]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/volumes.c
btrfs: tree-checker: Check item size before reading file extent type
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832
CM
6#include <linux/sched.h>
7#include <linux/bio.h>
5a0e3ad6 8#include <linux/slab.h>
8a4b83cc 9#include <linux/buffer_head.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
0b86a832 33
af902047
ZL
34const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
8789f4fe 40 .tolerated_failures = 1,
af902047
ZL
41 .devs_increment = 2,
42 .ncopies = 2,
b50836ed 43 .nparity = 0,
ed23467b 44 .raid_name = "raid10",
41a6e891 45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
47 },
48 [BTRFS_RAID_RAID1] = {
49 .sub_stripes = 1,
50 .dev_stripes = 1,
51 .devs_max = 2,
52 .devs_min = 2,
8789f4fe 53 .tolerated_failures = 1,
af902047
ZL
54 .devs_increment = 2,
55 .ncopies = 2,
b50836ed 56 .nparity = 0,
ed23467b 57 .raid_name = "raid1",
41a6e891 58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047
ZL
60 },
61 [BTRFS_RAID_DUP] = {
62 .sub_stripes = 1,
63 .dev_stripes = 2,
64 .devs_max = 1,
65 .devs_min = 1,
8789f4fe 66 .tolerated_failures = 0,
af902047
ZL
67 .devs_increment = 1,
68 .ncopies = 2,
b50836ed 69 .nparity = 0,
ed23467b 70 .raid_name = "dup",
41a6e891 71 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 72 .mindev_error = 0,
af902047
ZL
73 },
74 [BTRFS_RAID_RAID0] = {
75 .sub_stripes = 1,
76 .dev_stripes = 1,
77 .devs_max = 0,
78 .devs_min = 2,
8789f4fe 79 .tolerated_failures = 0,
af902047
ZL
80 .devs_increment = 1,
81 .ncopies = 1,
b50836ed 82 .nparity = 0,
ed23467b 83 .raid_name = "raid0",
41a6e891 84 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 85 .mindev_error = 0,
af902047
ZL
86 },
87 [BTRFS_RAID_SINGLE] = {
88 .sub_stripes = 1,
89 .dev_stripes = 1,
90 .devs_max = 1,
91 .devs_min = 1,
8789f4fe 92 .tolerated_failures = 0,
af902047
ZL
93 .devs_increment = 1,
94 .ncopies = 1,
b50836ed 95 .nparity = 0,
ed23467b 96 .raid_name = "single",
41a6e891 97 .bg_flag = 0,
f9fbcaa2 98 .mindev_error = 0,
af902047
ZL
99 },
100 [BTRFS_RAID_RAID5] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 2,
8789f4fe 105 .tolerated_failures = 1,
af902047 106 .devs_increment = 1,
da612e31 107 .ncopies = 1,
b50836ed 108 .nparity = 1,
ed23467b 109 .raid_name = "raid5",
41a6e891 110 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 111 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
112 },
113 [BTRFS_RAID_RAID6] = {
114 .sub_stripes = 1,
115 .dev_stripes = 1,
116 .devs_max = 0,
117 .devs_min = 3,
8789f4fe 118 .tolerated_failures = 2,
af902047 119 .devs_increment = 1,
da612e31 120 .ncopies = 1,
b50836ed 121 .nparity = 2,
ed23467b 122 .raid_name = "raid6",
41a6e891 123 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 124 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
125 },
126};
127
158da513 128const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 129{
158da513
DS
130 const int index = btrfs_bg_flags_to_raid_index(flags);
131
132 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
133 return NULL;
134
158da513 135 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
136}
137
f89e09cf
AJ
138/*
139 * Fill @buf with textual description of @bg_flags, no more than @size_buf
140 * bytes including terminating null byte.
141 */
142void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
143{
144 int i;
145 int ret;
146 char *bp = buf;
147 u64 flags = bg_flags;
148 u32 size_bp = size_buf;
149
150 if (!flags) {
151 strcpy(bp, "NONE");
152 return;
153 }
154
155#define DESCRIBE_FLAG(flag, desc) \
156 do { \
157 if (flags & (flag)) { \
158 ret = snprintf(bp, size_bp, "%s|", (desc)); \
159 if (ret < 0 || ret >= size_bp) \
160 goto out_overflow; \
161 size_bp -= ret; \
162 bp += ret; \
163 flags &= ~(flag); \
164 } \
165 } while (0)
166
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
170
171 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
172 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
173 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
174 btrfs_raid_array[i].raid_name);
175#undef DESCRIBE_FLAG
176
177 if (flags) {
178 ret = snprintf(bp, size_bp, "0x%llx|", flags);
179 size_bp -= ret;
180 }
181
182 if (size_bp < size_buf)
183 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
184
185 /*
186 * The text is trimmed, it's up to the caller to provide sufficiently
187 * large buffer
188 */
189out_overflow:;
190}
191
6f8e0fc7 192static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 193static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 194static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 195static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
196static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 enum btrfs_map_op op,
198 u64 logical, u64 *length,
199 struct btrfs_bio **bbio_ret,
200 int mirror_num, int need_raid_map);
2b82032c 201
9c6b1c4d
DS
202/*
203 * Device locking
204 * ==============
205 *
206 * There are several mutexes that protect manipulation of devices and low-level
207 * structures like chunks but not block groups, extents or files
208 *
209 * uuid_mutex (global lock)
210 * ------------------------
211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213 * device) or requested by the device= mount option
214 *
215 * the mutex can be very coarse and can cover long-running operations
216 *
217 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 218 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
219 *
220 * global::fs_devs - add, remove, updates to the global list
221 *
222 * does not protect: manipulation of the fs_devices::devices list!
223 *
224 * btrfs_device::name - renames (write side), read is RCU
225 *
226 * fs_devices::device_list_mutex (per-fs, with RCU)
227 * ------------------------------------------------
228 * protects updates to fs_devices::devices, ie. adding and deleting
229 *
230 * simple list traversal with read-only actions can be done with RCU protection
231 *
232 * may be used to exclude some operations from running concurrently without any
233 * modifications to the list (see write_all_supers)
234 *
9c6b1c4d
DS
235 * balance_mutex
236 * -------------
237 * protects balance structures (status, state) and context accessed from
238 * several places (internally, ioctl)
239 *
240 * chunk_mutex
241 * -----------
242 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
243 * device is added/removed. Additionally it also protects post_commit_list of
244 * individual devices, since they can be added to the transaction's
245 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
246 *
247 * cleaner_mutex
248 * -------------
249 * a big lock that is held by the cleaner thread and prevents running subvolume
250 * cleaning together with relocation or delayed iputs
251 *
252 *
253 * Lock nesting
254 * ============
255 *
256 * uuid_mutex
257 * volume_mutex
258 * device_list_mutex
259 * chunk_mutex
260 * balance_mutex
89595e80
AJ
261 *
262 *
263 * Exclusive operations, BTRFS_FS_EXCL_OP
264 * ======================================
265 *
266 * Maintains the exclusivity of the following operations that apply to the
267 * whole filesystem and cannot run in parallel.
268 *
269 * - Balance (*)
270 * - Device add
271 * - Device remove
272 * - Device replace (*)
273 * - Resize
274 *
275 * The device operations (as above) can be in one of the following states:
276 *
277 * - Running state
278 * - Paused state
279 * - Completed state
280 *
281 * Only device operations marked with (*) can go into the Paused state for the
282 * following reasons:
283 *
284 * - ioctl (only Balance can be Paused through ioctl)
285 * - filesystem remounted as read-only
286 * - filesystem unmounted and mounted as read-only
287 * - system power-cycle and filesystem mounted as read-only
288 * - filesystem or device errors leading to forced read-only
289 *
290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292 * A device operation in Paused or Running state can be canceled or resumed
293 * either by ioctl (Balance only) or when remounted as read-write.
294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 * completed.
9c6b1c4d
DS
296 */
297
67a2c45e 298DEFINE_MUTEX(uuid_mutex);
8a4b83cc 299static LIST_HEAD(fs_uuids);
4143cb8b 300struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
301{
302 return &fs_uuids;
303}
8a4b83cc 304
2dfeca9b
DS
305/*
306 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
309 *
310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311 * The returned struct is not linked onto any lists and can be destroyed with
312 * kfree() right away.
313 */
7239ff4b
NB
314static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 const u8 *metadata_fsid)
2208a378
ID
316{
317 struct btrfs_fs_devices *fs_devs;
318
78f2c9e6 319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
320 if (!fs_devs)
321 return ERR_PTR(-ENOMEM);
322
323 mutex_init(&fs_devs->device_list_mutex);
324
325 INIT_LIST_HEAD(&fs_devs->devices);
326 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 327 INIT_LIST_HEAD(&fs_devs->fs_list);
2208a378
ID
328 if (fsid)
329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 330
7239ff4b
NB
331 if (metadata_fsid)
332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 else if (fsid)
334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
2208a378
ID
336 return fs_devs;
337}
338
a425f9d4 339void btrfs_free_device(struct btrfs_device *device)
48dae9cf 340{
bbbf7243 341 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 342 rcu_string_free(device->name);
1c11b63e 343 extent_io_tree_release(&device->alloc_state);
48dae9cf
DS
344 bio_put(device->flush_bio);
345 kfree(device);
346}
347
e4404d6e
YZ
348static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349{
350 struct btrfs_device *device;
351 WARN_ON(fs_devices->opened);
352 while (!list_empty(&fs_devices->devices)) {
353 device = list_entry(fs_devices->devices.next,
354 struct btrfs_device, dev_list);
355 list_del(&device->dev_list);
a425f9d4 356 btrfs_free_device(device);
e4404d6e
YZ
357 }
358 kfree(fs_devices);
359}
360
ffc5a379 361void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
362{
363 struct btrfs_fs_devices *fs_devices;
8a4b83cc 364
2b82032c
YZ
365 while (!list_empty(&fs_uuids)) {
366 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
367 struct btrfs_fs_devices, fs_list);
368 list_del(&fs_devices->fs_list);
e4404d6e 369 free_fs_devices(fs_devices);
8a4b83cc 370 }
8a4b83cc
CM
371}
372
48dae9cf
DS
373/*
374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
375 * Returned struct is not linked onto any lists and must be destroyed using
a425f9d4 376 * btrfs_free_device.
48dae9cf 377 */
12bd2fc0
ID
378static struct btrfs_device *__alloc_device(void)
379{
380 struct btrfs_device *dev;
381
78f2c9e6 382 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
383 if (!dev)
384 return ERR_PTR(-ENOMEM);
385
e0ae9994
DS
386 /*
387 * Preallocate a bio that's always going to be used for flushing device
388 * barriers and matches the device lifespan
389 */
390 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
391 if (!dev->flush_bio) {
392 kfree(dev);
393 return ERR_PTR(-ENOMEM);
394 }
e0ae9994 395
12bd2fc0
ID
396 INIT_LIST_HEAD(&dev->dev_list);
397 INIT_LIST_HEAD(&dev->dev_alloc_list);
bbbf7243 398 INIT_LIST_HEAD(&dev->post_commit_list);
12bd2fc0 399
12bd2fc0 400 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 401 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 402 btrfs_device_data_ordered_init(dev);
9bcaaea7 403 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 404 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
1c11b63e 405 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
12bd2fc0
ID
406
407 return dev;
408}
409
7239ff4b
NB
410static noinline struct btrfs_fs_devices *find_fsid(
411 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 412{
8a4b83cc
CM
413 struct btrfs_fs_devices *fs_devices;
414
7239ff4b
NB
415 ASSERT(fsid);
416
7a62d0f0
NB
417 if (metadata_fsid) {
418 /*
419 * Handle scanned device having completed its fsid change but
420 * belonging to a fs_devices that was created by first scanning
421 * a device which didn't have its fsid/metadata_uuid changed
422 * at all and the CHANGING_FSID_V2 flag set.
423 */
424 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
425 if (fs_devices->fsid_change &&
426 memcmp(metadata_fsid, fs_devices->fsid,
427 BTRFS_FSID_SIZE) == 0 &&
428 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
429 BTRFS_FSID_SIZE) == 0) {
430 return fs_devices;
431 }
432 }
cc5de4e7
NB
433 /*
434 * Handle scanned device having completed its fsid change but
435 * belonging to a fs_devices that was created by a device that
436 * has an outdated pair of fsid/metadata_uuid and
437 * CHANGING_FSID_V2 flag set.
438 */
439 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
440 if (fs_devices->fsid_change &&
441 memcmp(fs_devices->metadata_uuid,
442 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
443 memcmp(metadata_fsid, fs_devices->metadata_uuid,
444 BTRFS_FSID_SIZE) == 0) {
445 return fs_devices;
446 }
447 }
7a62d0f0
NB
448 }
449
450 /* Handle non-split brain cases */
c4babc5e 451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
452 if (metadata_fsid) {
453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
454 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
455 BTRFS_FSID_SIZE) == 0)
456 return fs_devices;
457 } else {
458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
459 return fs_devices;
460 }
8a4b83cc
CM
461 }
462 return NULL;
463}
464
beaf8ab3
SB
465static int
466btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
467 int flush, struct block_device **bdev,
468 struct buffer_head **bh)
469{
470 int ret;
471
472 *bdev = blkdev_get_by_path(device_path, flags, holder);
473
474 if (IS_ERR(*bdev)) {
475 ret = PTR_ERR(*bdev);
beaf8ab3
SB
476 goto error;
477 }
478
479 if (flush)
480 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 481 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
482 if (ret) {
483 blkdev_put(*bdev, flags);
484 goto error;
485 }
486 invalidate_bdev(*bdev);
487 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
488 if (IS_ERR(*bh)) {
489 ret = PTR_ERR(*bh);
beaf8ab3
SB
490 blkdev_put(*bdev, flags);
491 goto error;
492 }
493
494 return 0;
495
496error:
497 *bdev = NULL;
498 *bh = NULL;
499 return ret;
500}
501
70bc7088
AJ
502static bool device_path_matched(const char *path, struct btrfs_device *device)
503{
504 int found;
505
506 rcu_read_lock();
507 found = strcmp(rcu_str_deref(device->name), path);
508 rcu_read_unlock();
509
510 return found == 0;
511}
512
d8367db3
AJ
513/*
514 * Search and remove all stale (devices which are not mounted) devices.
515 * When both inputs are NULL, it will search and release all stale devices.
516 * path: Optional. When provided will it release all unmounted devices
517 * matching this path only.
518 * skip_dev: Optional. Will skip this device when searching for the stale
519 * devices.
70bc7088
AJ
520 * Return: 0 for success or if @path is NULL.
521 * -EBUSY if @path is a mounted device.
522 * -ENOENT if @path does not match any device in the list.
d8367db3 523 */
70bc7088 524static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 525 struct btrfs_device *skip_device)
4fde46f0 526{
fa6d2ae5
AJ
527 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
528 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
529 int ret = 0;
530
531 if (path)
532 ret = -ENOENT;
4fde46f0 533
fa6d2ae5 534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 535
70bc7088 536 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
537 list_for_each_entry_safe(device, tmp_device,
538 &fs_devices->devices, dev_list) {
fa6d2ae5 539 if (skip_device && skip_device == device)
d8367db3 540 continue;
fa6d2ae5 541 if (path && !device->name)
4fde46f0 542 continue;
70bc7088 543 if (path && !device_path_matched(path, device))
38cf665d 544 continue;
70bc7088
AJ
545 if (fs_devices->opened) {
546 /* for an already deleted device return 0 */
547 if (path && ret != 0)
548 ret = -EBUSY;
549 break;
550 }
4fde46f0 551
4fde46f0 552 /* delete the stale device */
7bcb8164
AJ
553 fs_devices->num_devices--;
554 list_del(&device->dev_list);
555 btrfs_free_device(device);
556
70bc7088 557 ret = 0;
7bcb8164 558 if (fs_devices->num_devices == 0)
fd649f10 559 break;
7bcb8164
AJ
560 }
561 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 562
7bcb8164
AJ
563 if (fs_devices->num_devices == 0) {
564 btrfs_sysfs_remove_fsid(fs_devices);
565 list_del(&fs_devices->fs_list);
566 free_fs_devices(fs_devices);
4fde46f0
AJ
567 }
568 }
70bc7088
AJ
569
570 return ret;
4fde46f0
AJ
571}
572
0fb08bcc
AJ
573static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
574 struct btrfs_device *device, fmode_t flags,
575 void *holder)
576{
577 struct request_queue *q;
578 struct block_device *bdev;
579 struct buffer_head *bh;
580 struct btrfs_super_block *disk_super;
581 u64 devid;
582 int ret;
583
584 if (device->bdev)
585 return -EINVAL;
586 if (!device->name)
587 return -EINVAL;
588
589 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
590 &bdev, &bh);
591 if (ret)
592 return ret;
593
594 disk_super = (struct btrfs_super_block *)bh->b_data;
595 devid = btrfs_stack_device_id(&disk_super->dev_item);
596 if (devid != device->devid)
597 goto error_brelse;
598
599 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
600 goto error_brelse;
601
602 device->generation = btrfs_super_generation(disk_super);
603
604 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
605 if (btrfs_super_incompat_flags(disk_super) &
606 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
607 pr_err(
608 "BTRFS: Invalid seeding and uuid-changed device detected\n");
609 goto error_brelse;
610 }
611
ebbede42 612 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
613 fs_devices->seeding = 1;
614 } else {
ebbede42
AJ
615 if (bdev_read_only(bdev))
616 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
617 else
618 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
619 }
620
621 q = bdev_get_queue(bdev);
0fb08bcc
AJ
622 if (!blk_queue_nonrot(q))
623 fs_devices->rotating = 1;
624
625 device->bdev = bdev;
e12c9621 626 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
627 device->mode = flags;
628
629 fs_devices->open_devices++;
ebbede42
AJ
630 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
631 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 632 fs_devices->rw_devices++;
b1b8e386 633 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc
AJ
634 }
635 brelse(bh);
636
637 return 0;
638
639error_brelse:
640 brelse(bh);
641 blkdev_put(bdev, flags);
642
643 return -EINVAL;
644}
645
7a62d0f0
NB
646/*
647 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
648 * being created with a disk that has already completed its fsid change.
649 */
650static struct btrfs_fs_devices *find_fsid_inprogress(
651 struct btrfs_super_block *disk_super)
652{
653 struct btrfs_fs_devices *fs_devices;
654
655 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
656 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
657 BTRFS_FSID_SIZE) != 0 &&
658 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
659 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
660 return fs_devices;
661 }
662 }
663
664 return NULL;
665}
666
cc5de4e7
NB
667
668static struct btrfs_fs_devices *find_fsid_changed(
669 struct btrfs_super_block *disk_super)
670{
671 struct btrfs_fs_devices *fs_devices;
672
673 /*
674 * Handles the case where scanned device is part of an fs that had
675 * multiple successful changes of FSID but curently device didn't
676 * observe it. Meaning our fsid will be different than theirs.
677 */
678 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
679 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
680 BTRFS_FSID_SIZE) != 0 &&
681 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
682 BTRFS_FSID_SIZE) == 0 &&
683 memcmp(fs_devices->fsid, disk_super->fsid,
684 BTRFS_FSID_SIZE) != 0) {
685 return fs_devices;
686 }
687 }
688
689 return NULL;
690}
60999ca4
DS
691/*
692 * Add new device to list of registered devices
693 *
694 * Returns:
e124ece5
AJ
695 * device pointer which was just added or updated when successful
696 * error pointer when failed
60999ca4 697 */
e124ece5 698static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
699 struct btrfs_super_block *disk_super,
700 bool *new_device_added)
8a4b83cc
CM
701{
702 struct btrfs_device *device;
7a62d0f0 703 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 704 struct rcu_string *name;
8a4b83cc 705 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 706 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
707 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
708 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
709 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
710 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 711
cc5de4e7
NB
712 if (fsid_change_in_progress) {
713 if (!has_metadata_uuid) {
714 /*
715 * When we have an image which has CHANGING_FSID_V2 set
716 * it might belong to either a filesystem which has
717 * disks with completed fsid change or it might belong
718 * to fs with no UUID changes in effect, handle both.
719 */
720 fs_devices = find_fsid_inprogress(disk_super);
721 if (!fs_devices)
722 fs_devices = find_fsid(disk_super->fsid, NULL);
723 } else {
724 fs_devices = find_fsid_changed(disk_super);
725 }
7a62d0f0
NB
726 } else if (has_metadata_uuid) {
727 fs_devices = find_fsid(disk_super->fsid,
728 disk_super->metadata_uuid);
729 } else {
7239ff4b 730 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
731 }
732
8a4b83cc 733
8a4b83cc 734 if (!fs_devices) {
7239ff4b
NB
735 if (has_metadata_uuid)
736 fs_devices = alloc_fs_devices(disk_super->fsid,
737 disk_super->metadata_uuid);
738 else
739 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
740
2208a378 741 if (IS_ERR(fs_devices))
e124ece5 742 return ERR_CAST(fs_devices);
2208a378 743
92900e51
AV
744 fs_devices->fsid_change = fsid_change_in_progress;
745
9c6d173e 746 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 747 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 748
8a4b83cc
CM
749 device = NULL;
750 } else {
9c6d173e 751 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
752 device = btrfs_find_device(fs_devices, devid,
753 disk_super->dev_item.uuid, NULL, false);
7a62d0f0
NB
754
755 /*
756 * If this disk has been pulled into an fs devices created by
757 * a device which had the CHANGING_FSID_V2 flag then replace the
758 * metadata_uuid/fsid values of the fs_devices.
759 */
760 if (has_metadata_uuid && fs_devices->fsid_change &&
761 found_transid > fs_devices->latest_generation) {
762 memcpy(fs_devices->fsid, disk_super->fsid,
763 BTRFS_FSID_SIZE);
764 memcpy(fs_devices->metadata_uuid,
765 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
766
767 fs_devices->fsid_change = false;
768 }
8a4b83cc 769 }
443f24fe 770
8a4b83cc 771 if (!device) {
9c6d173e
AJ
772 if (fs_devices->opened) {
773 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 774 return ERR_PTR(-EBUSY);
9c6d173e 775 }
2b82032c 776
12bd2fc0
ID
777 device = btrfs_alloc_device(NULL, &devid,
778 disk_super->dev_item.uuid);
779 if (IS_ERR(device)) {
9c6d173e 780 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 781 /* we can safely leave the fs_devices entry around */
e124ece5 782 return device;
8a4b83cc 783 }
606686ee
JB
784
785 name = rcu_string_strdup(path, GFP_NOFS);
786 if (!name) {
a425f9d4 787 btrfs_free_device(device);
9c6d173e 788 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 789 return ERR_PTR(-ENOMEM);
8a4b83cc 790 }
606686ee 791 rcu_assign_pointer(device->name, name);
90519d66 792
1f78160c 793 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 794 fs_devices->num_devices++;
e5e9a520 795
2b82032c 796 device->fs_devices = fs_devices;
4306a974 797 *new_device_added = true;
327f18cc
AJ
798
799 if (disk_super->label[0])
aa6c0df7
AJ
800 pr_info(
801 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
802 disk_super->label, devid, found_transid, path,
803 current->comm, task_pid_nr(current));
327f18cc 804 else
aa6c0df7
AJ
805 pr_info(
806 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
807 disk_super->fsid, devid, found_transid, path,
808 current->comm, task_pid_nr(current));
327f18cc 809
606686ee 810 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
811 /*
812 * When FS is already mounted.
813 * 1. If you are here and if the device->name is NULL that
814 * means this device was missing at time of FS mount.
815 * 2. If you are here and if the device->name is different
816 * from 'path' that means either
817 * a. The same device disappeared and reappeared with
818 * different name. or
819 * b. The missing-disk-which-was-replaced, has
820 * reappeared now.
821 *
822 * We must allow 1 and 2a above. But 2b would be a spurious
823 * and unintentional.
824 *
825 * Further in case of 1 and 2a above, the disk at 'path'
826 * would have missed some transaction when it was away and
827 * in case of 2a the stale bdev has to be updated as well.
828 * 2b must not be allowed at all time.
829 */
830
831 /*
0f23ae74
CM
832 * For now, we do allow update to btrfs_fs_device through the
833 * btrfs dev scan cli after FS has been mounted. We're still
834 * tracking a problem where systems fail mount by subvolume id
835 * when we reject replacement on a mounted FS.
b96de000 836 */
0f23ae74 837 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
838 /*
839 * That is if the FS is _not_ mounted and if you
840 * are here, that means there is more than one
841 * disk with same uuid and devid.We keep the one
842 * with larger generation number or the last-in if
843 * generation are equal.
844 */
9c6d173e 845 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 846 return ERR_PTR(-EEXIST);
77bdae4d 847 }
b96de000 848
a9261d41
AJ
849 /*
850 * We are going to replace the device path for a given devid,
851 * make sure it's the same device if the device is mounted
852 */
853 if (device->bdev) {
854 struct block_device *path_bdev;
855
856 path_bdev = lookup_bdev(path);
857 if (IS_ERR(path_bdev)) {
858 mutex_unlock(&fs_devices->device_list_mutex);
859 return ERR_CAST(path_bdev);
860 }
861
862 if (device->bdev != path_bdev) {
863 bdput(path_bdev);
864 mutex_unlock(&fs_devices->device_list_mutex);
865 btrfs_warn_in_rcu(device->fs_info,
866 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
867 disk_super->fsid, devid,
868 rcu_str_deref(device->name), path);
869 return ERR_PTR(-EEXIST);
870 }
871 bdput(path_bdev);
872 btrfs_info_in_rcu(device->fs_info,
873 "device fsid %pU devid %llu moved old:%s new:%s",
874 disk_super->fsid, devid,
875 rcu_str_deref(device->name), path);
876 }
877
606686ee 878 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
879 if (!name) {
880 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 881 return ERR_PTR(-ENOMEM);
9c6d173e 882 }
606686ee
JB
883 rcu_string_free(device->name);
884 rcu_assign_pointer(device->name, name);
e6e674bd 885 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 886 fs_devices->missing_devices--;
e6e674bd 887 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 888 }
8a4b83cc
CM
889 }
890
77bdae4d
AJ
891 /*
892 * Unmount does not free the btrfs_device struct but would zero
893 * generation along with most of the other members. So just update
894 * it back. We need it to pick the disk with largest generation
895 * (as above).
896 */
d1a63002 897 if (!fs_devices->opened) {
77bdae4d 898 device->generation = found_transid;
d1a63002
NB
899 fs_devices->latest_generation = max_t(u64, found_transid,
900 fs_devices->latest_generation);
901 }
77bdae4d 902
f2788d2f
AJ
903 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
904
9c6d173e 905 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 906 return device;
8a4b83cc
CM
907}
908
e4404d6e
YZ
909static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
910{
911 struct btrfs_fs_devices *fs_devices;
912 struct btrfs_device *device;
913 struct btrfs_device *orig_dev;
d2979aa2 914 int ret = 0;
e4404d6e 915
7239ff4b 916 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
917 if (IS_ERR(fs_devices))
918 return fs_devices;
e4404d6e 919
adbbb863 920 mutex_lock(&orig->device_list_mutex);
02db0844 921 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
922
923 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
924 struct rcu_string *name;
925
12bd2fc0
ID
926 device = btrfs_alloc_device(NULL, &orig_dev->devid,
927 orig_dev->uuid);
d2979aa2
AJ
928 if (IS_ERR(device)) {
929 ret = PTR_ERR(device);
e4404d6e 930 goto error;
d2979aa2 931 }
e4404d6e 932
606686ee
JB
933 /*
934 * This is ok to do without rcu read locked because we hold the
935 * uuid mutex so nothing we touch in here is going to disappear.
936 */
e755f780 937 if (orig_dev->name) {
78f2c9e6
DS
938 name = rcu_string_strdup(orig_dev->name->str,
939 GFP_KERNEL);
e755f780 940 if (!name) {
a425f9d4 941 btrfs_free_device(device);
d2979aa2 942 ret = -ENOMEM;
e755f780
AJ
943 goto error;
944 }
945 rcu_assign_pointer(device->name, name);
fd2696f3 946 }
e4404d6e 947
e4404d6e
YZ
948 list_add(&device->dev_list, &fs_devices->devices);
949 device->fs_devices = fs_devices;
950 fs_devices->num_devices++;
951 }
adbbb863 952 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
953 return fs_devices;
954error:
adbbb863 955 mutex_unlock(&orig->device_list_mutex);
e4404d6e 956 free_fs_devices(fs_devices);
d2979aa2 957 return ERR_PTR(ret);
e4404d6e
YZ
958}
959
9b99b115
AJ
960/*
961 * After we have read the system tree and know devids belonging to
962 * this filesystem, remove the device which does not belong there.
963 */
964void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 965{
c6e30871 966 struct btrfs_device *device, *next;
443f24fe 967 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 968
dfe25020
CM
969 mutex_lock(&uuid_mutex);
970again:
46224705 971 /* This is the initialized path, it is safe to release the devices. */
c6e30871 972 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
e12c9621
AJ
973 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
974 &device->dev_state)) {
401e29c1
AJ
975 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
976 &device->dev_state) &&
977 (!latest_dev ||
978 device->generation > latest_dev->generation)) {
443f24fe 979 latest_dev = device;
a6b0d5c8 980 }
2b82032c 981 continue;
a6b0d5c8 982 }
2b82032c 983
8dabb742
SB
984 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
985 /*
986 * In the first step, keep the device which has
987 * the correct fsid and the devid that is used
988 * for the dev_replace procedure.
989 * In the second step, the dev_replace state is
990 * read from the device tree and it is known
991 * whether the procedure is really active or
992 * not, which means whether this device is
993 * used or whether it should be removed.
