]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/volumes.c
btrfs: clean up btrfs_dev_stat_inc usage
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
142static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
2b82032c 147
67a2c45e 148DEFINE_MUTEX(uuid_mutex);
8a4b83cc 149static LIST_HEAD(fs_uuids);
c73eccf7
AJ
150struct list_head *btrfs_get_fs_uuids(void)
151{
152 return &fs_uuids;
153}
8a4b83cc 154
2dfeca9b
DS
155/*
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
158 *
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
162 */
163static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
2208a378
ID
164{
165 struct btrfs_fs_devices *fs_devs;
166
78f2c9e6 167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
170
171 mutex_init(&fs_devs->device_list_mutex);
172
173 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 174 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
2208a378
ID
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378
ID
179
180 return fs_devs;
181}
182
e4404d6e
YZ
183static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184{
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
606686ee 191 rcu_string_free(device->name);
3065ae5b 192 bio_put(device->flush_bio);
e4404d6e
YZ
193 kfree(device);
194 }
195 kfree(fs_devices);
196}
197
b8b8ff59
LC
198static void btrfs_kobject_uevent(struct block_device *bdev,
199 enum kobject_action action)
200{
201 int ret;
202
203 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204 if (ret)
efe120a0 205 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
206 action,
207 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
208 &disk_to_dev(bdev->bd_disk)->kobj);
209}
210
143bede5 211void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
212{
213 struct btrfs_fs_devices *fs_devices;
8a4b83cc 214
2b82032c
YZ
215 while (!list_empty(&fs_uuids)) {
216 fs_devices = list_entry(fs_uuids.next,
217 struct btrfs_fs_devices, list);
218 list_del(&fs_devices->list);
e4404d6e 219 free_fs_devices(fs_devices);
8a4b83cc 220 }
8a4b83cc
CM
221}
222
12bd2fc0
ID
223static struct btrfs_device *__alloc_device(void)
224{
225 struct btrfs_device *dev;
226
78f2c9e6 227 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
228 if (!dev)
229 return ERR_PTR(-ENOMEM);
230
e0ae9994
DS
231 /*
232 * Preallocate a bio that's always going to be used for flushing device
233 * barriers and matches the device lifespan
234 */
235 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
236 if (!dev->flush_bio) {
237 kfree(dev);
238 return ERR_PTR(-ENOMEM);
239 }
e0ae9994 240
12bd2fc0
ID
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
9bcaaea7 251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
35c70103
DS
257/*
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259 * return NULL.
260 *
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
263 */
264static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
8a4b83cc 266{
35c70103 267 struct list_head *head = &fs_devices->devices;
8a4b83cc 268 struct btrfs_device *dev;
8a4b83cc 269
c6e30871 270 list_for_each_entry(dev, head, dev_list) {
a443755f 271 if (dev->devid == devid &&
8f18cf13 272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 273 return dev;
a443755f 274 }
8a4b83cc
CM
275 }
276 return NULL;
277}
278
a1b32a59 279static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 280{
8a4b83cc
CM
281 struct btrfs_fs_devices *fs_devices;
282
c6e30871 283 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 return fs_devices;
286 }
287 return NULL;
288}
289
beaf8ab3
SB
290static int
291btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
294{
295 int ret;
296
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299 if (IS_ERR(*bdev)) {
300 ret = PTR_ERR(*bdev);
beaf8ab3
SB
301 goto error;
302 }
303
304 if (flush)
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
307 if (ret) {
308 blkdev_put(*bdev, flags);
309 goto error;
310 }
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
313 if (IS_ERR(*bh)) {
314 ret = PTR_ERR(*bh);
beaf8ab3
SB
315 blkdev_put(*bdev, flags);
316 goto error;
317 }
318
319 return 0;
320
321error:
322 *bdev = NULL;
323 *bh = NULL;
324 return ret;
325}
326
ffbd517d
CM
327static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
329{
330
331 struct bio *old_head;
332
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
337 else
338 pending_bios->tail = tail;
339}
340
8b712842
CM
341/*
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
345 *
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
351 */
143bede5 352static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 353{
0b246afa 354 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
355 struct bio *pending;
356 struct backing_dev_info *bdi;
ffbd517d 357 struct btrfs_pending_bios *pending_bios;
8b712842
CM
358 struct bio *tail;
359 struct bio *cur;
360 int again = 0;
ffbd517d 361 unsigned long num_run;
d644d8a1 362 unsigned long batch_run = 0;
b765ead5 363 unsigned long last_waited = 0;
d84275c9 364 int force_reg = 0;
0e588859 365 int sync_pending = 0;
211588ad
CM
366 struct blk_plug plug;
367
368 /*
369 * this function runs all the bios we've collected for
370 * a particular device. We don't want to wander off to
371 * another device without first sending all of these down.
372 * So, setup a plug here and finish it off before we return
373 */
374 blk_start_plug(&plug);
8b712842 375
efa7c9f9 376 bdi = device->bdev->bd_bdi;
b64a2851 377
8b712842
CM
378loop:
379 spin_lock(&device->io_lock);
380
a6837051 381loop_lock:
d84275c9 382 num_run = 0;
ffbd517d 383
8b712842
CM
384 /* take all the bios off the list at once and process them
385 * later on (without the lock held). But, remember the
386 * tail and other pointers so the bios can be properly reinserted
387 * into the list if we hit congestion
388 */
d84275c9 389 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 390 pending_bios = &device->pending_sync_bios;
d84275c9
CM
391 force_reg = 1;
392 } else {
ffbd517d 393 pending_bios = &device->pending_bios;
d84275c9
CM
394 force_reg = 0;
395 }
ffbd517d
CM
396
397 pending = pending_bios->head;
398 tail = pending_bios->tail;
8b712842 399 WARN_ON(pending && !tail);
8b712842
CM
400
401 /*
402 * if pending was null this time around, no bios need processing
403 * at all and we can stop. Otherwise it'll loop back up again
404 * and do an additional check so no bios are missed.
405 *
406 * device->running_pending is used to synchronize with the
407 * schedule_bio code.
408 */
ffbd517d
CM
409 if (device->pending_sync_bios.head == NULL &&
410 device->pending_bios.head == NULL) {
8b712842
CM
411 again = 0;
412 device->running_pending = 0;
ffbd517d
CM
413 } else {
414 again = 1;
415 device->running_pending = 1;
8b712842 416 }
ffbd517d
CM
417
418 pending_bios->head = NULL;
419 pending_bios->tail = NULL;
420
8b712842
CM
421 spin_unlock(&device->io_lock);
422
d397712b 423 while (pending) {
ffbd517d
CM
424
425 rmb();
d84275c9
CM
426 /* we want to work on both lists, but do more bios on the
427 * sync list than the regular list
428 */
429 if ((num_run > 32 &&
430 pending_bios != &device->pending_sync_bios &&
431 device->pending_sync_bios.head) ||
432 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433 device->pending_bios.head)) {
ffbd517d
CM
434 spin_lock(&device->io_lock);
435 requeue_list(pending_bios, pending, tail);
436 goto loop_lock;
437 }
438
8b712842
CM
439 cur = pending;
440 pending = pending->bi_next;
441 cur->bi_next = NULL;
b64a2851 442
dac56212 443 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 444
2ab1ba68
CM
445 /*
446 * if we're doing the sync list, record that our
447 * plug has some sync requests on it
448 *
449 * If we're doing the regular list and there are
450 * sync requests sitting around, unplug before
451 * we add more
452 */
453 if (pending_bios == &device->pending_sync_bios) {
454 sync_pending = 1;
455 } else if (sync_pending) {
456 blk_finish_plug(&plug);
457 blk_start_plug(&plug);
458 sync_pending = 0;
459 }
460
4e49ea4a 461 btrfsic_submit_bio(cur);
5ff7ba3a
CM
462 num_run++;
463 batch_run++;
853d8ec4
DS
464
465 cond_resched();
8b712842
CM
466
467 /*
468 * we made progress, there is more work to do and the bdi
469 * is now congested. Back off and let other work structs
470 * run instead
471 */
57fd5a5f 472 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 473 fs_info->fs_devices->open_devices > 1) {
b765ead5 474 struct io_context *ioc;
8b712842 475
b765ead5
CM
476 ioc = current->io_context;
477
478 /*
479 * the main goal here is that we don't want to
480 * block if we're going to be able to submit
481 * more requests without blocking.
482 *
483 * This code does two great things, it pokes into
484 * the elevator code from a filesystem _and_
485 * it makes assumptions about how batching works.
486 */
487 if (ioc && ioc->nr_batch_requests > 0 &&
488 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489 (last_waited == 0 ||
490 ioc->last_waited == last_waited)) {
491 /*
492 * we want to go through our batch of
493 * requests and stop. So, we copy out
494 * the ioc->last_waited time and test
495 * against it before looping
496 */
497 last_waited = ioc->last_waited;
853d8ec4 498 cond_resched();
b765ead5
CM
499 continue;
500 }
8b712842 501 spin_lock(&device->io_lock);
ffbd517d 502 requeue_list(pending_bios, pending, tail);
a6837051 503 device->running_pending = 1;
8b712842
CM
504
505 spin_unlock(&device->io_lock);
a8c93d4e
QW
506 btrfs_queue_work(fs_info->submit_workers,
507 &device->work);
8b712842
CM
508 goto done;
509 }
510 }
ffbd517d 511
51684082
CM
512 cond_resched();
513 if (again)
514 goto loop;
515
516 spin_lock(&device->io_lock);
517 if (device->pending_bios.head || device->pending_sync_bios.head)
518 goto loop_lock;
519 spin_unlock(&device->io_lock);
520
8b712842 521done:
211588ad 522 blk_finish_plug(&plug);
8b712842
CM
523}
524
b2950863 525static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
526{
527 struct btrfs_device *device;
528
529 device = container_of(work, struct btrfs_device, work);
530 run_scheduled_bios(device);
531}
532
4fde46f0 533
c9162bdf 534static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
4fde46f0
AJ
535{
536 struct btrfs_fs_devices *fs_devs;
537 struct btrfs_device *dev;
538
539 if (!cur_dev->name)
540 return;
541
542 list_for_each_entry(fs_devs, &fs_uuids, list) {
543 int del = 1;
544
545 if (fs_devs->opened)
546 continue;
547 if (fs_devs->seeding)
548 continue;
549
550 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551
552 if (dev == cur_dev)
553 continue;
554 if (!dev->name)
555 continue;
556
557 /*
558 * Todo: This won't be enough. What if the same device
559 * comes back (with new uuid and) with its mapper path?
560 * But for now, this does help as mostly an admin will
561 * either use mapper or non mapper path throughout.
562 */
563 rcu_read_lock();
564 del = strcmp(rcu_str_deref(dev->name),
565 rcu_str_deref(cur_dev->name));
566 rcu_read_unlock();
567 if (!del)
568 break;
569 }
570
571 if (!del) {
572 /* delete the stale device */
573 if (fs_devs->num_devices == 1) {
574 btrfs_sysfs_remove_fsid(fs_devs);
575 list_del(&fs_devs->list);
576 free_fs_devices(fs_devs);
577 } else {
578 fs_devs->num_devices--;
579 list_del(&dev->dev_list);
580 rcu_string_free(dev->name);
3065ae5b 581 bio_put(dev->flush_bio);
4fde46f0
AJ
582 kfree(dev);
583 }
584 break;
585 }
586 }
587}
588
60999ca4
DS
589/*
590 * Add new device to list of registered devices
591 *
592 * Returns:
593 * 1 - first time device is seen
594 * 0 - device already known
595 * < 0 - error
596 */
a1b32a59 597static noinline int device_list_add(const char *path,
8a4b83cc
CM
598 struct btrfs_super_block *disk_super,
599 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
600{
601 struct btrfs_device *device;
602 struct btrfs_fs_devices *fs_devices;
606686ee 603 struct rcu_string *name;
60999ca4 604 int ret = 0;
8a4b83cc
CM
605 u64 found_transid = btrfs_super_generation(disk_super);
606
607 fs_devices = find_fsid(disk_super->fsid);
608 if (!fs_devices) {
2208a378
ID
609 fs_devices = alloc_fs_devices(disk_super->fsid);
610 if (IS_ERR(fs_devices))
611 return PTR_ERR(fs_devices);
612
8a4b83cc 613 list_add(&fs_devices->list, &fs_uuids);
2208a378 614
8a4b83cc
CM
615 device = NULL;
616 } else {
35c70103
DS
617 device = find_device(fs_devices, devid,
618 disk_super->dev_item.uuid);
8a4b83cc 619 }
443f24fe 620
8a4b83cc 621 if (!device) {
2b82032c
YZ
622 if (fs_devices->opened)
623 return -EBUSY;
624
12bd2fc0
ID
625 device = btrfs_alloc_device(NULL, &devid,
626 disk_super->dev_item.uuid);
627 if (IS_ERR(device)) {
8a4b83cc 628 /* we can safely leave the fs_devices entry around */
12bd2fc0 629 return PTR_ERR(device);
8a4b83cc 630 }
606686ee
JB
631
632 name = rcu_string_strdup(path, GFP_NOFS);
633 if (!name) {
3065ae5b 634 bio_put(device->flush_bio);
8a4b83cc
CM
635 kfree(device);
636 return -ENOMEM;
637 }
606686ee 638 rcu_assign_pointer(device->name, name);
90519d66 639
e5e9a520 640 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 641 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 642 fs_devices->num_devices++;
e5e9a520
CM
643 mutex_unlock(&fs_devices->device_list_mutex);
644
60999ca4 645 ret = 1;
2b82032c 646 device->fs_devices = fs_devices;
606686ee 647 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
648 /*
649 * When FS is already mounted.
650 * 1. If you are here and if the device->name is NULL that
651 * means this device was missing at time of FS mount.
652 * 2. If you are here and if the device->name is different
653 * from 'path' that means either
654 * a. The same device disappeared and reappeared with
655 * different name. or
656 * b. The missing-disk-which-was-replaced, has
657 * reappeared now.
658 *
659 * We must allow 1 and 2a above. But 2b would be a spurious
660 * and unintentional.
661 *
662 * Further in case of 1 and 2a above, the disk at 'path'
663 * would have missed some transaction when it was away and
664 * in case of 2a the stale bdev has to be updated as well.
665 * 2b must not be allowed at all time.
666 */
667
668 /*
0f23ae74
CM
669 * For now, we do allow update to btrfs_fs_device through the
670 * btrfs dev scan cli after FS has been mounted. We're still
671 * tracking a problem where systems fail mount by subvolume id
672 * when we reject replacement on a mounted FS.
b96de000 673 */
0f23ae74 674 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
675 /*
676 * That is if the FS is _not_ mounted and if you
677 * are here, that means there is more than one
678 * disk with same uuid and devid.We keep the one
679 * with larger generation number or the last-in if
680 * generation are equal.
681 */
0f23ae74 682 return -EEXIST;
77bdae4d 683 }
b96de000 684
606686ee 685 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
686 if (!name)
687 return -ENOMEM;
606686ee
JB
688 rcu_string_free(device->name);
689 rcu_assign_pointer(device->name, name);
cd02dca5
CM
690 if (device->missing) {
691 fs_devices->missing_devices--;
692 device->missing = 0;
693 }
8a4b83cc
CM
694 }
695
77bdae4d
AJ
696 /*
697 * Unmount does not free the btrfs_device struct but would zero
698 * generation along with most of the other members. So just update
699 * it back. We need it to pick the disk with largest generation
700 * (as above).
701 */
702 if (!fs_devices->opened)
703 device->generation = found_transid;
704
4fde46f0
AJ
705 /*
706 * if there is new btrfs on an already registered device,
707 * then remove the stale device entry.
708 */
02feae3c
AJ
709 if (ret > 0)
710 btrfs_free_stale_device(device);
4fde46f0 711
8a4b83cc 712 *fs_devices_ret = fs_devices;
60999ca4
DS
713
714 return ret;
8a4b83cc
CM
715}
716
e4404d6e
YZ
717static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
718{
719 struct btrfs_fs_devices *fs_devices;
720 struct btrfs_device *device;
721 struct btrfs_device *orig_dev;
722
2208a378
ID
723 fs_devices = alloc_fs_devices(orig->fsid);
724 if (IS_ERR(fs_devices))
725 return fs_devices;
e4404d6e 726
adbbb863 727 mutex_lock(&orig->device_list_mutex);
02db0844 728 fs_devices->total_devices = orig->total_devices;
e4404d6e 729
46224705 730 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 731 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
732 struct rcu_string *name;
733
12bd2fc0
ID
734 device = btrfs_alloc_device(NULL, &orig_dev->devid,
735 orig_dev->uuid);
736 if (IS_ERR(device))
e4404d6e
YZ
737 goto error;
738
606686ee
JB
739 /*
740 * This is ok to do without rcu read locked because we hold the
741 * uuid mutex so nothing we touch in here is going to disappear.
742 */
e755f780 743 if (orig_dev->name) {
78f2c9e6
DS
744 name = rcu_string_strdup(orig_dev->name->str,
745 GFP_KERNEL);
e755f780 746 if (!name) {
3065ae5b 747 bio_put(device->flush_bio);
e755f780
AJ
748 kfree(device);
749 goto error;
750 }
751 rcu_assign_pointer(device->name, name);
fd2696f3 752 }
e4404d6e 753
e4404d6e
YZ
754 list_add(&device->dev_list, &fs_devices->devices);
755 device->fs_devices = fs_devices;
756 fs_devices->num_devices++;
757 }
adbbb863 758 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
759 return fs_devices;
760error:
adbbb863 761 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
762 free_fs_devices(fs_devices);
763 return ERR_PTR(-ENOMEM);
764}
765
9eaed21e 766void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 767{
c6e30871 768 struct btrfs_device *device, *next;
443f24fe 769 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 770
dfe25020
CM
771 mutex_lock(&uuid_mutex);
772again:
46224705 773 /* This is the initialized path, it is safe to release the devices. */
c6e30871 774 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 775 if (device->in_fs_metadata) {
63a212ab 776 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
777 (!latest_dev ||
778 device->generation > latest_dev->generation)) {
779 latest_dev = device;
a6b0d5c8 780 }
2b82032c 781 continue;
a6b0d5c8 782 }
2b82032c 783
8dabb742
SB
784 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
785 /*
786 * In the first step, keep the device which has
787 * the correct fsid and the devid that is used
788 * for the dev_replace procedure.
789 * In the second step, the dev_replace state is
790 * read from the device tree and it is known
791 * whether the procedure is really active or
792 * not, which means whether this device is
793 * used or whether it should be removed.
794 */
795 if (step == 0 || device->is_tgtdev_for_dev_replace) {
796 continue;
797 }
798 }
2b82032c 799 if (device->bdev) {
d4d77629 800 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
801 device->bdev = NULL;
802 fs_devices->open_devices--;
803 }
804 if (device->writeable) {
805 list_del_init(&device->dev_alloc_list);
806 device->writeable = 0;
8dabb742
SB
807 if (!device->is_tgtdev_for_dev_replace)
808 fs_devices->rw_devices--;
2b82032c 809 }
e4404d6e
YZ
810 list_del_init(&device->dev_list);
811 fs_devices->num_devices--;
606686ee 812 rcu_string_free(device->name);
3065ae5b 813 bio_put(device->flush_bio);
e4404d6e 814 kfree(device);
dfe25020 815 }
2b82032c
YZ
816
817 if (fs_devices->seed) {
818 fs_devices = fs_devices->seed;
2b82032c
YZ
819 goto again;
820 }
821
443f24fe 822 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 823
dfe25020 824 mutex_unlock(&uuid_mutex);
dfe25020 825}
a0af469b 826
9f5316c1 827static void free_device(struct rcu_head *head)
1f78160c
XG
828{
829 struct btrfs_device *device;
830
9f5316c1 831 device = container_of(head, struct btrfs_device, rcu);
606686ee 832 rcu_string_free(device->name);
e0ae9994 833 bio_put(device->flush_bio);
1f78160c
XG
834 kfree(device);
835}
836
14238819
AJ
837static void btrfs_close_bdev(struct btrfs_device *device)
838{
839 if (device->bdev && device->writeable) {
840 sync_blockdev(device->bdev);
841 invalidate_bdev(device->bdev);
842 }
843
844 if (device->bdev)
845 blkdev_put(device->bdev, device->mode);
846}
847
0ccd0528 848static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
849{
850 struct btrfs_fs_devices *fs_devices = device->fs_devices;
851 struct btrfs_device *new_device;
852 struct rcu_string *name;
853
854 if (device->bdev)
855 fs_devices->open_devices--;
856
857 if (device->writeable &&
858 device->devid != BTRFS_DEV_REPLACE_DEVID) {
859 list_del_init(&device->dev_alloc_list);
860 fs_devices->rw_devices--;
861 }
862
863 if (device->missing)
864 fs_devices->missing_devices--;
865
866 new_device = btrfs_alloc_device(NULL, &device->devid,
867 device->uuid);
868 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
869
870 /* Safe because we are under uuid_mutex */
871 if (device->name) {
872 name = rcu_string_strdup(device->name->str, GFP_NOFS);
873 BUG_ON(!name); /* -ENOMEM */
874 rcu_assign_pointer(new_device->name, name);
875 }
876
877 list_replace_rcu(&device->dev_list, &new_device->dev_list);
878 new_device->fs_devices = device->fs_devices;
f448341a
AJ
879}
880
2b82032c 881static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 882{
2037a093 883 struct btrfs_device *device, *tmp;
0ccd0528
AJ
884 struct list_head pending_put;
885
886 INIT_LIST_HEAD(&pending_put);
e4404d6e 887
2b82032c
YZ
888 if (--fs_devices->opened > 0)
889 return 0;
8a4b83cc 890
c9513edb 891 mutex_lock(&fs_devices->device_list_mutex);
2037a093 892 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
893 btrfs_prepare_close_one_device(device);
894 list_add(&device->dev_list, &pending_put);
8a4b83cc 895 }
c9513edb
XG
896 mutex_unlock(&fs_devices->device_list_mutex);
897
0ccd0528
AJ
898 /*
899 * btrfs_show_devname() is using the device_list_mutex,
900 * sometimes call to blkdev_put() leads vfs calling
901 * into this func. So do put outside of device_list_mutex,
902 * as of now.
903 */
904 while (!list_empty(&pending_put)) {
905 device = list_first_entry(&pending_put,
906 struct btrfs_device, dev_list);
907 list_del(&device->dev_list);
908 btrfs_close_bdev(device);
909 call_rcu(&device->rcu, free_device);
910 }
911
e4404d6e
YZ
912 WARN_ON(fs_devices->open_devices);
913 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
914 fs_devices->opened = 0;
915 fs_devices->seeding = 0;
2b82032c 916
8a4b83cc
CM
917 return 0;
918}
919
2b82032c
YZ
920int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
921{
e4404d6e 922 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
923 int ret;
924
925 mutex_lock(&uuid_mutex);
926 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
927 if (!fs_devices->opened) {
928 seed_devices = fs_devices->seed;
929 fs_devices->seed = NULL;
930 }
2b82032c 931 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
932
933 while (seed_devices) {
934 fs_devices = seed_devices;
935 seed_devices = fs_devices->seed;
936 __btrfs_close_devices(fs_devices);
937 free_fs_devices(fs_devices);
938 }
bc178622
ES
939 /*
940 * Wait for rcu kworkers under __btrfs_close_devices
941 * to finish all blkdev_puts so device is really
942 * free when umount is done.
943 */
944 rcu_barrier();
2b82032c
YZ
945 return ret;
946}
947
e4404d6e
YZ
948static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
949 fmode_t flags, void *holder)
8a4b83cc 950{
d5e2003c 951 struct request_queue *q;
8a4b83cc
CM
952 struct block_device *bdev;
953 struct list_head *head = &fs_devices->devices;
8a4b83cc 954 struct btrfs_device *device;
443f24fe 955 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
956 struct buffer_head *bh;
957 struct btrfs_super_block *disk_super;
a0af469b 958 u64 devid;
2b82032c 959 int seeding = 1;
a0af469b 960 int ret = 0;
8a4b83cc 961
d4d77629
TH
962 flags |= FMODE_EXCL;
963
c6e30871 964 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
965 if (device->bdev)
966 continue;
dfe25020
CM
967 if (!device->name)
968 continue;
969
f63e0cca
ES
970 /* Just open everything we can; ignore failures here */
971 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
972 &bdev, &bh))
beaf8ab3 973 continue;
a0af469b
CM
974
975 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 976 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
977 if (devid != device->devid)
978 goto error_brelse;
979
2b82032c
YZ
980 if (memcmp(device->uuid, disk_super->dev_item.uuid,
981 BTRFS_UUID_SIZE))
982 goto error_brelse;
983
984 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
985 if (!latest_dev ||
986 device->generation > latest_dev->generation)
987 latest_dev = device;
a0af469b 988
2b82032c
YZ
989 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
990 device->writeable = 0;
991 } else {
992 device->writeable = !bdev_read_only(bdev);
993 seeding = 0;
994 }
995
d5e2003c 996 q = bdev_get_queue(bdev);
90180da4 997 if (blk_queue_discard(q))
d5e2003c 998 device->can_discard = 1;
e884f4f0
AJ
999 if (!blk_queue_nonrot(q))
1000 fs_devices->rotating = 1;
d5e2003c 1001
8a4b83cc 1002 device->bdev = bdev;
dfe25020 1003 device->in_fs_metadata = 0;
15916de8
CM
1004 device->mode = flags;
1005
a0af469b 1006 fs_devices->open_devices++;
55e50e45
ID
1007 if (device->writeable &&
1008 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1009 fs_devices->rw_devices++;
1010 list_add(&device->dev_alloc_list,
1011 &fs_devices->alloc_list);
1012 }
4f6c9328 1013 brelse(bh);
a0af469b 1014 continue;
a061fc8d 1015
a0af469b
CM
1016error_brelse:
1017 brelse(bh);
d4d77629 1018 blkdev_put(bdev, flags);
a0af469b 1019 continue;
8a4b83cc 1020 }
a0af469b 1021 if (fs_devices->open_devices == 0) {
20bcd649 1022 ret = -EINVAL;
a0af469b
CM
1023 goto out;
1024 }
2b82032c
YZ
1025 fs_devices->seeding = seeding;
1026 fs_devices->opened = 1;
443f24fe 1027 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1028 fs_devices->total_rw_bytes = 0;
a0af469b 1029out:
2b82032c
YZ
1030 return ret;
1031}
1032
1033int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1034 fmode_t flags, void *holder)
2b82032c
YZ
1035{
1036 int ret;
1037
1038 mutex_lock(&uuid_mutex);
1039 if (fs_devices->opened) {
e4404d6e
YZ
1040 fs_devices->opened++;
1041 ret = 0;
2b82032c 1042 } else {
15916de8 1043 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1044 }
8a4b83cc 1045 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1046 return ret;
1047}
1048
c9162bdf 1049static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1050{
1051 kunmap(page);
1052 put_page(page);
1053}
1054
c9162bdf
OS
1055static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1056 struct page **page,
1057 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1058{
1059 void *p;
1060 pgoff_t index;
1061
1062 /* make sure our super fits in the device */
1063 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1064 return 1;
1065
1066 /* make sure our super fits in the page */
1067 if (sizeof(**disk_super) > PAGE_SIZE)
1068 return 1;
1069
1070 /* make sure our super doesn't straddle pages on disk */
1071 index = bytenr >> PAGE_SHIFT;
1072 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1073 return 1;
1074
1075 /* pull in the page with our super */
1076 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1077 index, GFP_KERNEL);
1078
1079 if (IS_ERR_OR_NULL(*page))
1080 return 1;
1081
1082 p = kmap(*page);
1083
1084 /* align our pointer to the offset of the super block */
1085 *disk_super = p + (bytenr & ~PAGE_MASK);
1086
1087 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1088 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1089 btrfs_release_disk_super(*page);
1090 return 1;
1091 }
1092
1093 if ((*disk_super)->label[0] &&
1094 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1095 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1096
1097 return 0;
1098}
1099
6f60cbd3
DS
1100/*
1101 * Look for a btrfs signature on a device. This may be called out of the mount path
1102 * and we are not allowed to call set_blocksize during the scan. The superblock
1103 * is read via pagecache
1104 */
97288f2c 1105int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1106 struct btrfs_fs_devices **fs_devices_ret)
1107{
1108 struct btrfs_super_block *disk_super;
1109 struct block_device *bdev;
6f60cbd3 1110 struct page *page;
6f60cbd3 1111 int ret = -EINVAL;
8a4b83cc 1112 u64 devid;
f2984462 1113 u64 transid;
02db0844 1114 u64 total_devices;
6f60cbd3 1115 u64 bytenr;
8a4b83cc 1116
6f60cbd3
DS
1117 /*
1118 * we would like to check all the supers, but that would make
1119 * a btrfs mount succeed after a mkfs from a different FS.
