]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/volumes.c
btrfs: pass number of devices to btrfs_check_raid_min_devices
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
2b82032c
YZ
121static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
87ad58c5 128static void btrfs_close_one_device(struct btrfs_device *device);
2b82032c 129
67a2c45e 130DEFINE_MUTEX(uuid_mutex);
8a4b83cc 131static LIST_HEAD(fs_uuids);
c73eccf7
AJ
132struct list_head *btrfs_get_fs_uuids(void)
133{
134 return &fs_uuids;
135}
8a4b83cc 136
2208a378
ID
137static struct btrfs_fs_devices *__alloc_fs_devices(void)
138{
139 struct btrfs_fs_devices *fs_devs;
140
78f2c9e6 141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 148 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153}
154
155/**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165{
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178}
179
e4404d6e
YZ
180static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181{
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
606686ee 188 rcu_string_free(device->name);
e4404d6e
YZ
189 kfree(device);
190 }
191 kfree(fs_devices);
192}
193
b8b8ff59
LC
194static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196{
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
efe120a0 201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205}
206
143bede5 207void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
208{
209 struct btrfs_fs_devices *fs_devices;
8a4b83cc 210
2b82032c
YZ
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
e4404d6e 215 free_fs_devices(fs_devices);
8a4b83cc 216 }
8a4b83cc
CM
217}
218
12bd2fc0
ID
219static struct btrfs_device *__alloc_device(void)
220{
221 struct btrfs_device *dev;
222
78f2c9e6 223 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 229 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 235 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 236 btrfs_device_data_ordered_init(dev);
d0164adc
MG
237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
239
240 return dev;
241}
242
a1b32a59
CM
243static noinline struct btrfs_device *__find_device(struct list_head *head,
244 u64 devid, u8 *uuid)
8a4b83cc
CM
245{
246 struct btrfs_device *dev;
8a4b83cc 247
c6e30871 248 list_for_each_entry(dev, head, dev_list) {
a443755f 249 if (dev->devid == devid &&
8f18cf13 250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 251 return dev;
a443755f 252 }
8a4b83cc
CM
253 }
254 return NULL;
255}
256
a1b32a59 257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 258{
8a4b83cc
CM
259 struct btrfs_fs_devices *fs_devices;
260
c6e30871 261 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266}
267
beaf8ab3
SB
268static int
269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272{
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
beaf8ab3
SB
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
284 ret = set_blocksize(*bdev, 4096);
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
beaf8ab3
SB
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303}
304
ffbd517d
CM
305static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307{
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317}
318
8b712842
CM
319/*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
143bede5 330static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
331{
332 struct bio *pending;
333 struct backing_dev_info *bdi;
b64a2851 334 struct btrfs_fs_info *fs_info;
ffbd517d 335 struct btrfs_pending_bios *pending_bios;
8b712842
CM
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
ffbd517d 339 unsigned long num_run;
d644d8a1 340 unsigned long batch_run = 0;
b64a2851 341 unsigned long limit;
b765ead5 342 unsigned long last_waited = 0;
d84275c9 343 int force_reg = 0;
0e588859 344 int sync_pending = 0;
211588ad
CM
345 struct blk_plug plug;
346
347 /*
348 * this function runs all the bios we've collected for
349 * a particular device. We don't want to wander off to
350 * another device without first sending all of these down.
351 * So, setup a plug here and finish it off before we return
352 */
353 blk_start_plug(&plug);
8b712842 354
bedf762b 355 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
356 fs_info = device->dev_root->fs_info;
357 limit = btrfs_async_submit_limit(fs_info);
358 limit = limit * 2 / 3;
359
8b712842
CM
360loop:
361 spin_lock(&device->io_lock);
362
a6837051 363loop_lock:
d84275c9 364 num_run = 0;
ffbd517d 365
8b712842
CM
366 /* take all the bios off the list at once and process them
367 * later on (without the lock held). But, remember the
368 * tail and other pointers so the bios can be properly reinserted
369 * into the list if we hit congestion
370 */
d84275c9 371 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 372 pending_bios = &device->pending_sync_bios;
d84275c9
CM
373 force_reg = 1;
374 } else {
ffbd517d 375 pending_bios = &device->pending_bios;
d84275c9
CM
376 force_reg = 0;
377 }
ffbd517d
CM
378
379 pending = pending_bios->head;
380 tail = pending_bios->tail;
8b712842 381 WARN_ON(pending && !tail);
8b712842
CM
382
383 /*
384 * if pending was null this time around, no bios need processing
385 * at all and we can stop. Otherwise it'll loop back up again
386 * and do an additional check so no bios are missed.
387 *
388 * device->running_pending is used to synchronize with the
389 * schedule_bio code.
