]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/volumes.c
Btrf: cleanup: don't check for root_refs == 0 twice
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
4b4e25f2 31#include "compat.h"
0b86a832
CM
32#include "ctree.h"
33#include "extent_map.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "print-tree.h"
37#include "volumes.h"
53b381b3 38#include "raid56.h"
8b712842 39#include "async-thread.h"
21adbd5c 40#include "check-integrity.h"
606686ee 41#include "rcu-string.h"
3fed40cc 42#include "math.h"
8dabb742 43#include "dev-replace.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
204 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
419 btrfs_requeue_work(&device->work);
420 goto done;
421 }
d85c8a6f
CM
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
8b712842 428 }
ffbd517d 429
51684082
CM
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
8b712842 439done:
211588ad 440 blk_finish_plug(&plug);
8b712842
CM
441}
442
b2950863 443static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
a1b32a59 451static noinline int device_list_add(const char *path,
8a4b83cc
CM
452 struct btrfs_super_block *disk_super,
453 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454{
455 struct btrfs_device *device;
456 struct btrfs_fs_devices *fs_devices;
606686ee 457 struct rcu_string *name;
8a4b83cc
CM
458 u64 found_transid = btrfs_super_generation(disk_super);
459
460 fs_devices = find_fsid(disk_super->fsid);
461 if (!fs_devices) {
2208a378
ID
462 fs_devices = alloc_fs_devices(disk_super->fsid);
463 if (IS_ERR(fs_devices))
464 return PTR_ERR(fs_devices);
465
8a4b83cc 466 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
467 fs_devices->latest_devid = devid;
468 fs_devices->latest_trans = found_transid;
2208a378 469
8a4b83cc
CM
470 device = NULL;
471 } else {
a443755f
CM
472 device = __find_device(&fs_devices->devices, devid,
473 disk_super->dev_item.uuid);
8a4b83cc
CM
474 }
475 if (!device) {
2b82032c
YZ
476 if (fs_devices->opened)
477 return -EBUSY;
478
12bd2fc0
ID
479 device = btrfs_alloc_device(NULL, &devid,
480 disk_super->dev_item.uuid);
481 if (IS_ERR(device)) {
8a4b83cc 482 /* we can safely leave the fs_devices entry around */
12bd2fc0 483 return PTR_ERR(device);
8a4b83cc 484 }
606686ee
JB
485
486 name = rcu_string_strdup(path, GFP_NOFS);
487 if (!name) {
8a4b83cc
CM
488 kfree(device);
489 return -ENOMEM;
490 }
606686ee 491 rcu_assign_pointer(device->name, name);
90519d66 492
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 494 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 495 fs_devices->num_devices++;
e5e9a520
CM
496 mutex_unlock(&fs_devices->device_list_mutex);
497
2b82032c 498 device->fs_devices = fs_devices;
606686ee
JB
499 } else if (!device->name || strcmp(device->name->str, path)) {
500 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
501 if (!name)
502 return -ENOMEM;
606686ee
JB
503 rcu_string_free(device->name);
504 rcu_assign_pointer(device->name, name);
cd02dca5
CM
505 if (device->missing) {
506 fs_devices->missing_devices--;
507 device->missing = 0;
508 }
8a4b83cc
CM
509 }
510
511 if (found_transid > fs_devices->latest_trans) {
512 fs_devices->latest_devid = devid;
513 fs_devices->latest_trans = found_transid;
514 }
8a4b83cc
CM
515 *fs_devices_ret = fs_devices;
516 return 0;
517}
518
e4404d6e
YZ
519static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520{
521 struct btrfs_fs_devices *fs_devices;
522 struct btrfs_device *device;
523 struct btrfs_device *orig_dev;
524
2208a378
ID
525 fs_devices = alloc_fs_devices(orig->fsid);
526 if (IS_ERR(fs_devices))
527 return fs_devices;
e4404d6e 528
e4404d6e
YZ
529 fs_devices->latest_devid = orig->latest_devid;
530 fs_devices->latest_trans = orig->latest_trans;
02db0844 531 fs_devices->total_devices = orig->total_devices;
e4404d6e 532
46224705 533 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
535 struct rcu_string *name;
536
12bd2fc0
ID
537 device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 orig_dev->uuid);
539 if (IS_ERR(device))
e4404d6e
YZ
540 goto error;
541
606686ee
JB
542 /*
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
545 */
546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 if (!name) {
fd2696f3 548 kfree(device);
e4404d6e 549 goto error;
fd2696f3 550 }
606686ee 551 rcu_assign_pointer(device->name, name);
e4404d6e 552
e4404d6e
YZ
553 list_add(&device->dev_list, &fs_devices->devices);
554 device->fs_devices = fs_devices;
555 fs_devices->num_devices++;
556 }
557 return fs_devices;
558error:
559 free_fs_devices(fs_devices);
560 return ERR_PTR(-ENOMEM);
561}
562
8dabb742
SB
563void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 565{
c6e30871 566 struct btrfs_device *device, *next;
dfe25020 567
a6b0d5c8
CM
568 struct block_device *latest_bdev = NULL;
569 u64 latest_devid = 0;
570 u64 latest_transid = 0;
571
dfe25020
CM
572 mutex_lock(&uuid_mutex);
573again:
46224705 574 /* This is the initialized path, it is safe to release the devices. */
c6e30871 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 576 if (device->in_fs_metadata) {
63a212ab
SB
577 if (!device->is_tgtdev_for_dev_replace &&
578 (!latest_transid ||
579 device->generation > latest_transid)) {
a6b0d5c8
CM
580 latest_devid = device->devid;
581 latest_transid = device->generation;
582 latest_bdev = device->bdev;
583 }
2b82032c 584 continue;
a6b0d5c8 585 }
2b82032c 586
8dabb742
SB
587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 /*
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
597 */
598 if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 continue;
600 }
601 }
2b82032c 602 if (device->bdev) {
d4d77629 603 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
604 device->bdev = NULL;
605 fs_devices->open_devices--;
606 }
607 if (device->writeable) {
608 list_del_init(&device->dev_alloc_list);
609 device->writeable = 0;
8dabb742
SB
610 if (!device->is_tgtdev_for_dev_replace)
611 fs_devices->rw_devices--;
2b82032c 612 }
e4404d6e
YZ
613 list_del_init(&device->dev_list);
614 fs_devices->num_devices--;
606686ee 615 rcu_string_free(device->name);
e4404d6e 616 kfree(device);
dfe25020 617 }
2b82032c
YZ
618
619 if (fs_devices->seed) {
620 fs_devices = fs_devices->seed;
2b82032c
YZ
621 goto again;
622 }
623
a6b0d5c8
CM
624 fs_devices->latest_bdev = latest_bdev;
625 fs_devices->latest_devid = latest_devid;
626 fs_devices->latest_trans = latest_transid;
627
dfe25020 628 mutex_unlock(&uuid_mutex);
dfe25020 629}
a0af469b 630
1f78160c
XG
631static void __free_device(struct work_struct *work)
632{
633 struct btrfs_device *device;
634
635 device = container_of(work, struct btrfs_device, rcu_work);
636
637 if (device->bdev)
638 blkdev_put(device->bdev, device->mode);
639
606686ee 640 rcu_string_free(device->name);
1f78160c
XG
641 kfree(device);
642}
643
644static void free_device(struct rcu_head *head)
645{
646 struct btrfs_device *device;
647
648 device = container_of(head, struct btrfs_device, rcu);
649
650 INIT_WORK(&device->rcu_work, __free_device);
651 schedule_work(&device->rcu_work);
652}
653
2b82032c 654static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 655{
8a4b83cc 656 struct btrfs_device *device;
e4404d6e 657
2b82032c
YZ
658 if (--fs_devices->opened > 0)
659 return 0;
8a4b83cc 660
c9513edb 661 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 662 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 663 struct btrfs_device *new_device;
606686ee 664 struct rcu_string *name;
1f78160c
XG
665
666 if (device->bdev)
a0af469b 667 fs_devices->open_devices--;
1f78160c 668
8dabb742 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
670 list_del_init(&device->dev_alloc_list);
671 fs_devices->rw_devices--;
672 }
673
d5e2003c
JB
674 if (device->can_discard)
675 fs_devices->num_can_discard--;
676
a1e8780a
ID
677 new_device = btrfs_alloc_device(NULL, &device->devid,
678 device->uuid);
679 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
680
681 /* Safe because we are under uuid_mutex */
99f5944b
JB
682 if (device->name) {
683 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 684 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
685 rcu_assign_pointer(new_device->name, name);
686 }
a1e8780a 687
1f78160c 688 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 689 new_device->fs_devices = device->fs_devices;
1f78160c
XG
690
691 call_rcu(&device->rcu, free_device);
8a4b83cc 692 }
c9513edb
XG
693 mutex_unlock(&fs_devices->device_list_mutex);
694
e4404d6e
YZ
695 WARN_ON(fs_devices->open_devices);
696 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
697 fs_devices->opened = 0;
698 fs_devices->seeding = 0;
2b82032c 699
8a4b83cc
CM
700 return 0;
701}
702
2b82032c
YZ
703int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
704{
e4404d6e 705 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
706 int ret;
707
708 mutex_lock(&uuid_mutex);
709 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
710 if (!fs_devices->opened) {
711 seed_devices = fs_devices->seed;
712 fs_devices->seed = NULL;
713 }
2b82032c 714 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
715
716 while (seed_devices) {
717 fs_devices = seed_devices;
718 seed_devices = fs_devices->seed;
719 __btrfs_close_devices(fs_devices);
720 free_fs_devices(fs_devices);
721 }
bc178622
ES
722 /*
723 * Wait for rcu kworkers under __btrfs_close_devices
724 * to finish all blkdev_puts so device is really
725 * free when umount is done.
726 */
727 rcu_barrier();
2b82032c
YZ
728 return ret;
729}
730
e4404d6e
YZ
731static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
732 fmode_t flags, void *holder)
8a4b83cc 733{
d5e2003c 734 struct request_queue *q;
8a4b83cc
CM
735 struct block_device *bdev;
736 struct list_head *head = &fs_devices->devices;
8a4b83cc 737 struct btrfs_device *device;
a0af469b
CM
738 struct block_device *latest_bdev = NULL;
739 struct buffer_head *bh;
740 struct btrfs_super_block *disk_super;
741 u64 latest_devid = 0;
742 u64 latest_transid = 0;
a0af469b 743 u64 devid;
2b82032c 744 int seeding = 1;
a0af469b 745 int ret = 0;
8a4b83cc 746
d4d77629
TH
747 flags |= FMODE_EXCL;
748
c6e30871 749 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
750 if (device->bdev)
751 continue;
dfe25020
CM
752 if (!device->name)
753 continue;
754
f63e0cca
ES
755 /* Just open everything we can; ignore failures here */
756 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
757 &bdev, &bh))
beaf8ab3 758 continue;
a0af469b
CM
759
760 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 761 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
762 if (devid != device->devid)
763 goto error_brelse;
764
2b82032c
YZ
765 if (memcmp(device->uuid, disk_super->dev_item.uuid,
766 BTRFS_UUID_SIZE))
767 goto error_brelse;
768
769 device->generation = btrfs_super_generation(disk_super);
770 if (!latest_transid || device->generation > latest_transid) {
a0af469b 771 latest_devid = devid;
2b82032c 772 latest_transid = device->generation;
a0af469b
CM
773 latest_bdev = bdev;
774 }
775
2b82032c
YZ
776 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
777 device->writeable = 0;
778 } else {
779 device->writeable = !bdev_read_only(bdev);
780 seeding = 0;
781 }
782
d5e2003c
JB
783 q = bdev_get_queue(bdev);
784 if (blk_queue_discard(q)) {
785 device->can_discard = 1;
786 fs_devices->num_can_discard++;
787 }
788
8a4b83cc 789 device->bdev = bdev;
dfe25020 790 device->in_fs_metadata = 0;
15916de8
CM
791 device->mode = flags;
792
c289811c
CM
793 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
794 fs_devices->rotating = 1;
795
a0af469b 796 fs_devices->open_devices++;
8dabb742 797 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
798 fs_devices->rw_devices++;
799 list_add(&device->dev_alloc_list,
800 &fs_devices->alloc_list);
801 }
4f6c9328 802 brelse(bh);
a0af469b 803 continue;
a061fc8d 804
a0af469b
CM
805error_brelse:
806 brelse(bh);
d4d77629 807 blkdev_put(bdev, flags);
a0af469b 808 continue;
8a4b83cc 809 }
a0af469b 810 if (fs_devices->open_devices == 0) {
20bcd649 811 ret = -EINVAL;
a0af469b
CM
812 goto out;
813 }
2b82032c
YZ
814 fs_devices->seeding = seeding;
815 fs_devices->opened = 1;
a0af469b
CM
816 fs_devices->latest_bdev = latest_bdev;
817 fs_devices->latest_devid = latest_devid;
818 fs_devices->latest_trans = latest_transid;
2b82032c 819 fs_devices->total_rw_bytes = 0;
a0af469b 820out:
2b82032c
YZ
821 return ret;
822}
823
824int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 825 fmode_t flags, void *holder)
2b82032c
YZ
826{
827 int ret;
828
829 mutex_lock(&uuid_mutex);
830 if (fs_devices->opened) {
e4404d6e
YZ
831 fs_devices->opened++;
832 ret = 0;
2b82032c 833 } else {
15916de8 834 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 835 }
8a4b83cc 836 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
837 return ret;
838}
839
6f60cbd3
DS
840/*
841 * Look for a btrfs signature on a device. This may be called out of the mount path
842 * and we are not allowed to call set_blocksize during the scan. The superblock
843 * is read via pagecache
844 */
97288f2c 845int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
846 struct btrfs_fs_devices **fs_devices_ret)
847{
848 struct btrfs_super_block *disk_super;
849 struct block_device *bdev;
6f60cbd3
DS
850 struct page *page;
851 void *p;
852 int ret = -EINVAL;
8a4b83cc 853 u64 devid;
f2984462 854 u64 transid;
02db0844 855 u64 total_devices;
6f60cbd3
DS
856 u64 bytenr;
857 pgoff_t index;
8a4b83cc 858
6f60cbd3
DS
859 /*
860 * we would like to check all the supers, but that would make
861 * a btrfs mount succeed after a mkfs from a different FS.
862 * So, we need to add a special mount option to scan for
863 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
864 */
865 bytenr = btrfs_sb_offset(0);
d4d77629 866 flags |= FMODE_EXCL;
10f6327b 867 mutex_lock(&uuid_mutex);
6f60cbd3
DS
868
869 bdev = blkdev_get_by_path(path, flags, holder);
870
871 if (IS_ERR(bdev)) {
872 ret = PTR_ERR(bdev);
beaf8ab3 873 goto error;
6f60cbd3
DS
874 }
875
876 /* make sure our super fits in the device */
877 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
878 goto error_bdev_put;
879
880 /* make sure our super fits in the page */
881 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
882 goto error_bdev_put;
883
884 /* make sure our super doesn't straddle pages on disk */
885 index = bytenr >> PAGE_CACHE_SHIFT;
886 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
887 goto error_bdev_put;
888
889 /* pull in the page with our super */
890 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
891 index, GFP_NOFS);
892
893 if (IS_ERR_OR_NULL(page))
894 goto error_bdev_put;
895
896 p = kmap(page);
897
898 /* align our pointer to the offset of the super block */
899 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
900
901 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 902 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
903 goto error_unmap;
904
a343832f 905 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 906 transid = btrfs_super_generation(disk_super);
02db0844 907 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 908
d03f918a
SB
909 if (disk_super->label[0]) {
910 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
911 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 912 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 913 } else {
22b63a29 914 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 915 }
6f60cbd3 916
c1c9ff7c 917 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
6f60cbd3 918
8a4b83cc 919 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
920 if (!ret && fs_devices_ret)
921 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
922
923error_unmap:
924 kunmap(page);
925 page_cache_release(page);
926
927error_bdev_put:
d4d77629 928 blkdev_put(bdev, flags);
8a4b83cc 929error:
beaf8ab3 930 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
931 return ret;
932}
0b86a832 933
6d07bcec
MX
934/* helper to account the used device space in the range */
935int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
936 u64 end, u64 *length)
937{
938 struct btrfs_key key;
939 struct btrfs_root *root = device->dev_root;
940 struct btrfs_dev_extent *dev_extent;
941 struct btrfs_path *path;
942 u64 extent_end;
943 int ret;
944 int slot;
945 struct extent_buffer *l;
946
947 *length = 0;
948
63a212ab 949 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
950 return 0;
951
952 path = btrfs_alloc_path();
953 if (!path)
954 return -ENOMEM;
955 path->reada = 2;
956
957 key.objectid = device->devid;
958 key.offset = start;
959 key.type = BTRFS_DEV_EXTENT_KEY;
960
961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
962 if (ret < 0)
963 goto out;
964 if (ret > 0) {
965 ret = btrfs_previous_item(root, path, key.objectid, key.type);
966 if (ret < 0)
967 goto out;
968 }
969
970 while (1) {
971 l = path->nodes[0];
972 slot = path->slots[0];
973 if (slot >= btrfs_header_nritems(l)) {
974 ret = btrfs_next_leaf(root, path);
975 if (ret == 0)
976 continue;
977 if (ret < 0)
978 goto out;
979
980 break;
981 }
982 btrfs_item_key_to_cpu(l, &key, slot);
983
984 if (key.objectid < device->devid)
985 goto next;
986
987 if (key.objectid > device->devid)
988 break;
989
990 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
991 goto next;
992
993 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
994 extent_end = key.offset + btrfs_dev_extent_length(l,
995 dev_extent);
996 if (key.offset <= start && extent_end > end) {
997 *length = end - start + 1;
998 break;
999 } else if (key.offset <= start && extent_end > start)
1000 *length += extent_end - start;
1001 else if (key.offset > start && extent_end <= end)
1002 *length += extent_end - key.offset;
1003 else if (key.offset > start && key.offset <= end) {
1004 *length += end - key.offset + 1;
1005 break;
1006 } else if (key.offset > end)
1007 break;
1008
1009next:
1010 path->slots[0]++;
1011 }
1012 ret = 0;
1013out:
1014 btrfs_free_path(path);
1015 return ret;
1016}
1017
6df9a95e
JB
1018static int contains_pending_extent(struct btrfs_trans_handle *trans,
1019 struct btrfs_device *device,
1020 u64 *start, u64 len)
1021{
1022 struct extent_map *em;
1023 int ret = 0;
1024
1025 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1026 struct map_lookup *map;
1027 int i;
1028
1029 map = (struct map_lookup *)em->bdev;
1030 for (i = 0; i < map->num_stripes; i++) {
1031 if (map->stripes[i].dev != device)
1032 continue;
1033 if (map->stripes[i].physical >= *start + len ||
1034 map->stripes[i].physical + em->orig_block_len <=
1035 *start)
1036 continue;
1037 *start = map->stripes[i].physical +
1038 em->orig_block_len;
1039 ret = 1;
1040 }
1041 }
1042
1043 return ret;
1044}
1045
1046
0b86a832 1047/*
7bfc837d 1048 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1049 * @device: the device which we search the free space in
1050 * @num_bytes: the size of the free space that we need
1051 * @start: store the start of the free space.
1052 * @len: the size of the free space. that we find, or the size of the max
1053 * free space if we don't find suitable free space
1054 *
0b86a832
CM
1055 * this uses a pretty simple search, the expectation is that it is
1056 * called very infrequently and that a given device has a small number
1057 * of extents
7bfc837d
MX
1058 *
1059 * @start is used to store the start of the free space if we find. But if we
1060 * don't find suitable free space, it will be used to store the start position
1061 * of the max free space.
1062 *
1063 * @len is used to store the size of the free space that we find.
1064 * But if we don't find suitable free space, it is used to store the size of
1065 * the max free space.
0b86a832 1066 */
6df9a95e
JB
1067int find_free_dev_extent(struct btrfs_trans_handle *trans,
1068 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1069 u64 *start, u64 *len)
0b86a832
CM
1070{
1071 struct btrfs_key key;
1072 struct btrfs_root *root = device->dev_root;
7bfc837d 1073 struct btrfs_dev_extent *dev_extent;
2b82032c 1074 struct btrfs_path *path;
7bfc837d
MX
1075 u64 hole_size;
1076 u64 max_hole_start;
1077 u64 max_hole_size;
1078 u64 extent_end;
1079 u64 search_start;
0b86a832
CM
1080 u64 search_end = device->total_bytes;
1081 int ret;
7bfc837d 1082 int slot;
0b86a832
CM
1083 struct extent_buffer *l;
1084
0b86a832
CM
1085 /* FIXME use last free of some kind */
1086
8a4b83cc
CM
1087 /* we don't want to overwrite the superblock on the drive,
1088 * so we make sure to start at an offset of at least 1MB
1089 */
a9c9bf68 1090 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1091
6df9a95e
JB
1092 path = btrfs_alloc_path();
1093 if (!path)
1094 return -ENOMEM;
1095again:
7bfc837d
MX
1096 max_hole_start = search_start;
1097 max_hole_size = 0;
38c01b96 1098 hole_size = 0;
7bfc837d 1099
63a212ab 1100 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1101 ret = -ENOSPC;
6df9a95e 1102 goto out;
7bfc837d
MX
1103 }
1104
7bfc837d 1105 path->reada = 2;
6df9a95e
JB
1106 path->search_commit_root = 1;
1107 path->skip_locking = 1;
7bfc837d 1108
0b86a832
CM
1109 key.objectid = device->devid;
1110 key.offset = search_start;
1111 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1112
125ccb0a 1113 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1114 if (ret < 0)
7bfc837d 1115 goto out;
1fcbac58
YZ
1116 if (ret > 0) {
1117 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1118 if (ret < 0)
7bfc837d 1119 goto out;
1fcbac58 1120 }
7bfc837d 1121
0b86a832
CM
1122 while (1) {
1123 l = path->nodes[0];
1124 slot = path->slots[0];
1125 if (slot >= btrfs_header_nritems(l)) {
1126 ret = btrfs_next_leaf(root, path);
1127 if (ret == 0)
1128 continue;
1129 if (ret < 0)
7bfc837d
MX
1130 goto out;
1131
1132 break;
0b86a832
CM
1133 }
1134 btrfs_item_key_to_cpu(l, &key, slot);
1135
1136 if (key.objectid < device->devid)
1137 goto next;
1138
1139 if (key.objectid > device->devid)
7bfc837d 1140 break;
0b86a832 1141
7bfc837d
MX
1142 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1143 goto next;
9779b72f 1144
7bfc837d
MX
1145 if (key.offset > search_start) {
1146 hole_size = key.offset - search_start;
9779b72f 1147
6df9a95e
JB
1148 /*
1149 * Have to check before we set max_hole_start, otherwise
1150 * we could end up sending back this offset anyway.
1151 */
1152 if (contains_pending_extent(trans, device,
1153 &search_start,
1154 hole_size))
1155 hole_size = 0;
1156
7bfc837d
MX
1157 if (hole_size > max_hole_size) {
1158 max_hole_start = search_start;
1159 max_hole_size = hole_size;
1160 }
9779b72f 1161
7bfc837d
MX
1162 /*
1163 * If this free space is greater than which we need,
1164 * it must be the max free space that we have found
1165 * until now, so max_hole_start must point to the start
1166 * of this free space and the length of this free space
1167 * is stored in max_hole_size. Thus, we return
1168 * max_hole_start and max_hole_size and go back to the
1169 * caller.