1120 * So, we need to add a special mount option to scan for
1121 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1122 */
1123 bytenr = btrfs_sb_offset(0);
d4d77629 1124 flags |= FMODE_EXCL;
10f6327b 1125 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1126
1127 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1128 if (IS_ERR(bdev)) {
1129 ret = PTR_ERR(bdev);
beaf8ab3 1130 goto error;
6f60cbd3
DS
1131 }
1132
6cf86a00 1133 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1134 goto error_bdev_put;
1135
a343832f 1136 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1137 transid = btrfs_super_generation(disk_super);
02db0844 1138 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1139
8a4b83cc 1140 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1141 if (ret > 0) {
1142 if (disk_super->label[0]) {
62e85577 1143 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1144 } else {
62e85577 1145 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1146 }
1147
62e85577 1148 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1149 ret = 0;
1150 }
02db0844
JB
1151 if (!ret && fs_devices_ret)
1152 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1153
6cf86a00 1154 btrfs_release_disk_super(page);
6f60cbd3
DS
1155
1156error_bdev_put:
d4d77629 1157 blkdev_put(bdev, flags);
8a4b83cc 1158error:
beaf8ab3 1159 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1160 return ret;
1161}
0b86a832 1162
6d07bcec
MX
1163/* helper to account the used device space in the range */
1164int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1165 u64 end, u64 *length)
1166{
1167 struct btrfs_key key;
fb456252 1168 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1169 struct btrfs_dev_extent *dev_extent;
1170 struct btrfs_path *path;
1171 u64 extent_end;
1172 int ret;
1173 int slot;
1174 struct extent_buffer *l;
1175
1176 *length = 0;
1177
63a212ab 1178 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1179 return 0;
1180
1181 path = btrfs_alloc_path();
1182 if (!path)
1183 return -ENOMEM;
e4058b54 1184 path->reada = READA_FORWARD;
6d07bcec
MX
1185
1186 key.objectid = device->devid;
1187 key.offset = start;
1188 key.type = BTRFS_DEV_EXTENT_KEY;
1189
1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 if (ret < 0)
1192 goto out;
1193 if (ret > 0) {
1194 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1195 if (ret < 0)
1196 goto out;
1197 }
1198
1199 while (1) {
1200 l = path->nodes[0];
1201 slot = path->slots[0];
1202 if (slot >= btrfs_header_nritems(l)) {
1203 ret = btrfs_next_leaf(root, path);
1204 if (ret == 0)
1205 continue;
1206 if (ret < 0)
1207 goto out;
1208
1209 break;
1210 }
1211 btrfs_item_key_to_cpu(l, &key, slot);
1212
1213 if (key.objectid < device->devid)
1214 goto next;
1215
1216 if (key.objectid > device->devid)
1217 break;
1218
962a298f 1219 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1220 goto next;
1221
1222 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1223 extent_end = key.offset + btrfs_dev_extent_length(l,
1224 dev_extent);
1225 if (key.offset <= start && extent_end > end) {
1226 *length = end - start + 1;
1227 break;
1228 } else if (key.offset <= start && extent_end > start)
1229 *length += extent_end - start;
1230 else if (key.offset > start && extent_end <= end)
1231 *length += extent_end - key.offset;
1232 else if (key.offset > start && key.offset <= end) {
1233 *length += end - key.offset + 1;
1234 break;
1235 } else if (key.offset > end)
1236 break;
1237
1238next:
1239 path->slots[0]++;
1240 }
1241 ret = 0;
1242out:
1243 btrfs_free_path(path);
1244 return ret;
1245}
1246
499f377f 1247static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1248 struct btrfs_device *device,
1249 u64 *start, u64 len)
1250{
fb456252 1251 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1252 struct extent_map *em;
499f377f 1253 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1254 int ret = 0;
1b984508 1255 u64 physical_start = *start;
6df9a95e 1256
499f377f
JM
1257 if (transaction)
1258 search_list = &transaction->pending_chunks;
04216820
FM
1259again:
1260 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1261 struct map_lookup *map;
1262 int i;
1263
95617d69 1264 map = em->map_lookup;
6df9a95e 1265 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1266 u64 end;
1267
6df9a95e
JB
1268 if (map->stripes[i].dev != device)
1269 continue;
1b984508 1270 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1271 map->stripes[i].physical + em->orig_block_len <=
1b984508 1272 physical_start)
6df9a95e 1273 continue;
c152b63e
FM
1274 /*
1275 * Make sure that while processing the pinned list we do
1276 * not override our *start with a lower value, because
1277 * we can have pinned chunks that fall within this
1278 * device hole and that have lower physical addresses
1279 * than the pending chunks we processed before. If we
1280 * do not take this special care we can end up getting
1281 * 2 pending chunks that start at the same physical
1282 * device offsets because the end offset of a pinned
1283 * chunk can be equal to the start offset of some
1284 * pending chunk.
1285 */
1286 end = map->stripes[i].physical + em->orig_block_len;
1287 if (end > *start) {
1288 *start = end;
1289 ret = 1;
1290 }
6df9a95e
JB
1291 }
1292 }
499f377f
JM
1293 if (search_list != &fs_info->pinned_chunks) {
1294 search_list = &fs_info->pinned_chunks;
04216820
FM
1295 goto again;
1296 }
6df9a95e
JB
1297
1298 return ret;
1299}
1300
1301
0b86a832 1302/*
499f377f
JM
1303 * find_free_dev_extent_start - find free space in the specified device
1304 * @device: the device which we search the free space in
1305 * @num_bytes: the size of the free space that we need
1306 * @search_start: the position from which to begin the search
1307 * @start: store the start of the free space.
1308 * @len: the size of the free space. that we find, or the size
1309 * of the max free space if we don't find suitable free space
7bfc837d 1310 *
0b86a832
CM
1311 * this uses a pretty simple search, the expectation is that it is
1312 * called very infrequently and that a given device has a small number
1313 * of extents
7bfc837d
MX
1314 *
1315 * @start is used to store the start of the free space if we find. But if we
1316 * don't find suitable free space, it will be used to store the start position
1317 * of the max free space.
1318 *
1319 * @len is used to store the size of the free space that we find.
1320 * But if we don't find suitable free space, it is used to store the size of
1321 * the max free space.
0b86a832 1322 */
499f377f
JM
1323int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1324 struct btrfs_device *device, u64 num_bytes,
1325 u64 search_start, u64 *start, u64 *len)
0b86a832 1326{
0b246afa
JM
1327 struct btrfs_fs_info *fs_info = device->fs_info;
1328 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1329 struct btrfs_key key;
7bfc837d 1330 struct btrfs_dev_extent *dev_extent;
2b82032c 1331 struct btrfs_path *path;
7bfc837d
MX
1332 u64 hole_size;
1333 u64 max_hole_start;
1334 u64 max_hole_size;
1335 u64 extent_end;
0b86a832
CM
1336 u64 search_end = device->total_bytes;
1337 int ret;
7bfc837d 1338 int slot;
0b86a832 1339 struct extent_buffer *l;
8cdc7c5b
FM
1340
1341 /*
1342 * We don't want to overwrite the superblock on the drive nor any area
1343 * used by the boot loader (grub for example), so we make sure to start
1344 * at an offset of at least 1MB.
1345 */
0d0c71b3 1346 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1347
6df9a95e
JB
1348 path = btrfs_alloc_path();
1349 if (!path)
1350 return -ENOMEM;
f2ab7618 1351
7bfc837d
MX
1352 max_hole_start = search_start;
1353 max_hole_size = 0;
1354
f2ab7618 1355again:
63a212ab 1356 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1357 ret = -ENOSPC;
6df9a95e 1358 goto out;
7bfc837d
MX
1359 }
1360
e4058b54 1361 path->reada = READA_FORWARD;
6df9a95e
JB
1362 path->search_commit_root = 1;
1363 path->skip_locking = 1;
7bfc837d 1364
0b86a832
CM
1365 key.objectid = device->devid;
1366 key.offset = search_start;
1367 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1368
125ccb0a 1369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1370 if (ret < 0)
7bfc837d 1371 goto out;
1fcbac58
YZ
1372 if (ret > 0) {
1373 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1374 if (ret < 0)
7bfc837d 1375 goto out;
1fcbac58 1376 }
7bfc837d 1377
0b86a832
CM
1378 while (1) {
1379 l = path->nodes[0];
1380 slot = path->slots[0];
1381 if (slot >= btrfs_header_nritems(l)) {
1382 ret = btrfs_next_leaf(root, path);
1383 if (ret == 0)
1384 continue;
1385 if (ret < 0)
7bfc837d
MX
1386 goto out;
1387
1388 break;
0b86a832
CM
1389 }
1390 btrfs_item_key_to_cpu(l, &key, slot);
1391
1392 if (key.objectid < device->devid)
1393 goto next;
1394
1395 if (key.objectid > device->devid)
7bfc837d 1396 break;
0b86a832 1397
962a298f 1398 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1399 goto next;
9779b72f 1400
7bfc837d
MX
1401 if (key.offset > search_start) {
1402 hole_size = key.offset - search_start;
9779b72f 1403
6df9a95e
JB
1404 /*
1405 * Have to check before we set max_hole_start, otherwise
1406 * we could end up sending back this offset anyway.
1407 */
499f377f 1408 if (contains_pending_extent(transaction, device,
6df9a95e 1409 &search_start,
1b984508
FL
1410 hole_size)) {
1411 if (key.offset >= search_start) {
1412 hole_size = key.offset - search_start;
1413 } else {
1414 WARN_ON_ONCE(1);
1415 hole_size = 0;
1416 }
1417 }
6df9a95e 1418
7bfc837d
MX
1419 if (hole_size > max_hole_size) {
1420 max_hole_start = search_start;
1421 max_hole_size = hole_size;
1422 }
9779b72f 1423
7bfc837d
MX
1424 /*
1425 * If this free space is greater than which we need,
1426 * it must be the max free space that we have found
1427 * until now, so max_hole_start must point to the start
1428 * of this free space and the length of this free space
1429 * is stored in max_hole_size. Thus, we return
1430 * max_hole_start and max_hole_size and go back to the
1431 * caller.
1432 */
1433 if (hole_size >= num_bytes) {
1434 ret = 0;
1435 goto out;
0b86a832
CM
1436 }
1437 }
0b86a832 1438
0b86a832 1439 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1440 extent_end = key.offset + btrfs_dev_extent_length(l,
1441 dev_extent);
1442 if (extent_end > search_start)
1443 search_start = extent_end;
0b86a832
CM
1444next:
1445 path->slots[0]++;
1446 cond_resched();
1447 }
0b86a832 1448
38c01b96 1449 /*
1450 * At this point, search_start should be the end of
1451 * allocated dev extents, and when shrinking the device,
1452 * search_end may be smaller than search_start.
1453 */
f2ab7618 1454 if (search_end > search_start) {
38c01b96 1455 hole_size = search_end - search_start;
1456
499f377f 1457 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1458 hole_size)) {
1459 btrfs_release_path(path);
1460 goto again;
1461 }
0b86a832 1462
f2ab7618
ZL
1463 if (hole_size > max_hole_size) {
1464 max_hole_start = search_start;
1465 max_hole_size = hole_size;
1466 }
6df9a95e
JB
1467 }
1468
7bfc837d 1469 /* See above. */
f2ab7618 1470 if (max_hole_size < num_bytes)
7bfc837d
MX
1471 ret = -ENOSPC;
1472 else
1473 ret = 0;
1474
1475out:
2b82032c 1476 btrfs_free_path(path);
7bfc837d 1477 *start = max_hole_start;
b2117a39 1478 if (len)
7bfc837d 1479 *len = max_hole_size;
0b86a832
CM
1480 return ret;
1481}
1482
499f377f
JM
1483int find_free_dev_extent(struct btrfs_trans_handle *trans,
1484 struct btrfs_device *device, u64 num_bytes,
1485 u64 *start, u64 *len)
1486{
499f377f 1487 /* FIXME use last free of some kind */
499f377f 1488 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1489 num_bytes, 0, start, len);
499f377f
JM
1490}
1491
b2950863 1492static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1493 struct btrfs_device *device,
2196d6e8 1494 u64 start, u64 *dev_extent_len)
8f18cf13 1495{
0b246afa
JM
1496 struct btrfs_fs_info *fs_info = device->fs_info;
1497 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1498 int ret;
1499 struct btrfs_path *path;
8f18cf13 1500 struct btrfs_key key;
a061fc8d
CM
1501 struct btrfs_key found_key;
1502 struct extent_buffer *leaf = NULL;
1503 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return -ENOMEM;
1508
1509 key.objectid = device->devid;
1510 key.offset = start;
1511 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1512again:
8f18cf13 1513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1514 if (ret > 0) {
1515 ret = btrfs_previous_item(root, path, key.objectid,
1516 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1517 if (ret)
1518 goto out;
a061fc8d
CM
1519 leaf = path->nodes[0];
1520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1521 extent = btrfs_item_ptr(leaf, path->slots[0],
1522 struct btrfs_dev_extent);
1523 BUG_ON(found_key.offset > start || found_key.offset +
1524 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1525 key = found_key;
1526 btrfs_release_path(path);
1527 goto again;
a061fc8d
CM
1528 } else if (ret == 0) {
1529 leaf = path->nodes[0];
1530 extent = btrfs_item_ptr(leaf, path->slots[0],
1531 struct btrfs_dev_extent);
79787eaa 1532 } else {
0b246afa 1533 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1534 goto out;
a061fc8d 1535 }
8f18cf13 1536
2196d6e8
MX
1537 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1538
8f18cf13 1539 ret = btrfs_del_item(trans, root, path);
79787eaa 1540 if (ret) {
0b246afa
JM
1541 btrfs_handle_fs_error(fs_info, ret,
1542 "Failed to remove dev extent item");
13212b54 1543 } else {
3204d33c 1544 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1545 }
b0b802d7 1546out:
8f18cf13
CM
1547 btrfs_free_path(path);
1548 return ret;
1549}
1550
48a3b636
ES
1551static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1552 struct btrfs_device *device,
48a3b636 1553 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1554{
1555 int ret;
1556 struct btrfs_path *path;
0b246afa
JM
1557 struct btrfs_fs_info *fs_info = device->fs_info;
1558 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1559 struct btrfs_dev_extent *extent;
1560 struct extent_buffer *leaf;
1561 struct btrfs_key key;
1562
dfe25020 1563 WARN_ON(!device->in_fs_metadata);
63a212ab 1564 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1565 path = btrfs_alloc_path();
1566 if (!path)
1567 return -ENOMEM;
1568
0b86a832 1569 key.objectid = device->devid;
2b82032c 1570 key.offset = start;
0b86a832
CM
1571 key.type = BTRFS_DEV_EXTENT_KEY;
1572 ret = btrfs_insert_empty_item(trans, root, path, &key,
1573 sizeof(*extent));
2cdcecbc
MF
1574 if (ret)
1575 goto out;
0b86a832
CM
1576
1577 leaf = path->nodes[0];
1578 extent = btrfs_item_ptr(leaf, path->slots[0],
1579 struct btrfs_dev_extent);
b5d9071c
NB
1580 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1581 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1582 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1583 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1584 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1585
0b86a832
CM
1586 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1587 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1588out:
0b86a832
CM
1589 btrfs_free_path(path);
1590 return ret;
1591}
1592
6df9a95e 1593static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1594{
6df9a95e
JB
1595 struct extent_map_tree *em_tree;
1596 struct extent_map *em;
1597 struct rb_node *n;
1598 u64 ret = 0;
0b86a832 1599
6df9a95e
JB
1600 em_tree = &fs_info->mapping_tree.map_tree;
1601 read_lock(&em_tree->lock);
1602 n = rb_last(&em_tree->map);
1603 if (n) {
1604 em = rb_entry(n, struct extent_map, rb_node);
1605 ret = em->start + em->len;
0b86a832 1606 }
6df9a95e
JB
1607 read_unlock(&em_tree->lock);
1608
0b86a832
CM
1609 return ret;
1610}
1611
53f10659
ID
1612static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1613 u64 *devid_ret)
0b86a832
CM
1614{
1615 int ret;
1616 struct btrfs_key key;
1617 struct btrfs_key found_key;
2b82032c
YZ
1618 struct btrfs_path *path;
1619
2b82032c
YZ
1620 path = btrfs_alloc_path();
1621 if (!path)
1622 return -ENOMEM;
0b86a832
CM
1623
1624 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1625 key.type = BTRFS_DEV_ITEM_KEY;
1626 key.offset = (u64)-1;
1627
53f10659 1628 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1629 if (ret < 0)
1630 goto error;
1631
79787eaa 1632 BUG_ON(ret == 0); /* Corruption */
0b86a832 1633
53f10659
ID
1634 ret = btrfs_previous_item(fs_info->chunk_root, path,
1635 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1636 BTRFS_DEV_ITEM_KEY);
1637 if (ret) {
53f10659 1638 *devid_ret = 1;
0b86a832
CM
1639 } else {
1640 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1641 path->slots[0]);
53f10659 1642 *devid_ret = found_key.offset + 1;
0b86a832
CM
1643 }
1644 ret = 0;
1645error:
2b82032c 1646 btrfs_free_path(path);
0b86a832
CM
1647 return ret;
1648}
1649
1650/*
1651 * the device information is stored in the chunk root
1652 * the btrfs_device struct should be fully filled in
1653 */
48a3b636 1654static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1655 struct btrfs_fs_info *fs_info,
48a3b636 1656 struct btrfs_device *device)
0b86a832 1657{
5b4aacef 1658 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1659 int ret;
1660 struct btrfs_path *path;
1661 struct btrfs_dev_item *dev_item;
1662 struct extent_buffer *leaf;
1663 struct btrfs_key key;
1664 unsigned long ptr;
0b86a832 1665
0b86a832
CM
1666 path = btrfs_alloc_path();
1667 if (!path)
1668 return -ENOMEM;
1669
0b86a832
CM
1670 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1671 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1672 key.offset = device->devid;
0b86a832
CM
1673
1674 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1675 sizeof(*dev_item));
0b86a832
CM
1676 if (ret)
1677 goto out;
1678
1679 leaf = path->nodes[0];
1680 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1681
1682 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1683 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1684 btrfs_set_device_type(leaf, dev_item, device->type);
1685 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1686 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1687 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1688 btrfs_set_device_total_bytes(leaf, dev_item,
1689 btrfs_device_get_disk_total_bytes(device));
1690 btrfs_set_device_bytes_used(leaf, dev_item,
1691 btrfs_device_get_bytes_used(device));
e17cade2
CM
1692 btrfs_set_device_group(leaf, dev_item, 0);
1693 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1694 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1695 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1696
410ba3a2 1697 ptr = btrfs_device_uuid(dev_item);
e17cade2 1698 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1699 ptr = btrfs_device_fsid(dev_item);
44880fdc 1700 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
0b86a832 1701 btrfs_mark_buffer_dirty(leaf);
0b86a832 1702
2b82032c 1703 ret = 0;
0b86a832
CM
1704out:
1705 btrfs_free_path(path);
1706 return ret;
1707}
8f18cf13 1708
5a1972bd
QW
1709/*
1710 * Function to update ctime/mtime for a given device path.
1711 * Mainly used for ctime/mtime based probe like libblkid.
1712 */
da353f6b 1713static void update_dev_time(const char *path_name)
5a1972bd
QW
1714{
1715 struct file *filp;
1716
1717 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1718 if (IS_ERR(filp))
5a1972bd
QW
1719 return;
1720 file_update_time(filp);
1721 filp_close(filp, NULL);
5a1972bd
QW
1722}
1723
5b4aacef 1724static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1725 struct btrfs_device *device)
1726{
5b4aacef 1727 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1728 int ret;
1729 struct btrfs_path *path;
a061fc8d 1730 struct btrfs_key key;
a061fc8d
CM
1731 struct btrfs_trans_handle *trans;
1732
a061fc8d
CM
1733 path = btrfs_alloc_path();
1734 if (!path)
1735 return -ENOMEM;
1736
a22285a6 1737 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1738 if (IS_ERR(trans)) {
1739 btrfs_free_path(path);
1740 return PTR_ERR(trans);
1741 }
a061fc8d
CM
1742 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1743 key.type = BTRFS_DEV_ITEM_KEY;
1744 key.offset = device->devid;
1745
1746 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1747 if (ret) {
1748 if (ret > 0)
1749 ret = -ENOENT;
1750 btrfs_abort_transaction(trans, ret);
1751 btrfs_end_transaction(trans);
a061fc8d
CM
1752 goto out;
1753 }
1754
1755 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1756 if (ret) {
1757 btrfs_abort_transaction(trans, ret);
1758 btrfs_end_transaction(trans);
1759 }
1760
a061fc8d
CM
1761out:
1762 btrfs_free_path(path);
5e9f2ad5
NB
1763 if (!ret)
1764 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1765 return ret;
1766}
1767
3cc31a0d
DS
1768/*
1769 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1770 * filesystem. It's up to the caller to adjust that number regarding eg. device
1771 * replace.
1772 */
1773static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1774 u64 num_devices)
a061fc8d 1775{
a061fc8d 1776 u64 all_avail;
de98ced9 1777 unsigned seq;
418775a2 1778 int i;
a061fc8d 1779
de98ced9 1780 do {
bd45ffbc 1781 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1782
bd45ffbc
AJ
1783 all_avail = fs_info->avail_data_alloc_bits |
1784 fs_info->avail_system_alloc_bits |
1785 fs_info->avail_metadata_alloc_bits;
1786 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1787
418775a2
DS
1788 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1789 if (!(all_avail & btrfs_raid_group[i]))
1790 continue;
a061fc8d 1791
418775a2
DS
1792 if (num_devices < btrfs_raid_array[i].devs_min) {
1793 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1794
418775a2
DS
1795 if (ret)
1796 return ret;
1797 }
53b381b3
DW
1798 }
1799
bd45ffbc 1800 return 0;
f1fa7f26
AJ
1801}
1802
c9162bdf
OS
1803static struct btrfs_device * btrfs_find_next_active_device(
1804 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1805{
2b82032c 1806 struct btrfs_device *next_device;
88acff64
AJ
1807
1808 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1809 if (next_device != device &&
1810 !next_device->missing && next_device->bdev)
1811 return next_device;
1812 }
1813
1814 return NULL;
1815}
1816
1817/*
1818 * Helper function to check if the given device is part of s_bdev / latest_bdev
1819 * and replace it with the provided or the next active device, in the context
1820 * where this function called, there should be always be another device (or
1821 * this_dev) which is active.
1822 */
1823void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1824 struct btrfs_device *device, struct btrfs_device *this_dev)
1825{
1826 struct btrfs_device *next_device;
1827
1828 if (this_dev)
1829 next_device = this_dev;
1830 else
1831 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1832 device);
1833 ASSERT(next_device);
1834
1835 if (fs_info->sb->s_bdev &&
1836 (fs_info->sb->s_bdev == device->bdev))
1837 fs_info->sb->s_bdev = next_device->bdev;
1838
1839 if (fs_info->fs_devices->latest_bdev == device->bdev)
1840 fs_info->fs_devices->latest_bdev = next_device->bdev;
1841}
1842
da353f6b
DS
1843int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1844 u64 devid)
f1fa7f26
AJ
1845{
1846 struct btrfs_device *device;
1f78160c 1847 struct btrfs_fs_devices *cur_devices;
2b82032c 1848 u64 num_devices;
a061fc8d
CM
1849 int ret = 0;
1850
a061fc8d
CM
1851 mutex_lock(&uuid_mutex);
1852
0b246afa
JM
1853 num_devices = fs_info->fs_devices->num_devices;
1854 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1855 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1856 WARN_ON(num_devices < 1);
1857 num_devices--;
1858 }
0b246afa 1859 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1860
0b246afa 1861 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1862 if (ret)
a061fc8d 1863 goto out;
a061fc8d 1864
2ff7e61e
JM
1865 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1866 &device);
24fc572f 1867 if (ret)
53b381b3 1868 goto out;
dfe25020 1869
63a212ab 1870 if (device->is_tgtdev_for_dev_replace) {
183860f6 1871 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1872 goto out;
63a212ab
SB
1873 }
1874
0b246afa 1875 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1876 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1877 goto out;
2b82032c
YZ
1878 }
1879
1880 if (device->writeable) {
34441361 1881 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1882 list_del_init(&device->dev_alloc_list);
c3929c36 1883 device->fs_devices->rw_devices--;
34441361 1884 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1885 }
a061fc8d 1886
d7901554 1887 mutex_unlock(&uuid_mutex);
a061fc8d 1888 ret = btrfs_shrink_device(device, 0);
d7901554 1889 mutex_lock(&uuid_mutex);
a061fc8d 1890 if (ret)
9b3517e9 1891 goto error_undo;
a061fc8d 1892
63a212ab
SB
1893 /*
1894 * TODO: the superblock still includes this device in its num_devices
1895 * counter although write_all_supers() is not locked out. This
1896 * could give a filesystem state which requires a degraded mount.
1897 */
0b246afa 1898 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1899 if (ret)
9b3517e9 1900 goto error_undo;
a061fc8d 1901
2b82032c 1902 device->in_fs_metadata = 0;
0b246afa 1903 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1904
1905 /*
1906 * the device list mutex makes sure that we don't change
1907 * the device list while someone else is writing out all
d7306801
FDBM
1908 * the device supers. Whoever is writing all supers, should
1909 * lock the device list mutex before getting the number of
1910 * devices in the super block (super_copy). Conversely,
1911 * whoever updates the number of devices in the super block
1912 * (super_copy) should hold the device list mutex.
e5e9a520 1913 */
1f78160c
XG
1914
1915 cur_devices = device->fs_devices;
0b246afa 1916 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1917 list_del_rcu(&device->dev_list);
e5e9a520 1918
e4404d6e 1919 device->fs_devices->num_devices--;
02db0844 1920 device->fs_devices->total_devices--;
2b82032c 1921
cd02dca5 1922 if (device->missing)
3a7d55c8 1923 device->fs_devices->missing_devices--;
cd02dca5 1924
0b246afa 1925 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1926
0bfaa9c5 1927 if (device->bdev) {
e4404d6e 1928 device->fs_devices->open_devices--;
0bfaa9c5 1929 /* remove sysfs entry */
0b246afa 1930 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1931 }
99994cde 1932
0b246afa
JM
1933 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1934 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1935 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1936
cea67ab9
JM
1937 /*
1938 * at this point, the device is zero sized and detached from
1939 * the devices list. All that's left is to zero out the old
1940 * supers and free the device.
