]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 142
67a2c45e 143DEFINE_MUTEX(uuid_mutex);
8a4b83cc 144static LIST_HEAD(fs_uuids);
c73eccf7
AJ
145struct list_head *btrfs_get_fs_uuids(void)
146{
147 return &fs_uuids;
148}
8a4b83cc 149
2208a378
ID
150static struct btrfs_fs_devices *__alloc_fs_devices(void)
151{
152 struct btrfs_fs_devices *fs_devs;
153
78f2c9e6 154 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
155 if (!fs_devs)
156 return ERR_PTR(-ENOMEM);
157
158 mutex_init(&fs_devs->device_list_mutex);
159
160 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 161 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
162 INIT_LIST_HEAD(&fs_devs->alloc_list);
163 INIT_LIST_HEAD(&fs_devs->list);
164
165 return fs_devs;
166}
167
168/**
169 * alloc_fs_devices - allocate struct btrfs_fs_devices
170 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
171 * generated.
172 *
173 * Return: a pointer to a new &struct btrfs_fs_devices on success;
174 * ERR_PTR() on error. Returned struct is not linked onto any lists and
175 * can be destroyed with kfree() right away.
176 */
177static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
178{
179 struct btrfs_fs_devices *fs_devs;
180
181 fs_devs = __alloc_fs_devices();
182 if (IS_ERR(fs_devs))
183 return fs_devs;
184
185 if (fsid)
186 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
187 else
188 generate_random_uuid(fs_devs->fsid);
189
190 return fs_devs;
191}
192
e4404d6e
YZ
193static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
194{
195 struct btrfs_device *device;
196 WARN_ON(fs_devices->opened);
197 while (!list_empty(&fs_devices->devices)) {
198 device = list_entry(fs_devices->devices.next,
199 struct btrfs_device, dev_list);
200 list_del(&device->dev_list);
606686ee 201 rcu_string_free(device->name);
e4404d6e
YZ
202 kfree(device);
203 }
204 kfree(fs_devices);
205}
206
b8b8ff59
LC
207static void btrfs_kobject_uevent(struct block_device *bdev,
208 enum kobject_action action)
209{
210 int ret;
211
212 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
213 if (ret)
efe120a0 214 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
215 action,
216 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
217 &disk_to_dev(bdev->bd_disk)->kobj);
218}
219
143bede5 220void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
221{
222 struct btrfs_fs_devices *fs_devices;
8a4b83cc 223
2b82032c
YZ
224 while (!list_empty(&fs_uuids)) {
225 fs_devices = list_entry(fs_uuids.next,
226 struct btrfs_fs_devices, list);
227 list_del(&fs_devices->list);
e4404d6e 228 free_fs_devices(fs_devices);
8a4b83cc 229 }
8a4b83cc
CM
230}
231
12bd2fc0
ID
232static struct btrfs_device *__alloc_device(void)
233{
234 struct btrfs_device *dev;
235
78f2c9e6 236 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
237 if (!dev)
238 return ERR_PTR(-ENOMEM);
239
240 INIT_LIST_HEAD(&dev->dev_list);
241 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 242 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
243
244 spin_lock_init(&dev->io_lock);
245
246 spin_lock_init(&dev->reada_lock);
247 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 248 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 249 btrfs_device_data_ordered_init(dev);
d0164adc
MG
250 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
251 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
252
253 return dev;
254}
255
a1b32a59
CM
256static noinline struct btrfs_device *__find_device(struct list_head *head,
257 u64 devid, u8 *uuid)
8a4b83cc
CM
258{
259 struct btrfs_device *dev;
8a4b83cc 260
c6e30871 261 list_for_each_entry(dev, head, dev_list) {
a443755f 262 if (dev->devid == devid &&
8f18cf13 263 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 264 return dev;
a443755f 265 }
8a4b83cc
CM
266 }
267 return NULL;
268}
269
a1b32a59 270static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 271{
8a4b83cc
CM
272 struct btrfs_fs_devices *fs_devices;
273
c6e30871 274 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
275 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
276 return fs_devices;
277 }
278 return NULL;
279}
280
beaf8ab3
SB
281static int
282btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
283 int flush, struct block_device **bdev,
284 struct buffer_head **bh)
285{
286 int ret;
287
288 *bdev = blkdev_get_by_path(device_path, flags, holder);
289
290 if (IS_ERR(*bdev)) {
291 ret = PTR_ERR(*bdev);
beaf8ab3
SB
292 goto error;
293 }
294
295 if (flush)
296 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
297 ret = set_blocksize(*bdev, 4096);
298 if (ret) {
299 blkdev_put(*bdev, flags);
300 goto error;
301 }
302 invalidate_bdev(*bdev);
303 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
304 if (IS_ERR(*bh)) {
305 ret = PTR_ERR(*bh);
beaf8ab3
SB
306 blkdev_put(*bdev, flags);
307 goto error;
308 }
309
310 return 0;
311
312error:
313 *bdev = NULL;
314 *bh = NULL;
315 return ret;
316}
317
ffbd517d
CM
318static void requeue_list(struct btrfs_pending_bios *pending_bios,
319 struct bio *head, struct bio *tail)
320{
321
322 struct bio *old_head;
323
324 old_head = pending_bios->head;
325 pending_bios->head = head;
326 if (pending_bios->tail)
327 tail->bi_next = old_head;
328 else
329 pending_bios->tail = tail;
330}
331
8b712842
CM
332/*
333 * we try to collect pending bios for a device so we don't get a large
334 * number of procs sending bios down to the same device. This greatly
335 * improves the schedulers ability to collect and merge the bios.
336 *
337 * But, it also turns into a long list of bios to process and that is sure
338 * to eventually make the worker thread block. The solution here is to
339 * make some progress and then put this work struct back at the end of
340 * the list if the block device is congested. This way, multiple devices
341 * can make progress from a single worker thread.
342 */
143bede5 343static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 344{
0b246afa 345 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
346 struct bio *pending;
347 struct backing_dev_info *bdi;
ffbd517d 348 struct btrfs_pending_bios *pending_bios;
8b712842
CM
349 struct bio *tail;
350 struct bio *cur;
351 int again = 0;
ffbd517d 352 unsigned long num_run;
d644d8a1 353 unsigned long batch_run = 0;
b64a2851 354 unsigned long limit;
b765ead5 355 unsigned long last_waited = 0;
d84275c9 356 int force_reg = 0;
0e588859 357 int sync_pending = 0;
211588ad
CM
358 struct blk_plug plug;
359
360 /*
361 * this function runs all the bios we've collected for
362 * a particular device. We don't want to wander off to
363 * another device without first sending all of these down.
364 * So, setup a plug here and finish it off before we return
365 */
366 blk_start_plug(&plug);
8b712842 367
efa7c9f9 368 bdi = device->bdev->bd_bdi;
b64a2851
CM
369 limit = btrfs_async_submit_limit(fs_info);
370 limit = limit * 2 / 3;
371
8b712842
CM
372loop:
373 spin_lock(&device->io_lock);
374
a6837051 375loop_lock:
d84275c9 376 num_run = 0;
ffbd517d 377
8b712842
CM
378 /* take all the bios off the list at once and process them
379 * later on (without the lock held). But, remember the
380 * tail and other pointers so the bios can be properly reinserted
381 * into the list if we hit congestion
382 */
d84275c9 383 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 384 pending_bios = &device->pending_sync_bios;
d84275c9
CM
385 force_reg = 1;
386 } else {
ffbd517d 387 pending_bios = &device->pending_bios;
d84275c9
CM
388 force_reg = 0;
389 }
ffbd517d
CM
390
391 pending = pending_bios->head;
392 tail = pending_bios->tail;
8b712842 393 WARN_ON(pending && !tail);
8b712842
CM
394
395 /*
396 * if pending was null this time around, no bios need processing
397 * at all and we can stop. Otherwise it'll loop back up again
398 * and do an additional check so no bios are missed.
399 *
400 * device->running_pending is used to synchronize with the
401 * schedule_bio code.
402 */
ffbd517d
CM
403 if (device->pending_sync_bios.head == NULL &&
404 device->pending_bios.head == NULL) {
8b712842
CM
405 again = 0;
406 device->running_pending = 0;
ffbd517d
CM
407 } else {
408 again = 1;
409 device->running_pending = 1;
8b712842 410 }
ffbd517d
CM
411
412 pending_bios->head = NULL;
413 pending_bios->tail = NULL;
414
8b712842
CM
415 spin_unlock(&device->io_lock);
416
d397712b 417 while (pending) {
ffbd517d
CM
418
419 rmb();
d84275c9
CM
420 /* we want to work on both lists, but do more bios on the
421 * sync list than the regular list
422 */
423 if ((num_run > 32 &&
424 pending_bios != &device->pending_sync_bios &&
425 device->pending_sync_bios.head) ||
426 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
427 device->pending_bios.head)) {
ffbd517d
CM
428 spin_lock(&device->io_lock);
429 requeue_list(pending_bios, pending, tail);
430 goto loop_lock;
431 }
432
8b712842
CM
433 cur = pending;
434 pending = pending->bi_next;
435 cur->bi_next = NULL;
b64a2851 436
ee863954
DS
437 /*
438 * atomic_dec_return implies a barrier for waitqueue_active
439 */
66657b31 440 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
441 waitqueue_active(&fs_info->async_submit_wait))
442 wake_up(&fs_info->async_submit_wait);
492bb6de 443
dac56212 444 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 445
2ab1ba68
CM
446 /*
447 * if we're doing the sync list, record that our
448 * plug has some sync requests on it
449 *
450 * If we're doing the regular list and there are
451 * sync requests sitting around, unplug before
452 * we add more
453 */
454 if (pending_bios == &device->pending_sync_bios) {
455 sync_pending = 1;
456 } else if (sync_pending) {
457 blk_finish_plug(&plug);
458 blk_start_plug(&plug);
459 sync_pending = 0;
460 }
461
4e49ea4a 462 btrfsic_submit_bio(cur);
5ff7ba3a
CM
463 num_run++;
464 batch_run++;
853d8ec4
DS
465
466 cond_resched();
8b712842
CM
467
468 /*
469 * we made progress, there is more work to do and the bdi
470 * is now congested. Back off and let other work structs
471 * run instead
472 */
57fd5a5f 473 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 474 fs_info->fs_devices->open_devices > 1) {
b765ead5 475 struct io_context *ioc;
8b712842 476
b765ead5
CM
477 ioc = current->io_context;
478
479 /*
480 * the main goal here is that we don't want to
481 * block if we're going to be able to submit
482 * more requests without blocking.
483 *
484 * This code does two great things, it pokes into
485 * the elevator code from a filesystem _and_
486 * it makes assumptions about how batching works.
487 */
488 if (ioc && ioc->nr_batch_requests > 0 &&
489 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
490 (last_waited == 0 ||
491 ioc->last_waited == last_waited)) {
492 /*
493 * we want to go through our batch of
494 * requests and stop. So, we copy out
495 * the ioc->last_waited time and test
496 * against it before looping
497 */
498 last_waited = ioc->last_waited;
853d8ec4 499 cond_resched();
b765ead5
CM
500 continue;
501 }
8b712842 502 spin_lock(&device->io_lock);
ffbd517d 503 requeue_list(pending_bios, pending, tail);
a6837051 504 device->running_pending = 1;
8b712842
CM
505
506 spin_unlock(&device->io_lock);
a8c93d4e
QW
507 btrfs_queue_work(fs_info->submit_workers,
508 &device->work);
8b712842
CM
509 goto done;
510 }
d85c8a6f
CM
511 /* unplug every 64 requests just for good measure */
512 if (batch_run % 64 == 0) {
513 blk_finish_plug(&plug);
514 blk_start_plug(&plug);
515 sync_pending = 0;
516 }
8b712842 517 }
ffbd517d 518
51684082
CM
519 cond_resched();
520 if (again)
521 goto loop;
522
523 spin_lock(&device->io_lock);
524 if (device->pending_bios.head || device->pending_sync_bios.head)
525 goto loop_lock;
526 spin_unlock(&device->io_lock);
527
8b712842 528done:
211588ad 529 blk_finish_plug(&plug);
8b712842
CM
530}
531
b2950863 532static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
533{
534 struct btrfs_device *device;
535
536 device = container_of(work, struct btrfs_device, work);
537 run_scheduled_bios(device);
538}
539
4fde46f0
AJ
540
541void btrfs_free_stale_device(struct btrfs_device *cur_dev)
542{
543 struct btrfs_fs_devices *fs_devs;
544 struct btrfs_device *dev;
545
546 if (!cur_dev->name)
547 return;
548
549 list_for_each_entry(fs_devs, &fs_uuids, list) {
550 int del = 1;
551
552 if (fs_devs->opened)
553 continue;
554 if (fs_devs->seeding)
555 continue;
556
557 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
558
559 if (dev == cur_dev)
560 continue;
561 if (!dev->name)
562 continue;
563
564 /*
565 * Todo: This won't be enough. What if the same device
566 * comes back (with new uuid and) with its mapper path?
567 * But for now, this does help as mostly an admin will
568 * either use mapper or non mapper path throughout.
569 */
570 rcu_read_lock();
571 del = strcmp(rcu_str_deref(dev->name),
572 rcu_str_deref(cur_dev->name));
573 rcu_read_unlock();
574 if (!del)
575 break;
576 }
577
578 if (!del) {
579 /* delete the stale device */
580 if (fs_devs->num_devices == 1) {
581 btrfs_sysfs_remove_fsid(fs_devs);
582 list_del(&fs_devs->list);
583 free_fs_devices(fs_devs);
584 } else {
585 fs_devs->num_devices--;
586 list_del(&dev->dev_list);
587 rcu_string_free(dev->name);
588 kfree(dev);
589 }
590 break;
591 }
592 }
593}
594
60999ca4
DS
595/*
596 * Add new device to list of registered devices
597 *
598 * Returns:
599 * 1 - first time device is seen
600 * 0 - device already known
601 * < 0 - error
602 */
a1b32a59 603static noinline int device_list_add(const char *path,
8a4b83cc
CM
604 struct btrfs_super_block *disk_super,
605 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
606{
607 struct btrfs_device *device;
608 struct btrfs_fs_devices *fs_devices;
606686ee 609 struct rcu_string *name;
60999ca4 610 int ret = 0;
8a4b83cc
CM
611 u64 found_transid = btrfs_super_generation(disk_super);
612
613 fs_devices = find_fsid(disk_super->fsid);
614 if (!fs_devices) {
2208a378
ID
615 fs_devices = alloc_fs_devices(disk_super->fsid);
616 if (IS_ERR(fs_devices))
617 return PTR_ERR(fs_devices);
618
8a4b83cc 619 list_add(&fs_devices->list, &fs_uuids);
2208a378 620
8a4b83cc
CM
621 device = NULL;
622 } else {
a443755f
CM
623 device = __find_device(&fs_devices->devices, devid,
624 disk_super->dev_item.uuid);
8a4b83cc 625 }
443f24fe 626
8a4b83cc 627 if (!device) {
2b82032c
YZ
628 if (fs_devices->opened)
629 return -EBUSY;
630
12bd2fc0
ID
631 device = btrfs_alloc_device(NULL, &devid,
632 disk_super->dev_item.uuid);
633 if (IS_ERR(device)) {
8a4b83cc 634 /* we can safely leave the fs_devices entry around */
12bd2fc0 635 return PTR_ERR(device);
8a4b83cc 636 }
606686ee
JB
637
638 name = rcu_string_strdup(path, GFP_NOFS);
639 if (!name) {
8a4b83cc
CM
640 kfree(device);
641 return -ENOMEM;
642 }
606686ee 643 rcu_assign_pointer(device->name, name);
90519d66 644
e5e9a520 645 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 646 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 647 fs_devices->num_devices++;
e5e9a520
CM
648 mutex_unlock(&fs_devices->device_list_mutex);
649
60999ca4 650 ret = 1;
2b82032c 651 device->fs_devices = fs_devices;
606686ee 652 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
653 /*
654 * When FS is already mounted.
655 * 1. If you are here and if the device->name is NULL that
656 * means this device was missing at time of FS mount.
657 * 2. If you are here and if the device->name is different
658 * from 'path' that means either
659 * a. The same device disappeared and reappeared with
660 * different name. or
661 * b. The missing-disk-which-was-replaced, has
662 * reappeared now.
663 *
664 * We must allow 1 and 2a above. But 2b would be a spurious
665 * and unintentional.
666 *
667 * Further in case of 1 and 2a above, the disk at 'path'
668 * would have missed some transaction when it was away and
669 * in case of 2a the stale bdev has to be updated as well.
670 * 2b must not be allowed at all time.
671 */
672
673 /*
0f23ae74
CM
674 * For now, we do allow update to btrfs_fs_device through the
675 * btrfs dev scan cli after FS has been mounted. We're still
676 * tracking a problem where systems fail mount by subvolume id
677 * when we reject replacement on a mounted FS.
b96de000 678 */
0f23ae74 679 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
680 /*
681 * That is if the FS is _not_ mounted and if you
682 * are here, that means there is more than one
683 * disk with same uuid and devid.We keep the one
684 * with larger generation number or the last-in if
685 * generation are equal.
686 */
0f23ae74 687 return -EEXIST;
77bdae4d 688 }
b96de000 689
606686ee 690 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
691 if (!name)
692 return -ENOMEM;
606686ee
JB
693 rcu_string_free(device->name);
694 rcu_assign_pointer(device->name, name);
cd02dca5
CM
695 if (device->missing) {
696 fs_devices->missing_devices--;
697 device->missing = 0;
698 }
8a4b83cc
CM
699 }
700
77bdae4d
AJ
701 /*
702 * Unmount does not free the btrfs_device struct but would zero
703 * generation along with most of the other members. So just update
704 * it back. We need it to pick the disk with largest generation
705 * (as above).
706 */
707 if (!fs_devices->opened)
708 device->generation = found_transid;
709
4fde46f0
AJ
710 /*
711 * if there is new btrfs on an already registered device,
712 * then remove the stale device entry.
713 */
02feae3c
AJ
714 if (ret > 0)
715 btrfs_free_stale_device(device);
4fde46f0 716
8a4b83cc 717 *fs_devices_ret = fs_devices;
60999ca4
DS
718
719 return ret;
8a4b83cc
CM
720}
721
e4404d6e
YZ
722static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
723{
724 struct btrfs_fs_devices *fs_devices;
725 struct btrfs_device *device;
726 struct btrfs_device *orig_dev;
727
2208a378
ID
728 fs_devices = alloc_fs_devices(orig->fsid);
729 if (IS_ERR(fs_devices))
730 return fs_devices;
e4404d6e 731
adbbb863 732 mutex_lock(&orig->device_list_mutex);
02db0844 733 fs_devices->total_devices = orig->total_devices;
e4404d6e 734
46224705 735 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 736 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
737 struct rcu_string *name;
738
12bd2fc0
ID
739 device = btrfs_alloc_device(NULL, &orig_dev->devid,
740 orig_dev->uuid);
741 if (IS_ERR(device))
e4404d6e
YZ
742 goto error;
743
606686ee
JB
744 /*
745 * This is ok to do without rcu read locked because we hold the
746 * uuid mutex so nothing we touch in here is going to disappear.
747 */
e755f780 748 if (orig_dev->name) {
78f2c9e6
DS
749 name = rcu_string_strdup(orig_dev->name->str,
750 GFP_KERNEL);
e755f780
AJ
751 if (!name) {
752 kfree(device);
753 goto error;
754 }
755 rcu_assign_pointer(device->name, name);
fd2696f3 756 }
e4404d6e 757
e4404d6e
YZ
758 list_add(&device->dev_list, &fs_devices->devices);
759 device->fs_devices = fs_devices;
760 fs_devices->num_devices++;
761 }
adbbb863 762 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
763 return fs_devices;
764error:
adbbb863 765 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
766 free_fs_devices(fs_devices);
767 return ERR_PTR(-ENOMEM);
768}
769
9eaed21e 770void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 771{
c6e30871 772 struct btrfs_device *device, *next;
443f24fe 773 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 774
dfe25020
CM
775 mutex_lock(&uuid_mutex);
776again:
46224705 777 /* This is the initialized path, it is safe to release the devices. */
c6e30871 778 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 779 if (device->in_fs_metadata) {
63a212ab 780 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
781 (!latest_dev ||
782 device->generation > latest_dev->generation)) {
783 latest_dev = device;
a6b0d5c8 784 }
2b82032c 785 continue;
a6b0d5c8 786 }
2b82032c 787
8dabb742
SB
788 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
789 /*
790 * In the first step, keep the device which has
791 * the correct fsid and the devid that is used
792 * for the dev_replace procedure.
793 * In the second step, the dev_replace state is
794 * read from the device tree and it is known
795 * whether the procedure is really active or
796 * not, which means whether this device is
797 * used or whether it should be removed.
798 */
799 if (step == 0 || device->is_tgtdev_for_dev_replace) {
800 continue;
801 }
802 }
2b82032c 803 if (device->bdev) {
d4d77629 804 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
805 device->bdev = NULL;
806 fs_devices->open_devices--;
807 }
808 if (device->writeable) {
809 list_del_init(&device->dev_alloc_list);
810 device->writeable = 0;
8dabb742
SB
811 if (!device->is_tgtdev_for_dev_replace)
812 fs_devices->rw_devices--;
2b82032c 813 }
e4404d6e
YZ
814 list_del_init(&device->dev_list);
815 fs_devices->num_devices--;
606686ee 816 rcu_string_free(device->name);
e4404d6e 817 kfree(device);
dfe25020 818 }
2b82032c
YZ
819
820 if (fs_devices->seed) {
821 fs_devices = fs_devices->seed;
2b82032c
YZ
822 goto again;
823 }
824
443f24fe 825 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 826
dfe25020 827 mutex_unlock(&uuid_mutex);
dfe25020 828}
a0af469b 829
1f78160c
XG
830static void __free_device(struct work_struct *work)
831{
832 struct btrfs_device *device;
833
834 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 835 rcu_string_free(device->name);
1f78160c
XG
836 kfree(device);
837}
838
839static void free_device(struct rcu_head *head)
840{
841 struct btrfs_device *device;
842
843 device = container_of(head, struct btrfs_device, rcu);
844
845 INIT_WORK(&device->rcu_work, __free_device);
846 schedule_work(&device->rcu_work);
847}
848
14238819
AJ
849static void btrfs_close_bdev(struct btrfs_device *device)
850{
851 if (device->bdev && device->writeable) {
852 sync_blockdev(device->bdev);
853 invalidate_bdev(device->bdev);
854 }
855
856 if (device->bdev)
857 blkdev_put(device->bdev, device->mode);
858}
859
0ccd0528 860static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
861{
862 struct btrfs_fs_devices *fs_devices = device->fs_devices;
863 struct btrfs_device *new_device;
864 struct rcu_string *name;
865
866 if (device->bdev)
867 fs_devices->open_devices--;
868
869 if (device->writeable &&
870 device->devid != BTRFS_DEV_REPLACE_DEVID) {
871 list_del_init(&device->dev_alloc_list);
872 fs_devices->rw_devices--;
873 }
874
875 if (device->missing)
876 fs_devices->missing_devices--;
877
878 new_device = btrfs_alloc_device(NULL, &device->devid,
879 device->uuid);
880 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
881
882 /* Safe because we are under uuid_mutex */
883 if (device->name) {
884 name = rcu_string_strdup(device->name->str, GFP_NOFS);
885 BUG_ON(!name); /* -ENOMEM */
886 rcu_assign_pointer(new_device->name, name);
887 }
888
889 list_replace_rcu(&device->dev_list, &new_device->dev_list);
890 new_device->fs_devices = device->fs_devices;
f448341a
AJ
891}
892
2b82032c 893static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 894{
2037a093 895 struct btrfs_device *device, *tmp;
0ccd0528
AJ
896 struct list_head pending_put;
897
898 INIT_LIST_HEAD(&pending_put);
e4404d6e 899
2b82032c
YZ
900 if (--fs_devices->opened > 0)
901 return 0;
8a4b83cc 902
c9513edb 903 mutex_lock(&fs_devices->device_list_mutex);
2037a093 904 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
905 btrfs_prepare_close_one_device(device);
906 list_add(&device->dev_list, &pending_put);
8a4b83cc 907 }
c9513edb
XG
908 mutex_unlock(&fs_devices->device_list_mutex);
909
0ccd0528
AJ
910 /*
911 * btrfs_show_devname() is using the device_list_mutex,
912 * sometimes call to blkdev_put() leads vfs calling
913 * into this func. So do put outside of device_list_mutex,
914 * as of now.
915 */
916 while (!list_empty(&pending_put)) {
917 device = list_first_entry(&pending_put,
918 struct btrfs_device, dev_list);
919 list_del(&device->dev_list);
920 btrfs_close_bdev(device);
921 call_rcu(&device->rcu, free_device);
922 }
923
e4404d6e
YZ
924 WARN_ON(fs_devices->open_devices);
925 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
926 fs_devices->opened = 0;
927 fs_devices->seeding = 0;
2b82032c 928
8a4b83cc
CM
929 return 0;
930}
931
2b82032c
YZ
932int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
933{
e4404d6e 934 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
935 int ret;
936
937 mutex_lock(&uuid_mutex);
938 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
939 if (!fs_devices->opened) {
940 seed_devices = fs_devices->seed;
941 fs_devices->seed = NULL;
942 }
2b82032c 943 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
944
945 while (seed_devices) {
946 fs_devices = seed_devices;
947 seed_devices = fs_devices->seed;
948 __btrfs_close_devices(fs_devices);
949 free_fs_devices(fs_devices);
950 }
bc178622
ES
951 /*
952 * Wait for rcu kworkers under __btrfs_close_devices
953 * to finish all blkdev_puts so device is really
954 * free when umount is done.