1170 */
1171 if (hole_size >= num_bytes) {
1172 ret = 0;
1173 goto out;
0b86a832
CM
1174 }
1175 }
0b86a832 1176
0b86a832 1177 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1178 extent_end = key.offset + btrfs_dev_extent_length(l,
1179 dev_extent);
1180 if (extent_end > search_start)
1181 search_start = extent_end;
0b86a832
CM
1182next:
1183 path->slots[0]++;
1184 cond_resched();
1185 }
0b86a832 1186
38c01b96 1187 /*
1188 * At this point, search_start should be the end of
1189 * allocated dev extents, and when shrinking the device,
1190 * search_end may be smaller than search_start.
1191 */
1192 if (search_end > search_start)
1193 hole_size = search_end - search_start;
1194
7bfc837d
MX
1195 if (hole_size > max_hole_size) {
1196 max_hole_start = search_start;
1197 max_hole_size = hole_size;
0b86a832 1198 }
0b86a832 1199
6df9a95e
JB
1200 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1201 btrfs_release_path(path);
1202 goto again;
1203 }
1204
7bfc837d
MX
1205 /* See above. */
1206 if (hole_size < num_bytes)
1207 ret = -ENOSPC;
1208 else
1209 ret = 0;
1210
1211out:
2b82032c 1212 btrfs_free_path(path);
7bfc837d 1213 *start = max_hole_start;
b2117a39 1214 if (len)
7bfc837d 1215 *len = max_hole_size;
0b86a832
CM
1216 return ret;
1217}
1218
b2950863 1219static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1220 struct btrfs_device *device,
1221 u64 start)
1222{
1223 int ret;
1224 struct btrfs_path *path;
1225 struct btrfs_root *root = device->dev_root;
1226 struct btrfs_key key;
a061fc8d
CM
1227 struct btrfs_key found_key;
1228 struct extent_buffer *leaf = NULL;
1229 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1230
1231 path = btrfs_alloc_path();
1232 if (!path)
1233 return -ENOMEM;
1234
1235 key.objectid = device->devid;
1236 key.offset = start;
1237 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1238again:
8f18cf13 1239 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1240 if (ret > 0) {
1241 ret = btrfs_previous_item(root, path, key.objectid,
1242 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1243 if (ret)
1244 goto out;
a061fc8d
CM
1245 leaf = path->nodes[0];
1246 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1247 extent = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_dev_extent);
1249 BUG_ON(found_key.offset > start || found_key.offset +
1250 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1251 key = found_key;
1252 btrfs_release_path(path);
1253 goto again;
a061fc8d
CM
1254 } else if (ret == 0) {
1255 leaf = path->nodes[0];
1256 extent = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_dev_extent);
79787eaa
JM
1258 } else {
1259 btrfs_error(root->fs_info, ret, "Slot search failed");
1260 goto out;
a061fc8d 1261 }
8f18cf13 1262
2bf64758
JB
1263 if (device->bytes_used > 0) {
1264 u64 len = btrfs_dev_extent_length(leaf, extent);
1265 device->bytes_used -= len;
1266 spin_lock(&root->fs_info->free_chunk_lock);
1267 root->fs_info->free_chunk_space += len;
1268 spin_unlock(&root->fs_info->free_chunk_lock);
1269 }
8f18cf13 1270 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1271 if (ret) {
1272 btrfs_error(root->fs_info, ret,
1273 "Failed to remove dev extent item");
1274 }
b0b802d7 1275out:
8f18cf13
CM
1276 btrfs_free_path(path);
1277 return ret;
1278}
1279
48a3b636
ES
1280static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1281 struct btrfs_device *device,
1282 u64 chunk_tree, u64 chunk_objectid,
1283 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1284{
1285 int ret;
1286 struct btrfs_path *path;
1287 struct btrfs_root *root = device->dev_root;
1288 struct btrfs_dev_extent *extent;
1289 struct extent_buffer *leaf;
1290 struct btrfs_key key;
1291
dfe25020 1292 WARN_ON(!device->in_fs_metadata);
63a212ab 1293 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1294 path = btrfs_alloc_path();
1295 if (!path)
1296 return -ENOMEM;
1297
0b86a832 1298 key.objectid = device->devid;
2b82032c 1299 key.offset = start;
0b86a832
CM
1300 key.type = BTRFS_DEV_EXTENT_KEY;
1301 ret = btrfs_insert_empty_item(trans, root, path, &key,
1302 sizeof(*extent));
2cdcecbc
MF
1303 if (ret)
1304 goto out;
0b86a832
CM
1305
1306 leaf = path->nodes[0];
1307 extent = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_dev_extent);
e17cade2
CM
1309 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1310 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1311 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1312
1313 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1314 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1315
0b86a832
CM
1316 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1317 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1318out:
0b86a832
CM
1319 btrfs_free_path(path);
1320 return ret;
1321}
1322
6df9a95e 1323static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1324{
6df9a95e
JB
1325 struct extent_map_tree *em_tree;
1326 struct extent_map *em;
1327 struct rb_node *n;
1328 u64 ret = 0;
0b86a832 1329
6df9a95e
JB
1330 em_tree = &fs_info->mapping_tree.map_tree;
1331 read_lock(&em_tree->lock);
1332 n = rb_last(&em_tree->map);
1333 if (n) {
1334 em = rb_entry(n, struct extent_map, rb_node);
1335 ret = em->start + em->len;
0b86a832 1336 }
6df9a95e
JB
1337 read_unlock(&em_tree->lock);
1338
0b86a832
CM
1339 return ret;
1340}
1341
53f10659
ID
1342static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1343 u64 *devid_ret)
0b86a832
CM
1344{
1345 int ret;
1346 struct btrfs_key key;
1347 struct btrfs_key found_key;
2b82032c
YZ
1348 struct btrfs_path *path;
1349
2b82032c
YZ
1350 path = btrfs_alloc_path();
1351 if (!path)
1352 return -ENOMEM;
0b86a832
CM
1353
1354 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1355 key.type = BTRFS_DEV_ITEM_KEY;
1356 key.offset = (u64)-1;
1357
53f10659 1358 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1359 if (ret < 0)
1360 goto error;
1361
79787eaa 1362 BUG_ON(ret == 0); /* Corruption */
0b86a832 1363
53f10659
ID
1364 ret = btrfs_previous_item(fs_info->chunk_root, path,
1365 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1366 BTRFS_DEV_ITEM_KEY);
1367 if (ret) {
53f10659 1368 *devid_ret = 1;
0b86a832
CM
1369 } else {
1370 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1371 path->slots[0]);
53f10659 1372 *devid_ret = found_key.offset + 1;
0b86a832
CM
1373 }
1374 ret = 0;
1375error:
2b82032c 1376 btrfs_free_path(path);
0b86a832
CM
1377 return ret;
1378}
1379
1380/*
1381 * the device information is stored in the chunk root
1382 * the btrfs_device struct should be fully filled in
1383 */
48a3b636
ES
1384static int btrfs_add_device(struct btrfs_trans_handle *trans,
1385 struct btrfs_root *root,
1386 struct btrfs_device *device)
0b86a832
CM
1387{
1388 int ret;
1389 struct btrfs_path *path;
1390 struct btrfs_dev_item *dev_item;
1391 struct extent_buffer *leaf;
1392 struct btrfs_key key;
1393 unsigned long ptr;
0b86a832
CM
1394
1395 root = root->fs_info->chunk_root;
1396
1397 path = btrfs_alloc_path();
1398 if (!path)
1399 return -ENOMEM;
1400
0b86a832
CM
1401 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1402 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1403 key.offset = device->devid;
0b86a832
CM
1404
1405 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1406 sizeof(*dev_item));
0b86a832
CM
1407 if (ret)
1408 goto out;
1409
1410 leaf = path->nodes[0];
1411 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1412
1413 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1414 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1415 btrfs_set_device_type(leaf, dev_item, device->type);
1416 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1417 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1418 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1419 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1420 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1421 btrfs_set_device_group(leaf, dev_item, 0);
1422 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1423 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1424 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1425
410ba3a2 1426 ptr = btrfs_device_uuid(dev_item);
e17cade2 1427 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1428 ptr = btrfs_device_fsid(dev_item);
2b82032c 1429 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1430 btrfs_mark_buffer_dirty(leaf);
0b86a832 1431
2b82032c 1432 ret = 0;
0b86a832
CM
1433out:
1434 btrfs_free_path(path);
1435 return ret;
1436}
8f18cf13 1437
a061fc8d
CM
1438static int btrfs_rm_dev_item(struct btrfs_root *root,
1439 struct btrfs_device *device)
1440{
1441 int ret;
1442 struct btrfs_path *path;
a061fc8d 1443 struct btrfs_key key;
a061fc8d
CM
1444 struct btrfs_trans_handle *trans;
1445
1446 root = root->fs_info->chunk_root;
1447
1448 path = btrfs_alloc_path();
1449 if (!path)
1450 return -ENOMEM;
1451
a22285a6 1452 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1453 if (IS_ERR(trans)) {
1454 btrfs_free_path(path);
1455 return PTR_ERR(trans);
1456 }
a061fc8d
CM
1457 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1458 key.type = BTRFS_DEV_ITEM_KEY;
1459 key.offset = device->devid;
7d9eb12c 1460 lock_chunks(root);
a061fc8d
CM
1461
1462 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1463 if (ret < 0)
1464 goto out;
1465
1466 if (ret > 0) {
1467 ret = -ENOENT;
1468 goto out;
1469 }
1470
1471 ret = btrfs_del_item(trans, root, path);
1472 if (ret)
1473 goto out;
a061fc8d
CM
1474out:
1475 btrfs_free_path(path);
7d9eb12c 1476 unlock_chunks(root);
a061fc8d
CM
1477 btrfs_commit_transaction(trans, root);
1478 return ret;
1479}
1480
1481int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1482{
1483 struct btrfs_device *device;
2b82032c 1484 struct btrfs_device *next_device;
a061fc8d 1485 struct block_device *bdev;
dfe25020 1486 struct buffer_head *bh = NULL;
a061fc8d 1487 struct btrfs_super_block *disk_super;
1f78160c 1488 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1489 u64 all_avail;
1490 u64 devid;
2b82032c
YZ
1491 u64 num_devices;
1492 u8 *dev_uuid;
de98ced9 1493 unsigned seq;
a061fc8d 1494 int ret = 0;
1f78160c 1495 bool clear_super = false;
a061fc8d 1496
a061fc8d
CM
1497 mutex_lock(&uuid_mutex);
1498
de98ced9
MX
1499 do {
1500 seq = read_seqbegin(&root->fs_info->profiles_lock);
1501
1502 all_avail = root->fs_info->avail_data_alloc_bits |
1503 root->fs_info->avail_system_alloc_bits |
1504 root->fs_info->avail_metadata_alloc_bits;
1505 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1506
8dabb742
SB
1507 num_devices = root->fs_info->fs_devices->num_devices;
1508 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1509 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1510 WARN_ON(num_devices < 1);
1511 num_devices--;
1512 }
1513 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1514
1515 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1516 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1517 goto out;
1518 }
1519
8dabb742 1520 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1521 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1522 goto out;
1523 }
1524
53b381b3
DW
1525 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1526 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1527 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1528 goto out;
1529 }
1530 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1531 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1532 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1533 goto out;
1534 }
1535
dfe25020 1536 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1537 struct list_head *devices;
1538 struct btrfs_device *tmp;
a061fc8d 1539
dfe25020
CM
1540 device = NULL;
1541 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1542 /*
1543 * It is safe to read the devices since the volume_mutex
1544 * is held.
1545 */
c6e30871 1546 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1547 if (tmp->in_fs_metadata &&
1548 !tmp->is_tgtdev_for_dev_replace &&
1549 !tmp->bdev) {
dfe25020
CM
1550 device = tmp;
1551 break;
1552 }
1553 }
1554 bdev = NULL;
1555 bh = NULL;
1556 disk_super = NULL;
1557 if (!device) {
183860f6 1558 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1559 goto out;
1560 }
dfe25020 1561 } else {
beaf8ab3 1562 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1563 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1564 root->fs_info->bdev_holder, 0,
1565 &bdev, &bh);
1566 if (ret)
dfe25020 1567 goto out;
dfe25020 1568 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1569 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1570 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1571 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1572 disk_super->fsid);
dfe25020
CM
1573 if (!device) {
1574 ret = -ENOENT;
1575 goto error_brelse;
1576 }
2b82032c 1577 }
dfe25020 1578
63a212ab 1579 if (device->is_tgtdev_for_dev_replace) {
183860f6 1580 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1581 goto error_brelse;
1582 }
1583
2b82032c 1584 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1585 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1586 goto error_brelse;
1587 }
1588
1589 if (device->writeable) {
0c1daee0 1590 lock_chunks(root);
2b82032c 1591 list_del_init(&device->dev_alloc_list);
0c1daee0 1592 unlock_chunks(root);
2b82032c 1593 root->fs_info->fs_devices->rw_devices--;
1f78160c 1594 clear_super = true;
dfe25020 1595 }
a061fc8d 1596
d7901554 1597 mutex_unlock(&uuid_mutex);
a061fc8d 1598 ret = btrfs_shrink_device(device, 0);
d7901554 1599 mutex_lock(&uuid_mutex);
a061fc8d 1600 if (ret)
9b3517e9 1601 goto error_undo;
a061fc8d 1602
63a212ab
SB
1603 /*
1604 * TODO: the superblock still includes this device in its num_devices
1605 * counter although write_all_supers() is not locked out. This
1606 * could give a filesystem state which requires a degraded mount.
1607 */
a061fc8d
CM
1608 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1609 if (ret)
9b3517e9 1610 goto error_undo;
a061fc8d 1611
2bf64758
JB
1612 spin_lock(&root->fs_info->free_chunk_lock);
1613 root->fs_info->free_chunk_space = device->total_bytes -
1614 device->bytes_used;
1615 spin_unlock(&root->fs_info->free_chunk_lock);
1616
2b82032c 1617 device->in_fs_metadata = 0;
aa1b8cd4 1618 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1619
1620 /*
1621 * the device list mutex makes sure that we don't change
1622 * the device list while someone else is writing out all
d7306801
FDBM
1623 * the device supers. Whoever is writing all supers, should
1624 * lock the device list mutex before getting the number of
1625 * devices in the super block (super_copy). Conversely,
1626 * whoever updates the number of devices in the super block
1627 * (super_copy) should hold the device list mutex.
e5e9a520 1628 */
1f78160c
XG
1629
1630 cur_devices = device->fs_devices;
e5e9a520 1631 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1632 list_del_rcu(&device->dev_list);
e5e9a520 1633
e4404d6e 1634 device->fs_devices->num_devices--;
02db0844 1635 device->fs_devices->total_devices--;
2b82032c 1636
cd02dca5
CM
1637 if (device->missing)
1638 root->fs_info->fs_devices->missing_devices--;
1639
2b82032c
YZ
1640 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1641 struct btrfs_device, dev_list);
1642 if (device->bdev == root->fs_info->sb->s_bdev)
1643 root->fs_info->sb->s_bdev = next_device->bdev;
1644 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1645 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1646
1f78160c 1647 if (device->bdev)
e4404d6e 1648 device->fs_devices->open_devices--;
1f78160c
XG
1649
1650 call_rcu(&device->rcu, free_device);
e4404d6e 1651
6c41761f
DS
1652 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1653 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1654 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1655
1f78160c 1656 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1657 struct btrfs_fs_devices *fs_devices;
1658 fs_devices = root->fs_info->fs_devices;
1659 while (fs_devices) {
1f78160c 1660 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1661 break;
1662 fs_devices = fs_devices->seed;
2b82032c 1663 }
1f78160c
XG
1664 fs_devices->seed = cur_devices->seed;
1665 cur_devices->seed = NULL;
0c1daee0 1666 lock_chunks(root);
1f78160c 1667 __btrfs_close_devices(cur_devices);
0c1daee0 1668 unlock_chunks(root);
1f78160c 1669 free_fs_devices(cur_devices);
2b82032c
YZ
1670 }
1671
5af3e8cc
SB
1672 root->fs_info->num_tolerated_disk_barrier_failures =
1673 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1674
2b82032c
YZ
1675 /*
1676 * at this point, the device is zero sized. We want to
1677 * remove it from the devices list and zero out the old super
1678 */
aa1b8cd4 1679 if (clear_super && disk_super) {
dfe25020
CM
1680 /* make sure this device isn't detected as part of
1681 * the FS anymore
1682 */
1683 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1684 set_buffer_dirty(bh);
1685 sync_dirty_buffer(bh);
dfe25020 1686 }
a061fc8d 1687
a061fc8d 1688 ret = 0;
a061fc8d 1689
b8b8ff59 1690 /* Notify udev that device has changed */
3c911608
ES
1691 if (bdev)
1692 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1693
a061fc8d
CM
1694error_brelse:
1695 brelse(bh);
dfe25020 1696 if (bdev)
e525fd89 1697 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1698out:
1699 mutex_unlock(&uuid_mutex);
a061fc8d 1700 return ret;
9b3517e9
ID
1701error_undo:
1702 if (device->writeable) {
0c1daee0 1703 lock_chunks(root);
9b3517e9
ID
1704 list_add(&device->dev_alloc_list,
1705 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1706 unlock_chunks(root);
9b3517e9
ID
1707 root->fs_info->fs_devices->rw_devices++;
1708 }
1709 goto error_brelse;
a061fc8d
CM
1710}
1711
e93c89c1
SB
1712void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1713 struct btrfs_device *srcdev)
1714{
1715 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1716 list_del_rcu(&srcdev->dev_list);
1717 list_del_rcu(&srcdev->dev_alloc_list);
1718 fs_info->fs_devices->num_devices--;
1719 if (srcdev->missing) {
1720 fs_info->fs_devices->missing_devices--;
1721 fs_info->fs_devices->rw_devices++;
1722 }
1723 if (srcdev->can_discard)
1724 fs_info->fs_devices->num_can_discard--;
1725 if (srcdev->bdev)
1726 fs_info->fs_devices->open_devices--;
1727
1728 call_rcu(&srcdev->rcu, free_device);
1729}
1730
1731void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1732 struct btrfs_device *tgtdev)
1733{
1734 struct btrfs_device *next_device;
1735
1736 WARN_ON(!tgtdev);
1737 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1738 if (tgtdev->bdev) {
1739 btrfs_scratch_superblock(tgtdev);
1740 fs_info->fs_devices->open_devices--;
1741 }
1742 fs_info->fs_devices->num_devices--;
1743 if (tgtdev->can_discard)
1744 fs_info->fs_devices->num_can_discard++;
1745
1746 next_device = list_entry(fs_info->fs_devices->devices.next,
1747 struct btrfs_device, dev_list);
1748 if (tgtdev->bdev == fs_info->sb->s_bdev)
1749 fs_info->sb->s_bdev = next_device->bdev;
1750 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1751 fs_info->fs_devices->latest_bdev = next_device->bdev;
1752 list_del_rcu(&tgtdev->dev_list);
1753
1754 call_rcu(&tgtdev->rcu, free_device);
1755
1756 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1757}
1758
48a3b636
ES
1759static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1760 struct btrfs_device **device)
7ba15b7d
SB
1761{
1762 int ret = 0;
1763 struct btrfs_super_block *disk_super;
1764 u64 devid;
1765 u8 *dev_uuid;
1766 struct block_device *bdev;
1767 struct buffer_head *bh;
1768
1769 *device = NULL;
1770 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1771 root->fs_info->bdev_holder, 0, &bdev, &bh);
1772 if (ret)
1773 return ret;
1774 disk_super = (struct btrfs_super_block *)bh->b_data;
1775 devid = btrfs_stack_device_id(&disk_super->dev_item);
1776 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1777 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1778 disk_super->fsid);
1779 brelse(bh);
1780 if (!*device)
1781 ret = -ENOENT;
1782 blkdev_put(bdev, FMODE_READ);
1783 return ret;
1784}
1785
1786int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1787 char *device_path,
1788 struct btrfs_device **device)
1789{
1790 *device = NULL;
1791 if (strcmp(device_path, "missing") == 0) {
1792 struct list_head *devices;
1793 struct btrfs_device *tmp;
1794
1795 devices = &root->fs_info->fs_devices->devices;
1796 /*
1797 * It is safe to read the devices since the volume_mutex
1798 * is held by the caller.
1799 */
1800 list_for_each_entry(tmp, devices, dev_list) {
1801 if (tmp->in_fs_metadata && !tmp->bdev) {
1802 *device = tmp;
1803 break;
1804 }
1805 }
1806
1807 if (!*device) {
1808 pr_err("btrfs: no missing device found\n");
1809 return -ENOENT;
1810 }
1811
1812 return 0;
1813 } else {
1814 return btrfs_find_device_by_path(root, device_path, device);
1815 }
1816}
1817
2b82032c
YZ
1818/*
1819 * does all the dirty work required for changing file system's UUID.
1820 */
125ccb0a 1821static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1822{
1823 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1824 struct btrfs_fs_devices *old_devices;
e4404d6e 1825 struct btrfs_fs_devices *seed_devices;
6c41761f 1826 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1827 struct btrfs_device *device;
1828 u64 super_flags;
1829
1830 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1831 if (!fs_devices->seeding)
2b82032c
YZ
1832 return -EINVAL;
1833
2208a378
ID
1834 seed_devices = __alloc_fs_devices();
1835 if (IS_ERR(seed_devices))
1836 return PTR_ERR(seed_devices);
2b82032c 1837
e4404d6e
YZ
1838 old_devices = clone_fs_devices(fs_devices);
1839 if (IS_ERR(old_devices)) {
1840 kfree(seed_devices);
1841 return PTR_ERR(old_devices);
2b82032c 1842 }
e4404d6e 1843
2b82032c
YZ
1844 list_add(&old_devices->list, &fs_uuids);
1845
e4404d6e
YZ
1846 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1847 seed_devices->opened = 1;
1848 INIT_LIST_HEAD(&seed_devices->devices);
1849 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1850 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1851
1852 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1853 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1854 synchronize_rcu);
c9513edb 1855
e4404d6e
YZ
1856 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1857 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1858 device->fs_devices = seed_devices;
1859 }
1860
2b82032c
YZ
1861 fs_devices->seeding = 0;
1862 fs_devices->num_devices = 0;
1863 fs_devices->open_devices = 0;
02db0844 1864 fs_devices->total_devices = 0;
e4404d6e 1865 fs_devices->seed = seed_devices;
2b82032c
YZ
1866
1867 generate_random_uuid(fs_devices->fsid);
1868 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1869 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
1870 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1871
2b82032c
YZ
1872 super_flags = btrfs_super_flags(disk_super) &
1873 ~BTRFS_SUPER_FLAG_SEEDING;
1874 btrfs_set_super_flags(disk_super, super_flags);
1875
1876 return 0;
1877}
1878
1879/*
1880 * strore the expected generation for seed devices in device items.