390 */
ffbd517d
CM
391 if (device->pending_sync_bios.head == NULL &&
392 device->pending_bios.head == NULL) {
8b712842
CM
393 again = 0;
394 device->running_pending = 0;
ffbd517d
CM
395 } else {
396 again = 1;
397 device->running_pending = 1;
8b712842 398 }
ffbd517d
CM
399
400 pending_bios->head = NULL;
401 pending_bios->tail = NULL;
402
8b712842
CM
403 spin_unlock(&device->io_lock);
404
d397712b 405 while (pending) {
ffbd517d
CM
406
407 rmb();
d84275c9
CM
408 /* we want to work on both lists, but do more bios on the
409 * sync list than the regular list
410 */
411 if ((num_run > 32 &&
412 pending_bios != &device->pending_sync_bios &&
413 device->pending_sync_bios.head) ||
414 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
415 device->pending_bios.head)) {
ffbd517d
CM
416 spin_lock(&device->io_lock);
417 requeue_list(pending_bios, pending, tail);
418 goto loop_lock;
419 }
420
8b712842
CM
421 cur = pending;
422 pending = pending->bi_next;
423 cur->bi_next = NULL;
b64a2851 424
ee863954
DS
425 /*
426 * atomic_dec_return implies a barrier for waitqueue_active
427 */
66657b31 428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
429 waitqueue_active(&fs_info->async_submit_wait))
430 wake_up(&fs_info->async_submit_wait);
492bb6de 431
dac56212 432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 433
2ab1ba68
CM
434 /*
435 * if we're doing the sync list, record that our
436 * plug has some sync requests on it
437 *
438 * If we're doing the regular list and there are
439 * sync requests sitting around, unplug before
440 * we add more
441 */
442 if (pending_bios == &device->pending_sync_bios) {
443 sync_pending = 1;
444 } else if (sync_pending) {
445 blk_finish_plug(&plug);
446 blk_start_plug(&plug);
447 sync_pending = 0;
448 }
449
21adbd5c 450 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
451 num_run++;
452 batch_run++;
853d8ec4
DS
453
454 cond_resched();
8b712842
CM
455
456 /*
457 * we made progress, there is more work to do and the bdi
458 * is now congested. Back off and let other work structs
459 * run instead
460 */
57fd5a5f 461 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 462 fs_info->fs_devices->open_devices > 1) {
b765ead5 463 struct io_context *ioc;
8b712842 464
b765ead5
CM
465 ioc = current->io_context;
466
467 /*
468 * the main goal here is that we don't want to
469 * block if we're going to be able to submit
470 * more requests without blocking.
471 *
472 * This code does two great things, it pokes into
473 * the elevator code from a filesystem _and_
474 * it makes assumptions about how batching works.
475 */
476 if (ioc && ioc->nr_batch_requests > 0 &&
477 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
478 (last_waited == 0 ||
479 ioc->last_waited == last_waited)) {
480 /*
481 * we want to go through our batch of
482 * requests and stop. So, we copy out
483 * the ioc->last_waited time and test
484 * against it before looping
485 */
486 last_waited = ioc->last_waited;
853d8ec4 487 cond_resched();
b765ead5
CM
488 continue;
489 }
8b712842 490 spin_lock(&device->io_lock);
ffbd517d 491 requeue_list(pending_bios, pending, tail);
a6837051 492 device->running_pending = 1;
8b712842
CM
493
494 spin_unlock(&device->io_lock);
a8c93d4e
QW
495 btrfs_queue_work(fs_info->submit_workers,
496 &device->work);
8b712842
CM
497 goto done;
498 }
d85c8a6f
CM
499 /* unplug every 64 requests just for good measure */
500 if (batch_run % 64 == 0) {
501 blk_finish_plug(&plug);
502 blk_start_plug(&plug);
503 sync_pending = 0;
504 }
8b712842 505 }
ffbd517d 506
51684082
CM
507 cond_resched();
508 if (again)
509 goto loop;
510
511 spin_lock(&device->io_lock);
512 if (device->pending_bios.head || device->pending_sync_bios.head)
513 goto loop_lock;
514 spin_unlock(&device->io_lock);
515
8b712842 516done:
211588ad 517 blk_finish_plug(&plug);
8b712842
CM
518}
519
b2950863 520static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, work);
525 run_scheduled_bios(device);
526}
527
4fde46f0
AJ
528
529void btrfs_free_stale_device(struct btrfs_device *cur_dev)
530{
531 struct btrfs_fs_devices *fs_devs;
532 struct btrfs_device *dev;
533
534 if (!cur_dev->name)
535 return;
536
537 list_for_each_entry(fs_devs, &fs_uuids, list) {
538 int del = 1;
539
540 if (fs_devs->opened)
541 continue;
542 if (fs_devs->seeding)
543 continue;
544
545 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
546
547 if (dev == cur_dev)
548 continue;
549 if (!dev->name)
550 continue;
551
552 /*
553 * Todo: This won't be enough. What if the same device
554 * comes back (with new uuid and) with its mapper path?
555 * But for now, this does help as mostly an admin will
556 * either use mapper or non mapper path throughout.
