]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/volumes.c
btrfs: relocation: fix use-after-free on dead relocation roots
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832
CM
6#include <linux/sched.h>
7#include <linux/bio.h>
5a0e3ad6 8#include <linux/slab.h>
8a4b83cc 9#include <linux/buffer_head.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
0b86a832 33
af902047
ZL
34const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
8789f4fe 40 .tolerated_failures = 1,
af902047
ZL
41 .devs_increment = 2,
42 .ncopies = 2,
b50836ed 43 .nparity = 0,
ed23467b 44 .raid_name = "raid10",
41a6e891 45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
47 },
48 [BTRFS_RAID_RAID1] = {
49 .sub_stripes = 1,
50 .dev_stripes = 1,
51 .devs_max = 2,
52 .devs_min = 2,
8789f4fe 53 .tolerated_failures = 1,
af902047
ZL
54 .devs_increment = 2,
55 .ncopies = 2,
b50836ed 56 .nparity = 0,
ed23467b 57 .raid_name = "raid1",
41a6e891 58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047
ZL
60 },
61 [BTRFS_RAID_DUP] = {
62 .sub_stripes = 1,
63 .dev_stripes = 2,
64 .devs_max = 1,
65 .devs_min = 1,
8789f4fe 66 .tolerated_failures = 0,
af902047
ZL
67 .devs_increment = 1,
68 .ncopies = 2,
b50836ed 69 .nparity = 0,
ed23467b 70 .raid_name = "dup",
41a6e891 71 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 72 .mindev_error = 0,
af902047
ZL
73 },
74 [BTRFS_RAID_RAID0] = {
75 .sub_stripes = 1,
76 .dev_stripes = 1,
77 .devs_max = 0,
78 .devs_min = 2,
8789f4fe 79 .tolerated_failures = 0,
af902047
ZL
80 .devs_increment = 1,
81 .ncopies = 1,
b50836ed 82 .nparity = 0,
ed23467b 83 .raid_name = "raid0",
41a6e891 84 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 85 .mindev_error = 0,
af902047
ZL
86 },
87 [BTRFS_RAID_SINGLE] = {
88 .sub_stripes = 1,
89 .dev_stripes = 1,
90 .devs_max = 1,
91 .devs_min = 1,
8789f4fe 92 .tolerated_failures = 0,
af902047
ZL
93 .devs_increment = 1,
94 .ncopies = 1,
b50836ed 95 .nparity = 0,
ed23467b 96 .raid_name = "single",
41a6e891 97 .bg_flag = 0,
f9fbcaa2 98 .mindev_error = 0,
af902047
ZL
99 },
100 [BTRFS_RAID_RAID5] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 2,
8789f4fe 105 .tolerated_failures = 1,
af902047 106 .devs_increment = 1,
da612e31 107 .ncopies = 1,
b50836ed 108 .nparity = 1,
ed23467b 109 .raid_name = "raid5",
41a6e891 110 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 111 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
112 },
113 [BTRFS_RAID_RAID6] = {
114 .sub_stripes = 1,
115 .dev_stripes = 1,
116 .devs_max = 0,
117 .devs_min = 3,
8789f4fe 118 .tolerated_failures = 2,
af902047 119 .devs_increment = 1,
da612e31 120 .ncopies = 1,
b50836ed 121 .nparity = 2,
ed23467b 122 .raid_name = "raid6",
41a6e891 123 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 124 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
125 },
126};
127
158da513 128const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 129{
158da513
DS
130 const int index = btrfs_bg_flags_to_raid_index(flags);
131
132 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
133 return NULL;
134
158da513 135 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
136}
137
f89e09cf
AJ
138/*
139 * Fill @buf with textual description of @bg_flags, no more than @size_buf
140 * bytes including terminating null byte.
141 */
142void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
143{
144 int i;
145 int ret;
146 char *bp = buf;
147 u64 flags = bg_flags;
148 u32 size_bp = size_buf;
149
150 if (!flags) {
151 strcpy(bp, "NONE");
152 return;
153 }
154
155#define DESCRIBE_FLAG(flag, desc) \
156 do { \
157 if (flags & (flag)) { \
158 ret = snprintf(bp, size_bp, "%s|", (desc)); \
159 if (ret < 0 || ret >= size_bp) \
160 goto out_overflow; \
161 size_bp -= ret; \
162 bp += ret; \
163 flags &= ~(flag); \
164 } \
165 } while (0)
166
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
170
171 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
172 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
173 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
174 btrfs_raid_array[i].raid_name);
175#undef DESCRIBE_FLAG
176
177 if (flags) {
178 ret = snprintf(bp, size_bp, "0x%llx|", flags);
179 size_bp -= ret;
180 }
181
182 if (size_bp < size_buf)
183 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
184
185 /*
186 * The text is trimmed, it's up to the caller to provide sufficiently
187 * large buffer
188 */
189out_overflow:;
190}
191
6f8e0fc7 192static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 193static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 194static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 195static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
196static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 enum btrfs_map_op op,
198 u64 logical, u64 *length,
199 struct btrfs_bio **bbio_ret,
200 int mirror_num, int need_raid_map);
2b82032c 201
9c6b1c4d
DS
202/*
203 * Device locking
204 * ==============
205 *
206 * There are several mutexes that protect manipulation of devices and low-level
207 * structures like chunks but not block groups, extents or files
208 *
209 * uuid_mutex (global lock)
210 * ------------------------
211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213 * device) or requested by the device= mount option
214 *
215 * the mutex can be very coarse and can cover long-running operations
216 *
217 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 218 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
219 *
220 * global::fs_devs - add, remove, updates to the global list
221 *
222 * does not protect: manipulation of the fs_devices::devices list!
223 *
224 * btrfs_device::name - renames (write side), read is RCU
225 *
226 * fs_devices::device_list_mutex (per-fs, with RCU)
227 * ------------------------------------------------
228 * protects updates to fs_devices::devices, ie. adding and deleting
229 *
230 * simple list traversal with read-only actions can be done with RCU protection
231 *
232 * may be used to exclude some operations from running concurrently without any
233 * modifications to the list (see write_all_supers)
234 *
9c6b1c4d
DS
235 * balance_mutex
236 * -------------
237 * protects balance structures (status, state) and context accessed from
238 * several places (internally, ioctl)
239 *
240 * chunk_mutex
241 * -----------
242 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
243 * device is added/removed. Additionally it also protects post_commit_list of
244 * individual devices, since they can be added to the transaction's
245 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
246 *
247 * cleaner_mutex
248 * -------------
249 * a big lock that is held by the cleaner thread and prevents running subvolume
250 * cleaning together with relocation or delayed iputs
251 *
252 *
253 * Lock nesting
254 * ============
255 *
256 * uuid_mutex
257 * volume_mutex
258 * device_list_mutex
259 * chunk_mutex
260 * balance_mutex
89595e80
AJ
261 *
262 *
263 * Exclusive operations, BTRFS_FS_EXCL_OP
264 * ======================================
265 *
266 * Maintains the exclusivity of the following operations that apply to the
267 * whole filesystem and cannot run in parallel.
268 *
269 * - Balance (*)
270 * - Device add
271 * - Device remove
272 * - Device replace (*)
273 * - Resize
274 *
275 * The device operations (as above) can be in one of the following states:
276 *
277 * - Running state
278 * - Paused state
279 * - Completed state
280 *
281 * Only device operations marked with (*) can go into the Paused state for the
282 * following reasons:
283 *
284 * - ioctl (only Balance can be Paused through ioctl)
285 * - filesystem remounted as read-only
286 * - filesystem unmounted and mounted as read-only
287 * - system power-cycle and filesystem mounted as read-only
288 * - filesystem or device errors leading to forced read-only
289 *
290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292 * A device operation in Paused or Running state can be canceled or resumed
293 * either by ioctl (Balance only) or when remounted as read-write.
294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 * completed.
9c6b1c4d
DS
296 */
297
67a2c45e 298DEFINE_MUTEX(uuid_mutex);
8a4b83cc 299static LIST_HEAD(fs_uuids);
c73eccf7
AJ
300struct list_head *btrfs_get_fs_uuids(void)
301{
302 return &fs_uuids;
303}
8a4b83cc 304
2dfeca9b
DS
305/*
306 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
309 *
310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311 * The returned struct is not linked onto any lists and can be destroyed with
312 * kfree() right away.
313 */
7239ff4b
NB
314static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 const u8 *metadata_fsid)
2208a378
ID
316{
317 struct btrfs_fs_devices *fs_devs;
318
78f2c9e6 319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
320 if (!fs_devs)
321 return ERR_PTR(-ENOMEM);
322
323 mutex_init(&fs_devs->device_list_mutex);
324
325 INIT_LIST_HEAD(&fs_devs->devices);
326 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 327 INIT_LIST_HEAD(&fs_devs->fs_list);
2208a378
ID
328 if (fsid)
329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 330
7239ff4b
NB
331 if (metadata_fsid)
332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 else if (fsid)
334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
2208a378
ID
336 return fs_devs;
337}
338
a425f9d4 339void btrfs_free_device(struct btrfs_device *device)
48dae9cf 340{
bbbf7243 341 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 342 rcu_string_free(device->name);
1c11b63e 343 extent_io_tree_release(&device->alloc_state);
48dae9cf
DS
344 bio_put(device->flush_bio);
345 kfree(device);
346}
347
e4404d6e
YZ
348static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349{
350 struct btrfs_device *device;
351 WARN_ON(fs_devices->opened);
352 while (!list_empty(&fs_devices->devices)) {
353 device = list_entry(fs_devices->devices.next,
354 struct btrfs_device, dev_list);
355 list_del(&device->dev_list);
a425f9d4 356 btrfs_free_device(device);
e4404d6e
YZ
357 }
358 kfree(fs_devices);
359}
360
ffc5a379 361void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
362{
363 struct btrfs_fs_devices *fs_devices;
8a4b83cc 364
2b82032c
YZ
365 while (!list_empty(&fs_uuids)) {
366 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
367 struct btrfs_fs_devices, fs_list);
368 list_del(&fs_devices->fs_list);
e4404d6e 369 free_fs_devices(fs_devices);
8a4b83cc 370 }
8a4b83cc
CM
371}
372
48dae9cf
DS
373/*
374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
375 * Returned struct is not linked onto any lists and must be destroyed using
a425f9d4 376 * btrfs_free_device.
48dae9cf 377 */
12bd2fc0
ID
378static struct btrfs_device *__alloc_device(void)
379{
380 struct btrfs_device *dev;
381
78f2c9e6 382 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
383 if (!dev)
384 return ERR_PTR(-ENOMEM);
385
e0ae9994
DS
386 /*
387 * Preallocate a bio that's always going to be used for flushing device
388 * barriers and matches the device lifespan
389 */
390 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
391 if (!dev->flush_bio) {
392 kfree(dev);
393 return ERR_PTR(-ENOMEM);
394 }
e0ae9994 395
12bd2fc0
ID
396 INIT_LIST_HEAD(&dev->dev_list);
397 INIT_LIST_HEAD(&dev->dev_alloc_list);
bbbf7243 398 INIT_LIST_HEAD(&dev->post_commit_list);
12bd2fc0
ID
399
400 spin_lock_init(&dev->io_lock);
401
12bd2fc0 402 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 403 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 404 btrfs_device_data_ordered_init(dev);
9bcaaea7 405 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 406 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
1c11b63e 407 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
12bd2fc0
ID
408
409 return dev;
410}
411
7239ff4b
NB
412static noinline struct btrfs_fs_devices *find_fsid(
413 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 414{
8a4b83cc
CM
415 struct btrfs_fs_devices *fs_devices;
416
7239ff4b
NB
417 ASSERT(fsid);
418
7a62d0f0
NB
419 if (metadata_fsid) {
420 /*
421 * Handle scanned device having completed its fsid change but
422 * belonging to a fs_devices that was created by first scanning
423 * a device which didn't have its fsid/metadata_uuid changed
424 * at all and the CHANGING_FSID_V2 flag set.
425 */
426 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
427 if (fs_devices->fsid_change &&
428 memcmp(metadata_fsid, fs_devices->fsid,
429 BTRFS_FSID_SIZE) == 0 &&
430 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
431 BTRFS_FSID_SIZE) == 0) {
432 return fs_devices;
433 }
434 }
cc5de4e7
NB
435 /*
436 * Handle scanned device having completed its fsid change but
437 * belonging to a fs_devices that was created by a device that
438 * has an outdated pair of fsid/metadata_uuid and
439 * CHANGING_FSID_V2 flag set.
440 */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 if (fs_devices->fsid_change &&
443 memcmp(fs_devices->metadata_uuid,
444 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
445 memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 BTRFS_FSID_SIZE) == 0) {
447 return fs_devices;
448 }
449 }
7a62d0f0
NB
450 }
451
452 /* Handle non-split brain cases */
c4babc5e 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
8a4b83cc
CM
463 }
464 return NULL;
465}
466
beaf8ab3
SB
467static int
468btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
469 int flush, struct block_device **bdev,
470 struct buffer_head **bh)
471{
472 int ret;
473
474 *bdev = blkdev_get_by_path(device_path, flags, holder);
475
476 if (IS_ERR(*bdev)) {
477 ret = PTR_ERR(*bdev);
beaf8ab3
SB
478 goto error;
479 }
480
481 if (flush)
482 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 483 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
484 if (ret) {
485 blkdev_put(*bdev, flags);
486 goto error;
487 }
488 invalidate_bdev(*bdev);
489 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
490 if (IS_ERR(*bh)) {
491 ret = PTR_ERR(*bh);
beaf8ab3
SB
492 blkdev_put(*bdev, flags);
493 goto error;
494 }
495
496 return 0;
497
498error:
499 *bdev = NULL;
500 *bh = NULL;
501 return ret;
502}
503
ffbd517d
CM
504static void requeue_list(struct btrfs_pending_bios *pending_bios,
505 struct bio *head, struct bio *tail)
506{
507
508 struct bio *old_head;
509
510 old_head = pending_bios->head;
511 pending_bios->head = head;
512 if (pending_bios->tail)
513 tail->bi_next = old_head;
514 else
515 pending_bios->tail = tail;
516}
517
8b712842
CM
518/*
519 * we try to collect pending bios for a device so we don't get a large
520 * number of procs sending bios down to the same device. This greatly
521 * improves the schedulers ability to collect and merge the bios.
522 *
523 * But, it also turns into a long list of bios to process and that is sure
524 * to eventually make the worker thread block. The solution here is to
525 * make some progress and then put this work struct back at the end of
526 * the list if the block device is congested. This way, multiple devices
527 * can make progress from a single worker thread.
528 */
143bede5 529static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 530{
0b246afa 531 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
532 struct bio *pending;
533 struct backing_dev_info *bdi;
ffbd517d 534 struct btrfs_pending_bios *pending_bios;
8b712842
CM
535 struct bio *tail;
536 struct bio *cur;
537 int again = 0;
ffbd517d 538 unsigned long num_run;
d644d8a1 539 unsigned long batch_run = 0;
b765ead5 540 unsigned long last_waited = 0;
d84275c9 541 int force_reg = 0;
0e588859 542 int sync_pending = 0;
211588ad
CM
543 struct blk_plug plug;
544
545 /*
546 * this function runs all the bios we've collected for
547 * a particular device. We don't want to wander off to
548 * another device without first sending all of these down.
549 * So, setup a plug here and finish it off before we return
550 */
551 blk_start_plug(&plug);
8b712842 552
efa7c9f9 553 bdi = device->bdev->bd_bdi;
b64a2851 554
8b712842
CM
555loop:
556 spin_lock(&device->io_lock);
557
a6837051 558loop_lock:
d84275c9 559 num_run = 0;
ffbd517d 560
8b712842
CM
561 /* take all the bios off the list at once and process them
562 * later on (without the lock held). But, remember the
563 * tail and other pointers so the bios can be properly reinserted
564 * into the list if we hit congestion
565 */
d84275c9 566 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 567 pending_bios = &device->pending_sync_bios;
d84275c9
CM
568 force_reg = 1;
569 } else {
ffbd517d 570 pending_bios = &device->pending_bios;
d84275c9
CM
571 force_reg = 0;
572 }
ffbd517d
CM
573
574 pending = pending_bios->head;
575 tail = pending_bios->tail;
8b712842 576 WARN_ON(pending && !tail);
8b712842
CM
577
578 /*
579 * if pending was null this time around, no bios need processing
580 * at all and we can stop. Otherwise it'll loop back up again
581 * and do an additional check so no bios are missed.
582 *
583 * device->running_pending is used to synchronize with the
584 * schedule_bio code.
585 */
ffbd517d
CM
586 if (device->pending_sync_bios.head == NULL &&
587 device->pending_bios.head == NULL) {
8b712842
CM
588 again = 0;
589 device->running_pending = 0;
ffbd517d
CM
590 } else {
591 again = 1;
592 device->running_pending = 1;
8b712842 593 }
ffbd517d
CM
594
595 pending_bios->head = NULL;
596 pending_bios->tail = NULL;
597
8b712842
CM
598 spin_unlock(&device->io_lock);
599
d397712b 600 while (pending) {
ffbd517d
CM
601
602 rmb();
d84275c9
CM
603 /* we want to work on both lists, but do more bios on the
604 * sync list than the regular list
605 */
606 if ((num_run > 32 &&
607 pending_bios != &device->pending_sync_bios &&
608 device->pending_sync_bios.head) ||
609 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
610 device->pending_bios.head)) {
ffbd517d
CM
611 spin_lock(&device->io_lock);
612 requeue_list(pending_bios, pending, tail);
613 goto loop_lock;
614 }
615
8b712842
CM
616 cur = pending;
617 pending = pending->bi_next;
618 cur->bi_next = NULL;
b64a2851 619
dac56212 620 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 621
2ab1ba68
CM
622 /*
623 * if we're doing the sync list, record that our
624 * plug has some sync requests on it
625 *
626 * If we're doing the regular list and there are
627 * sync requests sitting around, unplug before
628 * we add more
629 */
630 if (pending_bios == &device->pending_sync_bios) {
631 sync_pending = 1;
632 } else if (sync_pending) {
633 blk_finish_plug(&plug);
634 blk_start_plug(&plug);
635 sync_pending = 0;
636 }
637
4e49ea4a 638 btrfsic_submit_bio(cur);
5ff7ba3a
CM
639 num_run++;
640 batch_run++;
853d8ec4
DS
641
642 cond_resched();
8b712842
CM
643
644 /*
645 * we made progress, there is more work to do and the bdi
646 * is now congested. Back off and let other work structs
647 * run instead
648 */
57fd5a5f 649 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 650 fs_info->fs_devices->open_devices > 1) {
b765ead5 651 struct io_context *ioc;
8b712842 652
b765ead5
CM
653 ioc = current->io_context;
654
655 /*
656 * the main goal here is that we don't want to
657 * block if we're going to be able to submit
658 * more requests without blocking.
659 *
660 * This code does two great things, it pokes into
661 * the elevator code from a filesystem _and_
662 * it makes assumptions about how batching works.
663 */
664 if (ioc && ioc->nr_batch_requests > 0 &&
665 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
666 (last_waited == 0 ||
667 ioc->last_waited == last_waited)) {
668 /*
669 * we want to go through our batch of
670 * requests and stop. So, we copy out
671 * the ioc->last_waited time and test
672 * against it before looping
673 */
674 last_waited = ioc->last_waited;
853d8ec4 675 cond_resched();
b765ead5
CM
676 continue;
677 }
8b712842 678 spin_lock(&device->io_lock);
ffbd517d 679 requeue_list(pending_bios, pending, tail);
a6837051 680 device->running_pending = 1;
8b712842
CM
681
682 spin_unlock(&device->io_lock);
a8c93d4e
QW
683 btrfs_queue_work(fs_info->submit_workers,
684 &device->work);
8b712842
CM
685 goto done;
686 }
687 }
ffbd517d 688
51684082
CM
689 cond_resched();
690 if (again)
691 goto loop;
692
693 spin_lock(&device->io_lock);
694 if (device->pending_bios.head || device->pending_sync_bios.head)
695 goto loop_lock;
696 spin_unlock(&device->io_lock);
697
8b712842 698done:
211588ad 699 blk_finish_plug(&plug);
8b712842
CM
700}
701
b2950863 702static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
703{
704 struct btrfs_device *device;
705
706 device = container_of(work, struct btrfs_device, work);
707 run_scheduled_bios(device);
708}
709
70bc7088
AJ
710static bool device_path_matched(const char *path, struct btrfs_device *device)
711{
712 int found;
713
714 rcu_read_lock();
715 found = strcmp(rcu_str_deref(device->name), path);
716 rcu_read_unlock();
717
718 return found == 0;
719}
720
d8367db3
AJ
721/*
722 * Search and remove all stale (devices which are not mounted) devices.
723 * When both inputs are NULL, it will search and release all stale devices.
724 * path: Optional. When provided will it release all unmounted devices
725 * matching this path only.
726 * skip_dev: Optional. Will skip this device when searching for the stale
727 * devices.
70bc7088
AJ
728 * Return: 0 for success or if @path is NULL.
729 * -EBUSY if @path is a mounted device.
730 * -ENOENT if @path does not match any device in the list.
d8367db3 731 */
70bc7088 732static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 733 struct btrfs_device *skip_device)
4fde46f0 734{
fa6d2ae5
AJ
735 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
736 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
737 int ret = 0;
738
739 if (path)
740 ret = -ENOENT;
4fde46f0 741
fa6d2ae5 742 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 743
70bc7088 744 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
745 list_for_each_entry_safe(device, tmp_device,
746 &fs_devices->devices, dev_list) {
fa6d2ae5 747 if (skip_device && skip_device == device)
d8367db3 748 continue;
fa6d2ae5 749 if (path && !device->name)
4fde46f0 750 continue;
70bc7088 751 if (path && !device_path_matched(path, device))
38cf665d 752 continue;
70bc7088
AJ
753 if (fs_devices->opened) {
754 /* for an already deleted device return 0 */
755 if (path && ret != 0)
756 ret = -EBUSY;
757 break;
758 }
4fde46f0 759
4fde46f0 760 /* delete the stale device */
7bcb8164
AJ
761 fs_devices->num_devices--;
762 list_del(&device->dev_list);
763 btrfs_free_device(device);
764
70bc7088 765 ret = 0;
7bcb8164 766 if (fs_devices->num_devices == 0)
fd649f10 767 break;
7bcb8164
AJ
768 }
769 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 770
7bcb8164
AJ
771 if (fs_devices->num_devices == 0) {
772 btrfs_sysfs_remove_fsid(fs_devices);
773 list_del(&fs_devices->fs_list);
774 free_fs_devices(fs_devices);
4fde46f0
AJ
775 }
776 }
70bc7088
AJ
777
778 return ret;
4fde46f0
AJ
779}
780
0fb08bcc
AJ
781static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
782 struct btrfs_device *device, fmode_t flags,
783 void *holder)
784{
785 struct request_queue *q;
786 struct block_device *bdev;
787 struct buffer_head *bh;
788 struct btrfs_super_block *disk_super;
789 u64 devid;
790 int ret;
791
792 if (device->bdev)
793 return -EINVAL;
794 if (!device->name)
795 return -EINVAL;
796
797 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798 &bdev, &bh);
799 if (ret)
800 return ret;
801
802 disk_super = (struct btrfs_super_block *)bh->b_data;
803 devid = btrfs_stack_device_id(&disk_super->dev_item);
804 if (devid != device->devid)
805 goto error_brelse;
806
807 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
808 goto error_brelse;
809
810 device->generation = btrfs_super_generation(disk_super);
811
812 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
813 if (btrfs_super_incompat_flags(disk_super) &
814 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
815 pr_err(
816 "BTRFS: Invalid seeding and uuid-changed device detected\n");
817 goto error_brelse;
818 }
819
ebbede42 820 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
821 fs_devices->seeding = 1;
822 } else {
ebbede42
AJ
823 if (bdev_read_only(bdev))
824 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
825 else
826 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
827 }
828
829 q = bdev_get_queue(bdev);
0fb08bcc
AJ
830 if (!blk_queue_nonrot(q))
831 fs_devices->rotating = 1;
832
833 device->bdev = bdev;
e12c9621 834 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
835 device->mode = flags;
836
837 fs_devices->open_devices++;
ebbede42
AJ
838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
839 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 840 fs_devices->rw_devices++;
b1b8e386 841 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc
AJ
842 }
843 brelse(bh);
844
845 return 0;
846
847error_brelse:
848 brelse(bh);
849 blkdev_put(bdev, flags);
850
851 return -EINVAL;
852}
853
7a62d0f0
NB
854/*
855 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
856 * being created with a disk that has already completed its fsid change.
857 */
858static struct btrfs_fs_devices *find_fsid_inprogress(
859 struct btrfs_super_block *disk_super)
860{
861 struct btrfs_fs_devices *fs_devices;
862
863 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
864 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
865 BTRFS_FSID_SIZE) != 0 &&
866 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
867 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
868 return fs_devices;
869 }
870 }
871
872 return NULL;
873}
874
cc5de4e7
NB
875
876static struct btrfs_fs_devices *find_fsid_changed(
877 struct btrfs_super_block *disk_super)
878{
879 struct btrfs_fs_devices *fs_devices;
880
881 /*
882 * Handles the case where scanned device is part of an fs that had
883 * multiple successful changes of FSID but curently device didn't
884 * observe it. Meaning our fsid will be different than theirs.
885 */
886 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
887 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
888 BTRFS_FSID_SIZE) != 0 &&
889 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
890 BTRFS_FSID_SIZE) == 0 &&
891 memcmp(fs_devices->fsid, disk_super->fsid,
892 BTRFS_FSID_SIZE) != 0) {
893 return fs_devices;
894 }
895 }
896
897 return NULL;
898}
60999ca4
DS
899/*
900 * Add new device to list of registered devices
901 *
902 * Returns:
e124ece5
AJ
903 * device pointer which was just added or updated when successful
904 * error pointer when failed
60999ca4 905 */
e124ece5 906static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
907 struct btrfs_super_block *disk_super,
908 bool *new_device_added)
8a4b83cc
CM
909{
910 struct btrfs_device *device;
7a62d0f0 911 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 912 struct rcu_string *name;
8a4b83cc 913 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 914 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
915 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
916 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
917 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
918 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 919
cc5de4e7
NB
920 if (fsid_change_in_progress) {
921 if (!has_metadata_uuid) {
922 /*
923 * When we have an image which has CHANGING_FSID_V2 set
924 * it might belong to either a filesystem which has
925 * disks with completed fsid change or it might belong
926 * to fs with no UUID changes in effect, handle both.
927 */
928 fs_devices = find_fsid_inprogress(disk_super);
929 if (!fs_devices)
930 fs_devices = find_fsid(disk_super->fsid, NULL);
931 } else {
932 fs_devices = find_fsid_changed(disk_super);
933 }
7a62d0f0
NB
934 } else if (has_metadata_uuid) {
935 fs_devices = find_fsid(disk_super->fsid,
936 disk_super->metadata_uuid);
937 } else {
7239ff4b 938 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
939 }
940
8a4b83cc 941
8a4b83cc 942 if (!fs_devices) {
7239ff4b
NB
943 if (has_metadata_uuid)
944 fs_devices = alloc_fs_devices(disk_super->fsid,
945 disk_super->metadata_uuid);
946 else
947 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
948
2208a378 949 if (IS_ERR(fs_devices))
e124ece5 950 return ERR_CAST(fs_devices);
2208a378 951
92900e51
AV
952 fs_devices->fsid_change = fsid_change_in_progress;
953
9c6d173e 954 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 955 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 956
8a4b83cc
CM
957 device = NULL;
958 } else {
9c6d173e 959 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
960 device = btrfs_find_device(fs_devices, devid,
961 disk_super->dev_item.uuid, NULL, false);
7a62d0f0
NB
962
963 /*
964 * If this disk has been pulled into an fs devices created by
965 * a device which had the CHANGING_FSID_V2 flag then replace the
966 * metadata_uuid/fsid values of the fs_devices.
967 */
968 if (has_metadata_uuid && fs_devices->fsid_change &&
969 found_transid > fs_devices->latest_generation) {
970 memcpy(fs_devices->fsid, disk_super->fsid,
971 BTRFS_FSID_SIZE);
972 memcpy(fs_devices->metadata_uuid,
973 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
974
975 fs_devices->fsid_change = false;
976 }
8a4b83cc 977 }
443f24fe 978
8a4b83cc 979 if (!device) {
9c6d173e
AJ
980 if (fs_devices->opened) {
981 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 982 return ERR_PTR(-EBUSY);
9c6d173e 983 }
2b82032c 984
12bd2fc0
ID
985 device = btrfs_alloc_device(NULL, &devid,
986 disk_super->dev_item.uuid);
987 if (IS_ERR(device)) {
9c6d173e 988 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 989 /* we can safely leave the fs_devices entry around */
e124ece5 990 return device;
8a4b83cc 991 }
606686ee
JB
992
993 name = rcu_string_strdup(path, GFP_NOFS);
994 if (!name) {
a425f9d4 995 btrfs_free_device(device);
9c6d173e 996 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 997 return ERR_PTR(-ENOMEM);
8a4b83cc 998 }
606686ee 999 rcu_assign_pointer(device->name, name);
90519d66 1000
1f78160c 1001 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 1002 fs_devices->num_devices++;
e5e9a520 1003
2b82032c 1004 device->fs_devices = fs_devices;
4306a974 1005 *new_device_added = true;
327f18cc
AJ
1006
1007 if (disk_super->label[0])
1008 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1009 disk_super->label, devid, found_transid, path);
1010 else
1011 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1012 disk_super->fsid, devid, found_transid, path);
1013
606686ee 1014 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
1015 /*
1016 * When FS is already mounted.
1017 * 1. If you are here and if the device->name is NULL that
1018 * means this device was missing at time of FS mount.
1019 * 2. If you are here and if the device->name is different
1020 * from 'path' that means either
1021 * a. The same device disappeared and reappeared with
1022 * different name. or
1023 * b. The missing-disk-which-was-replaced, has
1024 * reappeared now.
1025 *
1026 * We must allow 1 and 2a above. But 2b would be a spurious
1027 * and unintentional.
1028 *
1029 * Further in case of 1 and 2a above, the disk at 'path'
1030 * would have missed some transaction when it was away and
1031 * in case of 2a the stale bdev has to be updated as well.
1032 * 2b must not be allowed at all time.
1033 */
1034
1035 /*
0f23ae74
CM
1036 * For now, we do allow update to btrfs_fs_device through the
1037 * btrfs dev scan cli after FS has been mounted. We're still
1038 * tracking a problem where systems fail mount by subvolume id
1039 * when we reject replacement on a mounted FS.
b96de000 1040 */
0f23ae74 1041 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
1042 /*
1043 * That is if the FS is _not_ mounted and if you
1044 * are here, that means there is more than one
1045 * disk with same uuid and devid.We keep the one
1046 * with larger generation number or the last-in if
1047 * generation are equal.
