]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: report errors when checksum is not found
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
142static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
2b82032c 147
67a2c45e 148DEFINE_MUTEX(uuid_mutex);
8a4b83cc 149static LIST_HEAD(fs_uuids);
c73eccf7
AJ
150struct list_head *btrfs_get_fs_uuids(void)
151{
152 return &fs_uuids;
153}
8a4b83cc 154
2208a378
ID
155static struct btrfs_fs_devices *__alloc_fs_devices(void)
156{
157 struct btrfs_fs_devices *fs_devs;
158
78f2c9e6 159 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
160 if (!fs_devs)
161 return ERR_PTR(-ENOMEM);
162
163 mutex_init(&fs_devs->device_list_mutex);
164
165 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 166 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
167 INIT_LIST_HEAD(&fs_devs->alloc_list);
168 INIT_LIST_HEAD(&fs_devs->list);
169
170 return fs_devs;
171}
172
173/**
174 * alloc_fs_devices - allocate struct btrfs_fs_devices
175 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
176 * generated.
177 *
178 * Return: a pointer to a new &struct btrfs_fs_devices on success;
179 * ERR_PTR() on error. Returned struct is not linked onto any lists and
180 * can be destroyed with kfree() right away.
181 */
182static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
183{
184 struct btrfs_fs_devices *fs_devs;
185
186 fs_devs = __alloc_fs_devices();
187 if (IS_ERR(fs_devs))
188 return fs_devs;
189
190 if (fsid)
191 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
192 else
193 generate_random_uuid(fs_devs->fsid);
194
195 return fs_devs;
196}
197
e4404d6e
YZ
198static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
199{
200 struct btrfs_device *device;
201 WARN_ON(fs_devices->opened);
202 while (!list_empty(&fs_devices->devices)) {
203 device = list_entry(fs_devices->devices.next,
204 struct btrfs_device, dev_list);
205 list_del(&device->dev_list);
606686ee 206 rcu_string_free(device->name);
e4404d6e
YZ
207 kfree(device);
208 }
209 kfree(fs_devices);
210}
211
b8b8ff59
LC
212static void btrfs_kobject_uevent(struct block_device *bdev,
213 enum kobject_action action)
214{
215 int ret;
216
217 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
218 if (ret)
efe120a0 219 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
220 action,
221 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
222 &disk_to_dev(bdev->bd_disk)->kobj);
223}
224
143bede5 225void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
226{
227 struct btrfs_fs_devices *fs_devices;
8a4b83cc 228
2b82032c
YZ
229 while (!list_empty(&fs_uuids)) {
230 fs_devices = list_entry(fs_uuids.next,
231 struct btrfs_fs_devices, list);
232 list_del(&fs_devices->list);
e4404d6e 233 free_fs_devices(fs_devices);
8a4b83cc 234 }
8a4b83cc
CM
235}
236
12bd2fc0
ID
237static struct btrfs_device *__alloc_device(void)
238{
239 struct btrfs_device *dev;
240
78f2c9e6 241 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
242 if (!dev)
243 return ERR_PTR(-ENOMEM);
244
e0ae9994
DS
245 /*
246 * Preallocate a bio that's always going to be used for flushing device
247 * barriers and matches the device lifespan
248 */
249 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
250 if (!dev->flush_bio) {
251 kfree(dev);
252 return ERR_PTR(-ENOMEM);
253 }
254 bio_get(dev->flush_bio);
255
12bd2fc0
ID
256 INIT_LIST_HEAD(&dev->dev_list);
257 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 258 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
259
260 spin_lock_init(&dev->io_lock);
261
262 spin_lock_init(&dev->reada_lock);
263 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 264 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 265 btrfs_device_data_ordered_init(dev);
9bcaaea7 266 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 267 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
268
269 return dev;
270}
271
a1b32a59
CM
272static noinline struct btrfs_device *__find_device(struct list_head *head,
273 u64 devid, u8 *uuid)
8a4b83cc
CM
274{
275 struct btrfs_device *dev;
8a4b83cc 276
c6e30871 277 list_for_each_entry(dev, head, dev_list) {
a443755f 278 if (dev->devid == devid &&
8f18cf13 279 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 280 return dev;
a443755f 281 }
8a4b83cc
CM
282 }
283 return NULL;
284}
285
a1b32a59 286static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 287{
8a4b83cc
CM
288 struct btrfs_fs_devices *fs_devices;
289
c6e30871 290 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
291 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
292 return fs_devices;
293 }
294 return NULL;
295}
296
beaf8ab3
SB
297static int
298btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
299 int flush, struct block_device **bdev,
300 struct buffer_head **bh)
301{
302 int ret;
303
304 *bdev = blkdev_get_by_path(device_path, flags, holder);
305
306 if (IS_ERR(*bdev)) {
307 ret = PTR_ERR(*bdev);
beaf8ab3
SB
308 goto error;
309 }
310
311 if (flush)
312 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
313 ret = set_blocksize(*bdev, 4096);
314 if (ret) {
315 blkdev_put(*bdev, flags);
316 goto error;
317 }
318 invalidate_bdev(*bdev);
319 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
320 if (IS_ERR(*bh)) {
321 ret = PTR_ERR(*bh);
beaf8ab3
SB
322 blkdev_put(*bdev, flags);
323 goto error;
324 }
325
326 return 0;
327
328error:
329 *bdev = NULL;
330 *bh = NULL;
331 return ret;
332}
333
ffbd517d
CM
334static void requeue_list(struct btrfs_pending_bios *pending_bios,
335 struct bio *head, struct bio *tail)
336{
337
338 struct bio *old_head;
339
340 old_head = pending_bios->head;
341 pending_bios->head = head;
342 if (pending_bios->tail)
343 tail->bi_next = old_head;
344 else
345 pending_bios->tail = tail;
346}
347
8b712842
CM
348/*
349 * we try to collect pending bios for a device so we don't get a large
350 * number of procs sending bios down to the same device. This greatly
351 * improves the schedulers ability to collect and merge the bios.
352 *
353 * But, it also turns into a long list of bios to process and that is sure
354 * to eventually make the worker thread block. The solution here is to
355 * make some progress and then put this work struct back at the end of
356 * the list if the block device is congested. This way, multiple devices
357 * can make progress from a single worker thread.
358 */
143bede5 359static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 360{
0b246afa 361 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
362 struct bio *pending;
363 struct backing_dev_info *bdi;
ffbd517d 364 struct btrfs_pending_bios *pending_bios;
8b712842
CM
365 struct bio *tail;
366 struct bio *cur;
367 int again = 0;
ffbd517d 368 unsigned long num_run;
d644d8a1 369 unsigned long batch_run = 0;
b64a2851 370 unsigned long limit;
b765ead5 371 unsigned long last_waited = 0;
d84275c9 372 int force_reg = 0;
0e588859 373 int sync_pending = 0;
211588ad
CM
374 struct blk_plug plug;
375
376 /*
377 * this function runs all the bios we've collected for
378 * a particular device. We don't want to wander off to
379 * another device without first sending all of these down.
380 * So, setup a plug here and finish it off before we return
381 */
382 blk_start_plug(&plug);
8b712842 383
efa7c9f9 384 bdi = device->bdev->bd_bdi;
b64a2851
CM
385 limit = btrfs_async_submit_limit(fs_info);
386 limit = limit * 2 / 3;
387
8b712842
CM
388loop:
389 spin_lock(&device->io_lock);
390
a6837051 391loop_lock:
d84275c9 392 num_run = 0;
ffbd517d 393
8b712842
CM
394 /* take all the bios off the list at once and process them
395 * later on (without the lock held). But, remember the
396 * tail and other pointers so the bios can be properly reinserted
397 * into the list if we hit congestion
398 */
d84275c9 399 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 400 pending_bios = &device->pending_sync_bios;
d84275c9
CM
401 force_reg = 1;
402 } else {
ffbd517d 403 pending_bios = &device->pending_bios;
d84275c9
CM
404 force_reg = 0;
405 }
ffbd517d
CM
406
407 pending = pending_bios->head;
408 tail = pending_bios->tail;
8b712842 409 WARN_ON(pending && !tail);
8b712842
CM
410
411 /*
412 * if pending was null this time around, no bios need processing
413 * at all and we can stop. Otherwise it'll loop back up again
414 * and do an additional check so no bios are missed.
415 *
416 * device->running_pending is used to synchronize with the
417 * schedule_bio code.
418 */
ffbd517d
CM
419 if (device->pending_sync_bios.head == NULL &&
420 device->pending_bios.head == NULL) {
8b712842
CM
421 again = 0;
422 device->running_pending = 0;
ffbd517d
CM
423 } else {
424 again = 1;
425 device->running_pending = 1;
8b712842 426 }
ffbd517d
CM
427
428 pending_bios->head = NULL;
429 pending_bios->tail = NULL;
430
8b712842
CM
431 spin_unlock(&device->io_lock);
432
d397712b 433 while (pending) {
ffbd517d
CM
434
435 rmb();
d84275c9
CM
436 /* we want to work on both lists, but do more bios on the
437 * sync list than the regular list
438 */
439 if ((num_run > 32 &&
440 pending_bios != &device->pending_sync_bios &&
441 device->pending_sync_bios.head) ||
442 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
443 device->pending_bios.head)) {
ffbd517d
CM
444 spin_lock(&device->io_lock);
445 requeue_list(pending_bios, pending, tail);
446 goto loop_lock;
447 }
448
8b712842
CM
449 cur = pending;
450 pending = pending->bi_next;
451 cur->bi_next = NULL;
b64a2851 452
ee863954
DS
453 /*
454 * atomic_dec_return implies a barrier for waitqueue_active
455 */
66657b31 456 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
457 waitqueue_active(&fs_info->async_submit_wait))
458 wake_up(&fs_info->async_submit_wait);
492bb6de 459
dac56212 460 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 461
2ab1ba68
CM
462 /*
463 * if we're doing the sync list, record that our
464 * plug has some sync requests on it
465 *
466 * If we're doing the regular list and there are
467 * sync requests sitting around, unplug before
468 * we add more
469 */
470 if (pending_bios == &device->pending_sync_bios) {
471 sync_pending = 1;
472 } else if (sync_pending) {
473 blk_finish_plug(&plug);
474 blk_start_plug(&plug);
475 sync_pending = 0;
476 }
477
4e49ea4a 478 btrfsic_submit_bio(cur);
5ff7ba3a
CM
479 num_run++;
480 batch_run++;
853d8ec4
DS
481
482 cond_resched();
8b712842
CM
483
484 /*
485 * we made progress, there is more work to do and the bdi
486 * is now congested. Back off and let other work structs
487 * run instead
488 */
57fd5a5f 489 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 490 fs_info->fs_devices->open_devices > 1) {
b765ead5 491 struct io_context *ioc;
8b712842 492
b765ead5
CM
493 ioc = current->io_context;
494
495 /*
496 * the main goal here is that we don't want to
497 * block if we're going to be able to submit
498 * more requests without blocking.
499 *
500 * This code does two great things, it pokes into
501 * the elevator code from a filesystem _and_
502 * it makes assumptions about how batching works.
503 */
504 if (ioc && ioc->nr_batch_requests > 0 &&
505 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
506 (last_waited == 0 ||
507 ioc->last_waited == last_waited)) {
508 /*
509 * we want to go through our batch of
510 * requests and stop. So, we copy out
511 * the ioc->last_waited time and test
512 * against it before looping
513 */
514 last_waited = ioc->last_waited;
853d8ec4 515 cond_resched();
b765ead5
CM
516 continue;
517 }
8b712842 518 spin_lock(&device->io_lock);
ffbd517d 519 requeue_list(pending_bios, pending, tail);
a6837051 520 device->running_pending = 1;
8b712842
CM
521
522 spin_unlock(&device->io_lock);
a8c93d4e
QW
523 btrfs_queue_work(fs_info->submit_workers,
524 &device->work);
8b712842
CM
525 goto done;
526 }
d85c8a6f
CM
527 /* unplug every 64 requests just for good measure */
528 if (batch_run % 64 == 0) {
529 blk_finish_plug(&plug);
530 blk_start_plug(&plug);
531 sync_pending = 0;
532 }
8b712842 533 }
ffbd517d 534
51684082
CM
535 cond_resched();
536 if (again)
537 goto loop;
538
539 spin_lock(&device->io_lock);
540 if (device->pending_bios.head || device->pending_sync_bios.head)
541 goto loop_lock;
542 spin_unlock(&device->io_lock);
543
8b712842 544done:
211588ad 545 blk_finish_plug(&plug);
8b712842
CM
546}
547
b2950863 548static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
549{
550 struct btrfs_device *device;
551
552 device = container_of(work, struct btrfs_device, work);
553 run_scheduled_bios(device);
554}
555
4fde46f0
AJ
556
557void btrfs_free_stale_device(struct btrfs_device *cur_dev)
558{
559 struct btrfs_fs_devices *fs_devs;
560 struct btrfs_device *dev;
561
562 if (!cur_dev->name)
563 return;
564
565 list_for_each_entry(fs_devs, &fs_uuids, list) {
566 int del = 1;
567
568 if (fs_devs->opened)
569 continue;
570 if (fs_devs->seeding)
571 continue;
572
573 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
574
575 if (dev == cur_dev)
576 continue;
577 if (!dev->name)
578 continue;
579
580 /*
581 * Todo: This won't be enough. What if the same device
582 * comes back (with new uuid and) with its mapper path?
583 * But for now, this does help as mostly an admin will
584 * either use mapper or non mapper path throughout.
585 */
586 rcu_read_lock();
587 del = strcmp(rcu_str_deref(dev->name),
588 rcu_str_deref(cur_dev->name));
589 rcu_read_unlock();
590 if (!del)
591 break;
592 }
593
594 if (!del) {
595 /* delete the stale device */
596 if (fs_devs->num_devices == 1) {
597 btrfs_sysfs_remove_fsid(fs_devs);
598 list_del(&fs_devs->list);
599 free_fs_devices(fs_devs);
600 } else {
601 fs_devs->num_devices--;
602 list_del(&dev->dev_list);
603 rcu_string_free(dev->name);
604 kfree(dev);
605 }
606 break;
607 }
608 }
609}
610
60999ca4
DS
611/*
612 * Add new device to list of registered devices
613 *
614 * Returns:
615 * 1 - first time device is seen
616 * 0 - device already known
617 * < 0 - error
618 */
a1b32a59 619static noinline int device_list_add(const char *path,
8a4b83cc
CM
620 struct btrfs_super_block *disk_super,
621 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
622{
623 struct btrfs_device *device;
624 struct btrfs_fs_devices *fs_devices;
606686ee 625 struct rcu_string *name;
60999ca4 626 int ret = 0;
8a4b83cc
CM
627 u64 found_transid = btrfs_super_generation(disk_super);
628
629 fs_devices = find_fsid(disk_super->fsid);
630 if (!fs_devices) {
2208a378
ID
631 fs_devices = alloc_fs_devices(disk_super->fsid);
632 if (IS_ERR(fs_devices))
633 return PTR_ERR(fs_devices);
634
8a4b83cc 635 list_add(&fs_devices->list, &fs_uuids);
2208a378 636
8a4b83cc
CM
637 device = NULL;
638 } else {
a443755f
CM
639 device = __find_device(&fs_devices->devices, devid,
640 disk_super->dev_item.uuid);
8a4b83cc 641 }
443f24fe 642
8a4b83cc 643 if (!device) {
2b82032c
YZ
644 if (fs_devices->opened)
645 return -EBUSY;
646
12bd2fc0
ID
647 device = btrfs_alloc_device(NULL, &devid,
648 disk_super->dev_item.uuid);
649 if (IS_ERR(device)) {
8a4b83cc 650 /* we can safely leave the fs_devices entry around */
12bd2fc0 651 return PTR_ERR(device);
8a4b83cc 652 }
606686ee
JB
653
654 name = rcu_string_strdup(path, GFP_NOFS);
655 if (!name) {
8a4b83cc
CM
656 kfree(device);
657 return -ENOMEM;
658 }
606686ee 659 rcu_assign_pointer(device->name, name);
90519d66 660
e5e9a520 661 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 662 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 663 fs_devices->num_devices++;
e5e9a520
CM
664 mutex_unlock(&fs_devices->device_list_mutex);
665
60999ca4 666 ret = 1;
2b82032c 667 device->fs_devices = fs_devices;
606686ee 668 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
669 /*
670 * When FS is already mounted.
671 * 1. If you are here and if the device->name is NULL that
672 * means this device was missing at time of FS mount.
673 * 2. If you are here and if the device->name is different
674 * from 'path' that means either
675 * a. The same device disappeared and reappeared with
676 * different name. or
677 * b. The missing-disk-which-was-replaced, has
678 * reappeared now.
679 *
680 * We must allow 1 and 2a above. But 2b would be a spurious
681 * and unintentional.
682 *
683 * Further in case of 1 and 2a above, the disk at 'path'
684 * would have missed some transaction when it was away and
685 * in case of 2a the stale bdev has to be updated as well.
686 * 2b must not be allowed at all time.
687 */
688
689 /*
0f23ae74
CM
690 * For now, we do allow update to btrfs_fs_device through the
691 * btrfs dev scan cli after FS has been mounted. We're still
692 * tracking a problem where systems fail mount by subvolume id
693 * when we reject replacement on a mounted FS.
b96de000 694 */
0f23ae74 695 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
696 /*
697 * That is if the FS is _not_ mounted and if you
698 * are here, that means there is more than one
699 * disk with same uuid and devid.We keep the one
700 * with larger generation number or the last-in if
701 * generation are equal.
702 */
0f23ae74 703 return -EEXIST;
77bdae4d 704 }
b96de000 705
606686ee 706 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
707 if (!name)
708 return -ENOMEM;
606686ee
JB
709 rcu_string_free(device->name);
710 rcu_assign_pointer(device->name, name);
cd02dca5
CM
711 if (device->missing) {
712 fs_devices->missing_devices--;
713 device->missing = 0;
714 }
8a4b83cc
CM
715 }
716
77bdae4d
AJ
717 /*
718 * Unmount does not free the btrfs_device struct but would zero
719 * generation along with most of the other members. So just update
720 * it back. We need it to pick the disk with largest generation
721 * (as above).
722 */
723 if (!fs_devices->opened)
724 device->generation = found_transid;
725
4fde46f0
AJ
726 /*
727 * if there is new btrfs on an already registered device,
728 * then remove the stale device entry.
729 */
02feae3c
AJ
730 if (ret > 0)
731 btrfs_free_stale_device(device);
4fde46f0 732
8a4b83cc 733 *fs_devices_ret = fs_devices;
60999ca4
DS
734
735 return ret;
8a4b83cc
CM
736}
737
e4404d6e
YZ
738static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
739{
740 struct btrfs_fs_devices *fs_devices;
741 struct btrfs_device *device;
742 struct btrfs_device *orig_dev;
743
2208a378
ID
744 fs_devices = alloc_fs_devices(orig->fsid);
745 if (IS_ERR(fs_devices))
746 return fs_devices;
e4404d6e 747
adbbb863 748 mutex_lock(&orig->device_list_mutex);
02db0844 749 fs_devices->total_devices = orig->total_devices;
e4404d6e 750
46224705 751 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 752 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
753 struct rcu_string *name;
754
12bd2fc0
ID
755 device = btrfs_alloc_device(NULL, &orig_dev->devid,
756 orig_dev->uuid);
757 if (IS_ERR(device))
e4404d6e
YZ
758 goto error;
759
606686ee
JB
760 /*
761 * This is ok to do without rcu read locked because we hold the
762 * uuid mutex so nothing we touch in here is going to disappear.
763 */
e755f780 764 if (orig_dev->name) {
78f2c9e6
DS
765 name = rcu_string_strdup(orig_dev->name->str,
766 GFP_KERNEL);
e755f780
AJ
767 if (!name) {
768 kfree(device);
769 goto error;
770 }
771 rcu_assign_pointer(device->name, name);
fd2696f3 772 }
e4404d6e 773
e4404d6e
YZ
774 list_add(&device->dev_list, &fs_devices->devices);
775 device->fs_devices = fs_devices;
776 fs_devices->num_devices++;
777 }
adbbb863 778 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
779 return fs_devices;
780error:
adbbb863 781 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
782 free_fs_devices(fs_devices);
783 return ERR_PTR(-ENOMEM);
784}
785
9eaed21e 786void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 787{
c6e30871 788 struct btrfs_device *device, *next;
443f24fe 789 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 790
dfe25020
CM
791 mutex_lock(&uuid_mutex);
792again:
46224705 793 /* This is the initialized path, it is safe to release the devices. */
c6e30871 794 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 795 if (device->in_fs_metadata) {
63a212ab 796 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
797 (!latest_dev ||
798 device->generation > latest_dev->generation)) {
799 latest_dev = device;
a6b0d5c8 800 }
2b82032c 801 continue;
a6b0d5c8 802 }
2b82032c 803
8dabb742
SB
804 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
805 /*
806 * In the first step, keep the device which has
807 * the correct fsid and the devid that is used
808 * for the dev_replace procedure.
809 * In the second step, the dev_replace state is
810 * read from the device tree and it is known
811 * whether the procedure is really active or
812 * not, which means whether this device is
813 * used or whether it should be removed.
814 */
815 if (step == 0 || device->is_tgtdev_for_dev_replace) {
816 continue;
817 }
818 }
2b82032c 819 if (device->bdev) {
d4d77629 820 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
821 device->bdev = NULL;
822 fs_devices->open_devices--;
823 }
824 if (device->writeable) {
825 list_del_init(&device->dev_alloc_list);
826 device->writeable = 0;
8dabb742
SB
827 if (!device->is_tgtdev_for_dev_replace)
828 fs_devices->rw_devices--;
2b82032c 829 }
e4404d6e
YZ
830 list_del_init(&device->dev_list);
831 fs_devices->num_devices--;
606686ee 832 rcu_string_free(device->name);
e4404d6e 833 kfree(device);
dfe25020 834 }
2b82032c
YZ
835
836 if (fs_devices->seed) {
837 fs_devices = fs_devices->seed;
2b82032c
YZ
838 goto again;
839 }
840
443f24fe 841 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 842
dfe25020 843 mutex_unlock(&uuid_mutex);
dfe25020 844}
a0af469b 845
1f78160c
XG
846static void __free_device(struct work_struct *work)
847{
848 struct btrfs_device *device;
849
850 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 851 rcu_string_free(device->name);
e0ae9994 852 bio_put(device->flush_bio);
1f78160c
XG
853 kfree(device);
854}
855
856static void free_device(struct rcu_head *head)
857{
858 struct btrfs_device *device;
859
860 device = container_of(head, struct btrfs_device, rcu);
861
862 INIT_WORK(&device->rcu_work, __free_device);
863 schedule_work(&device->rcu_work);
864}
865
14238819
AJ
866static void btrfs_close_bdev(struct btrfs_device *device)
867{
868 if (device->bdev && device->writeable) {
869 sync_blockdev(device->bdev);
870 invalidate_bdev(device->bdev);
871 }
872
873 if (device->bdev)
874 blkdev_put(device->bdev, device->mode);
875}
876
0ccd0528 877static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
878{
879 struct btrfs_fs_devices *fs_devices = device->fs_devices;
880 struct btrfs_device *new_device;
881 struct rcu_string *name;
882
883 if (device->bdev)
884 fs_devices->open_devices--;
885
886 if (device->writeable &&
887 device->devid != BTRFS_DEV_REPLACE_DEVID) {
888 list_del_init(&device->dev_alloc_list);
889 fs_devices->rw_devices--;
890 }
891
892 if (device->missing)
893 fs_devices->missing_devices--;
894
895 new_device = btrfs_alloc_device(NULL, &device->devid,
896 device->uuid);
897 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
898
899 /* Safe because we are under uuid_mutex */
900 if (device->name) {
901 name = rcu_string_strdup(device->name->str, GFP_NOFS);
902 BUG_ON(!name); /* -ENOMEM */
903 rcu_assign_pointer(new_device->name, name);
904 }
905
906 list_replace_rcu(&device->dev_list, &new_device->dev_list);
907 new_device->fs_devices = device->fs_devices;
f448341a
AJ
908}
909
2b82032c 910static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 911{
2037a093 912 struct btrfs_device *device, *tmp;
0ccd0528
AJ
913 struct list_head pending_put;
914
915 INIT_LIST_HEAD(&pending_put);
e4404d6e 916
2b82032c
YZ
917 if (--fs_devices->opened > 0)
918 return 0;
8a4b83cc 919
c9513edb 920 mutex_lock(&fs_devices->device_list_mutex);
2037a093 921 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
922 btrfs_prepare_close_one_device(device);
923 list_add(&device->dev_list, &pending_put);
8a4b83cc 924 }
c9513edb
XG
925 mutex_unlock(&fs_devices->device_list_mutex);
926
0ccd0528
AJ
927 /*
928 * btrfs_show_devname() is using the device_list_mutex,
929 * sometimes call to blkdev_put() leads vfs calling
930 * into this func. So do put outside of device_list_mutex,
931 * as of now.
932 */
933 while (!list_empty(&pending_put)) {
934 device = list_first_entry(&pending_put,
935 struct btrfs_device, dev_list);
936 list_del(&device->dev_list);
937 btrfs_close_bdev(device);
938 call_rcu(&device->rcu, free_device);
939 }
940
e4404d6e
YZ
941 WARN_ON(fs_devices->open_devices);
942 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
943 fs_devices->opened = 0;
944 fs_devices->seeding = 0;
2b82032c 945
8a4b83cc
CM
946 return 0;
947}
948
2b82032c
YZ
949int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
950{
e4404d6e 951 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
952 int ret;
953
954 mutex_lock(&uuid_mutex);
955 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
956 if (!fs_devices->opened) {
957 seed_devices = fs_devices->seed;
958 fs_devices->seed = NULL;
959 }
2b82032c 960 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
961
962 while (seed_devices) {
963 fs_devices = seed_devices;
964 seed_devices = fs_devices->seed;
965 __btrfs_close_devices(fs_devices);
966 free_fs_devices(fs_devices);
967 }
bc178622
ES
968 /*
969 * Wait for rcu kworkers under __btrfs_close_devices
970 * to finish all blkdev_puts so device is really
971 * free when umount is done.