955 */
956 rcu_barrier();
2b82032c
YZ
957 return ret;
958}
959
e4404d6e
YZ
960static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
961 fmode_t flags, void *holder)
8a4b83cc 962{
d5e2003c 963 struct request_queue *q;
8a4b83cc
CM
964 struct block_device *bdev;
965 struct list_head *head = &fs_devices->devices;
8a4b83cc 966 struct btrfs_device *device;
443f24fe 967 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
968 struct buffer_head *bh;
969 struct btrfs_super_block *disk_super;
a0af469b 970 u64 devid;
2b82032c 971 int seeding = 1;
a0af469b 972 int ret = 0;
8a4b83cc 973
d4d77629
TH
974 flags |= FMODE_EXCL;
975
c6e30871 976 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
977 if (device->bdev)
978 continue;
dfe25020
CM
979 if (!device->name)
980 continue;
981
f63e0cca
ES
982 /* Just open everything we can; ignore failures here */
983 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
984 &bdev, &bh))
beaf8ab3 985 continue;
a0af469b
CM
986
987 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 988 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
989 if (devid != device->devid)
990 goto error_brelse;
991
2b82032c
YZ
992 if (memcmp(device->uuid, disk_super->dev_item.uuid,
993 BTRFS_UUID_SIZE))
994 goto error_brelse;
995
996 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
997 if (!latest_dev ||
998 device->generation > latest_dev->generation)
999 latest_dev = device;
a0af469b 1000
2b82032c
YZ
1001 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1002 device->writeable = 0;
1003 } else {
1004 device->writeable = !bdev_read_only(bdev);
1005 seeding = 0;
1006 }
1007
d5e2003c 1008 q = bdev_get_queue(bdev);
90180da4 1009 if (blk_queue_discard(q))
d5e2003c 1010 device->can_discard = 1;
d5e2003c 1011
8a4b83cc 1012 device->bdev = bdev;
dfe25020 1013 device->in_fs_metadata = 0;
15916de8
CM
1014 device->mode = flags;
1015
c289811c
CM
1016 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1017 fs_devices->rotating = 1;
1018
a0af469b 1019 fs_devices->open_devices++;
55e50e45
ID
1020 if (device->writeable &&
1021 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1022 fs_devices->rw_devices++;
1023 list_add(&device->dev_alloc_list,
1024 &fs_devices->alloc_list);
1025 }
4f6c9328 1026 brelse(bh);
a0af469b 1027 continue;
a061fc8d 1028
a0af469b
CM
1029error_brelse:
1030 brelse(bh);
d4d77629 1031 blkdev_put(bdev, flags);
a0af469b 1032 continue;
8a4b83cc 1033 }
a0af469b 1034 if (fs_devices->open_devices == 0) {
20bcd649 1035 ret = -EINVAL;
a0af469b
CM
1036 goto out;
1037 }
2b82032c
YZ
1038 fs_devices->seeding = seeding;
1039 fs_devices->opened = 1;
443f24fe 1040 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1041 fs_devices->total_rw_bytes = 0;
a0af469b 1042out:
2b82032c
YZ
1043 return ret;
1044}
1045
1046int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1047 fmode_t flags, void *holder)
2b82032c
YZ
1048{
1049 int ret;
1050
1051 mutex_lock(&uuid_mutex);
1052 if (fs_devices->opened) {
e4404d6e
YZ
1053 fs_devices->opened++;
1054 ret = 0;
2b82032c 1055 } else {
15916de8 1056 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1057 }
8a4b83cc 1058 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1059 return ret;
1060}
1061
6cf86a00
AJ
1062void btrfs_release_disk_super(struct page *page)
1063{
1064 kunmap(page);
1065 put_page(page);
1066}
1067
1068int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1069 struct page **page, struct btrfs_super_block **disk_super)
1070{
1071 void *p;
1072 pgoff_t index;
1073
1074 /* make sure our super fits in the device */
1075 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1076 return 1;
1077
1078 /* make sure our super fits in the page */
1079 if (sizeof(**disk_super) > PAGE_SIZE)
1080 return 1;
1081
1082 /* make sure our super doesn't straddle pages on disk */
1083 index = bytenr >> PAGE_SHIFT;
1084 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1085 return 1;
1086
1087 /* pull in the page with our super */
1088 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1089 index, GFP_KERNEL);
1090
1091 if (IS_ERR_OR_NULL(*page))
1092 return 1;
1093
1094 p = kmap(*page);
1095
1096 /* align our pointer to the offset of the super block */
1097 *disk_super = p + (bytenr & ~PAGE_MASK);
1098
1099 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1100 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1101 btrfs_release_disk_super(*page);
1102 return 1;
1103 }
1104
1105 if ((*disk_super)->label[0] &&
1106 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1107 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1108
1109 return 0;
1110}
1111
6f60cbd3
DS
1112/*
1113 * Look for a btrfs signature on a device. This may be called out of the mount path
1114 * and we are not allowed to call set_blocksize during the scan. The superblock
1115 * is read via pagecache
1116 */
97288f2c 1117int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1118 struct btrfs_fs_devices **fs_devices_ret)
1119{
1120 struct btrfs_super_block *disk_super;
1121 struct block_device *bdev;
6f60cbd3 1122 struct page *page;
6f60cbd3 1123 int ret = -EINVAL;
8a4b83cc 1124 u64 devid;
f2984462 1125 u64 transid;
02db0844 1126 u64 total_devices;
6f60cbd3 1127 u64 bytenr;
8a4b83cc 1128
6f60cbd3
DS
1129 /*
1130 * we would like to check all the supers, but that would make
1131 * a btrfs mount succeed after a mkfs from a different FS.
1132 * So, we need to add a special mount option to scan for
1133 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1134 */
1135 bytenr = btrfs_sb_offset(0);
d4d77629 1136 flags |= FMODE_EXCL;
10f6327b 1137 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1138
1139 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1140 if (IS_ERR(bdev)) {
1141 ret = PTR_ERR(bdev);
beaf8ab3 1142 goto error;
6f60cbd3
DS
1143 }
1144
6cf86a00 1145 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1146 goto error_bdev_put;
1147
a343832f 1148 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1149 transid = btrfs_super_generation(disk_super);
02db0844 1150 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1151
8a4b83cc 1152 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1153 if (ret > 0) {
1154 if (disk_super->label[0]) {
62e85577 1155 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1156 } else {
62e85577 1157 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1158 }
1159
62e85577 1160 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1161 ret = 0;
1162 }
02db0844
JB
1163 if (!ret && fs_devices_ret)
1164 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1165
6cf86a00 1166 btrfs_release_disk_super(page);
6f60cbd3
DS
1167
1168error_bdev_put:
d4d77629 1169 blkdev_put(bdev, flags);
8a4b83cc 1170error:
beaf8ab3 1171 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1172 return ret;
1173}
0b86a832 1174
6d07bcec
MX
1175/* helper to account the used device space in the range */
1176int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1177 u64 end, u64 *length)
1178{
1179 struct btrfs_key key;
fb456252 1180 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1181 struct btrfs_dev_extent *dev_extent;
1182 struct btrfs_path *path;
1183 u64 extent_end;
1184 int ret;
1185 int slot;
1186 struct extent_buffer *l;
1187
1188 *length = 0;
1189
63a212ab 1190 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1191 return 0;
1192
1193 path = btrfs_alloc_path();
1194 if (!path)
1195 return -ENOMEM;
e4058b54 1196 path->reada = READA_FORWARD;
6d07bcec
MX
1197
1198 key.objectid = device->devid;
1199 key.offset = start;
1200 key.type = BTRFS_DEV_EXTENT_KEY;
1201
1202 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1203 if (ret < 0)
1204 goto out;
1205 if (ret > 0) {
1206 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1207 if (ret < 0)
1208 goto out;
1209 }
1210
1211 while (1) {
1212 l = path->nodes[0];
1213 slot = path->slots[0];
1214 if (slot >= btrfs_header_nritems(l)) {
1215 ret = btrfs_next_leaf(root, path);
1216 if (ret == 0)
1217 continue;
1218 if (ret < 0)
1219 goto out;
1220
1221 break;
1222 }
1223 btrfs_item_key_to_cpu(l, &key, slot);
1224
1225 if (key.objectid < device->devid)
1226 goto next;
1227
1228 if (key.objectid > device->devid)
1229 break;
1230
962a298f 1231 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1232 goto next;
1233
1234 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1235 extent_end = key.offset + btrfs_dev_extent_length(l,
1236 dev_extent);
1237 if (key.offset <= start && extent_end > end) {
1238 *length = end - start + 1;
1239 break;
1240 } else if (key.offset <= start && extent_end > start)
1241 *length += extent_end - start;
1242 else if (key.offset > start && extent_end <= end)
1243 *length += extent_end - key.offset;
1244 else if (key.offset > start && key.offset <= end) {
1245 *length += end - key.offset + 1;
1246 break;
1247 } else if (key.offset > end)
1248 break;
1249
1250next:
1251 path->slots[0]++;
1252 }
1253 ret = 0;
1254out:
1255 btrfs_free_path(path);
1256 return ret;
1257}
1258
499f377f 1259static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1260 struct btrfs_device *device,
1261 u64 *start, u64 len)
1262{
fb456252 1263 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1264 struct extent_map *em;
499f377f 1265 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1266 int ret = 0;
1b984508 1267 u64 physical_start = *start;
6df9a95e 1268
499f377f
JM
1269 if (transaction)
1270 search_list = &transaction->pending_chunks;
04216820
FM
1271again:
1272 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1273 struct map_lookup *map;
1274 int i;
1275
95617d69 1276 map = em->map_lookup;
6df9a95e 1277 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1278 u64 end;
1279
6df9a95e
JB
1280 if (map->stripes[i].dev != device)
1281 continue;
1b984508 1282 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1283 map->stripes[i].physical + em->orig_block_len <=
1b984508 1284 physical_start)
6df9a95e 1285 continue;
c152b63e
FM
1286 /*
1287 * Make sure that while processing the pinned list we do
1288 * not override our *start with a lower value, because
1289 * we can have pinned chunks that fall within this
1290 * device hole and that have lower physical addresses
1291 * than the pending chunks we processed before. If we
1292 * do not take this special care we can end up getting
1293 * 2 pending chunks that start at the same physical
1294 * device offsets because the end offset of a pinned
1295 * chunk can be equal to the start offset of some
1296 * pending chunk.
1297 */
1298 end = map->stripes[i].physical + em->orig_block_len;
1299 if (end > *start) {
1300 *start = end;
1301 ret = 1;
1302 }
6df9a95e
JB
1303 }
1304 }
499f377f
JM
1305 if (search_list != &fs_info->pinned_chunks) {
1306 search_list = &fs_info->pinned_chunks;
04216820
FM
1307 goto again;
1308 }
6df9a95e
JB
1309
1310 return ret;
1311}
1312
1313
0b86a832 1314/*
499f377f
JM
1315 * find_free_dev_extent_start - find free space in the specified device
1316 * @device: the device which we search the free space in
1317 * @num_bytes: the size of the free space that we need
1318 * @search_start: the position from which to begin the search
1319 * @start: store the start of the free space.
1320 * @len: the size of the free space. that we find, or the size
1321 * of the max free space if we don't find suitable free space
7bfc837d 1322 *
0b86a832
CM
1323 * this uses a pretty simple search, the expectation is that it is
1324 * called very infrequently and that a given device has a small number
1325 * of extents
7bfc837d
MX
1326 *
1327 * @start is used to store the start of the free space if we find. But if we
1328 * don't find suitable free space, it will be used to store the start position
1329 * of the max free space.
1330 *
1331 * @len is used to store the size of the free space that we find.
1332 * But if we don't find suitable free space, it is used to store the size of
1333 * the max free space.
0b86a832 1334 */
499f377f
JM
1335int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1336 struct btrfs_device *device, u64 num_bytes,
1337 u64 search_start, u64 *start, u64 *len)
0b86a832 1338{
0b246afa
JM
1339 struct btrfs_fs_info *fs_info = device->fs_info;
1340 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1341 struct btrfs_key key;
7bfc837d 1342 struct btrfs_dev_extent *dev_extent;
2b82032c 1343 struct btrfs_path *path;
7bfc837d
MX
1344 u64 hole_size;
1345 u64 max_hole_start;
1346 u64 max_hole_size;
1347 u64 extent_end;
0b86a832
CM
1348 u64 search_end = device->total_bytes;
1349 int ret;
7bfc837d 1350 int slot;
0b86a832 1351 struct extent_buffer *l;
8cdc7c5b
FM
1352 u64 min_search_start;
1353
1354 /*
1355 * We don't want to overwrite the superblock on the drive nor any area
1356 * used by the boot loader (grub for example), so we make sure to start
1357 * at an offset of at least 1MB.
1358 */
0b246afa 1359 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
8cdc7c5b 1360 search_start = max(search_start, min_search_start);
0b86a832 1361
6df9a95e
JB
1362 path = btrfs_alloc_path();
1363 if (!path)
1364 return -ENOMEM;
f2ab7618 1365
7bfc837d
MX
1366 max_hole_start = search_start;
1367 max_hole_size = 0;
1368
f2ab7618 1369again:
63a212ab 1370 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1371 ret = -ENOSPC;
6df9a95e 1372 goto out;
7bfc837d
MX
1373 }
1374
e4058b54 1375 path->reada = READA_FORWARD;
6df9a95e
JB
1376 path->search_commit_root = 1;
1377 path->skip_locking = 1;
7bfc837d 1378
0b86a832
CM
1379 key.objectid = device->devid;
1380 key.offset = search_start;
1381 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1382
125ccb0a 1383 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1384 if (ret < 0)
7bfc837d 1385 goto out;
1fcbac58
YZ
1386 if (ret > 0) {
1387 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1388 if (ret < 0)
7bfc837d 1389 goto out;
1fcbac58 1390 }
7bfc837d 1391
0b86a832
CM
1392 while (1) {
1393 l = path->nodes[0];
1394 slot = path->slots[0];
1395 if (slot >= btrfs_header_nritems(l)) {
1396 ret = btrfs_next_leaf(root, path);
1397 if (ret == 0)
1398 continue;
1399 if (ret < 0)
7bfc837d
MX
1400 goto out;
1401
1402 break;
0b86a832
CM
1403 }
1404 btrfs_item_key_to_cpu(l, &key, slot);
1405
1406 if (key.objectid < device->devid)
1407 goto next;
1408
1409 if (key.objectid > device->devid)
7bfc837d 1410 break;
0b86a832 1411
962a298f 1412 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1413 goto next;
9779b72f 1414
7bfc837d
MX
1415 if (key.offset > search_start) {
1416 hole_size = key.offset - search_start;
9779b72f 1417
6df9a95e
JB
1418 /*
1419 * Have to check before we set max_hole_start, otherwise
1420 * we could end up sending back this offset anyway.
1421 */
499f377f 1422 if (contains_pending_extent(transaction, device,
6df9a95e 1423 &search_start,
1b984508
FL
1424 hole_size)) {
1425 if (key.offset >= search_start) {
1426 hole_size = key.offset - search_start;
1427 } else {
1428 WARN_ON_ONCE(1);
1429 hole_size = 0;
1430 }
1431 }
6df9a95e 1432
7bfc837d
MX
1433 if (hole_size > max_hole_size) {
1434 max_hole_start = search_start;
1435 max_hole_size = hole_size;
1436 }
9779b72f 1437
7bfc837d
MX
1438 /*
1439 * If this free space is greater than which we need,
1440 * it must be the max free space that we have found
1441 * until now, so max_hole_start must point to the start
1442 * of this free space and the length of this free space
1443 * is stored in max_hole_size. Thus, we return
1444 * max_hole_start and max_hole_size and go back to the
1445 * caller.
1446 */
1447 if (hole_size >= num_bytes) {
1448 ret = 0;
1449 goto out;
0b86a832
CM
1450 }
1451 }
0b86a832 1452
0b86a832 1453 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1454 extent_end = key.offset + btrfs_dev_extent_length(l,
1455 dev_extent);
1456 if (extent_end > search_start)
1457 search_start = extent_end;
0b86a832
CM
1458next:
1459 path->slots[0]++;
1460 cond_resched();
1461 }
0b86a832 1462
38c01b96 1463 /*
1464 * At this point, search_start should be the end of
1465 * allocated dev extents, and when shrinking the device,
1466 * search_end may be smaller than search_start.
1467 */
f2ab7618 1468 if (search_end > search_start) {
38c01b96 1469 hole_size = search_end - search_start;
1470
499f377f 1471 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1472 hole_size)) {
1473 btrfs_release_path(path);
1474 goto again;
1475 }
0b86a832 1476
f2ab7618
ZL
1477 if (hole_size > max_hole_size) {
1478 max_hole_start = search_start;
1479 max_hole_size = hole_size;
1480 }
6df9a95e
JB
1481 }
1482
7bfc837d 1483 /* See above. */
f2ab7618 1484 if (max_hole_size < num_bytes)
7bfc837d
MX
1485 ret = -ENOSPC;
1486 else
1487 ret = 0;
1488
1489out:
2b82032c 1490 btrfs_free_path(path);
7bfc837d 1491 *start = max_hole_start;
b2117a39 1492 if (len)
7bfc837d 1493 *len = max_hole_size;
0b86a832
CM
1494 return ret;
1495}
1496
499f377f
JM
1497int find_free_dev_extent(struct btrfs_trans_handle *trans,
1498 struct btrfs_device *device, u64 num_bytes,
1499 u64 *start, u64 *len)
1500{
499f377f 1501 /* FIXME use last free of some kind */
499f377f 1502 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1503 num_bytes, 0, start, len);
499f377f
JM
1504}
1505
b2950863 1506static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1507 struct btrfs_device *device,
2196d6e8 1508 u64 start, u64 *dev_extent_len)
8f18cf13 1509{
0b246afa
JM
1510 struct btrfs_fs_info *fs_info = device->fs_info;
1511 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1512 int ret;
1513 struct btrfs_path *path;
8f18cf13 1514 struct btrfs_key key;
a061fc8d
CM
1515 struct btrfs_key found_key;
1516 struct extent_buffer *leaf = NULL;
1517 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1518
1519 path = btrfs_alloc_path();
1520 if (!path)
1521 return -ENOMEM;
1522
1523 key.objectid = device->devid;
1524 key.offset = start;
1525 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1526again:
8f18cf13 1527 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1528 if (ret > 0) {
1529 ret = btrfs_previous_item(root, path, key.objectid,
1530 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1531 if (ret)
1532 goto out;
a061fc8d
CM
1533 leaf = path->nodes[0];
1534 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1535 extent = btrfs_item_ptr(leaf, path->slots[0],
1536 struct btrfs_dev_extent);
1537 BUG_ON(found_key.offset > start || found_key.offset +
1538 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1539 key = found_key;
1540 btrfs_release_path(path);
1541 goto again;
a061fc8d
CM
1542 } else if (ret == 0) {
1543 leaf = path->nodes[0];
1544 extent = btrfs_item_ptr(leaf, path->slots[0],
1545 struct btrfs_dev_extent);
79787eaa 1546 } else {
0b246afa 1547 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1548 goto out;
a061fc8d 1549 }
8f18cf13 1550
2196d6e8
MX
1551 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1552
8f18cf13 1553 ret = btrfs_del_item(trans, root, path);
79787eaa 1554 if (ret) {
0b246afa
JM
1555 btrfs_handle_fs_error(fs_info, ret,
1556 "Failed to remove dev extent item");
13212b54 1557 } else {
3204d33c 1558 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1559 }
b0b802d7 1560out:
8f18cf13
CM
1561 btrfs_free_path(path);
1562 return ret;
1563}
1564
48a3b636
ES
1565static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1566 struct btrfs_device *device,
1567 u64 chunk_tree, u64 chunk_objectid,
1568 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1569{
1570 int ret;
1571 struct btrfs_path *path;
0b246afa
JM
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1574 struct btrfs_dev_extent *extent;
1575 struct extent_buffer *leaf;
1576 struct btrfs_key key;
1577
dfe25020 1578 WARN_ON(!device->in_fs_metadata);
63a212ab 1579 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
0b86a832 1584 key.objectid = device->devid;
2b82032c 1585 key.offset = start;
0b86a832
CM
1586 key.type = BTRFS_DEV_EXTENT_KEY;
1587 ret = btrfs_insert_empty_item(trans, root, path, &key,
1588 sizeof(*extent));
2cdcecbc
MF
1589 if (ret)
1590 goto out;
0b86a832
CM
1591
1592 leaf = path->nodes[0];
1593 extent = btrfs_item_ptr(leaf, path->slots[0],
1594 struct btrfs_dev_extent);
e17cade2
CM
1595 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1596 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1597 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1598
0b246afa 1599 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
e17cade2 1600
0b86a832
CM
1601 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1603out:
0b86a832
CM
1604 btrfs_free_path(path);
1605 return ret;
1606}
1607
6df9a95e 1608static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1609{
6df9a95e
JB
1610 struct extent_map_tree *em_tree;
1611 struct extent_map *em;
1612 struct rb_node *n;
1613 u64 ret = 0;
0b86a832 1614
6df9a95e
JB
1615 em_tree = &fs_info->mapping_tree.map_tree;
1616 read_lock(&em_tree->lock);
1617 n = rb_last(&em_tree->map);
1618 if (n) {
1619 em = rb_entry(n, struct extent_map, rb_node);
1620 ret = em->start + em->len;
0b86a832 1621 }
6df9a95e
JB
1622 read_unlock(&em_tree->lock);
1623
0b86a832
CM
1624 return ret;
1625}
1626
53f10659
ID
1627static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628 u64 *devid_ret)
0b86a832
CM
1629{
1630 int ret;
1631 struct btrfs_key key;
1632 struct btrfs_key found_key;
2b82032c
YZ
1633 struct btrfs_path *path;
1634
2b82032c
YZ
1635 path = btrfs_alloc_path();
1636 if (!path)
1637 return -ENOMEM;
0b86a832
CM
1638
1639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640 key.type = BTRFS_DEV_ITEM_KEY;
1641 key.offset = (u64)-1;
1642
53f10659 1643 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1644 if (ret < 0)
1645 goto error;
1646
79787eaa 1647 BUG_ON(ret == 0); /* Corruption */
0b86a832 1648
53f10659
ID
1649 ret = btrfs_previous_item(fs_info->chunk_root, path,
1650 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1651 BTRFS_DEV_ITEM_KEY);
1652 if (ret) {
53f10659 1653 *devid_ret = 1;
0b86a832
CM
1654 } else {
1655 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656 path->slots[0]);
53f10659 1657 *devid_ret = found_key.offset + 1;
0b86a832
CM
1658 }
1659 ret = 0;
1660error:
2b82032c 1661 btrfs_free_path(path);
0b86a832
CM
1662 return ret;
1663}
1664
1665/*
1666 * the device information is stored in the chunk root
1667 * the btrfs_device struct should be fully filled in
1668 */
48a3b636 1669static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1670 struct btrfs_fs_info *fs_info,
48a3b636 1671 struct btrfs_device *device)
0b86a832 1672{
5b4aacef 1673 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1674 int ret;
1675 struct btrfs_path *path;
1676 struct btrfs_dev_item *dev_item;
1677 struct extent_buffer *leaf;
1678 struct btrfs_key key;
1679 unsigned long ptr;
0b86a832 1680
0b86a832
CM
1681 path = btrfs_alloc_path();
1682 if (!path)
1683 return -ENOMEM;
1684
0b86a832
CM
1685 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1686 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1687 key.offset = device->devid;
0b86a832
CM
1688
1689 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1690 sizeof(*dev_item));
0b86a832
CM
1691 if (ret)
1692 goto out;
1693
1694 leaf = path->nodes[0];
1695 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1696
1697 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1698 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1699 btrfs_set_device_type(leaf, dev_item, device->type);
1700 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1701 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1702 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1703 btrfs_set_device_total_bytes(leaf, dev_item,
1704 btrfs_device_get_disk_total_bytes(device));
1705 btrfs_set_device_bytes_used(leaf, dev_item,
1706 btrfs_device_get_bytes_used(device));
e17cade2
CM
1707 btrfs_set_device_group(leaf, dev_item, 0);
1708 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1709 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1710 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1711
410ba3a2 1712 ptr = btrfs_device_uuid(dev_item);
e17cade2 1713 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1714 ptr = btrfs_device_fsid(dev_item);
0b246afa 1715 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1716 btrfs_mark_buffer_dirty(leaf);
0b86a832 1717
2b82032c 1718 ret = 0;
0b86a832
CM
1719out:
1720 btrfs_free_path(path);
1721 return ret;
1722}
8f18cf13 1723
5a1972bd
QW
1724/*
1725 * Function to update ctime/mtime for a given device path.
1726 * Mainly used for ctime/mtime based probe like libblkid.
1727 */
da353f6b 1728static void update_dev_time(const char *path_name)
5a1972bd
QW
1729{
1730 struct file *filp;
1731
1732 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1733 if (IS_ERR(filp))
5a1972bd
QW
1734 return;
1735 file_update_time(filp);
1736 filp_close(filp, NULL);
5a1972bd
QW
1737}
1738
5b4aacef 1739static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1740 struct btrfs_device *device)
1741{
5b4aacef 1742 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1743 int ret;
1744 struct btrfs_path *path;
a061fc8d 1745 struct btrfs_key key;
a061fc8d
CM
1746 struct btrfs_trans_handle *trans;
1747
a061fc8d
CM
1748 path = btrfs_alloc_path();
1749 if (!path)
1750 return -ENOMEM;
1751
a22285a6 1752 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1753 if (IS_ERR(trans)) {
1754 btrfs_free_path(path);
1755 return PTR_ERR(trans);
1756 }
a061fc8d
CM
1757 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1758 key.type = BTRFS_DEV_ITEM_KEY;
1759 key.offset = device->devid;
1760
1761 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1762 if (ret < 0)
1763 goto out;
1764
1765 if (ret > 0) {
1766 ret = -ENOENT;
1767 goto out;
1768 }
1769
1770 ret = btrfs_del_item(trans, root, path);
1771 if (ret)
1772 goto out;
a061fc8d
CM
1773out:
1774 btrfs_free_path(path);
3a45bb20 1775 btrfs_commit_transaction(trans);
a061fc8d
CM
1776 return ret;
1777}
1778
3cc31a0d
DS
1779/*
1780 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781 * filesystem. It's up to the caller to adjust that number regarding eg. device
1782 * replace.
1783 */
1784static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1785 u64 num_devices)
a061fc8d 1786{
a061fc8d 1787 u64 all_avail;
de98ced9 1788 unsigned seq;
418775a2 1789 int i;
a061fc8d 1790
de98ced9 1791 do {
bd45ffbc 1792 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1793
bd45ffbc
AJ
1794 all_avail = fs_info->avail_data_alloc_bits |
1795 fs_info->avail_system_alloc_bits |
1796 fs_info->avail_metadata_alloc_bits;
1797 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1798
418775a2
DS
1799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1800 if (!(all_avail & btrfs_raid_group[i]))
1801 continue;
a061fc8d 1802
418775a2
DS
1803 if (num_devices < btrfs_raid_array[i].devs_min) {
1804 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1805
418775a2
DS
1806 if (ret)
1807 return ret;
1808 }
53b381b3
DW
1809 }
1810
bd45ffbc 1811 return 0;
f1fa7f26
AJ
1812}
1813
88acff64
AJ
1814struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1815 struct btrfs_device *device)
a061fc8d 1816{
2b82032c 1817 struct btrfs_device *next_device;
88acff64
AJ
1818
1819 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1820 if (next_device != device &&
1821 !next_device->missing && next_device->bdev)
1822 return next_device;
1823 }
1824
1825 return NULL;
1826}
1827
1828/*
1829 * Helper function to check if the given device is part of s_bdev / latest_bdev
1830 * and replace it with the provided or the next active device, in the context
1831 * where this function called, there should be always be another device (or
1832 * this_dev) which is active.
1833 */
1834void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1835 struct btrfs_device *device, struct btrfs_device *this_dev)
1836{
1837 struct btrfs_device *next_device;
1838
1839 if (this_dev)
1840 next_device = this_dev;
1841 else
1842 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1843 device);
1844 ASSERT(next_device);
1845
1846 if (fs_info->sb->s_bdev &&
1847 (fs_info->sb->s_bdev == device->bdev))
1848 fs_info->sb->s_bdev = next_device->bdev;
1849
1850 if (fs_info->fs_devices->latest_bdev == device->bdev)
1851 fs_info->fs_devices->latest_bdev = next_device->bdev;
1852}
1853
da353f6b
DS
1854int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1855 u64 devid)
f1fa7f26
AJ
1856{
1857 struct btrfs_device *device;
1f78160c 1858 struct btrfs_fs_devices *cur_devices;
2b82032c 1859 u64 num_devices;
a061fc8d 1860 int ret = 0;
1f78160c 1861 bool clear_super = false;
a061fc8d 1862
a061fc8d
CM
1863 mutex_lock(&uuid_mutex);
1864
0b246afa
JM
1865 num_devices = fs_info->fs_devices->num_devices;
1866 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1867 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1868 WARN_ON(num_devices < 1);
1869 num_devices--;
1870 }
0b246afa 1871 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1872
0b246afa 1873 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1874 if (ret)
a061fc8d 1875 goto out;
a061fc8d 1876
2ff7e61e
JM
1877 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1878 &device);
24fc572f 1879 if (ret)
53b381b3 1880 goto out;
dfe25020 1881
63a212ab 1882 if (device->is_tgtdev_for_dev_replace) {
183860f6 1883 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1884 goto out;
63a212ab
SB
1885 }
1886
0b246afa 1887 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1888 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1889 goto out;
2b82032c
YZ
1890 }
1891
1892 if (device->writeable) {
34441361 1893 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1894 list_del_init(&device->dev_alloc_list);
c3929c36 1895 device->fs_devices->rw_devices--;
34441361 1896 mutex_unlock(&fs_info->chunk_mutex);
1f78160c 1897 clear_super = true;
dfe25020 1898 }
a061fc8d 1899
d7901554 1900 mutex_unlock(&uuid_mutex);
a061fc8d 1901 ret = btrfs_shrink_device(device, 0);
d7901554 1902 mutex_lock(&uuid_mutex);
a061fc8d 1903 if (ret)
9b3517e9 1904 goto error_undo;
a061fc8d 1905
63a212ab
SB
1906 /*
1907 * TODO: the superblock still includes this device in its num_devices
1908 * counter although write_all_supers() is not locked out. This
1909 * could give a filesystem state which requires a degraded mount.