1881 */
1882static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1883 struct btrfs_root *root)
1884{
1885 struct btrfs_path *path;
1886 struct extent_buffer *leaf;
1887 struct btrfs_dev_item *dev_item;
1888 struct btrfs_device *device;
1889 struct btrfs_key key;
1890 u8 fs_uuid[BTRFS_UUID_SIZE];
1891 u8 dev_uuid[BTRFS_UUID_SIZE];
1892 u64 devid;
1893 int ret;
1894
1895 path = btrfs_alloc_path();
1896 if (!path)
1897 return -ENOMEM;
1898
1899 root = root->fs_info->chunk_root;
1900 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1901 key.offset = 0;
1902 key.type = BTRFS_DEV_ITEM_KEY;
1903
1904 while (1) {
1905 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1906 if (ret < 0)
1907 goto error;
1908
1909 leaf = path->nodes[0];
1910next_slot:
1911 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1912 ret = btrfs_next_leaf(root, path);
1913 if (ret > 0)
1914 break;
1915 if (ret < 0)
1916 goto error;
1917 leaf = path->nodes[0];
1918 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1919 btrfs_release_path(path);
2b82032c
YZ
1920 continue;
1921 }
1922
1923 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1924 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1925 key.type != BTRFS_DEV_ITEM_KEY)
1926 break;
1927
1928 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1929 struct btrfs_dev_item);
1930 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 1931 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 1932 BTRFS_UUID_SIZE);
1473b24e 1933 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 1934 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1935 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1936 fs_uuid);
79787eaa 1937 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1938
1939 if (device->fs_devices->seeding) {
1940 btrfs_set_device_generation(leaf, dev_item,
1941 device->generation);
1942 btrfs_mark_buffer_dirty(leaf);
1943 }
1944
1945 path->slots[0]++;
1946 goto next_slot;
1947 }
1948 ret = 0;
1949error:
1950 btrfs_free_path(path);
1951 return ret;
1952}
1953
788f20eb
CM
1954int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1955{
d5e2003c 1956 struct request_queue *q;
788f20eb
CM
1957 struct btrfs_trans_handle *trans;
1958 struct btrfs_device *device;
1959 struct block_device *bdev;
788f20eb 1960 struct list_head *devices;
2b82032c 1961 struct super_block *sb = root->fs_info->sb;
606686ee 1962 struct rcu_string *name;
788f20eb 1963 u64 total_bytes;
2b82032c 1964 int seeding_dev = 0;
788f20eb
CM
1965 int ret = 0;
1966
2b82032c 1967 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1968 return -EROFS;
788f20eb 1969
a5d16333 1970 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1971 root->fs_info->bdev_holder);
7f59203a
JB
1972 if (IS_ERR(bdev))
1973 return PTR_ERR(bdev);
a2135011 1974
2b82032c
YZ
1975 if (root->fs_info->fs_devices->seeding) {
1976 seeding_dev = 1;
1977 down_write(&sb->s_umount);
1978 mutex_lock(&uuid_mutex);
1979 }
1980
8c8bee1d 1981 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1982
788f20eb 1983 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1984
1985 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1986 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1987 if (device->bdev == bdev) {
1988 ret = -EEXIST;
d25628bd
LB
1989 mutex_unlock(
1990 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1991 goto error;
788f20eb
CM
1992 }
1993 }
d25628bd 1994 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1995
12bd2fc0
ID
1996 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
1997 if (IS_ERR(device)) {
788f20eb 1998 /* we can safely leave the fs_devices entry around */
12bd2fc0 1999 ret = PTR_ERR(device);
2b82032c 2000 goto error;
788f20eb
CM
2001 }
2002
606686ee
JB
2003 name = rcu_string_strdup(device_path, GFP_NOFS);
2004 if (!name) {
788f20eb 2005 kfree(device);
2b82032c
YZ
2006 ret = -ENOMEM;
2007 goto error;
788f20eb 2008 }
606686ee 2009 rcu_assign_pointer(device->name, name);
2b82032c 2010
a22285a6 2011 trans = btrfs_start_transaction(root, 0);
98d5dc13 2012 if (IS_ERR(trans)) {
606686ee 2013 rcu_string_free(device->name);
98d5dc13
TI
2014 kfree(device);
2015 ret = PTR_ERR(trans);
2016 goto error;
2017 }
2018
2b82032c
YZ
2019 lock_chunks(root);
2020
d5e2003c
JB
2021 q = bdev_get_queue(bdev);
2022 if (blk_queue_discard(q))
2023 device->can_discard = 1;
2b82032c 2024 device->writeable = 1;
2b82032c 2025 device->generation = trans->transid;
788f20eb
CM
2026 device->io_width = root->sectorsize;
2027 device->io_align = root->sectorsize;
2028 device->sector_size = root->sectorsize;
2029 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2030 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2031 device->dev_root = root->fs_info->dev_root;
2032 device->bdev = bdev;
dfe25020 2033 device->in_fs_metadata = 1;
63a212ab 2034 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2035 device->mode = FMODE_EXCL;
2b82032c 2036 set_blocksize(device->bdev, 4096);
788f20eb 2037
2b82032c
YZ
2038 if (seeding_dev) {
2039 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2040 ret = btrfs_prepare_sprout(root);
79787eaa 2041 BUG_ON(ret); /* -ENOMEM */
2b82032c 2042 }
788f20eb 2043
2b82032c 2044 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2045
e5e9a520 2046 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2047 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2048 list_add(&device->dev_alloc_list,
2049 &root->fs_info->fs_devices->alloc_list);
2050 root->fs_info->fs_devices->num_devices++;
2051 root->fs_info->fs_devices->open_devices++;
2052 root->fs_info->fs_devices->rw_devices++;
02db0844 2053 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2054 if (device->can_discard)
2055 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2056 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2057
2bf64758
JB
2058 spin_lock(&root->fs_info->free_chunk_lock);
2059 root->fs_info->free_chunk_space += device->total_bytes;
2060 spin_unlock(&root->fs_info->free_chunk_lock);
2061
c289811c
CM
2062 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2063 root->fs_info->fs_devices->rotating = 1;
2064
6c41761f
DS
2065 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2066 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2067 total_bytes + device->total_bytes);
2068
6c41761f
DS
2069 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2070 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2071 total_bytes + 1);
e5e9a520 2072 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2073
2b82032c
YZ
2074 if (seeding_dev) {
2075 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2076 if (ret) {
2077 btrfs_abort_transaction(trans, root, ret);
79787eaa 2078 goto error_trans;
005d6427 2079 }
2b82032c 2080 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2081 if (ret) {
2082 btrfs_abort_transaction(trans, root, ret);
79787eaa 2083 goto error_trans;
005d6427 2084 }
2b82032c
YZ
2085 } else {
2086 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2087 if (ret) {
2088 btrfs_abort_transaction(trans, root, ret);
79787eaa 2089 goto error_trans;
005d6427 2090 }
2b82032c
YZ
2091 }
2092
913d952e
CM
2093 /*
2094 * we've got more storage, clear any full flags on the space
2095 * infos
2096 */
2097 btrfs_clear_space_info_full(root->fs_info);
2098
7d9eb12c 2099 unlock_chunks(root);
5af3e8cc
SB
2100 root->fs_info->num_tolerated_disk_barrier_failures =
2101 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2102 ret = btrfs_commit_transaction(trans, root);
a2135011 2103
2b82032c
YZ
2104 if (seeding_dev) {
2105 mutex_unlock(&uuid_mutex);
2106 up_write(&sb->s_umount);
788f20eb 2107
79787eaa
JM
2108 if (ret) /* transaction commit */
2109 return ret;
2110
2b82032c 2111 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2112 if (ret < 0)
2113 btrfs_error(root->fs_info, ret,
2114 "Failed to relocate sys chunks after "
2115 "device initialization. This can be fixed "
2116 "using the \"btrfs balance\" command.");
671415b7
MX
2117 trans = btrfs_attach_transaction(root);
2118 if (IS_ERR(trans)) {
2119 if (PTR_ERR(trans) == -ENOENT)
2120 return 0;
2121 return PTR_ERR(trans);
2122 }
2123 ret = btrfs_commit_transaction(trans, root);
2b82032c 2124 }
c9e9f97b 2125
2b82032c 2126 return ret;
79787eaa
JM
2127
2128error_trans:
2129 unlock_chunks(root);
79787eaa 2130 btrfs_end_transaction(trans, root);
606686ee 2131 rcu_string_free(device->name);
79787eaa 2132 kfree(device);
2b82032c 2133error:
e525fd89 2134 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2135 if (seeding_dev) {
2136 mutex_unlock(&uuid_mutex);
2137 up_write(&sb->s_umount);
2138 }
c9e9f97b 2139 return ret;
788f20eb
CM
2140}
2141
e93c89c1
SB
2142int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2143 struct btrfs_device **device_out)
2144{
2145 struct request_queue *q;
2146 struct btrfs_device *device;
2147 struct block_device *bdev;
2148 struct btrfs_fs_info *fs_info = root->fs_info;
2149 struct list_head *devices;
2150 struct rcu_string *name;
12bd2fc0 2151 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2152 int ret = 0;
2153
2154 *device_out = NULL;
2155 if (fs_info->fs_devices->seeding)
2156 return -EINVAL;
2157
2158 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2159 fs_info->bdev_holder);
2160 if (IS_ERR(bdev))
2161 return PTR_ERR(bdev);
2162
2163 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2164
2165 devices = &fs_info->fs_devices->devices;
2166 list_for_each_entry(device, devices, dev_list) {
2167 if (device->bdev == bdev) {
2168 ret = -EEXIST;
2169 goto error;
2170 }
2171 }
2172
12bd2fc0
ID
2173 device = btrfs_alloc_device(NULL, &devid, NULL);
2174 if (IS_ERR(device)) {
2175 ret = PTR_ERR(device);
e93c89c1
SB
2176 goto error;
2177 }
2178
2179 name = rcu_string_strdup(device_path, GFP_NOFS);
2180 if (!name) {
2181 kfree(device);
2182 ret = -ENOMEM;
2183 goto error;
2184 }
2185 rcu_assign_pointer(device->name, name);
2186
2187 q = bdev_get_queue(bdev);
2188 if (blk_queue_discard(q))
2189 device->can_discard = 1;
2190 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2191 device->writeable = 1;
e93c89c1
SB
2192 device->generation = 0;
2193 device->io_width = root->sectorsize;
2194 device->io_align = root->sectorsize;
2195 device->sector_size = root->sectorsize;
2196 device->total_bytes = i_size_read(bdev->bd_inode);
2197 device->disk_total_bytes = device->total_bytes;
2198 device->dev_root = fs_info->dev_root;
2199 device->bdev = bdev;
2200 device->in_fs_metadata = 1;
2201 device->is_tgtdev_for_dev_replace = 1;
2202 device->mode = FMODE_EXCL;
2203 set_blocksize(device->bdev, 4096);
2204 device->fs_devices = fs_info->fs_devices;
2205 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2206 fs_info->fs_devices->num_devices++;
2207 fs_info->fs_devices->open_devices++;
2208 if (device->can_discard)
2209 fs_info->fs_devices->num_can_discard++;
2210 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2211
2212 *device_out = device;
2213 return ret;
2214
2215error:
2216 blkdev_put(bdev, FMODE_EXCL);
2217 return ret;
2218}
2219
2220void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2221 struct btrfs_device *tgtdev)
2222{
2223 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2224 tgtdev->io_width = fs_info->dev_root->sectorsize;
2225 tgtdev->io_align = fs_info->dev_root->sectorsize;
2226 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2227 tgtdev->dev_root = fs_info->dev_root;
2228 tgtdev->in_fs_metadata = 1;
2229}
2230
d397712b
CM
2231static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2232 struct btrfs_device *device)
0b86a832
CM
2233{
2234 int ret;
2235 struct btrfs_path *path;
2236 struct btrfs_root *root;
2237 struct btrfs_dev_item *dev_item;
2238 struct extent_buffer *leaf;
2239 struct btrfs_key key;
2240
2241 root = device->dev_root->fs_info->chunk_root;
2242
2243 path = btrfs_alloc_path();
2244 if (!path)
2245 return -ENOMEM;
2246
2247 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2248 key.type = BTRFS_DEV_ITEM_KEY;
2249 key.offset = device->devid;
2250
2251 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2252 if (ret < 0)
2253 goto out;
2254
2255 if (ret > 0) {
2256 ret = -ENOENT;
2257 goto out;
2258 }
2259
2260 leaf = path->nodes[0];
2261 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2262
2263 btrfs_set_device_id(leaf, dev_item, device->devid);
2264 btrfs_set_device_type(leaf, dev_item, device->type);
2265 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2266 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2267 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2268 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2269 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2270 btrfs_mark_buffer_dirty(leaf);
2271
2272out:
2273 btrfs_free_path(path);
2274 return ret;
2275}
2276
7d9eb12c 2277static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2278 struct btrfs_device *device, u64 new_size)
2279{
2280 struct btrfs_super_block *super_copy =
6c41761f 2281 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2282 u64 old_total = btrfs_super_total_bytes(super_copy);
2283 u64 diff = new_size - device->total_bytes;
2284
2b82032c
YZ
2285 if (!device->writeable)
2286 return -EACCES;
63a212ab
SB
2287 if (new_size <= device->total_bytes ||
2288 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2289 return -EINVAL;
2290
8f18cf13 2291 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2292 device->fs_devices->total_rw_bytes += diff;
2293
2294 device->total_bytes = new_size;
9779b72f 2295 device->disk_total_bytes = new_size;
4184ea7f
CM
2296 btrfs_clear_space_info_full(device->dev_root->fs_info);
2297
8f18cf13
CM
2298 return btrfs_update_device(trans, device);
2299}
2300
7d9eb12c
CM
2301int btrfs_grow_device(struct btrfs_trans_handle *trans,
2302 struct btrfs_device *device, u64 new_size)
2303{
2304 int ret;
2305 lock_chunks(device->dev_root);
2306 ret = __btrfs_grow_device(trans, device, new_size);
2307 unlock_chunks(device->dev_root);
2308 return ret;
2309}
2310
8f18cf13
CM
2311static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2312 struct btrfs_root *root,
2313 u64 chunk_tree, u64 chunk_objectid,
2314 u64 chunk_offset)
2315{
2316 int ret;
2317 struct btrfs_path *path;
2318 struct btrfs_key key;
2319
2320 root = root->fs_info->chunk_root;
2321 path = btrfs_alloc_path();
2322 if (!path)
2323 return -ENOMEM;
2324
2325 key.objectid = chunk_objectid;
2326 key.offset = chunk_offset;
2327 key.type = BTRFS_CHUNK_ITEM_KEY;
2328
2329 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2330 if (ret < 0)
2331 goto out;
2332 else if (ret > 0) { /* Logic error or corruption */
2333 btrfs_error(root->fs_info, -ENOENT,
2334 "Failed lookup while freeing chunk.");
2335 ret = -ENOENT;
2336 goto out;
2337 }
8f18cf13
CM
2338
2339 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2340 if (ret < 0)
2341 btrfs_error(root->fs_info, ret,
2342 "Failed to delete chunk item.");
2343out:
8f18cf13 2344 btrfs_free_path(path);
65a246c5 2345 return ret;
8f18cf13
CM
2346}
2347
b2950863 2348static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2349 chunk_offset)
2350{
6c41761f 2351 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2352 struct btrfs_disk_key *disk_key;
2353 struct btrfs_chunk *chunk;
2354 u8 *ptr;
2355 int ret = 0;
2356 u32 num_stripes;
2357 u32 array_size;
2358 u32 len = 0;
2359 u32 cur;
2360 struct btrfs_key key;
2361
2362 array_size = btrfs_super_sys_array_size(super_copy);
2363
2364 ptr = super_copy->sys_chunk_array;
2365 cur = 0;
2366
2367 while (cur < array_size) {
2368 disk_key = (struct btrfs_disk_key *)ptr;
2369 btrfs_disk_key_to_cpu(&key, disk_key);
2370
2371 len = sizeof(*disk_key);
2372
2373 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2374 chunk = (struct btrfs_chunk *)(ptr + len);
2375 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2376 len += btrfs_chunk_item_size(num_stripes);
2377 } else {
2378 ret = -EIO;
2379 break;
2380 }
2381 if (key.objectid == chunk_objectid &&
2382 key.offset == chunk_offset) {
2383 memmove(ptr, ptr + len, array_size - (cur + len));
2384 array_size -= len;
2385 btrfs_set_super_sys_array_size(super_copy, array_size);
2386 } else {
2387 ptr += len;
2388 cur += len;
2389 }
2390 }
2391 return ret;
2392}
2393
b2950863 2394static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2395 u64 chunk_tree, u64 chunk_objectid,
2396 u64 chunk_offset)
2397{
2398 struct extent_map_tree *em_tree;
2399 struct btrfs_root *extent_root;
2400 struct btrfs_trans_handle *trans;
2401 struct extent_map *em;
2402 struct map_lookup *map;
2403 int ret;
2404 int i;
2405
2406 root = root->fs_info->chunk_root;
2407 extent_root = root->fs_info->extent_root;
2408 em_tree = &root->fs_info->mapping_tree.map_tree;
2409
ba1bf481
JB
2410 ret = btrfs_can_relocate(extent_root, chunk_offset);
2411 if (ret)
2412 return -ENOSPC;
2413
8f18cf13 2414 /* step one, relocate all the extents inside this chunk */
1a40e23b 2415 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2416 if (ret)
2417 return ret;
8f18cf13 2418
a22285a6 2419 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2420 if (IS_ERR(trans)) {
2421 ret = PTR_ERR(trans);
2422 btrfs_std_error(root->fs_info, ret);
2423 return ret;
2424 }
8f18cf13 2425
7d9eb12c
CM
2426 lock_chunks(root);
2427
8f18cf13
CM
2428 /*
2429 * step two, delete the device extents and the
2430 * chunk tree entries
2431 */
890871be 2432 read_lock(&em_tree->lock);
8f18cf13 2433 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2434 read_unlock(&em_tree->lock);
8f18cf13 2435
285190d9 2436 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2437 em->start + em->len < chunk_offset);
8f18cf13
CM
2438 map = (struct map_lookup *)em->bdev;
2439
2440 for (i = 0; i < map->num_stripes; i++) {
2441 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2442 map->stripes[i].physical);
2443 BUG_ON(ret);
a061fc8d 2444
dfe25020
CM
2445 if (map->stripes[i].dev) {
2446 ret = btrfs_update_device(trans, map->stripes[i].dev);
2447 BUG_ON(ret);
2448 }
8f18cf13
CM
2449 }
2450 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2451 chunk_offset);
2452
2453 BUG_ON(ret);
2454
1abe9b8a 2455 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2456
8f18cf13
CM
2457 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2458 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2459 BUG_ON(ret);
8f18cf13
CM
2460 }
2461
2b82032c
YZ
2462 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2463 BUG_ON(ret);
2464
890871be 2465 write_lock(&em_tree->lock);
2b82032c 2466 remove_extent_mapping(em_tree, em);
890871be 2467 write_unlock(&em_tree->lock);
2b82032c
YZ
2468
2469 kfree(map);
2470 em->bdev = NULL;
2471
2472 /* once for the tree */
2473 free_extent_map(em);
2474 /* once for us */
2475 free_extent_map(em);
2476
2477 unlock_chunks(root);
2478 btrfs_end_transaction(trans, root);
2479 return 0;
2480}
2481
2482static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2483{
2484 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2485 struct btrfs_path *path;
2486 struct extent_buffer *leaf;
2487 struct btrfs_chunk *chunk;
2488 struct btrfs_key key;
2489 struct btrfs_key found_key;
2490 u64 chunk_tree = chunk_root->root_key.objectid;
2491 u64 chunk_type;
ba1bf481
JB
2492 bool retried = false;
2493 int failed = 0;
2b82032c
YZ
2494 int ret;
2495
2496 path = btrfs_alloc_path();
2497 if (!path)
2498 return -ENOMEM;
2499
ba1bf481 2500again:
2b82032c
YZ
2501 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2502 key.offset = (u64)-1;
2503 key.type = BTRFS_CHUNK_ITEM_KEY;
2504
2505 while (1) {
2506 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2507 if (ret < 0)
2508 goto error;
79787eaa 2509 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2510
2511 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2512 key.type);
2513 if (ret < 0)
2514 goto error;
2515 if (ret > 0)
2516 break;
1a40e23b 2517
2b82032c
YZ
2518 leaf = path->nodes[0];
2519 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2520
2b82032c
YZ
2521 chunk = btrfs_item_ptr(leaf, path->slots[0],
2522 struct btrfs_chunk);
2523 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2524 btrfs_release_path(path);
8f18cf13 2525
2b82032c
YZ
2526 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2527 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2528 found_key.objectid,
2529 found_key.offset);
ba1bf481
JB
2530 if (ret == -ENOSPC)
2531 failed++;
2532 else if (ret)
2533 BUG();
2b82032c 2534 }
8f18cf13 2535
2b82032c
YZ
2536 if (found_key.offset == 0)
2537 break;
2538 key.offset = found_key.offset - 1;
2539 }
2540 ret = 0;
ba1bf481
JB
2541 if (failed && !retried) {
2542 failed = 0;
2543 retried = true;
2544 goto again;
2545 } else if (failed && retried) {
2546 WARN_ON(1);
2547 ret = -ENOSPC;
2548 }
2b82032c
YZ
2549error:
2550 btrfs_free_path(path);
2551 return ret;
8f18cf13
CM
2552}
2553
0940ebf6
ID
2554static int insert_balance_item(struct btrfs_root *root,
2555 struct btrfs_balance_control *bctl)
2556{
2557 struct btrfs_trans_handle *trans;
2558 struct btrfs_balance_item *item;
2559 struct btrfs_disk_balance_args disk_bargs;
2560 struct btrfs_path *path;
2561 struct extent_buffer *leaf;
2562 struct btrfs_key key;
2563 int ret, err;
2564
2565 path = btrfs_alloc_path();
2566 if (!path)
2567 return -ENOMEM;
2568
2569 trans = btrfs_start_transaction(root, 0);
2570 if (IS_ERR(trans)) {
2571 btrfs_free_path(path);
2572 return PTR_ERR(trans);
2573 }
2574
2575 key.objectid = BTRFS_BALANCE_OBJECTID;
2576 key.type = BTRFS_BALANCE_ITEM_KEY;
2577 key.offset = 0;
2578
2579 ret = btrfs_insert_empty_item(trans, root, path, &key,
2580 sizeof(*item));
2581 if (ret)
2582 goto out;
2583
2584 leaf = path->nodes[0];
2585 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2586
2587 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2588
2589 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2590 btrfs_set_balance_data(leaf, item, &disk_bargs);
2591 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2592 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2593 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2594 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2595
2596 btrfs_set_balance_flags(leaf, item, bctl->flags);
2597
2598 btrfs_mark_buffer_dirty(leaf);
2599out:
2600 btrfs_free_path(path);
2601 err = btrfs_commit_transaction(trans, root);
2602 if (err && !ret)
2603 ret = err;
2604 return ret;
2605}
2606
2607static int del_balance_item(struct btrfs_root *root)
2608{
2609 struct btrfs_trans_handle *trans;
2610 struct btrfs_path *path;
2611 struct btrfs_key key;
2612 int ret, err;
2613
2614 path = btrfs_alloc_path();
2615 if (!path)
2616 return -ENOMEM;
2617
2618 trans = btrfs_start_transaction(root, 0);
2619 if (IS_ERR(trans)) {
2620 btrfs_free_path(path);
2621 return PTR_ERR(trans);
2622 }
2623
2624 key.objectid = BTRFS_BALANCE_OBJECTID;
2625 key.type = BTRFS_BALANCE_ITEM_KEY;
2626 key.offset = 0;
2627
2628 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2629 if (ret < 0)
2630 goto out;
2631 if (ret > 0) {
2632 ret = -ENOENT;
2633 goto out;
2634 }
2635
2636 ret = btrfs_del_item(trans, root, path);
2637out:
2638 btrfs_free_path(path);
2639 err = btrfs_commit_transaction(trans, root);
2640 if (err && !ret)
2641 ret = err;
2642 return ret;
2643}
2644
59641015
ID
2645/*
2646 * This is a heuristic used to reduce the number of chunks balanced on
2647 * resume after balance was interrupted.
