]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
btrfs: fix nossd and ssd_spread mount option regression
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
efe120a0 129 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
efe120a0 204 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
beaf8ab3
SB
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
a8c93d4e
QW
419 btrfs_queue_work(fs_info->submit_workers,
420 &device->work);
8b712842
CM
421 goto done;
422 }
d85c8a6f
CM
423 /* unplug every 64 requests just for good measure */
424 if (batch_run % 64 == 0) {
425 blk_finish_plug(&plug);
426 blk_start_plug(&plug);
427 sync_pending = 0;
428 }
8b712842 429 }
ffbd517d 430
51684082
CM
431 cond_resched();
432 if (again)
433 goto loop;
434
435 spin_lock(&device->io_lock);
436 if (device->pending_bios.head || device->pending_sync_bios.head)
437 goto loop_lock;
438 spin_unlock(&device->io_lock);
439
8b712842 440done:
211588ad 441 blk_finish_plug(&plug);
8b712842
CM
442}
443
b2950863 444static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
445{
446 struct btrfs_device *device;
447
448 device = container_of(work, struct btrfs_device, work);
449 run_scheduled_bios(device);
450}
451
60999ca4
DS
452/*
453 * Add new device to list of registered devices
454 *
455 * Returns:
456 * 1 - first time device is seen
457 * 0 - device already known
458 * < 0 - error
459 */
a1b32a59 460static noinline int device_list_add(const char *path,
8a4b83cc
CM
461 struct btrfs_super_block *disk_super,
462 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
463{
464 struct btrfs_device *device;
465 struct btrfs_fs_devices *fs_devices;
606686ee 466 struct rcu_string *name;
60999ca4 467 int ret = 0;
8a4b83cc
CM
468 u64 found_transid = btrfs_super_generation(disk_super);
469
470 fs_devices = find_fsid(disk_super->fsid);
471 if (!fs_devices) {
2208a378
ID
472 fs_devices = alloc_fs_devices(disk_super->fsid);
473 if (IS_ERR(fs_devices))
474 return PTR_ERR(fs_devices);
475
8a4b83cc 476 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
477 fs_devices->latest_devid = devid;
478 fs_devices->latest_trans = found_transid;
2208a378 479
8a4b83cc
CM
480 device = NULL;
481 } else {
a443755f
CM
482 device = __find_device(&fs_devices->devices, devid,
483 disk_super->dev_item.uuid);
8a4b83cc
CM
484 }
485 if (!device) {
2b82032c
YZ
486 if (fs_devices->opened)
487 return -EBUSY;
488
12bd2fc0
ID
489 device = btrfs_alloc_device(NULL, &devid,
490 disk_super->dev_item.uuid);
491 if (IS_ERR(device)) {
8a4b83cc 492 /* we can safely leave the fs_devices entry around */
12bd2fc0 493 return PTR_ERR(device);
8a4b83cc 494 }
606686ee
JB
495
496 name = rcu_string_strdup(path, GFP_NOFS);
497 if (!name) {
8a4b83cc
CM
498 kfree(device);
499 return -ENOMEM;
500 }
606686ee 501 rcu_assign_pointer(device->name, name);
90519d66 502
e5e9a520 503 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 504 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 505 fs_devices->num_devices++;
e5e9a520
CM
506 mutex_unlock(&fs_devices->device_list_mutex);
507
60999ca4 508 ret = 1;
2b82032c 509 device->fs_devices = fs_devices;
606686ee
JB
510 } else if (!device->name || strcmp(device->name->str, path)) {
511 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
512 if (!name)
513 return -ENOMEM;
606686ee
JB
514 rcu_string_free(device->name);
515 rcu_assign_pointer(device->name, name);
cd02dca5
CM
516 if (device->missing) {
517 fs_devices->missing_devices--;
518 device->missing = 0;
519 }
8a4b83cc
CM
520 }
521
522 if (found_transid > fs_devices->latest_trans) {
523 fs_devices->latest_devid = devid;
524 fs_devices->latest_trans = found_transid;
525 }
8a4b83cc 526 *fs_devices_ret = fs_devices;
60999ca4
DS
527
528 return ret;
8a4b83cc
CM
529}
530
e4404d6e
YZ
531static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
532{
533 struct btrfs_fs_devices *fs_devices;
534 struct btrfs_device *device;
535 struct btrfs_device *orig_dev;
536
2208a378
ID
537 fs_devices = alloc_fs_devices(orig->fsid);
538 if (IS_ERR(fs_devices))
539 return fs_devices;
e4404d6e 540
e4404d6e
YZ
541 fs_devices->latest_devid = orig->latest_devid;
542 fs_devices->latest_trans = orig->latest_trans;
02db0844 543 fs_devices->total_devices = orig->total_devices;
e4404d6e 544
46224705 545 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 546 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
547 struct rcu_string *name;
548
12bd2fc0
ID
549 device = btrfs_alloc_device(NULL, &orig_dev->devid,
550 orig_dev->uuid);
551 if (IS_ERR(device))
e4404d6e
YZ
552 goto error;
553
606686ee
JB
554 /*
555 * This is ok to do without rcu read locked because we hold the
556 * uuid mutex so nothing we touch in here is going to disappear.
557 */
558 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
559 if (!name) {
fd2696f3 560 kfree(device);
e4404d6e 561 goto error;
fd2696f3 562 }
606686ee 563 rcu_assign_pointer(device->name, name);
e4404d6e 564
e4404d6e
YZ
565 list_add(&device->dev_list, &fs_devices->devices);
566 device->fs_devices = fs_devices;
567 fs_devices->num_devices++;
568 }
569 return fs_devices;
570error:
571 free_fs_devices(fs_devices);
572 return ERR_PTR(-ENOMEM);
573}
574
8dabb742
SB
575void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
576 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 577{
c6e30871 578 struct btrfs_device *device, *next;
dfe25020 579
a6b0d5c8
CM
580 struct block_device *latest_bdev = NULL;
581 u64 latest_devid = 0;
582 u64 latest_transid = 0;
583
dfe25020
CM
584 mutex_lock(&uuid_mutex);
585again:
46224705 586 /* This is the initialized path, it is safe to release the devices. */
c6e30871 587 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 588 if (device->in_fs_metadata) {
63a212ab
SB
589 if (!device->is_tgtdev_for_dev_replace &&
590 (!latest_transid ||
591 device->generation > latest_transid)) {
a6b0d5c8
CM
592 latest_devid = device->devid;
593 latest_transid = device->generation;
594 latest_bdev = device->bdev;
595 }
2b82032c 596 continue;
a6b0d5c8 597 }
2b82032c 598
8dabb742
SB
599 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
600 /*
601 * In the first step, keep the device which has
602 * the correct fsid and the devid that is used
603 * for the dev_replace procedure.
604 * In the second step, the dev_replace state is
605 * read from the device tree and it is known
606 * whether the procedure is really active or
607 * not, which means whether this device is
608 * used or whether it should be removed.
609 */
610 if (step == 0 || device->is_tgtdev_for_dev_replace) {
611 continue;
612 }
613 }
2b82032c 614 if (device->bdev) {
d4d77629 615 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
616 device->bdev = NULL;
617 fs_devices->open_devices--;
618 }
619 if (device->writeable) {
620 list_del_init(&device->dev_alloc_list);
621 device->writeable = 0;
8dabb742
SB
622 if (!device->is_tgtdev_for_dev_replace)
623 fs_devices->rw_devices--;
2b82032c 624 }
e4404d6e
YZ
625 list_del_init(&device->dev_list);
626 fs_devices->num_devices--;
606686ee 627 rcu_string_free(device->name);
e4404d6e 628 kfree(device);
dfe25020 629 }
2b82032c
YZ
630
631 if (fs_devices->seed) {
632 fs_devices = fs_devices->seed;
2b82032c
YZ
633 goto again;
634 }
635
a6b0d5c8
CM
636 fs_devices->latest_bdev = latest_bdev;
637 fs_devices->latest_devid = latest_devid;
638 fs_devices->latest_trans = latest_transid;
639
dfe25020 640 mutex_unlock(&uuid_mutex);
dfe25020 641}
a0af469b 642
1f78160c
XG
643static void __free_device(struct work_struct *work)
644{
645 struct btrfs_device *device;
646
647 device = container_of(work, struct btrfs_device, rcu_work);
648
649 if (device->bdev)
650 blkdev_put(device->bdev, device->mode);
651
606686ee 652 rcu_string_free(device->name);
1f78160c
XG
653 kfree(device);
654}
655
656static void free_device(struct rcu_head *head)
657{
658 struct btrfs_device *device;
659
660 device = container_of(head, struct btrfs_device, rcu);
661
662 INIT_WORK(&device->rcu_work, __free_device);
663 schedule_work(&device->rcu_work);
664}
665
2b82032c 666static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 667{
8a4b83cc 668 struct btrfs_device *device;
e4404d6e 669
2b82032c
YZ
670 if (--fs_devices->opened > 0)
671 return 0;
8a4b83cc 672
c9513edb 673 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 674 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 675 struct btrfs_device *new_device;
606686ee 676 struct rcu_string *name;
1f78160c
XG
677
678 if (device->bdev)
a0af469b 679 fs_devices->open_devices--;
1f78160c 680
f747cab7
ID
681 if (device->writeable &&
682 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
683 list_del_init(&device->dev_alloc_list);
684 fs_devices->rw_devices--;
685 }
686
d5e2003c
JB
687 if (device->can_discard)
688 fs_devices->num_can_discard--;
726551eb
JB
689 if (device->missing)
690 fs_devices->missing_devices--;
d5e2003c 691
a1e8780a
ID
692 new_device = btrfs_alloc_device(NULL, &device->devid,
693 device->uuid);
694 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
695
696 /* Safe because we are under uuid_mutex */
99f5944b
JB
697 if (device->name) {
698 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 699 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
700 rcu_assign_pointer(new_device->name, name);
701 }
a1e8780a 702
1f78160c 703 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 704 new_device->fs_devices = device->fs_devices;
1f78160c
XG
705
706 call_rcu(&device->rcu, free_device);
8a4b83cc 707 }
c9513edb
XG
708 mutex_unlock(&fs_devices->device_list_mutex);
709
e4404d6e
YZ
710 WARN_ON(fs_devices->open_devices);
711 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
712 fs_devices->opened = 0;
713 fs_devices->seeding = 0;
2b82032c 714
8a4b83cc
CM
715 return 0;
716}
717
2b82032c
YZ
718int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
719{
e4404d6e 720 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
721 int ret;
722
723 mutex_lock(&uuid_mutex);
724 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
725 if (!fs_devices->opened) {
726 seed_devices = fs_devices->seed;
727 fs_devices->seed = NULL;
728 }
2b82032c 729 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
730
731 while (seed_devices) {
732 fs_devices = seed_devices;
733 seed_devices = fs_devices->seed;
734 __btrfs_close_devices(fs_devices);
735 free_fs_devices(fs_devices);
736 }
bc178622
ES
737 /*
738 * Wait for rcu kworkers under __btrfs_close_devices
739 * to finish all blkdev_puts so device is really
740 * free when umount is done.
741 */
742 rcu_barrier();
2b82032c
YZ
743 return ret;
744}
745
e4404d6e
YZ
746static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
747 fmode_t flags, void *holder)
8a4b83cc 748{
d5e2003c 749 struct request_queue *q;
8a4b83cc
CM
750 struct block_device *bdev;
751 struct list_head *head = &fs_devices->devices;
8a4b83cc 752 struct btrfs_device *device;
a0af469b
CM
753 struct block_device *latest_bdev = NULL;
754 struct buffer_head *bh;
755 struct btrfs_super_block *disk_super;
756 u64 latest_devid = 0;
757 u64 latest_transid = 0;
a0af469b 758 u64 devid;
2b82032c 759 int seeding = 1;
a0af469b 760 int ret = 0;
8a4b83cc 761
d4d77629
TH
762 flags |= FMODE_EXCL;
763
c6e30871 764 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
765 if (device->bdev)
766 continue;
dfe25020
CM
767 if (!device->name)
768 continue;
769
f63e0cca
ES
770 /* Just open everything we can; ignore failures here */
771 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
772 &bdev, &bh))
beaf8ab3 773 continue;
a0af469b
CM
774
775 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 776 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
777 if (devid != device->devid)
778 goto error_brelse;
779
2b82032c
YZ
780 if (memcmp(device->uuid, disk_super->dev_item.uuid,
781 BTRFS_UUID_SIZE))
782 goto error_brelse;
783
784 device->generation = btrfs_super_generation(disk_super);
785 if (!latest_transid || device->generation > latest_transid) {
a0af469b 786 latest_devid = devid;
2b82032c 787 latest_transid = device->generation;
a0af469b
CM
788 latest_bdev = bdev;
789 }
790
2b82032c
YZ
791 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
792 device->writeable = 0;
793 } else {
794 device->writeable = !bdev_read_only(bdev);
795 seeding = 0;
796 }
797
d5e2003c
JB
798 q = bdev_get_queue(bdev);
799 if (blk_queue_discard(q)) {
800 device->can_discard = 1;
801 fs_devices->num_can_discard++;
802 }
803
8a4b83cc 804 device->bdev = bdev;
dfe25020 805 device->in_fs_metadata = 0;
15916de8
CM
806 device->mode = flags;
807
c289811c
CM
808 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
809 fs_devices->rotating = 1;
810
a0af469b 811 fs_devices->open_devices++;
55e50e45
ID
812 if (device->writeable &&
813 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
814 fs_devices->rw_devices++;
815 list_add(&device->dev_alloc_list,
816 &fs_devices->alloc_list);
817 }
4f6c9328 818 brelse(bh);
a0af469b 819 continue;
a061fc8d 820
a0af469b
CM
821error_brelse:
822 brelse(bh);
d4d77629 823 blkdev_put(bdev, flags);
a0af469b 824 continue;
8a4b83cc 825 }
a0af469b 826 if (fs_devices->open_devices == 0) {
20bcd649 827 ret = -EINVAL;
a0af469b
CM
828 goto out;
829 }
2b82032c
YZ
830 fs_devices->seeding = seeding;
831 fs_devices->opened = 1;
a0af469b
CM
832 fs_devices->latest_bdev = latest_bdev;
833 fs_devices->latest_devid = latest_devid;
834 fs_devices->latest_trans = latest_transid;
2b82032c 835 fs_devices->total_rw_bytes = 0;
a0af469b 836out:
2b82032c
YZ
837 return ret;
838}
839
840int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 841 fmode_t flags, void *holder)
2b82032c
YZ
842{
843 int ret;
844
845 mutex_lock(&uuid_mutex);
846 if (fs_devices->opened) {
e4404d6e
YZ
847 fs_devices->opened++;
848 ret = 0;
2b82032c 849 } else {
15916de8 850 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 851 }
8a4b83cc 852 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
853 return ret;
854}
855
6f60cbd3
DS
856/*
857 * Look for a btrfs signature on a device. This may be called out of the mount path
858 * and we are not allowed to call set_blocksize during the scan. The superblock
859 * is read via pagecache
860 */
97288f2c 861int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
862 struct btrfs_fs_devices **fs_devices_ret)
863{
864 struct btrfs_super_block *disk_super;
865 struct block_device *bdev;
6f60cbd3
DS
866 struct page *page;
867 void *p;
868 int ret = -EINVAL;
8a4b83cc 869 u64 devid;
f2984462 870 u64 transid;
02db0844 871 u64 total_devices;
6f60cbd3
DS
872 u64 bytenr;
873 pgoff_t index;
8a4b83cc 874
6f60cbd3
DS
875 /*
876 * we would like to check all the supers, but that would make
877 * a btrfs mount succeed after a mkfs from a different FS.
878 * So, we need to add a special mount option to scan for
879 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
880 */
881 bytenr = btrfs_sb_offset(0);
d4d77629 882 flags |= FMODE_EXCL;
10f6327b 883 mutex_lock(&uuid_mutex);
6f60cbd3
DS
884
885 bdev = blkdev_get_by_path(path, flags, holder);
886
887 if (IS_ERR(bdev)) {
888 ret = PTR_ERR(bdev);
beaf8ab3 889 goto error;
6f60cbd3
DS
890 }
891
892 /* make sure our super fits in the device */
893 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
894 goto error_bdev_put;
895
896 /* make sure our super fits in the page */
897 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
898 goto error_bdev_put;
899
900 /* make sure our super doesn't straddle pages on disk */
901 index = bytenr >> PAGE_CACHE_SHIFT;
902 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
903 goto error_bdev_put;
904
905 /* pull in the page with our super */
906 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
907 index, GFP_NOFS);
908
909 if (IS_ERR_OR_NULL(page))
910 goto error_bdev_put;
911
912 p = kmap(page);
913
914 /* align our pointer to the offset of the super block */
915 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
916
917 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 918 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
919 goto error_unmap;
920
a343832f 921 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 922 transid = btrfs_super_generation(disk_super);
02db0844 923 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 924
8a4b83cc 925 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
926 if (ret > 0) {
927 if (disk_super->label[0]) {
928 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
929 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
930 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
931 } else {
932 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
933 }
934
935 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
936 ret = 0;
937 }
02db0844
JB
938 if (!ret && fs_devices_ret)
939 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
940
941error_unmap:
942 kunmap(page);
943 page_cache_release(page);
944
945error_bdev_put:
d4d77629 946 blkdev_put(bdev, flags);
8a4b83cc 947error:
beaf8ab3 948 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
949 return ret;
950}
0b86a832 951
6d07bcec
MX
952/* helper to account the used device space in the range */
953int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
954 u64 end, u64 *length)
955{
956 struct btrfs_key key;
957 struct btrfs_root *root = device->dev_root;
958 struct btrfs_dev_extent *dev_extent;
959 struct btrfs_path *path;
960 u64 extent_end;
961 int ret;
962 int slot;
963 struct extent_buffer *l;
964
965 *length = 0;
966
63a212ab 967 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
968 return 0;
969
970 path = btrfs_alloc_path();
971 if (!path)
972 return -ENOMEM;
973 path->reada = 2;
974
975 key.objectid = device->devid;
976 key.offset = start;
977 key.type = BTRFS_DEV_EXTENT_KEY;
978
979 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
980 if (ret < 0)
981 goto out;
982 if (ret > 0) {
983 ret = btrfs_previous_item(root, path, key.objectid, key.type);
984 if (ret < 0)
985 goto out;
986 }
987
988 while (1) {
989 l = path->nodes[0];
990 slot = path->slots[0];
991 if (slot >= btrfs_header_nritems(l)) {
992 ret = btrfs_next_leaf(root, path);
993 if (ret == 0)
994 continue;
995 if (ret < 0)
996 goto out;
997
998 break;
999 }
1000 btrfs_item_key_to_cpu(l, &key, slot);
1001
1002 if (key.objectid < device->devid)
1003 goto next;
1004
1005 if (key.objectid > device->devid)
1006 break;
1007
1008 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1009 goto next;
1010
1011 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1012 extent_end = key.offset + btrfs_dev_extent_length(l,
1013 dev_extent);
1014 if (key.offset <= start && extent_end > end) {
1015 *length = end - start + 1;
1016 break;
1017 } else if (key.offset <= start && extent_end > start)
1018 *length += extent_end - start;
1019 else if (key.offset > start && extent_end <= end)
1020 *length += extent_end - key.offset;
1021 else if (key.offset > start && key.offset <= end) {
1022 *length += end - key.offset + 1;
1023 break;
1024 } else if (key.offset > end)
1025 break;
1026
1027next:
1028 path->slots[0]++;
1029 }
1030 ret = 0;
1031out:
1032 btrfs_free_path(path);
1033 return ret;
1034}
1035
6df9a95e
JB
1036static int contains_pending_extent(struct btrfs_trans_handle *trans,
1037 struct btrfs_device *device,
1038 u64 *start, u64 len)
1039{
1040 struct extent_map *em;
1041 int ret = 0;
1042
1043 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1044 struct map_lookup *map;
1045 int i;
1046
1047 map = (struct map_lookup *)em->bdev;
1048 for (i = 0; i < map->num_stripes; i++) {
1049 if (map->stripes[i].dev != device)
1050 continue;
1051 if (map->stripes[i].physical >= *start + len ||
1052 map->stripes[i].physical + em->orig_block_len <=
1053 *start)
1054 continue;
1055 *start = map->stripes[i].physical +
1056 em->orig_block_len;
1057 ret = 1;
1058 }
1059 }
1060
1061 return ret;
1062}
1063
1064
0b86a832 1065/*
7bfc837d 1066 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1067 * @device: the device which we search the free space in
1068 * @num_bytes: the size of the free space that we need
1069 * @start: store the start of the free space.
1070 * @len: the size of the free space. that we find, or the size of the max
1071 * free space if we don't find suitable free space
1072 *
0b86a832
CM
1073 * this uses a pretty simple search, the expectation is that it is
1074 * called very infrequently and that a given device has a small number
1075 * of extents
7bfc837d
MX
1076 *
1077 * @start is used to store the start of the free space if we find. But if we
1078 * don't find suitable free space, it will be used to store the start position
1079 * of the max free space.
1080 *
1081 * @len is used to store the size of the free space that we find.
1082 * But if we don't find suitable free space, it is used to store the size of
1083 * the max free space.
0b86a832 1084 */
6df9a95e
JB
1085int find_free_dev_extent(struct btrfs_trans_handle *trans,
1086 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1087 u64 *start, u64 *len)
0b86a832
CM
1088{
1089 struct btrfs_key key;
1090 struct btrfs_root *root = device->dev_root;
7bfc837d 1091 struct btrfs_dev_extent *dev_extent;
2b82032c 1092 struct btrfs_path *path;
7bfc837d
MX
1093 u64 hole_size;
1094 u64 max_hole_start;
1095 u64 max_hole_size;
1096 u64 extent_end;
1097 u64 search_start;
0b86a832
CM
1098 u64 search_end = device->total_bytes;
1099 int ret;
7bfc837d 1100 int slot;
0b86a832
CM
1101 struct extent_buffer *l;
1102
0b86a832
CM
1103 /* FIXME use last free of some kind */
1104
8a4b83cc
CM
1105 /* we don't want to overwrite the superblock on the drive,
1106 * so we make sure to start at an offset of at least 1MB
1107 */
a9c9bf68 1108 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1109
6df9a95e
JB
1110 path = btrfs_alloc_path();
1111 if (!path)
1112 return -ENOMEM;
1113again:
7bfc837d
MX
1114 max_hole_start = search_start;
1115 max_hole_size = 0;
38c01b96 1116 hole_size = 0;
7bfc837d 1117
63a212ab 1118 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1119 ret = -ENOSPC;
6df9a95e 1120 goto out;
7bfc837d
MX
1121 }
1122
7bfc837d 1123 path->reada = 2;
6df9a95e
JB
1124 path->search_commit_root = 1;
1125 path->skip_locking = 1;
7bfc837d 1126
0b86a832
CM
1127 key.objectid = device->devid;
1128 key.offset = search_start;
1129 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1130
125ccb0a 1131 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1132 if (ret < 0)
7bfc837d 1133 goto out;
1fcbac58
YZ
1134 if (ret > 0) {
1135 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1136 if (ret < 0)
7bfc837d 1137 goto out;
1fcbac58 1138 }
7bfc837d 1139
0b86a832
CM
1140 while (1) {
1141 l = path->nodes[0];
1142 slot = path->slots[0];
1143 if (slot >= btrfs_header_nritems(l)) {
1144 ret = btrfs_next_leaf(root, path);
1145 if (ret == 0)
1146 continue;
1147 if (ret < 0)
7bfc837d
MX
1148 goto out;
1149
1150 break;
0b86a832
CM
1151 }
1152 btrfs_item_key_to_cpu(l, &key, slot);
1153
1154 if (key.objectid < device->devid)
1155 goto next;
1156
1157 if (key.objectid > device->devid)
7bfc837d 1158 break;
0b86a832 1159
7bfc837d
MX
1160 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1161 goto next;
9779b72f 1162
7bfc837d
MX
1163 if (key.offset > search_start) {
1164 hole_size = key.offset - search_start;
9779b72f 1165
6df9a95e
JB
1166 /*
1167 * Have to check before we set max_hole_start, otherwise
1168 * we could end up sending back this offset anyway.