557 */
558 rcu_read_lock();
559 del = strcmp(rcu_str_deref(dev->name),
560 rcu_str_deref(cur_dev->name));
561 rcu_read_unlock();
562 if (!del)
563 break;
564 }
565
566 if (!del) {
567 /* delete the stale device */
568 if (fs_devs->num_devices == 1) {
569 btrfs_sysfs_remove_fsid(fs_devs);
570 list_del(&fs_devs->list);
571 free_fs_devices(fs_devs);
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581}
582
60999ca4
DS
583/*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
a1b32a59 591static noinline int device_list_add(const char *path,
8a4b83cc
CM
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594{
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
606686ee 597 struct rcu_string *name;
60999ca4 598 int ret = 0;
8a4b83cc
CM
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
2208a378
ID
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
8a4b83cc 607 list_add(&fs_devices->list, &fs_uuids);
2208a378 608
8a4b83cc
CM
609 device = NULL;
610 } else {
a443755f
CM
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
8a4b83cc 613 }
443f24fe 614
8a4b83cc 615 if (!device) {
2b82032c
YZ
616 if (fs_devices->opened)
617 return -EBUSY;
618
12bd2fc0
ID
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
8a4b83cc 622 /* we can safely leave the fs_devices entry around */
12bd2fc0 623 return PTR_ERR(device);
8a4b83cc 624 }
606686ee
JB
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
8a4b83cc
CM
628 kfree(device);
629 return -ENOMEM;
630 }
606686ee 631 rcu_assign_pointer(device->name, name);
90519d66 632
e5e9a520 633 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 634 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 635 fs_devices->num_devices++;
e5e9a520
CM
636 mutex_unlock(&fs_devices->device_list_mutex);
637
60999ca4 638 ret = 1;
2b82032c 639 device->fs_devices = fs_devices;
606686ee 640 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
0f23ae74
CM
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
b96de000 666 */
0f23ae74 667 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
0f23ae74 675 return -EEXIST;
77bdae4d 676 }
b96de000 677
606686ee 678 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
679 if (!name)
680 return -ENOMEM;
606686ee
JB
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
cd02dca5
CM
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
8a4b83cc
CM
687 }
688
77bdae4d
AJ
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
4fde46f0
AJ
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
02feae3c
AJ
702 if (ret > 0)
703 btrfs_free_stale_device(device);
4fde46f0 704
8a4b83cc 705 *fs_devices_ret = fs_devices;
60999ca4
DS
706
707 return ret;
8a4b83cc
CM
708}
709
e4404d6e
YZ
710static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
711{
712 struct btrfs_fs_devices *fs_devices;
713 struct btrfs_device *device;
714 struct btrfs_device *orig_dev;
715
2208a378
ID
716 fs_devices = alloc_fs_devices(orig->fsid);
717 if (IS_ERR(fs_devices))
718 return fs_devices;
e4404d6e 719
adbbb863 720 mutex_lock(&orig->device_list_mutex);
02db0844 721 fs_devices->total_devices = orig->total_devices;
e4404d6e 722
46224705 723 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 724 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
725 struct rcu_string *name;
726
12bd2fc0
ID
727 device = btrfs_alloc_device(NULL, &orig_dev->devid,
728 orig_dev->uuid);
729 if (IS_ERR(device))
e4404d6e
YZ
730 goto error;
731
606686ee
JB
732 /*
733 * This is ok to do without rcu read locked because we hold the
734 * uuid mutex so nothing we touch in here is going to disappear.
735 */
e755f780 736 if (orig_dev->name) {
78f2c9e6
DS
737 name = rcu_string_strdup(orig_dev->name->str,
738 GFP_KERNEL);
e755f780
AJ
739 if (!name) {
740 kfree(device);
741 goto error;
742 }
743 rcu_assign_pointer(device->name, name);
fd2696f3 744 }
e4404d6e 745
e4404d6e
YZ
746 list_add(&device->dev_list, &fs_devices->devices);
747 device->fs_devices = fs_devices;
748 fs_devices->num_devices++;
749 }
adbbb863 750 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
751 return fs_devices;
752error:
adbbb863 753 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
754 free_fs_devices(fs_devices);
755 return ERR_PTR(-ENOMEM);
756}
757
9eaed21e 758void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 759{
c6e30871 760 struct btrfs_device *device, *next;
443f24fe 761 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 762
dfe25020
CM
763 mutex_lock(&uuid_mutex);
764again:
46224705 765 /* This is the initialized path, it is safe to release the devices. */
c6e30871 766 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 767 if (device->in_fs_metadata) {
63a212ab 768 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
769 (!latest_dev ||
770 device->generation > latest_dev->generation)) {
771 latest_dev = device;
a6b0d5c8 772 }
2b82032c 773 continue;
a6b0d5c8 774 }
2b82032c 775
8dabb742
SB
776 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
777 /*
778 * In the first step, keep the device which has
779 * the correct fsid and the devid that is used
780 * for the dev_replace procedure.
781 * In the second step, the dev_replace state is
782 * read from the device tree and it is known
783 * whether the procedure is really active or
784 * not, which means whether this device is
785 * used or whether it should be removed.