2648 */
2649static void update_balance_args(struct btrfs_balance_control *bctl)
2650{
2651 /*
2652 * Turn on soft mode for chunk types that were being converted.
2653 */
2654 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2655 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2656 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2657 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2658 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2659 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2660
2661 /*
2662 * Turn on usage filter if is not already used. The idea is
2663 * that chunks that we have already balanced should be
2664 * reasonably full. Don't do it for chunks that are being
2665 * converted - that will keep us from relocating unconverted
2666 * (albeit full) chunks.
2667 */
2668 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2669 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2670 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2671 bctl->data.usage = 90;
2672 }
2673 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2674 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2675 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2676 bctl->sys.usage = 90;
2677 }
2678 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2679 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2680 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2681 bctl->meta.usage = 90;
2682 }
2683}
2684
c9e9f97b
ID
2685/*
2686 * Should be called with both balance and volume mutexes held to
2687 * serialize other volume operations (add_dev/rm_dev/resize) with
2688 * restriper. Same goes for unset_balance_control.
2689 */
2690static void set_balance_control(struct btrfs_balance_control *bctl)
2691{
2692 struct btrfs_fs_info *fs_info = bctl->fs_info;
2693
2694 BUG_ON(fs_info->balance_ctl);
2695
2696 spin_lock(&fs_info->balance_lock);
2697 fs_info->balance_ctl = bctl;
2698 spin_unlock(&fs_info->balance_lock);
2699}
2700
2701static void unset_balance_control(struct btrfs_fs_info *fs_info)
2702{
2703 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2704
2705 BUG_ON(!fs_info->balance_ctl);
2706
2707 spin_lock(&fs_info->balance_lock);
2708 fs_info->balance_ctl = NULL;
2709 spin_unlock(&fs_info->balance_lock);
2710
2711 kfree(bctl);
2712}
2713
ed25e9b2
ID
2714/*
2715 * Balance filters. Return 1 if chunk should be filtered out
2716 * (should not be balanced).
2717 */
899c81ea 2718static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2719 struct btrfs_balance_args *bargs)
2720{
899c81ea
ID
2721 chunk_type = chunk_to_extended(chunk_type) &
2722 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2723
899c81ea 2724 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2725 return 0;
2726
2727 return 1;
2728}
2729
5ce5b3c0
ID
2730static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2731 struct btrfs_balance_args *bargs)
2732{
2733 struct btrfs_block_group_cache *cache;
2734 u64 chunk_used, user_thresh;
2735 int ret = 1;
2736
2737 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2738 chunk_used = btrfs_block_group_used(&cache->item);
2739
a105bb88 2740 if (bargs->usage == 0)
3e39cea6 2741 user_thresh = 1;
a105bb88
ID
2742 else if (bargs->usage > 100)
2743 user_thresh = cache->key.offset;
2744 else
2745 user_thresh = div_factor_fine(cache->key.offset,
2746 bargs->usage);
2747
5ce5b3c0
ID
2748 if (chunk_used < user_thresh)
2749 ret = 0;
2750
2751 btrfs_put_block_group(cache);
2752 return ret;
2753}
2754
409d404b
ID
2755static int chunk_devid_filter(struct extent_buffer *leaf,
2756 struct btrfs_chunk *chunk,
2757 struct btrfs_balance_args *bargs)
2758{
2759 struct btrfs_stripe *stripe;
2760 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2761 int i;
2762
2763 for (i = 0; i < num_stripes; i++) {
2764 stripe = btrfs_stripe_nr(chunk, i);
2765 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2766 return 0;
2767 }
2768
2769 return 1;
2770}
2771
94e60d5a
ID
2772/* [pstart, pend) */
2773static int chunk_drange_filter(struct extent_buffer *leaf,
2774 struct btrfs_chunk *chunk,
2775 u64 chunk_offset,
2776 struct btrfs_balance_args *bargs)
2777{
2778 struct btrfs_stripe *stripe;
2779 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2780 u64 stripe_offset;
2781 u64 stripe_length;
2782 int factor;
2783 int i;
2784
2785 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2786 return 0;
2787
2788 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2789 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2790 factor = num_stripes / 2;
2791 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2792 factor = num_stripes - 1;
2793 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2794 factor = num_stripes - 2;
2795 } else {
2796 factor = num_stripes;
2797 }
94e60d5a
ID
2798
2799 for (i = 0; i < num_stripes; i++) {
2800 stripe = btrfs_stripe_nr(chunk, i);
2801 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2802 continue;
2803
2804 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2805 stripe_length = btrfs_chunk_length(leaf, chunk);
2806 do_div(stripe_length, factor);
2807
2808 if (stripe_offset < bargs->pend &&
2809 stripe_offset + stripe_length > bargs->pstart)
2810 return 0;
2811 }
2812
2813 return 1;
2814}
2815
ea67176a
ID
2816/* [vstart, vend) */
2817static int chunk_vrange_filter(struct extent_buffer *leaf,
2818 struct btrfs_chunk *chunk,
2819 u64 chunk_offset,
2820 struct btrfs_balance_args *bargs)
2821{
2822 if (chunk_offset < bargs->vend &&
2823 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2824 /* at least part of the chunk is inside this vrange */
2825 return 0;
2826
2827 return 1;
2828}
2829
899c81ea 2830static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2831 struct btrfs_balance_args *bargs)
2832{
2833 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2834 return 0;
2835
899c81ea
ID
2836 chunk_type = chunk_to_extended(chunk_type) &
2837 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2838
899c81ea 2839 if (bargs->target == chunk_type)
cfa4c961
ID
2840 return 1;
2841
2842 return 0;
2843}
2844
f43ffb60
ID
2845static int should_balance_chunk(struct btrfs_root *root,
2846 struct extent_buffer *leaf,
2847 struct btrfs_chunk *chunk, u64 chunk_offset)
2848{
2849 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2850 struct btrfs_balance_args *bargs = NULL;
2851 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2852
2853 /* type filter */
2854 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2855 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2856 return 0;
2857 }
2858
2859 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2860 bargs = &bctl->data;
2861 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2862 bargs = &bctl->sys;
2863 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2864 bargs = &bctl->meta;
2865
ed25e9b2
ID
2866 /* profiles filter */
2867 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2868 chunk_profiles_filter(chunk_type, bargs)) {
2869 return 0;
5ce5b3c0
ID
2870 }
2871
2872 /* usage filter */
2873 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2874 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2875 return 0;
409d404b
ID
2876 }
2877
2878 /* devid filter */
2879 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2880 chunk_devid_filter(leaf, chunk, bargs)) {
2881 return 0;
94e60d5a
ID
2882 }
2883
2884 /* drange filter, makes sense only with devid filter */
2885 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2886 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2887 return 0;
ea67176a
ID
2888 }
2889
2890 /* vrange filter */
2891 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2892 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2893 return 0;
ed25e9b2
ID
2894 }
2895
cfa4c961
ID
2896 /* soft profile changing mode */
2897 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2898 chunk_soft_convert_filter(chunk_type, bargs)) {
2899 return 0;
2900 }
2901
f43ffb60
ID
2902 return 1;
2903}
2904
c9e9f97b 2905static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2906{
19a39dce 2907 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2908 struct btrfs_root *chunk_root = fs_info->chunk_root;
2909 struct btrfs_root *dev_root = fs_info->dev_root;
2910 struct list_head *devices;
ec44a35c
CM
2911 struct btrfs_device *device;
2912 u64 old_size;
2913 u64 size_to_free;
f43ffb60 2914 struct btrfs_chunk *chunk;
ec44a35c
CM
2915 struct btrfs_path *path;
2916 struct btrfs_key key;
ec44a35c 2917 struct btrfs_key found_key;
c9e9f97b 2918 struct btrfs_trans_handle *trans;
f43ffb60
ID
2919 struct extent_buffer *leaf;
2920 int slot;
c9e9f97b
ID
2921 int ret;
2922 int enospc_errors = 0;
19a39dce 2923 bool counting = true;
ec44a35c 2924
ec44a35c 2925 /* step one make some room on all the devices */
c9e9f97b 2926 devices = &fs_info->fs_devices->devices;
c6e30871 2927 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2928 old_size = device->total_bytes;
2929 size_to_free = div_factor(old_size, 1);
2930 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2931 if (!device->writeable ||
63a212ab
SB
2932 device->total_bytes - device->bytes_used > size_to_free ||
2933 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2934 continue;
2935
2936 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2937 if (ret == -ENOSPC)
2938 break;
ec44a35c
CM
2939 BUG_ON(ret);
2940
a22285a6 2941 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2942 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2943
2944 ret = btrfs_grow_device(trans, device, old_size);
2945 BUG_ON(ret);
2946
2947 btrfs_end_transaction(trans, dev_root);
2948 }
2949
2950 /* step two, relocate all the chunks */
2951 path = btrfs_alloc_path();
17e9f796
MF
2952 if (!path) {
2953 ret = -ENOMEM;
2954 goto error;
2955 }
19a39dce
ID
2956
2957 /* zero out stat counters */
2958 spin_lock(&fs_info->balance_lock);
2959 memset(&bctl->stat, 0, sizeof(bctl->stat));
2960 spin_unlock(&fs_info->balance_lock);
2961again:
ec44a35c
CM
2962 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2963 key.offset = (u64)-1;
2964 key.type = BTRFS_CHUNK_ITEM_KEY;
2965
d397712b 2966 while (1) {
19a39dce 2967 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2968 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2969 ret = -ECANCELED;
2970 goto error;
2971 }
2972
ec44a35c
CM
2973 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2974 if (ret < 0)
2975 goto error;
2976
2977 /*
2978 * this shouldn't happen, it means the last relocate
2979 * failed
2980 */
2981 if (ret == 0)
c9e9f97b 2982 BUG(); /* FIXME break ? */
ec44a35c
CM
2983
2984 ret = btrfs_previous_item(chunk_root, path, 0,
2985 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2986 if (ret) {
2987 ret = 0;
ec44a35c 2988 break;
c9e9f97b 2989 }
7d9eb12c 2990
f43ffb60
ID
2991 leaf = path->nodes[0];
2992 slot = path->slots[0];
2993 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2994
ec44a35c
CM
2995 if (found_key.objectid != key.objectid)
2996 break;
7d9eb12c 2997
ec44a35c 2998 /* chunk zero is special */
ba1bf481 2999 if (found_key.offset == 0)
ec44a35c
CM
3000 break;
3001
f43ffb60
ID
3002 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3003
19a39dce
ID
3004 if (!counting) {
3005 spin_lock(&fs_info->balance_lock);
3006 bctl->stat.considered++;
3007 spin_unlock(&fs_info->balance_lock);
3008 }
3009
f43ffb60
ID
3010 ret = should_balance_chunk(chunk_root, leaf, chunk,
3011 found_key.offset);
b3b4aa74 3012 btrfs_release_path(path);
f43ffb60
ID
3013 if (!ret)
3014 goto loop;
3015
19a39dce
ID
3016 if (counting) {
3017 spin_lock(&fs_info->balance_lock);
3018 bctl->stat.expected++;
3019 spin_unlock(&fs_info->balance_lock);
3020 goto loop;
3021 }
3022
ec44a35c
CM
3023 ret = btrfs_relocate_chunk(chunk_root,
3024 chunk_root->root_key.objectid,
3025 found_key.objectid,
3026 found_key.offset);
508794eb
JB
3027 if (ret && ret != -ENOSPC)
3028 goto error;
19a39dce 3029 if (ret == -ENOSPC) {
c9e9f97b 3030 enospc_errors++;
19a39dce
ID
3031 } else {
3032 spin_lock(&fs_info->balance_lock);
3033 bctl->stat.completed++;
3034 spin_unlock(&fs_info->balance_lock);
3035 }
f43ffb60 3036loop:
ba1bf481 3037 key.offset = found_key.offset - 1;
ec44a35c 3038 }
c9e9f97b 3039
19a39dce
ID
3040 if (counting) {
3041 btrfs_release_path(path);
3042 counting = false;
3043 goto again;
3044 }
ec44a35c
CM
3045error:
3046 btrfs_free_path(path);
c9e9f97b
ID
3047 if (enospc_errors) {
3048 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3049 enospc_errors);
3050 if (!ret)
3051 ret = -ENOSPC;
3052 }
3053
ec44a35c
CM
3054 return ret;
3055}
3056
0c460c0d
ID
3057/**
3058 * alloc_profile_is_valid - see if a given profile is valid and reduced
3059 * @flags: profile to validate
3060 * @extended: if true @flags is treated as an extended profile
3061 */
3062static int alloc_profile_is_valid(u64 flags, int extended)
3063{
3064 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3065 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3066
3067 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3068
3069 /* 1) check that all other bits are zeroed */
3070 if (flags & ~mask)
3071 return 0;
3072
3073 /* 2) see if profile is reduced */
3074 if (flags == 0)
3075 return !extended; /* "0" is valid for usual profiles */
3076
3077 /* true if exactly one bit set */
3078 return (flags & (flags - 1)) == 0;
3079}
3080
837d5b6e
ID
3081static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3082{
a7e99c69
ID
3083 /* cancel requested || normal exit path */
3084 return atomic_read(&fs_info->balance_cancel_req) ||
3085 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3086 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3087}
3088
c9e9f97b
ID
3089static void __cancel_balance(struct btrfs_fs_info *fs_info)
3090{
0940ebf6
ID
3091 int ret;
3092
c9e9f97b 3093 unset_balance_control(fs_info);
0940ebf6 3094 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3095 if (ret)
3096 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3097
3098 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3099}
3100
c9e9f97b
ID
3101/*
3102 * Should be called with both balance and volume mutexes held
3103 */
3104int btrfs_balance(struct btrfs_balance_control *bctl,
3105 struct btrfs_ioctl_balance_args *bargs)
3106{
3107 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3108 u64 allowed;
e4837f8f 3109 int mixed = 0;
c9e9f97b 3110 int ret;
8dabb742 3111 u64 num_devices;
de98ced9 3112 unsigned seq;
c9e9f97b 3113
837d5b6e 3114 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3115 atomic_read(&fs_info->balance_pause_req) ||
3116 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3117 ret = -EINVAL;
3118 goto out;
3119 }
3120
e4837f8f
ID
3121 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3122 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3123 mixed = 1;
3124
f43ffb60
ID
3125 /*
3126 * In case of mixed groups both data and meta should be picked,
3127 * and identical options should be given for both of them.
3128 */
e4837f8f
ID
3129 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3130 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3131 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3132 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3133 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3134 printk(KERN_ERR "btrfs: with mixed groups data and "
3135 "metadata balance options must be the same\n");
3136 ret = -EINVAL;
3137 goto out;
3138 }
3139 }
3140
8dabb742
SB
3141 num_devices = fs_info->fs_devices->num_devices;
3142 btrfs_dev_replace_lock(&fs_info->dev_replace);
3143 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3144 BUG_ON(num_devices < 1);
3145 num_devices--;
3146 }
3147 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3148 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3149 if (num_devices == 1)
e4d8ec0f 3150 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3151 else if (num_devices > 1)
e4d8ec0f 3152 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3153 if (num_devices > 2)
3154 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3155 if (num_devices > 3)
3156 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3157 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3158 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3159 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3160 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3161 printk(KERN_ERR "btrfs: unable to start balance with target "
3162 "data profile %llu\n",
c1c9ff7c 3163 bctl->data.target);
e4d8ec0f
ID
3164 ret = -EINVAL;
3165 goto out;
3166 }
6728b198
ID
3167 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3168 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3169 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3170 printk(KERN_ERR "btrfs: unable to start balance with target "
3171 "metadata profile %llu\n",
c1c9ff7c 3172 bctl->meta.target);
e4d8ec0f
ID
3173 ret = -EINVAL;
3174 goto out;
3175 }
6728b198
ID
3176 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3177 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3178 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3179 printk(KERN_ERR "btrfs: unable to start balance with target "
3180 "system profile %llu\n",
c1c9ff7c 3181 bctl->sys.target);
e4d8ec0f
ID
3182 ret = -EINVAL;
3183 goto out;
3184 }
3185
e4837f8f
ID
3186 /* allow dup'ed data chunks only in mixed mode */
3187 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3188 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3189 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3190 ret = -EINVAL;
3191 goto out;
3192 }
3193
3194 /* allow to reduce meta or sys integrity only if force set */
3195 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3196 BTRFS_BLOCK_GROUP_RAID10 |
3197 BTRFS_BLOCK_GROUP_RAID5 |
3198 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3199 do {
3200 seq = read_seqbegin(&fs_info->profiles_lock);
3201
3202 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3203 (fs_info->avail_system_alloc_bits & allowed) &&
3204 !(bctl->sys.target & allowed)) ||
3205 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3206 (fs_info->avail_metadata_alloc_bits & allowed) &&
3207 !(bctl->meta.target & allowed))) {
3208 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3209 printk(KERN_INFO "btrfs: force reducing metadata "
3210 "integrity\n");
3211 } else {
3212 printk(KERN_ERR "btrfs: balance will reduce metadata "
3213 "integrity, use force if you want this\n");
3214 ret = -EINVAL;
3215 goto out;
3216 }
e4d8ec0f 3217 }
de98ced9 3218 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3219
5af3e8cc
SB
3220 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3221 int num_tolerated_disk_barrier_failures;
3222 u64 target = bctl->sys.target;
3223
3224 num_tolerated_disk_barrier_failures =
3225 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3226 if (num_tolerated_disk_barrier_failures > 0 &&
3227 (target &
3228 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3229 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3230 num_tolerated_disk_barrier_failures = 0;
3231 else if (num_tolerated_disk_barrier_failures > 1 &&
3232 (target &
3233 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3234 num_tolerated_disk_barrier_failures = 1;
3235
3236 fs_info->num_tolerated_disk_barrier_failures =
3237 num_tolerated_disk_barrier_failures;
3238 }
3239
0940ebf6 3240 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3241 if (ret && ret != -EEXIST)
0940ebf6
ID
3242 goto out;
3243
59641015
ID
3244 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3245 BUG_ON(ret == -EEXIST);
3246 set_balance_control(bctl);
3247 } else {
3248 BUG_ON(ret != -EEXIST);
3249 spin_lock(&fs_info->balance_lock);
3250 update_balance_args(bctl);
3251 spin_unlock(&fs_info->balance_lock);
3252 }
c9e9f97b 3253
837d5b6e 3254 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3255 mutex_unlock(&fs_info->balance_mutex);
3256
3257 ret = __btrfs_balance(fs_info);
3258
3259 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3260 atomic_dec(&fs_info->balance_running);
c9e9f97b 3261
bf023ecf
ID
3262 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3263 fs_info->num_tolerated_disk_barrier_failures =
3264 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3265 }
3266
c9e9f97b
ID
3267 if (bargs) {
3268 memset(bargs, 0, sizeof(*bargs));
19a39dce 3269 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3270 }
3271
3a01aa7a
ID
3272 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3273 balance_need_close(fs_info)) {
3274 __cancel_balance(fs_info);
3275 }
3276
837d5b6e 3277 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3278
3279 return ret;
3280out:
59641015
ID
3281 if (bctl->flags & BTRFS_BALANCE_RESUME)
3282 __cancel_balance(fs_info);
ed0fb78f 3283 else {
59641015 3284 kfree(bctl);
ed0fb78f
ID
3285 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3286 }
59641015
ID
3287 return ret;
3288}
3289
3290static int balance_kthread(void *data)
3291{
2b6ba629 3292 struct btrfs_fs_info *fs_info = data;
9555c6c1 3293 int ret = 0;
59641015
ID
3294
3295 mutex_lock(&fs_info->volume_mutex);
3296 mutex_lock(&fs_info->balance_mutex);
3297
2b6ba629 3298 if (fs_info->balance_ctl) {
9555c6c1 3299 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3300 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3301 }
59641015
ID
3302
3303 mutex_unlock(&fs_info->balance_mutex);
3304 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3305
59641015
ID
3306 return ret;
3307}
3308
2b6ba629
ID
3309int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3310{
3311 struct task_struct *tsk;
3312
3313 spin_lock(&fs_info->balance_lock);
3314 if (!fs_info->balance_ctl) {
3315 spin_unlock(&fs_info->balance_lock);
3316 return 0;
3317 }
3318 spin_unlock(&fs_info->balance_lock);
3319
3320 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3321 printk(KERN_INFO "btrfs: force skipping balance\n");
3322 return 0;
3323 }
3324
3325 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
97a184fe 3326 return PTR_RET(tsk);
2b6ba629
ID
3327}
3328
68310a5e 3329int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3330{
59641015
ID
3331 struct btrfs_balance_control *bctl;
3332 struct btrfs_balance_item *item;
3333 struct btrfs_disk_balance_args disk_bargs;
3334 struct btrfs_path *path;
3335 struct extent_buffer *leaf;
3336 struct btrfs_key key;
3337 int ret;
3338
3339 path = btrfs_alloc_path();
3340 if (!path)
3341 return -ENOMEM;
3342
59641015
ID
3343 key.objectid = BTRFS_BALANCE_OBJECTID;
3344 key.type = BTRFS_BALANCE_ITEM_KEY;
3345 key.offset = 0;
3346
68310a5e 3347 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3348 if (ret < 0)
68310a5e 3349 goto out;
59641015
ID
3350 if (ret > 0) { /* ret = -ENOENT; */
3351 ret = 0;
68310a5e
ID
3352 goto out;
3353 }
3354
3355 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3356 if (!bctl) {
3357 ret = -ENOMEM;
3358 goto out;
59641015
ID
3359 }
3360
3361 leaf = path->nodes[0];
3362 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3363
68310a5e
ID
3364 bctl->fs_info = fs_info;
3365 bctl->flags = btrfs_balance_flags(leaf, item);
3366 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3367
3368 btrfs_balance_data(leaf, item, &disk_bargs);
3369 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3370 btrfs_balance_meta(leaf, item, &disk_bargs);
3371 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3372 btrfs_balance_sys(leaf, item, &disk_bargs);
3373 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3374
ed0fb78f
ID
3375 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3376
68310a5e
ID
3377 mutex_lock(&fs_info->volume_mutex);
3378 mutex_lock(&fs_info->balance_mutex);
59641015 3379
68310a5e
ID
3380 set_balance_control(bctl);
3381
3382 mutex_unlock(&fs_info->balance_mutex);
3383 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3384out:
3385 btrfs_free_path(path);
ec44a35c
CM
3386 return ret;
3387}
3388
837d5b6e
ID
3389int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3390{
3391 int ret = 0;
3392
3393 mutex_lock(&fs_info->balance_mutex);
3394 if (!fs_info->balance_ctl) {
3395 mutex_unlock(&fs_info->balance_mutex);
3396 return -ENOTCONN;
3397 }
3398
3399 if (atomic_read(&fs_info->balance_running)) {
3400 atomic_inc(&fs_info->balance_pause_req);
3401 mutex_unlock(&fs_info->balance_mutex);
3402
3403 wait_event(fs_info->balance_wait_q,
3404 atomic_read(&fs_info->balance_running) == 0);
3405
3406 mutex_lock(&fs_info->balance_mutex);
3407 /* we are good with balance_ctl ripped off from under us */
3408 BUG_ON(atomic_read(&fs_info->balance_running));
3409 atomic_dec(&fs_info->balance_pause_req);
3410 } else {
3411 ret = -ENOTCONN;
3412 }
3413
3414 mutex_unlock(&fs_info->balance_mutex);
3415 return ret;
3416}
3417
a7e99c69
ID
3418int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3419{
3420 mutex_lock(&fs_info->balance_mutex);
3421 if (!fs_info->balance_ctl) {
3422 mutex_unlock(&fs_info->balance_mutex);
3423 return -ENOTCONN;
3424 }
3425
3426 atomic_inc(&fs_info->balance_cancel_req);
3427 /*
3428 * if we are running just wait and return, balance item is
3429 * deleted in btrfs_balance in this case
3430 */
3431 if (atomic_read(&fs_info->balance_running)) {
3432 mutex_unlock(&fs_info->balance_mutex);
3433 wait_event(fs_info->balance_wait_q,
3434 atomic_read(&fs_info->balance_running) == 0);
3435 mutex_lock(&fs_info->balance_mutex);
3436 } else {
3437 /* __cancel_balance needs volume_mutex */
3438 mutex_unlock(&fs_info->balance_mutex);
3439 mutex_lock(&fs_info->volume_mutex);
3440 mutex_lock(&fs_info->balance_mutex);
3441
3442 if (fs_info->balance_ctl)
3443 __cancel_balance(fs_info);
3444
3445 mutex_unlock(&fs_info->volume_mutex);
3446 }
3447
3448 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3449 atomic_dec(&fs_info->balance_cancel_req);
3450 mutex_unlock(&fs_info->balance_mutex);
3451 return 0;
3452}
3453
803b2f54
SB
3454static int btrfs_uuid_scan_kthread(void *data)
3455{
3456 struct btrfs_fs_info *fs_info = data;
3457 struct btrfs_root *root = fs_info->tree_root;
3458 struct btrfs_key key;
3459 struct btrfs_key max_key;
3460 struct btrfs_path *path = NULL;
3461 int ret = 0;
3462 struct extent_buffer *eb;
3463 int slot;
3464 struct btrfs_root_item root_item;
3465 u32 item_size;
3466 struct btrfs_trans_handle *trans;
3467
3468 path = btrfs_alloc_path();
3469 if (!path) {
3470 ret = -ENOMEM;
3471 goto out;
3472 }
3473
3474 key.objectid = 0;
3475 key.type = BTRFS_ROOT_ITEM_KEY;
3476 key.offset = 0;
3477
3478 max_key.objectid = (u64)-1;
3479 max_key.type = BTRFS_ROOT_ITEM_KEY;
3480 max_key.offset = (u64)-1;
3481
3482 path->keep_locks = 1;
3483
3484 while (1) {
3485 ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3486 if (ret) {
3487 if (ret > 0)
3488 ret = 0;
3489 break;
3490 }
3491
3492 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3493 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3494 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3495 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3496 goto skip;
3497
3498 eb = path->nodes[0];
3499 slot = path->slots[0];
3500 item_size = btrfs_item_size_nr(eb, slot);
3501 if (item_size < sizeof(root_item))
3502 goto skip;
3503
3504 trans = NULL;
3505 read_extent_buffer(eb, &root_item,
3506 btrfs_item_ptr_offset(eb, slot),
3507 (int)sizeof(root_item));
3508 if (btrfs_root_refs(&root_item) == 0)
3509 goto skip;
3510 if (!btrfs_is_empty_uuid(root_item.uuid)) {
3511 /*
3512 * 1 - subvol uuid item
3513 * 1 - received_subvol uuid item
3514 */
3515 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3516 if (IS_ERR(trans)) {
3517 ret = PTR_ERR(trans);
3518 break;
3519 }
3520 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3521 root_item.uuid,
3522 BTRFS_UUID_KEY_SUBVOL,
3523 key.objectid);
3524 if (ret < 0) {
3525 pr_warn("btrfs: uuid_tree_add failed %d\n",
3526 ret);
3527 btrfs_end_transaction(trans,
3528 fs_info->uuid_root);
3529 break;
3530 }
3531 }
3532
3533 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3534 if (!trans) {
3535 /* 1 - received_subvol uuid item */
3536 trans = btrfs_start_transaction(
3537 fs_info->uuid_root, 1);
3538 if (IS_ERR(trans)) {
3539 ret = PTR_ERR(trans);
3540 break;
3541 }
3542 }
3543 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3544 root_item.received_uuid,
3545 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3546 key.objectid);
3547 if (ret < 0) {
3548 pr_warn("btrfs: uuid_tree_add failed %d\n",
3549 ret);
3550 btrfs_end_transaction(trans,
3551 fs_info->uuid_root);
3552 break;
3553 }
3554 }
3555
3556 if (trans) {
3557 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3558 if (ret)
3559 break;
3560 }
3561
3562skip:
3563 btrfs_release_path(path);
3564 if (key.offset < (u64)-1) {
3565 key.offset++;
3566 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3567 key.offset = 0;
3568 key.type = BTRFS_ROOT_ITEM_KEY;
3569 } else if (key.objectid < (u64)-1) {
3570 key.offset = 0;
3571 key.type = BTRFS_ROOT_ITEM_KEY;
3572 key.objectid++;
3573 } else {
3574 break;
3575 }
3576 cond_resched();
3577 }
3578
3579out:
3580 btrfs_free_path(path);
3581 if (ret)
3582 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
70f80175
SB
3583 else
3584 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3585 up(&fs_info->uuid_tree_rescan_sem);
3586 return 0;
3587}
3588
70f80175
SB
3589/*
3590 * Callback for btrfs_uuid_tree_iterate().