994 */
401e29c1
AJ
995 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
996 &device->dev_state)) {
8dabb742
SB
997 continue;
998 }
999 }
2b82032c 1000 if (device->bdev) {
d4d77629 1001 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1002 device->bdev = NULL;
1003 fs_devices->open_devices--;
1004 }
ebbede42 1005 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1006 list_del_init(&device->dev_alloc_list);
ebbede42 1007 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
401e29c1
AJ
1008 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1009 &device->dev_state))
8dabb742 1010 fs_devices->rw_devices--;
2b82032c 1011 }
e4404d6e
YZ
1012 list_del_init(&device->dev_list);
1013 fs_devices->num_devices--;
a425f9d4 1014 btrfs_free_device(device);
dfe25020 1015 }
2b82032c
YZ
1016
1017 if (fs_devices->seed) {
1018 fs_devices = fs_devices->seed;
2b82032c
YZ
1019 goto again;
1020 }
1021
443f24fe 1022 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1023
dfe25020 1024 mutex_unlock(&uuid_mutex);
dfe25020 1025}
a0af469b 1026
14238819
AJ
1027static void btrfs_close_bdev(struct btrfs_device *device)
1028{
08ffcae8
DS
1029 if (!device->bdev)
1030 return;
1031
ebbede42 1032 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1033 sync_blockdev(device->bdev);
1034 invalidate_bdev(device->bdev);
1035 }
1036
08ffcae8 1037 blkdev_put(device->bdev, device->mode);
14238819
AJ
1038}
1039
959b1c04 1040static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1041{
1042 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1043 struct btrfs_device *new_device;
1044 struct rcu_string *name;
1045
1046 if (device->bdev)
1047 fs_devices->open_devices--;
1048
ebbede42 1049 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1050 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1051 list_del_init(&device->dev_alloc_list);
1052 fs_devices->rw_devices--;
1053 }
1054
e6e674bd 1055 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1056 fs_devices->missing_devices--;
1057
959b1c04
NB
1058 btrfs_close_bdev(device);
1059
f448341a
AJ
1060 new_device = btrfs_alloc_device(NULL, &device->devid,
1061 device->uuid);
1062 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1063
1064 /* Safe because we are under uuid_mutex */
1065 if (device->name) {
1066 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1067 BUG_ON(!name); /* -ENOMEM */
1068 rcu_assign_pointer(new_device->name, name);
1069 }
1070
1071 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1072 new_device->fs_devices = device->fs_devices;
959b1c04 1073
8e75fd89
NB
1074 synchronize_rcu();
1075 btrfs_free_device(device);
f448341a
AJ
1076}
1077
0226e0eb 1078static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1079{
2037a093 1080 struct btrfs_device *device, *tmp;
e4404d6e 1081
2b82032c
YZ
1082 if (--fs_devices->opened > 0)
1083 return 0;
8a4b83cc 1084
c9513edb 1085 mutex_lock(&fs_devices->device_list_mutex);
2037a093 1086 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
959b1c04 1087 btrfs_close_one_device(device);
8a4b83cc 1088 }
c9513edb
XG
1089 mutex_unlock(&fs_devices->device_list_mutex);
1090
e4404d6e
YZ
1091 WARN_ON(fs_devices->open_devices);
1092 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
1093 fs_devices->opened = 0;
1094 fs_devices->seeding = 0;
2b82032c 1095
8a4b83cc
CM
1096 return 0;
1097}
1098
2b82032c
YZ
1099int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1100{
e4404d6e 1101 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
1102 int ret;
1103
1104 mutex_lock(&uuid_mutex);
0226e0eb 1105 ret = close_fs_devices(fs_devices);
e4404d6e
YZ
1106 if (!fs_devices->opened) {
1107 seed_devices = fs_devices->seed;
1108 fs_devices->seed = NULL;
1109 }
2b82032c 1110 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
1111
1112 while (seed_devices) {
1113 fs_devices = seed_devices;
1114 seed_devices = fs_devices->seed;
0226e0eb 1115 close_fs_devices(fs_devices);
e4404d6e
YZ
1116 free_fs_devices(fs_devices);
1117 }
2b82032c
YZ
1118 return ret;
1119}
1120
897fb573 1121static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1122 fmode_t flags, void *holder)
8a4b83cc 1123{
8a4b83cc 1124 struct btrfs_device *device;
443f24fe 1125 struct btrfs_device *latest_dev = NULL;
a0af469b 1126 int ret = 0;
8a4b83cc 1127
d4d77629
TH
1128 flags |= FMODE_EXCL;
1129
f117e290 1130 list_for_each_entry(device, &fs_devices->devices, dev_list) {
f63e0cca 1131 /* Just open everything we can; ignore failures here */
0fb08bcc 1132 if (btrfs_open_one_device(fs_devices, device, flags, holder))
beaf8ab3 1133 continue;
a0af469b 1134
9f050db4
AJ
1135 if (!latest_dev ||
1136 device->generation > latest_dev->generation)
1137 latest_dev = device;
8a4b83cc 1138 }
a0af469b 1139 if (fs_devices->open_devices == 0) {
20bcd649 1140 ret = -EINVAL;
a0af469b
CM
1141 goto out;
1142 }
2b82032c 1143 fs_devices->opened = 1;
443f24fe 1144 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1145 fs_devices->total_rw_bytes = 0;
a0af469b 1146out:
2b82032c
YZ
1147 return ret;
1148}
1149
f8e10cd3
AJ
1150static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1151{
1152 struct btrfs_device *dev1, *dev2;
1153
1154 dev1 = list_entry(a, struct btrfs_device, dev_list);
1155 dev2 = list_entry(b, struct btrfs_device, dev_list);
1156
1157 if (dev1->devid < dev2->devid)
1158 return -1;
1159 else if (dev1->devid > dev2->devid)
1160 return 1;
1161 return 0;
1162}
1163
2b82032c 1164int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1165 fmode_t flags, void *holder)
2b82032c
YZ
1166{
1167 int ret;
1168
f5194e34
DS
1169 lockdep_assert_held(&uuid_mutex);
1170
542c5908 1171 mutex_lock(&fs_devices->device_list_mutex);
2b82032c 1172 if (fs_devices->opened) {
e4404d6e
YZ
1173 fs_devices->opened++;
1174 ret = 0;
2b82032c 1175 } else {
f8e10cd3 1176 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1177 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1178 }
542c5908
AJ
1179 mutex_unlock(&fs_devices->device_list_mutex);
1180
8a4b83cc
CM
1181 return ret;
1182}
1183
c9162bdf 1184static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1185{
1186 kunmap(page);
1187 put_page(page);
1188}
1189
c9162bdf
OS
1190static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1191 struct page **page,
1192 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1193{
1194 void *p;
1195 pgoff_t index;
1196
1197 /* make sure our super fits in the device */
1198 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1199 return 1;
1200
1201 /* make sure our super fits in the page */
1202 if (sizeof(**disk_super) > PAGE_SIZE)
1203 return 1;
1204
1205 /* make sure our super doesn't straddle pages on disk */
1206 index = bytenr >> PAGE_SHIFT;
1207 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1208 return 1;
1209
1210 /* pull in the page with our super */
1211 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1212 index, GFP_KERNEL);
1213
1214 if (IS_ERR_OR_NULL(*page))
1215 return 1;
1216
1217 p = kmap(*page);
1218
1219 /* align our pointer to the offset of the super block */
7073017a 1220 *disk_super = p + offset_in_page(bytenr);
6cf86a00
AJ
1221
1222 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1223 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1224 btrfs_release_disk_super(*page);
1225 return 1;
1226 }
1227
1228 if ((*disk_super)->label[0] &&
1229 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1230 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1231
1232 return 0;
1233}
1234
228a73ab
AJ
1235int btrfs_forget_devices(const char *path)
1236{
1237 int ret;
1238
1239 mutex_lock(&uuid_mutex);
1240 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1241 mutex_unlock(&uuid_mutex);
1242
1243 return ret;
1244}
1245
6f60cbd3
DS
1246/*
1247 * Look for a btrfs signature on a device. This may be called out of the mount path
1248 * and we are not allowed to call set_blocksize during the scan. The superblock
1249 * is read via pagecache
1250 */
36350e95
GJ
1251struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1252 void *holder)
8a4b83cc
CM
1253{
1254 struct btrfs_super_block *disk_super;
4306a974 1255 bool new_device_added = false;
36350e95 1256 struct btrfs_device *device = NULL;
8a4b83cc 1257 struct block_device *bdev;
6f60cbd3 1258 struct page *page;
6f60cbd3 1259 u64 bytenr;
8a4b83cc 1260
899f9307
DS
1261 lockdep_assert_held(&uuid_mutex);
1262
6f60cbd3
DS
1263 /*
1264 * we would like to check all the supers, but that would make
1265 * a btrfs mount succeed after a mkfs from a different FS.
1266 * So, we need to add a special mount option to scan for
1267 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1268 */
1269 bytenr = btrfs_sb_offset(0);
d4d77629 1270 flags |= FMODE_EXCL;
6f60cbd3
DS
1271
1272 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1273 if (IS_ERR(bdev))
36350e95 1274 return ERR_CAST(bdev);
6f60cbd3 1275
05a5c55d 1276 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
36350e95 1277 device = ERR_PTR(-EINVAL);
6f60cbd3 1278 goto error_bdev_put;
05a5c55d 1279 }
6f60cbd3 1280
4306a974 1281 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1282 if (!IS_ERR(device)) {
4306a974
AJ
1283 if (new_device_added)
1284 btrfs_free_stale_devices(path, device);
1285 }
6f60cbd3 1286
6cf86a00 1287 btrfs_release_disk_super(page);
6f60cbd3
DS
1288
1289error_bdev_put:
d4d77629 1290 blkdev_put(bdev, flags);
b6ed73bc 1291
36350e95 1292 return device;
8a4b83cc 1293}
0b86a832 1294
1c11b63e
JM
1295/*
1296 * Try to find a chunk that intersects [start, start + len] range and when one
1297 * such is found, record the end of it in *start
1298 */
1c11b63e
JM
1299static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1300 u64 len)
6df9a95e 1301{
1c11b63e 1302 u64 physical_start, physical_end;
6df9a95e 1303
1c11b63e 1304 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1305
1c11b63e
JM
1306 if (!find_first_extent_bit(&device->alloc_state, *start,
1307 &physical_start, &physical_end,
1308 CHUNK_ALLOCATED, NULL)) {
c152b63e 1309
1c11b63e
JM
1310 if (in_range(physical_start, *start, len) ||
1311 in_range(*start, physical_start,
1312 physical_end - physical_start)) {
1313 *start = physical_end + 1;
1314 return true;
6df9a95e
JB
1315 }
1316 }
1c11b63e 1317 return false;
6df9a95e
JB
1318}
1319
1320
0b86a832 1321/*
499f377f
JM
1322 * find_free_dev_extent_start - find free space in the specified device
1323 * @device: the device which we search the free space in
1324 * @num_bytes: the size of the free space that we need
1325 * @search_start: the position from which to begin the search
1326 * @start: store the start of the free space.
1327 * @len: the size of the free space. that we find, or the size
1328 * of the max free space if we don't find suitable free space
7bfc837d 1329 *
0b86a832
CM
1330 * this uses a pretty simple search, the expectation is that it is
1331 * called very infrequently and that a given device has a small number
1332 * of extents
7bfc837d
MX
1333 *
1334 * @start is used to store the start of the free space if we find. But if we
1335 * don't find suitable free space, it will be used to store the start position
1336 * of the max free space.
1337 *
1338 * @len is used to store the size of the free space that we find.
1339 * But if we don't find suitable free space, it is used to store the size of
1340 * the max free space.
135da976
QW
1341 *
1342 * NOTE: This function will search *commit* root of device tree, and does extra
1343 * check to ensure dev extents are not double allocated.
1344 * This makes the function safe to allocate dev extents but may not report
1345 * correct usable device space, as device extent freed in current transaction
1346 * is not reported as avaiable.
0b86a832 1347 */
9e3246a5
QW
1348static int find_free_dev_extent_start(struct btrfs_device *device,
1349 u64 num_bytes, u64 search_start, u64 *start,
1350 u64 *len)
0b86a832 1351{
0b246afa
JM
1352 struct btrfs_fs_info *fs_info = device->fs_info;
1353 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1354 struct btrfs_key key;
7bfc837d 1355 struct btrfs_dev_extent *dev_extent;
2b82032c 1356 struct btrfs_path *path;
7bfc837d
MX
1357 u64 hole_size;
1358 u64 max_hole_start;
1359 u64 max_hole_size;
1360 u64 extent_end;
0b86a832
CM
1361 u64 search_end = device->total_bytes;
1362 int ret;
7bfc837d 1363 int slot;
0b86a832 1364 struct extent_buffer *l;
8cdc7c5b
FM
1365
1366 /*
1367 * We don't want to overwrite the superblock on the drive nor any area
1368 * used by the boot loader (grub for example), so we make sure to start
1369 * at an offset of at least 1MB.
1370 */
0d0c71b3 1371 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1372
6df9a95e
JB
1373 path = btrfs_alloc_path();
1374 if (!path)
1375 return -ENOMEM;
f2ab7618 1376
7bfc837d
MX
1377 max_hole_start = search_start;
1378 max_hole_size = 0;
1379
f2ab7618 1380again:
401e29c1
AJ
1381 if (search_start >= search_end ||
1382 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1383 ret = -ENOSPC;
6df9a95e 1384 goto out;
7bfc837d
MX
1385 }
1386
e4058b54 1387 path->reada = READA_FORWARD;
6df9a95e
JB
1388 path->search_commit_root = 1;
1389 path->skip_locking = 1;
7bfc837d 1390
0b86a832
CM
1391 key.objectid = device->devid;
1392 key.offset = search_start;
1393 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1394
125ccb0a 1395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1396 if (ret < 0)
7bfc837d 1397 goto out;
1fcbac58
YZ
1398 if (ret > 0) {
1399 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1400 if (ret < 0)
7bfc837d 1401 goto out;
1fcbac58 1402 }
7bfc837d 1403
0b86a832
CM
1404 while (1) {
1405 l = path->nodes[0];
1406 slot = path->slots[0];
1407 if (slot >= btrfs_header_nritems(l)) {
1408 ret = btrfs_next_leaf(root, path);
1409 if (ret == 0)
1410 continue;
1411 if (ret < 0)
7bfc837d
MX
1412 goto out;
1413
1414 break;
0b86a832
CM
1415 }
1416 btrfs_item_key_to_cpu(l, &key, slot);
1417
1418 if (key.objectid < device->devid)
1419 goto next;
1420
1421 if (key.objectid > device->devid)
7bfc837d 1422 break;
0b86a832 1423
962a298f 1424 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1425 goto next;
9779b72f 1426
7bfc837d
MX
1427 if (key.offset > search_start) {
1428 hole_size = key.offset - search_start;
9779b72f 1429
6df9a95e
JB
1430 /*
1431 * Have to check before we set max_hole_start, otherwise
1432 * we could end up sending back this offset anyway.
1433 */
1c11b63e 1434 if (contains_pending_extent(device, &search_start,
1b984508 1435 hole_size)) {
1c11b63e 1436 if (key.offset >= search_start)
1b984508 1437 hole_size = key.offset - search_start;
1c11b63e 1438 else
1b984508 1439 hole_size = 0;
1b984508 1440 }
6df9a95e 1441
7bfc837d
MX
1442 if (hole_size > max_hole_size) {
1443 max_hole_start = search_start;
1444 max_hole_size = hole_size;
1445 }
9779b72f 1446
7bfc837d
MX
1447 /*
1448 * If this free space is greater than which we need,
1449 * it must be the max free space that we have found
1450 * until now, so max_hole_start must point to the start
1451 * of this free space and the length of this free space
1452 * is stored in max_hole_size. Thus, we return
1453 * max_hole_start and max_hole_size and go back to the
1454 * caller.
1455 */
1456 if (hole_size >= num_bytes) {
1457 ret = 0;
1458 goto out;
0b86a832
CM
1459 }
1460 }
0b86a832 1461
0b86a832 1462 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1463 extent_end = key.offset + btrfs_dev_extent_length(l,
1464 dev_extent);
1465 if (extent_end > search_start)
1466 search_start = extent_end;
0b86a832
CM
1467next:
1468 path->slots[0]++;
1469 cond_resched();
1470 }
0b86a832 1471
38c01b96 1472 /*
1473 * At this point, search_start should be the end of
1474 * allocated dev extents, and when shrinking the device,
1475 * search_end may be smaller than search_start.
1476 */
f2ab7618 1477 if (search_end > search_start) {
38c01b96 1478 hole_size = search_end - search_start;
1479
1c11b63e 1480 if (contains_pending_extent(device, &search_start, hole_size)) {
f2ab7618
ZL
1481 btrfs_release_path(path);
1482 goto again;
1483 }
0b86a832 1484
f2ab7618
ZL
1485 if (hole_size > max_hole_size) {
1486 max_hole_start = search_start;
1487 max_hole_size = hole_size;
1488 }
6df9a95e
JB
1489 }
1490
7bfc837d 1491 /* See above. */
f2ab7618 1492 if (max_hole_size < num_bytes)
7bfc837d
MX
1493 ret = -ENOSPC;
1494 else
1495 ret = 0;
1496
1497out:
2b82032c 1498 btrfs_free_path(path);
7bfc837d 1499 *start = max_hole_start;
b2117a39 1500 if (len)
7bfc837d 1501 *len = max_hole_size;
0b86a832
CM
1502 return ret;
1503}
1504
60dfdf25 1505int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1506 u64 *start, u64 *len)
1507{
499f377f 1508 /* FIXME use last free of some kind */
60dfdf25 1509 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1510}
1511
b2950863 1512static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1513 struct btrfs_device *device,
2196d6e8 1514 u64 start, u64 *dev_extent_len)
8f18cf13 1515{
0b246afa
JM
1516 struct btrfs_fs_info *fs_info = device->fs_info;
1517 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1518 int ret;
1519 struct btrfs_path *path;
8f18cf13 1520 struct btrfs_key key;
a061fc8d
CM
1521 struct btrfs_key found_key;
1522 struct extent_buffer *leaf = NULL;
1523 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1524
1525 path = btrfs_alloc_path();
1526 if (!path)
1527 return -ENOMEM;
1528
1529 key.objectid = device->devid;
1530 key.offset = start;
1531 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1532again:
8f18cf13 1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1534 if (ret > 0) {
1535 ret = btrfs_previous_item(root, path, key.objectid,
1536 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1537 if (ret)
1538 goto out;
a061fc8d
CM
1539 leaf = path->nodes[0];
1540 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1541 extent = btrfs_item_ptr(leaf, path->slots[0],
1542 struct btrfs_dev_extent);
1543 BUG_ON(found_key.offset > start || found_key.offset +
1544 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1545 key = found_key;
1546 btrfs_release_path(path);
1547 goto again;
a061fc8d
CM
1548 } else if (ret == 0) {
1549 leaf = path->nodes[0];
1550 extent = btrfs_item_ptr(leaf, path->slots[0],
1551 struct btrfs_dev_extent);
79787eaa 1552 } else {
0b246afa 1553 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1554 goto out;
a061fc8d 1555 }
8f18cf13 1556
2196d6e8
MX
1557 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1558
8f18cf13 1559 ret = btrfs_del_item(trans, root, path);
79787eaa 1560 if (ret) {
0b246afa
JM
1561 btrfs_handle_fs_error(fs_info, ret,
1562 "Failed to remove dev extent item");
13212b54 1563 } else {
3204d33c 1564 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1565 }
b0b802d7 1566out:
8f18cf13
CM
1567 btrfs_free_path(path);
1568 return ret;
1569}
1570
48a3b636
ES
1571static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1572 struct btrfs_device *device,
48a3b636 1573 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1574{
1575 int ret;
1576 struct btrfs_path *path;
0b246afa
JM
1577 struct btrfs_fs_info *fs_info = device->fs_info;
1578 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1579 struct btrfs_dev_extent *extent;
1580 struct extent_buffer *leaf;
1581 struct btrfs_key key;
1582
e12c9621 1583 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
401e29c1 1584 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
0b86a832
CM
1585 path = btrfs_alloc_path();
1586 if (!path)
1587 return -ENOMEM;
1588
0b86a832 1589 key.objectid = device->devid;
2b82032c 1590 key.offset = start;
0b86a832
CM
1591 key.type = BTRFS_DEV_EXTENT_KEY;
1592 ret = btrfs_insert_empty_item(trans, root, path, &key,
1593 sizeof(*extent));
2cdcecbc
MF
1594 if (ret)
1595 goto out;
0b86a832
CM
1596
1597 leaf = path->nodes[0];
1598 extent = btrfs_item_ptr(leaf, path->slots[0],
1599 struct btrfs_dev_extent);
b5d9071c
NB
1600 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1601 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1602 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1603 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1604 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1605
0b86a832
CM
1606 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1607 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1608out:
0b86a832
CM
1609 btrfs_free_path(path);
1610 return ret;
1611}
1612
6df9a95e 1613static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1614{
6df9a95e
JB
1615 struct extent_map_tree *em_tree;
1616 struct extent_map *em;
1617 struct rb_node *n;
1618 u64 ret = 0;
0b86a832 1619
c8bf1b67 1620 em_tree = &fs_info->mapping_tree;
6df9a95e 1621 read_lock(&em_tree->lock);
07e1ce09 1622 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1623 if (n) {
1624 em = rb_entry(n, struct extent_map, rb_node);
1625 ret = em->start + em->len;
0b86a832 1626 }
6df9a95e
JB
1627 read_unlock(&em_tree->lock);
1628
0b86a832
CM
1629 return ret;
1630}
1631
53f10659
ID
1632static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1633 u64 *devid_ret)
0b86a832
CM
1634{
1635 int ret;
1636 struct btrfs_key key;
1637 struct btrfs_key found_key;
2b82032c
YZ
1638 struct btrfs_path *path;
1639
2b82032c
YZ
1640 path = btrfs_alloc_path();
1641 if (!path)
1642 return -ENOMEM;
0b86a832
CM
1643
1644 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1645 key.type = BTRFS_DEV_ITEM_KEY;
1646 key.offset = (u64)-1;
1647
53f10659 1648 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1649 if (ret < 0)
1650 goto error;
1651
a06dee4d
AJ
1652 if (ret == 0) {
1653 /* Corruption */
1654 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1655 ret = -EUCLEAN;
1656 goto error;
1657 }
0b86a832 1658
53f10659
ID
1659 ret = btrfs_previous_item(fs_info->chunk_root, path,
1660 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1661 BTRFS_DEV_ITEM_KEY);
1662 if (ret) {
53f10659 1663 *devid_ret = 1;
0b86a832
CM
1664 } else {
1665 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1666 path->slots[0]);
53f10659 1667 *devid_ret = found_key.offset + 1;
0b86a832
CM
1668 }
1669 ret = 0;
1670error:
2b82032c 1671 btrfs_free_path(path);
0b86a832
CM
1672 return ret;
1673}
1674
1675/*
1676 * the device information is stored in the chunk root
1677 * the btrfs_device struct should be fully filled in
1678 */
c74a0b02 1679static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1680 struct btrfs_device *device)
0b86a832
CM
1681{
1682 int ret;
1683 struct btrfs_path *path;
1684 struct btrfs_dev_item *dev_item;
1685 struct extent_buffer *leaf;
1686 struct btrfs_key key;
1687 unsigned long ptr;
0b86a832 1688
0b86a832
CM
1689 path = btrfs_alloc_path();
1690 if (!path)
1691 return -ENOMEM;
1692
0b86a832
CM
1693 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1694 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1695 key.offset = device->devid;
0b86a832 1696
8e87e856
NB
1697 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1698 &key, sizeof(*dev_item));
0b86a832
CM
1699 if (ret)
1700 goto out;
1701
1702 leaf = path->nodes[0];
1703 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1704
1705 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1706 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1707 btrfs_set_device_type(leaf, dev_item, device->type);
1708 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1709 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1710 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1711 btrfs_set_device_total_bytes(leaf, dev_item,
1712 btrfs_device_get_disk_total_bytes(device));
1713 btrfs_set_device_bytes_used(leaf, dev_item,
1714 btrfs_device_get_bytes_used(device));
e17cade2
CM
1715 btrfs_set_device_group(leaf, dev_item, 0);
1716 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1717 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1718 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1719
410ba3a2 1720 ptr = btrfs_device_uuid(dev_item);
e17cade2 1721 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1722 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1723 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1724 ptr, BTRFS_FSID_SIZE);
0b86a832 1725 btrfs_mark_buffer_dirty(leaf);
0b86a832 1726
2b82032c 1727 ret = 0;
0b86a832
CM
1728out:
1729 btrfs_free_path(path);
1730 return ret;
1731}
8f18cf13 1732
5a1972bd
QW
1733/*
1734 * Function to update ctime/mtime for a given device path.
1735 * Mainly used for ctime/mtime based probe like libblkid.
1736 */
da353f6b 1737static void update_dev_time(const char *path_name)
5a1972bd
QW
1738{
1739 struct file *filp;
1740
1741 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1742 if (IS_ERR(filp))
5a1972bd
QW
1743 return;
1744 file_update_time(filp);
1745 filp_close(filp, NULL);
5a1972bd
QW
1746}
1747
f331a952 1748static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1749{
f331a952 1750 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1751 int ret;
1752 struct btrfs_path *path;
a061fc8d 1753 struct btrfs_key key;
a061fc8d
CM
1754 struct btrfs_trans_handle *trans;
1755
a061fc8d
CM
1756 path = btrfs_alloc_path();
1757 if (!path)
1758 return -ENOMEM;
1759
a22285a6 1760 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1761 if (IS_ERR(trans)) {
1762 btrfs_free_path(path);
1763 return PTR_ERR(trans);
1764 }
a061fc8d
CM
1765 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1766 key.type = BTRFS_DEV_ITEM_KEY;
1767 key.offset = device->devid;
1768
1769 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1770 if (ret) {
1771 if (ret > 0)
1772 ret = -ENOENT;
1773 btrfs_abort_transaction(trans, ret);
1774 btrfs_end_transaction(trans);
a061fc8d
CM
1775 goto out;
1776 }
1777
1778 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1779 if (ret) {
1780 btrfs_abort_transaction(trans, ret);
1781 btrfs_end_transaction(trans);
1782 }
1783
a061fc8d
CM
1784out:
1785 btrfs_free_path(path);
5e9f2ad5
NB
1786 if (!ret)
1787 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1788 return ret;
1789}
1790
3cc31a0d
DS
1791/*
1792 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1793 * filesystem. It's up to the caller to adjust that number regarding eg. device
1794 * replace.
1795 */
1796static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1797 u64 num_devices)
a061fc8d 1798{
a061fc8d 1799 u64 all_avail;
de98ced9 1800 unsigned seq;
418775a2 1801 int i;
a061fc8d 1802
de98ced9 1803 do {
bd45ffbc 1804 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1805
bd45ffbc
AJ
1806 all_avail = fs_info->avail_data_alloc_bits |
1807 fs_info->avail_system_alloc_bits |
1808 fs_info->avail_metadata_alloc_bits;
1809 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1810
418775a2 1811 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1812 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1813 continue;
a061fc8d 1814
418775a2 1815 if (num_devices < btrfs_raid_array[i].devs_min) {
f9fbcaa2 1816 int ret = btrfs_raid_array[i].mindev_error;
bd45ffbc 1817
418775a2
DS
1818 if (ret)
1819 return ret;
1820 }
53b381b3
DW
1821 }
1822
bd45ffbc 1823 return 0;
f1fa7f26
AJ
1824}
1825
c9162bdf
OS
1826static struct btrfs_device * btrfs_find_next_active_device(
1827 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1828{
2b82032c 1829 struct btrfs_device *next_device;
88acff64
AJ
1830
1831 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1832 if (next_device != device &&
e6e674bd
AJ
1833 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1834 && next_device->bdev)
88acff64
AJ
1835 return next_device;
1836 }
1837
1838 return NULL;
1839}
1840
1841/*
1842 * Helper function to check if the given device is part of s_bdev / latest_bdev
1843 * and replace it with the provided or the next active device, in the context
1844 * where this function called, there should be always be another device (or
1845 * this_dev) which is active.
1846 */
b105e927 1847void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
d6507cf1 1848 struct btrfs_device *this_dev)
88acff64 1849{
d6507cf1 1850 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64
AJ
1851 struct btrfs_device *next_device;
1852
1853 if (this_dev)
1854 next_device = this_dev;
1855 else
1856 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1857 device);
1858 ASSERT(next_device);
1859
1860 if (fs_info->sb->s_bdev &&
1861 (fs_info->sb->s_bdev == device->bdev))
1862 fs_info->sb->s_bdev = next_device->bdev;
1863
1864 if (fs_info->fs_devices->latest_bdev == device->bdev)
1865 fs_info->fs_devices->latest_bdev = next_device->bdev;
1866}
1867
1da73967
AJ
1868/*
1869 * Return btrfs_fs_devices::num_devices excluding the device that's being
1870 * currently replaced.
1871 */
1872static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1873{
1874 u64 num_devices = fs_info->fs_devices->num_devices;
1875
cb5583dd 1876 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
1877 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1878 ASSERT(num_devices > 1);
1879 num_devices--;
1880 }
cb5583dd 1881 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
1882
1883 return num_devices;
1884}
1885
da353f6b
DS
1886int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1887 u64 devid)
f1fa7f26
AJ
1888{
1889 struct btrfs_device *device;
1f78160c 1890 struct btrfs_fs_devices *cur_devices;
b5185197 1891 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 1892 u64 num_devices;
a061fc8d
CM
1893 int ret = 0;
1894
a061fc8d
CM
1895 mutex_lock(&uuid_mutex);
1896
1da73967 1897 num_devices = btrfs_num_devices(fs_info);
8dabb742 1898
0b246afa 1899 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1900 if (ret)
a061fc8d 1901 goto out;
a061fc8d 1902
a27a94c2
NB
1903 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1904
1905 if (IS_ERR(device)) {
1906 if (PTR_ERR(device) == -ENOENT &&
1907 strcmp(device_path, "missing") == 0)
1908 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1909 else
1910 ret = PTR_ERR(device);
53b381b3 1911 goto out;
a27a94c2 1912 }
dfe25020 1913
eede2bf3
OS
1914 if (btrfs_pinned_by_swapfile(fs_info, device)) {
1915 btrfs_warn_in_rcu(fs_info,
1916 "cannot remove device %s (devid %llu) due to active swapfile",
1917 rcu_str_deref(device->name), device->devid);
1918 ret = -ETXTBSY;
1919 goto out;
1920 }
1921
401e29c1 1922 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 1923 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1924 goto out;
63a212ab
SB
1925 }
1926
ebbede42
AJ
1927 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1928 fs_info->fs_devices->rw_devices == 1) {
183860f6 1929 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1930 goto out;
2b82032c
YZ
1931 }
1932
ebbede42 1933 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 1934 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1935 list_del_init(&device->dev_alloc_list);
c3929c36 1936 device->fs_devices->rw_devices--;
34441361 1937 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1938 }
a061fc8d 1939
d7901554 1940 mutex_unlock(&uuid_mutex);
a061fc8d 1941 ret = btrfs_shrink_device(device, 0);
d7901554 1942 mutex_lock(&uuid_mutex);
a061fc8d 1943 if (ret)
9b3517e9 1944 goto error_undo;
a061fc8d 1945
63a212ab
SB
1946 /*
1947 * TODO: the superblock still includes this device in its num_devices
1948 * counter although write_all_supers() is not locked out. This
1949 * could give a filesystem state which requires a degraded mount.