972 */
973 rcu_barrier();
2b82032c
YZ
974 return ret;
975}
976
e4404d6e
YZ
977static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
978 fmode_t flags, void *holder)
8a4b83cc 979{
d5e2003c 980 struct request_queue *q;
8a4b83cc
CM
981 struct block_device *bdev;
982 struct list_head *head = &fs_devices->devices;
8a4b83cc 983 struct btrfs_device *device;
443f24fe 984 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
985 struct buffer_head *bh;
986 struct btrfs_super_block *disk_super;
a0af469b 987 u64 devid;
2b82032c 988 int seeding = 1;
a0af469b 989 int ret = 0;
8a4b83cc 990
d4d77629
TH
991 flags |= FMODE_EXCL;
992
c6e30871 993 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
994 if (device->bdev)
995 continue;
dfe25020
CM
996 if (!device->name)
997 continue;
998
f63e0cca
ES
999 /* Just open everything we can; ignore failures here */
1000 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
1001 &bdev, &bh))
beaf8ab3 1002 continue;
a0af469b
CM
1003
1004 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1005 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
1006 if (devid != device->devid)
1007 goto error_brelse;
1008
2b82032c
YZ
1009 if (memcmp(device->uuid, disk_super->dev_item.uuid,
1010 BTRFS_UUID_SIZE))
1011 goto error_brelse;
1012
1013 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
1014 if (!latest_dev ||
1015 device->generation > latest_dev->generation)
1016 latest_dev = device;
a0af469b 1017
2b82032c
YZ
1018 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1019 device->writeable = 0;
1020 } else {
1021 device->writeable = !bdev_read_only(bdev);
1022 seeding = 0;
1023 }
1024
d5e2003c 1025 q = bdev_get_queue(bdev);
90180da4 1026 if (blk_queue_discard(q))
d5e2003c 1027 device->can_discard = 1;
e884f4f0
AJ
1028 if (!blk_queue_nonrot(q))
1029 fs_devices->rotating = 1;
d5e2003c 1030
8a4b83cc 1031 device->bdev = bdev;
dfe25020 1032 device->in_fs_metadata = 0;
15916de8
CM
1033 device->mode = flags;
1034
a0af469b 1035 fs_devices->open_devices++;
55e50e45
ID
1036 if (device->writeable &&
1037 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1038 fs_devices->rw_devices++;
1039 list_add(&device->dev_alloc_list,
1040 &fs_devices->alloc_list);
1041 }
4f6c9328 1042 brelse(bh);
a0af469b 1043 continue;
a061fc8d 1044
a0af469b
CM
1045error_brelse:
1046 brelse(bh);
d4d77629 1047 blkdev_put(bdev, flags);
a0af469b 1048 continue;
8a4b83cc 1049 }
a0af469b 1050 if (fs_devices->open_devices == 0) {
20bcd649 1051 ret = -EINVAL;
a0af469b
CM
1052 goto out;
1053 }
2b82032c
YZ
1054 fs_devices->seeding = seeding;
1055 fs_devices->opened = 1;
443f24fe 1056 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1057 fs_devices->total_rw_bytes = 0;
a0af469b 1058out:
2b82032c
YZ
1059 return ret;
1060}
1061
1062int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1063 fmode_t flags, void *holder)
2b82032c
YZ
1064{
1065 int ret;
1066
1067 mutex_lock(&uuid_mutex);
1068 if (fs_devices->opened) {
e4404d6e
YZ
1069 fs_devices->opened++;
1070 ret = 0;
2b82032c 1071 } else {
15916de8 1072 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1073 }
8a4b83cc 1074 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1075 return ret;
1076}
1077
6cf86a00
AJ
1078void btrfs_release_disk_super(struct page *page)
1079{
1080 kunmap(page);
1081 put_page(page);
1082}
1083
1084int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1085 struct page **page, struct btrfs_super_block **disk_super)
1086{
1087 void *p;
1088 pgoff_t index;
1089
1090 /* make sure our super fits in the device */
1091 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1092 return 1;
1093
1094 /* make sure our super fits in the page */
1095 if (sizeof(**disk_super) > PAGE_SIZE)
1096 return 1;
1097
1098 /* make sure our super doesn't straddle pages on disk */
1099 index = bytenr >> PAGE_SHIFT;
1100 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1101 return 1;
1102
1103 /* pull in the page with our super */
1104 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1105 index, GFP_KERNEL);
1106
1107 if (IS_ERR_OR_NULL(*page))
1108 return 1;
1109
1110 p = kmap(*page);
1111
1112 /* align our pointer to the offset of the super block */
1113 *disk_super = p + (bytenr & ~PAGE_MASK);
1114
1115 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1116 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1117 btrfs_release_disk_super(*page);
1118 return 1;
1119 }
1120
1121 if ((*disk_super)->label[0] &&
1122 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1123 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1124
1125 return 0;
1126}
1127
6f60cbd3
DS
1128/*
1129 * Look for a btrfs signature on a device. This may be called out of the mount path
1130 * and we are not allowed to call set_blocksize during the scan. The superblock
1131 * is read via pagecache
1132 */
97288f2c 1133int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1134 struct btrfs_fs_devices **fs_devices_ret)
1135{
1136 struct btrfs_super_block *disk_super;
1137 struct block_device *bdev;
6f60cbd3 1138 struct page *page;
6f60cbd3 1139 int ret = -EINVAL;
8a4b83cc 1140 u64 devid;
f2984462 1141 u64 transid;
02db0844 1142 u64 total_devices;
6f60cbd3 1143 u64 bytenr;
8a4b83cc 1144
6f60cbd3
DS
1145 /*
1146 * we would like to check all the supers, but that would make
1147 * a btrfs mount succeed after a mkfs from a different FS.
1148 * So, we need to add a special mount option to scan for
1149 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1150 */
1151 bytenr = btrfs_sb_offset(0);
d4d77629 1152 flags |= FMODE_EXCL;
10f6327b 1153 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1154
1155 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1156 if (IS_ERR(bdev)) {
1157 ret = PTR_ERR(bdev);
beaf8ab3 1158 goto error;
6f60cbd3
DS
1159 }
1160
6cf86a00 1161 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1162 goto error_bdev_put;
1163
a343832f 1164 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1165 transid = btrfs_super_generation(disk_super);
02db0844 1166 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1167
8a4b83cc 1168 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1169 if (ret > 0) {
1170 if (disk_super->label[0]) {
62e85577 1171 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1172 } else {
62e85577 1173 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1174 }
1175
62e85577 1176 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1177 ret = 0;
1178 }
02db0844
JB
1179 if (!ret && fs_devices_ret)
1180 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1181
6cf86a00 1182 btrfs_release_disk_super(page);
6f60cbd3
DS
1183
1184error_bdev_put:
d4d77629 1185 blkdev_put(bdev, flags);
8a4b83cc 1186error:
beaf8ab3 1187 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1188 return ret;
1189}
0b86a832 1190
6d07bcec
MX
1191/* helper to account the used device space in the range */
1192int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1193 u64 end, u64 *length)
1194{
1195 struct btrfs_key key;
fb456252 1196 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1197 struct btrfs_dev_extent *dev_extent;
1198 struct btrfs_path *path;
1199 u64 extent_end;
1200 int ret;
1201 int slot;
1202 struct extent_buffer *l;
1203
1204 *length = 0;
1205
63a212ab 1206 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1207 return 0;
1208
1209 path = btrfs_alloc_path();
1210 if (!path)
1211 return -ENOMEM;
e4058b54 1212 path->reada = READA_FORWARD;
6d07bcec
MX
1213
1214 key.objectid = device->devid;
1215 key.offset = start;
1216 key.type = BTRFS_DEV_EXTENT_KEY;
1217
1218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1219 if (ret < 0)
1220 goto out;
1221 if (ret > 0) {
1222 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1223 if (ret < 0)
1224 goto out;
1225 }
1226
1227 while (1) {
1228 l = path->nodes[0];
1229 slot = path->slots[0];
1230 if (slot >= btrfs_header_nritems(l)) {
1231 ret = btrfs_next_leaf(root, path);
1232 if (ret == 0)
1233 continue;
1234 if (ret < 0)
1235 goto out;
1236
1237 break;
1238 }
1239 btrfs_item_key_to_cpu(l, &key, slot);
1240
1241 if (key.objectid < device->devid)
1242 goto next;
1243
1244 if (key.objectid > device->devid)
1245 break;
1246
962a298f 1247 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1248 goto next;
1249
1250 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1251 extent_end = key.offset + btrfs_dev_extent_length(l,
1252 dev_extent);
1253 if (key.offset <= start && extent_end > end) {
1254 *length = end - start + 1;
1255 break;
1256 } else if (key.offset <= start && extent_end > start)
1257 *length += extent_end - start;
1258 else if (key.offset > start && extent_end <= end)
1259 *length += extent_end - key.offset;
1260 else if (key.offset > start && key.offset <= end) {
1261 *length += end - key.offset + 1;
1262 break;
1263 } else if (key.offset > end)
1264 break;
1265
1266next:
1267 path->slots[0]++;
1268 }
1269 ret = 0;
1270out:
1271 btrfs_free_path(path);
1272 return ret;
1273}
1274
499f377f 1275static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1276 struct btrfs_device *device,
1277 u64 *start, u64 len)
1278{
fb456252 1279 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1280 struct extent_map *em;
499f377f 1281 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1282 int ret = 0;
1b984508 1283 u64 physical_start = *start;
6df9a95e 1284
499f377f
JM
1285 if (transaction)
1286 search_list = &transaction->pending_chunks;
04216820
FM
1287again:
1288 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1289 struct map_lookup *map;
1290 int i;
1291
95617d69 1292 map = em->map_lookup;
6df9a95e 1293 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1294 u64 end;
1295
6df9a95e
JB
1296 if (map->stripes[i].dev != device)
1297 continue;
1b984508 1298 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1299 map->stripes[i].physical + em->orig_block_len <=
1b984508 1300 physical_start)
6df9a95e 1301 continue;
c152b63e
FM
1302 /*
1303 * Make sure that while processing the pinned list we do
1304 * not override our *start with a lower value, because
1305 * we can have pinned chunks that fall within this
1306 * device hole and that have lower physical addresses
1307 * than the pending chunks we processed before. If we
1308 * do not take this special care we can end up getting
1309 * 2 pending chunks that start at the same physical
1310 * device offsets because the end offset of a pinned
1311 * chunk can be equal to the start offset of some
1312 * pending chunk.
1313 */
1314 end = map->stripes[i].physical + em->orig_block_len;
1315 if (end > *start) {
1316 *start = end;
1317 ret = 1;
1318 }
6df9a95e
JB
1319 }
1320 }
499f377f
JM
1321 if (search_list != &fs_info->pinned_chunks) {
1322 search_list = &fs_info->pinned_chunks;
04216820
FM
1323 goto again;
1324 }
6df9a95e
JB
1325
1326 return ret;
1327}
1328
1329
0b86a832 1330/*
499f377f
JM
1331 * find_free_dev_extent_start - find free space in the specified device
1332 * @device: the device which we search the free space in
1333 * @num_bytes: the size of the free space that we need
1334 * @search_start: the position from which to begin the search
1335 * @start: store the start of the free space.
1336 * @len: the size of the free space. that we find, or the size
1337 * of the max free space if we don't find suitable free space
7bfc837d 1338 *
0b86a832
CM
1339 * this uses a pretty simple search, the expectation is that it is
1340 * called very infrequently and that a given device has a small number
1341 * of extents
7bfc837d
MX
1342 *
1343 * @start is used to store the start of the free space if we find. But if we
1344 * don't find suitable free space, it will be used to store the start position
1345 * of the max free space.
1346 *
1347 * @len is used to store the size of the free space that we find.
1348 * But if we don't find suitable free space, it is used to store the size of
1349 * the max free space.
0b86a832 1350 */
499f377f
JM
1351int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1352 struct btrfs_device *device, u64 num_bytes,
1353 u64 search_start, u64 *start, u64 *len)
0b86a832 1354{
0b246afa
JM
1355 struct btrfs_fs_info *fs_info = device->fs_info;
1356 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1357 struct btrfs_key key;
7bfc837d 1358 struct btrfs_dev_extent *dev_extent;
2b82032c 1359 struct btrfs_path *path;
7bfc837d
MX
1360 u64 hole_size;
1361 u64 max_hole_start;
1362 u64 max_hole_size;
1363 u64 extent_end;
0b86a832
CM
1364 u64 search_end = device->total_bytes;
1365 int ret;
7bfc837d 1366 int slot;
0b86a832 1367 struct extent_buffer *l;
8cdc7c5b
FM
1368
1369 /*
1370 * We don't want to overwrite the superblock on the drive nor any area
1371 * used by the boot loader (grub for example), so we make sure to start
1372 * at an offset of at least 1MB.
1373 */
0d0c71b3 1374 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1375
6df9a95e
JB
1376 path = btrfs_alloc_path();
1377 if (!path)
1378 return -ENOMEM;
f2ab7618 1379
7bfc837d
MX
1380 max_hole_start = search_start;
1381 max_hole_size = 0;
1382
f2ab7618 1383again:
63a212ab 1384 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1385 ret = -ENOSPC;
6df9a95e 1386 goto out;
7bfc837d
MX
1387 }
1388
e4058b54 1389 path->reada = READA_FORWARD;
6df9a95e
JB
1390 path->search_commit_root = 1;
1391 path->skip_locking = 1;
7bfc837d 1392
0b86a832
CM
1393 key.objectid = device->devid;
1394 key.offset = search_start;
1395 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1396
125ccb0a 1397 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1398 if (ret < 0)
7bfc837d 1399 goto out;
1fcbac58
YZ
1400 if (ret > 0) {
1401 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1402 if (ret < 0)
7bfc837d 1403 goto out;
1fcbac58 1404 }
7bfc837d 1405
0b86a832
CM
1406 while (1) {
1407 l = path->nodes[0];
1408 slot = path->slots[0];
1409 if (slot >= btrfs_header_nritems(l)) {
1410 ret = btrfs_next_leaf(root, path);
1411 if (ret == 0)
1412 continue;
1413 if (ret < 0)
7bfc837d
MX
1414 goto out;
1415
1416 break;
0b86a832
CM
1417 }
1418 btrfs_item_key_to_cpu(l, &key, slot);
1419
1420 if (key.objectid < device->devid)
1421 goto next;
1422
1423 if (key.objectid > device->devid)
7bfc837d 1424 break;
0b86a832 1425
962a298f 1426 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1427 goto next;
9779b72f 1428
7bfc837d
MX
1429 if (key.offset > search_start) {
1430 hole_size = key.offset - search_start;
9779b72f 1431
6df9a95e
JB
1432 /*
1433 * Have to check before we set max_hole_start, otherwise
1434 * we could end up sending back this offset anyway.
1435 */
499f377f 1436 if (contains_pending_extent(transaction, device,
6df9a95e 1437 &search_start,
1b984508
FL
1438 hole_size)) {
1439 if (key.offset >= search_start) {
1440 hole_size = key.offset - search_start;
1441 } else {
1442 WARN_ON_ONCE(1);
1443 hole_size = 0;
1444 }
1445 }
6df9a95e 1446
7bfc837d
MX
1447 if (hole_size > max_hole_size) {
1448 max_hole_start = search_start;
1449 max_hole_size = hole_size;
1450 }
9779b72f 1451
7bfc837d
MX
1452 /*
1453 * If this free space is greater than which we need,
1454 * it must be the max free space that we have found
1455 * until now, so max_hole_start must point to the start
1456 * of this free space and the length of this free space
1457 * is stored in max_hole_size. Thus, we return
1458 * max_hole_start and max_hole_size and go back to the
1459 * caller.
1460 */
1461 if (hole_size >= num_bytes) {
1462 ret = 0;
1463 goto out;
0b86a832
CM
1464 }
1465 }
0b86a832 1466
0b86a832 1467 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1468 extent_end = key.offset + btrfs_dev_extent_length(l,
1469 dev_extent);
1470 if (extent_end > search_start)
1471 search_start = extent_end;
0b86a832
CM
1472next:
1473 path->slots[0]++;
1474 cond_resched();
1475 }
0b86a832 1476
38c01b96 1477 /*
1478 * At this point, search_start should be the end of
1479 * allocated dev extents, and when shrinking the device,
1480 * search_end may be smaller than search_start.
1481 */
f2ab7618 1482 if (search_end > search_start) {
38c01b96 1483 hole_size = search_end - search_start;
1484
499f377f 1485 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1486 hole_size)) {
1487 btrfs_release_path(path);
1488 goto again;
1489 }
0b86a832 1490
f2ab7618
ZL
1491 if (hole_size > max_hole_size) {
1492 max_hole_start = search_start;
1493 max_hole_size = hole_size;
1494 }
6df9a95e
JB
1495 }
1496
7bfc837d 1497 /* See above. */
f2ab7618 1498 if (max_hole_size < num_bytes)
7bfc837d
MX
1499 ret = -ENOSPC;
1500 else
1501 ret = 0;
1502
1503out:
2b82032c 1504 btrfs_free_path(path);
7bfc837d 1505 *start = max_hole_start;
b2117a39 1506 if (len)
7bfc837d 1507 *len = max_hole_size;
0b86a832
CM
1508 return ret;
1509}
1510
499f377f
JM
1511int find_free_dev_extent(struct btrfs_trans_handle *trans,
1512 struct btrfs_device *device, u64 num_bytes,
1513 u64 *start, u64 *len)
1514{
499f377f 1515 /* FIXME use last free of some kind */
499f377f 1516 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1517 num_bytes, 0, start, len);
499f377f
JM
1518}
1519
b2950863 1520static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1521 struct btrfs_device *device,
2196d6e8 1522 u64 start, u64 *dev_extent_len)
8f18cf13 1523{
0b246afa
JM
1524 struct btrfs_fs_info *fs_info = device->fs_info;
1525 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1526 int ret;
1527 struct btrfs_path *path;
8f18cf13 1528 struct btrfs_key key;
a061fc8d
CM
1529 struct btrfs_key found_key;
1530 struct extent_buffer *leaf = NULL;
1531 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1532
1533 path = btrfs_alloc_path();
1534 if (!path)
1535 return -ENOMEM;
1536
1537 key.objectid = device->devid;
1538 key.offset = start;
1539 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1540again:
8f18cf13 1541 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1542 if (ret > 0) {
1543 ret = btrfs_previous_item(root, path, key.objectid,
1544 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1545 if (ret)
1546 goto out;
a061fc8d
CM
1547 leaf = path->nodes[0];
1548 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1549 extent = btrfs_item_ptr(leaf, path->slots[0],
1550 struct btrfs_dev_extent);
1551 BUG_ON(found_key.offset > start || found_key.offset +
1552 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1553 key = found_key;
1554 btrfs_release_path(path);
1555 goto again;
a061fc8d
CM
1556 } else if (ret == 0) {
1557 leaf = path->nodes[0];
1558 extent = btrfs_item_ptr(leaf, path->slots[0],
1559 struct btrfs_dev_extent);
79787eaa 1560 } else {
0b246afa 1561 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1562 goto out;
a061fc8d 1563 }
8f18cf13 1564
2196d6e8
MX
1565 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1566
8f18cf13 1567 ret = btrfs_del_item(trans, root, path);
79787eaa 1568 if (ret) {
0b246afa
JM
1569 btrfs_handle_fs_error(fs_info, ret,
1570 "Failed to remove dev extent item");
13212b54 1571 } else {
3204d33c 1572 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1573 }
b0b802d7 1574out:
8f18cf13
CM
1575 btrfs_free_path(path);
1576 return ret;
1577}
1578
48a3b636
ES
1579static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1580 struct btrfs_device *device,
1581 u64 chunk_tree, u64 chunk_objectid,
1582 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1583{
1584 int ret;
1585 struct btrfs_path *path;
0b246afa
JM
1586 struct btrfs_fs_info *fs_info = device->fs_info;
1587 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1588 struct btrfs_dev_extent *extent;
1589 struct extent_buffer *leaf;
1590 struct btrfs_key key;
1591
dfe25020 1592 WARN_ON(!device->in_fs_metadata);
63a212ab 1593 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1594 path = btrfs_alloc_path();
1595 if (!path)
1596 return -ENOMEM;
1597
0b86a832 1598 key.objectid = device->devid;
2b82032c 1599 key.offset = start;
0b86a832
CM
1600 key.type = BTRFS_DEV_EXTENT_KEY;
1601 ret = btrfs_insert_empty_item(trans, root, path, &key,
1602 sizeof(*extent));
2cdcecbc
MF
1603 if (ret)
1604 goto out;
0b86a832
CM
1605
1606 leaf = path->nodes[0];
1607 extent = btrfs_item_ptr(leaf, path->slots[0],
1608 struct btrfs_dev_extent);
e17cade2
CM
1609 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1610 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1611 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1612
0b246afa 1613 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
e17cade2 1614
0b86a832
CM
1615 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1616 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1617out:
0b86a832
CM
1618 btrfs_free_path(path);
1619 return ret;
1620}
1621
6df9a95e 1622static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1623{
6df9a95e
JB
1624 struct extent_map_tree *em_tree;
1625 struct extent_map *em;
1626 struct rb_node *n;
1627 u64 ret = 0;
0b86a832 1628
6df9a95e
JB
1629 em_tree = &fs_info->mapping_tree.map_tree;
1630 read_lock(&em_tree->lock);
1631 n = rb_last(&em_tree->map);
1632 if (n) {
1633 em = rb_entry(n, struct extent_map, rb_node);
1634 ret = em->start + em->len;
0b86a832 1635 }
6df9a95e
JB
1636 read_unlock(&em_tree->lock);
1637
0b86a832
CM
1638 return ret;
1639}
1640
53f10659
ID
1641static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1642 u64 *devid_ret)
0b86a832
CM
1643{
1644 int ret;
1645 struct btrfs_key key;
1646 struct btrfs_key found_key;
2b82032c
YZ
1647 struct btrfs_path *path;
1648
2b82032c
YZ
1649 path = btrfs_alloc_path();
1650 if (!path)
1651 return -ENOMEM;
0b86a832
CM
1652
1653 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1654 key.type = BTRFS_DEV_ITEM_KEY;
1655 key.offset = (u64)-1;
1656
53f10659 1657 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1658 if (ret < 0)
1659 goto error;
1660
79787eaa 1661 BUG_ON(ret == 0); /* Corruption */
0b86a832 1662
53f10659
ID
1663 ret = btrfs_previous_item(fs_info->chunk_root, path,
1664 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1665 BTRFS_DEV_ITEM_KEY);
1666 if (ret) {
53f10659 1667 *devid_ret = 1;
0b86a832
CM
1668 } else {
1669 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1670 path->slots[0]);
53f10659 1671 *devid_ret = found_key.offset + 1;
0b86a832
CM
1672 }
1673 ret = 0;
1674error:
2b82032c 1675 btrfs_free_path(path);
0b86a832
CM
1676 return ret;
1677}
1678
1679/*
1680 * the device information is stored in the chunk root
1681 * the btrfs_device struct should be fully filled in
1682 */
48a3b636 1683static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1684 struct btrfs_fs_info *fs_info,
48a3b636 1685 struct btrfs_device *device)
0b86a832 1686{
5b4aacef 1687 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1688 int ret;
1689 struct btrfs_path *path;
1690 struct btrfs_dev_item *dev_item;
1691 struct extent_buffer *leaf;
1692 struct btrfs_key key;
1693 unsigned long ptr;
0b86a832 1694
0b86a832
CM
1695 path = btrfs_alloc_path();
1696 if (!path)
1697 return -ENOMEM;
1698
0b86a832
CM
1699 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1700 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1701 key.offset = device->devid;
0b86a832
CM
1702
1703 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1704 sizeof(*dev_item));
0b86a832
CM
1705 if (ret)
1706 goto out;
1707
1708 leaf = path->nodes[0];
1709 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1710
1711 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1712 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1713 btrfs_set_device_type(leaf, dev_item, device->type);
1714 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1715 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1716 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1717 btrfs_set_device_total_bytes(leaf, dev_item,
1718 btrfs_device_get_disk_total_bytes(device));
1719 btrfs_set_device_bytes_used(leaf, dev_item,
1720 btrfs_device_get_bytes_used(device));
e17cade2
CM
1721 btrfs_set_device_group(leaf, dev_item, 0);
1722 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1723 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1724 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1725
410ba3a2 1726 ptr = btrfs_device_uuid(dev_item);
e17cade2 1727 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1728 ptr = btrfs_device_fsid(dev_item);
0b246afa 1729 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1730 btrfs_mark_buffer_dirty(leaf);
0b86a832 1731
2b82032c 1732 ret = 0;
0b86a832
CM
1733out:
1734 btrfs_free_path(path);
1735 return ret;
1736}
8f18cf13 1737
5a1972bd
QW
1738/*
1739 * Function to update ctime/mtime for a given device path.
1740 * Mainly used for ctime/mtime based probe like libblkid.
1741 */
da353f6b 1742static void update_dev_time(const char *path_name)
5a1972bd
QW
1743{
1744 struct file *filp;
1745
1746 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1747 if (IS_ERR(filp))
5a1972bd
QW
1748 return;
1749 file_update_time(filp);
1750 filp_close(filp, NULL);
5a1972bd
QW
1751}
1752
5b4aacef 1753static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1754 struct btrfs_device *device)
1755{
5b4aacef 1756 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1757 int ret;
1758 struct btrfs_path *path;
a061fc8d 1759 struct btrfs_key key;
a061fc8d
CM
1760 struct btrfs_trans_handle *trans;
1761
a061fc8d
CM
1762 path = btrfs_alloc_path();
1763 if (!path)
1764 return -ENOMEM;
1765
a22285a6 1766 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1767 if (IS_ERR(trans)) {
1768 btrfs_free_path(path);
1769 return PTR_ERR(trans);
1770 }
a061fc8d
CM
1771 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1772 key.type = BTRFS_DEV_ITEM_KEY;
1773 key.offset = device->devid;
1774
1775 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1776 if (ret < 0)
1777 goto out;
1778
1779 if (ret > 0) {
1780 ret = -ENOENT;
1781 goto out;
1782 }
1783
1784 ret = btrfs_del_item(trans, root, path);
1785 if (ret)
1786 goto out;
a061fc8d
CM
1787out:
1788 btrfs_free_path(path);
3a45bb20 1789 btrfs_commit_transaction(trans);
a061fc8d
CM
1790 return ret;
1791}
1792
3cc31a0d
DS
1793/*
1794 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1795 * filesystem. It's up to the caller to adjust that number regarding eg. device
1796 * replace.
1797 */
1798static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1799 u64 num_devices)
a061fc8d 1800{
a061fc8d 1801 u64 all_avail;
de98ced9 1802 unsigned seq;
418775a2 1803 int i;
a061fc8d 1804
de98ced9 1805 do {
bd45ffbc 1806 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1807
bd45ffbc
AJ
1808 all_avail = fs_info->avail_data_alloc_bits |
1809 fs_info->avail_system_alloc_bits |
1810 fs_info->avail_metadata_alloc_bits;
1811 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1812
418775a2
DS
1813 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1814 if (!(all_avail & btrfs_raid_group[i]))
1815 continue;
a061fc8d 1816
418775a2
DS
1817 if (num_devices < btrfs_raid_array[i].devs_min) {
1818 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1819
418775a2
DS
1820 if (ret)
1821 return ret;
1822 }
53b381b3
DW
1823 }
1824
bd45ffbc 1825 return 0;
f1fa7f26
AJ
1826}
1827
88acff64
AJ
1828struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1829 struct btrfs_device *device)
a061fc8d 1830{
2b82032c 1831 struct btrfs_device *next_device;
88acff64
AJ
1832
1833 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1834 if (next_device != device &&
1835 !next_device->missing && next_device->bdev)
1836 return next_device;
1837 }
1838
1839 return NULL;
1840}
1841
1842/*
1843 * Helper function to check if the given device is part of s_bdev / latest_bdev
1844 * and replace it with the provided or the next active device, in the context
1845 * where this function called, there should be always be another device (or
1846 * this_dev) which is active.
1847 */
1848void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1849 struct btrfs_device *device, struct btrfs_device *this_dev)
1850{
1851 struct btrfs_device *next_device;
1852
1853 if (this_dev)
1854 next_device = this_dev;
1855 else
1856 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1857 device);
1858 ASSERT(next_device);
1859
1860 if (fs_info->sb->s_bdev &&
1861 (fs_info->sb->s_bdev == device->bdev))
1862 fs_info->sb->s_bdev = next_device->bdev;
1863
1864 if (fs_info->fs_devices->latest_bdev == device->bdev)
1865 fs_info->fs_devices->latest_bdev = next_device->bdev;
1866}
1867
da353f6b
DS
1868int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1869 u64 devid)
f1fa7f26
AJ
1870{
1871 struct btrfs_device *device;
1f78160c 1872 struct btrfs_fs_devices *cur_devices;
2b82032c 1873 u64 num_devices;
a061fc8d 1874 int ret = 0;
1f78160c 1875 bool clear_super = false;
a061fc8d 1876
a061fc8d
CM
1877 mutex_lock(&uuid_mutex);
1878
0b246afa
JM
1879 num_devices = fs_info->fs_devices->num_devices;
1880 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1881 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1882 WARN_ON(num_devices < 1);
1883 num_devices--;
1884 }
0b246afa 1885 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1886
0b246afa 1887 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1888 if (ret)
a061fc8d 1889 goto out;
a061fc8d 1890
2ff7e61e
JM
1891 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1892 &device);
24fc572f 1893 if (ret)
53b381b3 1894 goto out;
dfe25020 1895
63a212ab 1896 if (device->is_tgtdev_for_dev_replace) {
183860f6 1897 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1898 goto out;
63a212ab
SB
1899 }
1900
0b246afa 1901 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1902 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1903 goto out;
2b82032c
YZ
1904 }
1905
1906 if (device->writeable) {
34441361 1907 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1908 list_del_init(&device->dev_alloc_list);
c3929c36 1909 device->fs_devices->rw_devices--;
34441361 1910 mutex_unlock(&fs_info->chunk_mutex);
1f78160c 1911 clear_super = true;
dfe25020 1912 }
a061fc8d 1913
d7901554 1914 mutex_unlock(&uuid_mutex);
a061fc8d 1915 ret = btrfs_shrink_device(device, 0);
d7901554 1916 mutex_lock(&uuid_mutex);
a061fc8d 1917 if (ret)
9b3517e9 1918 goto error_undo;
a061fc8d 1919
63a212ab
SB
1920 /*
1921 * TODO: the superblock still includes this device in its num_devices
1922 * counter although write_all_supers() is not locked out. This
1923 * could give a filesystem state which requires a degraded mount.
