of chunks balanced on
3123 * resume after balance was interrupted.
3124 */
3125static void update_balance_args(struct btrfs_balance_control *bctl)
3126{
3127 /*
3128 * Turn on soft mode for chunk types that were being converted.
3129 */
3130 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3131 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3132 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3133 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3134 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3135 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3136
3137 /*
3138 * Turn on usage filter if is not already used. The idea is
3139 * that chunks that we have already balanced should be
3140 * reasonably full. Don't do it for chunks that are being
3141 * converted - that will keep us from relocating unconverted
3142 * (albeit full) chunks.
3143 */
3144 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3145 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3146 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3147 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3148 bctl->data.usage = 90;
3149 }
3150 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3151 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3152 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 bctl->sys.usage = 90;
3155 }
3156 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3157 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3158 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3159 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3160 bctl->meta.usage = 90;
3161 }
3162}
3163
c9e9f97b
ID
3164/*
3165 * Should be called with both balance and volume mutexes held to
3166 * serialize other volume operations (add_dev/rm_dev/resize) with
3167 * restriper. Same goes for unset_balance_control.
3168 */
3169static void set_balance_control(struct btrfs_balance_control *bctl)
3170{
3171 struct btrfs_fs_info *fs_info = bctl->fs_info;
3172
3173 BUG_ON(fs_info->balance_ctl);
3174
3175 spin_lock(&fs_info->balance_lock);
3176 fs_info->balance_ctl = bctl;
3177 spin_unlock(&fs_info->balance_lock);
3178}
3179
3180static void unset_balance_control(struct btrfs_fs_info *fs_info)
3181{
3182 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3183
3184 BUG_ON(!fs_info->balance_ctl);
3185
3186 spin_lock(&fs_info->balance_lock);
3187 fs_info->balance_ctl = NULL;
3188 spin_unlock(&fs_info->balance_lock);
3189
3190 kfree(bctl);
3191}
3192
ed25e9b2
ID
3193/*
3194 * Balance filters. Return 1 if chunk should be filtered out
3195 * (should not be balanced).
3196 */
899c81ea 3197static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3198 struct btrfs_balance_args *bargs)
3199{
899c81ea
ID
3200 chunk_type = chunk_to_extended(chunk_type) &
3201 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3202
899c81ea 3203 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3204 return 0;
3205
3206 return 1;
3207}
3208
dba72cb3 3209static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3210 struct btrfs_balance_args *bargs)
bc309467
DS
3211{
3212 struct btrfs_block_group_cache *cache;
3213 u64 chunk_used;
3214 u64 user_thresh_min;
3215 u64 user_thresh_max;
3216 int ret = 1;
3217
3218 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3219 chunk_used = btrfs_block_group_used(&cache->item);
3220
3221 if (bargs->usage_min == 0)
3222 user_thresh_min = 0;
3223 else
3224 user_thresh_min = div_factor_fine(cache->key.offset,
3225 bargs->usage_min);
3226
3227 if (bargs->usage_max == 0)
3228 user_thresh_max = 1;
3229 else if (bargs->usage_max > 100)
3230 user_thresh_max = cache->key.offset;
3231 else
3232 user_thresh_max = div_factor_fine(cache->key.offset,
3233 bargs->usage_max);
3234
3235 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3236 ret = 0;
3237
3238 btrfs_put_block_group(cache);
3239 return ret;
3240}
3241
dba72cb3 3242static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3243 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3244{
3245 struct btrfs_block_group_cache *cache;
3246 u64 chunk_used, user_thresh;
3247 int ret = 1;
3248
3249 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3250 chunk_used = btrfs_block_group_used(&cache->item);
3251
bc309467 3252 if (bargs->usage_min == 0)
3e39cea6 3253 user_thresh = 1;
a105bb88
ID
3254 else if (bargs->usage > 100)
3255 user_thresh = cache->key.offset;
3256 else
3257 user_thresh = div_factor_fine(cache->key.offset,
3258 bargs->usage);
3259
5ce5b3c0
ID
3260 if (chunk_used < user_thresh)
3261 ret = 0;
3262
3263 btrfs_put_block_group(cache);
3264 return ret;
3265}
3266
409d404b
ID
3267static int chunk_devid_filter(struct extent_buffer *leaf,
3268 struct btrfs_chunk *chunk,
3269 struct btrfs_balance_args *bargs)
3270{
3271 struct btrfs_stripe *stripe;
3272 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3273 int i;
3274
3275 for (i = 0; i < num_stripes; i++) {
3276 stripe = btrfs_stripe_nr(chunk, i);
3277 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3278 return 0;
3279 }
3280
3281 return 1;
3282}
3283
94e60d5a
ID
3284/* [pstart, pend) */
3285static int chunk_drange_filter(struct extent_buffer *leaf,
3286 struct btrfs_chunk *chunk,
94e60d5a
ID
3287 struct btrfs_balance_args *bargs)
3288{
3289 struct btrfs_stripe *stripe;
3290 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3291 u64 stripe_offset;
3292 u64 stripe_length;
3293 int factor;
3294 int i;
3295
3296 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3297 return 0;
3298
3299 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3300 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3301 factor = num_stripes / 2;
3302 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3303 factor = num_stripes - 1;
3304 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3305 factor = num_stripes - 2;
3306 } else {
3307 factor = num_stripes;
3308 }
94e60d5a
ID
3309
3310 for (i = 0; i < num_stripes; i++) {
3311 stripe = btrfs_stripe_nr(chunk, i);
3312 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3313 continue;
3314
3315 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3316 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3317 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3318
3319 if (stripe_offset < bargs->pend &&
3320 stripe_offset + stripe_length > bargs->pstart)
3321 return 0;
3322 }
3323
3324 return 1;
3325}
3326
ea67176a
ID
3327/* [vstart, vend) */
3328static int chunk_vrange_filter(struct extent_buffer *leaf,
3329 struct btrfs_chunk *chunk,
3330 u64 chunk_offset,
3331 struct btrfs_balance_args *bargs)
3332{
3333 if (chunk_offset < bargs->vend &&
3334 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3335 /* at least part of the chunk is inside this vrange */
3336 return 0;
3337
3338 return 1;
3339}
3340
dee32d0a
GAP
3341static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3342 struct btrfs_chunk *chunk,
3343 struct btrfs_balance_args *bargs)
3344{
3345 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3346
3347 if (bargs->stripes_min <= num_stripes
3348 && num_stripes <= bargs->stripes_max)
3349 return 0;
3350
3351 return 1;
3352}
3353
899c81ea 3354static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3355 struct btrfs_balance_args *bargs)
3356{
3357 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3358 return 0;
3359
899c81ea
ID
3360 chunk_type = chunk_to_extended(chunk_type) &
3361 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3362
899c81ea 3363 if (bargs->target == chunk_type)
cfa4c961
ID
3364 return 1;
3365
3366 return 0;
3367}
3368
2ff7e61e 3369static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3370 struct extent_buffer *leaf,
3371 struct btrfs_chunk *chunk, u64 chunk_offset)
3372{
0b246afa 3373 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3374 struct btrfs_balance_args *bargs = NULL;
3375 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3376
3377 /* type filter */
3378 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3379 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3380 return 0;
3381 }
3382
3383 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3384 bargs = &bctl->data;
3385 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3386 bargs = &bctl->sys;
3387 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3388 bargs = &bctl->meta;
3389
ed25e9b2
ID
3390 /* profiles filter */
3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3392 chunk_profiles_filter(chunk_type, bargs)) {
3393 return 0;
5ce5b3c0
ID
3394 }
3395
3396 /* usage filter */
3397 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3398 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3399 return 0;
bc309467 3400 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3401 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3402 return 0;
409d404b
ID
3403 }
3404
3405 /* devid filter */
3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3407 chunk_devid_filter(leaf, chunk, bargs)) {
3408 return 0;
94e60d5a
ID
3409 }
3410
3411 /* drange filter, makes sense only with devid filter */
3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3413 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3414 return 0;
ea67176a
ID
3415 }
3416
3417 /* vrange filter */
3418 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3419 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3420 return 0;
ed25e9b2
ID
3421 }
3422
dee32d0a
GAP
3423 /* stripes filter */
3424 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3425 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3426 return 0;
3427 }
3428
cfa4c961
ID
3429 /* soft profile changing mode */
3430 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3431 chunk_soft_convert_filter(chunk_type, bargs)) {
3432 return 0;
3433 }
3434
7d824b6f
DS
3435 /*
3436 * limited by count, must be the last filter
3437 */
3438 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3439 if (bargs->limit == 0)
3440 return 0;
3441 else
3442 bargs->limit--;
12907fc7
DS
3443 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3444 /*
3445 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3446 * determined here because we do not have the global information
12907fc7
DS
3447 * about the count of all chunks that satisfy the filters.
3448 */
3449 if (bargs->limit_max == 0)
3450 return 0;
3451 else
3452 bargs->limit_max--;
7d824b6f
DS
3453 }
3454
f43ffb60
ID
3455 return 1;
3456}
3457
c9e9f97b 3458static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3459{
19a39dce 3460 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3461 struct btrfs_root *chunk_root = fs_info->chunk_root;
3462 struct btrfs_root *dev_root = fs_info->dev_root;
3463 struct list_head *devices;
ec44a35c
CM
3464 struct btrfs_device *device;
3465 u64 old_size;
3466 u64 size_to_free;
12907fc7 3467 u64 chunk_type;
f43ffb60 3468 struct btrfs_chunk *chunk;
5a488b9d 3469 struct btrfs_path *path = NULL;
ec44a35c 3470 struct btrfs_key key;
ec44a35c 3471 struct btrfs_key found_key;
c9e9f97b 3472 struct btrfs_trans_handle *trans;
f43ffb60
ID
3473 struct extent_buffer *leaf;
3474 int slot;
c9e9f97b
ID
3475 int ret;
3476 int enospc_errors = 0;
19a39dce 3477 bool counting = true;
12907fc7 3478 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3479 u64 limit_data = bctl->data.limit;
3480 u64 limit_meta = bctl->meta.limit;
3481 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3482 u32 count_data = 0;
3483 u32 count_meta = 0;
3484 u32 count_sys = 0;
2c9fe835 3485 int chunk_reserved = 0;
cf25ce51 3486 u64 bytes_used = 0;
ec44a35c 3487
ec44a35c 3488 /* step one make some room on all the devices */
c9e9f97b 3489 devices = &fs_info->fs_devices->devices;
c6e30871 3490 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3491 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3492 size_to_free = div_factor(old_size, 1);
ee22184b 3493 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3494 if (!device->writeable ||
7cc8e58d
MX
3495 btrfs_device_get_total_bytes(device) -
3496 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3497 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3498 continue;
3499
3500 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3501 if (ret == -ENOSPC)
3502 break;
5a488b9d
LB
3503 if (ret) {
3504 /* btrfs_shrink_device never returns ret > 0 */
3505 WARN_ON(ret > 0);
3506 goto error;
3507 }
ec44a35c 3508
a22285a6 3509 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3510 if (IS_ERR(trans)) {
3511 ret = PTR_ERR(trans);
3512 btrfs_info_in_rcu(fs_info,
3513 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3514 rcu_str_deref(device->name), ret,
3515 old_size, old_size - size_to_free);
3516 goto error;
3517 }
ec44a35c
CM
3518
3519 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3520 if (ret) {
3a45bb20 3521 btrfs_end_transaction(trans);
5a488b9d
LB
3522 /* btrfs_grow_device never returns ret > 0 */
3523 WARN_ON(ret > 0);
3524 btrfs_info_in_rcu(fs_info,
3525 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3526 rcu_str_deref(device->name), ret,
3527 old_size, old_size - size_to_free);
3528 goto error;
3529 }
ec44a35c 3530
3a45bb20 3531 btrfs_end_transaction(trans);
ec44a35c
CM
3532 }
3533
3534 /* step two, relocate all the chunks */
3535 path = btrfs_alloc_path();
17e9f796
MF
3536 if (!path) {
3537 ret = -ENOMEM;
3538 goto error;
3539 }
19a39dce
ID
3540
3541 /* zero out stat counters */
3542 spin_lock(&fs_info->balance_lock);
3543 memset(&bctl->stat, 0, sizeof(bctl->stat));
3544 spin_unlock(&fs_info->balance_lock);
3545again:
7d824b6f 3546 if (!counting) {
12907fc7
DS
3547 /*
3548 * The single value limit and min/max limits use the same bytes
3549 * in the
3550 */
7d824b6f
DS
3551 bctl->data.limit = limit_data;
3552 bctl->meta.limit = limit_meta;
3553 bctl->sys.limit = limit_sys;
3554 }
ec44a35c
CM
3555 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3556 key.offset = (u64)-1;
3557 key.type = BTRFS_CHUNK_ITEM_KEY;
3558
d397712b 3559 while (1) {
19a39dce 3560 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3561 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3562 ret = -ECANCELED;
3563 goto error;
3564 }
3565
67c5e7d4 3566 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3567 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3568 if (ret < 0) {
3569 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3570 goto error;
67c5e7d4 3571 }
ec44a35c
CM
3572
3573 /*
3574 * this shouldn't happen, it means the last relocate
3575 * failed
3576 */
3577 if (ret == 0)
c9e9f97b 3578 BUG(); /* FIXME break ? */
ec44a35c
CM
3579
3580 ret = btrfs_previous_item(chunk_root, path, 0,
3581 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3582 if (ret) {
67c5e7d4 3583 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3584 ret = 0;
ec44a35c 3585 break;
c9e9f97b 3586 }
7d9eb12c 3587
f43ffb60
ID
3588 leaf = path->nodes[0];
3589 slot = path->slots[0];
3590 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3591
67c5e7d4
FM
3592 if (found_key.objectid != key.objectid) {
3593 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3594 break;
67c5e7d4 3595 }
7d9eb12c 3596
f43ffb60 3597 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3598 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3599
19a39dce
ID
3600 if (!counting) {
3601 spin_lock(&fs_info->balance_lock);
3602 bctl->stat.considered++;
3603 spin_unlock(&fs_info->balance_lock);
3604 }
3605
2ff7e61e 3606 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3607 found_key.offset);
2c9fe835 3608
b3b4aa74 3609 btrfs_release_path(path);
67c5e7d4
FM
3610 if (!ret) {
3611 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3612 goto loop;
67c5e7d4 3613 }
f43ffb60 3614
19a39dce 3615 if (counting) {
67c5e7d4 3616 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3617 spin_lock(&fs_info->balance_lock);
3618 bctl->stat.expected++;
3619 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3620
3621 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3622 count_data++;
3623 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3624 count_sys++;
3625 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3626 count_meta++;
3627
3628 goto loop;
3629 }
3630
3631 /*
3632 * Apply limit_min filter, no need to check if the LIMITS
3633 * filter is used, limit_min is 0 by default
3634 */
3635 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3636 count_data < bctl->data.limit_min)
3637 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3638 count_meta < bctl->meta.limit_min)
3639 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3640 count_sys < bctl->sys.limit_min)) {
3641 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3642 goto loop;
3643 }
3644
cf25ce51
LB
3645 ASSERT(fs_info->data_sinfo);
3646 spin_lock(&fs_info->data_sinfo->lock);
3647 bytes_used = fs_info->data_sinfo->bytes_used;
3648 spin_unlock(&fs_info->data_sinfo->lock);
3649
3650 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3651 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3652 trans = btrfs_start_transaction(chunk_root, 0);
3653 if (IS_ERR(trans)) {
3654 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3655 ret = PTR_ERR(trans);
3656 goto error;
3657 }
3658
2ff7e61e 3659 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3660 BTRFS_BLOCK_GROUP_DATA);
3a45bb20 3661 btrfs_end_transaction(trans);
2c9fe835
ZL
3662 if (ret < 0) {
3663 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664 goto error;
3665 }
2c9fe835
ZL
3666 chunk_reserved = 1;
3667 }
3668
5b4aacef 3669 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3670 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3671 if (ret && ret != -ENOSPC)
3672 goto error;
19a39dce 3673 if (ret == -ENOSPC) {
c9e9f97b 3674 enospc_errors++;
19a39dce
ID
3675 } else {
3676 spin_lock(&fs_info->balance_lock);
3677 bctl->stat.completed++;
3678 spin_unlock(&fs_info->balance_lock);
3679 }
f43ffb60 3680loop:
795a3321
ID
3681 if (found_key.offset == 0)
3682 break;
ba1bf481 3683 key.offset = found_key.offset - 1;
ec44a35c 3684 }
c9e9f97b 3685
19a39dce
ID
3686 if (counting) {
3687 btrfs_release_path(path);
3688 counting = false;
3689 goto again;
3690 }
ec44a35c
CM
3691error:
3692 btrfs_free_path(path);
c9e9f97b 3693 if (enospc_errors) {
efe120a0 3694 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3695 enospc_errors);
c9e9f97b
ID
3696 if (!ret)
3697 ret = -ENOSPC;
3698 }
3699
ec44a35c
CM
3700 return ret;
3701}
3702
0c460c0d
ID
3703/**
3704 * alloc_profile_is_valid - see if a given profile is valid and reduced
3705 * @flags: profile to validate
3706 * @extended: if true @flags is treated as an extended profile
3707 */
3708static int alloc_profile_is_valid(u64 flags, int extended)
3709{
3710 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3711 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3712
3713 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3714
3715 /* 1) check that all other bits are zeroed */
3716 if (flags & ~mask)
3717 return 0;
3718
3719 /* 2) see if profile is reduced */
3720 if (flags == 0)
3721 return !extended; /* "0" is valid for usual profiles */
3722
3723 /* true if exactly one bit set */
3724 return (flags & (flags - 1)) == 0;
3725}
3726
837d5b6e
ID
3727static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3728{
a7e99c69
ID
3729 /* cancel requested || normal exit path */
3730 return atomic_read(&fs_info->balance_cancel_req) ||
3731 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3732 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3733}
3734
c9e9f97b
ID
3735static void __cancel_balance(struct btrfs_fs_info *fs_info)
3736{
0940ebf6
ID
3737 int ret;
3738
c9e9f97b 3739 unset_balance_control(fs_info);
6bccf3ab 3740 ret = del_balance_item(fs_info);
0f788c58 3741 if (ret)
34d97007 3742 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f 3743
171938e5 3744 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
c9e9f97b
ID
3745}
3746
bdcd3c97
AM
3747/* Non-zero return value signifies invalidity */
3748static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3749 u64 allowed)
3750{
3751 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3752 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3753 (bctl_arg->target & ~allowed)));
3754}
3755
c9e9f97b
ID
3756/*
3757 * Should be called with both balance and volume mutexes held
3758 */
3759int btrfs_balance(struct btrfs_balance_control *bctl,
3760 struct btrfs_ioctl_balance_args *bargs)
3761{
3762 struct btrfs_fs_info *fs_info = bctl->fs_info;
14506127 3763 u64 meta_target, data_target;
f43ffb60 3764 u64 allowed;
e4837f8f 3765 int mixed = 0;
c9e9f97b 3766 int ret;
8dabb742 3767 u64 num_devices;
de98ced9 3768 unsigned seq;
f23a8dcc 3769 bool reducing_integrity;
c9e9f97b 3770
837d5b6e 3771 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3772 atomic_read(&fs_info->balance_pause_req) ||
3773 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3774 ret = -EINVAL;
3775 goto out;
3776 }
3777
e4837f8f
ID
3778 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3779 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3780 mixed = 1;
3781
f43ffb60
ID
3782 /*
3783 * In case of mixed groups both data and meta should be picked,
3784 * and identical options should be given for both of them.