1048 */
9c6d173e 1049 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 1050 return ERR_PTR(-EEXIST);
77bdae4d 1051 }
b96de000 1052
a9261d41
AJ
1053 /*
1054 * We are going to replace the device path for a given devid,
1055 * make sure it's the same device if the device is mounted
1056 */
1057 if (device->bdev) {
1058 struct block_device *path_bdev;
1059
1060 path_bdev = lookup_bdev(path);
1061 if (IS_ERR(path_bdev)) {
1062 mutex_unlock(&fs_devices->device_list_mutex);
1063 return ERR_CAST(path_bdev);
1064 }
1065
1066 if (device->bdev != path_bdev) {
1067 bdput(path_bdev);
1068 mutex_unlock(&fs_devices->device_list_mutex);
1069 btrfs_warn_in_rcu(device->fs_info,
1070 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1071 disk_super->fsid, devid,
1072 rcu_str_deref(device->name), path);
1073 return ERR_PTR(-EEXIST);
1074 }
1075 bdput(path_bdev);
1076 btrfs_info_in_rcu(device->fs_info,
1077 "device fsid %pU devid %llu moved old:%s new:%s",
1078 disk_super->fsid, devid,
1079 rcu_str_deref(device->name), path);
1080 }
1081
606686ee 1082 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
1083 if (!name) {
1084 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 1085 return ERR_PTR(-ENOMEM);
9c6d173e 1086 }
606686ee
JB
1087 rcu_string_free(device->name);
1088 rcu_assign_pointer(device->name, name);
e6e674bd 1089 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 1090 fs_devices->missing_devices--;
e6e674bd 1091 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 1092 }
8a4b83cc
CM
1093 }
1094
77bdae4d
AJ
1095 /*
1096 * Unmount does not free the btrfs_device struct but would zero
1097 * generation along with most of the other members. So just update
1098 * it back. We need it to pick the disk with largest generation
1099 * (as above).
1100 */
d1a63002 1101 if (!fs_devices->opened) {
77bdae4d 1102 device->generation = found_transid;
d1a63002
NB
1103 fs_devices->latest_generation = max_t(u64, found_transid,
1104 fs_devices->latest_generation);
1105 }
77bdae4d 1106
f2788d2f
AJ
1107 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1108
9c6d173e 1109 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 1110 return device;
8a4b83cc
CM
1111}
1112
e4404d6e
YZ
1113static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1114{
1115 struct btrfs_fs_devices *fs_devices;
1116 struct btrfs_device *device;
1117 struct btrfs_device *orig_dev;
d2979aa2 1118 int ret = 0;
e4404d6e 1119
7239ff4b 1120 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
1121 if (IS_ERR(fs_devices))
1122 return fs_devices;
e4404d6e 1123
adbbb863 1124 mutex_lock(&orig->device_list_mutex);
02db0844 1125 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
1126
1127 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
1128 struct rcu_string *name;
1129
12bd2fc0
ID
1130 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1131 orig_dev->uuid);
d2979aa2
AJ
1132 if (IS_ERR(device)) {
1133 ret = PTR_ERR(device);
e4404d6e 1134 goto error;
d2979aa2 1135 }
e4404d6e 1136
606686ee
JB
1137 /*
1138 * This is ok to do without rcu read locked because we hold the
1139 * uuid mutex so nothing we touch in here is going to disappear.
1140 */
e755f780 1141 if (orig_dev->name) {
78f2c9e6
DS
1142 name = rcu_string_strdup(orig_dev->name->str,
1143 GFP_KERNEL);
e755f780 1144 if (!name) {
a425f9d4 1145 btrfs_free_device(device);
d2979aa2 1146 ret = -ENOMEM;
e755f780
AJ
1147 goto error;
1148 }
1149 rcu_assign_pointer(device->name, name);
fd2696f3 1150 }
e4404d6e 1151
e4404d6e
YZ
1152 list_add(&device->dev_list, &fs_devices->devices);
1153 device->fs_devices = fs_devices;
1154 fs_devices->num_devices++;
1155 }
adbbb863 1156 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
1157 return fs_devices;
1158error:
adbbb863 1159 mutex_unlock(&orig->device_list_mutex);
e4404d6e 1160 free_fs_devices(fs_devices);
d2979aa2 1161 return ERR_PTR(ret);
e4404d6e
YZ
1162}
1163
9b99b115
AJ
1164/*
1165 * After we have read the system tree and know devids belonging to
1166 * this filesystem, remove the device which does not belong there.
1167 */
1168void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 1169{
c6e30871 1170 struct btrfs_device *device, *next;
443f24fe 1171 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 1172
dfe25020
CM
1173 mutex_lock(&uuid_mutex);
1174again:
46224705 1175 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1176 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
e12c9621
AJ
1177 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1178 &device->dev_state)) {
401e29c1
AJ
1179 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1180 &device->dev_state) &&
1181 (!latest_dev ||
1182 device->generation > latest_dev->generation)) {
443f24fe 1183 latest_dev = device;
a6b0d5c8 1184 }
2b82032c 1185 continue;
a6b0d5c8 1186 }
2b82032c 1187
8dabb742
SB
1188 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1189 /*
1190 * In the first step, keep the device which has
1191 * the correct fsid and the devid that is used
1192 * for the dev_replace procedure.
1193 * In the second step, the dev_replace state is
1194 * read from the device tree and it is known
1195 * whether the procedure is really active or
1196 * not, which means whether this device is
1197 * used or whether it should be removed.
1198 */
401e29c1
AJ
1199 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1200 &device->dev_state)) {
8dabb742
SB
1201 continue;
1202 }
1203 }
2b82032c 1204 if (device->bdev) {
d4d77629 1205 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1206 device->bdev = NULL;
1207 fs_devices->open_devices--;
1208 }
ebbede42 1209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1210 list_del_init(&device->dev_alloc_list);
ebbede42 1211 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
401e29c1
AJ
1212 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1213 &device->dev_state))
8dabb742 1214 fs_devices->rw_devices--;
2b82032c 1215 }
e4404d6e
YZ
1216 list_del_init(&device->dev_list);
1217 fs_devices->num_devices--;
a425f9d4 1218 btrfs_free_device(device);
dfe25020 1219 }
2b82032c
YZ
1220
1221 if (fs_devices->seed) {
1222 fs_devices = fs_devices->seed;
2b82032c
YZ
1223 goto again;
1224 }
1225
443f24fe 1226 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1227
dfe25020 1228 mutex_unlock(&uuid_mutex);
dfe25020 1229}
a0af469b 1230
14238819
AJ
1231static void btrfs_close_bdev(struct btrfs_device *device)
1232{
08ffcae8
DS
1233 if (!device->bdev)
1234 return;
1235
ebbede42 1236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1237 sync_blockdev(device->bdev);
1238 invalidate_bdev(device->bdev);
1239 }
1240
08ffcae8 1241 blkdev_put(device->bdev, device->mode);
14238819
AJ
1242}
1243
959b1c04 1244static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1245{
1246 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1247 struct btrfs_device *new_device;
1248 struct rcu_string *name;
1249
1250 if (device->bdev)
1251 fs_devices->open_devices--;
1252
ebbede42 1253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1254 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1255 list_del_init(&device->dev_alloc_list);
1256 fs_devices->rw_devices--;
1257 }
1258
e6e674bd 1259 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1260 fs_devices->missing_devices--;
1261
959b1c04
NB
1262 btrfs_close_bdev(device);
1263
f448341a
AJ
1264 new_device = btrfs_alloc_device(NULL, &device->devid,
1265 device->uuid);
1266 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1267
1268 /* Safe because we are under uuid_mutex */
1269 if (device->name) {
1270 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1271 BUG_ON(!name); /* -ENOMEM */
1272 rcu_assign_pointer(new_device->name, name);
1273 }
1274
1275 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1276 new_device->fs_devices = device->fs_devices;
959b1c04 1277
8e75fd89
NB
1278 synchronize_rcu();
1279 btrfs_free_device(device);
f448341a
AJ
1280}
1281
0226e0eb 1282static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1283{
2037a093 1284 struct btrfs_device *device, *tmp;
e4404d6e 1285
2b82032c
YZ
1286 if (--fs_devices->opened > 0)
1287 return 0;
8a4b83cc 1288
c9513edb 1289 mutex_lock(&fs_devices->device_list_mutex);
2037a093 1290 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
959b1c04 1291 btrfs_close_one_device(device);
8a4b83cc 1292 }
c9513edb
XG
1293 mutex_unlock(&fs_devices->device_list_mutex);
1294
e4404d6e
YZ
1295 WARN_ON(fs_devices->open_devices);
1296 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
1297 fs_devices->opened = 0;
1298 fs_devices->seeding = 0;
2b82032c 1299
8a4b83cc
CM
1300 return 0;
1301}
1302
2b82032c
YZ
1303int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1304{
e4404d6e 1305 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
1306 int ret;
1307
1308 mutex_lock(&uuid_mutex);
0226e0eb 1309 ret = close_fs_devices(fs_devices);
e4404d6e
YZ
1310 if (!fs_devices->opened) {
1311 seed_devices = fs_devices->seed;
1312 fs_devices->seed = NULL;
1313 }
2b82032c 1314 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
1315
1316 while (seed_devices) {
1317 fs_devices = seed_devices;
1318 seed_devices = fs_devices->seed;
0226e0eb 1319 close_fs_devices(fs_devices);
e4404d6e
YZ
1320 free_fs_devices(fs_devices);
1321 }
2b82032c
YZ
1322 return ret;
1323}
1324
897fb573 1325static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1326 fmode_t flags, void *holder)
8a4b83cc 1327{
8a4b83cc 1328 struct btrfs_device *device;
443f24fe 1329 struct btrfs_device *latest_dev = NULL;
a0af469b 1330 int ret = 0;
8a4b83cc 1331
d4d77629
TH
1332 flags |= FMODE_EXCL;
1333
f117e290 1334 list_for_each_entry(device, &fs_devices->devices, dev_list) {
f63e0cca 1335 /* Just open everything we can; ignore failures here */
0fb08bcc 1336 if (btrfs_open_one_device(fs_devices, device, flags, holder))
beaf8ab3 1337 continue;
a0af469b 1338
9f050db4
AJ
1339 if (!latest_dev ||
1340 device->generation > latest_dev->generation)
1341 latest_dev = device;
8a4b83cc 1342 }
a0af469b 1343 if (fs_devices->open_devices == 0) {
20bcd649 1344 ret = -EINVAL;
a0af469b
CM
1345 goto out;
1346 }
2b82032c 1347 fs_devices->opened = 1;
443f24fe 1348 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1349 fs_devices->total_rw_bytes = 0;
a0af469b 1350out:
2b82032c
YZ
1351 return ret;
1352}
1353
f8e10cd3
AJ
1354static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1355{
1356 struct btrfs_device *dev1, *dev2;
1357
1358 dev1 = list_entry(a, struct btrfs_device, dev_list);
1359 dev2 = list_entry(b, struct btrfs_device, dev_list);
1360
1361 if (dev1->devid < dev2->devid)
1362 return -1;
1363 else if (dev1->devid > dev2->devid)
1364 return 1;
1365 return 0;
1366}
1367
2b82032c 1368int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1369 fmode_t flags, void *holder)
2b82032c
YZ
1370{
1371 int ret;
1372
f5194e34
DS
1373 lockdep_assert_held(&uuid_mutex);
1374
542c5908 1375 mutex_lock(&fs_devices->device_list_mutex);
2b82032c 1376 if (fs_devices->opened) {
e4404d6e
YZ
1377 fs_devices->opened++;
1378 ret = 0;
2b82032c 1379 } else {
f8e10cd3 1380 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1381 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1382 }
542c5908
AJ
1383 mutex_unlock(&fs_devices->device_list_mutex);
1384
8a4b83cc
CM
1385 return ret;
1386}
1387
c9162bdf 1388static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1389{
1390 kunmap(page);
1391 put_page(page);
1392}
1393
c9162bdf
OS
1394static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1395 struct page **page,
1396 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1397{
1398 void *p;
1399 pgoff_t index;
1400
1401 /* make sure our super fits in the device */
1402 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1403 return 1;
1404
1405 /* make sure our super fits in the page */
1406 if (sizeof(**disk_super) > PAGE_SIZE)
1407 return 1;
1408
1409 /* make sure our super doesn't straddle pages on disk */
1410 index = bytenr >> PAGE_SHIFT;
1411 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1412 return 1;
1413
1414 /* pull in the page with our super */
1415 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1416 index, GFP_KERNEL);
1417
1418 if (IS_ERR_OR_NULL(*page))
1419 return 1;
1420
1421 p = kmap(*page);
1422
1423 /* align our pointer to the offset of the super block */
7073017a 1424 *disk_super = p + offset_in_page(bytenr);
6cf86a00
AJ
1425
1426 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1427 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1428 btrfs_release_disk_super(*page);
1429 return 1;
1430 }
1431
1432 if ((*disk_super)->label[0] &&
1433 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1434 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1435
1436 return 0;
1437}
1438
228a73ab
AJ
1439int btrfs_forget_devices(const char *path)
1440{
1441 int ret;
1442
1443 mutex_lock(&uuid_mutex);
1444 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1445 mutex_unlock(&uuid_mutex);
1446
1447 return ret;
1448}
1449
6f60cbd3
DS
1450/*
1451 * Look for a btrfs signature on a device. This may be called out of the mount path
1452 * and we are not allowed to call set_blocksize during the scan. The superblock
1453 * is read via pagecache
1454 */
36350e95
GJ
1455struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1456 void *holder)
8a4b83cc
CM
1457{
1458 struct btrfs_super_block *disk_super;
4306a974 1459 bool new_device_added = false;
36350e95 1460 struct btrfs_device *device = NULL;
8a4b83cc 1461 struct block_device *bdev;
6f60cbd3 1462 struct page *page;
6f60cbd3 1463 u64 bytenr;
8a4b83cc 1464
899f9307
DS
1465 lockdep_assert_held(&uuid_mutex);
1466
6f60cbd3
DS
1467 /*
1468 * we would like to check all the supers, but that would make
1469 * a btrfs mount succeed after a mkfs from a different FS.
1470 * So, we need to add a special mount option to scan for
1471 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1472 */
1473 bytenr = btrfs_sb_offset(0);
d4d77629 1474 flags |= FMODE_EXCL;
6f60cbd3
DS
1475
1476 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1477 if (IS_ERR(bdev))
36350e95 1478 return ERR_CAST(bdev);
6f60cbd3 1479
05a5c55d 1480 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
36350e95 1481 device = ERR_PTR(-EINVAL);
6f60cbd3 1482 goto error_bdev_put;
05a5c55d 1483 }
6f60cbd3 1484
4306a974 1485 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1486 if (!IS_ERR(device)) {
4306a974
AJ
1487 if (new_device_added)
1488 btrfs_free_stale_devices(path, device);
1489 }
6f60cbd3 1490
6cf86a00 1491 btrfs_release_disk_super(page);
6f60cbd3
DS
1492
1493error_bdev_put:
d4d77629 1494 blkdev_put(bdev, flags);
b6ed73bc 1495
36350e95 1496 return device;
8a4b83cc 1497}
0b86a832 1498
1c11b63e
JM
1499/*
1500 * Try to find a chunk that intersects [start, start + len] range and when one
1501 * such is found, record the end of it in *start
1502 */
1c11b63e
JM
1503static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1504 u64 len)
6df9a95e 1505{
1c11b63e 1506 u64 physical_start, physical_end;
6df9a95e 1507
1c11b63e 1508 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1509
1c11b63e
JM
1510 if (!find_first_extent_bit(&device->alloc_state, *start,
1511 &physical_start, &physical_end,
1512 CHUNK_ALLOCATED, NULL)) {
c152b63e 1513
1c11b63e
JM
1514 if (in_range(physical_start, *start, len) ||
1515 in_range(*start, physical_start,
1516 physical_end - physical_start)) {
1517 *start = physical_end + 1;
1518 return true;
6df9a95e
JB
1519 }
1520 }
1c11b63e 1521 return false;
6df9a95e
JB
1522}
1523
1524
0b86a832 1525/*
499f377f
JM
1526 * find_free_dev_extent_start - find free space in the specified device
1527 * @device: the device which we search the free space in
1528 * @num_bytes: the size of the free space that we need
1529 * @search_start: the position from which to begin the search
1530 * @start: store the start of the free space.
1531 * @len: the size of the free space. that we find, or the size
1532 * of the max free space if we don't find suitable free space
7bfc837d 1533 *
0b86a832
CM
1534 * this uses a pretty simple search, the expectation is that it is
1535 * called very infrequently and that a given device has a small number
1536 * of extents
7bfc837d
MX
1537 *
1538 * @start is used to store the start of the free space if we find. But if we
1539 * don't find suitable free space, it will be used to store the start position
1540 * of the max free space.
1541 *
1542 * @len is used to store the size of the free space that we find.
1543 * But if we don't find suitable free space, it is used to store the size of
1544 * the max free space.
135da976
QW
1545 *
1546 * NOTE: This function will search *commit* root of device tree, and does extra
1547 * check to ensure dev extents are not double allocated.
1548 * This makes the function safe to allocate dev extents but may not report
1549 * correct usable device space, as device extent freed in current transaction
1550 * is not reported as avaiable.
0b86a832 1551 */
9e3246a5
QW
1552static int find_free_dev_extent_start(struct btrfs_device *device,
1553 u64 num_bytes, u64 search_start, u64 *start,
1554 u64 *len)
0b86a832 1555{
0b246afa
JM
1556 struct btrfs_fs_info *fs_info = device->fs_info;
1557 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1558 struct btrfs_key key;
7bfc837d 1559 struct btrfs_dev_extent *dev_extent;
2b82032c 1560 struct btrfs_path *path;
7bfc837d
MX
1561 u64 hole_size;
1562 u64 max_hole_start;
1563 u64 max_hole_size;
1564 u64 extent_end;
0b86a832
CM
1565 u64 search_end = device->total_bytes;
1566 int ret;
7bfc837d 1567 int slot;
0b86a832 1568 struct extent_buffer *l;
8cdc7c5b
FM
1569
1570 /*
1571 * We don't want to overwrite the superblock on the drive nor any area
1572 * used by the boot loader (grub for example), so we make sure to start
1573 * at an offset of at least 1MB.
1574 */
0d0c71b3 1575 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1576
6df9a95e
JB
1577 path = btrfs_alloc_path();
1578 if (!path)
1579 return -ENOMEM;
f2ab7618 1580
7bfc837d
MX
1581 max_hole_start = search_start;
1582 max_hole_size = 0;
1583
f2ab7618 1584again:
401e29c1
AJ
1585 if (search_start >= search_end ||
1586 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1587 ret = -ENOSPC;
6df9a95e 1588 goto out;
7bfc837d
MX
1589 }
1590
e4058b54 1591 path->reada = READA_FORWARD;
6df9a95e
JB
1592 path->search_commit_root = 1;
1593 path->skip_locking = 1;
7bfc837d 1594
0b86a832
CM
1595 key.objectid = device->devid;
1596 key.offset = search_start;
1597 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1598
125ccb0a 1599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1600 if (ret < 0)
7bfc837d 1601 goto out;
1fcbac58
YZ
1602 if (ret > 0) {
1603 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604 if (ret < 0)
7bfc837d 1605 goto out;
1fcbac58 1606 }
7bfc837d 1607
0b86a832
CM
1608 while (1) {
1609 l = path->nodes[0];
1610 slot = path->slots[0];
1611 if (slot >= btrfs_header_nritems(l)) {
1612 ret = btrfs_next_leaf(root, path);
1613 if (ret == 0)
1614 continue;
1615 if (ret < 0)
7bfc837d
MX
1616 goto out;
1617
1618 break;
0b86a832
CM
1619 }
1620 btrfs_item_key_to_cpu(l, &key, slot);
1621
1622 if (key.objectid < device->devid)
1623 goto next;
1624
1625 if (key.objectid > device->devid)
7bfc837d 1626 break;
0b86a832 1627
962a298f 1628 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1629 goto next;
9779b72f 1630
7bfc837d
MX
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
9779b72f 1633
6df9a95e
JB
1634 /*
1635 * Have to check before we set max_hole_start, otherwise
1636 * we could end up sending back this offset anyway.
1637 */
1c11b63e 1638 if (contains_pending_extent(device, &search_start,
1b984508 1639 hole_size)) {
1c11b63e 1640 if (key.offset >= search_start)
1b984508 1641 hole_size = key.offset - search_start;
1c11b63e 1642 else
1b984508 1643 hole_size = 0;
1b984508 1644 }
6df9a95e 1645
7bfc837d
MX
1646 if (hole_size > max_hole_size) {
1647 max_hole_start = search_start;
1648 max_hole_size = hole_size;
1649 }
9779b72f 1650
7bfc837d
MX
1651 /*
1652 * If this free space is greater than which we need,
1653 * it must be the max free space that we have found
1654 * until now, so max_hole_start must point to the start
1655 * of this free space and the length of this free space
1656 * is stored in max_hole_size. Thus, we return
1657 * max_hole_start and max_hole_size and go back to the
1658 * caller.
1659 */
1660 if (hole_size >= num_bytes) {
1661 ret = 0;
1662 goto out;
0b86a832
CM
1663 }
1664 }
0b86a832 1665
0b86a832 1666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1667 extent_end = key.offset + btrfs_dev_extent_length(l,
1668 dev_extent);
1669 if (extent_end > search_start)
1670 search_start = extent_end;
0b86a832
CM
1671next:
1672 path->slots[0]++;
1673 cond_resched();
1674 }
0b86a832 1675
38c01b96 1676 /*
1677 * At this point, search_start should be the end of
1678 * allocated dev extents, and when shrinking the device,
1679 * search_end may be smaller than search_start.
1680 */
f2ab7618 1681 if (search_end > search_start) {
38c01b96 1682 hole_size = search_end - search_start;
1683
1c11b63e 1684 if (contains_pending_extent(device, &search_start, hole_size)) {
f2ab7618
ZL
1685 btrfs_release_path(path);
1686 goto again;
1687 }
0b86a832 1688
f2ab7618
ZL
1689 if (hole_size > max_hole_size) {
1690 max_hole_start = search_start;
1691 max_hole_size = hole_size;
1692 }
6df9a95e
JB
1693 }
1694
7bfc837d 1695 /* See above. */
f2ab7618 1696 if (max_hole_size < num_bytes)
7bfc837d
MX
1697 ret = -ENOSPC;
1698 else
1699 ret = 0;
1700
1701out:
2b82032c 1702 btrfs_free_path(path);
7bfc837d 1703 *start = max_hole_start;
b2117a39 1704 if (len)
7bfc837d 1705 *len = max_hole_size;
0b86a832
CM
1706 return ret;
1707}
1708
60dfdf25 1709int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1710 u64 *start, u64 *len)
1711{
499f377f 1712 /* FIXME use last free of some kind */
60dfdf25 1713 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1714}
1715
b2950863 1716static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1717 struct btrfs_device *device,
2196d6e8 1718 u64 start, u64 *dev_extent_len)
8f18cf13 1719{
0b246afa
JM
1720 struct btrfs_fs_info *fs_info = device->fs_info;
1721 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1722 int ret;
1723 struct btrfs_path *path;
8f18cf13 1724 struct btrfs_key key;
a061fc8d
CM
1725 struct btrfs_key found_key;
1726 struct extent_buffer *leaf = NULL;
1727 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1728
1729 path = btrfs_alloc_path();
1730 if (!path)
1731 return -ENOMEM;
1732
1733 key.objectid = device->devid;
1734 key.offset = start;
1735 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1736again:
8f18cf13 1737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1738 if (ret > 0) {
1739 ret = btrfs_previous_item(root, path, key.objectid,
1740 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1741 if (ret)
1742 goto out;
a061fc8d
CM
1743 leaf = path->nodes[0];
1744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1745 extent = btrfs_item_ptr(leaf, path->slots[0],
1746 struct btrfs_dev_extent);
1747 BUG_ON(found_key.offset > start || found_key.offset +
1748 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1749 key = found_key;
1750 btrfs_release_path(path);
1751 goto again;
a061fc8d
CM
1752 } else if (ret == 0) {
1753 leaf = path->nodes[0];
1754 extent = btrfs_item_ptr(leaf, path->slots[0],
1755 struct btrfs_dev_extent);
79787eaa 1756 } else {
0b246afa 1757 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1758 goto out;
a061fc8d 1759 }
8f18cf13 1760
2196d6e8
MX
1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
8f18cf13 1763 ret = btrfs_del_item(trans, root, path);
79787eaa 1764 if (ret) {
0b246afa
JM
1765 btrfs_handle_fs_error(fs_info, ret,
1766 "Failed to remove dev extent item");
13212b54 1767 } else {
3204d33c 1768 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1769 }
b0b802d7 1770out:
8f18cf13
CM
1771 btrfs_free_path(path);
1772 return ret;
1773}
1774
48a3b636
ES
1775static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1776 struct btrfs_device *device,
48a3b636 1777 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1778{
1779 int ret;
1780 struct btrfs_path *path;
0b246afa
JM
1781 struct btrfs_fs_info *fs_info = device->fs_info;
1782 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1783 struct btrfs_dev_extent *extent;
1784 struct extent_buffer *leaf;
1785 struct btrfs_key key;
1786
e12c9621 1787 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
401e29c1 1788 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
0b86a832
CM
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
0b86a832 1793 key.objectid = device->devid;
2b82032c 1794 key.offset = start;
0b86a832
CM
1795 key.type = BTRFS_DEV_EXTENT_KEY;
1796 ret = btrfs_insert_empty_item(trans, root, path, &key,
1797 sizeof(*extent));
2cdcecbc
MF
1798 if (ret)
1799 goto out;
0b86a832
CM
1800
1801 leaf = path->nodes[0];
1802 extent = btrfs_item_ptr(leaf, path->slots[0],
1803 struct btrfs_dev_extent);
b5d9071c
NB
1804 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1805 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1806 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1807 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1808 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809
0b86a832
CM
1810 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1811 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1812out:
0b86a832
CM
1813 btrfs_free_path(path);
1814 return ret;
1815}
1816
6df9a95e 1817static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1818{
6df9a95e
JB
1819 struct extent_map_tree *em_tree;
1820 struct extent_map *em;
1821 struct rb_node *n;
1822 u64 ret = 0;
0b86a832 1823
c8bf1b67 1824 em_tree = &fs_info->mapping_tree;
6df9a95e 1825 read_lock(&em_tree->lock);
07e1ce09 1826 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1827 if (n) {
1828 em = rb_entry(n, struct extent_map, rb_node);
1829 ret = em->start + em->len;
0b86a832 1830 }
6df9a95e
JB
1831 read_unlock(&em_tree->lock);
1832
0b86a832
CM
1833 return ret;
1834}
1835
53f10659
ID
1836static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837 u64 *devid_ret)
0b86a832
CM
1838{
1839 int ret;
1840 struct btrfs_key key;
1841 struct btrfs_key found_key;
2b82032c
YZ
1842 struct btrfs_path *path;
1843
2b82032c
YZ
1844 path = btrfs_alloc_path();
1845 if (!path)
1846 return -ENOMEM;
0b86a832
CM
1847
1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1849 key.type = BTRFS_DEV_ITEM_KEY;
1850 key.offset = (u64)-1;
1851
53f10659 1852 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1853 if (ret < 0)
1854 goto error;
1855
a06dee4d
AJ
1856 if (ret == 0) {
1857 /* Corruption */
1858 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1859 ret = -EUCLEAN;
1860 goto error;
1861 }
0b86a832 1862
53f10659
ID
1863 ret = btrfs_previous_item(fs_info->chunk_root, path,
1864 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1865 BTRFS_DEV_ITEM_KEY);
1866 if (ret) {
53f10659 1867 *devid_ret = 1;
0b86a832
CM
1868 } else {
1869 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1870 path->slots[0]);
53f10659 1871 *devid_ret = found_key.offset + 1;
0b86a832
CM
1872 }
1873 ret = 0;
1874error:
2b82032c 1875 btrfs_free_path(path);
0b86a832
CM
1876 return ret;
1877}
1878
1879/*
1880 * the device information is stored in the chunk root
1881 * the btrfs_device struct should be fully filled in
1882 */
c74a0b02 1883static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1884 struct btrfs_device *device)
0b86a832
CM
1885{
1886 int ret;
1887 struct btrfs_path *path;
1888 struct btrfs_dev_item *dev_item;
1889 struct extent_buffer *leaf;
1890 struct btrfs_key key;
1891 unsigned long ptr;
0b86a832 1892
0b86a832
CM
1893 path = btrfs_alloc_path();
1894 if (!path)
1895 return -ENOMEM;
1896
0b86a832
CM
1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1899 key.offset = device->devid;
0b86a832 1900
8e87e856
NB
1901 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1902 &key, sizeof(*dev_item));
0b86a832
CM
1903 if (ret)
1904 goto out;
1905
1906 leaf = path->nodes[0];
1907 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1908
1909 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1910 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1911 btrfs_set_device_type(leaf, dev_item, device->type);
1912 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1913 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1914 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1915 btrfs_set_device_total_bytes(leaf, dev_item,
1916 btrfs_device_get_disk_total_bytes(device));
1917 btrfs_set_device_bytes_used(leaf, dev_item,
1918 btrfs_device_get_bytes_used(device));
e17cade2
CM
1919 btrfs_set_device_group(leaf, dev_item, 0);
1920 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1921 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1922 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1923
410ba3a2 1924 ptr = btrfs_device_uuid(dev_item);
e17cade2 1925 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1926 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1927 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1928 ptr, BTRFS_FSID_SIZE);
0b86a832 1929 btrfs_mark_buffer_dirty(leaf);
0b86a832 1930
2b82032c 1931 ret = 0;
0b86a832
CM
1932out:
1933 btrfs_free_path(path);
1934 return ret;
1935}
8f18cf13 1936
5a1972bd
QW
1937/*
1938 * Function to update ctime/mtime for a given device path.
1939 * Mainly used for ctime/mtime based probe like libblkid.
1940 */
da353f6b 1941static void update_dev_time(const char *path_name)
5a1972bd
QW
1942{
1943 struct file *filp;
1944
1945 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1946 if (IS_ERR(filp))
5a1972bd
QW
1947 return;
1948 file_update_time(filp);
1949 filp_close(filp, NULL);
5a1972bd
QW
1950}
1951
f331a952 1952static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1953{
f331a952 1954 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1955 int ret;
1956 struct btrfs_path *path;
a061fc8d 1957 struct btrfs_key key;
a061fc8d
CM
1958 struct btrfs_trans_handle *trans;
1959
a061fc8d
CM
1960 path = btrfs_alloc_path();
1961 if (!path)
1962 return -ENOMEM;
1963
a22285a6 1964 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1965 if (IS_ERR(trans)) {
1966 btrfs_free_path(path);
1967 return PTR_ERR(trans);
1968 }
a061fc8d
CM
1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970 key.type = BTRFS_DEV_ITEM_KEY;
1971 key.offset = device->devid;
1972
1973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1974 if (ret) {
1975 if (ret > 0)
1976 ret = -ENOENT;
1977 btrfs_abort_transaction(trans, ret);
1978 btrfs_end_transaction(trans);
a061fc8d
CM
1979 goto out;
1980 }
1981
1982 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1983 if (ret) {
1984 btrfs_abort_transaction(trans, ret);
1985 btrfs_end_transaction(trans);
1986 }
1987
a061fc8d
CM
1988out:
1989 btrfs_free_path(path);
5e9f2ad5
NB
1990 if (!ret)
1991 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1992 return ret;
1993}
1994
3cc31a0d
DS
1995/*
1996 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1997 * filesystem. It's up to the caller to adjust that number regarding eg. device
1998 * replace.