1924 */
0b246afa 1925 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1926 if (ret)
9b3517e9 1927 goto error_undo;
a061fc8d 1928
2b82032c 1929 device->in_fs_metadata = 0;
0b246afa 1930 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1931
1932 /*
1933 * the device list mutex makes sure that we don't change
1934 * the device list while someone else is writing out all
d7306801
FDBM
1935 * the device supers. Whoever is writing all supers, should
1936 * lock the device list mutex before getting the number of
1937 * devices in the super block (super_copy). Conversely,
1938 * whoever updates the number of devices in the super block
1939 * (super_copy) should hold the device list mutex.
e5e9a520 1940 */
1f78160c
XG
1941
1942 cur_devices = device->fs_devices;
0b246afa 1943 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1944 list_del_rcu(&device->dev_list);
e5e9a520 1945
e4404d6e 1946 device->fs_devices->num_devices--;
02db0844 1947 device->fs_devices->total_devices--;
2b82032c 1948
cd02dca5 1949 if (device->missing)
3a7d55c8 1950 device->fs_devices->missing_devices--;
cd02dca5 1951
0b246afa 1952 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1953
0bfaa9c5 1954 if (device->bdev) {
e4404d6e 1955 device->fs_devices->open_devices--;
0bfaa9c5 1956 /* remove sysfs entry */
0b246afa 1957 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1958 }
99994cde 1959
0b246afa
JM
1960 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1961 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1962 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1963
cea67ab9
JM
1964 /*
1965 * at this point, the device is zero sized and detached from
1966 * the devices list. All that's left is to zero out the old
1967 * supers and free the device.
1968 */
1969 if (device->writeable)
1970 btrfs_scratch_superblocks(device->bdev, device->name->str);
1971
1972 btrfs_close_bdev(device);
1973 call_rcu(&device->rcu, free_device);
1974
1f78160c 1975 if (cur_devices->open_devices == 0) {
e4404d6e 1976 struct btrfs_fs_devices *fs_devices;
0b246afa 1977 fs_devices = fs_info->fs_devices;
e4404d6e 1978 while (fs_devices) {
8321cf25
RS
1979 if (fs_devices->seed == cur_devices) {
1980 fs_devices->seed = cur_devices->seed;
e4404d6e 1981 break;
8321cf25 1982 }
e4404d6e 1983 fs_devices = fs_devices->seed;
2b82032c 1984 }
1f78160c 1985 cur_devices->seed = NULL;
1f78160c 1986 __btrfs_close_devices(cur_devices);
1f78160c 1987 free_fs_devices(cur_devices);
2b82032c
YZ
1988 }
1989
0b246afa
JM
1990 fs_info->num_tolerated_disk_barrier_failures =
1991 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
5af3e8cc 1992
a061fc8d
CM
1993out:
1994 mutex_unlock(&uuid_mutex);
a061fc8d 1995 return ret;
24fc572f 1996
9b3517e9
ID
1997error_undo:
1998 if (device->writeable) {
34441361 1999 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2000 list_add(&device->dev_alloc_list,
0b246afa 2001 &fs_info->fs_devices->alloc_list);
c3929c36 2002 device->fs_devices->rw_devices++;
34441361 2003 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2004 }
24fc572f 2005 goto out;
a061fc8d
CM
2006}
2007
084b6e7c
QW
2008void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2009 struct btrfs_device *srcdev)
e93c89c1 2010{
d51908ce
AJ
2011 struct btrfs_fs_devices *fs_devices;
2012
e93c89c1 2013 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 2014
25e8e911
AJ
2015 /*
2016 * in case of fs with no seed, srcdev->fs_devices will point
2017 * to fs_devices of fs_info. However when the dev being replaced is
2018 * a seed dev it will point to the seed's local fs_devices. In short
2019 * srcdev will have its correct fs_devices in both the cases.
2020 */
2021 fs_devices = srcdev->fs_devices;
d51908ce 2022
e93c89c1
SB
2023 list_del_rcu(&srcdev->dev_list);
2024 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 2025 fs_devices->num_devices--;
82372bc8 2026 if (srcdev->missing)
d51908ce 2027 fs_devices->missing_devices--;
e93c89c1 2028
48b3b9d4 2029 if (srcdev->writeable)
82372bc8 2030 fs_devices->rw_devices--;
1357272f 2031
82372bc8 2032 if (srcdev->bdev)
d51908ce 2033 fs_devices->open_devices--;
084b6e7c
QW
2034}
2035
2036void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2037 struct btrfs_device *srcdev)
2038{
2039 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2040
48b3b9d4
AJ
2041 if (srcdev->writeable) {
2042 /* zero out the old super if it is writable */
2043 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2044 }
14238819
AJ
2045
2046 btrfs_close_bdev(srcdev);
2047
e93c89c1 2048 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2049
2050 /*
2051 * unless fs_devices is seed fs, num_devices shouldn't go
2052 * zero
2053 */
2054 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2055
2056 /* if this is no devs we rather delete the fs_devices */
2057 if (!fs_devices->num_devices) {
2058 struct btrfs_fs_devices *tmp_fs_devices;
2059
2060 tmp_fs_devices = fs_info->fs_devices;
2061 while (tmp_fs_devices) {
2062 if (tmp_fs_devices->seed == fs_devices) {
2063 tmp_fs_devices->seed = fs_devices->seed;
2064 break;
2065 }
2066 tmp_fs_devices = tmp_fs_devices->seed;
2067 }
2068 fs_devices->seed = NULL;
8bef8401
AJ
2069 __btrfs_close_devices(fs_devices);
2070 free_fs_devices(fs_devices);
94d5f0c2 2071 }
e93c89c1
SB
2072}
2073
2074void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2075 struct btrfs_device *tgtdev)
2076{
67a2c45e 2077 mutex_lock(&uuid_mutex);
e93c89c1
SB
2078 WARN_ON(!tgtdev);
2079 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2080
32576040 2081 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2082
779bf3fe 2083 if (tgtdev->bdev)
e93c89c1 2084 fs_info->fs_devices->open_devices--;
779bf3fe 2085
e93c89c1 2086 fs_info->fs_devices->num_devices--;
e93c89c1 2087
88acff64 2088 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2089
e93c89c1 2090 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2091
2092 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2093 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2094
2095 /*
2096 * The update_dev_time() with in btrfs_scratch_superblocks()
2097 * may lead to a call to btrfs_show_devname() which will try
2098 * to hold device_list_mutex. And here this device
2099 * is already out of device list, so we don't have to hold
2100 * the device_list_mutex lock.
2101 */
2102 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2103
2104 btrfs_close_bdev(tgtdev);
779bf3fe 2105 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2106}
2107
2ff7e61e 2108static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2109 const char *device_path,
48a3b636 2110 struct btrfs_device **device)
7ba15b7d
SB
2111{
2112 int ret = 0;
2113 struct btrfs_super_block *disk_super;
2114 u64 devid;
2115 u8 *dev_uuid;
2116 struct block_device *bdev;
2117 struct buffer_head *bh;
2118
2119 *device = NULL;
2120 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2121 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2122 if (ret)
2123 return ret;
2124 disk_super = (struct btrfs_super_block *)bh->b_data;
2125 devid = btrfs_stack_device_id(&disk_super->dev_item);
2126 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2127 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2128 brelse(bh);
2129 if (!*device)
2130 ret = -ENOENT;
2131 blkdev_put(bdev, FMODE_READ);
2132 return ret;
2133}
2134
2ff7e61e 2135int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2136 const char *device_path,
7ba15b7d
SB
2137 struct btrfs_device **device)
2138{
2139 *device = NULL;
2140 if (strcmp(device_path, "missing") == 0) {
2141 struct list_head *devices;
2142 struct btrfs_device *tmp;
2143
0b246afa 2144 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2145 /*
2146 * It is safe to read the devices since the volume_mutex
2147 * is held by the caller.
2148 */
2149 list_for_each_entry(tmp, devices, dev_list) {
2150 if (tmp->in_fs_metadata && !tmp->bdev) {
2151 *device = tmp;
2152 break;
2153 }
2154 }
2155
d74a6259
AJ
2156 if (!*device)
2157 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2158
2159 return 0;
2160 } else {
2ff7e61e 2161 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2162 }
2163}
2164
5c5c0df0
DS
2165/*
2166 * Lookup a device given by device id, or the path if the id is 0.
2167 */
2ff7e61e 2168int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2169 const char *devpath,
2170 struct btrfs_device **device)
24e0474b
AJ
2171{
2172 int ret;
2173
5c5c0df0 2174 if (devid) {
24e0474b 2175 ret = 0;
0b246afa 2176 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2177 if (!*device)
2178 ret = -ENOENT;
2179 } else {
5c5c0df0 2180 if (!devpath || !devpath[0])
b3d1b153
AJ
2181 return -EINVAL;
2182
2ff7e61e 2183 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2184 device);
2185 }
2186 return ret;
2187}
2188
2b82032c
YZ
2189/*
2190 * does all the dirty work required for changing file system's UUID.
2191 */
2ff7e61e 2192static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2193{
0b246afa 2194 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2195 struct btrfs_fs_devices *old_devices;
e4404d6e 2196 struct btrfs_fs_devices *seed_devices;
0b246afa 2197 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2198 struct btrfs_device *device;
2199 u64 super_flags;
2200
2201 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2202 if (!fs_devices->seeding)
2b82032c
YZ
2203 return -EINVAL;
2204
2208a378
ID
2205 seed_devices = __alloc_fs_devices();
2206 if (IS_ERR(seed_devices))
2207 return PTR_ERR(seed_devices);
2b82032c 2208
e4404d6e
YZ
2209 old_devices = clone_fs_devices(fs_devices);
2210 if (IS_ERR(old_devices)) {
2211 kfree(seed_devices);
2212 return PTR_ERR(old_devices);
2b82032c 2213 }
e4404d6e 2214
2b82032c
YZ
2215 list_add(&old_devices->list, &fs_uuids);
2216
e4404d6e
YZ
2217 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2218 seed_devices->opened = 1;
2219 INIT_LIST_HEAD(&seed_devices->devices);
2220 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2221 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2222
0b246afa 2223 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2224 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2225 synchronize_rcu);
2196d6e8
MX
2226 list_for_each_entry(device, &seed_devices->devices, dev_list)
2227 device->fs_devices = seed_devices;
c9513edb 2228
34441361 2229 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2230 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2231 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2232
2b82032c
YZ
2233 fs_devices->seeding = 0;
2234 fs_devices->num_devices = 0;
2235 fs_devices->open_devices = 0;
69611ac8 2236 fs_devices->missing_devices = 0;
69611ac8 2237 fs_devices->rotating = 0;
e4404d6e 2238 fs_devices->seed = seed_devices;
2b82032c
YZ
2239
2240 generate_random_uuid(fs_devices->fsid);
0b246afa 2241 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2242 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2243 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2244
2b82032c
YZ
2245 super_flags = btrfs_super_flags(disk_super) &
2246 ~BTRFS_SUPER_FLAG_SEEDING;
2247 btrfs_set_super_flags(disk_super, super_flags);
2248
2249 return 0;
2250}
2251
2252/*
01327610 2253 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2254 */
2255static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2256 struct btrfs_fs_info *fs_info)
2b82032c 2257{
5b4aacef 2258 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2259 struct btrfs_path *path;
2260 struct extent_buffer *leaf;
2261 struct btrfs_dev_item *dev_item;
2262 struct btrfs_device *device;
2263 struct btrfs_key key;
2264 u8 fs_uuid[BTRFS_UUID_SIZE];
2265 u8 dev_uuid[BTRFS_UUID_SIZE];
2266 u64 devid;
2267 int ret;
2268
2269 path = btrfs_alloc_path();
2270 if (!path)
2271 return -ENOMEM;
2272
2b82032c
YZ
2273 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2274 key.offset = 0;
2275 key.type = BTRFS_DEV_ITEM_KEY;
2276
2277 while (1) {
2278 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2279 if (ret < 0)
2280 goto error;
2281
2282 leaf = path->nodes[0];
2283next_slot:
2284 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2285 ret = btrfs_next_leaf(root, path);
2286 if (ret > 0)
2287 break;
2288 if (ret < 0)
2289 goto error;
2290 leaf = path->nodes[0];
2291 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2292 btrfs_release_path(path);
2b82032c
YZ
2293 continue;
2294 }
2295
2296 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2297 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2298 key.type != BTRFS_DEV_ITEM_KEY)
2299 break;
2300
2301 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2302 struct btrfs_dev_item);
2303 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2304 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2305 BTRFS_UUID_SIZE);
1473b24e 2306 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2307 BTRFS_UUID_SIZE);
0b246afa 2308 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2309 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2310
2311 if (device->fs_devices->seeding) {
2312 btrfs_set_device_generation(leaf, dev_item,
2313 device->generation);
2314 btrfs_mark_buffer_dirty(leaf);
2315 }
2316
2317 path->slots[0]++;
2318 goto next_slot;
2319 }
2320 ret = 0;
2321error:
2322 btrfs_free_path(path);
2323 return ret;
2324}
2325
da353f6b 2326int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2327{
5112febb 2328 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2329 struct request_queue *q;
788f20eb
CM
2330 struct btrfs_trans_handle *trans;
2331 struct btrfs_device *device;
2332 struct block_device *bdev;
788f20eb 2333 struct list_head *devices;
0b246afa 2334 struct super_block *sb = fs_info->sb;
606686ee 2335 struct rcu_string *name;
3c1dbdf5 2336 u64 tmp;
2b82032c 2337 int seeding_dev = 0;
788f20eb
CM
2338 int ret = 0;
2339
0b246afa 2340 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
f8c5d0b4 2341 return -EROFS;
788f20eb 2342
a5d16333 2343 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2344 fs_info->bdev_holder);
7f59203a
JB
2345 if (IS_ERR(bdev))
2346 return PTR_ERR(bdev);
a2135011 2347
0b246afa 2348 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2349 seeding_dev = 1;
2350 down_write(&sb->s_umount);
2351 mutex_lock(&uuid_mutex);
2352 }
2353
8c8bee1d 2354 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2355
0b246afa 2356 devices = &fs_info->fs_devices->devices;
d25628bd 2357
0b246afa 2358 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2359 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2360 if (device->bdev == bdev) {
2361 ret = -EEXIST;
d25628bd 2362 mutex_unlock(
0b246afa 2363 &fs_info->fs_devices->device_list_mutex);
2b82032c 2364 goto error;
788f20eb
CM
2365 }
2366 }
0b246afa 2367 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2368
0b246afa 2369 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2370 if (IS_ERR(device)) {
788f20eb 2371 /* we can safely leave the fs_devices entry around */
12bd2fc0 2372 ret = PTR_ERR(device);
2b82032c 2373 goto error;
788f20eb
CM
2374 }
2375
78f2c9e6 2376 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2377 if (!name) {
788f20eb 2378 kfree(device);
2b82032c
YZ
2379 ret = -ENOMEM;
2380 goto error;
788f20eb 2381 }
606686ee 2382 rcu_assign_pointer(device->name, name);
2b82032c 2383
a22285a6 2384 trans = btrfs_start_transaction(root, 0);
98d5dc13 2385 if (IS_ERR(trans)) {
606686ee 2386 rcu_string_free(device->name);
98d5dc13
TI
2387 kfree(device);
2388 ret = PTR_ERR(trans);
2389 goto error;
2390 }
2391
d5e2003c
JB
2392 q = bdev_get_queue(bdev);
2393 if (blk_queue_discard(q))
2394 device->can_discard = 1;
2b82032c 2395 device->writeable = 1;
2b82032c 2396 device->generation = trans->transid;
0b246afa
JM
2397 device->io_width = fs_info->sectorsize;
2398 device->io_align = fs_info->sectorsize;
2399 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2400 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2401 fs_info->sectorsize);
2cc3c559 2402 device->disk_total_bytes = device->total_bytes;
935e5cc9 2403 device->commit_total_bytes = device->total_bytes;
fb456252 2404 device->fs_info = fs_info;
788f20eb 2405 device->bdev = bdev;
dfe25020 2406 device->in_fs_metadata = 1;
63a212ab 2407 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2408 device->mode = FMODE_EXCL;
27087f37 2409 device->dev_stats_valid = 1;
2b82032c 2410 set_blocksize(device->bdev, 4096);
788f20eb 2411
2b82032c
YZ
2412 if (seeding_dev) {
2413 sb->s_flags &= ~MS_RDONLY;
2ff7e61e 2414 ret = btrfs_prepare_sprout(fs_info);
79787eaa 2415 BUG_ON(ret); /* -ENOMEM */
2b82032c 2416 }
788f20eb 2417
0b246afa 2418 device->fs_devices = fs_info->fs_devices;
e5e9a520 2419
0b246afa 2420 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2421 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2422 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2423 list_add(&device->dev_alloc_list,
0b246afa
JM
2424 &fs_info->fs_devices->alloc_list);
2425 fs_info->fs_devices->num_devices++;
2426 fs_info->fs_devices->open_devices++;
2427 fs_info->fs_devices->rw_devices++;
2428 fs_info->fs_devices->total_devices++;
2429 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2430
a5ed45f8 2431 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2432
e884f4f0 2433 if (!blk_queue_nonrot(q))
0b246afa 2434 fs_info->fs_devices->rotating = 1;
c289811c 2435
0b246afa
JM
2436 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2437 btrfs_set_super_total_bytes(fs_info->super_copy,
7dfb8be1 2438 round_down(tmp + device->total_bytes, fs_info->sectorsize));
788f20eb 2439
0b246afa
JM
2440 tmp = btrfs_super_num_devices(fs_info->super_copy);
2441 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2442
2443 /* add sysfs device entry */
0b246afa 2444 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2445
2196d6e8
MX
2446 /*
2447 * we've got more storage, clear any full flags on the space
2448 * infos
2449 */
0b246afa 2450 btrfs_clear_space_info_full(fs_info);
2196d6e8 2451
34441361 2452 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2453 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2454
2b82032c 2455 if (seeding_dev) {
34441361 2456 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2457 ret = init_first_rw_device(trans, fs_info);
34441361 2458 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2459 if (ret) {
66642832 2460 btrfs_abort_transaction(trans, ret);
79787eaa 2461 goto error_trans;
005d6427 2462 }
2196d6e8
MX
2463 }
2464
0b246afa 2465 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2466 if (ret) {
66642832 2467 btrfs_abort_transaction(trans, ret);
2196d6e8
MX
2468 goto error_trans;
2469 }
2470
2471 if (seeding_dev) {
2472 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2473
0b246afa 2474 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2475 if (ret) {
66642832 2476 btrfs_abort_transaction(trans, ret);
79787eaa 2477 goto error_trans;
005d6427 2478 }
b2373f25
AJ
2479
2480 /* Sprouting would change fsid of the mounted root,
2481 * so rename the fsid on the sysfs
2482 */
2483 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2484 fs_info->fsid);
2485 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2486 btrfs_warn(fs_info,
2487 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2488 }
2489
0b246afa
JM
2490 fs_info->num_tolerated_disk_barrier_failures =
2491 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3a45bb20 2492 ret = btrfs_commit_transaction(trans);
a2135011 2493
2b82032c
YZ
2494 if (seeding_dev) {
2495 mutex_unlock(&uuid_mutex);
2496 up_write(&sb->s_umount);
788f20eb 2497
79787eaa
JM
2498 if (ret) /* transaction commit */
2499 return ret;
2500
2ff7e61e 2501 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2502 if (ret < 0)
0b246afa 2503 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2504 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2505 trans = btrfs_attach_transaction(root);
2506 if (IS_ERR(trans)) {
2507 if (PTR_ERR(trans) == -ENOENT)
2508 return 0;
2509 return PTR_ERR(trans);
2510 }
3a45bb20 2511 ret = btrfs_commit_transaction(trans);
2b82032c 2512 }
c9e9f97b 2513
5a1972bd
QW
2514 /* Update ctime/mtime for libblkid */
2515 update_dev_time(device_path);
2b82032c 2516 return ret;
79787eaa
JM
2517
2518error_trans:
3a45bb20 2519 btrfs_end_transaction(trans);
606686ee 2520 rcu_string_free(device->name);
0b246afa 2521 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2522 kfree(device);
2b82032c 2523error:
e525fd89 2524 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2525 if (seeding_dev) {
2526 mutex_unlock(&uuid_mutex);
2527 up_write(&sb->s_umount);
2528 }
c9e9f97b 2529 return ret;
788f20eb
CM
2530}
2531
2ff7e61e 2532int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2533 const char *device_path,
1c43366d 2534 struct btrfs_device *srcdev,
e93c89c1
SB
2535 struct btrfs_device **device_out)
2536{
2537 struct request_queue *q;
2538 struct btrfs_device *device;
2539 struct block_device *bdev;
e93c89c1
SB
2540 struct list_head *devices;
2541 struct rcu_string *name;
12bd2fc0 2542 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2543 int ret = 0;
2544
2545 *device_out = NULL;
1c43366d
MX
2546 if (fs_info->fs_devices->seeding) {
2547 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2548 return -EINVAL;
1c43366d 2549 }
e93c89c1
SB
2550
2551 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2552 fs_info->bdev_holder);
1c43366d
MX
2553 if (IS_ERR(bdev)) {
2554 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2555 return PTR_ERR(bdev);
1c43366d 2556 }
e93c89c1
SB
2557
2558 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2559
2560 devices = &fs_info->fs_devices->devices;
2561 list_for_each_entry(device, devices, dev_list) {
2562 if (device->bdev == bdev) {
5d163e0e
JM
2563 btrfs_err(fs_info,
2564 "target device is in the filesystem!");
e93c89c1
SB
2565 ret = -EEXIST;
2566 goto error;
2567 }
2568 }
2569
1c43366d 2570
7cc8e58d
MX
2571 if (i_size_read(bdev->bd_inode) <
2572 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2573 btrfs_err(fs_info,
2574 "target device is smaller than source device!");
1c43366d
MX
2575 ret = -EINVAL;
2576 goto error;
2577 }
2578
2579
12bd2fc0
ID
2580 device = btrfs_alloc_device(NULL, &devid, NULL);
2581 if (IS_ERR(device)) {
2582 ret = PTR_ERR(device);
e93c89c1
SB
2583 goto error;
2584 }
2585
6165572c 2586 name = rcu_string_strdup(device_path, GFP_KERNEL);
e93c89c1
SB
2587 if (!name) {
2588 kfree(device);
2589 ret = -ENOMEM;
2590 goto error;
2591 }
2592 rcu_assign_pointer(device->name, name);
2593
2594 q = bdev_get_queue(bdev);
2595 if (blk_queue_discard(q))
2596 device->can_discard = 1;
0b246afa 2597 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2598 device->writeable = 1;
e93c89c1 2599 device->generation = 0;
0b246afa
JM
2600 device->io_width = fs_info->sectorsize;
2601 device->io_align = fs_info->sectorsize;
2602 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2603 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2604 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2605 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2606 ASSERT(list_empty(&srcdev->resized_list));
2607 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2608 device->commit_bytes_used = device->bytes_used;
fb456252 2609 device->fs_info = fs_info;
e93c89c1
SB
2610 device->bdev = bdev;
2611 device->in_fs_metadata = 1;
2612 device->is_tgtdev_for_dev_replace = 1;
2613 device->mode = FMODE_EXCL;
27087f37 2614 device->dev_stats_valid = 1;
e93c89c1
SB
2615 set_blocksize(device->bdev, 4096);
2616 device->fs_devices = fs_info->fs_devices;
2617 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2618 fs_info->fs_devices->num_devices++;
2619 fs_info->fs_devices->open_devices++;
0b246afa 2620 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2621
2622 *device_out = device;
2623 return ret;
2624
2625error:
2626 blkdev_put(bdev, FMODE_EXCL);
2627 return ret;
2628}
2629
2630void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2631 struct btrfs_device *tgtdev)
2632{
da17066c
JM
2633 u32 sectorsize = fs_info->sectorsize;
2634
e93c89c1 2635 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2636 tgtdev->io_width = sectorsize;
2637 tgtdev->io_align = sectorsize;
2638 tgtdev->sector_size = sectorsize;
fb456252 2639 tgtdev->fs_info = fs_info;
e93c89c1
SB
2640 tgtdev->in_fs_metadata = 1;
2641}
2642
d397712b
CM
2643static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2644 struct btrfs_device *device)
0b86a832
CM
2645{
2646 int ret;
2647 struct btrfs_path *path;
0b246afa 2648 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2649 struct btrfs_dev_item *dev_item;
2650 struct extent_buffer *leaf;
2651 struct btrfs_key key;
2652
0b86a832
CM
2653 path = btrfs_alloc_path();
2654 if (!path)
2655 return -ENOMEM;
2656
2657 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2658 key.type = BTRFS_DEV_ITEM_KEY;
2659 key.offset = device->devid;
2660
2661 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2662 if (ret < 0)
2663 goto out;
2664
2665 if (ret > 0) {
2666 ret = -ENOENT;
2667 goto out;
2668 }
2669
2670 leaf = path->nodes[0];
2671 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2672
2673 btrfs_set_device_id(leaf, dev_item, device->devid);
2674 btrfs_set_device_type(leaf, dev_item, device->type);
2675 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2676 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2677 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2678 btrfs_set_device_total_bytes(leaf, dev_item,
2679 btrfs_device_get_disk_total_bytes(device));
2680 btrfs_set_device_bytes_used(leaf, dev_item,
2681 btrfs_device_get_bytes_used(device));
0b86a832
CM
2682 btrfs_mark_buffer_dirty(leaf);
2683
2684out:
2685 btrfs_free_path(path);
2686 return ret;
2687}
2688
2196d6e8 2689int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2690 struct btrfs_device *device, u64 new_size)
2691{
0b246afa
JM
2692 struct btrfs_fs_info *fs_info = device->fs_info;
2693 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2694 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2695 u64 old_total;
2696 u64 diff;
8f18cf13 2697
2b82032c
YZ
2698 if (!device->writeable)
2699 return -EACCES;
2196d6e8 2700
7dfb8be1
NB
2701 new_size = round_down(new_size, fs_info->sectorsize);
2702
34441361 2703 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2704 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2705 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2706
63a212ab 2707 if (new_size <= device->total_bytes ||
2196d6e8 2708 device->is_tgtdev_for_dev_replace) {
34441361 2709 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2710 return -EINVAL;
2196d6e8 2711 }
2b82032c 2712
0b246afa 2713 fs_devices = fs_info->fs_devices;
2b82032c 2714
7dfb8be1
NB
2715 btrfs_set_super_total_bytes(super_copy,
2716 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2717 device->fs_devices->total_rw_bytes += diff;
2718
7cc8e58d
MX
2719 btrfs_device_set_total_bytes(device, new_size);
2720 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2721 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2722 if (list_empty(&device->resized_list))
2723 list_add_tail(&device->resized_list,
2724 &fs_devices->resized_devices);
34441361 2725 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2726
8f18cf13
CM
2727 return btrfs_update_device(trans, device);
2728}
2729
2730static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2731 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
8f18cf13
CM
2732 u64 chunk_offset)
2733{
5b4aacef 2734 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2735 int ret;
2736 struct btrfs_path *path;
2737 struct btrfs_key key;
2738
8f18cf13
CM
2739 path = btrfs_alloc_path();
2740 if (!path)
2741 return -ENOMEM;
2742
2743 key.objectid = chunk_objectid;
2744 key.offset = chunk_offset;
2745 key.type = BTRFS_CHUNK_ITEM_KEY;
2746
2747 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2748 if (ret < 0)
2749 goto out;
2750 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2751 btrfs_handle_fs_error(fs_info, -ENOENT,
2752 "Failed lookup while freeing chunk.");
79787eaa
JM
2753 ret = -ENOENT;
2754 goto out;
2755 }
8f18cf13
CM
2756
2757 ret = btrfs_del_item(trans, root, path);
79787eaa 2758 if (ret < 0)
0b246afa
JM
2759 btrfs_handle_fs_error(fs_info, ret,
2760 "Failed to delete chunk item.");
79787eaa 2761out:
8f18cf13 2762 btrfs_free_path(path);
65a246c5 2763 return ret;
8f18cf13
CM
2764}
2765
6bccf3ab
JM
2766static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2767 u64 chunk_objectid, u64 chunk_offset)
8f18cf13 2768{
0b246afa 2769 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2770 struct btrfs_disk_key *disk_key;
2771 struct btrfs_chunk *chunk;
2772 u8 *ptr;
2773 int ret = 0;
2774 u32 num_stripes;
2775 u32 array_size;
2776 u32 len = 0;
2777 u32 cur;
2778 struct btrfs_key key;
2779
34441361 2780 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2781 array_size = btrfs_super_sys_array_size(super_copy);
2782
2783 ptr = super_copy->sys_chunk_array;
2784 cur = 0;
2785
2786 while (cur < array_size) {
2787 disk_key = (struct btrfs_disk_key *)ptr;
2788 btrfs_disk_key_to_cpu(&key, disk_key);
2789
2790 len = sizeof(*disk_key);
2791
2792 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2793 chunk = (struct btrfs_chunk *)(ptr + len);
2794 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2795 len += btrfs_chunk_item_size(num_stripes);
2796 } else {
2797 ret = -EIO;
2798 break;
2799 }
2800 if (key.objectid == chunk_objectid &&
2801 key.offset == chunk_offset) {
2802 memmove(ptr, ptr + len, array_size - (cur + len));
2803 array_size -= len;
2804 btrfs_set_super_sys_array_size(super_copy, array_size);
2805 } else {
2806 ptr += len;
2807 cur += len;
2808 }
2809 }
34441361 2810 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2811 return ret;
2812}
2813
592d92ee
LB
2814static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2815 u64 logical, u64 length)
2816{
2817 struct extent_map_tree *em_tree;
2818 struct extent_map *em;
2819
2820 em_tree = &fs_info->mapping_tree.map_tree;
2821 read_lock(&em_tree->lock);
2822 em = lookup_extent_mapping(em_tree, logical, length);
2823 read_unlock(&em_tree->lock);
2824
2825 if (!em) {
2826 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2827 logical, length);
2828 return ERR_PTR(-EINVAL);
2829 }
2830
2831 if (em->start > logical || em->start + em->len < logical) {
2832 btrfs_crit(fs_info,
2833 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2834 logical, length, em->start, em->start + em->len);
2835 free_extent_map(em);
2836 return ERR_PTR(-EINVAL);
2837 }
2838
2839 /* callers are responsible for dropping em's ref. */
2840 return em;
2841}
2842
47ab2a6c 2843int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2844 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2845{
8f18cf13
CM
2846 struct extent_map *em;
2847 struct map_lookup *map;
2196d6e8 2848 u64 dev_extent_len = 0;
47ab2a6c 2849 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2850 int i, ret = 0;
0b246afa 2851 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2852
592d92ee
LB
2853 em = get_chunk_map(fs_info, chunk_offset, 1);
2854 if (IS_ERR(em)) {
47ab2a6c
JB
2855 /*
2856 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2857 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2858 * do anything we still error out.