3785 */
e4837f8f
ID
3786 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3787 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3788 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3789 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3790 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3791 btrfs_err(fs_info,
3792 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3793 ret = -EINVAL;
3794 goto out;
3795 }
3796 }
3797
8dabb742 3798 num_devices = fs_info->fs_devices->num_devices;
73beece9 3799 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3800 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3801 BUG_ON(num_devices < 1);
3802 num_devices--;
3803 }
73beece9 3804 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3805 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3806 if (num_devices > 1)
e4d8ec0f 3807 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3808 if (num_devices > 2)
3809 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3810 if (num_devices > 3)
3811 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3812 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3813 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3814 btrfs_err(fs_info,
3815 "unable to start balance with target data profile %llu",
3816 bctl->data.target);
e4d8ec0f
ID
3817 ret = -EINVAL;
3818 goto out;
3819 }
bdcd3c97 3820 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3821 btrfs_err(fs_info,
5d163e0e
JM
3822 "unable to start balance with target metadata profile %llu",
3823 bctl->meta.target);
e4d8ec0f
ID
3824 ret = -EINVAL;
3825 goto out;
3826 }
bdcd3c97 3827 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3828 btrfs_err(fs_info,
5d163e0e
JM
3829 "unable to start balance with target system profile %llu",
3830 bctl->sys.target);
e4d8ec0f
ID
3831 ret = -EINVAL;
3832 goto out;
3833 }
3834
e4d8ec0f
ID
3835 /* allow to reduce meta or sys integrity only if force set */
3836 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3837 BTRFS_BLOCK_GROUP_RAID10 |
3838 BTRFS_BLOCK_GROUP_RAID5 |
3839 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3840 do {
3841 seq = read_seqbegin(&fs_info->profiles_lock);
3842
3843 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3844 (fs_info->avail_system_alloc_bits & allowed) &&
3845 !(bctl->sys.target & allowed)) ||
3846 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3847 (fs_info->avail_metadata_alloc_bits & allowed) &&
f23a8dcc
FM
3848 !(bctl->meta.target & allowed)))
3849 reducing_integrity = true;
3850 else
3851 reducing_integrity = false;
3852
3853 /* if we're not converting, the target field is uninitialized */
3854 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3855 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3856 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3857 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 3858 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3859
f23a8dcc
FM
3860 if (reducing_integrity) {
3861 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3862 btrfs_info(fs_info,
3863 "balance: force reducing metadata integrity");
3864 } else {
3865 btrfs_err(fs_info,
3866 "balance: reduces metadata integrity, use --force if you want this");
3867 ret = -EINVAL;
3868 goto out;
3869 }
3870 }
3871
14506127
AB
3872 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3873 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3874 btrfs_warn(fs_info,
5d163e0e 3875 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
14506127 3876 meta_target, data_target);
ee592d07
ST
3877 }
3878
6bccf3ab 3879 ret = insert_balance_item(fs_info, bctl);
59641015 3880 if (ret && ret != -EEXIST)
0940ebf6
ID
3881 goto out;
3882
59641015
ID
3883 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3884 BUG_ON(ret == -EEXIST);
3885 set_balance_control(bctl);
3886 } else {
3887 BUG_ON(ret != -EEXIST);
3888 spin_lock(&fs_info->balance_lock);
3889 update_balance_args(bctl);
3890 spin_unlock(&fs_info->balance_lock);
3891 }
c9e9f97b 3892
837d5b6e 3893 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3894 mutex_unlock(&fs_info->balance_mutex);
3895
3896 ret = __btrfs_balance(fs_info);
3897
3898 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3899 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
3900
3901 if (bargs) {
3902 memset(bargs, 0, sizeof(*bargs));
19a39dce 3903 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3904 }
3905
3a01aa7a
ID
3906 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3907 balance_need_close(fs_info)) {
3908 __cancel_balance(fs_info);
3909 }
3910
837d5b6e 3911 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3912
3913 return ret;
3914out:
59641015
ID
3915 if (bctl->flags & BTRFS_BALANCE_RESUME)
3916 __cancel_balance(fs_info);
ed0fb78f 3917 else {
59641015 3918 kfree(bctl);
171938e5 3919 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
ed0fb78f 3920 }
59641015
ID
3921 return ret;
3922}
3923
3924static int balance_kthread(void *data)
3925{
2b6ba629 3926 struct btrfs_fs_info *fs_info = data;
9555c6c1 3927 int ret = 0;
59641015
ID
3928
3929 mutex_lock(&fs_info->volume_mutex);
3930 mutex_lock(&fs_info->balance_mutex);
3931
2b6ba629 3932 if (fs_info->balance_ctl) {
efe120a0 3933 btrfs_info(fs_info, "continuing balance");
2b6ba629 3934 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3935 }
59641015
ID
3936
3937 mutex_unlock(&fs_info->balance_mutex);
3938 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3939
59641015
ID
3940 return ret;
3941}
3942
2b6ba629
ID
3943int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3944{
3945 struct task_struct *tsk;
3946
3947 spin_lock(&fs_info->balance_lock);
3948 if (!fs_info->balance_ctl) {
3949 spin_unlock(&fs_info->balance_lock);
3950 return 0;
3951 }
3952 spin_unlock(&fs_info->balance_lock);
3953
3cdde224 3954 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3955 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3956 return 0;
3957 }
3958
1556b8d3
AJ
3959 /*
3960 * A ro->rw remount sequence should continue with the paused balance
3961 * regardless of who pauses it, system or the user as of now, so set
3962 * the resume flag.
3963 */
3964 spin_lock(&fs_info->balance_lock);
3965 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3966 spin_unlock(&fs_info->balance_lock);
3967
2b6ba629 3968 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3969 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3970}
3971
68310a5e 3972int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3973{
59641015
ID
3974 struct btrfs_balance_control *bctl;
3975 struct btrfs_balance_item *item;
3976 struct btrfs_disk_balance_args disk_bargs;
3977 struct btrfs_path *path;
3978 struct extent_buffer *leaf;
3979 struct btrfs_key key;
3980 int ret;
3981
3982 path = btrfs_alloc_path();
3983 if (!path)
3984 return -ENOMEM;
3985
59641015 3986 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3987 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3988 key.offset = 0;
3989
68310a5e 3990 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3991 if (ret < 0)
68310a5e 3992 goto out;
59641015
ID
3993 if (ret > 0) { /* ret = -ENOENT; */
3994 ret = 0;
68310a5e
ID
3995 goto out;
3996 }
3997
3998 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3999 if (!bctl) {
4000 ret = -ENOMEM;
4001 goto out;
59641015
ID
4002 }
4003
4004 leaf = path->nodes[0];
4005 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4006
68310a5e
ID
4007 bctl->fs_info = fs_info;
4008 bctl->flags = btrfs_balance_flags(leaf, item);
4009 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4010
4011 btrfs_balance_data(leaf, item, &disk_bargs);
4012 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4013 btrfs_balance_meta(leaf, item, &disk_bargs);
4014 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4015 btrfs_balance_sys(leaf, item, &disk_bargs);
4016 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4017
171938e5 4018 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
ed0fb78f 4019
68310a5e
ID
4020 mutex_lock(&fs_info->volume_mutex);
4021 mutex_lock(&fs_info->balance_mutex);
59641015 4022
68310a5e
ID
4023 set_balance_control(bctl);
4024
4025 mutex_unlock(&fs_info->balance_mutex);
4026 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4027out:
4028 btrfs_free_path(path);
ec44a35c
CM
4029 return ret;
4030}
4031
837d5b6e
ID
4032int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4033{
4034 int ret = 0;
4035
4036 mutex_lock(&fs_info->balance_mutex);
4037 if (!fs_info->balance_ctl) {
4038 mutex_unlock(&fs_info->balance_mutex);
4039 return -ENOTCONN;
4040 }
4041
4042 if (atomic_read(&fs_info->balance_running)) {
4043 atomic_inc(&fs_info->balance_pause_req);
4044 mutex_unlock(&fs_info->balance_mutex);
4045
4046 wait_event(fs_info->balance_wait_q,
4047 atomic_read(&fs_info->balance_running) == 0);
4048
4049 mutex_lock(&fs_info->balance_mutex);
4050 /* we are good with balance_ctl ripped off from under us */
4051 BUG_ON(atomic_read(&fs_info->balance_running));
4052 atomic_dec(&fs_info->balance_pause_req);
4053 } else {
4054 ret = -ENOTCONN;
4055 }
4056
4057 mutex_unlock(&fs_info->balance_mutex);
4058 return ret;
4059}
4060
a7e99c69
ID
4061int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4062{
bc98a42c 4063 if (sb_rdonly(fs_info->sb))
e649e587
ID
4064 return -EROFS;
4065
a7e99c69
ID
4066 mutex_lock(&fs_info->balance_mutex);
4067 if (!fs_info->balance_ctl) {
4068 mutex_unlock(&fs_info->balance_mutex);
4069 return -ENOTCONN;
4070 }
4071
4072 atomic_inc(&fs_info->balance_cancel_req);
4073 /*
4074 * if we are running just wait and return, balance item is
4075 * deleted in btrfs_balance in this case
4076 */
4077 if (atomic_read(&fs_info->balance_running)) {
4078 mutex_unlock(&fs_info->balance_mutex);
4079 wait_event(fs_info->balance_wait_q,
4080 atomic_read(&fs_info->balance_running) == 0);
4081 mutex_lock(&fs_info->balance_mutex);
4082 } else {
4083 /* __cancel_balance needs volume_mutex */
4084 mutex_unlock(&fs_info->balance_mutex);
4085 mutex_lock(&fs_info->volume_mutex);
4086 mutex_lock(&fs_info->balance_mutex);
4087
4088 if (fs_info->balance_ctl)
4089 __cancel_balance(fs_info);
4090
4091 mutex_unlock(&fs_info->volume_mutex);
4092 }
4093
4094 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4095 atomic_dec(&fs_info->balance_cancel_req);
4096 mutex_unlock(&fs_info->balance_mutex);
4097 return 0;
4098}
4099
803b2f54
SB
4100static int btrfs_uuid_scan_kthread(void *data)
4101{
4102 struct btrfs_fs_info *fs_info = data;
4103 struct btrfs_root *root = fs_info->tree_root;
4104 struct btrfs_key key;
803b2f54
SB
4105 struct btrfs_path *path = NULL;
4106 int ret = 0;
4107 struct extent_buffer *eb;
4108 int slot;
4109 struct btrfs_root_item root_item;
4110 u32 item_size;
f45388f3 4111 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4112
4113 path = btrfs_alloc_path();
4114 if (!path) {
4115 ret = -ENOMEM;
4116 goto out;
4117 }
4118
4119 key.objectid = 0;
4120 key.type = BTRFS_ROOT_ITEM_KEY;
4121 key.offset = 0;
4122
803b2f54 4123 while (1) {
6174d3cb 4124 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4125 if (ret) {
4126 if (ret > 0)
4127 ret = 0;
4128 break;
4129 }
4130
4131 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4132 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4133 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4134 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4135 goto skip;
4136
4137 eb = path->nodes[0];
4138 slot = path->slots[0];
4139 item_size = btrfs_item_size_nr(eb, slot);
4140 if (item_size < sizeof(root_item))
4141 goto skip;
4142
803b2f54
SB
4143 read_extent_buffer(eb, &root_item,
4144 btrfs_item_ptr_offset(eb, slot),
4145 (int)sizeof(root_item));
4146 if (btrfs_root_refs(&root_item) == 0)
4147 goto skip;
f45388f3
FDBM
4148
4149 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4150 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4151 if (trans)
4152 goto update_tree;
4153
4154 btrfs_release_path(path);
803b2f54
SB
4155 /*
4156 * 1 - subvol uuid item
4157 * 1 - received_subvol uuid item
4158 */
4159 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4160 if (IS_ERR(trans)) {
4161 ret = PTR_ERR(trans);
4162 break;
4163 }
f45388f3
FDBM
4164 continue;
4165 } else {
4166 goto skip;
4167 }
4168update_tree:
4169 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4170 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4171 root_item.uuid,
4172 BTRFS_UUID_KEY_SUBVOL,
4173 key.objectid);
4174 if (ret < 0) {
efe120a0 4175 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4176 ret);
803b2f54
SB
4177 break;
4178 }
4179 }
4180
4181 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4182 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4183 root_item.received_uuid,
4184 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4185 key.objectid);
4186 if (ret < 0) {
efe120a0 4187 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4188 ret);
803b2f54
SB
4189 break;
4190 }
4191 }
4192
f45388f3 4193skip:
803b2f54 4194 if (trans) {
3a45bb20 4195 ret = btrfs_end_transaction(trans);
f45388f3 4196 trans = NULL;
803b2f54
SB
4197 if (ret)
4198 break;
4199 }
4200
803b2f54
SB
4201 btrfs_release_path(path);
4202 if (key.offset < (u64)-1) {
4203 key.offset++;
4204 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4205 key.offset = 0;
4206 key.type = BTRFS_ROOT_ITEM_KEY;
4207 } else if (key.objectid < (u64)-1) {
4208 key.offset = 0;
4209 key.type = BTRFS_ROOT_ITEM_KEY;
4210 key.objectid++;
4211 } else {
4212 break;
4213 }
4214 cond_resched();
4215 }
4216
4217out:
4218 btrfs_free_path(path);
f45388f3 4219 if (trans && !IS_ERR(trans))
3a45bb20 4220 btrfs_end_transaction(trans);
803b2f54 4221 if (ret)
efe120a0 4222 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4223 else
afcdd129 4224 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4225 up(&fs_info->uuid_tree_rescan_sem);
4226 return 0;
4227}
4228
70f80175
SB
4229/*
4230 * Callback for btrfs_uuid_tree_iterate().
4231 * returns:
4232 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4233 * < 0 if an error occurred.
70f80175
SB
4234 * > 0 if the check failed, which means the caller shall remove the entry.