1999 */
2000static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2001 u64 num_devices)
a061fc8d 2002{
a061fc8d 2003 u64 all_avail;
de98ced9 2004 unsigned seq;
418775a2 2005 int i;
a061fc8d 2006
de98ced9 2007 do {
bd45ffbc 2008 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 2009
bd45ffbc
AJ
2010 all_avail = fs_info->avail_data_alloc_bits |
2011 fs_info->avail_system_alloc_bits |
2012 fs_info->avail_metadata_alloc_bits;
2013 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 2014
418775a2 2015 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 2016 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 2017 continue;
a061fc8d 2018
418775a2 2019 if (num_devices < btrfs_raid_array[i].devs_min) {
f9fbcaa2 2020 int ret = btrfs_raid_array[i].mindev_error;
bd45ffbc 2021
418775a2
DS
2022 if (ret)
2023 return ret;
2024 }
53b381b3
DW
2025 }
2026
bd45ffbc 2027 return 0;
f1fa7f26
AJ
2028}
2029
c9162bdf
OS
2030static struct btrfs_device * btrfs_find_next_active_device(
2031 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 2032{
2b82032c 2033 struct btrfs_device *next_device;
88acff64
AJ
2034
2035 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2036 if (next_device != device &&
e6e674bd
AJ
2037 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2038 && next_device->bdev)
88acff64
AJ
2039 return next_device;
2040 }
2041
2042 return NULL;
2043}
2044
2045/*
2046 * Helper function to check if the given device is part of s_bdev / latest_bdev
2047 * and replace it with the provided or the next active device, in the context
2048 * where this function called, there should be always be another device (or
2049 * this_dev) which is active.
2050 */
d6507cf1
NB
2051void btrfs_assign_next_active_device(struct btrfs_device *device,
2052 struct btrfs_device *this_dev)
88acff64 2053{
d6507cf1 2054 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64
AJ
2055 struct btrfs_device *next_device;
2056
2057 if (this_dev)
2058 next_device = this_dev;
2059 else
2060 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2061 device);
2062 ASSERT(next_device);
2063
2064 if (fs_info->sb->s_bdev &&
2065 (fs_info->sb->s_bdev == device->bdev))
2066 fs_info->sb->s_bdev = next_device->bdev;
2067
2068 if (fs_info->fs_devices->latest_bdev == device->bdev)
2069 fs_info->fs_devices->latest_bdev = next_device->bdev;
2070}
2071
1da73967
AJ
2072/*
2073 * Return btrfs_fs_devices::num_devices excluding the device that's being
2074 * currently replaced.
2075 */
2076static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2077{
2078 u64 num_devices = fs_info->fs_devices->num_devices;
2079
cb5583dd 2080 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2081 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2082 ASSERT(num_devices > 1);
2083 num_devices--;
2084 }
cb5583dd 2085 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2086
2087 return num_devices;
2088}
2089
da353f6b
DS
2090int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2091 u64 devid)
f1fa7f26
AJ
2092{
2093 struct btrfs_device *device;
1f78160c 2094 struct btrfs_fs_devices *cur_devices;
b5185197 2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2096 u64 num_devices;
a061fc8d
CM
2097 int ret = 0;
2098
a061fc8d
CM
2099 mutex_lock(&uuid_mutex);
2100
1da73967 2101 num_devices = btrfs_num_devices(fs_info);
8dabb742 2102
0b246afa 2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2104 if (ret)
a061fc8d 2105 goto out;
a061fc8d 2106
a27a94c2
NB
2107 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2108
2109 if (IS_ERR(device)) {
2110 if (PTR_ERR(device) == -ENOENT &&
2111 strcmp(device_path, "missing") == 0)
2112 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2113 else
2114 ret = PTR_ERR(device);
53b381b3 2115 goto out;
a27a94c2 2116 }
dfe25020 2117
eede2bf3
OS
2118 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2119 btrfs_warn_in_rcu(fs_info,
2120 "cannot remove device %s (devid %llu) due to active swapfile",
2121 rcu_str_deref(device->name), device->devid);
2122 ret = -ETXTBSY;
2123 goto out;
2124 }
2125
401e29c1 2126 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 2127 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 2128 goto out;
63a212ab
SB
2129 }
2130
ebbede42
AJ
2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2132 fs_info->fs_devices->rw_devices == 1) {
183860f6 2133 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 2134 goto out;
2b82032c
YZ
2135 }
2136
ebbede42 2137 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2138 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2139 list_del_init(&device->dev_alloc_list);
c3929c36 2140 device->fs_devices->rw_devices--;
34441361 2141 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2142 }
a061fc8d 2143
d7901554 2144 mutex_unlock(&uuid_mutex);
a061fc8d 2145 ret = btrfs_shrink_device(device, 0);
d7901554 2146 mutex_lock(&uuid_mutex);
a061fc8d 2147 if (ret)
9b3517e9 2148 goto error_undo;
a061fc8d 2149
63a212ab
SB
2150 /*
2151 * TODO: the superblock still includes this device in its num_devices
2152 * counter although write_all_supers() is not locked out. This
2153 * could give a filesystem state which requires a degraded mount.
2154 */
f331a952 2155 ret = btrfs_rm_dev_item(device);
a061fc8d 2156 if (ret)
9b3517e9 2157 goto error_undo;
a061fc8d 2158
e12c9621 2159 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2160 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2161
2162 /*
2163 * the device list mutex makes sure that we don't change
2164 * the device list while someone else is writing out all
d7306801
FDBM
2165 * the device supers. Whoever is writing all supers, should
2166 * lock the device list mutex before getting the number of
2167 * devices in the super block (super_copy). Conversely,
2168 * whoever updates the number of devices in the super block
2169 * (super_copy) should hold the device list mutex.
e5e9a520 2170 */
1f78160c 2171
41a52a0f
AJ
2172 /*
2173 * In normal cases the cur_devices == fs_devices. But in case
2174 * of deleting a seed device, the cur_devices should point to
2175 * its own fs_devices listed under the fs_devices->seed.
2176 */
1f78160c 2177 cur_devices = device->fs_devices;
b5185197 2178 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2179 list_del_rcu(&device->dev_list);
e5e9a520 2180
41a52a0f
AJ
2181 cur_devices->num_devices--;
2182 cur_devices->total_devices--;
b4993e64
AJ
2183 /* Update total_devices of the parent fs_devices if it's seed */
2184 if (cur_devices != fs_devices)
2185 fs_devices->total_devices--;
2b82032c 2186
e6e674bd 2187 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2188 cur_devices->missing_devices--;
cd02dca5 2189
d6507cf1 2190 btrfs_assign_next_active_device(device, NULL);
2b82032c 2191
0bfaa9c5 2192 if (device->bdev) {
41a52a0f 2193 cur_devices->open_devices--;
0bfaa9c5 2194 /* remove sysfs entry */
b5185197 2195 btrfs_sysfs_rm_device_link(fs_devices, device);
0bfaa9c5 2196 }
99994cde 2197
0b246afa
JM
2198 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2199 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2200 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2201
cea67ab9
JM
2202 /*
2203 * at this point, the device is zero sized and detached from
2204 * the devices list. All that's left is to zero out the old
2205 * supers and free the device.
2206 */
ebbede42 2207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
cea67ab9
JM
2208 btrfs_scratch_superblocks(device->bdev, device->name->str);
2209
2210 btrfs_close_bdev(device);
8e75fd89
NB
2211 synchronize_rcu();
2212 btrfs_free_device(device);
cea67ab9 2213
1f78160c 2214 if (cur_devices->open_devices == 0) {
e4404d6e 2215 while (fs_devices) {
8321cf25
RS
2216 if (fs_devices->seed == cur_devices) {
2217 fs_devices->seed = cur_devices->seed;
e4404d6e 2218 break;
8321cf25 2219 }
e4404d6e 2220 fs_devices = fs_devices->seed;
2b82032c 2221 }
1f78160c 2222 cur_devices->seed = NULL;
0226e0eb 2223 close_fs_devices(cur_devices);
1f78160c 2224 free_fs_devices(cur_devices);
2b82032c
YZ
2225 }
2226
a061fc8d
CM
2227out:
2228 mutex_unlock(&uuid_mutex);
a061fc8d 2229 return ret;
24fc572f 2230
9b3517e9 2231error_undo:
ebbede42 2232 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2233 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2234 list_add(&device->dev_alloc_list,
b5185197 2235 &fs_devices->alloc_list);
c3929c36 2236 device->fs_devices->rw_devices++;
34441361 2237 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2238 }
24fc572f 2239 goto out;
a061fc8d
CM
2240}
2241
68a9db5f 2242void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2243{
d51908ce
AJ
2244 struct btrfs_fs_devices *fs_devices;
2245
68a9db5f 2246 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2247
25e8e911
AJ
2248 /*
2249 * in case of fs with no seed, srcdev->fs_devices will point
2250 * to fs_devices of fs_info. However when the dev being replaced is
2251 * a seed dev it will point to the seed's local fs_devices. In short
2252 * srcdev will have its correct fs_devices in both the cases.
2253 */
2254 fs_devices = srcdev->fs_devices;
d51908ce 2255
e93c89c1 2256 list_del_rcu(&srcdev->dev_list);
619c47f3 2257 list_del(&srcdev->dev_alloc_list);
d51908ce 2258 fs_devices->num_devices--;
e6e674bd 2259 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2260 fs_devices->missing_devices--;
e93c89c1 2261
ebbede42 2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2263 fs_devices->rw_devices--;
1357272f 2264
82372bc8 2265 if (srcdev->bdev)
d51908ce 2266 fs_devices->open_devices--;
084b6e7c
QW
2267}
2268
65237ee3 2269void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c 2270{
65237ee3 2271 struct btrfs_fs_info *fs_info = srcdev->fs_info;
084b6e7c 2272 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2273
ebbede42 2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
48b3b9d4
AJ
2275 /* zero out the old super if it is writable */
2276 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2277 }
14238819
AJ
2278
2279 btrfs_close_bdev(srcdev);
8e75fd89
NB
2280 synchronize_rcu();
2281 btrfs_free_device(srcdev);
94d5f0c2 2282
94d5f0c2
AJ
2283 /* if this is no devs we rather delete the fs_devices */
2284 if (!fs_devices->num_devices) {
2285 struct btrfs_fs_devices *tmp_fs_devices;
2286
6dd38f81
AJ
2287 /*
2288 * On a mounted FS, num_devices can't be zero unless it's a
2289 * seed. In case of a seed device being replaced, the replace
2290 * target added to the sprout FS, so there will be no more
2291 * device left under the seed FS.
2292 */
2293 ASSERT(fs_devices->seeding);
2294
94d5f0c2
AJ
2295 tmp_fs_devices = fs_info->fs_devices;
2296 while (tmp_fs_devices) {
2297 if (tmp_fs_devices->seed == fs_devices) {
2298 tmp_fs_devices->seed = fs_devices->seed;
2299 break;
2300 }
2301 tmp_fs_devices = tmp_fs_devices->seed;
2302 }
2303 fs_devices->seed = NULL;
0226e0eb 2304 close_fs_devices(fs_devices);
8bef8401 2305 free_fs_devices(fs_devices);
94d5f0c2 2306 }
e93c89c1
SB
2307}
2308
4f5ad7bd 2309void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2310{
4f5ad7bd 2311 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2312
e93c89c1 2313 WARN_ON(!tgtdev);
d9a071f0 2314 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2315
d9a071f0 2316 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
d2ff1b20 2317
779bf3fe 2318 if (tgtdev->bdev)
d9a071f0 2319 fs_devices->open_devices--;
779bf3fe 2320
d9a071f0 2321 fs_devices->num_devices--;
e93c89c1 2322
d6507cf1 2323 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2324
e93c89c1 2325 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2326
d9a071f0 2327 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2328
2329 /*
2330 * The update_dev_time() with in btrfs_scratch_superblocks()
2331 * may lead to a call to btrfs_show_devname() which will try
2332 * to hold device_list_mutex. And here this device
2333 * is already out of device list, so we don't have to hold
2334 * the device_list_mutex lock.
2335 */
2336 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2337
2338 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2339 synchronize_rcu();
2340 btrfs_free_device(tgtdev);
e93c89c1
SB
2341}
2342
b444ad46
NB
2343static struct btrfs_device *btrfs_find_device_by_path(
2344 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2345{
2346 int ret = 0;
2347 struct btrfs_super_block *disk_super;
2348 u64 devid;
2349 u8 *dev_uuid;
2350 struct block_device *bdev;
2351 struct buffer_head *bh;
b444ad46 2352 struct btrfs_device *device;
7ba15b7d 2353
7ba15b7d 2354 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2355 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d 2356 if (ret)
b444ad46 2357 return ERR_PTR(ret);
7ba15b7d
SB
2358 disk_super = (struct btrfs_super_block *)bh->b_data;
2359 devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2363 disk_super->metadata_uuid, true);
7239ff4b 2364 else
e4319cd9 2365 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2366 disk_super->fsid, true);
7239ff4b 2367
7ba15b7d 2368 brelse(bh);
b444ad46
NB
2369 if (!device)
2370 device = ERR_PTR(-ENOENT);
7ba15b7d 2371 blkdev_put(bdev, FMODE_READ);
b444ad46 2372 return device;
7ba15b7d
SB
2373}
2374
5c5c0df0
DS
2375/*
2376 * Lookup a device given by device id, or the path if the id is 0.
2377 */
a27a94c2 2378struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2379 struct btrfs_fs_info *fs_info, u64 devid,
2380 const char *device_path)
24e0474b 2381{
a27a94c2 2382 struct btrfs_device *device;
24e0474b 2383
5c5c0df0 2384 if (devid) {
e4319cd9 2385 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
09ba3bc9 2386 NULL, true);
a27a94c2
NB
2387 if (!device)
2388 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2389 return device;
2390 }
2391
2392 if (!device_path || !device_path[0])
2393 return ERR_PTR(-EINVAL);
2394
2395 if (strcmp(device_path, "missing") == 0) {
2396 /* Find first missing device */
2397 list_for_each_entry(device, &fs_info->fs_devices->devices,
2398 dev_list) {
2399 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2400 &device->dev_state) && !device->bdev)
2401 return device;
d95a830c 2402 }
6e927ceb 2403 return ERR_PTR(-ENOENT);
24e0474b 2404 }
6e927ceb
AJ
2405
2406 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2407}
2408
2b82032c
YZ
2409/*
2410 * does all the dirty work required for changing file system's UUID.
2411 */
2ff7e61e 2412static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2413{
0b246afa 2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2415 struct btrfs_fs_devices *old_devices;
e4404d6e 2416 struct btrfs_fs_devices *seed_devices;
0b246afa 2417 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2418 struct btrfs_device *device;
2419 u64 super_flags;
2420
a32bf9a3 2421 lockdep_assert_held(&uuid_mutex);
e4404d6e 2422 if (!fs_devices->seeding)
2b82032c
YZ
2423 return -EINVAL;
2424
7239ff4b 2425 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2426 if (IS_ERR(seed_devices))
2427 return PTR_ERR(seed_devices);
2b82032c 2428
e4404d6e
YZ
2429 old_devices = clone_fs_devices(fs_devices);
2430 if (IS_ERR(old_devices)) {
2431 kfree(seed_devices);
2432 return PTR_ERR(old_devices);
2b82032c 2433 }
e4404d6e 2434
c4babc5e 2435 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2436
e4404d6e
YZ
2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2438 seed_devices->opened = 1;
2439 INIT_LIST_HEAD(&seed_devices->devices);
2440 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2441 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2442
321a4bf7 2443 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2444 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2445 synchronize_rcu);
2196d6e8
MX
2446 list_for_each_entry(device, &seed_devices->devices, dev_list)
2447 device->fs_devices = seed_devices;
c9513edb 2448
34441361 2449 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2450 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2451 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2452
2b82032c
YZ
2453 fs_devices->seeding = 0;
2454 fs_devices->num_devices = 0;
2455 fs_devices->open_devices = 0;
69611ac8 2456 fs_devices->missing_devices = 0;
69611ac8 2457 fs_devices->rotating = 0;
e4404d6e 2458 fs_devices->seed = seed_devices;
2b82032c
YZ
2459
2460 generate_random_uuid(fs_devices->fsid);
7239ff4b 2461 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2462 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2463 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2464
2b82032c
YZ
2465 super_flags = btrfs_super_flags(disk_super) &
2466 ~BTRFS_SUPER_FLAG_SEEDING;
2467 btrfs_set_super_flags(disk_super, super_flags);
2468
2469 return 0;
2470}
2471
2472/*
01327610 2473 * Store the expected generation for seed devices in device items.
2b82032c 2474 */
5c466629 2475static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2476{
5c466629 2477 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2478 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2479 struct btrfs_path *path;
2480 struct extent_buffer *leaf;
2481 struct btrfs_dev_item *dev_item;
2482 struct btrfs_device *device;
2483 struct btrfs_key key;
44880fdc 2484 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2485 u8 dev_uuid[BTRFS_UUID_SIZE];
2486 u64 devid;
2487 int ret;
2488
2489 path = btrfs_alloc_path();
2490 if (!path)
2491 return -ENOMEM;
2492
2b82032c
YZ
2493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2494 key.offset = 0;
2495 key.type = BTRFS_DEV_ITEM_KEY;
2496
2497 while (1) {
2498 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2499 if (ret < 0)
2500 goto error;
2501
2502 leaf = path->nodes[0];
2503next_slot:
2504 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2505 ret = btrfs_next_leaf(root, path);
2506 if (ret > 0)
2507 break;
2508 if (ret < 0)
2509 goto error;
2510 leaf = path->nodes[0];
2511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2512 btrfs_release_path(path);
2b82032c
YZ
2513 continue;
2514 }
2515
2516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2518 key.type != BTRFS_DEV_ITEM_KEY)
2519 break;
2520
2521 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2522 struct btrfs_dev_item);
2523 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2524 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2525 BTRFS_UUID_SIZE);
1473b24e 2526 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2527 BTRFS_FSID_SIZE);
e4319cd9 2528 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2529 fs_uuid, true);
79787eaa 2530 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2531
2532 if (device->fs_devices->seeding) {
2533 btrfs_set_device_generation(leaf, dev_item,
2534 device->generation);
2535 btrfs_mark_buffer_dirty(leaf);
2536 }
2537
2538 path->slots[0]++;
2539 goto next_slot;
2540 }
2541 ret = 0;
2542error:
2543 btrfs_free_path(path);
2544 return ret;
2545}
2546
da353f6b 2547int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2548{
5112febb 2549 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2550 struct request_queue *q;
788f20eb
CM
2551 struct btrfs_trans_handle *trans;
2552 struct btrfs_device *device;
2553 struct block_device *bdev;
0b246afa 2554 struct super_block *sb = fs_info->sb;
606686ee 2555 struct rcu_string *name;
5da54bc1 2556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2557 u64 orig_super_total_bytes;
2558 u64 orig_super_num_devices;
2b82032c 2559 int seeding_dev = 0;
788f20eb 2560 int ret = 0;
7132a262 2561 bool unlocked = false;
788f20eb 2562
5da54bc1 2563 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2564 return -EROFS;
788f20eb 2565
a5d16333 2566 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2567 fs_info->bdev_holder);
7f59203a
JB
2568 if (IS_ERR(bdev))
2569 return PTR_ERR(bdev);
a2135011 2570
5da54bc1 2571 if (fs_devices->seeding) {
2b82032c
YZ
2572 seeding_dev = 1;
2573 down_write(&sb->s_umount);
2574 mutex_lock(&uuid_mutex);
2575 }
2576
8c8bee1d 2577 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2578
5da54bc1 2579 mutex_lock(&fs_devices->device_list_mutex);
694c51fb 2580 list_for_each_entry(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2581 if (device->bdev == bdev) {
2582 ret = -EEXIST;
d25628bd 2583 mutex_unlock(
5da54bc1 2584 &fs_devices->device_list_mutex);
2b82032c 2585 goto error;
788f20eb
CM
2586 }
2587 }
5da54bc1 2588 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2589
0b246afa 2590 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2591 if (IS_ERR(device)) {
788f20eb 2592 /* we can safely leave the fs_devices entry around */
12bd2fc0 2593 ret = PTR_ERR(device);
2b82032c 2594 goto error;
788f20eb
CM
2595 }
2596
78f2c9e6 2597 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2598 if (!name) {
2b82032c 2599 ret = -ENOMEM;
5c4cf6c9 2600 goto error_free_device;
788f20eb 2601 }
606686ee 2602 rcu_assign_pointer(device->name, name);
2b82032c 2603
a22285a6 2604 trans = btrfs_start_transaction(root, 0);
98d5dc13 2605 if (IS_ERR(trans)) {
98d5dc13 2606 ret = PTR_ERR(trans);
5c4cf6c9 2607 goto error_free_device;
98d5dc13
TI
2608 }
2609
d5e2003c 2610 q = bdev_get_queue(bdev);
ebbede42 2611 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2612 device->generation = trans->transid;
0b246afa
JM
2613 device->io_width = fs_info->sectorsize;
2614 device->io_align = fs_info->sectorsize;
2615 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2616 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2617 fs_info->sectorsize);
2cc3c559 2618 device->disk_total_bytes = device->total_bytes;
935e5cc9 2619 device->commit_total_bytes = device->total_bytes;
fb456252 2620 device->fs_info = fs_info;
788f20eb 2621 device->bdev = bdev;
e12c9621 2622 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2623 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2624 device->mode = FMODE_EXCL;
27087f37 2625 device->dev_stats_valid = 1;
9f6d2510 2626 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2627
2b82032c 2628 if (seeding_dev) {
1751e8a6 2629 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2630 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2631 if (ret) {
2632 btrfs_abort_transaction(trans, ret);
2633 goto error_trans;
2634 }
2b82032c 2635 }
788f20eb 2636
5da54bc1 2637 device->fs_devices = fs_devices;
e5e9a520 2638
5da54bc1 2639 mutex_lock(&fs_devices->device_list_mutex);
34441361 2640 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2641 list_add_rcu(&device->dev_list, &fs_devices->devices);
2642 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2643 fs_devices->num_devices++;
2644 fs_devices->open_devices++;
2645 fs_devices->rw_devices++;
2646 fs_devices->total_devices++;
2647 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2648
a5ed45f8 2649 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2650
e884f4f0 2651 if (!blk_queue_nonrot(q))
5da54bc1 2652 fs_devices->rotating = 1;
c289811c 2653
39379faa 2654 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2655 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2656 round_down(orig_super_total_bytes + device->total_bytes,
2657 fs_info->sectorsize));
788f20eb 2658
39379faa
NA
2659 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2660 btrfs_set_super_num_devices(fs_info->super_copy,
2661 orig_super_num_devices + 1);
0d39376a
AJ
2662
2663 /* add sysfs device entry */
5da54bc1 2664 btrfs_sysfs_add_device_link(fs_devices, device);
0d39376a 2665
2196d6e8
MX
2666 /*
2667 * we've got more storage, clear any full flags on the space
2668 * infos
2669 */
0b246afa 2670 btrfs_clear_space_info_full(fs_info);
2196d6e8 2671
34441361 2672 mutex_unlock(&fs_info->chunk_mutex);
5da54bc1 2673 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2674
2b82032c 2675 if (seeding_dev) {
34441361 2676 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2677 ret = init_first_rw_device(trans);
34441361 2678 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2679 if (ret) {
66642832 2680 btrfs_abort_transaction(trans, ret);
d31c32f6 2681 goto error_sysfs;
005d6427 2682 }
2196d6e8
MX
2683 }
2684
8e87e856 2685 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2686 if (ret) {
66642832 2687 btrfs_abort_transaction(trans, ret);
d31c32f6 2688 goto error_sysfs;
2196d6e8
MX
2689 }
2690
2691 if (seeding_dev) {
5c466629 2692 ret = btrfs_finish_sprout(trans);
005d6427 2693 if (ret) {
66642832 2694 btrfs_abort_transaction(trans, ret);
d31c32f6 2695 goto error_sysfs;
005d6427 2696 }
b2373f25 2697
f93c3997
DS
2698 btrfs_sysfs_update_sprout_fsid(fs_devices,
2699 fs_info->fs_devices->fsid);
2b82032c
YZ
2700 }
2701
3a45bb20 2702 ret = btrfs_commit_transaction(trans);
a2135011 2703
2b82032c
YZ
2704 if (seeding_dev) {
2705 mutex_unlock(&uuid_mutex);
2706 up_write(&sb->s_umount);
7132a262 2707 unlocked = true;
788f20eb 2708
79787eaa
JM
2709 if (ret) /* transaction commit */
2710 return ret;
2711
2ff7e61e 2712 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2713 if (ret < 0)
0b246afa 2714 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2716 trans = btrfs_attach_transaction(root);
2717 if (IS_ERR(trans)) {
2718 if (PTR_ERR(trans) == -ENOENT)
2719 return 0;
7132a262
AJ
2720 ret = PTR_ERR(trans);
2721 trans = NULL;
2722 goto error_sysfs;
671415b7 2723 }
3a45bb20 2724 ret = btrfs_commit_transaction(trans);
2b82032c 2725 }
c9e9f97b 2726
5a1972bd
QW
2727 /* Update ctime/mtime for libblkid */
2728 update_dev_time(device_path);
2b82032c 2729 return ret;
79787eaa 2730
d31c32f6 2731error_sysfs:
5da54bc1 2732 btrfs_sysfs_rm_device_link(fs_devices, device);
39379faa
NA
2733 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734 mutex_lock(&fs_info->chunk_mutex);
2735 list_del_rcu(&device->dev_list);
2736 list_del(&device->dev_alloc_list);
2737 fs_info->fs_devices->num_devices--;
2738 fs_info->fs_devices->open_devices--;
2739 fs_info->fs_devices->rw_devices--;
2740 fs_info->fs_devices->total_devices--;
2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743 btrfs_set_super_total_bytes(fs_info->super_copy,
2744 orig_super_total_bytes);
2745 btrfs_set_super_num_devices(fs_info->super_copy,
2746 orig_super_num_devices);
2747 mutex_unlock(&fs_info->chunk_mutex);
2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2749error_trans:
0af2c4bf 2750 if (seeding_dev)
1751e8a6 2751 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2752 if (trans)
2753 btrfs_end_transaction(trans);
5c4cf6c9 2754error_free_device:
a425f9d4 2755 btrfs_free_device(device);
2b82032c 2756error:
e525fd89 2757 blkdev_put(bdev, FMODE_EXCL);
7132a262 2758 if (seeding_dev && !unlocked) {
2b82032c
YZ
2759 mutex_unlock(&uuid_mutex);
2760 up_write(&sb->s_umount);
2761 }
c9e9f97b 2762 return ret;
788f20eb
CM
2763}
2764
d397712b
CM
2765static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766 struct btrfs_device *device)
0b86a832
CM
2767{
2768 int ret;
2769 struct btrfs_path *path;
0b246afa 2770 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2771 struct btrfs_dev_item *dev_item;
2772 struct extent_buffer *leaf;
2773 struct btrfs_key key;
2774
0b86a832
CM
2775 path = btrfs_alloc_path();
2776 if (!path)
2777 return -ENOMEM;
2778
2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780 key.type = BTRFS_DEV_ITEM_KEY;
2781 key.offset = device->devid;
2782
2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784 if (ret < 0)
2785 goto out;
2786
2787 if (ret > 0) {
2788 ret = -ENOENT;
2789 goto out;
2790 }
2791
2792 leaf = path->nodes[0];
2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794
2795 btrfs_set_device_id(leaf, dev_item, device->devid);
2796 btrfs_set_device_type(leaf, dev_item, device->type);
2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2800 btrfs_set_device_total_bytes(leaf, dev_item,
2801 btrfs_device_get_disk_total_bytes(device));
2802 btrfs_set_device_bytes_used(leaf, dev_item,
2803 btrfs_device_get_bytes_used(device));
0b86a832
CM
2804 btrfs_mark_buffer_dirty(leaf);
2805
2806out:
2807 btrfs_free_path(path);
2808 return ret;
2809}
2810
2196d6e8 2811int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2812 struct btrfs_device *device, u64 new_size)
2813{
0b246afa
JM
2814 struct btrfs_fs_info *fs_info = device->fs_info;
2815 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2816 u64 old_total;
2817 u64 diff;
8f18cf13 2818
ebbede42 2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2820 return -EACCES;
2196d6e8 2821
7dfb8be1
NB
2822 new_size = round_down(new_size, fs_info->sectorsize);
2823
34441361 2824 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2825 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2827
63a212ab 2828 if (new_size <= device->total_bytes ||
401e29c1 2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2830 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2831 return -EINVAL;
2196d6e8 2832 }
2b82032c 2833
7dfb8be1
NB
2834 btrfs_set_super_total_bytes(super_copy,
2835 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2836 device->fs_devices->total_rw_bytes += diff;
2837
7cc8e58d
MX
2838 btrfs_device_set_total_bytes(device, new_size);
2839 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2840 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2841 if (list_empty(&device->post_commit_list))
2842 list_add_tail(&device->post_commit_list,
2843 &trans->transaction->dev_update_list);
34441361 2844 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2845
8f18cf13
CM
2846 return btrfs_update_device(trans, device);
2847}
2848
f4208794 2849static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2850{
f4208794 2851 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2852 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2853 int ret;
2854 struct btrfs_path *path;
2855 struct btrfs_key key;
2856
8f18cf13
CM
2857 path = btrfs_alloc_path();
2858 if (!path)
2859 return -ENOMEM;
2860
408fbf19 2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2862 key.offset = chunk_offset;
2863 key.type = BTRFS_CHUNK_ITEM_KEY;
2864
2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2866 if (ret < 0)
2867 goto out;
2868 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2869 btrfs_handle_fs_error(fs_info, -ENOENT,
2870 "Failed lookup while freeing chunk.");
79787eaa
JM
2871 ret = -ENOENT;
2872 goto out;
2873 }
8f18cf13
CM
2874
2875 ret = btrfs_del_item(trans, root, path);
79787eaa 2876 if (ret < 0)
0b246afa
JM
2877 btrfs_handle_fs_error(fs_info, ret,
2878 "Failed to delete chunk item.");
79787eaa 2879out:
8f18cf13 2880 btrfs_free_path(path);
65a246c5 2881 return ret;
8f18cf13
CM
2882}
2883
408fbf19 2884static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2885{
0b246afa 2886 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2887 struct btrfs_disk_key *disk_key;
2888 struct btrfs_chunk *chunk;
2889 u8 *ptr;
2890 int ret = 0;
2891 u32 num_stripes;
2892 u32 array_size;
2893 u32 len = 0;
2894 u32 cur;
2895 struct btrfs_key key;
2896
34441361 2897 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2898 array_size = btrfs_super_sys_array_size(super_copy);
2899
2900 ptr = super_copy->sys_chunk_array;
2901 cur = 0;
2902
2903 while (cur < array_size) {
2904 disk_key = (struct btrfs_disk_key *)ptr;
2905 btrfs_disk_key_to_cpu(&key, disk_key);
2906
2907 len = sizeof(*disk_key);
2908
2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910 chunk = (struct btrfs_chunk *)(ptr + len);
2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912 len += btrfs_chunk_item_size(num_stripes);
2913 } else {
2914 ret = -EIO;
2915 break;
2916 }
408fbf19 2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2918 key.offset == chunk_offset) {
2919 memmove(ptr, ptr + len, array_size - (cur + len));
2920 array_size -= len;
2921 btrfs_set_super_sys_array_size(super_copy, array_size);
2922 } else {
2923 ptr += len;
2924 cur += len;
2925 }
2926 }
34441361 2927 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2928 return ret;
2929}
2930
60ca842e
OS
2931/*
2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933 * @logical: Logical block offset in bytes.