2859 */
2860 ASSERT(0);
592d92ee 2861 return PTR_ERR(em);
47ab2a6c 2862 }
95617d69 2863 map = em->map_lookup;
34441361 2864 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2865 check_system_chunk(trans, fs_info, map->type);
34441361 2866 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2867
57ba4cb8
FM
2868 /*
2869 * Take the device list mutex to prevent races with the final phase of
2870 * a device replace operation that replaces the device object associated
2871 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2872 */
2873 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2874 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2875 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2876 ret = btrfs_free_dev_extent(trans, device,
2877 map->stripes[i].physical,
2878 &dev_extent_len);
47ab2a6c 2879 if (ret) {
57ba4cb8 2880 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2881 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2882 goto out;
2883 }
a061fc8d 2884
2196d6e8 2885 if (device->bytes_used > 0) {
34441361 2886 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2887 btrfs_device_set_bytes_used(device,
2888 device->bytes_used - dev_extent_len);
a5ed45f8 2889 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2890 btrfs_clear_space_info_full(fs_info);
34441361 2891 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2892 }
a061fc8d 2893
dfe25020
CM
2894 if (map->stripes[i].dev) {
2895 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2896 if (ret) {
57ba4cb8 2897 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2898 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2899 goto out;
2900 }
dfe25020 2901 }
8f18cf13 2902 }
57ba4cb8
FM
2903 mutex_unlock(&fs_devices->device_list_mutex);
2904
0b246afa 2905 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
47ab2a6c 2906 if (ret) {
66642832 2907 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2908 goto out;
2909 }
8f18cf13 2910
6bccf3ab 2911 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2912
8f18cf13 2913 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
6bccf3ab
JM
2914 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2915 chunk_offset);
47ab2a6c 2916 if (ret) {
66642832 2917 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2918 goto out;
2919 }
8f18cf13
CM
2920 }
2921
6bccf3ab 2922 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2923 if (ret) {
66642832 2924 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2925 goto out;
2926 }
2b82032c 2927
47ab2a6c 2928out:
2b82032c
YZ
2929 /* once for us */
2930 free_extent_map(em);
47ab2a6c
JB
2931 return ret;
2932}
2b82032c 2933
5b4aacef 2934static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2935{
5b4aacef 2936 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2937 struct btrfs_trans_handle *trans;
47ab2a6c 2938 int ret;
2b82032c 2939
67c5e7d4
FM
2940 /*
2941 * Prevent races with automatic removal of unused block groups.
2942 * After we relocate and before we remove the chunk with offset
2943 * chunk_offset, automatic removal of the block group can kick in,
2944 * resulting in a failure when calling btrfs_remove_chunk() below.
2945 *
2946 * Make sure to acquire this mutex before doing a tree search (dev
2947 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2948 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2949 * we release the path used to search the chunk/dev tree and before
2950 * the current task acquires this mutex and calls us.
2951 */
0b246afa 2952 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2953
0b246afa 2954 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2955 if (ret)
2956 return -ENOSPC;
2957
2958 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2959 btrfs_scrub_pause(fs_info);
0b246afa 2960 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2961 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2962 if (ret)
2963 return ret;
2964
19c4d2f9
CM
2965 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2966 chunk_offset);
2967 if (IS_ERR(trans)) {
2968 ret = PTR_ERR(trans);
2969 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2970 return ret;
2971 }
2972
47ab2a6c 2973 /*
19c4d2f9
CM
2974 * step two, delete the device extents and the
2975 * chunk tree entries
47ab2a6c 2976 */
5b4aacef 2977 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2978 btrfs_end_transaction(trans);
19c4d2f9 2979 return ret;
2b82032c
YZ
2980}
2981
2ff7e61e 2982static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2983{
0b246afa 2984 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2985 struct btrfs_path *path;
2986 struct extent_buffer *leaf;
2987 struct btrfs_chunk *chunk;
2988 struct btrfs_key key;
2989 struct btrfs_key found_key;
2b82032c 2990 u64 chunk_type;
ba1bf481
JB
2991 bool retried = false;
2992 int failed = 0;
2b82032c
YZ
2993 int ret;
2994
2995 path = btrfs_alloc_path();
2996 if (!path)
2997 return -ENOMEM;
2998
ba1bf481 2999again:
2b82032c
YZ
3000 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3001 key.offset = (u64)-1;
3002 key.type = BTRFS_CHUNK_ITEM_KEY;
3003
3004 while (1) {
0b246afa 3005 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3006 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3007 if (ret < 0) {
0b246afa 3008 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3009 goto error;
67c5e7d4 3010 }
79787eaa 3011 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3012
3013 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3014 key.type);
67c5e7d4 3015 if (ret)
0b246afa 3016 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
3017 if (ret < 0)
3018 goto error;
3019 if (ret > 0)
3020 break;
1a40e23b 3021
2b82032c
YZ
3022 leaf = path->nodes[0];
3023 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3024
2b82032c
YZ
3025 chunk = btrfs_item_ptr(leaf, path->slots[0],
3026 struct btrfs_chunk);
3027 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3028 btrfs_release_path(path);
8f18cf13 3029
2b82032c 3030 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3031 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3032 if (ret == -ENOSPC)
3033 failed++;
14586651
HS
3034 else
3035 BUG_ON(ret);
2b82032c 3036 }
0b246afa 3037 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3038
2b82032c
YZ
3039 if (found_key.offset == 0)
3040 break;
3041 key.offset = found_key.offset - 1;
3042 }
3043 ret = 0;
ba1bf481
JB
3044 if (failed && !retried) {
3045 failed = 0;
3046 retried = true;
3047 goto again;
fae7f21c 3048 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3049 ret = -ENOSPC;
3050 }
2b82032c
YZ
3051error:
3052 btrfs_free_path(path);
3053 return ret;
8f18cf13
CM
3054}
3055
6bccf3ab 3056static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3057 struct btrfs_balance_control *bctl)
3058{
6bccf3ab 3059 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3060 struct btrfs_trans_handle *trans;
3061 struct btrfs_balance_item *item;
3062 struct btrfs_disk_balance_args disk_bargs;
3063 struct btrfs_path *path;
3064 struct extent_buffer *leaf;
3065 struct btrfs_key key;
3066 int ret, err;
3067
3068 path = btrfs_alloc_path();
3069 if (!path)
3070 return -ENOMEM;
3071
3072 trans = btrfs_start_transaction(root, 0);
3073 if (IS_ERR(trans)) {
3074 btrfs_free_path(path);
3075 return PTR_ERR(trans);
3076 }
3077
3078 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3079 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3080 key.offset = 0;
3081
3082 ret = btrfs_insert_empty_item(trans, root, path, &key,
3083 sizeof(*item));
3084 if (ret)
3085 goto out;
3086
3087 leaf = path->nodes[0];
3088 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3089
b159fa28 3090 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3091
3092 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3093 btrfs_set_balance_data(leaf, item, &disk_bargs);
3094 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3095 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3096 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3097 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3098
3099 btrfs_set_balance_flags(leaf, item, bctl->flags);
3100
3101 btrfs_mark_buffer_dirty(leaf);
3102out:
3103 btrfs_free_path(path);
3a45bb20 3104 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3105 if (err && !ret)
3106 ret = err;
3107 return ret;
3108}
3109
6bccf3ab 3110static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3111{
6bccf3ab 3112 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3113 struct btrfs_trans_handle *trans;
3114 struct btrfs_path *path;
3115 struct btrfs_key key;
3116 int ret, err;
3117
3118 path = btrfs_alloc_path();
3119 if (!path)
3120 return -ENOMEM;
3121
3122 trans = btrfs_start_transaction(root, 0);
3123 if (IS_ERR(trans)) {
3124 btrfs_free_path(path);
3125 return PTR_ERR(trans);
3126 }
3127
3128 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3129 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3130 key.offset = 0;
3131
3132 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3133 if (ret < 0)
3134 goto out;
3135 if (ret > 0) {
3136 ret = -ENOENT;
3137 goto out;
3138 }
3139
3140 ret = btrfs_del_item(trans, root, path);
3141out:
3142 btrfs_free_path(path);
3a45bb20 3143 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3144 if (err && !ret)
3145 ret = err;
3146 return ret;
3147}
3148
59641015
ID
3149/*
3150 * This is a heuristic used to reduce the number of chunks balanced on
3151 * resume after balance was interrupted.
3152 */
3153static void update_balance_args(struct btrfs_balance_control *bctl)
3154{
3155 /*
3156 * Turn on soft mode for chunk types that were being converted.
3157 */
3158 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3159 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3160 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3161 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3162 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3163 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3164
3165 /*
3166 * Turn on usage filter if is not already used. The idea is
3167 * that chunks that we have already balanced should be
3168 * reasonably full. Don't do it for chunks that are being
3169 * converted - that will keep us from relocating unconverted
3170 * (albeit full) chunks.
3171 */
3172 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3173 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3174 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3175 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3176 bctl->data.usage = 90;
3177 }
3178 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3179 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3180 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3181 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3182 bctl->sys.usage = 90;
3183 }
3184 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3185 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3186 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3187 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3188 bctl->meta.usage = 90;
3189 }
3190}
3191
c9e9f97b
ID
3192/*
3193 * Should be called with both balance and volume mutexes held to
3194 * serialize other volume operations (add_dev/rm_dev/resize) with
3195 * restriper. Same goes for unset_balance_control.
3196 */
3197static void set_balance_control(struct btrfs_balance_control *bctl)
3198{
3199 struct btrfs_fs_info *fs_info = bctl->fs_info;
3200
3201 BUG_ON(fs_info->balance_ctl);
3202
3203 spin_lock(&fs_info->balance_lock);
3204 fs_info->balance_ctl = bctl;
3205 spin_unlock(&fs_info->balance_lock);
3206}
3207
3208static void unset_balance_control(struct btrfs_fs_info *fs_info)
3209{
3210 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3211
3212 BUG_ON(!fs_info->balance_ctl);
3213
3214 spin_lock(&fs_info->balance_lock);
3215 fs_info->balance_ctl = NULL;
3216 spin_unlock(&fs_info->balance_lock);
3217
3218 kfree(bctl);
3219}
3220
ed25e9b2
ID
3221/*
3222 * Balance filters. Return 1 if chunk should be filtered out
3223 * (should not be balanced).
3224 */
899c81ea 3225static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3226 struct btrfs_balance_args *bargs)
3227{
899c81ea
ID
3228 chunk_type = chunk_to_extended(chunk_type) &
3229 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3230
899c81ea 3231 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3232 return 0;
3233
3234 return 1;
3235}
3236
dba72cb3 3237static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3238 struct btrfs_balance_args *bargs)
bc309467
DS
3239{
3240 struct btrfs_block_group_cache *cache;
3241 u64 chunk_used;
3242 u64 user_thresh_min;
3243 u64 user_thresh_max;
3244 int ret = 1;
3245
3246 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3247 chunk_used = btrfs_block_group_used(&cache->item);
3248
3249 if (bargs->usage_min == 0)
3250 user_thresh_min = 0;
3251 else
3252 user_thresh_min = div_factor_fine(cache->key.offset,
3253 bargs->usage_min);
3254
3255 if (bargs->usage_max == 0)
3256 user_thresh_max = 1;
3257 else if (bargs->usage_max > 100)
3258 user_thresh_max = cache->key.offset;
3259 else
3260 user_thresh_max = div_factor_fine(cache->key.offset,
3261 bargs->usage_max);
3262
3263 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3264 ret = 0;
3265
3266 btrfs_put_block_group(cache);
3267 return ret;
3268}
3269
dba72cb3 3270static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3271 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3272{
3273 struct btrfs_block_group_cache *cache;
3274 u64 chunk_used, user_thresh;
3275 int ret = 1;
3276
3277 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3278 chunk_used = btrfs_block_group_used(&cache->item);
3279
bc309467 3280 if (bargs->usage_min == 0)
3e39cea6 3281 user_thresh = 1;
a105bb88
ID
3282 else if (bargs->usage > 100)
3283 user_thresh = cache->key.offset;
3284 else
3285 user_thresh = div_factor_fine(cache->key.offset,
3286 bargs->usage);
3287
5ce5b3c0
ID
3288 if (chunk_used < user_thresh)
3289 ret = 0;
3290
3291 btrfs_put_block_group(cache);
3292 return ret;
3293}
3294
409d404b
ID
3295static int chunk_devid_filter(struct extent_buffer *leaf,
3296 struct btrfs_chunk *chunk,
3297 struct btrfs_balance_args *bargs)
3298{
3299 struct btrfs_stripe *stripe;
3300 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3301 int i;
3302
3303 for (i = 0; i < num_stripes; i++) {
3304 stripe = btrfs_stripe_nr(chunk, i);
3305 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3306 return 0;
3307 }
3308
3309 return 1;
3310}
3311
94e60d5a
ID
3312/* [pstart, pend) */
3313static int chunk_drange_filter(struct extent_buffer *leaf,
3314 struct btrfs_chunk *chunk,
3315 u64 chunk_offset,
3316 struct btrfs_balance_args *bargs)
3317{
3318 struct btrfs_stripe *stripe;
3319 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3320 u64 stripe_offset;
3321 u64 stripe_length;
3322 int factor;
3323 int i;
3324
3325 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3326 return 0;
3327
3328 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3329 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3330 factor = num_stripes / 2;
3331 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3332 factor = num_stripes - 1;
3333 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3334 factor = num_stripes - 2;
3335 } else {
3336 factor = num_stripes;
3337 }
94e60d5a
ID
3338
3339 for (i = 0; i < num_stripes; i++) {
3340 stripe = btrfs_stripe_nr(chunk, i);
3341 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3342 continue;
3343
3344 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3345 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3346 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3347
3348 if (stripe_offset < bargs->pend &&
3349 stripe_offset + stripe_length > bargs->pstart)
3350 return 0;
3351 }
3352
3353 return 1;
3354}
3355
ea67176a
ID
3356/* [vstart, vend) */
3357static int chunk_vrange_filter(struct extent_buffer *leaf,
3358 struct btrfs_chunk *chunk,
3359 u64 chunk_offset,
3360 struct btrfs_balance_args *bargs)
3361{
3362 if (chunk_offset < bargs->vend &&
3363 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3364 /* at least part of the chunk is inside this vrange */
3365 return 0;
3366
3367 return 1;
3368}
3369
dee32d0a
GAP
3370static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3371 struct btrfs_chunk *chunk,
3372 struct btrfs_balance_args *bargs)
3373{
3374 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3375
3376 if (bargs->stripes_min <= num_stripes
3377 && num_stripes <= bargs->stripes_max)
3378 return 0;
3379
3380 return 1;
3381}
3382
899c81ea 3383static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3384 struct btrfs_balance_args *bargs)
3385{
3386 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3387 return 0;
3388
899c81ea
ID
3389 chunk_type = chunk_to_extended(chunk_type) &
3390 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3391
899c81ea 3392 if (bargs->target == chunk_type)
cfa4c961
ID
3393 return 1;
3394
3395 return 0;
3396}
3397
2ff7e61e 3398static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3399 struct extent_buffer *leaf,
3400 struct btrfs_chunk *chunk, u64 chunk_offset)
3401{
0b246afa 3402 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3403 struct btrfs_balance_args *bargs = NULL;
3404 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3405
3406 /* type filter */
3407 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3408 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3409 return 0;
3410 }
3411
3412 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3413 bargs = &bctl->data;
3414 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3415 bargs = &bctl->sys;
3416 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3417 bargs = &bctl->meta;
3418
ed25e9b2
ID
3419 /* profiles filter */
3420 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3421 chunk_profiles_filter(chunk_type, bargs)) {
3422 return 0;
5ce5b3c0
ID
3423 }
3424
3425 /* usage filter */
3426 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3427 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3428 return 0;
bc309467 3429 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3430 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3431 return 0;
409d404b
ID
3432 }
3433
3434 /* devid filter */
3435 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3436 chunk_devid_filter(leaf, chunk, bargs)) {
3437 return 0;
94e60d5a
ID
3438 }
3439
3440 /* drange filter, makes sense only with devid filter */
3441 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3442 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3443 return 0;
ea67176a
ID
3444 }
3445
3446 /* vrange filter */
3447 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3448 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3449 return 0;
ed25e9b2
ID
3450 }
3451
dee32d0a
GAP
3452 /* stripes filter */
3453 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3454 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3455 return 0;
3456 }
3457
cfa4c961
ID
3458 /* soft profile changing mode */
3459 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3460 chunk_soft_convert_filter(chunk_type, bargs)) {
3461 return 0;
3462 }
3463
7d824b6f
DS
3464 /*
3465 * limited by count, must be the last filter
3466 */
3467 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3468 if (bargs->limit == 0)
3469 return 0;
3470 else
3471 bargs->limit--;
12907fc7
DS
3472 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3473 /*
3474 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3475 * determined here because we do not have the global information
12907fc7
DS
3476 * about the count of all chunks that satisfy the filters.
3477 */
3478 if (bargs->limit_max == 0)
3479 return 0;
3480 else
3481 bargs->limit_max--;
7d824b6f
DS
3482 }
3483
f43ffb60
ID
3484 return 1;
3485}
3486
c9e9f97b 3487static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3488{
19a39dce 3489 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3490 struct btrfs_root *chunk_root = fs_info->chunk_root;
3491 struct btrfs_root *dev_root = fs_info->dev_root;
3492 struct list_head *devices;
ec44a35c
CM
3493 struct btrfs_device *device;
3494 u64 old_size;
3495 u64 size_to_free;
12907fc7 3496 u64 chunk_type;
f43ffb60 3497 struct btrfs_chunk *chunk;
5a488b9d 3498 struct btrfs_path *path = NULL;
ec44a35c 3499 struct btrfs_key key;
ec44a35c 3500 struct btrfs_key found_key;
c9e9f97b 3501 struct btrfs_trans_handle *trans;
f43ffb60
ID
3502 struct extent_buffer *leaf;
3503 int slot;
c9e9f97b
ID
3504 int ret;
3505 int enospc_errors = 0;
19a39dce 3506 bool counting = true;
12907fc7 3507 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3508 u64 limit_data = bctl->data.limit;
3509 u64 limit_meta = bctl->meta.limit;
3510 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3511 u32 count_data = 0;
3512 u32 count_meta = 0;
3513 u32 count_sys = 0;
2c9fe835 3514 int chunk_reserved = 0;
cf25ce51 3515 u64 bytes_used = 0;
ec44a35c 3516
ec44a35c 3517 /* step one make some room on all the devices */
c9e9f97b 3518 devices = &fs_info->fs_devices->devices;
c6e30871 3519 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3520 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3521 size_to_free = div_factor(old_size, 1);
ee22184b 3522 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3523 if (!device->writeable ||
7cc8e58d
MX
3524 btrfs_device_get_total_bytes(device) -
3525 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3526 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3527 continue;
3528
3529 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3530 if (ret == -ENOSPC)
3531 break;
5a488b9d
LB
3532 if (ret) {
3533 /* btrfs_shrink_device never returns ret > 0 */
3534 WARN_ON(ret > 0);
3535 goto error;
3536 }
ec44a35c 3537
a22285a6 3538 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3539 if (IS_ERR(trans)) {
3540 ret = PTR_ERR(trans);
3541 btrfs_info_in_rcu(fs_info,
3542 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3543 rcu_str_deref(device->name), ret,
3544 old_size, old_size - size_to_free);
3545 goto error;
3546 }
ec44a35c
CM
3547
3548 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3549 if (ret) {
3a45bb20 3550 btrfs_end_transaction(trans);
5a488b9d
LB
3551 /* btrfs_grow_device never returns ret > 0 */
3552 WARN_ON(ret > 0);
3553 btrfs_info_in_rcu(fs_info,
3554 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3555 rcu_str_deref(device->name), ret,
3556 old_size, old_size - size_to_free);
3557 goto error;
3558 }
ec44a35c 3559
3a45bb20 3560 btrfs_end_transaction(trans);
ec44a35c
CM
3561 }
3562
3563 /* step two, relocate all the chunks */
3564 path = btrfs_alloc_path();
17e9f796
MF
3565 if (!path) {
3566 ret = -ENOMEM;
3567 goto error;
3568 }
19a39dce
ID
3569
3570 /* zero out stat counters */
3571 spin_lock(&fs_info->balance_lock);
3572 memset(&bctl->stat, 0, sizeof(bctl->stat));
3573 spin_unlock(&fs_info->balance_lock);
3574again:
7d824b6f 3575 if (!counting) {
12907fc7
DS
3576 /*
3577 * The single value limit and min/max limits use the same bytes
3578 * in the
3579 */
7d824b6f
DS
3580 bctl->data.limit = limit_data;
3581 bctl->meta.limit = limit_meta;
3582 bctl->sys.limit = limit_sys;
3583 }
ec44a35c
CM
3584 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3585 key.offset = (u64)-1;
3586 key.type = BTRFS_CHUNK_ITEM_KEY;
3587
d397712b 3588 while (1) {
19a39dce 3589 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3590 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3591 ret = -ECANCELED;
3592 goto error;
3593 }
3594
67c5e7d4 3595 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3596 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3597 if (ret < 0) {
3598 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3599 goto error;
67c5e7d4 3600 }
ec44a35c
CM
3601
3602 /*
3603 * this shouldn't happen, it means the last relocate
3604 * failed
3605 */
3606 if (ret == 0)
c9e9f97b 3607 BUG(); /* FIXME break ? */
ec44a35c
CM
3608
3609 ret = btrfs_previous_item(chunk_root, path, 0,
3610 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3611 if (ret) {
67c5e7d4 3612 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3613 ret = 0;
ec44a35c 3614 break;
c9e9f97b 3615 }
7d9eb12c 3616
f43ffb60
ID
3617 leaf = path->nodes[0];
3618 slot = path->slots[0];
3619 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3620
67c5e7d4
FM
3621 if (found_key.objectid != key.objectid) {
3622 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3623 break;
67c5e7d4 3624 }
7d9eb12c 3625
f43ffb60 3626 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3627 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3628
19a39dce
ID
3629 if (!counting) {
3630 spin_lock(&fs_info->balance_lock);
3631 bctl->stat.considered++;
3632 spin_unlock(&fs_info->balance_lock);
3633 }
3634
2ff7e61e 3635 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3636 found_key.offset);
2c9fe835 3637
b3b4aa74 3638 btrfs_release_path(path);
67c5e7d4
FM
3639 if (!ret) {
3640 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3641 goto loop;
67c5e7d4 3642 }
f43ffb60 3643
19a39dce 3644 if (counting) {
67c5e7d4 3645 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3646 spin_lock(&fs_info->balance_lock);
3647 bctl->stat.expected++;
3648 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3649
3650 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3651 count_data++;
3652 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3653 count_sys++;
3654 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3655 count_meta++;
3656
3657 goto loop;
3658 }
3659
3660 /*
3661 * Apply limit_min filter, no need to check if the LIMITS
3662 * filter is used, limit_min is 0 by default
3663 */
3664 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3665 count_data < bctl->data.limit_min)
3666 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3667 count_meta < bctl->meta.limit_min)
3668 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3669 count_sys < bctl->sys.limit_min)) {
3670 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3671 goto loop;
3672 }
3673
cf25ce51
LB
3674 ASSERT(fs_info->data_sinfo);
3675 spin_lock(&fs_info->data_sinfo->lock);
3676 bytes_used = fs_info->data_sinfo->bytes_used;
3677 spin_unlock(&fs_info->data_sinfo->lock);
3678
3679 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3680 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3681 trans = btrfs_start_transaction(chunk_root, 0);
3682 if (IS_ERR(trans)) {
3683 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684 ret = PTR_ERR(trans);
3685 goto error;
3686 }
3687
2ff7e61e 3688 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3689 BTRFS_BLOCK_GROUP_DATA);
3a45bb20 3690 btrfs_end_transaction(trans);
2c9fe835
ZL
3691 if (ret < 0) {
3692 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3693 goto error;
3694 }
2c9fe835
ZL
3695 chunk_reserved = 1;
3696 }
3697
5b4aacef 3698 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3699 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3700 if (ret && ret != -ENOSPC)
3701 goto error;
19a39dce 3702 if (ret == -ENOSPC) {
c9e9f97b 3703 enospc_errors++;
19a39dce
ID
3704 } else {
3705 spin_lock(&fs_info->balance_lock);
3706 bctl->stat.completed++;
3707 spin_unlock(&fs_info->balance_lock);
3708 }
f43ffb60 3709loop:
795a3321
ID
3710 if (found_key.offset == 0)
3711 break;
ba1bf481 3712 key.offset = found_key.offset - 1;
ec44a35c 3713 }
c9e9f97b 3714
19a39dce
ID
3715 if (counting) {
3716 btrfs_release_path(path);
3717 counting = false;
3718 goto again;
3719 }
ec44a35c
CM
3720error:
3721 btrfs_free_path(path);
c9e9f97b 3722 if (enospc_errors) {
efe120a0 3723 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3724 enospc_errors);
c9e9f97b
ID
3725 if (!ret)
3726 ret = -ENOSPC;
3727 }
3728
ec44a35c
CM
3729 return ret;
3730}
3731
0c460c0d
ID
3732/**
3733 * alloc_profile_is_valid - see if a given profile is valid and reduced
3734 * @flags: profile to validate
3735 * @extended: if true @flags is treated as an extended profile
3736 */
3737static int alloc_profile_is_valid(u64 flags, int extended)
3738{
3739 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3740 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3741
3742 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3743
3744 /* 1) check that all other bits are zeroed */
3745 if (flags & ~mask)
3746 return 0;
3747
3748 /* 2) see if profile is reduced */
3749 if (flags == 0)
3750 return !extended; /* "0" is valid for usual profiles */
3751
3752 /* true if exactly one bit set */
3753 return (flags & (flags - 1)) == 0;
3754}
3755
837d5b6e
ID
3756static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3757{
a7e99c69
ID
3758 /* cancel requested || normal exit path */
3759 return atomic_read(&fs_info->balance_cancel_req) ||
3760 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3761 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3762}
3763
c9e9f97b
ID
3764static void __cancel_balance(struct btrfs_fs_info *fs_info)
3765{
0940ebf6
ID
3766 int ret;
3767
c9e9f97b 3768 unset_balance_control(fs_info);
6bccf3ab 3769 ret = del_balance_item(fs_info);
0f788c58 3770 if (ret)
34d97007 3771 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f 3772
171938e5 3773 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
c9e9f97b
ID
3774}
3775
bdcd3c97
AM
3776/* Non-zero return value signifies invalidity */
3777static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3778 u64 allowed)
3779{
3780 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3781 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3782 (bctl_arg->target & ~allowed)));
3783}
3784
c9e9f97b
ID
3785/*
3786 * Should be called with both balance and volume mutexes held
3787 */
3788int btrfs_balance(struct btrfs_balance_control *bctl,
3789 struct btrfs_ioctl_balance_args *bargs)
3790{
3791 struct btrfs_fs_info *fs_info = bctl->fs_info;
14506127 3792 u64 meta_target, data_target;
f43ffb60 3793 u64 allowed;
e4837f8f 3794 int mixed = 0;
c9e9f97b 3795 int ret;
8dabb742 3796 u64 num_devices;
de98ced9 3797 unsigned seq;
c9e9f97b 3798
837d5b6e 3799 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3800 atomic_read(&fs_info->balance_pause_req) ||
3801 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3802 ret = -EINVAL;
3803 goto out;
3804 }
3805
e4837f8f
ID
3806 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3807 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3808 mixed = 1;
3809
f43ffb60
ID
3810 /*
3811 * In case of mixed groups both data and meta should be picked,
3812 * and identical options should be given for both of them.