4235 */
4236static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4237 u8 *uuid, u8 type, u64 subid)
4238{
4239 struct btrfs_key key;
4240 int ret = 0;
4241 struct btrfs_root *subvol_root;
4242
4243 if (type != BTRFS_UUID_KEY_SUBVOL &&
4244 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4245 goto out;
4246
4247 key.objectid = subid;
4248 key.type = BTRFS_ROOT_ITEM_KEY;
4249 key.offset = (u64)-1;
4250 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4251 if (IS_ERR(subvol_root)) {
4252 ret = PTR_ERR(subvol_root);
4253 if (ret == -ENOENT)
4254 ret = 1;
4255 goto out;
4256 }
4257
4258 switch (type) {
4259 case BTRFS_UUID_KEY_SUBVOL:
4260 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4261 ret = 1;
4262 break;
4263 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4264 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4265 BTRFS_UUID_SIZE))
4266 ret = 1;
4267 break;
4268 }
4269
4270out:
4271 return ret;
4272}
4273
4274static int btrfs_uuid_rescan_kthread(void *data)
4275{
4276 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4277 int ret;
4278
4279 /*
4280 * 1st step is to iterate through the existing UUID tree and
4281 * to delete all entries that contain outdated data.
4282 * 2nd step is to add all missing entries to the UUID tree.
4283 */
4284 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4285 if (ret < 0) {
efe120a0 4286 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4287 up(&fs_info->uuid_tree_rescan_sem);
4288 return ret;
4289 }
4290 return btrfs_uuid_scan_kthread(data);
4291}
4292
f7a81ea4
SB
4293int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4294{
4295 struct btrfs_trans_handle *trans;
4296 struct btrfs_root *tree_root = fs_info->tree_root;
4297 struct btrfs_root *uuid_root;
803b2f54
SB
4298 struct task_struct *task;
4299 int ret;
f7a81ea4
SB
4300
4301 /*
4302 * 1 - root node
4303 * 1 - root item
4304 */
4305 trans = btrfs_start_transaction(tree_root, 2);
4306 if (IS_ERR(trans))
4307 return PTR_ERR(trans);
4308
4309 uuid_root = btrfs_create_tree(trans, fs_info,
4310 BTRFS_UUID_TREE_OBJECTID);
4311 if (IS_ERR(uuid_root)) {
6d13f549 4312 ret = PTR_ERR(uuid_root);
66642832 4313 btrfs_abort_transaction(trans, ret);
3a45bb20 4314 btrfs_end_transaction(trans);
6d13f549 4315 return ret;
f7a81ea4
SB
4316 }
4317
4318 fs_info->uuid_root = uuid_root;
4319
3a45bb20 4320 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4321 if (ret)
4322 return ret;
4323
4324 down(&fs_info->uuid_tree_rescan_sem);
4325 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4326 if (IS_ERR(task)) {
70f80175 4327 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4328 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4329 up(&fs_info->uuid_tree_rescan_sem);
4330 return PTR_ERR(task);
4331 }
4332
4333 return 0;
f7a81ea4 4334}
803b2f54 4335
70f80175
SB
4336int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4337{
4338 struct task_struct *task;
4339
4340 down(&fs_info->uuid_tree_rescan_sem);
4341 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4342 if (IS_ERR(task)) {
4343 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4344 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4345 up(&fs_info->uuid_tree_rescan_sem);
4346 return PTR_ERR(task);
4347 }
4348
4349 return 0;
4350}
4351
8f18cf13
CM
4352/*
4353 * shrinking a device means finding all of the device extents past
4354 * the new size, and then following the back refs to the chunks.
4355 * The chunk relocation code actually frees the device extent
4356 */
4357int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4358{
0b246afa
JM
4359 struct btrfs_fs_info *fs_info = device->fs_info;
4360 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4361 struct btrfs_trans_handle *trans;
8f18cf13
CM
4362 struct btrfs_dev_extent *dev_extent = NULL;
4363 struct btrfs_path *path;
4364 u64 length;
8f18cf13
CM
4365 u64 chunk_offset;
4366 int ret;
4367 int slot;
ba1bf481
JB
4368 int failed = 0;
4369 bool retried = false;
53e489bc 4370 bool checked_pending_chunks = false;
8f18cf13
CM
4371 struct extent_buffer *l;
4372 struct btrfs_key key;
0b246afa 4373 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4374 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4375 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1
NB
4376 u64 diff;
4377
4378 new_size = round_down(new_size, fs_info->sectorsize);
0e4324a4 4379 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4380
63a212ab
SB
4381 if (device->is_tgtdev_for_dev_replace)
4382 return -EINVAL;
4383
8f18cf13
CM
4384 path = btrfs_alloc_path();
4385 if (!path)
4386 return -ENOMEM;
4387
e4058b54 4388 path->reada = READA_FORWARD;
8f18cf13 4389
34441361 4390 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4391
7cc8e58d 4392 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4393 if (device->writeable) {
2b82032c 4394 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4395 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4396 }
34441361 4397 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4398
ba1bf481 4399again:
8f18cf13
CM
4400 key.objectid = device->devid;
4401 key.offset = (u64)-1;
4402 key.type = BTRFS_DEV_EXTENT_KEY;
4403
213e64da 4404 do {
0b246afa 4405 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4407 if (ret < 0) {
0b246afa 4408 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4409 goto done;
67c5e7d4 4410 }
8f18cf13
CM
4411
4412 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4413 if (ret)
0b246afa 4414 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4415 if (ret < 0)
4416 goto done;
4417 if (ret) {
4418 ret = 0;
b3b4aa74 4419 btrfs_release_path(path);
bf1fb512 4420 break;
8f18cf13
CM
4421 }
4422
4423 l = path->nodes[0];
4424 slot = path->slots[0];
4425 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4426
ba1bf481 4427 if (key.objectid != device->devid) {
0b246afa 4428 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4429 btrfs_release_path(path);
bf1fb512 4430 break;
ba1bf481 4431 }
8f18cf13
CM
4432
4433 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4434 length = btrfs_dev_extent_length(l, dev_extent);
4435
ba1bf481 4436 if (key.offset + length <= new_size) {
0b246afa 4437 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4438 btrfs_release_path(path);
d6397bae 4439 break;
ba1bf481 4440 }
8f18cf13 4441
8f18cf13 4442 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4443 btrfs_release_path(path);
8f18cf13 4444
0b246afa
JM
4445 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4446 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4447 if (ret && ret != -ENOSPC)
8f18cf13 4448 goto done;
ba1bf481
JB
4449 if (ret == -ENOSPC)
4450 failed++;
213e64da 4451 } while (key.offset-- > 0);
ba1bf481
JB
4452
4453 if (failed && !retried) {
4454 failed = 0;
4455 retried = true;
4456 goto again;
4457 } else if (failed && retried) {
4458 ret = -ENOSPC;
ba1bf481 4459 goto done;
8f18cf13
CM
4460 }
4461
d6397bae 4462 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4463 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4464 if (IS_ERR(trans)) {
4465 ret = PTR_ERR(trans);
4466 goto done;
4467 }
4468
34441361 4469 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4470
4471 /*
4472 * We checked in the above loop all device extents that were already in
4473 * the device tree. However before we have updated the device's
4474 * total_bytes to the new size, we might have had chunk allocations that
4475 * have not complete yet (new block groups attached to transaction
4476 * handles), and therefore their device extents were not yet in the
4477 * device tree and we missed them in the loop above. So if we have any
4478 * pending chunk using a device extent that overlaps the device range
4479 * that we can not use anymore, commit the current transaction and
4480 * repeat the search on the device tree - this way we guarantee we will
4481 * not have chunks using device extents that end beyond 'new_size'.
4482 */
4483 if (!checked_pending_chunks) {
4484 u64 start = new_size;
4485 u64 len = old_size - new_size;
4486
499f377f
JM
4487 if (contains_pending_extent(trans->transaction, device,
4488 &start, len)) {
34441361 4489 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4490 checked_pending_chunks = true;
4491 failed = 0;
4492 retried = false;
3a45bb20 4493 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4494 if (ret)
4495 goto done;
4496 goto again;
4497 }
4498 }
4499
7cc8e58d 4500 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4501 if (list_empty(&device->resized_list))
4502 list_add_tail(&device->resized_list,
0b246afa 4503 &fs_info->fs_devices->resized_devices);
d6397bae 4504
d6397bae 4505 WARN_ON(diff > old_total);
7dfb8be1
NB
4506 btrfs_set_super_total_bytes(super_copy,
4507 round_down(old_total - diff, fs_info->sectorsize));
34441361 4508 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4509
4510 /* Now btrfs_update_device() will change the on-disk size. */
4511 ret = btrfs_update_device(trans, device);
ce46c90b
AJ
4512 if (ret < 0) {
4513 btrfs_abort_transaction(trans, ret);
4514 btrfs_end_transaction(trans);
4515 } else {
4516 ret = btrfs_commit_transaction(trans);
4517 }
8f18cf13
CM
4518done:
4519 btrfs_free_path(path);
53e489bc 4520 if (ret) {
34441361 4521 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4522 btrfs_device_set_total_bytes(device, old_size);
4523 if (device->writeable)
4524 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4525 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4526 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4527 }
8f18cf13
CM
4528 return ret;
4529}
4530
2ff7e61e 4531static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4532 struct btrfs_key *key,
4533 struct btrfs_chunk *chunk, int item_size)
4534{
0b246afa 4535 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4536 struct btrfs_disk_key disk_key;
4537 u32 array_size;
4538 u8 *ptr;
4539
34441361 4540 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4541 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4542 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4543 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4544 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4545 return -EFBIG;
fe48a5c0 4546 }
0b86a832
CM
4547
4548 ptr = super_copy->sys_chunk_array + array_size;
4549 btrfs_cpu_key_to_disk(&disk_key, key);
4550 memcpy(ptr, &disk_key, sizeof(disk_key));
4551 ptr += sizeof(disk_key);
4552 memcpy(ptr, chunk, item_size);
4553 item_size += sizeof(disk_key);
4554 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4555 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4556
0b86a832
CM
4557 return 0;
4558}
4559
73c5de00
AJ
4560/*
4561 * sort the devices in descending order by max_avail, total_avail
4562 */
4563static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4564{
73c5de00
AJ
4565 const struct btrfs_device_info *di_a = a;
4566 const struct btrfs_device_info *di_b = b;
9b3f68b9 4567
73c5de00 4568 if (di_a->max_avail > di_b->max_avail)
b2117a39 4569 return -1;
73c5de00 4570 if (di_a->max_avail < di_b->max_avail)
b2117a39 4571 return 1;
73c5de00
AJ
4572 if (di_a->total_avail > di_b->total_avail)
4573 return -1;
4574 if (di_a->total_avail < di_b->total_avail)
4575 return 1;
4576 return 0;
b2117a39 4577}
0b86a832 4578
53b381b3
DW
4579static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4580{
ffe2d203 4581 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4582 return;
4583
ceda0864 4584 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4585}
4586
da17066c 4587#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4588 - sizeof(struct btrfs_chunk)) \
4589 / sizeof(struct btrfs_stripe) + 1)
4590
4591#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4592 - 2 * sizeof(struct btrfs_disk_key) \
4593 - 2 * sizeof(struct btrfs_chunk)) \
4594 / sizeof(struct btrfs_stripe) + 1)
4595
73c5de00 4596static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4597 u64 start, u64 type)
b2117a39 4598{
2ff7e61e 4599 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4600 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4601 struct btrfs_device *device;
73c5de00
AJ
4602 struct map_lookup *map = NULL;
4603 struct extent_map_tree *em_tree;
4604 struct extent_map *em;
4605 struct btrfs_device_info *devices_info = NULL;
4606 u64 total_avail;
4607 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4608 int data_stripes; /* number of stripes that count for
4609 block group size */
73c5de00
AJ
4610 int sub_stripes; /* sub_stripes info for map */
4611 int dev_stripes; /* stripes per dev */
4612 int devs_max; /* max devs to use */
4613 int devs_min; /* min devs needed */
4614 int devs_increment; /* ndevs has to be a multiple of this */
4615 int ncopies; /* how many copies to data has */
4616 int ret;
4617 u64 max_stripe_size;
4618 u64 max_chunk_size;
4619 u64 stripe_size;
4620 u64 num_bytes;
4621 int ndevs;
4622 int i;
4623 int j;
31e50229 4624 int index;
593060d7 4625
0c460c0d 4626 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4627
73c5de00
AJ
4628 if (list_empty(&fs_devices->alloc_list))
4629 return -ENOSPC;
b2117a39 4630
31e50229 4631 index = __get_raid_index(type);
73c5de00 4632
31e50229
LB
4633 sub_stripes = btrfs_raid_array[index].sub_stripes;
4634 dev_stripes = btrfs_raid_array[index].dev_stripes;
4635 devs_max = btrfs_raid_array[index].devs_max;
4636 devs_min = btrfs_raid_array[index].devs_min;
4637 devs_increment = btrfs_raid_array[index].devs_increment;
4638 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4639
9b3f68b9 4640 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4641 max_stripe_size = SZ_1G;
404f17e9 4642 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
23f8f9b7
GH
4643 if (!devs_max)
4644 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4645 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4646 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4647 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4648 max_stripe_size = SZ_1G;
1100373f 4649 else
ee22184b 4650 max_stripe_size = SZ_256M;
73c5de00 4651 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4652 if (!devs_max)
4653 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4654 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4655 max_stripe_size = SZ_32M;
73c5de00 4656 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4657 if (!devs_max)
4658 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4659 } else {
351fd353 4660 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4661 type);
4662 BUG_ON(1);
9b3f68b9
CM
4663 }
4664
2b82032c
YZ
4665 /* we don't want a chunk larger than 10% of writeable space */
4666 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4667 max_chunk_size);
9b3f68b9 4668
31e818fe 4669 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4670 GFP_NOFS);
4671 if (!devices_info)
4672 return -ENOMEM;
0cad8a11 4673
9f680ce0 4674 /*
73c5de00
AJ
4675 * in the first pass through the devices list, we gather information
4676 * about the available holes on each device.
9f680ce0 4677 */
73c5de00 4678 ndevs = 0;
ebcc9301 4679 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4680 u64 max_avail;
4681 u64 dev_offset;
b2117a39 4682
73c5de00 4683 if (!device->writeable) {
31b1a2bd 4684 WARN(1, KERN_ERR
efe120a0 4685 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4686 continue;
4687 }
b2117a39 4688
63a212ab
SB
4689 if (!device->in_fs_metadata ||
4690 device->is_tgtdev_for_dev_replace)
73c5de00 4691 continue;
b2117a39 4692
73c5de00
AJ
4693 if (device->total_bytes > device->bytes_used)
4694 total_avail = device->total_bytes - device->bytes_used;
4695 else
4696 total_avail = 0;
38c01b96 4697
4698 /* If there is no space on this device, skip it. */
4699 if (total_avail == 0)
4700 continue;
b2117a39 4701
6df9a95e 4702 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4703 max_stripe_size * dev_stripes,
4704 &dev_offset, &max_avail);
4705 if (ret && ret != -ENOSPC)
4706 goto error;
b2117a39 4707
73c5de00
AJ
4708 if (ret == 0)
4709 max_avail = max_stripe_size * dev_stripes;
b2117a39 4710
73c5de00
AJ
4711 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4712 continue;
b2117a39 4713
063d006f
ES
4714 if (ndevs == fs_devices->rw_devices) {
4715 WARN(1, "%s: found more than %llu devices\n",
4716 __func__, fs_devices->rw_devices);
4717 break;
4718 }
73c5de00
AJ
4719 devices_info[ndevs].dev_offset = dev_offset;
4720 devices_info[ndevs].max_avail = max_avail;
4721 devices_info[ndevs].total_avail = total_avail;
4722 devices_info[ndevs].dev = device;
4723 ++ndevs;
4724 }
b2117a39 4725
73c5de00
AJ
4726 /*
4727 * now sort the devices by hole size / available space
4728 */
4729 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4730 btrfs_cmp_device_info, NULL);
b2117a39 4731
73c5de00 4732 /* round down to number of usable stripes */
e5600fd6 4733 ndevs = round_down(ndevs, devs_increment);
b2117a39 4734
73c5de00
AJ
4735 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4736 ret = -ENOSPC;
4737 goto error;
b2117a39 4738 }
9f680ce0 4739
f148ef4d
NB
4740 ndevs = min(ndevs, devs_max);
4741
73c5de00 4742 /*
272b3be7
HK
4743 * The primary goal is to maximize the number of stripes, so use as
4744 * many devices as possible, even if the stripes are not maximum sized.
4745 *
4746 * The DUP profile stores more than one stripe per device, the
4747 * max_avail is the total size so we have to adjust.