1169 */
1170 if (contains_pending_extent(trans, device,
1171 &search_start,
1172 hole_size))
1173 hole_size = 0;
1174
7bfc837d
MX
1175 if (hole_size > max_hole_size) {
1176 max_hole_start = search_start;
1177 max_hole_size = hole_size;
1178 }
9779b72f 1179
7bfc837d
MX
1180 /*
1181 * If this free space is greater than which we need,
1182 * it must be the max free space that we have found
1183 * until now, so max_hole_start must point to the start
1184 * of this free space and the length of this free space
1185 * is stored in max_hole_size. Thus, we return
1186 * max_hole_start and max_hole_size and go back to the
1187 * caller.
1188 */
1189 if (hole_size >= num_bytes) {
1190 ret = 0;
1191 goto out;
0b86a832
CM
1192 }
1193 }
0b86a832 1194
0b86a832 1195 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1196 extent_end = key.offset + btrfs_dev_extent_length(l,
1197 dev_extent);
1198 if (extent_end > search_start)
1199 search_start = extent_end;
0b86a832
CM
1200next:
1201 path->slots[0]++;
1202 cond_resched();
1203 }
0b86a832 1204
38c01b96 1205 /*
1206 * At this point, search_start should be the end of
1207 * allocated dev extents, and when shrinking the device,
1208 * search_end may be smaller than search_start.
1209 */
1210 if (search_end > search_start)
1211 hole_size = search_end - search_start;
1212
7bfc837d
MX
1213 if (hole_size > max_hole_size) {
1214 max_hole_start = search_start;
1215 max_hole_size = hole_size;
0b86a832 1216 }
0b86a832 1217
6df9a95e
JB
1218 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1219 btrfs_release_path(path);
1220 goto again;
1221 }
1222
7bfc837d
MX
1223 /* See above. */
1224 if (hole_size < num_bytes)
1225 ret = -ENOSPC;
1226 else
1227 ret = 0;
1228
1229out:
2b82032c 1230 btrfs_free_path(path);
7bfc837d 1231 *start = max_hole_start;
b2117a39 1232 if (len)
7bfc837d 1233 *len = max_hole_size;
0b86a832
CM
1234 return ret;
1235}
1236
b2950863 1237static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1238 struct btrfs_device *device,
1239 u64 start)
1240{
1241 int ret;
1242 struct btrfs_path *path;
1243 struct btrfs_root *root = device->dev_root;
1244 struct btrfs_key key;
a061fc8d
CM
1245 struct btrfs_key found_key;
1246 struct extent_buffer *leaf = NULL;
1247 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1248
1249 path = btrfs_alloc_path();
1250 if (!path)
1251 return -ENOMEM;
1252
1253 key.objectid = device->devid;
1254 key.offset = start;
1255 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1256again:
8f18cf13 1257 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1258 if (ret > 0) {
1259 ret = btrfs_previous_item(root, path, key.objectid,
1260 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1261 if (ret)
1262 goto out;
a061fc8d
CM
1263 leaf = path->nodes[0];
1264 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1265 extent = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_dev_extent);
1267 BUG_ON(found_key.offset > start || found_key.offset +
1268 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1269 key = found_key;
1270 btrfs_release_path(path);
1271 goto again;
a061fc8d
CM
1272 } else if (ret == 0) {
1273 leaf = path->nodes[0];
1274 extent = btrfs_item_ptr(leaf, path->slots[0],
1275 struct btrfs_dev_extent);
79787eaa
JM
1276 } else {
1277 btrfs_error(root->fs_info, ret, "Slot search failed");
1278 goto out;
a061fc8d 1279 }
8f18cf13 1280
2bf64758
JB
1281 if (device->bytes_used > 0) {
1282 u64 len = btrfs_dev_extent_length(leaf, extent);
1283 device->bytes_used -= len;
1284 spin_lock(&root->fs_info->free_chunk_lock);
1285 root->fs_info->free_chunk_space += len;
1286 spin_unlock(&root->fs_info->free_chunk_lock);
1287 }
8f18cf13 1288 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1289 if (ret) {
1290 btrfs_error(root->fs_info, ret,
1291 "Failed to remove dev extent item");
1292 }
b0b802d7 1293out:
8f18cf13
CM
1294 btrfs_free_path(path);
1295 return ret;
1296}
1297
48a3b636
ES
1298static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1299 struct btrfs_device *device,
1300 u64 chunk_tree, u64 chunk_objectid,
1301 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1302{
1303 int ret;
1304 struct btrfs_path *path;
1305 struct btrfs_root *root = device->dev_root;
1306 struct btrfs_dev_extent *extent;
1307 struct extent_buffer *leaf;
1308 struct btrfs_key key;
1309
dfe25020 1310 WARN_ON(!device->in_fs_metadata);
63a212ab 1311 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1312 path = btrfs_alloc_path();
1313 if (!path)
1314 return -ENOMEM;
1315
0b86a832 1316 key.objectid = device->devid;
2b82032c 1317 key.offset = start;
0b86a832
CM
1318 key.type = BTRFS_DEV_EXTENT_KEY;
1319 ret = btrfs_insert_empty_item(trans, root, path, &key,
1320 sizeof(*extent));
2cdcecbc
MF
1321 if (ret)
1322 goto out;
0b86a832
CM
1323
1324 leaf = path->nodes[0];
1325 extent = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_dev_extent);
e17cade2
CM
1327 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1328 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1329 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1330
1331 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1332 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1333
0b86a832
CM
1334 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1335 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1336out:
0b86a832
CM
1337 btrfs_free_path(path);
1338 return ret;
1339}
1340
6df9a95e 1341static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1342{
6df9a95e
JB
1343 struct extent_map_tree *em_tree;
1344 struct extent_map *em;
1345 struct rb_node *n;
1346 u64 ret = 0;
0b86a832 1347
6df9a95e
JB
1348 em_tree = &fs_info->mapping_tree.map_tree;
1349 read_lock(&em_tree->lock);
1350 n = rb_last(&em_tree->map);
1351 if (n) {
1352 em = rb_entry(n, struct extent_map, rb_node);
1353 ret = em->start + em->len;
0b86a832 1354 }
6df9a95e
JB
1355 read_unlock(&em_tree->lock);
1356
0b86a832
CM
1357 return ret;
1358}
1359
53f10659
ID
1360static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1361 u64 *devid_ret)
0b86a832
CM
1362{
1363 int ret;
1364 struct btrfs_key key;
1365 struct btrfs_key found_key;
2b82032c
YZ
1366 struct btrfs_path *path;
1367
2b82032c
YZ
1368 path = btrfs_alloc_path();
1369 if (!path)
1370 return -ENOMEM;
0b86a832
CM
1371
1372 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1373 key.type = BTRFS_DEV_ITEM_KEY;
1374 key.offset = (u64)-1;
1375
53f10659 1376 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1377 if (ret < 0)
1378 goto error;
1379
79787eaa 1380 BUG_ON(ret == 0); /* Corruption */
0b86a832 1381
53f10659
ID
1382 ret = btrfs_previous_item(fs_info->chunk_root, path,
1383 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1384 BTRFS_DEV_ITEM_KEY);
1385 if (ret) {
53f10659 1386 *devid_ret = 1;
0b86a832
CM
1387 } else {
1388 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1389 path->slots[0]);
53f10659 1390 *devid_ret = found_key.offset + 1;
0b86a832
CM
1391 }
1392 ret = 0;
1393error:
2b82032c 1394 btrfs_free_path(path);
0b86a832
CM
1395 return ret;
1396}
1397
1398/*
1399 * the device information is stored in the chunk root
1400 * the btrfs_device struct should be fully filled in
1401 */
48a3b636
ES
1402static int btrfs_add_device(struct btrfs_trans_handle *trans,
1403 struct btrfs_root *root,
1404 struct btrfs_device *device)
0b86a832
CM
1405{
1406 int ret;
1407 struct btrfs_path *path;
1408 struct btrfs_dev_item *dev_item;
1409 struct extent_buffer *leaf;
1410 struct btrfs_key key;
1411 unsigned long ptr;
0b86a832
CM
1412
1413 root = root->fs_info->chunk_root;
1414
1415 path = btrfs_alloc_path();
1416 if (!path)
1417 return -ENOMEM;
1418
0b86a832
CM
1419 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1420 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1421 key.offset = device->devid;
0b86a832
CM
1422
1423 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1424 sizeof(*dev_item));
0b86a832
CM
1425 if (ret)
1426 goto out;
1427
1428 leaf = path->nodes[0];
1429 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1430
1431 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1432 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1433 btrfs_set_device_type(leaf, dev_item, device->type);
1434 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1435 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1436 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1437 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1438 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1439 btrfs_set_device_group(leaf, dev_item, 0);
1440 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1441 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1442 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1443
410ba3a2 1444 ptr = btrfs_device_uuid(dev_item);
e17cade2 1445 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1446 ptr = btrfs_device_fsid(dev_item);
2b82032c 1447 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1448 btrfs_mark_buffer_dirty(leaf);
0b86a832 1449
2b82032c 1450 ret = 0;
0b86a832
CM
1451out:
1452 btrfs_free_path(path);
1453 return ret;
1454}
8f18cf13 1455
5a1972bd
QW
1456/*
1457 * Function to update ctime/mtime for a given device path.
1458 * Mainly used for ctime/mtime based probe like libblkid.
1459 */
1460static void update_dev_time(char *path_name)
1461{
1462 struct file *filp;
1463
1464 filp = filp_open(path_name, O_RDWR, 0);
1465 if (!filp)
1466 return;
1467 file_update_time(filp);
1468 filp_close(filp, NULL);
1469 return;
1470}
1471
a061fc8d
CM
1472static int btrfs_rm_dev_item(struct btrfs_root *root,
1473 struct btrfs_device *device)
1474{
1475 int ret;
1476 struct btrfs_path *path;
a061fc8d 1477 struct btrfs_key key;
a061fc8d
CM
1478 struct btrfs_trans_handle *trans;
1479
1480 root = root->fs_info->chunk_root;
1481
1482 path = btrfs_alloc_path();
1483 if (!path)
1484 return -ENOMEM;
1485
a22285a6 1486 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1487 if (IS_ERR(trans)) {
1488 btrfs_free_path(path);
1489 return PTR_ERR(trans);
1490 }
a061fc8d
CM
1491 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1492 key.type = BTRFS_DEV_ITEM_KEY;
1493 key.offset = device->devid;
7d9eb12c 1494 lock_chunks(root);
a061fc8d
CM
1495
1496 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1497 if (ret < 0)
1498 goto out;
1499
1500 if (ret > 0) {
1501 ret = -ENOENT;
1502 goto out;
1503 }
1504
1505 ret = btrfs_del_item(trans, root, path);
1506 if (ret)
1507 goto out;
a061fc8d
CM
1508out:
1509 btrfs_free_path(path);
7d9eb12c 1510 unlock_chunks(root);
a061fc8d
CM
1511 btrfs_commit_transaction(trans, root);
1512 return ret;
1513}
1514
1515int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1516{
1517 struct btrfs_device *device;
2b82032c 1518 struct btrfs_device *next_device;
a061fc8d 1519 struct block_device *bdev;
dfe25020 1520 struct buffer_head *bh = NULL;
a061fc8d 1521 struct btrfs_super_block *disk_super;
1f78160c 1522 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1523 u64 all_avail;
1524 u64 devid;
2b82032c
YZ
1525 u64 num_devices;
1526 u8 *dev_uuid;
de98ced9 1527 unsigned seq;
a061fc8d 1528 int ret = 0;
1f78160c 1529 bool clear_super = false;
a061fc8d 1530
a061fc8d
CM
1531 mutex_lock(&uuid_mutex);
1532
de98ced9
MX
1533 do {
1534 seq = read_seqbegin(&root->fs_info->profiles_lock);
1535
1536 all_avail = root->fs_info->avail_data_alloc_bits |
1537 root->fs_info->avail_system_alloc_bits |
1538 root->fs_info->avail_metadata_alloc_bits;
1539 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1540
8dabb742
SB
1541 num_devices = root->fs_info->fs_devices->num_devices;
1542 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1543 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1544 WARN_ON(num_devices < 1);
1545 num_devices--;
1546 }
1547 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1548
1549 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1550 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1551 goto out;
1552 }
1553
8dabb742 1554 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1555 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1556 goto out;
1557 }
1558
53b381b3
DW
1559 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1560 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1561 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1562 goto out;
1563 }
1564 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1565 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1566 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1567 goto out;
1568 }
1569
dfe25020 1570 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1571 struct list_head *devices;
1572 struct btrfs_device *tmp;
a061fc8d 1573
dfe25020
CM
1574 device = NULL;
1575 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1576 /*
1577 * It is safe to read the devices since the volume_mutex
1578 * is held.
1579 */
c6e30871 1580 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1581 if (tmp->in_fs_metadata &&
1582 !tmp->is_tgtdev_for_dev_replace &&
1583 !tmp->bdev) {
dfe25020
CM
1584 device = tmp;
1585 break;
1586 }
1587 }
1588 bdev = NULL;
1589 bh = NULL;
1590 disk_super = NULL;
1591 if (!device) {
183860f6 1592 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1593 goto out;
1594 }
dfe25020 1595 } else {
beaf8ab3 1596 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1597 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1598 root->fs_info->bdev_holder, 0,
1599 &bdev, &bh);
1600 if (ret)
dfe25020 1601 goto out;
dfe25020 1602 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1603 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1604 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1605 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1606 disk_super->fsid);
dfe25020
CM
1607 if (!device) {
1608 ret = -ENOENT;
1609 goto error_brelse;
1610 }
2b82032c 1611 }
dfe25020 1612
63a212ab 1613 if (device->is_tgtdev_for_dev_replace) {
183860f6 1614 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1615 goto error_brelse;
1616 }
1617
2b82032c 1618 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1619 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1620 goto error_brelse;
1621 }
1622
1623 if (device->writeable) {
0c1daee0 1624 lock_chunks(root);
2b82032c 1625 list_del_init(&device->dev_alloc_list);
0c1daee0 1626 unlock_chunks(root);
2b82032c 1627 root->fs_info->fs_devices->rw_devices--;
1f78160c 1628 clear_super = true;
dfe25020 1629 }
a061fc8d 1630
d7901554 1631 mutex_unlock(&uuid_mutex);
a061fc8d 1632 ret = btrfs_shrink_device(device, 0);
d7901554 1633 mutex_lock(&uuid_mutex);
a061fc8d 1634 if (ret)
9b3517e9 1635 goto error_undo;
a061fc8d 1636
63a212ab
SB
1637 /*
1638 * TODO: the superblock still includes this device in its num_devices
1639 * counter although write_all_supers() is not locked out. This
1640 * could give a filesystem state which requires a degraded mount.
1641 */
a061fc8d
CM
1642 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1643 if (ret)
9b3517e9 1644 goto error_undo;
a061fc8d 1645
2bf64758
JB
1646 spin_lock(&root->fs_info->free_chunk_lock);
1647 root->fs_info->free_chunk_space = device->total_bytes -
1648 device->bytes_used;
1649 spin_unlock(&root->fs_info->free_chunk_lock);
1650
2b82032c 1651 device->in_fs_metadata = 0;
aa1b8cd4 1652 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1653
1654 /*
1655 * the device list mutex makes sure that we don't change
1656 * the device list while someone else is writing out all
d7306801
FDBM
1657 * the device supers. Whoever is writing all supers, should
1658 * lock the device list mutex before getting the number of
1659 * devices in the super block (super_copy). Conversely,
1660 * whoever updates the number of devices in the super block
1661 * (super_copy) should hold the device list mutex.
e5e9a520 1662 */
1f78160c
XG
1663
1664 cur_devices = device->fs_devices;
e5e9a520 1665 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1666 list_del_rcu(&device->dev_list);
e5e9a520 1667
e4404d6e 1668 device->fs_devices->num_devices--;
02db0844 1669 device->fs_devices->total_devices--;
2b82032c 1670
cd02dca5
CM
1671 if (device->missing)
1672 root->fs_info->fs_devices->missing_devices--;
1673
2b82032c
YZ
1674 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1675 struct btrfs_device, dev_list);
1676 if (device->bdev == root->fs_info->sb->s_bdev)
1677 root->fs_info->sb->s_bdev = next_device->bdev;
1678 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1679 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1680
1f78160c 1681 if (device->bdev)
e4404d6e 1682 device->fs_devices->open_devices--;
1f78160c 1683
99994cde
AJ
1684 /* remove sysfs entry */
1685 btrfs_kobj_rm_device(root->fs_info, device);
1686
1f78160c 1687 call_rcu(&device->rcu, free_device);
e4404d6e 1688
6c41761f
DS
1689 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1690 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1691 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1692
1f78160c 1693 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1694 struct btrfs_fs_devices *fs_devices;
1695 fs_devices = root->fs_info->fs_devices;
1696 while (fs_devices) {
8321cf25
RS
1697 if (fs_devices->seed == cur_devices) {
1698 fs_devices->seed = cur_devices->seed;
e4404d6e 1699 break;
8321cf25 1700 }
e4404d6e 1701 fs_devices = fs_devices->seed;
2b82032c 1702 }
1f78160c 1703 cur_devices->seed = NULL;
0c1daee0 1704 lock_chunks(root);
1f78160c 1705 __btrfs_close_devices(cur_devices);
0c1daee0 1706 unlock_chunks(root);
1f78160c 1707 free_fs_devices(cur_devices);
2b82032c
YZ
1708 }
1709
5af3e8cc
SB
1710 root->fs_info->num_tolerated_disk_barrier_failures =
1711 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1712
2b82032c
YZ
1713 /*
1714 * at this point, the device is zero sized. We want to
1715 * remove it from the devices list and zero out the old super
1716 */
aa1b8cd4 1717 if (clear_super && disk_super) {
4d90d28b
AJ
1718 u64 bytenr;
1719 int i;
1720
dfe25020
CM
1721 /* make sure this device isn't detected as part of
1722 * the FS anymore
1723 */
1724 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1725 set_buffer_dirty(bh);
1726 sync_dirty_buffer(bh);
4d90d28b
AJ
1727
1728 /* clear the mirror copies of super block on the disk
1729 * being removed, 0th copy is been taken care above and
1730 * the below would take of the rest
1731 */
1732 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1733 bytenr = btrfs_sb_offset(i);
1734 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1735 i_size_read(bdev->bd_inode))
1736 break;
1737
1738 brelse(bh);
1739 bh = __bread(bdev, bytenr / 4096,
1740 BTRFS_SUPER_INFO_SIZE);
1741 if (!bh)
1742 continue;
1743
1744 disk_super = (struct btrfs_super_block *)bh->b_data;
1745
1746 if (btrfs_super_bytenr(disk_super) != bytenr ||
1747 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1748 continue;
1749 }
1750 memset(&disk_super->magic, 0,
1751 sizeof(disk_super->magic));
1752 set_buffer_dirty(bh);
1753 sync_dirty_buffer(bh);
1754 }
dfe25020 1755 }
a061fc8d 1756
a061fc8d 1757 ret = 0;
a061fc8d 1758
5a1972bd
QW
1759 if (bdev) {
1760 /* Notify udev that device has changed */
3c911608 1761 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1762
5a1972bd
QW
1763 /* Update ctime/mtime for device path for libblkid */
1764 update_dev_time(device_path);
1765 }
1766
a061fc8d
CM
1767error_brelse:
1768 brelse(bh);
dfe25020 1769 if (bdev)
e525fd89 1770 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1771out:
1772 mutex_unlock(&uuid_mutex);
a061fc8d 1773 return ret;
9b3517e9
ID
1774error_undo:
1775 if (device->writeable) {
0c1daee0 1776 lock_chunks(root);
9b3517e9
ID
1777 list_add(&device->dev_alloc_list,
1778 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1779 unlock_chunks(root);
9b3517e9
ID
1780 root->fs_info->fs_devices->rw_devices++;
1781 }
1782 goto error_brelse;
a061fc8d
CM
1783}
1784
e93c89c1
SB
1785void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1786 struct btrfs_device *srcdev)
1787{
1788 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1789
e93c89c1
SB
1790 list_del_rcu(&srcdev->dev_list);
1791 list_del_rcu(&srcdev->dev_alloc_list);
1792 fs_info->fs_devices->num_devices--;
1793 if (srcdev->missing) {
1794 fs_info->fs_devices->missing_devices--;
1795 fs_info->fs_devices->rw_devices++;
1796 }
1797 if (srcdev->can_discard)
1798 fs_info->fs_devices->num_can_discard--;
1357272f 1799 if (srcdev->bdev) {
e93c89c1
SB
1800 fs_info->fs_devices->open_devices--;
1801
1357272f
ID
1802 /* zero out the old super */
1803 btrfs_scratch_superblock(srcdev);
1804 }
1805
e93c89c1
SB
1806 call_rcu(&srcdev->rcu, free_device);
1807}
1808
1809void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1810 struct btrfs_device *tgtdev)
1811{
1812 struct btrfs_device *next_device;
1813
1814 WARN_ON(!tgtdev);
1815 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1816 if (tgtdev->bdev) {
1817 btrfs_scratch_superblock(tgtdev);
1818 fs_info->fs_devices->open_devices--;
1819 }
1820 fs_info->fs_devices->num_devices--;
1821 if (tgtdev->can_discard)
1822 fs_info->fs_devices->num_can_discard++;
1823
1824 next_device = list_entry(fs_info->fs_devices->devices.next,
1825 struct btrfs_device, dev_list);
1826 if (tgtdev->bdev == fs_info->sb->s_bdev)
1827 fs_info->sb->s_bdev = next_device->bdev;
1828 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1829 fs_info->fs_devices->latest_bdev = next_device->bdev;
1830 list_del_rcu(&tgtdev->dev_list);
1831
1832 call_rcu(&tgtdev->rcu, free_device);
1833
1834 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1835}
1836
48a3b636
ES
1837static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1838 struct btrfs_device **device)
7ba15b7d
SB
1839{
1840 int ret = 0;
1841 struct btrfs_super_block *disk_super;
1842 u64 devid;
1843 u8 *dev_uuid;
1844 struct block_device *bdev;
1845 struct buffer_head *bh;
1846
1847 *device = NULL;
1848 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1849 root->fs_info->bdev_holder, 0, &bdev, &bh);
1850 if (ret)
1851 return ret;
1852 disk_super = (struct btrfs_super_block *)bh->b_data;
1853 devid = btrfs_stack_device_id(&disk_super->dev_item);
1854 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1855 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1856 disk_super->fsid);
1857 brelse(bh);
1858 if (!*device)
1859 ret = -ENOENT;
1860 blkdev_put(bdev, FMODE_READ);
1861 return ret;
1862}
1863
1864int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1865 char *device_path,
1866 struct btrfs_device **device)
1867{
1868 *device = NULL;
1869 if (strcmp(device_path, "missing") == 0) {
1870 struct list_head *devices;
1871 struct btrfs_device *tmp;
1872
1873 devices = &root->fs_info->fs_devices->devices;
1874 /*
1875 * It is safe to read the devices since the volume_mutex
1876 * is held by the caller.
1877 */
1878 list_for_each_entry(tmp, devices, dev_list) {
1879 if (tmp->in_fs_metadata && !tmp->bdev) {
1880 *device = tmp;
1881 break;
1882 }
1883 }
1884
1885 if (!*device) {
efe120a0 1886 btrfs_err(root->fs_info, "no missing device found");
7ba15b7d
SB
1887 return -ENOENT;
1888 }
1889
1890 return 0;
1891 } else {
1892 return btrfs_find_device_by_path(root, device_path, device);
1893 }
1894}
1895
2b82032c
YZ
1896/*
1897 * does all the dirty work required for changing file system's UUID.