786 */
787 if (step == 0 || device->is_tgtdev_for_dev_replace) {
788 continue;
789 }
790 }
2b82032c 791 if (device->bdev) {
d4d77629 792 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
793 device->bdev = NULL;
794 fs_devices->open_devices--;
795 }
796 if (device->writeable) {
797 list_del_init(&device->dev_alloc_list);
798 device->writeable = 0;
8dabb742
SB
799 if (!device->is_tgtdev_for_dev_replace)
800 fs_devices->rw_devices--;
2b82032c 801 }
e4404d6e
YZ
802 list_del_init(&device->dev_list);
803 fs_devices->num_devices--;
606686ee 804 rcu_string_free(device->name);
e4404d6e 805 kfree(device);
dfe25020 806 }
2b82032c
YZ
807
808 if (fs_devices->seed) {
809 fs_devices = fs_devices->seed;
2b82032c
YZ
810 goto again;
811 }
812
443f24fe 813 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 814
dfe25020 815 mutex_unlock(&uuid_mutex);
dfe25020 816}
a0af469b 817
1f78160c
XG
818static void __free_device(struct work_struct *work)
819{
820 struct btrfs_device *device;
821
822 device = container_of(work, struct btrfs_device, rcu_work);
823
824 if (device->bdev)
825 blkdev_put(device->bdev, device->mode);
826
606686ee 827 rcu_string_free(device->name);
1f78160c
XG
828 kfree(device);
829}
830
831static void free_device(struct rcu_head *head)
832{
833 struct btrfs_device *device;
834
835 device = container_of(head, struct btrfs_device, rcu);
836
837 INIT_WORK(&device->rcu_work, __free_device);
838 schedule_work(&device->rcu_work);
839}
840
2b82032c 841static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 842{
2037a093 843 struct btrfs_device *device, *tmp;
e4404d6e 844
2b82032c
YZ
845 if (--fs_devices->opened > 0)
846 return 0;
8a4b83cc 847
c9513edb 848 mutex_lock(&fs_devices->device_list_mutex);
2037a093 849 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 850 btrfs_close_one_device(device);
8a4b83cc 851 }
c9513edb
XG
852 mutex_unlock(&fs_devices->device_list_mutex);
853
e4404d6e
YZ
854 WARN_ON(fs_devices->open_devices);
855 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
856 fs_devices->opened = 0;
857 fs_devices->seeding = 0;
2b82032c 858
8a4b83cc
CM
859 return 0;
860}
861
2b82032c
YZ
862int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
863{
e4404d6e 864 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
865 int ret;
866
867 mutex_lock(&uuid_mutex);
868 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
869 if (!fs_devices->opened) {
870 seed_devices = fs_devices->seed;
871 fs_devices->seed = NULL;
872 }
2b82032c 873 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
874
875 while (seed_devices) {
876 fs_devices = seed_devices;
877 seed_devices = fs_devices->seed;
878 __btrfs_close_devices(fs_devices);
879 free_fs_devices(fs_devices);
880 }
bc178622
ES
881 /*
882 * Wait for rcu kworkers under __btrfs_close_devices
883 * to finish all blkdev_puts so device is really
884 * free when umount is done.
885 */
886 rcu_barrier();
2b82032c
YZ
887 return ret;
888}
889
e4404d6e
YZ
890static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
891 fmode_t flags, void *holder)
8a4b83cc 892{
d5e2003c 893 struct request_queue *q;
8a4b83cc
CM
894 struct block_device *bdev;
895 struct list_head *head = &fs_devices->devices;
8a4b83cc 896 struct btrfs_device *device;
443f24fe 897 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
898 struct buffer_head *bh;
899 struct btrfs_super_block *disk_super;
a0af469b 900 u64 devid;
2b82032c 901 int seeding = 1;
a0af469b 902 int ret = 0;
8a4b83cc 903
d4d77629
TH
904 flags |= FMODE_EXCL;
905
c6e30871 906 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
907 if (device->bdev)
908 continue;
dfe25020
CM
909 if (!device->name)
910 continue;
911
f63e0cca
ES
912 /* Just open everything we can; ignore failures here */
913 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
914 &bdev, &bh))
beaf8ab3 915 continue;
a0af469b
CM
916
917 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 918 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
919 if (devid != device->devid)
920 goto error_brelse;
921
2b82032c
YZ
922 if (memcmp(device->uuid, disk_super->dev_item.uuid,
923 BTRFS_UUID_SIZE))
924 goto error_brelse;
925
926 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
927 if (!latest_dev ||
928 device->generation > latest_dev->generation)
929 latest_dev = device;
a0af469b 930
2b82032c
YZ
931 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
932 device->writeable = 0;
933 } else {
934 device->writeable = !bdev_read_only(bdev);
935 seeding = 0;
936 }
937
d5e2003c 938 q = bdev_get_queue(bdev);
90180da4 939 if (blk_queue_discard(q))
d5e2003c 940 device->can_discard = 1;
d5e2003c 941
8a4b83cc 942 device->bdev = bdev;
dfe25020 943 device->in_fs_metadata = 0;
15916de8
CM
944 device->mode = flags;
945
c289811c
CM
946 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
947 fs_devices->rotating = 1;
948
a0af469b 949 fs_devices->open_devices++;
55e50e45
ID
950 if (device->writeable &&
951 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
952 fs_devices->rw_devices++;
953 list_add(&device->dev_alloc_list,
954 &fs_devices->alloc_list);
955 }
4f6c9328 956 brelse(bh);
a0af469b 957 continue;
a061fc8d 958
a0af469b
CM
959error_brelse:
960 brelse(bh);
d4d77629 961 blkdev_put(bdev, flags);
a0af469b 962 continue;
8a4b83cc 963 }
a0af469b 964 if (fs_devices->open_devices == 0) {
20bcd649 965 ret = -EINVAL;
a0af469b
CM
966 goto out;
967 }
2b82032c
YZ
968 fs_devices->seeding = seeding;
969 fs_devices->opened = 1;
443f24fe 970 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 971 fs_devices->total_rw_bytes = 0;
a0af469b 972out:
2b82032c
YZ
973 return ret;
974}
975
976int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 977 fmode_t flags, void *holder)
2b82032c
YZ
978{
979 int ret;
980
981 mutex_lock(&uuid_mutex);
982 if (fs_devices->opened) {
e4404d6e
YZ
983 fs_devices->opened++;
984 ret = 0;
2b82032c 985 } else {
15916de8 986 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 987 }
8a4b83cc 988 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
989 return ret;
990}
991
6cf86a00
AJ
992void btrfs_release_disk_super(struct page *page)
993{
994 kunmap(page);
995 put_page(page);
996}
997
998int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
999 struct page **page, struct btrfs_super_block **disk_super)
1000{
1001 void *p;
1002 pgoff_t index;
1003
1004 /* make sure our super fits in the device */
1005 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1006 return 1;
1007
1008 /* make sure our super fits in the page */
1009 if (sizeof(**disk_super) > PAGE_SIZE)
1010 return 1;
1011
1012 /* make sure our super doesn't straddle pages on disk */
1013 index = bytenr >> PAGE_SHIFT;
1014 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1015 return 1;
1016
1017 /* pull in the page with our super */
1018 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1019 index, GFP_KERNEL);
1020
1021 if (IS_ERR_OR_NULL(*page))
1022 return 1;
1023
1024 p = kmap(*page);
1025
1026 /* align our pointer to the offset of the super block */
1027 *disk_super = p + (bytenr & ~PAGE_MASK);
1028
1029 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1030 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1031 btrfs_release_disk_super(*page);
1032 return 1;
1033 }
1034
1035 if ((*disk_super)->label[0] &&
1036 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1037 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1038
1039 return 0;
1040}
1041
6f60cbd3
DS
1042/*
1043 * Look for a btrfs signature on a device. This may be called out of the mount path
1044 * and we are not allowed to call set_blocksize during the scan. The superblock
1045 * is read via pagecache
1046 */
97288f2c 1047int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1048 struct btrfs_fs_devices **fs_devices_ret)
1049{
1050 struct btrfs_super_block *disk_super;
1051 struct block_device *bdev;
6f60cbd3 1052 struct page *page;
6f60cbd3 1053 int ret = -EINVAL;
8a4b83cc 1054 u64 devid;
f2984462 1055 u64 transid;
02db0844 1056 u64 total_devices;
6f60cbd3 1057 u64 bytenr;
8a4b83cc 1058
6f60cbd3
DS
1059 /*
1060 * we would like to check all the supers, but that would make
1061 * a btrfs mount succeed after a mkfs from a different FS.
1062 * So, we need to add a special mount option to scan for
1063 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1064 */
1065 bytenr = btrfs_sb_offset(0);
d4d77629 1066 flags |= FMODE_EXCL;
10f6327b 1067 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1068
1069 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1070 if (IS_ERR(bdev)) {
1071 ret = PTR_ERR(bdev);
beaf8ab3 1072 goto error;
6f60cbd3
DS
1073 }
1074
6cf86a00 1075 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1076 goto error_bdev_put;
1077
a343832f 1078 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1079 transid = btrfs_super_generation(disk_super);
02db0844 1080 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1081
8a4b83cc 1082 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1083 if (ret > 0) {
1084 if (disk_super->label[0]) {
60999ca4
DS
1085 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1086 } else {
1087 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1088 }
1089
1090 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1091 ret = 0;
1092 }
02db0844
JB
1093 if (!ret && fs_devices_ret)
1094 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1095
6cf86a00 1096 btrfs_release_disk_super(page);
6f60cbd3
DS
1097
1098error_bdev_put:
d4d77629 1099 blkdev_put(bdev, flags);
8a4b83cc 1100error:
beaf8ab3 1101 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1102 return ret;
1103}
0b86a832 1104
6d07bcec
MX
1105/* helper to account the used device space in the range */
1106int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1107 u64 end, u64 *length)
1108{
1109 struct btrfs_key key;
1110 struct btrfs_root *root = device->dev_root;
1111 struct btrfs_dev_extent *dev_extent;
1112 struct btrfs_path *path;
1113 u64 extent_end;
1114 int ret;
1115 int slot;
1116 struct extent_buffer *l;
1117
1118 *length = 0;
1119
63a212ab 1120 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1121 return 0;
1122
1123 path = btrfs_alloc_path();
1124 if (!path)
1125 return -ENOMEM;
e4058b54 1126 path->reada = READA_FORWARD;
6d07bcec
MX
1127
1128 key.objectid = device->devid;
1129 key.offset = start;
1130 key.type = BTRFS_DEV_EXTENT_KEY;