73c5de00 4748 */
272b3be7 4749 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
73c5de00 4750 num_stripes = ndevs * dev_stripes;
b2117a39 4751
53b381b3
DW
4752 /*
4753 * this will have to be fixed for RAID1 and RAID10 over
4754 * more drives
4755 */
4756 data_stripes = num_stripes / ncopies;
4757
500ceed8 4758 if (type & BTRFS_BLOCK_GROUP_RAID5)
53b381b3 4759 data_stripes = num_stripes - 1;
500ceed8
NB
4760
4761 if (type & BTRFS_BLOCK_GROUP_RAID6)
53b381b3 4762 data_stripes = num_stripes - 2;
86db2578
CM
4763
4764 /*
4765 * Use the number of data stripes to figure out how big this chunk
4766 * is really going to be in terms of logical address space,
4767 * and compare that answer with the max chunk size
4768 */
4769 if (stripe_size * data_stripes > max_chunk_size) {
4770 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4771
4772 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4773
4774 /* bump the answer up to a 16MB boundary */
4775 stripe_size = (stripe_size + mask) & ~mask;
4776
4777 /* but don't go higher than the limits we found
4778 * while searching for free extents
4779 */
4780 if (stripe_size > devices_info[ndevs-1].max_avail)
4781 stripe_size = devices_info[ndevs-1].max_avail;
4782 }
4783
37db63a4 4784 /* align to BTRFS_STRIPE_LEN */
500ceed8 4785 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4786
4787 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4788 if (!map) {
4789 ret = -ENOMEM;
4790 goto error;
4791 }
4792 map->num_stripes = num_stripes;
9b3f68b9 4793
73c5de00
AJ
4794 for (i = 0; i < ndevs; ++i) {
4795 for (j = 0; j < dev_stripes; ++j) {
4796 int s = i * dev_stripes + j;
4797 map->stripes[s].dev = devices_info[i].dev;
4798 map->stripes[s].physical = devices_info[i].dev_offset +
4799 j * stripe_size;
6324fbf3 4800 }
6324fbf3 4801 }
500ceed8
NB
4802 map->stripe_len = BTRFS_STRIPE_LEN;
4803 map->io_align = BTRFS_STRIPE_LEN;
4804 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4805 map->type = type;
2b82032c 4806 map->sub_stripes = sub_stripes;
0b86a832 4807
53b381b3 4808 num_bytes = stripe_size * data_stripes;
0b86a832 4809
6bccf3ab 4810 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4811
172ddd60 4812 em = alloc_extent_map();
2b82032c 4813 if (!em) {
298a8f9c 4814 kfree(map);
b2117a39
MX
4815 ret = -ENOMEM;
4816 goto error;
593060d7 4817 }
298a8f9c 4818 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4819 em->map_lookup = map;
2b82032c 4820 em->start = start;
73c5de00 4821 em->len = num_bytes;
2b82032c
YZ
4822 em->block_start = 0;
4823 em->block_len = em->len;
6df9a95e 4824 em->orig_block_len = stripe_size;
593060d7 4825
0b246afa 4826 em_tree = &info->mapping_tree.map_tree;
890871be 4827 write_lock(&em_tree->lock);
09a2a8f9 4828 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4829 if (ret) {
1efb72a3 4830 write_unlock(&em_tree->lock);
0f5d42b2 4831 free_extent_map(em);
1dd4602f 4832 goto error;
0f5d42b2 4833 }
0b86a832 4834
1efb72a3
NB
4835 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4836 refcount_inc(&em->refs);
4837 write_unlock(&em_tree->lock);
4838
0174484d 4839 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
6df9a95e
JB
4840 if (ret)
4841 goto error_del_extent;
2b82032c 4842
7cc8e58d
MX
4843 for (i = 0; i < map->num_stripes; i++) {
4844 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4845 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
8217e0f8 4846 map->stripes[i].dev->has_pending_chunks = true;
7cc8e58d 4847 }
43530c46 4848
a5ed45f8 4849 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4850
0f5d42b2 4851 free_extent_map(em);
0b246afa 4852 check_raid56_incompat_flag(info, type);
53b381b3 4853
b2117a39 4854 kfree(devices_info);
2b82032c 4855 return 0;
b2117a39 4856
6df9a95e 4857error_del_extent:
0f5d42b2
JB
4858 write_lock(&em_tree->lock);
4859 remove_extent_mapping(em_tree, em);
4860 write_unlock(&em_tree->lock);
4861
4862 /* One for our allocation */
4863 free_extent_map(em);
4864 /* One for the tree reference */
4865 free_extent_map(em);
495e64f4
FM
4866 /* One for the pending_chunks list reference */
4867 free_extent_map(em);
b2117a39 4868error:
b2117a39
MX
4869 kfree(devices_info);
4870 return ret;
2b82032c
YZ
4871}
4872
6df9a95e 4873int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4874 struct btrfs_fs_info *fs_info,
6df9a95e 4875 u64 chunk_offset, u64 chunk_size)
2b82032c 4876{
6bccf3ab
JM
4877 struct btrfs_root *extent_root = fs_info->extent_root;
4878 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4879 struct btrfs_key key;
2b82032c
YZ
4880 struct btrfs_device *device;
4881 struct btrfs_chunk *chunk;
4882 struct btrfs_stripe *stripe;
6df9a95e
JB
4883 struct extent_map *em;
4884 struct map_lookup *map;
4885 size_t item_size;
4886 u64 dev_offset;
4887 u64 stripe_size;
4888 int i = 0;
140e639f 4889 int ret = 0;
2b82032c 4890
592d92ee
LB
4891 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4892 if (IS_ERR(em))
4893 return PTR_ERR(em);
6df9a95e 4894
95617d69 4895 map = em->map_lookup;
6df9a95e
JB
4896 item_size = btrfs_chunk_item_size(map->num_stripes);
4897 stripe_size = em->orig_block_len;
4898
2b82032c 4899 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4900 if (!chunk) {
4901 ret = -ENOMEM;
4902 goto out;
4903 }
4904
50460e37
FM
4905 /*
4906 * Take the device list mutex to prevent races with the final phase of
4907 * a device replace operation that replaces the device object associated
4908 * with the map's stripes, because the device object's id can change
4909 * at any time during that final phase of the device replace operation
4910 * (dev-replace.c:btrfs_dev_replace_finishing()).
4911 */
0b246afa 4912 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4913 for (i = 0; i < map->num_stripes; i++) {
4914 device = map->stripes[i].dev;
4915 dev_offset = map->stripes[i].physical;
2b82032c 4916
0b86a832 4917 ret = btrfs_update_device(trans, device);
3acd3953 4918 if (ret)
50460e37 4919 break;
b5d9071c
NB
4920 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4921 dev_offset, stripe_size);
6df9a95e 4922 if (ret)
50460e37
FM
4923 break;
4924 }
4925 if (ret) {
0b246afa 4926 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4927 goto out;
2b82032c
YZ
4928 }
4929
2b82032c 4930 stripe = &chunk->stripe;
6df9a95e
JB
4931 for (i = 0; i < map->num_stripes; i++) {
4932 device = map->stripes[i].dev;
4933 dev_offset = map->stripes[i].physical;
0b86a832 4934
e17cade2
CM
4935 btrfs_set_stack_stripe_devid(stripe, device->devid);
4936 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4937 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4938 stripe++;
0b86a832 4939 }
0b246afa 4940 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4941
2b82032c 4942 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4943 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4944 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4945 btrfs_set_stack_chunk_type(chunk, map->type);
4946 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4947 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4948 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4949 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4950 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4951
2b82032c
YZ
4952 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4953 key.type = BTRFS_CHUNK_ITEM_KEY;
4954 key.offset = chunk_offset;
0b86a832 4955
2b82032c 4956 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4957 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4958 /*
4959 * TODO: Cleanup of inserted chunk root in case of
4960 * failure.
4961 */
2ff7e61e 4962 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 4963 }
1abe9b8a 4964
6df9a95e 4965out:
0b86a832 4966 kfree(chunk);
6df9a95e 4967 free_extent_map(em);
4ed1d16e 4968 return ret;
2b82032c 4969}
0b86a832 4970
2b82032c
YZ
4971/*
4972 * Chunk allocation falls into two parts. The first part does works
4973 * that make the new allocated chunk useable, but not do any operation
4974 * that modifies the chunk tree. The second part does the works that
4975 * require modifying the chunk tree. This division is important for the
4976 * bootstrap process of adding storage to a seed btrfs.
4977 */
4978int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4979 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
4980{
4981 u64 chunk_offset;
2b82032c 4982
0b246afa
JM
4983 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4984 chunk_offset = find_next_chunk(fs_info);
72b468c8 4985 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
4986}
4987
d397712b 4988static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 4989 struct btrfs_fs_info *fs_info)
2b82032c
YZ
4990{
4991 u64 chunk_offset;
4992 u64 sys_chunk_offset;
2b82032c 4993 u64 alloc_profile;
2b82032c
YZ
4994 int ret;
4995
6df9a95e 4996 chunk_offset = find_next_chunk(fs_info);
1b86826d 4997 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 4998 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
4999 if (ret)
5000 return ret;
2b82032c 5001
0b246afa 5002 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5003 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5004 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5005 return ret;
2b82032c
YZ
5006}
5007
d20983b4
MX
5008static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5009{
5010 int max_errors;
5011
5012 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5013 BTRFS_BLOCK_GROUP_RAID10 |
79b33f0c 5014 BTRFS_BLOCK_GROUP_RAID5)) {
d20983b4
MX
5015 max_errors = 1;
5016 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5017 max_errors = 2;
5018 } else {
5019 max_errors = 0;
005d6427 5020 }
2b82032c 5021
d20983b4 5022 return max_errors;
2b82032c
YZ
5023}
5024
2ff7e61e 5025int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5026{
5027 struct extent_map *em;
5028 struct map_lookup *map;
2b82032c 5029 int readonly = 0;
d20983b4 5030 int miss_ndevs = 0;
2b82032c
YZ
5031 int i;
5032
592d92ee
LB
5033 em = get_chunk_map(fs_info, chunk_offset, 1);
5034 if (IS_ERR(em))
2b82032c
YZ
5035 return 1;
5036
95617d69 5037 map = em->map_lookup;
2b82032c 5038 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5039 if (map->stripes[i].dev->missing) {
5040 miss_ndevs++;
5041 continue;
5042 }
5043
2b82032c
YZ
5044 if (!map->stripes[i].dev->writeable) {
5045 readonly = 1;
d20983b4 5046 goto end;
2b82032c
YZ
5047 }
5048 }
d20983b4
MX
5049
5050 /*
5051 * If the number of missing devices is larger than max errors,
5052 * we can not write the data into that chunk successfully, so
5053 * set it readonly.
5054 */
5055 if (miss_ndevs > btrfs_chunk_max_errors(map))
5056 readonly = 1;
5057end:
0b86a832 5058 free_extent_map(em);
2b82032c 5059 return readonly;
0b86a832
CM
5060}
5061
5062void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5063{
a8067e02 5064 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5065}
5066
5067void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5068{
5069 struct extent_map *em;
5070
d397712b 5071 while (1) {
890871be 5072 write_lock(&tree->map_tree.lock);
0b86a832
CM
5073 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5074 if (em)
5075 remove_extent_mapping(&tree->map_tree, em);
890871be 5076 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5077 if (!em)
5078 break;
0b86a832
CM
5079 /* once for us */
5080 free_extent_map(em);
5081 /* once for the tree */
5082 free_extent_map(em);
5083 }
5084}
5085
5d964051 5086int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5087{
5088 struct extent_map *em;
5089 struct map_lookup *map;
f188591e
CM
5090 int ret;
5091
592d92ee
LB
5092 em = get_chunk_map(fs_info, logical, len);
5093 if (IS_ERR(em))
5094 /*
5095 * We could return errors for these cases, but that could get
5096 * ugly and we'd probably do the same thing which is just not do
5097 * anything else and exit, so return 1 so the callers don't try
5098 * to use other copies.
5099 */
fb7669b5 5100 return 1;
fb7669b5 5101
95617d69 5102 map = em->map_lookup;
f188591e
CM
5103 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5104 ret = map->num_stripes;
321aecc6
CM
5105 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5106 ret = map->sub_stripes;
53b381b3
DW
5107 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5108 ret = 2;
5109 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
cc41f4fe
LB
5110 /*
5111 * There could be two corrupted data stripes, we need
5112 * to loop retry in order to rebuild the correct data.
5113 *
5114 * Fail a stripe at a time on every retry except the
5115 * stripe under reconstruction.
5116 */
5117 ret = map->num_stripes;
f188591e
CM
5118 else
5119 ret = 1;
5120 free_extent_map(em);
ad6d620e 5121
73beece9 5122 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
6fad823f
LB
5123 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5124 fs_info->dev_replace.tgtdev)
ad6d620e 5125 ret++;
73beece9 5126 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5127
f188591e
CM
5128 return ret;
5129}
5130
2ff7e61e 5131unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5132 u64 logical)
5133{
5134 struct extent_map *em;
5135 struct map_lookup *map;
0b246afa 5136 unsigned long len = fs_info->sectorsize;
53b381b3 5137
592d92ee 5138 em = get_chunk_map(fs_info, logical, len);
53b381b3 5139
69f03f13
NB
5140 if (!WARN_ON(IS_ERR(em))) {
5141 map = em->map_lookup;
5142 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5143 len = map->stripe_len * nr_data_stripes(map);
5144 free_extent_map(em);
5145 }
53b381b3
DW
5146 return len;
5147}
5148
e4ff5fb5 5149int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5150{
5151 struct extent_map *em;
5152 struct map_lookup *map;
53b381b3
DW
5153 int ret = 0;
5154
592d92ee 5155 em = get_chunk_map(fs_info, logical, len);
53b381b3 5156
69f03f13
NB
5157 if(!WARN_ON(IS_ERR(em))) {
5158 map = em->map_lookup;
5159 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5160 ret = 1;
5161 free_extent_map(em);
5162 }
53b381b3
DW
5163 return ret;
5164}
5165
30d9861f
SB
5166static int find_live_mirror(struct btrfs_fs_info *fs_info,
5167 struct map_lookup *map, int first, int num,
5168 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5169{
5170 int i;
30d9861f
SB
5171 int tolerance;
5172 struct btrfs_device *srcdev;
5173
5174 if (dev_replace_is_ongoing &&
5175 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5176 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5177 srcdev = fs_info->dev_replace.srcdev;
5178 else
5179 srcdev = NULL;
5180
5181 /*
5182 * try to avoid the drive that is the source drive for a
5183 * dev-replace procedure, only choose it if no other non-missing
5184 * mirror is available
5185 */
5186 for (tolerance = 0; tolerance < 2; tolerance++) {
5187 if (map->stripes[optimal].dev->bdev &&
5188 (tolerance || map->stripes[optimal].dev != srcdev))
5189 return optimal;
5190 for (i = first; i < first + num; i++) {
5191 if (map->stripes[i].dev->bdev &&
5192 (tolerance || map->stripes[i].dev != srcdev))
5193 return i;
5194 }
dfe25020 5195 }
30d9861f 5196
dfe25020
CM
5197 /* we couldn't find one that doesn't fail. Just return something
5198 * and the io error handling code will clean up eventually
5199 */
5200 return optimal;
5201}
5202
53b381b3
DW
5203static inline int parity_smaller(u64 a, u64 b)
5204{
5205 return a > b;
5206}
5207
5208/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5209static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5210{
5211 struct btrfs_bio_stripe s;
5212 int i;
5213 u64 l;
5214 int again = 1;
5215
5216 while (again) {
5217 again = 0;
cc7539ed 5218 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5219 if (parity_smaller(bbio->raid_map[i],
5220 bbio->raid_map[i+1])) {
53b381b3 5221 s = bbio->stripes[i];
8e5cfb55 5222 l = bbio->raid_map[i];
53b381b3 5223 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5224 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5225 bbio->stripes[i+1] = s;
8e5cfb55 5226 bbio->raid_map[i+1] = l;
2c8cdd6e 5227
53b381b3
DW
5228 again = 1;
5229 }
5230 }
5231 }
5232}
5233
6e9606d2
ZL
5234static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5235{
5236 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5237 /* the size of the btrfs_bio */
6e9606d2 5238 sizeof(struct btrfs_bio) +
e57cf21e 5239 /* plus the variable array for the stripes */
6e9606d2 5240 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5241 /* plus the variable array for the tgt dev */
6e9606d2 5242 sizeof(int) * (real_stripes) +
e57cf21e
CM
5243 /*
5244 * plus the raid_map, which includes both the tgt dev
5245 * and the stripes
5246 */
5247 sizeof(u64) * (total_stripes),
277fb5fc 5248 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5249
5250 atomic_set(&bbio->error, 0);
140475ae 5251 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5252
5253 return bbio;
5254}
5255
5256void btrfs_get_bbio(struct btrfs_bio *bbio)
5257{
140475ae
ER
5258 WARN_ON(!refcount_read(&bbio->refs));
5259 refcount_inc(&bbio->refs);
6e9606d2
ZL
5260}
5261
5262void btrfs_put_bbio(struct btrfs_bio *bbio)
5263{
5264 if (!bbio)
5265 return;
140475ae 5266 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5267 kfree(bbio);
5268}
5269
0b3d4cd3
LB
5270/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5271/*
5272 * Please note that, discard won't be sent to target device of device
5273 * replace.