1941 */
1942 if (device->writeable)
1943 btrfs_scratch_superblocks(device->bdev, device->name->str);
1944
1945 btrfs_close_bdev(device);
1946 call_rcu(&device->rcu, free_device);
1947
1f78160c 1948 if (cur_devices->open_devices == 0) {
e4404d6e 1949 struct btrfs_fs_devices *fs_devices;
0b246afa 1950 fs_devices = fs_info->fs_devices;
e4404d6e 1951 while (fs_devices) {
8321cf25
RS
1952 if (fs_devices->seed == cur_devices) {
1953 fs_devices->seed = cur_devices->seed;
e4404d6e 1954 break;
8321cf25 1955 }
e4404d6e 1956 fs_devices = fs_devices->seed;
2b82032c 1957 }
1f78160c 1958 cur_devices->seed = NULL;
1f78160c 1959 __btrfs_close_devices(cur_devices);
1f78160c 1960 free_fs_devices(cur_devices);
2b82032c
YZ
1961 }
1962
a061fc8d
CM
1963out:
1964 mutex_unlock(&uuid_mutex);
a061fc8d 1965 return ret;
24fc572f 1966
9b3517e9
ID
1967error_undo:
1968 if (device->writeable) {
34441361 1969 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 1970 list_add(&device->dev_alloc_list,
0b246afa 1971 &fs_info->fs_devices->alloc_list);
c3929c36 1972 device->fs_devices->rw_devices++;
34441361 1973 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 1974 }
24fc572f 1975 goto out;
a061fc8d
CM
1976}
1977
084b6e7c
QW
1978void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1979 struct btrfs_device *srcdev)
e93c89c1 1980{
d51908ce
AJ
1981 struct btrfs_fs_devices *fs_devices;
1982
e93c89c1 1983 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1984
25e8e911
AJ
1985 /*
1986 * in case of fs with no seed, srcdev->fs_devices will point
1987 * to fs_devices of fs_info. However when the dev being replaced is
1988 * a seed dev it will point to the seed's local fs_devices. In short
1989 * srcdev will have its correct fs_devices in both the cases.
1990 */
1991 fs_devices = srcdev->fs_devices;
d51908ce 1992
e93c89c1 1993 list_del_rcu(&srcdev->dev_list);
619c47f3 1994 list_del(&srcdev->dev_alloc_list);
d51908ce 1995 fs_devices->num_devices--;
82372bc8 1996 if (srcdev->missing)
d51908ce 1997 fs_devices->missing_devices--;
e93c89c1 1998
48b3b9d4 1999 if (srcdev->writeable)
82372bc8 2000 fs_devices->rw_devices--;
1357272f 2001
82372bc8 2002 if (srcdev->bdev)
d51908ce 2003 fs_devices->open_devices--;
084b6e7c
QW
2004}
2005
2006void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2007 struct btrfs_device *srcdev)
2008{
2009 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2010
48b3b9d4
AJ
2011 if (srcdev->writeable) {
2012 /* zero out the old super if it is writable */
2013 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2014 }
14238819
AJ
2015
2016 btrfs_close_bdev(srcdev);
e93c89c1 2017 call_rcu(&srcdev->rcu, free_device);
94d5f0c2 2018
94d5f0c2
AJ
2019 /* if this is no devs we rather delete the fs_devices */
2020 if (!fs_devices->num_devices) {
2021 struct btrfs_fs_devices *tmp_fs_devices;
2022
6dd38f81
AJ
2023 /*
2024 * On a mounted FS, num_devices can't be zero unless it's a
2025 * seed. In case of a seed device being replaced, the replace
2026 * target added to the sprout FS, so there will be no more
2027 * device left under the seed FS.
2028 */
2029 ASSERT(fs_devices->seeding);
2030
94d5f0c2
AJ
2031 tmp_fs_devices = fs_info->fs_devices;
2032 while (tmp_fs_devices) {
2033 if (tmp_fs_devices->seed == fs_devices) {
2034 tmp_fs_devices->seed = fs_devices->seed;
2035 break;
2036 }
2037 tmp_fs_devices = tmp_fs_devices->seed;
2038 }
2039 fs_devices->seed = NULL;
8bef8401
AJ
2040 __btrfs_close_devices(fs_devices);
2041 free_fs_devices(fs_devices);
94d5f0c2 2042 }
e93c89c1
SB
2043}
2044
2045void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2046 struct btrfs_device *tgtdev)
2047{
67a2c45e 2048 mutex_lock(&uuid_mutex);
e93c89c1
SB
2049 WARN_ON(!tgtdev);
2050 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2051
32576040 2052 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2053
779bf3fe 2054 if (tgtdev->bdev)
e93c89c1 2055 fs_info->fs_devices->open_devices--;
779bf3fe 2056
e93c89c1 2057 fs_info->fs_devices->num_devices--;
e93c89c1 2058
88acff64 2059 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2060
e93c89c1 2061 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2062
2063 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2064 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2065
2066 /*
2067 * The update_dev_time() with in btrfs_scratch_superblocks()
2068 * may lead to a call to btrfs_show_devname() which will try
2069 * to hold device_list_mutex. And here this device
2070 * is already out of device list, so we don't have to hold
2071 * the device_list_mutex lock.
2072 */
2073 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2074
2075 btrfs_close_bdev(tgtdev);
779bf3fe 2076 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2077}
2078
2ff7e61e 2079static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2080 const char *device_path,
48a3b636 2081 struct btrfs_device **device)
7ba15b7d
SB
2082{
2083 int ret = 0;
2084 struct btrfs_super_block *disk_super;
2085 u64 devid;
2086 u8 *dev_uuid;
2087 struct block_device *bdev;
2088 struct buffer_head *bh;
2089
2090 *device = NULL;
2091 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2092 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2093 if (ret)
2094 return ret;
2095 disk_super = (struct btrfs_super_block *)bh->b_data;
2096 devid = btrfs_stack_device_id(&disk_super->dev_item);
2097 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2098 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2099 brelse(bh);
2100 if (!*device)
2101 ret = -ENOENT;
2102 blkdev_put(bdev, FMODE_READ);
2103 return ret;
2104}
2105
2ff7e61e 2106int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2107 const char *device_path,
7ba15b7d
SB
2108 struct btrfs_device **device)
2109{
2110 *device = NULL;
2111 if (strcmp(device_path, "missing") == 0) {
2112 struct list_head *devices;
2113 struct btrfs_device *tmp;
2114
0b246afa 2115 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2116 /*
2117 * It is safe to read the devices since the volume_mutex
2118 * is held by the caller.
2119 */
2120 list_for_each_entry(tmp, devices, dev_list) {
2121 if (tmp->in_fs_metadata && !tmp->bdev) {
2122 *device = tmp;
2123 break;
2124 }
2125 }
2126
d74a6259
AJ
2127 if (!*device)
2128 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2129
2130 return 0;
2131 } else {
2ff7e61e 2132 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2133 }
2134}
2135
5c5c0df0
DS
2136/*
2137 * Lookup a device given by device id, or the path if the id is 0.
2138 */
2ff7e61e 2139int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2140 const char *devpath,
2141 struct btrfs_device **device)
24e0474b
AJ
2142{
2143 int ret;
2144
5c5c0df0 2145 if (devid) {
24e0474b 2146 ret = 0;
0b246afa 2147 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2148 if (!*device)
2149 ret = -ENOENT;
2150 } else {
5c5c0df0 2151 if (!devpath || !devpath[0])
b3d1b153
AJ
2152 return -EINVAL;
2153
2ff7e61e 2154 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2155 device);
2156 }
2157 return ret;
2158}
2159
2b82032c
YZ
2160/*
2161 * does all the dirty work required for changing file system's UUID.
2162 */
2ff7e61e 2163static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2164{
0b246afa 2165 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2166 struct btrfs_fs_devices *old_devices;
e4404d6e 2167 struct btrfs_fs_devices *seed_devices;
0b246afa 2168 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2169 struct btrfs_device *device;
2170 u64 super_flags;
2171
2172 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2173 if (!fs_devices->seeding)
2b82032c
YZ
2174 return -EINVAL;
2175
2dfeca9b 2176 seed_devices = alloc_fs_devices(NULL);
2208a378
ID
2177 if (IS_ERR(seed_devices))
2178 return PTR_ERR(seed_devices);
2b82032c 2179
e4404d6e
YZ
2180 old_devices = clone_fs_devices(fs_devices);
2181 if (IS_ERR(old_devices)) {
2182 kfree(seed_devices);
2183 return PTR_ERR(old_devices);
2b82032c 2184 }
e4404d6e 2185
2b82032c
YZ
2186 list_add(&old_devices->list, &fs_uuids);
2187
e4404d6e
YZ
2188 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2189 seed_devices->opened = 1;
2190 INIT_LIST_HEAD(&seed_devices->devices);
2191 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2192 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2193
0b246afa 2194 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2195 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2196 synchronize_rcu);
2196d6e8
MX
2197 list_for_each_entry(device, &seed_devices->devices, dev_list)
2198 device->fs_devices = seed_devices;
c9513edb 2199
34441361 2200 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2201 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2202 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2203
2b82032c
YZ
2204 fs_devices->seeding = 0;
2205 fs_devices->num_devices = 0;
2206 fs_devices->open_devices = 0;
69611ac8 2207 fs_devices->missing_devices = 0;
69611ac8 2208 fs_devices->rotating = 0;
e4404d6e 2209 fs_devices->seed = seed_devices;
2b82032c
YZ
2210
2211 generate_random_uuid(fs_devices->fsid);
0b246afa 2212 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2213 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2214 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2215
2b82032c
YZ
2216 super_flags = btrfs_super_flags(disk_super) &
2217 ~BTRFS_SUPER_FLAG_SEEDING;
2218 btrfs_set_super_flags(disk_super, super_flags);
2219
2220 return 0;
2221}
2222
2223/*
01327610 2224 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2225 */
2226static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2227 struct btrfs_fs_info *fs_info)
2b82032c 2228{
5b4aacef 2229 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2230 struct btrfs_path *path;
2231 struct extent_buffer *leaf;
2232 struct btrfs_dev_item *dev_item;
2233 struct btrfs_device *device;
2234 struct btrfs_key key;
44880fdc 2235 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2236 u8 dev_uuid[BTRFS_UUID_SIZE];
2237 u64 devid;
2238 int ret;
2239
2240 path = btrfs_alloc_path();
2241 if (!path)
2242 return -ENOMEM;
2243
2b82032c
YZ
2244 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2245 key.offset = 0;
2246 key.type = BTRFS_DEV_ITEM_KEY;
2247
2248 while (1) {
2249 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2250 if (ret < 0)
2251 goto error;
2252
2253 leaf = path->nodes[0];
2254next_slot:
2255 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2256 ret = btrfs_next_leaf(root, path);
2257 if (ret > 0)
2258 break;
2259 if (ret < 0)
2260 goto error;
2261 leaf = path->nodes[0];
2262 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2263 btrfs_release_path(path);
2b82032c
YZ
2264 continue;
2265 }
2266
2267 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2268 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2269 key.type != BTRFS_DEV_ITEM_KEY)
2270 break;
2271
2272 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2273 struct btrfs_dev_item);
2274 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2275 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2276 BTRFS_UUID_SIZE);
1473b24e 2277 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2278 BTRFS_FSID_SIZE);
0b246afa 2279 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2280 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2281
2282 if (device->fs_devices->seeding) {
2283 btrfs_set_device_generation(leaf, dev_item,
2284 device->generation);
2285 btrfs_mark_buffer_dirty(leaf);
2286 }
2287
2288 path->slots[0]++;
2289 goto next_slot;
2290 }
2291 ret = 0;
2292error:
2293 btrfs_free_path(path);
2294 return ret;
2295}
2296
da353f6b 2297int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2298{
5112febb 2299 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2300 struct request_queue *q;
788f20eb
CM
2301 struct btrfs_trans_handle *trans;
2302 struct btrfs_device *device;
2303 struct block_device *bdev;
788f20eb 2304 struct list_head *devices;
0b246afa 2305 struct super_block *sb = fs_info->sb;
606686ee 2306 struct rcu_string *name;
3c1dbdf5 2307 u64 tmp;
2b82032c 2308 int seeding_dev = 0;
788f20eb 2309 int ret = 0;
7132a262 2310 bool unlocked = false;
788f20eb 2311
bc98a42c 2312 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
f8c5d0b4 2313 return -EROFS;
788f20eb 2314
a5d16333 2315 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2316 fs_info->bdev_holder);
7f59203a
JB
2317 if (IS_ERR(bdev))
2318 return PTR_ERR(bdev);
a2135011 2319
0b246afa 2320 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2321 seeding_dev = 1;
2322 down_write(&sb->s_umount);
2323 mutex_lock(&uuid_mutex);
2324 }
2325
8c8bee1d 2326 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2327
0b246afa 2328 devices = &fs_info->fs_devices->devices;
d25628bd 2329
0b246afa 2330 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2331 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2332 if (device->bdev == bdev) {
2333 ret = -EEXIST;
d25628bd 2334 mutex_unlock(
0b246afa 2335 &fs_info->fs_devices->device_list_mutex);
2b82032c 2336 goto error;
788f20eb
CM
2337 }
2338 }
0b246afa 2339 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2340
0b246afa 2341 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2342 if (IS_ERR(device)) {
788f20eb 2343 /* we can safely leave the fs_devices entry around */
12bd2fc0 2344 ret = PTR_ERR(device);
2b82032c 2345 goto error;
788f20eb
CM
2346 }
2347
78f2c9e6 2348 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2349 if (!name) {
3065ae5b 2350 bio_put(device->flush_bio);
788f20eb 2351 kfree(device);
2b82032c
YZ
2352 ret = -ENOMEM;
2353 goto error;
788f20eb 2354 }
606686ee 2355 rcu_assign_pointer(device->name, name);
2b82032c 2356
a22285a6 2357 trans = btrfs_start_transaction(root, 0);
98d5dc13 2358 if (IS_ERR(trans)) {
606686ee 2359 rcu_string_free(device->name);
3065ae5b 2360 bio_put(device->flush_bio);
98d5dc13
TI
2361 kfree(device);
2362 ret = PTR_ERR(trans);
2363 goto error;
2364 }
2365
d5e2003c
JB
2366 q = bdev_get_queue(bdev);
2367 if (blk_queue_discard(q))
2368 device->can_discard = 1;
2b82032c 2369 device->writeable = 1;
2b82032c 2370 device->generation = trans->transid;
0b246afa
JM
2371 device->io_width = fs_info->sectorsize;
2372 device->io_align = fs_info->sectorsize;
2373 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2374 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2375 fs_info->sectorsize);
2cc3c559 2376 device->disk_total_bytes = device->total_bytes;
935e5cc9 2377 device->commit_total_bytes = device->total_bytes;
fb456252 2378 device->fs_info = fs_info;
788f20eb 2379 device->bdev = bdev;
dfe25020 2380 device->in_fs_metadata = 1;
63a212ab 2381 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2382 device->mode = FMODE_EXCL;
27087f37 2383 device->dev_stats_valid = 1;
9f6d2510 2384 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2385
2b82032c 2386 if (seeding_dev) {
1751e8a6 2387 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2388 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2389 if (ret) {
2390 btrfs_abort_transaction(trans, ret);
2391 goto error_trans;
2392 }
2b82032c 2393 }
788f20eb 2394
0b246afa 2395 device->fs_devices = fs_info->fs_devices;
e5e9a520 2396
0b246afa 2397 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2398 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2399 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2400 list_add(&device->dev_alloc_list,
0b246afa
JM
2401 &fs_info->fs_devices->alloc_list);
2402 fs_info->fs_devices->num_devices++;
2403 fs_info->fs_devices->open_devices++;
2404 fs_info->fs_devices->rw_devices++;
2405 fs_info->fs_devices->total_devices++;
2406 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2407
a5ed45f8 2408 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2409
e884f4f0 2410 if (!blk_queue_nonrot(q))
0b246afa 2411 fs_info->fs_devices->rotating = 1;
c289811c 2412
0b246afa
JM
2413 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2414 btrfs_set_super_total_bytes(fs_info->super_copy,
7dfb8be1 2415 round_down(tmp + device->total_bytes, fs_info->sectorsize));
788f20eb 2416
0b246afa
JM
2417 tmp = btrfs_super_num_devices(fs_info->super_copy);
2418 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2419
2420 /* add sysfs device entry */
0b246afa 2421 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2422
2196d6e8
MX
2423 /*
2424 * we've got more storage, clear any full flags on the space
2425 * infos
2426 */
0b246afa 2427 btrfs_clear_space_info_full(fs_info);
2196d6e8 2428
34441361 2429 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2430 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2431
2b82032c 2432 if (seeding_dev) {
34441361 2433 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2434 ret = init_first_rw_device(trans, fs_info);
34441361 2435 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2436 if (ret) {
66642832 2437 btrfs_abort_transaction(trans, ret);
d31c32f6 2438 goto error_sysfs;
005d6427 2439 }
2196d6e8
MX
2440 }
2441
0b246afa 2442 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2443 if (ret) {
66642832 2444 btrfs_abort_transaction(trans, ret);
d31c32f6 2445 goto error_sysfs;
2196d6e8
MX
2446 }
2447
2448 if (seeding_dev) {
2449 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2450
0b246afa 2451 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2452 if (ret) {
66642832 2453 btrfs_abort_transaction(trans, ret);
d31c32f6 2454 goto error_sysfs;
005d6427 2455 }
b2373f25
AJ
2456
2457 /* Sprouting would change fsid of the mounted root,
2458 * so rename the fsid on the sysfs
2459 */
2460 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2461 fs_info->fsid);
2462 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2463 btrfs_warn(fs_info,
2464 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2465 }
2466
3a45bb20 2467 ret = btrfs_commit_transaction(trans);
a2135011 2468
2b82032c
YZ
2469 if (seeding_dev) {
2470 mutex_unlock(&uuid_mutex);
2471 up_write(&sb->s_umount);
7132a262 2472 unlocked = true;
788f20eb 2473
79787eaa
JM
2474 if (ret) /* transaction commit */
2475 return ret;
2476
2ff7e61e 2477 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2478 if (ret < 0)
0b246afa 2479 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2480 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2481 trans = btrfs_attach_transaction(root);
2482 if (IS_ERR(trans)) {
2483 if (PTR_ERR(trans) == -ENOENT)
2484 return 0;
7132a262
AJ
2485 ret = PTR_ERR(trans);
2486 trans = NULL;
2487 goto error_sysfs;
671415b7 2488 }
3a45bb20 2489 ret = btrfs_commit_transaction(trans);
2b82032c 2490 }
c9e9f97b 2491
5a1972bd
QW
2492 /* Update ctime/mtime for libblkid */
2493 update_dev_time(device_path);
2b82032c 2494 return ret;
79787eaa 2495
d31c32f6
AJ
2496error_sysfs:
2497 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2498error_trans:
0af2c4bf 2499 if (seeding_dev)
1751e8a6 2500 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2501 if (trans)
2502 btrfs_end_transaction(trans);
606686ee 2503 rcu_string_free(device->name);
3065ae5b 2504 bio_put(device->flush_bio);
79787eaa 2505 kfree(device);
2b82032c 2506error:
e525fd89 2507 blkdev_put(bdev, FMODE_EXCL);
7132a262 2508 if (seeding_dev && !unlocked) {
2b82032c
YZ
2509 mutex_unlock(&uuid_mutex);
2510 up_write(&sb->s_umount);
2511 }
c9e9f97b 2512 return ret;
788f20eb
CM
2513}
2514
2ff7e61e 2515int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2516 const char *device_path,
1c43366d 2517 struct btrfs_device *srcdev,
e93c89c1
SB
2518 struct btrfs_device **device_out)
2519{
2520 struct request_queue *q;
2521 struct btrfs_device *device;
2522 struct block_device *bdev;
e93c89c1
SB
2523 struct list_head *devices;
2524 struct rcu_string *name;
12bd2fc0 2525 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2526 int ret = 0;
2527
2528 *device_out = NULL;
1c43366d
MX
2529 if (fs_info->fs_devices->seeding) {
2530 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2531 return -EINVAL;
1c43366d 2532 }
e93c89c1
SB
2533
2534 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2535 fs_info->bdev_holder);
1c43366d
MX
2536 if (IS_ERR(bdev)) {
2537 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2538 return PTR_ERR(bdev);
1c43366d 2539 }
e93c89c1
SB
2540
2541 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2542
2543 devices = &fs_info->fs_devices->devices;
2544 list_for_each_entry(device, devices, dev_list) {
2545 if (device->bdev == bdev) {
5d163e0e
JM
2546 btrfs_err(fs_info,
2547 "target device is in the filesystem!");
e93c89c1
SB
2548 ret = -EEXIST;
2549 goto error;
2550 }
2551 }
2552
1c43366d 2553
7cc8e58d
MX
2554 if (i_size_read(bdev->bd_inode) <
2555 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2556 btrfs_err(fs_info,
2557 "target device is smaller than source device!");
1c43366d
MX
2558 ret = -EINVAL;
2559 goto error;
2560 }
2561
2562
12bd2fc0
ID
2563 device = btrfs_alloc_device(NULL, &devid, NULL);
2564 if (IS_ERR(device)) {
2565 ret = PTR_ERR(device);
e93c89c1
SB
2566 goto error;
2567 }
2568
6165572c 2569 name = rcu_string_strdup(device_path, GFP_KERNEL);
e93c89c1 2570 if (!name) {
3065ae5b 2571 bio_put(device->flush_bio);
e93c89c1
SB
2572 kfree(device);
2573 ret = -ENOMEM;
2574 goto error;
2575 }
2576 rcu_assign_pointer(device->name, name);
2577
2578 q = bdev_get_queue(bdev);
2579 if (blk_queue_discard(q))
2580 device->can_discard = 1;
0b246afa 2581 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2582 device->writeable = 1;
e93c89c1 2583 device->generation = 0;
0b246afa
JM
2584 device->io_width = fs_info->sectorsize;
2585 device->io_align = fs_info->sectorsize;
2586 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2587 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2588 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2589 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2590 ASSERT(list_empty(&srcdev->resized_list));
2591 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2592 device->commit_bytes_used = device->bytes_used;
fb456252 2593 device->fs_info = fs_info;
e93c89c1
SB
2594 device->bdev = bdev;
2595 device->in_fs_metadata = 1;
2596 device->is_tgtdev_for_dev_replace = 1;
2597 device->mode = FMODE_EXCL;
27087f37 2598 device->dev_stats_valid = 1;
9f6d2510 2599 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
e93c89c1
SB
2600 device->fs_devices = fs_info->fs_devices;
2601 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2602 fs_info->fs_devices->num_devices++;
2603 fs_info->fs_devices->open_devices++;
0b246afa 2604 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2605
2606 *device_out = device;
2607 return ret;
2608
2609error:
2610 blkdev_put(bdev, FMODE_EXCL);
2611 return ret;
2612}
2613
2614void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2615 struct btrfs_device *tgtdev)
2616{
da17066c
JM
2617 u32 sectorsize = fs_info->sectorsize;
2618
e93c89c1 2619 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2620 tgtdev->io_width = sectorsize;
2621 tgtdev->io_align = sectorsize;
2622 tgtdev->sector_size = sectorsize;
fb456252 2623 tgtdev->fs_info = fs_info;
e93c89c1
SB
2624 tgtdev->in_fs_metadata = 1;
2625}
2626
d397712b
CM
2627static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2628 struct btrfs_device *device)
0b86a832
CM
2629{
2630 int ret;
2631 struct btrfs_path *path;
0b246afa 2632 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2633 struct btrfs_dev_item *dev_item;
2634 struct extent_buffer *leaf;
2635 struct btrfs_key key;
2636
0b86a832
CM
2637 path = btrfs_alloc_path();
2638 if (!path)
2639 return -ENOMEM;
2640
2641 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2642 key.type = BTRFS_DEV_ITEM_KEY;
2643 key.offset = device->devid;
2644
2645 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2646 if (ret < 0)
2647 goto out;
2648
2649 if (ret > 0) {
2650 ret = -ENOENT;
2651 goto out;
2652 }
2653
2654 leaf = path->nodes[0];
2655 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2656
2657 btrfs_set_device_id(leaf, dev_item, device->devid);
2658 btrfs_set_device_type(leaf, dev_item, device->type);
2659 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2660 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2661 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2662 btrfs_set_device_total_bytes(leaf, dev_item,
2663 btrfs_device_get_disk_total_bytes(device));
2664 btrfs_set_device_bytes_used(leaf, dev_item,
2665 btrfs_device_get_bytes_used(device));
0b86a832
CM
2666 btrfs_mark_buffer_dirty(leaf);
2667
2668out:
2669 btrfs_free_path(path);
2670 return ret;
2671}
2672
2196d6e8 2673int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2674 struct btrfs_device *device, u64 new_size)
2675{
0b246afa
JM
2676 struct btrfs_fs_info *fs_info = device->fs_info;
2677 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2678 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2679 u64 old_total;
2680 u64 diff;
8f18cf13 2681
2b82032c
YZ
2682 if (!device->writeable)
2683 return -EACCES;
2196d6e8 2684
7dfb8be1
NB
2685 new_size = round_down(new_size, fs_info->sectorsize);
2686
34441361 2687 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2688 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2689 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2690
63a212ab 2691 if (new_size <= device->total_bytes ||
2196d6e8 2692 device->is_tgtdev_for_dev_replace) {
34441361 2693 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2694 return -EINVAL;
2196d6e8 2695 }
2b82032c 2696
0b246afa 2697 fs_devices = fs_info->fs_devices;
2b82032c 2698
7dfb8be1
NB
2699 btrfs_set_super_total_bytes(super_copy,
2700 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2701 device->fs_devices->total_rw_bytes += diff;
2702
7cc8e58d
MX
2703 btrfs_device_set_total_bytes(device, new_size);
2704 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2705 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2706 if (list_empty(&device->resized_list))
2707 list_add_tail(&device->resized_list,
2708 &fs_devices->resized_devices);
34441361 2709 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2710
8f18cf13
CM
2711 return btrfs_update_device(trans, device);
2712}
2713
2714static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
408fbf19 2715 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2716{
5b4aacef 2717 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2718 int ret;
2719 struct btrfs_path *path;
2720 struct btrfs_key key;
2721
8f18cf13
CM
2722 path = btrfs_alloc_path();
2723 if (!path)
2724 return -ENOMEM;
2725
408fbf19 2726 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2727 key.offset = chunk_offset;
2728 key.type = BTRFS_CHUNK_ITEM_KEY;
2729
2730 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2731 if (ret < 0)
2732 goto out;
2733 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2734 btrfs_handle_fs_error(fs_info, -ENOENT,
2735 "Failed lookup while freeing chunk.");
79787eaa
JM
2736 ret = -ENOENT;
2737 goto out;
2738 }
8f18cf13
CM
2739
2740 ret = btrfs_del_item(trans, root, path);
79787eaa 2741 if (ret < 0)
0b246afa
JM
2742 btrfs_handle_fs_error(fs_info, ret,
2743 "Failed to delete chunk item.");
79787eaa 2744out:
8f18cf13 2745 btrfs_free_path(path);
65a246c5 2746 return ret;
8f18cf13
CM
2747}
2748
408fbf19 2749static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2750{
0b246afa 2751 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2752 struct btrfs_disk_key *disk_key;
2753 struct btrfs_chunk *chunk;
2754 u8 *ptr;
2755 int ret = 0;
2756 u32 num_stripes;
2757 u32 array_size;
2758 u32 len = 0;
2759 u32 cur;
2760 struct btrfs_key key;
2761
34441361 2762 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2763 array_size = btrfs_super_sys_array_size(super_copy);
2764
2765 ptr = super_copy->sys_chunk_array;
2766 cur = 0;
2767
2768 while (cur < array_size) {
2769 disk_key = (struct btrfs_disk_key *)ptr;
2770 btrfs_disk_key_to_cpu(&key, disk_key);
2771
2772 len = sizeof(*disk_key);
2773
2774 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2775 chunk = (struct btrfs_chunk *)(ptr + len);
2776 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2777 len += btrfs_chunk_item_size(num_stripes);
2778 } else {
2779 ret = -EIO;
2780 break;
2781 }
408fbf19 2782 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2783 key.offset == chunk_offset) {
2784 memmove(ptr, ptr + len, array_size - (cur + len));
2785 array_size -= len;
2786 btrfs_set_super_sys_array_size(super_copy, array_size);
2787 } else {
2788 ptr += len;
2789 cur += len;
2790 }
2791 }
34441361 2792 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2793 return ret;
2794}
2795
592d92ee
LB
2796static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2797 u64 logical, u64 length)
2798{
2799 struct extent_map_tree *em_tree;
2800 struct extent_map *em;
2801
2802 em_tree = &fs_info->mapping_tree.map_tree;
2803 read_lock(&em_tree->lock);
2804 em = lookup_extent_mapping(em_tree, logical, length);
2805 read_unlock(&em_tree->lock);
2806
2807 if (!em) {
2808 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2809 logical, length);
2810 return ERR_PTR(-EINVAL);
2811 }
2812
2813 if (em->start > logical || em->start + em->len < logical) {
2814 btrfs_crit(fs_info,
2815 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2816 logical, length, em->start, em->start + em->len);
2817 free_extent_map(em);
2818 return ERR_PTR(-EINVAL);
2819 }
2820
2821 /* callers are responsible for dropping em's ref. */
2822 return em;
2823}
2824
47ab2a6c 2825int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2826 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2827{
8f18cf13
CM
2828 struct extent_map *em;
2829 struct map_lookup *map;
2196d6e8 2830 u64 dev_extent_len = 0;
47ab2a6c 2831 int i, ret = 0;
0b246afa 2832 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2833
592d92ee
LB
2834 em = get_chunk_map(fs_info, chunk_offset, 1);
2835 if (IS_ERR(em)) {
47ab2a6c
JB
2836 /*
2837 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2838 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2839 * do anything we still error out.