3591 * returns:
3592 * 0 check succeeded, the entry is not outdated.
3593 * < 0 if an error occured.
3594 * > 0 if the check failed, which means the caller shall remove the entry.
3595 */
3596static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3597 u8 *uuid, u8 type, u64 subid)
3598{
3599 struct btrfs_key key;
3600 int ret = 0;
3601 struct btrfs_root *subvol_root;
3602
3603 if (type != BTRFS_UUID_KEY_SUBVOL &&
3604 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3605 goto out;
3606
3607 key.objectid = subid;
3608 key.type = BTRFS_ROOT_ITEM_KEY;
3609 key.offset = (u64)-1;
3610 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3611 if (IS_ERR(subvol_root)) {
3612 ret = PTR_ERR(subvol_root);
3613 if (ret == -ENOENT)
3614 ret = 1;
3615 goto out;
3616 }
3617
3618 switch (type) {
3619 case BTRFS_UUID_KEY_SUBVOL:
3620 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3621 ret = 1;
3622 break;
3623 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3624 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3625 BTRFS_UUID_SIZE))
3626 ret = 1;
3627 break;
3628 }
3629
3630out:
3631 return ret;
3632}
3633
3634static int btrfs_uuid_rescan_kthread(void *data)
3635{
3636 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3637 int ret;
3638
3639 /*
3640 * 1st step is to iterate through the existing UUID tree and
3641 * to delete all entries that contain outdated data.
3642 * 2nd step is to add all missing entries to the UUID tree.
3643 */
3644 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3645 if (ret < 0) {
3646 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3647 up(&fs_info->uuid_tree_rescan_sem);
3648 return ret;
3649 }
3650 return btrfs_uuid_scan_kthread(data);
3651}
3652
f7a81ea4
SB
3653int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3654{
3655 struct btrfs_trans_handle *trans;
3656 struct btrfs_root *tree_root = fs_info->tree_root;
3657 struct btrfs_root *uuid_root;
803b2f54
SB
3658 struct task_struct *task;
3659 int ret;
f7a81ea4
SB
3660
3661 /*
3662 * 1 - root node
3663 * 1 - root item
3664 */
3665 trans = btrfs_start_transaction(tree_root, 2);
3666 if (IS_ERR(trans))
3667 return PTR_ERR(trans);
3668
3669 uuid_root = btrfs_create_tree(trans, fs_info,
3670 BTRFS_UUID_TREE_OBJECTID);
3671 if (IS_ERR(uuid_root)) {
3672 btrfs_abort_transaction(trans, tree_root,
3673 PTR_ERR(uuid_root));
3674 return PTR_ERR(uuid_root);
3675 }
3676
3677 fs_info->uuid_root = uuid_root;
3678
803b2f54
SB
3679 ret = btrfs_commit_transaction(trans, tree_root);
3680 if (ret)
3681 return ret;
3682
3683 down(&fs_info->uuid_tree_rescan_sem);
3684 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3685 if (IS_ERR(task)) {
70f80175 3686 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
803b2f54
SB
3687 pr_warn("btrfs: failed to start uuid_scan task\n");
3688 up(&fs_info->uuid_tree_rescan_sem);
3689 return PTR_ERR(task);
3690 }
3691
3692 return 0;
f7a81ea4 3693}
803b2f54 3694
70f80175
SB
3695int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3696{
3697 struct task_struct *task;
3698
3699 down(&fs_info->uuid_tree_rescan_sem);
3700 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3701 if (IS_ERR(task)) {
3702 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3703 pr_warn("btrfs: failed to start uuid_rescan task\n");
3704 up(&fs_info->uuid_tree_rescan_sem);
3705 return PTR_ERR(task);
3706 }
3707
3708 return 0;
3709}
3710
8f18cf13
CM
3711/*
3712 * shrinking a device means finding all of the device extents past
3713 * the new size, and then following the back refs to the chunks.
3714 * The chunk relocation code actually frees the device extent
3715 */
3716int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3717{
3718 struct btrfs_trans_handle *trans;
3719 struct btrfs_root *root = device->dev_root;
3720 struct btrfs_dev_extent *dev_extent = NULL;
3721 struct btrfs_path *path;
3722 u64 length;
3723 u64 chunk_tree;
3724 u64 chunk_objectid;
3725 u64 chunk_offset;
3726 int ret;
3727 int slot;
ba1bf481
JB
3728 int failed = 0;
3729 bool retried = false;
8f18cf13
CM
3730 struct extent_buffer *l;
3731 struct btrfs_key key;
6c41761f 3732 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3733 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3734 u64 old_size = device->total_bytes;
8f18cf13
CM
3735 u64 diff = device->total_bytes - new_size;
3736
63a212ab
SB
3737 if (device->is_tgtdev_for_dev_replace)
3738 return -EINVAL;
3739
8f18cf13
CM
3740 path = btrfs_alloc_path();
3741 if (!path)
3742 return -ENOMEM;
3743
8f18cf13
CM
3744 path->reada = 2;
3745
7d9eb12c
CM
3746 lock_chunks(root);
3747
8f18cf13 3748 device->total_bytes = new_size;
2bf64758 3749 if (device->writeable) {
2b82032c 3750 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3751 spin_lock(&root->fs_info->free_chunk_lock);
3752 root->fs_info->free_chunk_space -= diff;
3753 spin_unlock(&root->fs_info->free_chunk_lock);
3754 }
7d9eb12c 3755 unlock_chunks(root);
8f18cf13 3756
ba1bf481 3757again:
8f18cf13
CM
3758 key.objectid = device->devid;
3759 key.offset = (u64)-1;
3760 key.type = BTRFS_DEV_EXTENT_KEY;
3761
213e64da 3762 do {
8f18cf13
CM
3763 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3764 if (ret < 0)
3765 goto done;
3766
3767 ret = btrfs_previous_item(root, path, 0, key.type);
3768 if (ret < 0)
3769 goto done;
3770 if (ret) {
3771 ret = 0;
b3b4aa74 3772 btrfs_release_path(path);
bf1fb512 3773 break;
8f18cf13
CM
3774 }
3775
3776 l = path->nodes[0];
3777 slot = path->slots[0];
3778 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3779
ba1bf481 3780 if (key.objectid != device->devid) {
b3b4aa74 3781 btrfs_release_path(path);
bf1fb512 3782 break;
ba1bf481 3783 }
8f18cf13
CM
3784
3785 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3786 length = btrfs_dev_extent_length(l, dev_extent);
3787
ba1bf481 3788 if (key.offset + length <= new_size) {
b3b4aa74 3789 btrfs_release_path(path);
d6397bae 3790 break;
ba1bf481 3791 }
8f18cf13
CM
3792
3793 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3794 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3795 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3796 btrfs_release_path(path);
8f18cf13
CM
3797
3798 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3799 chunk_offset);
ba1bf481 3800 if (ret && ret != -ENOSPC)
8f18cf13 3801 goto done;
ba1bf481
JB
3802 if (ret == -ENOSPC)
3803 failed++;
213e64da 3804 } while (key.offset-- > 0);
ba1bf481
JB
3805
3806 if (failed && !retried) {
3807 failed = 0;
3808 retried = true;
3809 goto again;
3810 } else if (failed && retried) {
3811 ret = -ENOSPC;
3812 lock_chunks(root);
3813
3814 device->total_bytes = old_size;
3815 if (device->writeable)
3816 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3817 spin_lock(&root->fs_info->free_chunk_lock);
3818 root->fs_info->free_chunk_space += diff;
3819 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3820 unlock_chunks(root);
3821 goto done;
8f18cf13
CM
3822 }
3823
d6397bae 3824 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3825 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3826 if (IS_ERR(trans)) {
3827 ret = PTR_ERR(trans);
3828 goto done;
3829 }
3830
d6397bae
CB
3831 lock_chunks(root);
3832
3833 device->disk_total_bytes = new_size;
3834 /* Now btrfs_update_device() will change the on-disk size. */
3835 ret = btrfs_update_device(trans, device);
3836 if (ret) {
3837 unlock_chunks(root);
3838 btrfs_end_transaction(trans, root);
3839 goto done;
3840 }
3841 WARN_ON(diff > old_total);
3842 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3843 unlock_chunks(root);
3844 btrfs_end_transaction(trans, root);
8f18cf13
CM
3845done:
3846 btrfs_free_path(path);
3847 return ret;
3848}
3849
125ccb0a 3850static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3851 struct btrfs_key *key,
3852 struct btrfs_chunk *chunk, int item_size)
3853{
6c41761f 3854 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3855 struct btrfs_disk_key disk_key;
3856 u32 array_size;
3857 u8 *ptr;
3858
3859 array_size = btrfs_super_sys_array_size(super_copy);
3860 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3861 return -EFBIG;
3862
3863 ptr = super_copy->sys_chunk_array + array_size;
3864 btrfs_cpu_key_to_disk(&disk_key, key);
3865 memcpy(ptr, &disk_key, sizeof(disk_key));
3866 ptr += sizeof(disk_key);
3867 memcpy(ptr, chunk, item_size);
3868 item_size += sizeof(disk_key);
3869 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3870 return 0;
3871}
3872
73c5de00
AJ
3873/*
3874 * sort the devices in descending order by max_avail, total_avail
3875 */
3876static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3877{
73c5de00
AJ
3878 const struct btrfs_device_info *di_a = a;
3879 const struct btrfs_device_info *di_b = b;
9b3f68b9 3880
73c5de00 3881 if (di_a->max_avail > di_b->max_avail)
b2117a39 3882 return -1;
73c5de00 3883 if (di_a->max_avail < di_b->max_avail)
b2117a39 3884 return 1;
73c5de00
AJ
3885 if (di_a->total_avail > di_b->total_avail)
3886 return -1;
3887 if (di_a->total_avail < di_b->total_avail)
3888 return 1;
3889 return 0;
b2117a39 3890}
0b86a832 3891
48a3b636 3892static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3893 [BTRFS_RAID_RAID10] = {
3894 .sub_stripes = 2,
3895 .dev_stripes = 1,
3896 .devs_max = 0, /* 0 == as many as possible */
3897 .devs_min = 4,
3898 .devs_increment = 2,
3899 .ncopies = 2,
3900 },
3901 [BTRFS_RAID_RAID1] = {
3902 .sub_stripes = 1,
3903 .dev_stripes = 1,
3904 .devs_max = 2,
3905 .devs_min = 2,
3906 .devs_increment = 2,
3907 .ncopies = 2,
3908 },
3909 [BTRFS_RAID_DUP] = {
3910 .sub_stripes = 1,
3911 .dev_stripes = 2,
3912 .devs_max = 1,
3913 .devs_min = 1,
3914 .devs_increment = 1,
3915 .ncopies = 2,
3916 },
3917 [BTRFS_RAID_RAID0] = {
3918 .sub_stripes = 1,
3919 .dev_stripes = 1,
3920 .devs_max = 0,
3921 .devs_min = 2,
3922 .devs_increment = 1,
3923 .ncopies = 1,
3924 },
3925 [BTRFS_RAID_SINGLE] = {
3926 .sub_stripes = 1,
3927 .dev_stripes = 1,
3928 .devs_max = 1,
3929 .devs_min = 1,
3930 .devs_increment = 1,
3931 .ncopies = 1,
3932 },
e942f883
CM
3933 [BTRFS_RAID_RAID5] = {
3934 .sub_stripes = 1,
3935 .dev_stripes = 1,
3936 .devs_max = 0,
3937 .devs_min = 2,
3938 .devs_increment = 1,
3939 .ncopies = 2,
3940 },
3941 [BTRFS_RAID_RAID6] = {
3942 .sub_stripes = 1,
3943 .dev_stripes = 1,
3944 .devs_max = 0,
3945 .devs_min = 3,
3946 .devs_increment = 1,
3947 .ncopies = 3,
3948 },
31e50229
LB
3949};
3950
53b381b3
DW
3951static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3952{
3953 /* TODO allow them to set a preferred stripe size */
3954 return 64 * 1024;
3955}
3956
3957static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3958{
53b381b3
DW
3959 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3960 return;
3961
ceda0864 3962 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3963}
3964
73c5de00 3965static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3966 struct btrfs_root *extent_root, u64 start,
3967 u64 type)
b2117a39 3968{
73c5de00
AJ
3969 struct btrfs_fs_info *info = extent_root->fs_info;
3970 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3971 struct list_head *cur;
3972 struct map_lookup *map = NULL;
3973 struct extent_map_tree *em_tree;
3974 struct extent_map *em;
3975 struct btrfs_device_info *devices_info = NULL;
3976 u64 total_avail;
3977 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3978 int data_stripes; /* number of stripes that count for
3979 block group size */
73c5de00
AJ
3980 int sub_stripes; /* sub_stripes info for map */
3981 int dev_stripes; /* stripes per dev */
3982 int devs_max; /* max devs to use */
3983 int devs_min; /* min devs needed */
3984 int devs_increment; /* ndevs has to be a multiple of this */
3985 int ncopies; /* how many copies to data has */
3986 int ret;
3987 u64 max_stripe_size;
3988 u64 max_chunk_size;
3989 u64 stripe_size;
3990 u64 num_bytes;
53b381b3 3991 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
3992 int ndevs;
3993 int i;
3994 int j;
31e50229 3995 int index;
593060d7 3996
0c460c0d 3997 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3998
73c5de00
AJ
3999 if (list_empty(&fs_devices->alloc_list))
4000 return -ENOSPC;
b2117a39 4001
31e50229 4002 index = __get_raid_index(type);
73c5de00 4003
31e50229
LB
4004 sub_stripes = btrfs_raid_array[index].sub_stripes;
4005 dev_stripes = btrfs_raid_array[index].dev_stripes;
4006 devs_max = btrfs_raid_array[index].devs_max;
4007 devs_min = btrfs_raid_array[index].devs_min;
4008 devs_increment = btrfs_raid_array[index].devs_increment;
4009 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4010
9b3f68b9 4011 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4012 max_stripe_size = 1024 * 1024 * 1024;
4013 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4014 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4015 /* for larger filesystems, use larger metadata chunks */
4016 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4017 max_stripe_size = 1024 * 1024 * 1024;
4018 else
4019 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4020 max_chunk_size = max_stripe_size;
a40a90a0 4021 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4022 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4023 max_chunk_size = 2 * max_stripe_size;
4024 } else {
4025 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4026 type);
4027 BUG_ON(1);
9b3f68b9
CM
4028 }
4029
2b82032c
YZ
4030 /* we don't want a chunk larger than 10% of writeable space */
4031 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4032 max_chunk_size);
9b3f68b9 4033
73c5de00
AJ
4034 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4035 GFP_NOFS);
4036 if (!devices_info)
4037 return -ENOMEM;
0cad8a11 4038
73c5de00 4039 cur = fs_devices->alloc_list.next;
9b3f68b9 4040
9f680ce0 4041 /*
73c5de00
AJ
4042 * in the first pass through the devices list, we gather information
4043 * about the available holes on each device.
9f680ce0 4044 */
73c5de00
AJ
4045 ndevs = 0;
4046 while (cur != &fs_devices->alloc_list) {
4047 struct btrfs_device *device;
4048 u64 max_avail;
4049 u64 dev_offset;
b2117a39 4050
73c5de00 4051 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4052
73c5de00 4053 cur = cur->next;
b2117a39 4054
73c5de00 4055 if (!device->writeable) {
31b1a2bd 4056 WARN(1, KERN_ERR
73c5de00 4057 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
4058 continue;
4059 }
b2117a39 4060
63a212ab
SB
4061 if (!device->in_fs_metadata ||
4062 device->is_tgtdev_for_dev_replace)
73c5de00 4063 continue;
b2117a39 4064
73c5de00
AJ
4065 if (device->total_bytes > device->bytes_used)
4066 total_avail = device->total_bytes - device->bytes_used;
4067 else
4068 total_avail = 0;
38c01b96 4069
4070 /* If there is no space on this device, skip it. */
4071 if (total_avail == 0)
4072 continue;
b2117a39 4073
6df9a95e 4074 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4075 max_stripe_size * dev_stripes,
4076 &dev_offset, &max_avail);
4077 if (ret && ret != -ENOSPC)
4078 goto error;
b2117a39 4079
73c5de00
AJ
4080 if (ret == 0)
4081 max_avail = max_stripe_size * dev_stripes;
b2117a39 4082
73c5de00
AJ
4083 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4084 continue;
b2117a39 4085
063d006f
ES
4086 if (ndevs == fs_devices->rw_devices) {
4087 WARN(1, "%s: found more than %llu devices\n",
4088 __func__, fs_devices->rw_devices);
4089 break;
4090 }
73c5de00
AJ
4091 devices_info[ndevs].dev_offset = dev_offset;
4092 devices_info[ndevs].max_avail = max_avail;
4093 devices_info[ndevs].total_avail = total_avail;
4094 devices_info[ndevs].dev = device;
4095 ++ndevs;
4096 }
b2117a39 4097
73c5de00
AJ
4098 /*
4099 * now sort the devices by hole size / available space
4100 */
4101 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4102 btrfs_cmp_device_info, NULL);
b2117a39 4103
73c5de00
AJ
4104 /* round down to number of usable stripes */
4105 ndevs -= ndevs % devs_increment;
b2117a39 4106
73c5de00
AJ
4107 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4108 ret = -ENOSPC;
4109 goto error;
b2117a39 4110 }
9f680ce0 4111
73c5de00
AJ
4112 if (devs_max && ndevs > devs_max)
4113 ndevs = devs_max;
4114 /*
4115 * the primary goal is to maximize the number of stripes, so use as many
4116 * devices as possible, even if the stripes are not maximum sized.