5274 */
5275static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5276 u64 logical, u64 length,
5277 struct btrfs_bio **bbio_ret)
5278{
5279 struct extent_map *em;
5280 struct map_lookup *map;
5281 struct btrfs_bio *bbio;
5282 u64 offset;
5283 u64 stripe_nr;
5284 u64 stripe_nr_end;
5285 u64 stripe_end_offset;
5286 u64 stripe_cnt;
5287 u64 stripe_len;
5288 u64 stripe_offset;
5289 u64 num_stripes;
5290 u32 stripe_index;
5291 u32 factor = 0;
5292 u32 sub_stripes = 0;
5293 u64 stripes_per_dev = 0;
5294 u32 remaining_stripes = 0;
5295 u32 last_stripe = 0;
5296 int ret = 0;
5297 int i;
5298
5299 /* discard always return a bbio */
5300 ASSERT(bbio_ret);
5301
5302 em = get_chunk_map(fs_info, logical, length);
5303 if (IS_ERR(em))
5304 return PTR_ERR(em);
5305
5306 map = em->map_lookup;
5307 /* we don't discard raid56 yet */
5308 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5309 ret = -EOPNOTSUPP;
5310 goto out;
5311 }
5312
5313 offset = logical - em->start;
5314 length = min_t(u64, em->len - offset, length);
5315
5316 stripe_len = map->stripe_len;
5317 /*
5318 * stripe_nr counts the total number of stripes we have to stride
5319 * to get to this block
5320 */
5321 stripe_nr = div64_u64(offset, stripe_len);
5322
5323 /* stripe_offset is the offset of this block in its stripe */
5324 stripe_offset = offset - stripe_nr * stripe_len;
5325
5326 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5327 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5328 stripe_cnt = stripe_nr_end - stripe_nr;
5329 stripe_end_offset = stripe_nr_end * map->stripe_len -
5330 (offset + length);
5331 /*
5332 * after this, stripe_nr is the number of stripes on this
5333 * device we have to walk to find the data, and stripe_index is
5334 * the number of our device in the stripe array
5335 */
5336 num_stripes = 1;
5337 stripe_index = 0;
5338 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5339 BTRFS_BLOCK_GROUP_RAID10)) {
5340 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5341 sub_stripes = 1;
5342 else
5343 sub_stripes = map->sub_stripes;
5344
5345 factor = map->num_stripes / sub_stripes;
5346 num_stripes = min_t(u64, map->num_stripes,
5347 sub_stripes * stripe_cnt);
5348 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5349 stripe_index *= sub_stripes;
5350 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5351 &remaining_stripes);
5352 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5353 last_stripe *= sub_stripes;
5354 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5355 BTRFS_BLOCK_GROUP_DUP)) {
5356 num_stripes = map->num_stripes;
5357 } else {
5358 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5359 &stripe_index);
5360 }
5361
5362 bbio = alloc_btrfs_bio(num_stripes, 0);
5363 if (!bbio) {
5364 ret = -ENOMEM;
5365 goto out;
5366 }
5367
5368 for (i = 0; i < num_stripes; i++) {
5369 bbio->stripes[i].physical =
5370 map->stripes[stripe_index].physical +
5371 stripe_offset + stripe_nr * map->stripe_len;
5372 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5373
5374 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5375 BTRFS_BLOCK_GROUP_RAID10)) {
5376 bbio->stripes[i].length = stripes_per_dev *
5377 map->stripe_len;
5378
5379 if (i / sub_stripes < remaining_stripes)
5380 bbio->stripes[i].length +=
5381 map->stripe_len;
5382
5383 /*
5384 * Special for the first stripe and
5385 * the last stripe:
5386 *
5387 * |-------|...|-------|
5388 * |----------|
5389 * off end_off
5390 */
5391 if (i < sub_stripes)
5392 bbio->stripes[i].length -=
5393 stripe_offset;
5394
5395 if (stripe_index >= last_stripe &&
5396 stripe_index <= (last_stripe +
5397 sub_stripes - 1))
5398 bbio->stripes[i].length -=
5399 stripe_end_offset;
5400
5401 if (i == sub_stripes - 1)
5402 stripe_offset = 0;
5403 } else {
5404 bbio->stripes[i].length = length;
5405 }
5406
5407 stripe_index++;
5408 if (stripe_index == map->num_stripes) {
5409 stripe_index = 0;
5410 stripe_nr++;
5411 }
5412 }
5413
5414 *bbio_ret = bbio;
5415 bbio->map_type = map->type;
5416 bbio->num_stripes = num_stripes;
5417out:
5418 free_extent_map(em);
5419 return ret;
5420}
5421
5ab56090
LB
5422/*
5423 * In dev-replace case, for repair case (that's the only case where the mirror
5424 * is selected explicitly when calling btrfs_map_block), blocks left of the
5425 * left cursor can also be read from the target drive.
5426 *
5427 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5428 * array of stripes.
5429 * For READ, it also needs to be supported using the same mirror number.
5430 *
5431 * If the requested block is not left of the left cursor, EIO is returned. This
5432 * can happen because btrfs_num_copies() returns one more in the dev-replace
5433 * case.
5434 */
5435static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5436 u64 logical, u64 length,
5437 u64 srcdev_devid, int *mirror_num,
5438 u64 *physical)
5439{
5440 struct btrfs_bio *bbio = NULL;
5441 int num_stripes;
5442 int index_srcdev = 0;
5443 int found = 0;
5444 u64 physical_of_found = 0;
5445 int i;
5446 int ret = 0;
5447
5448 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5449 logical, &length, &bbio, 0, 0);
5450 if (ret) {
5451 ASSERT(bbio == NULL);
5452 return ret;
5453 }
5454
5455 num_stripes = bbio->num_stripes;
5456 if (*mirror_num > num_stripes) {
5457 /*
5458 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5459 * that means that the requested area is not left of the left
5460 * cursor
5461 */
5462 btrfs_put_bbio(bbio);
5463 return -EIO;
5464 }
5465
5466 /*
5467 * process the rest of the function using the mirror_num of the source
5468 * drive. Therefore look it up first. At the end, patch the device
5469 * pointer to the one of the target drive.
5470 */
5471 for (i = 0; i < num_stripes; i++) {
5472 if (bbio->stripes[i].dev->devid != srcdev_devid)
5473 continue;
5474
5475 /*
5476 * In case of DUP, in order to keep it simple, only add the
5477 * mirror with the lowest physical address
5478 */
5479 if (found &&
5480 physical_of_found <= bbio->stripes[i].physical)
5481 continue;
5482
5483 index_srcdev = i;
5484 found = 1;
5485 physical_of_found = bbio->stripes[i].physical;
5486 }
5487
5488 btrfs_put_bbio(bbio);
5489
5490 ASSERT(found);
5491 if (!found)
5492 return -EIO;
5493
5494 *mirror_num = index_srcdev + 1;
5495 *physical = physical_of_found;
5496 return ret;
5497}
5498
73c0f228
LB
5499static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5500 struct btrfs_bio **bbio_ret,
5501 struct btrfs_dev_replace *dev_replace,
5502 int *num_stripes_ret, int *max_errors_ret)
5503{
5504 struct btrfs_bio *bbio = *bbio_ret;
5505 u64 srcdev_devid = dev_replace->srcdev->devid;
5506 int tgtdev_indexes = 0;
5507 int num_stripes = *num_stripes_ret;
5508 int max_errors = *max_errors_ret;
5509 int i;
5510
5511 if (op == BTRFS_MAP_WRITE) {
5512 int index_where_to_add;
5513
5514 /*
5515 * duplicate the write operations while the dev replace
5516 * procedure is running. Since the copying of the old disk to
5517 * the new disk takes place at run time while the filesystem is
5518 * mounted writable, the regular write operations to the old
5519 * disk have to be duplicated to go to the new disk as well.
5520 *
5521 * Note that device->missing is handled by the caller, and that
5522 * the write to the old disk is already set up in the stripes
5523 * array.
5524 */
5525 index_where_to_add = num_stripes;
5526 for (i = 0; i < num_stripes; i++) {
5527 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5528 /* write to new disk, too */
5529 struct btrfs_bio_stripe *new =
5530 bbio->stripes + index_where_to_add;
5531 struct btrfs_bio_stripe *old =
5532 bbio->stripes + i;
5533
5534 new->physical = old->physical;
5535 new->length = old->length;
5536 new->dev = dev_replace->tgtdev;
5537 bbio->tgtdev_map[i] = index_where_to_add;
5538 index_where_to_add++;
5539 max_errors++;
5540 tgtdev_indexes++;
5541 }
5542 }
5543 num_stripes = index_where_to_add;
5544 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5545 int index_srcdev = 0;
5546 int found = 0;
5547 u64 physical_of_found = 0;
5548
5549 /*
5550 * During the dev-replace procedure, the target drive can also
5551 * be used to read data in case it is needed to repair a corrupt
5552 * block elsewhere. This is possible if the requested area is
5553 * left of the left cursor. In this area, the target drive is a
5554 * full copy of the source drive.
5555 */
5556 for (i = 0; i < num_stripes; i++) {
5557 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5558 /*
5559 * In case of DUP, in order to keep it simple,
5560 * only add the mirror with the lowest physical
5561 * address
5562 */
5563 if (found &&
5564 physical_of_found <=
5565 bbio->stripes[i].physical)
5566 continue;
5567 index_srcdev = i;
5568 found = 1;
5569 physical_of_found = bbio->stripes[i].physical;
5570 }
5571 }
5572 if (found) {
5573 struct btrfs_bio_stripe *tgtdev_stripe =
5574 bbio->stripes + num_stripes;
5575
5576 tgtdev_stripe->physical = physical_of_found;
5577 tgtdev_stripe->length =
5578 bbio->stripes[index_srcdev].length;
5579 tgtdev_stripe->dev = dev_replace->tgtdev;
5580 bbio->tgtdev_map[index_srcdev] = num_stripes;
5581
5582 tgtdev_indexes++;
5583 num_stripes++;
5584 }
5585 }
5586
5587 *num_stripes_ret = num_stripes;
5588 *max_errors_ret = max_errors;
5589 bbio->num_tgtdevs = tgtdev_indexes;
5590 *bbio_ret = bbio;
5591}
5592
2b19a1fe
LB
5593static bool need_full_stripe(enum btrfs_map_op op)
5594{
5595 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5596}
5597
cf8cddd3
CH
5598static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5599 enum btrfs_map_op op,
f2d8d74d 5600 u64 logical, u64 *length,
a1d3c478 5601 struct btrfs_bio **bbio_ret,
8e5cfb55 5602 int mirror_num, int need_raid_map)
0b86a832
CM
5603{
5604 struct extent_map *em;
5605 struct map_lookup *map;
0b86a832 5606 u64 offset;
593060d7
CM
5607 u64 stripe_offset;
5608 u64 stripe_nr;
53b381b3 5609 u64 stripe_len;
9d644a62 5610 u32 stripe_index;
cea9e445 5611 int i;
de11cc12 5612 int ret = 0;
f2d8d74d 5613 int num_stripes;
a236aed1 5614 int max_errors = 0;
2c8cdd6e 5615 int tgtdev_indexes = 0;
a1d3c478 5616 struct btrfs_bio *bbio = NULL;
472262f3
SB
5617 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5618 int dev_replace_is_ongoing = 0;
5619 int num_alloc_stripes;
ad6d620e
SB
5620 int patch_the_first_stripe_for_dev_replace = 0;
5621 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5622 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5623
0b3d4cd3
LB
5624 if (op == BTRFS_MAP_DISCARD)
5625 return __btrfs_map_block_for_discard(fs_info, logical,
5626 *length, bbio_ret);
5627
592d92ee
LB
5628 em = get_chunk_map(fs_info, logical, *length);
5629 if (IS_ERR(em))
5630 return PTR_ERR(em);
0b86a832 5631
95617d69 5632 map = em->map_lookup;
0b86a832 5633 offset = logical - em->start;
593060d7 5634
53b381b3 5635 stripe_len = map->stripe_len;
593060d7
CM
5636 stripe_nr = offset;
5637 /*
5638 * stripe_nr counts the total number of stripes we have to stride
5639 * to get to this block
5640 */
47c5713f 5641 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5642
53b381b3 5643 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5644 if (offset < stripe_offset) {
5d163e0e
JM
5645 btrfs_crit(fs_info,
5646 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5647 stripe_offset, offset, em->start, logical,
5648 stripe_len);
5649 free_extent_map(em);
5650 return -EINVAL;
5651 }
593060d7
CM
5652
5653 /* stripe_offset is the offset of this block in its stripe*/
5654 stripe_offset = offset - stripe_offset;
5655
53b381b3 5656 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5657 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5658 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5659 raid56_full_stripe_start = offset;
5660
5661 /* allow a write of a full stripe, but make sure we don't
5662 * allow straddling of stripes
5663 */
47c5713f
DS
5664 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5665 full_stripe_len);
53b381b3
DW
5666 raid56_full_stripe_start *= full_stripe_len;
5667 }
5668
0b3d4cd3 5669 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5670 u64 max_len;
5671 /* For writes to RAID[56], allow a full stripeset across all disks.
5672 For other RAID types and for RAID[56] reads, just allow a single
5673 stripe (on a single disk). */
ffe2d203 5674 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5675 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5676 max_len = stripe_len * nr_data_stripes(map) -
5677 (offset - raid56_full_stripe_start);
5678 } else {
5679 /* we limit the length of each bio to what fits in a stripe */
5680 max_len = stripe_len - stripe_offset;
5681 }
5682 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5683 } else {
5684 *length = em->len - offset;
5685 }
f2d8d74d 5686
53b381b3
DW
5687 /* This is for when we're called from btrfs_merge_bio_hook() and all
5688 it cares about is the length */
a1d3c478 5689 if (!bbio_ret)
cea9e445
CM
5690 goto out;
5691
73beece9 5692 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5693 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5694 if (!dev_replace_is_ongoing)
73beece9
LB
5695 btrfs_dev_replace_unlock(dev_replace, 0);
5696 else
5697 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5698
ad6d620e 5699 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5700 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5701 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5702 dev_replace->srcdev->devid,
5703 &mirror_num,
5704 &physical_to_patch_in_first_stripe);
5705 if (ret)
ad6d620e 5706 goto out;
5ab56090
LB
5707 else
5708 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5709 } else if (mirror_num > map->num_stripes) {
5710 mirror_num = 0;
5711 }
5712
f2d8d74d 5713 num_stripes = 1;
cea9e445 5714 stripe_index = 0;
fce3bb9a 5715 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5716 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5717 &stripe_index);
de483734 5718 if (!need_full_stripe(op))
28e1cc7d 5719 mirror_num = 1;
fce3bb9a 5720 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
de483734 5721 if (need_full_stripe(op))
f2d8d74d 5722 num_stripes = map->num_stripes;
2fff734f 5723 else if (mirror_num)
f188591e 5724 stripe_index = mirror_num - 1;
dfe25020 5725 else {
30d9861f 5726 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5727 map->num_stripes,
30d9861f
SB
5728 current->pid % map->num_stripes,
5729 dev_replace_is_ongoing);
a1d3c478 5730 mirror_num = stripe_index + 1;
dfe25020 5731 }
2fff734f 5732
611f0e00 5733 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5734 if (need_full_stripe(op)) {
f2d8d74d 5735 num_stripes = map->num_stripes;
a1d3c478 5736 } else if (mirror_num) {
f188591e 5737 stripe_index = mirror_num - 1;
a1d3c478
JS
5738 } else {
5739 mirror_num = 1;
5740 }
2fff734f 5741
321aecc6 5742 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5743 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5744
47c5713f 5745 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5746 stripe_index *= map->sub_stripes;
5747
de483734 5748 if (need_full_stripe(op))
f2d8d74d 5749 num_stripes = map->sub_stripes;
321aecc6
CM
5750 else if (mirror_num)
5751 stripe_index += mirror_num - 1;
dfe25020 5752 else {
3e74317a 5753 int old_stripe_index = stripe_index;
30d9861f
SB
5754 stripe_index = find_live_mirror(fs_info, map,
5755 stripe_index,
dfe25020 5756 map->sub_stripes, stripe_index +
30d9861f
SB
5757 current->pid % map->sub_stripes,
5758 dev_replace_is_ongoing);
3e74317a 5759 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5760 }
53b381b3 5761
ffe2d203 5762 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5763 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5764 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5765 stripe_nr = div64_u64(raid56_full_stripe_start,
b8b93add 5766 stripe_len * nr_data_stripes(map));
53b381b3
DW
5767
5768 /* RAID[56] write or recovery. Return all stripes */
5769 num_stripes = map->num_stripes;
5770 max_errors = nr_parity_stripes(map);
5771
53b381b3
DW
5772 *length = map->stripe_len;
5773 stripe_index = 0;
5774 stripe_offset = 0;
5775 } else {
5776 /*
5777 * Mirror #0 or #1 means the original data block.