2840 */
2841 ASSERT(0);
592d92ee 2842 return PTR_ERR(em);
47ab2a6c 2843 }
95617d69 2844 map = em->map_lookup;
34441361 2845 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2846 check_system_chunk(trans, fs_info, map->type);
34441361 2847 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2848
57ba4cb8
FM
2849 /*
2850 * Take the device list mutex to prevent races with the final phase of
2851 * a device replace operation that replaces the device object associated
2852 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2853 */
2854 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2855 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2856 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2857 ret = btrfs_free_dev_extent(trans, device,
2858 map->stripes[i].physical,
2859 &dev_extent_len);
47ab2a6c 2860 if (ret) {
57ba4cb8 2861 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2862 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2863 goto out;
2864 }
a061fc8d 2865
2196d6e8 2866 if (device->bytes_used > 0) {
34441361 2867 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2868 btrfs_device_set_bytes_used(device,
2869 device->bytes_used - dev_extent_len);
a5ed45f8 2870 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2871 btrfs_clear_space_info_full(fs_info);
34441361 2872 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2873 }
a061fc8d 2874
dfe25020
CM
2875 if (map->stripes[i].dev) {
2876 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2877 if (ret) {
57ba4cb8 2878 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2879 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2880 goto out;
2881 }
dfe25020 2882 }
8f18cf13 2883 }
57ba4cb8
FM
2884 mutex_unlock(&fs_devices->device_list_mutex);
2885
408fbf19 2886 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
47ab2a6c 2887 if (ret) {
66642832 2888 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2889 goto out;
2890 }
8f18cf13 2891
6bccf3ab 2892 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2893
8f18cf13 2894 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2895 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2896 if (ret) {
66642832 2897 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2898 goto out;
2899 }
8f18cf13
CM
2900 }
2901
6bccf3ab 2902 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2903 if (ret) {
66642832 2904 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2905 goto out;
2906 }
2b82032c 2907
47ab2a6c 2908out:
2b82032c
YZ
2909 /* once for us */
2910 free_extent_map(em);
47ab2a6c
JB
2911 return ret;
2912}
2b82032c 2913
5b4aacef 2914static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2915{
5b4aacef 2916 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2917 struct btrfs_trans_handle *trans;
47ab2a6c 2918 int ret;
2b82032c 2919
67c5e7d4
FM
2920 /*
2921 * Prevent races with automatic removal of unused block groups.
2922 * After we relocate and before we remove the chunk with offset
2923 * chunk_offset, automatic removal of the block group can kick in,
2924 * resulting in a failure when calling btrfs_remove_chunk() below.
2925 *
2926 * Make sure to acquire this mutex before doing a tree search (dev
2927 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2928 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2929 * we release the path used to search the chunk/dev tree and before
2930 * the current task acquires this mutex and calls us.
2931 */
0b246afa 2932 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2933
0b246afa 2934 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2935 if (ret)
2936 return -ENOSPC;
2937
2938 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2939 btrfs_scrub_pause(fs_info);
0b246afa 2940 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2941 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2942 if (ret)
2943 return ret;
2944
19c4d2f9
CM
2945 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2946 chunk_offset);
2947 if (IS_ERR(trans)) {
2948 ret = PTR_ERR(trans);
2949 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2950 return ret;
2951 }
2952
47ab2a6c 2953 /*
19c4d2f9
CM
2954 * step two, delete the device extents and the
2955 * chunk tree entries
47ab2a6c 2956 */
5b4aacef 2957 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2958 btrfs_end_transaction(trans);
19c4d2f9 2959 return ret;
2b82032c
YZ
2960}
2961
2ff7e61e 2962static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2963{
0b246afa 2964 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2965 struct btrfs_path *path;
2966 struct extent_buffer *leaf;
2967 struct btrfs_chunk *chunk;
2968 struct btrfs_key key;
2969 struct btrfs_key found_key;
2b82032c 2970 u64 chunk_type;
ba1bf481
JB
2971 bool retried = false;
2972 int failed = 0;
2b82032c
YZ
2973 int ret;
2974
2975 path = btrfs_alloc_path();
2976 if (!path)
2977 return -ENOMEM;
2978
ba1bf481 2979again:
2b82032c
YZ
2980 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2981 key.offset = (u64)-1;
2982 key.type = BTRFS_CHUNK_ITEM_KEY;
2983
2984 while (1) {
0b246afa 2985 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2986 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2987 if (ret < 0) {
0b246afa 2988 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2989 goto error;
67c5e7d4 2990 }
79787eaa 2991 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2992
2993 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2994 key.type);
67c5e7d4 2995 if (ret)
0b246afa 2996 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2997 if (ret < 0)
2998 goto error;
2999 if (ret > 0)
3000 break;
1a40e23b 3001
2b82032c
YZ
3002 leaf = path->nodes[0];
3003 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3004
2b82032c
YZ
3005 chunk = btrfs_item_ptr(leaf, path->slots[0],
3006 struct btrfs_chunk);
3007 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3008 btrfs_release_path(path);
8f18cf13 3009
2b82032c 3010 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3011 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3012 if (ret == -ENOSPC)
3013 failed++;
14586651
HS
3014 else
3015 BUG_ON(ret);
2b82032c 3016 }
0b246afa 3017 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3018
2b82032c
YZ
3019 if (found_key.offset == 0)
3020 break;
3021 key.offset = found_key.offset - 1;
3022 }
3023 ret = 0;
ba1bf481
JB
3024 if (failed && !retried) {
3025 failed = 0;
3026 retried = true;
3027 goto again;
fae7f21c 3028 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3029 ret = -ENOSPC;
3030 }
2b82032c
YZ
3031error:
3032 btrfs_free_path(path);
3033 return ret;
8f18cf13
CM
3034}
3035
6bccf3ab 3036static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3037 struct btrfs_balance_control *bctl)
3038{
6bccf3ab 3039 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3040 struct btrfs_trans_handle *trans;
3041 struct btrfs_balance_item *item;
3042 struct btrfs_disk_balance_args disk_bargs;
3043 struct btrfs_path *path;
3044 struct extent_buffer *leaf;
3045 struct btrfs_key key;
3046 int ret, err;
3047
3048 path = btrfs_alloc_path();
3049 if (!path)
3050 return -ENOMEM;
3051
3052 trans = btrfs_start_transaction(root, 0);
3053 if (IS_ERR(trans)) {
3054 btrfs_free_path(path);
3055 return PTR_ERR(trans);
3056 }
3057
3058 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3059 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3060 key.offset = 0;
3061
3062 ret = btrfs_insert_empty_item(trans, root, path, &key,
3063 sizeof(*item));
3064 if (ret)
3065 goto out;
3066
3067 leaf = path->nodes[0];
3068 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3069
b159fa28 3070 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3071
3072 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3073 btrfs_set_balance_data(leaf, item, &disk_bargs);
3074 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3075 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3076 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3077 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3078
3079 btrfs_set_balance_flags(leaf, item, bctl->flags);
3080
3081 btrfs_mark_buffer_dirty(leaf);
3082out:
3083 btrfs_free_path(path);
3a45bb20 3084 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3085 if (err && !ret)
3086 ret = err;
3087 return ret;
3088}
3089
6bccf3ab 3090static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3091{
6bccf3ab 3092 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3093 struct btrfs_trans_handle *trans;
3094 struct btrfs_path *path;
3095 struct btrfs_key key;
3096 int ret, err;
3097
3098 path = btrfs_alloc_path();
3099 if (!path)
3100 return -ENOMEM;
3101
3102 trans = btrfs_start_transaction(root, 0);
3103 if (IS_ERR(trans)) {
3104 btrfs_free_path(path);
3105 return PTR_ERR(trans);
3106 }
3107
3108 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3109 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3110 key.offset = 0;
3111
3112 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3113 if (ret < 0)
3114 goto out;
3115 if (ret > 0) {
3116 ret = -ENOENT;
3117 goto out;
3118 }
3119
3120 ret = btrfs_del_item(trans, root, path);
3121out:
3122 btrfs_free_path(path);
3a45bb20 3123 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3124 if (err && !ret)
3125 ret = err;
3126 return ret;
3127}
3128
59641015
ID
3129/*
3130 * This is a heuristic used to reduce the number of chunks balanced on
3131 * resume after balance was interrupted.
3132 */
3133static void update_balance_args(struct btrfs_balance_control *bctl)
3134{
3135 /*
3136 * Turn on soft mode for chunk types that were being converted.
3137 */
3138 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3139 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3140 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3141 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3142 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3143 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3144
3145 /*
3146 * Turn on usage filter if is not already used. The idea is
3147 * that chunks that we have already balanced should be
3148 * reasonably full. Don't do it for chunks that are being
3149 * converted - that will keep us from relocating unconverted
3150 * (albeit full) chunks.
3151 */
3152 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3153 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3154 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3155 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3156 bctl->data.usage = 90;
3157 }
3158 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3159 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3160 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3161 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3162 bctl->sys.usage = 90;
3163 }
3164 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3165 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3166 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3167 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3168 bctl->meta.usage = 90;
3169 }
3170}
3171
c9e9f97b
ID
3172/*
3173 * Should be called with both balance and volume mutexes held to
3174 * serialize other volume operations (add_dev/rm_dev/resize) with
3175 * restriper. Same goes for unset_balance_control.
3176 */
3177static void set_balance_control(struct btrfs_balance_control *bctl)
3178{
3179 struct btrfs_fs_info *fs_info = bctl->fs_info;
3180
3181 BUG_ON(fs_info->balance_ctl);
3182
3183 spin_lock(&fs_info->balance_lock);
3184 fs_info->balance_ctl = bctl;
3185 spin_unlock(&fs_info->balance_lock);
3186}
3187
3188static void unset_balance_control(struct btrfs_fs_info *fs_info)
3189{
3190 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3191
3192 BUG_ON(!fs_info->balance_ctl);
3193
3194 spin_lock(&fs_info->balance_lock);
3195 fs_info->balance_ctl = NULL;
3196 spin_unlock(&fs_info->balance_lock);
3197
3198 kfree(bctl);
3199}
3200
ed25e9b2
ID
3201/*
3202 * Balance filters. Return 1 if chunk should be filtered out
3203 * (should not be balanced).
3204 */
899c81ea 3205static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3206 struct btrfs_balance_args *bargs)
3207{
899c81ea
ID
3208 chunk_type = chunk_to_extended(chunk_type) &
3209 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3210
899c81ea 3211 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3212 return 0;
3213
3214 return 1;
3215}
3216
dba72cb3 3217static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3218 struct btrfs_balance_args *bargs)
bc309467
DS
3219{
3220 struct btrfs_block_group_cache *cache;
3221 u64 chunk_used;
3222 u64 user_thresh_min;
3223 u64 user_thresh_max;
3224 int ret = 1;
3225
3226 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3227 chunk_used = btrfs_block_group_used(&cache->item);
3228
3229 if (bargs->usage_min == 0)
3230 user_thresh_min = 0;
3231 else
3232 user_thresh_min = div_factor_fine(cache->key.offset,
3233 bargs->usage_min);
3234
3235 if (bargs->usage_max == 0)
3236 user_thresh_max = 1;
3237 else if (bargs->usage_max > 100)
3238 user_thresh_max = cache->key.offset;
3239 else
3240 user_thresh_max = div_factor_fine(cache->key.offset,
3241 bargs->usage_max);
3242
3243 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3244 ret = 0;
3245
3246 btrfs_put_block_group(cache);
3247 return ret;
3248}
3249
dba72cb3 3250static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3251 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3252{
3253 struct btrfs_block_group_cache *cache;
3254 u64 chunk_used, user_thresh;
3255 int ret = 1;
3256
3257 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3258 chunk_used = btrfs_block_group_used(&cache->item);
3259
bc309467 3260 if (bargs->usage_min == 0)
3e39cea6 3261 user_thresh = 1;
a105bb88
ID
3262 else if (bargs->usage > 100)
3263 user_thresh = cache->key.offset;
3264 else
3265 user_thresh = div_factor_fine(cache->key.offset,
3266 bargs->usage);
3267
5ce5b3c0
ID
3268 if (chunk_used < user_thresh)
3269 ret = 0;
3270
3271 btrfs_put_block_group(cache);
3272 return ret;
3273}
3274
409d404b
ID
3275static int chunk_devid_filter(struct extent_buffer *leaf,
3276 struct btrfs_chunk *chunk,
3277 struct btrfs_balance_args *bargs)
3278{
3279 struct btrfs_stripe *stripe;
3280 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3281 int i;
3282
3283 for (i = 0; i < num_stripes; i++) {
3284 stripe = btrfs_stripe_nr(chunk, i);
3285 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3286 return 0;
3287 }
3288
3289 return 1;
3290}
3291
94e60d5a
ID
3292/* [pstart, pend) */
3293static int chunk_drange_filter(struct extent_buffer *leaf,
3294 struct btrfs_chunk *chunk,
94e60d5a
ID
3295 struct btrfs_balance_args *bargs)
3296{
3297 struct btrfs_stripe *stripe;
3298 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3299 u64 stripe_offset;
3300 u64 stripe_length;
3301 int factor;
3302 int i;
3303
3304 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3305 return 0;
3306
3307 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3308 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3309 factor = num_stripes / 2;
3310 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3311 factor = num_stripes - 1;
3312 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3313 factor = num_stripes - 2;
3314 } else {
3315 factor = num_stripes;
3316 }
94e60d5a
ID
3317
3318 for (i = 0; i < num_stripes; i++) {
3319 stripe = btrfs_stripe_nr(chunk, i);
3320 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3321 continue;
3322
3323 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3324 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3325 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3326
3327 if (stripe_offset < bargs->pend &&
3328 stripe_offset + stripe_length > bargs->pstart)
3329 return 0;
3330 }
3331
3332 return 1;
3333}
3334
ea67176a
ID
3335/* [vstart, vend) */
3336static int chunk_vrange_filter(struct extent_buffer *leaf,
3337 struct btrfs_chunk *chunk,
3338 u64 chunk_offset,
3339 struct btrfs_balance_args *bargs)
3340{
3341 if (chunk_offset < bargs->vend &&
3342 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3343 /* at least part of the chunk is inside this vrange */
3344 return 0;
3345
3346 return 1;
3347}
3348
dee32d0a
GAP
3349static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3350 struct btrfs_chunk *chunk,
3351 struct btrfs_balance_args *bargs)
3352{
3353 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3354
3355 if (bargs->stripes_min <= num_stripes
3356 && num_stripes <= bargs->stripes_max)
3357 return 0;
3358
3359 return 1;
3360}
3361
899c81ea 3362static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3363 struct btrfs_balance_args *bargs)
3364{
3365 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3366 return 0;
3367
899c81ea
ID
3368 chunk_type = chunk_to_extended(chunk_type) &
3369 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3370
899c81ea 3371 if (bargs->target == chunk_type)
cfa4c961
ID
3372 return 1;
3373
3374 return 0;
3375}
3376
2ff7e61e 3377static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3378 struct extent_buffer *leaf,
3379 struct btrfs_chunk *chunk, u64 chunk_offset)
3380{
0b246afa 3381 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3382 struct btrfs_balance_args *bargs = NULL;
3383 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3384
3385 /* type filter */
3386 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3387 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3388 return 0;
3389 }
3390
3391 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3392 bargs = &bctl->data;
3393 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3394 bargs = &bctl->sys;
3395 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3396 bargs = &bctl->meta;
3397
ed25e9b2
ID
3398 /* profiles filter */
3399 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3400 chunk_profiles_filter(chunk_type, bargs)) {
3401 return 0;
5ce5b3c0
ID
3402 }
3403
3404 /* usage filter */
3405 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3406 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3407 return 0;
bc309467 3408 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3409 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3410 return 0;
409d404b
ID
3411 }
3412
3413 /* devid filter */
3414 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3415 chunk_devid_filter(leaf, chunk, bargs)) {
3416 return 0;
94e60d5a
ID
3417 }
3418
3419 /* drange filter, makes sense only with devid filter */
3420 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3421 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3422 return 0;
ea67176a
ID
3423 }
3424
3425 /* vrange filter */
3426 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3427 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3428 return 0;
ed25e9b2
ID
3429 }
3430
dee32d0a
GAP
3431 /* stripes filter */
3432 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3433 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3434 return 0;
3435 }
3436
cfa4c961
ID
3437 /* soft profile changing mode */
3438 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3439 chunk_soft_convert_filter(chunk_type, bargs)) {
3440 return 0;
3441 }
3442
7d824b6f
DS
3443 /*
3444 * limited by count, must be the last filter
3445 */
3446 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3447 if (bargs->limit == 0)
3448 return 0;
3449 else
3450 bargs->limit--;
12907fc7
DS
3451 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3452 /*
3453 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3454 * determined here because we do not have the global information
12907fc7
DS
3455 * about the count of all chunks that satisfy the filters.
3456 */
3457 if (bargs->limit_max == 0)
3458 return 0;
3459 else
3460 bargs->limit_max--;
7d824b6f
DS
3461 }
3462
f43ffb60
ID
3463 return 1;
3464}
3465
c9e9f97b 3466static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3467{
19a39dce 3468 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3469 struct btrfs_root *chunk_root = fs_info->chunk_root;
3470 struct btrfs_root *dev_root = fs_info->dev_root;
3471 struct list_head *devices;
ec44a35c
CM
3472 struct btrfs_device *device;
3473 u64 old_size;
3474 u64 size_to_free;
12907fc7 3475 u64 chunk_type;
f43ffb60 3476 struct btrfs_chunk *chunk;
5a488b9d 3477 struct btrfs_path *path = NULL;
ec44a35c 3478 struct btrfs_key key;
ec44a35c 3479 struct btrfs_key found_key;
c9e9f97b 3480 struct btrfs_trans_handle *trans;
f43ffb60
ID
3481 struct extent_buffer *leaf;
3482 int slot;
c9e9f97b
ID
3483 int ret;
3484 int enospc_errors = 0;
19a39dce 3485 bool counting = true;
12907fc7 3486 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3487 u64 limit_data = bctl->data.limit;
3488 u64 limit_meta = bctl->meta.limit;
3489 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3490 u32 count_data = 0;
3491 u32 count_meta = 0;
3492 u32 count_sys = 0;
2c9fe835 3493 int chunk_reserved = 0;
cf25ce51 3494 u64 bytes_used = 0;
ec44a35c 3495
ec44a35c 3496 /* step one make some room on all the devices */
c9e9f97b 3497 devices = &fs_info->fs_devices->devices;
c6e30871 3498 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3499 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3500 size_to_free = div_factor(old_size, 1);
ee22184b 3501 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3502 if (!device->writeable ||
7cc8e58d
MX
3503 btrfs_device_get_total_bytes(device) -
3504 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3505 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3506 continue;
3507
3508 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3509 if (ret == -ENOSPC)
3510 break;
5a488b9d
LB
3511 if (ret) {
3512 /* btrfs_shrink_device never returns ret > 0 */
3513 WARN_ON(ret > 0);
3514 goto error;
3515 }
ec44a35c 3516
a22285a6 3517 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3518 if (IS_ERR(trans)) {
3519 ret = PTR_ERR(trans);
3520 btrfs_info_in_rcu(fs_info,
3521 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3522 rcu_str_deref(device->name), ret,
3523 old_size, old_size - size_to_free);
3524 goto error;
3525 }
ec44a35c
CM
3526
3527 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3528 if (ret) {
3a45bb20 3529 btrfs_end_transaction(trans);
5a488b9d
LB
3530 /* btrfs_grow_device never returns ret > 0 */
3531 WARN_ON(ret > 0);
3532 btrfs_info_in_rcu(fs_info,
3533 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3534 rcu_str_deref(device->name), ret,
3535 old_size, old_size - size_to_free);
3536 goto error;
3537 }
ec44a35c 3538
3a45bb20 3539 btrfs_end_transaction(trans);
ec44a35c
CM
3540 }
3541
3542 /* step two, relocate all the chunks */
3543 path = btrfs_alloc_path();
17e9f796
MF
3544 if (!path) {
3545 ret = -ENOMEM;
3546 goto error;
3547 }
19a39dce
ID
3548
3549 /* zero out stat counters */
3550 spin_lock(&fs_info->balance_lock);
3551 memset(&bctl->stat, 0, sizeof(bctl->stat));
3552 spin_unlock(&fs_info->balance_lock);
3553again:
7d824b6f 3554 if (!counting) {
12907fc7
DS
3555 /*
3556 * The single value limit and min/max limits use the same bytes
3557 * in the
3558 */
7d824b6f
DS
3559 bctl->data.limit = limit_data;
3560 bctl->meta.limit = limit_meta;
3561 bctl->sys.limit = limit_sys;
3562 }
ec44a35c
CM
3563 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3564 key.offset = (u64)-1;
3565 key.type = BTRFS_CHUNK_ITEM_KEY;
3566
d397712b 3567 while (1) {
19a39dce 3568 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3569 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3570 ret = -ECANCELED;
3571 goto error;
3572 }
3573
67c5e7d4 3574 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3575 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3576 if (ret < 0) {
3577 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3578 goto error;
67c5e7d4 3579 }
ec44a35c
CM
3580
3581 /*
3582 * this shouldn't happen, it means the last relocate
3583 * failed
3584 */
3585 if (ret == 0)
c9e9f97b 3586 BUG(); /* FIXME break ? */
ec44a35c
CM
3587
3588 ret = btrfs_previous_item(chunk_root, path, 0,
3589 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3590 if (ret) {
67c5e7d4 3591 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3592 ret = 0;
ec44a35c 3593 break;
c9e9f97b 3594 }
7d9eb12c 3595
f43ffb60
ID
3596 leaf = path->nodes[0];
3597 slot = path->slots[0];
3598 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3599
67c5e7d4
FM
3600 if (found_key.objectid != key.objectid) {
3601 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3602 break;
67c5e7d4 3603 }
7d9eb12c 3604
f43ffb60 3605 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3606 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3607
19a39dce
ID
3608 if (!counting) {
3609 spin_lock(&fs_info->balance_lock);
3610 bctl->stat.considered++;
3611 spin_unlock(&fs_info->balance_lock);
3612 }
3613
2ff7e61e 3614 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3615 found_key.offset);
2c9fe835 3616
b3b4aa74 3617 btrfs_release_path(path);
67c5e7d4
FM
3618 if (!ret) {
3619 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3620 goto loop;
67c5e7d4 3621 }
f43ffb60 3622
19a39dce 3623 if (counting) {
67c5e7d4 3624 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3625 spin_lock(&fs_info->balance_lock);
3626 bctl->stat.expected++;
3627 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3628
3629 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3630 count_data++;
3631 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3632 count_sys++;
3633 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3634 count_meta++;
3635
3636 goto loop;
3637 }
3638
3639 /*
3640 * Apply limit_min filter, no need to check if the LIMITS
3641 * filter is used, limit_min is 0 by default
3642 */
3643 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3644 count_data < bctl->data.limit_min)
3645 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3646 count_meta < bctl->meta.limit_min)
3647 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3648 count_sys < bctl->sys.limit_min)) {
3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3650 goto loop;
3651 }
3652
cf25ce51
LB
3653 ASSERT(fs_info->data_sinfo);
3654 spin_lock(&fs_info->data_sinfo->lock);
3655 bytes_used = fs_info->data_sinfo->bytes_used;
3656 spin_unlock(&fs_info->data_sinfo->lock);
3657
3658 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3659 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3660 trans = btrfs_start_transaction(chunk_root, 0);
3661 if (IS_ERR(trans)) {
3662 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3663 ret = PTR_ERR(trans);
3664 goto error;
3665 }
3666
2ff7e61e 3667 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3668 BTRFS_BLOCK_GROUP_DATA);
3a45bb20 3669 btrfs_end_transaction(trans);
2c9fe835
ZL
3670 if (ret < 0) {
3671 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3672 goto error;
3673 }
2c9fe835
ZL
3674 chunk_reserved = 1;
3675 }
3676
5b4aacef 3677 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3678 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3679 if (ret && ret != -ENOSPC)
3680 goto error;
19a39dce 3681 if (ret == -ENOSPC) {
c9e9f97b 3682 enospc_errors++;
19a39dce
ID
3683 } else {
3684 spin_lock(&fs_info->balance_lock);
3685 bctl->stat.completed++;
3686 spin_unlock(&fs_info->balance_lock);
3687 }
f43ffb60 3688loop:
795a3321
ID
3689 if (found_key.offset == 0)
3690 break;
ba1bf481 3691 key.offset = found_key.offset - 1;
ec44a35c 3692 }
c9e9f97b 3693
19a39dce
ID
3694 if (counting) {
3695 btrfs_release_path(path);
3696 counting = false;
3697 goto again;
3698 }
ec44a35c
CM
3699error:
3700 btrfs_free_path(path);
c9e9f97b 3701 if (enospc_errors) {
efe120a0 3702 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3703 enospc_errors);
c9e9f97b
ID
3704 if (!ret)
3705 ret = -ENOSPC;
3706 }
3707
ec44a35c
CM
3708 return ret;
3709}
3710
0c460c0d
ID
3711/**
3712 * alloc_profile_is_valid - see if a given profile is valid and reduced
3713 * @flags: profile to validate
3714 * @extended: if true @flags is treated as an extended profile
3715 */
3716static int alloc_profile_is_valid(u64 flags, int extended)
3717{
3718 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3719 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3720
3721 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3722
3723 /* 1) check that all other bits are zeroed */
3724 if (flags & ~mask)
3725 return 0;
3726
3727 /* 2) see if profile is reduced */
3728 if (flags == 0)
3729 return !extended; /* "0" is valid for usual profiles */
3730
3731 /* true if exactly one bit set */
3732 return (flags & (flags - 1)) == 0;
3733}
3734
837d5b6e
ID
3735static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3736{
a7e99c69
ID
3737 /* cancel requested || normal exit path */
3738 return atomic_read(&fs_info->balance_cancel_req) ||
3739 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3740 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3741}
3742
c9e9f97b
ID
3743static void __cancel_balance(struct btrfs_fs_info *fs_info)
3744{
0940ebf6
ID
3745 int ret;
3746
c9e9f97b 3747 unset_balance_control(fs_info);
6bccf3ab 3748 ret = del_balance_item(fs_info);
0f788c58 3749 if (ret)
34d97007 3750 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f 3751
171938e5 3752 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
c9e9f97b
ID
3753}
3754
bdcd3c97
AM
3755/* Non-zero return value signifies invalidity */
3756static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3757 u64 allowed)
3758{
3759 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3760 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3761 (bctl_arg->target & ~allowed)));
3762}
3763
c9e9f97b
ID
3764/*
3765 * Should be called with both balance and volume mutexes held
3766 */
3767int btrfs_balance(struct btrfs_balance_control *bctl,
3768 struct btrfs_ioctl_balance_args *bargs)
3769{
3770 struct btrfs_fs_info *fs_info = bctl->fs_info;
14506127 3771 u64 meta_target, data_target;
f43ffb60 3772 u64 allowed;
e4837f8f 3773 int mixed = 0;
c9e9f97b 3774 int ret;
8dabb742 3775 u64 num_devices;
de98ced9 3776 unsigned seq;
c9e9f97b 3777
837d5b6e 3778 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3779 atomic_read(&fs_info->balance_pause_req) ||
3780 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3781 ret = -EINVAL;
3782 goto out;
3783 }
3784
e4837f8f
ID
3785 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3786 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3787 mixed = 1;
3788
f43ffb60
ID
3789 /*
3790 * In case of mixed groups both data and meta should be picked,
3791 * and identical options should be given for both of them.