1898 */
125ccb0a 1899static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1900{
1901 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1902 struct btrfs_fs_devices *old_devices;
e4404d6e 1903 struct btrfs_fs_devices *seed_devices;
6c41761f 1904 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1905 struct btrfs_device *device;
1906 u64 super_flags;
1907
1908 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1909 if (!fs_devices->seeding)
2b82032c
YZ
1910 return -EINVAL;
1911
2208a378
ID
1912 seed_devices = __alloc_fs_devices();
1913 if (IS_ERR(seed_devices))
1914 return PTR_ERR(seed_devices);
2b82032c 1915
e4404d6e
YZ
1916 old_devices = clone_fs_devices(fs_devices);
1917 if (IS_ERR(old_devices)) {
1918 kfree(seed_devices);
1919 return PTR_ERR(old_devices);
2b82032c 1920 }
e4404d6e 1921
2b82032c
YZ
1922 list_add(&old_devices->list, &fs_uuids);
1923
e4404d6e
YZ
1924 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1925 seed_devices->opened = 1;
1926 INIT_LIST_HEAD(&seed_devices->devices);
1927 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1928 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1929
1930 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1931 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1932 synchronize_rcu);
c9513edb 1933
e4404d6e
YZ
1934 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1935 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1936 device->fs_devices = seed_devices;
1937 }
1938
2b82032c
YZ
1939 fs_devices->seeding = 0;
1940 fs_devices->num_devices = 0;
1941 fs_devices->open_devices = 0;
e4404d6e 1942 fs_devices->seed = seed_devices;
2b82032c
YZ
1943
1944 generate_random_uuid(fs_devices->fsid);
1945 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1946 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
1947 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1948
2b82032c
YZ
1949 super_flags = btrfs_super_flags(disk_super) &
1950 ~BTRFS_SUPER_FLAG_SEEDING;
1951 btrfs_set_super_flags(disk_super, super_flags);
1952
1953 return 0;
1954}
1955
1956/*
1957 * strore the expected generation for seed devices in device items.
1958 */
1959static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1960 struct btrfs_root *root)
1961{
1962 struct btrfs_path *path;
1963 struct extent_buffer *leaf;
1964 struct btrfs_dev_item *dev_item;
1965 struct btrfs_device *device;
1966 struct btrfs_key key;
1967 u8 fs_uuid[BTRFS_UUID_SIZE];
1968 u8 dev_uuid[BTRFS_UUID_SIZE];
1969 u64 devid;
1970 int ret;
1971
1972 path = btrfs_alloc_path();
1973 if (!path)
1974 return -ENOMEM;
1975
1976 root = root->fs_info->chunk_root;
1977 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1978 key.offset = 0;
1979 key.type = BTRFS_DEV_ITEM_KEY;
1980
1981 while (1) {
1982 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1983 if (ret < 0)
1984 goto error;
1985
1986 leaf = path->nodes[0];
1987next_slot:
1988 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1989 ret = btrfs_next_leaf(root, path);
1990 if (ret > 0)
1991 break;
1992 if (ret < 0)
1993 goto error;
1994 leaf = path->nodes[0];
1995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1996 btrfs_release_path(path);
2b82032c
YZ
1997 continue;
1998 }
1999
2000 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2001 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2002 key.type != BTRFS_DEV_ITEM_KEY)
2003 break;
2004
2005 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2006 struct btrfs_dev_item);
2007 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2008 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2009 BTRFS_UUID_SIZE);
1473b24e 2010 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2011 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2012 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2013 fs_uuid);
79787eaa 2014 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2015
2016 if (device->fs_devices->seeding) {
2017 btrfs_set_device_generation(leaf, dev_item,
2018 device->generation);
2019 btrfs_mark_buffer_dirty(leaf);
2020 }
2021
2022 path->slots[0]++;
2023 goto next_slot;
2024 }
2025 ret = 0;
2026error:
2027 btrfs_free_path(path);
2028 return ret;
2029}
2030
788f20eb
CM
2031int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2032{
d5e2003c 2033 struct request_queue *q;
788f20eb
CM
2034 struct btrfs_trans_handle *trans;
2035 struct btrfs_device *device;
2036 struct block_device *bdev;
788f20eb 2037 struct list_head *devices;
2b82032c 2038 struct super_block *sb = root->fs_info->sb;
606686ee 2039 struct rcu_string *name;
788f20eb 2040 u64 total_bytes;
2b82032c 2041 int seeding_dev = 0;
788f20eb
CM
2042 int ret = 0;
2043
2b82032c 2044 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2045 return -EROFS;
788f20eb 2046
a5d16333 2047 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2048 root->fs_info->bdev_holder);
7f59203a
JB
2049 if (IS_ERR(bdev))
2050 return PTR_ERR(bdev);
a2135011 2051
2b82032c
YZ
2052 if (root->fs_info->fs_devices->seeding) {
2053 seeding_dev = 1;
2054 down_write(&sb->s_umount);
2055 mutex_lock(&uuid_mutex);
2056 }
2057
8c8bee1d 2058 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2059
788f20eb 2060 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2061
2062 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2063 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2064 if (device->bdev == bdev) {
2065 ret = -EEXIST;
d25628bd
LB
2066 mutex_unlock(
2067 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2068 goto error;
788f20eb
CM
2069 }
2070 }
d25628bd 2071 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2072
12bd2fc0
ID
2073 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2074 if (IS_ERR(device)) {
788f20eb 2075 /* we can safely leave the fs_devices entry around */
12bd2fc0 2076 ret = PTR_ERR(device);
2b82032c 2077 goto error;
788f20eb
CM
2078 }
2079
606686ee
JB
2080 name = rcu_string_strdup(device_path, GFP_NOFS);
2081 if (!name) {
788f20eb 2082 kfree(device);
2b82032c
YZ
2083 ret = -ENOMEM;
2084 goto error;
788f20eb 2085 }
606686ee 2086 rcu_assign_pointer(device->name, name);
2b82032c 2087
a22285a6 2088 trans = btrfs_start_transaction(root, 0);
98d5dc13 2089 if (IS_ERR(trans)) {
606686ee 2090 rcu_string_free(device->name);
98d5dc13
TI
2091 kfree(device);
2092 ret = PTR_ERR(trans);
2093 goto error;
2094 }
2095
2b82032c
YZ
2096 lock_chunks(root);
2097
d5e2003c
JB
2098 q = bdev_get_queue(bdev);
2099 if (blk_queue_discard(q))
2100 device->can_discard = 1;
2b82032c 2101 device->writeable = 1;
2b82032c 2102 device->generation = trans->transid;
788f20eb
CM
2103 device->io_width = root->sectorsize;
2104 device->io_align = root->sectorsize;
2105 device->sector_size = root->sectorsize;
2106 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2107 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2108 device->dev_root = root->fs_info->dev_root;
2109 device->bdev = bdev;
dfe25020 2110 device->in_fs_metadata = 1;
63a212ab 2111 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2112 device->mode = FMODE_EXCL;
27087f37 2113 device->dev_stats_valid = 1;
2b82032c 2114 set_blocksize(device->bdev, 4096);
788f20eb 2115
2b82032c
YZ
2116 if (seeding_dev) {
2117 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2118 ret = btrfs_prepare_sprout(root);
79787eaa 2119 BUG_ON(ret); /* -ENOMEM */
2b82032c 2120 }
788f20eb 2121
2b82032c 2122 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2123
e5e9a520 2124 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2125 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2126 list_add(&device->dev_alloc_list,
2127 &root->fs_info->fs_devices->alloc_list);
2128 root->fs_info->fs_devices->num_devices++;
2129 root->fs_info->fs_devices->open_devices++;
2130 root->fs_info->fs_devices->rw_devices++;
02db0844 2131 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2132 if (device->can_discard)
2133 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2134 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2135
2bf64758
JB
2136 spin_lock(&root->fs_info->free_chunk_lock);
2137 root->fs_info->free_chunk_space += device->total_bytes;
2138 spin_unlock(&root->fs_info->free_chunk_lock);
2139
c289811c
CM
2140 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2141 root->fs_info->fs_devices->rotating = 1;
2142
6c41761f
DS
2143 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2144 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2145 total_bytes + device->total_bytes);
2146
6c41761f
DS
2147 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2148 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2149 total_bytes + 1);
0d39376a
AJ
2150
2151 /* add sysfs device entry */
2152 btrfs_kobj_add_device(root->fs_info, device);
2153
e5e9a520 2154 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2155
2b82032c 2156 if (seeding_dev) {
b2373f25 2157 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2b82032c 2158 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2159 if (ret) {
2160 btrfs_abort_transaction(trans, root, ret);
79787eaa 2161 goto error_trans;
005d6427 2162 }
2b82032c 2163 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2164 if (ret) {
2165 btrfs_abort_transaction(trans, root, ret);
79787eaa 2166 goto error_trans;
005d6427 2167 }
b2373f25
AJ
2168
2169 /* Sprouting would change fsid of the mounted root,
2170 * so rename the fsid on the sysfs
2171 */
2172 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2173 root->fs_info->fsid);
2174 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf))
2175 goto error_trans;
2b82032c
YZ
2176 } else {
2177 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2178 if (ret) {
2179 btrfs_abort_transaction(trans, root, ret);
79787eaa 2180 goto error_trans;
005d6427 2181 }
2b82032c
YZ
2182 }
2183
913d952e
CM
2184 /*
2185 * we've got more storage, clear any full flags on the space
2186 * infos
2187 */
2188 btrfs_clear_space_info_full(root->fs_info);
2189
7d9eb12c 2190 unlock_chunks(root);
5af3e8cc
SB
2191 root->fs_info->num_tolerated_disk_barrier_failures =
2192 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2193 ret = btrfs_commit_transaction(trans, root);
a2135011 2194
2b82032c
YZ
2195 if (seeding_dev) {
2196 mutex_unlock(&uuid_mutex);
2197 up_write(&sb->s_umount);
788f20eb 2198
79787eaa
JM
2199 if (ret) /* transaction commit */
2200 return ret;
2201
2b82032c 2202 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2203 if (ret < 0)
2204 btrfs_error(root->fs_info, ret,
2205 "Failed to relocate sys chunks after "
2206 "device initialization. This can be fixed "
2207 "using the \"btrfs balance\" command.");
671415b7
MX
2208 trans = btrfs_attach_transaction(root);
2209 if (IS_ERR(trans)) {
2210 if (PTR_ERR(trans) == -ENOENT)
2211 return 0;
2212 return PTR_ERR(trans);
2213 }
2214 ret = btrfs_commit_transaction(trans, root);
2b82032c 2215 }
c9e9f97b 2216
5a1972bd
QW
2217 /* Update ctime/mtime for libblkid */
2218 update_dev_time(device_path);
2b82032c 2219 return ret;
79787eaa
JM
2220
2221error_trans:
2222 unlock_chunks(root);
79787eaa 2223 btrfs_end_transaction(trans, root);
606686ee 2224 rcu_string_free(device->name);
0d39376a 2225 btrfs_kobj_rm_device(root->fs_info, device);
79787eaa 2226 kfree(device);
2b82032c 2227error:
e525fd89 2228 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2229 if (seeding_dev) {
2230 mutex_unlock(&uuid_mutex);
2231 up_write(&sb->s_umount);
2232 }
c9e9f97b 2233 return ret;
788f20eb
CM
2234}
2235
e93c89c1
SB
2236int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2237 struct btrfs_device **device_out)
2238{
2239 struct request_queue *q;
2240 struct btrfs_device *device;
2241 struct block_device *bdev;
2242 struct btrfs_fs_info *fs_info = root->fs_info;
2243 struct list_head *devices;
2244 struct rcu_string *name;
12bd2fc0 2245 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2246 int ret = 0;
2247
2248 *device_out = NULL;
2249 if (fs_info->fs_devices->seeding)
2250 return -EINVAL;
2251
2252 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2253 fs_info->bdev_holder);
2254 if (IS_ERR(bdev))
2255 return PTR_ERR(bdev);
2256
2257 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2258
2259 devices = &fs_info->fs_devices->devices;
2260 list_for_each_entry(device, devices, dev_list) {
2261 if (device->bdev == bdev) {
2262 ret = -EEXIST;
2263 goto error;
2264 }
2265 }
2266
12bd2fc0
ID
2267 device = btrfs_alloc_device(NULL, &devid, NULL);
2268 if (IS_ERR(device)) {
2269 ret = PTR_ERR(device);
e93c89c1
SB
2270 goto error;
2271 }
2272
2273 name = rcu_string_strdup(device_path, GFP_NOFS);
2274 if (!name) {
2275 kfree(device);
2276 ret = -ENOMEM;
2277 goto error;
2278 }
2279 rcu_assign_pointer(device->name, name);
2280
2281 q = bdev_get_queue(bdev);
2282 if (blk_queue_discard(q))
2283 device->can_discard = 1;
2284 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2285 device->writeable = 1;
e93c89c1
SB
2286 device->generation = 0;
2287 device->io_width = root->sectorsize;
2288 device->io_align = root->sectorsize;
2289 device->sector_size = root->sectorsize;
2290 device->total_bytes = i_size_read(bdev->bd_inode);
2291 device->disk_total_bytes = device->total_bytes;
2292 device->dev_root = fs_info->dev_root;
2293 device->bdev = bdev;
2294 device->in_fs_metadata = 1;
2295 device->is_tgtdev_for_dev_replace = 1;
2296 device->mode = FMODE_EXCL;
27087f37 2297 device->dev_stats_valid = 1;
e93c89c1
SB
2298 set_blocksize(device->bdev, 4096);
2299 device->fs_devices = fs_info->fs_devices;
2300 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2301 fs_info->fs_devices->num_devices++;
2302 fs_info->fs_devices->open_devices++;
2303 if (device->can_discard)
2304 fs_info->fs_devices->num_can_discard++;
2305 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2306
2307 *device_out = device;
2308 return ret;
2309
2310error:
2311 blkdev_put(bdev, FMODE_EXCL);
2312 return ret;
2313}
2314
2315void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2316 struct btrfs_device *tgtdev)
2317{
2318 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2319 tgtdev->io_width = fs_info->dev_root->sectorsize;
2320 tgtdev->io_align = fs_info->dev_root->sectorsize;
2321 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2322 tgtdev->dev_root = fs_info->dev_root;
2323 tgtdev->in_fs_metadata = 1;
2324}
2325
d397712b
CM
2326static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2327 struct btrfs_device *device)
0b86a832
CM
2328{
2329 int ret;
2330 struct btrfs_path *path;
2331 struct btrfs_root *root;
2332 struct btrfs_dev_item *dev_item;
2333 struct extent_buffer *leaf;
2334 struct btrfs_key key;
2335
2336 root = device->dev_root->fs_info->chunk_root;
2337
2338 path = btrfs_alloc_path();
2339 if (!path)
2340 return -ENOMEM;
2341
2342 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2343 key.type = BTRFS_DEV_ITEM_KEY;
2344 key.offset = device->devid;
2345
2346 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2347 if (ret < 0)
2348 goto out;
2349
2350 if (ret > 0) {
2351 ret = -ENOENT;
2352 goto out;
2353 }
2354
2355 leaf = path->nodes[0];
2356 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2357
2358 btrfs_set_device_id(leaf, dev_item, device->devid);
2359 btrfs_set_device_type(leaf, dev_item, device->type);
2360 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2361 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2362 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2363 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2364 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2365 btrfs_mark_buffer_dirty(leaf);
2366
2367out:
2368 btrfs_free_path(path);
2369 return ret;
2370}
2371
7d9eb12c 2372static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2373 struct btrfs_device *device, u64 new_size)
2374{
2375 struct btrfs_super_block *super_copy =
6c41761f 2376 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2377 u64 old_total = btrfs_super_total_bytes(super_copy);
2378 u64 diff = new_size - device->total_bytes;
2379
2b82032c
YZ
2380 if (!device->writeable)
2381 return -EACCES;
63a212ab
SB
2382 if (new_size <= device->total_bytes ||
2383 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2384 return -EINVAL;
2385
8f18cf13 2386 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2387 device->fs_devices->total_rw_bytes += diff;
2388
2389 device->total_bytes = new_size;
9779b72f 2390 device->disk_total_bytes = new_size;
4184ea7f
CM
2391 btrfs_clear_space_info_full(device->dev_root->fs_info);
2392
8f18cf13
CM
2393 return btrfs_update_device(trans, device);
2394}
2395
7d9eb12c
CM
2396int btrfs_grow_device(struct btrfs_trans_handle *trans,
2397 struct btrfs_device *device, u64 new_size)
2398{
2399 int ret;
2400 lock_chunks(device->dev_root);
2401 ret = __btrfs_grow_device(trans, device, new_size);
2402 unlock_chunks(device->dev_root);
2403 return ret;
2404}
2405
8f18cf13
CM
2406static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2407 struct btrfs_root *root,
2408 u64 chunk_tree, u64 chunk_objectid,
2409 u64 chunk_offset)
2410{
2411 int ret;
2412 struct btrfs_path *path;
2413 struct btrfs_key key;
2414
2415 root = root->fs_info->chunk_root;
2416 path = btrfs_alloc_path();
2417 if (!path)
2418 return -ENOMEM;
2419
2420 key.objectid = chunk_objectid;
2421 key.offset = chunk_offset;
2422 key.type = BTRFS_CHUNK_ITEM_KEY;
2423
2424 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2425 if (ret < 0)
2426 goto out;
2427 else if (ret > 0) { /* Logic error or corruption */
2428 btrfs_error(root->fs_info, -ENOENT,
2429 "Failed lookup while freeing chunk.");
2430 ret = -ENOENT;
2431 goto out;
2432 }
8f18cf13
CM
2433
2434 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2435 if (ret < 0)
2436 btrfs_error(root->fs_info, ret,
2437 "Failed to delete chunk item.");
2438out:
8f18cf13 2439 btrfs_free_path(path);
65a246c5 2440 return ret;
8f18cf13
CM
2441}
2442
b2950863 2443static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2444 chunk_offset)
2445{
6c41761f 2446 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2447 struct btrfs_disk_key *disk_key;
2448 struct btrfs_chunk *chunk;
2449 u8 *ptr;
2450 int ret = 0;
2451 u32 num_stripes;
2452 u32 array_size;
2453 u32 len = 0;
2454 u32 cur;
2455 struct btrfs_key key;
2456
2457 array_size = btrfs_super_sys_array_size(super_copy);
2458
2459 ptr = super_copy->sys_chunk_array;
2460 cur = 0;
2461
2462 while (cur < array_size) {
2463 disk_key = (struct btrfs_disk_key *)ptr;
2464 btrfs_disk_key_to_cpu(&key, disk_key);
2465
2466 len = sizeof(*disk_key);
2467
2468 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2469 chunk = (struct btrfs_chunk *)(ptr + len);
2470 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2471 len += btrfs_chunk_item_size(num_stripes);
2472 } else {
2473 ret = -EIO;
2474 break;
2475 }
2476 if (key.objectid == chunk_objectid &&
2477 key.offset == chunk_offset) {
2478 memmove(ptr, ptr + len, array_size - (cur + len));
2479 array_size -= len;
2480 btrfs_set_super_sys_array_size(super_copy, array_size);
2481 } else {
2482 ptr += len;
2483 cur += len;
2484 }
2485 }
2486 return ret;
2487}
2488
b2950863 2489static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2490 u64 chunk_tree, u64 chunk_objectid,
2491 u64 chunk_offset)
2492{
2493 struct extent_map_tree *em_tree;
2494 struct btrfs_root *extent_root;
2495 struct btrfs_trans_handle *trans;
2496 struct extent_map *em;
2497 struct map_lookup *map;
2498 int ret;
2499 int i;
2500
2501 root = root->fs_info->chunk_root;
2502 extent_root = root->fs_info->extent_root;
2503 em_tree = &root->fs_info->mapping_tree.map_tree;
2504
ba1bf481
JB
2505 ret = btrfs_can_relocate(extent_root, chunk_offset);
2506 if (ret)
2507 return -ENOSPC;
2508
8f18cf13 2509 /* step one, relocate all the extents inside this chunk */
1a40e23b 2510 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2511 if (ret)
2512 return ret;
8f18cf13 2513
a22285a6 2514 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2515 if (IS_ERR(trans)) {
2516 ret = PTR_ERR(trans);
2517 btrfs_std_error(root->fs_info, ret);
2518 return ret;
2519 }
8f18cf13 2520
7d9eb12c
CM
2521 lock_chunks(root);
2522
8f18cf13
CM
2523 /*
2524 * step two, delete the device extents and the
2525 * chunk tree entries
2526 */
890871be 2527 read_lock(&em_tree->lock);
8f18cf13 2528 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2529 read_unlock(&em_tree->lock);
8f18cf13 2530
285190d9 2531 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2532 em->start + em->len < chunk_offset);
8f18cf13
CM
2533 map = (struct map_lookup *)em->bdev;
2534
2535 for (i = 0; i < map->num_stripes; i++) {
2536 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2537 map->stripes[i].physical);
2538 BUG_ON(ret);
a061fc8d 2539
dfe25020
CM
2540 if (map->stripes[i].dev) {
2541 ret = btrfs_update_device(trans, map->stripes[i].dev);
2542 BUG_ON(ret);
2543 }
8f18cf13
CM
2544 }
2545 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2546 chunk_offset);
2547
2548 BUG_ON(ret);
2549
1abe9b8a 2550 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2551
8f18cf13
CM
2552 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2553 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2554 BUG_ON(ret);
8f18cf13
CM
2555 }
2556
2b82032c
YZ
2557 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2558 BUG_ON(ret);
2559
890871be 2560 write_lock(&em_tree->lock);
2b82032c 2561 remove_extent_mapping(em_tree, em);
890871be 2562 write_unlock(&em_tree->lock);
2b82032c 2563
2b82032c
YZ
2564 /* once for the tree */
2565 free_extent_map(em);
2566 /* once for us */
2567 free_extent_map(em);
2568
2569 unlock_chunks(root);
2570 btrfs_end_transaction(trans, root);
2571 return 0;
2572}
2573
2574static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2575{
2576 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2577 struct btrfs_path *path;
2578 struct extent_buffer *leaf;
2579 struct btrfs_chunk *chunk;
2580 struct btrfs_key key;
2581 struct btrfs_key found_key;
2582 u64 chunk_tree = chunk_root->root_key.objectid;
2583 u64 chunk_type;
ba1bf481
JB
2584 bool retried = false;
2585 int failed = 0;
2b82032c
YZ
2586 int ret;
2587
2588 path = btrfs_alloc_path();
2589 if (!path)
2590 return -ENOMEM;
2591
ba1bf481 2592again:
2b82032c
YZ
2593 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2594 key.offset = (u64)-1;
2595 key.type = BTRFS_CHUNK_ITEM_KEY;
2596
2597 while (1) {
2598 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2599 if (ret < 0)
2600 goto error;
79787eaa 2601 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2602
2603 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2604 key.type);
2605 if (ret < 0)
2606 goto error;
2607 if (ret > 0)
2608 break;
1a40e23b 2609
2b82032c
YZ
2610 leaf = path->nodes[0];
2611 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2612
2b82032c
YZ
2613 chunk = btrfs_item_ptr(leaf, path->slots[0],
2614 struct btrfs_chunk);
2615 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2616 btrfs_release_path(path);
8f18cf13 2617
2b82032c
YZ
2618 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2619 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2620 found_key.objectid,
2621 found_key.offset);
ba1bf481
JB
2622 if (ret == -ENOSPC)
2623 failed++;
2624 else if (ret)
2625 BUG();
2b82032c 2626 }
8f18cf13 2627
2b82032c
YZ
2628 if (found_key.offset == 0)
2629 break;
2630 key.offset = found_key.offset - 1;
2631 }
2632 ret = 0;
ba1bf481
JB
2633 if (failed && !retried) {
2634 failed = 0;
2635 retried = true;
2636 goto again;
fae7f21c 2637 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2638 ret = -ENOSPC;
2639 }
2b82032c
YZ
2640error:
2641 btrfs_free_path(path);
2642 return ret;
8f18cf13
CM
2643}
2644
0940ebf6
ID
2645static int insert_balance_item(struct btrfs_root *root,
2646 struct btrfs_balance_control *bctl)
2647{
2648 struct btrfs_trans_handle *trans;
2649 struct btrfs_balance_item *item;
2650 struct btrfs_disk_balance_args disk_bargs;
2651 struct btrfs_path *path;
2652 struct extent_buffer *leaf;
2653 struct btrfs_key key;
2654 int ret, err;
2655
2656 path = btrfs_alloc_path();
2657 if (!path)
2658 return -ENOMEM;
2659
2660 trans = btrfs_start_transaction(root, 0);
2661 if (IS_ERR(trans)) {
2662 btrfs_free_path(path);
2663 return PTR_ERR(trans);
2664 }
2665
2666 key.objectid = BTRFS_BALANCE_OBJECTID;
2667 key.type = BTRFS_BALANCE_ITEM_KEY;
2668 key.offset = 0;
2669
2670 ret = btrfs_insert_empty_item(trans, root, path, &key,
2671 sizeof(*item));
2672 if (ret)
2673 goto out;
2674
2675 leaf = path->nodes[0];
2676 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2677
2678 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2679
2680 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2681 btrfs_set_balance_data(leaf, item, &disk_bargs);
2682 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2683 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2684 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2685 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2686
2687 btrfs_set_balance_flags(leaf, item, bctl->flags);
2688
2689 btrfs_mark_buffer_dirty(leaf);
2690out:
2691 btrfs_free_path(path);
2692 err = btrfs_commit_transaction(trans, root);
2693 if (err && !ret)
2694 ret = err;
2695 return ret;
2696}
2697
2698static int del_balance_item(struct btrfs_root *root)
2699{
2700 struct btrfs_trans_handle *trans;
2701 struct btrfs_path *path;
2702 struct btrfs_key key;
2703 int ret, err;
2704
2705 path = btrfs_alloc_path();
2706 if (!path)
2707 return -ENOMEM;
2708
2709 trans = btrfs_start_transaction(root, 0);
2710 if (IS_ERR(trans)) {
2711 btrfs_free_path(path);
2712 return PTR_ERR(trans);
2713 }
2714
2715 key.objectid = BTRFS_BALANCE_OBJECTID;
2716 key.type = BTRFS_BALANCE_ITEM_KEY;
2717 key.offset = 0;
2718
2719 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2720 if (ret < 0)
2721 goto out;
2722 if (ret > 0) {
2723 ret = -ENOENT;
2724 goto out;
2725 }
2726
2727 ret = btrfs_del_item(trans, root, path);
2728out:
2729 btrfs_free_path(path);
2730 err = btrfs_commit_transaction(trans, root);
2731 if (err && !ret)
2732 ret = err;
2733 return ret;
2734}
2735
59641015
ID
2736/*
2737 * This is a heuristic used to reduce the number of chunks balanced on
2738 * resume after balance was interrupted.