5778 * Mirror #2 is RAID5 parity block.
5779 * Mirror #3 is RAID6 Q block.
5780 */
47c5713f
DS
5781 stripe_nr = div_u64_rem(stripe_nr,
5782 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5783 if (mirror_num > 1)
5784 stripe_index = nr_data_stripes(map) +
5785 mirror_num - 2;
5786
5787 /* We distribute the parity blocks across stripes */
47c5713f
DS
5788 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5789 &stripe_index);
de483734 5790 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5791 mirror_num = 1;
53b381b3 5792 }
8790d502
CM
5793 } else {
5794 /*
47c5713f
DS
5795 * after this, stripe_nr is the number of stripes on this
5796 * device we have to walk to find the data, and stripe_index is
5797 * the number of our device in the stripe array
8790d502 5798 */
47c5713f
DS
5799 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5800 &stripe_index);
a1d3c478 5801 mirror_num = stripe_index + 1;
8790d502 5802 }
e042d1ec 5803 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5804 btrfs_crit(fs_info,
5805 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5806 stripe_index, map->num_stripes);
5807 ret = -EINVAL;
5808 goto out;
5809 }
cea9e445 5810
472262f3 5811 num_alloc_stripes = num_stripes;
6fad823f 5812 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5813 if (op == BTRFS_MAP_WRITE)
ad6d620e 5814 num_alloc_stripes <<= 1;
cf8cddd3 5815 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5816 num_alloc_stripes++;
2c8cdd6e 5817 tgtdev_indexes = num_stripes;
ad6d620e 5818 }
2c8cdd6e 5819
6e9606d2 5820 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5821 if (!bbio) {
5822 ret = -ENOMEM;
5823 goto out;
5824 }
6fad823f 5825 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5826 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5827
8e5cfb55 5828 /* build raid_map */
2b19a1fe
LB
5829 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5830 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5831 u64 tmp;
9d644a62 5832 unsigned rot;
8e5cfb55
ZL
5833
5834 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5835 sizeof(struct btrfs_bio_stripe) *
5836 num_alloc_stripes +
5837 sizeof(int) * tgtdev_indexes);
5838
5839 /* Work out the disk rotation on this stripe-set */
47c5713f 5840 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5841
5842 /* Fill in the logical address of each stripe */
5843 tmp = stripe_nr * nr_data_stripes(map);
5844 for (i = 0; i < nr_data_stripes(map); i++)
5845 bbio->raid_map[(i+rot) % num_stripes] =
5846 em->start + (tmp + i) * map->stripe_len;
5847
5848 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5849 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5850 bbio->raid_map[(i+rot+1) % num_stripes] =
5851 RAID6_Q_STRIPE;
5852 }
5853
b89203f7 5854
0b3d4cd3
LB
5855 for (i = 0; i < num_stripes; i++) {
5856 bbio->stripes[i].physical =
5857 map->stripes[stripe_index].physical +
5858 stripe_offset +
5859 stripe_nr * map->stripe_len;
5860 bbio->stripes[i].dev =
5861 map->stripes[stripe_index].dev;
5862 stripe_index++;
593060d7 5863 }
de11cc12 5864
2b19a1fe 5865 if (need_full_stripe(op))
d20983b4 5866 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5867
8e5cfb55
ZL
5868 if (bbio->raid_map)
5869 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5870
73c0f228 5871 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5872 need_full_stripe(op)) {
73c0f228
LB
5873 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5874 &max_errors);
472262f3
SB
5875 }
5876
de11cc12 5877 *bbio_ret = bbio;
10f11900 5878 bbio->map_type = map->type;
de11cc12
LZ
5879 bbio->num_stripes = num_stripes;
5880 bbio->max_errors = max_errors;
5881 bbio->mirror_num = mirror_num;
ad6d620e
SB
5882
5883 /*
5884 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5885 * mirror_num == num_stripes + 1 && dev_replace target drive is
5886 * available as a mirror
5887 */
5888 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5889 WARN_ON(num_stripes > 1);
5890 bbio->stripes[0].dev = dev_replace->tgtdev;
5891 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5892 bbio->mirror_num = map->num_stripes + 1;
5893 }
cea9e445 5894out:
73beece9
LB
5895 if (dev_replace_is_ongoing) {
5896 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5897 btrfs_dev_replace_unlock(dev_replace, 0);
5898 }
0b86a832 5899 free_extent_map(em);
de11cc12 5900 return ret;
0b86a832
CM
5901}
5902
cf8cddd3 5903int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5904 u64 logical, u64 *length,
a1d3c478 5905 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5906{
b3d3fa51 5907 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5908 mirror_num, 0);
f2d8d74d
CM
5909}
5910
af8e2d1d 5911/* For Scrub/replace */
cf8cddd3 5912int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 5913 u64 logical, u64 *length,
825ad4c9 5914 struct btrfs_bio **bbio_ret)
af8e2d1d 5915{
825ad4c9 5916 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
5917}
5918
ab8d0fc4 5919int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5920 u64 chunk_start, u64 physical, u64 devid,
5921 u64 **logical, int *naddrs, int *stripe_len)
5922{
a512bbf8
YZ
5923 struct extent_map *em;
5924 struct map_lookup *map;
5925 u64 *buf;
5926 u64 bytenr;
5927 u64 length;
5928 u64 stripe_nr;
53b381b3 5929 u64 rmap_len;
a512bbf8
YZ
5930 int i, j, nr = 0;
5931
592d92ee
LB
5932 em = get_chunk_map(fs_info, chunk_start, 1);
5933 if (IS_ERR(em))
835d974f 5934 return -EIO;
835d974f 5935
95617d69 5936 map = em->map_lookup;
a512bbf8 5937 length = em->len;
53b381b3
DW
5938 rmap_len = map->stripe_len;
5939
a512bbf8 5940 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5941 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5942 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5943 length = div_u64(length, map->num_stripes);
ffe2d203 5944 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5945 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5946 rmap_len = map->stripe_len * nr_data_stripes(map);
5947 }
a512bbf8 5948
31e818fe 5949 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5950 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5951
5952 for (i = 0; i < map->num_stripes; i++) {
5953 if (devid && map->stripes[i].dev->devid != devid)
5954 continue;
5955 if (map->stripes[i].physical > physical ||
5956 map->stripes[i].physical + length <= physical)
5957 continue;
5958
5959 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 5960 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5961
5962 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5963 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5964 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5965 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5966 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5967 } /* else if RAID[56], multiply by nr_data_stripes().
5968 * Alternatively, just use rmap_len below instead of
5969 * map->stripe_len */
5970
5971 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5972 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5973 for (j = 0; j < nr; j++) {
5974 if (buf[j] == bytenr)
5975 break;
5976 }
934d375b
CM
5977 if (j == nr) {
5978 WARN_ON(nr >= map->num_stripes);
a512bbf8 5979 buf[nr++] = bytenr;
934d375b 5980 }
a512bbf8
YZ
5981 }
5982
a512bbf8
YZ
5983 *logical = buf;
5984 *naddrs = nr;
53b381b3 5985 *stripe_len = rmap_len;
a512bbf8
YZ
5986
5987 free_extent_map(em);
5988 return 0;
f2d8d74d
CM
5989}
5990
4246a0b6 5991static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5992{
326e1dbb
MS
5993 bio->bi_private = bbio->private;
5994 bio->bi_end_io = bbio->end_io;
4246a0b6 5995 bio_endio(bio);
326e1dbb 5996
6e9606d2 5997 btrfs_put_bbio(bbio);
8408c716
MX
5998}
5999
4246a0b6 6000static void btrfs_end_bio(struct bio *bio)
8790d502 6001{
9be3395b 6002 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6003 int is_orig_bio = 0;
8790d502 6004
4e4cbee9 6005 if (bio->bi_status) {
a1d3c478 6006 atomic_inc(&bbio->error);
4e4cbee9
CH
6007 if (bio->bi_status == BLK_STS_IOERR ||
6008 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6009 unsigned int stripe_index =
9be3395b 6010 btrfs_io_bio(bio)->stripe_index;
65f53338 6011 struct btrfs_device *dev;
442a4f63
SB
6012
6013 BUG_ON(stripe_index >= bbio->num_stripes);
6014 dev = bbio->stripes[stripe_index].dev;
597a60fa 6015 if (dev->bdev) {
37226b21 6016 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6017 btrfs_dev_stat_inc(dev,
6018 BTRFS_DEV_STAT_WRITE_ERRS);
6019 else
6020 btrfs_dev_stat_inc(dev,
6021 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6022 if (bio->bi_opf & REQ_PREFLUSH)
597a60fa
SB
6023 btrfs_dev_stat_inc(dev,
6024 BTRFS_DEV_STAT_FLUSH_ERRS);
6025 btrfs_dev_stat_print_on_error(dev);
6026 }
442a4f63
SB
6027 }
6028 }
8790d502 6029
a1d3c478 6030 if (bio == bbio->orig_bio)
7d2b4daa
CM
6031 is_orig_bio = 1;
6032
c404e0dc
MX
6033 btrfs_bio_counter_dec(bbio->fs_info);
6034
a1d3c478 6035 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6036 if (!is_orig_bio) {
6037 bio_put(bio);
a1d3c478 6038 bio = bbio->orig_bio;
7d2b4daa 6039 }
c7b22bb1 6040
9be3395b 6041 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6042 /* only send an error to the higher layers if it is
53b381b3 6043 * beyond the tolerance of the btrfs bio
a236aed1 6044 */
a1d3c478 6045 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6046 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6047 } else {
1259ab75
CM
6048 /*
6049 * this bio is actually up to date, we didn't
6050 * go over the max number of errors
6051 */
2dbe0c77 6052 bio->bi_status = BLK_STS_OK;
1259ab75 6053 }
c55f1396 6054
4246a0b6 6055 btrfs_end_bbio(bbio, bio);
7d2b4daa 6056 } else if (!is_orig_bio) {
8790d502
CM
6057 bio_put(bio);
6058 }
8790d502
CM
6059}
6060
8b712842
CM
6061/*
6062 * see run_scheduled_bios for a description of why bios are collected for
6063 * async submit.
6064 *
6065 * This will add one bio to the pending list for a device and make sure
6066 * the work struct is scheduled.
6067 */
2ff7e61e 6068static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6069 struct bio *bio)
8b712842 6070{
0b246afa 6071 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6072 int should_queue = 1;
ffbd517d 6073 struct btrfs_pending_bios *pending_bios;
8b712842 6074
53b381b3 6075 if (device->missing || !device->bdev) {
4246a0b6 6076 bio_io_error(bio);
53b381b3
DW
6077 return;
6078 }
6079
8b712842 6080 /* don't bother with additional async steps for reads, right now */
37226b21 6081 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6082 bio_get(bio);
4e49ea4a 6083 btrfsic_submit_bio(bio);
492bb6de 6084 bio_put(bio);
143bede5 6085 return;
8b712842
CM
6086 }
6087
492bb6de 6088 WARN_ON(bio->bi_next);
8b712842 6089 bio->bi_next = NULL;
8b712842
CM
6090
6091 spin_lock(&device->io_lock);
67f055c7 6092 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6093 pending_bios = &device->pending_sync_bios;
6094 else
6095 pending_bios = &device->pending_bios;
8b712842 6096
ffbd517d
CM
6097 if (pending_bios->tail)
6098 pending_bios->tail->bi_next = bio;
8b712842 6099
ffbd517d
CM
6100 pending_bios->tail = bio;
6101 if (!pending_bios->head)
6102 pending_bios->head = bio;
8b712842
CM
6103 if (device->running_pending)
6104 should_queue = 0;
6105
6106 spin_unlock(&device->io_lock);
6107
6108 if (should_queue)
0b246afa 6109 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6110}
6111
2ff7e61e
JM
6112static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6113 u64 physical, int dev_nr, int async)
de1ee92a
JB
6114{
6115 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6116 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6117
6118 bio->bi_private = bbio;
9be3395b 6119 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6120 bio->bi_end_io = btrfs_end_bio;
4f024f37 6121 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6122#ifdef DEBUG
6123 {
6124 struct rcu_string *name;
6125
6126 rcu_read_lock();
6127 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6128 btrfs_debug(fs_info,
6129 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6130 bio_op(bio), bio->bi_opf,
6131 (u64)bio->bi_iter.bi_sector,
6132 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6133 bio->bi_iter.bi_size);
de1ee92a
JB
6134 rcu_read_unlock();
6135 }
6136#endif
74d46992 6137 bio_set_dev(bio, dev->bdev);
c404e0dc 6138
2ff7e61e 6139 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6140
de1ee92a 6141 if (async)
2ff7e61e 6142 btrfs_schedule_bio(dev, bio);
de1ee92a 6143 else
4e49ea4a 6144 btrfsic_submit_bio(bio);
de1ee92a
JB
6145}
6146
de1ee92a
JB
6147static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6148{
6149 atomic_inc(&bbio->error);
6150 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6151 /* Should be the original bio. */
8408c716
MX
6152 WARN_ON(bio != bbio->orig_bio);
6153
9be3395b 6154 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6155 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6156 if (atomic_read(&bbio->error) > bbio->max_errors)
6157 bio->bi_status = BLK_STS_IOERR;
6158 else
6159 bio->bi_status = BLK_STS_OK;
4246a0b6 6160 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6161 }
6162}
6163
58efbc9f
OS
6164blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6165 int mirror_num, int async_submit)
0b86a832 6166{
0b86a832 6167 struct btrfs_device *dev;
8790d502 6168 struct bio *first_bio = bio;
4f024f37 6169 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6170 u64 length = 0;
6171 u64 map_length;
0b86a832 6172 int ret;
08da757d
ZL
6173 int dev_nr;
6174 int total_devs;
a1d3c478 6175 struct btrfs_bio *bbio = NULL;
0b86a832 6176
4f024f37 6177 length = bio->bi_iter.bi_size;
0b86a832 6178 map_length = length;
cea9e445 6179
0b246afa 6180 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6181 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6182 &map_length, &bbio, mirror_num, 1);
c404e0dc 6183 if (ret) {
0b246afa 6184 btrfs_bio_counter_dec(fs_info);
58efbc9f 6185 return errno_to_blk_status(ret);
c404e0dc 6186 }
cea9e445 6187
a1d3c478 6188 total_devs = bbio->num_stripes;
53b381b3
DW
6189 bbio->orig_bio = first_bio;
6190 bbio->private = first_bio->bi_private;
6191 bbio->end_io = first_bio->bi_end_io;
0b246afa 6192 bbio->fs_info = fs_info;
53b381b3
DW
6193 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6194
ad1ba2a0 6195 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6196 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6197 /* In this case, map_length has been set to the length of
6198 a single stripe; not the whole write */
37226b21 6199 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6200 ret = raid56_parity_write(fs_info, bio, bbio,
6201 map_length);
53b381b3 6202 } else {
2ff7e61e
JM
6203 ret = raid56_parity_recover(fs_info, bio, bbio,
6204 map_length, mirror_num, 1);
53b381b3 6205 }
4245215d 6206
0b246afa 6207 btrfs_bio_counter_dec(fs_info);
58efbc9f 6208 return errno_to_blk_status(ret);
53b381b3
DW
6209 }
6210
cea9e445 6211 if (map_length < length) {
0b246afa 6212 btrfs_crit(fs_info,
5d163e0e
JM
6213 "mapping failed logical %llu bio len %llu len %llu",
6214 logical, length, map_length);
cea9e445
CM
6215 BUG();
6216 }
a1d3c478 6217
08da757d 6218 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6219 dev = bbio->stripes[dev_nr].dev;
37226b21 6220 if (!dev || !dev->bdev ||
a967efb3 6221 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6222 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6223 continue;
6224 }
6225
3aa8e074 6226 if (dev_nr < total_devs - 1)
8b6c1d56 6227 bio = btrfs_bio_clone(first_bio);
3aa8e074 6228 else
a1d3c478 6229 bio = first_bio;
de1ee92a 6230
2ff7e61e
JM
6231 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6232 dev_nr, async_submit);
8790d502 6233 }
0b246afa 6234 btrfs_bio_counter_dec(fs_info);
58efbc9f 6235 return BLK_STS_OK;
0b86a832
CM
6236}
6237
34857e15
AJ
6238/*
6239 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6240 * return NULL.
6241 *
6242 * If devid and uuid are both specified, the match must be exact, otherwise
6243 * only devid is used.
6244 *
6245 * If @seed is true, traverse through the seed devices.