3813 */
e4837f8f
ID
3814 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3815 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3816 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3817 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3818 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3819 btrfs_err(fs_info,
3820 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3821 ret = -EINVAL;
3822 goto out;
3823 }
3824 }
3825
8dabb742 3826 num_devices = fs_info->fs_devices->num_devices;
73beece9 3827 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3828 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3829 BUG_ON(num_devices < 1);
3830 num_devices--;
3831 }
73beece9 3832 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3833 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3834 if (num_devices > 1)
e4d8ec0f 3835 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3836 if (num_devices > 2)
3837 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3838 if (num_devices > 3)
3839 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3840 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3841 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3842 btrfs_err(fs_info,
3843 "unable to start balance with target data profile %llu",
3844 bctl->data.target);
e4d8ec0f
ID
3845 ret = -EINVAL;
3846 goto out;
3847 }
bdcd3c97 3848 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3849 btrfs_err(fs_info,
5d163e0e
JM
3850 "unable to start balance with target metadata profile %llu",
3851 bctl->meta.target);
e4d8ec0f
ID
3852 ret = -EINVAL;
3853 goto out;
3854 }
bdcd3c97 3855 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3856 btrfs_err(fs_info,
5d163e0e
JM
3857 "unable to start balance with target system profile %llu",
3858 bctl->sys.target);
e4d8ec0f
ID
3859 ret = -EINVAL;
3860 goto out;
3861 }
3862
e4d8ec0f
ID
3863 /* allow to reduce meta or sys integrity only if force set */
3864 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3865 BTRFS_BLOCK_GROUP_RAID10 |
3866 BTRFS_BLOCK_GROUP_RAID5 |
3867 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3868 do {
3869 seq = read_seqbegin(&fs_info->profiles_lock);
3870
3871 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3872 (fs_info->avail_system_alloc_bits & allowed) &&
3873 !(bctl->sys.target & allowed)) ||
3874 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3875 (fs_info->avail_metadata_alloc_bits & allowed) &&
3876 !(bctl->meta.target & allowed))) {
3877 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3878 btrfs_info(fs_info,
3879 "force reducing metadata integrity");
de98ced9 3880 } else {
5d163e0e
JM
3881 btrfs_err(fs_info,
3882 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3883 ret = -EINVAL;
3884 goto out;
3885 }
e4d8ec0f 3886 }
de98ced9 3887 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3888
14506127
AB
3889 /* if we're not converting, the target field is uninitialized */
3890 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3891 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3892 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3893 bctl->data.target : fs_info->avail_data_alloc_bits;
3894 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3895 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3896 btrfs_warn(fs_info,
5d163e0e 3897 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
14506127 3898 meta_target, data_target);
ee592d07
ST
3899 }
3900
5af3e8cc 3901 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3902 fs_info->num_tolerated_disk_barrier_failures = min(
3903 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3904 btrfs_get_num_tolerated_disk_barrier_failures(
3905 bctl->sys.target));
5af3e8cc
SB
3906 }
3907
6bccf3ab 3908 ret = insert_balance_item(fs_info, bctl);
59641015 3909 if (ret && ret != -EEXIST)
0940ebf6
ID
3910 goto out;
3911
59641015
ID
3912 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3913 BUG_ON(ret == -EEXIST);
3914 set_balance_control(bctl);
3915 } else {
3916 BUG_ON(ret != -EEXIST);
3917 spin_lock(&fs_info->balance_lock);
3918 update_balance_args(bctl);
3919 spin_unlock(&fs_info->balance_lock);
3920 }
c9e9f97b 3921
837d5b6e 3922 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3923 mutex_unlock(&fs_info->balance_mutex);
3924
3925 ret = __btrfs_balance(fs_info);
3926
3927 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3928 atomic_dec(&fs_info->balance_running);
c9e9f97b 3929
bf023ecf
ID
3930 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3931 fs_info->num_tolerated_disk_barrier_failures =
3932 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3933 }
3934
c9e9f97b
ID
3935 if (bargs) {
3936 memset(bargs, 0, sizeof(*bargs));
19a39dce 3937 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3938 }
3939
3a01aa7a
ID
3940 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3941 balance_need_close(fs_info)) {
3942 __cancel_balance(fs_info);
3943 }
3944
837d5b6e 3945 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3946
3947 return ret;
3948out:
59641015
ID
3949 if (bctl->flags & BTRFS_BALANCE_RESUME)
3950 __cancel_balance(fs_info);
ed0fb78f 3951 else {
59641015 3952 kfree(bctl);
171938e5 3953 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
ed0fb78f 3954 }
59641015
ID
3955 return ret;
3956}
3957
3958static int balance_kthread(void *data)
3959{
2b6ba629 3960 struct btrfs_fs_info *fs_info = data;
9555c6c1 3961 int ret = 0;
59641015
ID
3962
3963 mutex_lock(&fs_info->volume_mutex);
3964 mutex_lock(&fs_info->balance_mutex);
3965
2b6ba629 3966 if (fs_info->balance_ctl) {
efe120a0 3967 btrfs_info(fs_info, "continuing balance");
2b6ba629 3968 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3969 }
59641015
ID
3970
3971 mutex_unlock(&fs_info->balance_mutex);
3972 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3973
59641015
ID
3974 return ret;
3975}
3976
2b6ba629
ID
3977int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3978{
3979 struct task_struct *tsk;
3980
3981 spin_lock(&fs_info->balance_lock);
3982 if (!fs_info->balance_ctl) {
3983 spin_unlock(&fs_info->balance_lock);
3984 return 0;
3985 }
3986 spin_unlock(&fs_info->balance_lock);
3987
3cdde224 3988 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3989 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3990 return 0;
3991 }
3992
3993 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3994 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3995}
3996
68310a5e 3997int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3998{
59641015
ID
3999 struct btrfs_balance_control *bctl;
4000 struct btrfs_balance_item *item;
4001 struct btrfs_disk_balance_args disk_bargs;
4002 struct btrfs_path *path;
4003 struct extent_buffer *leaf;
4004 struct btrfs_key key;
4005 int ret;
4006
4007 path = btrfs_alloc_path();
4008 if (!path)
4009 return -ENOMEM;
4010
59641015 4011 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4012 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4013 key.offset = 0;
4014
68310a5e 4015 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4016 if (ret < 0)
68310a5e 4017 goto out;
59641015
ID
4018 if (ret > 0) { /* ret = -ENOENT; */
4019 ret = 0;
68310a5e
ID
4020 goto out;
4021 }
4022
4023 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4024 if (!bctl) {
4025 ret = -ENOMEM;
4026 goto out;
59641015
ID
4027 }
4028
4029 leaf = path->nodes[0];
4030 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4031
68310a5e
ID
4032 bctl->fs_info = fs_info;
4033 bctl->flags = btrfs_balance_flags(leaf, item);
4034 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4035
4036 btrfs_balance_data(leaf, item, &disk_bargs);
4037 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4038 btrfs_balance_meta(leaf, item, &disk_bargs);
4039 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4040 btrfs_balance_sys(leaf, item, &disk_bargs);
4041 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4042
171938e5 4043 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
ed0fb78f 4044
68310a5e
ID
4045 mutex_lock(&fs_info->volume_mutex);
4046 mutex_lock(&fs_info->balance_mutex);
59641015 4047
68310a5e
ID
4048 set_balance_control(bctl);
4049
4050 mutex_unlock(&fs_info->balance_mutex);
4051 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4052out:
4053 btrfs_free_path(path);
ec44a35c
CM
4054 return ret;
4055}
4056
837d5b6e
ID
4057int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4058{
4059 int ret = 0;
4060
4061 mutex_lock(&fs_info->balance_mutex);
4062 if (!fs_info->balance_ctl) {
4063 mutex_unlock(&fs_info->balance_mutex);
4064 return -ENOTCONN;
4065 }
4066
4067 if (atomic_read(&fs_info->balance_running)) {
4068 atomic_inc(&fs_info->balance_pause_req);
4069 mutex_unlock(&fs_info->balance_mutex);
4070
4071 wait_event(fs_info->balance_wait_q,
4072 atomic_read(&fs_info->balance_running) == 0);
4073
4074 mutex_lock(&fs_info->balance_mutex);
4075 /* we are good with balance_ctl ripped off from under us */
4076 BUG_ON(atomic_read(&fs_info->balance_running));
4077 atomic_dec(&fs_info->balance_pause_req);
4078 } else {
4079 ret = -ENOTCONN;
4080 }
4081
4082 mutex_unlock(&fs_info->balance_mutex);
4083 return ret;
4084}
4085
a7e99c69
ID
4086int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4087{
e649e587
ID
4088 if (fs_info->sb->s_flags & MS_RDONLY)
4089 return -EROFS;
4090
a7e99c69
ID
4091 mutex_lock(&fs_info->balance_mutex);
4092 if (!fs_info->balance_ctl) {
4093 mutex_unlock(&fs_info->balance_mutex);
4094 return -ENOTCONN;
4095 }
4096
4097 atomic_inc(&fs_info->balance_cancel_req);
4098 /*
4099 * if we are running just wait and return, balance item is
4100 * deleted in btrfs_balance in this case
4101 */
4102 if (atomic_read(&fs_info->balance_running)) {
4103 mutex_unlock(&fs_info->balance_mutex);
4104 wait_event(fs_info->balance_wait_q,
4105 atomic_read(&fs_info->balance_running) == 0);
4106 mutex_lock(&fs_info->balance_mutex);
4107 } else {
4108 /* __cancel_balance needs volume_mutex */
4109 mutex_unlock(&fs_info->balance_mutex);
4110 mutex_lock(&fs_info->volume_mutex);
4111 mutex_lock(&fs_info->balance_mutex);
4112
4113 if (fs_info->balance_ctl)
4114 __cancel_balance(fs_info);
4115
4116 mutex_unlock(&fs_info->volume_mutex);
4117 }
4118
4119 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4120 atomic_dec(&fs_info->balance_cancel_req);
4121 mutex_unlock(&fs_info->balance_mutex);
4122 return 0;
4123}
4124
803b2f54
SB
4125static int btrfs_uuid_scan_kthread(void *data)
4126{
4127 struct btrfs_fs_info *fs_info = data;
4128 struct btrfs_root *root = fs_info->tree_root;
4129 struct btrfs_key key;
4130 struct btrfs_key max_key;
4131 struct btrfs_path *path = NULL;
4132 int ret = 0;
4133 struct extent_buffer *eb;
4134 int slot;
4135 struct btrfs_root_item root_item;
4136 u32 item_size;
f45388f3 4137 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4138
4139 path = btrfs_alloc_path();
4140 if (!path) {
4141 ret = -ENOMEM;
4142 goto out;
4143 }
4144
4145 key.objectid = 0;
4146 key.type = BTRFS_ROOT_ITEM_KEY;
4147 key.offset = 0;
4148
4149 max_key.objectid = (u64)-1;
4150 max_key.type = BTRFS_ROOT_ITEM_KEY;
4151 max_key.offset = (u64)-1;
4152
803b2f54 4153 while (1) {
6174d3cb 4154 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4155 if (ret) {
4156 if (ret > 0)
4157 ret = 0;
4158 break;
4159 }
4160
4161 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4162 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4163 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4164 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4165 goto skip;
4166
4167 eb = path->nodes[0];
4168 slot = path->slots[0];
4169 item_size = btrfs_item_size_nr(eb, slot);
4170 if (item_size < sizeof(root_item))
4171 goto skip;
4172
803b2f54
SB
4173 read_extent_buffer(eb, &root_item,
4174 btrfs_item_ptr_offset(eb, slot),
4175 (int)sizeof(root_item));
4176 if (btrfs_root_refs(&root_item) == 0)
4177 goto skip;
f45388f3
FDBM
4178
4179 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4180 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4181 if (trans)
4182 goto update_tree;
4183
4184 btrfs_release_path(path);
803b2f54
SB
4185 /*
4186 * 1 - subvol uuid item
4187 * 1 - received_subvol uuid item
4188 */
4189 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4190 if (IS_ERR(trans)) {
4191 ret = PTR_ERR(trans);
4192 break;
4193 }
f45388f3
FDBM
4194 continue;
4195 } else {
4196 goto skip;
4197 }
4198update_tree:
4199 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4200 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4201 root_item.uuid,
4202 BTRFS_UUID_KEY_SUBVOL,
4203 key.objectid);
4204 if (ret < 0) {
efe120a0 4205 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4206 ret);
803b2f54
SB
4207 break;
4208 }
4209 }
4210
4211 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4212 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4213 root_item.received_uuid,
4214 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4215 key.objectid);
4216 if (ret < 0) {
efe120a0 4217 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4218 ret);
803b2f54
SB
4219 break;
4220 }
4221 }
4222
f45388f3 4223skip:
803b2f54 4224 if (trans) {
3a45bb20 4225 ret = btrfs_end_transaction(trans);
f45388f3 4226 trans = NULL;
803b2f54
SB
4227 if (ret)
4228 break;
4229 }
4230
803b2f54
SB
4231 btrfs_release_path(path);
4232 if (key.offset < (u64)-1) {
4233 key.offset++;
4234 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4235 key.offset = 0;
4236 key.type = BTRFS_ROOT_ITEM_KEY;
4237 } else if (key.objectid < (u64)-1) {
4238 key.offset = 0;
4239 key.type = BTRFS_ROOT_ITEM_KEY;
4240 key.objectid++;
4241 } else {
4242 break;
4243 }
4244 cond_resched();
4245 }
4246
4247out:
4248 btrfs_free_path(path);
f45388f3 4249 if (trans && !IS_ERR(trans))
3a45bb20 4250 btrfs_end_transaction(trans);
803b2f54 4251 if (ret)
efe120a0 4252 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4253 else
afcdd129 4254 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4255 up(&fs_info->uuid_tree_rescan_sem);
4256 return 0;
4257}
4258
70f80175
SB
4259/*
4260 * Callback for btrfs_uuid_tree_iterate().
4261 * returns:
4262 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4263 * < 0 if an error occurred.
70f80175
SB
4264 * > 0 if the check failed, which means the caller shall remove the entry.
4265 */
4266static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4267 u8 *uuid, u8 type, u64 subid)
4268{
4269 struct btrfs_key key;
4270 int ret = 0;
4271 struct btrfs_root *subvol_root;
4272
4273 if (type != BTRFS_UUID_KEY_SUBVOL &&
4274 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4275 goto out;
4276
4277 key.objectid = subid;
4278 key.type = BTRFS_ROOT_ITEM_KEY;
4279 key.offset = (u64)-1;
4280 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4281 if (IS_ERR(subvol_root)) {
4282 ret = PTR_ERR(subvol_root);
4283 if (ret == -ENOENT)
4284 ret = 1;
4285 goto out;
4286 }
4287
4288 switch (type) {
4289 case BTRFS_UUID_KEY_SUBVOL:
4290 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4291 ret = 1;
4292 break;
4293 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4294 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4295 BTRFS_UUID_SIZE))
4296 ret = 1;
4297 break;
4298 }
4299
4300out:
4301 return ret;
4302}
4303
4304static int btrfs_uuid_rescan_kthread(void *data)
4305{
4306 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4307 int ret;
4308
4309 /*
4310 * 1st step is to iterate through the existing UUID tree and
4311 * to delete all entries that contain outdated data.
4312 * 2nd step is to add all missing entries to the UUID tree.
4313 */
4314 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4315 if (ret < 0) {
efe120a0 4316 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4317 up(&fs_info->uuid_tree_rescan_sem);
4318 return ret;
4319 }
4320 return btrfs_uuid_scan_kthread(data);
4321}
4322
f7a81ea4
SB
4323int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4324{
4325 struct btrfs_trans_handle *trans;
4326 struct btrfs_root *tree_root = fs_info->tree_root;
4327 struct btrfs_root *uuid_root;
803b2f54
SB
4328 struct task_struct *task;
4329 int ret;
f7a81ea4
SB
4330
4331 /*
4332 * 1 - root node
4333 * 1 - root item
4334 */
4335 trans = btrfs_start_transaction(tree_root, 2);
4336 if (IS_ERR(trans))
4337 return PTR_ERR(trans);
4338
4339 uuid_root = btrfs_create_tree(trans, fs_info,
4340 BTRFS_UUID_TREE_OBJECTID);
4341 if (IS_ERR(uuid_root)) {
6d13f549 4342 ret = PTR_ERR(uuid_root);
66642832 4343 btrfs_abort_transaction(trans, ret);
3a45bb20 4344 btrfs_end_transaction(trans);
6d13f549 4345 return ret;
f7a81ea4
SB
4346 }
4347
4348 fs_info->uuid_root = uuid_root;
4349
3a45bb20 4350 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4351 if (ret)
4352 return ret;
4353
4354 down(&fs_info->uuid_tree_rescan_sem);
4355 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4356 if (IS_ERR(task)) {
70f80175 4357 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4358 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4359 up(&fs_info->uuid_tree_rescan_sem);
4360 return PTR_ERR(task);
4361 }
4362
4363 return 0;
f7a81ea4 4364}
803b2f54 4365
70f80175
SB
4366int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4367{
4368 struct task_struct *task;
4369
4370 down(&fs_info->uuid_tree_rescan_sem);
4371 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4372 if (IS_ERR(task)) {
4373 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4374 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4375 up(&fs_info->uuid_tree_rescan_sem);
4376 return PTR_ERR(task);
4377 }
4378
4379 return 0;
4380}
4381
8f18cf13
CM
4382/*
4383 * shrinking a device means finding all of the device extents past
4384 * the new size, and then following the back refs to the chunks.
4385 * The chunk relocation code actually frees the device extent
4386 */
4387int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4388{
0b246afa
JM
4389 struct btrfs_fs_info *fs_info = device->fs_info;
4390 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4391 struct btrfs_trans_handle *trans;
8f18cf13
CM
4392 struct btrfs_dev_extent *dev_extent = NULL;
4393 struct btrfs_path *path;
4394 u64 length;
8f18cf13
CM
4395 u64 chunk_offset;
4396 int ret;
4397 int slot;
ba1bf481
JB
4398 int failed = 0;
4399 bool retried = false;
53e489bc 4400 bool checked_pending_chunks = false;
8f18cf13
CM
4401 struct extent_buffer *l;
4402 struct btrfs_key key;
0b246afa 4403 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4404 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4405 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1
NB
4406 u64 diff;
4407
4408 new_size = round_down(new_size, fs_info->sectorsize);
0e4324a4 4409 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4410
63a212ab
SB
4411 if (device->is_tgtdev_for_dev_replace)
4412 return -EINVAL;
4413
8f18cf13
CM
4414 path = btrfs_alloc_path();
4415 if (!path)
4416 return -ENOMEM;
4417
e4058b54 4418 path->reada = READA_FORWARD;
8f18cf13 4419
34441361 4420 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4421
7cc8e58d 4422 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4423 if (device->writeable) {
2b82032c 4424 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4425 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4426 }
34441361 4427 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4428
ba1bf481 4429again:
8f18cf13
CM
4430 key.objectid = device->devid;
4431 key.offset = (u64)-1;
4432 key.type = BTRFS_DEV_EXTENT_KEY;
4433
213e64da 4434 do {
0b246afa 4435 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4436 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4437 if (ret < 0) {
0b246afa 4438 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4439 goto done;
67c5e7d4 4440 }
8f18cf13
CM
4441
4442 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4443 if (ret)
0b246afa 4444 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4445 if (ret < 0)
4446 goto done;
4447 if (ret) {
4448 ret = 0;
b3b4aa74 4449 btrfs_release_path(path);
bf1fb512 4450 break;
8f18cf13
CM
4451 }
4452
4453 l = path->nodes[0];
4454 slot = path->slots[0];
4455 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4456
ba1bf481 4457 if (key.objectid != device->devid) {
0b246afa 4458 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4459 btrfs_release_path(path);
bf1fb512 4460 break;
ba1bf481 4461 }
8f18cf13
CM
4462
4463 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4464 length = btrfs_dev_extent_length(l, dev_extent);
4465
ba1bf481 4466 if (key.offset + length <= new_size) {
0b246afa 4467 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4468 btrfs_release_path(path);
d6397bae 4469 break;
ba1bf481 4470 }
8f18cf13 4471
8f18cf13 4472 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4473 btrfs_release_path(path);
8f18cf13 4474
0b246afa
JM
4475 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4476 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4477 if (ret && ret != -ENOSPC)
8f18cf13 4478 goto done;
ba1bf481
JB
4479 if (ret == -ENOSPC)
4480 failed++;
213e64da 4481 } while (key.offset-- > 0);
ba1bf481
JB
4482
4483 if (failed && !retried) {
4484 failed = 0;
4485 retried = true;
4486 goto again;
4487 } else if (failed && retried) {
4488 ret = -ENOSPC;
ba1bf481 4489 goto done;
8f18cf13
CM
4490 }
4491
d6397bae 4492 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4493 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4494 if (IS_ERR(trans)) {
4495 ret = PTR_ERR(trans);
4496 goto done;
4497 }
4498
34441361 4499 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4500
4501 /*
4502 * We checked in the above loop all device extents that were already in
4503 * the device tree. However before we have updated the device's
4504 * total_bytes to the new size, we might have had chunk allocations that
4505 * have not complete yet (new block groups attached to transaction
4506 * handles), and therefore their device extents were not yet in the
4507 * device tree and we missed them in the loop above. So if we have any
4508 * pending chunk using a device extent that overlaps the device range
4509 * that we can not use anymore, commit the current transaction and
4510 * repeat the search on the device tree - this way we guarantee we will
4511 * not have chunks using device extents that end beyond 'new_size'.
4512 */
4513 if (!checked_pending_chunks) {
4514 u64 start = new_size;
4515 u64 len = old_size - new_size;
4516
499f377f
JM
4517 if (contains_pending_extent(trans->transaction, device,
4518 &start, len)) {
34441361 4519 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4520 checked_pending_chunks = true;
4521 failed = 0;
4522 retried = false;
3a45bb20 4523 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4524 if (ret)
4525 goto done;
4526 goto again;
4527 }
4528 }
4529
7cc8e58d 4530 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4531 if (list_empty(&device->resized_list))
4532 list_add_tail(&device->resized_list,
0b246afa 4533 &fs_info->fs_devices->resized_devices);
d6397bae 4534
d6397bae 4535 WARN_ON(diff > old_total);
7dfb8be1
NB
4536 btrfs_set_super_total_bytes(super_copy,
4537 round_down(old_total - diff, fs_info->sectorsize));
34441361 4538 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4539
4540 /* Now btrfs_update_device() will change the on-disk size. */
4541 ret = btrfs_update_device(trans, device);
3a45bb20 4542 btrfs_end_transaction(trans);
8f18cf13
CM
4543done:
4544 btrfs_free_path(path);
53e489bc 4545 if (ret) {
34441361 4546 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4547 btrfs_device_set_total_bytes(device, old_size);
4548 if (device->writeable)
4549 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4550 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4551 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4552 }
8f18cf13
CM
4553 return ret;
4554}
4555
2ff7e61e 4556static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4557 struct btrfs_key *key,
4558 struct btrfs_chunk *chunk, int item_size)
4559{
0b246afa 4560 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4561 struct btrfs_disk_key disk_key;
4562 u32 array_size;
4563 u8 *ptr;
4564
34441361 4565 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4566 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4567 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4568 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4569 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4570 return -EFBIG;
fe48a5c0 4571 }
0b86a832
CM
4572
4573 ptr = super_copy->sys_chunk_array + array_size;
4574 btrfs_cpu_key_to_disk(&disk_key, key);
4575 memcpy(ptr, &disk_key, sizeof(disk_key));
4576 ptr += sizeof(disk_key);
4577 memcpy(ptr, chunk, item_size);
4578 item_size += sizeof(disk_key);
4579 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4580 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4581
0b86a832
CM
4582 return 0;
4583}
4584
73c5de00
AJ
4585/*
4586 * sort the devices in descending order by max_avail, total_avail
4587 */
4588static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4589{
73c5de00
AJ
4590 const struct btrfs_device_info *di_a = a;
4591 const struct btrfs_device_info *di_b = b;
9b3f68b9 4592
73c5de00 4593 if (di_a->max_avail > di_b->max_avail)
b2117a39 4594 return -1;
73c5de00 4595 if (di_a->max_avail < di_b->max_avail)
b2117a39 4596 return 1;
73c5de00
AJ
4597 if (di_a->total_avail > di_b->total_avail)
4598 return -1;
4599 if (di_a->total_avail < di_b->total_avail)
4600 return 1;
4601 return 0;
b2117a39 4602}
0b86a832 4603
53b381b3
DW
4604static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4605{
4606 /* TODO allow them to set a preferred stripe size */
ee22184b 4607 return SZ_64K;
53b381b3
DW
4608}
4609
4610static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4611{
ffe2d203 4612 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4613 return;
4614
ceda0864 4615 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4616}
4617
da17066c 4618#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4619 - sizeof(struct btrfs_chunk)) \
4620 / sizeof(struct btrfs_stripe) + 1)
4621
4622#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4623 - 2 * sizeof(struct btrfs_disk_key) \
4624 - 2 * sizeof(struct btrfs_chunk)) \
4625 / sizeof(struct btrfs_stripe) + 1)
4626
73c5de00 4627static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4628 u64 start, u64 type)
b2117a39 4629{
2ff7e61e 4630 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4631 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4632 struct btrfs_device *device;
73c5de00
AJ
4633 struct map_lookup *map = NULL;
4634 struct extent_map_tree *em_tree;
4635 struct extent_map *em;
4636 struct btrfs_device_info *devices_info = NULL;
4637 u64 total_avail;
4638 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4639 int data_stripes; /* number of stripes that count for
4640 block group size */
73c5de00
AJ
4641 int sub_stripes; /* sub_stripes info for map */
4642 int dev_stripes; /* stripes per dev */
4643 int devs_max; /* max devs to use */
4644 int devs_min; /* min devs needed */
4645 int devs_increment; /* ndevs has to be a multiple of this */
4646 int ncopies; /* how many copies to data has */
4647 int ret;
4648 u64 max_stripe_size;
4649 u64 max_chunk_size;
4650 u64 stripe_size;
4651 u64 num_bytes;
53b381b3 4652 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4653 int ndevs;
4654 int i;
4655 int j;
31e50229 4656 int index;
593060d7 4657
0c460c0d 4658 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4659
73c5de00
AJ
4660 if (list_empty(&fs_devices->alloc_list))
4661 return -ENOSPC;
b2117a39 4662
31e50229 4663 index = __get_raid_index(type);
73c5de00 4664
31e50229
LB
4665 sub_stripes = btrfs_raid_array[index].sub_stripes;
4666 dev_stripes = btrfs_raid_array[index].dev_stripes;
4667 devs_max = btrfs_raid_array[index].devs_max;
4668 devs_min = btrfs_raid_array[index].devs_min;
4669 devs_increment = btrfs_raid_array[index].devs_increment;
4670 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4671
9b3f68b9 4672 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4673 max_stripe_size = SZ_1G;
73c5de00 4674 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4675 if (!devs_max)
4676 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4677 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4678 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4679 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4680 max_stripe_size = SZ_1G;
1100373f 4681 else
ee22184b 4682 max_stripe_size = SZ_256M;
73c5de00 4683 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4684 if (!devs_max)
4685 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4686 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4687 max_stripe_size = SZ_32M;
73c5de00 4688 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4689 if (!devs_max)
4690 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4691 } else {
351fd353 4692 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4693 type);
4694 BUG_ON(1);
9b3f68b9
CM
4695 }
4696
2b82032c
YZ
4697 /* we don't want a chunk larger than 10% of writeable space */
4698 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4699 max_chunk_size);
9b3f68b9 4700
31e818fe 4701 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4702 GFP_NOFS);
4703 if (!devices_info)
4704 return -ENOMEM;
0cad8a11 4705
9f680ce0 4706 /*
73c5de00
AJ
4707 * in the first pass through the devices list, we gather information
4708 * about the available holes on each device.