1910 */
0b246afa 1911 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1912 if (ret)
9b3517e9 1913 goto error_undo;
a061fc8d 1914
2b82032c 1915 device->in_fs_metadata = 0;
0b246afa 1916 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1917
1918 /*
1919 * the device list mutex makes sure that we don't change
1920 * the device list while someone else is writing out all
d7306801
FDBM
1921 * the device supers. Whoever is writing all supers, should
1922 * lock the device list mutex before getting the number of
1923 * devices in the super block (super_copy). Conversely,
1924 * whoever updates the number of devices in the super block
1925 * (super_copy) should hold the device list mutex.
e5e9a520 1926 */
1f78160c
XG
1927
1928 cur_devices = device->fs_devices;
0b246afa 1929 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1930 list_del_rcu(&device->dev_list);
e5e9a520 1931
e4404d6e 1932 device->fs_devices->num_devices--;
02db0844 1933 device->fs_devices->total_devices--;
2b82032c 1934
cd02dca5 1935 if (device->missing)
3a7d55c8 1936 device->fs_devices->missing_devices--;
cd02dca5 1937
0b246afa 1938 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1939
0bfaa9c5 1940 if (device->bdev) {
e4404d6e 1941 device->fs_devices->open_devices--;
0bfaa9c5 1942 /* remove sysfs entry */
0b246afa 1943 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1944 }
99994cde 1945
0b246afa
JM
1946 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1947 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1948 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1949
cea67ab9
JM
1950 /*
1951 * at this point, the device is zero sized and detached from
1952 * the devices list. All that's left is to zero out the old
1953 * supers and free the device.
1954 */
1955 if (device->writeable)
1956 btrfs_scratch_superblocks(device->bdev, device->name->str);
1957
1958 btrfs_close_bdev(device);
1959 call_rcu(&device->rcu, free_device);
1960
1f78160c 1961 if (cur_devices->open_devices == 0) {
e4404d6e 1962 struct btrfs_fs_devices *fs_devices;
0b246afa 1963 fs_devices = fs_info->fs_devices;
e4404d6e 1964 while (fs_devices) {
8321cf25
RS
1965 if (fs_devices->seed == cur_devices) {
1966 fs_devices->seed = cur_devices->seed;
e4404d6e 1967 break;
8321cf25 1968 }
e4404d6e 1969 fs_devices = fs_devices->seed;
2b82032c 1970 }
1f78160c 1971 cur_devices->seed = NULL;
1f78160c 1972 __btrfs_close_devices(cur_devices);
1f78160c 1973 free_fs_devices(cur_devices);
2b82032c
YZ
1974 }
1975
0b246afa
JM
1976 fs_info->num_tolerated_disk_barrier_failures =
1977 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
5af3e8cc 1978
a061fc8d
CM
1979out:
1980 mutex_unlock(&uuid_mutex);
a061fc8d 1981 return ret;
24fc572f 1982
9b3517e9
ID
1983error_undo:
1984 if (device->writeable) {
34441361 1985 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 1986 list_add(&device->dev_alloc_list,
0b246afa 1987 &fs_info->fs_devices->alloc_list);
c3929c36 1988 device->fs_devices->rw_devices++;
34441361 1989 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 1990 }
24fc572f 1991 goto out;
a061fc8d
CM
1992}
1993
084b6e7c
QW
1994void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1995 struct btrfs_device *srcdev)
e93c89c1 1996{
d51908ce
AJ
1997 struct btrfs_fs_devices *fs_devices;
1998
e93c89c1 1999 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 2000
25e8e911
AJ
2001 /*
2002 * in case of fs with no seed, srcdev->fs_devices will point
2003 * to fs_devices of fs_info. However when the dev being replaced is
2004 * a seed dev it will point to the seed's local fs_devices. In short
2005 * srcdev will have its correct fs_devices in both the cases.
2006 */
2007 fs_devices = srcdev->fs_devices;
d51908ce 2008
e93c89c1
SB
2009 list_del_rcu(&srcdev->dev_list);
2010 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 2011 fs_devices->num_devices--;
82372bc8 2012 if (srcdev->missing)
d51908ce 2013 fs_devices->missing_devices--;
e93c89c1 2014
48b3b9d4 2015 if (srcdev->writeable)
82372bc8 2016 fs_devices->rw_devices--;
1357272f 2017
82372bc8 2018 if (srcdev->bdev)
d51908ce 2019 fs_devices->open_devices--;
084b6e7c
QW
2020}
2021
2022void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2023 struct btrfs_device *srcdev)
2024{
2025 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2026
48b3b9d4
AJ
2027 if (srcdev->writeable) {
2028 /* zero out the old super if it is writable */
2029 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2030 }
14238819
AJ
2031
2032 btrfs_close_bdev(srcdev);
2033
e93c89c1 2034 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2035
2036 /*
2037 * unless fs_devices is seed fs, num_devices shouldn't go
2038 * zero
2039 */
2040 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2041
2042 /* if this is no devs we rather delete the fs_devices */
2043 if (!fs_devices->num_devices) {
2044 struct btrfs_fs_devices *tmp_fs_devices;
2045
2046 tmp_fs_devices = fs_info->fs_devices;
2047 while (tmp_fs_devices) {
2048 if (tmp_fs_devices->seed == fs_devices) {
2049 tmp_fs_devices->seed = fs_devices->seed;
2050 break;
2051 }
2052 tmp_fs_devices = tmp_fs_devices->seed;
2053 }
2054 fs_devices->seed = NULL;
8bef8401
AJ
2055 __btrfs_close_devices(fs_devices);
2056 free_fs_devices(fs_devices);
94d5f0c2 2057 }
e93c89c1
SB
2058}
2059
2060void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2061 struct btrfs_device *tgtdev)
2062{
67a2c45e 2063 mutex_lock(&uuid_mutex);
e93c89c1
SB
2064 WARN_ON(!tgtdev);
2065 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2066
32576040 2067 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2068
779bf3fe 2069 if (tgtdev->bdev)
e93c89c1 2070 fs_info->fs_devices->open_devices--;
779bf3fe 2071
e93c89c1 2072 fs_info->fs_devices->num_devices--;
e93c89c1 2073
88acff64 2074 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2075
e93c89c1 2076 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2077
2078 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2079 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2080
2081 /*
2082 * The update_dev_time() with in btrfs_scratch_superblocks()
2083 * may lead to a call to btrfs_show_devname() which will try
2084 * to hold device_list_mutex. And here this device
2085 * is already out of device list, so we don't have to hold
2086 * the device_list_mutex lock.
2087 */
2088 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2089
2090 btrfs_close_bdev(tgtdev);
779bf3fe 2091 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2092}
2093
2ff7e61e 2094static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2095 const char *device_path,
48a3b636 2096 struct btrfs_device **device)
7ba15b7d
SB
2097{
2098 int ret = 0;
2099 struct btrfs_super_block *disk_super;
2100 u64 devid;
2101 u8 *dev_uuid;
2102 struct block_device *bdev;
2103 struct buffer_head *bh;
2104
2105 *device = NULL;
2106 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2107 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2108 if (ret)
2109 return ret;
2110 disk_super = (struct btrfs_super_block *)bh->b_data;
2111 devid = btrfs_stack_device_id(&disk_super->dev_item);
2112 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2113 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2114 brelse(bh);
2115 if (!*device)
2116 ret = -ENOENT;
2117 blkdev_put(bdev, FMODE_READ);
2118 return ret;
2119}
2120
2ff7e61e 2121int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2122 const char *device_path,
7ba15b7d
SB
2123 struct btrfs_device **device)
2124{
2125 *device = NULL;
2126 if (strcmp(device_path, "missing") == 0) {
2127 struct list_head *devices;
2128 struct btrfs_device *tmp;
2129
0b246afa 2130 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2131 /*
2132 * It is safe to read the devices since the volume_mutex
2133 * is held by the caller.
2134 */
2135 list_for_each_entry(tmp, devices, dev_list) {
2136 if (tmp->in_fs_metadata && !tmp->bdev) {
2137 *device = tmp;
2138 break;
2139 }
2140 }
2141
d74a6259
AJ
2142 if (!*device)
2143 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2144
2145 return 0;
2146 } else {
2ff7e61e 2147 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2148 }
2149}
2150
5c5c0df0
DS
2151/*
2152 * Lookup a device given by device id, or the path if the id is 0.
2153 */
2ff7e61e 2154int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2155 const char *devpath,
2156 struct btrfs_device **device)
24e0474b
AJ
2157{
2158 int ret;
2159
5c5c0df0 2160 if (devid) {
24e0474b 2161 ret = 0;
0b246afa 2162 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2163 if (!*device)
2164 ret = -ENOENT;
2165 } else {
5c5c0df0 2166 if (!devpath || !devpath[0])
b3d1b153
AJ
2167 return -EINVAL;
2168
2ff7e61e 2169 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2170 device);
2171 }
2172 return ret;
2173}
2174
2b82032c
YZ
2175/*
2176 * does all the dirty work required for changing file system's UUID.
2177 */
2ff7e61e 2178static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2179{
0b246afa 2180 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2181 struct btrfs_fs_devices *old_devices;
e4404d6e 2182 struct btrfs_fs_devices *seed_devices;
0b246afa 2183 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2184 struct btrfs_device *device;
2185 u64 super_flags;
2186
2187 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2188 if (!fs_devices->seeding)
2b82032c
YZ
2189 return -EINVAL;
2190
2208a378
ID
2191 seed_devices = __alloc_fs_devices();
2192 if (IS_ERR(seed_devices))
2193 return PTR_ERR(seed_devices);
2b82032c 2194
e4404d6e
YZ
2195 old_devices = clone_fs_devices(fs_devices);
2196 if (IS_ERR(old_devices)) {
2197 kfree(seed_devices);
2198 return PTR_ERR(old_devices);
2b82032c 2199 }
e4404d6e 2200
2b82032c
YZ
2201 list_add(&old_devices->list, &fs_uuids);
2202
e4404d6e
YZ
2203 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2204 seed_devices->opened = 1;
2205 INIT_LIST_HEAD(&seed_devices->devices);
2206 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2207 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2208
0b246afa 2209 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2210 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2211 synchronize_rcu);
2196d6e8
MX
2212 list_for_each_entry(device, &seed_devices->devices, dev_list)
2213 device->fs_devices = seed_devices;
c9513edb 2214
34441361 2215 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2216 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2217 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2218
2b82032c
YZ
2219 fs_devices->seeding = 0;
2220 fs_devices->num_devices = 0;
2221 fs_devices->open_devices = 0;
69611ac8 2222 fs_devices->missing_devices = 0;
69611ac8 2223 fs_devices->rotating = 0;
e4404d6e 2224 fs_devices->seed = seed_devices;
2b82032c
YZ
2225
2226 generate_random_uuid(fs_devices->fsid);
0b246afa 2227 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2228 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2229 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2230
2b82032c
YZ
2231 super_flags = btrfs_super_flags(disk_super) &
2232 ~BTRFS_SUPER_FLAG_SEEDING;
2233 btrfs_set_super_flags(disk_super, super_flags);
2234
2235 return 0;
2236}
2237
2238/*
01327610 2239 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2240 */
2241static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2242 struct btrfs_fs_info *fs_info)
2b82032c 2243{
5b4aacef 2244 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2245 struct btrfs_path *path;
2246 struct extent_buffer *leaf;
2247 struct btrfs_dev_item *dev_item;
2248 struct btrfs_device *device;
2249 struct btrfs_key key;
2250 u8 fs_uuid[BTRFS_UUID_SIZE];
2251 u8 dev_uuid[BTRFS_UUID_SIZE];
2252 u64 devid;
2253 int ret;
2254
2255 path = btrfs_alloc_path();
2256 if (!path)
2257 return -ENOMEM;
2258
2b82032c
YZ
2259 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2260 key.offset = 0;
2261 key.type = BTRFS_DEV_ITEM_KEY;
2262
2263 while (1) {
2264 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2265 if (ret < 0)
2266 goto error;
2267
2268 leaf = path->nodes[0];
2269next_slot:
2270 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2271 ret = btrfs_next_leaf(root, path);
2272 if (ret > 0)
2273 break;
2274 if (ret < 0)
2275 goto error;
2276 leaf = path->nodes[0];
2277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2278 btrfs_release_path(path);
2b82032c
YZ
2279 continue;
2280 }
2281
2282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2283 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2284 key.type != BTRFS_DEV_ITEM_KEY)
2285 break;
2286
2287 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2288 struct btrfs_dev_item);
2289 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2290 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2291 BTRFS_UUID_SIZE);
1473b24e 2292 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2293 BTRFS_UUID_SIZE);
0b246afa 2294 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2295 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2296
2297 if (device->fs_devices->seeding) {
2298 btrfs_set_device_generation(leaf, dev_item,
2299 device->generation);
2300 btrfs_mark_buffer_dirty(leaf);
2301 }
2302
2303 path->slots[0]++;
2304 goto next_slot;
2305 }
2306 ret = 0;
2307error:
2308 btrfs_free_path(path);
2309 return ret;
2310}
2311
da353f6b 2312int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2313{
5112febb 2314 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2315 struct request_queue *q;
788f20eb
CM
2316 struct btrfs_trans_handle *trans;
2317 struct btrfs_device *device;
2318 struct block_device *bdev;
788f20eb 2319 struct list_head *devices;
0b246afa 2320 struct super_block *sb = fs_info->sb;
606686ee 2321 struct rcu_string *name;
3c1dbdf5 2322 u64 tmp;
2b82032c 2323 int seeding_dev = 0;
788f20eb
CM
2324 int ret = 0;
2325
0b246afa 2326 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
f8c5d0b4 2327 return -EROFS;
788f20eb 2328
a5d16333 2329 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2330 fs_info->bdev_holder);
7f59203a
JB
2331 if (IS_ERR(bdev))
2332 return PTR_ERR(bdev);
a2135011 2333
0b246afa 2334 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2335 seeding_dev = 1;
2336 down_write(&sb->s_umount);
2337 mutex_lock(&uuid_mutex);
2338 }
2339
8c8bee1d 2340 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2341
0b246afa 2342 devices = &fs_info->fs_devices->devices;
d25628bd 2343
0b246afa 2344 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2345 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2346 if (device->bdev == bdev) {
2347 ret = -EEXIST;
d25628bd 2348 mutex_unlock(
0b246afa 2349 &fs_info->fs_devices->device_list_mutex);
2b82032c 2350 goto error;
788f20eb
CM
2351 }
2352 }
0b246afa 2353 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2354
0b246afa 2355 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2356 if (IS_ERR(device)) {
788f20eb 2357 /* we can safely leave the fs_devices entry around */
12bd2fc0 2358 ret = PTR_ERR(device);
2b82032c 2359 goto error;
788f20eb
CM
2360 }
2361
78f2c9e6 2362 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2363 if (!name) {
788f20eb 2364 kfree(device);
2b82032c
YZ
2365 ret = -ENOMEM;
2366 goto error;
788f20eb 2367 }
606686ee 2368 rcu_assign_pointer(device->name, name);
2b82032c 2369
a22285a6 2370 trans = btrfs_start_transaction(root, 0);
98d5dc13 2371 if (IS_ERR(trans)) {
606686ee 2372 rcu_string_free(device->name);
98d5dc13
TI
2373 kfree(device);
2374 ret = PTR_ERR(trans);
2375 goto error;
2376 }
2377
d5e2003c
JB
2378 q = bdev_get_queue(bdev);
2379 if (blk_queue_discard(q))
2380 device->can_discard = 1;
2b82032c 2381 device->writeable = 1;
2b82032c 2382 device->generation = trans->transid;
0b246afa
JM
2383 device->io_width = fs_info->sectorsize;
2384 device->io_align = fs_info->sectorsize;
2385 device->sector_size = fs_info->sectorsize;
788f20eb 2386 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2387 device->disk_total_bytes = device->total_bytes;
935e5cc9 2388 device->commit_total_bytes = device->total_bytes;
fb456252 2389 device->fs_info = fs_info;
788f20eb 2390 device->bdev = bdev;
dfe25020 2391 device->in_fs_metadata = 1;
63a212ab 2392 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2393 device->mode = FMODE_EXCL;
27087f37 2394 device->dev_stats_valid = 1;
2b82032c 2395 set_blocksize(device->bdev, 4096);
788f20eb 2396
2b82032c
YZ
2397 if (seeding_dev) {
2398 sb->s_flags &= ~MS_RDONLY;
2ff7e61e 2399 ret = btrfs_prepare_sprout(fs_info);
79787eaa 2400 BUG_ON(ret); /* -ENOMEM */
2b82032c 2401 }
788f20eb 2402
0b246afa 2403 device->fs_devices = fs_info->fs_devices;
e5e9a520 2404
0b246afa 2405 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2406 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2407 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2408 list_add(&device->dev_alloc_list,
0b246afa
JM
2409 &fs_info->fs_devices->alloc_list);
2410 fs_info->fs_devices->num_devices++;
2411 fs_info->fs_devices->open_devices++;
2412 fs_info->fs_devices->rw_devices++;
2413 fs_info->fs_devices->total_devices++;
2414 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2415
0b246afa
JM
2416 spin_lock(&fs_info->free_chunk_lock);
2417 fs_info->free_chunk_space += device->total_bytes;
2418 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 2419
c289811c 2420 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
0b246afa 2421 fs_info->fs_devices->rotating = 1;
c289811c 2422
0b246afa
JM
2423 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2424 btrfs_set_super_total_bytes(fs_info->super_copy,
3c1dbdf5 2425 tmp + device->total_bytes);
788f20eb 2426
0b246afa
JM
2427 tmp = btrfs_super_num_devices(fs_info->super_copy);
2428 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2429
2430 /* add sysfs device entry */
0b246afa 2431 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2432
2196d6e8
MX
2433 /*
2434 * we've got more storage, clear any full flags on the space
2435 * infos
2436 */
0b246afa 2437 btrfs_clear_space_info_full(fs_info);
2196d6e8 2438
34441361 2439 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2440 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2441
2b82032c 2442 if (seeding_dev) {
34441361 2443 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2444 ret = init_first_rw_device(trans, fs_info);
34441361 2445 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2446 if (ret) {
66642832 2447 btrfs_abort_transaction(trans, ret);
79787eaa 2448 goto error_trans;
005d6427 2449 }
2196d6e8
MX
2450 }
2451
0b246afa 2452 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2453 if (ret) {
66642832 2454 btrfs_abort_transaction(trans, ret);
2196d6e8
MX
2455 goto error_trans;
2456 }
2457
2458 if (seeding_dev) {
2459 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2460
0b246afa 2461 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2462 if (ret) {
66642832 2463 btrfs_abort_transaction(trans, ret);
79787eaa 2464 goto error_trans;
005d6427 2465 }
b2373f25
AJ
2466
2467 /* Sprouting would change fsid of the mounted root,
2468 * so rename the fsid on the sysfs
2469 */
2470 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2471 fs_info->fsid);
2472 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2473 btrfs_warn(fs_info,
2474 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2475 }
2476
0b246afa
JM
2477 fs_info->num_tolerated_disk_barrier_failures =
2478 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3a45bb20 2479 ret = btrfs_commit_transaction(trans);
a2135011 2480
2b82032c
YZ
2481 if (seeding_dev) {
2482 mutex_unlock(&uuid_mutex);
2483 up_write(&sb->s_umount);
788f20eb 2484
79787eaa
JM
2485 if (ret) /* transaction commit */
2486 return ret;
2487
2ff7e61e 2488 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2489 if (ret < 0)
0b246afa 2490 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2491 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2492 trans = btrfs_attach_transaction(root);
2493 if (IS_ERR(trans)) {
2494 if (PTR_ERR(trans) == -ENOENT)
2495 return 0;
2496 return PTR_ERR(trans);
2497 }
3a45bb20 2498 ret = btrfs_commit_transaction(trans);
2b82032c 2499 }
c9e9f97b 2500
5a1972bd
QW
2501 /* Update ctime/mtime for libblkid */
2502 update_dev_time(device_path);
2b82032c 2503 return ret;
79787eaa
JM
2504
2505error_trans:
3a45bb20 2506 btrfs_end_transaction(trans);
606686ee 2507 rcu_string_free(device->name);
0b246afa 2508 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2509 kfree(device);
2b82032c 2510error:
e525fd89 2511 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2512 if (seeding_dev) {
2513 mutex_unlock(&uuid_mutex);
2514 up_write(&sb->s_umount);
2515 }
c9e9f97b 2516 return ret;
788f20eb
CM
2517}
2518
2ff7e61e 2519int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2520 const char *device_path,
1c43366d 2521 struct btrfs_device *srcdev,
e93c89c1
SB
2522 struct btrfs_device **device_out)
2523{
2524 struct request_queue *q;
2525 struct btrfs_device *device;
2526 struct block_device *bdev;
e93c89c1
SB
2527 struct list_head *devices;
2528 struct rcu_string *name;
12bd2fc0 2529 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2530 int ret = 0;
2531
2532 *device_out = NULL;
1c43366d
MX
2533 if (fs_info->fs_devices->seeding) {
2534 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2535 return -EINVAL;
1c43366d 2536 }
e93c89c1
SB
2537
2538 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2539 fs_info->bdev_holder);
1c43366d
MX
2540 if (IS_ERR(bdev)) {
2541 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2542 return PTR_ERR(bdev);
1c43366d 2543 }
e93c89c1
SB
2544
2545 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2546
2547 devices = &fs_info->fs_devices->devices;
2548 list_for_each_entry(device, devices, dev_list) {
2549 if (device->bdev == bdev) {
5d163e0e
JM
2550 btrfs_err(fs_info,
2551 "target device is in the filesystem!");
e93c89c1
SB
2552 ret = -EEXIST;
2553 goto error;
2554 }
2555 }
2556
1c43366d 2557
7cc8e58d
MX
2558 if (i_size_read(bdev->bd_inode) <
2559 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2560 btrfs_err(fs_info,
2561 "target device is smaller than source device!");
1c43366d
MX
2562 ret = -EINVAL;
2563 goto error;
2564 }
2565
2566
12bd2fc0
ID
2567 device = btrfs_alloc_device(NULL, &devid, NULL);
2568 if (IS_ERR(device)) {
2569 ret = PTR_ERR(device);
e93c89c1
SB
2570 goto error;
2571 }
2572
2573 name = rcu_string_strdup(device_path, GFP_NOFS);
2574 if (!name) {
2575 kfree(device);
2576 ret = -ENOMEM;
2577 goto error;
2578 }
2579 rcu_assign_pointer(device->name, name);
2580
2581 q = bdev_get_queue(bdev);
2582 if (blk_queue_discard(q))
2583 device->can_discard = 1;
0b246afa 2584 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2585 device->writeable = 1;
e93c89c1 2586 device->generation = 0;
0b246afa
JM
2587 device->io_width = fs_info->sectorsize;
2588 device->io_align = fs_info->sectorsize;
2589 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2590 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2591 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2592 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2593 ASSERT(list_empty(&srcdev->resized_list));
2594 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2595 device->commit_bytes_used = device->bytes_used;
fb456252 2596 device->fs_info = fs_info;
e93c89c1
SB
2597 device->bdev = bdev;
2598 device->in_fs_metadata = 1;
2599 device->is_tgtdev_for_dev_replace = 1;
2600 device->mode = FMODE_EXCL;
27087f37 2601 device->dev_stats_valid = 1;
e93c89c1
SB
2602 set_blocksize(device->bdev, 4096);
2603 device->fs_devices = fs_info->fs_devices;
2604 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2605 fs_info->fs_devices->num_devices++;
2606 fs_info->fs_devices->open_devices++;
0b246afa 2607 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2608
2609 *device_out = device;
2610 return ret;
2611
2612error:
2613 blkdev_put(bdev, FMODE_EXCL);
2614 return ret;
2615}
2616
2617void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2618 struct btrfs_device *tgtdev)
2619{
da17066c
JM
2620 u32 sectorsize = fs_info->sectorsize;
2621
e93c89c1 2622 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2623 tgtdev->io_width = sectorsize;
2624 tgtdev->io_align = sectorsize;
2625 tgtdev->sector_size = sectorsize;
fb456252 2626 tgtdev->fs_info = fs_info;
e93c89c1
SB
2627 tgtdev->in_fs_metadata = 1;
2628}
2629
d397712b
CM
2630static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2631 struct btrfs_device *device)
0b86a832
CM
2632{
2633 int ret;
2634 struct btrfs_path *path;
0b246afa 2635 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2636 struct btrfs_dev_item *dev_item;
2637 struct extent_buffer *leaf;
2638 struct btrfs_key key;
2639
0b86a832
CM
2640 path = btrfs_alloc_path();
2641 if (!path)
2642 return -ENOMEM;
2643
2644 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2645 key.type = BTRFS_DEV_ITEM_KEY;
2646 key.offset = device->devid;
2647
2648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2649 if (ret < 0)
2650 goto out;
2651
2652 if (ret > 0) {
2653 ret = -ENOENT;
2654 goto out;
2655 }
2656
2657 leaf = path->nodes[0];
2658 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2659
2660 btrfs_set_device_id(leaf, dev_item, device->devid);
2661 btrfs_set_device_type(leaf, dev_item, device->type);
2662 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2663 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2664 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2665 btrfs_set_device_total_bytes(leaf, dev_item,
2666 btrfs_device_get_disk_total_bytes(device));
2667 btrfs_set_device_bytes_used(leaf, dev_item,
2668 btrfs_device_get_bytes_used(device));
0b86a832
CM
2669 btrfs_mark_buffer_dirty(leaf);
2670
2671out:
2672 btrfs_free_path(path);
2673 return ret;
2674}
2675
2196d6e8 2676int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2677 struct btrfs_device *device, u64 new_size)
2678{
0b246afa
JM
2679 struct btrfs_fs_info *fs_info = device->fs_info;
2680 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2681 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2682 u64 old_total;
2683 u64 diff;
8f18cf13 2684
2b82032c
YZ
2685 if (!device->writeable)
2686 return -EACCES;
2196d6e8 2687
34441361 2688 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2689 old_total = btrfs_super_total_bytes(super_copy);
2690 diff = new_size - device->total_bytes;
2691
63a212ab 2692 if (new_size <= device->total_bytes ||
2196d6e8 2693 device->is_tgtdev_for_dev_replace) {
34441361 2694 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2695 return -EINVAL;
2196d6e8 2696 }
2b82032c 2697
0b246afa 2698 fs_devices = fs_info->fs_devices;
2b82032c 2699
8f18cf13 2700 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2701 device->fs_devices->total_rw_bytes += diff;
2702
7cc8e58d
MX
2703 btrfs_device_set_total_bytes(device, new_size);
2704 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2705 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2706 if (list_empty(&device->resized_list))
2707 list_add_tail(&device->resized_list,
2708 &fs_devices->resized_devices);
34441361 2709 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2710
8f18cf13
CM
2711 return btrfs_update_device(trans, device);
2712}
2713
2714static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2715 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
8f18cf13
CM
2716 u64 chunk_offset)
2717{
5b4aacef 2718 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2719 int ret;
2720 struct btrfs_path *path;
2721 struct btrfs_key key;
2722
8f18cf13
CM
2723 path = btrfs_alloc_path();
2724 if (!path)
2725 return -ENOMEM;
2726
2727 key.objectid = chunk_objectid;
2728 key.offset = chunk_offset;
2729 key.type = BTRFS_CHUNK_ITEM_KEY;
2730
2731 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2732 if (ret < 0)
2733 goto out;
2734 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2735 btrfs_handle_fs_error(fs_info, -ENOENT,
2736 "Failed lookup while freeing chunk.");
79787eaa
JM
2737 ret = -ENOENT;
2738 goto out;
2739 }
8f18cf13
CM
2740
2741 ret = btrfs_del_item(trans, root, path);
79787eaa 2742 if (ret < 0)
0b246afa
JM
2743 btrfs_handle_fs_error(fs_info, ret,
2744 "Failed to delete chunk item.");
79787eaa 2745out:
8f18cf13 2746 btrfs_free_path(path);
65a246c5 2747 return ret;
8f18cf13
CM
2748}
2749
6bccf3ab
JM
2750static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2751 u64 chunk_objectid, u64 chunk_offset)
8f18cf13 2752{
0b246afa 2753 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2754 struct btrfs_disk_key *disk_key;
2755 struct btrfs_chunk *chunk;
2756 u8 *ptr;
2757 int ret = 0;
2758 u32 num_stripes;
2759 u32 array_size;
2760 u32 len = 0;
2761 u32 cur;
2762 struct btrfs_key key;
2763
34441361 2764 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2765 array_size = btrfs_super_sys_array_size(super_copy);
2766
2767 ptr = super_copy->sys_chunk_array;
2768 cur = 0;
2769
2770 while (cur < array_size) {
2771 disk_key = (struct btrfs_disk_key *)ptr;
2772 btrfs_disk_key_to_cpu(&key, disk_key);
2773
2774 len = sizeof(*disk_key);
2775
2776 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2777 chunk = (struct btrfs_chunk *)(ptr + len);
2778 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2779 len += btrfs_chunk_item_size(num_stripes);
2780 } else {
2781 ret = -EIO;
2782 break;
2783 }
2784 if (key.objectid == chunk_objectid &&
2785 key.offset == chunk_offset) {
2786 memmove(ptr, ptr + len, array_size - (cur + len));
2787 array_size -= len;
2788 btrfs_set_super_sys_array_size(super_copy, array_size);
2789 } else {
2790 ptr += len;
2791 cur += len;
2792 }
2793 }
34441361 2794 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2795 return ret;
2796}
2797
47ab2a6c 2798int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2799 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13
CM
2800{
2801 struct extent_map_tree *em_tree;
8f18cf13
CM
2802 struct extent_map *em;
2803 struct map_lookup *map;
2196d6e8 2804 u64 dev_extent_len = 0;
47ab2a6c 2805 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2806 int i, ret = 0;
0b246afa 2807 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2808
5b4aacef 2809 em_tree = &fs_info->mapping_tree.map_tree;
8f18cf13 2810
890871be 2811 read_lock(&em_tree->lock);
8f18cf13 2812 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2813 read_unlock(&em_tree->lock);
8f18cf13 2814
47ab2a6c
JB
2815 if (!em || em->start > chunk_offset ||
2816 em->start + em->len < chunk_offset) {
2817 /*
2818 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2819 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2820 * do anything we still error out.