3792 */
e4837f8f
ID
3793 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3794 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3795 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3796 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3797 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3798 btrfs_err(fs_info,
3799 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3800 ret = -EINVAL;
3801 goto out;
3802 }
3803 }
3804
8dabb742 3805 num_devices = fs_info->fs_devices->num_devices;
73beece9 3806 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3807 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3808 BUG_ON(num_devices < 1);
3809 num_devices--;
3810 }
73beece9 3811 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3812 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3813 if (num_devices > 1)
e4d8ec0f 3814 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3815 if (num_devices > 2)
3816 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3817 if (num_devices > 3)
3818 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3819 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3820 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3821 btrfs_err(fs_info,
3822 "unable to start balance with target data profile %llu",
3823 bctl->data.target);
e4d8ec0f
ID
3824 ret = -EINVAL;
3825 goto out;
3826 }
bdcd3c97 3827 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3828 btrfs_err(fs_info,
5d163e0e
JM
3829 "unable to start balance with target metadata profile %llu",
3830 bctl->meta.target);
e4d8ec0f
ID
3831 ret = -EINVAL;
3832 goto out;
3833 }
bdcd3c97 3834 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3835 btrfs_err(fs_info,
5d163e0e
JM
3836 "unable to start balance with target system profile %llu",
3837 bctl->sys.target);
e4d8ec0f
ID
3838 ret = -EINVAL;
3839 goto out;
3840 }
3841
e4d8ec0f
ID
3842 /* allow to reduce meta or sys integrity only if force set */
3843 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3844 BTRFS_BLOCK_GROUP_RAID10 |
3845 BTRFS_BLOCK_GROUP_RAID5 |
3846 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3847 do {
3848 seq = read_seqbegin(&fs_info->profiles_lock);
3849
3850 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3851 (fs_info->avail_system_alloc_bits & allowed) &&
3852 !(bctl->sys.target & allowed)) ||
3853 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3854 (fs_info->avail_metadata_alloc_bits & allowed) &&
3855 !(bctl->meta.target & allowed))) {
3856 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3857 btrfs_info(fs_info,
3858 "force reducing metadata integrity");
de98ced9 3859 } else {
5d163e0e
JM
3860 btrfs_err(fs_info,
3861 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3862 ret = -EINVAL;
3863 goto out;
3864 }
e4d8ec0f 3865 }
de98ced9 3866 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3867
14506127
AB
3868 /* if we're not converting, the target field is uninitialized */
3869 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3870 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3871 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3872 bctl->data.target : fs_info->avail_data_alloc_bits;
3873 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3874 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3875 btrfs_warn(fs_info,
5d163e0e 3876 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
14506127 3877 meta_target, data_target);
ee592d07
ST
3878 }
3879
6bccf3ab 3880 ret = insert_balance_item(fs_info, bctl);
59641015 3881 if (ret && ret != -EEXIST)
0940ebf6
ID
3882 goto out;
3883
59641015
ID
3884 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3885 BUG_ON(ret == -EEXIST);
3886 set_balance_control(bctl);
3887 } else {
3888 BUG_ON(ret != -EEXIST);
3889 spin_lock(&fs_info->balance_lock);
3890 update_balance_args(bctl);
3891 spin_unlock(&fs_info->balance_lock);
3892 }
c9e9f97b 3893
837d5b6e 3894 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3895 mutex_unlock(&fs_info->balance_mutex);
3896
3897 ret = __btrfs_balance(fs_info);
3898
3899 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3900 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
3901
3902 if (bargs) {
3903 memset(bargs, 0, sizeof(*bargs));
19a39dce 3904 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3905 }
3906
3a01aa7a
ID
3907 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3908 balance_need_close(fs_info)) {
3909 __cancel_balance(fs_info);
3910 }
3911
837d5b6e 3912 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3913
3914 return ret;
3915out:
59641015
ID
3916 if (bctl->flags & BTRFS_BALANCE_RESUME)
3917 __cancel_balance(fs_info);
ed0fb78f 3918 else {
59641015 3919 kfree(bctl);
171938e5 3920 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
ed0fb78f 3921 }
59641015
ID
3922 return ret;
3923}
3924
3925static int balance_kthread(void *data)
3926{
2b6ba629 3927 struct btrfs_fs_info *fs_info = data;
9555c6c1 3928 int ret = 0;
59641015
ID
3929
3930 mutex_lock(&fs_info->volume_mutex);
3931 mutex_lock(&fs_info->balance_mutex);
3932
2b6ba629 3933 if (fs_info->balance_ctl) {
efe120a0 3934 btrfs_info(fs_info, "continuing balance");
2b6ba629 3935 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3936 }
59641015
ID
3937
3938 mutex_unlock(&fs_info->balance_mutex);
3939 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3940
59641015
ID
3941 return ret;
3942}
3943
2b6ba629
ID
3944int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3945{
3946 struct task_struct *tsk;
3947
3948 spin_lock(&fs_info->balance_lock);
3949 if (!fs_info->balance_ctl) {
3950 spin_unlock(&fs_info->balance_lock);
3951 return 0;
3952 }
3953 spin_unlock(&fs_info->balance_lock);
3954
3cdde224 3955 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3956 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3957 return 0;
3958 }
3959
3960 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3961 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3962}
3963
68310a5e 3964int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3965{
59641015
ID
3966 struct btrfs_balance_control *bctl;
3967 struct btrfs_balance_item *item;
3968 struct btrfs_disk_balance_args disk_bargs;
3969 struct btrfs_path *path;
3970 struct extent_buffer *leaf;
3971 struct btrfs_key key;
3972 int ret;
3973
3974 path = btrfs_alloc_path();
3975 if (!path)
3976 return -ENOMEM;
3977
59641015 3978 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3979 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3980 key.offset = 0;
3981
68310a5e 3982 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3983 if (ret < 0)
68310a5e 3984 goto out;
59641015
ID
3985 if (ret > 0) { /* ret = -ENOENT; */
3986 ret = 0;
68310a5e
ID
3987 goto out;
3988 }
3989
3990 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3991 if (!bctl) {
3992 ret = -ENOMEM;
3993 goto out;
59641015
ID
3994 }
3995
3996 leaf = path->nodes[0];
3997 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3998
68310a5e
ID
3999 bctl->fs_info = fs_info;
4000 bctl->flags = btrfs_balance_flags(leaf, item);
4001 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4002
4003 btrfs_balance_data(leaf, item, &disk_bargs);
4004 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4005 btrfs_balance_meta(leaf, item, &disk_bargs);
4006 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4007 btrfs_balance_sys(leaf, item, &disk_bargs);
4008 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4009
171938e5 4010 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
ed0fb78f 4011
68310a5e
ID
4012 mutex_lock(&fs_info->volume_mutex);
4013 mutex_lock(&fs_info->balance_mutex);
59641015 4014
68310a5e
ID
4015 set_balance_control(bctl);
4016
4017 mutex_unlock(&fs_info->balance_mutex);
4018 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4019out:
4020 btrfs_free_path(path);
ec44a35c
CM
4021 return ret;
4022}
4023
837d5b6e
ID
4024int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4025{
4026 int ret = 0;
4027
4028 mutex_lock(&fs_info->balance_mutex);
4029 if (!fs_info->balance_ctl) {
4030 mutex_unlock(&fs_info->balance_mutex);
4031 return -ENOTCONN;
4032 }
4033
4034 if (atomic_read(&fs_info->balance_running)) {
4035 atomic_inc(&fs_info->balance_pause_req);
4036 mutex_unlock(&fs_info->balance_mutex);
4037
4038 wait_event(fs_info->balance_wait_q,
4039 atomic_read(&fs_info->balance_running) == 0);
4040
4041 mutex_lock(&fs_info->balance_mutex);
4042 /* we are good with balance_ctl ripped off from under us */
4043 BUG_ON(atomic_read(&fs_info->balance_running));
4044 atomic_dec(&fs_info->balance_pause_req);
4045 } else {
4046 ret = -ENOTCONN;
4047 }
4048
4049 mutex_unlock(&fs_info->balance_mutex);
4050 return ret;
4051}
4052
a7e99c69
ID
4053int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4054{
bc98a42c 4055 if (sb_rdonly(fs_info->sb))
e649e587
ID
4056 return -EROFS;
4057
a7e99c69
ID
4058 mutex_lock(&fs_info->balance_mutex);
4059 if (!fs_info->balance_ctl) {
4060 mutex_unlock(&fs_info->balance_mutex);
4061 return -ENOTCONN;
4062 }
4063
4064 atomic_inc(&fs_info->balance_cancel_req);
4065 /*
4066 * if we are running just wait and return, balance item is
4067 * deleted in btrfs_balance in this case
4068 */
4069 if (atomic_read(&fs_info->balance_running)) {
4070 mutex_unlock(&fs_info->balance_mutex);
4071 wait_event(fs_info->balance_wait_q,
4072 atomic_read(&fs_info->balance_running) == 0);
4073 mutex_lock(&fs_info->balance_mutex);
4074 } else {
4075 /* __cancel_balance needs volume_mutex */
4076 mutex_unlock(&fs_info->balance_mutex);
4077 mutex_lock(&fs_info->volume_mutex);
4078 mutex_lock(&fs_info->balance_mutex);
4079
4080 if (fs_info->balance_ctl)
4081 __cancel_balance(fs_info);
4082
4083 mutex_unlock(&fs_info->volume_mutex);
4084 }
4085
4086 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4087 atomic_dec(&fs_info->balance_cancel_req);
4088 mutex_unlock(&fs_info->balance_mutex);
4089 return 0;
4090}
4091
803b2f54
SB
4092static int btrfs_uuid_scan_kthread(void *data)
4093{
4094 struct btrfs_fs_info *fs_info = data;
4095 struct btrfs_root *root = fs_info->tree_root;
4096 struct btrfs_key key;
803b2f54
SB
4097 struct btrfs_path *path = NULL;
4098 int ret = 0;
4099 struct extent_buffer *eb;
4100 int slot;
4101 struct btrfs_root_item root_item;
4102 u32 item_size;
f45388f3 4103 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4104
4105 path = btrfs_alloc_path();
4106 if (!path) {
4107 ret = -ENOMEM;
4108 goto out;
4109 }
4110
4111 key.objectid = 0;
4112 key.type = BTRFS_ROOT_ITEM_KEY;
4113 key.offset = 0;
4114
803b2f54 4115 while (1) {
6174d3cb 4116 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4117 if (ret) {
4118 if (ret > 0)
4119 ret = 0;
4120 break;
4121 }
4122
4123 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4124 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4125 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4126 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4127 goto skip;
4128
4129 eb = path->nodes[0];
4130 slot = path->slots[0];
4131 item_size = btrfs_item_size_nr(eb, slot);
4132 if (item_size < sizeof(root_item))
4133 goto skip;
4134
803b2f54
SB
4135 read_extent_buffer(eb, &root_item,
4136 btrfs_item_ptr_offset(eb, slot),
4137 (int)sizeof(root_item));
4138 if (btrfs_root_refs(&root_item) == 0)
4139 goto skip;
f45388f3
FDBM
4140
4141 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4142 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4143 if (trans)
4144 goto update_tree;
4145
4146 btrfs_release_path(path);
803b2f54
SB
4147 /*
4148 * 1 - subvol uuid item
4149 * 1 - received_subvol uuid item
4150 */
4151 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4152 if (IS_ERR(trans)) {
4153 ret = PTR_ERR(trans);
4154 break;
4155 }
f45388f3
FDBM
4156 continue;
4157 } else {
4158 goto skip;
4159 }
4160update_tree:
4161 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4162 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4163 root_item.uuid,
4164 BTRFS_UUID_KEY_SUBVOL,
4165 key.objectid);
4166 if (ret < 0) {
efe120a0 4167 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4168 ret);
803b2f54
SB
4169 break;
4170 }
4171 }
4172
4173 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4174 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4175 root_item.received_uuid,
4176 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4177 key.objectid);
4178 if (ret < 0) {
efe120a0 4179 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4180 ret);
803b2f54
SB
4181 break;
4182 }
4183 }
4184
f45388f3 4185skip:
803b2f54 4186 if (trans) {
3a45bb20 4187 ret = btrfs_end_transaction(trans);
f45388f3 4188 trans = NULL;
803b2f54
SB
4189 if (ret)
4190 break;
4191 }
4192
803b2f54
SB
4193 btrfs_release_path(path);
4194 if (key.offset < (u64)-1) {
4195 key.offset++;
4196 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4197 key.offset = 0;
4198 key.type = BTRFS_ROOT_ITEM_KEY;
4199 } else if (key.objectid < (u64)-1) {
4200 key.offset = 0;
4201 key.type = BTRFS_ROOT_ITEM_KEY;
4202 key.objectid++;
4203 } else {
4204 break;
4205 }
4206 cond_resched();
4207 }
4208
4209out:
4210 btrfs_free_path(path);
f45388f3 4211 if (trans && !IS_ERR(trans))
3a45bb20 4212 btrfs_end_transaction(trans);
803b2f54 4213 if (ret)
efe120a0 4214 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4215 else
afcdd129 4216 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4217 up(&fs_info->uuid_tree_rescan_sem);
4218 return 0;
4219}
4220
70f80175
SB
4221/*
4222 * Callback for btrfs_uuid_tree_iterate().
4223 * returns:
4224 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4225 * < 0 if an error occurred.
70f80175
SB
4226 * > 0 if the check failed, which means the caller shall remove the entry.
4227 */
4228static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4229 u8 *uuid, u8 type, u64 subid)
4230{
4231 struct btrfs_key key;
4232 int ret = 0;
4233 struct btrfs_root *subvol_root;
4234
4235 if (type != BTRFS_UUID_KEY_SUBVOL &&
4236 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4237 goto out;
4238
4239 key.objectid = subid;
4240 key.type = BTRFS_ROOT_ITEM_KEY;
4241 key.offset = (u64)-1;
4242 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4243 if (IS_ERR(subvol_root)) {
4244 ret = PTR_ERR(subvol_root);
4245 if (ret == -ENOENT)
4246 ret = 1;
4247 goto out;
4248 }
4249
4250 switch (type) {
4251 case BTRFS_UUID_KEY_SUBVOL:
4252 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4253 ret = 1;
4254 break;
4255 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4256 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4257 BTRFS_UUID_SIZE))
4258 ret = 1;
4259 break;
4260 }
4261
4262out:
4263 return ret;
4264}
4265
4266static int btrfs_uuid_rescan_kthread(void *data)
4267{
4268 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4269 int ret;
4270
4271 /*
4272 * 1st step is to iterate through the existing UUID tree and
4273 * to delete all entries that contain outdated data.
4274 * 2nd step is to add all missing entries to the UUID tree.
4275 */
4276 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4277 if (ret < 0) {
efe120a0 4278 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4279 up(&fs_info->uuid_tree_rescan_sem);
4280 return ret;
4281 }
4282 return btrfs_uuid_scan_kthread(data);
4283}
4284
f7a81ea4
SB
4285int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4286{
4287 struct btrfs_trans_handle *trans;
4288 struct btrfs_root *tree_root = fs_info->tree_root;
4289 struct btrfs_root *uuid_root;
803b2f54
SB
4290 struct task_struct *task;
4291 int ret;
f7a81ea4
SB
4292
4293 /*
4294 * 1 - root node
4295 * 1 - root item
4296 */
4297 trans = btrfs_start_transaction(tree_root, 2);
4298 if (IS_ERR(trans))
4299 return PTR_ERR(trans);
4300
4301 uuid_root = btrfs_create_tree(trans, fs_info,
4302 BTRFS_UUID_TREE_OBJECTID);
4303 if (IS_ERR(uuid_root)) {
6d13f549 4304 ret = PTR_ERR(uuid_root);
66642832 4305 btrfs_abort_transaction(trans, ret);
3a45bb20 4306 btrfs_end_transaction(trans);
6d13f549 4307 return ret;
f7a81ea4
SB
4308 }
4309
4310 fs_info->uuid_root = uuid_root;
4311
3a45bb20 4312 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4313 if (ret)
4314 return ret;
4315
4316 down(&fs_info->uuid_tree_rescan_sem);
4317 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4318 if (IS_ERR(task)) {
70f80175 4319 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4320 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4321 up(&fs_info->uuid_tree_rescan_sem);
4322 return PTR_ERR(task);
4323 }
4324
4325 return 0;
f7a81ea4 4326}
803b2f54 4327
70f80175
SB
4328int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4329{
4330 struct task_struct *task;
4331
4332 down(&fs_info->uuid_tree_rescan_sem);
4333 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4334 if (IS_ERR(task)) {
4335 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4336 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4337 up(&fs_info->uuid_tree_rescan_sem);
4338 return PTR_ERR(task);
4339 }
4340
4341 return 0;
4342}
4343
8f18cf13
CM
4344/*
4345 * shrinking a device means finding all of the device extents past
4346 * the new size, and then following the back refs to the chunks.
4347 * The chunk relocation code actually frees the device extent
4348 */
4349int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4350{
0b246afa
JM
4351 struct btrfs_fs_info *fs_info = device->fs_info;
4352 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4353 struct btrfs_trans_handle *trans;
8f18cf13
CM
4354 struct btrfs_dev_extent *dev_extent = NULL;
4355 struct btrfs_path *path;
4356 u64 length;
8f18cf13
CM
4357 u64 chunk_offset;
4358 int ret;
4359 int slot;
ba1bf481
JB
4360 int failed = 0;
4361 bool retried = false;
53e489bc 4362 bool checked_pending_chunks = false;
8f18cf13
CM
4363 struct extent_buffer *l;
4364 struct btrfs_key key;
0b246afa 4365 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4366 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4367 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1
NB
4368 u64 diff;
4369
4370 new_size = round_down(new_size, fs_info->sectorsize);
0e4324a4 4371 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4372
63a212ab
SB
4373 if (device->is_tgtdev_for_dev_replace)
4374 return -EINVAL;
4375
8f18cf13
CM
4376 path = btrfs_alloc_path();
4377 if (!path)
4378 return -ENOMEM;
4379
e4058b54 4380 path->reada = READA_FORWARD;
8f18cf13 4381
34441361 4382 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4383
7cc8e58d 4384 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4385 if (device->writeable) {
2b82032c 4386 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4387 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4388 }
34441361 4389 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4390
ba1bf481 4391again:
8f18cf13
CM
4392 key.objectid = device->devid;
4393 key.offset = (u64)-1;
4394 key.type = BTRFS_DEV_EXTENT_KEY;
4395
213e64da 4396 do {
0b246afa 4397 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4399 if (ret < 0) {
0b246afa 4400 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4401 goto done;
67c5e7d4 4402 }
8f18cf13
CM
4403
4404 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4405 if (ret)
0b246afa 4406 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4407 if (ret < 0)
4408 goto done;
4409 if (ret) {
4410 ret = 0;
b3b4aa74 4411 btrfs_release_path(path);
bf1fb512 4412 break;
8f18cf13
CM
4413 }
4414
4415 l = path->nodes[0];
4416 slot = path->slots[0];
4417 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4418
ba1bf481 4419 if (key.objectid != device->devid) {
0b246afa 4420 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4421 btrfs_release_path(path);
bf1fb512 4422 break;
ba1bf481 4423 }
8f18cf13
CM
4424
4425 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4426 length = btrfs_dev_extent_length(l, dev_extent);
4427
ba1bf481 4428 if (key.offset + length <= new_size) {
0b246afa 4429 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4430 btrfs_release_path(path);
d6397bae 4431 break;
ba1bf481 4432 }
8f18cf13 4433
8f18cf13 4434 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4435 btrfs_release_path(path);
8f18cf13 4436
0b246afa
JM
4437 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4438 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4439 if (ret && ret != -ENOSPC)
8f18cf13 4440 goto done;
ba1bf481
JB
4441 if (ret == -ENOSPC)
4442 failed++;
213e64da 4443 } while (key.offset-- > 0);
ba1bf481
JB
4444
4445 if (failed && !retried) {
4446 failed = 0;
4447 retried = true;
4448 goto again;
4449 } else if (failed && retried) {
4450 ret = -ENOSPC;
ba1bf481 4451 goto done;
8f18cf13
CM
4452 }
4453
d6397bae 4454 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4455 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4456 if (IS_ERR(trans)) {
4457 ret = PTR_ERR(trans);
4458 goto done;
4459 }
4460
34441361 4461 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4462
4463 /*
4464 * We checked in the above loop all device extents that were already in
4465 * the device tree. However before we have updated the device's
4466 * total_bytes to the new size, we might have had chunk allocations that
4467 * have not complete yet (new block groups attached to transaction
4468 * handles), and therefore their device extents were not yet in the
4469 * device tree and we missed them in the loop above. So if we have any
4470 * pending chunk using a device extent that overlaps the device range
4471 * that we can not use anymore, commit the current transaction and
4472 * repeat the search on the device tree - this way we guarantee we will
4473 * not have chunks using device extents that end beyond 'new_size'.
4474 */
4475 if (!checked_pending_chunks) {
4476 u64 start = new_size;
4477 u64 len = old_size - new_size;
4478
499f377f
JM
4479 if (contains_pending_extent(trans->transaction, device,
4480 &start, len)) {
34441361 4481 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4482 checked_pending_chunks = true;
4483 failed = 0;
4484 retried = false;
3a45bb20 4485 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4486 if (ret)
4487 goto done;
4488 goto again;
4489 }
4490 }
4491
7cc8e58d 4492 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4493 if (list_empty(&device->resized_list))
4494 list_add_tail(&device->resized_list,
0b246afa 4495 &fs_info->fs_devices->resized_devices);
d6397bae 4496
d6397bae 4497 WARN_ON(diff > old_total);
7dfb8be1
NB
4498 btrfs_set_super_total_bytes(super_copy,
4499 round_down(old_total - diff, fs_info->sectorsize));
34441361 4500 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4501
4502 /* Now btrfs_update_device() will change the on-disk size. */
4503 ret = btrfs_update_device(trans, device);
3a45bb20 4504 btrfs_end_transaction(trans);
8f18cf13
CM
4505done:
4506 btrfs_free_path(path);
53e489bc 4507 if (ret) {
34441361 4508 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4509 btrfs_device_set_total_bytes(device, old_size);
4510 if (device->writeable)
4511 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4512 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4513 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4514 }
8f18cf13
CM
4515 return ret;
4516}
4517
2ff7e61e 4518static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4519 struct btrfs_key *key,
4520 struct btrfs_chunk *chunk, int item_size)
4521{
0b246afa 4522 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4523 struct btrfs_disk_key disk_key;
4524 u32 array_size;
4525 u8 *ptr;
4526
34441361 4527 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4528 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4529 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4530 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4531 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4532 return -EFBIG;
fe48a5c0 4533 }
0b86a832
CM
4534
4535 ptr = super_copy->sys_chunk_array + array_size;
4536 btrfs_cpu_key_to_disk(&disk_key, key);
4537 memcpy(ptr, &disk_key, sizeof(disk_key));
4538 ptr += sizeof(disk_key);
4539 memcpy(ptr, chunk, item_size);
4540 item_size += sizeof(disk_key);
4541 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4542 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4543
0b86a832
CM
4544 return 0;
4545}
4546
73c5de00
AJ
4547/*
4548 * sort the devices in descending order by max_avail, total_avail
4549 */
4550static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4551{
73c5de00
AJ
4552 const struct btrfs_device_info *di_a = a;
4553 const struct btrfs_device_info *di_b = b;
9b3f68b9 4554
73c5de00 4555 if (di_a->max_avail > di_b->max_avail)
b2117a39 4556 return -1;
73c5de00 4557 if (di_a->max_avail < di_b->max_avail)
b2117a39 4558 return 1;
73c5de00
AJ
4559 if (di_a->total_avail > di_b->total_avail)
4560 return -1;
4561 if (di_a->total_avail < di_b->total_avail)
4562 return 1;
4563 return 0;
b2117a39 4564}
0b86a832 4565
53b381b3
DW
4566static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4567{
ffe2d203 4568 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4569 return;
4570
ceda0864 4571 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4572}
4573
da17066c 4574#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4575 - sizeof(struct btrfs_chunk)) \
4576 / sizeof(struct btrfs_stripe) + 1)
4577
4578#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4579 - 2 * sizeof(struct btrfs_disk_key) \
4580 - 2 * sizeof(struct btrfs_chunk)) \
4581 / sizeof(struct btrfs_stripe) + 1)
4582
73c5de00 4583static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4584 u64 start, u64 type)
b2117a39 4585{
2ff7e61e 4586 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4587 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4588 struct btrfs_device *device;
73c5de00
AJ
4589 struct map_lookup *map = NULL;
4590 struct extent_map_tree *em_tree;
4591 struct extent_map *em;
4592 struct btrfs_device_info *devices_info = NULL;
4593 u64 total_avail;
4594 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4595 int data_stripes; /* number of stripes that count for
4596 block group size */
73c5de00
AJ
4597 int sub_stripes; /* sub_stripes info for map */
4598 int dev_stripes; /* stripes per dev */
4599 int devs_max; /* max devs to use */
4600 int devs_min; /* min devs needed */
4601 int devs_increment; /* ndevs has to be a multiple of this */
4602 int ncopies; /* how many copies to data has */
4603 int ret;
4604 u64 max_stripe_size;
4605 u64 max_chunk_size;
4606 u64 stripe_size;
4607 u64 num_bytes;
4608 int ndevs;
4609 int i;
4610 int j;
31e50229 4611 int index;
593060d7 4612
0c460c0d 4613 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4614
73c5de00
AJ
4615 if (list_empty(&fs_devices->alloc_list))
4616 return -ENOSPC;
b2117a39 4617
31e50229 4618 index = __get_raid_index(type);
73c5de00 4619
31e50229
LB
4620 sub_stripes = btrfs_raid_array[index].sub_stripes;
4621 dev_stripes = btrfs_raid_array[index].dev_stripes;
4622 devs_max = btrfs_raid_array[index].devs_max;
4623 devs_min = btrfs_raid_array[index].devs_min;
4624 devs_increment = btrfs_raid_array[index].devs_increment;
4625 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4626
9b3f68b9 4627 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4628 max_stripe_size = SZ_1G;
73c5de00 4629 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4630 if (!devs_max)
4631 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4632 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4633 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4634 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4635 max_stripe_size = SZ_1G;
1100373f 4636 else
ee22184b 4637 max_stripe_size = SZ_256M;
73c5de00 4638 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4639 if (!devs_max)
4640 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4641 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4642 max_stripe_size = SZ_32M;
73c5de00 4643 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4644 if (!devs_max)
4645 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4646 } else {
351fd353 4647 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4648 type);
4649 BUG_ON(1);
9b3f68b9
CM
4650 }
4651
2b82032c
YZ
4652 /* we don't want a chunk larger than 10% of writeable space */
4653 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4654 max_chunk_size);
9b3f68b9 4655
31e818fe 4656 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4657 GFP_NOFS);
4658 if (!devices_info)
4659 return -ENOMEM;
0cad8a11 4660
9f680ce0 4661 /*
73c5de00
AJ
4662 * in the first pass through the devices list, we gather information
4663 * about the available holes on each device.