2739 */
2740static void update_balance_args(struct btrfs_balance_control *bctl)
2741{
2742 /*
2743 * Turn on soft mode for chunk types that were being converted.
2744 */
2745 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2746 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2747 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2748 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2749 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2750 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2751
2752 /*
2753 * Turn on usage filter if is not already used. The idea is
2754 * that chunks that we have already balanced should be
2755 * reasonably full. Don't do it for chunks that are being
2756 * converted - that will keep us from relocating unconverted
2757 * (albeit full) chunks.
2758 */
2759 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2760 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2761 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2762 bctl->data.usage = 90;
2763 }
2764 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2765 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2766 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2767 bctl->sys.usage = 90;
2768 }
2769 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2770 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2771 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2772 bctl->meta.usage = 90;
2773 }
2774}
2775
c9e9f97b
ID
2776/*
2777 * Should be called with both balance and volume mutexes held to
2778 * serialize other volume operations (add_dev/rm_dev/resize) with
2779 * restriper. Same goes for unset_balance_control.
2780 */
2781static void set_balance_control(struct btrfs_balance_control *bctl)
2782{
2783 struct btrfs_fs_info *fs_info = bctl->fs_info;
2784
2785 BUG_ON(fs_info->balance_ctl);
2786
2787 spin_lock(&fs_info->balance_lock);
2788 fs_info->balance_ctl = bctl;
2789 spin_unlock(&fs_info->balance_lock);
2790}
2791
2792static void unset_balance_control(struct btrfs_fs_info *fs_info)
2793{
2794 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2795
2796 BUG_ON(!fs_info->balance_ctl);
2797
2798 spin_lock(&fs_info->balance_lock);
2799 fs_info->balance_ctl = NULL;
2800 spin_unlock(&fs_info->balance_lock);
2801
2802 kfree(bctl);
2803}
2804
ed25e9b2
ID
2805/*
2806 * Balance filters. Return 1 if chunk should be filtered out
2807 * (should not be balanced).
2808 */
899c81ea 2809static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2810 struct btrfs_balance_args *bargs)
2811{
899c81ea
ID
2812 chunk_type = chunk_to_extended(chunk_type) &
2813 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2814
899c81ea 2815 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2816 return 0;
2817
2818 return 1;
2819}
2820
5ce5b3c0
ID
2821static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2822 struct btrfs_balance_args *bargs)
2823{
2824 struct btrfs_block_group_cache *cache;
2825 u64 chunk_used, user_thresh;
2826 int ret = 1;
2827
2828 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2829 chunk_used = btrfs_block_group_used(&cache->item);
2830
a105bb88 2831 if (bargs->usage == 0)
3e39cea6 2832 user_thresh = 1;
a105bb88
ID
2833 else if (bargs->usage > 100)
2834 user_thresh = cache->key.offset;
2835 else
2836 user_thresh = div_factor_fine(cache->key.offset,
2837 bargs->usage);
2838
5ce5b3c0
ID
2839 if (chunk_used < user_thresh)
2840 ret = 0;
2841
2842 btrfs_put_block_group(cache);
2843 return ret;
2844}
2845
409d404b
ID
2846static int chunk_devid_filter(struct extent_buffer *leaf,
2847 struct btrfs_chunk *chunk,
2848 struct btrfs_balance_args *bargs)
2849{
2850 struct btrfs_stripe *stripe;
2851 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2852 int i;
2853
2854 for (i = 0; i < num_stripes; i++) {
2855 stripe = btrfs_stripe_nr(chunk, i);
2856 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2857 return 0;
2858 }
2859
2860 return 1;
2861}
2862
94e60d5a
ID
2863/* [pstart, pend) */
2864static int chunk_drange_filter(struct extent_buffer *leaf,
2865 struct btrfs_chunk *chunk,
2866 u64 chunk_offset,
2867 struct btrfs_balance_args *bargs)
2868{
2869 struct btrfs_stripe *stripe;
2870 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2871 u64 stripe_offset;
2872 u64 stripe_length;
2873 int factor;
2874 int i;
2875
2876 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2877 return 0;
2878
2879 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2880 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2881 factor = num_stripes / 2;
2882 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2883 factor = num_stripes - 1;
2884 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2885 factor = num_stripes - 2;
2886 } else {
2887 factor = num_stripes;
2888 }
94e60d5a
ID
2889
2890 for (i = 0; i < num_stripes; i++) {
2891 stripe = btrfs_stripe_nr(chunk, i);
2892 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2893 continue;
2894
2895 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2896 stripe_length = btrfs_chunk_length(leaf, chunk);
2897 do_div(stripe_length, factor);
2898
2899 if (stripe_offset < bargs->pend &&
2900 stripe_offset + stripe_length > bargs->pstart)
2901 return 0;
2902 }
2903
2904 return 1;
2905}
2906
ea67176a
ID
2907/* [vstart, vend) */
2908static int chunk_vrange_filter(struct extent_buffer *leaf,
2909 struct btrfs_chunk *chunk,
2910 u64 chunk_offset,
2911 struct btrfs_balance_args *bargs)
2912{
2913 if (chunk_offset < bargs->vend &&
2914 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2915 /* at least part of the chunk is inside this vrange */
2916 return 0;
2917
2918 return 1;
2919}
2920
899c81ea 2921static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2922 struct btrfs_balance_args *bargs)
2923{
2924 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2925 return 0;
2926
899c81ea
ID
2927 chunk_type = chunk_to_extended(chunk_type) &
2928 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2929
899c81ea 2930 if (bargs->target == chunk_type)
cfa4c961
ID
2931 return 1;
2932
2933 return 0;
2934}
2935
f43ffb60
ID
2936static int should_balance_chunk(struct btrfs_root *root,
2937 struct extent_buffer *leaf,
2938 struct btrfs_chunk *chunk, u64 chunk_offset)
2939{
2940 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2941 struct btrfs_balance_args *bargs = NULL;
2942 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2943
2944 /* type filter */
2945 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2946 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2947 return 0;
2948 }
2949
2950 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2951 bargs = &bctl->data;
2952 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2953 bargs = &bctl->sys;
2954 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2955 bargs = &bctl->meta;
2956
ed25e9b2
ID
2957 /* profiles filter */
2958 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2959 chunk_profiles_filter(chunk_type, bargs)) {
2960 return 0;
5ce5b3c0
ID
2961 }
2962
2963 /* usage filter */
2964 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2965 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2966 return 0;
409d404b
ID
2967 }
2968
2969 /* devid filter */
2970 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2971 chunk_devid_filter(leaf, chunk, bargs)) {
2972 return 0;
94e60d5a
ID
2973 }
2974
2975 /* drange filter, makes sense only with devid filter */
2976 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2977 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2978 return 0;
ea67176a
ID
2979 }
2980
2981 /* vrange filter */
2982 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2983 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2984 return 0;
ed25e9b2
ID
2985 }
2986
cfa4c961
ID
2987 /* soft profile changing mode */
2988 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2989 chunk_soft_convert_filter(chunk_type, bargs)) {
2990 return 0;
2991 }
2992
7d824b6f
DS
2993 /*
2994 * limited by count, must be the last filter
2995 */
2996 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
2997 if (bargs->limit == 0)
2998 return 0;
2999 else
3000 bargs->limit--;
3001 }
3002
f43ffb60
ID
3003 return 1;
3004}
3005
c9e9f97b 3006static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3007{
19a39dce 3008 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3009 struct btrfs_root *chunk_root = fs_info->chunk_root;
3010 struct btrfs_root *dev_root = fs_info->dev_root;
3011 struct list_head *devices;
ec44a35c
CM
3012 struct btrfs_device *device;
3013 u64 old_size;
3014 u64 size_to_free;
f43ffb60 3015 struct btrfs_chunk *chunk;
ec44a35c
CM
3016 struct btrfs_path *path;
3017 struct btrfs_key key;
ec44a35c 3018 struct btrfs_key found_key;
c9e9f97b 3019 struct btrfs_trans_handle *trans;
f43ffb60
ID
3020 struct extent_buffer *leaf;
3021 int slot;
c9e9f97b
ID
3022 int ret;
3023 int enospc_errors = 0;
19a39dce 3024 bool counting = true;
7d824b6f
DS
3025 u64 limit_data = bctl->data.limit;
3026 u64 limit_meta = bctl->meta.limit;
3027 u64 limit_sys = bctl->sys.limit;
ec44a35c 3028
ec44a35c 3029 /* step one make some room on all the devices */
c9e9f97b 3030 devices = &fs_info->fs_devices->devices;
c6e30871 3031 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
3032 old_size = device->total_bytes;
3033 size_to_free = div_factor(old_size, 1);
3034 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3035 if (!device->writeable ||
63a212ab
SB
3036 device->total_bytes - device->bytes_used > size_to_free ||
3037 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3038 continue;
3039
3040 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3041 if (ret == -ENOSPC)
3042 break;
ec44a35c
CM
3043 BUG_ON(ret);
3044
a22285a6 3045 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3046 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3047
3048 ret = btrfs_grow_device(trans, device, old_size);
3049 BUG_ON(ret);
3050
3051 btrfs_end_transaction(trans, dev_root);
3052 }
3053
3054 /* step two, relocate all the chunks */
3055 path = btrfs_alloc_path();
17e9f796
MF
3056 if (!path) {
3057 ret = -ENOMEM;
3058 goto error;
3059 }
19a39dce
ID
3060
3061 /* zero out stat counters */
3062 spin_lock(&fs_info->balance_lock);
3063 memset(&bctl->stat, 0, sizeof(bctl->stat));
3064 spin_unlock(&fs_info->balance_lock);
3065again:
7d824b6f
DS
3066 if (!counting) {
3067 bctl->data.limit = limit_data;
3068 bctl->meta.limit = limit_meta;
3069 bctl->sys.limit = limit_sys;
3070 }
ec44a35c
CM
3071 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3072 key.offset = (u64)-1;
3073 key.type = BTRFS_CHUNK_ITEM_KEY;
3074
d397712b 3075 while (1) {
19a39dce 3076 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3077 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3078 ret = -ECANCELED;
3079 goto error;
3080 }
3081
ec44a35c
CM
3082 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3083 if (ret < 0)
3084 goto error;
3085
3086 /*
3087 * this shouldn't happen, it means the last relocate
3088 * failed
3089 */
3090 if (ret == 0)
c9e9f97b 3091 BUG(); /* FIXME break ? */
ec44a35c
CM
3092
3093 ret = btrfs_previous_item(chunk_root, path, 0,
3094 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
3095 if (ret) {
3096 ret = 0;
ec44a35c 3097 break;
c9e9f97b 3098 }
7d9eb12c 3099
f43ffb60
ID
3100 leaf = path->nodes[0];
3101 slot = path->slots[0];
3102 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3103
ec44a35c
CM
3104 if (found_key.objectid != key.objectid)
3105 break;
7d9eb12c 3106
f43ffb60
ID
3107 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3108
19a39dce
ID
3109 if (!counting) {
3110 spin_lock(&fs_info->balance_lock);
3111 bctl->stat.considered++;
3112 spin_unlock(&fs_info->balance_lock);
3113 }
3114
f43ffb60
ID
3115 ret = should_balance_chunk(chunk_root, leaf, chunk,
3116 found_key.offset);
b3b4aa74 3117 btrfs_release_path(path);
f43ffb60
ID
3118 if (!ret)
3119 goto loop;
3120
19a39dce
ID
3121 if (counting) {
3122 spin_lock(&fs_info->balance_lock);
3123 bctl->stat.expected++;
3124 spin_unlock(&fs_info->balance_lock);
3125 goto loop;
3126 }
3127
ec44a35c
CM
3128 ret = btrfs_relocate_chunk(chunk_root,
3129 chunk_root->root_key.objectid,
3130 found_key.objectid,
3131 found_key.offset);
508794eb
JB
3132 if (ret && ret != -ENOSPC)
3133 goto error;
19a39dce 3134 if (ret == -ENOSPC) {
c9e9f97b 3135 enospc_errors++;
19a39dce
ID
3136 } else {
3137 spin_lock(&fs_info->balance_lock);
3138 bctl->stat.completed++;
3139 spin_unlock(&fs_info->balance_lock);
3140 }
f43ffb60 3141loop:
795a3321
ID
3142 if (found_key.offset == 0)
3143 break;
ba1bf481 3144 key.offset = found_key.offset - 1;
ec44a35c 3145 }
c9e9f97b 3146
19a39dce
ID
3147 if (counting) {
3148 btrfs_release_path(path);
3149 counting = false;
3150 goto again;
3151 }
ec44a35c
CM
3152error:
3153 btrfs_free_path(path);
c9e9f97b 3154 if (enospc_errors) {
efe120a0 3155 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3156 enospc_errors);
3157 if (!ret)
3158 ret = -ENOSPC;
3159 }
3160
ec44a35c
CM
3161 return ret;
3162}
3163
0c460c0d
ID
3164/**
3165 * alloc_profile_is_valid - see if a given profile is valid and reduced
3166 * @flags: profile to validate
3167 * @extended: if true @flags is treated as an extended profile
3168 */
3169static int alloc_profile_is_valid(u64 flags, int extended)
3170{
3171 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3172 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3173
3174 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3175
3176 /* 1) check that all other bits are zeroed */
3177 if (flags & ~mask)
3178 return 0;
3179
3180 /* 2) see if profile is reduced */
3181 if (flags == 0)
3182 return !extended; /* "0" is valid for usual profiles */
3183
3184 /* true if exactly one bit set */
3185 return (flags & (flags - 1)) == 0;
3186}
3187
837d5b6e
ID
3188static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3189{
a7e99c69
ID
3190 /* cancel requested || normal exit path */
3191 return atomic_read(&fs_info->balance_cancel_req) ||
3192 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3193 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3194}
3195
c9e9f97b
ID
3196static void __cancel_balance(struct btrfs_fs_info *fs_info)
3197{
0940ebf6
ID
3198 int ret;
3199
c9e9f97b 3200 unset_balance_control(fs_info);
0940ebf6 3201 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3202 if (ret)
3203 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3204
3205 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3206}
3207
c9e9f97b
ID
3208/*
3209 * Should be called with both balance and volume mutexes held
3210 */
3211int btrfs_balance(struct btrfs_balance_control *bctl,
3212 struct btrfs_ioctl_balance_args *bargs)
3213{
3214 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3215 u64 allowed;
e4837f8f 3216 int mixed = 0;
c9e9f97b 3217 int ret;
8dabb742 3218 u64 num_devices;
de98ced9 3219 unsigned seq;
c9e9f97b 3220
837d5b6e 3221 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3222 atomic_read(&fs_info->balance_pause_req) ||
3223 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3224 ret = -EINVAL;
3225 goto out;
3226 }
3227
e4837f8f
ID
3228 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3229 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3230 mixed = 1;
3231
f43ffb60
ID
3232 /*
3233 * In case of mixed groups both data and meta should be picked,
3234 * and identical options should be given for both of them.