2821 */
2822 ASSERT(0);
2823 if (em)
2824 free_extent_map(em);
2825 return -EINVAL;
2826 }
95617d69 2827 map = em->map_lookup;
34441361 2828 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2829 check_system_chunk(trans, fs_info, map->type);
34441361 2830 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2831
57ba4cb8
FM
2832 /*
2833 * Take the device list mutex to prevent races with the final phase of
2834 * a device replace operation that replaces the device object associated
2835 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2836 */
2837 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2838 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2839 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2840 ret = btrfs_free_dev_extent(trans, device,
2841 map->stripes[i].physical,
2842 &dev_extent_len);
47ab2a6c 2843 if (ret) {
57ba4cb8 2844 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2845 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2846 goto out;
2847 }
a061fc8d 2848
2196d6e8 2849 if (device->bytes_used > 0) {
34441361 2850 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2851 btrfs_device_set_bytes_used(device,
2852 device->bytes_used - dev_extent_len);
0b246afa
JM
2853 spin_lock(&fs_info->free_chunk_lock);
2854 fs_info->free_chunk_space += dev_extent_len;
2855 spin_unlock(&fs_info->free_chunk_lock);
2856 btrfs_clear_space_info_full(fs_info);
34441361 2857 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2858 }
a061fc8d 2859
dfe25020
CM
2860 if (map->stripes[i].dev) {
2861 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2862 if (ret) {
57ba4cb8 2863 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2864 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2865 goto out;
2866 }
dfe25020 2867 }
8f18cf13 2868 }
57ba4cb8
FM
2869 mutex_unlock(&fs_devices->device_list_mutex);
2870
0b246afa 2871 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
47ab2a6c 2872 if (ret) {
66642832 2873 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2874 goto out;
2875 }
8f18cf13 2876
6bccf3ab 2877 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2878
8f18cf13 2879 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
6bccf3ab
JM
2880 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2881 chunk_offset);
47ab2a6c 2882 if (ret) {
66642832 2883 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2884 goto out;
2885 }
8f18cf13
CM
2886 }
2887
6bccf3ab 2888 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2889 if (ret) {
66642832 2890 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2891 goto out;
2892 }
2b82032c 2893
47ab2a6c 2894out:
2b82032c
YZ
2895 /* once for us */
2896 free_extent_map(em);
47ab2a6c
JB
2897 return ret;
2898}
2b82032c 2899
5b4aacef 2900static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2901{
5b4aacef 2902 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2903 struct btrfs_trans_handle *trans;
47ab2a6c 2904 int ret;
2b82032c 2905
67c5e7d4
FM
2906 /*
2907 * Prevent races with automatic removal of unused block groups.
2908 * After we relocate and before we remove the chunk with offset
2909 * chunk_offset, automatic removal of the block group can kick in,
2910 * resulting in a failure when calling btrfs_remove_chunk() below.
2911 *
2912 * Make sure to acquire this mutex before doing a tree search (dev
2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 * we release the path used to search the chunk/dev tree and before
2916 * the current task acquires this mutex and calls us.
2917 */
0b246afa 2918 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2919
0b246afa 2920 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2921 if (ret)
2922 return -ENOSPC;
2923
2924 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2925 btrfs_scrub_pause(fs_info);
0b246afa 2926 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2927 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2928 if (ret)
2929 return ret;
2930
19c4d2f9
CM
2931 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2932 chunk_offset);
2933 if (IS_ERR(trans)) {
2934 ret = PTR_ERR(trans);
2935 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2936 return ret;
2937 }
2938
47ab2a6c 2939 /*
19c4d2f9
CM
2940 * step two, delete the device extents and the
2941 * chunk tree entries
47ab2a6c 2942 */
5b4aacef 2943 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2944 btrfs_end_transaction(trans);
19c4d2f9 2945 return ret;
2b82032c
YZ
2946}
2947
2ff7e61e 2948static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2949{
0b246afa 2950 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2951 struct btrfs_path *path;
2952 struct extent_buffer *leaf;
2953 struct btrfs_chunk *chunk;
2954 struct btrfs_key key;
2955 struct btrfs_key found_key;
2b82032c 2956 u64 chunk_type;
ba1bf481
JB
2957 bool retried = false;
2958 int failed = 0;
2b82032c
YZ
2959 int ret;
2960
2961 path = btrfs_alloc_path();
2962 if (!path)
2963 return -ENOMEM;
2964
ba1bf481 2965again:
2b82032c
YZ
2966 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2967 key.offset = (u64)-1;
2968 key.type = BTRFS_CHUNK_ITEM_KEY;
2969
2970 while (1) {
0b246afa 2971 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2972 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2973 if (ret < 0) {
0b246afa 2974 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2975 goto error;
67c5e7d4 2976 }
79787eaa 2977 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2978
2979 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2980 key.type);
67c5e7d4 2981 if (ret)
0b246afa 2982 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2983 if (ret < 0)
2984 goto error;
2985 if (ret > 0)
2986 break;
1a40e23b 2987
2b82032c
YZ
2988 leaf = path->nodes[0];
2989 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2990
2b82032c
YZ
2991 chunk = btrfs_item_ptr(leaf, path->slots[0],
2992 struct btrfs_chunk);
2993 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2994 btrfs_release_path(path);
8f18cf13 2995
2b82032c 2996 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 2997 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
2998 if (ret == -ENOSPC)
2999 failed++;
14586651
HS
3000 else
3001 BUG_ON(ret);
2b82032c 3002 }
0b246afa 3003 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3004
2b82032c
YZ
3005 if (found_key.offset == 0)
3006 break;
3007 key.offset = found_key.offset - 1;
3008 }
3009 ret = 0;
ba1bf481
JB
3010 if (failed && !retried) {
3011 failed = 0;
3012 retried = true;
3013 goto again;
fae7f21c 3014 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3015 ret = -ENOSPC;
3016 }
2b82032c
YZ
3017error:
3018 btrfs_free_path(path);
3019 return ret;
8f18cf13
CM
3020}
3021
6bccf3ab 3022static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3023 struct btrfs_balance_control *bctl)
3024{
6bccf3ab 3025 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3026 struct btrfs_trans_handle *trans;
3027 struct btrfs_balance_item *item;
3028 struct btrfs_disk_balance_args disk_bargs;
3029 struct btrfs_path *path;
3030 struct extent_buffer *leaf;
3031 struct btrfs_key key;
3032 int ret, err;
3033
3034 path = btrfs_alloc_path();
3035 if (!path)
3036 return -ENOMEM;
3037
3038 trans = btrfs_start_transaction(root, 0);
3039 if (IS_ERR(trans)) {
3040 btrfs_free_path(path);
3041 return PTR_ERR(trans);
3042 }
3043
3044 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3045 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3046 key.offset = 0;
3047
3048 ret = btrfs_insert_empty_item(trans, root, path, &key,
3049 sizeof(*item));
3050 if (ret)
3051 goto out;
3052
3053 leaf = path->nodes[0];
3054 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3055
b159fa28 3056 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3057
3058 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3059 btrfs_set_balance_data(leaf, item, &disk_bargs);
3060 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3061 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3062 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3063 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3064
3065 btrfs_set_balance_flags(leaf, item, bctl->flags);
3066
3067 btrfs_mark_buffer_dirty(leaf);
3068out:
3069 btrfs_free_path(path);
3a45bb20 3070 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3071 if (err && !ret)
3072 ret = err;
3073 return ret;
3074}
3075
6bccf3ab 3076static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3077{
6bccf3ab 3078 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3079 struct btrfs_trans_handle *trans;
3080 struct btrfs_path *path;
3081 struct btrfs_key key;
3082 int ret, err;
3083
3084 path = btrfs_alloc_path();
3085 if (!path)
3086 return -ENOMEM;
3087
3088 trans = btrfs_start_transaction(root, 0);
3089 if (IS_ERR(trans)) {
3090 btrfs_free_path(path);
3091 return PTR_ERR(trans);
3092 }
3093
3094 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3095 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3096 key.offset = 0;
3097
3098 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3099 if (ret < 0)
3100 goto out;
3101 if (ret > 0) {
3102 ret = -ENOENT;
3103 goto out;
3104 }
3105
3106 ret = btrfs_del_item(trans, root, path);
3107out:
3108 btrfs_free_path(path);
3a45bb20 3109 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3110 if (err && !ret)
3111 ret = err;
3112 return ret;
3113}
3114
59641015
ID
3115/*
3116 * This is a heuristic used to reduce the number of chunks balanced on
3117 * resume after balance was interrupted.
3118 */
3119static void update_balance_args(struct btrfs_balance_control *bctl)
3120{
3121 /*
3122 * Turn on soft mode for chunk types that were being converted.
3123 */
3124 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3125 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3126 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3127 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3128 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3129 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3130
3131 /*
3132 * Turn on usage filter if is not already used. The idea is
3133 * that chunks that we have already balanced should be
3134 * reasonably full. Don't do it for chunks that are being
3135 * converted - that will keep us from relocating unconverted
3136 * (albeit full) chunks.
3137 */
3138 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3139 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3140 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3141 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3142 bctl->data.usage = 90;
3143 }
3144 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3145 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3146 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3147 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3148 bctl->sys.usage = 90;
3149 }
3150 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3151 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3152 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3153 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3154 bctl->meta.usage = 90;
3155 }
3156}
3157
c9e9f97b
ID
3158/*
3159 * Should be called with both balance and volume mutexes held to
3160 * serialize other volume operations (add_dev/rm_dev/resize) with
3161 * restriper. Same goes for unset_balance_control.
3162 */
3163static void set_balance_control(struct btrfs_balance_control *bctl)
3164{
3165 struct btrfs_fs_info *fs_info = bctl->fs_info;
3166
3167 BUG_ON(fs_info->balance_ctl);
3168
3169 spin_lock(&fs_info->balance_lock);
3170 fs_info->balance_ctl = bctl;
3171 spin_unlock(&fs_info->balance_lock);
3172}
3173
3174static void unset_balance_control(struct btrfs_fs_info *fs_info)
3175{
3176 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3177
3178 BUG_ON(!fs_info->balance_ctl);
3179
3180 spin_lock(&fs_info->balance_lock);
3181 fs_info->balance_ctl = NULL;
3182 spin_unlock(&fs_info->balance_lock);
3183
3184 kfree(bctl);
3185}
3186
ed25e9b2
ID
3187/*
3188 * Balance filters. Return 1 if chunk should be filtered out
3189 * (should not be balanced).
3190 */
899c81ea 3191static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3192 struct btrfs_balance_args *bargs)
3193{
899c81ea
ID
3194 chunk_type = chunk_to_extended(chunk_type) &
3195 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3196
899c81ea 3197 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3198 return 0;
3199
3200 return 1;
3201}
3202
dba72cb3 3203static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3204 struct btrfs_balance_args *bargs)
bc309467
DS
3205{
3206 struct btrfs_block_group_cache *cache;
3207 u64 chunk_used;
3208 u64 user_thresh_min;
3209 u64 user_thresh_max;
3210 int ret = 1;
3211
3212 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3213 chunk_used = btrfs_block_group_used(&cache->item);
3214
3215 if (bargs->usage_min == 0)
3216 user_thresh_min = 0;
3217 else
3218 user_thresh_min = div_factor_fine(cache->key.offset,
3219 bargs->usage_min);
3220
3221 if (bargs->usage_max == 0)
3222 user_thresh_max = 1;
3223 else if (bargs->usage_max > 100)
3224 user_thresh_max = cache->key.offset;
3225 else
3226 user_thresh_max = div_factor_fine(cache->key.offset,
3227 bargs->usage_max);
3228
3229 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3230 ret = 0;
3231
3232 btrfs_put_block_group(cache);
3233 return ret;
3234}
3235
dba72cb3 3236static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3237 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3238{
3239 struct btrfs_block_group_cache *cache;
3240 u64 chunk_used, user_thresh;
3241 int ret = 1;
3242
3243 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3244 chunk_used = btrfs_block_group_used(&cache->item);
3245
bc309467 3246 if (bargs->usage_min == 0)
3e39cea6 3247 user_thresh = 1;
a105bb88
ID
3248 else if (bargs->usage > 100)
3249 user_thresh = cache->key.offset;
3250 else
3251 user_thresh = div_factor_fine(cache->key.offset,
3252 bargs->usage);
3253
5ce5b3c0
ID
3254 if (chunk_used < user_thresh)
3255 ret = 0;
3256
3257 btrfs_put_block_group(cache);
3258 return ret;
3259}
3260
409d404b
ID
3261static int chunk_devid_filter(struct extent_buffer *leaf,
3262 struct btrfs_chunk *chunk,
3263 struct btrfs_balance_args *bargs)
3264{
3265 struct btrfs_stripe *stripe;
3266 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3267 int i;
3268
3269 for (i = 0; i < num_stripes; i++) {
3270 stripe = btrfs_stripe_nr(chunk, i);
3271 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3272 return 0;
3273 }
3274
3275 return 1;
3276}
3277
94e60d5a
ID
3278/* [pstart, pend) */
3279static int chunk_drange_filter(struct extent_buffer *leaf,
3280 struct btrfs_chunk *chunk,
3281 u64 chunk_offset,
3282 struct btrfs_balance_args *bargs)
3283{
3284 struct btrfs_stripe *stripe;
3285 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3286 u64 stripe_offset;
3287 u64 stripe_length;
3288 int factor;
3289 int i;
3290
3291 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3292 return 0;
3293
3294 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3295 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3296 factor = num_stripes / 2;
3297 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3298 factor = num_stripes - 1;
3299 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3300 factor = num_stripes - 2;
3301 } else {
3302 factor = num_stripes;
3303 }
94e60d5a
ID
3304
3305 for (i = 0; i < num_stripes; i++) {
3306 stripe = btrfs_stripe_nr(chunk, i);
3307 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3308 continue;
3309
3310 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3311 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3312 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3313
3314 if (stripe_offset < bargs->pend &&
3315 stripe_offset + stripe_length > bargs->pstart)
3316 return 0;
3317 }
3318
3319 return 1;
3320}
3321
ea67176a
ID
3322/* [vstart, vend) */
3323static int chunk_vrange_filter(struct extent_buffer *leaf,
3324 struct btrfs_chunk *chunk,
3325 u64 chunk_offset,
3326 struct btrfs_balance_args *bargs)
3327{
3328 if (chunk_offset < bargs->vend &&
3329 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3330 /* at least part of the chunk is inside this vrange */
3331 return 0;
3332
3333 return 1;
3334}
3335
dee32d0a
GAP
3336static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3337 struct btrfs_chunk *chunk,
3338 struct btrfs_balance_args *bargs)
3339{
3340 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3341
3342 if (bargs->stripes_min <= num_stripes
3343 && num_stripes <= bargs->stripes_max)
3344 return 0;
3345
3346 return 1;
3347}
3348
899c81ea 3349static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3350 struct btrfs_balance_args *bargs)
3351{
3352 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3353 return 0;
3354
899c81ea
ID
3355 chunk_type = chunk_to_extended(chunk_type) &
3356 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3357
899c81ea 3358 if (bargs->target == chunk_type)
cfa4c961
ID
3359 return 1;
3360
3361 return 0;
3362}
3363
2ff7e61e 3364static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3365 struct extent_buffer *leaf,
3366 struct btrfs_chunk *chunk, u64 chunk_offset)
3367{
0b246afa 3368 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3369 struct btrfs_balance_args *bargs = NULL;
3370 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3371
3372 /* type filter */
3373 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3374 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3375 return 0;
3376 }
3377
3378 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3379 bargs = &bctl->data;
3380 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3381 bargs = &bctl->sys;
3382 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3383 bargs = &bctl->meta;
3384
ed25e9b2
ID
3385 /* profiles filter */
3386 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3387 chunk_profiles_filter(chunk_type, bargs)) {
3388 return 0;
5ce5b3c0
ID
3389 }
3390
3391 /* usage filter */
3392 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3393 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3394 return 0;
bc309467 3395 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3396 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3397 return 0;
409d404b
ID
3398 }
3399
3400 /* devid filter */
3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3402 chunk_devid_filter(leaf, chunk, bargs)) {
3403 return 0;
94e60d5a
ID
3404 }
3405
3406 /* drange filter, makes sense only with devid filter */
3407 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3408 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3409 return 0;
ea67176a
ID
3410 }
3411
3412 /* vrange filter */
3413 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3414 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3415 return 0;
ed25e9b2
ID
3416 }
3417
dee32d0a
GAP
3418 /* stripes filter */
3419 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3420 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3421 return 0;
3422 }
3423
cfa4c961
ID
3424 /* soft profile changing mode */
3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3426 chunk_soft_convert_filter(chunk_type, bargs)) {
3427 return 0;
3428 }
3429
7d824b6f
DS
3430 /*
3431 * limited by count, must be the last filter
3432 */
3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3434 if (bargs->limit == 0)
3435 return 0;
3436 else
3437 bargs->limit--;
12907fc7
DS
3438 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3439 /*
3440 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3441 * determined here because we do not have the global information
12907fc7
DS
3442 * about the count of all chunks that satisfy the filters.
3443 */
3444 if (bargs->limit_max == 0)
3445 return 0;
3446 else
3447 bargs->limit_max--;
7d824b6f
DS
3448 }
3449
f43ffb60
ID
3450 return 1;
3451}
3452
c9e9f97b 3453static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3454{
19a39dce 3455 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3456 struct btrfs_root *chunk_root = fs_info->chunk_root;
3457 struct btrfs_root *dev_root = fs_info->dev_root;
3458 struct list_head *devices;
ec44a35c
CM
3459 struct btrfs_device *device;
3460 u64 old_size;
3461 u64 size_to_free;
12907fc7 3462 u64 chunk_type;
f43ffb60 3463 struct btrfs_chunk *chunk;
5a488b9d 3464 struct btrfs_path *path = NULL;
ec44a35c 3465 struct btrfs_key key;
ec44a35c 3466 struct btrfs_key found_key;
c9e9f97b 3467 struct btrfs_trans_handle *trans;
f43ffb60
ID
3468 struct extent_buffer *leaf;
3469 int slot;
c9e9f97b
ID
3470 int ret;
3471 int enospc_errors = 0;
19a39dce 3472 bool counting = true;
12907fc7 3473 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3474 u64 limit_data = bctl->data.limit;
3475 u64 limit_meta = bctl->meta.limit;
3476 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3477 u32 count_data = 0;
3478 u32 count_meta = 0;
3479 u32 count_sys = 0;
2c9fe835 3480 int chunk_reserved = 0;
cf25ce51 3481 u64 bytes_used = 0;
ec44a35c 3482
ec44a35c 3483 /* step one make some room on all the devices */
c9e9f97b 3484 devices = &fs_info->fs_devices->devices;
c6e30871 3485 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3486 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3487 size_to_free = div_factor(old_size, 1);
ee22184b 3488 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3489 if (!device->writeable ||
7cc8e58d
MX
3490 btrfs_device_get_total_bytes(device) -
3491 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3492 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3493 continue;
3494
3495 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3496 if (ret == -ENOSPC)
3497 break;
5a488b9d
LB
3498 if (ret) {
3499 /* btrfs_shrink_device never returns ret > 0 */
3500 WARN_ON(ret > 0);
3501 goto error;
3502 }
ec44a35c 3503
a22285a6 3504 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3505 if (IS_ERR(trans)) {
3506 ret = PTR_ERR(trans);
3507 btrfs_info_in_rcu(fs_info,
3508 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3509 rcu_str_deref(device->name), ret,
3510 old_size, old_size - size_to_free);
3511 goto error;
3512 }
ec44a35c
CM
3513
3514 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3515 if (ret) {
3a45bb20 3516 btrfs_end_transaction(trans);
5a488b9d
LB
3517 /* btrfs_grow_device never returns ret > 0 */
3518 WARN_ON(ret > 0);
3519 btrfs_info_in_rcu(fs_info,
3520 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3521 rcu_str_deref(device->name), ret,
3522 old_size, old_size - size_to_free);
3523 goto error;
3524 }
ec44a35c 3525
3a45bb20 3526 btrfs_end_transaction(trans);
ec44a35c
CM
3527 }
3528
3529 /* step two, relocate all the chunks */
3530 path = btrfs_alloc_path();
17e9f796
MF
3531 if (!path) {
3532 ret = -ENOMEM;
3533 goto error;
3534 }
19a39dce
ID
3535
3536 /* zero out stat counters */
3537 spin_lock(&fs_info->balance_lock);
3538 memset(&bctl->stat, 0, sizeof(bctl->stat));
3539 spin_unlock(&fs_info->balance_lock);
3540again:
7d824b6f 3541 if (!counting) {
12907fc7
DS
3542 /*
3543 * The single value limit and min/max limits use the same bytes
3544 * in the
3545 */
7d824b6f
DS
3546 bctl->data.limit = limit_data;
3547 bctl->meta.limit = limit_meta;
3548 bctl->sys.limit = limit_sys;
3549 }
ec44a35c
CM
3550 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3551 key.offset = (u64)-1;
3552 key.type = BTRFS_CHUNK_ITEM_KEY;
3553
d397712b 3554 while (1) {
19a39dce 3555 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3556 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3557 ret = -ECANCELED;
3558 goto error;
3559 }
3560
67c5e7d4 3561 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3562 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3563 if (ret < 0) {
3564 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3565 goto error;
67c5e7d4 3566 }
ec44a35c
CM
3567
3568 /*
3569 * this shouldn't happen, it means the last relocate
3570 * failed
3571 */
3572 if (ret == 0)
c9e9f97b 3573 BUG(); /* FIXME break ? */
ec44a35c
CM
3574
3575 ret = btrfs_previous_item(chunk_root, path, 0,
3576 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3577 if (ret) {
67c5e7d4 3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3579 ret = 0;
ec44a35c 3580 break;
c9e9f97b 3581 }
7d9eb12c 3582
f43ffb60
ID
3583 leaf = path->nodes[0];
3584 slot = path->slots[0];
3585 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3586
67c5e7d4
FM
3587 if (found_key.objectid != key.objectid) {
3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3589 break;
67c5e7d4 3590 }
7d9eb12c 3591
f43ffb60 3592 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3593 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3594
19a39dce
ID
3595 if (!counting) {
3596 spin_lock(&fs_info->balance_lock);
3597 bctl->stat.considered++;
3598 spin_unlock(&fs_info->balance_lock);
3599 }
3600
2ff7e61e 3601 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3602 found_key.offset);
2c9fe835 3603
b3b4aa74 3604 btrfs_release_path(path);
67c5e7d4
FM
3605 if (!ret) {
3606 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3607 goto loop;
67c5e7d4 3608 }
f43ffb60 3609
19a39dce 3610 if (counting) {
67c5e7d4 3611 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3612 spin_lock(&fs_info->balance_lock);
3613 bctl->stat.expected++;
3614 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3615
3616 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3617 count_data++;
3618 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3619 count_sys++;
3620 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3621 count_meta++;
3622
3623 goto loop;
3624 }
3625
3626 /*
3627 * Apply limit_min filter, no need to check if the LIMITS
3628 * filter is used, limit_min is 0 by default
3629 */
3630 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3631 count_data < bctl->data.limit_min)
3632 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3633 count_meta < bctl->meta.limit_min)
3634 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3635 count_sys < bctl->sys.limit_min)) {
3636 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3637 goto loop;
3638 }
3639
cf25ce51
LB
3640 ASSERT(fs_info->data_sinfo);
3641 spin_lock(&fs_info->data_sinfo->lock);
3642 bytes_used = fs_info->data_sinfo->bytes_used;
3643 spin_unlock(&fs_info->data_sinfo->lock);
3644
3645 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3646 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3647 trans = btrfs_start_transaction(chunk_root, 0);
3648 if (IS_ERR(trans)) {
3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650 ret = PTR_ERR(trans);
3651 goto error;
3652 }
3653
2ff7e61e 3654 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3655 BTRFS_BLOCK_GROUP_DATA);
3a45bb20 3656 btrfs_end_transaction(trans);
2c9fe835
ZL
3657 if (ret < 0) {
3658 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3659 goto error;
3660 }
2c9fe835
ZL
3661 chunk_reserved = 1;
3662 }
3663
5b4aacef 3664 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3665 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3666 if (ret && ret != -ENOSPC)
3667 goto error;
19a39dce 3668 if (ret == -ENOSPC) {
c9e9f97b 3669 enospc_errors++;
19a39dce
ID
3670 } else {
3671 spin_lock(&fs_info->balance_lock);
3672 bctl->stat.completed++;
3673 spin_unlock(&fs_info->balance_lock);
3674 }
f43ffb60 3675loop:
795a3321
ID
3676 if (found_key.offset == 0)
3677 break;
ba1bf481 3678 key.offset = found_key.offset - 1;
ec44a35c 3679 }
c9e9f97b 3680
19a39dce
ID
3681 if (counting) {
3682 btrfs_release_path(path);
3683 counting = false;
3684 goto again;
3685 }
ec44a35c
CM
3686error:
3687 btrfs_free_path(path);
c9e9f97b 3688 if (enospc_errors) {
efe120a0 3689 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3690 enospc_errors);
c9e9f97b
ID
3691 if (!ret)
3692 ret = -ENOSPC;
3693 }
3694
ec44a35c
CM
3695 return ret;
3696}
3697
0c460c0d
ID
3698/**
3699 * alloc_profile_is_valid - see if a given profile is valid and reduced
3700 * @flags: profile to validate
3701 * @extended: if true @flags is treated as an extended profile
3702 */
3703static int alloc_profile_is_valid(u64 flags, int extended)
3704{
3705 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3706 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3707
3708 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3709
3710 /* 1) check that all other bits are zeroed */
3711 if (flags & ~mask)
3712 return 0;
3713
3714 /* 2) see if profile is reduced */
3715 if (flags == 0)
3716 return !extended; /* "0" is valid for usual profiles */
3717
3718 /* true if exactly one bit set */
3719 return (flags & (flags - 1)) == 0;
3720}
3721
837d5b6e
ID
3722static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3723{
a7e99c69
ID
3724 /* cancel requested || normal exit path */
3725 return atomic_read(&fs_info->balance_cancel_req) ||
3726 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3727 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3728}
3729
c9e9f97b
ID
3730static void __cancel_balance(struct btrfs_fs_info *fs_info)
3731{
0940ebf6
ID
3732 int ret;
3733
c9e9f97b 3734 unset_balance_control(fs_info);
6bccf3ab 3735 ret = del_balance_item(fs_info);
0f788c58 3736 if (ret)
34d97007 3737 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f
ID
3738
3739 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3740}
3741
bdcd3c97
AM
3742/* Non-zero return value signifies invalidity */
3743static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3744 u64 allowed)
3745{
3746 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3747 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3748 (bctl_arg->target & ~allowed)));
3749}
3750
c9e9f97b
ID
3751/*
3752 * Should be called with both balance and volume mutexes held
3753 */
3754int btrfs_balance(struct btrfs_balance_control *bctl,
3755 struct btrfs_ioctl_balance_args *bargs)
3756{
3757 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3758 u64 allowed;
e4837f8f 3759 int mixed = 0;
c9e9f97b 3760 int ret;
8dabb742 3761 u64 num_devices;
de98ced9 3762 unsigned seq;
c9e9f97b 3763
837d5b6e 3764 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3765 atomic_read(&fs_info->balance_pause_req) ||
3766 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3767 ret = -EINVAL;
3768 goto out;
3769 }
3770
e4837f8f
ID
3771 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3772 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3773 mixed = 1;
3774
f43ffb60
ID
3775 /*
3776 * In case of mixed groups both data and meta should be picked,
3777 * and identical options should be given for both of them.