1950 */
f331a952 1951 ret = btrfs_rm_dev_item(device);
a061fc8d 1952 if (ret)
9b3517e9 1953 goto error_undo;
a061fc8d 1954
e12c9621 1955 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 1956 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
1957
1958 /*
1959 * the device list mutex makes sure that we don't change
1960 * the device list while someone else is writing out all
d7306801
FDBM
1961 * the device supers. Whoever is writing all supers, should
1962 * lock the device list mutex before getting the number of
1963 * devices in the super block (super_copy). Conversely,
1964 * whoever updates the number of devices in the super block
1965 * (super_copy) should hold the device list mutex.
e5e9a520 1966 */
1f78160c 1967
41a52a0f
AJ
1968 /*
1969 * In normal cases the cur_devices == fs_devices. But in case
1970 * of deleting a seed device, the cur_devices should point to
1971 * its own fs_devices listed under the fs_devices->seed.
1972 */
1f78160c 1973 cur_devices = device->fs_devices;
b5185197 1974 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 1975 list_del_rcu(&device->dev_list);
e5e9a520 1976
41a52a0f
AJ
1977 cur_devices->num_devices--;
1978 cur_devices->total_devices--;
b4993e64
AJ
1979 /* Update total_devices of the parent fs_devices if it's seed */
1980 if (cur_devices != fs_devices)
1981 fs_devices->total_devices--;
2b82032c 1982
e6e674bd 1983 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 1984 cur_devices->missing_devices--;
cd02dca5 1985
d6507cf1 1986 btrfs_assign_next_active_device(device, NULL);
2b82032c 1987
0bfaa9c5 1988 if (device->bdev) {
41a52a0f 1989 cur_devices->open_devices--;
0bfaa9c5 1990 /* remove sysfs entry */
b5185197 1991 btrfs_sysfs_rm_device_link(fs_devices, device);
0bfaa9c5 1992 }
99994cde 1993
0b246afa
JM
1994 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1995 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 1996 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 1997
cea67ab9
JM
1998 /*
1999 * at this point, the device is zero sized and detached from
2000 * the devices list. All that's left is to zero out the old
2001 * supers and free the device.
2002 */
ebbede42 2003 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
cea67ab9
JM
2004 btrfs_scratch_superblocks(device->bdev, device->name->str);
2005
2006 btrfs_close_bdev(device);
8e75fd89
NB
2007 synchronize_rcu();
2008 btrfs_free_device(device);
cea67ab9 2009
1f78160c 2010 if (cur_devices->open_devices == 0) {
e4404d6e 2011 while (fs_devices) {
8321cf25
RS
2012 if (fs_devices->seed == cur_devices) {
2013 fs_devices->seed = cur_devices->seed;
e4404d6e 2014 break;
8321cf25 2015 }
e4404d6e 2016 fs_devices = fs_devices->seed;
2b82032c 2017 }
1f78160c 2018 cur_devices->seed = NULL;
0226e0eb 2019 close_fs_devices(cur_devices);
1f78160c 2020 free_fs_devices(cur_devices);
2b82032c
YZ
2021 }
2022
a061fc8d
CM
2023out:
2024 mutex_unlock(&uuid_mutex);
a061fc8d 2025 return ret;
24fc572f 2026
9b3517e9 2027error_undo:
ebbede42 2028 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2029 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2030 list_add(&device->dev_alloc_list,
b5185197 2031 &fs_devices->alloc_list);
c3929c36 2032 device->fs_devices->rw_devices++;
34441361 2033 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2034 }
24fc572f 2035 goto out;
a061fc8d
CM
2036}
2037
68a9db5f 2038void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2039{
d51908ce
AJ
2040 struct btrfs_fs_devices *fs_devices;
2041
68a9db5f 2042 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2043
25e8e911
AJ
2044 /*
2045 * in case of fs with no seed, srcdev->fs_devices will point
2046 * to fs_devices of fs_info. However when the dev being replaced is
2047 * a seed dev it will point to the seed's local fs_devices. In short
2048 * srcdev will have its correct fs_devices in both the cases.
2049 */
2050 fs_devices = srcdev->fs_devices;
d51908ce 2051
e93c89c1 2052 list_del_rcu(&srcdev->dev_list);
619c47f3 2053 list_del(&srcdev->dev_alloc_list);
d51908ce 2054 fs_devices->num_devices--;
e6e674bd 2055 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2056 fs_devices->missing_devices--;
e93c89c1 2057
ebbede42 2058 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2059 fs_devices->rw_devices--;
1357272f 2060
82372bc8 2061 if (srcdev->bdev)
d51908ce 2062 fs_devices->open_devices--;
084b6e7c
QW
2063}
2064
65237ee3 2065void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c 2066{
65237ee3 2067 struct btrfs_fs_info *fs_info = srcdev->fs_info;
084b6e7c 2068 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2069
ebbede42 2070 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
48b3b9d4
AJ
2071 /* zero out the old super if it is writable */
2072 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2073 }
14238819
AJ
2074
2075 btrfs_close_bdev(srcdev);
8e75fd89
NB
2076 synchronize_rcu();
2077 btrfs_free_device(srcdev);
94d5f0c2 2078
94d5f0c2
AJ
2079 /* if this is no devs we rather delete the fs_devices */
2080 if (!fs_devices->num_devices) {
2081 struct btrfs_fs_devices *tmp_fs_devices;
2082
6dd38f81
AJ
2083 /*
2084 * On a mounted FS, num_devices can't be zero unless it's a
2085 * seed. In case of a seed device being replaced, the replace
2086 * target added to the sprout FS, so there will be no more
2087 * device left under the seed FS.
2088 */
2089 ASSERT(fs_devices->seeding);
2090
94d5f0c2
AJ
2091 tmp_fs_devices = fs_info->fs_devices;
2092 while (tmp_fs_devices) {
2093 if (tmp_fs_devices->seed == fs_devices) {
2094 tmp_fs_devices->seed = fs_devices->seed;
2095 break;
2096 }
2097 tmp_fs_devices = tmp_fs_devices->seed;
2098 }
2099 fs_devices->seed = NULL;
0226e0eb 2100 close_fs_devices(fs_devices);
8bef8401 2101 free_fs_devices(fs_devices);
94d5f0c2 2102 }
e93c89c1
SB
2103}
2104
4f5ad7bd 2105void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2106{
4f5ad7bd 2107 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2108
e93c89c1 2109 WARN_ON(!tgtdev);
d9a071f0 2110 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2111
d9a071f0 2112 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
d2ff1b20 2113
779bf3fe 2114 if (tgtdev->bdev)
d9a071f0 2115 fs_devices->open_devices--;
779bf3fe 2116
d9a071f0 2117 fs_devices->num_devices--;
e93c89c1 2118
d6507cf1 2119 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2120
e93c89c1 2121 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2122
d9a071f0 2123 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2124
2125 /*
2126 * The update_dev_time() with in btrfs_scratch_superblocks()
2127 * may lead to a call to btrfs_show_devname() which will try
2128 * to hold device_list_mutex. And here this device
2129 * is already out of device list, so we don't have to hold
2130 * the device_list_mutex lock.
2131 */
2132 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2133
2134 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2135 synchronize_rcu();
2136 btrfs_free_device(tgtdev);
e93c89c1
SB
2137}
2138
b444ad46
NB
2139static struct btrfs_device *btrfs_find_device_by_path(
2140 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2141{
2142 int ret = 0;
2143 struct btrfs_super_block *disk_super;
2144 u64 devid;
2145 u8 *dev_uuid;
2146 struct block_device *bdev;
2147 struct buffer_head *bh;
b444ad46 2148 struct btrfs_device *device;
7ba15b7d 2149
7ba15b7d 2150 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2151 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d 2152 if (ret)
b444ad46 2153 return ERR_PTR(ret);
7ba15b7d
SB
2154 disk_super = (struct btrfs_super_block *)bh->b_data;
2155 devid = btrfs_stack_device_id(&disk_super->dev_item);
2156 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2157 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2158 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2159 disk_super->metadata_uuid, true);
7239ff4b 2160 else
e4319cd9 2161 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2162 disk_super->fsid, true);
7239ff4b 2163
7ba15b7d 2164 brelse(bh);
b444ad46
NB
2165 if (!device)
2166 device = ERR_PTR(-ENOENT);
7ba15b7d 2167 blkdev_put(bdev, FMODE_READ);
b444ad46 2168 return device;
7ba15b7d
SB
2169}
2170
5c5c0df0
DS
2171/*
2172 * Lookup a device given by device id, or the path if the id is 0.
2173 */
a27a94c2 2174struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2175 struct btrfs_fs_info *fs_info, u64 devid,
2176 const char *device_path)
24e0474b 2177{
a27a94c2 2178 struct btrfs_device *device;
24e0474b 2179
5c5c0df0 2180 if (devid) {
e4319cd9 2181 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
09ba3bc9 2182 NULL, true);
a27a94c2
NB
2183 if (!device)
2184 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2185 return device;
2186 }
2187
2188 if (!device_path || !device_path[0])
2189 return ERR_PTR(-EINVAL);
2190
2191 if (strcmp(device_path, "missing") == 0) {
2192 /* Find first missing device */
2193 list_for_each_entry(device, &fs_info->fs_devices->devices,
2194 dev_list) {
2195 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2196 &device->dev_state) && !device->bdev)
2197 return device;
d95a830c 2198 }
6e927ceb 2199 return ERR_PTR(-ENOENT);
24e0474b 2200 }
6e927ceb
AJ
2201
2202 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2203}
2204
2b82032c
YZ
2205/*
2206 * does all the dirty work required for changing file system's UUID.
2207 */
2ff7e61e 2208static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2209{
0b246afa 2210 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2211 struct btrfs_fs_devices *old_devices;
e4404d6e 2212 struct btrfs_fs_devices *seed_devices;
0b246afa 2213 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2214 struct btrfs_device *device;
2215 u64 super_flags;
2216
a32bf9a3 2217 lockdep_assert_held(&uuid_mutex);
e4404d6e 2218 if (!fs_devices->seeding)
2b82032c
YZ
2219 return -EINVAL;
2220
7239ff4b 2221 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2222 if (IS_ERR(seed_devices))
2223 return PTR_ERR(seed_devices);
2b82032c 2224
e4404d6e
YZ
2225 old_devices = clone_fs_devices(fs_devices);
2226 if (IS_ERR(old_devices)) {
2227 kfree(seed_devices);
2228 return PTR_ERR(old_devices);
2b82032c 2229 }
e4404d6e 2230
c4babc5e 2231 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2232
e4404d6e
YZ
2233 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2234 seed_devices->opened = 1;
2235 INIT_LIST_HEAD(&seed_devices->devices);
2236 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2237 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2238
321a4bf7 2239 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2240 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2241 synchronize_rcu);
2196d6e8
MX
2242 list_for_each_entry(device, &seed_devices->devices, dev_list)
2243 device->fs_devices = seed_devices;
c9513edb 2244
34441361 2245 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2246 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2247 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2248
2b82032c
YZ
2249 fs_devices->seeding = 0;
2250 fs_devices->num_devices = 0;
2251 fs_devices->open_devices = 0;
69611ac8 2252 fs_devices->missing_devices = 0;
69611ac8 2253 fs_devices->rotating = 0;
e4404d6e 2254 fs_devices->seed = seed_devices;
2b82032c
YZ
2255
2256 generate_random_uuid(fs_devices->fsid);
7239ff4b 2257 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2258 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2259 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2260
2b82032c
YZ
2261 super_flags = btrfs_super_flags(disk_super) &
2262 ~BTRFS_SUPER_FLAG_SEEDING;
2263 btrfs_set_super_flags(disk_super, super_flags);
2264
2265 return 0;
2266}
2267
2268/*
01327610 2269 * Store the expected generation for seed devices in device items.
2b82032c 2270 */
5c466629 2271static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2272{
5c466629 2273 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2274 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2275 struct btrfs_path *path;
2276 struct extent_buffer *leaf;
2277 struct btrfs_dev_item *dev_item;
2278 struct btrfs_device *device;
2279 struct btrfs_key key;
44880fdc 2280 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2281 u8 dev_uuid[BTRFS_UUID_SIZE];
2282 u64 devid;
2283 int ret;
2284
2285 path = btrfs_alloc_path();
2286 if (!path)
2287 return -ENOMEM;
2288
2b82032c
YZ
2289 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2290 key.offset = 0;
2291 key.type = BTRFS_DEV_ITEM_KEY;
2292
2293 while (1) {
2294 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2295 if (ret < 0)
2296 goto error;
2297
2298 leaf = path->nodes[0];
2299next_slot:
2300 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2301 ret = btrfs_next_leaf(root, path);
2302 if (ret > 0)
2303 break;
2304 if (ret < 0)
2305 goto error;
2306 leaf = path->nodes[0];
2307 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2308 btrfs_release_path(path);
2b82032c
YZ
2309 continue;
2310 }
2311
2312 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2313 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2314 key.type != BTRFS_DEV_ITEM_KEY)
2315 break;
2316
2317 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2318 struct btrfs_dev_item);
2319 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2320 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2321 BTRFS_UUID_SIZE);
1473b24e 2322 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2323 BTRFS_FSID_SIZE);
e4319cd9 2324 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2325 fs_uuid, true);
79787eaa 2326 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2327
2328 if (device->fs_devices->seeding) {
2329 btrfs_set_device_generation(leaf, dev_item,
2330 device->generation);
2331 btrfs_mark_buffer_dirty(leaf);
2332 }
2333
2334 path->slots[0]++;
2335 goto next_slot;
2336 }
2337 ret = 0;
2338error:
2339 btrfs_free_path(path);
2340 return ret;
2341}
2342
da353f6b 2343int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2344{
5112febb 2345 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2346 struct request_queue *q;
788f20eb
CM
2347 struct btrfs_trans_handle *trans;
2348 struct btrfs_device *device;
2349 struct block_device *bdev;
0b246afa 2350 struct super_block *sb = fs_info->sb;
606686ee 2351 struct rcu_string *name;
5da54bc1 2352 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2353 u64 orig_super_total_bytes;
2354 u64 orig_super_num_devices;
2b82032c 2355 int seeding_dev = 0;
788f20eb 2356 int ret = 0;
7132a262 2357 bool unlocked = false;
788f20eb 2358
5da54bc1 2359 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2360 return -EROFS;
788f20eb 2361
a5d16333 2362 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2363 fs_info->bdev_holder);
7f59203a
JB
2364 if (IS_ERR(bdev))
2365 return PTR_ERR(bdev);
a2135011 2366
5da54bc1 2367 if (fs_devices->seeding) {
2b82032c
YZ
2368 seeding_dev = 1;
2369 down_write(&sb->s_umount);
2370 mutex_lock(&uuid_mutex);
2371 }
2372
8c8bee1d 2373 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2374
5da54bc1 2375 mutex_lock(&fs_devices->device_list_mutex);
694c51fb 2376 list_for_each_entry(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2377 if (device->bdev == bdev) {
2378 ret = -EEXIST;
d25628bd 2379 mutex_unlock(
5da54bc1 2380 &fs_devices->device_list_mutex);
2b82032c 2381 goto error;
788f20eb
CM
2382 }
2383 }
5da54bc1 2384 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2385
0b246afa 2386 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2387 if (IS_ERR(device)) {
788f20eb 2388 /* we can safely leave the fs_devices entry around */
12bd2fc0 2389 ret = PTR_ERR(device);
2b82032c 2390 goto error;
788f20eb
CM
2391 }
2392
78f2c9e6 2393 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2394 if (!name) {
2b82032c 2395 ret = -ENOMEM;
5c4cf6c9 2396 goto error_free_device;
788f20eb 2397 }
606686ee 2398 rcu_assign_pointer(device->name, name);
2b82032c 2399
a22285a6 2400 trans = btrfs_start_transaction(root, 0);
98d5dc13 2401 if (IS_ERR(trans)) {
98d5dc13 2402 ret = PTR_ERR(trans);
5c4cf6c9 2403 goto error_free_device;
98d5dc13
TI
2404 }
2405
d5e2003c 2406 q = bdev_get_queue(bdev);
ebbede42 2407 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2408 device->generation = trans->transid;
0b246afa
JM
2409 device->io_width = fs_info->sectorsize;
2410 device->io_align = fs_info->sectorsize;
2411 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2412 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2413 fs_info->sectorsize);
2cc3c559 2414 device->disk_total_bytes = device->total_bytes;
935e5cc9 2415 device->commit_total_bytes = device->total_bytes;
fb456252 2416 device->fs_info = fs_info;
788f20eb 2417 device->bdev = bdev;
e12c9621 2418 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2419 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2420 device->mode = FMODE_EXCL;
27087f37 2421 device->dev_stats_valid = 1;
9f6d2510 2422 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2423
2b82032c 2424 if (seeding_dev) {
1751e8a6 2425 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2426 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2427 if (ret) {
2428 btrfs_abort_transaction(trans, ret);
2429 goto error_trans;
2430 }
2b82032c 2431 }
788f20eb 2432
5da54bc1 2433 device->fs_devices = fs_devices;
e5e9a520 2434
5da54bc1 2435 mutex_lock(&fs_devices->device_list_mutex);
34441361 2436 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2437 list_add_rcu(&device->dev_list, &fs_devices->devices);
2438 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2439 fs_devices->num_devices++;
2440 fs_devices->open_devices++;
2441 fs_devices->rw_devices++;
2442 fs_devices->total_devices++;
2443 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2444
a5ed45f8 2445 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2446
e884f4f0 2447 if (!blk_queue_nonrot(q))
5da54bc1 2448 fs_devices->rotating = 1;
c289811c 2449
39379faa 2450 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2451 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2452 round_down(orig_super_total_bytes + device->total_bytes,
2453 fs_info->sectorsize));
788f20eb 2454
39379faa
NA
2455 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2456 btrfs_set_super_num_devices(fs_info->super_copy,
2457 orig_super_num_devices + 1);
0d39376a
AJ
2458
2459 /* add sysfs device entry */
5da54bc1 2460 btrfs_sysfs_add_device_link(fs_devices, device);
0d39376a 2461
2196d6e8
MX
2462 /*
2463 * we've got more storage, clear any full flags on the space
2464 * infos
2465 */
0b246afa 2466 btrfs_clear_space_info_full(fs_info);
2196d6e8 2467
34441361 2468 mutex_unlock(&fs_info->chunk_mutex);
5da54bc1 2469 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2470
2b82032c 2471 if (seeding_dev) {
34441361 2472 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2473 ret = init_first_rw_device(trans);
34441361 2474 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2475 if (ret) {
66642832 2476 btrfs_abort_transaction(trans, ret);
d31c32f6 2477 goto error_sysfs;
005d6427 2478 }
2196d6e8
MX
2479 }
2480
8e87e856 2481 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2482 if (ret) {
66642832 2483 btrfs_abort_transaction(trans, ret);
d31c32f6 2484 goto error_sysfs;
2196d6e8
MX
2485 }
2486
2487 if (seeding_dev) {
5c466629 2488 ret = btrfs_finish_sprout(trans);
005d6427 2489 if (ret) {
66642832 2490 btrfs_abort_transaction(trans, ret);
d31c32f6 2491 goto error_sysfs;
005d6427 2492 }
b2373f25 2493
f93c3997
DS
2494 btrfs_sysfs_update_sprout_fsid(fs_devices,
2495 fs_info->fs_devices->fsid);
2b82032c
YZ
2496 }
2497
3a45bb20 2498 ret = btrfs_commit_transaction(trans);
a2135011 2499
2b82032c
YZ
2500 if (seeding_dev) {
2501 mutex_unlock(&uuid_mutex);
2502 up_write(&sb->s_umount);
7132a262 2503 unlocked = true;
788f20eb 2504
79787eaa
JM
2505 if (ret) /* transaction commit */
2506 return ret;
2507
2ff7e61e 2508 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2509 if (ret < 0)
0b246afa 2510 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2511 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2512 trans = btrfs_attach_transaction(root);
2513 if (IS_ERR(trans)) {
2514 if (PTR_ERR(trans) == -ENOENT)
2515 return 0;
7132a262
AJ
2516 ret = PTR_ERR(trans);
2517 trans = NULL;
2518 goto error_sysfs;
671415b7 2519 }
3a45bb20 2520 ret = btrfs_commit_transaction(trans);
2b82032c 2521 }
c9e9f97b 2522
5a1972bd
QW
2523 /* Update ctime/mtime for libblkid */
2524 update_dev_time(device_path);
2b82032c 2525 return ret;
79787eaa 2526
d31c32f6 2527error_sysfs:
5da54bc1 2528 btrfs_sysfs_rm_device_link(fs_devices, device);
39379faa
NA
2529 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2530 mutex_lock(&fs_info->chunk_mutex);
2531 list_del_rcu(&device->dev_list);
2532 list_del(&device->dev_alloc_list);
2533 fs_info->fs_devices->num_devices--;
2534 fs_info->fs_devices->open_devices--;
2535 fs_info->fs_devices->rw_devices--;
2536 fs_info->fs_devices->total_devices--;
2537 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2538 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2539 btrfs_set_super_total_bytes(fs_info->super_copy,
2540 orig_super_total_bytes);
2541 btrfs_set_super_num_devices(fs_info->super_copy,
2542 orig_super_num_devices);
2543 mutex_unlock(&fs_info->chunk_mutex);
2544 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2545error_trans:
0af2c4bf 2546 if (seeding_dev)
1751e8a6 2547 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2548 if (trans)
2549 btrfs_end_transaction(trans);
5c4cf6c9 2550error_free_device:
a425f9d4 2551 btrfs_free_device(device);
2b82032c 2552error:
e525fd89 2553 blkdev_put(bdev, FMODE_EXCL);
7132a262 2554 if (seeding_dev && !unlocked) {
2b82032c
YZ
2555 mutex_unlock(&uuid_mutex);
2556 up_write(&sb->s_umount);
2557 }
c9e9f97b 2558 return ret;
788f20eb
CM
2559}
2560
d397712b
CM
2561static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2562 struct btrfs_device *device)
0b86a832
CM
2563{
2564 int ret;
2565 struct btrfs_path *path;
0b246afa 2566 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2567 struct btrfs_dev_item *dev_item;
2568 struct extent_buffer *leaf;
2569 struct btrfs_key key;
2570
0b86a832
CM
2571 path = btrfs_alloc_path();
2572 if (!path)
2573 return -ENOMEM;
2574
2575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576 key.type = BTRFS_DEV_ITEM_KEY;
2577 key.offset = device->devid;
2578
2579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580 if (ret < 0)
2581 goto out;
2582
2583 if (ret > 0) {
2584 ret = -ENOENT;
2585 goto out;
2586 }
2587
2588 leaf = path->nodes[0];
2589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591 btrfs_set_device_id(leaf, dev_item, device->devid);
2592 btrfs_set_device_type(leaf, dev_item, device->type);
2593 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2596 btrfs_set_device_total_bytes(leaf, dev_item,
2597 btrfs_device_get_disk_total_bytes(device));
2598 btrfs_set_device_bytes_used(leaf, dev_item,
2599 btrfs_device_get_bytes_used(device));
0b86a832
CM
2600 btrfs_mark_buffer_dirty(leaf);
2601
2602out:
2603 btrfs_free_path(path);
2604 return ret;
2605}
2606
2196d6e8 2607int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2608 struct btrfs_device *device, u64 new_size)
2609{
0b246afa
JM
2610 struct btrfs_fs_info *fs_info = device->fs_info;
2611 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2612 u64 old_total;
2613 u64 diff;
8f18cf13 2614
ebbede42 2615 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2616 return -EACCES;
2196d6e8 2617
7dfb8be1
NB
2618 new_size = round_down(new_size, fs_info->sectorsize);
2619
34441361 2620 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2621 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2622 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2623
63a212ab 2624 if (new_size <= device->total_bytes ||
401e29c1 2625 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2626 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2627 return -EINVAL;
2196d6e8 2628 }
2b82032c 2629
7dfb8be1
NB
2630 btrfs_set_super_total_bytes(super_copy,
2631 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2632 device->fs_devices->total_rw_bytes += diff;
2633
7cc8e58d
MX
2634 btrfs_device_set_total_bytes(device, new_size);
2635 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2636 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2637 if (list_empty(&device->post_commit_list))
2638 list_add_tail(&device->post_commit_list,
2639 &trans->transaction->dev_update_list);
34441361 2640 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2641
8f18cf13
CM
2642 return btrfs_update_device(trans, device);
2643}
2644
f4208794 2645static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2646{
f4208794 2647 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2648 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2649 int ret;
2650 struct btrfs_path *path;
2651 struct btrfs_key key;
2652
8f18cf13
CM
2653 path = btrfs_alloc_path();
2654 if (!path)
2655 return -ENOMEM;
2656
408fbf19 2657 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2658 key.offset = chunk_offset;
2659 key.type = BTRFS_CHUNK_ITEM_KEY;
2660
2661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2662 if (ret < 0)
2663 goto out;
2664 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2665 btrfs_handle_fs_error(fs_info, -ENOENT,
2666 "Failed lookup while freeing chunk.");
79787eaa
JM
2667 ret = -ENOENT;
2668 goto out;
2669 }
8f18cf13
CM
2670
2671 ret = btrfs_del_item(trans, root, path);
79787eaa 2672 if (ret < 0)
0b246afa
JM
2673 btrfs_handle_fs_error(fs_info, ret,
2674 "Failed to delete chunk item.");
79787eaa 2675out:
8f18cf13 2676 btrfs_free_path(path);
65a246c5 2677 return ret;
8f18cf13
CM
2678}
2679
408fbf19 2680static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2681{
0b246afa 2682 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2683 struct btrfs_disk_key *disk_key;
2684 struct btrfs_chunk *chunk;
2685 u8 *ptr;
2686 int ret = 0;
2687 u32 num_stripes;
2688 u32 array_size;
2689 u32 len = 0;
2690 u32 cur;
2691 struct btrfs_key key;
2692
34441361 2693 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2694 array_size = btrfs_super_sys_array_size(super_copy);
2695
2696 ptr = super_copy->sys_chunk_array;
2697 cur = 0;
2698
2699 while (cur < array_size) {
2700 disk_key = (struct btrfs_disk_key *)ptr;
2701 btrfs_disk_key_to_cpu(&key, disk_key);
2702
2703 len = sizeof(*disk_key);
2704
2705 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2706 chunk = (struct btrfs_chunk *)(ptr + len);
2707 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2708 len += btrfs_chunk_item_size(num_stripes);
2709 } else {
2710 ret = -EIO;
2711 break;
2712 }
408fbf19 2713 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2714 key.offset == chunk_offset) {
2715 memmove(ptr, ptr + len, array_size - (cur + len));
2716 array_size -= len;
2717 btrfs_set_super_sys_array_size(super_copy, array_size);
2718 } else {
2719 ptr += len;
2720 cur += len;
2721 }
2722 }
34441361 2723 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2724 return ret;
2725}
2726
60ca842e
OS
2727/*
2728 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2729 * @logical: Logical block offset in bytes.
2730 * @length: Length of extent in bytes.
2731 *
2732 * Return: Chunk mapping or ERR_PTR.
2733 */
2734struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2735 u64 logical, u64 length)
592d92ee
LB
2736{
2737 struct extent_map_tree *em_tree;
2738 struct extent_map *em;
2739
c8bf1b67 2740 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2741 read_lock(&em_tree->lock);
2742 em = lookup_extent_mapping(em_tree, logical, length);
2743 read_unlock(&em_tree->lock);
2744
2745 if (!em) {
2746 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2747 logical, length);
2748 return ERR_PTR(-EINVAL);
2749 }
2750
2751 if (em->start > logical || em->start + em->len < logical) {
2752 btrfs_crit(fs_info,
2753 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2754 logical, length, em->start, em->start + em->len);
2755 free_extent_map(em);
2756 return ERR_PTR(-EINVAL);
2757 }
2758
2759 /* callers are responsible for dropping em's ref. */
2760 return em;
2761}
2762
97aff912 2763int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2764{
97aff912 2765 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
2766 struct extent_map *em;
2767 struct map_lookup *map;
2196d6e8 2768 u64 dev_extent_len = 0;
47ab2a6c 2769 int i, ret = 0;
0b246afa 2770 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2771
60ca842e 2772 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 2773 if (IS_ERR(em)) {
47ab2a6c
JB
2774 /*
2775 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2776 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2777 * do anything we still error out.
2778 */
2779 ASSERT(0);
592d92ee 2780 return PTR_ERR(em);
47ab2a6c 2781 }
95617d69 2782 map = em->map_lookup;
34441361 2783 mutex_lock(&fs_info->chunk_mutex);
451a2c13 2784 check_system_chunk(trans, map->type);
34441361 2785 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2786
57ba4cb8
FM
2787 /*
2788 * Take the device list mutex to prevent races with the final phase of
2789 * a device replace operation that replaces the device object associated
2790 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2791 */
2792 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2793 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2794 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2795 ret = btrfs_free_dev_extent(trans, device,
2796 map->stripes[i].physical,
2797 &dev_extent_len);
47ab2a6c 2798 if (ret) {
57ba4cb8 2799 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2800 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2801 goto out;
2802 }
a061fc8d 2803
2196d6e8 2804 if (device->bytes_used > 0) {
34441361 2805 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2806 btrfs_device_set_bytes_used(device,
2807 device->bytes_used - dev_extent_len);
a5ed45f8 2808 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2809 btrfs_clear_space_info_full(fs_info);
34441361 2810 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2811 }
a061fc8d 2812
64bc6c2a
NB
2813 ret = btrfs_update_device(trans, device);
2814 if (ret) {
2815 mutex_unlock(&fs_devices->device_list_mutex);
2816 btrfs_abort_transaction(trans, ret);
2817 goto out;
dfe25020 2818 }
8f18cf13 2819 }
57ba4cb8
FM
2820 mutex_unlock(&fs_devices->device_list_mutex);
2821
f4208794 2822 ret = btrfs_free_chunk(trans, chunk_offset);
47ab2a6c 2823 if (ret) {
66642832 2824 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2825 goto out;
2826 }
8f18cf13 2827
6bccf3ab 2828 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2829
8f18cf13 2830 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2831 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2832 if (ret) {
66642832 2833 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2834 goto out;
2835 }
8f18cf13
CM
2836 }
2837
5a98ec01 2838 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 2839 if (ret) {
66642832 2840 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2841 goto out;
2842 }
2b82032c 2843
47ab2a6c 2844out:
2b82032c
YZ
2845 /* once for us */
2846 free_extent_map(em);
47ab2a6c
JB
2847 return ret;
2848}
2b82032c 2849
5b4aacef 2850static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2851{
5b4aacef 2852 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2853 struct btrfs_trans_handle *trans;
47ab2a6c 2854 int ret;
2b82032c 2855
67c5e7d4
FM
2856 /*
2857 * Prevent races with automatic removal of unused block groups.