3235 */
e4837f8f
ID
3236 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3237 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3238 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3239 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3240 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3241 btrfs_err(fs_info, "with mixed groups data and "
3242 "metadata balance options must be the same");
f43ffb60
ID
3243 ret = -EINVAL;
3244 goto out;
3245 }
3246 }
3247
8dabb742
SB
3248 num_devices = fs_info->fs_devices->num_devices;
3249 btrfs_dev_replace_lock(&fs_info->dev_replace);
3250 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3251 BUG_ON(num_devices < 1);
3252 num_devices--;
3253 }
3254 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3255 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3256 if (num_devices == 1)
e4d8ec0f 3257 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3258 else if (num_devices > 1)
e4d8ec0f 3259 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3260 if (num_devices > 2)
3261 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3262 if (num_devices > 3)
3263 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3264 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3265 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3266 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3267 (bctl->data.target & ~allowed))) {
efe120a0
FH
3268 btrfs_err(fs_info, "unable to start balance with target "
3269 "data profile %llu",
c1c9ff7c 3270 bctl->data.target);
e4d8ec0f
ID
3271 ret = -EINVAL;
3272 goto out;
3273 }
6728b198
ID
3274 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3275 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3276 (bctl->meta.target & ~allowed))) {
efe120a0
FH
3277 btrfs_err(fs_info,
3278 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3279 bctl->meta.target);
e4d8ec0f
ID
3280 ret = -EINVAL;
3281 goto out;
3282 }
6728b198
ID
3283 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3284 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3285 (bctl->sys.target & ~allowed))) {
efe120a0
FH
3286 btrfs_err(fs_info,
3287 "unable to start balance with target system profile %llu",
c1c9ff7c 3288 bctl->sys.target);
e4d8ec0f
ID
3289 ret = -EINVAL;
3290 goto out;
3291 }
3292
e4837f8f
ID
3293 /* allow dup'ed data chunks only in mixed mode */
3294 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3295 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3296 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3297 ret = -EINVAL;
3298 goto out;
3299 }
3300
3301 /* allow to reduce meta or sys integrity only if force set */
3302 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3303 BTRFS_BLOCK_GROUP_RAID10 |
3304 BTRFS_BLOCK_GROUP_RAID5 |
3305 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3306 do {
3307 seq = read_seqbegin(&fs_info->profiles_lock);
3308
3309 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3310 (fs_info->avail_system_alloc_bits & allowed) &&
3311 !(bctl->sys.target & allowed)) ||
3312 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3313 (fs_info->avail_metadata_alloc_bits & allowed) &&
3314 !(bctl->meta.target & allowed))) {
3315 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3316 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3317 } else {
efe120a0
FH
3318 btrfs_err(fs_info, "balance will reduce metadata "
3319 "integrity, use force if you want this");
de98ced9
MX
3320 ret = -EINVAL;
3321 goto out;
3322 }
e4d8ec0f 3323 }
de98ced9 3324 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3325
5af3e8cc
SB
3326 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3327 int num_tolerated_disk_barrier_failures;
3328 u64 target = bctl->sys.target;
3329
3330 num_tolerated_disk_barrier_failures =
3331 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3332 if (num_tolerated_disk_barrier_failures > 0 &&
3333 (target &
3334 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3335 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3336 num_tolerated_disk_barrier_failures = 0;
3337 else if (num_tolerated_disk_barrier_failures > 1 &&
3338 (target &
3339 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3340 num_tolerated_disk_barrier_failures = 1;
3341
3342 fs_info->num_tolerated_disk_barrier_failures =
3343 num_tolerated_disk_barrier_failures;
3344 }
3345
0940ebf6 3346 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3347 if (ret && ret != -EEXIST)
0940ebf6
ID
3348 goto out;
3349
59641015
ID
3350 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3351 BUG_ON(ret == -EEXIST);
3352 set_balance_control(bctl);
3353 } else {
3354 BUG_ON(ret != -EEXIST);
3355 spin_lock(&fs_info->balance_lock);
3356 update_balance_args(bctl);
3357 spin_unlock(&fs_info->balance_lock);
3358 }
c9e9f97b 3359
837d5b6e 3360 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3361 mutex_unlock(&fs_info->balance_mutex);
3362
3363 ret = __btrfs_balance(fs_info);
3364
3365 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3366 atomic_dec(&fs_info->balance_running);
c9e9f97b 3367
bf023ecf
ID
3368 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3369 fs_info->num_tolerated_disk_barrier_failures =
3370 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3371 }
3372
c9e9f97b
ID
3373 if (bargs) {
3374 memset(bargs, 0, sizeof(*bargs));
19a39dce 3375 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3376 }
3377
3a01aa7a
ID
3378 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3379 balance_need_close(fs_info)) {
3380 __cancel_balance(fs_info);
3381 }
3382
837d5b6e 3383 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3384
3385 return ret;
3386out:
59641015
ID
3387 if (bctl->flags & BTRFS_BALANCE_RESUME)
3388 __cancel_balance(fs_info);
ed0fb78f 3389 else {
59641015 3390 kfree(bctl);
ed0fb78f
ID
3391 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3392 }
59641015
ID
3393 return ret;
3394}
3395
3396static int balance_kthread(void *data)
3397{
2b6ba629 3398 struct btrfs_fs_info *fs_info = data;
9555c6c1 3399 int ret = 0;
59641015
ID
3400
3401 mutex_lock(&fs_info->volume_mutex);
3402 mutex_lock(&fs_info->balance_mutex);
3403
2b6ba629 3404 if (fs_info->balance_ctl) {
efe120a0 3405 btrfs_info(fs_info, "continuing balance");
2b6ba629 3406 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3407 }
59641015
ID
3408
3409 mutex_unlock(&fs_info->balance_mutex);
3410 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3411
59641015
ID
3412 return ret;
3413}
3414
2b6ba629
ID
3415int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3416{
3417 struct task_struct *tsk;
3418
3419 spin_lock(&fs_info->balance_lock);
3420 if (!fs_info->balance_ctl) {
3421 spin_unlock(&fs_info->balance_lock);
3422 return 0;
3423 }
3424 spin_unlock(&fs_info->balance_lock);
3425
3426 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3427 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3428 return 0;
3429 }
3430
3431 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3432 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3433}
3434
68310a5e 3435int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3436{
59641015
ID
3437 struct btrfs_balance_control *bctl;
3438 struct btrfs_balance_item *item;
3439 struct btrfs_disk_balance_args disk_bargs;
3440 struct btrfs_path *path;
3441 struct extent_buffer *leaf;
3442 struct btrfs_key key;
3443 int ret;
3444
3445 path = btrfs_alloc_path();
3446 if (!path)
3447 return -ENOMEM;
3448
59641015
ID
3449 key.objectid = BTRFS_BALANCE_OBJECTID;
3450 key.type = BTRFS_BALANCE_ITEM_KEY;
3451 key.offset = 0;
3452
68310a5e 3453 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3454 if (ret < 0)
68310a5e 3455 goto out;
59641015
ID
3456 if (ret > 0) { /* ret = -ENOENT; */
3457 ret = 0;
68310a5e
ID
3458 goto out;
3459 }
3460
3461 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3462 if (!bctl) {
3463 ret = -ENOMEM;
3464 goto out;
59641015
ID
3465 }
3466
3467 leaf = path->nodes[0];
3468 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3469
68310a5e
ID
3470 bctl->fs_info = fs_info;
3471 bctl->flags = btrfs_balance_flags(leaf, item);
3472 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3473
3474 btrfs_balance_data(leaf, item, &disk_bargs);
3475 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3476 btrfs_balance_meta(leaf, item, &disk_bargs);
3477 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3478 btrfs_balance_sys(leaf, item, &disk_bargs);
3479 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3480
ed0fb78f
ID
3481 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3482
68310a5e
ID
3483 mutex_lock(&fs_info->volume_mutex);
3484 mutex_lock(&fs_info->balance_mutex);
59641015 3485
68310a5e
ID
3486 set_balance_control(bctl);
3487
3488 mutex_unlock(&fs_info->balance_mutex);
3489 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3490out:
3491 btrfs_free_path(path);
ec44a35c
CM
3492 return ret;
3493}
3494
837d5b6e
ID
3495int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3496{
3497 int ret = 0;
3498
3499 mutex_lock(&fs_info->balance_mutex);
3500 if (!fs_info->balance_ctl) {
3501 mutex_unlock(&fs_info->balance_mutex);
3502 return -ENOTCONN;
3503 }
3504
3505 if (atomic_read(&fs_info->balance_running)) {
3506 atomic_inc(&fs_info->balance_pause_req);
3507 mutex_unlock(&fs_info->balance_mutex);
3508
3509 wait_event(fs_info->balance_wait_q,
3510 atomic_read(&fs_info->balance_running) == 0);
3511
3512 mutex_lock(&fs_info->balance_mutex);
3513 /* we are good with balance_ctl ripped off from under us */
3514 BUG_ON(atomic_read(&fs_info->balance_running));
3515 atomic_dec(&fs_info->balance_pause_req);
3516 } else {
3517 ret = -ENOTCONN;
3518 }
3519
3520 mutex_unlock(&fs_info->balance_mutex);
3521 return ret;
3522}
3523
a7e99c69
ID
3524int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3525{
e649e587
ID
3526 if (fs_info->sb->s_flags & MS_RDONLY)
3527 return -EROFS;
3528
a7e99c69
ID
3529 mutex_lock(&fs_info->balance_mutex);
3530 if (!fs_info->balance_ctl) {
3531 mutex_unlock(&fs_info->balance_mutex);
3532 return -ENOTCONN;
3533 }
3534
3535 atomic_inc(&fs_info->balance_cancel_req);
3536 /*
3537 * if we are running just wait and return, balance item is
3538 * deleted in btrfs_balance in this case
3539 */
3540 if (atomic_read(&fs_info->balance_running)) {
3541 mutex_unlock(&fs_info->balance_mutex);
3542 wait_event(fs_info->balance_wait_q,
3543 atomic_read(&fs_info->balance_running) == 0);
3544 mutex_lock(&fs_info->balance_mutex);
3545 } else {
3546 /* __cancel_balance needs volume_mutex */
3547 mutex_unlock(&fs_info->balance_mutex);
3548 mutex_lock(&fs_info->volume_mutex);
3549 mutex_lock(&fs_info->balance_mutex);
3550
3551 if (fs_info->balance_ctl)
3552 __cancel_balance(fs_info);
3553
3554 mutex_unlock(&fs_info->volume_mutex);
3555 }
3556
3557 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3558 atomic_dec(&fs_info->balance_cancel_req);
3559 mutex_unlock(&fs_info->balance_mutex);
3560 return 0;
3561}
3562
803b2f54
SB
3563static int btrfs_uuid_scan_kthread(void *data)
3564{
3565 struct btrfs_fs_info *fs_info = data;
3566 struct btrfs_root *root = fs_info->tree_root;
3567 struct btrfs_key key;
3568 struct btrfs_key max_key;
3569 struct btrfs_path *path = NULL;
3570 int ret = 0;
3571 struct extent_buffer *eb;
3572 int slot;
3573 struct btrfs_root_item root_item;
3574 u32 item_size;
f45388f3 3575 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3576
3577 path = btrfs_alloc_path();
3578 if (!path) {
3579 ret = -ENOMEM;
3580 goto out;
3581 }
3582
3583 key.objectid = 0;
3584 key.type = BTRFS_ROOT_ITEM_KEY;
3585 key.offset = 0;
3586
3587 max_key.objectid = (u64)-1;
3588 max_key.type = BTRFS_ROOT_ITEM_KEY;
3589 max_key.offset = (u64)-1;
3590
3591 path->keep_locks = 1;
3592
3593 while (1) {
6174d3cb 3594 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3595 if (ret) {
3596 if (ret > 0)
3597 ret = 0;
3598 break;
3599 }
3600
3601 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3602 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3603 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3604 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3605 goto skip;
3606
3607 eb = path->nodes[0];
3608 slot = path->slots[0];
3609 item_size = btrfs_item_size_nr(eb, slot);
3610 if (item_size < sizeof(root_item))
3611 goto skip;
3612
803b2f54
SB
3613 read_extent_buffer(eb, &root_item,
3614 btrfs_item_ptr_offset(eb, slot),
3615 (int)sizeof(root_item));
3616 if (btrfs_root_refs(&root_item) == 0)
3617 goto skip;
f45388f3
FDBM
3618
3619 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3620 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3621 if (trans)
3622 goto update_tree;
3623
3624 btrfs_release_path(path);
803b2f54
SB
3625 /*
3626 * 1 - subvol uuid item
3627 * 1 - received_subvol uuid item
3628 */
3629 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3630 if (IS_ERR(trans)) {
3631 ret = PTR_ERR(trans);
3632 break;
3633 }
f45388f3
FDBM
3634 continue;
3635 } else {
3636 goto skip;
3637 }
3638update_tree:
3639 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3640 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3641 root_item.uuid,
3642 BTRFS_UUID_KEY_SUBVOL,
3643 key.objectid);
3644 if (ret < 0) {
efe120a0 3645 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3646 ret);
803b2f54
SB
3647 break;
3648 }
3649 }
3650
3651 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3652 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3653 root_item.received_uuid,
3654 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3655 key.objectid);
3656 if (ret < 0) {
efe120a0 3657 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3658 ret);
803b2f54
SB
3659 break;
3660 }
3661 }
3662
f45388f3 3663skip:
803b2f54
SB
3664 if (trans) {
3665 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3666 trans = NULL;
803b2f54
SB
3667 if (ret)
3668 break;
3669 }
3670
803b2f54
SB
3671 btrfs_release_path(path);
3672 if (key.offset < (u64)-1) {
3673 key.offset++;
3674 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3675 key.offset = 0;
3676 key.type = BTRFS_ROOT_ITEM_KEY;
3677 } else if (key.objectid < (u64)-1) {
3678 key.offset = 0;
3679 key.type = BTRFS_ROOT_ITEM_KEY;
3680 key.objectid++;
3681 } else {
3682 break;
3683 }
3684 cond_resched();
3685 }
3686
3687out:
3688 btrfs_free_path(path);
f45388f3
FDBM
3689 if (trans && !IS_ERR(trans))
3690 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3691 if (ret)
efe120a0 3692 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3693 else
3694 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3695 up(&fs_info->uuid_tree_rescan_sem);
3696 return 0;
3697}
3698
70f80175
SB
3699/*
3700 * Callback for btrfs_uuid_tree_iterate().
3701 * returns:
3702 * 0 check succeeded, the entry is not outdated.
3703 * < 0 if an error occured.
3704 * > 0 if the check failed, which means the caller shall remove the entry.
3705 */
3706static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3707 u8 *uuid, u8 type, u64 subid)
3708{
3709 struct btrfs_key key;
3710 int ret = 0;
3711 struct btrfs_root *subvol_root;
3712
3713 if (type != BTRFS_UUID_KEY_SUBVOL &&
3714 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3715 goto out;
3716
3717 key.objectid = subid;
3718 key.type = BTRFS_ROOT_ITEM_KEY;
3719 key.offset = (u64)-1;
3720 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3721 if (IS_ERR(subvol_root)) {
3722 ret = PTR_ERR(subvol_root);
3723 if (ret == -ENOENT)
3724 ret = 1;
3725 goto out;
3726 }
3727
3728 switch (type) {
3729 case BTRFS_UUID_KEY_SUBVOL:
3730 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3731 ret = 1;
3732 break;
3733 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3734 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3735 BTRFS_UUID_SIZE))
3736 ret = 1;
3737 break;
3738 }
3739
3740out:
3741 return ret;
3742}
3743
3744static int btrfs_uuid_rescan_kthread(void *data)
3745{
3746 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3747 int ret;
3748
3749 /*
3750 * 1st step is to iterate through the existing UUID tree and
3751 * to delete all entries that contain outdated data.
3752 * 2nd step is to add all missing entries to the UUID tree.
3753 */
3754 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3755 if (ret < 0) {
efe120a0 3756 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
3757 up(&fs_info->uuid_tree_rescan_sem);
3758 return ret;
3759 }
3760 return btrfs_uuid_scan_kthread(data);
3761}
3762
f7a81ea4
SB
3763int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3764{
3765 struct btrfs_trans_handle *trans;
3766 struct btrfs_root *tree_root = fs_info->tree_root;
3767 struct btrfs_root *uuid_root;
803b2f54
SB
3768 struct task_struct *task;
3769 int ret;
f7a81ea4
SB
3770
3771 /*
3772 * 1 - root node
3773 * 1 - root item
3774 */
3775 trans = btrfs_start_transaction(tree_root, 2);
3776 if (IS_ERR(trans))
3777 return PTR_ERR(trans);
3778
3779 uuid_root = btrfs_create_tree(trans, fs_info,
3780 BTRFS_UUID_TREE_OBJECTID);
3781 if (IS_ERR(uuid_root)) {
3782 btrfs_abort_transaction(trans, tree_root,
3783 PTR_ERR(uuid_root));
3784 return PTR_ERR(uuid_root);
3785 }
3786
3787 fs_info->uuid_root = uuid_root;
3788
803b2f54
SB
3789 ret = btrfs_commit_transaction(trans, tree_root);
3790 if (ret)
3791 return ret;
3792
3793 down(&fs_info->uuid_tree_rescan_sem);
3794 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3795 if (IS_ERR(task)) {
70f80175 3796 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3797 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
3798 up(&fs_info->uuid_tree_rescan_sem);
3799 return PTR_ERR(task);
3800 }
3801
3802 return 0;
f7a81ea4 3803}
803b2f54 3804
70f80175
SB
3805int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3806{
3807 struct task_struct *task;
3808
3809 down(&fs_info->uuid_tree_rescan_sem);
3810 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3811 if (IS_ERR(task)) {
3812 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 3813 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
3814 up(&fs_info->uuid_tree_rescan_sem);
3815 return PTR_ERR(task);
3816 }
3817
3818 return 0;
3819}
3820
8f18cf13
CM
3821/*
3822 * shrinking a device means finding all of the device extents past
3823 * the new size, and then following the back refs to the chunks.
3824 * The chunk relocation code actually frees the device extent
3825 */
3826int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3827{
3828 struct btrfs_trans_handle *trans;
3829 struct btrfs_root *root = device->dev_root;
3830 struct btrfs_dev_extent *dev_extent = NULL;
3831 struct btrfs_path *path;
3832 u64 length;
3833 u64 chunk_tree;
3834 u64 chunk_objectid;
3835 u64 chunk_offset;
3836 int ret;
3837 int slot;
ba1bf481
JB
3838 int failed = 0;
3839 bool retried = false;
8f18cf13
CM
3840 struct extent_buffer *l;
3841 struct btrfs_key key;
6c41761f 3842 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3843 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3844 u64 old_size = device->total_bytes;
8f18cf13
CM
3845 u64 diff = device->total_bytes - new_size;
3846
63a212ab
SB
3847 if (device->is_tgtdev_for_dev_replace)
3848 return -EINVAL;
3849
8f18cf13
CM
3850 path = btrfs_alloc_path();
3851 if (!path)
3852 return -ENOMEM;
3853
8f18cf13
CM
3854 path->reada = 2;
3855
7d9eb12c
CM
3856 lock_chunks(root);
3857
8f18cf13 3858 device->total_bytes = new_size;
2bf64758 3859 if (device->writeable) {
2b82032c 3860 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3861 spin_lock(&root->fs_info->free_chunk_lock);
3862 root->fs_info->free_chunk_space -= diff;
3863 spin_unlock(&root->fs_info->free_chunk_lock);
3864 }
7d9eb12c 3865 unlock_chunks(root);
8f18cf13 3866
ba1bf481 3867again:
8f18cf13
CM
3868 key.objectid = device->devid;
3869 key.offset = (u64)-1;
3870 key.type = BTRFS_DEV_EXTENT_KEY;
3871
213e64da 3872 do {
8f18cf13
CM
3873 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3874 if (ret < 0)
3875 goto done;
3876
3877 ret = btrfs_previous_item(root, path, 0, key.type);
3878 if (ret < 0)
3879 goto done;
3880 if (ret) {
3881 ret = 0;
b3b4aa74 3882 btrfs_release_path(path);
bf1fb512 3883 break;
8f18cf13
CM
3884 }
3885
3886 l = path->nodes[0];
3887 slot = path->slots[0];
3888 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3889
ba1bf481 3890 if (key.objectid != device->devid) {
b3b4aa74 3891 btrfs_release_path(path);
bf1fb512 3892 break;
ba1bf481 3893 }
8f18cf13
CM
3894
3895 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3896 length = btrfs_dev_extent_length(l, dev_extent);
3897
ba1bf481 3898 if (key.offset + length <= new_size) {
b3b4aa74 3899 btrfs_release_path(path);
d6397bae 3900 break;
ba1bf481 3901 }
8f18cf13
CM
3902
3903 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3904 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3905 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3906 btrfs_release_path(path);
8f18cf13
CM
3907
3908 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3909 chunk_offset);
ba1bf481 3910 if (ret && ret != -ENOSPC)
8f18cf13 3911 goto done;
ba1bf481
JB
3912 if (ret == -ENOSPC)
3913 failed++;
213e64da 3914 } while (key.offset-- > 0);
ba1bf481
JB
3915
3916 if (failed && !retried) {
3917 failed = 0;
3918 retried = true;
3919 goto again;
3920 } else if (failed && retried) {
3921 ret = -ENOSPC;
3922 lock_chunks(root);
3923
3924 device->total_bytes = old_size;
3925 if (device->writeable)
3926 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3927 spin_lock(&root->fs_info->free_chunk_lock);
3928 root->fs_info->free_chunk_space += diff;
3929 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3930 unlock_chunks(root);
3931 goto done;
8f18cf13
CM
3932 }
3933
d6397bae 3934 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3935 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3936 if (IS_ERR(trans)) {
3937 ret = PTR_ERR(trans);
3938 goto done;
3939 }
3940
d6397bae
CB
3941 lock_chunks(root);
3942
3943 device->disk_total_bytes = new_size;
3944 /* Now btrfs_update_device() will change the on-disk size. */
3945 ret = btrfs_update_device(trans, device);
3946 if (ret) {
3947 unlock_chunks(root);
3948 btrfs_end_transaction(trans, root);
3949 goto done;
3950 }
3951 WARN_ON(diff > old_total);
3952 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3953 unlock_chunks(root);
3954 btrfs_end_transaction(trans, root);
8f18cf13
CM
3955done:
3956 btrfs_free_path(path);
3957 return ret;
3958}
3959
125ccb0a 3960static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3961 struct btrfs_key *key,
3962 struct btrfs_chunk *chunk, int item_size)
3963{
6c41761f 3964 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3965 struct btrfs_disk_key disk_key;
3966 u32 array_size;
3967 u8 *ptr;
3968
3969 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e
GH
3970 if (array_size + item_size + sizeof(disk_key)
3971 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
3972 return -EFBIG;
3973
3974 ptr = super_copy->sys_chunk_array + array_size;
3975 btrfs_cpu_key_to_disk(&disk_key, key);
3976 memcpy(ptr, &disk_key, sizeof(disk_key));
3977 ptr += sizeof(disk_key);
3978 memcpy(ptr, chunk, item_size);
3979 item_size += sizeof(disk_key);
3980 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3981 return 0;
3982}
3983
73c5de00
AJ
3984/*
3985 * sort the devices in descending order by max_avail, total_avail
3986 */
3987static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3988{
73c5de00
AJ
3989 const struct btrfs_device_info *di_a = a;
3990 const struct btrfs_device_info *di_b = b;
9b3f68b9 3991
73c5de00 3992 if (di_a->max_avail > di_b->max_avail)
b2117a39 3993 return -1;
73c5de00 3994 if (di_a->max_avail < di_b->max_avail)
b2117a39 3995 return 1;
73c5de00
AJ
3996 if (di_a->total_avail > di_b->total_avail)
3997 return -1;
3998 if (di_a->total_avail < di_b->total_avail)
3999 return 1;
4000 return 0;
b2117a39 4001}
0b86a832 4002
48a3b636 4003static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
4004 [BTRFS_RAID_RAID10] = {
4005 .sub_stripes = 2,
4006 .dev_stripes = 1,
4007 .devs_max = 0, /* 0 == as many as possible */
4008 .devs_min = 4,
4009 .devs_increment = 2,
4010 .ncopies = 2,
4011 },
4012 [BTRFS_RAID_RAID1] = {
4013 .sub_stripes = 1,
4014 .dev_stripes = 1,
4015 .devs_max = 2,
4016 .devs_min = 2,
4017 .devs_increment = 2,
4018 .ncopies = 2,
4019 },
4020 [BTRFS_RAID_DUP] = {
4021 .sub_stripes = 1,
4022 .dev_stripes = 2,
4023 .devs_max = 1,
4024 .devs_min = 1,
4025 .devs_increment = 1,
4026 .ncopies = 2,
4027 },
4028 [BTRFS_RAID_RAID0] = {
4029 .sub_stripes = 1,
4030 .dev_stripes = 1,
4031 .devs_max = 0,
4032 .devs_min = 2,
4033 .devs_increment = 1,
4034 .ncopies = 1,
4035 },
4036 [BTRFS_RAID_SINGLE] = {
4037 .sub_stripes = 1,
4038 .dev_stripes = 1,
4039 .devs_max = 1,
4040 .devs_min = 1,
4041 .devs_increment = 1,
4042 .ncopies = 1,
4043 },
e942f883
CM
4044 [BTRFS_RAID_RAID5] = {
4045 .sub_stripes = 1,
4046 .dev_stripes = 1,
4047 .devs_max = 0,
4048 .devs_min = 2,
4049 .devs_increment = 1,
4050 .ncopies = 2,
4051 },
4052 [BTRFS_RAID_RAID6] = {
4053 .sub_stripes = 1,
4054 .dev_stripes = 1,
4055 .devs_max = 0,
4056 .devs_min = 3,
4057 .devs_increment = 1,
4058 .ncopies = 3,
4059 },
31e50229
LB
4060};
4061
53b381b3
DW
4062static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4063{
4064 /* TODO allow them to set a preferred stripe size */
4065 return 64 * 1024;
4066}
4067
4068static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4069{
53b381b3
DW
4070 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
4071 return;
4072
ceda0864 4073 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4074}
4075
23f8f9b7
GH
4076#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4077 - sizeof(struct btrfs_item) \
4078 - sizeof(struct btrfs_chunk)) \
4079 / sizeof(struct btrfs_stripe) + 1)
4080
4081#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4082 - 2 * sizeof(struct btrfs_disk_key) \
4083 - 2 * sizeof(struct btrfs_chunk)) \
4084 / sizeof(struct btrfs_stripe) + 1)
4085
73c5de00 4086static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4087 struct btrfs_root *extent_root, u64 start,
4088 u64 type)
b2117a39 4089{
73c5de00
AJ
4090 struct btrfs_fs_info *info = extent_root->fs_info;
4091 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4092 struct list_head *cur;
4093 struct map_lookup *map = NULL;
4094 struct extent_map_tree *em_tree;
4095 struct extent_map *em;
4096 struct btrfs_device_info *devices_info = NULL;
4097 u64 total_avail;
4098 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4099 int data_stripes; /* number of stripes that count for
4100 block group size */
73c5de00
AJ
4101 int sub_stripes; /* sub_stripes info for map */
4102 int dev_stripes; /* stripes per dev */
4103 int devs_max; /* max devs to use */
4104 int devs_min; /* min devs needed */
4105 int devs_increment; /* ndevs has to be a multiple of this */
4106 int ncopies; /* how many copies to data has */
4107 int ret;
4108 u64 max_stripe_size;
4109 u64 max_chunk_size;
4110 u64 stripe_size;
4111 u64 num_bytes;
53b381b3 4112 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4113 int ndevs;
4114 int i;
4115 int j;
31e50229 4116 int index;
593060d7 4117
0c460c0d 4118 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4119
73c5de00
AJ
4120 if (list_empty(&fs_devices->alloc_list))
4121 return -ENOSPC;
b2117a39 4122
31e50229 4123 index = __get_raid_index(type);
73c5de00 4124
31e50229
LB
4125 sub_stripes = btrfs_raid_array[index].sub_stripes;
4126 dev_stripes = btrfs_raid_array[index].dev_stripes;
4127 devs_max = btrfs_raid_array[index].devs_max;
4128 devs_min = btrfs_raid_array[index].devs_min;
4129 devs_increment = btrfs_raid_array[index].devs_increment;
4130 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4131
9b3f68b9 4132 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4133 max_stripe_size = 1024 * 1024 * 1024;
4134 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4135 if (!devs_max)
4136 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4137 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4138 /* for larger filesystems, use larger metadata chunks */
4139 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4140 max_stripe_size = 1024 * 1024 * 1024;
4141 else
4142 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4143 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4144 if (!devs_max)
4145 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4146 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4147 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4148 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4149 if (!devs_max)
4150 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4151 } else {
351fd353 4152 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4153 type);
4154 BUG_ON(1);
9b3f68b9
CM
4155 }
4156
2b82032c
YZ
4157 /* we don't want a chunk larger than 10% of writeable space */
4158 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4159 max_chunk_size);
9b3f68b9 4160
73c5de00
AJ
4161 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4162 GFP_NOFS);
4163 if (!devices_info)
4164 return -ENOMEM;
0cad8a11 4165
73c5de00 4166 cur = fs_devices->alloc_list.next;
9b3f68b9 4167
9f680ce0 4168 /*
73c5de00
AJ
4169 * in the first pass through the devices list, we gather information
4170 * about the available holes on each device.
9f680ce0 4171 */
73c5de00
AJ
4172 ndevs = 0;
4173 while (cur != &fs_devices->alloc_list) {
4174 struct btrfs_device *device;
4175 u64 max_avail;
4176 u64 dev_offset;
b2117a39 4177
73c5de00 4178 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4179
73c5de00 4180 cur = cur->next;
b2117a39 4181
73c5de00 4182 if (!device->writeable) {
31b1a2bd 4183 WARN(1, KERN_ERR
efe120a0 4184 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4185 continue;
4186 }
b2117a39 4187
63a212ab
SB
4188 if (!device->in_fs_metadata ||
4189 device->is_tgtdev_for_dev_replace)
73c5de00 4190 continue;
b2117a39 4191
73c5de00
AJ
4192 if (device->total_bytes > device->bytes_used)
4193 total_avail = device->total_bytes - device->bytes_used;
4194 else
4195 total_avail = 0;
38c01b96 4196
4197 /* If there is no space on this device, skip it. */
4198 if (total_avail == 0)
4199 continue;
b2117a39 4200
6df9a95e 4201 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4202 max_stripe_size * dev_stripes,
4203 &dev_offset, &max_avail);
4204 if (ret && ret != -ENOSPC)
4205 goto error;
b2117a39 4206
73c5de00
AJ
4207 if (ret == 0)
4208 max_avail = max_stripe_size * dev_stripes;
b2117a39 4209
73c5de00
AJ
4210 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4211 continue;
b2117a39 4212
063d006f
ES
4213 if (ndevs == fs_devices->rw_devices) {
4214 WARN(1, "%s: found more than %llu devices\n",
4215 __func__, fs_devices->rw_devices);
4216 break;
4217 }
73c5de00
AJ
4218 devices_info[ndevs].dev_offset = dev_offset;
4219 devices_info[ndevs].max_avail = max_avail;
4220 devices_info[ndevs].total_avail = total_avail;
4221 devices_info[ndevs].dev = device;
4222 ++ndevs;
4223 }
b2117a39 4224
73c5de00
AJ
4225 /*
4226 * now sort the devices by hole size / available space
4227 */
4228 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4229 btrfs_cmp_device_info, NULL);
b2117a39 4230
73c5de00
AJ
4231 /* round down to number of usable stripes */
4232 ndevs -= ndevs % devs_increment;
b2117a39 4233
73c5de00
AJ
4234 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4235 ret = -ENOSPC;
4236 goto error;
b2117a39 4237 }
9f680ce0 4238
73c5de00
AJ
4239 if (devs_max && ndevs > devs_max)
4240 ndevs = devs_max;
4241 /*
4242 * the primary goal is to maximize the number of stripes, so use as many
4243 * devices as possible, even if the stripes are not maximum sized.