9f680ce0 4709 */
73c5de00 4710 ndevs = 0;
ebcc9301 4711 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4712 u64 max_avail;
4713 u64 dev_offset;
b2117a39 4714
73c5de00 4715 if (!device->writeable) {
31b1a2bd 4716 WARN(1, KERN_ERR
efe120a0 4717 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4718 continue;
4719 }
b2117a39 4720
63a212ab
SB
4721 if (!device->in_fs_metadata ||
4722 device->is_tgtdev_for_dev_replace)
73c5de00 4723 continue;
b2117a39 4724
73c5de00
AJ
4725 if (device->total_bytes > device->bytes_used)
4726 total_avail = device->total_bytes - device->bytes_used;
4727 else
4728 total_avail = 0;
38c01b96 4729
4730 /* If there is no space on this device, skip it. */
4731 if (total_avail == 0)
4732 continue;
b2117a39 4733
6df9a95e 4734 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4735 max_stripe_size * dev_stripes,
4736 &dev_offset, &max_avail);
4737 if (ret && ret != -ENOSPC)
4738 goto error;
b2117a39 4739
73c5de00
AJ
4740 if (ret == 0)
4741 max_avail = max_stripe_size * dev_stripes;
b2117a39 4742
73c5de00
AJ
4743 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4744 continue;
b2117a39 4745
063d006f
ES
4746 if (ndevs == fs_devices->rw_devices) {
4747 WARN(1, "%s: found more than %llu devices\n",
4748 __func__, fs_devices->rw_devices);
4749 break;
4750 }
73c5de00
AJ
4751 devices_info[ndevs].dev_offset = dev_offset;
4752 devices_info[ndevs].max_avail = max_avail;
4753 devices_info[ndevs].total_avail = total_avail;
4754 devices_info[ndevs].dev = device;
4755 ++ndevs;
4756 }
b2117a39 4757
73c5de00
AJ
4758 /*
4759 * now sort the devices by hole size / available space
4760 */
4761 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4762 btrfs_cmp_device_info, NULL);
b2117a39 4763
73c5de00 4764 /* round down to number of usable stripes */
e5600fd6 4765 ndevs = round_down(ndevs, devs_increment);
b2117a39 4766
73c5de00
AJ
4767 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4768 ret = -ENOSPC;
4769 goto error;
b2117a39 4770 }
9f680ce0 4771
f148ef4d
NB
4772 ndevs = min(ndevs, devs_max);
4773
73c5de00
AJ
4774 /*
4775 * the primary goal is to maximize the number of stripes, so use as many
4776 * devices as possible, even if the stripes are not maximum sized.
4777 */
4778 stripe_size = devices_info[ndevs-1].max_avail;
4779 num_stripes = ndevs * dev_stripes;
b2117a39 4780
53b381b3
DW
4781 /*
4782 * this will have to be fixed for RAID1 and RAID10 over
4783 * more drives
4784 */
4785 data_stripes = num_stripes / ncopies;
4786
53b381b3
DW
4787 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4788 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
da17066c 4789 info->stripesize);
53b381b3
DW
4790 data_stripes = num_stripes - 1;
4791 }
4792 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4793 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
da17066c 4794 info->stripesize);
53b381b3
DW
4795 data_stripes = num_stripes - 2;
4796 }
86db2578
CM
4797
4798 /*
4799 * Use the number of data stripes to figure out how big this chunk
4800 * is really going to be in terms of logical address space,
4801 * and compare that answer with the max chunk size
4802 */
4803 if (stripe_size * data_stripes > max_chunk_size) {
4804 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4805
4806 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4807
4808 /* bump the answer up to a 16MB boundary */
4809 stripe_size = (stripe_size + mask) & ~mask;
4810
4811 /* but don't go higher than the limits we found
4812 * while searching for free extents
4813 */
4814 if (stripe_size > devices_info[ndevs-1].max_avail)
4815 stripe_size = devices_info[ndevs-1].max_avail;
4816 }
4817
b8b93add 4818 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4819
4820 /* align to BTRFS_STRIPE_LEN */
42c61ab6 4821 stripe_size = div64_u64(stripe_size, raid_stripe_len);
53b381b3 4822 stripe_size *= raid_stripe_len;
b2117a39
MX
4823
4824 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4825 if (!map) {
4826 ret = -ENOMEM;
4827 goto error;
4828 }
4829 map->num_stripes = num_stripes;
9b3f68b9 4830
73c5de00
AJ
4831 for (i = 0; i < ndevs; ++i) {
4832 for (j = 0; j < dev_stripes; ++j) {
4833 int s = i * dev_stripes + j;
4834 map->stripes[s].dev = devices_info[i].dev;
4835 map->stripes[s].physical = devices_info[i].dev_offset +
4836 j * stripe_size;
6324fbf3 4837 }
6324fbf3 4838 }
da17066c 4839 map->sector_size = info->sectorsize;
53b381b3
DW
4840 map->stripe_len = raid_stripe_len;
4841 map->io_align = raid_stripe_len;
4842 map->io_width = raid_stripe_len;
2b82032c 4843 map->type = type;
2b82032c 4844 map->sub_stripes = sub_stripes;
0b86a832 4845
53b381b3 4846 num_bytes = stripe_size * data_stripes;
0b86a832 4847
6bccf3ab 4848 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4849
172ddd60 4850 em = alloc_extent_map();
2b82032c 4851 if (!em) {
298a8f9c 4852 kfree(map);
b2117a39
MX
4853 ret = -ENOMEM;
4854 goto error;
593060d7 4855 }
298a8f9c 4856 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4857 em->map_lookup = map;
2b82032c 4858 em->start = start;
73c5de00 4859 em->len = num_bytes;
2b82032c
YZ
4860 em->block_start = 0;
4861 em->block_len = em->len;
6df9a95e 4862 em->orig_block_len = stripe_size;
593060d7 4863
0b246afa 4864 em_tree = &info->mapping_tree.map_tree;
890871be 4865 write_lock(&em_tree->lock);
09a2a8f9 4866 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4867 if (!ret) {
4868 list_add_tail(&em->list, &trans->transaction->pending_chunks);
490b54d6 4869 refcount_inc(&em->refs);
6df9a95e 4870 }
890871be 4871 write_unlock(&em_tree->lock);
0f5d42b2
JB
4872 if (ret) {
4873 free_extent_map(em);
1dd4602f 4874 goto error;
0f5d42b2 4875 }
0b86a832 4876
2ff7e61e 4877 ret = btrfs_make_block_group(trans, info, 0, type,
04487488
JB
4878 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4879 start, num_bytes);
6df9a95e
JB
4880 if (ret)
4881 goto error_del_extent;
2b82032c 4882
7cc8e58d
MX
4883 for (i = 0; i < map->num_stripes; i++) {
4884 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4885 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4886 }
43530c46 4887
a5ed45f8 4888 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4889
0f5d42b2 4890 free_extent_map(em);
0b246afa 4891 check_raid56_incompat_flag(info, type);
53b381b3 4892
b2117a39 4893 kfree(devices_info);
2b82032c 4894 return 0;
b2117a39 4895
6df9a95e 4896error_del_extent:
0f5d42b2
JB
4897 write_lock(&em_tree->lock);
4898 remove_extent_mapping(em_tree, em);
4899 write_unlock(&em_tree->lock);
4900
4901 /* One for our allocation */
4902 free_extent_map(em);
4903 /* One for the tree reference */
4904 free_extent_map(em);
495e64f4
FM
4905 /* One for the pending_chunks list reference */
4906 free_extent_map(em);
b2117a39 4907error:
b2117a39
MX
4908 kfree(devices_info);
4909 return ret;
2b82032c
YZ
4910}
4911
6df9a95e 4912int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4913 struct btrfs_fs_info *fs_info,
6df9a95e 4914 u64 chunk_offset, u64 chunk_size)
2b82032c 4915{
6bccf3ab
JM
4916 struct btrfs_root *extent_root = fs_info->extent_root;
4917 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4918 struct btrfs_key key;
2b82032c
YZ
4919 struct btrfs_device *device;
4920 struct btrfs_chunk *chunk;
4921 struct btrfs_stripe *stripe;
6df9a95e
JB
4922 struct extent_map *em;
4923 struct map_lookup *map;
4924 size_t item_size;
4925 u64 dev_offset;
4926 u64 stripe_size;
4927 int i = 0;
140e639f 4928 int ret = 0;
2b82032c 4929
592d92ee
LB
4930 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4931 if (IS_ERR(em))
4932 return PTR_ERR(em);
6df9a95e 4933
95617d69 4934 map = em->map_lookup;
6df9a95e
JB
4935 item_size = btrfs_chunk_item_size(map->num_stripes);
4936 stripe_size = em->orig_block_len;
4937
2b82032c 4938 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4939 if (!chunk) {
4940 ret = -ENOMEM;
4941 goto out;
4942 }
4943
50460e37
FM
4944 /*
4945 * Take the device list mutex to prevent races with the final phase of
4946 * a device replace operation that replaces the device object associated
4947 * with the map's stripes, because the device object's id can change
4948 * at any time during that final phase of the device replace operation
4949 * (dev-replace.c:btrfs_dev_replace_finishing()).
4950 */
0b246afa 4951 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4952 for (i = 0; i < map->num_stripes; i++) {
4953 device = map->stripes[i].dev;
4954 dev_offset = map->stripes[i].physical;
2b82032c 4955
0b86a832 4956 ret = btrfs_update_device(trans, device);
3acd3953 4957 if (ret)
50460e37 4958 break;
6df9a95e
JB
4959 ret = btrfs_alloc_dev_extent(trans, device,
4960 chunk_root->root_key.objectid,
4961 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4962 chunk_offset, dev_offset,
4963 stripe_size);
4964 if (ret)
50460e37
FM
4965 break;
4966 }
4967 if (ret) {
0b246afa 4968 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4969 goto out;
2b82032c
YZ
4970 }
4971
2b82032c 4972 stripe = &chunk->stripe;
6df9a95e
JB
4973 for (i = 0; i < map->num_stripes; i++) {
4974 device = map->stripes[i].dev;
4975 dev_offset = map->stripes[i].physical;
0b86a832 4976
e17cade2
CM
4977 btrfs_set_stack_stripe_devid(stripe, device->devid);
4978 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4979 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4980 stripe++;
0b86a832 4981 }
0b246afa 4982 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4983
2b82032c 4984 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4985 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4986 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4987 btrfs_set_stack_chunk_type(chunk, map->type);
4988 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4989 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4990 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4991 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4992 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4993
2b82032c
YZ
4994 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4995 key.type = BTRFS_CHUNK_ITEM_KEY;
4996 key.offset = chunk_offset;
0b86a832 4997
2b82032c 4998 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4999 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5000 /*
5001 * TODO: Cleanup of inserted chunk root in case of
5002 * failure.
5003 */
2ff7e61e 5004 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5005 }
1abe9b8a 5006
6df9a95e 5007out:
0b86a832 5008 kfree(chunk);
6df9a95e 5009 free_extent_map(em);
4ed1d16e 5010 return ret;
2b82032c 5011}
0b86a832 5012
2b82032c
YZ
5013/*
5014 * Chunk allocation falls into two parts. The first part does works
5015 * that make the new allocated chunk useable, but not do any operation
5016 * that modifies the chunk tree. The second part does the works that
5017 * require modifying the chunk tree. This division is important for the
5018 * bootstrap process of adding storage to a seed btrfs.
5019 */
5020int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 5021 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
5022{
5023 u64 chunk_offset;
2b82032c 5024
0b246afa
JM
5025 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5026 chunk_offset = find_next_chunk(fs_info);
72b468c8 5027 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5028}
5029
d397712b 5030static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 5031 struct btrfs_fs_info *fs_info)
2b82032c
YZ
5032{
5033 u64 chunk_offset;
5034 u64 sys_chunk_offset;
2b82032c 5035 u64 alloc_profile;
2b82032c
YZ
5036 int ret;
5037
6df9a95e 5038 chunk_offset = find_next_chunk(fs_info);
1b86826d 5039 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5040 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5041 if (ret)
5042 return ret;
2b82032c 5043
0b246afa 5044 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5045 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5046 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5047 return ret;
2b82032c
YZ
5048}
5049
d20983b4
MX
5050static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5051{
5052 int max_errors;
5053
5054 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5055 BTRFS_BLOCK_GROUP_RAID10 |
5056 BTRFS_BLOCK_GROUP_RAID5 |
5057 BTRFS_BLOCK_GROUP_DUP)) {
5058 max_errors = 1;
5059 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5060 max_errors = 2;
5061 } else {
5062 max_errors = 0;
005d6427 5063 }
2b82032c 5064
d20983b4 5065 return max_errors;
2b82032c
YZ
5066}
5067
2ff7e61e 5068int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5069{
5070 struct extent_map *em;
5071 struct map_lookup *map;
2b82032c 5072 int readonly = 0;
d20983b4 5073 int miss_ndevs = 0;
2b82032c
YZ
5074 int i;
5075
592d92ee
LB
5076 em = get_chunk_map(fs_info, chunk_offset, 1);
5077 if (IS_ERR(em))
2b82032c
YZ
5078 return 1;
5079
95617d69 5080 map = em->map_lookup;
2b82032c 5081 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5082 if (map->stripes[i].dev->missing) {
5083 miss_ndevs++;
5084 continue;
5085 }
5086
2b82032c
YZ
5087 if (!map->stripes[i].dev->writeable) {
5088 readonly = 1;
d20983b4 5089 goto end;
2b82032c
YZ
5090 }
5091 }
d20983b4
MX
5092
5093 /*
5094 * If the number of missing devices is larger than max errors,
5095 * we can not write the data into that chunk successfully, so
5096 * set it readonly.
5097 */
5098 if (miss_ndevs > btrfs_chunk_max_errors(map))
5099 readonly = 1;
5100end:
0b86a832 5101 free_extent_map(em);
2b82032c 5102 return readonly;
0b86a832
CM
5103}
5104
5105void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5106{
a8067e02 5107 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5108}
5109
5110void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5111{
5112 struct extent_map *em;
5113
d397712b 5114 while (1) {
890871be 5115 write_lock(&tree->map_tree.lock);
0b86a832
CM
5116 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5117 if (em)
5118 remove_extent_mapping(&tree->map_tree, em);
890871be 5119 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5120 if (!em)
5121 break;
0b86a832
CM
5122 /* once for us */
5123 free_extent_map(em);
5124 /* once for the tree */
5125 free_extent_map(em);
5126 }
5127}
5128
5d964051 5129int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5130{
5131 struct extent_map *em;
5132 struct map_lookup *map;
f188591e
CM
5133 int ret;
5134
592d92ee
LB
5135 em = get_chunk_map(fs_info, logical, len);
5136 if (IS_ERR(em))
5137 /*
5138 * We could return errors for these cases, but that could get
5139 * ugly and we'd probably do the same thing which is just not do
5140 * anything else and exit, so return 1 so the callers don't try
5141 * to use other copies.
5142 */
fb7669b5 5143 return 1;
fb7669b5 5144
95617d69 5145 map = em->map_lookup;
f188591e
CM
5146 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5147 ret = map->num_stripes;
321aecc6
CM
5148 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5149 ret = map->sub_stripes;
53b381b3
DW
5150 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5151 ret = 2;
5152 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5153 ret = 3;
f188591e
CM
5154 else
5155 ret = 1;
5156 free_extent_map(em);
ad6d620e 5157
73beece9 5158 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
6fad823f
LB
5159 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5160 fs_info->dev_replace.tgtdev)
ad6d620e 5161 ret++;
73beece9 5162 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5163
f188591e
CM
5164 return ret;
5165}
5166
2ff7e61e 5167unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5168 struct btrfs_mapping_tree *map_tree,
5169 u64 logical)
5170{
5171 struct extent_map *em;
5172 struct map_lookup *map;
0b246afa 5173 unsigned long len = fs_info->sectorsize;
53b381b3 5174
592d92ee 5175 em = get_chunk_map(fs_info, logical, len);
53b381b3 5176
69f03f13
NB
5177 if (!WARN_ON(IS_ERR(em))) {
5178 map = em->map_lookup;
5179 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5180 len = map->stripe_len * nr_data_stripes(map);
5181 free_extent_map(em);
5182 }
53b381b3
DW
5183 return len;
5184}
5185
592d92ee 5186int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
53b381b3
DW
5187 u64 logical, u64 len, int mirror_num)
5188{
5189 struct extent_map *em;
5190 struct map_lookup *map;
53b381b3
DW
5191 int ret = 0;
5192
592d92ee 5193 em = get_chunk_map(fs_info, logical, len);
53b381b3 5194
69f03f13
NB
5195 if(!WARN_ON(IS_ERR(em))) {
5196 map = em->map_lookup;
5197 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5198 ret = 1;
5199 free_extent_map(em);
5200 }
53b381b3
DW
5201 return ret;
5202}
5203
30d9861f
SB
5204static int find_live_mirror(struct btrfs_fs_info *fs_info,
5205 struct map_lookup *map, int first, int num,
5206 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5207{
5208 int i;
30d9861f
SB
5209 int tolerance;
5210 struct btrfs_device *srcdev;
5211
5212 if (dev_replace_is_ongoing &&
5213 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5214 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5215 srcdev = fs_info->dev_replace.srcdev;
5216 else
5217 srcdev = NULL;
5218
5219 /*
5220 * try to avoid the drive that is the source drive for a
5221 * dev-replace procedure, only choose it if no other non-missing
5222 * mirror is available
5223 */
5224 for (tolerance = 0; tolerance < 2; tolerance++) {
5225 if (map->stripes[optimal].dev->bdev &&
5226 (tolerance || map->stripes[optimal].dev != srcdev))
5227 return optimal;
5228 for (i = first; i < first + num; i++) {
5229 if (map->stripes[i].dev->bdev &&
5230 (tolerance || map->stripes[i].dev != srcdev))
5231 return i;
5232 }
dfe25020 5233 }
30d9861f 5234
dfe25020
CM
5235 /* we couldn't find one that doesn't fail. Just return something
5236 * and the io error handling code will clean up eventually
5237 */
5238 return optimal;
5239}
5240
53b381b3
DW
5241static inline int parity_smaller(u64 a, u64 b)
5242{
5243 return a > b;
5244}
5245
5246/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5247static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5248{
5249 struct btrfs_bio_stripe s;
5250 int i;
5251 u64 l;
5252 int again = 1;
5253
5254 while (again) {
5255 again = 0;
cc7539ed 5256 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5257 if (parity_smaller(bbio->raid_map[i],
5258 bbio->raid_map[i+1])) {
53b381b3 5259 s = bbio->stripes[i];
8e5cfb55 5260 l = bbio->raid_map[i];
53b381b3 5261 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5262 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5263 bbio->stripes[i+1] = s;
8e5cfb55 5264 bbio->raid_map[i+1] = l;
2c8cdd6e 5265
53b381b3
DW
5266 again = 1;
5267 }
5268 }
5269 }
5270}
5271
6e9606d2
ZL
5272static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5273{
5274 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5275 /* the size of the btrfs_bio */
6e9606d2 5276 sizeof(struct btrfs_bio) +
e57cf21e 5277 /* plus the variable array for the stripes */
6e9606d2 5278 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5279 /* plus the variable array for the tgt dev */
6e9606d2 5280 sizeof(int) * (real_stripes) +
e57cf21e
CM
5281 /*
5282 * plus the raid_map, which includes both the tgt dev
5283 * and the stripes
5284 */
5285 sizeof(u64) * (total_stripes),
277fb5fc 5286 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5287
5288 atomic_set(&bbio->error, 0);
140475ae 5289 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5290
5291 return bbio;
5292}
5293
5294void btrfs_get_bbio(struct btrfs_bio *bbio)
5295{
140475ae
ER
5296 WARN_ON(!refcount_read(&bbio->refs));
5297 refcount_inc(&bbio->refs);
6e9606d2
ZL
5298}
5299
5300void btrfs_put_bbio(struct btrfs_bio *bbio)
5301{
5302 if (!bbio)
5303 return;
140475ae 5304 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5305 kfree(bbio);
5306}
5307
0b3d4cd3
LB
5308/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5309/*
5310 * Please note that, discard won't be sent to target device of device
5311 * replace.
5312 */
5313static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5314 u64 logical, u64 length,
5315 struct btrfs_bio **bbio_ret)
5316{
5317 struct extent_map *em;
5318 struct map_lookup *map;
5319 struct btrfs_bio *bbio;
5320 u64 offset;
5321 u64 stripe_nr;
5322 u64 stripe_nr_end;
5323 u64 stripe_end_offset;
5324 u64 stripe_cnt;
5325 u64 stripe_len;
5326 u64 stripe_offset;
5327 u64 num_stripes;
5328 u32 stripe_index;
5329 u32 factor = 0;
5330 u32 sub_stripes = 0;
5331 u64 stripes_per_dev = 0;
5332 u32 remaining_stripes = 0;
5333 u32 last_stripe = 0;
5334 int ret = 0;
5335 int i;
5336
5337 /* discard always return a bbio */
5338 ASSERT(bbio_ret);
5339
5340 em = get_chunk_map(fs_info, logical, length);
5341 if (IS_ERR(em))
5342 return PTR_ERR(em);
5343
5344 map = em->map_lookup;
5345 /* we don't discard raid56 yet */
5346 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5347 ret = -EOPNOTSUPP;
5348 goto out;
5349 }
5350
5351 offset = logical - em->start;
5352 length = min_t(u64, em->len - offset, length);
5353
5354 stripe_len = map->stripe_len;
5355 /*
5356 * stripe_nr counts the total number of stripes we have to stride
5357 * to get to this block
5358 */
5359 stripe_nr = div64_u64(offset, stripe_len);
5360
5361 /* stripe_offset is the offset of this block in its stripe */
5362 stripe_offset = offset - stripe_nr * stripe_len;
5363
5364 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5365 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5366 stripe_cnt = stripe_nr_end - stripe_nr;
5367 stripe_end_offset = stripe_nr_end * map->stripe_len -
5368 (offset + length);
5369 /*
5370 * after this, stripe_nr is the number of stripes on this
5371 * device we have to walk to find the data, and stripe_index is
5372 * the number of our device in the stripe array
5373 */
5374 num_stripes = 1;
5375 stripe_index = 0;
5376 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5377 BTRFS_BLOCK_GROUP_RAID10)) {
5378 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5379 sub_stripes = 1;
5380 else
5381 sub_stripes = map->sub_stripes;
5382
5383 factor = map->num_stripes / sub_stripes;
5384 num_stripes = min_t(u64, map->num_stripes,
5385 sub_stripes * stripe_cnt);
5386 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5387 stripe_index *= sub_stripes;
5388 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5389 &remaining_stripes);
5390 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5391 last_stripe *= sub_stripes;
5392 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5393 BTRFS_BLOCK_GROUP_DUP)) {
5394 num_stripes = map->num_stripes;
5395 } else {
5396 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5397 &stripe_index);
5398 }
5399
5400 bbio = alloc_btrfs_bio(num_stripes, 0);
5401 if (!bbio) {
5402 ret = -ENOMEM;
5403 goto out;
5404 }
5405
5406 for (i = 0; i < num_stripes; i++) {
5407 bbio->stripes[i].physical =
5408 map->stripes[stripe_index].physical +
5409 stripe_offset + stripe_nr * map->stripe_len;
5410 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5411
5412 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5413 BTRFS_BLOCK_GROUP_RAID10)) {
5414 bbio->stripes[i].length = stripes_per_dev *
5415 map->stripe_len;
5416
5417 if (i / sub_stripes < remaining_stripes)
5418 bbio->stripes[i].length +=
5419 map->stripe_len;
5420
5421 /*
5422 * Special for the first stripe and
5423 * the last stripe:
5424 *
5425 * |-------|...|-------|
5426 * |----------|
5427 * off end_off
5428 */
5429 if (i < sub_stripes)
5430 bbio->stripes[i].length -=
5431 stripe_offset;
5432
5433 if (stripe_index >= last_stripe &&
5434 stripe_index <= (last_stripe +
5435 sub_stripes - 1))
5436 bbio->stripes[i].length -=
5437 stripe_end_offset;
5438
5439 if (i == sub_stripes - 1)
5440 stripe_offset = 0;
5441 } else {
5442 bbio->stripes[i].length = length;
5443 }
5444
5445 stripe_index++;
5446 if (stripe_index == map->num_stripes) {
5447 stripe_index = 0;
5448 stripe_nr++;
5449 }
5450 }
5451
5452 *bbio_ret = bbio;
5453 bbio->map_type = map->type;
5454 bbio->num_stripes = num_stripes;
5455out:
5456 free_extent_map(em);
5457 return ret;
5458}
5459
5ab56090
LB
5460/*
5461 * In dev-replace case, for repair case (that's the only case where the mirror
5462 * is selected explicitly when calling btrfs_map_block), blocks left of the
5463 * left cursor can also be read from the target drive.
5464 *
5465 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5466 * array of stripes.
5467 * For READ, it also needs to be supported using the same mirror number.
5468 *
5469 * If the requested block is not left of the left cursor, EIO is returned. This
5470 * can happen because btrfs_num_copies() returns one more in the dev-replace
5471 * case.
5472 */
5473static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5474 u64 logical, u64 length,
5475 u64 srcdev_devid, int *mirror_num,
5476 u64 *physical)
5477{
5478 struct btrfs_bio *bbio = NULL;
5479 int num_stripes;
5480 int index_srcdev = 0;
5481 int found = 0;
5482 u64 physical_of_found = 0;
5483 int i;
5484 int ret = 0;
5485
5486 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5487 logical, &length, &bbio, 0, 0);
5488 if (ret) {
5489 ASSERT(bbio == NULL);
5490 return ret;
5491 }
5492
5493 num_stripes = bbio->num_stripes;
5494 if (*mirror_num > num_stripes) {
5495 /*
5496 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5497 * that means that the requested area is not left of the left
5498 * cursor
5499 */
5500 btrfs_put_bbio(bbio);
5501 return -EIO;
5502 }
5503
5504 /*
5505 * process the rest of the function using the mirror_num of the source
5506 * drive. Therefore look it up first. At the end, patch the device
5507 * pointer to the one of the target drive.