2934 * @length: Length of extent in bytes.
2935 *
2936 * Return: Chunk mapping or ERR_PTR.
2937 */
2938struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939 u64 logical, u64 length)
592d92ee
LB
2940{
2941 struct extent_map_tree *em_tree;
2942 struct extent_map *em;
2943
c8bf1b67 2944 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2945 read_lock(&em_tree->lock);
2946 em = lookup_extent_mapping(em_tree, logical, length);
2947 read_unlock(&em_tree->lock);
2948
2949 if (!em) {
2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951 logical, length);
2952 return ERR_PTR(-EINVAL);
2953 }
2954
2955 if (em->start > logical || em->start + em->len < logical) {
2956 btrfs_crit(fs_info,
2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958 logical, length, em->start, em->start + em->len);
2959 free_extent_map(em);
2960 return ERR_PTR(-EINVAL);
2961 }
2962
2963 /* callers are responsible for dropping em's ref. */
2964 return em;
2965}
2966
97aff912 2967int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2968{
97aff912 2969 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
2970 struct extent_map *em;
2971 struct map_lookup *map;
2196d6e8 2972 u64 dev_extent_len = 0;
47ab2a6c 2973 int i, ret = 0;
0b246afa 2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2975
60ca842e 2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 2977 if (IS_ERR(em)) {
47ab2a6c
JB
2978 /*
2979 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2980 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2981 * do anything we still error out.
2982 */
2983 ASSERT(0);
592d92ee 2984 return PTR_ERR(em);
47ab2a6c 2985 }
95617d69 2986 map = em->map_lookup;
34441361 2987 mutex_lock(&fs_info->chunk_mutex);
451a2c13 2988 check_system_chunk(trans, map->type);
34441361 2989 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2990
57ba4cb8
FM
2991 /*
2992 * Take the device list mutex to prevent races with the final phase of
2993 * a device replace operation that replaces the device object associated
2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2995 */
2996 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2997 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2998 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2999 ret = btrfs_free_dev_extent(trans, device,
3000 map->stripes[i].physical,
3001 &dev_extent_len);
47ab2a6c 3002 if (ret) {
57ba4cb8 3003 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3004 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3005 goto out;
3006 }
a061fc8d 3007
2196d6e8 3008 if (device->bytes_used > 0) {
34441361 3009 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3010 btrfs_device_set_bytes_used(device,
3011 device->bytes_used - dev_extent_len);
a5ed45f8 3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3013 btrfs_clear_space_info_full(fs_info);
34441361 3014 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3015 }
a061fc8d 3016
64bc6c2a
NB
3017 ret = btrfs_update_device(trans, device);
3018 if (ret) {
3019 mutex_unlock(&fs_devices->device_list_mutex);
3020 btrfs_abort_transaction(trans, ret);
3021 goto out;
dfe25020 3022 }
8f18cf13 3023 }
57ba4cb8
FM
3024 mutex_unlock(&fs_devices->device_list_mutex);
3025
f4208794 3026 ret = btrfs_free_chunk(trans, chunk_offset);
47ab2a6c 3027 if (ret) {
66642832 3028 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3029 goto out;
3030 }
8f18cf13 3031
6bccf3ab 3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3033
8f18cf13 3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3036 if (ret) {
66642832 3037 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3038 goto out;
3039 }
8f18cf13
CM
3040 }
3041
5a98ec01 3042 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3043 if (ret) {
66642832 3044 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3045 goto out;
3046 }
2b82032c 3047
47ab2a6c 3048out:
2b82032c
YZ
3049 /* once for us */
3050 free_extent_map(em);
47ab2a6c
JB
3051 return ret;
3052}
2b82032c 3053
5b4aacef 3054static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3055{
5b4aacef 3056 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3057 struct btrfs_trans_handle *trans;
47ab2a6c 3058 int ret;
2b82032c 3059
67c5e7d4
FM
3060 /*
3061 * Prevent races with automatic removal of unused block groups.
3062 * After we relocate and before we remove the chunk with offset
3063 * chunk_offset, automatic removal of the block group can kick in,
3064 * resulting in a failure when calling btrfs_remove_chunk() below.
3065 *
3066 * Make sure to acquire this mutex before doing a tree search (dev
3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069 * we release the path used to search the chunk/dev tree and before
3070 * the current task acquires this mutex and calls us.
3071 */
a32bf9a3 3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 3073
47ab2a6c 3074 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3075 btrfs_scrub_pause(fs_info);
0b246afa 3076 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3077 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3078 if (ret)
3079 return ret;
3080
19c4d2f9
CM
3081 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3082 chunk_offset);
3083 if (IS_ERR(trans)) {
3084 ret = PTR_ERR(trans);
3085 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3086 return ret;
3087 }
3088
47ab2a6c 3089 /*
19c4d2f9
CM
3090 * step two, delete the device extents and the
3091 * chunk tree entries
47ab2a6c 3092 */
97aff912 3093 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3094 btrfs_end_transaction(trans);
19c4d2f9 3095 return ret;
2b82032c
YZ
3096}
3097
2ff7e61e 3098static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3099{
0b246afa 3100 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3101 struct btrfs_path *path;
3102 struct extent_buffer *leaf;
3103 struct btrfs_chunk *chunk;
3104 struct btrfs_key key;
3105 struct btrfs_key found_key;
2b82032c 3106 u64 chunk_type;
ba1bf481
JB
3107 bool retried = false;
3108 int failed = 0;
2b82032c
YZ
3109 int ret;
3110
3111 path = btrfs_alloc_path();
3112 if (!path)
3113 return -ENOMEM;
3114
ba1bf481 3115again:
2b82032c
YZ
3116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3117 key.offset = (u64)-1;
3118 key.type = BTRFS_CHUNK_ITEM_KEY;
3119
3120 while (1) {
0b246afa 3121 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3122 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3123 if (ret < 0) {
0b246afa 3124 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3125 goto error;
67c5e7d4 3126 }
79787eaa 3127 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3128
3129 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3130 key.type);
67c5e7d4 3131 if (ret)
0b246afa 3132 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
3133 if (ret < 0)
3134 goto error;
3135 if (ret > 0)
3136 break;
1a40e23b 3137
2b82032c
YZ
3138 leaf = path->nodes[0];
3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3140
2b82032c
YZ
3141 chunk = btrfs_item_ptr(leaf, path->slots[0],
3142 struct btrfs_chunk);
3143 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3144 btrfs_release_path(path);
8f18cf13 3145
2b82032c 3146 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3147 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3148 if (ret == -ENOSPC)
3149 failed++;
14586651
HS
3150 else
3151 BUG_ON(ret);
2b82032c 3152 }
0b246afa 3153 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3154
2b82032c
YZ
3155 if (found_key.offset == 0)
3156 break;
3157 key.offset = found_key.offset - 1;
3158 }
3159 ret = 0;
ba1bf481
JB
3160 if (failed && !retried) {
3161 failed = 0;
3162 retried = true;
3163 goto again;
fae7f21c 3164 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3165 ret = -ENOSPC;
3166 }
2b82032c
YZ
3167error:
3168 btrfs_free_path(path);
3169 return ret;
8f18cf13
CM
3170}
3171
a6f93c71
LB
3172/*
3173 * return 1 : allocate a data chunk successfully,
3174 * return <0: errors during allocating a data chunk,
3175 * return 0 : no need to allocate a data chunk.
3176 */
3177static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3178 u64 chunk_offset)
3179{
3180 struct btrfs_block_group_cache *cache;
3181 u64 bytes_used;
3182 u64 chunk_type;
3183
3184 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185 ASSERT(cache);
3186 chunk_type = cache->flags;
3187 btrfs_put_block_group(cache);
3188
3189 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3190 spin_lock(&fs_info->data_sinfo->lock);
3191 bytes_used = fs_info->data_sinfo->bytes_used;
3192 spin_unlock(&fs_info->data_sinfo->lock);
3193
3194 if (!bytes_used) {
3195 struct btrfs_trans_handle *trans;
3196 int ret;
3197
3198 trans = btrfs_join_transaction(fs_info->tree_root);
3199 if (IS_ERR(trans))
3200 return PTR_ERR(trans);
3201
43a7e99d 3202 ret = btrfs_force_chunk_alloc(trans,
a6f93c71
LB
3203 BTRFS_BLOCK_GROUP_DATA);
3204 btrfs_end_transaction(trans);
3205 if (ret < 0)
3206 return ret;
a6f93c71
LB
3207 return 1;
3208 }
3209 }
3210 return 0;
3211}
3212
6bccf3ab 3213static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3214 struct btrfs_balance_control *bctl)
3215{
6bccf3ab 3216 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3217 struct btrfs_trans_handle *trans;
3218 struct btrfs_balance_item *item;
3219 struct btrfs_disk_balance_args disk_bargs;
3220 struct btrfs_path *path;
3221 struct extent_buffer *leaf;
3222 struct btrfs_key key;
3223 int ret, err;
3224
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3228
3229 trans = btrfs_start_transaction(root, 0);
3230 if (IS_ERR(trans)) {
3231 btrfs_free_path(path);
3232 return PTR_ERR(trans);
3233 }
3234
3235 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3236 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3237 key.offset = 0;
3238
3239 ret = btrfs_insert_empty_item(trans, root, path, &key,
3240 sizeof(*item));
3241 if (ret)
3242 goto out;
3243
3244 leaf = path->nodes[0];
3245 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3246
b159fa28 3247 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3248
3249 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3250 btrfs_set_balance_data(leaf, item, &disk_bargs);
3251 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3252 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3253 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3254 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3255
3256 btrfs_set_balance_flags(leaf, item, bctl->flags);
3257
3258 btrfs_mark_buffer_dirty(leaf);
3259out:
3260 btrfs_free_path(path);
3a45bb20 3261 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3262 if (err && !ret)
3263 ret = err;
3264 return ret;
3265}
3266
6bccf3ab 3267static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3268{
6bccf3ab 3269 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3270 struct btrfs_trans_handle *trans;
3271 struct btrfs_path *path;
3272 struct btrfs_key key;
3273 int ret, err;
3274
3275 path = btrfs_alloc_path();
3276 if (!path)
3277 return -ENOMEM;
3278
3279 trans = btrfs_start_transaction(root, 0);
3280 if (IS_ERR(trans)) {
3281 btrfs_free_path(path);
3282 return PTR_ERR(trans);
3283 }
3284
3285 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3286 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3287 key.offset = 0;
3288
3289 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3290 if (ret < 0)
3291 goto out;
3292 if (ret > 0) {
3293 ret = -ENOENT;
3294 goto out;
3295 }
3296
3297 ret = btrfs_del_item(trans, root, path);
3298out:
3299 btrfs_free_path(path);
3a45bb20 3300 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3301 if (err && !ret)
3302 ret = err;
3303 return ret;
3304}
3305
59641015
ID
3306/*
3307 * This is a heuristic used to reduce the number of chunks balanced on
3308 * resume after balance was interrupted.
3309 */
3310static void update_balance_args(struct btrfs_balance_control *bctl)
3311{
3312 /*
3313 * Turn on soft mode for chunk types that were being converted.
3314 */
3315 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3316 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3317 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3318 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3319 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3320 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3321
3322 /*
3323 * Turn on usage filter if is not already used. The idea is
3324 * that chunks that we have already balanced should be
3325 * reasonably full. Don't do it for chunks that are being
3326 * converted - that will keep us from relocating unconverted
3327 * (albeit full) chunks.
3328 */
3329 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3330 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3331 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3332 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3333 bctl->data.usage = 90;
3334 }
3335 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3336 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3337 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3338 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3339 bctl->sys.usage = 90;
3340 }
3341 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3342 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3343 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3344 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3345 bctl->meta.usage = 90;
3346 }
3347}
3348
149196a2
DS
3349/*
3350 * Clear the balance status in fs_info and delete the balance item from disk.
3351 */
3352static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3353{
3354 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3355 int ret;
c9e9f97b
ID
3356
3357 BUG_ON(!fs_info->balance_ctl);
3358
3359 spin_lock(&fs_info->balance_lock);
3360 fs_info->balance_ctl = NULL;
3361 spin_unlock(&fs_info->balance_lock);
3362
3363 kfree(bctl);
149196a2
DS
3364 ret = del_balance_item(fs_info);
3365 if (ret)
3366 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3367}
3368
ed25e9b2
ID
3369/*
3370 * Balance filters. Return 1 if chunk should be filtered out
3371 * (should not be balanced).
3372 */
899c81ea 3373static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3374 struct btrfs_balance_args *bargs)
3375{
899c81ea
ID
3376 chunk_type = chunk_to_extended(chunk_type) &
3377 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3378
899c81ea 3379 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3380 return 0;
3381
3382 return 1;
3383}
3384
dba72cb3 3385static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3386 struct btrfs_balance_args *bargs)
bc309467
DS
3387{
3388 struct btrfs_block_group_cache *cache;
3389 u64 chunk_used;
3390 u64 user_thresh_min;
3391 u64 user_thresh_max;
3392 int ret = 1;
3393
3394 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3395 chunk_used = btrfs_block_group_used(&cache->item);
3396
3397 if (bargs->usage_min == 0)
3398 user_thresh_min = 0;
3399 else
3400 user_thresh_min = div_factor_fine(cache->key.offset,
3401 bargs->usage_min);
3402
3403 if (bargs->usage_max == 0)
3404 user_thresh_max = 1;
3405 else if (bargs->usage_max > 100)
3406 user_thresh_max = cache->key.offset;
3407 else
3408 user_thresh_max = div_factor_fine(cache->key.offset,
3409 bargs->usage_max);
3410
3411 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3412 ret = 0;
3413
3414 btrfs_put_block_group(cache);
3415 return ret;
3416}
3417
dba72cb3 3418static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3419 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3420{
3421 struct btrfs_block_group_cache *cache;
3422 u64 chunk_used, user_thresh;
3423 int ret = 1;
3424
3425 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3426 chunk_used = btrfs_block_group_used(&cache->item);
3427
bc309467 3428 if (bargs->usage_min == 0)
3e39cea6 3429 user_thresh = 1;
a105bb88
ID
3430 else if (bargs->usage > 100)
3431 user_thresh = cache->key.offset;
3432 else
3433 user_thresh = div_factor_fine(cache->key.offset,
3434 bargs->usage);
3435
5ce5b3c0
ID
3436 if (chunk_used < user_thresh)
3437 ret = 0;
3438
3439 btrfs_put_block_group(cache);
3440 return ret;
3441}
3442
409d404b
ID
3443static int chunk_devid_filter(struct extent_buffer *leaf,
3444 struct btrfs_chunk *chunk,
3445 struct btrfs_balance_args *bargs)
3446{
3447 struct btrfs_stripe *stripe;
3448 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449 int i;
3450
3451 for (i = 0; i < num_stripes; i++) {
3452 stripe = btrfs_stripe_nr(chunk, i);
3453 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3454 return 0;
3455 }
3456
3457 return 1;
3458}
3459
946c9256
DS
3460static u64 calc_data_stripes(u64 type, int num_stripes)
3461{
3462 const int index = btrfs_bg_flags_to_raid_index(type);
3463 const int ncopies = btrfs_raid_array[index].ncopies;
3464 const int nparity = btrfs_raid_array[index].nparity;
3465
3466 if (nparity)
3467 return num_stripes - nparity;
3468 else
3469 return num_stripes / ncopies;
3470}
3471
94e60d5a
ID
3472/* [pstart, pend) */
3473static int chunk_drange_filter(struct extent_buffer *leaf,
3474 struct btrfs_chunk *chunk,
94e60d5a
ID
3475 struct btrfs_balance_args *bargs)
3476{
3477 struct btrfs_stripe *stripe;
3478 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3479 u64 stripe_offset;
3480 u64 stripe_length;
946c9256 3481 u64 type;
94e60d5a
ID
3482 int factor;
3483 int i;
3484
3485 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3486 return 0;
3487
946c9256
DS
3488 type = btrfs_chunk_type(leaf, chunk);
3489 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3490
3491 for (i = 0; i < num_stripes; i++) {
3492 stripe = btrfs_stripe_nr(chunk, i);
3493 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3494 continue;
3495
3496 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3497 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3498 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3499
3500 if (stripe_offset < bargs->pend &&
3501 stripe_offset + stripe_length > bargs->pstart)
3502 return 0;
3503 }
3504
3505 return 1;
3506}
3507
ea67176a
ID
3508/* [vstart, vend) */
3509static int chunk_vrange_filter(struct extent_buffer *leaf,
3510 struct btrfs_chunk *chunk,
3511 u64 chunk_offset,
3512 struct btrfs_balance_args *bargs)
3513{
3514 if (chunk_offset < bargs->vend &&
3515 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3516 /* at least part of the chunk is inside this vrange */
3517 return 0;
3518
3519 return 1;
3520}
3521
dee32d0a
GAP
3522static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3523 struct btrfs_chunk *chunk,
3524 struct btrfs_balance_args *bargs)
3525{
3526 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3527
3528 if (bargs->stripes_min <= num_stripes
3529 && num_stripes <= bargs->stripes_max)
3530 return 0;
3531
3532 return 1;
3533}
3534
899c81ea 3535static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3536 struct btrfs_balance_args *bargs)
3537{
3538 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3539 return 0;
3540
899c81ea
ID
3541 chunk_type = chunk_to_extended(chunk_type) &
3542 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3543
899c81ea 3544 if (bargs->target == chunk_type)
cfa4c961
ID
3545 return 1;
3546
3547 return 0;
3548}
3549
6ec0896c 3550static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3551 struct btrfs_chunk *chunk, u64 chunk_offset)
3552{
6ec0896c 3553 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3554 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3555 struct btrfs_balance_args *bargs = NULL;
3556 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3557
3558 /* type filter */
3559 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3560 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3561 return 0;
3562 }
3563
3564 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3565 bargs = &bctl->data;
3566 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3567 bargs = &bctl->sys;
3568 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3569 bargs = &bctl->meta;
3570
ed25e9b2
ID
3571 /* profiles filter */
3572 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3573 chunk_profiles_filter(chunk_type, bargs)) {
3574 return 0;
5ce5b3c0
ID
3575 }
3576
3577 /* usage filter */
3578 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3579 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3580 return 0;
bc309467 3581 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3582 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3583 return 0;
409d404b
ID
3584 }
3585
3586 /* devid filter */
3587 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3588 chunk_devid_filter(leaf, chunk, bargs)) {
3589 return 0;
94e60d5a
ID
3590 }
3591
3592 /* drange filter, makes sense only with devid filter */
3593 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3594 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3595 return 0;
ea67176a
ID
3596 }
3597
3598 /* vrange filter */
3599 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3600 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3601 return 0;
ed25e9b2
ID
3602 }
3603
dee32d0a
GAP
3604 /* stripes filter */
3605 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3606 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3607 return 0;
3608 }
3609
cfa4c961
ID
3610 /* soft profile changing mode */
3611 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3612 chunk_soft_convert_filter(chunk_type, bargs)) {
3613 return 0;
3614 }
3615
7d824b6f
DS
3616 /*
3617 * limited by count, must be the last filter
3618 */
3619 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3620 if (bargs->limit == 0)
3621 return 0;
3622 else
3623 bargs->limit--;
12907fc7
DS
3624 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3625 /*
3626 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3627 * determined here because we do not have the global information
12907fc7
DS
3628 * about the count of all chunks that satisfy the filters.
3629 */
3630 if (bargs->limit_max == 0)
3631 return 0;
3632 else
3633 bargs->limit_max--;
7d824b6f
DS
3634 }
3635
f43ffb60
ID
3636 return 1;
3637}
3638
c9e9f97b 3639static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3640{
19a39dce 3641 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3642 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3643 u64 chunk_type;
f43ffb60 3644 struct btrfs_chunk *chunk;
5a488b9d 3645 struct btrfs_path *path = NULL;
ec44a35c 3646 struct btrfs_key key;
ec44a35c 3647 struct btrfs_key found_key;
f43ffb60
ID
3648 struct extent_buffer *leaf;
3649 int slot;
c9e9f97b
ID
3650 int ret;
3651 int enospc_errors = 0;
19a39dce 3652 bool counting = true;
12907fc7 3653 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3654 u64 limit_data = bctl->data.limit;
3655 u64 limit_meta = bctl->meta.limit;
3656 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3657 u32 count_data = 0;
3658 u32 count_meta = 0;
3659 u32 count_sys = 0;
2c9fe835 3660 int chunk_reserved = 0;
ec44a35c 3661
ec44a35c 3662 path = btrfs_alloc_path();
17e9f796
MF
3663 if (!path) {
3664 ret = -ENOMEM;
3665 goto error;
3666 }
19a39dce
ID
3667
3668 /* zero out stat counters */
3669 spin_lock(&fs_info->balance_lock);
3670 memset(&bctl->stat, 0, sizeof(bctl->stat));
3671 spin_unlock(&fs_info->balance_lock);
3672again:
7d824b6f 3673 if (!counting) {
12907fc7
DS
3674 /*
3675 * The single value limit and min/max limits use the same bytes
3676 * in the
3677 */
7d824b6f
DS
3678 bctl->data.limit = limit_data;
3679 bctl->meta.limit = limit_meta;
3680 bctl->sys.limit = limit_sys;
3681 }
ec44a35c
CM
3682 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3683 key.offset = (u64)-1;
3684 key.type = BTRFS_CHUNK_ITEM_KEY;
3685
d397712b 3686 while (1) {
19a39dce 3687 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3688 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3689 ret = -ECANCELED;
3690 goto error;
3691 }
3692
67c5e7d4 3693 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3694 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3695 if (ret < 0) {
3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3697 goto error;
67c5e7d4 3698 }
ec44a35c
CM
3699
3700 /*
3701 * this shouldn't happen, it means the last relocate
3702 * failed
3703 */
3704 if (ret == 0)
c9e9f97b 3705 BUG(); /* FIXME break ? */
ec44a35c
CM
3706
3707 ret = btrfs_previous_item(chunk_root, path, 0,
3708 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3709 if (ret) {
67c5e7d4 3710 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3711 ret = 0;
ec44a35c 3712 break;
c9e9f97b 3713 }
7d9eb12c 3714
f43ffb60
ID
3715 leaf = path->nodes[0];
3716 slot = path->slots[0];
3717 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3718
67c5e7d4
FM
3719 if (found_key.objectid != key.objectid) {
3720 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3721 break;
67c5e7d4 3722 }
7d9eb12c 3723
f43ffb60 3724 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3725 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3726
19a39dce
ID
3727 if (!counting) {
3728 spin_lock(&fs_info->balance_lock);
3729 bctl->stat.considered++;
3730 spin_unlock(&fs_info->balance_lock);
3731 }
3732
6ec0896c 3733 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3734
b3b4aa74 3735 btrfs_release_path(path);
67c5e7d4
FM
3736 if (!ret) {
3737 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3738 goto loop;
67c5e7d4 3739 }
f43ffb60 3740
19a39dce 3741 if (counting) {
67c5e7d4 3742 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3743 spin_lock(&fs_info->balance_lock);
3744 bctl->stat.expected++;
3745 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3746
3747 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748 count_data++;
3749 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750 count_sys++;
3751 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752 count_meta++;
3753
3754 goto loop;
3755 }
3756
3757 /*
3758 * Apply limit_min filter, no need to check if the LIMITS
3759 * filter is used, limit_min is 0 by default
3760 */
3761 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3762 count_data < bctl->data.limit_min)
3763 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3764 count_meta < bctl->meta.limit_min)
3765 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3766 count_sys < bctl->sys.limit_min)) {
3767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3768 goto loop;
3769 }
3770
a6f93c71
LB
3771 if (!chunk_reserved) {
3772 /*
3773 * We may be relocating the only data chunk we have,
3774 * which could potentially end up with losing data's
3775 * raid profile, so lets allocate an empty one in
3776 * advance.
3777 */
3778 ret = btrfs_may_alloc_data_chunk(fs_info,
3779 found_key.offset);
2c9fe835
ZL
3780 if (ret < 0) {
3781 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3782 goto error;
a6f93c71
LB
3783 } else if (ret == 1) {
3784 chunk_reserved = 1;
2c9fe835 3785 }
2c9fe835
ZL
3786 }
3787
5b4aacef 3788 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3789 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce 3790 if (ret == -ENOSPC) {
c9e9f97b 3791 enospc_errors++;
eede2bf3
OS
3792 } else if (ret == -ETXTBSY) {
3793 btrfs_info(fs_info,
3794 "skipping relocation of block group %llu due to active swapfile",
3795 found_key.offset);
3796 ret = 0;
3797 } else if (ret) {
3798 goto error;
19a39dce
ID
3799 } else {
3800 spin_lock(&fs_info->balance_lock);
3801 bctl->stat.completed++;
3802 spin_unlock(&fs_info->balance_lock);
3803 }
f43ffb60 3804loop:
795a3321
ID
3805 if (found_key.offset == 0)
3806 break;
ba1bf481 3807 key.offset = found_key.offset - 1;
ec44a35c 3808 }
c9e9f97b 3809
19a39dce
ID
3810 if (counting) {
3811 btrfs_release_path(path);
3812 counting = false;
3813 goto again;
3814 }
ec44a35c
CM
3815error:
3816 btrfs_free_path(path);
c9e9f97b 3817 if (enospc_errors) {
efe120a0 3818 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3819 enospc_errors);
c9e9f97b
ID
3820 if (!ret)
3821 ret = -ENOSPC;
3822 }
3823
ec44a35c
CM
3824 return ret;
3825}
3826
0c460c0d
ID
3827/**
3828 * alloc_profile_is_valid - see if a given profile is valid and reduced
3829 * @flags: profile to validate
3830 * @extended: if true @flags is treated as an extended profile
3831 */
3832static int alloc_profile_is_valid(u64 flags, int extended)
3833{
3834 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3835 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3836
3837 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3838
3839 /* 1) check that all other bits are zeroed */
3840 if (flags & ~mask)
3841 return 0;
3842
3843 /* 2) see if profile is reduced */
3844 if (flags == 0)
3845 return !extended; /* "0" is valid for usual profiles */
3846
3847 /* true if exactly one bit set */
818255fe 3848 return is_power_of_2(flags);
0c460c0d
ID
3849}
3850
837d5b6e
ID
3851static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3852{
a7e99c69
ID
3853 /* cancel requested || normal exit path */
3854 return atomic_read(&fs_info->balance_cancel_req) ||
3855 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3856 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3857}
3858
bdcd3c97
AM
3859/* Non-zero return value signifies invalidity */
3860static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3861 u64 allowed)
3862{
3863 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3864 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3865 (bctl_arg->target & ~allowed)));
3866}
3867
56fc37d9
AJ
3868/*
3869 * Fill @buf with textual description of balance filter flags @bargs, up to
3870 * @size_buf including the terminating null. The output may be trimmed if it
3871 * does not fit into the provided buffer.
3872 */
3873static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3874 u32 size_buf)
3875{
3876 int ret;
3877 u32 size_bp = size_buf;
3878 char *bp = buf;
3879 u64 flags = bargs->flags;
3880 char tmp_buf[128] = {'\0'};
3881
3882 if (!flags)
3883 return;
3884
3885#define CHECK_APPEND_NOARG(a) \
3886 do { \
3887 ret = snprintf(bp, size_bp, (a)); \
3888 if (ret < 0 || ret >= size_bp) \
3889 goto out_overflow; \
3890 size_bp -= ret; \
3891 bp += ret; \
3892 } while (0)
3893
3894#define CHECK_APPEND_1ARG(a, v1) \
3895 do { \
3896 ret = snprintf(bp, size_bp, (a), (v1)); \
3897 if (ret < 0 || ret >= size_bp) \
3898 goto out_overflow; \
3899 size_bp -= ret; \
3900 bp += ret; \
3901 } while (0)
3902
3903#define CHECK_APPEND_2ARG(a, v1, v2) \
3904 do { \
3905 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3906 if (ret < 0 || ret >= size_bp) \
3907 goto out_overflow; \
3908 size_bp -= ret; \
3909 bp += ret; \
3910 } while (0)
3911
158da513
DS
3912 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3913 CHECK_APPEND_1ARG("convert=%s,",
3914 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
3915
3916 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3917 CHECK_APPEND_NOARG("soft,");
3918
3919 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3920 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3921 sizeof(tmp_buf));
3922 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3923 }
3924
3925 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3926 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3927
3928 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3929 CHECK_APPEND_2ARG("usage=%u..%u,",
3930 bargs->usage_min, bargs->usage_max);
3931
3932 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3933 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3934
3935 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3936 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3937 bargs->pstart, bargs->pend);
3938
3939 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3940 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3941 bargs->vstart, bargs->vend);
3942
3943 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3944 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3945
3946 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3947 CHECK_APPEND_2ARG("limit=%u..%u,",
3948 bargs->limit_min, bargs->limit_max);
3949
3950 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3951 CHECK_APPEND_2ARG("stripes=%u..%u,",
3952 bargs->stripes_min, bargs->stripes_max);
3953
3954#undef CHECK_APPEND_2ARG
3955#undef CHECK_APPEND_1ARG
3956#undef CHECK_APPEND_NOARG
3957
3958out_overflow:
3959
3960 if (size_bp < size_buf)
3961 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3962 else
3963 buf[0] = '\0';
3964}
3965
3966static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3967{
3968 u32 size_buf = 1024;
3969 char tmp_buf[192] = {'\0'};
3970 char *buf;
3971 char *bp;
3972 u32 size_bp = size_buf;
3973 int ret;
3974 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3975
3976 buf = kzalloc(size_buf, GFP_KERNEL);
3977 if (!buf)
3978 return;
3979
3980 bp = buf;
3981
3982#define CHECK_APPEND_1ARG(a, v1) \
3983 do { \
3984 ret = snprintf(bp, size_bp, (a), (v1)); \
3985 if (ret < 0 || ret >= size_bp) \
3986 goto out_overflow; \
3987 size_bp -= ret; \
3988 bp += ret; \
3989 } while (0)
3990
3991 if (bctl->flags & BTRFS_BALANCE_FORCE)
3992 CHECK_APPEND_1ARG("%s", "-f ");
3993
3994 if (bctl->flags & BTRFS_BALANCE_DATA) {
3995 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3996 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3997 }
3998
3999 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4000 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4001 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4002 }
4003
4004 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4005 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4006 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4007 }
4008
4009#undef CHECK_APPEND_1ARG
4010
4011out_overflow:
4012
4013 if (size_bp < size_buf)
4014 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4015 btrfs_info(fs_info, "balance: %s %s",
4016 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4017 "resume" : "start", buf);
4018
4019 kfree(buf);
4020}
4021
c9e9f97b 4022/*
dccdb07b 4023 * Should be called with balance mutexe held
c9e9f97b 4024 */
6fcf6e2b
DS
4025int btrfs_balance(struct btrfs_fs_info *fs_info,
4026 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4027 struct btrfs_ioctl_balance_args *bargs)
4028{
14506127 4029 u64 meta_target, data_target;
f43ffb60 4030 u64 allowed;
e4837f8f 4031 int mixed = 0;
c9e9f97b 4032 int ret;
8dabb742 4033 u64 num_devices;
de98ced9 4034 unsigned seq;
5a8067c0 4035 bool reducing_integrity;
081db89b 4036 int i;
c9e9f97b 4037
837d5b6e 4038 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
4039 atomic_read(&fs_info->balance_pause_req) ||
4040 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
4041 ret = -EINVAL;
4042 goto out;
4043 }
4044
e4837f8f
ID
4045 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4046 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4047 mixed = 1;
4048
f43ffb60
ID
4049 /*
4050 * In case of mixed groups both data and meta should be picked,
4051 * and identical options should be given for both of them.