4117 */
4118 stripe_size = devices_info[ndevs-1].max_avail;
4119 num_stripes = ndevs * dev_stripes;
b2117a39 4120
53b381b3
DW
4121 /*
4122 * this will have to be fixed for RAID1 and RAID10 over
4123 * more drives
4124 */
4125 data_stripes = num_stripes / ncopies;
4126
53b381b3
DW
4127 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4128 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4129 btrfs_super_stripesize(info->super_copy));
4130 data_stripes = num_stripes - 1;
4131 }
4132 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4133 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4134 btrfs_super_stripesize(info->super_copy));
4135 data_stripes = num_stripes - 2;
4136 }
86db2578
CM
4137
4138 /*
4139 * Use the number of data stripes to figure out how big this chunk
4140 * is really going to be in terms of logical address space,
4141 * and compare that answer with the max chunk size
4142 */
4143 if (stripe_size * data_stripes > max_chunk_size) {
4144 u64 mask = (1ULL << 24) - 1;
4145 stripe_size = max_chunk_size;
4146 do_div(stripe_size, data_stripes);
4147
4148 /* bump the answer up to a 16MB boundary */
4149 stripe_size = (stripe_size + mask) & ~mask;
4150
4151 /* but don't go higher than the limits we found
4152 * while searching for free extents
4153 */
4154 if (stripe_size > devices_info[ndevs-1].max_avail)
4155 stripe_size = devices_info[ndevs-1].max_avail;
4156 }
4157
73c5de00 4158 do_div(stripe_size, dev_stripes);
37db63a4
ID
4159
4160 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4161 do_div(stripe_size, raid_stripe_len);
4162 stripe_size *= raid_stripe_len;
b2117a39
MX
4163
4164 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4165 if (!map) {
4166 ret = -ENOMEM;
4167 goto error;
4168 }
4169 map->num_stripes = num_stripes;
9b3f68b9 4170
73c5de00
AJ
4171 for (i = 0; i < ndevs; ++i) {
4172 for (j = 0; j < dev_stripes; ++j) {
4173 int s = i * dev_stripes + j;
4174 map->stripes[s].dev = devices_info[i].dev;
4175 map->stripes[s].physical = devices_info[i].dev_offset +
4176 j * stripe_size;
6324fbf3 4177 }
6324fbf3 4178 }
2b82032c 4179 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4180 map->stripe_len = raid_stripe_len;
4181 map->io_align = raid_stripe_len;
4182 map->io_width = raid_stripe_len;
2b82032c 4183 map->type = type;
2b82032c 4184 map->sub_stripes = sub_stripes;
0b86a832 4185
53b381b3 4186 num_bytes = stripe_size * data_stripes;
0b86a832 4187
73c5de00 4188 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4189
172ddd60 4190 em = alloc_extent_map();
2b82032c 4191 if (!em) {
b2117a39
MX
4192 ret = -ENOMEM;
4193 goto error;
593060d7 4194 }
2b82032c
YZ
4195 em->bdev = (struct block_device *)map;
4196 em->start = start;
73c5de00 4197 em->len = num_bytes;
2b82032c
YZ
4198 em->block_start = 0;
4199 em->block_len = em->len;
6df9a95e 4200 em->orig_block_len = stripe_size;
593060d7 4201
2b82032c 4202 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4203 write_lock(&em_tree->lock);
09a2a8f9 4204 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4205 if (!ret) {
4206 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4207 atomic_inc(&em->refs);
4208 }
890871be 4209 write_unlock(&em_tree->lock);
0f5d42b2
JB
4210 if (ret) {
4211 free_extent_map(em);
1dd4602f 4212 goto error;
0f5d42b2 4213 }
0b86a832 4214
04487488
JB
4215 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4216 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4217 start, num_bytes);
6df9a95e
JB
4218 if (ret)
4219 goto error_del_extent;
2b82032c 4220
0f5d42b2 4221 free_extent_map(em);
53b381b3
DW
4222 check_raid56_incompat_flag(extent_root->fs_info, type);
4223
b2117a39 4224 kfree(devices_info);
2b82032c 4225 return 0;
b2117a39 4226
6df9a95e 4227error_del_extent:
0f5d42b2
JB
4228 write_lock(&em_tree->lock);
4229 remove_extent_mapping(em_tree, em);
4230 write_unlock(&em_tree->lock);
4231
4232 /* One for our allocation */
4233 free_extent_map(em);
4234 /* One for the tree reference */
4235 free_extent_map(em);
b2117a39
MX
4236error:
4237 kfree(map);
4238 kfree(devices_info);
4239 return ret;
2b82032c
YZ
4240}
4241
6df9a95e 4242int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4243 struct btrfs_root *extent_root,
6df9a95e 4244 u64 chunk_offset, u64 chunk_size)
2b82032c 4245{
2b82032c
YZ
4246 struct btrfs_key key;
4247 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4248 struct btrfs_device *device;
4249 struct btrfs_chunk *chunk;
4250 struct btrfs_stripe *stripe;
6df9a95e
JB
4251 struct extent_map_tree *em_tree;
4252 struct extent_map *em;
4253 struct map_lookup *map;
4254 size_t item_size;
4255 u64 dev_offset;
4256 u64 stripe_size;
4257 int i = 0;
2b82032c
YZ
4258 int ret;
4259
6df9a95e
JB
4260 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4261 read_lock(&em_tree->lock);
4262 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4263 read_unlock(&em_tree->lock);
4264
4265 if (!em) {
4266 btrfs_crit(extent_root->fs_info, "unable to find logical "
4267 "%Lu len %Lu", chunk_offset, chunk_size);
4268 return -EINVAL;
4269 }
4270
4271 if (em->start != chunk_offset || em->len != chunk_size) {
4272 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4273 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4274 chunk_size, em->start, em->len);
4275 free_extent_map(em);
4276 return -EINVAL;
4277 }
4278
4279 map = (struct map_lookup *)em->bdev;
4280 item_size = btrfs_chunk_item_size(map->num_stripes);
4281 stripe_size = em->orig_block_len;
4282
2b82032c 4283 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4284 if (!chunk) {
4285 ret = -ENOMEM;
4286 goto out;
4287 }
4288
4289 for (i = 0; i < map->num_stripes; i++) {
4290 device = map->stripes[i].dev;
4291 dev_offset = map->stripes[i].physical;
2b82032c 4292
2b82032c 4293 device->bytes_used += stripe_size;
0b86a832 4294 ret = btrfs_update_device(trans, device);
3acd3953 4295 if (ret)
6df9a95e
JB
4296 goto out;
4297 ret = btrfs_alloc_dev_extent(trans, device,
4298 chunk_root->root_key.objectid,
4299 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4300 chunk_offset, dev_offset,
4301 stripe_size);
4302 if (ret)
4303 goto out;
2b82032c
YZ
4304 }
4305
2bf64758
JB
4306 spin_lock(&extent_root->fs_info->free_chunk_lock);
4307 extent_root->fs_info->free_chunk_space -= (stripe_size *
4308 map->num_stripes);
4309 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4310
2b82032c 4311 stripe = &chunk->stripe;
6df9a95e
JB
4312 for (i = 0; i < map->num_stripes; i++) {
4313 device = map->stripes[i].dev;
4314 dev_offset = map->stripes[i].physical;
0b86a832 4315
e17cade2
CM
4316 btrfs_set_stack_stripe_devid(stripe, device->devid);
4317 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4318 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4319 stripe++;
0b86a832
CM
4320 }
4321
2b82032c 4322 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4323 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4324 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4325 btrfs_set_stack_chunk_type(chunk, map->type);
4326 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4327 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4328 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4329 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4330 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4331
2b82032c
YZ
4332 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4333 key.type = BTRFS_CHUNK_ITEM_KEY;
4334 key.offset = chunk_offset;
0b86a832 4335
2b82032c 4336 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4337 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4338 /*
4339 * TODO: Cleanup of inserted chunk root in case of
4340 * failure.
4341 */
125ccb0a 4342 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4343 item_size);
8f18cf13 4344 }
1abe9b8a 4345
6df9a95e 4346out:
0b86a832 4347 kfree(chunk);
6df9a95e 4348 free_extent_map(em);
4ed1d16e 4349 return ret;
2b82032c 4350}
0b86a832 4351
2b82032c
YZ
4352/*
4353 * Chunk allocation falls into two parts. The first part does works
4354 * that make the new allocated chunk useable, but not do any operation
4355 * that modifies the chunk tree. The second part does the works that
4356 * require modifying the chunk tree. This division is important for the
4357 * bootstrap process of adding storage to a seed btrfs.
4358 */
4359int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4360 struct btrfs_root *extent_root, u64 type)
4361{
4362 u64 chunk_offset;
2b82032c 4363
6df9a95e
JB
4364 chunk_offset = find_next_chunk(extent_root->fs_info);
4365 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4366}
4367
d397712b 4368static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4369 struct btrfs_root *root,
4370 struct btrfs_device *device)
4371{
4372 u64 chunk_offset;
4373 u64 sys_chunk_offset;
2b82032c 4374 u64 alloc_profile;
2b82032c
YZ
4375 struct btrfs_fs_info *fs_info = root->fs_info;
4376 struct btrfs_root *extent_root = fs_info->extent_root;
4377 int ret;
4378
6df9a95e 4379 chunk_offset = find_next_chunk(fs_info);
de98ced9 4380 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4381 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4382 alloc_profile);
79787eaa
JM
4383 if (ret)
4384 return ret;
2b82032c 4385
6df9a95e 4386 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4387 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4388 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4389 alloc_profile);
005d6427
DS
4390 if (ret) {
4391 btrfs_abort_transaction(trans, root, ret);
4392 goto out;
4393 }
2b82032c
YZ
4394
4395 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4396 if (ret)
005d6427 4397 btrfs_abort_transaction(trans, root, ret);
005d6427 4398out:
79787eaa 4399 return ret;
2b82032c
YZ
4400}
4401
4402int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4403{
4404 struct extent_map *em;
4405 struct map_lookup *map;
4406 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4407 int readonly = 0;
4408 int i;
4409
890871be 4410 read_lock(&map_tree->map_tree.lock);
2b82032c 4411 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4412 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4413 if (!em)
4414 return 1;
4415
f48b9075
JB
4416 if (btrfs_test_opt(root, DEGRADED)) {
4417 free_extent_map(em);
4418 return 0;
4419 }
4420
2b82032c
YZ
4421 map = (struct map_lookup *)em->bdev;
4422 for (i = 0; i < map->num_stripes; i++) {
4423 if (!map->stripes[i].dev->writeable) {
4424 readonly = 1;
4425 break;
4426 }
4427 }
0b86a832 4428 free_extent_map(em);
2b82032c 4429 return readonly;
0b86a832
CM
4430}
4431
4432void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4433{
a8067e02 4434 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4435}
4436
4437void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4438{
4439 struct extent_map *em;
4440
d397712b 4441 while (1) {
890871be 4442 write_lock(&tree->map_tree.lock);
0b86a832
CM
4443 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4444 if (em)
4445 remove_extent_mapping(&tree->map_tree, em);
890871be 4446 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4447 if (!em)
4448 break;
4449 kfree(em->bdev);
4450 /* once for us */
4451 free_extent_map(em);
4452 /* once for the tree */
4453 free_extent_map(em);
4454 }
4455}
4456
5d964051 4457int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4458{
5d964051 4459 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4460 struct extent_map *em;
4461 struct map_lookup *map;
4462 struct extent_map_tree *em_tree = &map_tree->map_tree;
4463 int ret;
4464
890871be 4465 read_lock(&em_tree->lock);
f188591e 4466 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4467 read_unlock(&em_tree->lock);
f188591e 4468
fb7669b5
JB
4469 /*
4470 * We could return errors for these cases, but that could get ugly and
4471 * we'd probably do the same thing which is just not do anything else
4472 * and exit, so return 1 so the callers don't try to use other copies.
4473 */
4474 if (!em) {
ccf39f92 4475 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4476 logical+len);
4477 return 1;
4478 }
4479
4480 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4481 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4482 "%Lu-%Lu\n", logical, logical+len, em->start,
4483 em->start + em->len);
4484 return 1;
4485 }
4486
f188591e
CM
4487 map = (struct map_lookup *)em->bdev;
4488 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4489 ret = map->num_stripes;
321aecc6
CM
4490 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4491 ret = map->sub_stripes;
53b381b3
DW
4492 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4493 ret = 2;
4494 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4495 ret = 3;
f188591e
CM
4496 else
4497 ret = 1;
4498 free_extent_map(em);
ad6d620e
SB
4499
4500 btrfs_dev_replace_lock(&fs_info->dev_replace);
4501 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4502 ret++;
4503 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4504
f188591e
CM
4505 return ret;
4506}
4507
53b381b3
DW
4508unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4509 struct btrfs_mapping_tree *map_tree,
4510 u64 logical)
4511{
4512 struct extent_map *em;
4513 struct map_lookup *map;
4514 struct extent_map_tree *em_tree = &map_tree->map_tree;
4515 unsigned long len = root->sectorsize;
4516
4517 read_lock(&em_tree->lock);
4518 em = lookup_extent_mapping(em_tree, logical, len);
4519 read_unlock(&em_tree->lock);
4520 BUG_ON(!em);
4521
4522 BUG_ON(em->start > logical || em->start + em->len < logical);
4523 map = (struct map_lookup *)em->bdev;
4524 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4525 BTRFS_BLOCK_GROUP_RAID6)) {
4526 len = map->stripe_len * nr_data_stripes(map);
4527 }
4528 free_extent_map(em);
4529 return len;
4530}
4531
4532int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4533 u64 logical, u64 len, int mirror_num)
4534{
4535 struct extent_map *em;
4536 struct map_lookup *map;
4537 struct extent_map_tree *em_tree = &map_tree->map_tree;
4538 int ret = 0;
4539
4540 read_lock(&em_tree->lock);
4541 em = lookup_extent_mapping(em_tree, logical, len);
4542 read_unlock(&em_tree->lock);
4543 BUG_ON(!em);
4544
4545 BUG_ON(em->start > logical || em->start + em->len < logical);
4546 map = (struct map_lookup *)em->bdev;
4547 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4548 BTRFS_BLOCK_GROUP_RAID6))
4549 ret = 1;
4550 free_extent_map(em);
4551 return ret;
4552}
4553
30d9861f
SB
4554static int find_live_mirror(struct btrfs_fs_info *fs_info,
4555 struct map_lookup *map, int first, int num,
4556 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4557{
4558 int i;
30d9861f
SB
4559 int tolerance;
4560 struct btrfs_device *srcdev;
4561
4562 if (dev_replace_is_ongoing &&
4563 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4564 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4565 srcdev = fs_info->dev_replace.srcdev;
4566 else
4567 srcdev = NULL;
4568
4569 /*
4570 * try to avoid the drive that is the source drive for a
4571 * dev-replace procedure, only choose it if no other non-missing
4572 * mirror is available
4573 */
4574 for (tolerance = 0; tolerance < 2; tolerance++) {
4575 if (map->stripes[optimal].dev->bdev &&
4576 (tolerance || map->stripes[optimal].dev != srcdev))
4577 return optimal;
4578 for (i = first; i < first + num; i++) {
4579 if (map->stripes[i].dev->bdev &&
4580 (tolerance || map->stripes[i].dev != srcdev))
4581 return i;
4582 }
dfe25020 4583 }
30d9861f 4584
dfe25020
CM
4585 /* we couldn't find one that doesn't fail. Just return something
4586 * and the io error handling code will clean up eventually
4587 */
4588 return optimal;
4589}
4590
53b381b3
DW
4591static inline int parity_smaller(u64 a, u64 b)
4592{
4593 return a > b;
4594}
4595
4596/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4597static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4598{
4599 struct btrfs_bio_stripe s;
4600 int i;
4601 u64 l;
4602 int again = 1;
4603
4604 while (again) {
4605 again = 0;
4606 for (i = 0; i < bbio->num_stripes - 1; i++) {
4607 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4608 s = bbio->stripes[i];
4609 l = raid_map[i];
4610 bbio->stripes[i] = bbio->stripes[i+1];
4611 raid_map[i] = raid_map[i+1];
4612 bbio->stripes[i+1] = s;
4613 raid_map[i+1] = l;
4614 again = 1;
4615 }
4616 }
4617 }
4618}
4619
3ec706c8 4620static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4621 u64 logical, u64 *length,
a1d3c478 4622 struct btrfs_bio **bbio_ret,
53b381b3 4623 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4624{
4625 struct extent_map *em;
4626 struct map_lookup *map;
3ec706c8 4627 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4628 struct extent_map_tree *em_tree = &map_tree->map_tree;
4629 u64 offset;
593060d7 4630 u64 stripe_offset;
fce3bb9a 4631 u64 stripe_end_offset;
593060d7 4632 u64 stripe_nr;
fce3bb9a
LD
4633 u64 stripe_nr_orig;
4634 u64 stripe_nr_end;
53b381b3
DW
4635 u64 stripe_len;
4636 u64 *raid_map = NULL;
593060d7 4637 int stripe_index;
cea9e445 4638 int i;
de11cc12 4639 int ret = 0;
f2d8d74d 4640 int num_stripes;
a236aed1 4641 int max_errors = 0;
a1d3c478 4642 struct btrfs_bio *bbio = NULL;
472262f3
SB
4643 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4644 int dev_replace_is_ongoing = 0;
4645 int num_alloc_stripes;
ad6d620e
SB
4646 int patch_the_first_stripe_for_dev_replace = 0;
4647 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4648 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4649
890871be 4650 read_lock(&em_tree->lock);
0b86a832 4651 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4652 read_unlock(&em_tree->lock);
f2d8d74d 4653
3b951516 4654 if (!em) {
c2cf52eb 4655 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4656 logical, *length);
9bb91873
JB
4657 return -EINVAL;
4658 }
4659
4660 if (em->start > logical || em->start + em->len < logical) {
4661 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4662 "found %Lu-%Lu\n", logical, em->start,
4663 em->start + em->len);
4664 return -EINVAL;
3b951516 4665 }
0b86a832 4666
0b86a832
CM
4667 map = (struct map_lookup *)em->bdev;
4668 offset = logical - em->start;
593060d7 4669
53b381b3 4670 stripe_len = map->stripe_len;
593060d7
CM
4671 stripe_nr = offset;
4672 /*
4673 * stripe_nr counts the total number of stripes we have to stride
4674 * to get to this block
4675 */
53b381b3 4676 do_div(stripe_nr, stripe_len);
593060d7 4677
53b381b3 4678 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4679 BUG_ON(offset < stripe_offset);
4680
4681 /* stripe_offset is the offset of this block in its stripe*/
4682 stripe_offset = offset - stripe_offset;
4683
53b381b3
DW
4684 /* if we're here for raid56, we need to know the stripe aligned start */
4685 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4686 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4687 raid56_full_stripe_start = offset;
4688
4689 /* allow a write of a full stripe, but make sure we don't
4690 * allow straddling of stripes
4691 */
4692 do_div(raid56_full_stripe_start, full_stripe_len);
4693 raid56_full_stripe_start *= full_stripe_len;
4694 }
4695
4696 if (rw & REQ_DISCARD) {
4697 /* we don't discard raid56 yet */
4698 if (map->type &
4699 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4700 ret = -EOPNOTSUPP;
4701 goto out;
4702 }
fce3bb9a 4703 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4704 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4705 u64 max_len;
4706 /* For writes to RAID[56], allow a full stripeset across all disks.
4707 For other RAID types and for RAID[56] reads, just allow a single
4708 stripe (on a single disk). */
4709 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4710 (rw & REQ_WRITE)) {
4711 max_len = stripe_len * nr_data_stripes(map) -
4712 (offset - raid56_full_stripe_start);
4713 } else {
4714 /* we limit the length of each bio to what fits in a stripe */
4715 max_len = stripe_len - stripe_offset;
4716 }
4717 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4718 } else {
4719 *length = em->len - offset;
4720 }
f2d8d74d 4721
53b381b3
DW
4722 /* This is for when we're called from btrfs_merge_bio_hook() and all
4723 it cares about is the length */
a1d3c478 4724 if (!bbio_ret)
cea9e445
CM
4725 goto out;
4726
472262f3
SB
4727 btrfs_dev_replace_lock(dev_replace);
4728 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4729 if (!dev_replace_is_ongoing)
4730 btrfs_dev_replace_unlock(dev_replace);
4731
ad6d620e
SB
4732 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4733 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4734 dev_replace->tgtdev != NULL) {
4735 /*
4736 * in dev-replace case, for repair case (that's the only
4737 * case where the mirror is selected explicitly when
4738 * calling btrfs_map_block), blocks left of the left cursor
4739 * can also be read from the target drive.
4740 * For REQ_GET_READ_MIRRORS, the target drive is added as
4741 * the last one to the array of stripes. For READ, it also
4742 * needs to be supported using the same mirror number.
4743 * If the requested block is not left of the left cursor,
4744 * EIO is returned. This can happen because btrfs_num_copies()
4745 * returns one more in the dev-replace case.
4746 */
4747 u64 tmp_length = *length;
4748 struct btrfs_bio *tmp_bbio = NULL;
4749 int tmp_num_stripes;
4750 u64 srcdev_devid = dev_replace->srcdev->devid;
4751 int index_srcdev = 0;
4752 int found = 0;
4753 u64 physical_of_found = 0;
4754
4755 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4756 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4757 if (ret) {
4758 WARN_ON(tmp_bbio != NULL);
4759 goto out;
4760 }
4761
4762 tmp_num_stripes = tmp_bbio->num_stripes;
4763 if (mirror_num > tmp_num_stripes) {
4764 /*
4765 * REQ_GET_READ_MIRRORS does not contain this
4766 * mirror, that means that the requested area
4767 * is not left of the left cursor
4768 */
4769 ret = -EIO;
4770 kfree(tmp_bbio);
4771 goto out;
4772 }
4773
4774 /*
4775 * process the rest of the function using the mirror_num
4776 * of the source drive. Therefore look it up first.
4777 * At the end, patch the device pointer to the one of the
4778 * target drive.