5508 */
5509 for (i = 0; i < num_stripes; i++) {
5510 if (bbio->stripes[i].dev->devid != srcdev_devid)
5511 continue;
5512
5513 /*
5514 * In case of DUP, in order to keep it simple, only add the
5515 * mirror with the lowest physical address
5516 */
5517 if (found &&
5518 physical_of_found <= bbio->stripes[i].physical)
5519 continue;
5520
5521 index_srcdev = i;
5522 found = 1;
5523 physical_of_found = bbio->stripes[i].physical;
5524 }
5525
5526 btrfs_put_bbio(bbio);
5527
5528 ASSERT(found);
5529 if (!found)
5530 return -EIO;
5531
5532 *mirror_num = index_srcdev + 1;
5533 *physical = physical_of_found;
5534 return ret;
5535}
5536
73c0f228
LB
5537static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5538 struct btrfs_bio **bbio_ret,
5539 struct btrfs_dev_replace *dev_replace,
5540 int *num_stripes_ret, int *max_errors_ret)
5541{
5542 struct btrfs_bio *bbio = *bbio_ret;
5543 u64 srcdev_devid = dev_replace->srcdev->devid;
5544 int tgtdev_indexes = 0;
5545 int num_stripes = *num_stripes_ret;
5546 int max_errors = *max_errors_ret;
5547 int i;
5548
5549 if (op == BTRFS_MAP_WRITE) {
5550 int index_where_to_add;
5551
5552 /*
5553 * duplicate the write operations while the dev replace
5554 * procedure is running. Since the copying of the old disk to
5555 * the new disk takes place at run time while the filesystem is
5556 * mounted writable, the regular write operations to the old
5557 * disk have to be duplicated to go to the new disk as well.
5558 *
5559 * Note that device->missing is handled by the caller, and that
5560 * the write to the old disk is already set up in the stripes
5561 * array.
5562 */
5563 index_where_to_add = num_stripes;
5564 for (i = 0; i < num_stripes; i++) {
5565 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5566 /* write to new disk, too */
5567 struct btrfs_bio_stripe *new =
5568 bbio->stripes + index_where_to_add;
5569 struct btrfs_bio_stripe *old =
5570 bbio->stripes + i;
5571
5572 new->physical = old->physical;
5573 new->length = old->length;
5574 new->dev = dev_replace->tgtdev;
5575 bbio->tgtdev_map[i] = index_where_to_add;
5576 index_where_to_add++;
5577 max_errors++;
5578 tgtdev_indexes++;
5579 }
5580 }
5581 num_stripes = index_where_to_add;
5582 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5583 int index_srcdev = 0;
5584 int found = 0;
5585 u64 physical_of_found = 0;
5586
5587 /*
5588 * During the dev-replace procedure, the target drive can also
5589 * be used to read data in case it is needed to repair a corrupt
5590 * block elsewhere. This is possible if the requested area is
5591 * left of the left cursor. In this area, the target drive is a
5592 * full copy of the source drive.
5593 */
5594 for (i = 0; i < num_stripes; i++) {
5595 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5596 /*
5597 * In case of DUP, in order to keep it simple,
5598 * only add the mirror with the lowest physical
5599 * address
5600 */
5601 if (found &&
5602 physical_of_found <=
5603 bbio->stripes[i].physical)
5604 continue;
5605 index_srcdev = i;
5606 found = 1;
5607 physical_of_found = bbio->stripes[i].physical;
5608 }
5609 }
5610 if (found) {
5611 struct btrfs_bio_stripe *tgtdev_stripe =
5612 bbio->stripes + num_stripes;
5613
5614 tgtdev_stripe->physical = physical_of_found;
5615 tgtdev_stripe->length =
5616 bbio->stripes[index_srcdev].length;
5617 tgtdev_stripe->dev = dev_replace->tgtdev;
5618 bbio->tgtdev_map[index_srcdev] = num_stripes;
5619
5620 tgtdev_indexes++;
5621 num_stripes++;
5622 }
5623 }
5624
5625 *num_stripes_ret = num_stripes;
5626 *max_errors_ret = max_errors;
5627 bbio->num_tgtdevs = tgtdev_indexes;
5628 *bbio_ret = bbio;
5629}
5630
2b19a1fe
LB
5631static bool need_full_stripe(enum btrfs_map_op op)
5632{
5633 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5634}
5635
cf8cddd3
CH
5636static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5637 enum btrfs_map_op op,
f2d8d74d 5638 u64 logical, u64 *length,
a1d3c478 5639 struct btrfs_bio **bbio_ret,
8e5cfb55 5640 int mirror_num, int need_raid_map)
0b86a832
CM
5641{
5642 struct extent_map *em;
5643 struct map_lookup *map;
0b86a832 5644 u64 offset;
593060d7
CM
5645 u64 stripe_offset;
5646 u64 stripe_nr;
53b381b3 5647 u64 stripe_len;
9d644a62 5648 u32 stripe_index;
cea9e445 5649 int i;
de11cc12 5650 int ret = 0;
f2d8d74d 5651 int num_stripes;
a236aed1 5652 int max_errors = 0;
2c8cdd6e 5653 int tgtdev_indexes = 0;
a1d3c478 5654 struct btrfs_bio *bbio = NULL;
472262f3
SB
5655 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5656 int dev_replace_is_ongoing = 0;
5657 int num_alloc_stripes;
ad6d620e
SB
5658 int patch_the_first_stripe_for_dev_replace = 0;
5659 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5660 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5661
0b3d4cd3
LB
5662 if (op == BTRFS_MAP_DISCARD)
5663 return __btrfs_map_block_for_discard(fs_info, logical,
5664 *length, bbio_ret);
5665
592d92ee
LB
5666 em = get_chunk_map(fs_info, logical, *length);
5667 if (IS_ERR(em))
5668 return PTR_ERR(em);
0b86a832 5669
95617d69 5670 map = em->map_lookup;
0b86a832 5671 offset = logical - em->start;
593060d7 5672
53b381b3 5673 stripe_len = map->stripe_len;
593060d7
CM
5674 stripe_nr = offset;
5675 /*
5676 * stripe_nr counts the total number of stripes we have to stride
5677 * to get to this block
5678 */
47c5713f 5679 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5680
53b381b3 5681 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5682 if (offset < stripe_offset) {
5d163e0e
JM
5683 btrfs_crit(fs_info,
5684 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5685 stripe_offset, offset, em->start, logical,
5686 stripe_len);
5687 free_extent_map(em);
5688 return -EINVAL;
5689 }
593060d7
CM
5690
5691 /* stripe_offset is the offset of this block in its stripe*/
5692 stripe_offset = offset - stripe_offset;
5693
53b381b3 5694 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5695 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5696 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5697 raid56_full_stripe_start = offset;
5698
5699 /* allow a write of a full stripe, but make sure we don't
5700 * allow straddling of stripes
5701 */
47c5713f
DS
5702 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5703 full_stripe_len);
53b381b3
DW
5704 raid56_full_stripe_start *= full_stripe_len;
5705 }
5706
0b3d4cd3 5707 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5708 u64 max_len;
5709 /* For writes to RAID[56], allow a full stripeset across all disks.
5710 For other RAID types and for RAID[56] reads, just allow a single
5711 stripe (on a single disk). */
ffe2d203 5712 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5713 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5714 max_len = stripe_len * nr_data_stripes(map) -
5715 (offset - raid56_full_stripe_start);
5716 } else {
5717 /* we limit the length of each bio to what fits in a stripe */
5718 max_len = stripe_len - stripe_offset;
5719 }
5720 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5721 } else {
5722 *length = em->len - offset;
5723 }
f2d8d74d 5724
53b381b3
DW
5725 /* This is for when we're called from btrfs_merge_bio_hook() and all
5726 it cares about is the length */
a1d3c478 5727 if (!bbio_ret)
cea9e445
CM
5728 goto out;
5729
73beece9 5730 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5731 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5732 if (!dev_replace_is_ongoing)
73beece9
LB
5733 btrfs_dev_replace_unlock(dev_replace, 0);
5734 else
5735 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5736
ad6d620e 5737 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5738 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5739 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5740 dev_replace->srcdev->devid,
5741 &mirror_num,
5742 &physical_to_patch_in_first_stripe);
5743 if (ret)
ad6d620e 5744 goto out;
5ab56090
LB
5745 else
5746 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5747 } else if (mirror_num > map->num_stripes) {
5748 mirror_num = 0;
5749 }
5750
f2d8d74d 5751 num_stripes = 1;
cea9e445 5752 stripe_index = 0;
fce3bb9a 5753 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5754 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5755 &stripe_index);
0b3d4cd3 5756 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
28e1cc7d 5757 mirror_num = 1;
fce3bb9a 5758 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
0b3d4cd3 5759 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5760 num_stripes = map->num_stripes;
2fff734f 5761 else if (mirror_num)
f188591e 5762 stripe_index = mirror_num - 1;
dfe25020 5763 else {
30d9861f 5764 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5765 map->num_stripes,
30d9861f
SB
5766 current->pid % map->num_stripes,
5767 dev_replace_is_ongoing);
a1d3c478 5768 mirror_num = stripe_index + 1;
dfe25020 5769 }
2fff734f 5770
611f0e00 5771 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
0b3d4cd3 5772 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
f2d8d74d 5773 num_stripes = map->num_stripes;
a1d3c478 5774 } else if (mirror_num) {
f188591e 5775 stripe_index = mirror_num - 1;
a1d3c478
JS
5776 } else {
5777 mirror_num = 1;
5778 }
2fff734f 5779
321aecc6 5780 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5781 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5782
47c5713f 5783 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5784 stripe_index *= map->sub_stripes;
5785
cf8cddd3 5786 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5787 num_stripes = map->sub_stripes;
321aecc6
CM
5788 else if (mirror_num)
5789 stripe_index += mirror_num - 1;
dfe25020 5790 else {
3e74317a 5791 int old_stripe_index = stripe_index;
30d9861f
SB
5792 stripe_index = find_live_mirror(fs_info, map,
5793 stripe_index,
dfe25020 5794 map->sub_stripes, stripe_index +
30d9861f
SB
5795 current->pid % map->sub_stripes,
5796 dev_replace_is_ongoing);
3e74317a 5797 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5798 }
53b381b3 5799
ffe2d203 5800 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5801 if (need_raid_map &&
cf8cddd3 5802 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
af8e2d1d 5803 mirror_num > 1)) {
53b381b3 5804 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5805 stripe_nr = div64_u64(raid56_full_stripe_start,
b8b93add 5806 stripe_len * nr_data_stripes(map));
53b381b3
DW
5807
5808 /* RAID[56] write or recovery. Return all stripes */
5809 num_stripes = map->num_stripes;
5810 max_errors = nr_parity_stripes(map);
5811
53b381b3
DW
5812 *length = map->stripe_len;
5813 stripe_index = 0;
5814 stripe_offset = 0;
5815 } else {
5816 /*
5817 * Mirror #0 or #1 means the original data block.
5818 * Mirror #2 is RAID5 parity block.
5819 * Mirror #3 is RAID6 Q block.
5820 */
47c5713f
DS
5821 stripe_nr = div_u64_rem(stripe_nr,
5822 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5823 if (mirror_num > 1)
5824 stripe_index = nr_data_stripes(map) +
5825 mirror_num - 2;
5826
5827 /* We distribute the parity blocks across stripes */
47c5713f
DS
5828 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5829 &stripe_index);
0b3d4cd3
LB
5830 if ((op != BTRFS_MAP_WRITE &&
5831 op != BTRFS_MAP_GET_READ_MIRRORS) &&
5832 mirror_num <= 1)
28e1cc7d 5833 mirror_num = 1;
53b381b3 5834 }
8790d502
CM
5835 } else {
5836 /*
47c5713f
DS
5837 * after this, stripe_nr is the number of stripes on this
5838 * device we have to walk to find the data, and stripe_index is
5839 * the number of our device in the stripe array
8790d502 5840 */
47c5713f
DS
5841 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5842 &stripe_index);
a1d3c478 5843 mirror_num = stripe_index + 1;
8790d502 5844 }
e042d1ec 5845 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5846 btrfs_crit(fs_info,
5847 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5848 stripe_index, map->num_stripes);
5849 ret = -EINVAL;
5850 goto out;
5851 }
cea9e445 5852
472262f3 5853 num_alloc_stripes = num_stripes;
6fad823f 5854 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5855 if (op == BTRFS_MAP_WRITE)
ad6d620e 5856 num_alloc_stripes <<= 1;
cf8cddd3 5857 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5858 num_alloc_stripes++;
2c8cdd6e 5859 tgtdev_indexes = num_stripes;
ad6d620e 5860 }
2c8cdd6e 5861
6e9606d2 5862 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5863 if (!bbio) {
5864 ret = -ENOMEM;
5865 goto out;
5866 }
6fad823f 5867 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5868 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5869
8e5cfb55 5870 /* build raid_map */
2b19a1fe
LB
5871 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5872 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5873 u64 tmp;
9d644a62 5874 unsigned rot;
8e5cfb55
ZL
5875
5876 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5877 sizeof(struct btrfs_bio_stripe) *
5878 num_alloc_stripes +
5879 sizeof(int) * tgtdev_indexes);
5880
5881 /* Work out the disk rotation on this stripe-set */
47c5713f 5882 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5883
5884 /* Fill in the logical address of each stripe */
5885 tmp = stripe_nr * nr_data_stripes(map);
5886 for (i = 0; i < nr_data_stripes(map); i++)
5887 bbio->raid_map[(i+rot) % num_stripes] =
5888 em->start + (tmp + i) * map->stripe_len;
5889
5890 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5891 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5892 bbio->raid_map[(i+rot+1) % num_stripes] =
5893 RAID6_Q_STRIPE;
5894 }
5895
b89203f7 5896
0b3d4cd3
LB
5897 for (i = 0; i < num_stripes; i++) {
5898 bbio->stripes[i].physical =
5899 map->stripes[stripe_index].physical +
5900 stripe_offset +
5901 stripe_nr * map->stripe_len;
5902 bbio->stripes[i].dev =
5903 map->stripes[stripe_index].dev;
5904 stripe_index++;
593060d7 5905 }
de11cc12 5906
2b19a1fe 5907 if (need_full_stripe(op))
d20983b4 5908 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5909
8e5cfb55
ZL
5910 if (bbio->raid_map)
5911 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5912
73c0f228 5913 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5914 need_full_stripe(op)) {
73c0f228
LB
5915 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5916 &max_errors);
472262f3
SB
5917 }
5918
de11cc12 5919 *bbio_ret = bbio;
10f11900 5920 bbio->map_type = map->type;
de11cc12
LZ
5921 bbio->num_stripes = num_stripes;
5922 bbio->max_errors = max_errors;
5923 bbio->mirror_num = mirror_num;
ad6d620e
SB
5924
5925 /*
5926 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5927 * mirror_num == num_stripes + 1 && dev_replace target drive is
5928 * available as a mirror
5929 */
5930 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5931 WARN_ON(num_stripes > 1);
5932 bbio->stripes[0].dev = dev_replace->tgtdev;
5933 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5934 bbio->mirror_num = map->num_stripes + 1;
5935 }
cea9e445 5936out:
73beece9
LB
5937 if (dev_replace_is_ongoing) {
5938 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5939 btrfs_dev_replace_unlock(dev_replace, 0);
5940 }
0b86a832 5941 free_extent_map(em);
de11cc12 5942 return ret;
0b86a832
CM
5943}
5944
cf8cddd3 5945int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5946 u64 logical, u64 *length,
a1d3c478 5947 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5948{
b3d3fa51 5949 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5950 mirror_num, 0);
f2d8d74d
CM
5951}
5952
af8e2d1d 5953/* For Scrub/replace */
cf8cddd3 5954int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 5955 u64 logical, u64 *length,
825ad4c9 5956 struct btrfs_bio **bbio_ret)
af8e2d1d 5957{
825ad4c9 5958 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
5959}
5960
ab8d0fc4 5961int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5962 u64 chunk_start, u64 physical, u64 devid,
5963 u64 **logical, int *naddrs, int *stripe_len)
5964{
a512bbf8
YZ
5965 struct extent_map *em;
5966 struct map_lookup *map;
5967 u64 *buf;
5968 u64 bytenr;
5969 u64 length;
5970 u64 stripe_nr;
53b381b3 5971 u64 rmap_len;
a512bbf8
YZ
5972 int i, j, nr = 0;
5973
592d92ee
LB
5974 em = get_chunk_map(fs_info, chunk_start, 1);
5975 if (IS_ERR(em))
835d974f 5976 return -EIO;
835d974f 5977
95617d69 5978 map = em->map_lookup;
a512bbf8 5979 length = em->len;
53b381b3
DW
5980 rmap_len = map->stripe_len;
5981
a512bbf8 5982 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5983 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5984 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5985 length = div_u64(length, map->num_stripes);
ffe2d203 5986 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5987 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5988 rmap_len = map->stripe_len * nr_data_stripes(map);
5989 }
a512bbf8 5990
31e818fe 5991 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5992 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5993
5994 for (i = 0; i < map->num_stripes; i++) {
5995 if (devid && map->stripes[i].dev->devid != devid)
5996 continue;
5997 if (map->stripes[i].physical > physical ||
5998 map->stripes[i].physical + length <= physical)
5999 continue;
6000
6001 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 6002 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6003
6004 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6005 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6006 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6007 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6008 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6009 } /* else if RAID[56], multiply by nr_data_stripes().
6010 * Alternatively, just use rmap_len below instead of
6011 * map->stripe_len */
6012
6013 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6014 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6015 for (j = 0; j < nr; j++) {
6016 if (buf[j] == bytenr)
6017 break;
6018 }
934d375b
CM
6019 if (j == nr) {
6020 WARN_ON(nr >= map->num_stripes);
a512bbf8 6021 buf[nr++] = bytenr;
934d375b 6022 }
a512bbf8
YZ
6023 }
6024
a512bbf8
YZ
6025 *logical = buf;
6026 *naddrs = nr;
53b381b3 6027 *stripe_len = rmap_len;
a512bbf8
YZ
6028
6029 free_extent_map(em);
6030 return 0;
f2d8d74d
CM
6031}
6032
4246a0b6 6033static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6034{
326e1dbb
MS
6035 bio->bi_private = bbio->private;
6036 bio->bi_end_io = bbio->end_io;
4246a0b6 6037 bio_endio(bio);
326e1dbb 6038
6e9606d2 6039 btrfs_put_bbio(bbio);
8408c716
MX
6040}
6041
4246a0b6 6042static void btrfs_end_bio(struct bio *bio)
8790d502 6043{
9be3395b 6044 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6045 int is_orig_bio = 0;
8790d502 6046
4e4cbee9 6047 if (bio->bi_status) {
a1d3c478 6048 atomic_inc(&bbio->error);
4e4cbee9
CH
6049 if (bio->bi_status == BLK_STS_IOERR ||
6050 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6051 unsigned int stripe_index =
9be3395b 6052 btrfs_io_bio(bio)->stripe_index;
65f53338 6053 struct btrfs_device *dev;
442a4f63
SB
6054
6055 BUG_ON(stripe_index >= bbio->num_stripes);
6056 dev = bbio->stripes[stripe_index].dev;
597a60fa 6057 if (dev->bdev) {
37226b21 6058 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6059 btrfs_dev_stat_inc(dev,
6060 BTRFS_DEV_STAT_WRITE_ERRS);
6061 else
6062 btrfs_dev_stat_inc(dev,
6063 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6064 if (bio->bi_opf & REQ_PREFLUSH)
597a60fa
SB
6065 btrfs_dev_stat_inc(dev,
6066 BTRFS_DEV_STAT_FLUSH_ERRS);
6067 btrfs_dev_stat_print_on_error(dev);
6068 }
442a4f63
SB
6069 }
6070 }
8790d502 6071
a1d3c478 6072 if (bio == bbio->orig_bio)
7d2b4daa
CM
6073 is_orig_bio = 1;
6074
c404e0dc
MX
6075 btrfs_bio_counter_dec(bbio->fs_info);
6076
a1d3c478 6077 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6078 if (!is_orig_bio) {
6079 bio_put(bio);
a1d3c478 6080 bio = bbio->orig_bio;
7d2b4daa 6081 }
c7b22bb1 6082
9be3395b 6083 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6084 /* only send an error to the higher layers if it is
53b381b3 6085 * beyond the tolerance of the btrfs bio
a236aed1 6086 */
a1d3c478 6087 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6088 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6089 } else {
1259ab75
CM
6090 /*
6091 * this bio is actually up to date, we didn't
6092 * go over the max number of errors
6093 */
4e4cbee9 6094 bio->bi_status = 0;
1259ab75 6095 }
c55f1396 6096
4246a0b6 6097 btrfs_end_bbio(bbio, bio);
7d2b4daa 6098 } else if (!is_orig_bio) {
8790d502
CM
6099 bio_put(bio);
6100 }
8790d502
CM
6101}
6102
8b712842
CM
6103/*
6104 * see run_scheduled_bios for a description of why bios are collected for
6105 * async submit.
6106 *
6107 * This will add one bio to the pending list for a device and make sure
6108 * the work struct is scheduled.
6109 */
2ff7e61e 6110static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6111 struct bio *bio)
8b712842 6112{
0b246afa 6113 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6114 int should_queue = 1;
ffbd517d 6115 struct btrfs_pending_bios *pending_bios;
8b712842 6116
53b381b3 6117 if (device->missing || !device->bdev) {
4246a0b6 6118 bio_io_error(bio);
53b381b3
DW
6119 return;
6120 }
6121
8b712842 6122 /* don't bother with additional async steps for reads, right now */
37226b21 6123 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6124 bio_get(bio);
4e49ea4a 6125 btrfsic_submit_bio(bio);
492bb6de 6126 bio_put(bio);
143bede5 6127 return;
8b712842
CM
6128 }
6129
6130 /*
0986fe9e 6131 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6132 * higher layers. Otherwise, the async bio makes it appear we have
6133 * made progress against dirty pages when we've really just put it
6134 * on a queue for later
6135 */
0b246afa 6136 atomic_inc(&fs_info->nr_async_bios);
492bb6de 6137 WARN_ON(bio->bi_next);
8b712842 6138 bio->bi_next = NULL;
8b712842
CM
6139
6140 spin_lock(&device->io_lock);
67f055c7 6141 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6142 pending_bios = &device->pending_sync_bios;
6143 else
6144 pending_bios = &device->pending_bios;
8b712842 6145
ffbd517d
CM
6146 if (pending_bios->tail)
6147 pending_bios->tail->bi_next = bio;
8b712842 6148
ffbd517d
CM
6149 pending_bios->tail = bio;
6150 if (!pending_bios->head)
6151 pending_bios->head = bio;
8b712842
CM
6152 if (device->running_pending)
6153 should_queue = 0;
6154
6155 spin_unlock(&device->io_lock);
6156
6157 if (should_queue)
0b246afa 6158 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6159}
6160
2ff7e61e
JM
6161static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6162 u64 physical, int dev_nr, int async)
de1ee92a
JB
6163{
6164 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6165 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6166
6167 bio->bi_private = bbio;
9be3395b 6168 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6169 bio->bi_end_io = btrfs_end_bio;
4f024f37 6170 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6171#ifdef DEBUG
6172 {
6173 struct rcu_string *name;
6174
6175 rcu_read_lock();
6176 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6177 btrfs_debug(fs_info,
6178 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6179 bio_op(bio), bio->bi_opf,
6180 (u64)bio->bi_iter.bi_sector,
6181 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6182 bio->bi_iter.bi_size);
de1ee92a
JB
6183 rcu_read_unlock();
6184 }
6185#endif
6186 bio->bi_bdev = dev->bdev;
c404e0dc 6187
2ff7e61e 6188 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6189
de1ee92a 6190 if (async)
2ff7e61e 6191 btrfs_schedule_bio(dev, bio);
de1ee92a 6192 else
4e49ea4a 6193 btrfsic_submit_bio(bio);
de1ee92a
JB
6194}
6195
de1ee92a
JB
6196static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6197{
6198 atomic_inc(&bbio->error);
6199 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6200 /* Should be the original bio. */
8408c716
MX
6201 WARN_ON(bio != bbio->orig_bio);
6202
9be3395b 6203 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6204 bio->bi_iter.bi_sector = logical >> 9;
4e4cbee9 6205 bio->bi_status = BLK_STS_IOERR;
4246a0b6 6206 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6207 }
6208}
6209
2ff7e61e 6210int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
8b712842 6211 int mirror_num, int async_submit)
0b86a832 6212{
0b86a832 6213 struct btrfs_device *dev;
8790d502 6214 struct bio *first_bio = bio;
4f024f37 6215 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6216 u64 length = 0;
6217 u64 map_length;
0b86a832 6218 int ret;
08da757d
ZL
6219 int dev_nr;
6220 int total_devs;
a1d3c478 6221 struct btrfs_bio *bbio = NULL;
0b86a832 6222
4f024f37 6223 length = bio->bi_iter.bi_size;
0b86a832 6224 map_length = length;
cea9e445 6225
0b246afa
JM
6226 btrfs_bio_counter_inc_blocked(fs_info);
6227 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
37226b21 6228 &map_length, &bbio, mirror_num, 1);
c404e0dc 6229 if (ret) {
0b246afa 6230 btrfs_bio_counter_dec(fs_info);
79787eaa 6231 return ret;
c404e0dc 6232 }
cea9e445 6233
a1d3c478 6234 total_devs = bbio->num_stripes;
53b381b3
DW
6235 bbio->orig_bio = first_bio;
6236 bbio->private = first_bio->bi_private;
6237 bbio->end_io = first_bio->bi_end_io;
0b246afa 6238 bbio->fs_info = fs_info;
53b381b3
DW
6239 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6240
ad1ba2a0 6241 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6242 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6243 /* In this case, map_length has been set to the length of
6244 a single stripe; not the whole write */
37226b21 6245 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6246 ret = raid56_parity_write(fs_info, bio, bbio,
6247 map_length);
53b381b3 6248 } else {
2ff7e61e
JM
6249 ret = raid56_parity_recover(fs_info, bio, bbio,
6250 map_length, mirror_num, 1);
53b381b3 6251 }
4245215d 6252
0b246afa 6253 btrfs_bio_counter_dec(fs_info);
c404e0dc 6254 return ret;
53b381b3
DW
6255 }
6256
cea9e445 6257 if (map_length < length) {
0b246afa 6258 btrfs_crit(fs_info,
5d163e0e
JM
6259 "mapping failed logical %llu bio len %llu len %llu",
6260 logical, length, map_length);
cea9e445
CM
6261 BUG();
6262 }
a1d3c478 6263
08da757d 6264 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6265 dev = bbio->stripes[dev_nr].dev;
37226b21 6266 if (!dev || !dev->bdev ||
a967efb3 6267 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6268 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6269 continue;
6270 }
6271
3aa8e074 6272 if (dev_nr < total_devs - 1)
8b6c1d56 6273 bio = btrfs_bio_clone(first_bio);
3aa8e074 6274 else
a1d3c478 6275 bio = first_bio;
de1ee92a 6276
2ff7e61e
JM
6277 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6278 dev_nr, async_submit);
8790d502 6279 }
0b246afa 6280 btrfs_bio_counter_dec(fs_info);
0b86a832
CM
6281 return 0;
6282}
6283
aa1b8cd4 6284struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6285 u8 *uuid, u8 *fsid)
0b86a832 6286{
2b82032c
YZ
6287 struct btrfs_device *device;
6288 struct btrfs_fs_devices *cur_devices;
6289
aa1b8cd4 6290 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6291 while (cur_devices) {
6292 if (!fsid ||
6293 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6294 device = __find_device(&cur_devices->devices,
6295 devid, uuid);
6296 if (device)
6297 return device;
6298 }
6299 cur_devices = cur_devices->seed;
6300 }
6301 return NULL;
0b86a832
CM
6302}
6303
2ff7e61e 6304static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6305 u64 devid, u8 *dev_uuid)
6306{
6307 struct btrfs_device *device;
dfe25020 6308
12bd2fc0
ID
6309 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6310 if (IS_ERR(device))
7cbd8a83 6311 return NULL;
12bd2fc0
ID
6312
6313 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6314 device->fs_devices = fs_devices;
dfe25020 6315 fs_devices->num_devices++;
12bd2fc0
ID
6316
6317 device->missing = 1;
cd02dca5 6318 fs_devices->missing_devices++;
12bd2fc0 6319
dfe25020
CM
6320 return device;
6321}
6322
12bd2fc0
ID
6323/**
6324 * btrfs_alloc_device - allocate struct btrfs_device
6325 * @fs_info: used only for generating a new devid, can be NULL if
6326 * devid is provided (i.e. @devid != NULL).