2858 * After we relocate and before we remove the chunk with offset
2859 * chunk_offset, automatic removal of the block group can kick in,
2860 * resulting in a failure when calling btrfs_remove_chunk() below.
2861 *
2862 * Make sure to acquire this mutex before doing a tree search (dev
2863 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2864 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2865 * we release the path used to search the chunk/dev tree and before
2866 * the current task acquires this mutex and calls us.
2867 */
a32bf9a3 2868 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 2869
47ab2a6c 2870 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2871 btrfs_scrub_pause(fs_info);
0b246afa 2872 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2873 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2874 if (ret)
2875 return ret;
2876
19c4d2f9
CM
2877 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2878 chunk_offset);
2879 if (IS_ERR(trans)) {
2880 ret = PTR_ERR(trans);
2881 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2882 return ret;
2883 }
2884
47ab2a6c 2885 /*
19c4d2f9
CM
2886 * step two, delete the device extents and the
2887 * chunk tree entries
47ab2a6c 2888 */
97aff912 2889 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 2890 btrfs_end_transaction(trans);
19c4d2f9 2891 return ret;
2b82032c
YZ
2892}
2893
2ff7e61e 2894static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2895{
0b246afa 2896 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2897 struct btrfs_path *path;
2898 struct extent_buffer *leaf;
2899 struct btrfs_chunk *chunk;
2900 struct btrfs_key key;
2901 struct btrfs_key found_key;
2b82032c 2902 u64 chunk_type;
ba1bf481
JB
2903 bool retried = false;
2904 int failed = 0;
2b82032c
YZ
2905 int ret;
2906
2907 path = btrfs_alloc_path();
2908 if (!path)
2909 return -ENOMEM;
2910
ba1bf481 2911again:
2b82032c
YZ
2912 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2913 key.offset = (u64)-1;
2914 key.type = BTRFS_CHUNK_ITEM_KEY;
2915
2916 while (1) {
0b246afa 2917 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2918 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2919 if (ret < 0) {
0b246afa 2920 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2921 goto error;
67c5e7d4 2922 }
79787eaa 2923 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2924
2925 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2926 key.type);
67c5e7d4 2927 if (ret)
0b246afa 2928 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2929 if (ret < 0)
2930 goto error;
2931 if (ret > 0)
2932 break;
1a40e23b 2933
2b82032c
YZ
2934 leaf = path->nodes[0];
2935 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2936
2b82032c
YZ
2937 chunk = btrfs_item_ptr(leaf, path->slots[0],
2938 struct btrfs_chunk);
2939 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2940 btrfs_release_path(path);
8f18cf13 2941
2b82032c 2942 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 2943 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
2944 if (ret == -ENOSPC)
2945 failed++;
14586651
HS
2946 else
2947 BUG_ON(ret);
2b82032c 2948 }
0b246afa 2949 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 2950
2b82032c
YZ
2951 if (found_key.offset == 0)
2952 break;
2953 key.offset = found_key.offset - 1;
2954 }
2955 ret = 0;
ba1bf481
JB
2956 if (failed && !retried) {
2957 failed = 0;
2958 retried = true;
2959 goto again;
fae7f21c 2960 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2961 ret = -ENOSPC;
2962 }
2b82032c
YZ
2963error:
2964 btrfs_free_path(path);
2965 return ret;
8f18cf13
CM
2966}
2967
a6f93c71
LB
2968/*
2969 * return 1 : allocate a data chunk successfully,
2970 * return <0: errors during allocating a data chunk,
2971 * return 0 : no need to allocate a data chunk.
2972 */
2973static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
2974 u64 chunk_offset)
2975{
2976 struct btrfs_block_group_cache *cache;
2977 u64 bytes_used;
2978 u64 chunk_type;
2979
2980 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2981 ASSERT(cache);
2982 chunk_type = cache->flags;
2983 btrfs_put_block_group(cache);
2984
5ae21692
JT
2985 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
2986 return 0;
2987
2988 spin_lock(&fs_info->data_sinfo->lock);
2989 bytes_used = fs_info->data_sinfo->bytes_used;
2990 spin_unlock(&fs_info->data_sinfo->lock);
2991
2992 if (!bytes_used) {
2993 struct btrfs_trans_handle *trans;
2994 int ret;
2995
2996 trans = btrfs_join_transaction(fs_info->tree_root);
2997 if (IS_ERR(trans))
2998 return PTR_ERR(trans);
2999
3000 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3001 btrfs_end_transaction(trans);
3002 if (ret < 0)
3003 return ret;
3004 return 1;
a6f93c71 3005 }
5ae21692 3006
a6f93c71
LB
3007 return 0;
3008}
3009
6bccf3ab 3010static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3011 struct btrfs_balance_control *bctl)
3012{
6bccf3ab 3013 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3014 struct btrfs_trans_handle *trans;
3015 struct btrfs_balance_item *item;
3016 struct btrfs_disk_balance_args disk_bargs;
3017 struct btrfs_path *path;
3018 struct extent_buffer *leaf;
3019 struct btrfs_key key;
3020 int ret, err;
3021
3022 path = btrfs_alloc_path();
3023 if (!path)
3024 return -ENOMEM;
3025
3026 trans = btrfs_start_transaction(root, 0);
3027 if (IS_ERR(trans)) {
3028 btrfs_free_path(path);
3029 return PTR_ERR(trans);
3030 }
3031
3032 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3033 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3034 key.offset = 0;
3035
3036 ret = btrfs_insert_empty_item(trans, root, path, &key,
3037 sizeof(*item));
3038 if (ret)
3039 goto out;
3040
3041 leaf = path->nodes[0];
3042 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3043
b159fa28 3044 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3045
3046 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3047 btrfs_set_balance_data(leaf, item, &disk_bargs);
3048 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3049 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3050 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3051 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3052
3053 btrfs_set_balance_flags(leaf, item, bctl->flags);
3054
3055 btrfs_mark_buffer_dirty(leaf);
3056out:
3057 btrfs_free_path(path);
3a45bb20 3058 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3059 if (err && !ret)
3060 ret = err;
3061 return ret;
3062}
3063
6bccf3ab 3064static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3065{
6bccf3ab 3066 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3067 struct btrfs_trans_handle *trans;
3068 struct btrfs_path *path;
3069 struct btrfs_key key;
3070 int ret, err;
3071
3072 path = btrfs_alloc_path();
3073 if (!path)
3074 return -ENOMEM;
3075
3076 trans = btrfs_start_transaction(root, 0);
3077 if (IS_ERR(trans)) {
3078 btrfs_free_path(path);
3079 return PTR_ERR(trans);
3080 }
3081
3082 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3083 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3084 key.offset = 0;
3085
3086 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3087 if (ret < 0)
3088 goto out;
3089 if (ret > 0) {
3090 ret = -ENOENT;
3091 goto out;
3092 }
3093
3094 ret = btrfs_del_item(trans, root, path);
3095out:
3096 btrfs_free_path(path);
3a45bb20 3097 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3098 if (err && !ret)
3099 ret = err;
3100 return ret;
3101}
3102
59641015
ID
3103/*
3104 * This is a heuristic used to reduce the number of chunks balanced on
3105 * resume after balance was interrupted.
3106 */
3107static void update_balance_args(struct btrfs_balance_control *bctl)
3108{
3109 /*
3110 * Turn on soft mode for chunk types that were being converted.
3111 */
3112 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3113 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3114 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3115 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3116 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3117 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3118
3119 /*
3120 * Turn on usage filter if is not already used. The idea is
3121 * that chunks that we have already balanced should be
3122 * reasonably full. Don't do it for chunks that are being
3123 * converted - that will keep us from relocating unconverted
3124 * (albeit full) chunks.
3125 */
3126 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3127 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3128 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3129 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3130 bctl->data.usage = 90;
3131 }
3132 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3133 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3134 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3135 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3136 bctl->sys.usage = 90;
3137 }
3138 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3139 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3140 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3141 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3142 bctl->meta.usage = 90;
3143 }
3144}
3145
149196a2
DS
3146/*
3147 * Clear the balance status in fs_info and delete the balance item from disk.
3148 */
3149static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3150{
3151 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3152 int ret;
c9e9f97b
ID
3153
3154 BUG_ON(!fs_info->balance_ctl);
3155
3156 spin_lock(&fs_info->balance_lock);
3157 fs_info->balance_ctl = NULL;
3158 spin_unlock(&fs_info->balance_lock);
3159
3160 kfree(bctl);
149196a2
DS
3161 ret = del_balance_item(fs_info);
3162 if (ret)
3163 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3164}
3165
ed25e9b2
ID
3166/*
3167 * Balance filters. Return 1 if chunk should be filtered out
3168 * (should not be balanced).
3169 */
899c81ea 3170static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3171 struct btrfs_balance_args *bargs)
3172{
899c81ea
ID
3173 chunk_type = chunk_to_extended(chunk_type) &
3174 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3175
899c81ea 3176 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3177 return 0;
3178
3179 return 1;
3180}
3181
dba72cb3 3182static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3183 struct btrfs_balance_args *bargs)
bc309467
DS
3184{
3185 struct btrfs_block_group_cache *cache;
3186 u64 chunk_used;
3187 u64 user_thresh_min;
3188 u64 user_thresh_max;
3189 int ret = 1;
3190
3191 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3192 chunk_used = cache->used;
bc309467
DS
3193
3194 if (bargs->usage_min == 0)
3195 user_thresh_min = 0;
3196 else
b3470b5d
DS
3197 user_thresh_min = div_factor_fine(cache->length,
3198 bargs->usage_min);
bc309467
DS
3199
3200 if (bargs->usage_max == 0)
3201 user_thresh_max = 1;
3202 else if (bargs->usage_max > 100)
b3470b5d 3203 user_thresh_max = cache->length;
bc309467 3204 else
b3470b5d
DS
3205 user_thresh_max = div_factor_fine(cache->length,
3206 bargs->usage_max);
bc309467
DS
3207
3208 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3209 ret = 0;
3210
3211 btrfs_put_block_group(cache);
3212 return ret;
3213}
3214
dba72cb3 3215static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3216 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3217{
3218 struct btrfs_block_group_cache *cache;
3219 u64 chunk_used, user_thresh;
3220 int ret = 1;
3221
3222 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3223 chunk_used = cache->used;
5ce5b3c0 3224
bc309467 3225 if (bargs->usage_min == 0)
3e39cea6 3226 user_thresh = 1;
a105bb88 3227 else if (bargs->usage > 100)
b3470b5d 3228 user_thresh = cache->length;
a105bb88 3229 else
b3470b5d 3230 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3231
5ce5b3c0
ID
3232 if (chunk_used < user_thresh)
3233 ret = 0;
3234
3235 btrfs_put_block_group(cache);
3236 return ret;
3237}
3238
409d404b
ID
3239static int chunk_devid_filter(struct extent_buffer *leaf,
3240 struct btrfs_chunk *chunk,
3241 struct btrfs_balance_args *bargs)
3242{
3243 struct btrfs_stripe *stripe;
3244 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3245 int i;
3246
3247 for (i = 0; i < num_stripes; i++) {
3248 stripe = btrfs_stripe_nr(chunk, i);
3249 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3250 return 0;
3251 }
3252
3253 return 1;
3254}
3255
946c9256
DS
3256static u64 calc_data_stripes(u64 type, int num_stripes)
3257{
3258 const int index = btrfs_bg_flags_to_raid_index(type);
3259 const int ncopies = btrfs_raid_array[index].ncopies;
3260 const int nparity = btrfs_raid_array[index].nparity;
3261
3262 if (nparity)
3263 return num_stripes - nparity;
3264 else
3265 return num_stripes / ncopies;
3266}
3267
94e60d5a
ID
3268/* [pstart, pend) */
3269static int chunk_drange_filter(struct extent_buffer *leaf,
3270 struct btrfs_chunk *chunk,
94e60d5a
ID
3271 struct btrfs_balance_args *bargs)
3272{
3273 struct btrfs_stripe *stripe;
3274 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3275 u64 stripe_offset;
3276 u64 stripe_length;
946c9256 3277 u64 type;
94e60d5a
ID
3278 int factor;
3279 int i;
3280
3281 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3282 return 0;
3283
946c9256
DS
3284 type = btrfs_chunk_type(leaf, chunk);
3285 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3286
3287 for (i = 0; i < num_stripes; i++) {
3288 stripe = btrfs_stripe_nr(chunk, i);
3289 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3290 continue;
3291
3292 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3293 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3294 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3295
3296 if (stripe_offset < bargs->pend &&
3297 stripe_offset + stripe_length > bargs->pstart)
3298 return 0;
3299 }
3300
3301 return 1;
3302}
3303
ea67176a
ID
3304/* [vstart, vend) */
3305static int chunk_vrange_filter(struct extent_buffer *leaf,
3306 struct btrfs_chunk *chunk,
3307 u64 chunk_offset,
3308 struct btrfs_balance_args *bargs)
3309{
3310 if (chunk_offset < bargs->vend &&
3311 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3312 /* at least part of the chunk is inside this vrange */
3313 return 0;
3314
3315 return 1;
3316}
3317
dee32d0a
GAP
3318static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3319 struct btrfs_chunk *chunk,
3320 struct btrfs_balance_args *bargs)
3321{
3322 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3323
3324 if (bargs->stripes_min <= num_stripes
3325 && num_stripes <= bargs->stripes_max)
3326 return 0;
3327
3328 return 1;
3329}
3330
899c81ea 3331static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3332 struct btrfs_balance_args *bargs)
3333{
3334 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3335 return 0;
3336
899c81ea
ID
3337 chunk_type = chunk_to_extended(chunk_type) &
3338 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3339
899c81ea 3340 if (bargs->target == chunk_type)
cfa4c961
ID
3341 return 1;
3342
3343 return 0;
3344}
3345
6ec0896c 3346static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3347 struct btrfs_chunk *chunk, u64 chunk_offset)
3348{
6ec0896c 3349 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3350 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3351 struct btrfs_balance_args *bargs = NULL;
3352 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3353
3354 /* type filter */
3355 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3356 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3357 return 0;
3358 }
3359
3360 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3361 bargs = &bctl->data;
3362 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3363 bargs = &bctl->sys;
3364 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3365 bargs = &bctl->meta;
3366
ed25e9b2
ID
3367 /* profiles filter */
3368 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3369 chunk_profiles_filter(chunk_type, bargs)) {
3370 return 0;
5ce5b3c0
ID
3371 }
3372
3373 /* usage filter */
3374 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3375 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3376 return 0;
bc309467 3377 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3378 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3379 return 0;
409d404b
ID
3380 }
3381
3382 /* devid filter */
3383 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3384 chunk_devid_filter(leaf, chunk, bargs)) {
3385 return 0;
94e60d5a
ID
3386 }
3387
3388 /* drange filter, makes sense only with devid filter */
3389 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3390 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3391 return 0;
ea67176a
ID
3392 }
3393
3394 /* vrange filter */
3395 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3396 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3397 return 0;
ed25e9b2
ID
3398 }
3399
dee32d0a
GAP
3400 /* stripes filter */
3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3402 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3403 return 0;
3404 }
3405
cfa4c961
ID
3406 /* soft profile changing mode */
3407 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3408 chunk_soft_convert_filter(chunk_type, bargs)) {
3409 return 0;
3410 }
3411
7d824b6f
DS
3412 /*
3413 * limited by count, must be the last filter
3414 */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3416 if (bargs->limit == 0)
3417 return 0;
3418 else
3419 bargs->limit--;
12907fc7
DS
3420 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3421 /*
3422 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3423 * determined here because we do not have the global information
12907fc7
DS
3424 * about the count of all chunks that satisfy the filters.
3425 */
3426 if (bargs->limit_max == 0)
3427 return 0;
3428 else
3429 bargs->limit_max--;
7d824b6f
DS
3430 }
3431
f43ffb60
ID
3432 return 1;
3433}
3434
c9e9f97b 3435static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3436{
19a39dce 3437 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3438 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3439 u64 chunk_type;
f43ffb60 3440 struct btrfs_chunk *chunk;
5a488b9d 3441 struct btrfs_path *path = NULL;
ec44a35c 3442 struct btrfs_key key;
ec44a35c 3443 struct btrfs_key found_key;
f43ffb60
ID
3444 struct extent_buffer *leaf;
3445 int slot;
c9e9f97b
ID
3446 int ret;
3447 int enospc_errors = 0;
19a39dce 3448 bool counting = true;
12907fc7 3449 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3450 u64 limit_data = bctl->data.limit;
3451 u64 limit_meta = bctl->meta.limit;
3452 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3453 u32 count_data = 0;
3454 u32 count_meta = 0;
3455 u32 count_sys = 0;
2c9fe835 3456 int chunk_reserved = 0;
ec44a35c 3457
ec44a35c 3458 path = btrfs_alloc_path();
17e9f796
MF
3459 if (!path) {
3460 ret = -ENOMEM;
3461 goto error;
3462 }
19a39dce
ID
3463
3464 /* zero out stat counters */
3465 spin_lock(&fs_info->balance_lock);
3466 memset(&bctl->stat, 0, sizeof(bctl->stat));
3467 spin_unlock(&fs_info->balance_lock);
3468again:
7d824b6f 3469 if (!counting) {
12907fc7
DS
3470 /*
3471 * The single value limit and min/max limits use the same bytes
3472 * in the
3473 */
7d824b6f
DS
3474 bctl->data.limit = limit_data;
3475 bctl->meta.limit = limit_meta;
3476 bctl->sys.limit = limit_sys;
3477 }
ec44a35c
CM
3478 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3479 key.offset = (u64)-1;
3480 key.type = BTRFS_CHUNK_ITEM_KEY;
3481
d397712b 3482 while (1) {
19a39dce 3483 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3484 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3485 ret = -ECANCELED;
3486 goto error;
3487 }
3488
67c5e7d4 3489 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3490 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3491 if (ret < 0) {
3492 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3493 goto error;
67c5e7d4 3494 }
ec44a35c
CM
3495
3496 /*
3497 * this shouldn't happen, it means the last relocate
3498 * failed
3499 */
3500 if (ret == 0)
c9e9f97b 3501 BUG(); /* FIXME break ? */
ec44a35c
CM
3502
3503 ret = btrfs_previous_item(chunk_root, path, 0,
3504 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3505 if (ret) {
67c5e7d4 3506 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3507 ret = 0;
ec44a35c 3508 break;
c9e9f97b 3509 }
7d9eb12c 3510
f43ffb60
ID
3511 leaf = path->nodes[0];
3512 slot = path->slots[0];
3513 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3514
67c5e7d4
FM
3515 if (found_key.objectid != key.objectid) {
3516 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3517 break;
67c5e7d4 3518 }
7d9eb12c 3519
f43ffb60 3520 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3521 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3522
19a39dce
ID
3523 if (!counting) {
3524 spin_lock(&fs_info->balance_lock);
3525 bctl->stat.considered++;
3526 spin_unlock(&fs_info->balance_lock);
3527 }
3528
6ec0896c 3529 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3530
b3b4aa74 3531 btrfs_release_path(path);
67c5e7d4
FM
3532 if (!ret) {
3533 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3534 goto loop;
67c5e7d4 3535 }
f43ffb60 3536
19a39dce 3537 if (counting) {
67c5e7d4 3538 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3539 spin_lock(&fs_info->balance_lock);
3540 bctl->stat.expected++;
3541 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3542
3543 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3544 count_data++;
3545 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3546 count_sys++;
3547 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3548 count_meta++;
3549
3550 goto loop;
3551 }
3552
3553 /*
3554 * Apply limit_min filter, no need to check if the LIMITS
3555 * filter is used, limit_min is 0 by default
3556 */
3557 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3558 count_data < bctl->data.limit_min)
3559 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3560 count_meta < bctl->meta.limit_min)
3561 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3562 count_sys < bctl->sys.limit_min)) {
3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3564 goto loop;
3565 }
3566
a6f93c71
LB
3567 if (!chunk_reserved) {
3568 /*
3569 * We may be relocating the only data chunk we have,
3570 * which could potentially end up with losing data's
3571 * raid profile, so lets allocate an empty one in
3572 * advance.
3573 */
3574 ret = btrfs_may_alloc_data_chunk(fs_info,
3575 found_key.offset);
2c9fe835
ZL
3576 if (ret < 0) {
3577 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3578 goto error;
a6f93c71
LB
3579 } else if (ret == 1) {
3580 chunk_reserved = 1;
2c9fe835 3581 }
2c9fe835
ZL
3582 }
3583
5b4aacef 3584 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3585 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce 3586 if (ret == -ENOSPC) {
c9e9f97b 3587 enospc_errors++;
eede2bf3
OS
3588 } else if (ret == -ETXTBSY) {
3589 btrfs_info(fs_info,
3590 "skipping relocation of block group %llu due to active swapfile",
3591 found_key.offset);
3592 ret = 0;
3593 } else if (ret) {
3594 goto error;
19a39dce
ID
3595 } else {
3596 spin_lock(&fs_info->balance_lock);
3597 bctl->stat.completed++;
3598 spin_unlock(&fs_info->balance_lock);
3599 }
f43ffb60 3600loop:
795a3321
ID
3601 if (found_key.offset == 0)
3602 break;
ba1bf481 3603 key.offset = found_key.offset - 1;
ec44a35c 3604 }
c9e9f97b 3605
19a39dce
ID
3606 if (counting) {
3607 btrfs_release_path(path);
3608 counting = false;
3609 goto again;
3610 }
ec44a35c
CM
3611error:
3612 btrfs_free_path(path);
c9e9f97b 3613 if (enospc_errors) {
efe120a0 3614 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3615 enospc_errors);
c9e9f97b
ID
3616 if (!ret)
3617 ret = -ENOSPC;
3618 }
3619
ec44a35c
CM
3620 return ret;
3621}
3622
0c460c0d
ID
3623/**
3624 * alloc_profile_is_valid - see if a given profile is valid and reduced
3625 * @flags: profile to validate
3626 * @extended: if true @flags is treated as an extended profile
3627 */
3628static int alloc_profile_is_valid(u64 flags, int extended)
3629{
3630 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3631 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3632
3633 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3634
3635 /* 1) check that all other bits are zeroed */
3636 if (flags & ~mask)
3637 return 0;
3638
3639 /* 2) see if profile is reduced */
3640 if (flags == 0)
3641 return !extended; /* "0" is valid for usual profiles */
3642
c1499166 3643 return has_single_bit_set(flags);
0c460c0d
ID
3644}
3645
837d5b6e
ID
3646static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3647{
a7e99c69
ID
3648 /* cancel requested || normal exit path */
3649 return atomic_read(&fs_info->balance_cancel_req) ||
3650 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3651 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3652}
3653
bdcd3c97
AM
3654/* Non-zero return value signifies invalidity */
3655static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3656 u64 allowed)
3657{
3658 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3659 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3660 (bctl_arg->target & ~allowed)));
3661}
3662
56fc37d9
AJ
3663/*
3664 * Fill @buf with textual description of balance filter flags @bargs, up to
3665 * @size_buf including the terminating null. The output may be trimmed if it
3666 * does not fit into the provided buffer.
3667 */
3668static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3669 u32 size_buf)
3670{
3671 int ret;
3672 u32 size_bp = size_buf;
3673 char *bp = buf;
3674 u64 flags = bargs->flags;
3675 char tmp_buf[128] = {'\0'};
3676
3677 if (!flags)
3678 return;
3679
3680#define CHECK_APPEND_NOARG(a) \
3681 do { \
3682 ret = snprintf(bp, size_bp, (a)); \
3683 if (ret < 0 || ret >= size_bp) \
3684 goto out_overflow; \
3685 size_bp -= ret; \
3686 bp += ret; \
3687 } while (0)
3688
3689#define CHECK_APPEND_1ARG(a, v1) \
3690 do { \
3691 ret = snprintf(bp, size_bp, (a), (v1)); \
3692 if (ret < 0 || ret >= size_bp) \
3693 goto out_overflow; \
3694 size_bp -= ret; \
3695 bp += ret; \
3696 } while (0)
3697
3698#define CHECK_APPEND_2ARG(a, v1, v2) \
3699 do { \
3700 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3701 if (ret < 0 || ret >= size_bp) \
3702 goto out_overflow; \
3703 size_bp -= ret; \
3704 bp += ret; \
3705 } while (0)
3706
158da513
DS
3707 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3708 CHECK_APPEND_1ARG("convert=%s,",
3709 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
3710
3711 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3712 CHECK_APPEND_NOARG("soft,");
3713
3714 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3715 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3716 sizeof(tmp_buf));
3717 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3718 }
3719
3720 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3721 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3722
3723 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3724 CHECK_APPEND_2ARG("usage=%u..%u,",
3725 bargs->usage_min, bargs->usage_max);
3726
3727 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3728 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3729
3730 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3731 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3732 bargs->pstart, bargs->pend);
3733
3734 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3735 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3736 bargs->vstart, bargs->vend);
3737
3738 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3739 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3740
3741 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3742 CHECK_APPEND_2ARG("limit=%u..%u,",
3743 bargs->limit_min, bargs->limit_max);
3744
3745 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3746 CHECK_APPEND_2ARG("stripes=%u..%u,",
3747 bargs->stripes_min, bargs->stripes_max);
3748
3749#undef CHECK_APPEND_2ARG
3750#undef CHECK_APPEND_1ARG
3751#undef CHECK_APPEND_NOARG
3752
3753out_overflow:
3754
3755 if (size_bp < size_buf)
3756 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3757 else
3758 buf[0] = '\0';
3759}
3760
3761static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3762{
3763 u32 size_buf = 1024;
3764 char tmp_buf[192] = {'\0'};
3765 char *buf;
3766 char *bp;
3767 u32 size_bp = size_buf;
3768 int ret;
3769 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3770
3771 buf = kzalloc(size_buf, GFP_KERNEL);
3772 if (!buf)
3773 return;
3774
3775 bp = buf;
3776
3777#define CHECK_APPEND_1ARG(a, v1) \
3778 do { \
3779 ret = snprintf(bp, size_bp, (a), (v1)); \
3780 if (ret < 0 || ret >= size_bp) \
3781 goto out_overflow; \
3782 size_bp -= ret; \
3783 bp += ret; \
3784 } while (0)
3785
3786 if (bctl->flags & BTRFS_BALANCE_FORCE)
3787 CHECK_APPEND_1ARG("%s", "-f ");
3788
3789 if (bctl->flags & BTRFS_BALANCE_DATA) {
3790 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3791 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3792 }
3793
3794 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3795 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3796 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3797 }
3798
3799 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3800 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3801 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3802 }
3803
3804#undef CHECK_APPEND_1ARG
3805
3806out_overflow:
3807
3808 if (size_bp < size_buf)
3809 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3810 btrfs_info(fs_info, "balance: %s %s",
3811 (bctl->flags & BTRFS_BALANCE_RESUME) ?
3812 "resume" : "start", buf);
3813
3814 kfree(buf);
3815}
3816
c9e9f97b 3817/*
dccdb07b 3818 * Should be called with balance mutexe held
c9e9f97b 3819 */
6fcf6e2b
DS
3820int btrfs_balance(struct btrfs_fs_info *fs_info,
3821 struct btrfs_balance_control *bctl,
c9e9f97b
ID
3822 struct btrfs_ioctl_balance_args *bargs)
3823{
14506127 3824 u64 meta_target, data_target;
f43ffb60 3825 u64 allowed;
e4837f8f 3826 int mixed = 0;
c9e9f97b 3827 int ret;
8dabb742 3828 u64 num_devices;
de98ced9 3829 unsigned seq;
e62869be 3830 bool reducing_redundancy;
081db89b 3831 int i;
c9e9f97b 3832
837d5b6e 3833 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3834 atomic_read(&fs_info->balance_pause_req) ||
3835 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3836 ret = -EINVAL;
3837 goto out;
3838 }
3839
e4837f8f
ID
3840 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3841 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3842 mixed = 1;
3843
f43ffb60
ID
3844 /*
3845 * In case of mixed groups both data and meta should be picked,
3846 * and identical options should be given for both of them.
3847 */
e4837f8f
ID
3848 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3849 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3850 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3851 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3852 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 3853 btrfs_err(fs_info,
6dac13f8 3854 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
3855 ret = -EINVAL;
3856 goto out;
3857 }
3858 }
3859
1da73967 3860 num_devices = btrfs_num_devices(fs_info);
fab27359
QW
3861
3862 /*
3863 * SINGLE profile on-disk has no profile bit, but in-memory we have a
3864 * special bit for it, to make it easier to distinguish. Thus we need
3865 * to set it manually, or balance would refuse the profile.