4052 */
e4837f8f
ID
4053 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4054 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4055 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4056 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4057 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4058 btrfs_err(fs_info,
6dac13f8 4059 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4060 ret = -EINVAL;
4061 goto out;
4062 }
4063 }
4064
1da73967 4065 num_devices = btrfs_num_devices(fs_info);
081db89b
DS
4066 allowed = 0;
4067 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4068 if (num_devices >= btrfs_raid_array[i].devs_min)
4069 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4070
bdcd3c97 4071 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e 4072 btrfs_err(fs_info,
6dac13f8 4073 "balance: invalid convert data profile %s",
158da513 4074 btrfs_bg_type_to_raid_name(bctl->data.target));
e4d8ec0f
ID
4075 ret = -EINVAL;
4076 goto out;
4077 }
bdcd3c97 4078 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 4079 btrfs_err(fs_info,
6dac13f8 4080 "balance: invalid convert metadata profile %s",
158da513 4081 btrfs_bg_type_to_raid_name(bctl->meta.target));
e4d8ec0f
ID
4082 ret = -EINVAL;
4083 goto out;
4084 }
bdcd3c97 4085 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 4086 btrfs_err(fs_info,
6dac13f8 4087 "balance: invalid convert system profile %s",
158da513 4088 btrfs_bg_type_to_raid_name(bctl->sys.target));
e4d8ec0f
ID
4089 ret = -EINVAL;
4090 goto out;
4091 }
4092
6079e12c
DS
4093 /*
4094 * Allow to reduce metadata or system integrity only if force set for
4095 * profiles with redundancy (copies, parity)
4096 */
4097 allowed = 0;
4098 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4099 if (btrfs_raid_array[i].ncopies >= 2 ||
4100 btrfs_raid_array[i].tolerated_failures >= 1)
4101 allowed |= btrfs_raid_array[i].bg_flag;
4102 }
de98ced9
MX
4103 do {
4104 seq = read_seqbegin(&fs_info->profiles_lock);
4105
4106 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4107 (fs_info->avail_system_alloc_bits & allowed) &&
4108 !(bctl->sys.target & allowed)) ||
4109 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4110 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0
FM
4111 !(bctl->meta.target & allowed)))
4112 reducing_integrity = true;
4113 else
4114 reducing_integrity = false;
4115
4116 /* if we're not converting, the target field is uninitialized */
4117 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4118 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4119 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4120 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4121 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4122
5a8067c0
FM
4123 if (reducing_integrity) {
4124 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4125 btrfs_info(fs_info,
4126 "balance: force reducing metadata integrity");
4127 } else {
4128 btrfs_err(fs_info,
4129 "balance: reduces metadata integrity, use --force if you want this");
4130 ret = -EINVAL;
4131 goto out;
4132 }
4133 }
4134
14506127
AB
4135 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4136 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4137 btrfs_warn(fs_info,
6dac13f8 4138 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4139 btrfs_bg_type_to_raid_name(meta_target),
4140 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4141 }
4142
9e967495
FM
4143 if (fs_info->send_in_progress) {
4144 btrfs_warn_rl(fs_info,
4145"cannot run balance while send operations are in progress (%d in progress)",
4146 fs_info->send_in_progress);
4147 ret = -EAGAIN;
4148 goto out;
4149 }
4150
6bccf3ab 4151 ret = insert_balance_item(fs_info, bctl);
59641015 4152 if (ret && ret != -EEXIST)
0940ebf6
ID
4153 goto out;
4154
59641015
ID
4155 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4156 BUG_ON(ret == -EEXIST);
833aae18
DS
4157 BUG_ON(fs_info->balance_ctl);
4158 spin_lock(&fs_info->balance_lock);
4159 fs_info->balance_ctl = bctl;
4160 spin_unlock(&fs_info->balance_lock);
59641015
ID
4161 } else {
4162 BUG_ON(ret != -EEXIST);
4163 spin_lock(&fs_info->balance_lock);
4164 update_balance_args(bctl);
4165 spin_unlock(&fs_info->balance_lock);
4166 }
c9e9f97b 4167
3009a62f
DS
4168 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4169 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4170 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4171 mutex_unlock(&fs_info->balance_mutex);
4172
4173 ret = __btrfs_balance(fs_info);
4174
4175 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4176 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4177 btrfs_info(fs_info, "balance: paused");
4178 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4179 btrfs_info(fs_info, "balance: canceled");
4180 else
4181 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4182
3009a62f 4183 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4184
4185 if (bargs) {
4186 memset(bargs, 0, sizeof(*bargs));
008ef096 4187 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4188 }
4189
3a01aa7a
ID
4190 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4191 balance_need_close(fs_info)) {
149196a2 4192 reset_balance_state(fs_info);
a17c95df 4193 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3a01aa7a
ID
4194 }
4195
837d5b6e 4196 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4197
4198 return ret;
4199out:
59641015 4200 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4201 reset_balance_state(fs_info);
a17c95df 4202 else
59641015 4203 kfree(bctl);
a17c95df
DS
4204 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4205
59641015
ID
4206 return ret;
4207}
4208
4209static int balance_kthread(void *data)
4210{
2b6ba629 4211 struct btrfs_fs_info *fs_info = data;
9555c6c1 4212 int ret = 0;
59641015 4213
59641015 4214 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4215 if (fs_info->balance_ctl)
6fcf6e2b 4216 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4217 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4218
59641015
ID
4219 return ret;
4220}
4221
2b6ba629
ID
4222int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4223{
4224 struct task_struct *tsk;
4225
1354e1a1 4226 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4227 if (!fs_info->balance_ctl) {
1354e1a1 4228 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4229 return 0;
4230 }
1354e1a1 4231 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4232
3cdde224 4233 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4234 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4235 return 0;
4236 }
4237
02ee654d
AJ
4238 /*
4239 * A ro->rw remount sequence should continue with the paused balance
4240 * regardless of who pauses it, system or the user as of now, so set
4241 * the resume flag.
4242 */
4243 spin_lock(&fs_info->balance_lock);
4244 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4245 spin_unlock(&fs_info->balance_lock);
4246
2b6ba629 4247 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4248 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4249}
4250
68310a5e 4251int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4252{
59641015
ID
4253 struct btrfs_balance_control *bctl;
4254 struct btrfs_balance_item *item;
4255 struct btrfs_disk_balance_args disk_bargs;
4256 struct btrfs_path *path;
4257 struct extent_buffer *leaf;
4258 struct btrfs_key key;
4259 int ret;
4260
4261 path = btrfs_alloc_path();
4262 if (!path)
4263 return -ENOMEM;
4264
59641015 4265 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4266 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4267 key.offset = 0;
4268
68310a5e 4269 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4270 if (ret < 0)
68310a5e 4271 goto out;
59641015
ID
4272 if (ret > 0) { /* ret = -ENOENT; */
4273 ret = 0;
68310a5e
ID
4274 goto out;
4275 }
4276
4277 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4278 if (!bctl) {
4279 ret = -ENOMEM;
4280 goto out;
59641015
ID
4281 }
4282
4283 leaf = path->nodes[0];
4284 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4285
68310a5e
ID
4286 bctl->flags = btrfs_balance_flags(leaf, item);
4287 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4288
4289 btrfs_balance_data(leaf, item, &disk_bargs);
4290 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4291 btrfs_balance_meta(leaf, item, &disk_bargs);
4292 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4293 btrfs_balance_sys(leaf, item, &disk_bargs);
4294 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4295
eee95e3f
DS
4296 /*
4297 * This should never happen, as the paused balance state is recovered
4298 * during mount without any chance of other exclusive ops to collide.
4299 *
4300 * This gives the exclusive op status to balance and keeps in paused
4301 * state until user intervention (cancel or umount). If the ownership
4302 * cannot be assigned, show a message but do not fail. The balance
4303 * is in a paused state and must have fs_info::balance_ctl properly
4304 * set up.
4305 */
4306 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4307 btrfs_warn(fs_info,
6dac13f8 4308 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4309
68310a5e 4310 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4311 BUG_ON(fs_info->balance_ctl);
4312 spin_lock(&fs_info->balance_lock);
4313 fs_info->balance_ctl = bctl;
4314 spin_unlock(&fs_info->balance_lock);
68310a5e 4315 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4316out:
4317 btrfs_free_path(path);
ec44a35c
CM
4318 return ret;
4319}
4320
837d5b6e
ID
4321int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4322{
4323 int ret = 0;
4324
4325 mutex_lock(&fs_info->balance_mutex);
4326 if (!fs_info->balance_ctl) {
4327 mutex_unlock(&fs_info->balance_mutex);
4328 return -ENOTCONN;
4329 }
4330
3009a62f 4331 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4332 atomic_inc(&fs_info->balance_pause_req);
4333 mutex_unlock(&fs_info->balance_mutex);
4334
4335 wait_event(fs_info->balance_wait_q,
3009a62f 4336 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4337
4338 mutex_lock(&fs_info->balance_mutex);
4339 /* we are good with balance_ctl ripped off from under us */
3009a62f 4340 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4341 atomic_dec(&fs_info->balance_pause_req);
4342 } else {
4343 ret = -ENOTCONN;
4344 }
4345
4346 mutex_unlock(&fs_info->balance_mutex);
4347 return ret;
4348}
4349
a7e99c69
ID
4350int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4351{
4352 mutex_lock(&fs_info->balance_mutex);
4353 if (!fs_info->balance_ctl) {
4354 mutex_unlock(&fs_info->balance_mutex);
4355 return -ENOTCONN;
4356 }
4357
cf7d20f4
DS
4358 /*
4359 * A paused balance with the item stored on disk can be resumed at
4360 * mount time if the mount is read-write. Otherwise it's still paused
4361 * and we must not allow cancelling as it deletes the item.
4362 */
4363 if (sb_rdonly(fs_info->sb)) {
4364 mutex_unlock(&fs_info->balance_mutex);
4365 return -EROFS;
4366 }
4367
a7e99c69
ID
4368 atomic_inc(&fs_info->balance_cancel_req);
4369 /*
4370 * if we are running just wait and return, balance item is
4371 * deleted in btrfs_balance in this case
4372 */
3009a62f 4373 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4374 mutex_unlock(&fs_info->balance_mutex);
4375 wait_event(fs_info->balance_wait_q,
3009a62f 4376 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4377 mutex_lock(&fs_info->balance_mutex);
4378 } else {
a7e99c69 4379 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4380 /*
4381 * Lock released to allow other waiters to continue, we'll
4382 * reexamine the status again.
4383 */
a7e99c69
ID
4384 mutex_lock(&fs_info->balance_mutex);
4385
a17c95df 4386 if (fs_info->balance_ctl) {
149196a2 4387 reset_balance_state(fs_info);
a17c95df 4388 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
6dac13f8 4389 btrfs_info(fs_info, "balance: canceled");
a17c95df 4390 }
a7e99c69
ID
4391 }
4392
3009a62f
DS
4393 BUG_ON(fs_info->balance_ctl ||
4394 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4395 atomic_dec(&fs_info->balance_cancel_req);
4396 mutex_unlock(&fs_info->balance_mutex);
4397 return 0;
4398}
4399
803b2f54
SB
4400static int btrfs_uuid_scan_kthread(void *data)
4401{
4402 struct btrfs_fs_info *fs_info = data;
4403 struct btrfs_root *root = fs_info->tree_root;
4404 struct btrfs_key key;
803b2f54
SB
4405 struct btrfs_path *path = NULL;
4406 int ret = 0;
4407 struct extent_buffer *eb;
4408 int slot;
4409 struct btrfs_root_item root_item;
4410 u32 item_size;
f45388f3 4411 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4412
4413 path = btrfs_alloc_path();
4414 if (!path) {
4415 ret = -ENOMEM;
4416 goto out;
4417 }
4418
4419 key.objectid = 0;
4420 key.type = BTRFS_ROOT_ITEM_KEY;
4421 key.offset = 0;
4422
803b2f54 4423 while (1) {
7c829b72
AJ
4424 ret = btrfs_search_forward(root, &key, path,
4425 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4426 if (ret) {
4427 if (ret > 0)
4428 ret = 0;
4429 break;
4430 }
4431
4432 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4433 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4434 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4435 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4436 goto skip;
4437
4438 eb = path->nodes[0];
4439 slot = path->slots[0];
4440 item_size = btrfs_item_size_nr(eb, slot);
4441 if (item_size < sizeof(root_item))
4442 goto skip;
4443
803b2f54
SB
4444 read_extent_buffer(eb, &root_item,
4445 btrfs_item_ptr_offset(eb, slot),
4446 (int)sizeof(root_item));
4447 if (btrfs_root_refs(&root_item) == 0)
4448 goto skip;
f45388f3
FDBM
4449
4450 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4451 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4452 if (trans)
4453 goto update_tree;
4454
4455 btrfs_release_path(path);
803b2f54
SB
4456 /*
4457 * 1 - subvol uuid item
4458 * 1 - received_subvol uuid item
4459 */
4460 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4461 if (IS_ERR(trans)) {
4462 ret = PTR_ERR(trans);
4463 break;
4464 }
f45388f3
FDBM
4465 continue;
4466 } else {
4467 goto skip;
4468 }
4469update_tree:
4470 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4471 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4472 BTRFS_UUID_KEY_SUBVOL,
4473 key.objectid);
4474 if (ret < 0) {
efe120a0 4475 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4476 ret);
803b2f54
SB
4477 break;
4478 }
4479 }
4480
4481 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4482 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4483 root_item.received_uuid,
4484 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4485 key.objectid);
4486 if (ret < 0) {
efe120a0 4487 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4488 ret);
803b2f54
SB
4489 break;
4490 }
4491 }
4492
f45388f3 4493skip:
803b2f54 4494 if (trans) {
3a45bb20 4495 ret = btrfs_end_transaction(trans);
f45388f3 4496 trans = NULL;
803b2f54
SB
4497 if (ret)
4498 break;
4499 }
4500
803b2f54
SB
4501 btrfs_release_path(path);
4502 if (key.offset < (u64)-1) {
4503 key.offset++;
4504 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4505 key.offset = 0;
4506 key.type = BTRFS_ROOT_ITEM_KEY;
4507 } else if (key.objectid < (u64)-1) {
4508 key.offset = 0;
4509 key.type = BTRFS_ROOT_ITEM_KEY;
4510 key.objectid++;
4511 } else {
4512 break;
4513 }
4514 cond_resched();
4515 }
4516
4517out:
4518 btrfs_free_path(path);
f45388f3 4519 if (trans && !IS_ERR(trans))
3a45bb20 4520 btrfs_end_transaction(trans);
803b2f54 4521 if (ret)
efe120a0 4522 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4523 else
afcdd129 4524 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4525 up(&fs_info->uuid_tree_rescan_sem);
4526 return 0;
4527}
4528
70f80175
SB
4529/*
4530 * Callback for btrfs_uuid_tree_iterate().
4531 * returns:
4532 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4533 * < 0 if an error occurred.
70f80175
SB
4534 * > 0 if the check failed, which means the caller shall remove the entry.
4535 */
4536static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4537 u8 *uuid, u8 type, u64 subid)
4538{
4539 struct btrfs_key key;
4540 int ret = 0;
4541 struct btrfs_root *subvol_root;
4542
4543 if (type != BTRFS_UUID_KEY_SUBVOL &&
4544 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4545 goto out;
4546
4547 key.objectid = subid;
4548 key.type = BTRFS_ROOT_ITEM_KEY;
4549 key.offset = (u64)-1;
4550 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4551 if (IS_ERR(subvol_root)) {
4552 ret = PTR_ERR(subvol_root);
4553 if (ret == -ENOENT)
4554 ret = 1;
4555 goto out;
4556 }
4557
4558 switch (type) {
4559 case BTRFS_UUID_KEY_SUBVOL:
4560 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4561 ret = 1;
4562 break;
4563 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4564 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4565 BTRFS_UUID_SIZE))
4566 ret = 1;
4567 break;
4568 }
4569
4570out:
4571 return ret;
4572}
4573
4574static int btrfs_uuid_rescan_kthread(void *data)
4575{
4576 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4577 int ret;
4578
4579 /*
4580 * 1st step is to iterate through the existing UUID tree and
4581 * to delete all entries that contain outdated data.
4582 * 2nd step is to add all missing entries to the UUID tree.
4583 */
4584 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4585 if (ret < 0) {
efe120a0 4586 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4587 up(&fs_info->uuid_tree_rescan_sem);
4588 return ret;
4589 }
4590 return btrfs_uuid_scan_kthread(data);
4591}
4592
f7a81ea4
SB
4593int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4594{
4595 struct btrfs_trans_handle *trans;
4596 struct btrfs_root *tree_root = fs_info->tree_root;
4597 struct btrfs_root *uuid_root;
803b2f54
SB
4598 struct task_struct *task;
4599 int ret;
f7a81ea4
SB
4600
4601 /*
4602 * 1 - root node
4603 * 1 - root item
4604 */
4605 trans = btrfs_start_transaction(tree_root, 2);
4606 if (IS_ERR(trans))
4607 return PTR_ERR(trans);
4608
9b7a2440 4609 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4610 if (IS_ERR(uuid_root)) {
6d13f549 4611 ret = PTR_ERR(uuid_root);
66642832 4612 btrfs_abort_transaction(trans, ret);
3a45bb20 4613 btrfs_end_transaction(trans);
6d13f549 4614 return ret;
f7a81ea4
SB
4615 }
4616
4617 fs_info->uuid_root = uuid_root;
4618
3a45bb20 4619 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4620 if (ret)
4621 return ret;
4622
4623 down(&fs_info->uuid_tree_rescan_sem);
4624 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4625 if (IS_ERR(task)) {
70f80175 4626 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4627 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4628 up(&fs_info->uuid_tree_rescan_sem);
4629 return PTR_ERR(task);
4630 }
4631
4632 return 0;
f7a81ea4 4633}
803b2f54 4634
70f80175
SB
4635int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4636{
4637 struct task_struct *task;
4638
4639 down(&fs_info->uuid_tree_rescan_sem);
4640 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4641 if (IS_ERR(task)) {
4642 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4643 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4644 up(&fs_info->uuid_tree_rescan_sem);
4645 return PTR_ERR(task);
4646 }
4647
4648 return 0;
4649}
4650
8f18cf13
CM
4651/*
4652 * shrinking a device means finding all of the device extents past
4653 * the new size, and then following the back refs to the chunks.
4654 * The chunk relocation code actually frees the device extent
4655 */
4656int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4657{
0b246afa
JM
4658 struct btrfs_fs_info *fs_info = device->fs_info;
4659 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4660 struct btrfs_trans_handle *trans;
8f18cf13
CM
4661 struct btrfs_dev_extent *dev_extent = NULL;
4662 struct btrfs_path *path;
4663 u64 length;
8f18cf13
CM
4664 u64 chunk_offset;
4665 int ret;
4666 int slot;
ba1bf481
JB
4667 int failed = 0;
4668 bool retried = false;
8f18cf13
CM
4669 struct extent_buffer *l;
4670 struct btrfs_key key;
0b246afa 4671 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4672 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4673 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4674 u64 diff;
61d0d0d2 4675 u64 start;
7dfb8be1
NB
4676
4677 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4678 start = new_size;
0e4324a4 4679 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4680
401e29c1 4681 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4682 return -EINVAL;
4683
8f18cf13
CM
4684 path = btrfs_alloc_path();
4685 if (!path)
4686 return -ENOMEM;
4687
0338dff6 4688 path->reada = READA_BACK;
8f18cf13 4689
61d0d0d2
NB
4690 trans = btrfs_start_transaction(root, 0);
4691 if (IS_ERR(trans)) {
4692 btrfs_free_path(path);
4693 return PTR_ERR(trans);
4694 }
4695
34441361 4696 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4697
7cc8e58d 4698 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4699 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4700 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4701 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4702 }
61d0d0d2
NB
4703
4704 /*
4705 * Once the device's size has been set to the new size, ensure all
4706 * in-memory chunks are synced to disk so that the loop below sees them
4707 * and relocates them accordingly.
4708 */
1c11b63e 4709 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4710 mutex_unlock(&fs_info->chunk_mutex);
4711 ret = btrfs_commit_transaction(trans);
4712 if (ret)
4713 goto done;
4714 } else {
4715 mutex_unlock(&fs_info->chunk_mutex);
4716 btrfs_end_transaction(trans);
4717 }
8f18cf13 4718
ba1bf481 4719again:
8f18cf13
CM
4720 key.objectid = device->devid;
4721 key.offset = (u64)-1;
4722 key.type = BTRFS_DEV_EXTENT_KEY;
4723
213e64da 4724 do {
0b246afa 4725 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4727 if (ret < 0) {
0b246afa 4728 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4729 goto done;
67c5e7d4 4730 }
8f18cf13
CM
4731
4732 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4733 if (ret)
0b246afa 4734 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4735 if (ret < 0)
4736 goto done;
4737 if (ret) {
4738 ret = 0;
b3b4aa74 4739 btrfs_release_path(path);
bf1fb512 4740 break;
8f18cf13
CM
4741 }
4742
4743 l = path->nodes[0];
4744 slot = path->slots[0];
4745 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4746
ba1bf481 4747 if (key.objectid != device->devid) {
0b246afa 4748 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4749 btrfs_release_path(path);
bf1fb512 4750 break;
ba1bf481 4751 }
8f18cf13
CM
4752
4753 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4754 length = btrfs_dev_extent_length(l, dev_extent);
4755
ba1bf481 4756 if (key.offset + length <= new_size) {
0b246afa 4757 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4758 btrfs_release_path(path);
d6397bae 4759 break;
ba1bf481 4760 }
8f18cf13 4761
8f18cf13 4762 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4763 btrfs_release_path(path);
8f18cf13 4764
a6f93c71
LB
4765 /*
4766 * We may be relocating the only data chunk we have,
4767 * which could potentially end up with losing data's
4768 * raid profile, so lets allocate an empty one in
4769 * advance.
4770 */
4771 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4772 if (ret < 0) {
4773 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4774 goto done;
4775 }
4776
0b246afa
JM
4777 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4778 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
eede2bf3 4779 if (ret == -ENOSPC) {
ba1bf481 4780 failed++;
eede2bf3
OS
4781 } else if (ret) {
4782 if (ret == -ETXTBSY) {
4783 btrfs_warn(fs_info,
4784 "could not shrink block group %llu due to active swapfile",
4785 chunk_offset);
4786 }
4787 goto done;
4788 }
213e64da 4789 } while (key.offset-- > 0);
ba1bf481
JB
4790
4791 if (failed && !retried) {
4792 failed = 0;
4793 retried = true;
4794 goto again;
4795 } else if (failed && retried) {
4796 ret = -ENOSPC;
ba1bf481 4797 goto done;
8f18cf13
CM
4798 }
4799
d6397bae 4800 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4801 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4802 if (IS_ERR(trans)) {
4803 ret = PTR_ERR(trans);
4804 goto done;
4805 }
4806
34441361 4807 mutex_lock(&fs_info->chunk_mutex);
7cc8e58d 4808 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4809 if (list_empty(&device->post_commit_list))
4810 list_add_tail(&device->post_commit_list,
4811 &trans->transaction->dev_update_list);
d6397bae 4812
d6397bae 4813 WARN_ON(diff > old_total);
7dfb8be1
NB
4814 btrfs_set_super_total_bytes(super_copy,
4815 round_down(old_total - diff, fs_info->sectorsize));
34441361 4816 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4817
4818 /* Now btrfs_update_device() will change the on-disk size. */
4819 ret = btrfs_update_device(trans, device);
801660b0
AJ
4820 if (ret < 0) {
4821 btrfs_abort_transaction(trans, ret);
4822 btrfs_end_transaction(trans);
4823 } else {
4824 ret = btrfs_commit_transaction(trans);
4825 }
8f18cf13
CM
4826done:
4827 btrfs_free_path(path);
53e489bc 4828 if (ret) {
34441361 4829 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4830 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4831 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4832 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4833 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4834 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4835 }
8f18cf13
CM
4836 return ret;
4837}
4838
2ff7e61e 4839static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4840 struct btrfs_key *key,
4841 struct btrfs_chunk *chunk, int item_size)
4842{
0b246afa 4843 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4844 struct btrfs_disk_key disk_key;
4845 u32 array_size;
4846 u8 *ptr;
4847
34441361 4848 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4849 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4850 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4851 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4852 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4853 return -EFBIG;
fe48a5c0 4854 }
0b86a832
CM
4855
4856 ptr = super_copy->sys_chunk_array + array_size;
4857 btrfs_cpu_key_to_disk(&disk_key, key);
4858 memcpy(ptr, &disk_key, sizeof(disk_key));
4859 ptr += sizeof(disk_key);
4860 memcpy(ptr, chunk, item_size);
4861 item_size += sizeof(disk_key);
4862 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4863 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4864
0b86a832
CM
4865 return 0;
4866}
4867
73c5de00
AJ
4868/*
4869 * sort the devices in descending order by max_avail, total_avail
4870 */
4871static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4872{
73c5de00
AJ
4873 const struct btrfs_device_info *di_a = a;
4874 const struct btrfs_device_info *di_b = b;
9b3f68b9 4875
73c5de00 4876 if (di_a->max_avail > di_b->max_avail)
b2117a39 4877 return -1;
73c5de00 4878 if (di_a->max_avail < di_b->max_avail)
b2117a39 4879 return 1;
73c5de00
AJ
4880 if (di_a->total_avail > di_b->total_avail)
4881 return -1;
4882 if (di_a->total_avail < di_b->total_avail)
4883 return 1;
4884 return 0;
b2117a39 4885}
0b86a832 4886
53b381b3
DW
4887static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4888{
ffe2d203 4889 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4890 return;
4891
ceda0864 4892 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4893}
4894
73c5de00 4895static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4896 u64 start, u64 type)
b2117a39 4897{
2ff7e61e 4898 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4899 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4900 struct btrfs_device *device;
73c5de00
AJ
4901 struct map_lookup *map = NULL;
4902 struct extent_map_tree *em_tree;
4903 struct extent_map *em;
4904 struct btrfs_device_info *devices_info = NULL;
4905 u64 total_avail;
4906 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4907 int data_stripes; /* number of stripes that count for
4908 block group size */
73c5de00
AJ
4909 int sub_stripes; /* sub_stripes info for map */
4910 int dev_stripes; /* stripes per dev */
4911 int devs_max; /* max devs to use */
4912 int devs_min; /* min devs needed */
4913 int devs_increment; /* ndevs has to be a multiple of this */
4914 int ncopies; /* how many copies to data has */
b50836ed
HK
4915 int nparity; /* number of stripes worth of bytes to
4916 store parity information */
73c5de00
AJ
4917 int ret;
4918 u64 max_stripe_size;
4919 u64 max_chunk_size;
4920 u64 stripe_size;
23f0ff1e 4921 u64 chunk_size;
73c5de00
AJ
4922 int ndevs;
4923 int i;
4924 int j;
31e50229 4925 int index;
593060d7 4926
0c460c0d 4927 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4928
4117f207
QW
4929 if (list_empty(&fs_devices->alloc_list)) {
4930 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4931 btrfs_debug(info, "%s: no writable device", __func__);
73c5de00 4932 return -ENOSPC;
4117f207 4933 }
b2117a39 4934
3e72ee88 4935 index = btrfs_bg_flags_to_raid_index(type);
73c5de00 4936
31e50229
LB
4937 sub_stripes = btrfs_raid_array[index].sub_stripes;
4938 dev_stripes = btrfs_raid_array[index].dev_stripes;
4939 devs_max = btrfs_raid_array[index].devs_max;
e3ecdb3f
DS
4940 if (!devs_max)
4941 devs_max = BTRFS_MAX_DEVS(info);
31e50229
LB
4942 devs_min = btrfs_raid_array[index].devs_min;
4943 devs_increment = btrfs_raid_array[index].devs_increment;
4944 ncopies = btrfs_raid_array[index].ncopies;
b50836ed 4945 nparity = btrfs_raid_array[index].nparity;
b2117a39 4946
9b3f68b9 4947 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4948 max_stripe_size = SZ_1G;
fce466ea 4949 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
9b3f68b9 4950 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4951 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4952 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4953 max_stripe_size = SZ_1G;
1100373f 4954 else
ee22184b 4955 max_stripe_size = SZ_256M;
73c5de00 4956 max_chunk_size = max_stripe_size;
a40a90a0 4957 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4958 max_stripe_size = SZ_32M;
73c5de00
AJ
4959 max_chunk_size = 2 * max_stripe_size;
4960 } else {
351fd353 4961 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00 4962 type);
290342f6 4963 BUG();
9b3f68b9
CM
4964 }
4965
52042d8e 4966 /* We don't want a chunk larger than 10% of writable space */
2b82032c
YZ
4967 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4968 max_chunk_size);
9b3f68b9 4969
31e818fe 4970 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4971 GFP_NOFS);
4972 if (!devices_info)
4973 return -ENOMEM;
0cad8a11 4974
9f680ce0 4975 /*
73c5de00
AJ
4976 * in the first pass through the devices list, we gather information
4977 * about the available holes on each device.