4244 */
4245 stripe_size = devices_info[ndevs-1].max_avail;
4246 num_stripes = ndevs * dev_stripes;
b2117a39 4247
53b381b3
DW
4248 /*
4249 * this will have to be fixed for RAID1 and RAID10 over
4250 * more drives
4251 */
4252 data_stripes = num_stripes / ncopies;
4253
53b381b3
DW
4254 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4255 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4256 btrfs_super_stripesize(info->super_copy));
4257 data_stripes = num_stripes - 1;
4258 }
4259 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4260 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4261 btrfs_super_stripesize(info->super_copy));
4262 data_stripes = num_stripes - 2;
4263 }
86db2578
CM
4264
4265 /*
4266 * Use the number of data stripes to figure out how big this chunk
4267 * is really going to be in terms of logical address space,
4268 * and compare that answer with the max chunk size
4269 */
4270 if (stripe_size * data_stripes > max_chunk_size) {
4271 u64 mask = (1ULL << 24) - 1;
4272 stripe_size = max_chunk_size;
4273 do_div(stripe_size, data_stripes);
4274
4275 /* bump the answer up to a 16MB boundary */
4276 stripe_size = (stripe_size + mask) & ~mask;
4277
4278 /* but don't go higher than the limits we found
4279 * while searching for free extents
4280 */
4281 if (stripe_size > devices_info[ndevs-1].max_avail)
4282 stripe_size = devices_info[ndevs-1].max_avail;
4283 }
4284
73c5de00 4285 do_div(stripe_size, dev_stripes);
37db63a4
ID
4286
4287 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4288 do_div(stripe_size, raid_stripe_len);
4289 stripe_size *= raid_stripe_len;
b2117a39
MX
4290
4291 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4292 if (!map) {
4293 ret = -ENOMEM;
4294 goto error;
4295 }
4296 map->num_stripes = num_stripes;
9b3f68b9 4297
73c5de00
AJ
4298 for (i = 0; i < ndevs; ++i) {
4299 for (j = 0; j < dev_stripes; ++j) {
4300 int s = i * dev_stripes + j;
4301 map->stripes[s].dev = devices_info[i].dev;
4302 map->stripes[s].physical = devices_info[i].dev_offset +
4303 j * stripe_size;
6324fbf3 4304 }
6324fbf3 4305 }
2b82032c 4306 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4307 map->stripe_len = raid_stripe_len;
4308 map->io_align = raid_stripe_len;
4309 map->io_width = raid_stripe_len;
2b82032c 4310 map->type = type;
2b82032c 4311 map->sub_stripes = sub_stripes;
0b86a832 4312
53b381b3 4313 num_bytes = stripe_size * data_stripes;
0b86a832 4314
73c5de00 4315 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4316
172ddd60 4317 em = alloc_extent_map();
2b82032c 4318 if (!em) {
298a8f9c 4319 kfree(map);
b2117a39
MX
4320 ret = -ENOMEM;
4321 goto error;
593060d7 4322 }
298a8f9c 4323 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4324 em->bdev = (struct block_device *)map;
4325 em->start = start;
73c5de00 4326 em->len = num_bytes;
2b82032c
YZ
4327 em->block_start = 0;
4328 em->block_len = em->len;
6df9a95e 4329 em->orig_block_len = stripe_size;
593060d7 4330
2b82032c 4331 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4332 write_lock(&em_tree->lock);
09a2a8f9 4333 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4334 if (!ret) {
4335 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4336 atomic_inc(&em->refs);
4337 }
890871be 4338 write_unlock(&em_tree->lock);
0f5d42b2
JB
4339 if (ret) {
4340 free_extent_map(em);
1dd4602f 4341 goto error;
0f5d42b2 4342 }
0b86a832 4343
04487488
JB
4344 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4345 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4346 start, num_bytes);
6df9a95e
JB
4347 if (ret)
4348 goto error_del_extent;
2b82032c 4349
0f5d42b2 4350 free_extent_map(em);
53b381b3
DW
4351 check_raid56_incompat_flag(extent_root->fs_info, type);
4352
b2117a39 4353 kfree(devices_info);
2b82032c 4354 return 0;
b2117a39 4355
6df9a95e 4356error_del_extent:
0f5d42b2
JB
4357 write_lock(&em_tree->lock);
4358 remove_extent_mapping(em_tree, em);
4359 write_unlock(&em_tree->lock);
4360
4361 /* One for our allocation */
4362 free_extent_map(em);
4363 /* One for the tree reference */
4364 free_extent_map(em);
b2117a39 4365error:
b2117a39
MX
4366 kfree(devices_info);
4367 return ret;
2b82032c
YZ
4368}
4369
6df9a95e 4370int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4371 struct btrfs_root *extent_root,
6df9a95e 4372 u64 chunk_offset, u64 chunk_size)
2b82032c 4373{
2b82032c
YZ
4374 struct btrfs_key key;
4375 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4376 struct btrfs_device *device;
4377 struct btrfs_chunk *chunk;
4378 struct btrfs_stripe *stripe;
6df9a95e
JB
4379 struct extent_map_tree *em_tree;
4380 struct extent_map *em;
4381 struct map_lookup *map;
4382 size_t item_size;
4383 u64 dev_offset;
4384 u64 stripe_size;
4385 int i = 0;
2b82032c
YZ
4386 int ret;
4387
6df9a95e
JB
4388 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4389 read_lock(&em_tree->lock);
4390 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4391 read_unlock(&em_tree->lock);
4392
4393 if (!em) {
4394 btrfs_crit(extent_root->fs_info, "unable to find logical "
4395 "%Lu len %Lu", chunk_offset, chunk_size);
4396 return -EINVAL;
4397 }
4398
4399 if (em->start != chunk_offset || em->len != chunk_size) {
4400 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4401 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4402 chunk_size, em->start, em->len);
4403 free_extent_map(em);
4404 return -EINVAL;
4405 }
4406
4407 map = (struct map_lookup *)em->bdev;
4408 item_size = btrfs_chunk_item_size(map->num_stripes);
4409 stripe_size = em->orig_block_len;
4410
2b82032c 4411 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4412 if (!chunk) {
4413 ret = -ENOMEM;
4414 goto out;
4415 }
4416
4417 for (i = 0; i < map->num_stripes; i++) {
4418 device = map->stripes[i].dev;
4419 dev_offset = map->stripes[i].physical;
2b82032c 4420
2b82032c 4421 device->bytes_used += stripe_size;
0b86a832 4422 ret = btrfs_update_device(trans, device);
3acd3953 4423 if (ret)
6df9a95e
JB
4424 goto out;
4425 ret = btrfs_alloc_dev_extent(trans, device,
4426 chunk_root->root_key.objectid,
4427 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4428 chunk_offset, dev_offset,
4429 stripe_size);
4430 if (ret)
4431 goto out;
2b82032c
YZ
4432 }
4433
2bf64758
JB
4434 spin_lock(&extent_root->fs_info->free_chunk_lock);
4435 extent_root->fs_info->free_chunk_space -= (stripe_size *
4436 map->num_stripes);
4437 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4438
2b82032c 4439 stripe = &chunk->stripe;
6df9a95e
JB
4440 for (i = 0; i < map->num_stripes; i++) {
4441 device = map->stripes[i].dev;
4442 dev_offset = map->stripes[i].physical;
0b86a832 4443
e17cade2
CM
4444 btrfs_set_stack_stripe_devid(stripe, device->devid);
4445 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4446 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4447 stripe++;
0b86a832
CM
4448 }
4449
2b82032c 4450 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4451 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4452 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4453 btrfs_set_stack_chunk_type(chunk, map->type);
4454 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4455 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4456 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4457 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4458 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4459
2b82032c
YZ
4460 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4461 key.type = BTRFS_CHUNK_ITEM_KEY;
4462 key.offset = chunk_offset;
0b86a832 4463
2b82032c 4464 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4465 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4466 /*
4467 * TODO: Cleanup of inserted chunk root in case of
4468 * failure.
4469 */
125ccb0a 4470 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4471 item_size);
8f18cf13 4472 }
1abe9b8a 4473
6df9a95e 4474out:
0b86a832 4475 kfree(chunk);
6df9a95e 4476 free_extent_map(em);
4ed1d16e 4477 return ret;
2b82032c 4478}
0b86a832 4479
2b82032c
YZ
4480/*
4481 * Chunk allocation falls into two parts. The first part does works
4482 * that make the new allocated chunk useable, but not do any operation
4483 * that modifies the chunk tree. The second part does the works that
4484 * require modifying the chunk tree. This division is important for the
4485 * bootstrap process of adding storage to a seed btrfs.
4486 */
4487int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4488 struct btrfs_root *extent_root, u64 type)
4489{
4490 u64 chunk_offset;
2b82032c 4491
6df9a95e
JB
4492 chunk_offset = find_next_chunk(extent_root->fs_info);
4493 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4494}
4495
d397712b 4496static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4497 struct btrfs_root *root,
4498 struct btrfs_device *device)
4499{
4500 u64 chunk_offset;
4501 u64 sys_chunk_offset;
2b82032c 4502 u64 alloc_profile;
2b82032c
YZ
4503 struct btrfs_fs_info *fs_info = root->fs_info;
4504 struct btrfs_root *extent_root = fs_info->extent_root;
4505 int ret;
4506
6df9a95e 4507 chunk_offset = find_next_chunk(fs_info);
de98ced9 4508 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4509 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4510 alloc_profile);
79787eaa
JM
4511 if (ret)
4512 return ret;
2b82032c 4513
6df9a95e 4514 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4515 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4516 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4517 alloc_profile);
005d6427
DS
4518 if (ret) {
4519 btrfs_abort_transaction(trans, root, ret);
4520 goto out;
4521 }
2b82032c
YZ
4522
4523 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4524 if (ret)
005d6427 4525 btrfs_abort_transaction(trans, root, ret);
005d6427 4526out:
79787eaa 4527 return ret;
2b82032c
YZ
4528}
4529
4530int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4531{
4532 struct extent_map *em;
4533 struct map_lookup *map;
4534 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4535 int readonly = 0;
4536 int i;
4537
890871be 4538 read_lock(&map_tree->map_tree.lock);
2b82032c 4539 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4540 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4541 if (!em)
4542 return 1;
4543
f48b9075
JB
4544 if (btrfs_test_opt(root, DEGRADED)) {
4545 free_extent_map(em);
4546 return 0;
4547 }
4548
2b82032c
YZ
4549 map = (struct map_lookup *)em->bdev;
4550 for (i = 0; i < map->num_stripes; i++) {
4551 if (!map->stripes[i].dev->writeable) {
4552 readonly = 1;
4553 break;
4554 }
4555 }
0b86a832 4556 free_extent_map(em);
2b82032c 4557 return readonly;
0b86a832
CM
4558}
4559
4560void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4561{
a8067e02 4562 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4563}
4564
4565void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4566{
4567 struct extent_map *em;
4568
d397712b 4569 while (1) {
890871be 4570 write_lock(&tree->map_tree.lock);
0b86a832
CM
4571 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4572 if (em)
4573 remove_extent_mapping(&tree->map_tree, em);
890871be 4574 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4575 if (!em)
4576 break;
0b86a832
CM
4577 /* once for us */
4578 free_extent_map(em);
4579 /* once for the tree */
4580 free_extent_map(em);
4581 }
4582}
4583
5d964051 4584int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4585{
5d964051 4586 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4587 struct extent_map *em;
4588 struct map_lookup *map;
4589 struct extent_map_tree *em_tree = &map_tree->map_tree;
4590 int ret;
4591
890871be 4592 read_lock(&em_tree->lock);
f188591e 4593 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4594 read_unlock(&em_tree->lock);
f188591e 4595
fb7669b5
JB
4596 /*
4597 * We could return errors for these cases, but that could get ugly and
4598 * we'd probably do the same thing which is just not do anything else
4599 * and exit, so return 1 so the callers don't try to use other copies.
4600 */
4601 if (!em) {
351fd353 4602 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4603 logical+len);
4604 return 1;
4605 }
4606
4607 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4608 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4609 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4610 em->start + em->len);
7d3d1744 4611 free_extent_map(em);
fb7669b5
JB
4612 return 1;
4613 }
4614
f188591e
CM
4615 map = (struct map_lookup *)em->bdev;
4616 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4617 ret = map->num_stripes;
321aecc6
CM
4618 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4619 ret = map->sub_stripes;
53b381b3
DW
4620 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4621 ret = 2;
4622 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4623 ret = 3;
f188591e
CM
4624 else
4625 ret = 1;
4626 free_extent_map(em);
ad6d620e
SB
4627
4628 btrfs_dev_replace_lock(&fs_info->dev_replace);
4629 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4630 ret++;
4631 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4632
f188591e
CM
4633 return ret;
4634}
4635
53b381b3
DW
4636unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4637 struct btrfs_mapping_tree *map_tree,
4638 u64 logical)
4639{
4640 struct extent_map *em;
4641 struct map_lookup *map;
4642 struct extent_map_tree *em_tree = &map_tree->map_tree;
4643 unsigned long len = root->sectorsize;
4644
4645 read_lock(&em_tree->lock);
4646 em = lookup_extent_mapping(em_tree, logical, len);
4647 read_unlock(&em_tree->lock);
4648 BUG_ON(!em);
4649
4650 BUG_ON(em->start > logical || em->start + em->len < logical);
4651 map = (struct map_lookup *)em->bdev;
4652 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4653 BTRFS_BLOCK_GROUP_RAID6)) {
4654 len = map->stripe_len * nr_data_stripes(map);
4655 }
4656 free_extent_map(em);
4657 return len;
4658}
4659
4660int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4661 u64 logical, u64 len, int mirror_num)
4662{
4663 struct extent_map *em;
4664 struct map_lookup *map;
4665 struct extent_map_tree *em_tree = &map_tree->map_tree;
4666 int ret = 0;
4667
4668 read_lock(&em_tree->lock);
4669 em = lookup_extent_mapping(em_tree, logical, len);
4670 read_unlock(&em_tree->lock);
4671 BUG_ON(!em);
4672
4673 BUG_ON(em->start > logical || em->start + em->len < logical);
4674 map = (struct map_lookup *)em->bdev;
4675 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4676 BTRFS_BLOCK_GROUP_RAID6))
4677 ret = 1;
4678 free_extent_map(em);
4679 return ret;
4680}
4681
30d9861f
SB
4682static int find_live_mirror(struct btrfs_fs_info *fs_info,
4683 struct map_lookup *map, int first, int num,
4684 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4685{
4686 int i;
30d9861f
SB
4687 int tolerance;
4688 struct btrfs_device *srcdev;
4689
4690 if (dev_replace_is_ongoing &&
4691 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4692 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4693 srcdev = fs_info->dev_replace.srcdev;
4694 else
4695 srcdev = NULL;
4696
4697 /*
4698 * try to avoid the drive that is the source drive for a
4699 * dev-replace procedure, only choose it if no other non-missing
4700 * mirror is available
4701 */
4702 for (tolerance = 0; tolerance < 2; tolerance++) {
4703 if (map->stripes[optimal].dev->bdev &&
4704 (tolerance || map->stripes[optimal].dev != srcdev))
4705 return optimal;
4706 for (i = first; i < first + num; i++) {
4707 if (map->stripes[i].dev->bdev &&
4708 (tolerance || map->stripes[i].dev != srcdev))
4709 return i;
4710 }
dfe25020 4711 }
30d9861f 4712
dfe25020
CM
4713 /* we couldn't find one that doesn't fail. Just return something
4714 * and the io error handling code will clean up eventually
4715 */
4716 return optimal;
4717}
4718
53b381b3
DW
4719static inline int parity_smaller(u64 a, u64 b)
4720{
4721 return a > b;
4722}
4723
4724/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4725static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4726{
4727 struct btrfs_bio_stripe s;
4728 int i;
4729 u64 l;
4730 int again = 1;
4731
4732 while (again) {
4733 again = 0;
4734 for (i = 0; i < bbio->num_stripes - 1; i++) {
4735 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4736 s = bbio->stripes[i];
4737 l = raid_map[i];
4738 bbio->stripes[i] = bbio->stripes[i+1];
4739 raid_map[i] = raid_map[i+1];
4740 bbio->stripes[i+1] = s;
4741 raid_map[i+1] = l;
4742 again = 1;
4743 }
4744 }
4745 }
4746}
4747
3ec706c8 4748static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4749 u64 logical, u64 *length,
a1d3c478 4750 struct btrfs_bio **bbio_ret,
53b381b3 4751 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4752{
4753 struct extent_map *em;
4754 struct map_lookup *map;
3ec706c8 4755 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4756 struct extent_map_tree *em_tree = &map_tree->map_tree;
4757 u64 offset;
593060d7 4758 u64 stripe_offset;
fce3bb9a 4759 u64 stripe_end_offset;
593060d7 4760 u64 stripe_nr;
fce3bb9a
LD
4761 u64 stripe_nr_orig;
4762 u64 stripe_nr_end;
53b381b3
DW
4763 u64 stripe_len;
4764 u64 *raid_map = NULL;
593060d7 4765 int stripe_index;
cea9e445 4766 int i;
de11cc12 4767 int ret = 0;
f2d8d74d 4768 int num_stripes;
a236aed1 4769 int max_errors = 0;
a1d3c478 4770 struct btrfs_bio *bbio = NULL;
472262f3
SB
4771 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4772 int dev_replace_is_ongoing = 0;
4773 int num_alloc_stripes;
ad6d620e
SB
4774 int patch_the_first_stripe_for_dev_replace = 0;
4775 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4776 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4777
890871be 4778 read_lock(&em_tree->lock);
0b86a832 4779 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4780 read_unlock(&em_tree->lock);
f2d8d74d 4781
3b951516 4782 if (!em) {
c2cf52eb 4783 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4784 logical, *length);
9bb91873
JB
4785 return -EINVAL;
4786 }
4787
4788 if (em->start > logical || em->start + em->len < logical) {
4789 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 4790 "found %Lu-%Lu", logical, em->start,
9bb91873 4791 em->start + em->len);
7d3d1744 4792 free_extent_map(em);
9bb91873 4793 return -EINVAL;
3b951516 4794 }
0b86a832 4795
0b86a832
CM
4796 map = (struct map_lookup *)em->bdev;
4797 offset = logical - em->start;
593060d7 4798
53b381b3 4799 stripe_len = map->stripe_len;
593060d7
CM
4800 stripe_nr = offset;
4801 /*
4802 * stripe_nr counts the total number of stripes we have to stride
4803 * to get to this block
4804 */
53b381b3 4805 do_div(stripe_nr, stripe_len);
593060d7 4806
53b381b3 4807 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4808 BUG_ON(offset < stripe_offset);
4809
4810 /* stripe_offset is the offset of this block in its stripe*/
4811 stripe_offset = offset - stripe_offset;
4812
53b381b3
DW
4813 /* if we're here for raid56, we need to know the stripe aligned start */
4814 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4815 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4816 raid56_full_stripe_start = offset;
4817
4818 /* allow a write of a full stripe, but make sure we don't
4819 * allow straddling of stripes
4820 */
4821 do_div(raid56_full_stripe_start, full_stripe_len);
4822 raid56_full_stripe_start *= full_stripe_len;
4823 }
4824
4825 if (rw & REQ_DISCARD) {
4826 /* we don't discard raid56 yet */
4827 if (map->type &
4828 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4829 ret = -EOPNOTSUPP;
4830 goto out;
4831 }
fce3bb9a 4832 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4833 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4834 u64 max_len;
4835 /* For writes to RAID[56], allow a full stripeset across all disks.
4836 For other RAID types and for RAID[56] reads, just allow a single
4837 stripe (on a single disk). */
4838 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4839 (rw & REQ_WRITE)) {
4840 max_len = stripe_len * nr_data_stripes(map) -
4841 (offset - raid56_full_stripe_start);
4842 } else {
4843 /* we limit the length of each bio to what fits in a stripe */
4844 max_len = stripe_len - stripe_offset;
4845 }
4846 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4847 } else {
4848 *length = em->len - offset;
4849 }
f2d8d74d 4850
53b381b3
DW
4851 /* This is for when we're called from btrfs_merge_bio_hook() and all
4852 it cares about is the length */
a1d3c478 4853 if (!bbio_ret)
cea9e445
CM
4854 goto out;
4855
472262f3
SB
4856 btrfs_dev_replace_lock(dev_replace);
4857 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4858 if (!dev_replace_is_ongoing)
4859 btrfs_dev_replace_unlock(dev_replace);
4860
ad6d620e
SB
4861 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4862 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4863 dev_replace->tgtdev != NULL) {
4864 /*
4865 * in dev-replace case, for repair case (that's the only
4866 * case where the mirror is selected explicitly when
4867 * calling btrfs_map_block), blocks left of the left cursor
4868 * can also be read from the target drive.
4869 * For REQ_GET_READ_MIRRORS, the target drive is added as
4870 * the last one to the array of stripes. For READ, it also
4871 * needs to be supported using the same mirror number.
4872 * If the requested block is not left of the left cursor,
4873 * EIO is returned. This can happen because btrfs_num_copies()
4874 * returns one more in the dev-replace case.
4875 */
4876 u64 tmp_length = *length;
4877 struct btrfs_bio *tmp_bbio = NULL;
4878 int tmp_num_stripes;
4879 u64 srcdev_devid = dev_replace->srcdev->devid;
4880 int index_srcdev = 0;
4881 int found = 0;
4882 u64 physical_of_found = 0;
4883
4884 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4885 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4886 if (ret) {
4887 WARN_ON(tmp_bbio != NULL);
4888 goto out;
4889 }
4890
4891 tmp_num_stripes = tmp_bbio->num_stripes;
4892 if (mirror_num > tmp_num_stripes) {
4893 /*
4894 * REQ_GET_READ_MIRRORS does not contain this
4895 * mirror, that means that the requested area
4896 * is not left of the left cursor
4897 */
4898 ret = -EIO;
4899 kfree(tmp_bbio);
4900 goto out;
4901 }
4902
4903 /*
4904 * process the rest of the function using the mirror_num
4905 * of the source drive. Therefore look it up first.
4906 * At the end, patch the device pointer to the one of the
4907 * target drive.