9f680ce0 4664 */
73c5de00 4665 ndevs = 0;
ebcc9301 4666 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4667 u64 max_avail;
4668 u64 dev_offset;
b2117a39 4669
73c5de00 4670 if (!device->writeable) {
31b1a2bd 4671 WARN(1, KERN_ERR
efe120a0 4672 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4673 continue;
4674 }
b2117a39 4675
63a212ab
SB
4676 if (!device->in_fs_metadata ||
4677 device->is_tgtdev_for_dev_replace)
73c5de00 4678 continue;
b2117a39 4679
73c5de00
AJ
4680 if (device->total_bytes > device->bytes_used)
4681 total_avail = device->total_bytes - device->bytes_used;
4682 else
4683 total_avail = 0;
38c01b96 4684
4685 /* If there is no space on this device, skip it. */
4686 if (total_avail == 0)
4687 continue;
b2117a39 4688
6df9a95e 4689 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4690 max_stripe_size * dev_stripes,
4691 &dev_offset, &max_avail);
4692 if (ret && ret != -ENOSPC)
4693 goto error;
b2117a39 4694
73c5de00
AJ
4695 if (ret == 0)
4696 max_avail = max_stripe_size * dev_stripes;
b2117a39 4697
73c5de00
AJ
4698 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4699 continue;
b2117a39 4700
063d006f
ES
4701 if (ndevs == fs_devices->rw_devices) {
4702 WARN(1, "%s: found more than %llu devices\n",
4703 __func__, fs_devices->rw_devices);
4704 break;
4705 }
73c5de00
AJ
4706 devices_info[ndevs].dev_offset = dev_offset;
4707 devices_info[ndevs].max_avail = max_avail;
4708 devices_info[ndevs].total_avail = total_avail;
4709 devices_info[ndevs].dev = device;
4710 ++ndevs;
4711 }
b2117a39 4712
73c5de00
AJ
4713 /*
4714 * now sort the devices by hole size / available space
4715 */
4716 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4717 btrfs_cmp_device_info, NULL);
b2117a39 4718
73c5de00 4719 /* round down to number of usable stripes */
e5600fd6 4720 ndevs = round_down(ndevs, devs_increment);
b2117a39 4721
73c5de00
AJ
4722 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4723 ret = -ENOSPC;
4724 goto error;
b2117a39 4725 }
9f680ce0 4726
f148ef4d
NB
4727 ndevs = min(ndevs, devs_max);
4728
73c5de00
AJ
4729 /*
4730 * the primary goal is to maximize the number of stripes, so use as many
4731 * devices as possible, even if the stripes are not maximum sized.
4732 */
4733 stripe_size = devices_info[ndevs-1].max_avail;
4734 num_stripes = ndevs * dev_stripes;
b2117a39 4735
53b381b3
DW
4736 /*
4737 * this will have to be fixed for RAID1 and RAID10 over
4738 * more drives
4739 */
4740 data_stripes = num_stripes / ncopies;
4741
500ceed8 4742 if (type & BTRFS_BLOCK_GROUP_RAID5)
53b381b3 4743 data_stripes = num_stripes - 1;
500ceed8
NB
4744
4745 if (type & BTRFS_BLOCK_GROUP_RAID6)
53b381b3 4746 data_stripes = num_stripes - 2;
86db2578
CM
4747
4748 /*
4749 * Use the number of data stripes to figure out how big this chunk
4750 * is really going to be in terms of logical address space,
4751 * and compare that answer with the max chunk size
4752 */
4753 if (stripe_size * data_stripes > max_chunk_size) {
4754 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4755
4756 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4757
4758 /* bump the answer up to a 16MB boundary */
4759 stripe_size = (stripe_size + mask) & ~mask;
4760
4761 /* but don't go higher than the limits we found
4762 * while searching for free extents
4763 */
4764 if (stripe_size > devices_info[ndevs-1].max_avail)
4765 stripe_size = devices_info[ndevs-1].max_avail;
4766 }
4767
b8b93add 4768 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4769
4770 /* align to BTRFS_STRIPE_LEN */
500ceed8 4771 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4772
4773 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4774 if (!map) {
4775 ret = -ENOMEM;
4776 goto error;
4777 }
4778 map->num_stripes = num_stripes;
9b3f68b9 4779
73c5de00
AJ
4780 for (i = 0; i < ndevs; ++i) {
4781 for (j = 0; j < dev_stripes; ++j) {
4782 int s = i * dev_stripes + j;
4783 map->stripes[s].dev = devices_info[i].dev;
4784 map->stripes[s].physical = devices_info[i].dev_offset +
4785 j * stripe_size;
6324fbf3 4786 }
6324fbf3 4787 }
500ceed8
NB
4788 map->stripe_len = BTRFS_STRIPE_LEN;
4789 map->io_align = BTRFS_STRIPE_LEN;
4790 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4791 map->type = type;
2b82032c 4792 map->sub_stripes = sub_stripes;
0b86a832 4793
53b381b3 4794 num_bytes = stripe_size * data_stripes;
0b86a832 4795
6bccf3ab 4796 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4797
172ddd60 4798 em = alloc_extent_map();
2b82032c 4799 if (!em) {
298a8f9c 4800 kfree(map);
b2117a39
MX
4801 ret = -ENOMEM;
4802 goto error;
593060d7 4803 }
298a8f9c 4804 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4805 em->map_lookup = map;
2b82032c 4806 em->start = start;
73c5de00 4807 em->len = num_bytes;
2b82032c
YZ
4808 em->block_start = 0;
4809 em->block_len = em->len;
6df9a95e 4810 em->orig_block_len = stripe_size;
593060d7 4811
0b246afa 4812 em_tree = &info->mapping_tree.map_tree;
890871be 4813 write_lock(&em_tree->lock);
09a2a8f9 4814 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4815 if (ret) {
1efb72a3 4816 write_unlock(&em_tree->lock);
0f5d42b2 4817 free_extent_map(em);
1dd4602f 4818 goto error;
0f5d42b2 4819 }
0b86a832 4820
1efb72a3
NB
4821 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4822 refcount_inc(&em->refs);
4823 write_unlock(&em_tree->lock);
4824
0174484d 4825 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
6df9a95e
JB
4826 if (ret)
4827 goto error_del_extent;
2b82032c 4828
7cc8e58d
MX
4829 for (i = 0; i < map->num_stripes; i++) {
4830 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4831 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4832 }
43530c46 4833
a5ed45f8 4834 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4835
0f5d42b2 4836 free_extent_map(em);
0b246afa 4837 check_raid56_incompat_flag(info, type);
53b381b3 4838
b2117a39 4839 kfree(devices_info);
2b82032c 4840 return 0;
b2117a39 4841
6df9a95e 4842error_del_extent:
0f5d42b2
JB
4843 write_lock(&em_tree->lock);
4844 remove_extent_mapping(em_tree, em);
4845 write_unlock(&em_tree->lock);
4846
4847 /* One for our allocation */
4848 free_extent_map(em);
4849 /* One for the tree reference */
4850 free_extent_map(em);
495e64f4
FM
4851 /* One for the pending_chunks list reference */
4852 free_extent_map(em);
b2117a39 4853error:
b2117a39
MX
4854 kfree(devices_info);
4855 return ret;
2b82032c
YZ
4856}
4857
6df9a95e 4858int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4859 struct btrfs_fs_info *fs_info,
6df9a95e 4860 u64 chunk_offset, u64 chunk_size)
2b82032c 4861{
6bccf3ab
JM
4862 struct btrfs_root *extent_root = fs_info->extent_root;
4863 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4864 struct btrfs_key key;
2b82032c
YZ
4865 struct btrfs_device *device;
4866 struct btrfs_chunk *chunk;
4867 struct btrfs_stripe *stripe;
6df9a95e
JB
4868 struct extent_map *em;
4869 struct map_lookup *map;
4870 size_t item_size;
4871 u64 dev_offset;
4872 u64 stripe_size;
4873 int i = 0;
140e639f 4874 int ret = 0;
2b82032c 4875
592d92ee
LB
4876 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4877 if (IS_ERR(em))
4878 return PTR_ERR(em);
6df9a95e 4879
95617d69 4880 map = em->map_lookup;
6df9a95e
JB
4881 item_size = btrfs_chunk_item_size(map->num_stripes);
4882 stripe_size = em->orig_block_len;
4883
2b82032c 4884 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4885 if (!chunk) {
4886 ret = -ENOMEM;
4887 goto out;
4888 }
4889
50460e37
FM
4890 /*
4891 * Take the device list mutex to prevent races with the final phase of
4892 * a device replace operation that replaces the device object associated
4893 * with the map's stripes, because the device object's id can change
4894 * at any time during that final phase of the device replace operation
4895 * (dev-replace.c:btrfs_dev_replace_finishing()).
4896 */
0b246afa 4897 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4898 for (i = 0; i < map->num_stripes; i++) {
4899 device = map->stripes[i].dev;
4900 dev_offset = map->stripes[i].physical;
2b82032c 4901
0b86a832 4902 ret = btrfs_update_device(trans, device);
3acd3953 4903 if (ret)
50460e37 4904 break;
b5d9071c
NB
4905 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4906 dev_offset, stripe_size);
6df9a95e 4907 if (ret)
50460e37
FM
4908 break;
4909 }
4910 if (ret) {
0b246afa 4911 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4912 goto out;
2b82032c
YZ
4913 }
4914
2b82032c 4915 stripe = &chunk->stripe;
6df9a95e
JB
4916 for (i = 0; i < map->num_stripes; i++) {
4917 device = map->stripes[i].dev;
4918 dev_offset = map->stripes[i].physical;
0b86a832 4919
e17cade2
CM
4920 btrfs_set_stack_stripe_devid(stripe, device->devid);
4921 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4922 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4923 stripe++;
0b86a832 4924 }
0b246afa 4925 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4926
2b82032c 4927 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4928 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4929 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4930 btrfs_set_stack_chunk_type(chunk, map->type);
4931 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4932 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4933 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4934 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4935 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4936
2b82032c
YZ
4937 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4938 key.type = BTRFS_CHUNK_ITEM_KEY;
4939 key.offset = chunk_offset;
0b86a832 4940
2b82032c 4941 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4942 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4943 /*
4944 * TODO: Cleanup of inserted chunk root in case of
4945 * failure.
4946 */
2ff7e61e 4947 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 4948 }
1abe9b8a 4949
6df9a95e 4950out:
0b86a832 4951 kfree(chunk);
6df9a95e 4952 free_extent_map(em);
4ed1d16e 4953 return ret;
2b82032c 4954}
0b86a832 4955
2b82032c
YZ
4956/*
4957 * Chunk allocation falls into two parts. The first part does works
4958 * that make the new allocated chunk useable, but not do any operation
4959 * that modifies the chunk tree. The second part does the works that
4960 * require modifying the chunk tree. This division is important for the
4961 * bootstrap process of adding storage to a seed btrfs.
4962 */
4963int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4964 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
4965{
4966 u64 chunk_offset;
2b82032c 4967
0b246afa
JM
4968 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4969 chunk_offset = find_next_chunk(fs_info);
72b468c8 4970 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
4971}
4972
d397712b 4973static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 4974 struct btrfs_fs_info *fs_info)
2b82032c
YZ
4975{
4976 u64 chunk_offset;
4977 u64 sys_chunk_offset;
2b82032c 4978 u64 alloc_profile;
2b82032c
YZ
4979 int ret;
4980
6df9a95e 4981 chunk_offset = find_next_chunk(fs_info);
1b86826d 4982 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 4983 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
4984 if (ret)
4985 return ret;
2b82032c 4986
0b246afa 4987 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 4988 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 4989 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 4990 return ret;
2b82032c
YZ
4991}
4992
d20983b4
MX
4993static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4994{
4995 int max_errors;
4996
4997 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4998 BTRFS_BLOCK_GROUP_RAID10 |
4999 BTRFS_BLOCK_GROUP_RAID5 |
5000 BTRFS_BLOCK_GROUP_DUP)) {
5001 max_errors = 1;
5002 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5003 max_errors = 2;
5004 } else {
5005 max_errors = 0;
005d6427 5006 }
2b82032c 5007
d20983b4 5008 return max_errors;
2b82032c
YZ
5009}
5010
2ff7e61e 5011int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5012{
5013 struct extent_map *em;
5014 struct map_lookup *map;
2b82032c 5015 int readonly = 0;
d20983b4 5016 int miss_ndevs = 0;
2b82032c
YZ
5017 int i;
5018
592d92ee
LB
5019 em = get_chunk_map(fs_info, chunk_offset, 1);
5020 if (IS_ERR(em))
2b82032c
YZ
5021 return 1;
5022
95617d69 5023 map = em->map_lookup;
2b82032c 5024 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5025 if (map->stripes[i].dev->missing) {
5026 miss_ndevs++;
5027 continue;
5028 }
5029
2b82032c
YZ
5030 if (!map->stripes[i].dev->writeable) {
5031 readonly = 1;
d20983b4 5032 goto end;
2b82032c
YZ
5033 }
5034 }
d20983b4
MX
5035
5036 /*
5037 * If the number of missing devices is larger than max errors,
5038 * we can not write the data into that chunk successfully, so
5039 * set it readonly.
5040 */
5041 if (miss_ndevs > btrfs_chunk_max_errors(map))
5042 readonly = 1;
5043end:
0b86a832 5044 free_extent_map(em);
2b82032c 5045 return readonly;
0b86a832
CM
5046}
5047
5048void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5049{
a8067e02 5050 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5051}
5052
5053void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5054{
5055 struct extent_map *em;
5056
d397712b 5057 while (1) {
890871be 5058 write_lock(&tree->map_tree.lock);
0b86a832
CM
5059 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5060 if (em)
5061 remove_extent_mapping(&tree->map_tree, em);
890871be 5062 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5063 if (!em)
5064 break;
0b86a832
CM
5065 /* once for us */
5066 free_extent_map(em);
5067 /* once for the tree */
5068 free_extent_map(em);
5069 }
5070}
5071
5d964051 5072int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5073{
5074 struct extent_map *em;
5075 struct map_lookup *map;
f188591e
CM
5076 int ret;
5077
592d92ee
LB
5078 em = get_chunk_map(fs_info, logical, len);
5079 if (IS_ERR(em))
5080 /*
5081 * We could return errors for these cases, but that could get
5082 * ugly and we'd probably do the same thing which is just not do
5083 * anything else and exit, so return 1 so the callers don't try
5084 * to use other copies.
5085 */
fb7669b5 5086 return 1;
fb7669b5 5087
95617d69 5088 map = em->map_lookup;
f188591e
CM
5089 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5090 ret = map->num_stripes;
321aecc6
CM
5091 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5092 ret = map->sub_stripes;
53b381b3
DW
5093 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5094 ret = 2;
5095 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5096 ret = 3;
f188591e
CM
5097 else
5098 ret = 1;
5099 free_extent_map(em);
ad6d620e 5100
73beece9 5101 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
6fad823f
LB
5102 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5103 fs_info->dev_replace.tgtdev)
ad6d620e 5104 ret++;
73beece9 5105 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5106
f188591e
CM
5107 return ret;
5108}
5109
2ff7e61e 5110unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5111 u64 logical)
5112{
5113 struct extent_map *em;
5114 struct map_lookup *map;
0b246afa 5115 unsigned long len = fs_info->sectorsize;
53b381b3 5116
592d92ee 5117 em = get_chunk_map(fs_info, logical, len);
53b381b3 5118
69f03f13
NB
5119 if (!WARN_ON(IS_ERR(em))) {
5120 map = em->map_lookup;
5121 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5122 len = map->stripe_len * nr_data_stripes(map);
5123 free_extent_map(em);
5124 }
53b381b3
DW
5125 return len;
5126}
5127
e4ff5fb5 5128int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5129{
5130 struct extent_map *em;
5131 struct map_lookup *map;
53b381b3
DW
5132 int ret = 0;
5133
592d92ee 5134 em = get_chunk_map(fs_info, logical, len);
53b381b3 5135
69f03f13
NB
5136 if(!WARN_ON(IS_ERR(em))) {
5137 map = em->map_lookup;
5138 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5139 ret = 1;
5140 free_extent_map(em);
5141 }
53b381b3
DW
5142 return ret;
5143}
5144
30d9861f
SB
5145static int find_live_mirror(struct btrfs_fs_info *fs_info,
5146 struct map_lookup *map, int first, int num,
5147 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5148{
5149 int i;
30d9861f
SB
5150 int tolerance;
5151 struct btrfs_device *srcdev;
5152
5153 if (dev_replace_is_ongoing &&
5154 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5155 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5156 srcdev = fs_info->dev_replace.srcdev;
5157 else
5158 srcdev = NULL;
5159
5160 /*
5161 * try to avoid the drive that is the source drive for a
5162 * dev-replace procedure, only choose it if no other non-missing
5163 * mirror is available
5164 */
5165 for (tolerance = 0; tolerance < 2; tolerance++) {
5166 if (map->stripes[optimal].dev->bdev &&
5167 (tolerance || map->stripes[optimal].dev != srcdev))
5168 return optimal;
5169 for (i = first; i < first + num; i++) {
5170 if (map->stripes[i].dev->bdev &&
5171 (tolerance || map->stripes[i].dev != srcdev))
5172 return i;
5173 }
dfe25020 5174 }
30d9861f 5175
dfe25020
CM
5176 /* we couldn't find one that doesn't fail. Just return something
5177 * and the io error handling code will clean up eventually
5178 */
5179 return optimal;
5180}
5181
53b381b3
DW
5182static inline int parity_smaller(u64 a, u64 b)
5183{
5184 return a > b;
5185}
5186
5187/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5188static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5189{
5190 struct btrfs_bio_stripe s;
5191 int i;
5192 u64 l;
5193 int again = 1;
5194
5195 while (again) {
5196 again = 0;
cc7539ed 5197 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5198 if (parity_smaller(bbio->raid_map[i],
5199 bbio->raid_map[i+1])) {
53b381b3 5200 s = bbio->stripes[i];
8e5cfb55 5201 l = bbio->raid_map[i];
53b381b3 5202 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5203 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5204 bbio->stripes[i+1] = s;
8e5cfb55 5205 bbio->raid_map[i+1] = l;
2c8cdd6e 5206
53b381b3
DW
5207 again = 1;
5208 }
5209 }
5210 }
5211}
5212
6e9606d2
ZL
5213static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5214{
5215 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5216 /* the size of the btrfs_bio */
6e9606d2 5217 sizeof(struct btrfs_bio) +
e57cf21e 5218 /* plus the variable array for the stripes */
6e9606d2 5219 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5220 /* plus the variable array for the tgt dev */
6e9606d2 5221 sizeof(int) * (real_stripes) +
e57cf21e
CM
5222 /*
5223 * plus the raid_map, which includes both the tgt dev
5224 * and the stripes
5225 */
5226 sizeof(u64) * (total_stripes),
277fb5fc 5227 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5228
5229 atomic_set(&bbio->error, 0);
140475ae 5230 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5231
5232 return bbio;
5233}
5234
5235void btrfs_get_bbio(struct btrfs_bio *bbio)
5236{
140475ae
ER
5237 WARN_ON(!refcount_read(&bbio->refs));
5238 refcount_inc(&bbio->refs);
6e9606d2
ZL
5239}
5240
5241void btrfs_put_bbio(struct btrfs_bio *bbio)
5242{
5243 if (!bbio)
5244 return;
140475ae 5245 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5246 kfree(bbio);
5247}
5248
0b3d4cd3
LB
5249/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5250/*
5251 * Please note that, discard won't be sent to target device of device
5252 * replace.
5253 */
5254static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5255 u64 logical, u64 length,
5256 struct btrfs_bio **bbio_ret)
5257{
5258 struct extent_map *em;
5259 struct map_lookup *map;
5260 struct btrfs_bio *bbio;
5261 u64 offset;
5262 u64 stripe_nr;
5263 u64 stripe_nr_end;
5264 u64 stripe_end_offset;
5265 u64 stripe_cnt;
5266 u64 stripe_len;
5267 u64 stripe_offset;
5268 u64 num_stripes;
5269 u32 stripe_index;
5270 u32 factor = 0;
5271 u32 sub_stripes = 0;
5272 u64 stripes_per_dev = 0;
5273 u32 remaining_stripes = 0;
5274 u32 last_stripe = 0;
5275 int ret = 0;
5276 int i;
5277
5278 /* discard always return a bbio */
5279 ASSERT(bbio_ret);
5280
5281 em = get_chunk_map(fs_info, logical, length);
5282 if (IS_ERR(em))
5283 return PTR_ERR(em);
5284
5285 map = em->map_lookup;
5286 /* we don't discard raid56 yet */
5287 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5288 ret = -EOPNOTSUPP;
5289 goto out;
5290 }
5291
5292 offset = logical - em->start;
5293 length = min_t(u64, em->len - offset, length);
5294
5295 stripe_len = map->stripe_len;
5296 /*
5297 * stripe_nr counts the total number of stripes we have to stride
5298 * to get to this block
5299 */
5300 stripe_nr = div64_u64(offset, stripe_len);
5301
5302 /* stripe_offset is the offset of this block in its stripe */
5303 stripe_offset = offset - stripe_nr * stripe_len;
5304
5305 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5306 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5307 stripe_cnt = stripe_nr_end - stripe_nr;
5308 stripe_end_offset = stripe_nr_end * map->stripe_len -
5309 (offset + length);
5310 /*
5311 * after this, stripe_nr is the number of stripes on this
5312 * device we have to walk to find the data, and stripe_index is
5313 * the number of our device in the stripe array
5314 */
5315 num_stripes = 1;
5316 stripe_index = 0;
5317 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5318 BTRFS_BLOCK_GROUP_RAID10)) {
5319 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5320 sub_stripes = 1;
5321 else
5322 sub_stripes = map->sub_stripes;
5323
5324 factor = map->num_stripes / sub_stripes;
5325 num_stripes = min_t(u64, map->num_stripes,
5326 sub_stripes * stripe_cnt);
5327 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5328 stripe_index *= sub_stripes;
5329 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5330 &remaining_stripes);
5331 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5332 last_stripe *= sub_stripes;
5333 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5334 BTRFS_BLOCK_GROUP_DUP)) {
5335 num_stripes = map->num_stripes;
5336 } else {
5337 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5338 &stripe_index);
5339 }
5340
5341 bbio = alloc_btrfs_bio(num_stripes, 0);
5342 if (!bbio) {
5343 ret = -ENOMEM;
5344 goto out;
5345 }
5346
5347 for (i = 0; i < num_stripes; i++) {
5348 bbio->stripes[i].physical =
5349 map->stripes[stripe_index].physical +
5350 stripe_offset + stripe_nr * map->stripe_len;
5351 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5352
5353 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5354 BTRFS_BLOCK_GROUP_RAID10)) {
5355 bbio->stripes[i].length = stripes_per_dev *
5356 map->stripe_len;
5357
5358 if (i / sub_stripes < remaining_stripes)
5359 bbio->stripes[i].length +=
5360 map->stripe_len;
5361
5362 /*
5363 * Special for the first stripe and
5364 * the last stripe:
5365 *
5366 * |-------|...|-------|
5367 * |----------|
5368 * off end_off
5369 */
5370 if (i < sub_stripes)
5371 bbio->stripes[i].length -=
5372 stripe_offset;
5373
5374 if (stripe_index >= last_stripe &&
5375 stripe_index <= (last_stripe +
5376 sub_stripes - 1))
5377 bbio->stripes[i].length -=
5378 stripe_end_offset;
5379
5380 if (i == sub_stripes - 1)
5381 stripe_offset = 0;
5382 } else {
5383 bbio->stripes[i].length = length;
5384 }
5385
5386 stripe_index++;
5387 if (stripe_index == map->num_stripes) {
5388 stripe_index = 0;
5389 stripe_nr++;
5390 }
5391 }
5392
5393 *bbio_ret = bbio;
5394 bbio->map_type = map->type;
5395 bbio->num_stripes = num_stripes;
5396out:
5397 free_extent_map(em);
5398 return ret;
5399}
5400
5ab56090
LB
5401/*
5402 * In dev-replace case, for repair case (that's the only case where the mirror
5403 * is selected explicitly when calling btrfs_map_block), blocks left of the
5404 * left cursor can also be read from the target drive.
5405 *
5406 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5407 * array of stripes.
5408 * For READ, it also needs to be supported using the same mirror number.
5409 *
5410 * If the requested block is not left of the left cursor, EIO is returned. This
5411 * can happen because btrfs_num_copies() returns one more in the dev-replace
5412 * case.
5413 */
5414static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5415 u64 logical, u64 length,
5416 u64 srcdev_devid, int *mirror_num,
5417 u64 *physical)
5418{
5419 struct btrfs_bio *bbio = NULL;
5420 int num_stripes;
5421 int index_srcdev = 0;
5422 int found = 0;
5423 u64 physical_of_found = 0;
5424 int i;
5425 int ret = 0;
5426
5427 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5428 logical, &length, &bbio, 0, 0);
5429 if (ret) {
5430 ASSERT(bbio == NULL);
5431 return ret;
5432 }
5433
5434 num_stripes = bbio->num_stripes;
5435 if (*mirror_num > num_stripes) {
5436 /*
5437 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5438 * that means that the requested area is not left of the left
5439 * cursor
5440 */
5441 btrfs_put_bbio(bbio);
5442 return -EIO;
5443 }
5444
5445 /*
5446 * process the rest of the function using the mirror_num of the source
5447 * drive. Therefore look it up first. At the end, patch the device
5448 * pointer to the one of the target drive.
5449 */
5450 for (i = 0; i < num_stripes; i++) {
5451 if (bbio->stripes[i].dev->devid != srcdev_devid)
5452 continue;
5453
5454 /*
5455 * In case of DUP, in order to keep it simple, only add the
5456 * mirror with the lowest physical address
5457 */
5458 if (found &&
5459 physical_of_found <= bbio->stripes[i].physical)
5460 continue;
5461
5462 index_srcdev = i;
5463 found = 1;
5464 physical_of_found = bbio->stripes[i].physical;
5465 }
5466
5467 btrfs_put_bbio(bbio);
5468
5469 ASSERT(found);
5470 if (!found)
5471 return -EIO;
5472
5473 *mirror_num = index_srcdev + 1;
5474 *physical = physical_of_found;
5475 return ret;
5476}
5477
73c0f228
LB
5478static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5479 struct btrfs_bio **bbio_ret,
5480 struct btrfs_dev_replace *dev_replace,
5481 int *num_stripes_ret, int *max_errors_ret)
5482{
5483 struct btrfs_bio *bbio = *bbio_ret;
5484 u64 srcdev_devid = dev_replace->srcdev->devid;
5485 int tgtdev_indexes = 0;
5486 int num_stripes = *num_stripes_ret;
5487 int max_errors = *max_errors_ret;
5488 int i;
5489
5490 if (op == BTRFS_MAP_WRITE) {
5491 int index_where_to_add;
5492
5493 /*
5494 * duplicate the write operations while the dev replace
5495 * procedure is running. Since the copying of the old disk to
5496 * the new disk takes place at run time while the filesystem is
5497 * mounted writable, the regular write operations to the old
5498 * disk have to be duplicated to go to the new disk as well.
5499 *
5500 * Note that device->missing is handled by the caller, and that
5501 * the write to the old disk is already set up in the stripes
5502 * array.
5503 */
5504 index_where_to_add = num_stripes;
5505 for (i = 0; i < num_stripes; i++) {
5506 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5507 /* write to new disk, too */
5508 struct btrfs_bio_stripe *new =
5509 bbio->stripes + index_where_to_add;
5510 struct btrfs_bio_stripe *old =
5511 bbio->stripes + i;
5512
5513 new->physical = old->physical;
5514 new->length = old->length;
5515 new->dev = dev_replace->tgtdev;
5516 bbio->tgtdev_map[i] = index_where_to_add;
5517 index_where_to_add++;
5518 max_errors++;
5519 tgtdev_indexes++;
5520 }
5521 }
5522 num_stripes = index_where_to_add;
5523 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5524 int index_srcdev = 0;
5525 int found = 0;
5526 u64 physical_of_found = 0;
5527
5528 /*
5529 * During the dev-replace procedure, the target drive can also
5530 * be used to read data in case it is needed to repair a corrupt
5531 * block elsewhere. This is possible if the requested area is
5532 * left of the left cursor. In this area, the target drive is a
5533 * full copy of the source drive.