9f680ce0 4978 */
73c5de00 4979 ndevs = 0;
ebcc9301 4980 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4981 u64 max_avail;
4982 u64 dev_offset;
b2117a39 4983
ebbede42 4984 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 4985 WARN(1, KERN_ERR
efe120a0 4986 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4987 continue;
4988 }
b2117a39 4989
e12c9621
AJ
4990 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4991 &device->dev_state) ||
401e29c1 4992 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 4993 continue;
b2117a39 4994
73c5de00
AJ
4995 if (device->total_bytes > device->bytes_used)
4996 total_avail = device->total_bytes - device->bytes_used;
4997 else
4998 total_avail = 0;
38c01b96 4999
5000 /* If there is no space on this device, skip it. */
5001 if (total_avail == 0)
5002 continue;
b2117a39 5003
60dfdf25 5004 ret = find_free_dev_extent(device,
73c5de00
AJ
5005 max_stripe_size * dev_stripes,
5006 &dev_offset, &max_avail);
5007 if (ret && ret != -ENOSPC)
5008 goto error;
b2117a39 5009
73c5de00
AJ
5010 if (ret == 0)
5011 max_avail = max_stripe_size * dev_stripes;
b2117a39 5012
4117f207
QW
5013 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5014 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5015 btrfs_debug(info,
5016 "%s: devid %llu has no free space, have=%llu want=%u",
5017 __func__, device->devid, max_avail,
5018 BTRFS_STRIPE_LEN * dev_stripes);
73c5de00 5019 continue;
4117f207 5020 }
b2117a39 5021
063d006f
ES
5022 if (ndevs == fs_devices->rw_devices) {
5023 WARN(1, "%s: found more than %llu devices\n",
5024 __func__, fs_devices->rw_devices);
5025 break;
5026 }
73c5de00
AJ
5027 devices_info[ndevs].dev_offset = dev_offset;
5028 devices_info[ndevs].max_avail = max_avail;
5029 devices_info[ndevs].total_avail = total_avail;
5030 devices_info[ndevs].dev = device;
5031 ++ndevs;
5032 }
b2117a39 5033
73c5de00
AJ
5034 /*
5035 * now sort the devices by hole size / available space
5036 */
5037 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5038 btrfs_cmp_device_info, NULL);
b2117a39 5039
73c5de00 5040 /* round down to number of usable stripes */
e5600fd6 5041 ndevs = round_down(ndevs, devs_increment);
b2117a39 5042
ba89b802 5043 if (ndevs < devs_min) {
73c5de00 5044 ret = -ENOSPC;
4117f207
QW
5045 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5046 btrfs_debug(info,
5047 "%s: not enough devices with free space: have=%d minimum required=%d",
ba89b802 5048 __func__, ndevs, devs_min);
4117f207 5049 }
73c5de00 5050 goto error;
b2117a39 5051 }
9f680ce0 5052
f148ef4d
NB
5053 ndevs = min(ndevs, devs_max);
5054
73c5de00 5055 /*
92e222df
HK
5056 * The primary goal is to maximize the number of stripes, so use as
5057 * many devices as possible, even if the stripes are not maximum sized.
5058 *
5059 * The DUP profile stores more than one stripe per device, the
5060 * max_avail is the total size so we have to adjust.
73c5de00 5061 */
92e222df 5062 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
73c5de00 5063 num_stripes = ndevs * dev_stripes;
b2117a39 5064
53b381b3
DW
5065 /*
5066 * this will have to be fixed for RAID1 and RAID10 over
5067 * more drives
5068 */
b50836ed 5069 data_stripes = (num_stripes - nparity) / ncopies;
86db2578
CM
5070
5071 /*
5072 * Use the number of data stripes to figure out how big this chunk
5073 * is really going to be in terms of logical address space,
baf92114
HK
5074 * and compare that answer with the max chunk size. If it's higher,
5075 * we try to reduce stripe_size.
86db2578
CM
5076 */
5077 if (stripe_size * data_stripes > max_chunk_size) {
793ff2c8 5078 /*
baf92114
HK
5079 * Reduce stripe_size, round it up to a 16MB boundary again and
5080 * then use it, unless it ends up being even bigger than the
5081 * previous value we had already.
86db2578 5082 */
baf92114
HK
5083 stripe_size = min(round_up(div_u64(max_chunk_size,
5084 data_stripes), SZ_16M),
793ff2c8 5085 stripe_size);
86db2578
CM
5086 }
5087
37db63a4 5088 /* align to BTRFS_STRIPE_LEN */
500ceed8 5089 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
5090
5091 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5092 if (!map) {
5093 ret = -ENOMEM;
5094 goto error;
5095 }
5096 map->num_stripes = num_stripes;
9b3f68b9 5097
73c5de00
AJ
5098 for (i = 0; i < ndevs; ++i) {
5099 for (j = 0; j < dev_stripes; ++j) {
5100 int s = i * dev_stripes + j;
5101 map->stripes[s].dev = devices_info[i].dev;
5102 map->stripes[s].physical = devices_info[i].dev_offset +
5103 j * stripe_size;
6324fbf3 5104 }
6324fbf3 5105 }
500ceed8
NB
5106 map->stripe_len = BTRFS_STRIPE_LEN;
5107 map->io_align = BTRFS_STRIPE_LEN;
5108 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5109 map->type = type;
2b82032c 5110 map->sub_stripes = sub_stripes;
0b86a832 5111
23f0ff1e 5112 chunk_size = stripe_size * data_stripes;
0b86a832 5113
23f0ff1e 5114 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
1abe9b8a 5115
172ddd60 5116 em = alloc_extent_map();
2b82032c 5117 if (!em) {
298a8f9c 5118 kfree(map);
b2117a39
MX
5119 ret = -ENOMEM;
5120 goto error;
593060d7 5121 }
298a8f9c 5122 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5123 em->map_lookup = map;
2b82032c 5124 em->start = start;
23f0ff1e 5125 em->len = chunk_size;
2b82032c
YZ
5126 em->block_start = 0;
5127 em->block_len = em->len;
6df9a95e 5128 em->orig_block_len = stripe_size;
593060d7 5129
c8bf1b67 5130 em_tree = &info->mapping_tree;
890871be 5131 write_lock(&em_tree->lock);
09a2a8f9 5132 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5133 if (ret) {
1efb72a3 5134 write_unlock(&em_tree->lock);
0f5d42b2 5135 free_extent_map(em);
1dd4602f 5136 goto error;
0f5d42b2 5137 }
1efb72a3
NB
5138 write_unlock(&em_tree->lock);
5139
23f0ff1e 5140 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
6df9a95e
JB
5141 if (ret)
5142 goto error_del_extent;
2b82032c 5143
bbbf7243
NB
5144 for (i = 0; i < map->num_stripes; i++) {
5145 struct btrfs_device *dev = map->stripes[i].dev;
5146
5147 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5148 if (list_empty(&dev->post_commit_list))
5149 list_add_tail(&dev->post_commit_list,
5150 &trans->transaction->dev_update_list);
5151 }
43530c46 5152
a5ed45f8 5153 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 5154
0f5d42b2 5155 free_extent_map(em);
0b246afa 5156 check_raid56_incompat_flag(info, type);
53b381b3 5157
b2117a39 5158 kfree(devices_info);
2b82032c 5159 return 0;
b2117a39 5160
6df9a95e 5161error_del_extent:
0f5d42b2
JB
5162 write_lock(&em_tree->lock);
5163 remove_extent_mapping(em_tree, em);
5164 write_unlock(&em_tree->lock);
5165
5166 /* One for our allocation */
5167 free_extent_map(em);
5168 /* One for the tree reference */
5169 free_extent_map(em);
b2117a39 5170error:
b2117a39
MX
5171 kfree(devices_info);
5172 return ret;
2b82032c
YZ
5173}
5174
6df9a95e 5175int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
97aff912 5176 u64 chunk_offset, u64 chunk_size)
2b82032c 5177{
97aff912 5178 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab
JM
5179 struct btrfs_root *extent_root = fs_info->extent_root;
5180 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 5181 struct btrfs_key key;
2b82032c
YZ
5182 struct btrfs_device *device;
5183 struct btrfs_chunk *chunk;
5184 struct btrfs_stripe *stripe;
6df9a95e
JB
5185 struct extent_map *em;
5186 struct map_lookup *map;
5187 size_t item_size;
5188 u64 dev_offset;
5189 u64 stripe_size;
5190 int i = 0;
140e639f 5191 int ret = 0;
2b82032c 5192
60ca842e 5193 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
592d92ee
LB
5194 if (IS_ERR(em))
5195 return PTR_ERR(em);
6df9a95e 5196
95617d69 5197 map = em->map_lookup;
6df9a95e
JB
5198 item_size = btrfs_chunk_item_size(map->num_stripes);
5199 stripe_size = em->orig_block_len;
5200
2b82032c 5201 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
5202 if (!chunk) {
5203 ret = -ENOMEM;
5204 goto out;
5205 }
5206
50460e37
FM
5207 /*
5208 * Take the device list mutex to prevent races with the final phase of
5209 * a device replace operation that replaces the device object associated
5210 * with the map's stripes, because the device object's id can change
5211 * at any time during that final phase of the device replace operation
5212 * (dev-replace.c:btrfs_dev_replace_finishing()).
5213 */
0b246afa 5214 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
5215 for (i = 0; i < map->num_stripes; i++) {
5216 device = map->stripes[i].dev;
5217 dev_offset = map->stripes[i].physical;
2b82032c 5218
0b86a832 5219 ret = btrfs_update_device(trans, device);
3acd3953 5220 if (ret)
50460e37 5221 break;
b5d9071c
NB
5222 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5223 dev_offset, stripe_size);
6df9a95e 5224 if (ret)
50460e37
FM
5225 break;
5226 }
5227 if (ret) {
0b246afa 5228 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 5229 goto out;
2b82032c
YZ
5230 }
5231
2b82032c 5232 stripe = &chunk->stripe;
6df9a95e
JB
5233 for (i = 0; i < map->num_stripes; i++) {
5234 device = map->stripes[i].dev;
5235 dev_offset = map->stripes[i].physical;
0b86a832 5236
e17cade2
CM
5237 btrfs_set_stack_stripe_devid(stripe, device->devid);
5238 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5239 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5240 stripe++;
0b86a832 5241 }
0b246afa 5242 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 5243
2b82032c 5244 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 5245 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5246 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5247 btrfs_set_stack_chunk_type(chunk, map->type);
5248 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5249 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5250 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5251 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5252 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5253
2b82032c
YZ
5254 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5255 key.type = BTRFS_CHUNK_ITEM_KEY;
5256 key.offset = chunk_offset;
0b86a832 5257
2b82032c 5258 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
5259 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5260 /*
5261 * TODO: Cleanup of inserted chunk root in case of
5262 * failure.
5263 */
2ff7e61e 5264 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5265 }
1abe9b8a 5266
6df9a95e 5267out:
0b86a832 5268 kfree(chunk);
6df9a95e 5269 free_extent_map(em);
4ed1d16e 5270 return ret;
2b82032c 5271}
0b86a832 5272
2b82032c 5273/*
52042d8e
AG
5274 * Chunk allocation falls into two parts. The first part does work
5275 * that makes the new allocated chunk usable, but does not do any operation
5276 * that modifies the chunk tree. The second part does the work that
5277 * requires modifying the chunk tree. This division is important for the
2b82032c
YZ
5278 * bootstrap process of adding storage to a seed btrfs.
5279 */
c216b203 5280int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
2b82032c
YZ
5281{
5282 u64 chunk_offset;
2b82032c 5283
c216b203
NB
5284 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5285 chunk_offset = find_next_chunk(trans->fs_info);
72b468c8 5286 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5287}
5288
6f8e0fc7 5289static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5290{
6f8e0fc7 5291 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c
YZ
5292 u64 chunk_offset;
5293 u64 sys_chunk_offset;
2b82032c 5294 u64 alloc_profile;
2b82032c
YZ
5295 int ret;
5296
6df9a95e 5297 chunk_offset = find_next_chunk(fs_info);
1b86826d 5298 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5299 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5300 if (ret)
5301 return ret;
2b82032c 5302
0b246afa 5303 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5304 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5305 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5306 return ret;
2b82032c
YZ
5307}
5308
d20983b4
MX
5309static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5310{
fc9a2ac7 5311 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5312
fc9a2ac7 5313 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5314}
5315
2ff7e61e 5316int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5317{
5318 struct extent_map *em;
5319 struct map_lookup *map;
2b82032c 5320 int readonly = 0;
d20983b4 5321 int miss_ndevs = 0;
2b82032c
YZ
5322 int i;
5323
60ca842e 5324 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5325 if (IS_ERR(em))
2b82032c
YZ
5326 return 1;
5327
95617d69 5328 map = em->map_lookup;
2b82032c 5329 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5330 if (test_bit(BTRFS_DEV_STATE_MISSING,
5331 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5332 miss_ndevs++;
5333 continue;
5334 }
ebbede42
AJ
5335 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5336 &map->stripes[i].dev->dev_state)) {
2b82032c 5337 readonly = 1;
d20983b4 5338 goto end;
2b82032c
YZ
5339 }
5340 }
d20983b4
MX
5341
5342 /*
5343 * If the number of missing devices is larger than max errors,
5344 * we can not write the data into that chunk successfully, so
5345 * set it readonly.
5346 */
5347 if (miss_ndevs > btrfs_chunk_max_errors(map))
5348 readonly = 1;
5349end:
0b86a832 5350 free_extent_map(em);
2b82032c 5351 return readonly;
0b86a832
CM
5352}
5353
c8bf1b67 5354void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5355{
5356 struct extent_map *em;
5357
d397712b 5358 while (1) {
c8bf1b67
DS
5359 write_lock(&tree->lock);
5360 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5361 if (em)
c8bf1b67
DS
5362 remove_extent_mapping(tree, em);
5363 write_unlock(&tree->lock);
0b86a832
CM
5364 if (!em)
5365 break;
0b86a832
CM
5366 /* once for us */
5367 free_extent_map(em);
5368 /* once for the tree */
5369 free_extent_map(em);
5370 }
5371}
5372
5d964051 5373int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5374{
5375 struct extent_map *em;
5376 struct map_lookup *map;
f188591e
CM
5377 int ret;
5378
60ca842e 5379 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5380 if (IS_ERR(em))
5381 /*
5382 * We could return errors for these cases, but that could get
5383 * ugly and we'd probably do the same thing which is just not do
5384 * anything else and exit, so return 1 so the callers don't try
5385 * to use other copies.
5386 */
fb7669b5 5387 return 1;
fb7669b5 5388
95617d69 5389 map = em->map_lookup;
c7369b3f 5390 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5391 ret = map->num_stripes;
321aecc6
CM
5392 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5393 ret = map->sub_stripes;
53b381b3
DW
5394 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5395 ret = 2;
5396 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5397 /*
5398 * There could be two corrupted data stripes, we need
5399 * to loop retry in order to rebuild the correct data.
e7e02096 5400 *
8810f751
LB
5401 * Fail a stripe at a time on every retry except the
5402 * stripe under reconstruction.
5403 */
5404 ret = map->num_stripes;
f188591e
CM
5405 else
5406 ret = 1;
5407 free_extent_map(em);
ad6d620e 5408
cb5583dd 5409 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5410 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5411 fs_info->dev_replace.tgtdev)
ad6d620e 5412 ret++;
cb5583dd 5413 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5414
f188591e
CM
5415 return ret;
5416}
5417
2ff7e61e 5418unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5419 u64 logical)
5420{
5421 struct extent_map *em;
5422 struct map_lookup *map;
0b246afa 5423 unsigned long len = fs_info->sectorsize;
53b381b3 5424
60ca842e 5425 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5426
69f03f13
NB
5427 if (!WARN_ON(IS_ERR(em))) {
5428 map = em->map_lookup;
5429 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5430 len = map->stripe_len * nr_data_stripes(map);
5431 free_extent_map(em);
5432 }
53b381b3
DW
5433 return len;
5434}
5435
e4ff5fb5 5436int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5437{
5438 struct extent_map *em;
5439 struct map_lookup *map;
53b381b3
DW
5440 int ret = 0;
5441
60ca842e 5442 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5443
69f03f13
NB
5444 if(!WARN_ON(IS_ERR(em))) {
5445 map = em->map_lookup;
5446 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5447 ret = 1;
5448 free_extent_map(em);
5449 }
53b381b3
DW
5450 return ret;
5451}
5452
30d9861f 5453static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5454 struct map_lookup *map, int first,
8ba0ae78 5455 int dev_replace_is_ongoing)
dfe25020
CM
5456{
5457 int i;
99f92a7c 5458 int num_stripes;
8ba0ae78 5459 int preferred_mirror;
30d9861f
SB
5460 int tolerance;
5461 struct btrfs_device *srcdev;
5462
99f92a7c 5463 ASSERT((map->type &
c7369b3f 5464 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5465
5466 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5467 num_stripes = map->sub_stripes;
5468 else
5469 num_stripes = map->num_stripes;
5470
8ba0ae78
AJ
5471 preferred_mirror = first + current->pid % num_stripes;
5472
30d9861f
SB
5473 if (dev_replace_is_ongoing &&
5474 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5475 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5476 srcdev = fs_info->dev_replace.srcdev;
5477 else
5478 srcdev = NULL;
5479
5480 /*
5481 * try to avoid the drive that is the source drive for a
5482 * dev-replace procedure, only choose it if no other non-missing
5483 * mirror is available
5484 */
5485 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5486 if (map->stripes[preferred_mirror].dev->bdev &&
5487 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5488 return preferred_mirror;
99f92a7c 5489 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5490 if (map->stripes[i].dev->bdev &&
5491 (tolerance || map->stripes[i].dev != srcdev))
5492 return i;
5493 }
dfe25020 5494 }
30d9861f 5495
dfe25020
CM
5496 /* we couldn't find one that doesn't fail. Just return something
5497 * and the io error handling code will clean up eventually
5498 */
8ba0ae78 5499 return preferred_mirror;
dfe25020
CM
5500}
5501
53b381b3
DW
5502static inline int parity_smaller(u64 a, u64 b)
5503{
5504 return a > b;
5505}
5506
5507/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5508static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5509{
5510 struct btrfs_bio_stripe s;
5511 int i;
5512 u64 l;
5513 int again = 1;
5514
5515 while (again) {
5516 again = 0;
cc7539ed 5517 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5518 if (parity_smaller(bbio->raid_map[i],
5519 bbio->raid_map[i+1])) {
53b381b3 5520 s = bbio->stripes[i];
8e5cfb55 5521 l = bbio->raid_map[i];
53b381b3 5522 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5523 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5524 bbio->stripes[i+1] = s;
8e5cfb55 5525 bbio->raid_map[i+1] = l;
2c8cdd6e 5526
53b381b3
DW
5527 again = 1;
5528 }
5529 }
5530 }
5531}
5532
6e9606d2
ZL
5533static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5534{
5535 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5536 /* the size of the btrfs_bio */
6e9606d2 5537 sizeof(struct btrfs_bio) +
e57cf21e 5538 /* plus the variable array for the stripes */
6e9606d2 5539 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5540 /* plus the variable array for the tgt dev */
6e9606d2 5541 sizeof(int) * (real_stripes) +
e57cf21e
CM
5542 /*
5543 * plus the raid_map, which includes both the tgt dev
5544 * and the stripes
5545 */
5546 sizeof(u64) * (total_stripes),
277fb5fc 5547 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5548
5549 atomic_set(&bbio->error, 0);
140475ae 5550 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5551
5552 return bbio;
5553}
5554
5555void btrfs_get_bbio(struct btrfs_bio *bbio)
5556{
140475ae
ER
5557 WARN_ON(!refcount_read(&bbio->refs));
5558 refcount_inc(&bbio->refs);
6e9606d2
ZL
5559}
5560
5561void btrfs_put_bbio(struct btrfs_bio *bbio)
5562{
5563 if (!bbio)
5564 return;
140475ae 5565 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5566 kfree(bbio);
5567}
5568
0b3d4cd3
LB
5569/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5570/*
5571 * Please note that, discard won't be sent to target device of device
5572 * replace.
5573 */
5574static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5575 u64 logical, u64 length,
5576 struct btrfs_bio **bbio_ret)
5577{
5578 struct extent_map *em;
5579 struct map_lookup *map;
5580 struct btrfs_bio *bbio;
5581 u64 offset;
5582 u64 stripe_nr;
5583 u64 stripe_nr_end;
5584 u64 stripe_end_offset;
5585 u64 stripe_cnt;
5586 u64 stripe_len;
5587 u64 stripe_offset;
5588 u64 num_stripes;
5589 u32 stripe_index;
5590 u32 factor = 0;
5591 u32 sub_stripes = 0;
5592 u64 stripes_per_dev = 0;
5593 u32 remaining_stripes = 0;
5594 u32 last_stripe = 0;
5595 int ret = 0;
5596 int i;
5597
5598 /* discard always return a bbio */
5599 ASSERT(bbio_ret);
5600
60ca842e 5601 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5602 if (IS_ERR(em))
5603 return PTR_ERR(em);
5604
5605 map = em->map_lookup;
5606 /* we don't discard raid56 yet */
5607 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5608 ret = -EOPNOTSUPP;
5609 goto out;
5610 }
5611
5612 offset = logical - em->start;
5613 length = min_t(u64, em->len - offset, length);
5614
5615 stripe_len = map->stripe_len;
5616 /*
5617 * stripe_nr counts the total number of stripes we have to stride
5618 * to get to this block
5619 */
5620 stripe_nr = div64_u64(offset, stripe_len);
5621
5622 /* stripe_offset is the offset of this block in its stripe */
5623 stripe_offset = offset - stripe_nr * stripe_len;
5624
5625 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5626 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5627 stripe_cnt = stripe_nr_end - stripe_nr;
5628 stripe_end_offset = stripe_nr_end * map->stripe_len -
5629 (offset + length);
5630 /*
5631 * after this, stripe_nr is the number of stripes on this
5632 * device we have to walk to find the data, and stripe_index is
5633 * the number of our device in the stripe array
5634 */
5635 num_stripes = 1;
5636 stripe_index = 0;
5637 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5638 BTRFS_BLOCK_GROUP_RAID10)) {
5639 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5640 sub_stripes = 1;
5641 else
5642 sub_stripes = map->sub_stripes;
5643
5644 factor = map->num_stripes / sub_stripes;
5645 num_stripes = min_t(u64, map->num_stripes,
5646 sub_stripes * stripe_cnt);
5647 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5648 stripe_index *= sub_stripes;
5649 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5650 &remaining_stripes);
5651 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5652 last_stripe *= sub_stripes;
c7369b3f 5653 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5654 BTRFS_BLOCK_GROUP_DUP)) {
5655 num_stripes = map->num_stripes;
5656 } else {
5657 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5658 &stripe_index);
5659 }
5660
5661 bbio = alloc_btrfs_bio(num_stripes, 0);
5662 if (!bbio) {
5663 ret = -ENOMEM;
5664 goto out;
5665 }
5666
5667 for (i = 0; i < num_stripes; i++) {
5668 bbio->stripes[i].physical =
5669 map->stripes[stripe_index].physical +
5670 stripe_offset + stripe_nr * map->stripe_len;
5671 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5672
5673 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5674 BTRFS_BLOCK_GROUP_RAID10)) {
5675 bbio->stripes[i].length = stripes_per_dev *
5676 map->stripe_len;
5677
5678 if (i / sub_stripes < remaining_stripes)
5679 bbio->stripes[i].length +=
5680 map->stripe_len;
5681
5682 /*
5683 * Special for the first stripe and
5684 * the last stripe:
5685 *
5686 * |-------|...|-------|
5687 * |----------|
5688 * off end_off
5689 */
5690 if (i < sub_stripes)
5691 bbio->stripes[i].length -=
5692 stripe_offset;
5693
5694 if (stripe_index >= last_stripe &&
5695 stripe_index <= (last_stripe +
5696 sub_stripes - 1))
5697 bbio->stripes[i].length -=
5698 stripe_end_offset;
5699
5700 if (i == sub_stripes - 1)
5701 stripe_offset = 0;
5702 } else {
5703 bbio->stripes[i].length = length;
5704 }
5705
5706 stripe_index++;
5707 if (stripe_index == map->num_stripes) {
5708 stripe_index = 0;
5709 stripe_nr++;
5710 }
5711 }
5712
5713 *bbio_ret = bbio;
5714 bbio->map_type = map->type;
5715 bbio->num_stripes = num_stripes;
5716out:
5717 free_extent_map(em);
5718 return ret;
5719}
5720
5ab56090
LB
5721/*
5722 * In dev-replace case, for repair case (that's the only case where the mirror
5723 * is selected explicitly when calling btrfs_map_block), blocks left of the
5724 * left cursor can also be read from the target drive.
5725 *
5726 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5727 * array of stripes.
5728 * For READ, it also needs to be supported using the same mirror number.
5729 *
5730 * If the requested block is not left of the left cursor, EIO is returned. This
5731 * can happen because btrfs_num_copies() returns one more in the dev-replace
5732 * case.
5733 */
5734static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5735 u64 logical, u64 length,
5736 u64 srcdev_devid, int *mirror_num,
5737 u64 *physical)
5738{
5739 struct btrfs_bio *bbio = NULL;
5740 int num_stripes;
5741 int index_srcdev = 0;
5742 int found = 0;
5743 u64 physical_of_found = 0;
5744 int i;
5745 int ret = 0;
5746
5747 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5748 logical, &length, &bbio, 0, 0);
5749 if (ret) {
5750 ASSERT(bbio == NULL);
5751 return ret;
5752 }
5753
5754 num_stripes = bbio->num_stripes;
5755 if (*mirror_num > num_stripes) {
5756 /*
5757 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5758 * that means that the requested area is not left of the left
5759 * cursor
5760 */
5761 btrfs_put_bbio(bbio);
5762 return -EIO;
5763 }
5764
5765 /*
5766 * process the rest of the function using the mirror_num of the source
5767 * drive. Therefore look it up first. At the end, patch the device
5768 * pointer to the one of the target drive.
5769 */
5770 for (i = 0; i < num_stripes; i++) {
5771 if (bbio->stripes[i].dev->devid != srcdev_devid)
5772 continue;
5773
5774 /*
5775 * In case of DUP, in order to keep it simple, only add the
5776 * mirror with the lowest physical address
5777 */
5778 if (found &&
5779 physical_of_found <= bbio->stripes[i].physical)
5780 continue;
5781
5782 index_srcdev = i;
5783 found = 1;
5784 physical_of_found = bbio->stripes[i].physical;
5785 }
5786
5787 btrfs_put_bbio(bbio);
5788
5789 ASSERT(found);
5790 if (!found)
5791 return -EIO;
5792
5793 *mirror_num = index_srcdev + 1;
5794 *physical = physical_of_found;
5795 return ret;
5796}
5797
73c0f228
LB
5798static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5799 struct btrfs_bio **bbio_ret,
5800 struct btrfs_dev_replace *dev_replace,
5801 int *num_stripes_ret, int *max_errors_ret)
5802{
5803 struct btrfs_bio *bbio = *bbio_ret;
5804 u64 srcdev_devid = dev_replace->srcdev->devid;
5805 int tgtdev_indexes = 0;
5806 int num_stripes = *num_stripes_ret;
5807 int max_errors = *max_errors_ret;
5808 int i;
5809
5810 if (op == BTRFS_MAP_WRITE) {
5811 int index_where_to_add;
5812
5813 /*
5814 * duplicate the write operations while the dev replace
5815 * procedure is running. Since the copying of the old disk to
5816 * the new disk takes place at run time while the filesystem is
5817 * mounted writable, the regular write operations to the old
5818 * disk have to be duplicated to go to the new disk as well.
5819 *
5820 * Note that device->missing is handled by the caller, and that
5821 * the write to the old disk is already set up in the stripes
5822 * array.
5823 */
5824 index_where_to_add = num_stripes;
5825 for (i = 0; i < num_stripes; i++) {
5826 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5827 /* write to new disk, too */
5828 struct btrfs_bio_stripe *new =
5829 bbio->stripes + index_where_to_add;
5830 struct btrfs_bio_stripe *old =
5831 bbio->stripes + i;
5832
5833 new->physical = old->physical;
5834 new->length = old->length;
5835 new->dev = dev_replace->tgtdev;
5836 bbio->tgtdev_map[i] = index_where_to_add;
5837 index_where_to_add++;
5838 max_errors++;
5839 tgtdev_indexes++;
5840 }
5841 }
5842 num_stripes = index_where_to_add;
5843 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5844 int index_srcdev = 0;
5845 int found = 0;
5846 u64 physical_of_found = 0;
5847
5848 /*
5849 * During the dev-replace procedure, the target drive can also
5850 * be used to read data in case it is needed to repair a corrupt
5851 * block elsewhere. This is possible if the requested area is
5852 * left of the left cursor. In this area, the target drive is a
5853 * full copy of the source drive.
5854 */
5855 for (i = 0; i < num_stripes; i++) {
5856 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5857 /*
5858 * In case of DUP, in order to keep it simple,
5859 * only add the mirror with the lowest physical
5860 * address
5861 */
5862 if (found &&
5863 physical_of_found <=
5864 bbio->stripes[i].physical)
5865 continue;
5866 index_srcdev = i;
5867 found = 1;
5868 physical_of_found = bbio->stripes[i].physical;
5869 }
5870 }
5871 if (found) {
5872 struct btrfs_bio_stripe *tgtdev_stripe =
5873 bbio->stripes + num_stripes;
5874
5875 tgtdev_stripe->physical = physical_of_found;
5876 tgtdev_stripe->length =
5877 bbio->stripes[index_srcdev].length;
5878 tgtdev_stripe->dev = dev_replace->tgtdev;
5879 bbio->tgtdev_map[index_srcdev] = num_stripes;
5880
5881 tgtdev_indexes++;
5882 num_stripes++;
5883 }
5884 }
5885
5886 *num_stripes_ret = num_stripes;
5887 *max_errors_ret = max_errors;
5888 bbio->num_tgtdevs = tgtdev_indexes;
5889 *bbio_ret = bbio;
5890}
5891
2b19a1fe
LB
5892static bool need_full_stripe(enum btrfs_map_op op)
5893{
5894 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5895}
5896
5f141126
NB
5897/*
5898 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5899 * tuple. This information is used to calculate how big a
5900 * particular bio can get before it straddles a stripe.
5901 *
5902 * @fs_info - the filesystem
5903 * @logical - address that we want to figure out the geometry of
5904 * @len - the length of IO we are going to perform, starting at @logical
5905 * @op - type of operation - write or read
5906 * @io_geom - pointer used to return values
5907 *
5908 * Returns < 0 in case a chunk for the given logical address cannot be found,
5909 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5910 */
5911int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
89b798ad 5912 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5f141126
NB
5913{
5914 struct extent_map *em;
5915 struct map_lookup *map;
5916 u64 offset;
5917 u64 stripe_offset;
5918 u64 stripe_nr;
5919 u64 stripe_len;
5920 u64 raid56_full_stripe_start = (u64)-1;
5921 int data_stripes;
373c3b80 5922 int ret = 0;
5f141126
NB
5923
5924 ASSERT(op != BTRFS_MAP_DISCARD);
5925
5926 em = btrfs_get_chunk_map(fs_info, logical, len);
5927 if (IS_ERR(em))
5928 return PTR_ERR(em);
5929
5930 map = em->map_lookup;
5931 /* Offset of this logical address in the chunk */
5932 offset = logical - em->start;
5933 /* Len of a stripe in a chunk */
5934 stripe_len = map->stripe_len;
5935 /* Stripe wher this block falls in */
5936 stripe_nr = div64_u64(offset, stripe_len);
5937 /* Offset of stripe in the chunk */
5938 stripe_offset = stripe_nr * stripe_len;
5939 if (offset < stripe_offset) {
5940 btrfs_crit(fs_info,
5941"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5942 stripe_offset, offset, em->start, logical, stripe_len);
373c3b80
JT
5943 ret = -EINVAL;
5944 goto out;
5f141126
NB
5945 }
5946
5947 /* stripe_offset is the offset of this block in its stripe */
5948 stripe_offset = offset - stripe_offset;
5949 data_stripes = nr_data_stripes(map);
5950
5951 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5952 u64 max_len = stripe_len - stripe_offset;
5953
5954 /*
5955 * In case of raid56, we need to know the stripe aligned start
5956 */
5957 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5958 unsigned long full_stripe_len = stripe_len * data_stripes;
5959 raid56_full_stripe_start = offset;
5960
5961 /*
5962 * Allow a write of a full stripe, but make sure we
5963 * don't allow straddling of stripes
5964 */
5965 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5966 full_stripe_len);
5967 raid56_full_stripe_start *= full_stripe_len;
5968
5969 /*
5970 * For writes to RAID[56], allow a full stripeset across
5971 * all disks. For other RAID types and for RAID[56]
5972 * reads, just allow a single stripe (on a single disk).