4908 */
4909 for (i = 0; i < tmp_num_stripes; i++) {
4910 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4911 /*
4912 * In case of DUP, in order to keep it
4913 * simple, only add the mirror with the
4914 * lowest physical address
4915 */
4916 if (found &&
4917 physical_of_found <=
4918 tmp_bbio->stripes[i].physical)
4919 continue;
4920 index_srcdev = i;
4921 found = 1;
4922 physical_of_found =
4923 tmp_bbio->stripes[i].physical;
4924 }
4925 }
4926
4927 if (found) {
4928 mirror_num = index_srcdev + 1;
4929 patch_the_first_stripe_for_dev_replace = 1;
4930 physical_to_patch_in_first_stripe = physical_of_found;
4931 } else {
4932 WARN_ON(1);
4933 ret = -EIO;
4934 kfree(tmp_bbio);
4935 goto out;
4936 }
4937
4938 kfree(tmp_bbio);
4939 } else if (mirror_num > map->num_stripes) {
4940 mirror_num = 0;
4941 }
4942
f2d8d74d 4943 num_stripes = 1;
cea9e445 4944 stripe_index = 0;
fce3bb9a 4945 stripe_nr_orig = stripe_nr;
fda2832f 4946 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4947 do_div(stripe_nr_end, map->stripe_len);
4948 stripe_end_offset = stripe_nr_end * map->stripe_len -
4949 (offset + *length);
53b381b3 4950
fce3bb9a
LD
4951 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4952 if (rw & REQ_DISCARD)
4953 num_stripes = min_t(u64, map->num_stripes,
4954 stripe_nr_end - stripe_nr_orig);
4955 stripe_index = do_div(stripe_nr, map->num_stripes);
4956 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4957 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4958 num_stripes = map->num_stripes;
2fff734f 4959 else if (mirror_num)
f188591e 4960 stripe_index = mirror_num - 1;
dfe25020 4961 else {
30d9861f 4962 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4963 map->num_stripes,
30d9861f
SB
4964 current->pid % map->num_stripes,
4965 dev_replace_is_ongoing);
a1d3c478 4966 mirror_num = stripe_index + 1;
dfe25020 4967 }
2fff734f 4968
611f0e00 4969 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4970 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4971 num_stripes = map->num_stripes;
a1d3c478 4972 } else if (mirror_num) {
f188591e 4973 stripe_index = mirror_num - 1;
a1d3c478
JS
4974 } else {
4975 mirror_num = 1;
4976 }
2fff734f 4977
321aecc6
CM
4978 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4979 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4980
4981 stripe_index = do_div(stripe_nr, factor);
4982 stripe_index *= map->sub_stripes;
4983
29a8d9a0 4984 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4985 num_stripes = map->sub_stripes;
fce3bb9a
LD
4986 else if (rw & REQ_DISCARD)
4987 num_stripes = min_t(u64, map->sub_stripes *
4988 (stripe_nr_end - stripe_nr_orig),
4989 map->num_stripes);
321aecc6
CM
4990 else if (mirror_num)
4991 stripe_index += mirror_num - 1;
dfe25020 4992 else {
3e74317a 4993 int old_stripe_index = stripe_index;
30d9861f
SB
4994 stripe_index = find_live_mirror(fs_info, map,
4995 stripe_index,
dfe25020 4996 map->sub_stripes, stripe_index +
30d9861f
SB
4997 current->pid % map->sub_stripes,
4998 dev_replace_is_ongoing);
3e74317a 4999 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5000 }
53b381b3
DW
5001
5002 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5003 BTRFS_BLOCK_GROUP_RAID6)) {
5004 u64 tmp;
5005
5006 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
5007 && raid_map_ret) {
5008 int i, rot;
5009
5010 /* push stripe_nr back to the start of the full stripe */
5011 stripe_nr = raid56_full_stripe_start;
5012 do_div(stripe_nr, stripe_len);
5013
5014 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5015
5016 /* RAID[56] write or recovery. Return all stripes */
5017 num_stripes = map->num_stripes;
5018 max_errors = nr_parity_stripes(map);
5019
d9b0d9ba 5020 raid_map = kmalloc_array(num_stripes, sizeof(u64),
53b381b3
DW
5021 GFP_NOFS);
5022 if (!raid_map) {
5023 ret = -ENOMEM;
5024 goto out;
5025 }
5026
5027 /* Work out the disk rotation on this stripe-set */
5028 tmp = stripe_nr;
5029 rot = do_div(tmp, num_stripes);
5030
5031 /* Fill in the logical address of each stripe */
5032 tmp = stripe_nr * nr_data_stripes(map);
5033 for (i = 0; i < nr_data_stripes(map); i++)
5034 raid_map[(i+rot) % num_stripes] =
5035 em->start + (tmp + i) * map->stripe_len;
5036
5037 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5038 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5039 raid_map[(i+rot+1) % num_stripes] =
5040 RAID6_Q_STRIPE;
5041
5042 *length = map->stripe_len;
5043 stripe_index = 0;
5044 stripe_offset = 0;
5045 } else {
5046 /*
5047 * Mirror #0 or #1 means the original data block.
5048 * Mirror #2 is RAID5 parity block.
5049 * Mirror #3 is RAID6 Q block.
5050 */
5051 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
5052 if (mirror_num > 1)
5053 stripe_index = nr_data_stripes(map) +
5054 mirror_num - 2;
5055
5056 /* We distribute the parity blocks across stripes */
5057 tmp = stripe_nr + stripe_index;
5058 stripe_index = do_div(tmp, map->num_stripes);
5059 }
8790d502
CM
5060 } else {
5061 /*
5062 * after this do_div call, stripe_nr is the number of stripes
5063 * on this device we have to walk to find the data, and
5064 * stripe_index is the number of our device in the stripe array
5065 */
5066 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 5067 mirror_num = stripe_index + 1;
8790d502 5068 }
593060d7 5069 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5070
472262f3 5071 num_alloc_stripes = num_stripes;
ad6d620e
SB
5072 if (dev_replace_is_ongoing) {
5073 if (rw & (REQ_WRITE | REQ_DISCARD))
5074 num_alloc_stripes <<= 1;
5075 if (rw & REQ_GET_READ_MIRRORS)
5076 num_alloc_stripes++;
5077 }
472262f3 5078 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 5079 if (!bbio) {
eb2067f7 5080 kfree(raid_map);
de11cc12
LZ
5081 ret = -ENOMEM;
5082 goto out;
5083 }
5084 atomic_set(&bbio->error, 0);
5085
fce3bb9a 5086 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
5087 int factor = 0;
5088 int sub_stripes = 0;
5089 u64 stripes_per_dev = 0;
5090 u32 remaining_stripes = 0;
b89203f7 5091 u32 last_stripe = 0;
ec9ef7a1
LZ
5092
5093 if (map->type &
5094 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5095 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5096 sub_stripes = 1;
5097 else
5098 sub_stripes = map->sub_stripes;
5099
5100 factor = map->num_stripes / sub_stripes;
5101 stripes_per_dev = div_u64_rem(stripe_nr_end -
5102 stripe_nr_orig,
5103 factor,
5104 &remaining_stripes);
b89203f7
LB
5105 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5106 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5107 }
5108
fce3bb9a 5109 for (i = 0; i < num_stripes; i++) {
a1d3c478 5110 bbio->stripes[i].physical =
f2d8d74d
CM
5111 map->stripes[stripe_index].physical +
5112 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5113 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5114
ec9ef7a1
LZ
5115 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5116 BTRFS_BLOCK_GROUP_RAID10)) {
5117 bbio->stripes[i].length = stripes_per_dev *
5118 map->stripe_len;
b89203f7 5119
ec9ef7a1
LZ
5120 if (i / sub_stripes < remaining_stripes)
5121 bbio->stripes[i].length +=
5122 map->stripe_len;
b89203f7
LB
5123
5124 /*
5125 * Special for the first stripe and
5126 * the last stripe:
5127 *
5128 * |-------|...|-------|
5129 * |----------|
5130 * off end_off
5131 */
ec9ef7a1 5132 if (i < sub_stripes)
a1d3c478 5133 bbio->stripes[i].length -=
fce3bb9a 5134 stripe_offset;
b89203f7
LB
5135
5136 if (stripe_index >= last_stripe &&
5137 stripe_index <= (last_stripe +
5138 sub_stripes - 1))
a1d3c478 5139 bbio->stripes[i].length -=
fce3bb9a 5140 stripe_end_offset;
b89203f7 5141
ec9ef7a1
LZ
5142 if (i == sub_stripes - 1)
5143 stripe_offset = 0;
fce3bb9a 5144 } else
a1d3c478 5145 bbio->stripes[i].length = *length;
fce3bb9a
LD
5146
5147 stripe_index++;
5148 if (stripe_index == map->num_stripes) {
5149 /* This could only happen for RAID0/10 */
5150 stripe_index = 0;
5151 stripe_nr++;
5152 }
5153 }
5154 } else {
5155 for (i = 0; i < num_stripes; i++) {
a1d3c478 5156 bbio->stripes[i].physical =
212a17ab
LT
5157 map->stripes[stripe_index].physical +
5158 stripe_offset +
5159 stripe_nr * map->stripe_len;
a1d3c478 5160 bbio->stripes[i].dev =
212a17ab 5161 map->stripes[stripe_index].dev;
fce3bb9a 5162 stripe_index++;
f2d8d74d 5163 }
593060d7 5164 }
de11cc12 5165
29a8d9a0 5166 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5167 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5168 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5169 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5170 BTRFS_BLOCK_GROUP_DUP)) {
5171 max_errors = 1;
53b381b3
DW
5172 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5173 max_errors = 2;
de11cc12 5174 }
f2d8d74d 5175 }
de11cc12 5176
472262f3
SB
5177 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5178 dev_replace->tgtdev != NULL) {
5179 int index_where_to_add;
5180 u64 srcdev_devid = dev_replace->srcdev->devid;
5181
5182 /*
5183 * duplicate the write operations while the dev replace
5184 * procedure is running. Since the copying of the old disk
5185 * to the new disk takes place at run time while the
5186 * filesystem is mounted writable, the regular write
5187 * operations to the old disk have to be duplicated to go
5188 * to the new disk as well.
5189 * Note that device->missing is handled by the caller, and
5190 * that the write to the old disk is already set up in the
5191 * stripes array.
5192 */
5193 index_where_to_add = num_stripes;
5194 for (i = 0; i < num_stripes; i++) {
5195 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5196 /* write to new disk, too */
5197 struct btrfs_bio_stripe *new =
5198 bbio->stripes + index_where_to_add;
5199 struct btrfs_bio_stripe *old =
5200 bbio->stripes + i;
5201
5202 new->physical = old->physical;
5203 new->length = old->length;
5204 new->dev = dev_replace->tgtdev;
5205 index_where_to_add++;
5206 max_errors++;
5207 }
5208 }
5209 num_stripes = index_where_to_add;
ad6d620e
SB
5210 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5211 dev_replace->tgtdev != NULL) {
5212 u64 srcdev_devid = dev_replace->srcdev->devid;
5213 int index_srcdev = 0;
5214 int found = 0;
5215 u64 physical_of_found = 0;
5216
5217 /*
5218 * During the dev-replace procedure, the target drive can
5219 * also be used to read data in case it is needed to repair
5220 * a corrupt block elsewhere. This is possible if the
5221 * requested area is left of the left cursor. In this area,
5222 * the target drive is a full copy of the source drive.
5223 */
5224 for (i = 0; i < num_stripes; i++) {
5225 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5226 /*
5227 * In case of DUP, in order to keep it
5228 * simple, only add the mirror with the
5229 * lowest physical address
5230 */
5231 if (found &&
5232 physical_of_found <=
5233 bbio->stripes[i].physical)
5234 continue;
5235 index_srcdev = i;
5236 found = 1;
5237 physical_of_found = bbio->stripes[i].physical;
5238 }
5239 }
5240 if (found) {
5241 u64 length = map->stripe_len;
5242
5243 if (physical_of_found + length <=
5244 dev_replace->cursor_left) {
5245 struct btrfs_bio_stripe *tgtdev_stripe =
5246 bbio->stripes + num_stripes;
5247
5248 tgtdev_stripe->physical = physical_of_found;
5249 tgtdev_stripe->length =
5250 bbio->stripes[index_srcdev].length;
5251 tgtdev_stripe->dev = dev_replace->tgtdev;
5252
5253 num_stripes++;
5254 }
5255 }
472262f3
SB
5256 }
5257
de11cc12
LZ
5258 *bbio_ret = bbio;
5259 bbio->num_stripes = num_stripes;
5260 bbio->max_errors = max_errors;
5261 bbio->mirror_num = mirror_num;
ad6d620e
SB
5262
5263 /*
5264 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5265 * mirror_num == num_stripes + 1 && dev_replace target drive is
5266 * available as a mirror
5267 */
5268 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5269 WARN_ON(num_stripes > 1);
5270 bbio->stripes[0].dev = dev_replace->tgtdev;
5271 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5272 bbio->mirror_num = map->num_stripes + 1;
5273 }
53b381b3
DW
5274 if (raid_map) {
5275 sort_parity_stripes(bbio, raid_map);
5276 *raid_map_ret = raid_map;
5277 }
cea9e445 5278out:
472262f3
SB
5279 if (dev_replace_is_ongoing)
5280 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5281 free_extent_map(em);
de11cc12 5282 return ret;
0b86a832
CM
5283}
5284
3ec706c8 5285int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5286 u64 logical, u64 *length,
a1d3c478 5287 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5288{
3ec706c8 5289 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5290 mirror_num, NULL);
f2d8d74d
CM
5291}
5292
a512bbf8
YZ
5293int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5294 u64 chunk_start, u64 physical, u64 devid,
5295 u64 **logical, int *naddrs, int *stripe_len)
5296{
5297 struct extent_map_tree *em_tree = &map_tree->map_tree;
5298 struct extent_map *em;
5299 struct map_lookup *map;
5300 u64 *buf;
5301 u64 bytenr;
5302 u64 length;
5303 u64 stripe_nr;
53b381b3 5304 u64 rmap_len;
a512bbf8
YZ
5305 int i, j, nr = 0;
5306
890871be 5307 read_lock(&em_tree->lock);
a512bbf8 5308 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5309 read_unlock(&em_tree->lock);
a512bbf8 5310
835d974f 5311 if (!em) {
efe120a0 5312 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5313 chunk_start);
5314 return -EIO;
5315 }
5316
5317 if (em->start != chunk_start) {
efe120a0 5318 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5319 em->start, chunk_start);
5320 free_extent_map(em);
5321 return -EIO;
5322 }
a512bbf8
YZ
5323 map = (struct map_lookup *)em->bdev;
5324
5325 length = em->len;
53b381b3
DW
5326 rmap_len = map->stripe_len;
5327
a512bbf8
YZ
5328 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5329 do_div(length, map->num_stripes / map->sub_stripes);
5330 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5331 do_div(length, map->num_stripes);
53b381b3
DW
5332 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5333 BTRFS_BLOCK_GROUP_RAID6)) {
5334 do_div(length, nr_data_stripes(map));
5335 rmap_len = map->stripe_len * nr_data_stripes(map);
5336 }
a512bbf8
YZ
5337
5338 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5339 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5340
5341 for (i = 0; i < map->num_stripes; i++) {
5342 if (devid && map->stripes[i].dev->devid != devid)
5343 continue;
5344 if (map->stripes[i].physical > physical ||
5345 map->stripes[i].physical + length <= physical)
5346 continue;
5347
5348 stripe_nr = physical - map->stripes[i].physical;
5349 do_div(stripe_nr, map->stripe_len);
5350
5351 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5352 stripe_nr = stripe_nr * map->num_stripes + i;
5353 do_div(stripe_nr, map->sub_stripes);
5354 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5355 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5356 } /* else if RAID[56], multiply by nr_data_stripes().
5357 * Alternatively, just use rmap_len below instead of
5358 * map->stripe_len */
5359
5360 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5361 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5362 for (j = 0; j < nr; j++) {
5363 if (buf[j] == bytenr)
5364 break;
5365 }
934d375b
CM
5366 if (j == nr) {
5367 WARN_ON(nr >= map->num_stripes);
a512bbf8 5368 buf[nr++] = bytenr;
934d375b 5369 }
a512bbf8
YZ
5370 }
5371
a512bbf8
YZ
5372 *logical = buf;
5373 *naddrs = nr;
53b381b3 5374 *stripe_len = rmap_len;
a512bbf8
YZ
5375
5376 free_extent_map(em);
5377 return 0;
f2d8d74d
CM
5378}
5379
8408c716
MX
5380static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err)
5381{
5382 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED))
5383 bio_endio_nodec(bio, err);
5384 else
5385 bio_endio(bio, err);
5386 kfree(bbio);
5387}
5388
a1d3c478 5389static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5390{
9be3395b 5391 struct btrfs_bio *bbio = bio->bi_private;
c404e0dc 5392 struct btrfs_device *dev = bbio->stripes[0].dev;
7d2b4daa 5393 int is_orig_bio = 0;
8790d502 5394
442a4f63 5395 if (err) {
a1d3c478 5396 atomic_inc(&bbio->error);
442a4f63
SB
5397 if (err == -EIO || err == -EREMOTEIO) {
5398 unsigned int stripe_index =
9be3395b 5399 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5400
5401 BUG_ON(stripe_index >= bbio->num_stripes);
5402 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5403 if (dev->bdev) {
5404 if (bio->bi_rw & WRITE)
5405 btrfs_dev_stat_inc(dev,
5406 BTRFS_DEV_STAT_WRITE_ERRS);
5407 else
5408 btrfs_dev_stat_inc(dev,
5409 BTRFS_DEV_STAT_READ_ERRS);
5410 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5411 btrfs_dev_stat_inc(dev,
5412 BTRFS_DEV_STAT_FLUSH_ERRS);
5413 btrfs_dev_stat_print_on_error(dev);
5414 }
442a4f63
SB
5415 }
5416 }
8790d502 5417
a1d3c478 5418 if (bio == bbio->orig_bio)
7d2b4daa
CM
5419 is_orig_bio = 1;
5420
c404e0dc
MX
5421 btrfs_bio_counter_dec(bbio->fs_info);
5422
a1d3c478 5423 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5424 if (!is_orig_bio) {
5425 bio_put(bio);
a1d3c478 5426 bio = bbio->orig_bio;
7d2b4daa 5427 }
c7b22bb1 5428
a1d3c478
JS
5429 bio->bi_private = bbio->private;
5430 bio->bi_end_io = bbio->end_io;
9be3395b 5431 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5432 /* only send an error to the higher layers if it is
53b381b3 5433 * beyond the tolerance of the btrfs bio
a236aed1 5434 */
a1d3c478 5435 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5436 err = -EIO;
5dbc8fca 5437 } else {
1259ab75
CM
5438 /*
5439 * this bio is actually up to date, we didn't
5440 * go over the max number of errors
5441 */
5442 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5443 err = 0;
1259ab75 5444 }
c55f1396 5445
8408c716 5446 btrfs_end_bbio(bbio, bio, err);
7d2b4daa 5447 } else if (!is_orig_bio) {
8790d502
CM
5448 bio_put(bio);
5449 }
8790d502
CM
5450}
5451
8b712842
CM
5452/*
5453 * see run_scheduled_bios for a description of why bios are collected for
5454 * async submit.
5455 *
5456 * This will add one bio to the pending list for a device and make sure
5457 * the work struct is scheduled.
5458 */
48a3b636
ES
5459static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5460 struct btrfs_device *device,
5461 int rw, struct bio *bio)
8b712842
CM
5462{
5463 int should_queue = 1;
ffbd517d 5464 struct btrfs_pending_bios *pending_bios;
8b712842 5465
53b381b3
DW
5466 if (device->missing || !device->bdev) {
5467 bio_endio(bio, -EIO);
5468 return;
5469 }
5470
8b712842 5471 /* don't bother with additional async steps for reads, right now */
7b6d91da 5472 if (!(rw & REQ_WRITE)) {
492bb6de 5473 bio_get(bio);
21adbd5c 5474 btrfsic_submit_bio(rw, bio);
492bb6de 5475 bio_put(bio);
143bede5 5476 return;
8b712842
CM
5477 }
5478
5479 /*
0986fe9e 5480 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5481 * higher layers. Otherwise, the async bio makes it appear we have
5482 * made progress against dirty pages when we've really just put it
5483 * on a queue for later
5484 */
0986fe9e 5485 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5486 WARN_ON(bio->bi_next);
8b712842
CM
5487 bio->bi_next = NULL;
5488 bio->bi_rw |= rw;
5489
5490 spin_lock(&device->io_lock);
7b6d91da 5491 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5492 pending_bios = &device->pending_sync_bios;
5493 else
5494 pending_bios = &device->pending_bios;
8b712842 5495
ffbd517d
CM
5496 if (pending_bios->tail)
5497 pending_bios->tail->bi_next = bio;
8b712842 5498
ffbd517d
CM
5499 pending_bios->tail = bio;
5500 if (!pending_bios->head)
5501 pending_bios->head = bio;
8b712842
CM
5502 if (device->running_pending)
5503 should_queue = 0;
5504
5505 spin_unlock(&device->io_lock);
5506
5507 if (should_queue)
a8c93d4e
QW
5508 btrfs_queue_work(root->fs_info->submit_workers,
5509 &device->work);
8b712842
CM
5510}
5511
de1ee92a
JB
5512static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5513 sector_t sector)
5514{
5515 struct bio_vec *prev;
5516 struct request_queue *q = bdev_get_queue(bdev);
475bf36f 5517 unsigned int max_sectors = queue_max_sectors(q);
de1ee92a
JB
5518 struct bvec_merge_data bvm = {
5519 .bi_bdev = bdev,
5520 .bi_sector = sector,
5521 .bi_rw = bio->bi_rw,
5522 };
5523
fae7f21c 5524 if (WARN_ON(bio->bi_vcnt == 0))
de1ee92a 5525 return 1;
de1ee92a
JB
5526
5527 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5528 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5529 return 0;
5530
5531 if (!q->merge_bvec_fn)
5532 return 1;
5533
4f024f37 5534 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
de1ee92a
JB
5535 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5536 return 0;
5537 return 1;
5538}
5539
5540static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5541 struct bio *bio, u64 physical, int dev_nr,
5542 int rw, int async)
5543{
5544 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5545
5546 bio->bi_private = bbio;
9be3395b 5547 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5548 bio->bi_end_io = btrfs_end_bio;
4f024f37 5549 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5550#ifdef DEBUG
5551 {
5552 struct rcu_string *name;
5553
5554 rcu_read_lock();
5555 name = rcu_dereference(dev->name);
d1423248 5556 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5557 "(%s id %llu), size=%u\n", rw,
5558 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5559 name->str, dev->devid, bio->bi_size);
5560 rcu_read_unlock();
5561 }
5562#endif
5563 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5564
5565 btrfs_bio_counter_inc_noblocked(root->fs_info);
5566
de1ee92a 5567 if (async)
53b381b3 5568 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5569 else
5570 btrfsic_submit_bio(rw, bio);
5571}
5572
5573static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5574 struct bio *first_bio, struct btrfs_device *dev,
5575 int dev_nr, int rw, int async)
5576{
5577 struct bio_vec *bvec = first_bio->bi_io_vec;
5578 struct bio *bio;
5579 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5580 u64 physical = bbio->stripes[dev_nr].physical;
5581
5582again:
5583 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5584 if (!bio)
5585 return -ENOMEM;
5586
5587 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5588 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5589 bvec->bv_offset) < bvec->bv_len) {
4f024f37 5590 u64 len = bio->bi_iter.bi_size;
de1ee92a
JB
5591
5592 atomic_inc(&bbio->stripes_pending);
5593 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5594 rw, async);
5595 physical += len;
5596 goto again;
5597 }
5598 bvec++;
5599 }
5600
5601 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5602 return 0;
5603}
5604
5605static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5606{
5607 atomic_inc(&bbio->error);
5608 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5609 /* Shoud be the original bio. */
5610 WARN_ON(bio != bbio->orig_bio);
5611
de1ee92a
JB
5612 bio->bi_private = bbio->private;
5613 bio->bi_end_io = bbio->end_io;
9be3395b 5614 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5615 bio->bi_iter.bi_sector = logical >> 9;
8408c716
MX
5616
5617 btrfs_end_bbio(bbio, bio, -EIO);
de1ee92a
JB
5618 }
5619}
5620
f188591e 5621int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5622 int mirror_num, int async_submit)
0b86a832 5623{
0b86a832 5624 struct btrfs_device *dev;
8790d502 5625 struct bio *first_bio = bio;
4f024f37 5626 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5627 u64 length = 0;
5628 u64 map_length;
53b381b3 5629 u64 *raid_map = NULL;
0b86a832 5630 int ret;
8790d502
CM
5631 int dev_nr = 0;
5632 int total_devs = 1;
a1d3c478 5633 struct btrfs_bio *bbio = NULL;
0b86a832 5634
4f024f37 5635 length = bio->bi_iter.bi_size;
0b86a832 5636 map_length = length;
cea9e445 5637
c404e0dc 5638 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3
DW
5639 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5640 mirror_num, &raid_map);
c404e0dc
MX
5641 if (ret) {
5642 btrfs_bio_counter_dec(root->fs_info);
79787eaa 5643 return ret;
c404e0dc 5644 }
cea9e445 5645
a1d3c478 5646 total_devs = bbio->num_stripes;
53b381b3
DW
5647 bbio->orig_bio = first_bio;
5648 bbio->private = first_bio->bi_private;
5649 bbio->end_io = first_bio->bi_end_io;
c404e0dc 5650 bbio->fs_info = root->fs_info;
53b381b3
DW
5651 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5652
5653 if (raid_map) {
5654 /* In this case, map_length has been set to the length of
5655 a single stripe; not the whole write */
5656 if (rw & WRITE) {
c404e0dc
MX
5657 ret = raid56_parity_write(root, bio, bbio,
5658 raid_map, map_length);
53b381b3 5659 } else {
c404e0dc
MX
5660 ret = raid56_parity_recover(root, bio, bbio,
5661 raid_map, map_length,
5662 mirror_num);
53b381b3 5663 }
c404e0dc
MX
5664 /*
5665 * FIXME, replace dosen't support raid56 yet, please fix
5666 * it in the future.