3778 */
e4837f8f
ID
3779 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3780 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3781 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3782 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3783 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3784 btrfs_err(fs_info,
3785 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3786 ret = -EINVAL;
3787 goto out;
3788 }
3789 }
3790
8dabb742 3791 num_devices = fs_info->fs_devices->num_devices;
73beece9 3792 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3793 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3794 BUG_ON(num_devices < 1);
3795 num_devices--;
3796 }
73beece9 3797 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3798 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3799 if (num_devices > 1)
e4d8ec0f 3800 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3801 if (num_devices > 2)
3802 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3803 if (num_devices > 3)
3804 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3805 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3806 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3807 btrfs_err(fs_info,
3808 "unable to start balance with target data profile %llu",
3809 bctl->data.target);
e4d8ec0f
ID
3810 ret = -EINVAL;
3811 goto out;
3812 }
bdcd3c97 3813 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3814 btrfs_err(fs_info,
5d163e0e
JM
3815 "unable to start balance with target metadata profile %llu",
3816 bctl->meta.target);
e4d8ec0f
ID
3817 ret = -EINVAL;
3818 goto out;
3819 }
bdcd3c97 3820 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3821 btrfs_err(fs_info,
5d163e0e
JM
3822 "unable to start balance with target system profile %llu",
3823 bctl->sys.target);
e4d8ec0f
ID
3824 ret = -EINVAL;
3825 goto out;
3826 }
3827
e4d8ec0f
ID
3828 /* allow to reduce meta or sys integrity only if force set */
3829 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3830 BTRFS_BLOCK_GROUP_RAID10 |
3831 BTRFS_BLOCK_GROUP_RAID5 |
3832 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3833 do {
3834 seq = read_seqbegin(&fs_info->profiles_lock);
3835
3836 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3837 (fs_info->avail_system_alloc_bits & allowed) &&
3838 !(bctl->sys.target & allowed)) ||
3839 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3840 (fs_info->avail_metadata_alloc_bits & allowed) &&
3841 !(bctl->meta.target & allowed))) {
3842 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3843 btrfs_info(fs_info,
3844 "force reducing metadata integrity");
de98ced9 3845 } else {
5d163e0e
JM
3846 btrfs_err(fs_info,
3847 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3848 ret = -EINVAL;
3849 goto out;
3850 }
e4d8ec0f 3851 }
de98ced9 3852 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3853
ee592d07
ST
3854 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3855 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3856 btrfs_warn(fs_info,
5d163e0e
JM
3857 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3858 bctl->meta.target, bctl->data.target);
ee592d07
ST
3859 }
3860
5af3e8cc 3861 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3862 fs_info->num_tolerated_disk_barrier_failures = min(
3863 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3864 btrfs_get_num_tolerated_disk_barrier_failures(
3865 bctl->sys.target));
5af3e8cc
SB
3866 }
3867
6bccf3ab 3868 ret = insert_balance_item(fs_info, bctl);
59641015 3869 if (ret && ret != -EEXIST)
0940ebf6
ID
3870 goto out;
3871
59641015
ID
3872 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3873 BUG_ON(ret == -EEXIST);
3874 set_balance_control(bctl);
3875 } else {
3876 BUG_ON(ret != -EEXIST);
3877 spin_lock(&fs_info->balance_lock);
3878 update_balance_args(bctl);
3879 spin_unlock(&fs_info->balance_lock);
3880 }
c9e9f97b 3881
837d5b6e 3882 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3883 mutex_unlock(&fs_info->balance_mutex);
3884
3885 ret = __btrfs_balance(fs_info);
3886
3887 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3888 atomic_dec(&fs_info->balance_running);
c9e9f97b 3889
bf023ecf
ID
3890 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3891 fs_info->num_tolerated_disk_barrier_failures =
3892 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3893 }
3894
c9e9f97b
ID
3895 if (bargs) {
3896 memset(bargs, 0, sizeof(*bargs));
19a39dce 3897 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3898 }
3899
3a01aa7a
ID
3900 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3901 balance_need_close(fs_info)) {
3902 __cancel_balance(fs_info);
3903 }
3904
837d5b6e 3905 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3906
3907 return ret;
3908out:
59641015
ID
3909 if (bctl->flags & BTRFS_BALANCE_RESUME)
3910 __cancel_balance(fs_info);
ed0fb78f 3911 else {
59641015 3912 kfree(bctl);
ed0fb78f
ID
3913 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3914 }
59641015
ID
3915 return ret;
3916}
3917
3918static int balance_kthread(void *data)
3919{
2b6ba629 3920 struct btrfs_fs_info *fs_info = data;
9555c6c1 3921 int ret = 0;
59641015
ID
3922
3923 mutex_lock(&fs_info->volume_mutex);
3924 mutex_lock(&fs_info->balance_mutex);
3925
2b6ba629 3926 if (fs_info->balance_ctl) {
efe120a0 3927 btrfs_info(fs_info, "continuing balance");
2b6ba629 3928 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3929 }
59641015
ID
3930
3931 mutex_unlock(&fs_info->balance_mutex);
3932 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3933
59641015
ID
3934 return ret;
3935}
3936
2b6ba629
ID
3937int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3938{
3939 struct task_struct *tsk;
3940
3941 spin_lock(&fs_info->balance_lock);
3942 if (!fs_info->balance_ctl) {
3943 spin_unlock(&fs_info->balance_lock);
3944 return 0;
3945 }
3946 spin_unlock(&fs_info->balance_lock);
3947
3cdde224 3948 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3949 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3950 return 0;
3951 }
3952
3953 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3954 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3955}
3956
68310a5e 3957int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3958{
59641015
ID
3959 struct btrfs_balance_control *bctl;
3960 struct btrfs_balance_item *item;
3961 struct btrfs_disk_balance_args disk_bargs;
3962 struct btrfs_path *path;
3963 struct extent_buffer *leaf;
3964 struct btrfs_key key;
3965 int ret;
3966
3967 path = btrfs_alloc_path();
3968 if (!path)
3969 return -ENOMEM;
3970
59641015 3971 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3972 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3973 key.offset = 0;
3974
68310a5e 3975 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3976 if (ret < 0)
68310a5e 3977 goto out;
59641015
ID
3978 if (ret > 0) { /* ret = -ENOENT; */
3979 ret = 0;
68310a5e
ID
3980 goto out;
3981 }
3982
3983 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3984 if (!bctl) {
3985 ret = -ENOMEM;
3986 goto out;
59641015
ID
3987 }
3988
3989 leaf = path->nodes[0];
3990 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3991
68310a5e
ID
3992 bctl->fs_info = fs_info;
3993 bctl->flags = btrfs_balance_flags(leaf, item);
3994 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3995
3996 btrfs_balance_data(leaf, item, &disk_bargs);
3997 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3998 btrfs_balance_meta(leaf, item, &disk_bargs);
3999 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4000 btrfs_balance_sys(leaf, item, &disk_bargs);
4001 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4002
ed0fb78f
ID
4003 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4004
68310a5e
ID
4005 mutex_lock(&fs_info->volume_mutex);
4006 mutex_lock(&fs_info->balance_mutex);
59641015 4007
68310a5e
ID
4008 set_balance_control(bctl);
4009
4010 mutex_unlock(&fs_info->balance_mutex);
4011 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4012out:
4013 btrfs_free_path(path);
ec44a35c
CM
4014 return ret;
4015}
4016
837d5b6e
ID
4017int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4018{
4019 int ret = 0;
4020
4021 mutex_lock(&fs_info->balance_mutex);
4022 if (!fs_info->balance_ctl) {
4023 mutex_unlock(&fs_info->balance_mutex);
4024 return -ENOTCONN;
4025 }
4026
4027 if (atomic_read(&fs_info->balance_running)) {
4028 atomic_inc(&fs_info->balance_pause_req);
4029 mutex_unlock(&fs_info->balance_mutex);
4030
4031 wait_event(fs_info->balance_wait_q,
4032 atomic_read(&fs_info->balance_running) == 0);
4033
4034 mutex_lock(&fs_info->balance_mutex);
4035 /* we are good with balance_ctl ripped off from under us */
4036 BUG_ON(atomic_read(&fs_info->balance_running));
4037 atomic_dec(&fs_info->balance_pause_req);
4038 } else {
4039 ret = -ENOTCONN;
4040 }
4041
4042 mutex_unlock(&fs_info->balance_mutex);
4043 return ret;
4044}
4045
a7e99c69
ID
4046int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4047{
e649e587
ID
4048 if (fs_info->sb->s_flags & MS_RDONLY)
4049 return -EROFS;
4050
a7e99c69
ID
4051 mutex_lock(&fs_info->balance_mutex);
4052 if (!fs_info->balance_ctl) {
4053 mutex_unlock(&fs_info->balance_mutex);
4054 return -ENOTCONN;
4055 }
4056
4057 atomic_inc(&fs_info->balance_cancel_req);
4058 /*
4059 * if we are running just wait and return, balance item is
4060 * deleted in btrfs_balance in this case
4061 */
4062 if (atomic_read(&fs_info->balance_running)) {
4063 mutex_unlock(&fs_info->balance_mutex);
4064 wait_event(fs_info->balance_wait_q,
4065 atomic_read(&fs_info->balance_running) == 0);
4066 mutex_lock(&fs_info->balance_mutex);
4067 } else {
4068 /* __cancel_balance needs volume_mutex */
4069 mutex_unlock(&fs_info->balance_mutex);
4070 mutex_lock(&fs_info->volume_mutex);
4071 mutex_lock(&fs_info->balance_mutex);
4072
4073 if (fs_info->balance_ctl)
4074 __cancel_balance(fs_info);
4075
4076 mutex_unlock(&fs_info->volume_mutex);
4077 }
4078
4079 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4080 atomic_dec(&fs_info->balance_cancel_req);
4081 mutex_unlock(&fs_info->balance_mutex);
4082 return 0;
4083}
4084
803b2f54
SB
4085static int btrfs_uuid_scan_kthread(void *data)
4086{
4087 struct btrfs_fs_info *fs_info = data;
4088 struct btrfs_root *root = fs_info->tree_root;
4089 struct btrfs_key key;
4090 struct btrfs_key max_key;
4091 struct btrfs_path *path = NULL;
4092 int ret = 0;
4093 struct extent_buffer *eb;
4094 int slot;
4095 struct btrfs_root_item root_item;
4096 u32 item_size;
f45388f3 4097 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4098
4099 path = btrfs_alloc_path();
4100 if (!path) {
4101 ret = -ENOMEM;
4102 goto out;
4103 }
4104
4105 key.objectid = 0;
4106 key.type = BTRFS_ROOT_ITEM_KEY;
4107 key.offset = 0;
4108
4109 max_key.objectid = (u64)-1;
4110 max_key.type = BTRFS_ROOT_ITEM_KEY;
4111 max_key.offset = (u64)-1;
4112
803b2f54 4113 while (1) {
6174d3cb 4114 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4115 if (ret) {
4116 if (ret > 0)
4117 ret = 0;
4118 break;
4119 }
4120
4121 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4122 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4123 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4124 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4125 goto skip;
4126
4127 eb = path->nodes[0];
4128 slot = path->slots[0];
4129 item_size = btrfs_item_size_nr(eb, slot);
4130 if (item_size < sizeof(root_item))
4131 goto skip;
4132
803b2f54
SB
4133 read_extent_buffer(eb, &root_item,
4134 btrfs_item_ptr_offset(eb, slot),
4135 (int)sizeof(root_item));
4136 if (btrfs_root_refs(&root_item) == 0)
4137 goto skip;
f45388f3
FDBM
4138
4139 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4140 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4141 if (trans)
4142 goto update_tree;
4143
4144 btrfs_release_path(path);
803b2f54
SB
4145 /*
4146 * 1 - subvol uuid item
4147 * 1 - received_subvol uuid item
4148 */
4149 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4150 if (IS_ERR(trans)) {
4151 ret = PTR_ERR(trans);
4152 break;
4153 }
f45388f3
FDBM
4154 continue;
4155 } else {
4156 goto skip;
4157 }
4158update_tree:
4159 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4160 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4161 root_item.uuid,
4162 BTRFS_UUID_KEY_SUBVOL,
4163 key.objectid);
4164 if (ret < 0) {
efe120a0 4165 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4166 ret);
803b2f54
SB
4167 break;
4168 }
4169 }
4170
4171 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4172 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4173 root_item.received_uuid,
4174 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4175 key.objectid);
4176 if (ret < 0) {
efe120a0 4177 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4178 ret);
803b2f54
SB
4179 break;
4180 }
4181 }
4182
f45388f3 4183skip:
803b2f54 4184 if (trans) {
3a45bb20 4185 ret = btrfs_end_transaction(trans);
f45388f3 4186 trans = NULL;
803b2f54
SB
4187 if (ret)
4188 break;
4189 }
4190
803b2f54
SB
4191 btrfs_release_path(path);
4192 if (key.offset < (u64)-1) {
4193 key.offset++;
4194 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4195 key.offset = 0;
4196 key.type = BTRFS_ROOT_ITEM_KEY;
4197 } else if (key.objectid < (u64)-1) {
4198 key.offset = 0;
4199 key.type = BTRFS_ROOT_ITEM_KEY;
4200 key.objectid++;
4201 } else {
4202 break;
4203 }
4204 cond_resched();
4205 }
4206
4207out:
4208 btrfs_free_path(path);
f45388f3 4209 if (trans && !IS_ERR(trans))
3a45bb20 4210 btrfs_end_transaction(trans);
803b2f54 4211 if (ret)
efe120a0 4212 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4213 else
afcdd129 4214 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4215 up(&fs_info->uuid_tree_rescan_sem);
4216 return 0;
4217}
4218
70f80175
SB
4219/*
4220 * Callback for btrfs_uuid_tree_iterate().
4221 * returns:
4222 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4223 * < 0 if an error occurred.
70f80175
SB
4224 * > 0 if the check failed, which means the caller shall remove the entry.
4225 */
4226static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4227 u8 *uuid, u8 type, u64 subid)
4228{
4229 struct btrfs_key key;
4230 int ret = 0;
4231 struct btrfs_root *subvol_root;
4232
4233 if (type != BTRFS_UUID_KEY_SUBVOL &&
4234 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4235 goto out;
4236
4237 key.objectid = subid;
4238 key.type = BTRFS_ROOT_ITEM_KEY;
4239 key.offset = (u64)-1;
4240 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4241 if (IS_ERR(subvol_root)) {
4242 ret = PTR_ERR(subvol_root);
4243 if (ret == -ENOENT)
4244 ret = 1;
4245 goto out;
4246 }
4247
4248 switch (type) {
4249 case BTRFS_UUID_KEY_SUBVOL:
4250 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4251 ret = 1;
4252 break;
4253 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4254 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4255 BTRFS_UUID_SIZE))
4256 ret = 1;
4257 break;
4258 }
4259
4260out:
4261 return ret;
4262}
4263
4264static int btrfs_uuid_rescan_kthread(void *data)
4265{
4266 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4267 int ret;
4268
4269 /*
4270 * 1st step is to iterate through the existing UUID tree and
4271 * to delete all entries that contain outdated data.
4272 * 2nd step is to add all missing entries to the UUID tree.
4273 */
4274 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4275 if (ret < 0) {
efe120a0 4276 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4277 up(&fs_info->uuid_tree_rescan_sem);
4278 return ret;
4279 }
4280 return btrfs_uuid_scan_kthread(data);
4281}
4282
f7a81ea4
SB
4283int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4284{
4285 struct btrfs_trans_handle *trans;
4286 struct btrfs_root *tree_root = fs_info->tree_root;
4287 struct btrfs_root *uuid_root;
803b2f54
SB
4288 struct task_struct *task;
4289 int ret;
f7a81ea4
SB
4290
4291 /*
4292 * 1 - root node
4293 * 1 - root item
4294 */
4295 trans = btrfs_start_transaction(tree_root, 2);
4296 if (IS_ERR(trans))
4297 return PTR_ERR(trans);
4298
4299 uuid_root = btrfs_create_tree(trans, fs_info,
4300 BTRFS_UUID_TREE_OBJECTID);
4301 if (IS_ERR(uuid_root)) {
6d13f549 4302 ret = PTR_ERR(uuid_root);
66642832 4303 btrfs_abort_transaction(trans, ret);
3a45bb20 4304 btrfs_end_transaction(trans);
6d13f549 4305 return ret;
f7a81ea4
SB
4306 }
4307
4308 fs_info->uuid_root = uuid_root;
4309
3a45bb20 4310 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4311 if (ret)
4312 return ret;
4313
4314 down(&fs_info->uuid_tree_rescan_sem);
4315 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4316 if (IS_ERR(task)) {
70f80175 4317 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4318 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4319 up(&fs_info->uuid_tree_rescan_sem);
4320 return PTR_ERR(task);
4321 }
4322
4323 return 0;
f7a81ea4 4324}
803b2f54 4325
70f80175
SB
4326int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4327{
4328 struct task_struct *task;
4329
4330 down(&fs_info->uuid_tree_rescan_sem);
4331 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4332 if (IS_ERR(task)) {
4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4334 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4335 up(&fs_info->uuid_tree_rescan_sem);
4336 return PTR_ERR(task);
4337 }
4338
4339 return 0;
4340}
4341
8f18cf13
CM
4342/*
4343 * shrinking a device means finding all of the device extents past
4344 * the new size, and then following the back refs to the chunks.
4345 * The chunk relocation code actually frees the device extent
4346 */
4347int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4348{
0b246afa
JM
4349 struct btrfs_fs_info *fs_info = device->fs_info;
4350 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4351 struct btrfs_trans_handle *trans;
8f18cf13
CM
4352 struct btrfs_dev_extent *dev_extent = NULL;
4353 struct btrfs_path *path;
4354 u64 length;
8f18cf13
CM
4355 u64 chunk_offset;
4356 int ret;
4357 int slot;
ba1bf481
JB
4358 int failed = 0;
4359 bool retried = false;
53e489bc 4360 bool checked_pending_chunks = false;
8f18cf13
CM
4361 struct extent_buffer *l;
4362 struct btrfs_key key;
0b246afa 4363 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4364 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4365 u64 old_size = btrfs_device_get_total_bytes(device);
4366 u64 diff = old_size - new_size;
8f18cf13 4367
63a212ab
SB
4368 if (device->is_tgtdev_for_dev_replace)
4369 return -EINVAL;
4370
8f18cf13
CM
4371 path = btrfs_alloc_path();
4372 if (!path)
4373 return -ENOMEM;
4374
e4058b54 4375 path->reada = READA_FORWARD;
8f18cf13 4376
34441361 4377 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4378
7cc8e58d 4379 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4380 if (device->writeable) {
2b82032c 4381 device->fs_devices->total_rw_bytes -= diff;
0b246afa
JM
4382 spin_lock(&fs_info->free_chunk_lock);
4383 fs_info->free_chunk_space -= diff;
4384 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 4385 }
34441361 4386 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4387
ba1bf481 4388again:
8f18cf13
CM
4389 key.objectid = device->devid;
4390 key.offset = (u64)-1;
4391 key.type = BTRFS_DEV_EXTENT_KEY;
4392
213e64da 4393 do {
0b246afa 4394 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4396 if (ret < 0) {
0b246afa 4397 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4398 goto done;
67c5e7d4 4399 }
8f18cf13
CM
4400
4401 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4402 if (ret)
0b246afa 4403 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4404 if (ret < 0)
4405 goto done;
4406 if (ret) {
4407 ret = 0;
b3b4aa74 4408 btrfs_release_path(path);
bf1fb512 4409 break;
8f18cf13
CM
4410 }
4411
4412 l = path->nodes[0];
4413 slot = path->slots[0];
4414 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4415
ba1bf481 4416 if (key.objectid != device->devid) {
0b246afa 4417 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4418 btrfs_release_path(path);
bf1fb512 4419 break;
ba1bf481 4420 }
8f18cf13
CM
4421
4422 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4423 length = btrfs_dev_extent_length(l, dev_extent);
4424
ba1bf481 4425 if (key.offset + length <= new_size) {
0b246afa 4426 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4427 btrfs_release_path(path);
d6397bae 4428 break;
ba1bf481 4429 }
8f18cf13 4430
8f18cf13 4431 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4432 btrfs_release_path(path);
8f18cf13 4433
0b246afa
JM
4434 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4435 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4436 if (ret && ret != -ENOSPC)
8f18cf13 4437 goto done;
ba1bf481
JB
4438 if (ret == -ENOSPC)
4439 failed++;
213e64da 4440 } while (key.offset-- > 0);
ba1bf481
JB
4441
4442 if (failed && !retried) {
4443 failed = 0;
4444 retried = true;
4445 goto again;
4446 } else if (failed && retried) {
4447 ret = -ENOSPC;
ba1bf481 4448 goto done;
8f18cf13
CM
4449 }
4450
d6397bae 4451 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4452 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4453 if (IS_ERR(trans)) {
4454 ret = PTR_ERR(trans);
4455 goto done;
4456 }
4457
34441361 4458 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4459
4460 /*
4461 * We checked in the above loop all device extents that were already in
4462 * the device tree. However before we have updated the device's
4463 * total_bytes to the new size, we might have had chunk allocations that
4464 * have not complete yet (new block groups attached to transaction
4465 * handles), and therefore their device extents were not yet in the
4466 * device tree and we missed them in the loop above. So if we have any
4467 * pending chunk using a device extent that overlaps the device range
4468 * that we can not use anymore, commit the current transaction and
4469 * repeat the search on the device tree - this way we guarantee we will
4470 * not have chunks using device extents that end beyond 'new_size'.
4471 */
4472 if (!checked_pending_chunks) {
4473 u64 start = new_size;
4474 u64 len = old_size - new_size;
4475
499f377f
JM
4476 if (contains_pending_extent(trans->transaction, device,
4477 &start, len)) {
34441361 4478 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4479 checked_pending_chunks = true;
4480 failed = 0;
4481 retried = false;
3a45bb20 4482 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4483 if (ret)
4484 goto done;
4485 goto again;
4486 }
4487 }
4488
7cc8e58d 4489 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4490 if (list_empty(&device->resized_list))
4491 list_add_tail(&device->resized_list,
0b246afa 4492 &fs_info->fs_devices->resized_devices);
d6397bae 4493
d6397bae
CB
4494 WARN_ON(diff > old_total);
4495 btrfs_set_super_total_bytes(super_copy, old_total - diff);
34441361 4496 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4497
4498 /* Now btrfs_update_device() will change the on-disk size. */
4499 ret = btrfs_update_device(trans, device);
3a45bb20 4500 btrfs_end_transaction(trans);
8f18cf13
CM
4501done:
4502 btrfs_free_path(path);
53e489bc 4503 if (ret) {
34441361 4504 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4505 btrfs_device_set_total_bytes(device, old_size);
4506 if (device->writeable)
4507 device->fs_devices->total_rw_bytes += diff;
0b246afa
JM
4508 spin_lock(&fs_info->free_chunk_lock);
4509 fs_info->free_chunk_space += diff;
4510 spin_unlock(&fs_info->free_chunk_lock);
34441361 4511 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4512 }
8f18cf13
CM
4513 return ret;
4514}
4515
2ff7e61e 4516static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4517 struct btrfs_key *key,
4518 struct btrfs_chunk *chunk, int item_size)
4519{
0b246afa 4520 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4521 struct btrfs_disk_key disk_key;
4522 u32 array_size;
4523 u8 *ptr;
4524
34441361 4525 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4526 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4527 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4528 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4529 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4530 return -EFBIG;
fe48a5c0 4531 }
0b86a832
CM
4532
4533 ptr = super_copy->sys_chunk_array + array_size;
4534 btrfs_cpu_key_to_disk(&disk_key, key);
4535 memcpy(ptr, &disk_key, sizeof(disk_key));
4536 ptr += sizeof(disk_key);
4537 memcpy(ptr, chunk, item_size);
4538 item_size += sizeof(disk_key);
4539 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4540 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4541
0b86a832
CM
4542 return 0;
4543}
4544
73c5de00
AJ
4545/*
4546 * sort the devices in descending order by max_avail, total_avail
4547 */
4548static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4549{
73c5de00
AJ
4550 const struct btrfs_device_info *di_a = a;
4551 const struct btrfs_device_info *di_b = b;
9b3f68b9 4552
73c5de00 4553 if (di_a->max_avail > di_b->max_avail)
b2117a39 4554 return -1;
73c5de00 4555 if (di_a->max_avail < di_b->max_avail)
b2117a39 4556 return 1;
73c5de00
AJ
4557 if (di_a->total_avail > di_b->total_avail)
4558 return -1;
4559 if (di_a->total_avail < di_b->total_avail)
4560 return 1;
4561 return 0;
b2117a39 4562}
0b86a832 4563
53b381b3
DW
4564static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4565{
4566 /* TODO allow them to set a preferred stripe size */
ee22184b 4567 return SZ_64K;
53b381b3
DW
4568}
4569
4570static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4571{
ffe2d203 4572 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4573 return;
4574
ceda0864 4575 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4576}
4577
da17066c 4578#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4579 - sizeof(struct btrfs_chunk)) \
4580 / sizeof(struct btrfs_stripe) + 1)
4581
4582#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4583 - 2 * sizeof(struct btrfs_disk_key) \
4584 - 2 * sizeof(struct btrfs_chunk)) \
4585 / sizeof(struct btrfs_stripe) + 1)
4586
73c5de00 4587static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4588 u64 start, u64 type)
b2117a39 4589{
2ff7e61e 4590 struct btrfs_fs_info *info = trans->fs_info;
73c5de00
AJ
4591 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4592 struct list_head *cur;
4593 struct map_lookup *map = NULL;
4594 struct extent_map_tree *em_tree;
4595 struct extent_map *em;
4596 struct btrfs_device_info *devices_info = NULL;
4597 u64 total_avail;
4598 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4599 int data_stripes; /* number of stripes that count for
4600 block group size */
73c5de00
AJ
4601 int sub_stripes; /* sub_stripes info for map */
4602 int dev_stripes; /* stripes per dev */
4603 int devs_max; /* max devs to use */
4604 int devs_min; /* min devs needed */
4605 int devs_increment; /* ndevs has to be a multiple of this */
4606 int ncopies; /* how many copies to data has */
4607 int ret;
4608 u64 max_stripe_size;
4609 u64 max_chunk_size;
4610 u64 stripe_size;
4611 u64 num_bytes;
53b381b3 4612 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4613 int ndevs;
4614 int i;
4615 int j;
31e50229 4616 int index;
593060d7 4617
0c460c0d 4618 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4619
73c5de00
AJ
4620 if (list_empty(&fs_devices->alloc_list))
4621 return -ENOSPC;
b2117a39 4622
31e50229 4623 index = __get_raid_index(type);
73c5de00 4624
31e50229
LB
4625 sub_stripes = btrfs_raid_array[index].sub_stripes;
4626 dev_stripes = btrfs_raid_array[index].dev_stripes;
4627 devs_max = btrfs_raid_array[index].devs_max;
4628 devs_min = btrfs_raid_array[index].devs_min;
4629 devs_increment = btrfs_raid_array[index].devs_increment;
4630 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4631
9b3f68b9 4632 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4633 max_stripe_size = SZ_1G;
73c5de00 4634 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4635 if (!devs_max)
4636 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4637 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4638 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4639 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4640 max_stripe_size = SZ_1G;
1100373f 4641 else
ee22184b 4642 max_stripe_size = SZ_256M;
73c5de00 4643 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4644 if (!devs_max)
4645 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4646 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4647 max_stripe_size = SZ_32M;
73c5de00 4648 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4649 if (!devs_max)
4650 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4651 } else {
351fd353 4652 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4653 type);
4654 BUG_ON(1);
9b3f68b9
CM
4655 }
4656
2b82032c
YZ
4657 /* we don't want a chunk larger than 10% of writeable space */
4658 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4659 max_chunk_size);
9b3f68b9 4660
31e818fe 4661 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4662 GFP_NOFS);
4663 if (!devices_info)
4664 return -ENOMEM;
0cad8a11 4665
73c5de00 4666 cur = fs_devices->alloc_list.next;
9b3f68b9 4667
9f680ce0 4668 /*
73c5de00
AJ
4669 * in the first pass through the devices list, we gather information
4670 * about the available holes on each device.