5973 */
5974 if (op == BTRFS_MAP_WRITE) {
5975 max_len = stripe_len * data_stripes -
5976 (offset - raid56_full_stripe_start);
5977 }
5978 }
5979 len = min_t(u64, em->len - offset, max_len);
5980 } else {
5981 len = em->len - offset;
5982 }
5983
5984 io_geom->len = len;
5985 io_geom->offset = offset;
5986 io_geom->stripe_len = stripe_len;
5987 io_geom->stripe_nr = stripe_nr;
5988 io_geom->stripe_offset = stripe_offset;
5989 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5990
373c3b80
JT
5991out:
5992 /* once for us */
5993 free_extent_map(em);
5994 return ret;
5f141126
NB
5995}
5996
cf8cddd3
CH
5997static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5998 enum btrfs_map_op op,
f2d8d74d 5999 u64 logical, u64 *length,
a1d3c478 6000 struct btrfs_bio **bbio_ret,
8e5cfb55 6001 int mirror_num, int need_raid_map)
0b86a832
CM
6002{
6003 struct extent_map *em;
6004 struct map_lookup *map;
593060d7
CM
6005 u64 stripe_offset;
6006 u64 stripe_nr;
53b381b3 6007 u64 stripe_len;
9d644a62 6008 u32 stripe_index;
cff82672 6009 int data_stripes;
cea9e445 6010 int i;
de11cc12 6011 int ret = 0;
f2d8d74d 6012 int num_stripes;
a236aed1 6013 int max_errors = 0;
2c8cdd6e 6014 int tgtdev_indexes = 0;
a1d3c478 6015 struct btrfs_bio *bbio = NULL;
472262f3
SB
6016 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6017 int dev_replace_is_ongoing = 0;
6018 int num_alloc_stripes;
ad6d620e
SB
6019 int patch_the_first_stripe_for_dev_replace = 0;
6020 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6021 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6022 struct btrfs_io_geometry geom;
6023
6024 ASSERT(bbio_ret);
0b86a832 6025
0b3d4cd3
LB
6026 if (op == BTRFS_MAP_DISCARD)
6027 return __btrfs_map_block_for_discard(fs_info, logical,
6028 *length, bbio_ret);
6029
89b798ad
NB
6030 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6031 if (ret < 0)
6032 return ret;
0b86a832 6033
89b798ad 6034 em = btrfs_get_chunk_map(fs_info, logical, *length);
f1136989 6035 ASSERT(!IS_ERR(em));
95617d69 6036 map = em->map_lookup;
593060d7 6037
89b798ad 6038 *length = geom.len;
89b798ad
NB
6039 stripe_len = geom.stripe_len;
6040 stripe_nr = geom.stripe_nr;
6041 stripe_offset = geom.stripe_offset;
6042 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6043 data_stripes = nr_data_stripes(map);
593060d7 6044
cb5583dd 6045 down_read(&dev_replace->rwsem);
472262f3 6046 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6047 /*
6048 * Hold the semaphore for read during the whole operation, write is
6049 * requested at commit time but must wait.
6050 */
472262f3 6051 if (!dev_replace_is_ongoing)
cb5583dd 6052 up_read(&dev_replace->rwsem);
472262f3 6053
ad6d620e 6054 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6055 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6056 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6057 dev_replace->srcdev->devid,
6058 &mirror_num,
6059 &physical_to_patch_in_first_stripe);
6060 if (ret)
ad6d620e 6061 goto out;
5ab56090
LB
6062 else
6063 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6064 } else if (mirror_num > map->num_stripes) {
6065 mirror_num = 0;
6066 }
6067
f2d8d74d 6068 num_stripes = 1;
cea9e445 6069 stripe_index = 0;
fce3bb9a 6070 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6071 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6072 &stripe_index);
de483734 6073 if (!need_full_stripe(op))
28e1cc7d 6074 mirror_num = 1;
c7369b3f 6075 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6076 if (need_full_stripe(op))
f2d8d74d 6077 num_stripes = map->num_stripes;
2fff734f 6078 else if (mirror_num)
f188591e 6079 stripe_index = mirror_num - 1;
dfe25020 6080 else {
30d9861f 6081 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6082 dev_replace_is_ongoing);
a1d3c478 6083 mirror_num = stripe_index + 1;
dfe25020 6084 }
2fff734f 6085
611f0e00 6086 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6087 if (need_full_stripe(op)) {
f2d8d74d 6088 num_stripes = map->num_stripes;
a1d3c478 6089 } else if (mirror_num) {
f188591e 6090 stripe_index = mirror_num - 1;
a1d3c478
JS
6091 } else {
6092 mirror_num = 1;
6093 }
2fff734f 6094
321aecc6 6095 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6096 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6097
47c5713f 6098 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6099 stripe_index *= map->sub_stripes;
6100
de483734 6101 if (need_full_stripe(op))
f2d8d74d 6102 num_stripes = map->sub_stripes;
321aecc6
CM
6103 else if (mirror_num)
6104 stripe_index += mirror_num - 1;
dfe25020 6105 else {
3e74317a 6106 int old_stripe_index = stripe_index;
30d9861f
SB
6107 stripe_index = find_live_mirror(fs_info, map,
6108 stripe_index,
30d9861f 6109 dev_replace_is_ongoing);
3e74317a 6110 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6111 }
53b381b3 6112
ffe2d203 6113 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6114 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6115 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6116 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6117 stripe_len * data_stripes);
53b381b3
DW
6118
6119 /* RAID[56] write or recovery. Return all stripes */
6120 num_stripes = map->num_stripes;
6121 max_errors = nr_parity_stripes(map);
6122
53b381b3
DW
6123 *length = map->stripe_len;
6124 stripe_index = 0;
6125 stripe_offset = 0;
6126 } else {
6127 /*
6128 * Mirror #0 or #1 means the original data block.
6129 * Mirror #2 is RAID5 parity block.
6130 * Mirror #3 is RAID6 Q block.
6131 */
47c5713f 6132 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6133 data_stripes, &stripe_index);
53b381b3 6134 if (mirror_num > 1)
cff82672 6135 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6136
6137 /* We distribute the parity blocks across stripes */
47c5713f
DS
6138 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6139 &stripe_index);
de483734 6140 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6141 mirror_num = 1;
53b381b3 6142 }
8790d502
CM
6143 } else {
6144 /*
47c5713f
DS
6145 * after this, stripe_nr is the number of stripes on this
6146 * device we have to walk to find the data, and stripe_index is
6147 * the number of our device in the stripe array
8790d502 6148 */
47c5713f
DS
6149 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6150 &stripe_index);
a1d3c478 6151 mirror_num = stripe_index + 1;
8790d502 6152 }
e042d1ec 6153 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6154 btrfs_crit(fs_info,
6155 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6156 stripe_index, map->num_stripes);
6157 ret = -EINVAL;
6158 goto out;
6159 }
cea9e445 6160
472262f3 6161 num_alloc_stripes = num_stripes;
6fad823f 6162 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6163 if (op == BTRFS_MAP_WRITE)
ad6d620e 6164 num_alloc_stripes <<= 1;
cf8cddd3 6165 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6166 num_alloc_stripes++;
2c8cdd6e 6167 tgtdev_indexes = num_stripes;
ad6d620e 6168 }
2c8cdd6e 6169
6e9606d2 6170 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
6171 if (!bbio) {
6172 ret = -ENOMEM;
6173 goto out;
6174 }
6fad823f 6175 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 6176 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 6177
8e5cfb55 6178 /* build raid_map */
2b19a1fe
LB
6179 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6180 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6181 u64 tmp;
9d644a62 6182 unsigned rot;
8e5cfb55
ZL
6183
6184 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6185 sizeof(struct btrfs_bio_stripe) *
6186 num_alloc_stripes +
6187 sizeof(int) * tgtdev_indexes);
6188
6189 /* Work out the disk rotation on this stripe-set */
47c5713f 6190 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6191
6192 /* Fill in the logical address of each stripe */
cff82672
DS
6193 tmp = stripe_nr * data_stripes;
6194 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
6195 bbio->raid_map[(i+rot) % num_stripes] =
6196 em->start + (tmp + i) * map->stripe_len;
6197
6198 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6199 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6200 bbio->raid_map[(i+rot+1) % num_stripes] =
6201 RAID6_Q_STRIPE;
6202 }
6203
b89203f7 6204
0b3d4cd3
LB
6205 for (i = 0; i < num_stripes; i++) {
6206 bbio->stripes[i].physical =
6207 map->stripes[stripe_index].physical +
6208 stripe_offset +
6209 stripe_nr * map->stripe_len;
6210 bbio->stripes[i].dev =
6211 map->stripes[stripe_index].dev;
6212 stripe_index++;
593060d7 6213 }
de11cc12 6214
2b19a1fe 6215 if (need_full_stripe(op))
d20983b4 6216 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6217
8e5cfb55
ZL
6218 if (bbio->raid_map)
6219 sort_parity_stripes(bbio, num_stripes);
cc7539ed 6220
73c0f228 6221 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6222 need_full_stripe(op)) {
73c0f228
LB
6223 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6224 &max_errors);
472262f3
SB
6225 }
6226
de11cc12 6227 *bbio_ret = bbio;
10f11900 6228 bbio->map_type = map->type;
de11cc12
LZ
6229 bbio->num_stripes = num_stripes;
6230 bbio->max_errors = max_errors;
6231 bbio->mirror_num = mirror_num;
ad6d620e
SB
6232
6233 /*
6234 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6235 * mirror_num == num_stripes + 1 && dev_replace target drive is
6236 * available as a mirror
6237 */
6238 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6239 WARN_ON(num_stripes > 1);
6240 bbio->stripes[0].dev = dev_replace->tgtdev;
6241 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6242 bbio->mirror_num = map->num_stripes + 1;
6243 }
cea9e445 6244out:
73beece9 6245 if (dev_replace_is_ongoing) {
53176dde
DS
6246 lockdep_assert_held(&dev_replace->rwsem);
6247 /* Unlock and let waiting writers proceed */
cb5583dd 6248 up_read(&dev_replace->rwsem);
73beece9 6249 }
0b86a832 6250 free_extent_map(em);
de11cc12 6251 return ret;
0b86a832
CM
6252}
6253
cf8cddd3 6254int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6255 u64 logical, u64 *length,
a1d3c478 6256 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6257{
b3d3fa51 6258 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6259 mirror_num, 0);
f2d8d74d
CM
6260}
6261
af8e2d1d 6262/* For Scrub/replace */
cf8cddd3 6263int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6264 u64 logical, u64 *length,
825ad4c9 6265 struct btrfs_bio **bbio_ret)
af8e2d1d 6266{
825ad4c9 6267 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6268}
6269
63a9c7b9
NB
6270int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6271 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
a512bbf8 6272{
a512bbf8
YZ
6273 struct extent_map *em;
6274 struct map_lookup *map;
6275 u64 *buf;
6276 u64 bytenr;
6277 u64 length;
6278 u64 stripe_nr;
53b381b3 6279 u64 rmap_len;
a512bbf8
YZ
6280 int i, j, nr = 0;
6281
60ca842e 6282 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
592d92ee 6283 if (IS_ERR(em))
835d974f 6284 return -EIO;
835d974f 6285
95617d69 6286 map = em->map_lookup;
a512bbf8 6287 length = em->len;
53b381b3
DW
6288 rmap_len = map->stripe_len;
6289
a512bbf8 6290 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 6291 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 6292 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 6293 length = div_u64(length, map->num_stripes);
ffe2d203 6294 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 6295 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
6296 rmap_len = map->stripe_len * nr_data_stripes(map);
6297 }
a512bbf8 6298
31e818fe 6299 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 6300 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
6301
6302 for (i = 0; i < map->num_stripes; i++) {
a512bbf8
YZ
6303 if (map->stripes[i].physical > physical ||
6304 map->stripes[i].physical + length <= physical)
6305 continue;
6306
6307 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 6308 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6309
6310 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6311 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6312 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6313 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6314 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6315 } /* else if RAID[56], multiply by nr_data_stripes().
6316 * Alternatively, just use rmap_len below instead of
6317 * map->stripe_len */
6318
6319 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6320 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6321 for (j = 0; j < nr; j++) {
6322 if (buf[j] == bytenr)
6323 break;
6324 }
934d375b
CM
6325 if (j == nr) {
6326 WARN_ON(nr >= map->num_stripes);
a512bbf8 6327 buf[nr++] = bytenr;
934d375b 6328 }
a512bbf8
YZ
6329 }
6330
a512bbf8
YZ
6331 *logical = buf;
6332 *naddrs = nr;
53b381b3 6333 *stripe_len = rmap_len;
a512bbf8
YZ
6334
6335 free_extent_map(em);
6336 return 0;
f2d8d74d
CM
6337}
6338
4246a0b6 6339static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6340{
326e1dbb
MS
6341 bio->bi_private = bbio->private;
6342 bio->bi_end_io = bbio->end_io;
4246a0b6 6343 bio_endio(bio);
326e1dbb 6344
6e9606d2 6345 btrfs_put_bbio(bbio);
8408c716
MX
6346}
6347
4246a0b6 6348static void btrfs_end_bio(struct bio *bio)
8790d502 6349{
9be3395b 6350 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6351 int is_orig_bio = 0;
8790d502 6352
4e4cbee9 6353 if (bio->bi_status) {
a1d3c478 6354 atomic_inc(&bbio->error);
4e4cbee9
CH
6355 if (bio->bi_status == BLK_STS_IOERR ||
6356 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6357 unsigned int stripe_index =
9be3395b 6358 btrfs_io_bio(bio)->stripe_index;
65f53338 6359 struct btrfs_device *dev;
442a4f63
SB
6360
6361 BUG_ON(stripe_index >= bbio->num_stripes);
6362 dev = bbio->stripes[stripe_index].dev;
597a60fa 6363 if (dev->bdev) {
37226b21 6364 if (bio_op(bio) == REQ_OP_WRITE)
1cb34c8e 6365 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6366 BTRFS_DEV_STAT_WRITE_ERRS);
0cc068e6 6367 else if (!(bio->bi_opf & REQ_RAHEAD))
1cb34c8e 6368 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6369 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6370 if (bio->bi_opf & REQ_PREFLUSH)
1cb34c8e 6371 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6372 BTRFS_DEV_STAT_FLUSH_ERRS);
597a60fa 6373 }
442a4f63
SB
6374 }
6375 }
8790d502 6376
a1d3c478 6377 if (bio == bbio->orig_bio)
7d2b4daa
CM
6378 is_orig_bio = 1;
6379
c404e0dc
MX
6380 btrfs_bio_counter_dec(bbio->fs_info);
6381
a1d3c478 6382 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6383 if (!is_orig_bio) {
6384 bio_put(bio);
a1d3c478 6385 bio = bbio->orig_bio;
7d2b4daa 6386 }
c7b22bb1 6387
9be3395b 6388 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6389 /* only send an error to the higher layers if it is
53b381b3 6390 * beyond the tolerance of the btrfs bio
a236aed1 6391 */
a1d3c478 6392 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6393 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6394 } else {
1259ab75
CM
6395 /*
6396 * this bio is actually up to date, we didn't
6397 * go over the max number of errors
6398 */
2dbe0c77 6399 bio->bi_status = BLK_STS_OK;
1259ab75 6400 }
c55f1396 6401
4246a0b6 6402 btrfs_end_bbio(bbio, bio);
7d2b4daa 6403 } else if (!is_orig_bio) {
8790d502
CM
6404 bio_put(bio);
6405 }
8790d502
CM
6406}
6407
8b712842
CM
6408/*
6409 * see run_scheduled_bios for a description of why bios are collected for
6410 * async submit.
6411 *
6412 * This will add one bio to the pending list for a device and make sure
6413 * the work struct is scheduled.
6414 */
2ff7e61e 6415static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6416 struct bio *bio)
8b712842 6417{
0b246afa 6418 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6419 int should_queue = 1;
ffbd517d 6420 struct btrfs_pending_bios *pending_bios;
8b712842
CM
6421
6422 /* don't bother with additional async steps for reads, right now */
37226b21 6423 if (bio_op(bio) == REQ_OP_READ) {
4e49ea4a 6424 btrfsic_submit_bio(bio);
143bede5 6425 return;
8b712842
CM
6426 }
6427
492bb6de 6428 WARN_ON(bio->bi_next);
8b712842 6429 bio->bi_next = NULL;
8b712842
CM
6430
6431 spin_lock(&device->io_lock);
67f055c7 6432 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6433 pending_bios = &device->pending_sync_bios;
6434 else
6435 pending_bios = &device->pending_bios;
8b712842 6436
ffbd517d
CM
6437 if (pending_bios->tail)
6438 pending_bios->tail->bi_next = bio;
8b712842 6439
ffbd517d
CM
6440 pending_bios->tail = bio;
6441 if (!pending_bios->head)
6442 pending_bios->head = bio;
8b712842
CM
6443 if (device->running_pending)
6444 should_queue = 0;
6445
6446 spin_unlock(&device->io_lock);
6447
6448 if (should_queue)
0b246afa 6449 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6450}
6451
2ff7e61e
JM
6452static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6453 u64 physical, int dev_nr, int async)
de1ee92a
JB
6454{
6455 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6456 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6457
6458 bio->bi_private = bbio;
9be3395b 6459 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6460 bio->bi_end_io = btrfs_end_bio;
4f024f37 6461 bio->bi_iter.bi_sector = physical >> 9;
672d5990
MT
6462 btrfs_debug_in_rcu(fs_info,
6463 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6464 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6465 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6466 bio->bi_iter.bi_size);
74d46992 6467 bio_set_dev(bio, dev->bdev);
c404e0dc 6468
2ff7e61e 6469 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6470
de1ee92a 6471 if (async)
2ff7e61e 6472 btrfs_schedule_bio(dev, bio);
de1ee92a 6473 else
4e49ea4a 6474 btrfsic_submit_bio(bio);
de1ee92a
JB
6475}
6476
de1ee92a
JB
6477static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6478{
6479 atomic_inc(&bbio->error);
6480 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6481 /* Should be the original bio. */
8408c716
MX
6482 WARN_ON(bio != bbio->orig_bio);
6483
9be3395b 6484 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6485 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6486 if (atomic_read(&bbio->error) > bbio->max_errors)
6487 bio->bi_status = BLK_STS_IOERR;
6488 else
6489 bio->bi_status = BLK_STS_OK;
4246a0b6 6490 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6491 }
6492}
6493
58efbc9f
OS
6494blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6495 int mirror_num, int async_submit)
0b86a832 6496{
0b86a832 6497 struct btrfs_device *dev;
8790d502 6498 struct bio *first_bio = bio;
4f024f37 6499 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6500 u64 length = 0;
6501 u64 map_length;
0b86a832 6502 int ret;
08da757d
ZL
6503 int dev_nr;
6504 int total_devs;
a1d3c478 6505 struct btrfs_bio *bbio = NULL;
0b86a832 6506
4f024f37 6507 length = bio->bi_iter.bi_size;
0b86a832 6508 map_length = length;
cea9e445 6509
0b246afa 6510 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6511 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6512 &map_length, &bbio, mirror_num, 1);
c404e0dc 6513 if (ret) {
0b246afa 6514 btrfs_bio_counter_dec(fs_info);
58efbc9f 6515 return errno_to_blk_status(ret);
c404e0dc 6516 }
cea9e445 6517
a1d3c478 6518 total_devs = bbio->num_stripes;
53b381b3
DW
6519 bbio->orig_bio = first_bio;
6520 bbio->private = first_bio->bi_private;
6521 bbio->end_io = first_bio->bi_end_io;
0b246afa 6522 bbio->fs_info = fs_info;
53b381b3
DW
6523 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6524
ad1ba2a0 6525 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6526 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6527 /* In this case, map_length has been set to the length of
6528 a single stripe; not the whole write */
37226b21 6529 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6530 ret = raid56_parity_write(fs_info, bio, bbio,
6531 map_length);
53b381b3 6532 } else {
2ff7e61e
JM
6533 ret = raid56_parity_recover(fs_info, bio, bbio,
6534 map_length, mirror_num, 1);
53b381b3 6535 }
4245215d 6536
0b246afa 6537 btrfs_bio_counter_dec(fs_info);
58efbc9f 6538 return errno_to_blk_status(ret);
53b381b3
DW
6539 }
6540
cea9e445 6541 if (map_length < length) {
0b246afa 6542 btrfs_crit(fs_info,
5d163e0e
JM
6543 "mapping failed logical %llu bio len %llu len %llu",
6544 logical, length, map_length);
cea9e445
CM
6545 BUG();
6546 }
a1d3c478 6547
08da757d 6548 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6549 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6550 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6551 &dev->dev_state) ||
ebbede42
AJ
6552 (bio_op(first_bio) == REQ_OP_WRITE &&
6553 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6554 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6555 continue;
6556 }
6557
3aa8e074 6558 if (dev_nr < total_devs - 1)
8b6c1d56 6559 bio = btrfs_bio_clone(first_bio);
3aa8e074 6560 else
a1d3c478 6561 bio = first_bio;
de1ee92a 6562
2ff7e61e
JM
6563 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6564 dev_nr, async_submit);
8790d502 6565 }
0b246afa 6566 btrfs_bio_counter_dec(fs_info);
58efbc9f 6567 return BLK_STS_OK;
0b86a832
CM
6568}
6569
09ba3bc9
AJ
6570/*
6571 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6572 * return NULL.
6573 *
6574 * If devid and uuid are both specified, the match must be exact, otherwise
6575 * only devid is used.
6576 *
6577 * If @seed is true, traverse through the seed devices.
6578 */
e4319cd9 6579struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
09ba3bc9
AJ
6580 u64 devid, u8 *uuid, u8 *fsid,
6581 bool seed)
0b86a832 6582{
2b82032c 6583 struct btrfs_device *device;
2b82032c 6584
e4319cd9 6585 while (fs_devices) {
2b82032c 6586 if (!fsid ||
e4319cd9 6587 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
09ba3bc9
AJ
6588 list_for_each_entry(device, &fs_devices->devices,
6589 dev_list) {
6590 if (device->devid == devid &&
6591 (!uuid || memcmp(device->uuid, uuid,
6592 BTRFS_UUID_SIZE) == 0))
6593 return device;
6594 }
2b82032c 6595 }
09ba3bc9
AJ
6596 if (seed)
6597 fs_devices = fs_devices->seed;
6598 else
6599 return NULL;
2b82032c
YZ
6600 }
6601 return NULL;
0b86a832
CM
6602}
6603
2ff7e61e 6604static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6605 u64 devid, u8 *dev_uuid)
6606{
6607 struct btrfs_device *device;
dfe25020 6608
12bd2fc0
ID
6609 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6610 if (IS_ERR(device))
adfb69af 6611 return device;
12bd2fc0
ID
6612
6613 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6614 device->fs_devices = fs_devices;
dfe25020 6615 fs_devices->num_devices++;
12bd2fc0 6616
e6e674bd 6617 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6618 fs_devices->missing_devices++;
12bd2fc0 6619
dfe25020
CM
6620 return device;
6621}
6622
12bd2fc0
ID
6623/**
6624 * btrfs_alloc_device - allocate struct btrfs_device
6625 * @fs_info: used only for generating a new devid, can be NULL if
6626 * devid is provided (i.e. @devid != NULL).
6627 * @devid: a pointer to devid for this device. If NULL a new devid
6628 * is generated.
6629 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6630 * is generated.
6631 *
6632 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6633 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6634 * destroyed with btrfs_free_device.
12bd2fc0
ID
6635 */
6636struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6637 const u64 *devid,
6638 const u8 *uuid)
6639{
6640 struct btrfs_device *dev;
6641 u64 tmp;
6642
fae7f21c 6643 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6644 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6645
6646 dev = __alloc_device();
6647 if (IS_ERR(dev))
6648 return dev;
6649
6650 if (devid)
6651 tmp = *devid;
6652 else {
6653 int ret;
6654
6655 ret = find_next_devid(fs_info, &tmp);
6656 if (ret) {
a425f9d4 6657 btrfs_free_device(dev);
12bd2fc0
ID
6658 return ERR_PTR(ret);
6659 }
6660 }
6661 dev->devid = tmp;
6662
6663 if (uuid)
6664 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6665 else
6666 generate_random_uuid(dev->uuid);
6667
9e0af237
LB
6668 btrfs_init_work(&dev->work, btrfs_submit_helper,
6669 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6670
6671 return dev;
6672}
6673
5a2b8e60 6674static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6675 u64 devid, u8 *uuid, bool error)
5a2b8e60 6676{
2b902dfc
AJ
6677 if (error)
6678 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6679 devid, uuid);
6680 else
6681 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6682 devid, uuid);
5a2b8e60
AJ
6683}
6684
39e264a4
NB
6685static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6686{
6687 int index = btrfs_bg_flags_to_raid_index(type);
6688 int ncopies = btrfs_raid_array[index].ncopies;
6689 int data_stripes;
6690
6691 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6692 case BTRFS_BLOCK_GROUP_RAID5:
6693 data_stripes = num_stripes - 1;
6694 break;
6695 case BTRFS_BLOCK_GROUP_RAID6:
6696 data_stripes = num_stripes - 2;
6697 break;
6698 default:
6699 data_stripes = num_stripes / ncopies;
6700 break;
6701 }
6702 return div_u64(chunk_len, data_stripes);
6703}
6704
9690ac09 6705static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6706 struct btrfs_chunk *chunk)
6707{
9690ac09 6708 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6709 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6710 struct map_lookup *map;
6711 struct extent_map *em;
6712 u64 logical;
6713 u64 length;
e06cd3dd
LB
6714 u64 devid;
6715 u8 uuid[BTRFS_UUID_SIZE];
6716 int num_stripes;
6717 int ret;
6718 int i;
6719
6720 logical = key->offset;
6721 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6722 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6723
075cb3c7
QW
6724 /*
6725 * Only need to verify chunk item if we're reading from sys chunk array,
6726 * as chunk item in tree block is already verified by tree-checker.
6727 */
6728 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6729 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6730 if (ret)
6731 return ret;
6732 }
a061fc8d 6733
c8bf1b67
DS
6734 read_lock(&map_tree->lock);
6735 em = lookup_extent_mapping(map_tree, logical, 1);
6736 read_unlock(&map_tree->lock);
0b86a832
CM
6737
6738 /* already mapped? */
6739 if (em && em->start <= logical && em->start + em->len > logical) {
6740 free_extent_map(em);
0b86a832
CM
6741 return 0;
6742 } else if (em) {
6743 free_extent_map(em);
6744 }
0b86a832 6745
172ddd60 6746 em = alloc_extent_map();
0b86a832
CM
6747 if (!em)
6748 return -ENOMEM;
593060d7 6749 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6750 if (!map) {
6751 free_extent_map(em);
6752 return -ENOMEM;
6753 }
6754
298a8f9c 6755 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6756 em->map_lookup = map;
0b86a832
CM
6757 em->start = logical;
6758 em->len = length;
70c8a91c 6759 em->orig_start = 0;
0b86a832 6760 em->block_start = 0;
c8b97818 6761 em->block_len = em->len;
0b86a832 6762
593060d7
CM
6763 map->num_stripes = num_stripes;
6764 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6765 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6766 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6767 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6768 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 6769 map->verified_stripes = 0;
39e264a4
NB
6770 em->orig_block_len = calc_stripe_length(map->type, em->len,
6771 map->num_stripes);
593060d7
CM
6772 for (i = 0; i < num_stripes; i++) {
6773 map->stripes[i].physical =
6774 btrfs_stripe_offset_nr(leaf, chunk, i);
6775 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6776 read_extent_buffer(leaf, uuid, (unsigned long)
6777 btrfs_stripe_dev_uuid_nr(chunk, i),
6778 BTRFS_UUID_SIZE);
e4319cd9 6779 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
09ba3bc9 6780 devid, uuid, NULL, true);
3cdde224 6781 if (!map->stripes[i].dev &&
0b246afa 6782 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6783 free_extent_map(em);
2b902dfc 6784 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6785 return -ENOENT;
593060d7 6786 }
dfe25020
CM
6787 if (!map->stripes[i].dev) {
6788 map->stripes[i].dev =
2ff7e61e
JM
6789 add_missing_dev(fs_info->fs_devices, devid,
6790 uuid);
adfb69af 6791 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6792 free_extent_map(em);
adfb69af
AJ
6793 btrfs_err(fs_info,
6794 "failed to init missing dev %llu: %ld",
6795 devid, PTR_ERR(map->stripes[i].dev));
6796 return PTR_ERR(map->stripes[i].dev);
dfe25020 6797 }
2b902dfc 6798 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 6799 }
e12c9621
AJ
6800 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6801 &(map->stripes[i].dev->dev_state));
6802
0b86a832
CM
6803 }
6804
c8bf1b67
DS
6805 write_lock(&map_tree->lock);
6806 ret = add_extent_mapping(map_tree, em, 0);
6807 write_unlock(&map_tree->lock);
64f64f43
QW
6808 if (ret < 0) {
6809 btrfs_err(fs_info,
6810 "failed to add chunk map, start=%llu len=%llu: %d",
6811 em->start, em->len, ret);
6812 }
0b86a832
CM
6813 free_extent_map(em);
6814
64f64f43 6815 return ret;
0b86a832
CM
6816}
6817
143bede5 6818static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6819 struct btrfs_dev_item *dev_item,
6820 struct btrfs_device *device)
6821{
6822 unsigned long ptr;
0b86a832
CM
6823
6824 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6825 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6826 device->total_bytes = device->disk_total_bytes;
935e5cc9 6827 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6828 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6829 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6830 device->type = btrfs_device_type(leaf, dev_item);
6831 device->io_align = btrfs_device_io_align(leaf, dev_item);
6832 device->io_width = btrfs_device_io_width(leaf, dev_item);
6833 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6834 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6835 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6836
410ba3a2 6837 ptr = btrfs_device_uuid(dev_item);
e17cade2 6838 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6839}
6840
2ff7e61e 6841static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6842 u8 *fsid)
2b82032c
YZ
6843{
6844 struct btrfs_fs_devices *fs_devices;
6845 int ret;
6846
a32bf9a3 6847 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6848 ASSERT(fsid);
2b82032c 6849
0b246afa 6850 fs_devices = fs_info->fs_devices->seed;
2b82032c 6851 while (fs_devices) {
44880fdc 6852 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6853 return fs_devices;
6854
2b82032c
YZ
6855 fs_devices = fs_devices->seed;
6856 }
6857
7239ff4b 6858 fs_devices = find_fsid(fsid, NULL);
2b82032c 6859 if (!fs_devices) {
0b246afa 6860 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6861 return ERR_PTR(-ENOENT);
6862
7239ff4b 6863 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
6864 if (IS_ERR(fs_devices))
6865 return fs_devices;
6866
6867 fs_devices->seeding = 1;
6868 fs_devices->opened = 1;
6869 return fs_devices;
2b82032c 6870 }
e4404d6e
YZ
6871
6872 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6873 if (IS_ERR(fs_devices))
6874 return fs_devices;
2b82032c 6875
897fb573 6876 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
6877 if (ret) {
6878 free_fs_devices(fs_devices);
5f375835 6879 fs_devices = ERR_PTR(ret);
2b82032c 6880 goto out;
48d28232 6881 }
2b82032c
YZ
6882
6883 if (!fs_devices->seeding) {
0226e0eb 6884 close_fs_devices(fs_devices);
e4404d6e 6885 free_fs_devices(fs_devices);
5f375835 6886 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6887 goto out;
6888 }
6889
0b246afa
JM
6890 fs_devices->seed = fs_info->fs_devices->seed;
6891 fs_info->fs_devices->seed = fs_devices;
2b82032c 6892out:
5f375835 6893 return fs_devices;
2b82032c
YZ
6894}
6895
17850759 6896static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
6897 struct btrfs_dev_item *dev_item)
6898{
17850759 6899 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 6900 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6901 struct btrfs_device *device;
6902 u64 devid;
6903 int ret;
44880fdc 6904 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6905 u8 dev_uuid[BTRFS_UUID_SIZE];
6906
0b86a832 6907 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6908 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6909 BTRFS_UUID_SIZE);
1473b24e 6910 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6911 BTRFS_FSID_SIZE);
2b82032c 6912
de37aa51 6913 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 6914 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6915 if (IS_ERR(fs_devices))
6916 return PTR_ERR(fs_devices);
2b82032c
YZ
6917 }
6918
e4319cd9 6919 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 6920 fs_uuid, true);
5f375835 6921 if (!device) {
c5502451 6922 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6923 btrfs_report_missing_device(fs_info, devid,
6924 dev_uuid, true);
45dbdbc9 6925 return -ENOENT;
c5502451 6926 }
2b82032c 6927
2ff7e61e 6928 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6929 if (IS_ERR(device)) {
6930 btrfs_err(fs_info,
6931 "failed to add missing dev %llu: %ld",
6932 devid, PTR_ERR(device));
6933 return PTR_ERR(device);
6934 }
2b902dfc 6935 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6936 } else {
c5502451 6937 if (!device->bdev) {
2b902dfc
AJ
6938 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6939 btrfs_report_missing_device(fs_info,
6940 devid, dev_uuid, true);
45dbdbc9 6941 return -ENOENT;
2b902dfc
AJ
6942 }
6943 btrfs_report_missing_device(fs_info, devid,
6944 dev_uuid, false);
c5502451 6945 }
5f375835 6946
e6e674bd
AJ
6947 if (!device->bdev &&
6948 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6949 /*
6950 * this happens when a device that was properly setup
6951 * in the device info lists suddenly goes bad.