1131
1132 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1133 if (ret < 0)
1134 goto out;
1135 if (ret > 0) {
1136 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1137 if (ret < 0)
1138 goto out;
1139 }
1140
1141 while (1) {
1142 l = path->nodes[0];
1143 slot = path->slots[0];
1144 if (slot >= btrfs_header_nritems(l)) {
1145 ret = btrfs_next_leaf(root, path);
1146 if (ret == 0)
1147 continue;
1148 if (ret < 0)
1149 goto out;
1150
1151 break;
1152 }
1153 btrfs_item_key_to_cpu(l, &key, slot);
1154
1155 if (key.objectid < device->devid)
1156 goto next;
1157
1158 if (key.objectid > device->devid)
1159 break;
1160
962a298f 1161 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1162 goto next;
1163
1164 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1165 extent_end = key.offset + btrfs_dev_extent_length(l,
1166 dev_extent);
1167 if (key.offset <= start && extent_end > end) {
1168 *length = end - start + 1;
1169 break;
1170 } else if (key.offset <= start && extent_end > start)
1171 *length += extent_end - start;
1172 else if (key.offset > start && extent_end <= end)
1173 *length += extent_end - key.offset;
1174 else if (key.offset > start && key.offset <= end) {
1175 *length += end - key.offset + 1;
1176 break;
1177 } else if (key.offset > end)
1178 break;
1179
1180next:
1181 path->slots[0]++;
1182 }
1183 ret = 0;
1184out:
1185 btrfs_free_path(path);
1186 return ret;
1187}
1188
499f377f 1189static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1190 struct btrfs_device *device,
1191 u64 *start, u64 len)
1192{
499f377f 1193 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1194 struct extent_map *em;
499f377f 1195 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1196 int ret = 0;
1b984508 1197 u64 physical_start = *start;
6df9a95e 1198
499f377f
JM
1199 if (transaction)
1200 search_list = &transaction->pending_chunks;
04216820
FM
1201again:
1202 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1203 struct map_lookup *map;
1204 int i;
1205
95617d69 1206 map = em->map_lookup;
6df9a95e 1207 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1208 u64 end;
1209
6df9a95e
JB
1210 if (map->stripes[i].dev != device)
1211 continue;
1b984508 1212 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1213 map->stripes[i].physical + em->orig_block_len <=
1b984508 1214 physical_start)
6df9a95e 1215 continue;
c152b63e
FM
1216 /*
1217 * Make sure that while processing the pinned list we do
1218 * not override our *start with a lower value, because
1219 * we can have pinned chunks that fall within this
1220 * device hole and that have lower physical addresses
1221 * than the pending chunks we processed before. If we
1222 * do not take this special care we can end up getting
1223 * 2 pending chunks that start at the same physical
1224 * device offsets because the end offset of a pinned
1225 * chunk can be equal to the start offset of some
1226 * pending chunk.
1227 */
1228 end = map->stripes[i].physical + em->orig_block_len;
1229 if (end > *start) {
1230 *start = end;
1231 ret = 1;
1232 }
6df9a95e
JB
1233 }
1234 }
499f377f
JM
1235 if (search_list != &fs_info->pinned_chunks) {
1236 search_list = &fs_info->pinned_chunks;
04216820
FM
1237 goto again;
1238 }
6df9a95e
JB
1239
1240 return ret;
1241}
1242
1243
0b86a832 1244/*
499f377f
JM
1245 * find_free_dev_extent_start - find free space in the specified device
1246 * @device: the device which we search the free space in
1247 * @num_bytes: the size of the free space that we need
1248 * @search_start: the position from which to begin the search
1249 * @start: store the start of the free space.
1250 * @len: the size of the free space. that we find, or the size
1251 * of the max free space if we don't find suitable free space
7bfc837d 1252 *
0b86a832
CM
1253 * this uses a pretty simple search, the expectation is that it is
1254 * called very infrequently and that a given device has a small number
1255 * of extents
7bfc837d
MX
1256 *
1257 * @start is used to store the start of the free space if we find. But if we
1258 * don't find suitable free space, it will be used to store the start position
1259 * of the max free space.
1260 *
1261 * @len is used to store the size of the free space that we find.
1262 * But if we don't find suitable free space, it is used to store the size of
1263 * the max free space.
0b86a832 1264 */
499f377f
JM
1265int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1266 struct btrfs_device *device, u64 num_bytes,
1267 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1268{
1269 struct btrfs_key key;
1270 struct btrfs_root *root = device->dev_root;
7bfc837d 1271 struct btrfs_dev_extent *dev_extent;
2b82032c 1272 struct btrfs_path *path;
7bfc837d
MX
1273 u64 hole_size;
1274 u64 max_hole_start;
1275 u64 max_hole_size;
1276 u64 extent_end;
0b86a832
CM
1277 u64 search_end = device->total_bytes;
1278 int ret;
7bfc837d 1279 int slot;
0b86a832 1280 struct extent_buffer *l;
8cdc7c5b
FM
1281 u64 min_search_start;
1282
1283 /*
1284 * We don't want to overwrite the superblock on the drive nor any area
1285 * used by the boot loader (grub for example), so we make sure to start
1286 * at an offset of at least 1MB.