3866 */
3867 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
3868 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
3869 if (num_devices >= btrfs_raid_array[i].devs_min)
3870 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 3871
bdcd3c97 3872 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e 3873 btrfs_err(fs_info,
6dac13f8 3874 "balance: invalid convert data profile %s",
158da513 3875 btrfs_bg_type_to_raid_name(bctl->data.target));
e4d8ec0f
ID
3876 ret = -EINVAL;
3877 goto out;
3878 }
bdcd3c97 3879 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3880 btrfs_err(fs_info,
6dac13f8 3881 "balance: invalid convert metadata profile %s",
158da513 3882 btrfs_bg_type_to_raid_name(bctl->meta.target));
e4d8ec0f
ID
3883 ret = -EINVAL;
3884 goto out;
3885 }
bdcd3c97 3886 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3887 btrfs_err(fs_info,
6dac13f8 3888 "balance: invalid convert system profile %s",
158da513 3889 btrfs_bg_type_to_raid_name(bctl->sys.target));
e4d8ec0f
ID
3890 ret = -EINVAL;
3891 goto out;
3892 }
3893
6079e12c
DS
3894 /*
3895 * Allow to reduce metadata or system integrity only if force set for
3896 * profiles with redundancy (copies, parity)
3897 */
3898 allowed = 0;
3899 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
3900 if (btrfs_raid_array[i].ncopies >= 2 ||
3901 btrfs_raid_array[i].tolerated_failures >= 1)
3902 allowed |= btrfs_raid_array[i].bg_flag;
3903 }
de98ced9
MX
3904 do {
3905 seq = read_seqbegin(&fs_info->profiles_lock);
3906
3907 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3908 (fs_info->avail_system_alloc_bits & allowed) &&
3909 !(bctl->sys.target & allowed)) ||
3910 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3911 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 3912 !(bctl->meta.target & allowed)))
e62869be 3913 reducing_redundancy = true;
5a8067c0 3914 else
e62869be 3915 reducing_redundancy = false;
5a8067c0
FM
3916
3917 /* if we're not converting, the target field is uninitialized */
3918 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3919 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3920 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3921 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 3922 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3923
e62869be 3924 if (reducing_redundancy) {
5a8067c0
FM
3925 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3926 btrfs_info(fs_info,
e62869be 3927 "balance: force reducing metadata redundancy");
5a8067c0
FM
3928 } else {
3929 btrfs_err(fs_info,
e62869be 3930 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
3931 ret = -EINVAL;
3932 goto out;
3933 }
3934 }
3935
14506127
AB
3936 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3937 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3938 btrfs_warn(fs_info,
6dac13f8 3939 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
3940 btrfs_bg_type_to_raid_name(meta_target),
3941 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
3942 }
3943
9e967495
FM
3944 if (fs_info->send_in_progress) {
3945 btrfs_warn_rl(fs_info,
3946"cannot run balance while send operations are in progress (%d in progress)",
3947 fs_info->send_in_progress);
3948 ret = -EAGAIN;
3949 goto out;
3950 }
3951
6bccf3ab 3952 ret = insert_balance_item(fs_info, bctl);
59641015 3953 if (ret && ret != -EEXIST)
0940ebf6
ID
3954 goto out;
3955
59641015
ID
3956 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3957 BUG_ON(ret == -EEXIST);
833aae18
DS
3958 BUG_ON(fs_info->balance_ctl);
3959 spin_lock(&fs_info->balance_lock);
3960 fs_info->balance_ctl = bctl;
3961 spin_unlock(&fs_info->balance_lock);
59641015
ID
3962 } else {
3963 BUG_ON(ret != -EEXIST);
3964 spin_lock(&fs_info->balance_lock);
3965 update_balance_args(bctl);
3966 spin_unlock(&fs_info->balance_lock);
3967 }
c9e9f97b 3968
3009a62f
DS
3969 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3970 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 3971 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
3972 mutex_unlock(&fs_info->balance_mutex);
3973
3974 ret = __btrfs_balance(fs_info);
3975
3976 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
3977 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
3978 btrfs_info(fs_info, "balance: paused");
3979 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
3980 btrfs_info(fs_info, "balance: canceled");
3981 else
3982 btrfs_info(fs_info, "balance: ended with status: %d", ret);
3983
3009a62f 3984 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
3985
3986 if (bargs) {
3987 memset(bargs, 0, sizeof(*bargs));
008ef096 3988 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
3989 }
3990
3a01aa7a
ID
3991 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3992 balance_need_close(fs_info)) {
149196a2 3993 reset_balance_state(fs_info);
a17c95df 3994 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3a01aa7a
ID
3995 }
3996
837d5b6e 3997 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3998
3999 return ret;
4000out:
59641015 4001 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4002 reset_balance_state(fs_info);
a17c95df 4003 else
59641015 4004 kfree(bctl);
a17c95df
DS
4005 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4006
59641015
ID
4007 return ret;
4008}
4009
4010static int balance_kthread(void *data)
4011{
2b6ba629 4012 struct btrfs_fs_info *fs_info = data;
9555c6c1 4013 int ret = 0;
59641015 4014
59641015 4015 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4016 if (fs_info->balance_ctl)
6fcf6e2b 4017 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4018 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4019
59641015
ID
4020 return ret;
4021}
4022
2b6ba629
ID
4023int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4024{
4025 struct task_struct *tsk;
4026
1354e1a1 4027 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4028 if (!fs_info->balance_ctl) {
1354e1a1 4029 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4030 return 0;
4031 }
1354e1a1 4032 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4033
3cdde224 4034 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4035 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4036 return 0;
4037 }
4038
02ee654d
AJ
4039 /*
4040 * A ro->rw remount sequence should continue with the paused balance
4041 * regardless of who pauses it, system or the user as of now, so set
4042 * the resume flag.
4043 */
4044 spin_lock(&fs_info->balance_lock);
4045 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4046 spin_unlock(&fs_info->balance_lock);
4047
2b6ba629 4048 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4049 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4050}
4051
68310a5e 4052int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4053{
59641015
ID
4054 struct btrfs_balance_control *bctl;
4055 struct btrfs_balance_item *item;
4056 struct btrfs_disk_balance_args disk_bargs;
4057 struct btrfs_path *path;
4058 struct extent_buffer *leaf;
4059 struct btrfs_key key;
4060 int ret;
4061
4062 path = btrfs_alloc_path();
4063 if (!path)
4064 return -ENOMEM;
4065
59641015 4066 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4067 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4068 key.offset = 0;
4069
68310a5e 4070 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4071 if (ret < 0)
68310a5e 4072 goto out;
59641015
ID
4073 if (ret > 0) { /* ret = -ENOENT; */
4074 ret = 0;
68310a5e
ID
4075 goto out;
4076 }
4077
4078 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4079 if (!bctl) {
4080 ret = -ENOMEM;
4081 goto out;
59641015
ID
4082 }
4083
4084 leaf = path->nodes[0];
4085 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4086
68310a5e
ID
4087 bctl->flags = btrfs_balance_flags(leaf, item);
4088 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4089
4090 btrfs_balance_data(leaf, item, &disk_bargs);
4091 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4092 btrfs_balance_meta(leaf, item, &disk_bargs);
4093 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4094 btrfs_balance_sys(leaf, item, &disk_bargs);
4095 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4096
eee95e3f
DS
4097 /*
4098 * This should never happen, as the paused balance state is recovered
4099 * during mount without any chance of other exclusive ops to collide.
4100 *
4101 * This gives the exclusive op status to balance and keeps in paused
4102 * state until user intervention (cancel or umount). If the ownership
4103 * cannot be assigned, show a message but do not fail. The balance
4104 * is in a paused state and must have fs_info::balance_ctl properly
4105 * set up.
4106 */
4107 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4108 btrfs_warn(fs_info,
6dac13f8 4109 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4110
68310a5e 4111 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4112 BUG_ON(fs_info->balance_ctl);
4113 spin_lock(&fs_info->balance_lock);
4114 fs_info->balance_ctl = bctl;
4115 spin_unlock(&fs_info->balance_lock);
68310a5e 4116 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4117out:
4118 btrfs_free_path(path);
ec44a35c
CM
4119 return ret;
4120}
4121
837d5b6e
ID
4122int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4123{
4124 int ret = 0;
4125
4126 mutex_lock(&fs_info->balance_mutex);
4127 if (!fs_info->balance_ctl) {
4128 mutex_unlock(&fs_info->balance_mutex);
4129 return -ENOTCONN;
4130 }
4131
3009a62f 4132 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4133 atomic_inc(&fs_info->balance_pause_req);
4134 mutex_unlock(&fs_info->balance_mutex);
4135
4136 wait_event(fs_info->balance_wait_q,
3009a62f 4137 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4138
4139 mutex_lock(&fs_info->balance_mutex);
4140 /* we are good with balance_ctl ripped off from under us */
3009a62f 4141 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4142 atomic_dec(&fs_info->balance_pause_req);
4143 } else {
4144 ret = -ENOTCONN;
4145 }
4146
4147 mutex_unlock(&fs_info->balance_mutex);
4148 return ret;
4149}
4150
a7e99c69
ID
4151int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4152{
4153 mutex_lock(&fs_info->balance_mutex);
4154 if (!fs_info->balance_ctl) {
4155 mutex_unlock(&fs_info->balance_mutex);
4156 return -ENOTCONN;
4157 }
4158
cf7d20f4
DS
4159 /*
4160 * A paused balance with the item stored on disk can be resumed at
4161 * mount time if the mount is read-write. Otherwise it's still paused
4162 * and we must not allow cancelling as it deletes the item.
4163 */
4164 if (sb_rdonly(fs_info->sb)) {
4165 mutex_unlock(&fs_info->balance_mutex);
4166 return -EROFS;
4167 }
4168
a7e99c69
ID
4169 atomic_inc(&fs_info->balance_cancel_req);
4170 /*
4171 * if we are running just wait and return, balance item is
4172 * deleted in btrfs_balance in this case
4173 */
3009a62f 4174 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4175 mutex_unlock(&fs_info->balance_mutex);
4176 wait_event(fs_info->balance_wait_q,
3009a62f 4177 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4178 mutex_lock(&fs_info->balance_mutex);
4179 } else {
a7e99c69 4180 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4181 /*
4182 * Lock released to allow other waiters to continue, we'll
4183 * reexamine the status again.
4184 */
a7e99c69
ID
4185 mutex_lock(&fs_info->balance_mutex);
4186
a17c95df 4187 if (fs_info->balance_ctl) {
149196a2 4188 reset_balance_state(fs_info);
a17c95df 4189 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
6dac13f8 4190 btrfs_info(fs_info, "balance: canceled");
a17c95df 4191 }
a7e99c69
ID
4192 }
4193
3009a62f
DS
4194 BUG_ON(fs_info->balance_ctl ||
4195 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4196 atomic_dec(&fs_info->balance_cancel_req);
4197 mutex_unlock(&fs_info->balance_mutex);
4198 return 0;
4199}
4200
803b2f54
SB
4201static int btrfs_uuid_scan_kthread(void *data)
4202{
4203 struct btrfs_fs_info *fs_info = data;
4204 struct btrfs_root *root = fs_info->tree_root;
4205 struct btrfs_key key;
803b2f54
SB
4206 struct btrfs_path *path = NULL;
4207 int ret = 0;
4208 struct extent_buffer *eb;
4209 int slot;
4210 struct btrfs_root_item root_item;
4211 u32 item_size;
f45388f3 4212 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4213
4214 path = btrfs_alloc_path();
4215 if (!path) {
4216 ret = -ENOMEM;
4217 goto out;
4218 }
4219
4220 key.objectid = 0;
4221 key.type = BTRFS_ROOT_ITEM_KEY;
4222 key.offset = 0;
4223
803b2f54 4224 while (1) {
7c829b72
AJ
4225 ret = btrfs_search_forward(root, &key, path,
4226 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4227 if (ret) {
4228 if (ret > 0)
4229 ret = 0;
4230 break;
4231 }
4232
4233 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4234 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4235 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4236 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4237 goto skip;
4238
4239 eb = path->nodes[0];
4240 slot = path->slots[0];
4241 item_size = btrfs_item_size_nr(eb, slot);
4242 if (item_size < sizeof(root_item))
4243 goto skip;
4244
803b2f54
SB
4245 read_extent_buffer(eb, &root_item,
4246 btrfs_item_ptr_offset(eb, slot),
4247 (int)sizeof(root_item));
4248 if (btrfs_root_refs(&root_item) == 0)
4249 goto skip;
f45388f3
FDBM
4250
4251 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4252 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4253 if (trans)
4254 goto update_tree;
4255
4256 btrfs_release_path(path);
803b2f54
SB
4257 /*
4258 * 1 - subvol uuid item
4259 * 1 - received_subvol uuid item
4260 */
4261 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4262 if (IS_ERR(trans)) {
4263 ret = PTR_ERR(trans);
4264 break;
4265 }
f45388f3
FDBM
4266 continue;
4267 } else {
4268 goto skip;
4269 }
4270update_tree:
4271 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4272 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4273 BTRFS_UUID_KEY_SUBVOL,
4274 key.objectid);
4275 if (ret < 0) {
efe120a0 4276 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4277 ret);
803b2f54
SB
4278 break;
4279 }
4280 }
4281
4282 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4283 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4284 root_item.received_uuid,
4285 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4286 key.objectid);
4287 if (ret < 0) {
efe120a0 4288 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4289 ret);
803b2f54
SB
4290 break;
4291 }
4292 }
4293
f45388f3 4294skip:
803b2f54 4295 if (trans) {
3a45bb20 4296 ret = btrfs_end_transaction(trans);
f45388f3 4297 trans = NULL;
803b2f54
SB
4298 if (ret)
4299 break;
4300 }
4301
803b2f54
SB
4302 btrfs_release_path(path);
4303 if (key.offset < (u64)-1) {
4304 key.offset++;
4305 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4306 key.offset = 0;
4307 key.type = BTRFS_ROOT_ITEM_KEY;
4308 } else if (key.objectid < (u64)-1) {
4309 key.offset = 0;
4310 key.type = BTRFS_ROOT_ITEM_KEY;
4311 key.objectid++;
4312 } else {
4313 break;
4314 }
4315 cond_resched();
4316 }
4317
4318out:
4319 btrfs_free_path(path);
f45388f3 4320 if (trans && !IS_ERR(trans))
3a45bb20 4321 btrfs_end_transaction(trans);
803b2f54 4322 if (ret)
efe120a0 4323 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4324 else
afcdd129 4325 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4326 up(&fs_info->uuid_tree_rescan_sem);
4327 return 0;
4328}
4329
70f80175
SB
4330/*
4331 * Callback for btrfs_uuid_tree_iterate().
4332 * returns:
4333 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4334 * < 0 if an error occurred.
70f80175
SB
4335 * > 0 if the check failed, which means the caller shall remove the entry.
4336 */
4337static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4338 u8 *uuid, u8 type, u64 subid)
4339{
4340 struct btrfs_key key;
4341 int ret = 0;
4342 struct btrfs_root *subvol_root;
4343
4344 if (type != BTRFS_UUID_KEY_SUBVOL &&
4345 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4346 goto out;
4347
4348 key.objectid = subid;
4349 key.type = BTRFS_ROOT_ITEM_KEY;
4350 key.offset = (u64)-1;
4351 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4352 if (IS_ERR(subvol_root)) {
4353 ret = PTR_ERR(subvol_root);
4354 if (ret == -ENOENT)
4355 ret = 1;
4356 goto out;
4357 }
4358
4359 switch (type) {
4360 case BTRFS_UUID_KEY_SUBVOL:
4361 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4362 ret = 1;
4363 break;
4364 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4365 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4366 BTRFS_UUID_SIZE))
4367 ret = 1;
4368 break;
4369 }
4370
4371out:
4372 return ret;
4373}
4374
4375static int btrfs_uuid_rescan_kthread(void *data)
4376{
4377 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4378 int ret;
4379
4380 /*
4381 * 1st step is to iterate through the existing UUID tree and
4382 * to delete all entries that contain outdated data.
4383 * 2nd step is to add all missing entries to the UUID tree.
4384 */
4385 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4386 if (ret < 0) {
efe120a0 4387 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4388 up(&fs_info->uuid_tree_rescan_sem);
4389 return ret;
4390 }
4391 return btrfs_uuid_scan_kthread(data);
4392}
4393
f7a81ea4
SB
4394int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4395{
4396 struct btrfs_trans_handle *trans;
4397 struct btrfs_root *tree_root = fs_info->tree_root;
4398 struct btrfs_root *uuid_root;
803b2f54
SB
4399 struct task_struct *task;
4400 int ret;
f7a81ea4
SB
4401
4402 /*
4403 * 1 - root node
4404 * 1 - root item
4405 */
4406 trans = btrfs_start_transaction(tree_root, 2);
4407 if (IS_ERR(trans))
4408 return PTR_ERR(trans);
4409
9b7a2440 4410 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4411 if (IS_ERR(uuid_root)) {
6d13f549 4412 ret = PTR_ERR(uuid_root);
66642832 4413 btrfs_abort_transaction(trans, ret);
3a45bb20 4414 btrfs_end_transaction(trans);
6d13f549 4415 return ret;
f7a81ea4
SB
4416 }
4417
4418 fs_info->uuid_root = uuid_root;
4419
3a45bb20 4420 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4421 if (ret)
4422 return ret;
4423
4424 down(&fs_info->uuid_tree_rescan_sem);
4425 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4426 if (IS_ERR(task)) {
70f80175 4427 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4428 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4429 up(&fs_info->uuid_tree_rescan_sem);
4430 return PTR_ERR(task);
4431 }
4432
4433 return 0;
f7a81ea4 4434}
803b2f54 4435
70f80175
SB
4436int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4437{
4438 struct task_struct *task;
4439
4440 down(&fs_info->uuid_tree_rescan_sem);
4441 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4442 if (IS_ERR(task)) {
4443 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4444 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4445 up(&fs_info->uuid_tree_rescan_sem);
4446 return PTR_ERR(task);
4447 }
4448
4449 return 0;
4450}
4451
8f18cf13
CM
4452/*
4453 * shrinking a device means finding all of the device extents past
4454 * the new size, and then following the back refs to the chunks.
4455 * The chunk relocation code actually frees the device extent
4456 */
4457int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4458{
0b246afa
JM
4459 struct btrfs_fs_info *fs_info = device->fs_info;
4460 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4461 struct btrfs_trans_handle *trans;
8f18cf13
CM
4462 struct btrfs_dev_extent *dev_extent = NULL;
4463 struct btrfs_path *path;
4464 u64 length;
8f18cf13
CM
4465 u64 chunk_offset;
4466 int ret;
4467 int slot;
ba1bf481
JB
4468 int failed = 0;
4469 bool retried = false;
8f18cf13
CM
4470 struct extent_buffer *l;
4471 struct btrfs_key key;
0b246afa 4472 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4473 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4474 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4475 u64 diff;
61d0d0d2 4476 u64 start;
7dfb8be1
NB
4477
4478 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4479 start = new_size;
0e4324a4 4480 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4481
401e29c1 4482 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4483 return -EINVAL;
4484
8f18cf13
CM
4485 path = btrfs_alloc_path();
4486 if (!path)
4487 return -ENOMEM;
4488
0338dff6 4489 path->reada = READA_BACK;
8f18cf13 4490
61d0d0d2
NB
4491 trans = btrfs_start_transaction(root, 0);
4492 if (IS_ERR(trans)) {
4493 btrfs_free_path(path);
4494 return PTR_ERR(trans);
4495 }
4496
34441361 4497 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4498
7cc8e58d 4499 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4500 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4501 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4502 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4503 }
61d0d0d2
NB
4504
4505 /*
4506 * Once the device's size has been set to the new size, ensure all
4507 * in-memory chunks are synced to disk so that the loop below sees them
4508 * and relocates them accordingly.
4509 */
1c11b63e 4510 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4511 mutex_unlock(&fs_info->chunk_mutex);
4512 ret = btrfs_commit_transaction(trans);
4513 if (ret)
4514 goto done;
4515 } else {
4516 mutex_unlock(&fs_info->chunk_mutex);
4517 btrfs_end_transaction(trans);
4518 }
8f18cf13 4519
ba1bf481 4520again:
8f18cf13
CM
4521 key.objectid = device->devid;
4522 key.offset = (u64)-1;
4523 key.type = BTRFS_DEV_EXTENT_KEY;
4524
213e64da 4525 do {
0b246afa 4526 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4528 if (ret < 0) {
0b246afa 4529 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4530 goto done;
67c5e7d4 4531 }
8f18cf13
CM
4532
4533 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4534 if (ret)
0b246afa 4535 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4536 if (ret < 0)
4537 goto done;
4538 if (ret) {
4539 ret = 0;
b3b4aa74 4540 btrfs_release_path(path);
bf1fb512 4541 break;
8f18cf13
CM
4542 }
4543
4544 l = path->nodes[0];
4545 slot = path->slots[0];
4546 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4547
ba1bf481 4548 if (key.objectid != device->devid) {
0b246afa 4549 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4550 btrfs_release_path(path);
bf1fb512 4551 break;
ba1bf481 4552 }
8f18cf13
CM
4553
4554 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4555 length = btrfs_dev_extent_length(l, dev_extent);
4556
ba1bf481 4557 if (key.offset + length <= new_size) {
0b246afa 4558 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4559 btrfs_release_path(path);
d6397bae 4560 break;
ba1bf481 4561 }
8f18cf13 4562
8f18cf13 4563 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4564 btrfs_release_path(path);
8f18cf13 4565
a6f93c71
LB
4566 /*
4567 * We may be relocating the only data chunk we have,
4568 * which could potentially end up with losing data's
4569 * raid profile, so lets allocate an empty one in
4570 * advance.
4571 */
4572 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4573 if (ret < 0) {
4574 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4575 goto done;
4576 }
4577
0b246afa
JM
4578 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4579 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
eede2bf3 4580 if (ret == -ENOSPC) {
ba1bf481 4581 failed++;
eede2bf3
OS
4582 } else if (ret) {
4583 if (ret == -ETXTBSY) {
4584 btrfs_warn(fs_info,
4585 "could not shrink block group %llu due to active swapfile",
4586 chunk_offset);
4587 }
4588 goto done;
4589 }
213e64da 4590 } while (key.offset-- > 0);
ba1bf481
JB
4591
4592 if (failed && !retried) {
4593 failed = 0;
4594 retried = true;
4595 goto again;
4596 } else if (failed && retried) {
4597 ret = -ENOSPC;
ba1bf481 4598 goto done;
8f18cf13
CM
4599 }
4600
d6397bae 4601 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4602 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4603 if (IS_ERR(trans)) {
4604 ret = PTR_ERR(trans);
4605 goto done;
4606 }
4607
34441361 4608 mutex_lock(&fs_info->chunk_mutex);
7cc8e58d 4609 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4610 if (list_empty(&device->post_commit_list))
4611 list_add_tail(&device->post_commit_list,
4612 &trans->transaction->dev_update_list);
d6397bae 4613
d6397bae 4614 WARN_ON(diff > old_total);
7dfb8be1
NB
4615 btrfs_set_super_total_bytes(super_copy,
4616 round_down(old_total - diff, fs_info->sectorsize));
34441361 4617 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4618
4619 /* Now btrfs_update_device() will change the on-disk size. */
4620 ret = btrfs_update_device(trans, device);
801660b0
AJ
4621 if (ret < 0) {
4622 btrfs_abort_transaction(trans, ret);
4623 btrfs_end_transaction(trans);
4624 } else {
4625 ret = btrfs_commit_transaction(trans);
4626 }
8f18cf13
CM
4627done:
4628 btrfs_free_path(path);
53e489bc 4629 if (ret) {
34441361 4630 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4631 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4632 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4633 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4634 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4635 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4636 }
8f18cf13
CM
4637 return ret;
4638}
4639
2ff7e61e 4640static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4641 struct btrfs_key *key,
4642 struct btrfs_chunk *chunk, int item_size)
4643{
0b246afa 4644 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4645 struct btrfs_disk_key disk_key;
4646 u32 array_size;
4647 u8 *ptr;
4648
34441361 4649 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4650 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4651 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4652 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4653 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4654 return -EFBIG;
fe48a5c0 4655 }
0b86a832
CM
4656
4657 ptr = super_copy->sys_chunk_array + array_size;
4658 btrfs_cpu_key_to_disk(&disk_key, key);
4659 memcpy(ptr, &disk_key, sizeof(disk_key));
4660 ptr += sizeof(disk_key);
4661 memcpy(ptr, chunk, item_size);
4662 item_size += sizeof(disk_key);
4663 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4664 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4665
0b86a832
CM
4666 return 0;
4667}
4668
73c5de00
AJ
4669/*
4670 * sort the devices in descending order by max_avail, total_avail
4671 */
4672static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4673{
73c5de00
AJ
4674 const struct btrfs_device_info *di_a = a;
4675 const struct btrfs_device_info *di_b = b;
9b3f68b9 4676
73c5de00 4677 if (di_a->max_avail > di_b->max_avail)
b2117a39 4678 return -1;
73c5de00 4679 if (di_a->max_avail < di_b->max_avail)
b2117a39 4680 return 1;
73c5de00
AJ
4681 if (di_a->total_avail > di_b->total_avail)
4682 return -1;
4683 if (di_a->total_avail < di_b->total_avail)
4684 return 1;
4685 return 0;
b2117a39 4686}
0b86a832 4687
53b381b3
DW
4688static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4689{
ffe2d203 4690 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4691 return;
4692
ceda0864 4693 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4694}
4695
73c5de00 4696static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4697 u64 start, u64 type)
b2117a39 4698{
2ff7e61e 4699 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4700 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4701 struct btrfs_device *device;
73c5de00
AJ
4702 struct map_lookup *map = NULL;
4703 struct extent_map_tree *em_tree;
4704 struct extent_map *em;
4705 struct btrfs_device_info *devices_info = NULL;
4706 u64 total_avail;
4707 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4708 int data_stripes; /* number of stripes that count for
4709 block group size */
73c5de00
AJ
4710 int sub_stripes; /* sub_stripes info for map */
4711 int dev_stripes; /* stripes per dev */
4712 int devs_max; /* max devs to use */
4713 int devs_min; /* min devs needed */
4714 int devs_increment; /* ndevs has to be a multiple of this */
4715 int ncopies; /* how many copies to data has */
b50836ed
HK
4716 int nparity; /* number of stripes worth of bytes to
4717 store parity information */
73c5de00
AJ
4718 int ret;
4719 u64 max_stripe_size;
4720 u64 max_chunk_size;
4721 u64 stripe_size;
23f0ff1e 4722 u64 chunk_size;
73c5de00
AJ
4723 int ndevs;
4724 int i;
4725 int j;
31e50229 4726 int index;
593060d7 4727
0c460c0d 4728 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4729
4117f207
QW
4730 if (list_empty(&fs_devices->alloc_list)) {
4731 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4732 btrfs_debug(info, "%s: no writable device", __func__);
73c5de00 4733 return -ENOSPC;
4117f207 4734 }
b2117a39 4735
3e72ee88 4736 index = btrfs_bg_flags_to_raid_index(type);
73c5de00 4737
31e50229
LB
4738 sub_stripes = btrfs_raid_array[index].sub_stripes;
4739 dev_stripes = btrfs_raid_array[index].dev_stripes;
4740 devs_max = btrfs_raid_array[index].devs_max;
e3ecdb3f
DS
4741 if (!devs_max)
4742 devs_max = BTRFS_MAX_DEVS(info);
31e50229
LB
4743 devs_min = btrfs_raid_array[index].devs_min;
4744 devs_increment = btrfs_raid_array[index].devs_increment;
4745 ncopies = btrfs_raid_array[index].ncopies;
b50836ed 4746 nparity = btrfs_raid_array[index].nparity;
b2117a39 4747
9b3f68b9 4748 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4749 max_stripe_size = SZ_1G;
fce466ea 4750 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
9b3f68b9 4751 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4752 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4753 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4754 max_stripe_size = SZ_1G;
1100373f 4755 else
ee22184b 4756 max_stripe_size = SZ_256M;
73c5de00 4757 max_chunk_size = max_stripe_size;
a40a90a0 4758 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4759 max_stripe_size = SZ_32M;
73c5de00 4760 max_chunk_size = 2 * max_stripe_size;
c17add7a 4761 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
73c5de00 4762 } else {
351fd353 4763 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00 4764 type);
290342f6 4765 BUG();
9b3f68b9
CM
4766 }
4767
52042d8e 4768 /* We don't want a chunk larger than 10% of writable space */
2b82032c
YZ
4769 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4770 max_chunk_size);
9b3f68b9 4771
31e818fe 4772 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4773 GFP_NOFS);
4774 if (!devices_info)
4775 return -ENOMEM;
0cad8a11 4776
9f680ce0 4777 /*
73c5de00
AJ
4778 * in the first pass through the devices list, we gather information
4779 * about the available holes on each device.
9f680ce0 4780 */
73c5de00 4781 ndevs = 0;
ebcc9301 4782 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4783 u64 max_avail;
4784 u64 dev_offset;
b2117a39 4785
ebbede42 4786 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 4787 WARN(1, KERN_ERR
efe120a0 4788 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4789 continue;
4790 }
b2117a39 4791
e12c9621
AJ
4792 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4793 &device->dev_state) ||
401e29c1 4794 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 4795 continue;
b2117a39 4796
73c5de00
AJ
4797 if (device->total_bytes > device->bytes_used)
4798 total_avail = device->total_bytes - device->bytes_used;
4799 else
4800 total_avail = 0;
38c01b96 4801
4802 /* If there is no space on this device, skip it. */
4803 if (total_avail == 0)
4804 continue;
b2117a39 4805
60dfdf25 4806 ret = find_free_dev_extent(device,
73c5de00
AJ
4807 max_stripe_size * dev_stripes,
4808 &dev_offset, &max_avail);
4809 if (ret && ret != -ENOSPC)
4810 goto error;
b2117a39 4811
73c5de00
AJ
4812 if (ret == 0)
4813 max_avail = max_stripe_size * dev_stripes;
b2117a39 4814
4117f207
QW
4815 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4816 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4817 btrfs_debug(info,
4818 "%s: devid %llu has no free space, have=%llu want=%u",
4819 __func__, device->devid, max_avail,
4820 BTRFS_STRIPE_LEN * dev_stripes);
73c5de00 4821 continue;
4117f207 4822 }
b2117a39 4823
063d006f
ES
4824 if (ndevs == fs_devices->rw_devices) {
4825 WARN(1, "%s: found more than %llu devices\n",
4826 __func__, fs_devices->rw_devices);
4827 break;
4828 }
73c5de00
AJ
4829 devices_info[ndevs].dev_offset = dev_offset;
4830 devices_info[ndevs].max_avail = max_avail;
4831 devices_info[ndevs].total_avail = total_avail;
4832 devices_info[ndevs].dev = device;
4833 ++ndevs;
4834 }
b2117a39 4835
73c5de00
AJ
4836 /*
4837 * now sort the devices by hole size / available space
4838 */
4839 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4840 btrfs_cmp_device_info, NULL);
b2117a39 4841
73c5de00 4842 /* round down to number of usable stripes */
e5600fd6 4843 ndevs = round_down(ndevs, devs_increment);
b2117a39 4844
ba89b802 4845 if (ndevs < devs_min) {
73c5de00 4846 ret = -ENOSPC;
4117f207
QW
4847 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4848 btrfs_debug(info,
4849 "%s: not enough devices with free space: have=%d minimum required=%d",
ba89b802 4850 __func__, ndevs, devs_min);
4117f207 4851 }
73c5de00 4852 goto error;
b2117a39 4853 }
9f680ce0 4854
f148ef4d
NB
4855 ndevs = min(ndevs, devs_max);
4856
73c5de00 4857 /*
92e222df
HK
4858 * The primary goal is to maximize the number of stripes, so use as
4859 * many devices as possible, even if the stripes are not maximum sized.