5534 */
5535 for (i = 0; i < num_stripes; i++) {
5536 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5537 /*
5538 * In case of DUP, in order to keep it simple,
5539 * only add the mirror with the lowest physical
5540 * address
5541 */
5542 if (found &&
5543 physical_of_found <=
5544 bbio->stripes[i].physical)
5545 continue;
5546 index_srcdev = i;
5547 found = 1;
5548 physical_of_found = bbio->stripes[i].physical;
5549 }
5550 }
5551 if (found) {
5552 struct btrfs_bio_stripe *tgtdev_stripe =
5553 bbio->stripes + num_stripes;
5554
5555 tgtdev_stripe->physical = physical_of_found;
5556 tgtdev_stripe->length =
5557 bbio->stripes[index_srcdev].length;
5558 tgtdev_stripe->dev = dev_replace->tgtdev;
5559 bbio->tgtdev_map[index_srcdev] = num_stripes;
5560
5561 tgtdev_indexes++;
5562 num_stripes++;
5563 }
5564 }
5565
5566 *num_stripes_ret = num_stripes;
5567 *max_errors_ret = max_errors;
5568 bbio->num_tgtdevs = tgtdev_indexes;
5569 *bbio_ret = bbio;
5570}
5571
2b19a1fe
LB
5572static bool need_full_stripe(enum btrfs_map_op op)
5573{
5574 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5575}
5576
cf8cddd3
CH
5577static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5578 enum btrfs_map_op op,
f2d8d74d 5579 u64 logical, u64 *length,
a1d3c478 5580 struct btrfs_bio **bbio_ret,
8e5cfb55 5581 int mirror_num, int need_raid_map)
0b86a832
CM
5582{
5583 struct extent_map *em;
5584 struct map_lookup *map;
0b86a832 5585 u64 offset;
593060d7
CM
5586 u64 stripe_offset;
5587 u64 stripe_nr;
53b381b3 5588 u64 stripe_len;
9d644a62 5589 u32 stripe_index;
cea9e445 5590 int i;
de11cc12 5591 int ret = 0;
f2d8d74d 5592 int num_stripes;
a236aed1 5593 int max_errors = 0;
2c8cdd6e 5594 int tgtdev_indexes = 0;
a1d3c478 5595 struct btrfs_bio *bbio = NULL;
472262f3
SB
5596 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5597 int dev_replace_is_ongoing = 0;
5598 int num_alloc_stripes;
ad6d620e
SB
5599 int patch_the_first_stripe_for_dev_replace = 0;
5600 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5601 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5602
0b3d4cd3
LB
5603 if (op == BTRFS_MAP_DISCARD)
5604 return __btrfs_map_block_for_discard(fs_info, logical,
5605 *length, bbio_ret);
5606
592d92ee
LB
5607 em = get_chunk_map(fs_info, logical, *length);
5608 if (IS_ERR(em))
5609 return PTR_ERR(em);
0b86a832 5610
95617d69 5611 map = em->map_lookup;
0b86a832 5612 offset = logical - em->start;
593060d7 5613
53b381b3 5614 stripe_len = map->stripe_len;
593060d7
CM
5615 stripe_nr = offset;
5616 /*
5617 * stripe_nr counts the total number of stripes we have to stride
5618 * to get to this block
5619 */
47c5713f 5620 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5621
53b381b3 5622 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5623 if (offset < stripe_offset) {
5d163e0e
JM
5624 btrfs_crit(fs_info,
5625 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5626 stripe_offset, offset, em->start, logical,
5627 stripe_len);
5628 free_extent_map(em);
5629 return -EINVAL;
5630 }
593060d7
CM
5631
5632 /* stripe_offset is the offset of this block in its stripe*/
5633 stripe_offset = offset - stripe_offset;
5634
53b381b3 5635 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5636 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5637 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5638 raid56_full_stripe_start = offset;
5639
5640 /* allow a write of a full stripe, but make sure we don't
5641 * allow straddling of stripes
5642 */
47c5713f
DS
5643 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5644 full_stripe_len);
53b381b3
DW
5645 raid56_full_stripe_start *= full_stripe_len;
5646 }
5647
0b3d4cd3 5648 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5649 u64 max_len;
5650 /* For writes to RAID[56], allow a full stripeset across all disks.
5651 For other RAID types and for RAID[56] reads, just allow a single
5652 stripe (on a single disk). */
ffe2d203 5653 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5654 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5655 max_len = stripe_len * nr_data_stripes(map) -
5656 (offset - raid56_full_stripe_start);
5657 } else {
5658 /* we limit the length of each bio to what fits in a stripe */
5659 max_len = stripe_len - stripe_offset;
5660 }
5661 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5662 } else {
5663 *length = em->len - offset;
5664 }
f2d8d74d 5665
53b381b3
DW
5666 /* This is for when we're called from btrfs_merge_bio_hook() and all
5667 it cares about is the length */
a1d3c478 5668 if (!bbio_ret)
cea9e445
CM
5669 goto out;
5670
73beece9 5671 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5672 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5673 if (!dev_replace_is_ongoing)
73beece9
LB
5674 btrfs_dev_replace_unlock(dev_replace, 0);
5675 else
5676 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5677
ad6d620e 5678 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5679 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5680 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5681 dev_replace->srcdev->devid,
5682 &mirror_num,
5683 &physical_to_patch_in_first_stripe);
5684 if (ret)
ad6d620e 5685 goto out;
5ab56090
LB
5686 else
5687 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5688 } else if (mirror_num > map->num_stripes) {
5689 mirror_num = 0;
5690 }
5691
f2d8d74d 5692 num_stripes = 1;
cea9e445 5693 stripe_index = 0;
fce3bb9a 5694 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5695 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5696 &stripe_index);
de483734 5697 if (!need_full_stripe(op))
28e1cc7d 5698 mirror_num = 1;
fce3bb9a 5699 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
de483734 5700 if (need_full_stripe(op))
f2d8d74d 5701 num_stripes = map->num_stripes;
2fff734f 5702 else if (mirror_num)
f188591e 5703 stripe_index = mirror_num - 1;
dfe25020 5704 else {
30d9861f 5705 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5706 map->num_stripes,
30d9861f
SB
5707 current->pid % map->num_stripes,
5708 dev_replace_is_ongoing);
a1d3c478 5709 mirror_num = stripe_index + 1;
dfe25020 5710 }
2fff734f 5711
611f0e00 5712 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5713 if (need_full_stripe(op)) {
f2d8d74d 5714 num_stripes = map->num_stripes;
a1d3c478 5715 } else if (mirror_num) {
f188591e 5716 stripe_index = mirror_num - 1;
a1d3c478
JS
5717 } else {
5718 mirror_num = 1;
5719 }
2fff734f 5720
321aecc6 5721 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5722 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5723
47c5713f 5724 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5725 stripe_index *= map->sub_stripes;
5726
de483734 5727 if (need_full_stripe(op))
f2d8d74d 5728 num_stripes = map->sub_stripes;
321aecc6
CM
5729 else if (mirror_num)
5730 stripe_index += mirror_num - 1;
dfe25020 5731 else {
3e74317a 5732 int old_stripe_index = stripe_index;
30d9861f
SB
5733 stripe_index = find_live_mirror(fs_info, map,
5734 stripe_index,
dfe25020 5735 map->sub_stripes, stripe_index +
30d9861f
SB
5736 current->pid % map->sub_stripes,
5737 dev_replace_is_ongoing);
3e74317a 5738 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5739 }
53b381b3 5740
ffe2d203 5741 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5742 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5743 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5744 stripe_nr = div64_u64(raid56_full_stripe_start,
b8b93add 5745 stripe_len * nr_data_stripes(map));
53b381b3
DW
5746
5747 /* RAID[56] write or recovery. Return all stripes */
5748 num_stripes = map->num_stripes;
5749 max_errors = nr_parity_stripes(map);
5750
53b381b3
DW
5751 *length = map->stripe_len;
5752 stripe_index = 0;
5753 stripe_offset = 0;
5754 } else {
5755 /*
5756 * Mirror #0 or #1 means the original data block.
5757 * Mirror #2 is RAID5 parity block.
5758 * Mirror #3 is RAID6 Q block.
5759 */
47c5713f
DS
5760 stripe_nr = div_u64_rem(stripe_nr,
5761 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5762 if (mirror_num > 1)
5763 stripe_index = nr_data_stripes(map) +
5764 mirror_num - 2;
5765
5766 /* We distribute the parity blocks across stripes */
47c5713f
DS
5767 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5768 &stripe_index);
de483734 5769 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5770 mirror_num = 1;
53b381b3 5771 }
8790d502
CM
5772 } else {
5773 /*
47c5713f
DS
5774 * after this, stripe_nr is the number of stripes on this
5775 * device we have to walk to find the data, and stripe_index is
5776 * the number of our device in the stripe array
8790d502 5777 */
47c5713f
DS
5778 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5779 &stripe_index);
a1d3c478 5780 mirror_num = stripe_index + 1;
8790d502 5781 }
e042d1ec 5782 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5783 btrfs_crit(fs_info,
5784 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5785 stripe_index, map->num_stripes);
5786 ret = -EINVAL;
5787 goto out;
5788 }
cea9e445 5789
472262f3 5790 num_alloc_stripes = num_stripes;
6fad823f 5791 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5792 if (op == BTRFS_MAP_WRITE)
ad6d620e 5793 num_alloc_stripes <<= 1;
cf8cddd3 5794 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5795 num_alloc_stripes++;
2c8cdd6e 5796 tgtdev_indexes = num_stripes;
ad6d620e 5797 }
2c8cdd6e 5798
6e9606d2 5799 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5800 if (!bbio) {
5801 ret = -ENOMEM;
5802 goto out;
5803 }
6fad823f 5804 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5805 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5806
8e5cfb55 5807 /* build raid_map */
2b19a1fe
LB
5808 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5809 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5810 u64 tmp;
9d644a62 5811 unsigned rot;
8e5cfb55
ZL
5812
5813 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5814 sizeof(struct btrfs_bio_stripe) *
5815 num_alloc_stripes +
5816 sizeof(int) * tgtdev_indexes);
5817
5818 /* Work out the disk rotation on this stripe-set */
47c5713f 5819 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5820
5821 /* Fill in the logical address of each stripe */
5822 tmp = stripe_nr * nr_data_stripes(map);
5823 for (i = 0; i < nr_data_stripes(map); i++)
5824 bbio->raid_map[(i+rot) % num_stripes] =
5825 em->start + (tmp + i) * map->stripe_len;
5826
5827 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5828 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5829 bbio->raid_map[(i+rot+1) % num_stripes] =
5830 RAID6_Q_STRIPE;
5831 }
5832
b89203f7 5833
0b3d4cd3
LB
5834 for (i = 0; i < num_stripes; i++) {
5835 bbio->stripes[i].physical =
5836 map->stripes[stripe_index].physical +
5837 stripe_offset +
5838 stripe_nr * map->stripe_len;
5839 bbio->stripes[i].dev =
5840 map->stripes[stripe_index].dev;
5841 stripe_index++;
593060d7 5842 }
de11cc12 5843
2b19a1fe 5844 if (need_full_stripe(op))
d20983b4 5845 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5846
8e5cfb55
ZL
5847 if (bbio->raid_map)
5848 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5849
73c0f228 5850 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5851 need_full_stripe(op)) {
73c0f228
LB
5852 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5853 &max_errors);
472262f3
SB
5854 }
5855
de11cc12 5856 *bbio_ret = bbio;
10f11900 5857 bbio->map_type = map->type;
de11cc12
LZ
5858 bbio->num_stripes = num_stripes;
5859 bbio->max_errors = max_errors;
5860 bbio->mirror_num = mirror_num;
ad6d620e
SB
5861
5862 /*
5863 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5864 * mirror_num == num_stripes + 1 && dev_replace target drive is
5865 * available as a mirror
5866 */
5867 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5868 WARN_ON(num_stripes > 1);
5869 bbio->stripes[0].dev = dev_replace->tgtdev;
5870 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5871 bbio->mirror_num = map->num_stripes + 1;
5872 }
cea9e445 5873out:
73beece9
LB
5874 if (dev_replace_is_ongoing) {
5875 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5876 btrfs_dev_replace_unlock(dev_replace, 0);
5877 }
0b86a832 5878 free_extent_map(em);
de11cc12 5879 return ret;
0b86a832
CM
5880}
5881
cf8cddd3 5882int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5883 u64 logical, u64 *length,
a1d3c478 5884 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5885{
b3d3fa51 5886 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5887 mirror_num, 0);
f2d8d74d
CM
5888}
5889
af8e2d1d 5890/* For Scrub/replace */
cf8cddd3 5891int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 5892 u64 logical, u64 *length,
825ad4c9 5893 struct btrfs_bio **bbio_ret)
af8e2d1d 5894{
825ad4c9 5895 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
5896}
5897
ab8d0fc4 5898int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5899 u64 chunk_start, u64 physical, u64 devid,
5900 u64 **logical, int *naddrs, int *stripe_len)
5901{
a512bbf8
YZ
5902 struct extent_map *em;
5903 struct map_lookup *map;
5904 u64 *buf;
5905 u64 bytenr;
5906 u64 length;
5907 u64 stripe_nr;
53b381b3 5908 u64 rmap_len;
a512bbf8
YZ
5909 int i, j, nr = 0;
5910
592d92ee
LB
5911 em = get_chunk_map(fs_info, chunk_start, 1);
5912 if (IS_ERR(em))
835d974f 5913 return -EIO;
835d974f 5914
95617d69 5915 map = em->map_lookup;
a512bbf8 5916 length = em->len;
53b381b3
DW
5917 rmap_len = map->stripe_len;
5918
a512bbf8 5919 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5920 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5921 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5922 length = div_u64(length, map->num_stripes);
ffe2d203 5923 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5924 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5925 rmap_len = map->stripe_len * nr_data_stripes(map);
5926 }
a512bbf8 5927
31e818fe 5928 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5929 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5930
5931 for (i = 0; i < map->num_stripes; i++) {
5932 if (devid && map->stripes[i].dev->devid != devid)
5933 continue;
5934 if (map->stripes[i].physical > physical ||
5935 map->stripes[i].physical + length <= physical)
5936 continue;
5937
5938 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 5939 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5940
5941 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5942 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5943 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5944 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5945 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5946 } /* else if RAID[56], multiply by nr_data_stripes().
5947 * Alternatively, just use rmap_len below instead of
5948 * map->stripe_len */
5949
5950 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5951 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5952 for (j = 0; j < nr; j++) {
5953 if (buf[j] == bytenr)
5954 break;
5955 }
934d375b
CM
5956 if (j == nr) {
5957 WARN_ON(nr >= map->num_stripes);
a512bbf8 5958 buf[nr++] = bytenr;
934d375b 5959 }
a512bbf8
YZ
5960 }
5961
a512bbf8
YZ
5962 *logical = buf;
5963 *naddrs = nr;
53b381b3 5964 *stripe_len = rmap_len;
a512bbf8
YZ
5965
5966 free_extent_map(em);
5967 return 0;
f2d8d74d
CM
5968}
5969
4246a0b6 5970static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5971{
326e1dbb
MS
5972 bio->bi_private = bbio->private;
5973 bio->bi_end_io = bbio->end_io;
4246a0b6 5974 bio_endio(bio);
326e1dbb 5975
6e9606d2 5976 btrfs_put_bbio(bbio);
8408c716
MX
5977}
5978
4246a0b6 5979static void btrfs_end_bio(struct bio *bio)
8790d502 5980{
9be3395b 5981 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5982 int is_orig_bio = 0;
8790d502 5983
4e4cbee9 5984 if (bio->bi_status) {
a1d3c478 5985 atomic_inc(&bbio->error);
4e4cbee9
CH
5986 if (bio->bi_status == BLK_STS_IOERR ||
5987 bio->bi_status == BLK_STS_TARGET) {
442a4f63 5988 unsigned int stripe_index =
9be3395b 5989 btrfs_io_bio(bio)->stripe_index;
65f53338 5990 struct btrfs_device *dev;
442a4f63
SB
5991
5992 BUG_ON(stripe_index >= bbio->num_stripes);
5993 dev = bbio->stripes[stripe_index].dev;
597a60fa 5994 if (dev->bdev) {
37226b21 5995 if (bio_op(bio) == REQ_OP_WRITE)
1cb34c8e 5996 btrfs_dev_stat_inc_and_print(dev,
597a60fa
SB
5997 BTRFS_DEV_STAT_WRITE_ERRS);
5998 else
1cb34c8e 5999 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6000 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6001 if (bio->bi_opf & REQ_PREFLUSH)
1cb34c8e 6002 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6003 BTRFS_DEV_STAT_FLUSH_ERRS);
597a60fa 6004 }
442a4f63
SB
6005 }
6006 }
8790d502 6007
a1d3c478 6008 if (bio == bbio->orig_bio)
7d2b4daa
CM
6009 is_orig_bio = 1;
6010
c404e0dc
MX
6011 btrfs_bio_counter_dec(bbio->fs_info);
6012
a1d3c478 6013 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6014 if (!is_orig_bio) {
6015 bio_put(bio);
a1d3c478 6016 bio = bbio->orig_bio;
7d2b4daa 6017 }
c7b22bb1 6018
9be3395b 6019 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6020 /* only send an error to the higher layers if it is
53b381b3 6021 * beyond the tolerance of the btrfs bio
a236aed1 6022 */
a1d3c478 6023 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6024 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6025 } else {
1259ab75
CM
6026 /*
6027 * this bio is actually up to date, we didn't
6028 * go over the max number of errors
6029 */
2dbe0c77 6030 bio->bi_status = BLK_STS_OK;
1259ab75 6031 }
c55f1396 6032
4246a0b6 6033 btrfs_end_bbio(bbio, bio);
7d2b4daa 6034 } else if (!is_orig_bio) {
8790d502
CM
6035 bio_put(bio);
6036 }
8790d502
CM
6037}
6038
8b712842
CM
6039/*
6040 * see run_scheduled_bios for a description of why bios are collected for
6041 * async submit.
6042 *
6043 * This will add one bio to the pending list for a device and make sure
6044 * the work struct is scheduled.
6045 */
2ff7e61e 6046static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6047 struct bio *bio)
8b712842 6048{
0b246afa 6049 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6050 int should_queue = 1;
ffbd517d 6051 struct btrfs_pending_bios *pending_bios;
8b712842 6052
53b381b3 6053 if (device->missing || !device->bdev) {
4246a0b6 6054 bio_io_error(bio);
53b381b3
DW
6055 return;
6056 }
6057
8b712842 6058 /* don't bother with additional async steps for reads, right now */
37226b21 6059 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6060 bio_get(bio);
4e49ea4a 6061 btrfsic_submit_bio(bio);
492bb6de 6062 bio_put(bio);
143bede5 6063 return;
8b712842
CM
6064 }
6065
492bb6de 6066 WARN_ON(bio->bi_next);
8b712842 6067 bio->bi_next = NULL;
8b712842
CM
6068
6069 spin_lock(&device->io_lock);
67f055c7 6070 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6071 pending_bios = &device->pending_sync_bios;
6072 else
6073 pending_bios = &device->pending_bios;
8b712842 6074
ffbd517d
CM
6075 if (pending_bios->tail)
6076 pending_bios->tail->bi_next = bio;
8b712842 6077
ffbd517d
CM
6078 pending_bios->tail = bio;
6079 if (!pending_bios->head)
6080 pending_bios->head = bio;
8b712842
CM
6081 if (device->running_pending)
6082 should_queue = 0;
6083
6084 spin_unlock(&device->io_lock);
6085
6086 if (should_queue)
0b246afa 6087 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6088}
6089
2ff7e61e
JM
6090static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6091 u64 physical, int dev_nr, int async)
de1ee92a
JB
6092{
6093 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6094 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6095
6096 bio->bi_private = bbio;
9be3395b 6097 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6098 bio->bi_end_io = btrfs_end_bio;
4f024f37 6099 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6100#ifdef DEBUG
6101 {
6102 struct rcu_string *name;
6103
6104 rcu_read_lock();
6105 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6106 btrfs_debug(fs_info,
6107 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6108 bio_op(bio), bio->bi_opf,
6109 (u64)bio->bi_iter.bi_sector,
6110 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6111 bio->bi_iter.bi_size);
de1ee92a
JB
6112 rcu_read_unlock();
6113 }
6114#endif
74d46992 6115 bio_set_dev(bio, dev->bdev);
c404e0dc 6116
2ff7e61e 6117 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6118
de1ee92a 6119 if (async)
2ff7e61e 6120 btrfs_schedule_bio(dev, bio);
de1ee92a 6121 else
4e49ea4a 6122 btrfsic_submit_bio(bio);
de1ee92a
JB
6123}
6124
de1ee92a
JB
6125static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6126{
6127 atomic_inc(&bbio->error);
6128 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6129 /* Should be the original bio. */
8408c716
MX
6130 WARN_ON(bio != bbio->orig_bio);
6131
9be3395b 6132 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6133 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6134 if (atomic_read(&bbio->error) > bbio->max_errors)
6135 bio->bi_status = BLK_STS_IOERR;
6136 else
6137 bio->bi_status = BLK_STS_OK;
4246a0b6 6138 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6139 }
6140}
6141
58efbc9f
OS
6142blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6143 int mirror_num, int async_submit)
0b86a832 6144{
0b86a832 6145 struct btrfs_device *dev;
8790d502 6146 struct bio *first_bio = bio;
4f024f37 6147 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6148 u64 length = 0;
6149 u64 map_length;
0b86a832 6150 int ret;
08da757d
ZL
6151 int dev_nr;
6152 int total_devs;
a1d3c478 6153 struct btrfs_bio *bbio = NULL;
0b86a832 6154
4f024f37 6155 length = bio->bi_iter.bi_size;
0b86a832 6156 map_length = length;
cea9e445 6157
0b246afa 6158 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6159 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6160 &map_length, &bbio, mirror_num, 1);
c404e0dc 6161 if (ret) {
0b246afa 6162 btrfs_bio_counter_dec(fs_info);
58efbc9f 6163 return errno_to_blk_status(ret);
c404e0dc 6164 }
cea9e445 6165
a1d3c478 6166 total_devs = bbio->num_stripes;
53b381b3
DW
6167 bbio->orig_bio = first_bio;
6168 bbio->private = first_bio->bi_private;
6169 bbio->end_io = first_bio->bi_end_io;
0b246afa 6170 bbio->fs_info = fs_info;
53b381b3
DW
6171 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6172
ad1ba2a0 6173 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6174 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6175 /* In this case, map_length has been set to the length of
6176 a single stripe; not the whole write */
37226b21 6177 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6178 ret = raid56_parity_write(fs_info, bio, bbio,
6179 map_length);
53b381b3 6180 } else {
2ff7e61e
JM
6181 ret = raid56_parity_recover(fs_info, bio, bbio,
6182 map_length, mirror_num, 1);
53b381b3 6183 }
4245215d 6184
0b246afa 6185 btrfs_bio_counter_dec(fs_info);
58efbc9f 6186 return errno_to_blk_status(ret);
53b381b3
DW
6187 }
6188
cea9e445 6189 if (map_length < length) {
0b246afa 6190 btrfs_crit(fs_info,
5d163e0e
JM
6191 "mapping failed logical %llu bio len %llu len %llu",
6192 logical, length, map_length);
cea9e445
CM
6193 BUG();
6194 }
a1d3c478 6195
08da757d 6196 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6197 dev = bbio->stripes[dev_nr].dev;
37226b21 6198 if (!dev || !dev->bdev ||
a967efb3 6199 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6200 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6201 continue;
6202 }
6203
3aa8e074 6204 if (dev_nr < total_devs - 1)
8b6c1d56 6205 bio = btrfs_bio_clone(first_bio);
3aa8e074 6206 else
a1d3c478 6207 bio = first_bio;
de1ee92a 6208
2ff7e61e
JM
6209 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6210 dev_nr, async_submit);
8790d502 6211 }
0b246afa 6212 btrfs_bio_counter_dec(fs_info);
58efbc9f 6213 return BLK_STS_OK;
0b86a832
CM
6214}
6215
aa1b8cd4 6216struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6217 u8 *uuid, u8 *fsid)
0b86a832 6218{
2b82032c
YZ
6219 struct btrfs_device *device;
6220 struct btrfs_fs_devices *cur_devices;
6221
aa1b8cd4 6222 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6223 while (cur_devices) {
6224 if (!fsid ||
44880fdc 6225 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
35c70103 6226 device = find_device(cur_devices, devid, uuid);
2b82032c
YZ
6227 if (device)
6228 return device;
6229 }
6230 cur_devices = cur_devices->seed;
6231 }
6232 return NULL;
0b86a832
CM
6233}
6234
2ff7e61e 6235static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6236 u64 devid, u8 *dev_uuid)
6237{
6238 struct btrfs_device *device;
dfe25020 6239
12bd2fc0
ID
6240 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6241 if (IS_ERR(device))
adfb69af 6242 return device;
12bd2fc0
ID
6243
6244 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6245 device->fs_devices = fs_devices;
dfe25020 6246 fs_devices->num_devices++;
12bd2fc0
ID
6247
6248 device->missing = 1;
cd02dca5 6249 fs_devices->missing_devices++;
12bd2fc0 6250
dfe25020
CM
6251 return device;
6252}
6253
12bd2fc0
ID
6254/**
6255 * btrfs_alloc_device - allocate struct btrfs_device
6256 * @fs_info: used only for generating a new devid, can be NULL if
6257 * devid is provided (i.e. @devid != NULL).
6258 * @devid: a pointer to devid for this device. If NULL a new devid
6259 * is generated.
6260 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6261 * is generated.
6262 *
6263 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6264 * on error. Returned struct is not linked onto any lists and can be
6265 * destroyed with kfree() right away.