9f680ce0 4671 */
73c5de00
AJ
4672 ndevs = 0;
4673 while (cur != &fs_devices->alloc_list) {
4674 struct btrfs_device *device;
4675 u64 max_avail;
4676 u64 dev_offset;
b2117a39 4677
73c5de00 4678 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4679
73c5de00 4680 cur = cur->next;
b2117a39 4681
73c5de00 4682 if (!device->writeable) {
31b1a2bd 4683 WARN(1, KERN_ERR
efe120a0 4684 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4685 continue;
4686 }
b2117a39 4687
63a212ab
SB
4688 if (!device->in_fs_metadata ||
4689 device->is_tgtdev_for_dev_replace)
73c5de00 4690 continue;
b2117a39 4691
73c5de00
AJ
4692 if (device->total_bytes > device->bytes_used)
4693 total_avail = device->total_bytes - device->bytes_used;
4694 else
4695 total_avail = 0;
38c01b96 4696
4697 /* If there is no space on this device, skip it. */
4698 if (total_avail == 0)
4699 continue;
b2117a39 4700
6df9a95e 4701 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4702 max_stripe_size * dev_stripes,
4703 &dev_offset, &max_avail);
4704 if (ret && ret != -ENOSPC)
4705 goto error;
b2117a39 4706
73c5de00
AJ
4707 if (ret == 0)
4708 max_avail = max_stripe_size * dev_stripes;
b2117a39 4709
73c5de00
AJ
4710 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4711 continue;
b2117a39 4712
063d006f
ES
4713 if (ndevs == fs_devices->rw_devices) {
4714 WARN(1, "%s: found more than %llu devices\n",
4715 __func__, fs_devices->rw_devices);
4716 break;
4717 }
73c5de00
AJ
4718 devices_info[ndevs].dev_offset = dev_offset;
4719 devices_info[ndevs].max_avail = max_avail;
4720 devices_info[ndevs].total_avail = total_avail;
4721 devices_info[ndevs].dev = device;
4722 ++ndevs;
4723 }
b2117a39 4724
73c5de00
AJ
4725 /*
4726 * now sort the devices by hole size / available space
4727 */
4728 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4729 btrfs_cmp_device_info, NULL);
b2117a39 4730
73c5de00
AJ
4731 /* round down to number of usable stripes */
4732 ndevs -= ndevs % devs_increment;
b2117a39 4733
73c5de00
AJ
4734 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4735 ret = -ENOSPC;
4736 goto error;
b2117a39 4737 }
9f680ce0 4738
73c5de00
AJ
4739 if (devs_max && ndevs > devs_max)
4740 ndevs = devs_max;
4741 /*
4742 * the primary goal is to maximize the number of stripes, so use as many
4743 * devices as possible, even if the stripes are not maximum sized.
4744 */
4745 stripe_size = devices_info[ndevs-1].max_avail;
4746 num_stripes = ndevs * dev_stripes;
b2117a39 4747
53b381b3
DW
4748 /*
4749 * this will have to be fixed for RAID1 and RAID10 over
4750 * more drives
4751 */
4752 data_stripes = num_stripes / ncopies;
4753
53b381b3
DW
4754 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4755 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
da17066c 4756 info->stripesize);
53b381b3
DW
4757 data_stripes = num_stripes - 1;
4758 }
4759 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4760 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
da17066c 4761 info->stripesize);
53b381b3
DW
4762 data_stripes = num_stripes - 2;
4763 }
86db2578
CM
4764
4765 /*
4766 * Use the number of data stripes to figure out how big this chunk
4767 * is really going to be in terms of logical address space,
4768 * and compare that answer with the max chunk size
4769 */
4770 if (stripe_size * data_stripes > max_chunk_size) {
4771 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4772
4773 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4774
4775 /* bump the answer up to a 16MB boundary */
4776 stripe_size = (stripe_size + mask) & ~mask;
4777
4778 /* but don't go higher than the limits we found
4779 * while searching for free extents
4780 */
4781 if (stripe_size > devices_info[ndevs-1].max_avail)
4782 stripe_size = devices_info[ndevs-1].max_avail;
4783 }
4784
b8b93add 4785 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4786
4787 /* align to BTRFS_STRIPE_LEN */
b8b93add 4788 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4789 stripe_size *= raid_stripe_len;
b2117a39
MX
4790
4791 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4792 if (!map) {
4793 ret = -ENOMEM;
4794 goto error;
4795 }
4796 map->num_stripes = num_stripes;
9b3f68b9 4797
73c5de00
AJ
4798 for (i = 0; i < ndevs; ++i) {
4799 for (j = 0; j < dev_stripes; ++j) {
4800 int s = i * dev_stripes + j;
4801 map->stripes[s].dev = devices_info[i].dev;
4802 map->stripes[s].physical = devices_info[i].dev_offset +
4803 j * stripe_size;
6324fbf3 4804 }
6324fbf3 4805 }
da17066c 4806 map->sector_size = info->sectorsize;
53b381b3
DW
4807 map->stripe_len = raid_stripe_len;
4808 map->io_align = raid_stripe_len;
4809 map->io_width = raid_stripe_len;
2b82032c 4810 map->type = type;
2b82032c 4811 map->sub_stripes = sub_stripes;
0b86a832 4812
53b381b3 4813 num_bytes = stripe_size * data_stripes;
0b86a832 4814
6bccf3ab 4815 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4816
172ddd60 4817 em = alloc_extent_map();
2b82032c 4818 if (!em) {
298a8f9c 4819 kfree(map);
b2117a39
MX
4820 ret = -ENOMEM;
4821 goto error;
593060d7 4822 }
298a8f9c 4823 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4824 em->map_lookup = map;
2b82032c 4825 em->start = start;
73c5de00 4826 em->len = num_bytes;
2b82032c
YZ
4827 em->block_start = 0;
4828 em->block_len = em->len;
6df9a95e 4829 em->orig_block_len = stripe_size;
593060d7 4830
0b246afa 4831 em_tree = &info->mapping_tree.map_tree;
890871be 4832 write_lock(&em_tree->lock);
09a2a8f9 4833 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4834 if (!ret) {
4835 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4836 atomic_inc(&em->refs);
4837 }
890871be 4838 write_unlock(&em_tree->lock);
0f5d42b2
JB
4839 if (ret) {
4840 free_extent_map(em);
1dd4602f 4841 goto error;
0f5d42b2 4842 }
0b86a832 4843
2ff7e61e 4844 ret = btrfs_make_block_group(trans, info, 0, type,
04487488
JB
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846 start, num_bytes);
6df9a95e
JB
4847 if (ret)
4848 goto error_del_extent;
2b82032c 4849
7cc8e58d
MX
4850 for (i = 0; i < map->num_stripes; i++) {
4851 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4852 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4853 }
43530c46 4854
0b246afa
JM
4855 spin_lock(&info->free_chunk_lock);
4856 info->free_chunk_space -= (stripe_size * map->num_stripes);
4857 spin_unlock(&info->free_chunk_lock);
1c116187 4858
0f5d42b2 4859 free_extent_map(em);
0b246afa 4860 check_raid56_incompat_flag(info, type);
53b381b3 4861
b2117a39 4862 kfree(devices_info);
2b82032c 4863 return 0;
b2117a39 4864
6df9a95e 4865error_del_extent:
0f5d42b2
JB
4866 write_lock(&em_tree->lock);
4867 remove_extent_mapping(em_tree, em);
4868 write_unlock(&em_tree->lock);
4869
4870 /* One for our allocation */
4871 free_extent_map(em);
4872 /* One for the tree reference */
4873 free_extent_map(em);
495e64f4
FM
4874 /* One for the pending_chunks list reference */
4875 free_extent_map(em);
b2117a39 4876error:
b2117a39
MX
4877 kfree(devices_info);
4878 return ret;
2b82032c
YZ
4879}
4880
6df9a95e 4881int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4882 struct btrfs_fs_info *fs_info,
6df9a95e 4883 u64 chunk_offset, u64 chunk_size)
2b82032c 4884{
6bccf3ab
JM
4885 struct btrfs_root *extent_root = fs_info->extent_root;
4886 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4887 struct btrfs_key key;
2b82032c
YZ
4888 struct btrfs_device *device;
4889 struct btrfs_chunk *chunk;
4890 struct btrfs_stripe *stripe;
6df9a95e
JB
4891 struct extent_map_tree *em_tree;
4892 struct extent_map *em;
4893 struct map_lookup *map;
4894 size_t item_size;
4895 u64 dev_offset;
4896 u64 stripe_size;
4897 int i = 0;
140e639f 4898 int ret = 0;
2b82032c 4899
0b246afa 4900 em_tree = &fs_info->mapping_tree.map_tree;
6df9a95e
JB
4901 read_lock(&em_tree->lock);
4902 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4903 read_unlock(&em_tree->lock);
4904
4905 if (!em) {
0b246afa 4906 btrfs_crit(fs_info, "unable to find logical %Lu len %Lu",
5d163e0e 4907 chunk_offset, chunk_size);
6df9a95e
JB
4908 return -EINVAL;
4909 }
4910
4911 if (em->start != chunk_offset || em->len != chunk_size) {
0b246afa 4912 btrfs_crit(fs_info,
5d163e0e
JM
4913 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4914 chunk_offset, chunk_size, em->start, em->len);
6df9a95e
JB
4915 free_extent_map(em);
4916 return -EINVAL;
4917 }
4918
95617d69 4919 map = em->map_lookup;
6df9a95e
JB
4920 item_size = btrfs_chunk_item_size(map->num_stripes);
4921 stripe_size = em->orig_block_len;
4922
2b82032c 4923 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4924 if (!chunk) {
4925 ret = -ENOMEM;
4926 goto out;
4927 }
4928
50460e37
FM
4929 /*
4930 * Take the device list mutex to prevent races with the final phase of
4931 * a device replace operation that replaces the device object associated
4932 * with the map's stripes, because the device object's id can change
4933 * at any time during that final phase of the device replace operation
4934 * (dev-replace.c:btrfs_dev_replace_finishing()).
4935 */
0b246afa 4936 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4937 for (i = 0; i < map->num_stripes; i++) {
4938 device = map->stripes[i].dev;
4939 dev_offset = map->stripes[i].physical;
2b82032c 4940
0b86a832 4941 ret = btrfs_update_device(trans, device);
3acd3953 4942 if (ret)
50460e37 4943 break;
6df9a95e
JB
4944 ret = btrfs_alloc_dev_extent(trans, device,
4945 chunk_root->root_key.objectid,
4946 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4947 chunk_offset, dev_offset,
4948 stripe_size);
4949 if (ret)
50460e37
FM
4950 break;
4951 }
4952 if (ret) {
0b246afa 4953 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4954 goto out;
2b82032c
YZ
4955 }
4956
2b82032c 4957 stripe = &chunk->stripe;
6df9a95e
JB
4958 for (i = 0; i < map->num_stripes; i++) {
4959 device = map->stripes[i].dev;
4960 dev_offset = map->stripes[i].physical;
0b86a832 4961
e17cade2
CM
4962 btrfs_set_stack_stripe_devid(stripe, device->devid);
4963 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4964 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4965 stripe++;
0b86a832 4966 }
0b246afa 4967 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4968
2b82032c 4969 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4970 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4971 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4972 btrfs_set_stack_chunk_type(chunk, map->type);
4973 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4974 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4975 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4976 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4977 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4978
2b82032c
YZ
4979 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4980 key.type = BTRFS_CHUNK_ITEM_KEY;
4981 key.offset = chunk_offset;
0b86a832 4982
2b82032c 4983 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4984 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4985 /*
4986 * TODO: Cleanup of inserted chunk root in case of
4987 * failure.
4988 */
2ff7e61e 4989 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 4990 }
1abe9b8a 4991
6df9a95e 4992out:
0b86a832 4993 kfree(chunk);
6df9a95e 4994 free_extent_map(em);
4ed1d16e 4995 return ret;
2b82032c 4996}
0b86a832 4997
2b82032c
YZ
4998/*
4999 * Chunk allocation falls into two parts. The first part does works
5000 * that make the new allocated chunk useable, but not do any operation
5001 * that modifies the chunk tree. The second part does the works that
5002 * require modifying the chunk tree. This division is important for the
5003 * bootstrap process of adding storage to a seed btrfs.
5004 */
5005int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 5006 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
5007{
5008 u64 chunk_offset;
2b82032c 5009
0b246afa
JM
5010 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5011 chunk_offset = find_next_chunk(fs_info);
72b468c8 5012 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5013}
5014
d397712b 5015static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 5016 struct btrfs_fs_info *fs_info)
2b82032c 5017{
2ff7e61e 5018 struct btrfs_root *extent_root = fs_info->extent_root;
2b82032c
YZ
5019 u64 chunk_offset;
5020 u64 sys_chunk_offset;
2b82032c 5021 u64 alloc_profile;
2b82032c
YZ
5022 int ret;
5023
6df9a95e 5024 chunk_offset = find_next_chunk(fs_info);
de98ced9 5025 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
72b468c8 5026 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5027 if (ret)
5028 return ret;
2b82032c 5029
0b246afa 5030 sys_chunk_offset = find_next_chunk(fs_info);
de98ced9 5031 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
72b468c8 5032 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5033 return ret;
2b82032c
YZ
5034}
5035
d20983b4
MX
5036static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5037{
5038 int max_errors;
5039
5040 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5041 BTRFS_BLOCK_GROUP_RAID10 |
5042 BTRFS_BLOCK_GROUP_RAID5 |
5043 BTRFS_BLOCK_GROUP_DUP)) {
5044 max_errors = 1;
5045 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5046 max_errors = 2;
5047 } else {
5048 max_errors = 0;
005d6427 5049 }
2b82032c 5050
d20983b4 5051 return max_errors;
2b82032c
YZ
5052}
5053
2ff7e61e 5054int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5055{
5056 struct extent_map *em;
5057 struct map_lookup *map;
0b246afa 5058 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2b82032c 5059 int readonly = 0;
d20983b4 5060 int miss_ndevs = 0;
2b82032c
YZ
5061 int i;
5062
890871be 5063 read_lock(&map_tree->map_tree.lock);
2b82032c 5064 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 5065 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
5066 if (!em)
5067 return 1;
5068
95617d69 5069 map = em->map_lookup;
2b82032c 5070 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5071 if (map->stripes[i].dev->missing) {
5072 miss_ndevs++;
5073 continue;
5074 }
5075
2b82032c
YZ
5076 if (!map->stripes[i].dev->writeable) {
5077 readonly = 1;
d20983b4 5078 goto end;
2b82032c
YZ
5079 }
5080 }
d20983b4
MX
5081
5082 /*
5083 * If the number of missing devices is larger than max errors,
5084 * we can not write the data into that chunk successfully, so
5085 * set it readonly.
5086 */
5087 if (miss_ndevs > btrfs_chunk_max_errors(map))
5088 readonly = 1;
5089end:
0b86a832 5090 free_extent_map(em);
2b82032c 5091 return readonly;
0b86a832
CM
5092}
5093
5094void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5095{
a8067e02 5096 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5097}
5098
5099void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5100{
5101 struct extent_map *em;
5102
d397712b 5103 while (1) {
890871be 5104 write_lock(&tree->map_tree.lock);
0b86a832
CM
5105 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5106 if (em)
5107 remove_extent_mapping(&tree->map_tree, em);
890871be 5108 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5109 if (!em)
5110 break;
0b86a832
CM
5111 /* once for us */
5112 free_extent_map(em);
5113 /* once for the tree */
5114 free_extent_map(em);
5115 }
5116}
5117
5d964051 5118int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5119{
5d964051 5120 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5121 struct extent_map *em;
5122 struct map_lookup *map;
5123 struct extent_map_tree *em_tree = &map_tree->map_tree;
5124 int ret;
5125
890871be 5126 read_lock(&em_tree->lock);
f188591e 5127 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5128 read_unlock(&em_tree->lock);
f188591e 5129
fb7669b5
JB
5130 /*
5131 * We could return errors for these cases, but that could get ugly and
5132 * we'd probably do the same thing which is just not do anything else
5133 * and exit, so return 1 so the callers don't try to use other copies.
5134 */
5135 if (!em) {
351fd353 5136 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5137 logical+len);
5138 return 1;
5139 }
5140
5141 if (em->start > logical || em->start + em->len < logical) {
5d163e0e
JM
5142 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5143 logical, logical+len, em->start,
5144 em->start + em->len);
7d3d1744 5145 free_extent_map(em);
fb7669b5
JB
5146 return 1;
5147 }
5148
95617d69 5149 map = em->map_lookup;
f188591e
CM
5150 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5151 ret = map->num_stripes;
321aecc6
CM
5152 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5153 ret = map->sub_stripes;
53b381b3
DW
5154 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5155 ret = 2;
5156 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5157 ret = 3;
f188591e
CM
5158 else
5159 ret = 1;
5160 free_extent_map(em);
ad6d620e 5161
73beece9 5162 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5163 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5164 ret++;
73beece9 5165 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5166
f188591e
CM
5167 return ret;
5168}
5169
2ff7e61e 5170unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5171 struct btrfs_mapping_tree *map_tree,
5172 u64 logical)
5173{
5174 struct extent_map *em;
5175 struct map_lookup *map;
5176 struct extent_map_tree *em_tree = &map_tree->map_tree;
0b246afa 5177 unsigned long len = fs_info->sectorsize;
53b381b3
DW
5178
5179 read_lock(&em_tree->lock);
5180 em = lookup_extent_mapping(em_tree, logical, len);
5181 read_unlock(&em_tree->lock);
5182 BUG_ON(!em);
5183
5184 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5185 map = em->map_lookup;
ffe2d203 5186 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5187 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5188 free_extent_map(em);
5189 return len;
5190}
5191
5192int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5193 u64 logical, u64 len, int mirror_num)
5194{
5195 struct extent_map *em;
5196 struct map_lookup *map;
5197 struct extent_map_tree *em_tree = &map_tree->map_tree;
5198 int ret = 0;
5199
5200 read_lock(&em_tree->lock);
5201 em = lookup_extent_mapping(em_tree, logical, len);
5202 read_unlock(&em_tree->lock);
5203 BUG_ON(!em);
5204
5205 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5206 map = em->map_lookup;
ffe2d203 5207 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5208 ret = 1;
5209 free_extent_map(em);
5210 return ret;
5211}
5212
30d9861f
SB
5213static int find_live_mirror(struct btrfs_fs_info *fs_info,
5214 struct map_lookup *map, int first, int num,
5215 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5216{
5217 int i;
30d9861f
SB
5218 int tolerance;
5219 struct btrfs_device *srcdev;
5220
5221 if (dev_replace_is_ongoing &&
5222 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5223 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5224 srcdev = fs_info->dev_replace.srcdev;
5225 else
5226 srcdev = NULL;
5227
5228 /*
5229 * try to avoid the drive that is the source drive for a
5230 * dev-replace procedure, only choose it if no other non-missing
5231 * mirror is available
5232 */
5233 for (tolerance = 0; tolerance < 2; tolerance++) {
5234 if (map->stripes[optimal].dev->bdev &&
5235 (tolerance || map->stripes[optimal].dev != srcdev))
5236 return optimal;
5237 for (i = first; i < first + num; i++) {
5238 if (map->stripes[i].dev->bdev &&
5239 (tolerance || map->stripes[i].dev != srcdev))
5240 return i;
5241 }
dfe25020 5242 }
30d9861f 5243
dfe25020
CM
5244 /* we couldn't find one that doesn't fail. Just return something
5245 * and the io error handling code will clean up eventually
5246 */
5247 return optimal;
5248}
5249
53b381b3
DW
5250static inline int parity_smaller(u64 a, u64 b)
5251{
5252 return a > b;
5253}
5254
5255/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5256static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5257{
5258 struct btrfs_bio_stripe s;
5259 int i;
5260 u64 l;
5261 int again = 1;
5262
5263 while (again) {
5264 again = 0;
cc7539ed 5265 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5266 if (parity_smaller(bbio->raid_map[i],
5267 bbio->raid_map[i+1])) {
53b381b3 5268 s = bbio->stripes[i];
8e5cfb55 5269 l = bbio->raid_map[i];
53b381b3 5270 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5271 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5272 bbio->stripes[i+1] = s;
8e5cfb55 5273 bbio->raid_map[i+1] = l;
2c8cdd6e 5274
53b381b3
DW
5275 again = 1;
5276 }
5277 }
5278 }
5279}
5280
6e9606d2
ZL
5281static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5282{
5283 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5284 /* the size of the btrfs_bio */
6e9606d2 5285 sizeof(struct btrfs_bio) +
e57cf21e 5286 /* plus the variable array for the stripes */
6e9606d2 5287 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5288 /* plus the variable array for the tgt dev */
6e9606d2 5289 sizeof(int) * (real_stripes) +
e57cf21e
CM
5290 /*
5291 * plus the raid_map, which includes both the tgt dev
5292 * and the stripes
5293 */
5294 sizeof(u64) * (total_stripes),
277fb5fc 5295 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5296
5297 atomic_set(&bbio->error, 0);
5298 atomic_set(&bbio->refs, 1);
5299
5300 return bbio;
5301}
5302
5303void btrfs_get_bbio(struct btrfs_bio *bbio)
5304{
5305 WARN_ON(!atomic_read(&bbio->refs));
5306 atomic_inc(&bbio->refs);
5307}
5308
5309void btrfs_put_bbio(struct btrfs_bio *bbio)
5310{
5311 if (!bbio)
5312 return;
5313 if (atomic_dec_and_test(&bbio->refs))
5314 kfree(bbio);
5315}
5316
cf8cddd3
CH
5317static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5318 enum btrfs_map_op op,
f2d8d74d 5319 u64 logical, u64 *length,
a1d3c478 5320 struct btrfs_bio **bbio_ret,
8e5cfb55 5321 int mirror_num, int need_raid_map)
0b86a832
CM
5322{
5323 struct extent_map *em;
5324 struct map_lookup *map;
3ec706c8 5325 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5326 struct extent_map_tree *em_tree = &map_tree->map_tree;
5327 u64 offset;
593060d7 5328 u64 stripe_offset;
fce3bb9a 5329 u64 stripe_end_offset;
593060d7 5330 u64 stripe_nr;
fce3bb9a
LD
5331 u64 stripe_nr_orig;
5332 u64 stripe_nr_end;
53b381b3 5333 u64 stripe_len;
9d644a62 5334 u32 stripe_index;
cea9e445 5335 int i;
de11cc12 5336 int ret = 0;
f2d8d74d 5337 int num_stripes;
a236aed1 5338 int max_errors = 0;
2c8cdd6e 5339 int tgtdev_indexes = 0;
a1d3c478 5340 struct btrfs_bio *bbio = NULL;
472262f3
SB
5341 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5342 int dev_replace_is_ongoing = 0;
5343 int num_alloc_stripes;
ad6d620e
SB
5344 int patch_the_first_stripe_for_dev_replace = 0;
5345 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5346 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5347
890871be 5348 read_lock(&em_tree->lock);
0b86a832 5349 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5350 read_unlock(&em_tree->lock);
f2d8d74d 5351
3b951516 5352 if (!em) {
c2cf52eb 5353 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5354 logical, *length);
9bb91873
JB
5355 return -EINVAL;
5356 }
5357
5358 if (em->start > logical || em->start + em->len < logical) {
5d163e0e
JM
5359 btrfs_crit(fs_info,
5360 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5361 logical, em->start, em->start + em->len);
7d3d1744 5362 free_extent_map(em);
9bb91873 5363 return -EINVAL;
3b951516 5364 }
0b86a832 5365
95617d69 5366 map = em->map_lookup;
0b86a832 5367 offset = logical - em->start;
593060d7 5368
53b381b3 5369 stripe_len = map->stripe_len;
593060d7
CM
5370 stripe_nr = offset;
5371 /*
5372 * stripe_nr counts the total number of stripes we have to stride
5373 * to get to this block
5374 */
47c5713f 5375 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5376
53b381b3 5377 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5378 if (offset < stripe_offset) {
5d163e0e
JM
5379 btrfs_crit(fs_info,
5380 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5381 stripe_offset, offset, em->start, logical,
5382 stripe_len);
5383 free_extent_map(em);
5384 return -EINVAL;
5385 }
593060d7
CM
5386
5387 /* stripe_offset is the offset of this block in its stripe*/
5388 stripe_offset = offset - stripe_offset;
5389
53b381b3 5390 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5391 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5392 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5393 raid56_full_stripe_start = offset;
5394
5395 /* allow a write of a full stripe, but make sure we don't
5396 * allow straddling of stripes
5397 */
47c5713f
DS
5398 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5399 full_stripe_len);
53b381b3
DW
5400 raid56_full_stripe_start *= full_stripe_len;
5401 }
5402
cf8cddd3 5403 if (op == BTRFS_MAP_DISCARD) {
53b381b3 5404 /* we don't discard raid56 yet */
ffe2d203 5405 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5406 ret = -EOPNOTSUPP;
5407 goto out;
5408 }
fce3bb9a 5409 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5410 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5411 u64 max_len;
5412 /* For writes to RAID[56], allow a full stripeset across all disks.
5413 For other RAID types and for RAID[56] reads, just allow a single
5414 stripe (on a single disk). */
ffe2d203 5415 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5416 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5417 max_len = stripe_len * nr_data_stripes(map) -
5418 (offset - raid56_full_stripe_start);
5419 } else {
5420 /* we limit the length of each bio to what fits in a stripe */
5421 max_len = stripe_len - stripe_offset;
5422 }
5423 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5424 } else {
5425 *length = em->len - offset;
5426 }
f2d8d74d 5427
53b381b3
DW
5428 /* This is for when we're called from btrfs_merge_bio_hook() and all
5429 it cares about is the length */
a1d3c478 5430 if (!bbio_ret)
cea9e445
CM
5431 goto out;
5432
73beece9 5433 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5434 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5435 if (!dev_replace_is_ongoing)
73beece9
LB
5436 btrfs_dev_replace_unlock(dev_replace, 0);
5437 else
5438 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5439
ad6d620e 5440 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
cf8cddd3
CH
5441 op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5442 op != BTRFS_MAP_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
ad6d620e
SB
5443 /*
5444 * in dev-replace case, for repair case (that's the only
5445 * case where the mirror is selected explicitly when
5446 * calling btrfs_map_block), blocks left of the left cursor
5447 * can also be read from the target drive.
5448 * For REQ_GET_READ_MIRRORS, the target drive is added as
5449 * the last one to the array of stripes. For READ, it also
5450 * needs to be supported using the same mirror number.
5451 * If the requested block is not left of the left cursor,
5452 * EIO is returned. This can happen because btrfs_num_copies()
5453 * returns one more in the dev-replace case.