6246 */
2f05c56f 6247struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
34857e15
AJ
6248 u64 devid, u8 *uuid, u8 *fsid,
6249 bool seed)
0b86a832 6250{
2b82032c 6251 struct btrfs_device *device;
2b82032c 6252
2f05c56f 6253 while (fs_devices) {
2b82032c 6254 if (!fsid ||
34857e15
AJ
6255 !memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6256 list_for_each_entry(device, &fs_devices->devices,
6257 dev_list) {
6258 if (device->devid == devid &&
6259 (!uuid || memcmp(device->uuid, uuid,
6260 BTRFS_UUID_SIZE) == 0))
6261 return device;
6262 }
2b82032c 6263 }
34857e15
AJ
6264 if (seed)
6265 fs_devices = fs_devices->seed;
6266 else
6267 return NULL;
2b82032c
YZ
6268 }
6269 return NULL;
0b86a832
CM
6270}
6271
2ff7e61e 6272static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6273 u64 devid, u8 *dev_uuid)
6274{
6275 struct btrfs_device *device;
dfe25020 6276
12bd2fc0
ID
6277 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6278 if (IS_ERR(device))
adfb69af 6279 return device;
12bd2fc0
ID
6280
6281 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6282 device->fs_devices = fs_devices;
dfe25020 6283 fs_devices->num_devices++;
12bd2fc0
ID
6284
6285 device->missing = 1;
cd02dca5 6286 fs_devices->missing_devices++;
12bd2fc0 6287
dfe25020
CM
6288 return device;
6289}
6290
12bd2fc0
ID
6291/**
6292 * btrfs_alloc_device - allocate struct btrfs_device
6293 * @fs_info: used only for generating a new devid, can be NULL if
6294 * devid is provided (i.e. @devid != NULL).
6295 * @devid: a pointer to devid for this device. If NULL a new devid
6296 * is generated.
6297 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6298 * is generated.
6299 *
6300 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6301 * on error. Returned struct is not linked onto any lists and can be
6302 * destroyed with kfree() right away.
6303 */
6304struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6305 const u64 *devid,
6306 const u8 *uuid)
6307{
6308 struct btrfs_device *dev;
6309 u64 tmp;
6310
fae7f21c 6311 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6312 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6313
6314 dev = __alloc_device();
6315 if (IS_ERR(dev))
6316 return dev;
6317
6318 if (devid)
6319 tmp = *devid;
6320 else {
6321 int ret;
6322
6323 ret = find_next_devid(fs_info, &tmp);
6324 if (ret) {
3065ae5b 6325 bio_put(dev->flush_bio);
12bd2fc0
ID
6326 kfree(dev);
6327 return ERR_PTR(ret);
6328 }
6329 }
6330 dev->devid = tmp;
6331
6332 if (uuid)
6333 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6334 else
6335 generate_random_uuid(dev->uuid);
6336
9e0af237
LB
6337 btrfs_init_work(&dev->work, btrfs_submit_helper,
6338 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6339
6340 return dev;
6341}
6342
e06cd3dd 6343/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6344static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6345 struct extent_buffer *leaf,
6346 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6347{
0b86a832 6348 u64 length;
f04b772b 6349 u64 stripe_len;
e06cd3dd
LB
6350 u16 num_stripes;
6351 u16 sub_stripes;
6352 u64 type;
75d0186f
GJ
6353 u64 features;
6354 bool mixed = false;
0b86a832 6355
e17cade2 6356 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6357 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6358 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6359 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6360 type = btrfs_chunk_type(leaf, chunk);
6361
f04b772b 6362 if (!num_stripes) {
0b246afa 6363 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6364 num_stripes);
6365 return -EIO;
6366 }
0b246afa
JM
6367 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6368 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6369 return -EIO;
6370 }
0b246afa
JM
6371 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6372 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6373 btrfs_chunk_sector_size(leaf, chunk));
6374 return -EIO;
6375 }
0b246afa
JM
6376 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6377 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6378 return -EIO;
6379 }
3d8da678 6380 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6381 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6382 stripe_len);
6383 return -EIO;
6384 }
6385 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6386 type) {
0b246afa 6387 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6388 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6389 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6390 btrfs_chunk_type(leaf, chunk));
6391 return -EIO;
6392 }
75d0186f
GJ
6393
6394 if ((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0) {
6395 btrfs_err(fs_info, "missing chunk type flag: 0x%llx", type);
6396 return -EIO;
6397 }
6398
6399 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
6400 (type & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA))) {
6401 btrfs_err(fs_info,
6402 "system chunk with data or metadata type: 0x%llx", type);
6403 return -EIO;
6404 }
6405
6406 features = btrfs_super_incompat_flags(fs_info->super_copy);
6407 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
6408 mixed = true;
6409
6410 if (!mixed) {
6411 if ((type & BTRFS_BLOCK_GROUP_METADATA) &&
6412 (type & BTRFS_BLOCK_GROUP_DATA)) {
6413 btrfs_err(fs_info,
6414 "mixed chunk type in non-mixed mode: 0x%llx", type);
6415 return -EIO;
6416 }
6417 }
6418
e06cd3dd 6419 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
72460cff 6420 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes != 2) ||
e06cd3dd
LB
6421 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6422 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
72460cff 6423 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes != 2) ||
e06cd3dd
LB
6424 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6425 num_stripes != 1)) {
0b246afa 6426 btrfs_err(fs_info,
e06cd3dd
LB
6427 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6428 num_stripes, sub_stripes,
6429 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6430 return -EIO;
6431 }
6432
6433 return 0;
6434}
6435
5a2b8e60 6436static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6437 u64 devid, u8 *uuid, bool error)
5a2b8e60 6438{
2b902dfc
AJ
6439 if (error)
6440 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6441 devid, uuid);
6442 else
6443 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6444 devid, uuid);
5a2b8e60
AJ
6445}
6446
2ff7e61e 6447static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6448 struct extent_buffer *leaf,
6449 struct btrfs_chunk *chunk)
6450{
0b246afa 6451 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6452 struct map_lookup *map;
6453 struct extent_map *em;
6454 u64 logical;
6455 u64 length;
e06cd3dd
LB
6456 u64 devid;
6457 u8 uuid[BTRFS_UUID_SIZE];
6458 int num_stripes;
6459 int ret;
6460 int i;
6461
6462 logical = key->offset;
6463 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6464 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6465
2ff7e61e 6466 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6467 if (ret)
6468 return ret;
a061fc8d 6469
890871be 6470 read_lock(&map_tree->map_tree.lock);
0b86a832 6471 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6472 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6473
6474 /* already mapped? */
6475 if (em && em->start <= logical && em->start + em->len > logical) {
6476 free_extent_map(em);
0b86a832
CM
6477 return 0;
6478 } else if (em) {
6479 free_extent_map(em);
6480 }
0b86a832 6481
172ddd60 6482 em = alloc_extent_map();
0b86a832
CM
6483 if (!em)
6484 return -ENOMEM;
593060d7 6485 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6486 if (!map) {
6487 free_extent_map(em);
6488 return -ENOMEM;
6489 }
6490
298a8f9c 6491 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6492 em->map_lookup = map;
0b86a832
CM
6493 em->start = logical;
6494 em->len = length;
70c8a91c 6495 em->orig_start = 0;
0b86a832 6496 em->block_start = 0;
c8b97818 6497 em->block_len = em->len;
0b86a832 6498
593060d7
CM
6499 map->num_stripes = num_stripes;
6500 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6501 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6502 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6503 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6504 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6505 for (i = 0; i < num_stripes; i++) {
6506 map->stripes[i].physical =
6507 btrfs_stripe_offset_nr(leaf, chunk, i);
6508 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6509 read_extent_buffer(leaf, uuid, (unsigned long)
6510 btrfs_stripe_dev_uuid_nr(chunk, i),
6511 BTRFS_UUID_SIZE);
2f05c56f 6512 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
34857e15 6513 devid, uuid, NULL, true);
3cdde224 6514 if (!map->stripes[i].dev &&
0b246afa 6515 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6516 free_extent_map(em);
2b902dfc 6517 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6518 return -ENOENT;
593060d7 6519 }
dfe25020
CM
6520 if (!map->stripes[i].dev) {
6521 map->stripes[i].dev =
2ff7e61e
JM
6522 add_missing_dev(fs_info->fs_devices, devid,
6523 uuid);
adfb69af 6524 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6525 free_extent_map(em);
adfb69af
AJ
6526 btrfs_err(fs_info,
6527 "failed to init missing dev %llu: %ld",
6528 devid, PTR_ERR(map->stripes[i].dev));
6529 return PTR_ERR(map->stripes[i].dev);
dfe25020 6530 }
2b902dfc 6531 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020
CM
6532 }
6533 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6534 }
6535
890871be 6536 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6537 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6538 write_unlock(&map_tree->map_tree.lock);
0ede0a53
QW
6539 if (ret < 0) {
6540 btrfs_err(fs_info,
6541 "failed to add chunk map, start=%llu len=%llu: %d",
6542 em->start, em->len, ret);
6543 }
0b86a832
CM
6544 free_extent_map(em);
6545
0ede0a53 6546 return ret;
0b86a832
CM
6547}
6548
143bede5 6549static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6550 struct btrfs_dev_item *dev_item,
6551 struct btrfs_device *device)
6552{
6553 unsigned long ptr;
0b86a832
CM
6554
6555 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6556 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6557 device->total_bytes = device->disk_total_bytes;
935e5cc9 6558 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6559 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6560 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6561 device->type = btrfs_device_type(leaf, dev_item);
6562 device->io_align = btrfs_device_io_align(leaf, dev_item);
6563 device->io_width = btrfs_device_io_width(leaf, dev_item);
6564 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6565 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6566 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6567
410ba3a2 6568 ptr = btrfs_device_uuid(dev_item);
e17cade2 6569 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6570}
6571
2ff7e61e 6572static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6573 u8 *fsid)
2b82032c
YZ
6574{
6575 struct btrfs_fs_devices *fs_devices;
6576 int ret;
6577
b367e47f 6578 BUG_ON(!mutex_is_locked(&uuid_mutex));
2dfeca9b 6579 ASSERT(fsid);
2b82032c 6580
0b246afa 6581 fs_devices = fs_info->fs_devices->seed;
2b82032c 6582 while (fs_devices) {
44880fdc 6583 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6584 return fs_devices;
6585
2b82032c
YZ
6586 fs_devices = fs_devices->seed;
6587 }
6588
6589 fs_devices = find_fsid(fsid);
6590 if (!fs_devices) {
0b246afa 6591 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6592 return ERR_PTR(-ENOENT);
6593
6594 fs_devices = alloc_fs_devices(fsid);
6595 if (IS_ERR(fs_devices))
6596 return fs_devices;
6597
6598 fs_devices->seeding = 1;
6599 fs_devices->opened = 1;
6600 return fs_devices;
2b82032c 6601 }
e4404d6e
YZ
6602
6603 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6604 if (IS_ERR(fs_devices))
6605 return fs_devices;
2b82032c 6606
97288f2c 6607 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6608 fs_info->bdev_holder);
48d28232
JL
6609 if (ret) {
6610 free_fs_devices(fs_devices);
5f375835 6611 fs_devices = ERR_PTR(ret);
2b82032c 6612 goto out;
48d28232 6613 }
2b82032c
YZ
6614
6615 if (!fs_devices->seeding) {
6616 __btrfs_close_devices(fs_devices);
e4404d6e 6617 free_fs_devices(fs_devices);
5f375835 6618 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6619 goto out;
6620 }
6621
0b246afa
JM
6622 fs_devices->seed = fs_info->fs_devices->seed;
6623 fs_info->fs_devices->seed = fs_devices;
2b82032c 6624out:
5f375835 6625 return fs_devices;
2b82032c
YZ
6626}
6627
2ff7e61e 6628static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6629 struct extent_buffer *leaf,
6630 struct btrfs_dev_item *dev_item)
6631{
0b246afa 6632 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6633 struct btrfs_device *device;
6634 u64 devid;
6635 int ret;
44880fdc 6636 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6637 u8 dev_uuid[BTRFS_UUID_SIZE];
6638
0b86a832 6639 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6640 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6641 BTRFS_UUID_SIZE);
1473b24e 6642 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6643 BTRFS_FSID_SIZE);
2b82032c 6644
44880fdc 6645 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
2ff7e61e 6646 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6647 if (IS_ERR(fs_devices))
6648 return PTR_ERR(fs_devices);
2b82032c
YZ
6649 }
6650
2f05c56f 6651 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
34857e15 6652 fs_uuid, true);
5f375835 6653 if (!device) {
c5502451 6654 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6655 btrfs_report_missing_device(fs_info, devid,
6656 dev_uuid, true);
45dbdbc9 6657 return -ENOENT;
c5502451 6658 }
2b82032c 6659
2ff7e61e 6660 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6661 if (IS_ERR(device)) {
6662 btrfs_err(fs_info,
6663 "failed to add missing dev %llu: %ld",
6664 devid, PTR_ERR(device));
6665 return PTR_ERR(device);
6666 }
2b902dfc 6667 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6668 } else {
c5502451 6669 if (!device->bdev) {
2b902dfc
AJ
6670 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6671 btrfs_report_missing_device(fs_info,
6672 devid, dev_uuid, true);
45dbdbc9 6673 return -ENOENT;
2b902dfc
AJ
6674 }
6675 btrfs_report_missing_device(fs_info, devid,
6676 dev_uuid, false);
c5502451 6677 }
5f375835
MX
6678
6679 if(!device->bdev && !device->missing) {
cd02dca5
CM
6680 /*
6681 * this happens when a device that was properly setup
6682 * in the device info lists suddenly goes bad.
6683 * device->bdev is NULL, and so we have to set
6684 * device->missing to one here
6685 */
5f375835 6686 device->fs_devices->missing_devices++;
cd02dca5 6687 device->missing = 1;
2b82032c 6688 }
5f375835
MX
6689
6690 /* Move the device to its own fs_devices */
6691 if (device->fs_devices != fs_devices) {
6692 ASSERT(device->missing);
6693
6694 list_move(&device->dev_list, &fs_devices->devices);
6695 device->fs_devices->num_devices--;
6696 fs_devices->num_devices++;
6697
6698 device->fs_devices->missing_devices--;
6699 fs_devices->missing_devices++;
6700
6701 device->fs_devices = fs_devices;
6702 }
2b82032c
YZ
6703 }
6704
0b246afa 6705 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6706 BUG_ON(device->writeable);
6707 if (device->generation !=
6708 btrfs_device_generation(leaf, dev_item))
6709 return -EINVAL;
6324fbf3 6710 }
0b86a832
CM
6711
6712 fill_device_from_item(leaf, dev_item, device);
dfe25020 6713 device->in_fs_metadata = 1;
63a212ab 6714 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6715 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6716 atomic64_add(device->total_bytes - device->bytes_used,
6717 &fs_info->free_chunk_space);
2bf64758 6718 }
0b86a832 6719 ret = 0;
0b86a832
CM
6720 return ret;
6721}
6722
6bccf3ab 6723int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6724{
6bccf3ab 6725 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6726 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6727 struct extent_buffer *sb;
0b86a832 6728 struct btrfs_disk_key *disk_key;
0b86a832 6729 struct btrfs_chunk *chunk;
1ffb22cf
DS
6730 u8 *array_ptr;
6731 unsigned long sb_array_offset;
84eed90f 6732 int ret = 0;
0b86a832
CM
6733 u32 num_stripes;
6734 u32 array_size;
6735 u32 len = 0;
1ffb22cf 6736 u32 cur_offset;
e06cd3dd 6737 u64 type;
84eed90f 6738 struct btrfs_key key;
0b86a832 6739
0b246afa 6740 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6741 /*
6742 * This will create extent buffer of nodesize, superblock size is
6743 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6744 * overallocate but we can keep it as-is, only the first page is used.
6745 */
2ff7e61e 6746 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6747 if (IS_ERR(sb))
6748 return PTR_ERR(sb);
4db8c528 6749 set_extent_buffer_uptodate(sb);
85d4e461 6750 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6751 /*
01327610 6752 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6753 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6754 * pages up-to-date when the page is larger: extent does not cover the
6755 * whole page and consequently check_page_uptodate does not find all
6756 * the page's extents up-to-date (the hole beyond sb),
6757 * write_extent_buffer then triggers a WARN_ON.
6758 *
6759 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6760 * but sb spans only this function. Add an explicit SetPageUptodate call
6761 * to silence the warning eg. on PowerPC 64.