4860 *
4861 * The DUP profile stores more than one stripe per device, the
4862 * max_avail is the total size so we have to adjust.
73c5de00 4863 */
92e222df 4864 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
73c5de00 4865 num_stripes = ndevs * dev_stripes;
b2117a39 4866
53b381b3
DW
4867 /*
4868 * this will have to be fixed for RAID1 and RAID10 over
4869 * more drives
4870 */
b50836ed 4871 data_stripes = (num_stripes - nparity) / ncopies;
86db2578
CM
4872
4873 /*
4874 * Use the number of data stripes to figure out how big this chunk
4875 * is really going to be in terms of logical address space,
baf92114
HK
4876 * and compare that answer with the max chunk size. If it's higher,
4877 * we try to reduce stripe_size.
86db2578
CM
4878 */
4879 if (stripe_size * data_stripes > max_chunk_size) {
793ff2c8 4880 /*
baf92114
HK
4881 * Reduce stripe_size, round it up to a 16MB boundary again and
4882 * then use it, unless it ends up being even bigger than the
4883 * previous value we had already.
86db2578 4884 */
baf92114
HK
4885 stripe_size = min(round_up(div_u64(max_chunk_size,
4886 data_stripes), SZ_16M),
793ff2c8 4887 stripe_size);
86db2578
CM
4888 }
4889
37db63a4 4890 /* align to BTRFS_STRIPE_LEN */
500ceed8 4891 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4892
4893 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4894 if (!map) {
4895 ret = -ENOMEM;
4896 goto error;
4897 }
4898 map->num_stripes = num_stripes;
9b3f68b9 4899
73c5de00
AJ
4900 for (i = 0; i < ndevs; ++i) {
4901 for (j = 0; j < dev_stripes; ++j) {
4902 int s = i * dev_stripes + j;
4903 map->stripes[s].dev = devices_info[i].dev;
4904 map->stripes[s].physical = devices_info[i].dev_offset +
4905 j * stripe_size;
6324fbf3 4906 }
6324fbf3 4907 }
500ceed8
NB
4908 map->stripe_len = BTRFS_STRIPE_LEN;
4909 map->io_align = BTRFS_STRIPE_LEN;
4910 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4911 map->type = type;
2b82032c 4912 map->sub_stripes = sub_stripes;
0b86a832 4913
23f0ff1e 4914 chunk_size = stripe_size * data_stripes;
0b86a832 4915
23f0ff1e 4916 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
1abe9b8a 4917
172ddd60 4918 em = alloc_extent_map();
2b82032c 4919 if (!em) {
298a8f9c 4920 kfree(map);
b2117a39
MX
4921 ret = -ENOMEM;
4922 goto error;
593060d7 4923 }
298a8f9c 4924 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4925 em->map_lookup = map;
2b82032c 4926 em->start = start;
23f0ff1e 4927 em->len = chunk_size;
2b82032c
YZ
4928 em->block_start = 0;
4929 em->block_len = em->len;
6df9a95e 4930 em->orig_block_len = stripe_size;
593060d7 4931
c8bf1b67 4932 em_tree = &info->mapping_tree;
890871be 4933 write_lock(&em_tree->lock);
09a2a8f9 4934 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4935 if (ret) {
1efb72a3 4936 write_unlock(&em_tree->lock);
0f5d42b2 4937 free_extent_map(em);
1dd4602f 4938 goto error;
0f5d42b2 4939 }
1efb72a3
NB
4940 write_unlock(&em_tree->lock);
4941
23f0ff1e 4942 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
6df9a95e
JB
4943 if (ret)
4944 goto error_del_extent;
2b82032c 4945
bbbf7243
NB
4946 for (i = 0; i < map->num_stripes; i++) {
4947 struct btrfs_device *dev = map->stripes[i].dev;
4948
4949 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
4950 if (list_empty(&dev->post_commit_list))
4951 list_add_tail(&dev->post_commit_list,
4952 &trans->transaction->dev_update_list);
4953 }
43530c46 4954
a5ed45f8 4955 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4956
0f5d42b2 4957 free_extent_map(em);
0b246afa 4958 check_raid56_incompat_flag(info, type);
53b381b3 4959
b2117a39 4960 kfree(devices_info);
2b82032c 4961 return 0;
b2117a39 4962
6df9a95e 4963error_del_extent:
0f5d42b2
JB
4964 write_lock(&em_tree->lock);
4965 remove_extent_mapping(em_tree, em);
4966 write_unlock(&em_tree->lock);
4967
4968 /* One for our allocation */
4969 free_extent_map(em);
4970 /* One for the tree reference */
4971 free_extent_map(em);
b2117a39 4972error:
b2117a39
MX
4973 kfree(devices_info);
4974 return ret;
2b82032c
YZ
4975}
4976
6df9a95e 4977int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
97aff912 4978 u64 chunk_offset, u64 chunk_size)
2b82032c 4979{
97aff912 4980 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab
JM
4981 struct btrfs_root *extent_root = fs_info->extent_root;
4982 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4983 struct btrfs_key key;
2b82032c
YZ
4984 struct btrfs_device *device;
4985 struct btrfs_chunk *chunk;
4986 struct btrfs_stripe *stripe;
6df9a95e
JB
4987 struct extent_map *em;
4988 struct map_lookup *map;
4989 size_t item_size;
4990 u64 dev_offset;
4991 u64 stripe_size;
4992 int i = 0;
140e639f 4993 int ret = 0;
2b82032c 4994
60ca842e 4995 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
592d92ee
LB
4996 if (IS_ERR(em))
4997 return PTR_ERR(em);
6df9a95e 4998
95617d69 4999 map = em->map_lookup;
6df9a95e
JB
5000 item_size = btrfs_chunk_item_size(map->num_stripes);
5001 stripe_size = em->orig_block_len;
5002
2b82032c 5003 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
5004 if (!chunk) {
5005 ret = -ENOMEM;
5006 goto out;
5007 }
5008
50460e37
FM
5009 /*
5010 * Take the device list mutex to prevent races with the final phase of
5011 * a device replace operation that replaces the device object associated
5012 * with the map's stripes, because the device object's id can change
5013 * at any time during that final phase of the device replace operation
5014 * (dev-replace.c:btrfs_dev_replace_finishing()).
5015 */
0b246afa 5016 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
5017 for (i = 0; i < map->num_stripes; i++) {
5018 device = map->stripes[i].dev;
5019 dev_offset = map->stripes[i].physical;
2b82032c 5020
0b86a832 5021 ret = btrfs_update_device(trans, device);
3acd3953 5022 if (ret)
50460e37 5023 break;
b5d9071c
NB
5024 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5025 dev_offset, stripe_size);
6df9a95e 5026 if (ret)
50460e37
FM
5027 break;
5028 }
5029 if (ret) {
0b246afa 5030 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 5031 goto out;
2b82032c
YZ
5032 }
5033
2b82032c 5034 stripe = &chunk->stripe;
6df9a95e
JB
5035 for (i = 0; i < map->num_stripes; i++) {
5036 device = map->stripes[i].dev;
5037 dev_offset = map->stripes[i].physical;
0b86a832 5038
e17cade2
CM
5039 btrfs_set_stack_stripe_devid(stripe, device->devid);
5040 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5041 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5042 stripe++;
0b86a832 5043 }
0b246afa 5044 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 5045
2b82032c 5046 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 5047 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5048 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5049 btrfs_set_stack_chunk_type(chunk, map->type);
5050 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5051 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5052 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5053 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5054 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5055
2b82032c
YZ
5056 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5057 key.type = BTRFS_CHUNK_ITEM_KEY;
5058 key.offset = chunk_offset;
0b86a832 5059
2b82032c 5060 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
5061 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5062 /*
5063 * TODO: Cleanup of inserted chunk root in case of
5064 * failure.
5065 */
2ff7e61e 5066 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5067 }
1abe9b8a 5068
6df9a95e 5069out:
0b86a832 5070 kfree(chunk);
6df9a95e 5071 free_extent_map(em);
4ed1d16e 5072 return ret;
2b82032c 5073}
0b86a832 5074
2b82032c 5075/*
52042d8e
AG
5076 * Chunk allocation falls into two parts. The first part does work
5077 * that makes the new allocated chunk usable, but does not do any operation
5078 * that modifies the chunk tree. The second part does the work that
5079 * requires modifying the chunk tree. This division is important for the
2b82032c
YZ
5080 * bootstrap process of adding storage to a seed btrfs.
5081 */
c216b203 5082int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
2b82032c
YZ
5083{
5084 u64 chunk_offset;
2b82032c 5085
c216b203
NB
5086 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5087 chunk_offset = find_next_chunk(trans->fs_info);
72b468c8 5088 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5089}
5090
6f8e0fc7 5091static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5092{
6f8e0fc7 5093 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c
YZ
5094 u64 chunk_offset;
5095 u64 sys_chunk_offset;
2b82032c 5096 u64 alloc_profile;
2b82032c
YZ
5097 int ret;
5098
6df9a95e 5099 chunk_offset = find_next_chunk(fs_info);
1b86826d 5100 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5101 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5102 if (ret)
5103 return ret;
2b82032c 5104
0b246afa 5105 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5106 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5107 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5108 return ret;
2b82032c
YZ
5109}
5110
d20983b4
MX
5111static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5112{
fc9a2ac7 5113 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5114
fc9a2ac7 5115 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5116}
5117
2ff7e61e 5118int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5119{
5120 struct extent_map *em;
5121 struct map_lookup *map;
2b82032c 5122 int readonly = 0;
d20983b4 5123 int miss_ndevs = 0;
2b82032c
YZ
5124 int i;
5125
60ca842e 5126 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5127 if (IS_ERR(em))
2b82032c
YZ
5128 return 1;
5129
95617d69 5130 map = em->map_lookup;
2b82032c 5131 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5132 if (test_bit(BTRFS_DEV_STATE_MISSING,
5133 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5134 miss_ndevs++;
5135 continue;
5136 }
ebbede42
AJ
5137 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5138 &map->stripes[i].dev->dev_state)) {
2b82032c 5139 readonly = 1;
d20983b4 5140 goto end;
2b82032c
YZ
5141 }
5142 }
d20983b4
MX
5143
5144 /*
5145 * If the number of missing devices is larger than max errors,
5146 * we can not write the data into that chunk successfully, so
5147 * set it readonly.
5148 */
5149 if (miss_ndevs > btrfs_chunk_max_errors(map))
5150 readonly = 1;
5151end:
0b86a832 5152 free_extent_map(em);
2b82032c 5153 return readonly;
0b86a832
CM
5154}
5155
c8bf1b67 5156void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5157{
5158 struct extent_map *em;
5159
d397712b 5160 while (1) {
c8bf1b67
DS
5161 write_lock(&tree->lock);
5162 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5163 if (em)
c8bf1b67
DS
5164 remove_extent_mapping(tree, em);
5165 write_unlock(&tree->lock);
0b86a832
CM
5166 if (!em)
5167 break;
0b86a832
CM
5168 /* once for us */
5169 free_extent_map(em);
5170 /* once for the tree */
5171 free_extent_map(em);
5172 }
5173}
5174
5d964051 5175int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5176{
5177 struct extent_map *em;
5178 struct map_lookup *map;
f188591e
CM
5179 int ret;
5180
60ca842e 5181 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5182 if (IS_ERR(em))
5183 /*
5184 * We could return errors for these cases, but that could get
5185 * ugly and we'd probably do the same thing which is just not do
5186 * anything else and exit, so return 1 so the callers don't try
5187 * to use other copies.
5188 */
fb7669b5 5189 return 1;
fb7669b5 5190
95617d69 5191 map = em->map_lookup;
c7369b3f 5192 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5193 ret = map->num_stripes;
321aecc6
CM
5194 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5195 ret = map->sub_stripes;
53b381b3
DW
5196 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5197 ret = 2;
5198 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5199 /*
5200 * There could be two corrupted data stripes, we need
5201 * to loop retry in order to rebuild the correct data.
e7e02096 5202 *
8810f751
LB
5203 * Fail a stripe at a time on every retry except the
5204 * stripe under reconstruction.
5205 */
5206 ret = map->num_stripes;
f188591e
CM
5207 else
5208 ret = 1;
5209 free_extent_map(em);
ad6d620e 5210
cb5583dd 5211 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5212 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5213 fs_info->dev_replace.tgtdev)
ad6d620e 5214 ret++;
cb5583dd 5215 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5216
f188591e
CM
5217 return ret;
5218}
5219
2ff7e61e 5220unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5221 u64 logical)
5222{
5223 struct extent_map *em;
5224 struct map_lookup *map;
0b246afa 5225 unsigned long len = fs_info->sectorsize;
53b381b3 5226
60ca842e 5227 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5228
69f03f13
NB
5229 if (!WARN_ON(IS_ERR(em))) {
5230 map = em->map_lookup;
5231 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5232 len = map->stripe_len * nr_data_stripes(map);
5233 free_extent_map(em);
5234 }
53b381b3
DW
5235 return len;
5236}
5237
e4ff5fb5 5238int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5239{
5240 struct extent_map *em;
5241 struct map_lookup *map;
53b381b3
DW
5242 int ret = 0;
5243
60ca842e 5244 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5245
69f03f13
NB
5246 if(!WARN_ON(IS_ERR(em))) {
5247 map = em->map_lookup;
5248 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5249 ret = 1;
5250 free_extent_map(em);
5251 }
53b381b3
DW
5252 return ret;
5253}
5254
30d9861f 5255static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5256 struct map_lookup *map, int first,
8ba0ae78 5257 int dev_replace_is_ongoing)
dfe25020
CM
5258{
5259 int i;
99f92a7c 5260 int num_stripes;
8ba0ae78 5261 int preferred_mirror;
30d9861f
SB
5262 int tolerance;
5263 struct btrfs_device *srcdev;
5264
99f92a7c 5265 ASSERT((map->type &
c7369b3f 5266 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5267
5268 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5269 num_stripes = map->sub_stripes;
5270 else
5271 num_stripes = map->num_stripes;
5272
8ba0ae78
AJ
5273 preferred_mirror = first + current->pid % num_stripes;
5274
30d9861f
SB
5275 if (dev_replace_is_ongoing &&
5276 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5277 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5278 srcdev = fs_info->dev_replace.srcdev;
5279 else
5280 srcdev = NULL;
5281
5282 /*
5283 * try to avoid the drive that is the source drive for a
5284 * dev-replace procedure, only choose it if no other non-missing
5285 * mirror is available
5286 */
5287 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5288 if (map->stripes[preferred_mirror].dev->bdev &&
5289 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5290 return preferred_mirror;
99f92a7c 5291 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5292 if (map->stripes[i].dev->bdev &&
5293 (tolerance || map->stripes[i].dev != srcdev))
5294 return i;
5295 }
dfe25020 5296 }
30d9861f 5297
dfe25020
CM
5298 /* we couldn't find one that doesn't fail. Just return something
5299 * and the io error handling code will clean up eventually
5300 */
8ba0ae78 5301 return preferred_mirror;
dfe25020
CM
5302}
5303
53b381b3
DW
5304static inline int parity_smaller(u64 a, u64 b)
5305{
5306 return a > b;
5307}
5308
5309/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5310static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5311{
5312 struct btrfs_bio_stripe s;
5313 int i;
5314 u64 l;
5315 int again = 1;
5316
5317 while (again) {
5318 again = 0;
cc7539ed 5319 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5320 if (parity_smaller(bbio->raid_map[i],
5321 bbio->raid_map[i+1])) {
53b381b3 5322 s = bbio->stripes[i];
8e5cfb55 5323 l = bbio->raid_map[i];
53b381b3 5324 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5325 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5326 bbio->stripes[i+1] = s;
8e5cfb55 5327 bbio->raid_map[i+1] = l;
2c8cdd6e 5328
53b381b3
DW
5329 again = 1;
5330 }
5331 }
5332 }
5333}
5334
6e9606d2
ZL
5335static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5336{
5337 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5338 /* the size of the btrfs_bio */
6e9606d2 5339 sizeof(struct btrfs_bio) +
e57cf21e 5340 /* plus the variable array for the stripes */
6e9606d2 5341 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5342 /* plus the variable array for the tgt dev */
6e9606d2 5343 sizeof(int) * (real_stripes) +
e57cf21e
CM
5344 /*
5345 * plus the raid_map, which includes both the tgt dev
5346 * and the stripes
5347 */
5348 sizeof(u64) * (total_stripes),
277fb5fc 5349 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5350
5351 atomic_set(&bbio->error, 0);
140475ae 5352 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5353
5354 return bbio;
5355}
5356
5357void btrfs_get_bbio(struct btrfs_bio *bbio)
5358{
140475ae
ER
5359 WARN_ON(!refcount_read(&bbio->refs));
5360 refcount_inc(&bbio->refs);
6e9606d2
ZL
5361}
5362
5363void btrfs_put_bbio(struct btrfs_bio *bbio)
5364{
5365 if (!bbio)
5366 return;
140475ae 5367 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5368 kfree(bbio);
5369}
5370
0b3d4cd3
LB
5371/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5372/*
5373 * Please note that, discard won't be sent to target device of device
5374 * replace.
5375 */
5376static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5377 u64 logical, u64 length,
5378 struct btrfs_bio **bbio_ret)
5379{
5380 struct extent_map *em;
5381 struct map_lookup *map;
5382 struct btrfs_bio *bbio;
5383 u64 offset;
5384 u64 stripe_nr;
5385 u64 stripe_nr_end;
5386 u64 stripe_end_offset;
5387 u64 stripe_cnt;
5388 u64 stripe_len;
5389 u64 stripe_offset;
5390 u64 num_stripes;
5391 u32 stripe_index;
5392 u32 factor = 0;
5393 u32 sub_stripes = 0;
5394 u64 stripes_per_dev = 0;
5395 u32 remaining_stripes = 0;
5396 u32 last_stripe = 0;
5397 int ret = 0;
5398 int i;
5399
5400 /* discard always return a bbio */
5401 ASSERT(bbio_ret);
5402
60ca842e 5403 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5404 if (IS_ERR(em))
5405 return PTR_ERR(em);
5406
5407 map = em->map_lookup;
5408 /* we don't discard raid56 yet */
5409 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5410 ret = -EOPNOTSUPP;
5411 goto out;
5412 }
5413
5414 offset = logical - em->start;
5415 length = min_t(u64, em->len - offset, length);
5416
5417 stripe_len = map->stripe_len;
5418 /*
5419 * stripe_nr counts the total number of stripes we have to stride
5420 * to get to this block
5421 */
5422 stripe_nr = div64_u64(offset, stripe_len);
5423
5424 /* stripe_offset is the offset of this block in its stripe */
5425 stripe_offset = offset - stripe_nr * stripe_len;
5426
5427 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5428 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5429 stripe_cnt = stripe_nr_end - stripe_nr;
5430 stripe_end_offset = stripe_nr_end * map->stripe_len -
5431 (offset + length);
5432 /*
5433 * after this, stripe_nr is the number of stripes on this
5434 * device we have to walk to find the data, and stripe_index is
5435 * the number of our device in the stripe array
5436 */
5437 num_stripes = 1;
5438 stripe_index = 0;
5439 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5440 BTRFS_BLOCK_GROUP_RAID10)) {
5441 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5442 sub_stripes = 1;
5443 else
5444 sub_stripes = map->sub_stripes;
5445
5446 factor = map->num_stripes / sub_stripes;
5447 num_stripes = min_t(u64, map->num_stripes,
5448 sub_stripes * stripe_cnt);
5449 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5450 stripe_index *= sub_stripes;
5451 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5452 &remaining_stripes);
5453 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5454 last_stripe *= sub_stripes;
c7369b3f 5455 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5456 BTRFS_BLOCK_GROUP_DUP)) {
5457 num_stripes = map->num_stripes;
5458 } else {
5459 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5460 &stripe_index);
5461 }
5462
5463 bbio = alloc_btrfs_bio(num_stripes, 0);
5464 if (!bbio) {
5465 ret = -ENOMEM;
5466 goto out;
5467 }
5468
5469 for (i = 0; i < num_stripes; i++) {
5470 bbio->stripes[i].physical =
5471 map->stripes[stripe_index].physical +
5472 stripe_offset + stripe_nr * map->stripe_len;
5473 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5474
5475 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5476 BTRFS_BLOCK_GROUP_RAID10)) {
5477 bbio->stripes[i].length = stripes_per_dev *
5478 map->stripe_len;
5479
5480 if (i / sub_stripes < remaining_stripes)
5481 bbio->stripes[i].length +=
5482 map->stripe_len;
5483
5484 /*
5485 * Special for the first stripe and
5486 * the last stripe:
5487 *
5488 * |-------|...|-------|
5489 * |----------|
5490 * off end_off
5491 */
5492 if (i < sub_stripes)
5493 bbio->stripes[i].length -=
5494 stripe_offset;
5495
5496 if (stripe_index >= last_stripe &&
5497 stripe_index <= (last_stripe +
5498 sub_stripes - 1))
5499 bbio->stripes[i].length -=
5500 stripe_end_offset;
5501
5502 if (i == sub_stripes - 1)
5503 stripe_offset = 0;
5504 } else {
5505 bbio->stripes[i].length = length;
5506 }
5507
5508 stripe_index++;
5509 if (stripe_index == map->num_stripes) {
5510 stripe_index = 0;
5511 stripe_nr++;
5512 }
5513 }
5514
5515 *bbio_ret = bbio;
5516 bbio->map_type = map->type;
5517 bbio->num_stripes = num_stripes;
5518out:
5519 free_extent_map(em);
5520 return ret;
5521}
5522
5ab56090
LB
5523/*
5524 * In dev-replace case, for repair case (that's the only case where the mirror
5525 * is selected explicitly when calling btrfs_map_block), blocks left of the
5526 * left cursor can also be read from the target drive.
5527 *
5528 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5529 * array of stripes.
5530 * For READ, it also needs to be supported using the same mirror number.
5531 *
5532 * If the requested block is not left of the left cursor, EIO is returned. This
5533 * can happen because btrfs_num_copies() returns one more in the dev-replace
5534 * case.
5535 */
5536static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5537 u64 logical, u64 length,
5538 u64 srcdev_devid, int *mirror_num,
5539 u64 *physical)
5540{
5541 struct btrfs_bio *bbio = NULL;
5542 int num_stripes;
5543 int index_srcdev = 0;
5544 int found = 0;
5545 u64 physical_of_found = 0;
5546 int i;
5547 int ret = 0;
5548
5549 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5550 logical, &length, &bbio, 0, 0);
5551 if (ret) {
5552 ASSERT(bbio == NULL);
5553 return ret;
5554 }
5555
5556 num_stripes = bbio->num_stripes;
5557 if (*mirror_num > num_stripes) {
5558 /*
5559 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5560 * that means that the requested area is not left of the left
5561 * cursor
5562 */
5563 btrfs_put_bbio(bbio);
5564 return -EIO;
5565 }
5566
5567 /*
5568 * process the rest of the function using the mirror_num of the source
5569 * drive. Therefore look it up first. At the end, patch the device
5570 * pointer to the one of the target drive.
5571 */
5572 for (i = 0; i < num_stripes; i++) {
5573 if (bbio->stripes[i].dev->devid != srcdev_devid)
5574 continue;
5575
5576 /*
5577 * In case of DUP, in order to keep it simple, only add the
5578 * mirror with the lowest physical address
5579 */
5580 if (found &&
5581 physical_of_found <= bbio->stripes[i].physical)
5582 continue;
5583
5584 index_srcdev = i;
5585 found = 1;
5586 physical_of_found = bbio->stripes[i].physical;
5587 }
5588
5589 btrfs_put_bbio(bbio);
5590
5591 ASSERT(found);
5592 if (!found)
5593 return -EIO;
5594
5595 *mirror_num = index_srcdev + 1;
5596 *physical = physical_of_found;
5597 return ret;
5598}
5599
73c0f228
LB
5600static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5601 struct btrfs_bio **bbio_ret,
5602 struct btrfs_dev_replace *dev_replace,
5603 int *num_stripes_ret, int *max_errors_ret)
5604{
5605 struct btrfs_bio *bbio = *bbio_ret;
5606 u64 srcdev_devid = dev_replace->srcdev->devid;
5607 int tgtdev_indexes = 0;
5608 int num_stripes = *num_stripes_ret;
5609 int max_errors = *max_errors_ret;
5610 int i;
5611
5612 if (op == BTRFS_MAP_WRITE) {
5613 int index_where_to_add;
5614
5615 /*
5616 * duplicate the write operations while the dev replace
5617 * procedure is running. Since the copying of the old disk to
5618 * the new disk takes place at run time while the filesystem is
5619 * mounted writable, the regular write operations to the old
5620 * disk have to be duplicated to go to the new disk as well.
5621 *
5622 * Note that device->missing is handled by the caller, and that
5623 * the write to the old disk is already set up in the stripes
5624 * array.
5625 */
5626 index_where_to_add = num_stripes;
5627 for (i = 0; i < num_stripes; i++) {
5628 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5629 /* write to new disk, too */
5630 struct btrfs_bio_stripe *new =
5631 bbio->stripes + index_where_to_add;
5632 struct btrfs_bio_stripe *old =
5633 bbio->stripes + i;
5634
5635 new->physical = old->physical;
5636 new->length = old->length;
5637 new->dev = dev_replace->tgtdev;
5638 bbio->tgtdev_map[i] = index_where_to_add;
5639 index_where_to_add++;
5640 max_errors++;
5641 tgtdev_indexes++;
5642 }
5643 }
5644 num_stripes = index_where_to_add;
5645 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5646 int index_srcdev = 0;
5647 int found = 0;
5648 u64 physical_of_found = 0;
5649
5650 /*
5651 * During the dev-replace procedure, the target drive can also
5652 * be used to read data in case it is needed to repair a corrupt
5653 * block elsewhere. This is possible if the requested area is
5654 * left of the left cursor. In this area, the target drive is a
5655 * full copy of the source drive.
5656 */
5657 for (i = 0; i < num_stripes; i++) {
5658 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5659 /*
5660 * In case of DUP, in order to keep it simple,
5661 * only add the mirror with the lowest physical
5662 * address
5663 */
5664 if (found &&
5665 physical_of_found <=
5666 bbio->stripes[i].physical)
5667 continue;
5668 index_srcdev = i;
5669 found = 1;
5670 physical_of_found = bbio->stripes[i].physical;
5671 }
5672 }
5673 if (found) {
5674 struct btrfs_bio_stripe *tgtdev_stripe =
5675 bbio->stripes + num_stripes;
5676
5677 tgtdev_stripe->physical = physical_of_found;
5678 tgtdev_stripe->length =
5679 bbio->stripes[index_srcdev].length;
5680 tgtdev_stripe->dev = dev_replace->tgtdev;
5681 bbio->tgtdev_map[index_srcdev] = num_stripes;
5682
5683 tgtdev_indexes++;
5684 num_stripes++;
5685 }
5686 }
5687
5688 *num_stripes_ret = num_stripes;
5689 *max_errors_ret = max_errors;
5690 bbio->num_tgtdevs = tgtdev_indexes;
5691 *bbio_ret = bbio;
5692}
5693
2b19a1fe
LB
5694static bool need_full_stripe(enum btrfs_map_op op)
5695{
5696 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5697}
5698
5f141126
NB
5699/*
5700 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5701 * tuple. This information is used to calculate how big a
5702 * particular bio can get before it straddles a stripe.
5703 *
5704 * @fs_info - the filesystem
5705 * @logical - address that we want to figure out the geometry of
5706 * @len - the length of IO we are going to perform, starting at @logical
5707 * @op - type of operation - write or read
5708 * @io_geom - pointer used to return values
5709 *
5710 * Returns < 0 in case a chunk for the given logical address cannot be found,
5711 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5712 */
5713int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
89b798ad 5714 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5f141126
NB
5715{
5716 struct extent_map *em;
5717 struct map_lookup *map;
5718 u64 offset;
5719 u64 stripe_offset;
5720 u64 stripe_nr;
5721 u64 stripe_len;
5722 u64 raid56_full_stripe_start = (u64)-1;
5723 int data_stripes;
373c3b80 5724 int ret = 0;
5f141126
NB
5725
5726 ASSERT(op != BTRFS_MAP_DISCARD);
5727
5728 em = btrfs_get_chunk_map(fs_info, logical, len);
5729 if (IS_ERR(em))
5730 return PTR_ERR(em);
5731
5732 map = em->map_lookup;
5733 /* Offset of this logical address in the chunk */
5734 offset = logical - em->start;
5735 /* Len of a stripe in a chunk */
5736 stripe_len = map->stripe_len;
5737 /* Stripe wher this block falls in */
5738 stripe_nr = div64_u64(offset, stripe_len);
5739 /* Offset of stripe in the chunk */
5740 stripe_offset = stripe_nr * stripe_len;
5741 if (offset < stripe_offset) {
5742 btrfs_crit(fs_info,
5743"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5744 stripe_offset, offset, em->start, logical, stripe_len);
373c3b80
JT
5745 ret = -EINVAL;
5746 goto out;
5f141126
NB
5747 }
5748
5749 /* stripe_offset is the offset of this block in its stripe */
5750 stripe_offset = offset - stripe_offset;
5751 data_stripes = nr_data_stripes(map);
5752
5753 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5754 u64 max_len = stripe_len - stripe_offset;
5755
5756 /*
5757 * In case of raid56, we need to know the stripe aligned start
5758 */
5759 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5760 unsigned long full_stripe_len = stripe_len * data_stripes;
5761 raid56_full_stripe_start = offset;
5762
5763 /*
5764 * Allow a write of a full stripe, but make sure we
5765 * don't allow straddling of stripes
5766 */
5767 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5768 full_stripe_len);
5769 raid56_full_stripe_start *= full_stripe_len;
5770
5771 /*
5772 * For writes to RAID[56], allow a full stripeset across
5773 * all disks. For other RAID types and for RAID[56]
5774 * reads, just allow a single stripe (on a single disk).