1287 */
1288 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1289 search_start = max(search_start, min_search_start);
0b86a832 1290
6df9a95e
JB
1291 path = btrfs_alloc_path();
1292 if (!path)
1293 return -ENOMEM;
f2ab7618 1294
7bfc837d
MX
1295 max_hole_start = search_start;
1296 max_hole_size = 0;
1297
f2ab7618 1298again:
63a212ab 1299 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1300 ret = -ENOSPC;
6df9a95e 1301 goto out;
7bfc837d
MX
1302 }
1303
e4058b54 1304 path->reada = READA_FORWARD;
6df9a95e
JB
1305 path->search_commit_root = 1;
1306 path->skip_locking = 1;
7bfc837d 1307
0b86a832
CM
1308 key.objectid = device->devid;
1309 key.offset = search_start;
1310 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1311
125ccb0a 1312 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1313 if (ret < 0)
7bfc837d 1314 goto out;
1fcbac58
YZ
1315 if (ret > 0) {
1316 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1317 if (ret < 0)
7bfc837d 1318 goto out;
1fcbac58 1319 }
7bfc837d 1320
0b86a832
CM
1321 while (1) {
1322 l = path->nodes[0];
1323 slot = path->slots[0];
1324 if (slot >= btrfs_header_nritems(l)) {
1325 ret = btrfs_next_leaf(root, path);
1326 if (ret == 0)
1327 continue;
1328 if (ret < 0)
7bfc837d
MX
1329 goto out;
1330
1331 break;
0b86a832
CM
1332 }
1333 btrfs_item_key_to_cpu(l, &key, slot);
1334
1335 if (key.objectid < device->devid)
1336 goto next;
1337
1338 if (key.objectid > device->devid)
7bfc837d 1339 break;
0b86a832 1340
962a298f 1341 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1342 goto next;
9779b72f 1343
7bfc837d
MX
1344 if (key.offset > search_start) {
1345 hole_size = key.offset - search_start;
9779b72f 1346
6df9a95e
JB
1347 /*
1348 * Have to check before we set max_hole_start, otherwise
1349 * we could end up sending back this offset anyway.
1350 */
499f377f 1351 if (contains_pending_extent(transaction, device,
6df9a95e 1352 &search_start,
1b984508
FL
1353 hole_size)) {
1354 if (key.offset >= search_start) {
1355 hole_size = key.offset - search_start;
1356 } else {
1357 WARN_ON_ONCE(1);
1358 hole_size = 0;
1359 }
1360 }
6df9a95e 1361
7bfc837d
MX
1362 if (hole_size > max_hole_size) {
1363 max_hole_start = search_start;
1364 max_hole_size = hole_size;
1365 }
9779b72f 1366
7bfc837d
MX
1367 /*
1368 * If this free space is greater than which we need,
1369 * it must be the max free space that we have found
1370 * until now, so max_hole_start must point to the start
1371 * of this free space and the length of this free space
1372 * is stored in max_hole_size. Thus, we return
1373 * max_hole_start and max_hole_size and go back to the
1374 * caller.
1375 */
1376 if (hole_size >= num_bytes) {
1377 ret = 0;
1378 goto out;
0b86a832
CM
1379 }
1380 }
0b86a832 1381
0b86a832 1382 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1383 extent_end = key.offset + btrfs_dev_extent_length(l,
1384 dev_extent);
1385 if (extent_end > search_start)
1386 search_start = extent_end;
0b86a832
CM
1387next:
1388 path->slots[0]++;
1389 cond_resched();
1390 }
0b86a832 1391
38c01b96 1392 /*
1393 * At this point, search_start should be the end of
1394 * allocated dev extents, and when shrinking the device,
1395 * search_end may be smaller than search_start.
1396 */
f2ab7618 1397 if (search_end > search_start) {
38c01b96 1398 hole_size = search_end - search_start;
1399
499f377f 1400 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1401 hole_size)) {
1402 btrfs_release_path(path);
1403 goto again;
1404 }
0b86a832 1405
f2ab7618
ZL
1406 if (hole_size > max_hole_size) {
1407 max_hole_start = search_start;
1408 max_hole_size = hole_size;
1409 }
6df9a95e
JB
1410 }
1411
7bfc837d 1412 /* See above. */
f2ab7618 1413 if (max_hole_size < num_bytes)
7bfc837d
MX
1414 ret = -ENOSPC;
1415 else
1416 ret = 0;
1417
1418out:
2b82032c 1419 btrfs_free_path(path);
7bfc837d 1420 *start = max_hole_start;
b2117a39 1421 if (len)
7bfc837d 1422 *len = max_hole_size;
0b86a832
CM
1423 return ret;
1424}
1425
499f377f
JM
1426int find_free_dev_extent(struct btrfs_trans_handle *trans,
1427 struct btrfs_device *device, u64 num_bytes,
1428 u64 *start, u64 *len)
1429{
499f377f 1430 /* FIXME use last free of some kind */
499f377f 1431 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1432 num_bytes, 0, start, len);
499f377f
JM
1433}
1434
b2950863 1435static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1436 struct btrfs_device *device,
2196d6e8 1437 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1438{
1439 int ret;
1440 struct btrfs_path *path;
1441 struct btrfs_root *root = device->dev_root;
1442 struct btrfs_key key;
a061fc8d
CM
1443 struct btrfs_key found_key;
1444 struct extent_buffer *leaf = NULL;
1445 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1446
1447 path = btrfs_alloc_path();
1448 if (!path)
1449 return -ENOMEM;
1450
1451 key.objectid = device->devid;
1452 key.offset = start;
1453 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1454again:
8f18cf13 1455 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1456 if (ret > 0) {
1457 ret = btrfs_previous_item(root, path, key.objectid,
1458 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1459 if (ret)
1460 goto out;
a061fc8d
CM
1461 leaf = path->nodes[0];
1462 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1463 extent = btrfs_item_ptr(leaf, path->slots[0],