6762 */
09cbfeaf 6763 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6764 SetPageUptodate(sb->pages[0]);
4008c04a 6765
a061fc8d 6766 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6767 array_size = btrfs_super_sys_array_size(super_copy);
6768
1ffb22cf
DS
6769 array_ptr = super_copy->sys_chunk_array;
6770 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6771 cur_offset = 0;
0b86a832 6772
1ffb22cf
DS
6773 while (cur_offset < array_size) {
6774 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6775 len = sizeof(*disk_key);
6776 if (cur_offset + len > array_size)
6777 goto out_short_read;
6778
0b86a832
CM
6779 btrfs_disk_key_to_cpu(&key, disk_key);
6780
1ffb22cf
DS
6781 array_ptr += len;
6782 sb_array_offset += len;
6783 cur_offset += len;
0b86a832 6784
0d81ba5d 6785 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6786 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6787 /*
6788 * At least one btrfs_chunk with one stripe must be
6789 * present, exact stripe count check comes afterwards
6790 */
6791 len = btrfs_chunk_item_size(1);
6792 if (cur_offset + len > array_size)
6793 goto out_short_read;
6794
6795 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6796 if (!num_stripes) {
ab8d0fc4
JM
6797 btrfs_err(fs_info,
6798 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6799 num_stripes, cur_offset);
6800 ret = -EIO;
6801 break;
6802 }
6803
e06cd3dd
LB
6804 type = btrfs_chunk_type(sb, chunk);
6805 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6806 btrfs_err(fs_info,
e06cd3dd
LB
6807 "invalid chunk type %llu in sys_array at offset %u",
6808 type, cur_offset);
6809 ret = -EIO;
6810 break;
6811 }
6812
e3540eab
DS
6813 len = btrfs_chunk_item_size(num_stripes);
6814 if (cur_offset + len > array_size)
6815 goto out_short_read;
6816
2ff7e61e 6817 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6818 if (ret)
6819 break;
0b86a832 6820 } else {
ab8d0fc4
JM
6821 btrfs_err(fs_info,
6822 "unexpected item type %u in sys_array at offset %u",
6823 (u32)key.type, cur_offset);
84eed90f
CM
6824 ret = -EIO;
6825 break;
0b86a832 6826 }
1ffb22cf
DS
6827 array_ptr += len;
6828 sb_array_offset += len;
6829 cur_offset += len;
0b86a832 6830 }
d865177a 6831 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6832 free_extent_buffer_stale(sb);
84eed90f 6833 return ret;
e3540eab
DS
6834
6835out_short_read:
ab8d0fc4 6836 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6837 len, cur_offset);
d865177a 6838 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6839 free_extent_buffer_stale(sb);
e3540eab 6840 return -EIO;
0b86a832
CM
6841}
6842
21634a19
QW
6843/*
6844 * Check if all chunks in the fs are OK for read-write degraded mount
6845 *
6846 * Return true if all chunks meet the minimal RW mount requirements.
6847 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6848 */
6849bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6850{
6851 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6852 struct extent_map *em;
6853 u64 next_start = 0;
6854 bool ret = true;
6855
6856 read_lock(&map_tree->map_tree.lock);
6857 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6858 read_unlock(&map_tree->map_tree.lock);
6859 /* No chunk at all? Return false anyway */
6860 if (!em) {
6861 ret = false;
6862 goto out;
6863 }
6864 while (em) {
6865 struct map_lookup *map;
6866 int missing = 0;
6867 int max_tolerated;
6868 int i;
6869
6870 map = em->map_lookup;
6871 max_tolerated =
6872 btrfs_get_num_tolerated_disk_barrier_failures(
6873 map->type);
6874 for (i = 0; i < map->num_stripes; i++) {
6875 struct btrfs_device *dev = map->stripes[i].dev;
6876
6877 if (!dev || !dev->bdev || dev->missing ||
6878 dev->last_flush_error)
6879 missing++;
6880 }
6881 if (missing > max_tolerated) {
6882 btrfs_warn(fs_info,
6883 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6884 em->start, missing, max_tolerated);
6885 free_extent_map(em);
6886 ret = false;
6887 goto out;
6888 }
6889 next_start = extent_map_end(em);
6890 free_extent_map(em);
6891
6892 read_lock(&map_tree->map_tree.lock);
6893 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6894 (u64)(-1) - next_start);
6895 read_unlock(&map_tree->map_tree.lock);
6896 }
6897out:
6898 return ret;
6899}
6900
5b4aacef 6901int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6902{
5b4aacef 6903 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6904 struct btrfs_path *path;
6905 struct extent_buffer *leaf;
6906 struct btrfs_key key;
6907 struct btrfs_key found_key;
6908 int ret;
6909 int slot;
99e3ecfc 6910 u64 total_dev = 0;
0b86a832 6911
0b86a832
CM
6912 path = btrfs_alloc_path();
6913 if (!path)
6914 return -ENOMEM;
6915
b367e47f 6916 mutex_lock(&uuid_mutex);
34441361 6917 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6918
395927a9
FDBM
6919 /*
6920 * Read all device items, and then all the chunk items. All
6921 * device items are found before any chunk item (their object id
6922 * is smaller than the lowest possible object id for a chunk
6923 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6924 */
6925 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6926 key.offset = 0;
6927 key.type = 0;
0b86a832 6928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6929 if (ret < 0)
6930 goto error;
d397712b 6931 while (1) {
0b86a832
CM
6932 leaf = path->nodes[0];
6933 slot = path->slots[0];
6934 if (slot >= btrfs_header_nritems(leaf)) {
6935 ret = btrfs_next_leaf(root, path);
6936 if (ret == 0)
6937 continue;
6938 if (ret < 0)
6939 goto error;
6940 break;
6941 }
6942 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6943 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6944 struct btrfs_dev_item *dev_item;
6945 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6946 struct btrfs_dev_item);
2ff7e61e 6947 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6948 if (ret)
6949 goto error;
99e3ecfc 6950 total_dev++;
0b86a832
CM
6951 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6952 struct btrfs_chunk *chunk;
6953 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6954 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6955 if (ret)
6956 goto error;
0b86a832
CM
6957 }
6958 path->slots[0]++;
6959 }
99e3ecfc
LB
6960
6961 /*
6962 * After loading chunk tree, we've got all device information,
6963 * do another round of validation checks.
6964 */
0b246afa
JM
6965 if (total_dev != fs_info->fs_devices->total_devices) {
6966 btrfs_err(fs_info,
99e3ecfc 6967 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6968 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6969 total_dev);
6970 ret = -EINVAL;
6971 goto error;
6972 }
0b246afa
JM
6973 if (btrfs_super_total_bytes(fs_info->super_copy) <
6974 fs_info->fs_devices->total_rw_bytes) {
6975 btrfs_err(fs_info,
99e3ecfc 6976 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6977 btrfs_super_total_bytes(fs_info->super_copy),
6978 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6979 ret = -EINVAL;
6980 goto error;
6981 }
0b86a832
CM
6982 ret = 0;
6983error:
34441361 6984 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
6985 mutex_unlock(&uuid_mutex);
6986
2b82032c 6987 btrfs_free_path(path);
0b86a832
CM
6988 return ret;
6989}
442a4f63 6990
cb517eab
MX
6991void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6992{
6993 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6994 struct btrfs_device *device;
6995
29cc83f6
LB
6996 while (fs_devices) {
6997 mutex_lock(&fs_devices->device_list_mutex);
6998 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6999 device->fs_info = fs_info;
29cc83f6
LB
7000 mutex_unlock(&fs_devices->device_list_mutex);
7001
7002 fs_devices = fs_devices->seed;
7003 }
cb517eab
MX
7004}
7005
733f4fbb
SB
7006static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7007{
7008 int i;
7009
7010 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7011 btrfs_dev_stat_reset(dev, i);
7012}
7013
7014int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7015{
7016 struct btrfs_key key;
7017 struct btrfs_key found_key;
7018 struct btrfs_root *dev_root = fs_info->dev_root;
7019 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7020 struct extent_buffer *eb;
7021 int slot;
7022 int ret = 0;
7023 struct btrfs_device *device;
7024 struct btrfs_path *path = NULL;
7025 int i;
7026
7027 path = btrfs_alloc_path();
7028 if (!path) {
7029 ret = -ENOMEM;
7030 goto out;
7031 }
7032
7033 mutex_lock(&fs_devices->device_list_mutex);
7034 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7035 int item_size;
7036 struct btrfs_dev_stats_item *ptr;
7037
242e2956
DS
7038 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7039 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7040 key.offset = device->devid;
7041 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7042 if (ret) {
733f4fbb
SB
7043 __btrfs_reset_dev_stats(device);
7044 device->dev_stats_valid = 1;
7045 btrfs_release_path(path);
7046 continue;
7047 }
7048 slot = path->slots[0];
7049 eb = path->nodes[0];
7050 btrfs_item_key_to_cpu(eb, &found_key, slot);
7051 item_size = btrfs_item_size_nr(eb, slot);
7052
7053 ptr = btrfs_item_ptr(eb, slot,
7054 struct btrfs_dev_stats_item);
7055
7056 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7057 if (item_size >= (1 + i) * sizeof(__le64))
7058 btrfs_dev_stat_set(device, i,
7059 btrfs_dev_stats_value(eb, ptr, i));
7060 else
7061 btrfs_dev_stat_reset(device, i);
7062 }
7063
7064 device->dev_stats_valid = 1;
7065 btrfs_dev_stat_print_on_load(device);
7066 btrfs_release_path(path);
7067 }
7068 mutex_unlock(&fs_devices->device_list_mutex);
7069
7070out:
7071 btrfs_free_path(path);
7072 return ret < 0 ? ret : 0;
7073}
7074
7075static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 7076 struct btrfs_fs_info *fs_info,
733f4fbb
SB
7077 struct btrfs_device *device)
7078{
6bccf3ab 7079 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7080 struct btrfs_path *path;
7081 struct btrfs_key key;
7082 struct extent_buffer *eb;
7083 struct btrfs_dev_stats_item *ptr;
7084 int ret;
7085 int i;
7086
242e2956
DS
7087 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7088 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7089 key.offset = device->devid;
7090
7091 path = btrfs_alloc_path();
fa252992
DS
7092 if (!path)
7093 return -ENOMEM;
733f4fbb
SB
7094 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7095 if (ret < 0) {
0b246afa 7096 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7097 "error %d while searching for dev_stats item for device %s",
606686ee 7098 ret, rcu_str_deref(device->name));
733f4fbb
SB
7099 goto out;
7100 }
7101
7102 if (ret == 0 &&
7103 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7104 /* need to delete old one and insert a new one */
7105 ret = btrfs_del_item(trans, dev_root, path);
7106 if (ret != 0) {
0b246afa 7107 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7108 "delete too small dev_stats item for device %s failed %d",
606686ee 7109 rcu_str_deref(device->name), ret);
733f4fbb
SB
7110 goto out;
7111 }
7112 ret = 1;
7113 }
7114
7115 if (ret == 1) {
7116 /* need to insert a new item */
7117 btrfs_release_path(path);
7118 ret = btrfs_insert_empty_item(trans, dev_root, path,
7119 &key, sizeof(*ptr));
7120 if (ret < 0) {
0b246afa 7121 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7122 "insert dev_stats item for device %s failed %d",
7123 rcu_str_deref(device->name), ret);
733f4fbb
SB
7124 goto out;
7125 }
7126 }
7127
7128 eb = path->nodes[0];
7129 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7130 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7131 btrfs_set_dev_stats_value(eb, ptr, i,
7132 btrfs_dev_stat_read(device, i));
7133 btrfs_mark_buffer_dirty(eb);
7134
7135out:
7136 btrfs_free_path(path);
7137 return ret;
7138}
7139
7140/*
7141 * called from commit_transaction. Writes all changed device stats to disk.
7142 */
7143int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7144 struct btrfs_fs_info *fs_info)
7145{
733f4fbb
SB
7146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7147 struct btrfs_device *device;
addc3fa7 7148 int stats_cnt;
733f4fbb
SB
7149 int ret = 0;
7150
7151 mutex_lock(&fs_devices->device_list_mutex);
7152 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9ee59c3a
NB
7153 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7154 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7155 continue;
7156
9ee59c3a
NB
7157
7158 /*
7159 * There is a LOAD-LOAD control dependency between the value of
7160 * dev_stats_ccnt and updating the on-disk values which requires
7161 * reading the in-memory counters. Such control dependencies
7162 * require explicit read memory barriers.
7163 *
7164 * This memory barriers pairs with smp_mb__before_atomic in
7165 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7166 * barrier implied by atomic_xchg in
7167 * btrfs_dev_stats_read_and_reset
7168 */
7169 smp_rmb();
7170
6bccf3ab 7171 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7172 if (!ret)
addc3fa7 7173 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7174 }
7175 mutex_unlock(&fs_devices->device_list_mutex);
7176
7177 return ret;
7178}
7179
442a4f63
SB
7180void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7181{
7182 btrfs_dev_stat_inc(dev, index);
7183 btrfs_dev_stat_print_on_error(dev);
7184}
7185
48a3b636 7186static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7187{
733f4fbb
SB
7188 if (!dev->dev_stats_valid)
7189 return;
fb456252 7190 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7191 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7192 rcu_str_deref(dev->name),
442a4f63
SB
7193 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7194 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7195 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7196 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7197 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7198}
c11d2c23 7199
733f4fbb
SB
7200static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7201{
a98cdb85
SB
7202 int i;
7203
7204 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7205 if (btrfs_dev_stat_read(dev, i) != 0)
7206 break;
7207 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7208 return; /* all values == 0, suppress message */
7209
fb456252 7210 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7211 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7212 rcu_str_deref(dev->name),
733f4fbb
SB
7213 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7214 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7215 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7216 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7217 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7218}
7219
2ff7e61e 7220int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7221 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7222{
7223 struct btrfs_device *dev;
0b246afa 7224 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7225 int i;
7226
7227 mutex_lock(&fs_devices->device_list_mutex);
34857e15
AJ
7228 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7229 true);
c11d2c23
SB
7230 mutex_unlock(&fs_devices->device_list_mutex);
7231
7232 if (!dev) {
0b246afa 7233 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7234 return -ENODEV;
733f4fbb 7235 } else if (!dev->dev_stats_valid) {
0b246afa 7236 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7237 return -ENODEV;
b27f7c0c 7238 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7239 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7240 if (stats->nr_items > i)
7241 stats->values[i] =
7242 btrfs_dev_stat_read_and_reset(dev, i);
7243 else
7244 btrfs_dev_stat_reset(dev, i);
7245 }
7246 } else {
7247 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7248 if (stats->nr_items > i)
7249 stats->values[i] = btrfs_dev_stat_read(dev, i);
7250 }
7251 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7252 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7253 return 0;
7254}
a8a6dab7 7255
da353f6b 7256void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7257{
7258 struct buffer_head *bh;
7259 struct btrfs_super_block *disk_super;
12b1c263 7260 int copy_num;
a8a6dab7 7261
12b1c263
AJ
7262 if (!bdev)
7263 return;
a8a6dab7 7264
12b1c263
AJ
7265 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7266 copy_num++) {
a8a6dab7 7267
12b1c263
AJ
7268 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7269 continue;
7270
7271 disk_super = (struct btrfs_super_block *)bh->b_data;
7272
7273 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7274 set_buffer_dirty(bh);
7275 sync_dirty_buffer(bh);
7276 brelse(bh);
7277 }
7278
7279 /* Notify udev that device has changed */
7280 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7281
7282 /* Update ctime/mtime for device path for libblkid */
7283 update_dev_time(device_path);
a8a6dab7 7284}
935e5cc9
MX
7285
7286/*
7287 * Update the size of all devices, which is used for writing out the
7288 * super blocks.
7289 */
7290void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7291{
7292 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7293 struct btrfs_device *curr, *next;
7294
7295 if (list_empty(&fs_devices->resized_devices))
7296 return;
7297
7298 mutex_lock(&fs_devices->device_list_mutex);
34441361 7299 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7300 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7301 resized_list) {
7302 list_del_init(&curr->resized_list);
7303 curr->commit_total_bytes = curr->disk_total_bytes;
7304 }
34441361 7305 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7306 mutex_unlock(&fs_devices->device_list_mutex);
7307}
ce7213c7
MX
7308
7309/* Must be invoked during the transaction commit */
2ff7e61e 7310void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7311 struct btrfs_transaction *transaction)
7312{
7313 struct extent_map *em;
7314 struct map_lookup *map;
7315 struct btrfs_device *dev;
7316 int i;
7317
7318 if (list_empty(&transaction->pending_chunks))
7319 return;
7320
7321 /* In order to kick the device replace finish process */
34441361 7322 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7323 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7324 map = em->map_lookup;
ce7213c7
MX
7325
7326 for (i = 0; i < map->num_stripes; i++) {
7327 dev = map->stripes[i].dev;
7328 dev->commit_bytes_used = dev->bytes_used;
8217e0f8 7329 dev->has_pending_chunks = false;
ce7213c7
MX
7330 }
7331 }
34441361 7332 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7333}
5a13f430
AJ
7334
7335void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7336{
7337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7338 while (fs_devices) {
7339 fs_devices->fs_info = fs_info;
7340 fs_devices = fs_devices->seed;
7341 }
7342}
7343
7344void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7345{
7346 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7347 while (fs_devices) {
7348 fs_devices->fs_info = NULL;
7349 fs_devices = fs_devices->seed;
7350 }
7351}