4779 */
4780 for (i = 0; i < tmp_num_stripes; i++) {
4781 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4782 /*
4783 * In case of DUP, in order to keep it
4784 * simple, only add the mirror with the
4785 * lowest physical address
4786 */
4787 if (found &&
4788 physical_of_found <=
4789 tmp_bbio->stripes[i].physical)
4790 continue;
4791 index_srcdev = i;
4792 found = 1;
4793 physical_of_found =
4794 tmp_bbio->stripes[i].physical;
4795 }
4796 }
4797
4798 if (found) {
4799 mirror_num = index_srcdev + 1;
4800 patch_the_first_stripe_for_dev_replace = 1;
4801 physical_to_patch_in_first_stripe = physical_of_found;
4802 } else {
4803 WARN_ON(1);
4804 ret = -EIO;
4805 kfree(tmp_bbio);
4806 goto out;
4807 }
4808
4809 kfree(tmp_bbio);
4810 } else if (mirror_num > map->num_stripes) {
4811 mirror_num = 0;
4812 }
4813
f2d8d74d 4814 num_stripes = 1;
cea9e445 4815 stripe_index = 0;
fce3bb9a 4816 stripe_nr_orig = stripe_nr;
fda2832f 4817 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4818 do_div(stripe_nr_end, map->stripe_len);
4819 stripe_end_offset = stripe_nr_end * map->stripe_len -
4820 (offset + *length);
53b381b3 4821
fce3bb9a
LD
4822 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4823 if (rw & REQ_DISCARD)
4824 num_stripes = min_t(u64, map->num_stripes,
4825 stripe_nr_end - stripe_nr_orig);
4826 stripe_index = do_div(stripe_nr, map->num_stripes);
4827 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4828 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4829 num_stripes = map->num_stripes;
2fff734f 4830 else if (mirror_num)
f188591e 4831 stripe_index = mirror_num - 1;
dfe25020 4832 else {
30d9861f 4833 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4834 map->num_stripes,
30d9861f
SB
4835 current->pid % map->num_stripes,
4836 dev_replace_is_ongoing);
a1d3c478 4837 mirror_num = stripe_index + 1;
dfe25020 4838 }
2fff734f 4839
611f0e00 4840 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4841 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4842 num_stripes = map->num_stripes;
a1d3c478 4843 } else if (mirror_num) {
f188591e 4844 stripe_index = mirror_num - 1;
a1d3c478
JS
4845 } else {
4846 mirror_num = 1;
4847 }
2fff734f 4848
321aecc6
CM
4849 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4850 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4851
4852 stripe_index = do_div(stripe_nr, factor);
4853 stripe_index *= map->sub_stripes;
4854
29a8d9a0 4855 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4856 num_stripes = map->sub_stripes;
fce3bb9a
LD
4857 else if (rw & REQ_DISCARD)
4858 num_stripes = min_t(u64, map->sub_stripes *
4859 (stripe_nr_end - stripe_nr_orig),
4860 map->num_stripes);
321aecc6
CM
4861 else if (mirror_num)
4862 stripe_index += mirror_num - 1;
dfe25020 4863 else {
3e74317a 4864 int old_stripe_index = stripe_index;
30d9861f
SB
4865 stripe_index = find_live_mirror(fs_info, map,
4866 stripe_index,
dfe25020 4867 map->sub_stripes, stripe_index +
30d9861f
SB
4868 current->pid % map->sub_stripes,
4869 dev_replace_is_ongoing);
3e74317a 4870 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4871 }
53b381b3
DW
4872
4873 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4874 BTRFS_BLOCK_GROUP_RAID6)) {
4875 u64 tmp;
4876
4877 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4878 && raid_map_ret) {
4879 int i, rot;
4880
4881 /* push stripe_nr back to the start of the full stripe */
4882 stripe_nr = raid56_full_stripe_start;
4883 do_div(stripe_nr, stripe_len);
4884
4885 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4886
4887 /* RAID[56] write or recovery. Return all stripes */
4888 num_stripes = map->num_stripes;
4889 max_errors = nr_parity_stripes(map);
4890
4891 raid_map = kmalloc(sizeof(u64) * num_stripes,
4892 GFP_NOFS);
4893 if (!raid_map) {
4894 ret = -ENOMEM;
4895 goto out;
4896 }
4897
4898 /* Work out the disk rotation on this stripe-set */
4899 tmp = stripe_nr;
4900 rot = do_div(tmp, num_stripes);
4901
4902 /* Fill in the logical address of each stripe */
4903 tmp = stripe_nr * nr_data_stripes(map);
4904 for (i = 0; i < nr_data_stripes(map); i++)
4905 raid_map[(i+rot) % num_stripes] =
4906 em->start + (tmp + i) * map->stripe_len;
4907
4908 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4909 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4910 raid_map[(i+rot+1) % num_stripes] =
4911 RAID6_Q_STRIPE;
4912
4913 *length = map->stripe_len;
4914 stripe_index = 0;
4915 stripe_offset = 0;
4916 } else {
4917 /*
4918 * Mirror #0 or #1 means the original data block.
4919 * Mirror #2 is RAID5 parity block.
4920 * Mirror #3 is RAID6 Q block.
4921 */
4922 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4923 if (mirror_num > 1)
4924 stripe_index = nr_data_stripes(map) +
4925 mirror_num - 2;
4926
4927 /* We distribute the parity blocks across stripes */
4928 tmp = stripe_nr + stripe_index;
4929 stripe_index = do_div(tmp, map->num_stripes);
4930 }
8790d502
CM
4931 } else {
4932 /*
4933 * after this do_div call, stripe_nr is the number of stripes
4934 * on this device we have to walk to find the data, and
4935 * stripe_index is the number of our device in the stripe array
4936 */
4937 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4938 mirror_num = stripe_index + 1;
8790d502 4939 }
593060d7 4940 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4941
472262f3 4942 num_alloc_stripes = num_stripes;
ad6d620e
SB
4943 if (dev_replace_is_ongoing) {
4944 if (rw & (REQ_WRITE | REQ_DISCARD))
4945 num_alloc_stripes <<= 1;
4946 if (rw & REQ_GET_READ_MIRRORS)
4947 num_alloc_stripes++;
4948 }
472262f3 4949 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4950 if (!bbio) {
eb2067f7 4951 kfree(raid_map);
de11cc12
LZ
4952 ret = -ENOMEM;
4953 goto out;
4954 }
4955 atomic_set(&bbio->error, 0);
4956
fce3bb9a 4957 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4958 int factor = 0;
4959 int sub_stripes = 0;
4960 u64 stripes_per_dev = 0;
4961 u32 remaining_stripes = 0;
b89203f7 4962 u32 last_stripe = 0;
ec9ef7a1
LZ
4963
4964 if (map->type &
4965 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4966 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4967 sub_stripes = 1;
4968 else
4969 sub_stripes = map->sub_stripes;
4970
4971 factor = map->num_stripes / sub_stripes;
4972 stripes_per_dev = div_u64_rem(stripe_nr_end -
4973 stripe_nr_orig,
4974 factor,
4975 &remaining_stripes);
b89203f7
LB
4976 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4977 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4978 }
4979
fce3bb9a 4980 for (i = 0; i < num_stripes; i++) {
a1d3c478 4981 bbio->stripes[i].physical =
f2d8d74d
CM
4982 map->stripes[stripe_index].physical +
4983 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4984 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4985
ec9ef7a1
LZ
4986 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4987 BTRFS_BLOCK_GROUP_RAID10)) {
4988 bbio->stripes[i].length = stripes_per_dev *
4989 map->stripe_len;
b89203f7 4990
ec9ef7a1
LZ
4991 if (i / sub_stripes < remaining_stripes)
4992 bbio->stripes[i].length +=
4993 map->stripe_len;
b89203f7
LB
4994
4995 /*
4996 * Special for the first stripe and
4997 * the last stripe:
4998 *
4999 * |-------|...|-------|
5000 * |----------|
5001 * off end_off
5002 */
ec9ef7a1 5003 if (i < sub_stripes)
a1d3c478 5004 bbio->stripes[i].length -=
fce3bb9a 5005 stripe_offset;
b89203f7
LB
5006
5007 if (stripe_index >= last_stripe &&
5008 stripe_index <= (last_stripe +
5009 sub_stripes - 1))
a1d3c478 5010 bbio->stripes[i].length -=
fce3bb9a 5011 stripe_end_offset;
b89203f7 5012
ec9ef7a1
LZ
5013 if (i == sub_stripes - 1)
5014 stripe_offset = 0;
fce3bb9a 5015 } else
a1d3c478 5016 bbio->stripes[i].length = *length;
fce3bb9a
LD
5017
5018 stripe_index++;
5019 if (stripe_index == map->num_stripes) {
5020 /* This could only happen for RAID0/10 */
5021 stripe_index = 0;
5022 stripe_nr++;
5023 }
5024 }
5025 } else {
5026 for (i = 0; i < num_stripes; i++) {
a1d3c478 5027 bbio->stripes[i].physical =
212a17ab
LT
5028 map->stripes[stripe_index].physical +
5029 stripe_offset +
5030 stripe_nr * map->stripe_len;
a1d3c478 5031 bbio->stripes[i].dev =
212a17ab 5032 map->stripes[stripe_index].dev;
fce3bb9a 5033 stripe_index++;
f2d8d74d 5034 }
593060d7 5035 }
de11cc12 5036
29a8d9a0 5037 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5038 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5039 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5040 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5041 BTRFS_BLOCK_GROUP_DUP)) {
5042 max_errors = 1;
53b381b3
DW
5043 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5044 max_errors = 2;
de11cc12 5045 }
f2d8d74d 5046 }
de11cc12 5047
472262f3
SB
5048 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5049 dev_replace->tgtdev != NULL) {
5050 int index_where_to_add;
5051 u64 srcdev_devid = dev_replace->srcdev->devid;
5052
5053 /*
5054 * duplicate the write operations while the dev replace
5055 * procedure is running. Since the copying of the old disk
5056 * to the new disk takes place at run time while the
5057 * filesystem is mounted writable, the regular write
5058 * operations to the old disk have to be duplicated to go
5059 * to the new disk as well.
5060 * Note that device->missing is handled by the caller, and
5061 * that the write to the old disk is already set up in the
5062 * stripes array.
5063 */
5064 index_where_to_add = num_stripes;
5065 for (i = 0; i < num_stripes; i++) {
5066 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5067 /* write to new disk, too */
5068 struct btrfs_bio_stripe *new =
5069 bbio->stripes + index_where_to_add;
5070 struct btrfs_bio_stripe *old =
5071 bbio->stripes + i;
5072
5073 new->physical = old->physical;
5074 new->length = old->length;
5075 new->dev = dev_replace->tgtdev;
5076 index_where_to_add++;
5077 max_errors++;
5078 }
5079 }
5080 num_stripes = index_where_to_add;
ad6d620e
SB
5081 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5082 dev_replace->tgtdev != NULL) {
5083 u64 srcdev_devid = dev_replace->srcdev->devid;
5084 int index_srcdev = 0;
5085 int found = 0;
5086 u64 physical_of_found = 0;
5087
5088 /*
5089 * During the dev-replace procedure, the target drive can
5090 * also be used to read data in case it is needed to repair
5091 * a corrupt block elsewhere. This is possible if the
5092 * requested area is left of the left cursor. In this area,
5093 * the target drive is a full copy of the source drive.
5094 */
5095 for (i = 0; i < num_stripes; i++) {
5096 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5097 /*
5098 * In case of DUP, in order to keep it
5099 * simple, only add the mirror with the
5100 * lowest physical address
5101 */
5102 if (found &&
5103 physical_of_found <=
5104 bbio->stripes[i].physical)
5105 continue;
5106 index_srcdev = i;
5107 found = 1;
5108 physical_of_found = bbio->stripes[i].physical;
5109 }
5110 }
5111 if (found) {
5112 u64 length = map->stripe_len;
5113
5114 if (physical_of_found + length <=
5115 dev_replace->cursor_left) {
5116 struct btrfs_bio_stripe *tgtdev_stripe =
5117 bbio->stripes + num_stripes;
5118
5119 tgtdev_stripe->physical = physical_of_found;
5120 tgtdev_stripe->length =
5121 bbio->stripes[index_srcdev].length;
5122 tgtdev_stripe->dev = dev_replace->tgtdev;
5123
5124 num_stripes++;
5125 }
5126 }
472262f3
SB
5127 }
5128
de11cc12
LZ
5129 *bbio_ret = bbio;
5130 bbio->num_stripes = num_stripes;
5131 bbio->max_errors = max_errors;
5132 bbio->mirror_num = mirror_num;
ad6d620e
SB
5133
5134 /*
5135 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5136 * mirror_num == num_stripes + 1 && dev_replace target drive is
5137 * available as a mirror
5138 */
5139 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5140 WARN_ON(num_stripes > 1);
5141 bbio->stripes[0].dev = dev_replace->tgtdev;
5142 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5143 bbio->mirror_num = map->num_stripes + 1;
5144 }
53b381b3
DW
5145 if (raid_map) {
5146 sort_parity_stripes(bbio, raid_map);
5147 *raid_map_ret = raid_map;
5148 }
cea9e445 5149out:
472262f3
SB
5150 if (dev_replace_is_ongoing)
5151 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5152 free_extent_map(em);
de11cc12 5153 return ret;
0b86a832
CM
5154}
5155
3ec706c8 5156int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5157 u64 logical, u64 *length,
a1d3c478 5158 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5159{
3ec706c8 5160 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5161 mirror_num, NULL);
f2d8d74d
CM
5162}
5163
a512bbf8
YZ
5164int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5165 u64 chunk_start, u64 physical, u64 devid,
5166 u64 **logical, int *naddrs, int *stripe_len)
5167{
5168 struct extent_map_tree *em_tree = &map_tree->map_tree;
5169 struct extent_map *em;
5170 struct map_lookup *map;
5171 u64 *buf;
5172 u64 bytenr;
5173 u64 length;
5174 u64 stripe_nr;
53b381b3 5175 u64 rmap_len;
a512bbf8
YZ
5176 int i, j, nr = 0;
5177
890871be 5178 read_lock(&em_tree->lock);
a512bbf8 5179 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5180 read_unlock(&em_tree->lock);
a512bbf8 5181
835d974f
JB
5182 if (!em) {
5183 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5184 chunk_start);
5185 return -EIO;
5186 }
5187
5188 if (em->start != chunk_start) {
5189 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5190 em->start, chunk_start);
5191 free_extent_map(em);
5192 return -EIO;
5193 }
a512bbf8
YZ
5194 map = (struct map_lookup *)em->bdev;
5195
5196 length = em->len;
53b381b3
DW
5197 rmap_len = map->stripe_len;
5198
a512bbf8
YZ
5199 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5200 do_div(length, map->num_stripes / map->sub_stripes);
5201 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5202 do_div(length, map->num_stripes);
53b381b3
DW
5203 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5204 BTRFS_BLOCK_GROUP_RAID6)) {
5205 do_div(length, nr_data_stripes(map));
5206 rmap_len = map->stripe_len * nr_data_stripes(map);
5207 }
a512bbf8
YZ
5208
5209 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5210 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5211
5212 for (i = 0; i < map->num_stripes; i++) {
5213 if (devid && map->stripes[i].dev->devid != devid)
5214 continue;
5215 if (map->stripes[i].physical > physical ||
5216 map->stripes[i].physical + length <= physical)
5217 continue;
5218
5219 stripe_nr = physical - map->stripes[i].physical;
5220 do_div(stripe_nr, map->stripe_len);
5221
5222 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5223 stripe_nr = stripe_nr * map->num_stripes + i;
5224 do_div(stripe_nr, map->sub_stripes);
5225 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5226 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5227 } /* else if RAID[56], multiply by nr_data_stripes().
5228 * Alternatively, just use rmap_len below instead of
5229 * map->stripe_len */
5230
5231 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5232 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5233 for (j = 0; j < nr; j++) {
5234 if (buf[j] == bytenr)
5235 break;
5236 }
934d375b
CM
5237 if (j == nr) {
5238 WARN_ON(nr >= map->num_stripes);
a512bbf8 5239 buf[nr++] = bytenr;
934d375b 5240 }
a512bbf8
YZ
5241 }
5242
a512bbf8
YZ
5243 *logical = buf;
5244 *naddrs = nr;
53b381b3 5245 *stripe_len = rmap_len;
a512bbf8
YZ
5246
5247 free_extent_map(em);
5248 return 0;
f2d8d74d
CM
5249}
5250
a1d3c478 5251static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5252{
9be3395b 5253 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5254 int is_orig_bio = 0;
8790d502 5255
442a4f63 5256 if (err) {
a1d3c478 5257 atomic_inc(&bbio->error);
442a4f63
SB
5258 if (err == -EIO || err == -EREMOTEIO) {
5259 unsigned int stripe_index =
9be3395b 5260 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5261 struct btrfs_device *dev;
5262
5263 BUG_ON(stripe_index >= bbio->num_stripes);
5264 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5265 if (dev->bdev) {
5266 if (bio->bi_rw & WRITE)
5267 btrfs_dev_stat_inc(dev,
5268 BTRFS_DEV_STAT_WRITE_ERRS);
5269 else
5270 btrfs_dev_stat_inc(dev,
5271 BTRFS_DEV_STAT_READ_ERRS);
5272 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5273 btrfs_dev_stat_inc(dev,
5274 BTRFS_DEV_STAT_FLUSH_ERRS);
5275 btrfs_dev_stat_print_on_error(dev);
5276 }
442a4f63
SB
5277 }
5278 }
8790d502 5279
a1d3c478 5280 if (bio == bbio->orig_bio)
7d2b4daa
CM
5281 is_orig_bio = 1;
5282
a1d3c478 5283 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5284 if (!is_orig_bio) {
5285 bio_put(bio);
a1d3c478 5286 bio = bbio->orig_bio;
7d2b4daa 5287 }
a1d3c478
JS
5288 bio->bi_private = bbio->private;
5289 bio->bi_end_io = bbio->end_io;
9be3395b 5290 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5291 /* only send an error to the higher layers if it is
53b381b3 5292 * beyond the tolerance of the btrfs bio
a236aed1 5293 */
a1d3c478 5294 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5295 err = -EIO;
5dbc8fca 5296 } else {
1259ab75
CM
5297 /*
5298 * this bio is actually up to date, we didn't
5299 * go over the max number of errors
5300 */
5301 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5302 err = 0;
1259ab75 5303 }
a1d3c478 5304 kfree(bbio);
8790d502
CM
5305
5306 bio_endio(bio, err);
7d2b4daa 5307 } else if (!is_orig_bio) {
8790d502
CM
5308 bio_put(bio);
5309 }
8790d502
CM
5310}
5311
8b712842
CM
5312struct async_sched {
5313 struct bio *bio;
5314 int rw;
5315 struct btrfs_fs_info *info;
5316 struct btrfs_work work;
5317};
5318
5319/*
5320 * see run_scheduled_bios for a description of why bios are collected for
5321 * async submit.
5322 *
5323 * This will add one bio to the pending list for a device and make sure
5324 * the work struct is scheduled.
5325 */
48a3b636
ES
5326static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5327 struct btrfs_device *device,
5328 int rw, struct bio *bio)
8b712842
CM
5329{
5330 int should_queue = 1;
ffbd517d 5331 struct btrfs_pending_bios *pending_bios;
8b712842 5332
53b381b3
DW
5333 if (device->missing || !device->bdev) {
5334 bio_endio(bio, -EIO);
5335 return;
5336 }
5337
8b712842 5338 /* don't bother with additional async steps for reads, right now */
7b6d91da 5339 if (!(rw & REQ_WRITE)) {
492bb6de 5340 bio_get(bio);
21adbd5c 5341 btrfsic_submit_bio(rw, bio);
492bb6de 5342 bio_put(bio);
143bede5 5343 return;
8b712842
CM
5344 }
5345
5346 /*
0986fe9e 5347 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5348 * higher layers. Otherwise, the async bio makes it appear we have
5349 * made progress against dirty pages when we've really just put it
5350 * on a queue for later
5351 */
0986fe9e 5352 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5353 WARN_ON(bio->bi_next);
8b712842
CM
5354 bio->bi_next = NULL;
5355 bio->bi_rw |= rw;
5356
5357 spin_lock(&device->io_lock);
7b6d91da 5358 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5359 pending_bios = &device->pending_sync_bios;
5360 else
5361 pending_bios = &device->pending_bios;
8b712842 5362
ffbd517d
CM
5363 if (pending_bios->tail)
5364 pending_bios->tail->bi_next = bio;
8b712842 5365
ffbd517d
CM
5366 pending_bios->tail = bio;
5367 if (!pending_bios->head)
5368 pending_bios->head = bio;
8b712842
CM
5369 if (device->running_pending)
5370 should_queue = 0;
5371
5372 spin_unlock(&device->io_lock);
5373
5374 if (should_queue)
1cc127b5
CM
5375 btrfs_queue_worker(&root->fs_info->submit_workers,
5376 &device->work);
8b712842
CM
5377}
5378
de1ee92a
JB
5379static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5380 sector_t sector)
5381{
5382 struct bio_vec *prev;
5383 struct request_queue *q = bdev_get_queue(bdev);
5384 unsigned short max_sectors = queue_max_sectors(q);
5385 struct bvec_merge_data bvm = {
5386 .bi_bdev = bdev,
5387 .bi_sector = sector,
5388 .bi_rw = bio->bi_rw,
5389 };
5390
5391 if (bio->bi_vcnt == 0) {
5392 WARN_ON(1);
5393 return 1;
5394 }
5395
5396 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5397 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5398 return 0;
5399
5400 if (!q->merge_bvec_fn)
5401 return 1;
5402
5403 bvm.bi_size = bio->bi_size - prev->bv_len;
5404 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5405 return 0;
5406 return 1;
5407}
5408
5409static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5410 struct bio *bio, u64 physical, int dev_nr,
5411 int rw, int async)
5412{
5413 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5414
5415 bio->bi_private = bbio;
9be3395b 5416 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a
JB
5417 bio->bi_end_io = btrfs_end_bio;
5418 bio->bi_sector = physical >> 9;
5419#ifdef DEBUG
5420 {
5421 struct rcu_string *name;
5422
5423 rcu_read_lock();
5424 name = rcu_dereference(dev->name);
d1423248 5425 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5426 "(%s id %llu), size=%u\n", rw,
5427 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5428 name->str, dev->devid, bio->bi_size);
5429 rcu_read_unlock();
5430 }
5431#endif
5432 bio->bi_bdev = dev->bdev;
5433 if (async)
53b381b3 5434 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5435 else
5436 btrfsic_submit_bio(rw, bio);
5437}
5438
5439static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5440 struct bio *first_bio, struct btrfs_device *dev,
5441 int dev_nr, int rw, int async)
5442{
5443 struct bio_vec *bvec = first_bio->bi_io_vec;
5444 struct bio *bio;
5445 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5446 u64 physical = bbio->stripes[dev_nr].physical;
5447
5448again:
5449 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5450 if (!bio)
5451 return -ENOMEM;
5452
5453 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5454 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5455 bvec->bv_offset) < bvec->bv_len) {
5456 u64 len = bio->bi_size;
5457
5458 atomic_inc(&bbio->stripes_pending);
5459 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5460 rw, async);
5461 physical += len;
5462 goto again;
5463 }
5464 bvec++;
5465 }
5466
5467 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5468 return 0;
5469}
5470
5471static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5472{
5473 atomic_inc(&bbio->error);
5474 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5475 bio->bi_private = bbio->private;
5476 bio->bi_end_io = bbio->end_io;
9be3395b 5477 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
de1ee92a
JB
5478 bio->bi_sector = logical >> 9;
5479 kfree(bbio);
5480 bio_endio(bio, -EIO);
5481 }
5482}
5483
f188591e 5484int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5485 int mirror_num, int async_submit)
0b86a832 5486{
0b86a832 5487 struct btrfs_device *dev;
8790d502 5488 struct bio *first_bio = bio;
a62b9401 5489 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5490 u64 length = 0;
5491 u64 map_length;
53b381b3 5492 u64 *raid_map = NULL;
0b86a832 5493 int ret;
8790d502
CM
5494 int dev_nr = 0;
5495 int total_devs = 1;
a1d3c478 5496 struct btrfs_bio *bbio = NULL;
0b86a832 5497
f2d8d74d 5498 length = bio->bi_size;
0b86a832 5499 map_length = length;
cea9e445 5500
53b381b3
DW
5501 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5502 mirror_num, &raid_map);
5503 if (ret) /* -ENOMEM */
79787eaa 5504 return ret;
cea9e445 5505
a1d3c478 5506 total_devs = bbio->num_stripes;
53b381b3
DW
5507 bbio->orig_bio = first_bio;
5508 bbio->private = first_bio->bi_private;
5509 bbio->end_io = first_bio->bi_end_io;
5510 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5511
5512 if (raid_map) {
5513 /* In this case, map_length has been set to the length of
5514 a single stripe; not the whole write */
5515 if (rw & WRITE) {
5516 return raid56_parity_write(root, bio, bbio,
5517 raid_map, map_length);
5518 } else {
5519 return raid56_parity_recover(root, bio, bbio,
5520 raid_map, map_length,
5521 mirror_num);
5522 }
5523 }
5524
cea9e445 5525 if (map_length < length) {
c2cf52eb 5526 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5527 logical, length, map_length);
cea9e445
CM
5528 BUG();
5529 }
a1d3c478 5530
d397712b 5531 while (dev_nr < total_devs) {
de1ee92a
JB
5532 dev = bbio->stripes[dev_nr].dev;
5533 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5534 bbio_error(bbio, first_bio, logical);
5535 dev_nr++;
5536 continue;
5537 }
5538
5539 /*
5540 * Check and see if we're ok with this bio based on it's size
5541 * and offset with the given device.