5454 */
5455 u64 tmp_length = *length;
5456 struct btrfs_bio *tmp_bbio = NULL;
5457 int tmp_num_stripes;
5458 u64 srcdev_devid = dev_replace->srcdev->devid;
5459 int index_srcdev = 0;
5460 int found = 0;
5461 u64 physical_of_found = 0;
5462
cf8cddd3 5463 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
8e5cfb55 5464 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5465 if (ret) {
5466 WARN_ON(tmp_bbio != NULL);
5467 goto out;
5468 }
5469
5470 tmp_num_stripes = tmp_bbio->num_stripes;
5471 if (mirror_num > tmp_num_stripes) {
5472 /*
cf8cddd3 5473 * BTRFS_MAP_GET_READ_MIRRORS does not contain this
ad6d620e
SB
5474 * mirror, that means that the requested area
5475 * is not left of the left cursor
5476 */
5477 ret = -EIO;
6e9606d2 5478 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5479 goto out;
5480 }
5481
5482 /*
5483 * process the rest of the function using the mirror_num
5484 * of the source drive. Therefore look it up first.
5485 * At the end, patch the device pointer to the one of the
5486 * target drive.
5487 */
5488 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5489 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5490 continue;
5491
5492 /*
5493 * In case of DUP, in order to keep it simple, only add
5494 * the mirror with the lowest physical address
5495 */
5496 if (found &&
5497 physical_of_found <= tmp_bbio->stripes[i].physical)
5498 continue;
5499
5500 index_srcdev = i;
5501 found = 1;
5502 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5503 }
5504
94a97dfe
ZL
5505 btrfs_put_bbio(tmp_bbio);
5506
5507 if (!found) {
ad6d620e
SB
5508 WARN_ON(1);
5509 ret = -EIO;
ad6d620e
SB
5510 goto out;
5511 }
5512
94a97dfe
ZL
5513 mirror_num = index_srcdev + 1;
5514 patch_the_first_stripe_for_dev_replace = 1;
5515 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5516 } else if (mirror_num > map->num_stripes) {
5517 mirror_num = 0;
5518 }
5519
f2d8d74d 5520 num_stripes = 1;
cea9e445 5521 stripe_index = 0;
fce3bb9a 5522 stripe_nr_orig = stripe_nr;
fda2832f 5523 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5524 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5525 stripe_end_offset = stripe_nr_end * map->stripe_len -
5526 (offset + *length);
53b381b3 5527
fce3bb9a 5528 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
cf8cddd3 5529 if (op == BTRFS_MAP_DISCARD)
fce3bb9a
LD
5530 num_stripes = min_t(u64, map->num_stripes,
5531 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5532 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5533 &stripe_index);
cf8cddd3
CH
5534 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5535 op != BTRFS_MAP_GET_READ_MIRRORS)
28e1cc7d 5536 mirror_num = 1;
fce3bb9a 5537 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
cf8cddd3
CH
5538 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5539 op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5540 num_stripes = map->num_stripes;
2fff734f 5541 else if (mirror_num)
f188591e 5542 stripe_index = mirror_num - 1;
dfe25020 5543 else {
30d9861f 5544 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5545 map->num_stripes,
30d9861f
SB
5546 current->pid % map->num_stripes,
5547 dev_replace_is_ongoing);
a1d3c478 5548 mirror_num = stripe_index + 1;
dfe25020 5549 }
2fff734f 5550
611f0e00 5551 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cf8cddd3
CH
5552 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD ||
5553 op == BTRFS_MAP_GET_READ_MIRRORS) {
f2d8d74d 5554 num_stripes = map->num_stripes;
a1d3c478 5555 } else if (mirror_num) {
f188591e 5556 stripe_index = mirror_num - 1;
a1d3c478
JS
5557 } else {
5558 mirror_num = 1;
5559 }
2fff734f 5560
321aecc6 5561 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5562 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5563
47c5713f 5564 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5565 stripe_index *= map->sub_stripes;
5566
cf8cddd3 5567 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5568 num_stripes = map->sub_stripes;
cf8cddd3 5569 else if (op == BTRFS_MAP_DISCARD)
fce3bb9a
LD
5570 num_stripes = min_t(u64, map->sub_stripes *
5571 (stripe_nr_end - stripe_nr_orig),
5572 map->num_stripes);
321aecc6
CM
5573 else if (mirror_num)
5574 stripe_index += mirror_num - 1;
dfe25020 5575 else {
3e74317a 5576 int old_stripe_index = stripe_index;
30d9861f
SB
5577 stripe_index = find_live_mirror(fs_info, map,
5578 stripe_index,
dfe25020 5579 map->sub_stripes, stripe_index +
30d9861f
SB
5580 current->pid % map->sub_stripes,
5581 dev_replace_is_ongoing);
3e74317a 5582 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5583 }
53b381b3 5584
ffe2d203 5585 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5586 if (need_raid_map &&
cf8cddd3 5587 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
af8e2d1d 5588 mirror_num > 1)) {
53b381b3 5589 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5590 stripe_nr = div_u64(raid56_full_stripe_start,
5591 stripe_len * nr_data_stripes(map));
53b381b3
DW
5592
5593 /* RAID[56] write or recovery. Return all stripes */
5594 num_stripes = map->num_stripes;
5595 max_errors = nr_parity_stripes(map);
5596
53b381b3
DW
5597 *length = map->stripe_len;
5598 stripe_index = 0;
5599 stripe_offset = 0;
5600 } else {
5601 /*
5602 * Mirror #0 or #1 means the original data block.
5603 * Mirror #2 is RAID5 parity block.
5604 * Mirror #3 is RAID6 Q block.
5605 */
47c5713f
DS
5606 stripe_nr = div_u64_rem(stripe_nr,
5607 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5608 if (mirror_num > 1)
5609 stripe_index = nr_data_stripes(map) +
5610 mirror_num - 2;
5611
5612 /* We distribute the parity blocks across stripes */
47c5713f
DS
5613 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5614 &stripe_index);
cf8cddd3
CH
5615 if ((op != BTRFS_MAP_WRITE && op != BTRFS_MAP_DISCARD &&
5616 op != BTRFS_MAP_GET_READ_MIRRORS) && mirror_num <= 1)
28e1cc7d 5617 mirror_num = 1;
53b381b3 5618 }
8790d502
CM
5619 } else {
5620 /*
47c5713f
DS
5621 * after this, stripe_nr is the number of stripes on this
5622 * device we have to walk to find the data, and stripe_index is
5623 * the number of our device in the stripe array
8790d502 5624 */
47c5713f
DS
5625 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5626 &stripe_index);
a1d3c478 5627 mirror_num = stripe_index + 1;
8790d502 5628 }
e042d1ec 5629 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5630 btrfs_crit(fs_info,
5631 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5632 stripe_index, map->num_stripes);
5633 ret = -EINVAL;
5634 goto out;
5635 }
cea9e445 5636
472262f3 5637 num_alloc_stripes = num_stripes;
ad6d620e 5638 if (dev_replace_is_ongoing) {
cf8cddd3 5639 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD)
ad6d620e 5640 num_alloc_stripes <<= 1;
cf8cddd3 5641 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5642 num_alloc_stripes++;
2c8cdd6e 5643 tgtdev_indexes = num_stripes;
ad6d620e 5644 }
2c8cdd6e 5645
6e9606d2 5646 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5647 if (!bbio) {
5648 ret = -ENOMEM;
5649 goto out;
5650 }
2c8cdd6e
MX
5651 if (dev_replace_is_ongoing)
5652 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5653
8e5cfb55 5654 /* build raid_map */
ffe2d203 5655 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
b3d3fa51 5656 need_raid_map &&
cf8cddd3 5657 ((op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) ||
8e5cfb55
ZL
5658 mirror_num > 1)) {
5659 u64 tmp;
9d644a62 5660 unsigned rot;
8e5cfb55
ZL
5661
5662 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5663 sizeof(struct btrfs_bio_stripe) *
5664 num_alloc_stripes +
5665 sizeof(int) * tgtdev_indexes);
5666
5667 /* Work out the disk rotation on this stripe-set */
47c5713f 5668 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5669
5670 /* Fill in the logical address of each stripe */
5671 tmp = stripe_nr * nr_data_stripes(map);
5672 for (i = 0; i < nr_data_stripes(map); i++)
5673 bbio->raid_map[(i+rot) % num_stripes] =
5674 em->start + (tmp + i) * map->stripe_len;
5675
5676 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5677 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5678 bbio->raid_map[(i+rot+1) % num_stripes] =
5679 RAID6_Q_STRIPE;
5680 }
5681
cf8cddd3 5682 if (op == BTRFS_MAP_DISCARD) {
9d644a62
DS
5683 u32 factor = 0;
5684 u32 sub_stripes = 0;
ec9ef7a1
LZ
5685 u64 stripes_per_dev = 0;
5686 u32 remaining_stripes = 0;
b89203f7 5687 u32 last_stripe = 0;
ec9ef7a1
LZ
5688
5689 if (map->type &
5690 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5691 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5692 sub_stripes = 1;
5693 else
5694 sub_stripes = map->sub_stripes;
5695
5696 factor = map->num_stripes / sub_stripes;
5697 stripes_per_dev = div_u64_rem(stripe_nr_end -
5698 stripe_nr_orig,
5699 factor,
5700 &remaining_stripes);
b89203f7
LB
5701 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5702 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5703 }
5704
fce3bb9a 5705 for (i = 0; i < num_stripes; i++) {
a1d3c478 5706 bbio->stripes[i].physical =
f2d8d74d
CM
5707 map->stripes[stripe_index].physical +
5708 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5709 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5710
ec9ef7a1
LZ
5711 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5712 BTRFS_BLOCK_GROUP_RAID10)) {
5713 bbio->stripes[i].length = stripes_per_dev *
5714 map->stripe_len;
b89203f7 5715
ec9ef7a1
LZ
5716 if (i / sub_stripes < remaining_stripes)
5717 bbio->stripes[i].length +=
5718 map->stripe_len;
b89203f7
LB
5719
5720 /*
5721 * Special for the first stripe and
5722 * the last stripe:
5723 *
5724 * |-------|...|-------|
5725 * |----------|
5726 * off end_off
5727 */
ec9ef7a1 5728 if (i < sub_stripes)
a1d3c478 5729 bbio->stripes[i].length -=
fce3bb9a 5730 stripe_offset;
b89203f7
LB
5731
5732 if (stripe_index >= last_stripe &&
5733 stripe_index <= (last_stripe +
5734 sub_stripes - 1))
a1d3c478 5735 bbio->stripes[i].length -=
fce3bb9a 5736 stripe_end_offset;
b89203f7 5737
ec9ef7a1
LZ
5738 if (i == sub_stripes - 1)
5739 stripe_offset = 0;
fce3bb9a 5740 } else
a1d3c478 5741 bbio->stripes[i].length = *length;
fce3bb9a
LD
5742
5743 stripe_index++;
5744 if (stripe_index == map->num_stripes) {
5745 /* This could only happen for RAID0/10 */
5746 stripe_index = 0;
5747 stripe_nr++;
5748 }
5749 }
5750 } else {
5751 for (i = 0; i < num_stripes; i++) {
a1d3c478 5752 bbio->stripes[i].physical =
212a17ab
LT
5753 map->stripes[stripe_index].physical +
5754 stripe_offset +
5755 stripe_nr * map->stripe_len;
a1d3c478 5756 bbio->stripes[i].dev =
212a17ab 5757 map->stripes[stripe_index].dev;
fce3bb9a 5758 stripe_index++;
f2d8d74d 5759 }
593060d7 5760 }
de11cc12 5761
cf8cddd3 5762 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
d20983b4 5763 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5764
8e5cfb55
ZL
5765 if (bbio->raid_map)
5766 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5767
2c8cdd6e 5768 tgtdev_indexes = 0;
b3d3fa51 5769 if (dev_replace_is_ongoing &&
cf8cddd3 5770 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_DISCARD) &&
472262f3
SB
5771 dev_replace->tgtdev != NULL) {
5772 int index_where_to_add;
5773 u64 srcdev_devid = dev_replace->srcdev->devid;
5774
5775 /*
5776 * duplicate the write operations while the dev replace
5777 * procedure is running. Since the copying of the old disk
5778 * to the new disk takes place at run time while the
5779 * filesystem is mounted writable, the regular write
5780 * operations to the old disk have to be duplicated to go
5781 * to the new disk as well.
5782 * Note that device->missing is handled by the caller, and
5783 * that the write to the old disk is already set up in the
5784 * stripes array.
5785 */
5786 index_where_to_add = num_stripes;
5787 for (i = 0; i < num_stripes; i++) {
5788 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5789 /* write to new disk, too */
5790 struct btrfs_bio_stripe *new =
5791 bbio->stripes + index_where_to_add;
5792 struct btrfs_bio_stripe *old =
5793 bbio->stripes + i;
5794
5795 new->physical = old->physical;
5796 new->length = old->length;
5797 new->dev = dev_replace->tgtdev;
2c8cdd6e 5798 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5799 index_where_to_add++;
5800 max_errors++;
2c8cdd6e 5801 tgtdev_indexes++;
472262f3
SB
5802 }
5803 }
5804 num_stripes = index_where_to_add;
cf8cddd3
CH
5805 } else if (dev_replace_is_ongoing &&
5806 op == BTRFS_MAP_GET_READ_MIRRORS &&
ad6d620e
SB
5807 dev_replace->tgtdev != NULL) {
5808 u64 srcdev_devid = dev_replace->srcdev->devid;
5809 int index_srcdev = 0;
5810 int found = 0;
5811 u64 physical_of_found = 0;
5812
5813 /*
5814 * During the dev-replace procedure, the target drive can
5815 * also be used to read data in case it is needed to repair
5816 * a corrupt block elsewhere. This is possible if the
5817 * requested area is left of the left cursor. In this area,
5818 * the target drive is a full copy of the source drive.
5819 */
5820 for (i = 0; i < num_stripes; i++) {
5821 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5822 /*
5823 * In case of DUP, in order to keep it
5824 * simple, only add the mirror with the
5825 * lowest physical address
5826 */
5827 if (found &&
5828 physical_of_found <=
5829 bbio->stripes[i].physical)
5830 continue;
5831 index_srcdev = i;
5832 found = 1;
5833 physical_of_found = bbio->stripes[i].physical;
5834 }
5835 }
5836 if (found) {
22ab04e8
FM
5837 struct btrfs_bio_stripe *tgtdev_stripe =
5838 bbio->stripes + num_stripes;
ad6d620e 5839
22ab04e8
FM
5840 tgtdev_stripe->physical = physical_of_found;
5841 tgtdev_stripe->length =
5842 bbio->stripes[index_srcdev].length;
5843 tgtdev_stripe->dev = dev_replace->tgtdev;
5844 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5845
22ab04e8
FM
5846 tgtdev_indexes++;
5847 num_stripes++;
ad6d620e 5848 }
472262f3
SB
5849 }
5850
de11cc12 5851 *bbio_ret = bbio;
10f11900 5852 bbio->map_type = map->type;
de11cc12
LZ
5853 bbio->num_stripes = num_stripes;
5854 bbio->max_errors = max_errors;
5855 bbio->mirror_num = mirror_num;
2c8cdd6e 5856 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5857
5858 /*
5859 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5860 * mirror_num == num_stripes + 1 && dev_replace target drive is
5861 * available as a mirror
5862 */
5863 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5864 WARN_ON(num_stripes > 1);
5865 bbio->stripes[0].dev = dev_replace->tgtdev;
5866 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5867 bbio->mirror_num = map->num_stripes + 1;
5868 }
cea9e445 5869out:
73beece9
LB
5870 if (dev_replace_is_ongoing) {
5871 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5872 btrfs_dev_replace_unlock(dev_replace, 0);
5873 }
0b86a832 5874 free_extent_map(em);
de11cc12 5875 return ret;
0b86a832
CM
5876}
5877
cf8cddd3 5878int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5879 u64 logical, u64 *length,
a1d3c478 5880 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5881{
b3d3fa51 5882 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5883 mirror_num, 0);
f2d8d74d
CM
5884}
5885
af8e2d1d 5886/* For Scrub/replace */
cf8cddd3 5887int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d
MX
5888 u64 logical, u64 *length,
5889 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5890 int need_raid_map)
af8e2d1d 5891{
b3d3fa51 5892 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5893 mirror_num, need_raid_map);
af8e2d1d
MX
5894}
5895
ab8d0fc4 5896int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5897 u64 chunk_start, u64 physical, u64 devid,
5898 u64 **logical, int *naddrs, int *stripe_len)
5899{
ab8d0fc4 5900 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
a512bbf8
YZ
5901 struct extent_map_tree *em_tree = &map_tree->map_tree;
5902 struct extent_map *em;
5903 struct map_lookup *map;
5904 u64 *buf;
5905 u64 bytenr;
5906 u64 length;
5907 u64 stripe_nr;
53b381b3 5908 u64 rmap_len;
a512bbf8
YZ
5909 int i, j, nr = 0;
5910
890871be 5911 read_lock(&em_tree->lock);
a512bbf8 5912 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5913 read_unlock(&em_tree->lock);
a512bbf8 5914
835d974f 5915 if (!em) {
ab8d0fc4
JM
5916 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5917 chunk_start);
835d974f
JB
5918 return -EIO;
5919 }
5920
5921 if (em->start != chunk_start) {
ab8d0fc4 5922 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
835d974f
JB
5923 em->start, chunk_start);
5924 free_extent_map(em);
5925 return -EIO;
5926 }
95617d69 5927 map = em->map_lookup;
a512bbf8
YZ
5928
5929 length = em->len;
53b381b3
DW
5930 rmap_len = map->stripe_len;
5931
a512bbf8 5932 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5933 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5934 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5935 length = div_u64(length, map->num_stripes);
ffe2d203 5936 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5937 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5938 rmap_len = map->stripe_len * nr_data_stripes(map);
5939 }
a512bbf8 5940
31e818fe 5941 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5942 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5943
5944 for (i = 0; i < map->num_stripes; i++) {
5945 if (devid && map->stripes[i].dev->devid != devid)
5946 continue;
5947 if (map->stripes[i].physical > physical ||
5948 map->stripes[i].physical + length <= physical)
5949 continue;
5950
5951 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5952 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5953
5954 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5955 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5956 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5957 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5958 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5959 } /* else if RAID[56], multiply by nr_data_stripes().
5960 * Alternatively, just use rmap_len below instead of
5961 * map->stripe_len */
5962
5963 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5964 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5965 for (j = 0; j < nr; j++) {
5966 if (buf[j] == bytenr)
5967 break;
5968 }
934d375b
CM
5969 if (j == nr) {
5970 WARN_ON(nr >= map->num_stripes);
a512bbf8 5971 buf[nr++] = bytenr;
934d375b 5972 }
a512bbf8
YZ
5973 }
5974
a512bbf8
YZ
5975 *logical = buf;
5976 *naddrs = nr;
53b381b3 5977 *stripe_len = rmap_len;
a512bbf8
YZ
5978
5979 free_extent_map(em);
5980 return 0;
f2d8d74d
CM
5981}
5982
4246a0b6 5983static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5984{
326e1dbb
MS
5985 bio->bi_private = bbio->private;
5986 bio->bi_end_io = bbio->end_io;
4246a0b6 5987 bio_endio(bio);
326e1dbb 5988
6e9606d2 5989 btrfs_put_bbio(bbio);
8408c716
MX
5990}
5991
4246a0b6 5992static void btrfs_end_bio(struct bio *bio)
8790d502 5993{
9be3395b 5994 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5995 int is_orig_bio = 0;
8790d502 5996
4246a0b6 5997 if (bio->bi_error) {
a1d3c478 5998 atomic_inc(&bbio->error);
4246a0b6 5999 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 6000 unsigned int stripe_index =
9be3395b 6001 btrfs_io_bio(bio)->stripe_index;
65f53338 6002 struct btrfs_device *dev;
442a4f63
SB
6003
6004 BUG_ON(stripe_index >= bbio->num_stripes);
6005 dev = bbio->stripes[stripe_index].dev;
597a60fa 6006 if (dev->bdev) {
37226b21 6007 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6008 btrfs_dev_stat_inc(dev,
6009 BTRFS_DEV_STAT_WRITE_ERRS);
6010 else
6011 btrfs_dev_stat_inc(dev,
6012 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6013 if (bio->bi_opf & REQ_PREFLUSH)
597a60fa
SB
6014 btrfs_dev_stat_inc(dev,
6015 BTRFS_DEV_STAT_FLUSH_ERRS);
6016 btrfs_dev_stat_print_on_error(dev);
6017 }
442a4f63
SB
6018 }
6019 }
8790d502 6020
a1d3c478 6021 if (bio == bbio->orig_bio)
7d2b4daa
CM
6022 is_orig_bio = 1;
6023
c404e0dc
MX
6024 btrfs_bio_counter_dec(bbio->fs_info);
6025
a1d3c478 6026 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6027 if (!is_orig_bio) {
6028 bio_put(bio);
a1d3c478 6029 bio = bbio->orig_bio;
7d2b4daa 6030 }
c7b22bb1 6031
9be3395b 6032 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6033 /* only send an error to the higher layers if it is
53b381b3 6034 * beyond the tolerance of the btrfs bio
a236aed1 6035 */
a1d3c478 6036 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 6037 bio->bi_error = -EIO;
5dbc8fca 6038 } else {
1259ab75
CM
6039 /*
6040 * this bio is actually up to date, we didn't
6041 * go over the max number of errors
6042 */
4246a0b6 6043 bio->bi_error = 0;
1259ab75 6044 }
c55f1396 6045
4246a0b6 6046 btrfs_end_bbio(bbio, bio);
7d2b4daa 6047 } else if (!is_orig_bio) {
8790d502
CM
6048 bio_put(bio);
6049 }
8790d502
CM
6050}
6051
8b712842
CM
6052/*
6053 * see run_scheduled_bios for a description of why bios are collected for
6054 * async submit.
6055 *
6056 * This will add one bio to the pending list for a device and make sure
6057 * the work struct is scheduled.
6058 */
2ff7e61e 6059static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6060 struct bio *bio)
8b712842 6061{
0b246afa 6062 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6063 int should_queue = 1;
ffbd517d 6064 struct btrfs_pending_bios *pending_bios;
8b712842 6065
53b381b3 6066 if (device->missing || !device->bdev) {
4246a0b6 6067 bio_io_error(bio);
53b381b3
DW
6068 return;
6069 }
6070
8b712842 6071 /* don't bother with additional async steps for reads, right now */
37226b21 6072 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6073 bio_get(bio);
4e49ea4a 6074 btrfsic_submit_bio(bio);
492bb6de 6075 bio_put(bio);
143bede5 6076 return;
8b712842
CM
6077 }
6078
6079 /*
0986fe9e 6080 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6081 * higher layers. Otherwise, the async bio makes it appear we have
6082 * made progress against dirty pages when we've really just put it
6083 * on a queue for later
6084 */
0b246afa 6085 atomic_inc(&fs_info->nr_async_bios);
492bb6de 6086 WARN_ON(bio->bi_next);
8b712842 6087 bio->bi_next = NULL;
8b712842
CM
6088
6089 spin_lock(&device->io_lock);
67f055c7 6090 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6091 pending_bios = &device->pending_sync_bios;
6092 else
6093 pending_bios = &device->pending_bios;
8b712842 6094
ffbd517d
CM
6095 if (pending_bios->tail)
6096 pending_bios->tail->bi_next = bio;
8b712842 6097
ffbd517d
CM
6098 pending_bios->tail = bio;
6099 if (!pending_bios->head)
6100 pending_bios->head = bio;
8b712842
CM
6101 if (device->running_pending)
6102 should_queue = 0;
6103
6104 spin_unlock(&device->io_lock);
6105
6106 if (should_queue)
0b246afa 6107 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6108}
6109
2ff7e61e
JM
6110static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6111 u64 physical, int dev_nr, int async)
de1ee92a
JB
6112{
6113 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6114 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6115
6116 bio->bi_private = bbio;
9be3395b 6117 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6118 bio->bi_end_io = btrfs_end_bio;
4f024f37 6119 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6120#ifdef DEBUG
6121 {
6122 struct rcu_string *name;
6123
6124 rcu_read_lock();
6125 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6126 btrfs_debug(fs_info,
6127 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6128 bio_op(bio), bio->bi_opf,
6129 (u64)bio->bi_iter.bi_sector,
6130 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6131 bio->bi_iter.bi_size);
de1ee92a
JB
6132 rcu_read_unlock();
6133 }
6134#endif
6135 bio->bi_bdev = dev->bdev;
c404e0dc 6136
2ff7e61e 6137 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6138
de1ee92a 6139 if (async)
2ff7e61e 6140 btrfs_schedule_bio(dev, bio);
de1ee92a 6141 else
4e49ea4a 6142 btrfsic_submit_bio(bio);
de1ee92a
JB
6143}
6144
de1ee92a
JB
6145static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6146{
6147 atomic_inc(&bbio->error);
6148 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6149 /* Should be the original bio. */
8408c716
MX
6150 WARN_ON(bio != bbio->orig_bio);
6151
9be3395b 6152 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6153 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6154 bio->bi_error = -EIO;
6155 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6156 }
6157}
6158
2ff7e61e 6159int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
8b712842 6160 int mirror_num, int async_submit)
0b86a832 6161{
0b86a832 6162 struct btrfs_device *dev;
8790d502 6163 struct bio *first_bio = bio;
4f024f37 6164 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6165 u64 length = 0;
6166 u64 map_length;
0b86a832 6167 int ret;
08da757d
ZL
6168 int dev_nr;
6169 int total_devs;
a1d3c478 6170 struct btrfs_bio *bbio = NULL;
0b86a832 6171
4f024f37 6172 length = bio->bi_iter.bi_size;
0b86a832 6173 map_length = length;
cea9e445 6174
0b246afa
JM
6175 btrfs_bio_counter_inc_blocked(fs_info);
6176 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
37226b21 6177 &map_length, &bbio, mirror_num, 1);
c404e0dc 6178 if (ret) {
0b246afa 6179 btrfs_bio_counter_dec(fs_info);
79787eaa 6180 return ret;
c404e0dc 6181 }
cea9e445 6182
a1d3c478 6183 total_devs = bbio->num_stripes;
53b381b3
DW
6184 bbio->orig_bio = first_bio;
6185 bbio->private = first_bio->bi_private;
6186 bbio->end_io = first_bio->bi_end_io;
0b246afa 6187 bbio->fs_info = fs_info;
53b381b3
DW
6188 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6189
ad1ba2a0 6190 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6191 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6192 /* In this case, map_length has been set to the length of
6193 a single stripe; not the whole write */
37226b21 6194 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6195 ret = raid56_parity_write(fs_info, bio, bbio,
6196 map_length);
53b381b3 6197 } else {
2ff7e61e
JM
6198 ret = raid56_parity_recover(fs_info, bio, bbio,
6199 map_length, mirror_num, 1);
53b381b3 6200 }
4245215d 6201
0b246afa 6202 btrfs_bio_counter_dec(fs_info);
c404e0dc 6203 return ret;
53b381b3
DW
6204 }
6205
cea9e445 6206 if (map_length < length) {
0b246afa 6207 btrfs_crit(fs_info,
5d163e0e
JM
6208 "mapping failed logical %llu bio len %llu len %llu",
6209 logical, length, map_length);
cea9e445
CM
6210 BUG();
6211 }
a1d3c478 6212
08da757d 6213 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6214 dev = bbio->stripes[dev_nr].dev;
37226b21 6215 if (!dev || !dev->bdev ||
a967efb3 6216 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6217 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6218 continue;
6219 }
6220
a1d3c478 6221 if (dev_nr < total_devs - 1) {
9be3395b 6222 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6223 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6224 } else
a1d3c478 6225 bio = first_bio;
de1ee92a 6226
2ff7e61e
JM
6227 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6228 dev_nr, async_submit);
8790d502 6229 }
0b246afa 6230 btrfs_bio_counter_dec(fs_info);
0b86a832
CM
6231 return 0;
6232}
6233
aa1b8cd4 6234struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6235 u8 *uuid, u8 *fsid)
0b86a832 6236{
2b82032c
YZ
6237 struct btrfs_device *device;
6238 struct btrfs_fs_devices *cur_devices;
6239
aa1b8cd4 6240 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6241 while (cur_devices) {
6242 if (!fsid ||
6243 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6244 device = __find_device(&cur_devices->devices,
6245 devid, uuid);
6246 if (device)
6247 return device;
6248 }
6249 cur_devices = cur_devices->seed;
6250 }
6251 return NULL;
0b86a832
CM
6252}
6253
2ff7e61e 6254static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6255 u64 devid, u8 *dev_uuid)
6256{
6257 struct btrfs_device *device;
dfe25020 6258
12bd2fc0
ID
6259 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6260 if (IS_ERR(device))
7cbd8a83 6261 return NULL;
12bd2fc0
ID
6262
6263 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6264 device->fs_devices = fs_devices;
dfe25020 6265 fs_devices->num_devices++;
12bd2fc0
ID
6266
6267 device->missing = 1;
cd02dca5 6268 fs_devices->missing_devices++;
12bd2fc0 6269
dfe25020
CM
6270 return device;
6271}
6272
12bd2fc0
ID
6273/**
6274 * btrfs_alloc_device - allocate struct btrfs_device
6275 * @fs_info: used only for generating a new devid, can be NULL if
6276 * devid is provided (i.e. @devid != NULL).