5667 */
5668 btrfs_bio_counter_dec(root->fs_info);
5669 return ret;
53b381b3
DW
5670 }
5671
cea9e445 5672 if (map_length < length) {
c2cf52eb 5673 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5674 logical, length, map_length);
cea9e445
CM
5675 BUG();
5676 }
a1d3c478 5677
d397712b 5678 while (dev_nr < total_devs) {
de1ee92a
JB
5679 dev = bbio->stripes[dev_nr].dev;
5680 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5681 bbio_error(bbio, first_bio, logical);
5682 dev_nr++;
5683 continue;
5684 }
5685
5686 /*
5687 * Check and see if we're ok with this bio based on it's size
5688 * and offset with the given device.
5689 */
5690 if (!bio_size_ok(dev->bdev, first_bio,
5691 bbio->stripes[dev_nr].physical >> 9)) {
5692 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5693 dev_nr, rw, async_submit);
5694 BUG_ON(ret);
5695 dev_nr++;
5696 continue;
5697 }
5698
a1d3c478 5699 if (dev_nr < total_devs - 1) {
9be3395b 5700 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5701 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5702 } else {
5703 bio = first_bio;
c55f1396 5704 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED;
8790d502 5705 }
de1ee92a
JB
5706
5707 submit_stripe_bio(root, bbio, bio,
5708 bbio->stripes[dev_nr].physical, dev_nr, rw,
5709 async_submit);
8790d502
CM
5710 dev_nr++;
5711 }
c404e0dc 5712 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
5713 return 0;
5714}
5715
aa1b8cd4 5716struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5717 u8 *uuid, u8 *fsid)
0b86a832 5718{
2b82032c
YZ
5719 struct btrfs_device *device;
5720 struct btrfs_fs_devices *cur_devices;
5721
aa1b8cd4 5722 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5723 while (cur_devices) {
5724 if (!fsid ||
5725 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5726 device = __find_device(&cur_devices->devices,
5727 devid, uuid);
5728 if (device)
5729 return device;
5730 }
5731 cur_devices = cur_devices->seed;
5732 }
5733 return NULL;
0b86a832
CM
5734}
5735
dfe25020
CM
5736static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5737 u64 devid, u8 *dev_uuid)
5738{
5739 struct btrfs_device *device;
5740 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5741
12bd2fc0
ID
5742 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5743 if (IS_ERR(device))
7cbd8a83 5744 return NULL;
12bd2fc0
ID
5745
5746 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5747 device->fs_devices = fs_devices;
dfe25020 5748 fs_devices->num_devices++;
12bd2fc0
ID
5749
5750 device->missing = 1;
cd02dca5 5751 fs_devices->missing_devices++;
12bd2fc0 5752
dfe25020
CM
5753 return device;
5754}
5755
12bd2fc0
ID
5756/**
5757 * btrfs_alloc_device - allocate struct btrfs_device
5758 * @fs_info: used only for generating a new devid, can be NULL if
5759 * devid is provided (i.e. @devid != NULL).
5760 * @devid: a pointer to devid for this device. If NULL a new devid
5761 * is generated.
5762 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5763 * is generated.
5764 *
5765 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5766 * on error. Returned struct is not linked onto any lists and can be
5767 * destroyed with kfree() right away.
5768 */
5769struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5770 const u64 *devid,
5771 const u8 *uuid)
5772{
5773 struct btrfs_device *dev;
5774 u64 tmp;
5775
fae7f21c 5776 if (WARN_ON(!devid && !fs_info))
12bd2fc0 5777 return ERR_PTR(-EINVAL);
12bd2fc0
ID
5778
5779 dev = __alloc_device();
5780 if (IS_ERR(dev))
5781 return dev;
5782
5783 if (devid)
5784 tmp = *devid;
5785 else {
5786 int ret;
5787
5788 ret = find_next_devid(fs_info, &tmp);
5789 if (ret) {
5790 kfree(dev);
5791 return ERR_PTR(ret);
5792 }
5793 }
5794 dev->devid = tmp;
5795
5796 if (uuid)
5797 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5798 else
5799 generate_random_uuid(dev->uuid);
5800
a8c93d4e 5801 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
12bd2fc0
ID
5802
5803 return dev;
5804}
5805
0b86a832
CM
5806static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5807 struct extent_buffer *leaf,
5808 struct btrfs_chunk *chunk)
5809{
5810 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5811 struct map_lookup *map;
5812 struct extent_map *em;
5813 u64 logical;
5814 u64 length;
5815 u64 devid;
a443755f 5816 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5817 int num_stripes;
0b86a832 5818 int ret;
593060d7 5819 int i;
0b86a832 5820
e17cade2
CM
5821 logical = key->offset;
5822 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5823
890871be 5824 read_lock(&map_tree->map_tree.lock);
0b86a832 5825 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5826 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5827
5828 /* already mapped? */
5829 if (em && em->start <= logical && em->start + em->len > logical) {
5830 free_extent_map(em);
0b86a832
CM
5831 return 0;
5832 } else if (em) {
5833 free_extent_map(em);
5834 }
0b86a832 5835
172ddd60 5836 em = alloc_extent_map();
0b86a832
CM
5837 if (!em)
5838 return -ENOMEM;
593060d7
CM
5839 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5840 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5841 if (!map) {
5842 free_extent_map(em);
5843 return -ENOMEM;
5844 }
5845
298a8f9c 5846 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
5847 em->bdev = (struct block_device *)map;
5848 em->start = logical;
5849 em->len = length;
70c8a91c 5850 em->orig_start = 0;
0b86a832 5851 em->block_start = 0;
c8b97818 5852 em->block_len = em->len;
0b86a832 5853
593060d7
CM
5854 map->num_stripes = num_stripes;
5855 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5856 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5857 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5858 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5859 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5860 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5861 for (i = 0; i < num_stripes; i++) {
5862 map->stripes[i].physical =
5863 btrfs_stripe_offset_nr(leaf, chunk, i);
5864 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5865 read_extent_buffer(leaf, uuid, (unsigned long)
5866 btrfs_stripe_dev_uuid_nr(chunk, i),
5867 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5868 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5869 uuid, NULL);
dfe25020 5870 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5871 free_extent_map(em);
5872 return -EIO;
5873 }
dfe25020
CM
5874 if (!map->stripes[i].dev) {
5875 map->stripes[i].dev =
5876 add_missing_dev(root, devid, uuid);
5877 if (!map->stripes[i].dev) {
dfe25020
CM
5878 free_extent_map(em);
5879 return -EIO;
5880 }
5881 }
5882 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5883 }
5884
890871be 5885 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5886 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5887 write_unlock(&map_tree->map_tree.lock);
79787eaa 5888 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5889 free_extent_map(em);
5890
5891 return 0;
5892}
5893
143bede5 5894static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5895 struct btrfs_dev_item *dev_item,
5896 struct btrfs_device *device)
5897{
5898 unsigned long ptr;
0b86a832
CM
5899
5900 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5901 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5902 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5903 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5904 device->type = btrfs_device_type(leaf, dev_item);
5905 device->io_align = btrfs_device_io_align(leaf, dev_item);
5906 device->io_width = btrfs_device_io_width(leaf, dev_item);
5907 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5908 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5909 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5910
410ba3a2 5911 ptr = btrfs_device_uuid(dev_item);
e17cade2 5912 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5913}
5914
2b82032c
YZ
5915static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5916{
5917 struct btrfs_fs_devices *fs_devices;
5918 int ret;
5919
b367e47f 5920 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5921
5922 fs_devices = root->fs_info->fs_devices->seed;
5923 while (fs_devices) {
5924 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5925 ret = 0;
5926 goto out;
5927 }
5928 fs_devices = fs_devices->seed;
5929 }
5930
5931 fs_devices = find_fsid(fsid);
5932 if (!fs_devices) {
5933 ret = -ENOENT;
5934 goto out;
5935 }
e4404d6e
YZ
5936
5937 fs_devices = clone_fs_devices(fs_devices);
5938 if (IS_ERR(fs_devices)) {
5939 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5940 goto out;
5941 }
5942
97288f2c 5943 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5944 root->fs_info->bdev_holder);
48d28232
JL
5945 if (ret) {
5946 free_fs_devices(fs_devices);
2b82032c 5947 goto out;
48d28232 5948 }
2b82032c
YZ
5949
5950 if (!fs_devices->seeding) {
5951 __btrfs_close_devices(fs_devices);
e4404d6e 5952 free_fs_devices(fs_devices);
2b82032c
YZ
5953 ret = -EINVAL;
5954 goto out;
5955 }
5956
5957 fs_devices->seed = root->fs_info->fs_devices->seed;
5958 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5959out:
2b82032c
YZ
5960 return ret;
5961}
5962
0d81ba5d 5963static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5964 struct extent_buffer *leaf,
5965 struct btrfs_dev_item *dev_item)
5966{
5967 struct btrfs_device *device;
5968 u64 devid;
5969 int ret;
2b82032c 5970 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5971 u8 dev_uuid[BTRFS_UUID_SIZE];
5972
0b86a832 5973 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5974 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5975 BTRFS_UUID_SIZE);
1473b24e 5976 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5977 BTRFS_UUID_SIZE);
5978
5979 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5980 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5981 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5982 return ret;
2b82032c
YZ
5983 }
5984
aa1b8cd4 5985 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5986 if (!device || !device->bdev) {
e4404d6e 5987 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5988 return -EIO;
5989
5990 if (!device) {
c1c9ff7c 5991 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5992 device = add_missing_dev(root, devid, dev_uuid);
5993 if (!device)
5994 return -ENOMEM;
cd02dca5
CM
5995 } else if (!device->missing) {
5996 /*
5997 * this happens when a device that was properly setup
5998 * in the device info lists suddenly goes bad.
5999 * device->bdev is NULL, and so we have to set
6000 * device->missing to one here
6001 */
6002 root->fs_info->fs_devices->missing_devices++;
6003 device->missing = 1;
2b82032c
YZ
6004 }
6005 }
6006
6007 if (device->fs_devices != root->fs_info->fs_devices) {
6008 BUG_ON(device->writeable);
6009 if (device->generation !=
6010 btrfs_device_generation(leaf, dev_item))
6011 return -EINVAL;
6324fbf3 6012 }
0b86a832
CM
6013
6014 fill_device_from_item(leaf, dev_item, device);
dfe25020 6015 device->in_fs_metadata = 1;
63a212ab 6016 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6017 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6018 spin_lock(&root->fs_info->free_chunk_lock);
6019 root->fs_info->free_chunk_space += device->total_bytes -
6020 device->bytes_used;
6021 spin_unlock(&root->fs_info->free_chunk_lock);
6022 }
0b86a832 6023 ret = 0;
0b86a832
CM
6024 return ret;
6025}
6026
e4404d6e 6027int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6028{
6c41761f 6029 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6030 struct extent_buffer *sb;
0b86a832 6031 struct btrfs_disk_key *disk_key;
0b86a832 6032 struct btrfs_chunk *chunk;
84eed90f
CM
6033 u8 *ptr;
6034 unsigned long sb_ptr;
6035 int ret = 0;
0b86a832
CM
6036 u32 num_stripes;
6037 u32 array_size;
6038 u32 len = 0;
0b86a832 6039 u32 cur;
84eed90f 6040 struct btrfs_key key;
0b86a832 6041
e4404d6e 6042 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
6043 BTRFS_SUPER_INFO_SIZE);
6044 if (!sb)
6045 return -ENOMEM;
6046 btrfs_set_buffer_uptodate(sb);
85d4e461 6047 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6048 /*
6049 * The sb extent buffer is artifical and just used to read the system array.
6050 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6051 * pages up-to-date when the page is larger: extent does not cover the
6052 * whole page and consequently check_page_uptodate does not find all
6053 * the page's extents up-to-date (the hole beyond sb),
6054 * write_extent_buffer then triggers a WARN_ON.
6055 *
6056 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6057 * but sb spans only this function. Add an explicit SetPageUptodate call
6058 * to silence the warning eg. on PowerPC 64.
6059 */
6060 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6061 SetPageUptodate(sb->pages[0]);
4008c04a 6062
a061fc8d 6063 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6064 array_size = btrfs_super_sys_array_size(super_copy);
6065
0b86a832
CM
6066 ptr = super_copy->sys_chunk_array;
6067 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
6068 cur = 0;
6069
6070 while (cur < array_size) {
6071 disk_key = (struct btrfs_disk_key *)ptr;
6072 btrfs_disk_key_to_cpu(&key, disk_key);
6073
a061fc8d 6074 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
6075 sb_ptr += len;
6076 cur += len;
6077
0d81ba5d 6078 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 6079 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 6080 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6081 if (ret)
6082 break;
0b86a832
CM
6083 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6084 len = btrfs_chunk_item_size(num_stripes);
6085 } else {
84eed90f
CM
6086 ret = -EIO;
6087 break;
0b86a832
CM
6088 }
6089 ptr += len;
6090 sb_ptr += len;
6091 cur += len;
6092 }
a061fc8d 6093 free_extent_buffer(sb);
84eed90f 6094 return ret;
0b86a832
CM
6095}
6096
6097int btrfs_read_chunk_tree(struct btrfs_root *root)
6098{
6099 struct btrfs_path *path;
6100 struct extent_buffer *leaf;
6101 struct btrfs_key key;
6102 struct btrfs_key found_key;
6103 int ret;
6104 int slot;
6105
6106 root = root->fs_info->chunk_root;
6107
6108 path = btrfs_alloc_path();
6109 if (!path)
6110 return -ENOMEM;
6111
b367e47f
LZ
6112 mutex_lock(&uuid_mutex);
6113 lock_chunks(root);
6114
395927a9
FDBM
6115 /*
6116 * Read all device items, and then all the chunk items. All
6117 * device items are found before any chunk item (their object id
6118 * is smaller than the lowest possible object id for a chunk
6119 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6120 */
6121 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6122 key.offset = 0;
6123 key.type = 0;
0b86a832 6124 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6125 if (ret < 0)
6126 goto error;
d397712b 6127 while (1) {
0b86a832
CM
6128 leaf = path->nodes[0];
6129 slot = path->slots[0];
6130 if (slot >= btrfs_header_nritems(leaf)) {
6131 ret = btrfs_next_leaf(root, path);
6132 if (ret == 0)
6133 continue;
6134 if (ret < 0)
6135 goto error;
6136 break;
6137 }
6138 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6139 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6140 struct btrfs_dev_item *dev_item;
6141 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6142 struct btrfs_dev_item);
395927a9
FDBM
6143 ret = read_one_dev(root, leaf, dev_item);
6144 if (ret)
6145 goto error;
0b86a832
CM
6146 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6147 struct btrfs_chunk *chunk;
6148 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6149 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6150 if (ret)
6151 goto error;
0b86a832
CM
6152 }
6153 path->slots[0]++;
6154 }
0b86a832
CM
6155 ret = 0;
6156error:
b367e47f
LZ
6157 unlock_chunks(root);
6158 mutex_unlock(&uuid_mutex);
6159
2b82032c 6160 btrfs_free_path(path);
0b86a832
CM
6161 return ret;
6162}
442a4f63 6163
cb517eab
MX
6164void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6165{
6166 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6167 struct btrfs_device *device;
6168
29cc83f6
LB
6169 while (fs_devices) {
6170 mutex_lock(&fs_devices->device_list_mutex);
6171 list_for_each_entry(device, &fs_devices->devices, dev_list)
6172 device->dev_root = fs_info->dev_root;
6173 mutex_unlock(&fs_devices->device_list_mutex);
6174
6175 fs_devices = fs_devices->seed;
6176 }
cb517eab
MX
6177}
6178
733f4fbb
SB
6179static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6180{
6181 int i;
6182
6183 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6184 btrfs_dev_stat_reset(dev, i);
6185}
6186
6187int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6188{
6189 struct btrfs_key key;
6190 struct btrfs_key found_key;
6191 struct btrfs_root *dev_root = fs_info->dev_root;
6192 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6193 struct extent_buffer *eb;
6194 int slot;
6195 int ret = 0;
6196 struct btrfs_device *device;
6197 struct btrfs_path *path = NULL;
6198 int i;
6199
6200 path = btrfs_alloc_path();
6201 if (!path) {
6202 ret = -ENOMEM;
6203 goto out;
6204 }
6205
6206 mutex_lock(&fs_devices->device_list_mutex);
6207 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6208 int item_size;
6209 struct btrfs_dev_stats_item *ptr;
6210
6211 key.objectid = 0;
6212 key.type = BTRFS_DEV_STATS_KEY;
6213 key.offset = device->devid;
6214 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6215 if (ret) {
733f4fbb
SB
6216 __btrfs_reset_dev_stats(device);
6217 device->dev_stats_valid = 1;
6218 btrfs_release_path(path);
6219 continue;
6220 }
6221 slot = path->slots[0];
6222 eb = path->nodes[0];
6223 btrfs_item_key_to_cpu(eb, &found_key, slot);
6224 item_size = btrfs_item_size_nr(eb, slot);
6225
6226 ptr = btrfs_item_ptr(eb, slot,
6227 struct btrfs_dev_stats_item);
6228
6229 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6230 if (item_size >= (1 + i) * sizeof(__le64))
6231 btrfs_dev_stat_set(device, i,
6232 btrfs_dev_stats_value(eb, ptr, i));
6233 else
6234 btrfs_dev_stat_reset(device, i);
6235 }
6236
6237 device->dev_stats_valid = 1;
6238 btrfs_dev_stat_print_on_load(device);
6239 btrfs_release_path(path);
6240 }
6241 mutex_unlock(&fs_devices->device_list_mutex);
6242
6243out:
6244 btrfs_free_path(path);
6245 return ret < 0 ? ret : 0;
6246}
6247
6248static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6249 struct btrfs_root *dev_root,
6250 struct btrfs_device *device)
6251{
6252 struct btrfs_path *path;
6253 struct btrfs_key key;
6254 struct extent_buffer *eb;
6255 struct btrfs_dev_stats_item *ptr;
6256 int ret;
6257 int i;
6258
6259 key.objectid = 0;
6260 key.type = BTRFS_DEV_STATS_KEY;
6261 key.offset = device->devid;
6262
6263 path = btrfs_alloc_path();
6264 BUG_ON(!path);
6265 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6266 if (ret < 0) {
efe120a0
FH
6267 printk_in_rcu(KERN_WARNING "BTRFS: "
6268 "error %d while searching for dev_stats item for device %s!\n",
606686ee 6269 ret, rcu_str_deref(device->name));
733f4fbb
SB
6270 goto out;
6271 }
6272
6273 if (ret == 0 &&
6274 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6275 /* need to delete old one and insert a new one */
6276 ret = btrfs_del_item(trans, dev_root, path);
6277 if (ret != 0) {
efe120a0
FH
6278 printk_in_rcu(KERN_WARNING "BTRFS: "
6279 "delete too small dev_stats item for device %s failed %d!\n",
606686ee 6280 rcu_str_deref(device->name), ret);
733f4fbb
SB
6281 goto out;
6282 }
6283 ret = 1;
6284 }
6285
6286 if (ret == 1) {
6287 /* need to insert a new item */
6288 btrfs_release_path(path);
6289 ret = btrfs_insert_empty_item(trans, dev_root, path,
6290 &key, sizeof(*ptr));
6291 if (ret < 0) {
efe120a0
FH
6292 printk_in_rcu(KERN_WARNING "BTRFS: "
6293 "insert dev_stats item for device %s failed %d!\n",
606686ee 6294 rcu_str_deref(device->name), ret);
733f4fbb
SB
6295 goto out;
6296 }
6297 }
6298
6299 eb = path->nodes[0];
6300 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6301 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6302 btrfs_set_dev_stats_value(eb, ptr, i,
6303 btrfs_dev_stat_read(device, i));
6304 btrfs_mark_buffer_dirty(eb);
6305
6306out:
6307 btrfs_free_path(path);
6308 return ret;
6309}
6310
6311/*
6312 * called from commit_transaction. Writes all changed device stats to disk.
6313 */
6314int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6315 struct btrfs_fs_info *fs_info)
6316{
6317 struct btrfs_root *dev_root = fs_info->dev_root;
6318 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6319 struct btrfs_device *device;
6320 int ret = 0;
6321
6322 mutex_lock(&fs_devices->device_list_mutex);
6323 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6324 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6325 continue;
6326
6327 ret = update_dev_stat_item(trans, dev_root, device);
6328 if (!ret)
6329 device->dev_stats_dirty = 0;
6330 }
6331 mutex_unlock(&fs_devices->device_list_mutex);
6332
6333 return ret;
6334}
6335
442a4f63
SB
6336void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6337{
6338 btrfs_dev_stat_inc(dev, index);
6339 btrfs_dev_stat_print_on_error(dev);
6340}
6341
48a3b636 6342static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6343{
733f4fbb
SB
6344 if (!dev->dev_stats_valid)
6345 return;
efe120a0
FH
6346 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6347 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6348 rcu_str_deref(dev->name),
442a4f63
SB
6349 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6350 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6351 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6352 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6353 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6354}
c11d2c23 6355
733f4fbb
SB
6356static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6357{
a98cdb85
SB
6358 int i;
6359
6360 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6361 if (btrfs_dev_stat_read(dev, i) != 0)
6362 break;
6363 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6364 return; /* all values == 0, suppress message */
6365
efe120a0
FH
6366 printk_in_rcu(KERN_INFO "BTRFS: "
6367 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6368 rcu_str_deref(dev->name),
733f4fbb
SB
6369 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6370 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6371 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6372 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6373 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6374}
6375
c11d2c23 6376int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6377 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6378{
6379 struct btrfs_device *dev;
6380 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6381 int i;
6382
6383 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6384 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6385 mutex_unlock(&fs_devices->device_list_mutex);
6386
6387 if (!dev) {
efe120a0 6388 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6389 return -ENODEV;
733f4fbb 6390 } else if (!dev->dev_stats_valid) {
efe120a0 6391 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6392 return -ENODEV;
b27f7c0c 6393 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6394 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6395 if (stats->nr_items > i)
6396 stats->values[i] =
6397 btrfs_dev_stat_read_and_reset(dev, i);
6398 else
6399 btrfs_dev_stat_reset(dev, i);
6400 }
6401 } else {
6402 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6403 if (stats->nr_items > i)
6404 stats->values[i] = btrfs_dev_stat_read(dev, i);
6405 }
6406 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6407 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6408 return 0;
6409}
a8a6dab7
SB
6410
6411int btrfs_scratch_superblock(struct btrfs_device *device)
6412{
6413 struct buffer_head *bh;
6414 struct btrfs_super_block *disk_super;
6415
6416 bh = btrfs_read_dev_super(device->bdev);
6417 if (!bh)
6418 return -EINVAL;
6419 disk_super = (struct btrfs_super_block *)bh->b_data;
6420
6421 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6422 set_buffer_dirty(bh);
6423 sync_dirty_buffer(bh);
6424 brelse(bh);
6425
6426 return 0;
6427}