5542 */
5543 if (!bio_size_ok(dev->bdev, first_bio,
5544 bbio->stripes[dev_nr].physical >> 9)) {
5545 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5546 dev_nr, rw, async_submit);
5547 BUG_ON(ret);
5548 dev_nr++;
5549 continue;
5550 }
5551
a1d3c478 5552 if (dev_nr < total_devs - 1) {
9be3395b 5553 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5554 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5555 } else {
5556 bio = first_bio;
8790d502 5557 }
de1ee92a
JB
5558
5559 submit_stripe_bio(root, bbio, bio,
5560 bbio->stripes[dev_nr].physical, dev_nr, rw,
5561 async_submit);
8790d502
CM
5562 dev_nr++;
5563 }
0b86a832
CM
5564 return 0;
5565}
5566
aa1b8cd4 5567struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5568 u8 *uuid, u8 *fsid)
0b86a832 5569{
2b82032c
YZ
5570 struct btrfs_device *device;
5571 struct btrfs_fs_devices *cur_devices;
5572
aa1b8cd4 5573 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5574 while (cur_devices) {
5575 if (!fsid ||
5576 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5577 device = __find_device(&cur_devices->devices,
5578 devid, uuid);
5579 if (device)
5580 return device;
5581 }
5582 cur_devices = cur_devices->seed;
5583 }
5584 return NULL;
0b86a832
CM
5585}
5586
dfe25020
CM
5587static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5588 u64 devid, u8 *dev_uuid)
5589{
5590 struct btrfs_device *device;
5591 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5592
12bd2fc0
ID
5593 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5594 if (IS_ERR(device))
7cbd8a83 5595 return NULL;
12bd2fc0
ID
5596
5597 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5598 device->fs_devices = fs_devices;
dfe25020 5599 fs_devices->num_devices++;
12bd2fc0
ID
5600
5601 device->missing = 1;
cd02dca5 5602 fs_devices->missing_devices++;
12bd2fc0 5603
dfe25020
CM
5604 return device;
5605}
5606
12bd2fc0
ID
5607/**
5608 * btrfs_alloc_device - allocate struct btrfs_device
5609 * @fs_info: used only for generating a new devid, can be NULL if
5610 * devid is provided (i.e. @devid != NULL).
5611 * @devid: a pointer to devid for this device. If NULL a new devid
5612 * is generated.
5613 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5614 * is generated.
5615 *
5616 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5617 * on error. Returned struct is not linked onto any lists and can be
5618 * destroyed with kfree() right away.
5619 */
5620struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5621 const u64 *devid,
5622 const u8 *uuid)
5623{
5624 struct btrfs_device *dev;
5625 u64 tmp;
5626
5627 if (!devid && !fs_info) {
5628 WARN_ON(1);
5629 return ERR_PTR(-EINVAL);
5630 }
5631
5632 dev = __alloc_device();
5633 if (IS_ERR(dev))
5634 return dev;
5635
5636 if (devid)
5637 tmp = *devid;
5638 else {
5639 int ret;
5640
5641 ret = find_next_devid(fs_info, &tmp);
5642 if (ret) {
5643 kfree(dev);
5644 return ERR_PTR(ret);
5645 }
5646 }
5647 dev->devid = tmp;
5648
5649 if (uuid)
5650 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5651 else
5652 generate_random_uuid(dev->uuid);
5653
5654 dev->work.func = pending_bios_fn;
5655
5656 return dev;
5657}
5658
0b86a832
CM
5659static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5660 struct extent_buffer *leaf,
5661 struct btrfs_chunk *chunk)
5662{
5663 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5664 struct map_lookup *map;
5665 struct extent_map *em;
5666 u64 logical;
5667 u64 length;
5668 u64 devid;
a443755f 5669 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5670 int num_stripes;
0b86a832 5671 int ret;
593060d7 5672 int i;
0b86a832 5673
e17cade2
CM
5674 logical = key->offset;
5675 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5676
890871be 5677 read_lock(&map_tree->map_tree.lock);
0b86a832 5678 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5679 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5680
5681 /* already mapped? */
5682 if (em && em->start <= logical && em->start + em->len > logical) {
5683 free_extent_map(em);
0b86a832
CM
5684 return 0;
5685 } else if (em) {
5686 free_extent_map(em);
5687 }
0b86a832 5688
172ddd60 5689 em = alloc_extent_map();
0b86a832
CM
5690 if (!em)
5691 return -ENOMEM;
593060d7
CM
5692 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5693 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5694 if (!map) {
5695 free_extent_map(em);
5696 return -ENOMEM;
5697 }
5698
5699 em->bdev = (struct block_device *)map;
5700 em->start = logical;
5701 em->len = length;
70c8a91c 5702 em->orig_start = 0;
0b86a832 5703 em->block_start = 0;
c8b97818 5704 em->block_len = em->len;
0b86a832 5705
593060d7
CM
5706 map->num_stripes = num_stripes;
5707 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5708 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5709 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5710 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5711 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5712 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5713 for (i = 0; i < num_stripes; i++) {
5714 map->stripes[i].physical =
5715 btrfs_stripe_offset_nr(leaf, chunk, i);
5716 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5717 read_extent_buffer(leaf, uuid, (unsigned long)
5718 btrfs_stripe_dev_uuid_nr(chunk, i),
5719 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5720 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5721 uuid, NULL);
dfe25020 5722 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5723 kfree(map);
5724 free_extent_map(em);
5725 return -EIO;
5726 }
dfe25020
CM
5727 if (!map->stripes[i].dev) {
5728 map->stripes[i].dev =
5729 add_missing_dev(root, devid, uuid);
5730 if (!map->stripes[i].dev) {
5731 kfree(map);
5732 free_extent_map(em);
5733 return -EIO;
5734 }
5735 }
5736 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5737 }
5738
890871be 5739 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5740 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5741 write_unlock(&map_tree->map_tree.lock);
79787eaa 5742 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5743 free_extent_map(em);
5744
5745 return 0;
5746}
5747
143bede5 5748static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5749 struct btrfs_dev_item *dev_item,
5750 struct btrfs_device *device)
5751{
5752 unsigned long ptr;
0b86a832
CM
5753
5754 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5755 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5756 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5757 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5758 device->type = btrfs_device_type(leaf, dev_item);
5759 device->io_align = btrfs_device_io_align(leaf, dev_item);
5760 device->io_width = btrfs_device_io_width(leaf, dev_item);
5761 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5762 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5763 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5764
410ba3a2 5765 ptr = btrfs_device_uuid(dev_item);
e17cade2 5766 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5767}
5768
2b82032c
YZ
5769static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5770{
5771 struct btrfs_fs_devices *fs_devices;
5772 int ret;
5773
b367e47f 5774 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5775
5776 fs_devices = root->fs_info->fs_devices->seed;
5777 while (fs_devices) {
5778 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5779 ret = 0;
5780 goto out;
5781 }
5782 fs_devices = fs_devices->seed;
5783 }
5784
5785 fs_devices = find_fsid(fsid);
5786 if (!fs_devices) {
5787 ret = -ENOENT;
5788 goto out;
5789 }
e4404d6e
YZ
5790
5791 fs_devices = clone_fs_devices(fs_devices);
5792 if (IS_ERR(fs_devices)) {
5793 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5794 goto out;
5795 }
5796
97288f2c 5797 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5798 root->fs_info->bdev_holder);
48d28232
JL
5799 if (ret) {
5800 free_fs_devices(fs_devices);
2b82032c 5801 goto out;
48d28232 5802 }
2b82032c
YZ
5803
5804 if (!fs_devices->seeding) {
5805 __btrfs_close_devices(fs_devices);
e4404d6e 5806 free_fs_devices(fs_devices);
2b82032c
YZ
5807 ret = -EINVAL;
5808 goto out;
5809 }
5810
5811 fs_devices->seed = root->fs_info->fs_devices->seed;
5812 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5813out:
2b82032c
YZ
5814 return ret;
5815}
5816
0d81ba5d 5817static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5818 struct extent_buffer *leaf,
5819 struct btrfs_dev_item *dev_item)
5820{
5821 struct btrfs_device *device;
5822 u64 devid;
5823 int ret;
2b82032c 5824 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5825 u8 dev_uuid[BTRFS_UUID_SIZE];
5826
0b86a832 5827 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5828 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5829 BTRFS_UUID_SIZE);
1473b24e 5830 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5831 BTRFS_UUID_SIZE);
5832
5833 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5834 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5835 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5836 return ret;
2b82032c
YZ
5837 }
5838
aa1b8cd4 5839 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5840 if (!device || !device->bdev) {
e4404d6e 5841 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5842 return -EIO;
5843
5844 if (!device) {
c1c9ff7c 5845 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5846 device = add_missing_dev(root, devid, dev_uuid);
5847 if (!device)
5848 return -ENOMEM;
cd02dca5
CM
5849 } else if (!device->missing) {
5850 /*
5851 * this happens when a device that was properly setup
5852 * in the device info lists suddenly goes bad.
5853 * device->bdev is NULL, and so we have to set
5854 * device->missing to one here
5855 */
5856 root->fs_info->fs_devices->missing_devices++;
5857 device->missing = 1;
2b82032c
YZ
5858 }
5859 }
5860
5861 if (device->fs_devices != root->fs_info->fs_devices) {
5862 BUG_ON(device->writeable);
5863 if (device->generation !=
5864 btrfs_device_generation(leaf, dev_item))
5865 return -EINVAL;
6324fbf3 5866 }
0b86a832
CM
5867
5868 fill_device_from_item(leaf, dev_item, device);
dfe25020 5869 device->in_fs_metadata = 1;
63a212ab 5870 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5871 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5872 spin_lock(&root->fs_info->free_chunk_lock);
5873 root->fs_info->free_chunk_space += device->total_bytes -
5874 device->bytes_used;
5875 spin_unlock(&root->fs_info->free_chunk_lock);
5876 }
0b86a832 5877 ret = 0;
0b86a832
CM
5878 return ret;
5879}
5880
e4404d6e 5881int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5882{
6c41761f 5883 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5884 struct extent_buffer *sb;
0b86a832 5885 struct btrfs_disk_key *disk_key;
0b86a832 5886 struct btrfs_chunk *chunk;
84eed90f
CM
5887 u8 *ptr;
5888 unsigned long sb_ptr;
5889 int ret = 0;
0b86a832
CM
5890 u32 num_stripes;
5891 u32 array_size;
5892 u32 len = 0;
0b86a832 5893 u32 cur;
84eed90f 5894 struct btrfs_key key;
0b86a832 5895
e4404d6e 5896 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5897 BTRFS_SUPER_INFO_SIZE);
5898 if (!sb)
5899 return -ENOMEM;
5900 btrfs_set_buffer_uptodate(sb);
85d4e461 5901 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5902 /*
5903 * The sb extent buffer is artifical and just used to read the system array.
5904 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5905 * pages up-to-date when the page is larger: extent does not cover the
5906 * whole page and consequently check_page_uptodate does not find all
5907 * the page's extents up-to-date (the hole beyond sb),
5908 * write_extent_buffer then triggers a WARN_ON.
5909 *
5910 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5911 * but sb spans only this function. Add an explicit SetPageUptodate call
5912 * to silence the warning eg. on PowerPC 64.
5913 */
5914 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5915 SetPageUptodate(sb->pages[0]);
4008c04a 5916
a061fc8d 5917 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5918 array_size = btrfs_super_sys_array_size(super_copy);
5919
0b86a832
CM
5920 ptr = super_copy->sys_chunk_array;
5921 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5922 cur = 0;
5923
5924 while (cur < array_size) {
5925 disk_key = (struct btrfs_disk_key *)ptr;
5926 btrfs_disk_key_to_cpu(&key, disk_key);
5927
a061fc8d 5928 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5929 sb_ptr += len;
5930 cur += len;
5931
0d81ba5d 5932 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5933 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5934 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5935 if (ret)
5936 break;
0b86a832
CM
5937 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5938 len = btrfs_chunk_item_size(num_stripes);
5939 } else {
84eed90f
CM
5940 ret = -EIO;
5941 break;
0b86a832
CM
5942 }
5943 ptr += len;
5944 sb_ptr += len;
5945 cur += len;
5946 }
a061fc8d 5947 free_extent_buffer(sb);
84eed90f 5948 return ret;
0b86a832
CM
5949}
5950
5951int btrfs_read_chunk_tree(struct btrfs_root *root)
5952{
5953 struct btrfs_path *path;
5954 struct extent_buffer *leaf;
5955 struct btrfs_key key;
5956 struct btrfs_key found_key;
5957 int ret;
5958 int slot;
5959
5960 root = root->fs_info->chunk_root;
5961
5962 path = btrfs_alloc_path();
5963 if (!path)
5964 return -ENOMEM;
5965
b367e47f
LZ
5966 mutex_lock(&uuid_mutex);
5967 lock_chunks(root);
5968
395927a9
FDBM
5969 /*
5970 * Read all device items, and then all the chunk items. All
5971 * device items are found before any chunk item (their object id
5972 * is smaller than the lowest possible object id for a chunk
5973 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
5974 */
5975 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5976 key.offset = 0;
5977 key.type = 0;
0b86a832 5978 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5979 if (ret < 0)
5980 goto error;
d397712b 5981 while (1) {
0b86a832
CM
5982 leaf = path->nodes[0];
5983 slot = path->slots[0];
5984 if (slot >= btrfs_header_nritems(leaf)) {
5985 ret = btrfs_next_leaf(root, path);
5986 if (ret == 0)
5987 continue;
5988 if (ret < 0)
5989 goto error;
5990 break;
5991 }
5992 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
5993 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5994 struct btrfs_dev_item *dev_item;
5995 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 5996 struct btrfs_dev_item);
395927a9
FDBM
5997 ret = read_one_dev(root, leaf, dev_item);
5998 if (ret)
5999 goto error;
0b86a832
CM
6000 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6001 struct btrfs_chunk *chunk;
6002 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6003 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6004 if (ret)
6005 goto error;
0b86a832
CM
6006 }
6007 path->slots[0]++;
6008 }
0b86a832
CM
6009 ret = 0;
6010error:
b367e47f
LZ
6011 unlock_chunks(root);
6012 mutex_unlock(&uuid_mutex);
6013
2b82032c 6014 btrfs_free_path(path);
0b86a832
CM
6015 return ret;
6016}
442a4f63 6017
cb517eab
MX
6018void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6019{
6020 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6021 struct btrfs_device *device;
6022
6023 mutex_lock(&fs_devices->device_list_mutex);
6024 list_for_each_entry(device, &fs_devices->devices, dev_list)
6025 device->dev_root = fs_info->dev_root;
6026 mutex_unlock(&fs_devices->device_list_mutex);
6027}
6028
733f4fbb
SB
6029static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6030{
6031 int i;
6032
6033 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6034 btrfs_dev_stat_reset(dev, i);
6035}
6036
6037int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6038{
6039 struct btrfs_key key;
6040 struct btrfs_key found_key;
6041 struct btrfs_root *dev_root = fs_info->dev_root;
6042 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6043 struct extent_buffer *eb;
6044 int slot;
6045 int ret = 0;
6046 struct btrfs_device *device;
6047 struct btrfs_path *path = NULL;
6048 int i;
6049
6050 path = btrfs_alloc_path();
6051 if (!path) {
6052 ret = -ENOMEM;
6053 goto out;
6054 }
6055
6056 mutex_lock(&fs_devices->device_list_mutex);
6057 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6058 int item_size;
6059 struct btrfs_dev_stats_item *ptr;
6060
6061 key.objectid = 0;
6062 key.type = BTRFS_DEV_STATS_KEY;
6063 key.offset = device->devid;
6064 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6065 if (ret) {
733f4fbb
SB
6066 __btrfs_reset_dev_stats(device);
6067 device->dev_stats_valid = 1;
6068 btrfs_release_path(path);
6069 continue;
6070 }
6071 slot = path->slots[0];
6072 eb = path->nodes[0];
6073 btrfs_item_key_to_cpu(eb, &found_key, slot);
6074 item_size = btrfs_item_size_nr(eb, slot);
6075
6076 ptr = btrfs_item_ptr(eb, slot,
6077 struct btrfs_dev_stats_item);
6078
6079 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6080 if (item_size >= (1 + i) * sizeof(__le64))
6081 btrfs_dev_stat_set(device, i,
6082 btrfs_dev_stats_value(eb, ptr, i));
6083 else
6084 btrfs_dev_stat_reset(device, i);
6085 }
6086
6087 device->dev_stats_valid = 1;
6088 btrfs_dev_stat_print_on_load(device);
6089 btrfs_release_path(path);
6090 }
6091 mutex_unlock(&fs_devices->device_list_mutex);
6092
6093out:
6094 btrfs_free_path(path);
6095 return ret < 0 ? ret : 0;
6096}
6097
6098static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6099 struct btrfs_root *dev_root,
6100 struct btrfs_device *device)
6101{
6102 struct btrfs_path *path;
6103 struct btrfs_key key;
6104 struct extent_buffer *eb;
6105 struct btrfs_dev_stats_item *ptr;
6106 int ret;
6107 int i;
6108
6109 key.objectid = 0;
6110 key.type = BTRFS_DEV_STATS_KEY;
6111 key.offset = device->devid;
6112
6113 path = btrfs_alloc_path();
6114 BUG_ON(!path);
6115 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6116 if (ret < 0) {
606686ee
JB
6117 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6118 ret, rcu_str_deref(device->name));
733f4fbb
SB
6119 goto out;
6120 }
6121
6122 if (ret == 0 &&
6123 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6124 /* need to delete old one and insert a new one */
6125 ret = btrfs_del_item(trans, dev_root, path);
6126 if (ret != 0) {
606686ee
JB
6127 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6128 rcu_str_deref(device->name), ret);
733f4fbb
SB
6129 goto out;
6130 }
6131 ret = 1;
6132 }
6133
6134 if (ret == 1) {
6135 /* need to insert a new item */
6136 btrfs_release_path(path);
6137 ret = btrfs_insert_empty_item(trans, dev_root, path,
6138 &key, sizeof(*ptr));
6139 if (ret < 0) {
606686ee
JB
6140 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6141 rcu_str_deref(device->name), ret);
733f4fbb
SB
6142 goto out;
6143 }
6144 }
6145
6146 eb = path->nodes[0];
6147 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6148 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6149 btrfs_set_dev_stats_value(eb, ptr, i,
6150 btrfs_dev_stat_read(device, i));
6151 btrfs_mark_buffer_dirty(eb);
6152
6153out:
6154 btrfs_free_path(path);
6155 return ret;
6156}
6157
6158/*
6159 * called from commit_transaction. Writes all changed device stats to disk.
6160 */
6161int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6162 struct btrfs_fs_info *fs_info)
6163{
6164 struct btrfs_root *dev_root = fs_info->dev_root;
6165 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6166 struct btrfs_device *device;
6167 int ret = 0;
6168
6169 mutex_lock(&fs_devices->device_list_mutex);
6170 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6171 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6172 continue;
6173
6174 ret = update_dev_stat_item(trans, dev_root, device);
6175 if (!ret)
6176 device->dev_stats_dirty = 0;
6177 }
6178 mutex_unlock(&fs_devices->device_list_mutex);
6179
6180 return ret;
6181}
6182
442a4f63
SB
6183void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6184{
6185 btrfs_dev_stat_inc(dev, index);
6186 btrfs_dev_stat_print_on_error(dev);
6187}
6188
48a3b636 6189static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6190{
733f4fbb
SB
6191 if (!dev->dev_stats_valid)
6192 return;
606686ee 6193 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 6194 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6195 rcu_str_deref(dev->name),
442a4f63
SB
6196 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6197 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6198 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6199 btrfs_dev_stat_read(dev,
6200 BTRFS_DEV_STAT_CORRUPTION_ERRS),
6201 btrfs_dev_stat_read(dev,
6202 BTRFS_DEV_STAT_GENERATION_ERRS));
6203}
c11d2c23 6204
733f4fbb
SB
6205static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6206{
a98cdb85
SB
6207 int i;
6208
6209 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6210 if (btrfs_dev_stat_read(dev, i) != 0)
6211 break;
6212 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6213 return; /* all values == 0, suppress message */
6214
606686ee
JB
6215 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6216 rcu_str_deref(dev->name),
733f4fbb
SB
6217 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6218 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6219 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6220 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6221 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6222}
6223
c11d2c23 6224int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6225 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6226{
6227 struct btrfs_device *dev;
6228 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6229 int i;
6230
6231 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6232 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6233 mutex_unlock(&fs_devices->device_list_mutex);
6234
6235 if (!dev) {
6236 printk(KERN_WARNING
6237 "btrfs: get dev_stats failed, device not found\n");
6238 return -ENODEV;
733f4fbb
SB
6239 } else if (!dev->dev_stats_valid) {
6240 printk(KERN_WARNING
6241 "btrfs: get dev_stats failed, not yet valid\n");
6242 return -ENODEV;
b27f7c0c 6243 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6244 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6245 if (stats->nr_items > i)
6246 stats->values[i] =
6247 btrfs_dev_stat_read_and_reset(dev, i);
6248 else
6249 btrfs_dev_stat_reset(dev, i);
6250 }
6251 } else {
6252 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6253 if (stats->nr_items > i)
6254 stats->values[i] = btrfs_dev_stat_read(dev, i);
6255 }
6256 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6257 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6258 return 0;
6259}
a8a6dab7
SB
6260
6261int btrfs_scratch_superblock(struct btrfs_device *device)
6262{
6263 struct buffer_head *bh;
6264 struct btrfs_super_block *disk_super;
6265
6266 bh = btrfs_read_dev_super(device->bdev);
6267 if (!bh)
6268 return -EINVAL;
6269 disk_super = (struct btrfs_super_block *)bh->b_data;
6270
6271 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6272 set_buffer_dirty(bh);
6273 sync_dirty_buffer(bh);
6274 brelse(bh);
6275
6276 return 0;
6277}