6952 * device->bdev is NULL, and so we have to set
6953 * device->missing to one here
6954 */
5f375835 6955 device->fs_devices->missing_devices++;
e6e674bd 6956 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6957 }
5f375835
MX
6958
6959 /* Move the device to its own fs_devices */
6960 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6961 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6962 &device->dev_state));
5f375835
MX
6963
6964 list_move(&device->dev_list, &fs_devices->devices);
6965 device->fs_devices->num_devices--;
6966 fs_devices->num_devices++;
6967
6968 device->fs_devices->missing_devices--;
6969 fs_devices->missing_devices++;
6970
6971 device->fs_devices = fs_devices;
6972 }
2b82032c
YZ
6973 }
6974
0b246afa 6975 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 6976 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
6977 if (device->generation !=
6978 btrfs_device_generation(leaf, dev_item))
6979 return -EINVAL;
6324fbf3 6980 }
0b86a832
CM
6981
6982 fill_device_from_item(leaf, dev_item, device);
e12c9621 6983 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 6984 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 6985 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 6986 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6987 atomic64_add(device->total_bytes - device->bytes_used,
6988 &fs_info->free_chunk_space);
2bf64758 6989 }
0b86a832 6990 ret = 0;
0b86a832
CM
6991 return ret;
6992}
6993
6bccf3ab 6994int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6995{
6bccf3ab 6996 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6997 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6998 struct extent_buffer *sb;
0b86a832 6999 struct btrfs_disk_key *disk_key;
0b86a832 7000 struct btrfs_chunk *chunk;
1ffb22cf
DS
7001 u8 *array_ptr;
7002 unsigned long sb_array_offset;
84eed90f 7003 int ret = 0;
0b86a832
CM
7004 u32 num_stripes;
7005 u32 array_size;
7006 u32 len = 0;
1ffb22cf 7007 u32 cur_offset;
e06cd3dd 7008 u64 type;
84eed90f 7009 struct btrfs_key key;
0b86a832 7010
0b246afa 7011 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
7012 /*
7013 * This will create extent buffer of nodesize, superblock size is
7014 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7015 * overallocate but we can keep it as-is, only the first page is used.
7016 */
2ff7e61e 7017 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
7018 if (IS_ERR(sb))
7019 return PTR_ERR(sb);
4db8c528 7020 set_extent_buffer_uptodate(sb);
85d4e461 7021 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 7022 /*
01327610 7023 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 7024 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
7025 * pages up-to-date when the page is larger: extent does not cover the
7026 * whole page and consequently check_page_uptodate does not find all
7027 * the page's extents up-to-date (the hole beyond sb),
7028 * write_extent_buffer then triggers a WARN_ON.
7029 *
7030 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7031 * but sb spans only this function. Add an explicit SetPageUptodate call
7032 * to silence the warning eg. on PowerPC 64.
7033 */
09cbfeaf 7034 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 7035 SetPageUptodate(sb->pages[0]);
4008c04a 7036
a061fc8d 7037 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7038 array_size = btrfs_super_sys_array_size(super_copy);
7039
1ffb22cf
DS
7040 array_ptr = super_copy->sys_chunk_array;
7041 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7042 cur_offset = 0;
0b86a832 7043
1ffb22cf
DS
7044 while (cur_offset < array_size) {
7045 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7046 len = sizeof(*disk_key);
7047 if (cur_offset + len > array_size)
7048 goto out_short_read;
7049
0b86a832
CM
7050 btrfs_disk_key_to_cpu(&key, disk_key);
7051
1ffb22cf
DS
7052 array_ptr += len;
7053 sb_array_offset += len;
7054 cur_offset += len;
0b86a832 7055
0d81ba5d 7056 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 7057 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
7058 /*
7059 * At least one btrfs_chunk with one stripe must be
7060 * present, exact stripe count check comes afterwards
7061 */
7062 len = btrfs_chunk_item_size(1);
7063 if (cur_offset + len > array_size)
7064 goto out_short_read;
7065
7066 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 7067 if (!num_stripes) {
ab8d0fc4
JM
7068 btrfs_err(fs_info,
7069 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
7070 num_stripes, cur_offset);
7071 ret = -EIO;
7072 break;
7073 }
7074
e06cd3dd
LB
7075 type = btrfs_chunk_type(sb, chunk);
7076 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7077 btrfs_err(fs_info,
e06cd3dd
LB
7078 "invalid chunk type %llu in sys_array at offset %u",
7079 type, cur_offset);
7080 ret = -EIO;
7081 break;
7082 }
7083
e3540eab
DS
7084 len = btrfs_chunk_item_size(num_stripes);
7085 if (cur_offset + len > array_size)
7086 goto out_short_read;
7087
9690ac09 7088 ret = read_one_chunk(&key, sb, chunk);
84eed90f
CM
7089 if (ret)
7090 break;
0b86a832 7091 } else {
ab8d0fc4
JM
7092 btrfs_err(fs_info,
7093 "unexpected item type %u in sys_array at offset %u",
7094 (u32)key.type, cur_offset);
84eed90f
CM
7095 ret = -EIO;
7096 break;
0b86a832 7097 }
1ffb22cf
DS
7098 array_ptr += len;
7099 sb_array_offset += len;
7100 cur_offset += len;
0b86a832 7101 }
d865177a 7102 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7103 free_extent_buffer_stale(sb);
84eed90f 7104 return ret;
e3540eab
DS
7105
7106out_short_read:
ab8d0fc4 7107 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7108 len, cur_offset);
d865177a 7109 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7110 free_extent_buffer_stale(sb);
e3540eab 7111 return -EIO;
0b86a832
CM
7112}
7113
21634a19
QW
7114/*
7115 * Check if all chunks in the fs are OK for read-write degraded mount
7116 *
6528b99d
AJ
7117 * If the @failing_dev is specified, it's accounted as missing.
7118 *
21634a19
QW
7119 * Return true if all chunks meet the minimal RW mount requirements.
7120 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7121 */
6528b99d
AJ
7122bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7123 struct btrfs_device *failing_dev)
21634a19 7124{
c8bf1b67 7125 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7126 struct extent_map *em;
7127 u64 next_start = 0;
7128 bool ret = true;
7129
c8bf1b67
DS
7130 read_lock(&map_tree->lock);
7131 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7132 read_unlock(&map_tree->lock);
21634a19
QW
7133 /* No chunk at all? Return false anyway */
7134 if (!em) {
7135 ret = false;
7136 goto out;
7137 }
7138 while (em) {
7139 struct map_lookup *map;
7140 int missing = 0;
7141 int max_tolerated;
7142 int i;
7143
7144 map = em->map_lookup;
7145 max_tolerated =
7146 btrfs_get_num_tolerated_disk_barrier_failures(
7147 map->type);
7148 for (i = 0; i < map->num_stripes; i++) {
7149 struct btrfs_device *dev = map->stripes[i].dev;
7150
e6e674bd
AJ
7151 if (!dev || !dev->bdev ||
7152 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7153 dev->last_flush_error)
7154 missing++;
6528b99d
AJ
7155 else if (failing_dev && failing_dev == dev)
7156 missing++;
21634a19
QW
7157 }
7158 if (missing > max_tolerated) {
6528b99d
AJ
7159 if (!failing_dev)
7160 btrfs_warn(fs_info,
52042d8e 7161 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7162 em->start, missing, max_tolerated);
7163 free_extent_map(em);
7164 ret = false;
7165 goto out;
7166 }
7167 next_start = extent_map_end(em);
7168 free_extent_map(em);
7169
c8bf1b67
DS
7170 read_lock(&map_tree->lock);
7171 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7172 (u64)(-1) - next_start);
c8bf1b67 7173 read_unlock(&map_tree->lock);
21634a19
QW
7174 }
7175out:
7176 return ret;
7177}
7178
5b4aacef 7179int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7180{
5b4aacef 7181 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7182 struct btrfs_path *path;
7183 struct extent_buffer *leaf;
7184 struct btrfs_key key;
7185 struct btrfs_key found_key;
7186 int ret;
7187 int slot;
99e3ecfc 7188 u64 total_dev = 0;
0b86a832 7189
0b86a832
CM
7190 path = btrfs_alloc_path();
7191 if (!path)
7192 return -ENOMEM;
7193
3dd0f7a3
AJ
7194 /*
7195 * uuid_mutex is needed only if we are mounting a sprout FS
7196 * otherwise we don't need it.
7197 */
b367e47f 7198 mutex_lock(&uuid_mutex);
34441361 7199 mutex_lock(&fs_info->chunk_mutex);
b367e47f 7200
395927a9
FDBM
7201 /*
7202 * Read all device items, and then all the chunk items. All
7203 * device items are found before any chunk item (their object id
7204 * is smaller than the lowest possible object id for a chunk
7205 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7206 */
7207 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7208 key.offset = 0;
7209 key.type = 0;
0b86a832 7210 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7211 if (ret < 0)
7212 goto error;
d397712b 7213 while (1) {
0b86a832
CM
7214 leaf = path->nodes[0];
7215 slot = path->slots[0];
7216 if (slot >= btrfs_header_nritems(leaf)) {
7217 ret = btrfs_next_leaf(root, path);
7218 if (ret == 0)
7219 continue;
7220 if (ret < 0)
7221 goto error;
7222 break;
7223 }
7224 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7225 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7226 struct btrfs_dev_item *dev_item;
7227 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7228 struct btrfs_dev_item);
17850759 7229 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7230 if (ret)
7231 goto error;
99e3ecfc 7232 total_dev++;
0b86a832
CM
7233 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7234 struct btrfs_chunk *chunk;
7235 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7236 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7237 if (ret)
7238 goto error;
0b86a832
CM
7239 }
7240 path->slots[0]++;
7241 }
99e3ecfc
LB
7242
7243 /*
7244 * After loading chunk tree, we've got all device information,
7245 * do another round of validation checks.
7246 */
0b246afa
JM
7247 if (total_dev != fs_info->fs_devices->total_devices) {
7248 btrfs_err(fs_info,
99e3ecfc 7249 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7250 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7251 total_dev);
7252 ret = -EINVAL;
7253 goto error;
7254 }
0b246afa
JM
7255 if (btrfs_super_total_bytes(fs_info->super_copy) <
7256 fs_info->fs_devices->total_rw_bytes) {
7257 btrfs_err(fs_info,
99e3ecfc 7258 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7259 btrfs_super_total_bytes(fs_info->super_copy),
7260 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7261 ret = -EINVAL;
7262 goto error;
7263 }
0b86a832
CM
7264 ret = 0;
7265error:
34441361 7266 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
7267 mutex_unlock(&uuid_mutex);
7268
2b82032c 7269 btrfs_free_path(path);
0b86a832
CM
7270 return ret;
7271}
442a4f63 7272
cb517eab
MX
7273void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7274{
7275 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7276 struct btrfs_device *device;
7277
29cc83f6
LB
7278 while (fs_devices) {
7279 mutex_lock(&fs_devices->device_list_mutex);
7280 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 7281 device->fs_info = fs_info;
29cc83f6
LB
7282 mutex_unlock(&fs_devices->device_list_mutex);
7283
7284 fs_devices = fs_devices->seed;
7285 }
cb517eab
MX
7286}
7287
1dc990df
DS
7288static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7289 const struct btrfs_dev_stats_item *ptr,
7290 int index)
7291{
7292 u64 val;
7293
7294 read_extent_buffer(eb, &val,
7295 offsetof(struct btrfs_dev_stats_item, values) +
7296 ((unsigned long)ptr) + (index * sizeof(u64)),
7297 sizeof(val));
7298 return val;
7299}
7300
7301static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7302 struct btrfs_dev_stats_item *ptr,
7303 int index, u64 val)
7304{
7305 write_extent_buffer(eb, &val,
7306 offsetof(struct btrfs_dev_stats_item, values) +
7307 ((unsigned long)ptr) + (index * sizeof(u64)),
7308 sizeof(val));
7309}
7310
733f4fbb
SB
7311int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7312{
7313 struct btrfs_key key;
733f4fbb
SB
7314 struct btrfs_root *dev_root = fs_info->dev_root;
7315 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7316 struct extent_buffer *eb;
7317 int slot;
7318 int ret = 0;
7319 struct btrfs_device *device;
7320 struct btrfs_path *path = NULL;
7321 int i;
7322
7323 path = btrfs_alloc_path();
3b80a984
AJ
7324 if (!path)
7325 return -ENOMEM;
733f4fbb
SB
7326
7327 mutex_lock(&fs_devices->device_list_mutex);
7328 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7329 int item_size;
7330 struct btrfs_dev_stats_item *ptr;
7331
242e2956
DS
7332 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7333 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7334 key.offset = device->devid;
7335 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7336 if (ret) {
ae4b9b4c
AJ
7337 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7338 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7339 device->dev_stats_valid = 1;
7340 btrfs_release_path(path);
7341 continue;
7342 }
7343 slot = path->slots[0];
7344 eb = path->nodes[0];
733f4fbb
SB
7345 item_size = btrfs_item_size_nr(eb, slot);
7346
7347 ptr = btrfs_item_ptr(eb, slot,
7348 struct btrfs_dev_stats_item);
7349
7350 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7351 if (item_size >= (1 + i) * sizeof(__le64))
7352 btrfs_dev_stat_set(device, i,
7353 btrfs_dev_stats_value(eb, ptr, i));
7354 else
4e411a7d 7355 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7356 }
7357
7358 device->dev_stats_valid = 1;
7359 btrfs_dev_stat_print_on_load(device);
7360 btrfs_release_path(path);
7361 }
7362 mutex_unlock(&fs_devices->device_list_mutex);
7363
733f4fbb
SB
7364 btrfs_free_path(path);
7365 return ret < 0 ? ret : 0;
7366}
7367
7368static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7369 struct btrfs_device *device)
7370{
5495f195 7371 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7372 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7373 struct btrfs_path *path;
7374 struct btrfs_key key;
7375 struct extent_buffer *eb;
7376 struct btrfs_dev_stats_item *ptr;
7377 int ret;
7378 int i;
7379
242e2956
DS
7380 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7381 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7382 key.offset = device->devid;
7383
7384 path = btrfs_alloc_path();
fa252992
DS
7385 if (!path)
7386 return -ENOMEM;
733f4fbb
SB
7387 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7388 if (ret < 0) {
0b246afa 7389 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7390 "error %d while searching for dev_stats item for device %s",
606686ee 7391 ret, rcu_str_deref(device->name));
733f4fbb
SB
7392 goto out;
7393 }
7394
7395 if (ret == 0 &&
7396 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7397 /* need to delete old one and insert a new one */
7398 ret = btrfs_del_item(trans, dev_root, path);
7399 if (ret != 0) {
0b246afa 7400 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7401 "delete too small dev_stats item for device %s failed %d",
606686ee 7402 rcu_str_deref(device->name), ret);
733f4fbb
SB
7403 goto out;
7404 }
7405 ret = 1;
7406 }
7407
7408 if (ret == 1) {
7409 /* need to insert a new item */
7410 btrfs_release_path(path);
7411 ret = btrfs_insert_empty_item(trans, dev_root, path,
7412 &key, sizeof(*ptr));
7413 if (ret < 0) {
0b246afa 7414 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7415 "insert dev_stats item for device %s failed %d",
7416 rcu_str_deref(device->name), ret);
733f4fbb
SB
7417 goto out;
7418 }
7419 }
7420
7421 eb = path->nodes[0];
7422 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7423 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7424 btrfs_set_dev_stats_value(eb, ptr, i,
7425 btrfs_dev_stat_read(device, i));
7426 btrfs_mark_buffer_dirty(eb);
7427
7428out:
7429 btrfs_free_path(path);
7430 return ret;
7431}
7432
7433/*
7434 * called from commit_transaction. Writes all changed device stats to disk.
7435 */
196c9d8d 7436int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7437{
196c9d8d 7438 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7439 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7440 struct btrfs_device *device;
addc3fa7 7441 int stats_cnt;
733f4fbb
SB
7442 int ret = 0;
7443
7444 mutex_lock(&fs_devices->device_list_mutex);
7445 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7446 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7447 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7448 continue;
7449
9deae968
NB
7450
7451 /*
7452 * There is a LOAD-LOAD control dependency between the value of
7453 * dev_stats_ccnt and updating the on-disk values which requires
7454 * reading the in-memory counters. Such control dependencies
7455 * require explicit read memory barriers.
7456 *
7457 * This memory barriers pairs with smp_mb__before_atomic in
7458 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7459 * barrier implied by atomic_xchg in
7460 * btrfs_dev_stats_read_and_reset
7461 */
7462 smp_rmb();
7463
5495f195 7464 ret = update_dev_stat_item(trans, device);
733f4fbb 7465 if (!ret)
addc3fa7 7466 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7467 }
7468 mutex_unlock(&fs_devices->device_list_mutex);
7469
7470 return ret;
7471}
7472
442a4f63
SB
7473void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7474{
7475 btrfs_dev_stat_inc(dev, index);
7476 btrfs_dev_stat_print_on_error(dev);
7477}
7478
48a3b636 7479static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7480{
733f4fbb
SB
7481 if (!dev->dev_stats_valid)
7482 return;
fb456252 7483 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7484 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7485 rcu_str_deref(dev->name),
442a4f63
SB
7486 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7487 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7488 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7489 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7490 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7491}
c11d2c23 7492
733f4fbb
SB
7493static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7494{
a98cdb85
SB
7495 int i;
7496
7497 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7498 if (btrfs_dev_stat_read(dev, i) != 0)
7499 break;
7500 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7501 return; /* all values == 0, suppress message */
7502
fb456252 7503 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7504 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7505 rcu_str_deref(dev->name),
733f4fbb
SB
7506 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7507 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7508 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7509 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7510 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7511}
7512
2ff7e61e 7513int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7514 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7515{
7516 struct btrfs_device *dev;
0b246afa 7517 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7518 int i;
7519
7520 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
7521 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7522 true);
c11d2c23
SB
7523 mutex_unlock(&fs_devices->device_list_mutex);
7524
7525 if (!dev) {
0b246afa 7526 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7527 return -ENODEV;
733f4fbb 7528 } else if (!dev->dev_stats_valid) {
0b246afa 7529 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7530 return -ENODEV;
b27f7c0c 7531 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7532 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7533 if (stats->nr_items > i)
7534 stats->values[i] =
7535 btrfs_dev_stat_read_and_reset(dev, i);
7536 else
4e411a7d 7537 btrfs_dev_stat_set(dev, i, 0);
c11d2c23
SB
7538 }
7539 } else {
7540 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7541 if (stats->nr_items > i)
7542 stats->values[i] = btrfs_dev_stat_read(dev, i);
7543 }
7544 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7545 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7546 return 0;
7547}
a8a6dab7 7548
da353f6b 7549void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7550{
7551 struct buffer_head *bh;
7552 struct btrfs_super_block *disk_super;
12b1c263 7553 int copy_num;
a8a6dab7 7554
12b1c263
AJ
7555 if (!bdev)
7556 return;
a8a6dab7 7557
12b1c263
AJ
7558 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7559 copy_num++) {
a8a6dab7 7560
12b1c263
AJ
7561 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7562 continue;
7563
7564 disk_super = (struct btrfs_super_block *)bh->b_data;
7565
7566 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7567 set_buffer_dirty(bh);
7568 sync_dirty_buffer(bh);
7569 brelse(bh);
7570 }
7571
7572 /* Notify udev that device has changed */
7573 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7574
7575 /* Update ctime/mtime for device path for libblkid */
7576 update_dev_time(device_path);
a8a6dab7 7577}
935e5cc9
MX
7578
7579/*
bbbf7243
NB
7580 * Update the size and bytes used for each device where it changed. This is
7581 * delayed since we would otherwise get errors while writing out the
7582 * superblocks.
7583 *
7584 * Must be invoked during transaction commit.
935e5cc9 7585 */
bbbf7243 7586void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7587{
935e5cc9
MX
7588 struct btrfs_device *curr, *next;
7589
bbbf7243 7590 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7591
bbbf7243 7592 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7593 return;
7594
bbbf7243
NB
7595 /*
7596 * We don't need the device_list_mutex here. This list is owned by the
7597 * transaction and the transaction must complete before the device is
7598 * released.
7599 */
7600 mutex_lock(&trans->fs_info->chunk_mutex);
7601 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7602 post_commit_list) {
7603 list_del_init(&curr->post_commit_list);
7604 curr->commit_total_bytes = curr->disk_total_bytes;
7605 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7606 }
bbbf7243 7607 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7608}
5a13f430
AJ
7609
7610void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7611{
7612 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7613 while (fs_devices) {
7614 fs_devices->fs_info = fs_info;
7615 fs_devices = fs_devices->seed;
7616 }
7617}
7618
7619void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7620{
7621 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7622 while (fs_devices) {
7623 fs_devices->fs_info = NULL;
7624 fs_devices = fs_devices->seed;
7625 }
7626}
46df06b8
DS
7627
7628/*
7629 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7630 */
7631int btrfs_bg_type_to_factor(u64 flags)
7632{
44b28ada
DS
7633 const int index = btrfs_bg_flags_to_raid_index(flags);
7634
7635 return btrfs_raid_array[index].ncopies;
46df06b8 7636}
cf90d884
QW
7637
7638
cf90d884
QW
7639
7640static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7641 u64 chunk_offset, u64 devid,
7642 u64 physical_offset, u64 physical_len)
7643{
c8bf1b67 7644 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7645 struct extent_map *em;
7646 struct map_lookup *map;
05a37c48 7647 struct btrfs_device *dev;
cf90d884
QW
7648 u64 stripe_len;
7649 bool found = false;
7650 int ret = 0;
7651 int i;
7652
7653 read_lock(&em_tree->lock);
7654 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7655 read_unlock(&em_tree->lock);
7656
7657 if (!em) {
7658 btrfs_err(fs_info,
7659"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7660 physical_offset, devid);
7661 ret = -EUCLEAN;
7662 goto out;
7663 }
7664
7665 map = em->map_lookup;
7666 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7667 if (physical_len != stripe_len) {
7668 btrfs_err(fs_info,
7669"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7670 physical_offset, devid, em->start, physical_len,
7671 stripe_len);
7672 ret = -EUCLEAN;
7673 goto out;
7674 }
7675
7676 for (i = 0; i < map->num_stripes; i++) {
7677 if (map->stripes[i].dev->devid == devid &&
7678 map->stripes[i].physical == physical_offset) {
7679 found = true;
7680 if (map->verified_stripes >= map->num_stripes) {
7681 btrfs_err(fs_info,
7682 "too many dev extents for chunk %llu found",
7683 em->start);
7684 ret = -EUCLEAN;
7685 goto out;
7686 }
7687 map->verified_stripes++;
7688 break;
7689 }
7690 }
7691 if (!found) {
7692 btrfs_err(fs_info,
7693 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7694 physical_offset, devid);
7695 ret = -EUCLEAN;
7696 }
05a37c48
QW
7697
7698 /* Make sure no dev extent is beyond device bondary */
09ba3bc9 7699 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
05a37c48
QW
7700 if (!dev) {
7701 btrfs_err(fs_info, "failed to find devid %llu", devid);
7702 ret = -EUCLEAN;
7703 goto out;
7704 }
1b3922a8
QW
7705
7706 /* It's possible this device is a dummy for seed device */
7707 if (dev->disk_total_bytes == 0) {
09ba3bc9
AJ
7708 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7709 NULL, false);
1b3922a8
QW
7710 if (!dev) {
7711 btrfs_err(fs_info, "failed to find seed devid %llu",
7712 devid);
7713 ret = -EUCLEAN;
7714 goto out;
7715 }
7716 }
7717
05a37c48
QW
7718 if (physical_offset + physical_len > dev->disk_total_bytes) {
7719 btrfs_err(fs_info,
7720"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7721 devid, physical_offset, physical_len,
7722 dev->disk_total_bytes);
7723 ret = -EUCLEAN;
7724 goto out;
7725 }
cf90d884
QW
7726out:
7727 free_extent_map(em);
7728 return ret;
7729}
7730
7731static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7732{
c8bf1b67 7733 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7734 struct extent_map *em;
7735 struct rb_node *node;
7736 int ret = 0;
7737
7738 read_lock(&em_tree->lock);
07e1ce09 7739 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7740 em = rb_entry(node, struct extent_map, rb_node);
7741 if (em->map_lookup->num_stripes !=
7742 em->map_lookup->verified_stripes) {
7743 btrfs_err(fs_info,
7744 "chunk %llu has missing dev extent, have %d expect %d",
7745 em->start, em->map_lookup->verified_stripes,
7746 em->map_lookup->num_stripes);
7747 ret = -EUCLEAN;
7748 goto out;
7749 }
7750 }
7751out:
7752 read_unlock(&em_tree->lock);
7753 return ret;
7754}
7755
7756/*
7757 * Ensure that all dev extents are mapped to correct chunk, otherwise
7758 * later chunk allocation/free would cause unexpected behavior.
7759 *
7760 * NOTE: This will iterate through the whole device tree, which should be of
7761 * the same size level as the chunk tree. This slightly increases mount time.
7762 */
7763int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7764{
7765 struct btrfs_path *path;
7766 struct btrfs_root *root = fs_info->dev_root;
7767 struct btrfs_key key;
5eb19381
QW
7768 u64 prev_devid = 0;
7769 u64 prev_dev_ext_end = 0;
cf90d884
QW
7770 int ret = 0;
7771
7772 key.objectid = 1;
7773 key.type = BTRFS_DEV_EXTENT_KEY;
7774 key.offset = 0;
7775
7776 path = btrfs_alloc_path();
7777 if (!path)
7778 return -ENOMEM;
7779
7780 path->reada = READA_FORWARD;
7781 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7782 if (ret < 0)
7783 goto out;
7784
7785 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7786 ret = btrfs_next_item(root, path);
7787 if (ret < 0)
7788 goto out;
7789 /* No dev extents at all? Not good */
7790 if (ret > 0) {
7791 ret = -EUCLEAN;
7792 goto out;
7793 }
7794 }
7795 while (1) {
7796 struct extent_buffer *leaf = path->nodes[0];
7797 struct btrfs_dev_extent *dext;
7798 int slot = path->slots[0];
7799 u64 chunk_offset;
7800 u64 physical_offset;
7801 u64 physical_len;
7802 u64 devid;
7803
7804 btrfs_item_key_to_cpu(leaf, &key, slot);
7805 if (key.type != BTRFS_DEV_EXTENT_KEY)
7806 break;
7807 devid = key.objectid;
7808 physical_offset = key.offset;
7809
7810 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7811 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7812 physical_len = btrfs_dev_extent_length(leaf, dext);
7813
5eb19381
QW
7814 /* Check if this dev extent overlaps with the previous one */
7815 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7816 btrfs_err(fs_info,
7817"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7818 devid, physical_offset, prev_dev_ext_end);
7819 ret = -EUCLEAN;
7820 goto out;
7821 }
7822
cf90d884
QW
7823 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7824 physical_offset, physical_len);
7825 if (ret < 0)
7826 goto out;
5eb19381
QW
7827 prev_devid = devid;
7828 prev_dev_ext_end = physical_offset + physical_len;
7829
cf90d884
QW
7830 ret = btrfs_next_item(root, path);
7831 if (ret < 0)
7832 goto out;
7833 if (ret > 0) {
7834 ret = 0;
7835 break;
7836 }
7837 }
7838
7839 /* Ensure all chunks have corresponding dev extents */
7840 ret = verify_chunk_dev_extent_mapping(fs_info);
7841out:
7842 btrfs_free_path(path);
7843 return ret;
7844}
eede2bf3
OS
7845
7846/*
7847 * Check whether the given block group or device is pinned by any inode being
7848 * used as a swapfile.
7849 */
7850bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7851{
7852 struct btrfs_swapfile_pin *sp;
7853 struct rb_node *node;
7854
7855 spin_lock(&fs_info->swapfile_pins_lock);
7856 node = fs_info->swapfile_pins.rb_node;
7857 while (node) {
7858 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7859 if (ptr < sp->ptr)
7860 node = node->rb_left;
7861 else if (ptr > sp->ptr)
7862 node = node->rb_right;
7863 else
7864 break;
7865 }
7866 spin_unlock(&fs_info->swapfile_pins_lock);
7867 return node != NULL;
7868}