6266 */
6267struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6268 const u64 *devid,
6269 const u8 *uuid)
6270{
6271 struct btrfs_device *dev;
6272 u64 tmp;
6273
fae7f21c 6274 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6275 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6276
6277 dev = __alloc_device();
6278 if (IS_ERR(dev))
6279 return dev;
6280
6281 if (devid)
6282 tmp = *devid;
6283 else {
6284 int ret;
6285
6286 ret = find_next_devid(fs_info, &tmp);
6287 if (ret) {
3065ae5b 6288 bio_put(dev->flush_bio);
12bd2fc0
ID
6289 kfree(dev);
6290 return ERR_PTR(ret);
6291 }
6292 }
6293 dev->devid = tmp;
6294
6295 if (uuid)
6296 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6297 else
6298 generate_random_uuid(dev->uuid);
6299
9e0af237
LB
6300 btrfs_init_work(&dev->work, btrfs_submit_helper,
6301 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6302
6303 return dev;
6304}
6305
e06cd3dd 6306/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6307static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6308 struct extent_buffer *leaf,
6309 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6310{
0b86a832 6311 u64 length;
f04b772b 6312 u64 stripe_len;
e06cd3dd
LB
6313 u16 num_stripes;
6314 u16 sub_stripes;
6315 u64 type;
0b86a832 6316
e17cade2 6317 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6318 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6319 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6320 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6321 type = btrfs_chunk_type(leaf, chunk);
6322
f04b772b 6323 if (!num_stripes) {
0b246afa 6324 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6325 num_stripes);
6326 return -EIO;
6327 }
0b246afa
JM
6328 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6329 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6330 return -EIO;
6331 }
0b246afa
JM
6332 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6333 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6334 btrfs_chunk_sector_size(leaf, chunk));
6335 return -EIO;
6336 }
0b246afa
JM
6337 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6338 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6339 return -EIO;
6340 }
3d8da678 6341 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6342 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6343 stripe_len);
6344 return -EIO;
6345 }
6346 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6347 type) {
0b246afa 6348 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6349 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6350 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6351 btrfs_chunk_type(leaf, chunk));
6352 return -EIO;
6353 }
e06cd3dd
LB
6354 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6355 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6356 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6357 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6358 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6359 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6360 num_stripes != 1)) {
0b246afa 6361 btrfs_err(fs_info,
e06cd3dd
LB
6362 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6363 num_stripes, sub_stripes,
6364 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6365 return -EIO;
6366 }
6367
6368 return 0;
6369}
6370
5a2b8e60 6371static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6372 u64 devid, u8 *uuid, bool error)
5a2b8e60 6373{
2b902dfc
AJ
6374 if (error)
6375 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6376 devid, uuid);
6377 else
6378 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6379 devid, uuid);
5a2b8e60
AJ
6380}
6381
2ff7e61e 6382static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6383 struct extent_buffer *leaf,
6384 struct btrfs_chunk *chunk)
6385{
0b246afa 6386 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6387 struct map_lookup *map;
6388 struct extent_map *em;
6389 u64 logical;
6390 u64 length;
e06cd3dd
LB
6391 u64 devid;
6392 u8 uuid[BTRFS_UUID_SIZE];
6393 int num_stripes;
6394 int ret;
6395 int i;
6396
6397 logical = key->offset;
6398 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6399 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6400
2ff7e61e 6401 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6402 if (ret)
6403 return ret;
a061fc8d 6404
890871be 6405 read_lock(&map_tree->map_tree.lock);
0b86a832 6406 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6407 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6408
6409 /* already mapped? */
6410 if (em && em->start <= logical && em->start + em->len > logical) {
6411 free_extent_map(em);
0b86a832
CM
6412 return 0;
6413 } else if (em) {
6414 free_extent_map(em);
6415 }
0b86a832 6416
172ddd60 6417 em = alloc_extent_map();
0b86a832
CM
6418 if (!em)
6419 return -ENOMEM;
593060d7 6420 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6421 if (!map) {
6422 free_extent_map(em);
6423 return -ENOMEM;
6424 }
6425
298a8f9c 6426 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6427 em->map_lookup = map;
0b86a832
CM
6428 em->start = logical;
6429 em->len = length;
70c8a91c 6430 em->orig_start = 0;
0b86a832 6431 em->block_start = 0;
c8b97818 6432 em->block_len = em->len;
0b86a832 6433
593060d7
CM
6434 map->num_stripes = num_stripes;
6435 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6436 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6437 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6438 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6439 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6440 for (i = 0; i < num_stripes; i++) {
6441 map->stripes[i].physical =
6442 btrfs_stripe_offset_nr(leaf, chunk, i);
6443 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6444 read_extent_buffer(leaf, uuid, (unsigned long)
6445 btrfs_stripe_dev_uuid_nr(chunk, i),
6446 BTRFS_UUID_SIZE);
0b246afa 6447 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6448 uuid, NULL);
3cdde224 6449 if (!map->stripes[i].dev &&
0b246afa 6450 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6451 free_extent_map(em);
2b902dfc 6452 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6453 return -ENOENT;
593060d7 6454 }
dfe25020
CM
6455 if (!map->stripes[i].dev) {
6456 map->stripes[i].dev =
2ff7e61e
JM
6457 add_missing_dev(fs_info->fs_devices, devid,
6458 uuid);
adfb69af 6459 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6460 free_extent_map(em);
adfb69af
AJ
6461 btrfs_err(fs_info,
6462 "failed to init missing dev %llu: %ld",
6463 devid, PTR_ERR(map->stripes[i].dev));
6464 return PTR_ERR(map->stripes[i].dev);
dfe25020 6465 }
2b902dfc 6466 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020
CM
6467 }
6468 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6469 }
6470
890871be 6471 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6472 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6473 write_unlock(&map_tree->map_tree.lock);
79787eaa 6474 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6475 free_extent_map(em);
6476
6477 return 0;
6478}
6479
143bede5 6480static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6481 struct btrfs_dev_item *dev_item,
6482 struct btrfs_device *device)
6483{
6484 unsigned long ptr;
0b86a832
CM
6485
6486 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6487 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6488 device->total_bytes = device->disk_total_bytes;
935e5cc9 6489 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6490 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6491 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6492 device->type = btrfs_device_type(leaf, dev_item);
6493 device->io_align = btrfs_device_io_align(leaf, dev_item);
6494 device->io_width = btrfs_device_io_width(leaf, dev_item);
6495 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6496 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6497 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6498
410ba3a2 6499 ptr = btrfs_device_uuid(dev_item);
e17cade2 6500 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6501}
6502
2ff7e61e 6503static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6504 u8 *fsid)
2b82032c
YZ
6505{
6506 struct btrfs_fs_devices *fs_devices;
6507 int ret;
6508
b367e47f 6509 BUG_ON(!mutex_is_locked(&uuid_mutex));
2dfeca9b 6510 ASSERT(fsid);
2b82032c 6511
0b246afa 6512 fs_devices = fs_info->fs_devices->seed;
2b82032c 6513 while (fs_devices) {
44880fdc 6514 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6515 return fs_devices;
6516
2b82032c
YZ
6517 fs_devices = fs_devices->seed;
6518 }
6519
6520 fs_devices = find_fsid(fsid);
6521 if (!fs_devices) {
0b246afa 6522 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6523 return ERR_PTR(-ENOENT);
6524
6525 fs_devices = alloc_fs_devices(fsid);
6526 if (IS_ERR(fs_devices))
6527 return fs_devices;
6528
6529 fs_devices->seeding = 1;
6530 fs_devices->opened = 1;
6531 return fs_devices;
2b82032c 6532 }
e4404d6e
YZ
6533
6534 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6535 if (IS_ERR(fs_devices))
6536 return fs_devices;
2b82032c 6537
97288f2c 6538 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6539 fs_info->bdev_holder);
48d28232
JL
6540 if (ret) {
6541 free_fs_devices(fs_devices);
5f375835 6542 fs_devices = ERR_PTR(ret);
2b82032c 6543 goto out;
48d28232 6544 }
2b82032c
YZ
6545
6546 if (!fs_devices->seeding) {
6547 __btrfs_close_devices(fs_devices);
e4404d6e 6548 free_fs_devices(fs_devices);
5f375835 6549 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6550 goto out;
6551 }
6552
0b246afa
JM
6553 fs_devices->seed = fs_info->fs_devices->seed;
6554 fs_info->fs_devices->seed = fs_devices;
2b82032c 6555out:
5f375835 6556 return fs_devices;
2b82032c
YZ
6557}
6558
2ff7e61e 6559static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6560 struct extent_buffer *leaf,
6561 struct btrfs_dev_item *dev_item)
6562{
0b246afa 6563 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6564 struct btrfs_device *device;
6565 u64 devid;
6566 int ret;
44880fdc 6567 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6568 u8 dev_uuid[BTRFS_UUID_SIZE];
6569
0b86a832 6570 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6571 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6572 BTRFS_UUID_SIZE);
1473b24e 6573 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6574 BTRFS_FSID_SIZE);
2b82032c 6575
44880fdc 6576 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
2ff7e61e 6577 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6578 if (IS_ERR(fs_devices))
6579 return PTR_ERR(fs_devices);
2b82032c
YZ
6580 }
6581
0b246afa 6582 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6583 if (!device) {
c5502451 6584 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6585 btrfs_report_missing_device(fs_info, devid,
6586 dev_uuid, true);
45dbdbc9 6587 return -ENOENT;
c5502451 6588 }
2b82032c 6589
2ff7e61e 6590 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6591 if (IS_ERR(device)) {
6592 btrfs_err(fs_info,
6593 "failed to add missing dev %llu: %ld",
6594 devid, PTR_ERR(device));
6595 return PTR_ERR(device);
6596 }
2b902dfc 6597 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6598 } else {
c5502451 6599 if (!device->bdev) {
2b902dfc
AJ
6600 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6601 btrfs_report_missing_device(fs_info,
6602 devid, dev_uuid, true);
45dbdbc9 6603 return -ENOENT;
2b902dfc
AJ
6604 }
6605 btrfs_report_missing_device(fs_info, devid,
6606 dev_uuid, false);
c5502451 6607 }
5f375835
MX
6608
6609 if(!device->bdev && !device->missing) {
cd02dca5
CM
6610 /*
6611 * this happens when a device that was properly setup
6612 * in the device info lists suddenly goes bad.
6613 * device->bdev is NULL, and so we have to set
6614 * device->missing to one here
6615 */
5f375835 6616 device->fs_devices->missing_devices++;
cd02dca5 6617 device->missing = 1;
2b82032c 6618 }
5f375835
MX
6619
6620 /* Move the device to its own fs_devices */
6621 if (device->fs_devices != fs_devices) {
6622 ASSERT(device->missing);
6623
6624 list_move(&device->dev_list, &fs_devices->devices);
6625 device->fs_devices->num_devices--;
6626 fs_devices->num_devices++;
6627
6628 device->fs_devices->missing_devices--;
6629 fs_devices->missing_devices++;
6630
6631 device->fs_devices = fs_devices;
6632 }
2b82032c
YZ
6633 }
6634
0b246afa 6635 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6636 BUG_ON(device->writeable);
6637 if (device->generation !=
6638 btrfs_device_generation(leaf, dev_item))
6639 return -EINVAL;
6324fbf3 6640 }
0b86a832
CM
6641
6642 fill_device_from_item(leaf, dev_item, device);
dfe25020 6643 device->in_fs_metadata = 1;
63a212ab 6644 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6645 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6646 atomic64_add(device->total_bytes - device->bytes_used,
6647 &fs_info->free_chunk_space);
2bf64758 6648 }
0b86a832 6649 ret = 0;
0b86a832
CM
6650 return ret;
6651}
6652
6bccf3ab 6653int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6654{
6bccf3ab 6655 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6656 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6657 struct extent_buffer *sb;
0b86a832 6658 struct btrfs_disk_key *disk_key;
0b86a832 6659 struct btrfs_chunk *chunk;
1ffb22cf
DS
6660 u8 *array_ptr;
6661 unsigned long sb_array_offset;
84eed90f 6662 int ret = 0;
0b86a832
CM
6663 u32 num_stripes;
6664 u32 array_size;
6665 u32 len = 0;
1ffb22cf 6666 u32 cur_offset;
e06cd3dd 6667 u64 type;
84eed90f 6668 struct btrfs_key key;
0b86a832 6669
0b246afa 6670 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6671 /*
6672 * This will create extent buffer of nodesize, superblock size is
6673 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6674 * overallocate but we can keep it as-is, only the first page is used.
6675 */
2ff7e61e 6676 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6677 if (IS_ERR(sb))
6678 return PTR_ERR(sb);
4db8c528 6679 set_extent_buffer_uptodate(sb);
85d4e461 6680 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6681 /*
01327610 6682 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6683 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6684 * pages up-to-date when the page is larger: extent does not cover the
6685 * whole page and consequently check_page_uptodate does not find all
6686 * the page's extents up-to-date (the hole beyond sb),
6687 * write_extent_buffer then triggers a WARN_ON.
6688 *
6689 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6690 * but sb spans only this function. Add an explicit SetPageUptodate call
6691 * to silence the warning eg. on PowerPC 64.
6692 */
09cbfeaf 6693 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6694 SetPageUptodate(sb->pages[0]);
4008c04a 6695
a061fc8d 6696 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6697 array_size = btrfs_super_sys_array_size(super_copy);
6698
1ffb22cf
DS
6699 array_ptr = super_copy->sys_chunk_array;
6700 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6701 cur_offset = 0;
0b86a832 6702
1ffb22cf
DS
6703 while (cur_offset < array_size) {
6704 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6705 len = sizeof(*disk_key);
6706 if (cur_offset + len > array_size)
6707 goto out_short_read;
6708
0b86a832
CM
6709 btrfs_disk_key_to_cpu(&key, disk_key);
6710
1ffb22cf
DS
6711 array_ptr += len;
6712 sb_array_offset += len;
6713 cur_offset += len;
0b86a832 6714
0d81ba5d 6715 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6716 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6717 /*
6718 * At least one btrfs_chunk with one stripe must be
6719 * present, exact stripe count check comes afterwards
6720 */
6721 len = btrfs_chunk_item_size(1);
6722 if (cur_offset + len > array_size)
6723 goto out_short_read;
6724
6725 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6726 if (!num_stripes) {
ab8d0fc4
JM
6727 btrfs_err(fs_info,
6728 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6729 num_stripes, cur_offset);
6730 ret = -EIO;
6731 break;
6732 }
6733
e06cd3dd
LB
6734 type = btrfs_chunk_type(sb, chunk);
6735 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6736 btrfs_err(fs_info,
e06cd3dd
LB
6737 "invalid chunk type %llu in sys_array at offset %u",
6738 type, cur_offset);
6739 ret = -EIO;
6740 break;
6741 }
6742
e3540eab
DS
6743 len = btrfs_chunk_item_size(num_stripes);
6744 if (cur_offset + len > array_size)
6745 goto out_short_read;
6746
2ff7e61e 6747 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6748 if (ret)
6749 break;
0b86a832 6750 } else {
ab8d0fc4
JM
6751 btrfs_err(fs_info,
6752 "unexpected item type %u in sys_array at offset %u",
6753 (u32)key.type, cur_offset);
84eed90f
CM
6754 ret = -EIO;
6755 break;
0b86a832 6756 }
1ffb22cf
DS
6757 array_ptr += len;
6758 sb_array_offset += len;
6759 cur_offset += len;
0b86a832 6760 }
d865177a 6761 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6762 free_extent_buffer_stale(sb);
84eed90f 6763 return ret;
e3540eab
DS
6764
6765out_short_read:
ab8d0fc4 6766 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6767 len, cur_offset);
d865177a 6768 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6769 free_extent_buffer_stale(sb);
e3540eab 6770 return -EIO;
0b86a832
CM
6771}
6772
21634a19
QW
6773/*
6774 * Check if all chunks in the fs are OK for read-write degraded mount
6775 *
6776 * Return true if all chunks meet the minimal RW mount requirements.
6777 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6778 */
6779bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6780{
6781 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6782 struct extent_map *em;
6783 u64 next_start = 0;
6784 bool ret = true;
6785
6786 read_lock(&map_tree->map_tree.lock);
6787 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6788 read_unlock(&map_tree->map_tree.lock);
6789 /* No chunk at all? Return false anyway */
6790 if (!em) {
6791 ret = false;
6792 goto out;
6793 }
6794 while (em) {
6795 struct map_lookup *map;
6796 int missing = 0;
6797 int max_tolerated;
6798 int i;
6799
6800 map = em->map_lookup;
6801 max_tolerated =
6802 btrfs_get_num_tolerated_disk_barrier_failures(
6803 map->type);
6804 for (i = 0; i < map->num_stripes; i++) {
6805 struct btrfs_device *dev = map->stripes[i].dev;
6806
6807 if (!dev || !dev->bdev || dev->missing ||
6808 dev->last_flush_error)
6809 missing++;
6810 }
6811 if (missing > max_tolerated) {
6812 btrfs_warn(fs_info,
6813 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6814 em->start, missing, max_tolerated);
6815 free_extent_map(em);
6816 ret = false;
6817 goto out;
6818 }
6819 next_start = extent_map_end(em);
6820 free_extent_map(em);
6821
6822 read_lock(&map_tree->map_tree.lock);
6823 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6824 (u64)(-1) - next_start);
6825 read_unlock(&map_tree->map_tree.lock);
6826 }
6827out:
6828 return ret;
6829}
6830
5b4aacef 6831int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6832{
5b4aacef 6833 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6834 struct btrfs_path *path;
6835 struct extent_buffer *leaf;
6836 struct btrfs_key key;
6837 struct btrfs_key found_key;
6838 int ret;
6839 int slot;
99e3ecfc 6840 u64 total_dev = 0;
0b86a832 6841
0b86a832
CM
6842 path = btrfs_alloc_path();
6843 if (!path)
6844 return -ENOMEM;
6845
b367e47f 6846 mutex_lock(&uuid_mutex);
34441361 6847 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6848
395927a9
FDBM
6849 /*
6850 * Read all device items, and then all the chunk items. All
6851 * device items are found before any chunk item (their object id
6852 * is smaller than the lowest possible object id for a chunk
6853 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6854 */
6855 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6856 key.offset = 0;
6857 key.type = 0;
0b86a832 6858 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6859 if (ret < 0)
6860 goto error;
d397712b 6861 while (1) {
0b86a832
CM
6862 leaf = path->nodes[0];
6863 slot = path->slots[0];
6864 if (slot >= btrfs_header_nritems(leaf)) {
6865 ret = btrfs_next_leaf(root, path);
6866 if (ret == 0)
6867 continue;
6868 if (ret < 0)
6869 goto error;
6870 break;
6871 }
6872 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6873 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6874 struct btrfs_dev_item *dev_item;
6875 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6876 struct btrfs_dev_item);
2ff7e61e 6877 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6878 if (ret)
6879 goto error;
99e3ecfc 6880 total_dev++;
0b86a832
CM
6881 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6882 struct btrfs_chunk *chunk;
6883 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6884 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6885 if (ret)
6886 goto error;
0b86a832
CM
6887 }
6888 path->slots[0]++;
6889 }
99e3ecfc
LB
6890
6891 /*
6892 * After loading chunk tree, we've got all device information,
6893 * do another round of validation checks.
6894 */
0b246afa
JM
6895 if (total_dev != fs_info->fs_devices->total_devices) {
6896 btrfs_err(fs_info,
99e3ecfc 6897 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6898 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6899 total_dev);
6900 ret = -EINVAL;
6901 goto error;
6902 }
0b246afa
JM
6903 if (btrfs_super_total_bytes(fs_info->super_copy) <
6904 fs_info->fs_devices->total_rw_bytes) {
6905 btrfs_err(fs_info,
99e3ecfc 6906 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6907 btrfs_super_total_bytes(fs_info->super_copy),
6908 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6909 ret = -EINVAL;
6910 goto error;
6911 }
0b86a832
CM
6912 ret = 0;
6913error:
34441361 6914 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
6915 mutex_unlock(&uuid_mutex);
6916
2b82032c 6917 btrfs_free_path(path);
0b86a832
CM
6918 return ret;
6919}
442a4f63 6920
cb517eab
MX
6921void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6922{
6923 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6924 struct btrfs_device *device;
6925
29cc83f6
LB
6926 while (fs_devices) {
6927 mutex_lock(&fs_devices->device_list_mutex);
6928 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6929 device->fs_info = fs_info;
29cc83f6
LB
6930 mutex_unlock(&fs_devices->device_list_mutex);
6931
6932 fs_devices = fs_devices->seed;
6933 }
cb517eab
MX
6934}
6935
733f4fbb
SB
6936static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6937{
6938 int i;
6939
6940 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6941 btrfs_dev_stat_reset(dev, i);
6942}
6943
6944int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6945{
6946 struct btrfs_key key;
6947 struct btrfs_key found_key;
6948 struct btrfs_root *dev_root = fs_info->dev_root;
6949 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6950 struct extent_buffer *eb;
6951 int slot;
6952 int ret = 0;
6953 struct btrfs_device *device;
6954 struct btrfs_path *path = NULL;
6955 int i;
6956
6957 path = btrfs_alloc_path();
6958 if (!path) {
6959 ret = -ENOMEM;
6960 goto out;
6961 }
6962
6963 mutex_lock(&fs_devices->device_list_mutex);
6964 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6965 int item_size;
6966 struct btrfs_dev_stats_item *ptr;
6967
242e2956
DS
6968 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6969 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6970 key.offset = device->devid;
6971 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6972 if (ret) {
733f4fbb
SB
6973 __btrfs_reset_dev_stats(device);
6974 device->dev_stats_valid = 1;
6975 btrfs_release_path(path);
6976 continue;
6977 }
6978 slot = path->slots[0];
6979 eb = path->nodes[0];
6980 btrfs_item_key_to_cpu(eb, &found_key, slot);
6981 item_size = btrfs_item_size_nr(eb, slot);
6982
6983 ptr = btrfs_item_ptr(eb, slot,
6984 struct btrfs_dev_stats_item);
6985
6986 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6987 if (item_size >= (1 + i) * sizeof(__le64))
6988 btrfs_dev_stat_set(device, i,
6989 btrfs_dev_stats_value(eb, ptr, i));
6990 else
6991 btrfs_dev_stat_reset(device, i);
6992 }
6993
6994 device->dev_stats_valid = 1;
6995 btrfs_dev_stat_print_on_load(device);
6996 btrfs_release_path(path);
6997 }
6998 mutex_unlock(&fs_devices->device_list_mutex);
6999
7000out:
7001 btrfs_free_path(path);
7002 return ret < 0 ? ret : 0;
7003}
7004
7005static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 7006 struct btrfs_fs_info *fs_info,
733f4fbb
SB
7007 struct btrfs_device *device)
7008{
6bccf3ab 7009 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7010 struct btrfs_path *path;
7011 struct btrfs_key key;
7012 struct extent_buffer *eb;
7013 struct btrfs_dev_stats_item *ptr;
7014 int ret;
7015 int i;
7016
242e2956
DS
7017 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7018 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7019 key.offset = device->devid;
7020
7021 path = btrfs_alloc_path();
fa252992
DS
7022 if (!path)
7023 return -ENOMEM;
733f4fbb
SB
7024 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7025 if (ret < 0) {
0b246afa 7026 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7027 "error %d while searching for dev_stats item for device %s",
606686ee 7028 ret, rcu_str_deref(device->name));
733f4fbb
SB
7029 goto out;
7030 }
7031
7032 if (ret == 0 &&
7033 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7034 /* need to delete old one and insert a new one */
7035 ret = btrfs_del_item(trans, dev_root, path);
7036 if (ret != 0) {
0b246afa 7037 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7038 "delete too small dev_stats item for device %s failed %d",
606686ee 7039 rcu_str_deref(device->name), ret);
733f4fbb
SB
7040 goto out;
7041 }
7042 ret = 1;
7043 }
7044
7045 if (ret == 1) {
7046 /* need to insert a new item */
7047 btrfs_release_path(path);
7048 ret = btrfs_insert_empty_item(trans, dev_root, path,
7049 &key, sizeof(*ptr));
7050 if (ret < 0) {
0b246afa 7051 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7052 "insert dev_stats item for device %s failed %d",
7053 rcu_str_deref(device->name), ret);
733f4fbb
SB
7054 goto out;
7055 }
7056 }
7057
7058 eb = path->nodes[0];
7059 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7060 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7061 btrfs_set_dev_stats_value(eb, ptr, i,
7062 btrfs_dev_stat_read(device, i));
7063 btrfs_mark_buffer_dirty(eb);
7064
7065out:
7066 btrfs_free_path(path);
7067 return ret;
7068}
7069
7070/*
7071 * called from commit_transaction. Writes all changed device stats to disk.
7072 */
7073int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7074 struct btrfs_fs_info *fs_info)
7075{
733f4fbb
SB
7076 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7077 struct btrfs_device *device;
addc3fa7 7078 int stats_cnt;
733f4fbb
SB
7079 int ret = 0;
7080
7081 mutex_lock(&fs_devices->device_list_mutex);
7082 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7083 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7084 continue;
7085
addc3fa7 7086 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7087 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7088 if (!ret)
addc3fa7 7089 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7090 }
7091 mutex_unlock(&fs_devices->device_list_mutex);
7092
7093 return ret;
7094}
7095
442a4f63
SB
7096void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7097{
7098 btrfs_dev_stat_inc(dev, index);
7099 btrfs_dev_stat_print_on_error(dev);
7100}
7101
48a3b636 7102static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7103{
733f4fbb
SB
7104 if (!dev->dev_stats_valid)
7105 return;
fb456252 7106 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7107 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7108 rcu_str_deref(dev->name),
442a4f63
SB
7109 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7110 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7111 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7112 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7113 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7114}
c11d2c23 7115
733f4fbb
SB
7116static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7117{
a98cdb85
SB
7118 int i;
7119
7120 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7121 if (btrfs_dev_stat_read(dev, i) != 0)
7122 break;
7123 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7124 return; /* all values == 0, suppress message */
7125
fb456252 7126 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7127 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7128 rcu_str_deref(dev->name),
733f4fbb
SB
7129 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7130 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7131 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7132 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7133 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7134}
7135
2ff7e61e 7136int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7137 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7138{
7139 struct btrfs_device *dev;
0b246afa 7140 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7141 int i;
7142
7143 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7144 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7145 mutex_unlock(&fs_devices->device_list_mutex);
7146
7147 if (!dev) {
0b246afa 7148 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7149 return -ENODEV;
733f4fbb 7150 } else if (!dev->dev_stats_valid) {
0b246afa 7151 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7152 return -ENODEV;
b27f7c0c 7153 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7154 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7155 if (stats->nr_items > i)
7156 stats->values[i] =
7157 btrfs_dev_stat_read_and_reset(dev, i);
7158 else
7159 btrfs_dev_stat_reset(dev, i);
7160 }
7161 } else {
7162 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7163 if (stats->nr_items > i)
7164 stats->values[i] = btrfs_dev_stat_read(dev, i);
7165 }
7166 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7167 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7168 return 0;
7169}
a8a6dab7 7170
da353f6b 7171void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7172{
7173 struct buffer_head *bh;
7174 struct btrfs_super_block *disk_super;
12b1c263 7175 int copy_num;
a8a6dab7 7176
12b1c263
AJ
7177 if (!bdev)
7178 return;
a8a6dab7 7179
12b1c263
AJ
7180 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7181 copy_num++) {
a8a6dab7 7182
12b1c263
AJ
7183 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7184 continue;
7185
7186 disk_super = (struct btrfs_super_block *)bh->b_data;
7187
7188 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7189 set_buffer_dirty(bh);
7190 sync_dirty_buffer(bh);
7191 brelse(bh);
7192 }
7193
7194 /* Notify udev that device has changed */
7195 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7196
7197 /* Update ctime/mtime for device path for libblkid */
7198 update_dev_time(device_path);
a8a6dab7 7199}
935e5cc9
MX
7200
7201/*
7202 * Update the size of all devices, which is used for writing out the
7203 * super blocks.
7204 */
7205void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7206{
7207 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7208 struct btrfs_device *curr, *next;
7209
7210 if (list_empty(&fs_devices->resized_devices))
7211 return;
7212
7213 mutex_lock(&fs_devices->device_list_mutex);
34441361 7214 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7215 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7216 resized_list) {
7217 list_del_init(&curr->resized_list);
7218 curr->commit_total_bytes = curr->disk_total_bytes;
7219 }
34441361 7220 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7221 mutex_unlock(&fs_devices->device_list_mutex);
7222}
ce7213c7
MX
7223
7224/* Must be invoked during the transaction commit */
2ff7e61e 7225void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7226 struct btrfs_transaction *transaction)
7227{
7228 struct extent_map *em;
7229 struct map_lookup *map;
7230 struct btrfs_device *dev;
7231 int i;
7232
7233 if (list_empty(&transaction->pending_chunks))
7234 return;
7235
7236 /* In order to kick the device replace finish process */
34441361 7237 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7238 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7239 map = em->map_lookup;
ce7213c7
MX
7240
7241 for (i = 0; i < map->num_stripes; i++) {
7242 dev = map->stripes[i].dev;
7243 dev->commit_bytes_used = dev->bytes_used;
7244 }
7245 }
34441361 7246 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7247}
5a13f430
AJ
7248
7249void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7250{
7251 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7252 while (fs_devices) {
7253 fs_devices->fs_info = fs_info;
7254 fs_devices = fs_devices->seed;
7255 }
7256}
7257
7258void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7259{
7260 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7261 while (fs_devices) {
7262 fs_devices->fs_info = NULL;
7263 fs_devices = fs_devices->seed;
7264 }
7265}