5775 */
5776 if (op == BTRFS_MAP_WRITE) {
5777 max_len = stripe_len * data_stripes -
5778 (offset - raid56_full_stripe_start);
5779 }
5780 }
5781 len = min_t(u64, em->len - offset, max_len);
5782 } else {
5783 len = em->len - offset;
5784 }
5785
5786 io_geom->len = len;
5787 io_geom->offset = offset;
5788 io_geom->stripe_len = stripe_len;
5789 io_geom->stripe_nr = stripe_nr;
5790 io_geom->stripe_offset = stripe_offset;
5791 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5792
373c3b80
JT
5793out:
5794 /* once for us */
5795 free_extent_map(em);
5796 return ret;
5f141126
NB
5797}
5798
cf8cddd3
CH
5799static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5800 enum btrfs_map_op op,
f2d8d74d 5801 u64 logical, u64 *length,
a1d3c478 5802 struct btrfs_bio **bbio_ret,
8e5cfb55 5803 int mirror_num, int need_raid_map)
0b86a832
CM
5804{
5805 struct extent_map *em;
5806 struct map_lookup *map;
593060d7
CM
5807 u64 stripe_offset;
5808 u64 stripe_nr;
53b381b3 5809 u64 stripe_len;
9d644a62 5810 u32 stripe_index;
cff82672 5811 int data_stripes;
cea9e445 5812 int i;
de11cc12 5813 int ret = 0;
f2d8d74d 5814 int num_stripes;
a236aed1 5815 int max_errors = 0;
2c8cdd6e 5816 int tgtdev_indexes = 0;
a1d3c478 5817 struct btrfs_bio *bbio = NULL;
472262f3
SB
5818 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5819 int dev_replace_is_ongoing = 0;
5820 int num_alloc_stripes;
ad6d620e
SB
5821 int patch_the_first_stripe_for_dev_replace = 0;
5822 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5823 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
5824 struct btrfs_io_geometry geom;
5825
5826 ASSERT(bbio_ret);
0b86a832 5827
0b3d4cd3
LB
5828 if (op == BTRFS_MAP_DISCARD)
5829 return __btrfs_map_block_for_discard(fs_info, logical,
5830 *length, bbio_ret);
5831
89b798ad
NB
5832 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5833 if (ret < 0)
5834 return ret;
0b86a832 5835
89b798ad 5836 em = btrfs_get_chunk_map(fs_info, logical, *length);
f1136989 5837 ASSERT(!IS_ERR(em));
95617d69 5838 map = em->map_lookup;
593060d7 5839
89b798ad 5840 *length = geom.len;
89b798ad
NB
5841 stripe_len = geom.stripe_len;
5842 stripe_nr = geom.stripe_nr;
5843 stripe_offset = geom.stripe_offset;
5844 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 5845 data_stripes = nr_data_stripes(map);
593060d7 5846
cb5583dd 5847 down_read(&dev_replace->rwsem);
472262f3 5848 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
5849 /*
5850 * Hold the semaphore for read during the whole operation, write is
5851 * requested at commit time but must wait.
5852 */
472262f3 5853 if (!dev_replace_is_ongoing)
cb5583dd 5854 up_read(&dev_replace->rwsem);
472262f3 5855
ad6d620e 5856 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5857 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5858 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5859 dev_replace->srcdev->devid,
5860 &mirror_num,
5861 &physical_to_patch_in_first_stripe);
5862 if (ret)
ad6d620e 5863 goto out;
5ab56090
LB
5864 else
5865 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5866 } else if (mirror_num > map->num_stripes) {
5867 mirror_num = 0;
5868 }
5869
f2d8d74d 5870 num_stripes = 1;
cea9e445 5871 stripe_index = 0;
fce3bb9a 5872 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5873 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5874 &stripe_index);
de483734 5875 if (!need_full_stripe(op))
28e1cc7d 5876 mirror_num = 1;
c7369b3f 5877 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 5878 if (need_full_stripe(op))
f2d8d74d 5879 num_stripes = map->num_stripes;
2fff734f 5880 else if (mirror_num)
f188591e 5881 stripe_index = mirror_num - 1;
dfe25020 5882 else {
30d9861f 5883 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 5884 dev_replace_is_ongoing);
a1d3c478 5885 mirror_num = stripe_index + 1;
dfe25020 5886 }
2fff734f 5887
611f0e00 5888 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5889 if (need_full_stripe(op)) {
f2d8d74d 5890 num_stripes = map->num_stripes;
a1d3c478 5891 } else if (mirror_num) {
f188591e 5892 stripe_index = mirror_num - 1;
a1d3c478
JS
5893 } else {
5894 mirror_num = 1;
5895 }
2fff734f 5896
321aecc6 5897 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5898 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5899
47c5713f 5900 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5901 stripe_index *= map->sub_stripes;
5902
de483734 5903 if (need_full_stripe(op))
f2d8d74d 5904 num_stripes = map->sub_stripes;
321aecc6
CM
5905 else if (mirror_num)
5906 stripe_index += mirror_num - 1;
dfe25020 5907 else {
3e74317a 5908 int old_stripe_index = stripe_index;
30d9861f
SB
5909 stripe_index = find_live_mirror(fs_info, map,
5910 stripe_index,
30d9861f 5911 dev_replace_is_ongoing);
3e74317a 5912 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5913 }
53b381b3 5914
ffe2d203 5915 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5916 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5917 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5918 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 5919 stripe_len * data_stripes);
53b381b3
DW
5920
5921 /* RAID[56] write or recovery. Return all stripes */
5922 num_stripes = map->num_stripes;
5923 max_errors = nr_parity_stripes(map);
5924
53b381b3
DW
5925 *length = map->stripe_len;
5926 stripe_index = 0;
5927 stripe_offset = 0;
5928 } else {
5929 /*
5930 * Mirror #0 or #1 means the original data block.
5931 * Mirror #2 is RAID5 parity block.
5932 * Mirror #3 is RAID6 Q block.
5933 */
47c5713f 5934 stripe_nr = div_u64_rem(stripe_nr,
cff82672 5935 data_stripes, &stripe_index);
53b381b3 5936 if (mirror_num > 1)
cff82672 5937 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
5938
5939 /* We distribute the parity blocks across stripes */
47c5713f
DS
5940 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5941 &stripe_index);
de483734 5942 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5943 mirror_num = 1;
53b381b3 5944 }
8790d502
CM
5945 } else {
5946 /*
47c5713f
DS
5947 * after this, stripe_nr is the number of stripes on this
5948 * device we have to walk to find the data, and stripe_index is
5949 * the number of our device in the stripe array
8790d502 5950 */
47c5713f
DS
5951 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5952 &stripe_index);
a1d3c478 5953 mirror_num = stripe_index + 1;
8790d502 5954 }
e042d1ec 5955 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5956 btrfs_crit(fs_info,
5957 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5958 stripe_index, map->num_stripes);
5959 ret = -EINVAL;
5960 goto out;
5961 }
cea9e445 5962
472262f3 5963 num_alloc_stripes = num_stripes;
6fad823f 5964 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5965 if (op == BTRFS_MAP_WRITE)
ad6d620e 5966 num_alloc_stripes <<= 1;
cf8cddd3 5967 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5968 num_alloc_stripes++;
2c8cdd6e 5969 tgtdev_indexes = num_stripes;
ad6d620e 5970 }
2c8cdd6e 5971
6e9606d2 5972 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5973 if (!bbio) {
5974 ret = -ENOMEM;
5975 goto out;
5976 }
6fad823f 5977 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5978 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5979
8e5cfb55 5980 /* build raid_map */
2b19a1fe
LB
5981 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5982 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5983 u64 tmp;
9d644a62 5984 unsigned rot;
8e5cfb55
ZL
5985
5986 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5987 sizeof(struct btrfs_bio_stripe) *
5988 num_alloc_stripes +
5989 sizeof(int) * tgtdev_indexes);
5990
5991 /* Work out the disk rotation on this stripe-set */
47c5713f 5992 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5993
5994 /* Fill in the logical address of each stripe */
cff82672
DS
5995 tmp = stripe_nr * data_stripes;
5996 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
5997 bbio->raid_map[(i+rot) % num_stripes] =
5998 em->start + (tmp + i) * map->stripe_len;
5999
6000 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6001 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6002 bbio->raid_map[(i+rot+1) % num_stripes] =
6003 RAID6_Q_STRIPE;
6004 }
6005
b89203f7 6006
0b3d4cd3
LB
6007 for (i = 0; i < num_stripes; i++) {
6008 bbio->stripes[i].physical =
6009 map->stripes[stripe_index].physical +
6010 stripe_offset +
6011 stripe_nr * map->stripe_len;
6012 bbio->stripes[i].dev =
6013 map->stripes[stripe_index].dev;
6014 stripe_index++;
593060d7 6015 }
de11cc12 6016
2b19a1fe 6017 if (need_full_stripe(op))
d20983b4 6018 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6019
8e5cfb55
ZL
6020 if (bbio->raid_map)
6021 sort_parity_stripes(bbio, num_stripes);
cc7539ed 6022
73c0f228 6023 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6024 need_full_stripe(op)) {
73c0f228
LB
6025 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6026 &max_errors);
472262f3
SB
6027 }
6028
de11cc12 6029 *bbio_ret = bbio;
10f11900 6030 bbio->map_type = map->type;
de11cc12
LZ
6031 bbio->num_stripes = num_stripes;
6032 bbio->max_errors = max_errors;
6033 bbio->mirror_num = mirror_num;
ad6d620e
SB
6034
6035 /*
6036 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6037 * mirror_num == num_stripes + 1 && dev_replace target drive is
6038 * available as a mirror
6039 */
6040 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6041 WARN_ON(num_stripes > 1);
6042 bbio->stripes[0].dev = dev_replace->tgtdev;
6043 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6044 bbio->mirror_num = map->num_stripes + 1;
6045 }
cea9e445 6046out:
73beece9 6047 if (dev_replace_is_ongoing) {
53176dde
DS
6048 lockdep_assert_held(&dev_replace->rwsem);
6049 /* Unlock and let waiting writers proceed */
cb5583dd 6050 up_read(&dev_replace->rwsem);
73beece9 6051 }
0b86a832 6052 free_extent_map(em);
de11cc12 6053 return ret;
0b86a832
CM
6054}
6055
cf8cddd3 6056int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6057 u64 logical, u64 *length,
a1d3c478 6058 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6059{
b3d3fa51 6060 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6061 mirror_num, 0);
f2d8d74d
CM
6062}
6063
af8e2d1d 6064/* For Scrub/replace */
cf8cddd3 6065int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6066 u64 logical, u64 *length,
825ad4c9 6067 struct btrfs_bio **bbio_ret)
af8e2d1d 6068{
825ad4c9 6069 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6070}
6071
63a9c7b9
NB
6072int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6073 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
a512bbf8 6074{
a512bbf8
YZ
6075 struct extent_map *em;
6076 struct map_lookup *map;
6077 u64 *buf;
6078 u64 bytenr;
6079 u64 length;
6080 u64 stripe_nr;
53b381b3 6081 u64 rmap_len;
a512bbf8
YZ
6082 int i, j, nr = 0;
6083
60ca842e 6084 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
592d92ee 6085 if (IS_ERR(em))
835d974f 6086 return -EIO;
835d974f 6087
95617d69 6088 map = em->map_lookup;
a512bbf8 6089 length = em->len;
53b381b3
DW
6090 rmap_len = map->stripe_len;
6091
a512bbf8 6092 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 6093 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 6094 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 6095 length = div_u64(length, map->num_stripes);
ffe2d203 6096 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 6097 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
6098 rmap_len = map->stripe_len * nr_data_stripes(map);
6099 }
a512bbf8 6100
31e818fe 6101 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 6102 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
6103
6104 for (i = 0; i < map->num_stripes; i++) {
a512bbf8
YZ
6105 if (map->stripes[i].physical > physical ||
6106 map->stripes[i].physical + length <= physical)
6107 continue;
6108
6109 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 6110 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6111
6112 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6113 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6114 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6115 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6116 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6117 } /* else if RAID[56], multiply by nr_data_stripes().
6118 * Alternatively, just use rmap_len below instead of
6119 * map->stripe_len */
6120
6121 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6122 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6123 for (j = 0; j < nr; j++) {
6124 if (buf[j] == bytenr)
6125 break;
6126 }
934d375b
CM
6127 if (j == nr) {
6128 WARN_ON(nr >= map->num_stripes);
a512bbf8 6129 buf[nr++] = bytenr;
934d375b 6130 }
a512bbf8
YZ
6131 }
6132
a512bbf8
YZ
6133 *logical = buf;
6134 *naddrs = nr;
53b381b3 6135 *stripe_len = rmap_len;
a512bbf8
YZ
6136
6137 free_extent_map(em);
6138 return 0;
f2d8d74d
CM
6139}
6140
4246a0b6 6141static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6142{
326e1dbb
MS
6143 bio->bi_private = bbio->private;
6144 bio->bi_end_io = bbio->end_io;
4246a0b6 6145 bio_endio(bio);
326e1dbb 6146
6e9606d2 6147 btrfs_put_bbio(bbio);
8408c716
MX
6148}
6149
4246a0b6 6150static void btrfs_end_bio(struct bio *bio)
8790d502 6151{
9be3395b 6152 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6153 int is_orig_bio = 0;
8790d502 6154
4e4cbee9 6155 if (bio->bi_status) {
a1d3c478 6156 atomic_inc(&bbio->error);
4e4cbee9
CH
6157 if (bio->bi_status == BLK_STS_IOERR ||
6158 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6159 unsigned int stripe_index =
9be3395b 6160 btrfs_io_bio(bio)->stripe_index;
65f53338 6161 struct btrfs_device *dev;
442a4f63
SB
6162
6163 BUG_ON(stripe_index >= bbio->num_stripes);
6164 dev = bbio->stripes[stripe_index].dev;
597a60fa 6165 if (dev->bdev) {
37226b21 6166 if (bio_op(bio) == REQ_OP_WRITE)
1cb34c8e 6167 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6168 BTRFS_DEV_STAT_WRITE_ERRS);
0cc068e6 6169 else if (!(bio->bi_opf & REQ_RAHEAD))
1cb34c8e 6170 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6171 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6172 if (bio->bi_opf & REQ_PREFLUSH)
1cb34c8e 6173 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6174 BTRFS_DEV_STAT_FLUSH_ERRS);
597a60fa 6175 }
442a4f63
SB
6176 }
6177 }
8790d502 6178
a1d3c478 6179 if (bio == bbio->orig_bio)
7d2b4daa
CM
6180 is_orig_bio = 1;
6181
c404e0dc
MX
6182 btrfs_bio_counter_dec(bbio->fs_info);
6183
a1d3c478 6184 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6185 if (!is_orig_bio) {
6186 bio_put(bio);
a1d3c478 6187 bio = bbio->orig_bio;
7d2b4daa 6188 }
c7b22bb1 6189
9be3395b 6190 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6191 /* only send an error to the higher layers if it is
53b381b3 6192 * beyond the tolerance of the btrfs bio
a236aed1 6193 */
a1d3c478 6194 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6195 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6196 } else {
1259ab75
CM
6197 /*
6198 * this bio is actually up to date, we didn't
6199 * go over the max number of errors
6200 */
2dbe0c77 6201 bio->bi_status = BLK_STS_OK;
1259ab75 6202 }
c55f1396 6203
4246a0b6 6204 btrfs_end_bbio(bbio, bio);
7d2b4daa 6205 } else if (!is_orig_bio) {
8790d502
CM
6206 bio_put(bio);
6207 }
8790d502
CM
6208}
6209
2ff7e61e 6210static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
08635bae 6211 u64 physical, int dev_nr)
de1ee92a
JB
6212{
6213 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6214 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6215
6216 bio->bi_private = bbio;
9be3395b 6217 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6218 bio->bi_end_io = btrfs_end_bio;
4f024f37 6219 bio->bi_iter.bi_sector = physical >> 9;
672d5990
MT
6220 btrfs_debug_in_rcu(fs_info,
6221 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6222 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6223 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6224 bio->bi_iter.bi_size);
74d46992 6225 bio_set_dev(bio, dev->bdev);
c404e0dc 6226
2ff7e61e 6227 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6228
08635bae 6229 btrfsic_submit_bio(bio);
de1ee92a
JB
6230}
6231
de1ee92a
JB
6232static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6233{
6234 atomic_inc(&bbio->error);
6235 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6236 /* Should be the original bio. */
8408c716
MX
6237 WARN_ON(bio != bbio->orig_bio);
6238
9be3395b 6239 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6240 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6241 if (atomic_read(&bbio->error) > bbio->max_errors)
6242 bio->bi_status = BLK_STS_IOERR;
6243 else
6244 bio->bi_status = BLK_STS_OK;
4246a0b6 6245 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6246 }
6247}
6248
58efbc9f 6249blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6250 int mirror_num)
0b86a832 6251{
0b86a832 6252 struct btrfs_device *dev;
8790d502 6253 struct bio *first_bio = bio;
4f024f37 6254 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6255 u64 length = 0;
6256 u64 map_length;
0b86a832 6257 int ret;
08da757d
ZL
6258 int dev_nr;
6259 int total_devs;
a1d3c478 6260 struct btrfs_bio *bbio = NULL;
0b86a832 6261
4f024f37 6262 length = bio->bi_iter.bi_size;
0b86a832 6263 map_length = length;
cea9e445 6264
0b246afa 6265 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6266 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6267 &map_length, &bbio, mirror_num, 1);
c404e0dc 6268 if (ret) {
0b246afa 6269 btrfs_bio_counter_dec(fs_info);
58efbc9f 6270 return errno_to_blk_status(ret);
c404e0dc 6271 }
cea9e445 6272
a1d3c478 6273 total_devs = bbio->num_stripes;
53b381b3
DW
6274 bbio->orig_bio = first_bio;
6275 bbio->private = first_bio->bi_private;
6276 bbio->end_io = first_bio->bi_end_io;
0b246afa 6277 bbio->fs_info = fs_info;
53b381b3
DW
6278 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6279
ad1ba2a0 6280 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6281 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6282 /* In this case, map_length has been set to the length of
6283 a single stripe; not the whole write */
37226b21 6284 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6285 ret = raid56_parity_write(fs_info, bio, bbio,
6286 map_length);
53b381b3 6287 } else {
2ff7e61e
JM
6288 ret = raid56_parity_recover(fs_info, bio, bbio,
6289 map_length, mirror_num, 1);
53b381b3 6290 }
4245215d 6291
0b246afa 6292 btrfs_bio_counter_dec(fs_info);
58efbc9f 6293 return errno_to_blk_status(ret);
53b381b3
DW
6294 }
6295
cea9e445 6296 if (map_length < length) {
0b246afa 6297 btrfs_crit(fs_info,
5d163e0e
JM
6298 "mapping failed logical %llu bio len %llu len %llu",
6299 logical, length, map_length);
cea9e445
CM
6300 BUG();
6301 }
a1d3c478 6302
08da757d 6303 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6304 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6305 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6306 &dev->dev_state) ||
ebbede42
AJ
6307 (bio_op(first_bio) == REQ_OP_WRITE &&
6308 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6309 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6310 continue;
6311 }
6312
3aa8e074 6313 if (dev_nr < total_devs - 1)
8b6c1d56 6314 bio = btrfs_bio_clone(first_bio);
3aa8e074 6315 else
a1d3c478 6316 bio = first_bio;
de1ee92a 6317
2ff7e61e 6318 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
08635bae 6319 dev_nr);
8790d502 6320 }
0b246afa 6321 btrfs_bio_counter_dec(fs_info);
58efbc9f 6322 return BLK_STS_OK;
0b86a832
CM
6323}
6324
09ba3bc9
AJ
6325/*
6326 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6327 * return NULL.
6328 *
6329 * If devid and uuid are both specified, the match must be exact, otherwise
6330 * only devid is used.
6331 *
6332 * If @seed is true, traverse through the seed devices.
6333 */
e4319cd9 6334struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
09ba3bc9
AJ
6335 u64 devid, u8 *uuid, u8 *fsid,
6336 bool seed)
0b86a832 6337{
2b82032c 6338 struct btrfs_device *device;
2b82032c 6339
e4319cd9 6340 while (fs_devices) {
2b82032c 6341 if (!fsid ||
e4319cd9 6342 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
09ba3bc9
AJ
6343 list_for_each_entry(device, &fs_devices->devices,
6344 dev_list) {
6345 if (device->devid == devid &&
6346 (!uuid || memcmp(device->uuid, uuid,
6347 BTRFS_UUID_SIZE) == 0))
6348 return device;
6349 }
2b82032c 6350 }
09ba3bc9
AJ
6351 if (seed)
6352 fs_devices = fs_devices->seed;
6353 else
6354 return NULL;
2b82032c
YZ
6355 }
6356 return NULL;
0b86a832
CM
6357}
6358
2ff7e61e 6359static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6360 u64 devid, u8 *dev_uuid)
6361{
6362 struct btrfs_device *device;
dfe25020 6363
12bd2fc0
ID
6364 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6365 if (IS_ERR(device))
adfb69af 6366 return device;
12bd2fc0
ID
6367
6368 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6369 device->fs_devices = fs_devices;
dfe25020 6370 fs_devices->num_devices++;
12bd2fc0 6371
e6e674bd 6372 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6373 fs_devices->missing_devices++;
12bd2fc0 6374
dfe25020
CM
6375 return device;
6376}
6377
12bd2fc0
ID
6378/**
6379 * btrfs_alloc_device - allocate struct btrfs_device
6380 * @fs_info: used only for generating a new devid, can be NULL if
6381 * devid is provided (i.e. @devid != NULL).
6382 * @devid: a pointer to devid for this device. If NULL a new devid
6383 * is generated.
6384 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6385 * is generated.
6386 *
6387 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6388 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6389 * destroyed with btrfs_free_device.
12bd2fc0
ID
6390 */
6391struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6392 const u64 *devid,
6393 const u8 *uuid)
6394{
6395 struct btrfs_device *dev;
6396 u64 tmp;
6397
fae7f21c 6398 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6399 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6400
6401 dev = __alloc_device();
6402 if (IS_ERR(dev))
6403 return dev;
6404
6405 if (devid)
6406 tmp = *devid;
6407 else {
6408 int ret;
6409
6410 ret = find_next_devid(fs_info, &tmp);
6411 if (ret) {
a425f9d4 6412 btrfs_free_device(dev);
12bd2fc0
ID
6413 return ERR_PTR(ret);
6414 }
6415 }
6416 dev->devid = tmp;
6417
6418 if (uuid)
6419 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6420 else
6421 generate_random_uuid(dev->uuid);
6422
12bd2fc0
ID
6423 return dev;
6424}
6425
5a2b8e60 6426static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6427 u64 devid, u8 *uuid, bool error)
5a2b8e60 6428{
2b902dfc
AJ
6429 if (error)
6430 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6431 devid, uuid);
6432 else
6433 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6434 devid, uuid);
5a2b8e60
AJ
6435}
6436
39e264a4
NB
6437static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6438{
6439 int index = btrfs_bg_flags_to_raid_index(type);
6440 int ncopies = btrfs_raid_array[index].ncopies;
6441 int data_stripes;
6442
6443 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6444 case BTRFS_BLOCK_GROUP_RAID5:
6445 data_stripes = num_stripes - 1;
6446 break;
6447 case BTRFS_BLOCK_GROUP_RAID6:
6448 data_stripes = num_stripes - 2;
6449 break;
6450 default:
6451 data_stripes = num_stripes / ncopies;
6452 break;
6453 }
6454 return div_u64(chunk_len, data_stripes);
6455}
6456
9690ac09 6457static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6458 struct btrfs_chunk *chunk)
6459{
9690ac09 6460 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6461 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6462 struct map_lookup *map;
6463 struct extent_map *em;
6464 u64 logical;
6465 u64 length;
e06cd3dd
LB
6466 u64 devid;
6467 u8 uuid[BTRFS_UUID_SIZE];
6468 int num_stripes;
6469 int ret;
6470 int i;
6471
6472 logical = key->offset;
6473 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6474 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6475
075cb3c7
QW
6476 /*
6477 * Only need to verify chunk item if we're reading from sys chunk array,
6478 * as chunk item in tree block is already verified by tree-checker.
6479 */
6480 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6481 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6482 if (ret)
6483 return ret;
6484 }
a061fc8d 6485
c8bf1b67
DS
6486 read_lock(&map_tree->lock);
6487 em = lookup_extent_mapping(map_tree, logical, 1);
6488 read_unlock(&map_tree->lock);
0b86a832
CM
6489
6490 /* already mapped? */
6491 if (em && em->start <= logical && em->start + em->len > logical) {
6492 free_extent_map(em);
0b86a832
CM
6493 return 0;
6494 } else if (em) {
6495 free_extent_map(em);
6496 }
0b86a832 6497
172ddd60 6498 em = alloc_extent_map();
0b86a832
CM
6499 if (!em)
6500 return -ENOMEM;
593060d7 6501 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6502 if (!map) {
6503 free_extent_map(em);
6504 return -ENOMEM;
6505 }
6506
298a8f9c 6507 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6508 em->map_lookup = map;
0b86a832
CM
6509 em->start = logical;
6510 em->len = length;
70c8a91c 6511 em->orig_start = 0;
0b86a832 6512 em->block_start = 0;
c8b97818 6513 em->block_len = em->len;
0b86a832 6514
593060d7
CM
6515 map->num_stripes = num_stripes;
6516 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6517 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6518 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6519 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6520 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 6521 map->verified_stripes = 0;
39e264a4
NB
6522 em->orig_block_len = calc_stripe_length(map->type, em->len,
6523 map->num_stripes);
593060d7
CM
6524 for (i = 0; i < num_stripes; i++) {
6525 map->stripes[i].physical =
6526 btrfs_stripe_offset_nr(leaf, chunk, i);
6527 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6528 read_extent_buffer(leaf, uuid, (unsigned long)
6529 btrfs_stripe_dev_uuid_nr(chunk, i),
6530 BTRFS_UUID_SIZE);
e4319cd9 6531 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
09ba3bc9 6532 devid, uuid, NULL, true);
3cdde224 6533 if (!map->stripes[i].dev &&
0b246afa 6534 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6535 free_extent_map(em);
2b902dfc 6536 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6537 return -ENOENT;
593060d7 6538 }
dfe25020
CM
6539 if (!map->stripes[i].dev) {
6540 map->stripes[i].dev =
2ff7e61e
JM
6541 add_missing_dev(fs_info->fs_devices, devid,
6542 uuid);
adfb69af 6543 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6544 free_extent_map(em);
adfb69af
AJ
6545 btrfs_err(fs_info,
6546 "failed to init missing dev %llu: %ld",
6547 devid, PTR_ERR(map->stripes[i].dev));
6548 return PTR_ERR(map->stripes[i].dev);
dfe25020 6549 }
2b902dfc 6550 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 6551 }
e12c9621
AJ
6552 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6553 &(map->stripes[i].dev->dev_state));
6554
0b86a832
CM
6555 }
6556
c8bf1b67
DS
6557 write_lock(&map_tree->lock);
6558 ret = add_extent_mapping(map_tree, em, 0);
6559 write_unlock(&map_tree->lock);
64f64f43
QW
6560 if (ret < 0) {
6561 btrfs_err(fs_info,
6562 "failed to add chunk map, start=%llu len=%llu: %d",
6563 em->start, em->len, ret);
6564 }
0b86a832
CM
6565 free_extent_map(em);
6566
64f64f43 6567 return ret;
0b86a832
CM
6568}
6569
143bede5 6570static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6571 struct btrfs_dev_item *dev_item,
6572 struct btrfs_device *device)
6573{
6574 unsigned long ptr;
0b86a832
CM
6575
6576 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6577 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6578 device->total_bytes = device->disk_total_bytes;
935e5cc9 6579 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6580 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6581 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6582 device->type = btrfs_device_type(leaf, dev_item);
6583 device->io_align = btrfs_device_io_align(leaf, dev_item);
6584 device->io_width = btrfs_device_io_width(leaf, dev_item);
6585 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6586 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6587 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6588
410ba3a2 6589 ptr = btrfs_device_uuid(dev_item);
e17cade2 6590 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6591}
6592
2ff7e61e 6593static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6594 u8 *fsid)
2b82032c
YZ
6595{
6596 struct btrfs_fs_devices *fs_devices;
6597 int ret;
6598
a32bf9a3 6599 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6600 ASSERT(fsid);
2b82032c 6601
0b246afa 6602 fs_devices = fs_info->fs_devices->seed;
2b82032c 6603 while (fs_devices) {
44880fdc 6604 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6605 return fs_devices;
6606
2b82032c
YZ
6607 fs_devices = fs_devices->seed;
6608 }
6609
7239ff4b 6610 fs_devices = find_fsid(fsid, NULL);
2b82032c 6611 if (!fs_devices) {
0b246afa 6612 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6613 return ERR_PTR(-ENOENT);
6614
7239ff4b 6615 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
6616 if (IS_ERR(fs_devices))
6617 return fs_devices;
6618
6619 fs_devices->seeding = 1;
6620 fs_devices->opened = 1;
6621 return fs_devices;
2b82032c 6622 }
e4404d6e
YZ
6623
6624 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6625 if (IS_ERR(fs_devices))
6626 return fs_devices;
2b82032c 6627
897fb573 6628 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
6629 if (ret) {
6630 free_fs_devices(fs_devices);
5f375835 6631 fs_devices = ERR_PTR(ret);
2b82032c 6632 goto out;
48d28232 6633 }
2b82032c
YZ
6634
6635 if (!fs_devices->seeding) {
0226e0eb 6636 close_fs_devices(fs_devices);
e4404d6e 6637 free_fs_devices(fs_devices);
5f375835 6638 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6639 goto out;
6640 }
6641
0b246afa
JM
6642 fs_devices->seed = fs_info->fs_devices->seed;
6643 fs_info->fs_devices->seed = fs_devices;
2b82032c 6644out:
5f375835 6645 return fs_devices;
2b82032c
YZ
6646}
6647
17850759 6648static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
6649 struct btrfs_dev_item *dev_item)
6650{
17850759 6651 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 6652 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6653 struct btrfs_device *device;
6654 u64 devid;
6655 int ret;
44880fdc 6656 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6657 u8 dev_uuid[BTRFS_UUID_SIZE];
6658
0b86a832 6659 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6660 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6661 BTRFS_UUID_SIZE);
1473b24e 6662 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6663 BTRFS_FSID_SIZE);
2b82032c 6664
de37aa51 6665 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 6666 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6667 if (IS_ERR(fs_devices))
6668 return PTR_ERR(fs_devices);
2b82032c
YZ
6669 }
6670
e4319cd9 6671 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 6672 fs_uuid, true);
5f375835 6673 if (!device) {
c5502451 6674 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6675 btrfs_report_missing_device(fs_info, devid,
6676 dev_uuid, true);
45dbdbc9 6677 return -ENOENT;
c5502451 6678 }
2b82032c 6679
2ff7e61e 6680 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6681 if (IS_ERR(device)) {
6682 btrfs_err(fs_info,
6683 "failed to add missing dev %llu: %ld",
6684 devid, PTR_ERR(device));
6685 return PTR_ERR(device);
6686 }
2b902dfc 6687 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6688 } else {
c5502451 6689 if (!device->bdev) {
2b902dfc
AJ
6690 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6691 btrfs_report_missing_device(fs_info,
6692 devid, dev_uuid, true);
45dbdbc9 6693 return -ENOENT;
2b902dfc
AJ
6694 }
6695 btrfs_report_missing_device(fs_info, devid,
6696 dev_uuid, false);
c5502451 6697 }
5f375835 6698
e6e674bd
AJ
6699 if (!device->bdev &&
6700 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6701 /*
6702 * this happens when a device that was properly setup
6703 * in the device info lists suddenly goes bad.