6277 * @devid: a pointer to devid for this device. If NULL a new devid
6278 * is generated.
6279 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6280 * is generated.
6281 *
6282 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6283 * on error. Returned struct is not linked onto any lists and can be
6284 * destroyed with kfree() right away.
6285 */
6286struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6287 const u64 *devid,
6288 const u8 *uuid)
6289{
6290 struct btrfs_device *dev;
6291 u64 tmp;
6292
fae7f21c 6293 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6294 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6295
6296 dev = __alloc_device();
6297 if (IS_ERR(dev))
6298 return dev;
6299
6300 if (devid)
6301 tmp = *devid;
6302 else {
6303 int ret;
6304
6305 ret = find_next_devid(fs_info, &tmp);
6306 if (ret) {
6307 kfree(dev);
6308 return ERR_PTR(ret);
6309 }
6310 }
6311 dev->devid = tmp;
6312
6313 if (uuid)
6314 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6315 else
6316 generate_random_uuid(dev->uuid);
6317
9e0af237
LB
6318 btrfs_init_work(&dev->work, btrfs_submit_helper,
6319 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6320
6321 return dev;
6322}
6323
e06cd3dd 6324/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6325static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6326 struct extent_buffer *leaf,
6327 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6328{
0b86a832 6329 u64 length;
f04b772b 6330 u64 stripe_len;
e06cd3dd
LB
6331 u16 num_stripes;
6332 u16 sub_stripes;
6333 u64 type;
0b86a832 6334
e17cade2 6335 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6336 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6337 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6338 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6339 type = btrfs_chunk_type(leaf, chunk);
6340
f04b772b 6341 if (!num_stripes) {
0b246afa 6342 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6343 num_stripes);
6344 return -EIO;
6345 }
0b246afa
JM
6346 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6347 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6348 return -EIO;
6349 }
0b246afa
JM
6350 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6351 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6352 btrfs_chunk_sector_size(leaf, chunk));
6353 return -EIO;
6354 }
0b246afa
JM
6355 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6356 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6357 return -EIO;
6358 }
3d8da678 6359 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6360 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6361 stripe_len);
6362 return -EIO;
6363 }
6364 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6365 type) {
0b246afa 6366 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6367 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6368 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6369 btrfs_chunk_type(leaf, chunk));
6370 return -EIO;
6371 }
e06cd3dd
LB
6372 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6373 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6374 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6375 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6376 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6377 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6378 num_stripes != 1)) {
0b246afa 6379 btrfs_err(fs_info,
e06cd3dd
LB
6380 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6381 num_stripes, sub_stripes,
6382 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6383 return -EIO;
6384 }
6385
6386 return 0;
6387}
6388
2ff7e61e 6389static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6390 struct extent_buffer *leaf,
6391 struct btrfs_chunk *chunk)
6392{
0b246afa 6393 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6394 struct map_lookup *map;
6395 struct extent_map *em;
6396 u64 logical;
6397 u64 length;
6398 u64 stripe_len;
6399 u64 devid;
6400 u8 uuid[BTRFS_UUID_SIZE];
6401 int num_stripes;
6402 int ret;
6403 int i;
6404
6405 logical = key->offset;
6406 length = btrfs_chunk_length(leaf, chunk);
6407 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6408 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6409
2ff7e61e 6410 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6411 if (ret)
6412 return ret;
a061fc8d 6413
890871be 6414 read_lock(&map_tree->map_tree.lock);
0b86a832 6415 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6416 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6417
6418 /* already mapped? */
6419 if (em && em->start <= logical && em->start + em->len > logical) {
6420 free_extent_map(em);
0b86a832
CM
6421 return 0;
6422 } else if (em) {
6423 free_extent_map(em);
6424 }
0b86a832 6425
172ddd60 6426 em = alloc_extent_map();
0b86a832
CM
6427 if (!em)
6428 return -ENOMEM;
593060d7 6429 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6430 if (!map) {
6431 free_extent_map(em);
6432 return -ENOMEM;
6433 }
6434
298a8f9c 6435 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6436 em->map_lookup = map;
0b86a832
CM
6437 em->start = logical;
6438 em->len = length;
70c8a91c 6439 em->orig_start = 0;
0b86a832 6440 em->block_start = 0;
c8b97818 6441 em->block_len = em->len;
0b86a832 6442
593060d7
CM
6443 map->num_stripes = num_stripes;
6444 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6445 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6446 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6447 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6448 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6449 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6450 for (i = 0; i < num_stripes; i++) {
6451 map->stripes[i].physical =
6452 btrfs_stripe_offset_nr(leaf, chunk, i);
6453 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6454 read_extent_buffer(leaf, uuid, (unsigned long)
6455 btrfs_stripe_dev_uuid_nr(chunk, i),
6456 BTRFS_UUID_SIZE);
0b246afa 6457 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6458 uuid, NULL);
3cdde224 6459 if (!map->stripes[i].dev &&
0b246afa 6460 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7
CM
6461 free_extent_map(em);
6462 return -EIO;
6463 }
dfe25020
CM
6464 if (!map->stripes[i].dev) {
6465 map->stripes[i].dev =
2ff7e61e
JM
6466 add_missing_dev(fs_info->fs_devices, devid,
6467 uuid);
dfe25020 6468 if (!map->stripes[i].dev) {
dfe25020
CM
6469 free_extent_map(em);
6470 return -EIO;
6471 }
0b246afa 6472 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
5d163e0e 6473 devid, uuid);
dfe25020
CM
6474 }
6475 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6476 }
6477
890871be 6478 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6479 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6480 write_unlock(&map_tree->map_tree.lock);
79787eaa 6481 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6482 free_extent_map(em);
6483
6484 return 0;
6485}
6486
143bede5 6487static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6488 struct btrfs_dev_item *dev_item,
6489 struct btrfs_device *device)
6490{
6491 unsigned long ptr;
0b86a832
CM
6492
6493 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6494 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6495 device->total_bytes = device->disk_total_bytes;
935e5cc9 6496 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6497 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6498 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6499 device->type = btrfs_device_type(leaf, dev_item);
6500 device->io_align = btrfs_device_io_align(leaf, dev_item);
6501 device->io_width = btrfs_device_io_width(leaf, dev_item);
6502 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6503 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6504 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6505
410ba3a2 6506 ptr = btrfs_device_uuid(dev_item);
e17cade2 6507 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6508}
6509
2ff7e61e 6510static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6511 u8 *fsid)
2b82032c
YZ
6512{
6513 struct btrfs_fs_devices *fs_devices;
6514 int ret;
6515
b367e47f 6516 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c 6517
0b246afa 6518 fs_devices = fs_info->fs_devices->seed;
2b82032c 6519 while (fs_devices) {
5f375835
MX
6520 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6521 return fs_devices;
6522
2b82032c
YZ
6523 fs_devices = fs_devices->seed;
6524 }
6525
6526 fs_devices = find_fsid(fsid);
6527 if (!fs_devices) {
0b246afa 6528 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6529 return ERR_PTR(-ENOENT);
6530
6531 fs_devices = alloc_fs_devices(fsid);
6532 if (IS_ERR(fs_devices))
6533 return fs_devices;
6534
6535 fs_devices->seeding = 1;
6536 fs_devices->opened = 1;
6537 return fs_devices;
2b82032c 6538 }
e4404d6e
YZ
6539
6540 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6541 if (IS_ERR(fs_devices))
6542 return fs_devices;
2b82032c 6543
97288f2c 6544 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6545 fs_info->bdev_holder);
48d28232
JL
6546 if (ret) {
6547 free_fs_devices(fs_devices);
5f375835 6548 fs_devices = ERR_PTR(ret);
2b82032c 6549 goto out;
48d28232 6550 }
2b82032c
YZ
6551
6552 if (!fs_devices->seeding) {
6553 __btrfs_close_devices(fs_devices);
e4404d6e 6554 free_fs_devices(fs_devices);
5f375835 6555 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6556 goto out;
6557 }
6558
0b246afa
JM
6559 fs_devices->seed = fs_info->fs_devices->seed;
6560 fs_info->fs_devices->seed = fs_devices;
2b82032c 6561out:
5f375835 6562 return fs_devices;
2b82032c
YZ
6563}
6564
2ff7e61e 6565static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6566 struct extent_buffer *leaf,
6567 struct btrfs_dev_item *dev_item)
6568{
0b246afa 6569 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6570 struct btrfs_device *device;
6571 u64 devid;
6572 int ret;
2b82032c 6573 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6574 u8 dev_uuid[BTRFS_UUID_SIZE];
6575
0b86a832 6576 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6577 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6578 BTRFS_UUID_SIZE);
1473b24e 6579 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6580 BTRFS_UUID_SIZE);
6581
0b246afa 6582 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
2ff7e61e 6583 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6584 if (IS_ERR(fs_devices))
6585 return PTR_ERR(fs_devices);
2b82032c
YZ
6586 }
6587
0b246afa 6588 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6589 if (!device) {
0b246afa 6590 if (!btrfs_test_opt(fs_info, DEGRADED))
2b82032c
YZ
6591 return -EIO;
6592
2ff7e61e 6593 device = add_missing_dev(fs_devices, devid, dev_uuid);
5f375835
MX
6594 if (!device)
6595 return -ENOMEM;
0b246afa 6596 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
33b97e43 6597 devid, dev_uuid);
5f375835 6598 } else {
0b246afa 6599 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6600 return -EIO;
6601
6602 if(!device->bdev && !device->missing) {
cd02dca5
CM
6603 /*
6604 * this happens when a device that was properly setup
6605 * in the device info lists suddenly goes bad.
6606 * device->bdev is NULL, and so we have to set
6607 * device->missing to one here
6608 */
5f375835 6609 device->fs_devices->missing_devices++;
cd02dca5 6610 device->missing = 1;
2b82032c 6611 }
5f375835
MX
6612
6613 /* Move the device to its own fs_devices */
6614 if (device->fs_devices != fs_devices) {
6615 ASSERT(device->missing);
6616
6617 list_move(&device->dev_list, &fs_devices->devices);
6618 device->fs_devices->num_devices--;
6619 fs_devices->num_devices++;
6620
6621 device->fs_devices->missing_devices--;
6622 fs_devices->missing_devices++;
6623
6624 device->fs_devices = fs_devices;
6625 }
2b82032c
YZ
6626 }
6627
0b246afa 6628 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6629 BUG_ON(device->writeable);
6630 if (device->generation !=
6631 btrfs_device_generation(leaf, dev_item))
6632 return -EINVAL;
6324fbf3 6633 }
0b86a832
CM
6634
6635 fill_device_from_item(leaf, dev_item, device);
dfe25020 6636 device->in_fs_metadata = 1;
63a212ab 6637 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6638 device->fs_devices->total_rw_bytes += device->total_bytes;
0b246afa
JM
6639 spin_lock(&fs_info->free_chunk_lock);
6640 fs_info->free_chunk_space += device->total_bytes -
2bf64758 6641 device->bytes_used;
0b246afa 6642 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 6643 }
0b86a832 6644 ret = 0;
0b86a832
CM
6645 return ret;
6646}
6647
6bccf3ab 6648int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6649{
6bccf3ab 6650 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6651 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6652 struct extent_buffer *sb;
0b86a832 6653 struct btrfs_disk_key *disk_key;
0b86a832 6654 struct btrfs_chunk *chunk;
1ffb22cf
DS
6655 u8 *array_ptr;
6656 unsigned long sb_array_offset;
84eed90f 6657 int ret = 0;
0b86a832
CM
6658 u32 num_stripes;
6659 u32 array_size;
6660 u32 len = 0;
1ffb22cf 6661 u32 cur_offset;
e06cd3dd 6662 u64 type;
84eed90f 6663 struct btrfs_key key;
0b86a832 6664
0b246afa 6665 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6666 /*
6667 * This will create extent buffer of nodesize, superblock size is
6668 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6669 * overallocate but we can keep it as-is, only the first page is used.
6670 */
2ff7e61e 6671 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6672 if (IS_ERR(sb))
6673 return PTR_ERR(sb);
4db8c528 6674 set_extent_buffer_uptodate(sb);
85d4e461 6675 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6676 /*
01327610 6677 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6678 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6679 * pages up-to-date when the page is larger: extent does not cover the
6680 * whole page and consequently check_page_uptodate does not find all
6681 * the page's extents up-to-date (the hole beyond sb),
6682 * write_extent_buffer then triggers a WARN_ON.
6683 *
6684 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6685 * but sb spans only this function. Add an explicit SetPageUptodate call
6686 * to silence the warning eg. on PowerPC 64.
6687 */
09cbfeaf 6688 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6689 SetPageUptodate(sb->pages[0]);
4008c04a 6690
a061fc8d 6691 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6692 array_size = btrfs_super_sys_array_size(super_copy);
6693
1ffb22cf
DS
6694 array_ptr = super_copy->sys_chunk_array;
6695 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6696 cur_offset = 0;
0b86a832 6697
1ffb22cf
DS
6698 while (cur_offset < array_size) {
6699 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6700 len = sizeof(*disk_key);
6701 if (cur_offset + len > array_size)
6702 goto out_short_read;
6703
0b86a832
CM
6704 btrfs_disk_key_to_cpu(&key, disk_key);
6705
1ffb22cf
DS
6706 array_ptr += len;
6707 sb_array_offset += len;
6708 cur_offset += len;
0b86a832 6709
0d81ba5d 6710 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6711 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6712 /*
6713 * At least one btrfs_chunk with one stripe must be
6714 * present, exact stripe count check comes afterwards
6715 */
6716 len = btrfs_chunk_item_size(1);
6717 if (cur_offset + len > array_size)
6718 goto out_short_read;
6719
6720 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6721 if (!num_stripes) {
ab8d0fc4
JM
6722 btrfs_err(fs_info,
6723 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6724 num_stripes, cur_offset);
6725 ret = -EIO;
6726 break;
6727 }
6728
e06cd3dd
LB
6729 type = btrfs_chunk_type(sb, chunk);
6730 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6731 btrfs_err(fs_info,
e06cd3dd
LB
6732 "invalid chunk type %llu in sys_array at offset %u",
6733 type, cur_offset);
6734 ret = -EIO;
6735 break;
6736 }
6737
e3540eab
DS
6738 len = btrfs_chunk_item_size(num_stripes);
6739 if (cur_offset + len > array_size)
6740 goto out_short_read;
6741
2ff7e61e 6742 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6743 if (ret)
6744 break;
0b86a832 6745 } else {
ab8d0fc4
JM
6746 btrfs_err(fs_info,
6747 "unexpected item type %u in sys_array at offset %u",
6748 (u32)key.type, cur_offset);
84eed90f
CM
6749 ret = -EIO;
6750 break;
0b86a832 6751 }
1ffb22cf
DS
6752 array_ptr += len;
6753 sb_array_offset += len;
6754 cur_offset += len;
0b86a832 6755 }
d865177a 6756 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6757 free_extent_buffer_stale(sb);
84eed90f 6758 return ret;
e3540eab
DS
6759
6760out_short_read:
ab8d0fc4 6761 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6762 len, cur_offset);
d865177a 6763 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6764 free_extent_buffer_stale(sb);
e3540eab 6765 return -EIO;
0b86a832
CM
6766}
6767
5b4aacef 6768int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6769{
5b4aacef 6770 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6771 struct btrfs_path *path;
6772 struct extent_buffer *leaf;
6773 struct btrfs_key key;
6774 struct btrfs_key found_key;
6775 int ret;
6776 int slot;
99e3ecfc 6777 u64 total_dev = 0;
0b86a832 6778
0b86a832
CM
6779 path = btrfs_alloc_path();
6780 if (!path)
6781 return -ENOMEM;
6782
b367e47f 6783 mutex_lock(&uuid_mutex);
34441361 6784 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6785
395927a9
FDBM
6786 /*
6787 * Read all device items, and then all the chunk items. All
6788 * device items are found before any chunk item (their object id
6789 * is smaller than the lowest possible object id for a chunk
6790 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6791 */
6792 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6793 key.offset = 0;
6794 key.type = 0;
0b86a832 6795 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6796 if (ret < 0)
6797 goto error;
d397712b 6798 while (1) {
0b86a832
CM
6799 leaf = path->nodes[0];
6800 slot = path->slots[0];
6801 if (slot >= btrfs_header_nritems(leaf)) {
6802 ret = btrfs_next_leaf(root, path);
6803 if (ret == 0)
6804 continue;
6805 if (ret < 0)
6806 goto error;
6807 break;
6808 }
6809 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6810 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6811 struct btrfs_dev_item *dev_item;
6812 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6813 struct btrfs_dev_item);
2ff7e61e 6814 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6815 if (ret)
6816 goto error;
99e3ecfc 6817 total_dev++;
0b86a832
CM
6818 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6819 struct btrfs_chunk *chunk;
6820 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6821 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6822 if (ret)
6823 goto error;
0b86a832
CM
6824 }
6825 path->slots[0]++;
6826 }
99e3ecfc
LB
6827
6828 /*
6829 * After loading chunk tree, we've got all device information,
6830 * do another round of validation checks.
6831 */
0b246afa
JM
6832 if (total_dev != fs_info->fs_devices->total_devices) {
6833 btrfs_err(fs_info,
99e3ecfc 6834 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6835 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6836 total_dev);
6837 ret = -EINVAL;
6838 goto error;
6839 }
0b246afa
JM
6840 if (btrfs_super_total_bytes(fs_info->super_copy) <
6841 fs_info->fs_devices->total_rw_bytes) {
6842 btrfs_err(fs_info,
99e3ecfc 6843 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6844 btrfs_super_total_bytes(fs_info->super_copy),
6845 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6846 ret = -EINVAL;
6847 goto error;
6848 }
0b86a832
CM
6849 ret = 0;
6850error:
34441361 6851 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
6852 mutex_unlock(&uuid_mutex);
6853
2b82032c 6854 btrfs_free_path(path);
0b86a832
CM
6855 return ret;
6856}
442a4f63 6857
cb517eab
MX
6858void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6859{
6860 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6861 struct btrfs_device *device;
6862
29cc83f6
LB
6863 while (fs_devices) {
6864 mutex_lock(&fs_devices->device_list_mutex);
6865 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6866 device->fs_info = fs_info;
29cc83f6
LB
6867 mutex_unlock(&fs_devices->device_list_mutex);
6868
6869 fs_devices = fs_devices->seed;
6870 }
cb517eab
MX
6871}
6872
733f4fbb
SB
6873static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6874{
6875 int i;
6876
6877 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6878 btrfs_dev_stat_reset(dev, i);
6879}
6880
6881int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6882{
6883 struct btrfs_key key;
6884 struct btrfs_key found_key;
6885 struct btrfs_root *dev_root = fs_info->dev_root;
6886 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6887 struct extent_buffer *eb;
6888 int slot;
6889 int ret = 0;
6890 struct btrfs_device *device;
6891 struct btrfs_path *path = NULL;
6892 int i;
6893
6894 path = btrfs_alloc_path();
6895 if (!path) {
6896 ret = -ENOMEM;
6897 goto out;
6898 }
6899
6900 mutex_lock(&fs_devices->device_list_mutex);
6901 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6902 int item_size;
6903 struct btrfs_dev_stats_item *ptr;
6904
242e2956
DS
6905 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6906 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6907 key.offset = device->devid;
6908 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6909 if (ret) {
733f4fbb
SB
6910 __btrfs_reset_dev_stats(device);
6911 device->dev_stats_valid = 1;
6912 btrfs_release_path(path);
6913 continue;
6914 }
6915 slot = path->slots[0];
6916 eb = path->nodes[0];
6917 btrfs_item_key_to_cpu(eb, &found_key, slot);
6918 item_size = btrfs_item_size_nr(eb, slot);
6919
6920 ptr = btrfs_item_ptr(eb, slot,
6921 struct btrfs_dev_stats_item);
6922
6923 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6924 if (item_size >= (1 + i) * sizeof(__le64))
6925 btrfs_dev_stat_set(device, i,
6926 btrfs_dev_stats_value(eb, ptr, i));
6927 else
6928 btrfs_dev_stat_reset(device, i);
6929 }
6930
6931 device->dev_stats_valid = 1;
6932 btrfs_dev_stat_print_on_load(device);
6933 btrfs_release_path(path);
6934 }
6935 mutex_unlock(&fs_devices->device_list_mutex);
6936
6937out:
6938 btrfs_free_path(path);
6939 return ret < 0 ? ret : 0;
6940}
6941
6942static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 6943 struct btrfs_fs_info *fs_info,
733f4fbb
SB
6944 struct btrfs_device *device)
6945{
6bccf3ab 6946 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
6947 struct btrfs_path *path;
6948 struct btrfs_key key;
6949 struct extent_buffer *eb;
6950 struct btrfs_dev_stats_item *ptr;
6951 int ret;
6952 int i;
6953
242e2956
DS
6954 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6955 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6956 key.offset = device->devid;
6957
6958 path = btrfs_alloc_path();
fa252992
DS
6959 if (!path)
6960 return -ENOMEM;
733f4fbb
SB
6961 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6962 if (ret < 0) {
0b246afa 6963 btrfs_warn_in_rcu(fs_info,
ecaeb14b 6964 "error %d while searching for dev_stats item for device %s",
606686ee 6965 ret, rcu_str_deref(device->name));
733f4fbb
SB
6966 goto out;
6967 }
6968
6969 if (ret == 0 &&
6970 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6971 /* need to delete old one and insert a new one */
6972 ret = btrfs_del_item(trans, dev_root, path);
6973 if (ret != 0) {
0b246afa 6974 btrfs_warn_in_rcu(fs_info,
ecaeb14b 6975 "delete too small dev_stats item for device %s failed %d",
606686ee 6976 rcu_str_deref(device->name), ret);
733f4fbb
SB
6977 goto out;
6978 }
6979 ret = 1;
6980 }
6981
6982 if (ret == 1) {
6983 /* need to insert a new item */
6984 btrfs_release_path(path);
6985 ret = btrfs_insert_empty_item(trans, dev_root, path,
6986 &key, sizeof(*ptr));
6987 if (ret < 0) {
0b246afa 6988 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
6989 "insert dev_stats item for device %s failed %d",
6990 rcu_str_deref(device->name), ret);
733f4fbb
SB
6991 goto out;
6992 }
6993 }
6994
6995 eb = path->nodes[0];
6996 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6997 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6998 btrfs_set_dev_stats_value(eb, ptr, i,
6999 btrfs_dev_stat_read(device, i));
7000 btrfs_mark_buffer_dirty(eb);
7001
7002out:
7003 btrfs_free_path(path);
7004 return ret;
7005}
7006
7007/*
7008 * called from commit_transaction. Writes all changed device stats to disk.
7009 */
7010int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7011 struct btrfs_fs_info *fs_info)
7012{
733f4fbb
SB
7013 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7014 struct btrfs_device *device;
addc3fa7 7015 int stats_cnt;
733f4fbb
SB
7016 int ret = 0;
7017
7018 mutex_lock(&fs_devices->device_list_mutex);
7019 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7020 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7021 continue;
7022
addc3fa7 7023 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7024 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7025 if (!ret)
addc3fa7 7026 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7027 }
7028 mutex_unlock(&fs_devices->device_list_mutex);
7029
7030 return ret;
7031}
7032
442a4f63
SB
7033void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7034{
7035 btrfs_dev_stat_inc(dev, index);
7036 btrfs_dev_stat_print_on_error(dev);
7037}
7038
48a3b636 7039static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7040{
733f4fbb
SB
7041 if (!dev->dev_stats_valid)
7042 return;
fb456252 7043 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7044 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7045 rcu_str_deref(dev->name),
442a4f63
SB
7046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7048 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7049 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7050 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7051}
c11d2c23 7052
733f4fbb
SB
7053static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7054{
a98cdb85
SB
7055 int i;
7056
7057 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7058 if (btrfs_dev_stat_read(dev, i) != 0)
7059 break;
7060 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7061 return; /* all values == 0, suppress message */
7062
fb456252 7063 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7064 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7065 rcu_str_deref(dev->name),
733f4fbb
SB
7066 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7070 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7071}
7072
2ff7e61e 7073int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7074 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7075{
7076 struct btrfs_device *dev;
0b246afa 7077 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7078 int i;
7079
7080 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7081 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7082 mutex_unlock(&fs_devices->device_list_mutex);
7083
7084 if (!dev) {
0b246afa 7085 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7086 return -ENODEV;
733f4fbb 7087 } else if (!dev->dev_stats_valid) {
0b246afa 7088 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7089 return -ENODEV;
b27f7c0c 7090 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7091 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7092 if (stats->nr_items > i)
7093 stats->values[i] =
7094 btrfs_dev_stat_read_and_reset(dev, i);
7095 else
7096 btrfs_dev_stat_reset(dev, i);
7097 }
7098 } else {
7099 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7100 if (stats->nr_items > i)
7101 stats->values[i] = btrfs_dev_stat_read(dev, i);
7102 }
7103 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7104 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7105 return 0;
7106}
a8a6dab7 7107
da353f6b 7108void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7109{
7110 struct buffer_head *bh;
7111 struct btrfs_super_block *disk_super;
12b1c263 7112 int copy_num;
a8a6dab7 7113
12b1c263
AJ
7114 if (!bdev)
7115 return;
a8a6dab7 7116
12b1c263
AJ
7117 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7118 copy_num++) {
a8a6dab7 7119
12b1c263
AJ
7120 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7121 continue;
7122
7123 disk_super = (struct btrfs_super_block *)bh->b_data;
7124
7125 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7126 set_buffer_dirty(bh);
7127 sync_dirty_buffer(bh);
7128 brelse(bh);
7129 }
7130
7131 /* Notify udev that device has changed */
7132 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7133
7134 /* Update ctime/mtime for device path for libblkid */
7135 update_dev_time(device_path);
a8a6dab7 7136}
935e5cc9
MX
7137
7138/*
7139 * Update the size of all devices, which is used for writing out the
7140 * super blocks.
7141 */
7142void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7143{
7144 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7145 struct btrfs_device *curr, *next;
7146
7147 if (list_empty(&fs_devices->resized_devices))
7148 return;
7149
7150 mutex_lock(&fs_devices->device_list_mutex);
34441361 7151 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7152 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7153 resized_list) {
7154 list_del_init(&curr->resized_list);
7155 curr->commit_total_bytes = curr->disk_total_bytes;
7156 }
34441361 7157 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7158 mutex_unlock(&fs_devices->device_list_mutex);
7159}
ce7213c7
MX
7160
7161/* Must be invoked during the transaction commit */
2ff7e61e 7162void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7163 struct btrfs_transaction *transaction)
7164{
7165 struct extent_map *em;
7166 struct map_lookup *map;
7167 struct btrfs_device *dev;
7168 int i;
7169
7170 if (list_empty(&transaction->pending_chunks))
7171 return;
7172
7173 /* In order to kick the device replace finish process */
34441361 7174 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7175 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7176 map = em->map_lookup;
ce7213c7
MX
7177
7178 for (i = 0; i < map->num_stripes; i++) {
7179 dev = map->stripes[i].dev;
7180 dev->commit_bytes_used = dev->bytes_used;
7181 }
7182 }
34441361 7183 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7184}
5a13f430
AJ
7185
7186void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7187{
7188 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7189 while (fs_devices) {
7190 fs_devices->fs_info = fs_info;
7191 fs_devices = fs_devices->seed;
7192 }
7193}
7194
7195void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7196{
7197 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7198 while (fs_devices) {
7199 fs_devices->fs_info = NULL;
7200 fs_devices = fs_devices->seed;
7201 }
7202}