6327 * @devid: a pointer to devid for this device. If NULL a new devid
6328 * is generated.
6329 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6330 * is generated.
6331 *
6332 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6333 * on error. Returned struct is not linked onto any lists and can be
6334 * destroyed with kfree() right away.
6335 */
6336struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6337 const u64 *devid,
6338 const u8 *uuid)
6339{
6340 struct btrfs_device *dev;
6341 u64 tmp;
6342
fae7f21c 6343 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6344 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6345
6346 dev = __alloc_device();
6347 if (IS_ERR(dev))
6348 return dev;
6349
6350 if (devid)
6351 tmp = *devid;
6352 else {
6353 int ret;
6354
6355 ret = find_next_devid(fs_info, &tmp);
6356 if (ret) {
6357 kfree(dev);
6358 return ERR_PTR(ret);
6359 }
6360 }
6361 dev->devid = tmp;
6362
6363 if (uuid)
6364 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6365 else
6366 generate_random_uuid(dev->uuid);
6367
9e0af237
LB
6368 btrfs_init_work(&dev->work, btrfs_submit_helper,
6369 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6370
6371 return dev;
6372}
6373
e06cd3dd 6374/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6375static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6376 struct extent_buffer *leaf,
6377 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6378{
0b86a832 6379 u64 length;
f04b772b 6380 u64 stripe_len;
e06cd3dd
LB
6381 u16 num_stripes;
6382 u16 sub_stripes;
6383 u64 type;
0b86a832 6384
e17cade2 6385 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6386 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6387 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6388 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6389 type = btrfs_chunk_type(leaf, chunk);
6390
f04b772b 6391 if (!num_stripes) {
0b246afa 6392 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6393 num_stripes);
6394 return -EIO;
6395 }
0b246afa
JM
6396 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6397 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6398 return -EIO;
6399 }
0b246afa
JM
6400 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6401 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6402 btrfs_chunk_sector_size(leaf, chunk));
6403 return -EIO;
6404 }
0b246afa
JM
6405 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6406 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6407 return -EIO;
6408 }
3d8da678 6409 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6410 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6411 stripe_len);
6412 return -EIO;
6413 }
6414 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6415 type) {
0b246afa 6416 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6417 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6418 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6419 btrfs_chunk_type(leaf, chunk));
6420 return -EIO;
6421 }
e06cd3dd
LB
6422 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6423 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6424 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6425 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6426 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6427 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6428 num_stripes != 1)) {
0b246afa 6429 btrfs_err(fs_info,
e06cd3dd
LB
6430 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6431 num_stripes, sub_stripes,
6432 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6433 return -EIO;
6434 }
6435
6436 return 0;
6437}
6438
2ff7e61e 6439static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6440 struct extent_buffer *leaf,
6441 struct btrfs_chunk *chunk)
6442{
0b246afa 6443 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6444 struct map_lookup *map;
6445 struct extent_map *em;
6446 u64 logical;
6447 u64 length;
6448 u64 stripe_len;
6449 u64 devid;
6450 u8 uuid[BTRFS_UUID_SIZE];
6451 int num_stripes;
6452 int ret;
6453 int i;
6454
6455 logical = key->offset;
6456 length = btrfs_chunk_length(leaf, chunk);
6457 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6458 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6459
2ff7e61e 6460 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6461 if (ret)
6462 return ret;
a061fc8d 6463
890871be 6464 read_lock(&map_tree->map_tree.lock);
0b86a832 6465 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6466 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6467
6468 /* already mapped? */
6469 if (em && em->start <= logical && em->start + em->len > logical) {
6470 free_extent_map(em);
0b86a832
CM
6471 return 0;
6472 } else if (em) {
6473 free_extent_map(em);
6474 }
0b86a832 6475
172ddd60 6476 em = alloc_extent_map();
0b86a832
CM
6477 if (!em)
6478 return -ENOMEM;
593060d7 6479 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6480 if (!map) {
6481 free_extent_map(em);
6482 return -ENOMEM;
6483 }
6484
298a8f9c 6485 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6486 em->map_lookup = map;
0b86a832
CM
6487 em->start = logical;
6488 em->len = length;
70c8a91c 6489 em->orig_start = 0;
0b86a832 6490 em->block_start = 0;
c8b97818 6491 em->block_len = em->len;
0b86a832 6492
593060d7
CM
6493 map->num_stripes = num_stripes;
6494 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6495 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6496 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6497 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6498 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6499 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6500 for (i = 0; i < num_stripes; i++) {
6501 map->stripes[i].physical =
6502 btrfs_stripe_offset_nr(leaf, chunk, i);
6503 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6504 read_extent_buffer(leaf, uuid, (unsigned long)
6505 btrfs_stripe_dev_uuid_nr(chunk, i),
6506 BTRFS_UUID_SIZE);
0b246afa 6507 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6508 uuid, NULL);
3cdde224 6509 if (!map->stripes[i].dev &&
0b246afa 6510 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7
CM
6511 free_extent_map(em);
6512 return -EIO;
6513 }
dfe25020
CM
6514 if (!map->stripes[i].dev) {
6515 map->stripes[i].dev =
2ff7e61e
JM
6516 add_missing_dev(fs_info->fs_devices, devid,
6517 uuid);
dfe25020 6518 if (!map->stripes[i].dev) {
dfe25020
CM
6519 free_extent_map(em);
6520 return -EIO;
6521 }
0b246afa 6522 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
5d163e0e 6523 devid, uuid);
dfe25020
CM
6524 }
6525 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6526 }
6527
890871be 6528 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6529 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6530 write_unlock(&map_tree->map_tree.lock);
79787eaa 6531 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6532 free_extent_map(em);
6533
6534 return 0;
6535}
6536
143bede5 6537static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6538 struct btrfs_dev_item *dev_item,
6539 struct btrfs_device *device)
6540{
6541 unsigned long ptr;
0b86a832
CM
6542
6543 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6544 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6545 device->total_bytes = device->disk_total_bytes;
935e5cc9 6546 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6547 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6548 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6549 device->type = btrfs_device_type(leaf, dev_item);
6550 device->io_align = btrfs_device_io_align(leaf, dev_item);
6551 device->io_width = btrfs_device_io_width(leaf, dev_item);
6552 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6553 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6554 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6555
410ba3a2 6556 ptr = btrfs_device_uuid(dev_item);
e17cade2 6557 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6558}
6559
2ff7e61e 6560static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6561 u8 *fsid)
2b82032c
YZ
6562{
6563 struct btrfs_fs_devices *fs_devices;
6564 int ret;
6565
b367e47f 6566 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c 6567
0b246afa 6568 fs_devices = fs_info->fs_devices->seed;
2b82032c 6569 while (fs_devices) {
5f375835
MX
6570 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6571 return fs_devices;
6572
2b82032c
YZ
6573 fs_devices = fs_devices->seed;
6574 }
6575
6576 fs_devices = find_fsid(fsid);
6577 if (!fs_devices) {
0b246afa 6578 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6579 return ERR_PTR(-ENOENT);
6580
6581 fs_devices = alloc_fs_devices(fsid);
6582 if (IS_ERR(fs_devices))
6583 return fs_devices;
6584
6585 fs_devices->seeding = 1;
6586 fs_devices->opened = 1;
6587 return fs_devices;
2b82032c 6588 }
e4404d6e
YZ
6589
6590 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6591 if (IS_ERR(fs_devices))
6592 return fs_devices;
2b82032c 6593
97288f2c 6594 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6595 fs_info->bdev_holder);
48d28232
JL
6596 if (ret) {
6597 free_fs_devices(fs_devices);
5f375835 6598 fs_devices = ERR_PTR(ret);
2b82032c 6599 goto out;
48d28232 6600 }
2b82032c
YZ
6601
6602 if (!fs_devices->seeding) {
6603 __btrfs_close_devices(fs_devices);
e4404d6e 6604 free_fs_devices(fs_devices);
5f375835 6605 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6606 goto out;
6607 }
6608
0b246afa
JM
6609 fs_devices->seed = fs_info->fs_devices->seed;
6610 fs_info->fs_devices->seed = fs_devices;
2b82032c 6611out:
5f375835 6612 return fs_devices;
2b82032c
YZ
6613}
6614
2ff7e61e 6615static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6616 struct extent_buffer *leaf,
6617 struct btrfs_dev_item *dev_item)
6618{
0b246afa 6619 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6620 struct btrfs_device *device;
6621 u64 devid;
6622 int ret;
2b82032c 6623 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6624 u8 dev_uuid[BTRFS_UUID_SIZE];
6625
0b86a832 6626 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6627 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6628 BTRFS_UUID_SIZE);
1473b24e 6629 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6630 BTRFS_UUID_SIZE);
6631
0b246afa 6632 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
2ff7e61e 6633 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6634 if (IS_ERR(fs_devices))
6635 return PTR_ERR(fs_devices);
2b82032c
YZ
6636 }
6637
0b246afa 6638 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6639 if (!device) {
0b246afa 6640 if (!btrfs_test_opt(fs_info, DEGRADED))
2b82032c
YZ
6641 return -EIO;
6642
2ff7e61e 6643 device = add_missing_dev(fs_devices, devid, dev_uuid);
5f375835
MX
6644 if (!device)
6645 return -ENOMEM;
0b246afa 6646 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
33b97e43 6647 devid, dev_uuid);
5f375835 6648 } else {
0b246afa 6649 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6650 return -EIO;
6651
6652 if(!device->bdev && !device->missing) {
cd02dca5
CM
6653 /*
6654 * this happens when a device that was properly setup
6655 * in the device info lists suddenly goes bad.
6656 * device->bdev is NULL, and so we have to set
6657 * device->missing to one here
6658 */
5f375835 6659 device->fs_devices->missing_devices++;
cd02dca5 6660 device->missing = 1;
2b82032c 6661 }
5f375835
MX
6662
6663 /* Move the device to its own fs_devices */
6664 if (device->fs_devices != fs_devices) {
6665 ASSERT(device->missing);
6666
6667 list_move(&device->dev_list, &fs_devices->devices);
6668 device->fs_devices->num_devices--;
6669 fs_devices->num_devices++;
6670
6671 device->fs_devices->missing_devices--;
6672 fs_devices->missing_devices++;
6673
6674 device->fs_devices = fs_devices;
6675 }
2b82032c
YZ
6676 }
6677
0b246afa 6678 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6679 BUG_ON(device->writeable);
6680 if (device->generation !=
6681 btrfs_device_generation(leaf, dev_item))
6682 return -EINVAL;
6324fbf3 6683 }
0b86a832
CM
6684
6685 fill_device_from_item(leaf, dev_item, device);
dfe25020 6686 device->in_fs_metadata = 1;
63a212ab 6687 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6688 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6689 atomic64_add(device->total_bytes - device->bytes_used,
6690 &fs_info->free_chunk_space);
2bf64758 6691 }
0b86a832 6692 ret = 0;
0b86a832
CM
6693 return ret;
6694}
6695
6bccf3ab 6696int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6697{
6bccf3ab 6698 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6699 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6700 struct extent_buffer *sb;
0b86a832 6701 struct btrfs_disk_key *disk_key;
0b86a832 6702 struct btrfs_chunk *chunk;
1ffb22cf
DS
6703 u8 *array_ptr;
6704 unsigned long sb_array_offset;
84eed90f 6705 int ret = 0;
0b86a832
CM
6706 u32 num_stripes;
6707 u32 array_size;
6708 u32 len = 0;
1ffb22cf 6709 u32 cur_offset;
e06cd3dd 6710 u64 type;
84eed90f 6711 struct btrfs_key key;
0b86a832 6712
0b246afa 6713 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6714 /*
6715 * This will create extent buffer of nodesize, superblock size is
6716 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6717 * overallocate but we can keep it as-is, only the first page is used.
6718 */
2ff7e61e 6719 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6720 if (IS_ERR(sb))
6721 return PTR_ERR(sb);
4db8c528 6722 set_extent_buffer_uptodate(sb);
85d4e461 6723 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6724 /*
01327610 6725 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6726 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6727 * pages up-to-date when the page is larger: extent does not cover the
6728 * whole page and consequently check_page_uptodate does not find all
6729 * the page's extents up-to-date (the hole beyond sb),
6730 * write_extent_buffer then triggers a WARN_ON.
6731 *
6732 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6733 * but sb spans only this function. Add an explicit SetPageUptodate call
6734 * to silence the warning eg. on PowerPC 64.
6735 */
09cbfeaf 6736 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6737 SetPageUptodate(sb->pages[0]);
4008c04a 6738
a061fc8d 6739 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6740 array_size = btrfs_super_sys_array_size(super_copy);
6741
1ffb22cf
DS
6742 array_ptr = super_copy->sys_chunk_array;
6743 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6744 cur_offset = 0;
0b86a832 6745
1ffb22cf
DS
6746 while (cur_offset < array_size) {
6747 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6748 len = sizeof(*disk_key);
6749 if (cur_offset + len > array_size)
6750 goto out_short_read;
6751
0b86a832
CM
6752 btrfs_disk_key_to_cpu(&key, disk_key);
6753
1ffb22cf
DS
6754 array_ptr += len;
6755 sb_array_offset += len;
6756 cur_offset += len;
0b86a832 6757
0d81ba5d 6758 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6759 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6760 /*
6761 * At least one btrfs_chunk with one stripe must be
6762 * present, exact stripe count check comes afterwards
6763 */
6764 len = btrfs_chunk_item_size(1);
6765 if (cur_offset + len > array_size)
6766 goto out_short_read;
6767
6768 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6769 if (!num_stripes) {
ab8d0fc4
JM
6770 btrfs_err(fs_info,
6771 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6772 num_stripes, cur_offset);
6773 ret = -EIO;
6774 break;
6775 }
6776
e06cd3dd
LB
6777 type = btrfs_chunk_type(sb, chunk);
6778 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6779 btrfs_err(fs_info,
e06cd3dd
LB
6780 "invalid chunk type %llu in sys_array at offset %u",
6781 type, cur_offset);
6782 ret = -EIO;
6783 break;
6784 }
6785
e3540eab
DS
6786 len = btrfs_chunk_item_size(num_stripes);
6787 if (cur_offset + len > array_size)
6788 goto out_short_read;
6789
2ff7e61e 6790 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6791 if (ret)
6792 break;
0b86a832 6793 } else {
ab8d0fc4
JM
6794 btrfs_err(fs_info,
6795 "unexpected item type %u in sys_array at offset %u",
6796 (u32)key.type, cur_offset);
84eed90f
CM
6797 ret = -EIO;
6798 break;
0b86a832 6799 }
1ffb22cf
DS
6800 array_ptr += len;
6801 sb_array_offset += len;
6802 cur_offset += len;
0b86a832 6803 }
d865177a 6804 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6805 free_extent_buffer_stale(sb);
84eed90f 6806 return ret;
e3540eab
DS
6807
6808out_short_read:
ab8d0fc4 6809 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6810 len, cur_offset);
d865177a 6811 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6812 free_extent_buffer_stale(sb);
e3540eab 6813 return -EIO;
0b86a832
CM
6814}
6815
5b4aacef 6816int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6817{
5b4aacef 6818 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6819 struct btrfs_path *path;
6820 struct extent_buffer *leaf;
6821 struct btrfs_key key;
6822 struct btrfs_key found_key;
6823 int ret;
6824 int slot;
99e3ecfc 6825 u64 total_dev = 0;
0b86a832 6826
0b86a832
CM
6827 path = btrfs_alloc_path();
6828 if (!path)
6829 return -ENOMEM;
6830
b367e47f 6831 mutex_lock(&uuid_mutex);
34441361 6832 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6833
395927a9
FDBM
6834 /*
6835 * Read all device items, and then all the chunk items. All
6836 * device items are found before any chunk item (their object id
6837 * is smaller than the lowest possible object id for a chunk
6838 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6839 */
6840 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6841 key.offset = 0;
6842 key.type = 0;
0b86a832 6843 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6844 if (ret < 0)
6845 goto error;
d397712b 6846 while (1) {
0b86a832
CM
6847 leaf = path->nodes[0];
6848 slot = path->slots[0];
6849 if (slot >= btrfs_header_nritems(leaf)) {
6850 ret = btrfs_next_leaf(root, path);
6851 if (ret == 0)
6852 continue;
6853 if (ret < 0)
6854 goto error;
6855 break;
6856 }
6857 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6858 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6859 struct btrfs_dev_item *dev_item;
6860 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6861 struct btrfs_dev_item);
2ff7e61e 6862 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6863 if (ret)
6864 goto error;
99e3ecfc 6865 total_dev++;
0b86a832
CM
6866 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6867 struct btrfs_chunk *chunk;
6868 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6869 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6870 if (ret)
6871 goto error;
0b86a832
CM
6872 }
6873 path->slots[0]++;
6874 }
99e3ecfc
LB
6875
6876 /*
6877 * After loading chunk tree, we've got all device information,
6878 * do another round of validation checks.
6879 */
0b246afa
JM
6880 if (total_dev != fs_info->fs_devices->total_devices) {
6881 btrfs_err(fs_info,
99e3ecfc 6882 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6883 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6884 total_dev);
6885 ret = -EINVAL;
6886 goto error;
6887 }
0b246afa
JM
6888 if (btrfs_super_total_bytes(fs_info->super_copy) <
6889 fs_info->fs_devices->total_rw_bytes) {
6890 btrfs_err(fs_info,
99e3ecfc 6891 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6892 btrfs_super_total_bytes(fs_info->super_copy),
6893 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6894 ret = -EINVAL;
6895 goto error;
6896 }
0b86a832
CM
6897 ret = 0;
6898error:
34441361 6899 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
6900 mutex_unlock(&uuid_mutex);
6901
2b82032c 6902 btrfs_free_path(path);
0b86a832
CM
6903 return ret;
6904}
442a4f63 6905
cb517eab
MX
6906void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6907{
6908 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6909 struct btrfs_device *device;
6910
29cc83f6
LB
6911 while (fs_devices) {
6912 mutex_lock(&fs_devices->device_list_mutex);
6913 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6914 device->fs_info = fs_info;
29cc83f6
LB
6915 mutex_unlock(&fs_devices->device_list_mutex);
6916
6917 fs_devices = fs_devices->seed;
6918 }
cb517eab
MX
6919}
6920
733f4fbb
SB
6921static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6922{
6923 int i;
6924
6925 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6926 btrfs_dev_stat_reset(dev, i);
6927}
6928
6929int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6930{
6931 struct btrfs_key key;
6932 struct btrfs_key found_key;
6933 struct btrfs_root *dev_root = fs_info->dev_root;
6934 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6935 struct extent_buffer *eb;
6936 int slot;
6937 int ret = 0;
6938 struct btrfs_device *device;
6939 struct btrfs_path *path = NULL;
6940 int i;
6941
6942 path = btrfs_alloc_path();
6943 if (!path) {
6944 ret = -ENOMEM;
6945 goto out;
6946 }
6947
6948 mutex_lock(&fs_devices->device_list_mutex);
6949 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6950 int item_size;
6951 struct btrfs_dev_stats_item *ptr;
6952
242e2956
DS
6953 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6954 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6955 key.offset = device->devid;
6956 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6957 if (ret) {
733f4fbb
SB
6958 __btrfs_reset_dev_stats(device);
6959 device->dev_stats_valid = 1;
6960 btrfs_release_path(path);
6961 continue;
6962 }
6963 slot = path->slots[0];
6964 eb = path->nodes[0];
6965 btrfs_item_key_to_cpu(eb, &found_key, slot);
6966 item_size = btrfs_item_size_nr(eb, slot);
6967
6968 ptr = btrfs_item_ptr(eb, slot,
6969 struct btrfs_dev_stats_item);
6970
6971 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6972 if (item_size >= (1 + i) * sizeof(__le64))
6973 btrfs_dev_stat_set(device, i,
6974 btrfs_dev_stats_value(eb, ptr, i));
6975 else
6976 btrfs_dev_stat_reset(device, i);
6977 }
6978
6979 device->dev_stats_valid = 1;
6980 btrfs_dev_stat_print_on_load(device);
6981 btrfs_release_path(path);
6982 }
6983 mutex_unlock(&fs_devices->device_list_mutex);
6984
6985out:
6986 btrfs_free_path(path);
6987 return ret < 0 ? ret : 0;
6988}
6989
6990static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 6991 struct btrfs_fs_info *fs_info,
733f4fbb
SB
6992 struct btrfs_device *device)
6993{
6bccf3ab 6994 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
6995 struct btrfs_path *path;
6996 struct btrfs_key key;
6997 struct extent_buffer *eb;
6998 struct btrfs_dev_stats_item *ptr;
6999 int ret;
7000 int i;
7001
242e2956
DS
7002 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7003 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7004 key.offset = device->devid;
7005
7006 path = btrfs_alloc_path();
fa252992
DS
7007 if (!path)
7008 return -ENOMEM;
733f4fbb
SB
7009 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7010 if (ret < 0) {
0b246afa 7011 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7012 "error %d while searching for dev_stats item for device %s",
606686ee 7013 ret, rcu_str_deref(device->name));
733f4fbb
SB
7014 goto out;
7015 }
7016
7017 if (ret == 0 &&
7018 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7019 /* need to delete old one and insert a new one */
7020 ret = btrfs_del_item(trans, dev_root, path);
7021 if (ret != 0) {
0b246afa 7022 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7023 "delete too small dev_stats item for device %s failed %d",
606686ee 7024 rcu_str_deref(device->name), ret);
733f4fbb
SB
7025 goto out;
7026 }
7027 ret = 1;
7028 }
7029
7030 if (ret == 1) {
7031 /* need to insert a new item */
7032 btrfs_release_path(path);
7033 ret = btrfs_insert_empty_item(trans, dev_root, path,
7034 &key, sizeof(*ptr));
7035 if (ret < 0) {
0b246afa 7036 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7037 "insert dev_stats item for device %s failed %d",
7038 rcu_str_deref(device->name), ret);
733f4fbb
SB
7039 goto out;
7040 }
7041 }
7042
7043 eb = path->nodes[0];
7044 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7045 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7046 btrfs_set_dev_stats_value(eb, ptr, i,
7047 btrfs_dev_stat_read(device, i));
7048 btrfs_mark_buffer_dirty(eb);
7049
7050out:
7051 btrfs_free_path(path);
7052 return ret;
7053}
7054
7055/*
7056 * called from commit_transaction. Writes all changed device stats to disk.
7057 */
7058int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7059 struct btrfs_fs_info *fs_info)
7060{
733f4fbb
SB
7061 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7062 struct btrfs_device *device;
addc3fa7 7063 int stats_cnt;
733f4fbb
SB
7064 int ret = 0;
7065
7066 mutex_lock(&fs_devices->device_list_mutex);
7067 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7068 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7069 continue;
7070
addc3fa7 7071 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7072 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7073 if (!ret)
addc3fa7 7074 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7075 }
7076 mutex_unlock(&fs_devices->device_list_mutex);
7077
7078 return ret;
7079}
7080
442a4f63
SB
7081void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7082{
7083 btrfs_dev_stat_inc(dev, index);
7084 btrfs_dev_stat_print_on_error(dev);
7085}
7086
48a3b636 7087static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7088{
733f4fbb
SB
7089 if (!dev->dev_stats_valid)
7090 return;
fb456252 7091 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7092 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7093 rcu_str_deref(dev->name),
442a4f63
SB
7094 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7095 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7096 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7097 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7098 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7099}
c11d2c23 7100
733f4fbb
SB
7101static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7102{
a98cdb85
SB
7103 int i;
7104
7105 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7106 if (btrfs_dev_stat_read(dev, i) != 0)
7107 break;
7108 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7109 return; /* all values == 0, suppress message */
7110
fb456252 7111 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7112 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7113 rcu_str_deref(dev->name),
733f4fbb
SB
7114 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7115 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7116 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7117 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7118 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7119}
7120
2ff7e61e 7121int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7122 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7123{
7124 struct btrfs_device *dev;
0b246afa 7125 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7126 int i;
7127
7128 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7129 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7130 mutex_unlock(&fs_devices->device_list_mutex);
7131
7132 if (!dev) {
0b246afa 7133 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7134 return -ENODEV;
733f4fbb 7135 } else if (!dev->dev_stats_valid) {
0b246afa 7136 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7137 return -ENODEV;
b27f7c0c 7138 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7139 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7140 if (stats->nr_items > i)
7141 stats->values[i] =
7142 btrfs_dev_stat_read_and_reset(dev, i);
7143 else
7144 btrfs_dev_stat_reset(dev, i);
7145 }
7146 } else {
7147 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7148 if (stats->nr_items > i)
7149 stats->values[i] = btrfs_dev_stat_read(dev, i);
7150 }
7151 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7152 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7153 return 0;
7154}
a8a6dab7 7155
da353f6b 7156void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7157{
7158 struct buffer_head *bh;
7159 struct btrfs_super_block *disk_super;
12b1c263 7160 int copy_num;
a8a6dab7 7161
12b1c263
AJ
7162 if (!bdev)
7163 return;
a8a6dab7 7164
12b1c263
AJ
7165 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7166 copy_num++) {
a8a6dab7 7167
12b1c263
AJ
7168 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7169 continue;
7170
7171 disk_super = (struct btrfs_super_block *)bh->b_data;
7172
7173 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7174 set_buffer_dirty(bh);
7175 sync_dirty_buffer(bh);
7176 brelse(bh);
7177 }
7178
7179 /* Notify udev that device has changed */
7180 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7181
7182 /* Update ctime/mtime for device path for libblkid */
7183 update_dev_time(device_path);
a8a6dab7 7184}
935e5cc9
MX
7185
7186/*
7187 * Update the size of all devices, which is used for writing out the
7188 * super blocks.
7189 */
7190void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7191{
7192 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7193 struct btrfs_device *curr, *next;
7194
7195 if (list_empty(&fs_devices->resized_devices))
7196 return;
7197
7198 mutex_lock(&fs_devices->device_list_mutex);
34441361 7199 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7200 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7201 resized_list) {
7202 list_del_init(&curr->resized_list);
7203 curr->commit_total_bytes = curr->disk_total_bytes;
7204 }
34441361 7205 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7206 mutex_unlock(&fs_devices->device_list_mutex);
7207}
ce7213c7
MX
7208
7209/* Must be invoked during the transaction commit */
2ff7e61e 7210void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7211 struct btrfs_transaction *transaction)
7212{
7213 struct extent_map *em;
7214 struct map_lookup *map;
7215 struct btrfs_device *dev;
7216 int i;
7217
7218 if (list_empty(&transaction->pending_chunks))
7219 return;
7220
7221 /* In order to kick the device replace finish process */
34441361 7222 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7223 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7224 map = em->map_lookup;
ce7213c7
MX
7225
7226 for (i = 0; i < map->num_stripes; i++) {
7227 dev = map->stripes[i].dev;
7228 dev->commit_bytes_used = dev->bytes_used;
7229 }
7230 }
34441361 7231 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7232}
5a13f430
AJ
7233
7234void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7235{
7236 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7237 while (fs_devices) {
7238 fs_devices->fs_info = fs_info;
7239 fs_devices = fs_devices->seed;
7240 }
7241}
7242
7243void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7244{
7245 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7246 while (fs_devices) {
7247 fs_devices->fs_info = NULL;
7248 fs_devices = fs_devices->seed;
7249 }
7250}