6704 * device->bdev is NULL, and so we have to set
6705 * device->missing to one here
6706 */
5f375835 6707 device->fs_devices->missing_devices++;
e6e674bd 6708 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6709 }
5f375835
MX
6710
6711 /* Move the device to its own fs_devices */
6712 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6713 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6714 &device->dev_state));
5f375835
MX
6715
6716 list_move(&device->dev_list, &fs_devices->devices);
6717 device->fs_devices->num_devices--;
6718 fs_devices->num_devices++;
6719
6720 device->fs_devices->missing_devices--;
6721 fs_devices->missing_devices++;
6722
6723 device->fs_devices = fs_devices;
6724 }
2b82032c
YZ
6725 }
6726
0b246afa 6727 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 6728 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
6729 if (device->generation !=
6730 btrfs_device_generation(leaf, dev_item))
6731 return -EINVAL;
6324fbf3 6732 }
0b86a832
CM
6733
6734 fill_device_from_item(leaf, dev_item, device);
e12c9621 6735 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 6736 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 6737 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 6738 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6739 atomic64_add(device->total_bytes - device->bytes_used,
6740 &fs_info->free_chunk_space);
2bf64758 6741 }
0b86a832 6742 ret = 0;
0b86a832
CM
6743 return ret;
6744}
6745
6bccf3ab 6746int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6747{
6bccf3ab 6748 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6749 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6750 struct extent_buffer *sb;
0b86a832 6751 struct btrfs_disk_key *disk_key;
0b86a832 6752 struct btrfs_chunk *chunk;
1ffb22cf
DS
6753 u8 *array_ptr;
6754 unsigned long sb_array_offset;
84eed90f 6755 int ret = 0;
0b86a832
CM
6756 u32 num_stripes;
6757 u32 array_size;
6758 u32 len = 0;
1ffb22cf 6759 u32 cur_offset;
e06cd3dd 6760 u64 type;
84eed90f 6761 struct btrfs_key key;
0b86a832 6762
0b246afa 6763 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6764 /*
6765 * This will create extent buffer of nodesize, superblock size is
6766 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6767 * overallocate but we can keep it as-is, only the first page is used.
6768 */
2ff7e61e 6769 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6770 if (IS_ERR(sb))
6771 return PTR_ERR(sb);
4db8c528 6772 set_extent_buffer_uptodate(sb);
85d4e461 6773 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6774 /*
01327610 6775 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6776 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6777 * pages up-to-date when the page is larger: extent does not cover the
6778 * whole page and consequently check_page_uptodate does not find all
6779 * the page's extents up-to-date (the hole beyond sb),
6780 * write_extent_buffer then triggers a WARN_ON.
6781 *
6782 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6783 * but sb spans only this function. Add an explicit SetPageUptodate call
6784 * to silence the warning eg. on PowerPC 64.
6785 */
09cbfeaf 6786 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6787 SetPageUptodate(sb->pages[0]);
4008c04a 6788
a061fc8d 6789 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6790 array_size = btrfs_super_sys_array_size(super_copy);
6791
1ffb22cf
DS
6792 array_ptr = super_copy->sys_chunk_array;
6793 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6794 cur_offset = 0;
0b86a832 6795
1ffb22cf
DS
6796 while (cur_offset < array_size) {
6797 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6798 len = sizeof(*disk_key);
6799 if (cur_offset + len > array_size)
6800 goto out_short_read;
6801
0b86a832
CM
6802 btrfs_disk_key_to_cpu(&key, disk_key);
6803
1ffb22cf
DS
6804 array_ptr += len;
6805 sb_array_offset += len;
6806 cur_offset += len;
0b86a832 6807
32ab3d1b
JT
6808 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6809 btrfs_err(fs_info,
6810 "unexpected item type %u in sys_array at offset %u",
6811 (u32)key.type, cur_offset);
6812 ret = -EIO;
6813 break;
6814 }
f5cdedd7 6815
32ab3d1b
JT
6816 chunk = (struct btrfs_chunk *)sb_array_offset;
6817 /*
6818 * At least one btrfs_chunk with one stripe must be present,
6819 * exact stripe count check comes afterwards
6820 */
6821 len = btrfs_chunk_item_size(1);
6822 if (cur_offset + len > array_size)
6823 goto out_short_read;
e06cd3dd 6824
32ab3d1b
JT
6825 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6826 if (!num_stripes) {
6827 btrfs_err(fs_info,
6828 "invalid number of stripes %u in sys_array at offset %u",
6829 num_stripes, cur_offset);
6830 ret = -EIO;
6831 break;
6832 }
e3540eab 6833
32ab3d1b
JT
6834 type = btrfs_chunk_type(sb, chunk);
6835 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6836 btrfs_err(fs_info,
32ab3d1b
JT
6837 "invalid chunk type %llu in sys_array at offset %u",
6838 type, cur_offset);
84eed90f
CM
6839 ret = -EIO;
6840 break;
0b86a832 6841 }
32ab3d1b
JT
6842
6843 len = btrfs_chunk_item_size(num_stripes);
6844 if (cur_offset + len > array_size)
6845 goto out_short_read;
6846
6847 ret = read_one_chunk(&key, sb, chunk);
6848 if (ret)
6849 break;
6850
1ffb22cf
DS
6851 array_ptr += len;
6852 sb_array_offset += len;
6853 cur_offset += len;
0b86a832 6854 }
d865177a 6855 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6856 free_extent_buffer_stale(sb);
84eed90f 6857 return ret;
e3540eab
DS
6858
6859out_short_read:
ab8d0fc4 6860 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6861 len, cur_offset);
d865177a 6862 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6863 free_extent_buffer_stale(sb);
e3540eab 6864 return -EIO;
0b86a832
CM
6865}
6866
21634a19
QW
6867/*
6868 * Check if all chunks in the fs are OK for read-write degraded mount
6869 *
6528b99d
AJ
6870 * If the @failing_dev is specified, it's accounted as missing.
6871 *
21634a19
QW
6872 * Return true if all chunks meet the minimal RW mount requirements.
6873 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6874 */
6528b99d
AJ
6875bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6876 struct btrfs_device *failing_dev)
21634a19 6877{
c8bf1b67 6878 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
6879 struct extent_map *em;
6880 u64 next_start = 0;
6881 bool ret = true;
6882
c8bf1b67
DS
6883 read_lock(&map_tree->lock);
6884 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6885 read_unlock(&map_tree->lock);
21634a19
QW
6886 /* No chunk at all? Return false anyway */
6887 if (!em) {
6888 ret = false;
6889 goto out;
6890 }
6891 while (em) {
6892 struct map_lookup *map;
6893 int missing = 0;
6894 int max_tolerated;
6895 int i;
6896
6897 map = em->map_lookup;
6898 max_tolerated =
6899 btrfs_get_num_tolerated_disk_barrier_failures(
6900 map->type);
6901 for (i = 0; i < map->num_stripes; i++) {
6902 struct btrfs_device *dev = map->stripes[i].dev;
6903
e6e674bd
AJ
6904 if (!dev || !dev->bdev ||
6905 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
6906 dev->last_flush_error)
6907 missing++;
6528b99d
AJ
6908 else if (failing_dev && failing_dev == dev)
6909 missing++;
21634a19
QW
6910 }
6911 if (missing > max_tolerated) {
6528b99d
AJ
6912 if (!failing_dev)
6913 btrfs_warn(fs_info,
52042d8e 6914 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
6915 em->start, missing, max_tolerated);
6916 free_extent_map(em);
6917 ret = false;
6918 goto out;
6919 }
6920 next_start = extent_map_end(em);
6921 free_extent_map(em);
6922
c8bf1b67
DS
6923 read_lock(&map_tree->lock);
6924 em = lookup_extent_mapping(map_tree, next_start,
21634a19 6925 (u64)(-1) - next_start);
c8bf1b67 6926 read_unlock(&map_tree->lock);
21634a19
QW
6927 }
6928out:
6929 return ret;
6930}
6931
5b4aacef 6932int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6933{
5b4aacef 6934 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6935 struct btrfs_path *path;
6936 struct extent_buffer *leaf;
6937 struct btrfs_key key;
6938 struct btrfs_key found_key;
6939 int ret;
6940 int slot;
99e3ecfc 6941 u64 total_dev = 0;
0b86a832 6942
0b86a832
CM
6943 path = btrfs_alloc_path();
6944 if (!path)
6945 return -ENOMEM;
6946
3dd0f7a3
AJ
6947 /*
6948 * uuid_mutex is needed only if we are mounting a sprout FS
6949 * otherwise we don't need it.
6950 */
b367e47f 6951 mutex_lock(&uuid_mutex);
34441361 6952 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6953
395927a9
FDBM
6954 /*
6955 * Read all device items, and then all the chunk items. All
6956 * device items are found before any chunk item (their object id
6957 * is smaller than the lowest possible object id for a chunk
6958 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6959 */
6960 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6961 key.offset = 0;
6962 key.type = 0;
0b86a832 6963 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6964 if (ret < 0)
6965 goto error;
d397712b 6966 while (1) {
0b86a832
CM
6967 leaf = path->nodes[0];
6968 slot = path->slots[0];
6969 if (slot >= btrfs_header_nritems(leaf)) {
6970 ret = btrfs_next_leaf(root, path);
6971 if (ret == 0)
6972 continue;
6973 if (ret < 0)
6974 goto error;
6975 break;
6976 }
6977 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6978 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6979 struct btrfs_dev_item *dev_item;
6980 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6981 struct btrfs_dev_item);
17850759 6982 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
6983 if (ret)
6984 goto error;
99e3ecfc 6985 total_dev++;
0b86a832
CM
6986 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6987 struct btrfs_chunk *chunk;
6988 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 6989 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
6990 if (ret)
6991 goto error;
0b86a832
CM
6992 }
6993 path->slots[0]++;
6994 }
99e3ecfc
LB
6995
6996 /*
6997 * After loading chunk tree, we've got all device information,
6998 * do another round of validation checks.
6999 */
0b246afa
JM
7000 if (total_dev != fs_info->fs_devices->total_devices) {
7001 btrfs_err(fs_info,
99e3ecfc 7002 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7003 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7004 total_dev);
7005 ret = -EINVAL;
7006 goto error;
7007 }
0b246afa
JM
7008 if (btrfs_super_total_bytes(fs_info->super_copy) <
7009 fs_info->fs_devices->total_rw_bytes) {
7010 btrfs_err(fs_info,
99e3ecfc 7011 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7012 btrfs_super_total_bytes(fs_info->super_copy),
7013 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7014 ret = -EINVAL;
7015 goto error;
7016 }
0b86a832
CM
7017 ret = 0;
7018error:
34441361 7019 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
7020 mutex_unlock(&uuid_mutex);
7021
2b82032c 7022 btrfs_free_path(path);
0b86a832
CM
7023 return ret;
7024}
442a4f63 7025
cb517eab
MX
7026void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7027{
7028 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7029 struct btrfs_device *device;
7030
29cc83f6
LB
7031 while (fs_devices) {
7032 mutex_lock(&fs_devices->device_list_mutex);
7033 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 7034 device->fs_info = fs_info;
29cc83f6
LB
7035 mutex_unlock(&fs_devices->device_list_mutex);
7036
7037 fs_devices = fs_devices->seed;
7038 }
cb517eab
MX
7039}
7040
1dc990df
DS
7041static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7042 const struct btrfs_dev_stats_item *ptr,
7043 int index)
7044{
7045 u64 val;
7046
7047 read_extent_buffer(eb, &val,
7048 offsetof(struct btrfs_dev_stats_item, values) +
7049 ((unsigned long)ptr) + (index * sizeof(u64)),
7050 sizeof(val));
7051 return val;
7052}
7053
7054static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7055 struct btrfs_dev_stats_item *ptr,
7056 int index, u64 val)
7057{
7058 write_extent_buffer(eb, &val,
7059 offsetof(struct btrfs_dev_stats_item, values) +
7060 ((unsigned long)ptr) + (index * sizeof(u64)),
7061 sizeof(val));
7062}
7063
733f4fbb
SB
7064int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7065{
7066 struct btrfs_key key;
733f4fbb
SB
7067 struct btrfs_root *dev_root = fs_info->dev_root;
7068 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7069 struct extent_buffer *eb;
7070 int slot;
7071 int ret = 0;
7072 struct btrfs_device *device;
7073 struct btrfs_path *path = NULL;
7074 int i;
7075
7076 path = btrfs_alloc_path();
3b80a984
AJ
7077 if (!path)
7078 return -ENOMEM;
733f4fbb
SB
7079
7080 mutex_lock(&fs_devices->device_list_mutex);
7081 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7082 int item_size;
7083 struct btrfs_dev_stats_item *ptr;
7084
242e2956
DS
7085 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7086 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7087 key.offset = device->devid;
7088 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7089 if (ret) {
ae4b9b4c
AJ
7090 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7091 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7092 device->dev_stats_valid = 1;
7093 btrfs_release_path(path);
7094 continue;
7095 }
7096 slot = path->slots[0];
7097 eb = path->nodes[0];
733f4fbb
SB
7098 item_size = btrfs_item_size_nr(eb, slot);
7099
7100 ptr = btrfs_item_ptr(eb, slot,
7101 struct btrfs_dev_stats_item);
7102
7103 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7104 if (item_size >= (1 + i) * sizeof(__le64))
7105 btrfs_dev_stat_set(device, i,
7106 btrfs_dev_stats_value(eb, ptr, i));
7107 else
4e411a7d 7108 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7109 }
7110
7111 device->dev_stats_valid = 1;
7112 btrfs_dev_stat_print_on_load(device);
7113 btrfs_release_path(path);
7114 }
7115 mutex_unlock(&fs_devices->device_list_mutex);
7116
733f4fbb
SB
7117 btrfs_free_path(path);
7118 return ret < 0 ? ret : 0;
7119}
7120
7121static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7122 struct btrfs_device *device)
7123{
5495f195 7124 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7125 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7126 struct btrfs_path *path;
7127 struct btrfs_key key;
7128 struct extent_buffer *eb;
7129 struct btrfs_dev_stats_item *ptr;
7130 int ret;
7131 int i;
7132
242e2956
DS
7133 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7134 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7135 key.offset = device->devid;
7136
7137 path = btrfs_alloc_path();
fa252992
DS
7138 if (!path)
7139 return -ENOMEM;
733f4fbb
SB
7140 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7141 if (ret < 0) {
0b246afa 7142 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7143 "error %d while searching for dev_stats item for device %s",
606686ee 7144 ret, rcu_str_deref(device->name));
733f4fbb
SB
7145 goto out;
7146 }
7147
7148 if (ret == 0 &&
7149 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7150 /* need to delete old one and insert a new one */
7151 ret = btrfs_del_item(trans, dev_root, path);
7152 if (ret != 0) {
0b246afa 7153 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7154 "delete too small dev_stats item for device %s failed %d",
606686ee 7155 rcu_str_deref(device->name), ret);
733f4fbb
SB
7156 goto out;
7157 }
7158 ret = 1;
7159 }
7160
7161 if (ret == 1) {
7162 /* need to insert a new item */
7163 btrfs_release_path(path);
7164 ret = btrfs_insert_empty_item(trans, dev_root, path,
7165 &key, sizeof(*ptr));
7166 if (ret < 0) {
0b246afa 7167 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7168 "insert dev_stats item for device %s failed %d",
7169 rcu_str_deref(device->name), ret);
733f4fbb
SB
7170 goto out;
7171 }
7172 }
7173
7174 eb = path->nodes[0];
7175 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7176 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7177 btrfs_set_dev_stats_value(eb, ptr, i,
7178 btrfs_dev_stat_read(device, i));
7179 btrfs_mark_buffer_dirty(eb);
7180
7181out:
7182 btrfs_free_path(path);
7183 return ret;
7184}
7185
7186/*
7187 * called from commit_transaction. Writes all changed device stats to disk.
7188 */
196c9d8d 7189int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7190{
196c9d8d 7191 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7192 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7193 struct btrfs_device *device;
addc3fa7 7194 int stats_cnt;
733f4fbb
SB
7195 int ret = 0;
7196
7197 mutex_lock(&fs_devices->device_list_mutex);
7198 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7199 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7200 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7201 continue;
7202
9deae968
NB
7203
7204 /*
7205 * There is a LOAD-LOAD control dependency between the value of
7206 * dev_stats_ccnt and updating the on-disk values which requires
7207 * reading the in-memory counters. Such control dependencies
7208 * require explicit read memory barriers.
7209 *
7210 * This memory barriers pairs with smp_mb__before_atomic in
7211 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7212 * barrier implied by atomic_xchg in
7213 * btrfs_dev_stats_read_and_reset
7214 */
7215 smp_rmb();
7216
5495f195 7217 ret = update_dev_stat_item(trans, device);
733f4fbb 7218 if (!ret)
addc3fa7 7219 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7220 }
7221 mutex_unlock(&fs_devices->device_list_mutex);
7222
7223 return ret;
7224}
7225
442a4f63
SB
7226void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7227{
7228 btrfs_dev_stat_inc(dev, index);
7229 btrfs_dev_stat_print_on_error(dev);
7230}
7231
48a3b636 7232static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7233{
733f4fbb
SB
7234 if (!dev->dev_stats_valid)
7235 return;
fb456252 7236 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7237 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7238 rcu_str_deref(dev->name),
442a4f63
SB
7239 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7240 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7241 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7242 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7243 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7244}
c11d2c23 7245
733f4fbb
SB
7246static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7247{
a98cdb85
SB
7248 int i;
7249
7250 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7251 if (btrfs_dev_stat_read(dev, i) != 0)
7252 break;
7253 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7254 return; /* all values == 0, suppress message */
7255
fb456252 7256 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7257 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7258 rcu_str_deref(dev->name),
733f4fbb
SB
7259 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7260 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7261 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7262 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7263 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7264}
7265
2ff7e61e 7266int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7267 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7268{
7269 struct btrfs_device *dev;
0b246afa 7270 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7271 int i;
7272
7273 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
7274 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7275 true);
c11d2c23
SB
7276 mutex_unlock(&fs_devices->device_list_mutex);
7277
7278 if (!dev) {
0b246afa 7279 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7280 return -ENODEV;
733f4fbb 7281 } else if (!dev->dev_stats_valid) {
0b246afa 7282 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7283 return -ENODEV;
b27f7c0c 7284 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7285 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7286 if (stats->nr_items > i)
7287 stats->values[i] =
7288 btrfs_dev_stat_read_and_reset(dev, i);
7289 else
4e411a7d 7290 btrfs_dev_stat_set(dev, i, 0);
c11d2c23
SB
7291 }
7292 } else {
7293 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7294 if (stats->nr_items > i)
7295 stats->values[i] = btrfs_dev_stat_read(dev, i);
7296 }
7297 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7298 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7299 return 0;
7300}
a8a6dab7 7301
da353f6b 7302void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7303{
7304 struct buffer_head *bh;
7305 struct btrfs_super_block *disk_super;
12b1c263 7306 int copy_num;
a8a6dab7 7307
12b1c263
AJ
7308 if (!bdev)
7309 return;
a8a6dab7 7310
12b1c263
AJ
7311 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7312 copy_num++) {
a8a6dab7 7313
12b1c263
AJ
7314 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7315 continue;
7316
7317 disk_super = (struct btrfs_super_block *)bh->b_data;
7318
7319 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7320 set_buffer_dirty(bh);
7321 sync_dirty_buffer(bh);
7322 brelse(bh);
7323 }
7324
7325 /* Notify udev that device has changed */
7326 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7327
7328 /* Update ctime/mtime for device path for libblkid */
7329 update_dev_time(device_path);
a8a6dab7 7330}
935e5cc9
MX
7331
7332/*
bbbf7243
NB
7333 * Update the size and bytes used for each device where it changed. This is
7334 * delayed since we would otherwise get errors while writing out the
7335 * superblocks.
7336 *
7337 * Must be invoked during transaction commit.
935e5cc9 7338 */
bbbf7243 7339void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7340{
935e5cc9
MX
7341 struct btrfs_device *curr, *next;
7342
bbbf7243 7343 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7344
bbbf7243 7345 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7346 return;
7347
bbbf7243
NB
7348 /*
7349 * We don't need the device_list_mutex here. This list is owned by the
7350 * transaction and the transaction must complete before the device is
7351 * released.
7352 */
7353 mutex_lock(&trans->fs_info->chunk_mutex);
7354 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7355 post_commit_list) {
7356 list_del_init(&curr->post_commit_list);
7357 curr->commit_total_bytes = curr->disk_total_bytes;
7358 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7359 }
bbbf7243 7360 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7361}
5a13f430
AJ
7362
7363void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7364{
7365 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7366 while (fs_devices) {
7367 fs_devices->fs_info = fs_info;
7368 fs_devices = fs_devices->seed;
7369 }
7370}
7371
7372void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7373{
7374 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7375 while (fs_devices) {
7376 fs_devices->fs_info = NULL;
7377 fs_devices = fs_devices->seed;
7378 }
7379}
46df06b8
DS
7380
7381/*
7382 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7383 */
7384int btrfs_bg_type_to_factor(u64 flags)
7385{
44b28ada
DS
7386 const int index = btrfs_bg_flags_to_raid_index(flags);
7387
7388 return btrfs_raid_array[index].ncopies;
46df06b8 7389}
cf90d884
QW
7390
7391
cf90d884
QW
7392
7393static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7394 u64 chunk_offset, u64 devid,
7395 u64 physical_offset, u64 physical_len)
7396{
c8bf1b67 7397 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7398 struct extent_map *em;
7399 struct map_lookup *map;
05a37c48 7400 struct btrfs_device *dev;
cf90d884
QW
7401 u64 stripe_len;
7402 bool found = false;
7403 int ret = 0;
7404 int i;
7405
7406 read_lock(&em_tree->lock);
7407 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7408 read_unlock(&em_tree->lock);
7409
7410 if (!em) {
7411 btrfs_err(fs_info,
7412"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7413 physical_offset, devid);
7414 ret = -EUCLEAN;
7415 goto out;
7416 }
7417
7418 map = em->map_lookup;
7419 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7420 if (physical_len != stripe_len) {
7421 btrfs_err(fs_info,
7422"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7423 physical_offset, devid, em->start, physical_len,
7424 stripe_len);
7425 ret = -EUCLEAN;
7426 goto out;
7427 }
7428
7429 for (i = 0; i < map->num_stripes; i++) {
7430 if (map->stripes[i].dev->devid == devid &&
7431 map->stripes[i].physical == physical_offset) {
7432 found = true;
7433 if (map->verified_stripes >= map->num_stripes) {
7434 btrfs_err(fs_info,
7435 "too many dev extents for chunk %llu found",
7436 em->start);
7437 ret = -EUCLEAN;
7438 goto out;
7439 }
7440 map->verified_stripes++;
7441 break;
7442 }
7443 }
7444 if (!found) {
7445 btrfs_err(fs_info,
7446 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7447 physical_offset, devid);
7448 ret = -EUCLEAN;
7449 }
05a37c48
QW
7450
7451 /* Make sure no dev extent is beyond device bondary */
09ba3bc9 7452 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
05a37c48
QW
7453 if (!dev) {
7454 btrfs_err(fs_info, "failed to find devid %llu", devid);
7455 ret = -EUCLEAN;
7456 goto out;
7457 }
1b3922a8
QW
7458
7459 /* It's possible this device is a dummy for seed device */
7460 if (dev->disk_total_bytes == 0) {
09ba3bc9
AJ
7461 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7462 NULL, false);
1b3922a8
QW
7463 if (!dev) {
7464 btrfs_err(fs_info, "failed to find seed devid %llu",
7465 devid);
7466 ret = -EUCLEAN;
7467 goto out;
7468 }
7469 }
7470
05a37c48
QW
7471 if (physical_offset + physical_len > dev->disk_total_bytes) {
7472 btrfs_err(fs_info,
7473"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7474 devid, physical_offset, physical_len,
7475 dev->disk_total_bytes);
7476 ret = -EUCLEAN;
7477 goto out;
7478 }
cf90d884
QW
7479out:
7480 free_extent_map(em);
7481 return ret;
7482}
7483
7484static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7485{
c8bf1b67 7486 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7487 struct extent_map *em;
7488 struct rb_node *node;
7489 int ret = 0;
7490
7491 read_lock(&em_tree->lock);
07e1ce09 7492 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7493 em = rb_entry(node, struct extent_map, rb_node);
7494 if (em->map_lookup->num_stripes !=
7495 em->map_lookup->verified_stripes) {
7496 btrfs_err(fs_info,
7497 "chunk %llu has missing dev extent, have %d expect %d",
7498 em->start, em->map_lookup->verified_stripes,
7499 em->map_lookup->num_stripes);
7500 ret = -EUCLEAN;
7501 goto out;
7502 }
7503 }
7504out:
7505 read_unlock(&em_tree->lock);
7506 return ret;
7507}
7508
7509/*
7510 * Ensure that all dev extents are mapped to correct chunk, otherwise
7511 * later chunk allocation/free would cause unexpected behavior.
7512 *
7513 * NOTE: This will iterate through the whole device tree, which should be of
7514 * the same size level as the chunk tree. This slightly increases mount time.
7515 */
7516int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7517{
7518 struct btrfs_path *path;
7519 struct btrfs_root *root = fs_info->dev_root;
7520 struct btrfs_key key;
5eb19381
QW
7521 u64 prev_devid = 0;
7522 u64 prev_dev_ext_end = 0;
cf90d884
QW
7523 int ret = 0;
7524
7525 key.objectid = 1;
7526 key.type = BTRFS_DEV_EXTENT_KEY;
7527 key.offset = 0;
7528
7529 path = btrfs_alloc_path();
7530 if (!path)
7531 return -ENOMEM;
7532
7533 path->reada = READA_FORWARD;
7534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7535 if (ret < 0)
7536 goto out;
7537
7538 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7539 ret = btrfs_next_item(root, path);
7540 if (ret < 0)
7541 goto out;
7542 /* No dev extents at all? Not good */
7543 if (ret > 0) {
7544 ret = -EUCLEAN;
7545 goto out;
7546 }
7547 }
7548 while (1) {
7549 struct extent_buffer *leaf = path->nodes[0];
7550 struct btrfs_dev_extent *dext;
7551 int slot = path->slots[0];
7552 u64 chunk_offset;
7553 u64 physical_offset;
7554 u64 physical_len;
7555 u64 devid;
7556
7557 btrfs_item_key_to_cpu(leaf, &key, slot);
7558 if (key.type != BTRFS_DEV_EXTENT_KEY)
7559 break;
7560 devid = key.objectid;
7561 physical_offset = key.offset;
7562
7563 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7564 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7565 physical_len = btrfs_dev_extent_length(leaf, dext);
7566
5eb19381
QW
7567 /* Check if this dev extent overlaps with the previous one */
7568 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7569 btrfs_err(fs_info,
7570"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7571 devid, physical_offset, prev_dev_ext_end);
7572 ret = -EUCLEAN;
7573 goto out;
7574 }
7575
cf90d884
QW
7576 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7577 physical_offset, physical_len);
7578 if (ret < 0)
7579 goto out;
5eb19381
QW
7580 prev_devid = devid;
7581 prev_dev_ext_end = physical_offset + physical_len;
7582
cf90d884
QW
7583 ret = btrfs_next_item(root, path);
7584 if (ret < 0)
7585 goto out;
7586 if (ret > 0) {
7587 ret = 0;
7588 break;
7589 }
7590 }
7591
7592 /* Ensure all chunks have corresponding dev extents */
7593 ret = verify_chunk_dev_extent_mapping(fs_info);
7594out:
7595 btrfs_free_path(path);
7596 return ret;
7597}
eede2bf3
OS
7598
7599/*
7600 * Check whether the given block group or device is pinned by any inode being
7601 * used as a swapfile.
7602 */
7603bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7604{
7605 struct btrfs_swapfile_pin *sp;
7606 struct rb_node *node;
7607
7608 spin_lock(&fs_info->swapfile_pins_lock);
7609 node = fs_info->swapfile_pins.rb_node;
7610 while (node) {
7611 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7612 if (ptr < sp->ptr)
7613 node = node->rb_left;
7614 else if (ptr > sp->ptr)
7615 node = node->rb_right;
7616 else
7617 break;
7618 }
7619 spin_unlock(&fs_info->swapfile_pins_lock);
7620 return node != NULL;
7621}