1464 struct btrfs_dev_extent);
1465 BUG_ON(found_key.offset > start || found_key.offset +
1466 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1467 key = found_key;
1468 btrfs_release_path(path);
1469 goto again;
a061fc8d
CM
1470 } else if (ret == 0) {
1471 leaf = path->nodes[0];
1472 extent = btrfs_item_ptr(leaf, path->slots[0],
1473 struct btrfs_dev_extent);
79787eaa 1474 } else {
a4553fef 1475 btrfs_std_error(root->fs_info, ret, "Slot search failed");
79787eaa 1476 goto out;
a061fc8d 1477 }
8f18cf13 1478
2196d6e8
MX
1479 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1480
8f18cf13 1481 ret = btrfs_del_item(trans, root, path);
79787eaa 1482 if (ret) {
a4553fef 1483 btrfs_std_error(root->fs_info, ret,
79787eaa 1484 "Failed to remove dev extent item");
13212b54 1485 } else {
3204d33c 1486 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1487 }
b0b802d7 1488out:
8f18cf13
CM
1489 btrfs_free_path(path);
1490 return ret;
1491}
1492
48a3b636
ES
1493static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1494 struct btrfs_device *device,
1495 u64 chunk_tree, u64 chunk_objectid,
1496 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1497{
1498 int ret;
1499 struct btrfs_path *path;
1500 struct btrfs_root *root = device->dev_root;
1501 struct btrfs_dev_extent *extent;
1502 struct extent_buffer *leaf;
1503 struct btrfs_key key;
1504
dfe25020 1505 WARN_ON(!device->in_fs_metadata);
63a212ab 1506 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1507 path = btrfs_alloc_path();
1508 if (!path)
1509 return -ENOMEM;
1510
0b86a832 1511 key.objectid = device->devid;
2b82032c 1512 key.offset = start;
0b86a832
CM
1513 key.type = BTRFS_DEV_EXTENT_KEY;
1514 ret = btrfs_insert_empty_item(trans, root, path, &key,
1515 sizeof(*extent));
2cdcecbc
MF
1516 if (ret)
1517 goto out;
0b86a832
CM
1518
1519 leaf = path->nodes[0];
1520 extent = btrfs_item_ptr(leaf, path->slots[0],
1521 struct btrfs_dev_extent);
e17cade2
CM
1522 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1523 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1524 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1525
1526 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1527 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1528
0b86a832
CM
1529 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1530 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1531out:
0b86a832
CM
1532 btrfs_free_path(path);
1533 return ret;
1534}
1535
6df9a95e 1536static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1537{
6df9a95e
JB
1538 struct extent_map_tree *em_tree;
1539 struct extent_map *em;
1540 struct rb_node *n;
1541 u64 ret = 0;
0b86a832 1542
6df9a95e
JB
1543 em_tree = &fs_info->mapping_tree.map_tree;
1544 read_lock(&em_tree->lock);
1545 n = rb_last(&em_tree->map);
1546 if (n) {
1547 em = rb_entry(n, struct extent_map, rb_node);
1548 ret = em->start + em->len;
0b86a832 1549 }
6df9a95e
JB
1550 read_unlock(&em_tree->lock);
1551
0b86a832
CM
1552 return ret;
1553}
1554
53f10659
ID
1555static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1556 u64 *devid_ret)
0b86a832
CM
1557{
1558 int ret;
1559 struct btrfs_key key;
1560 struct btrfs_key found_key;
2b82032c
YZ
1561 struct btrfs_path *path;
1562
2b82032c
YZ
1563 path = btrfs_alloc_path();
1564 if (!path)
1565 return -ENOMEM;
0b86a832
CM
1566
1567 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1568 key.type = BTRFS_DEV_ITEM_KEY;
1569 key.offset = (u64)-1;
1570
53f10659 1571 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1572 if (ret < 0)
1573 goto error;
1574
79787eaa 1575 BUG_ON(ret == 0); /* Corruption */
0b86a832 1576
53f10659
ID
1577 ret = btrfs_previous_item(fs_info->chunk_root, path,
1578 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1579 BTRFS_DEV_ITEM_KEY);
1580 if (ret) {
53f10659 1581 *devid_ret = 1;
0b86a832
CM
1582 } else {
1583 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1584 path->slots[0]);
53f10659 1585 *devid_ret = found_key.offset + 1;
0b86a832
CM
1586 }
1587 ret = 0;
1588error:
2b82032c 1589 btrfs_free_path(path);
0b86a832
CM
1590 return ret;
1591}
1592
1593/*
1594 * the device information is stored in the chunk root
1595 * the btrfs_device struct should be fully filled in
1596 */
48a3b636
ES
1597static int btrfs_add_device(struct btrfs_trans_handle *trans,
1598 struct btrfs_root *root,
1599 struct btrfs_device *device)
0b86a832
CM
1600{
1601 int ret;
1602 struct btrfs_path *path;
1603 struct btrfs_dev_item *dev_item;
1604 struct extent_buffer *leaf;
1605 struct btrfs_key key;
1606 unsigned long ptr;
0b86a832
CM
1607
1608 root = root->fs_info->chunk_root;
1609
1610 path = btrfs_alloc_path();
1611 if (!path)
1612 return -ENOMEM;
1613
0b86a832
CM
1614 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1615 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1616 key.offset = device->devid;
0b86a832
CM
1617
1618 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1619 sizeof(*dev_item));
0b86a832
CM
1620 if (ret)
1621 goto out;
1622
1623 leaf = path->nodes[0];
1624 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1625
1626 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1627 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1628 btrfs_set_device_type(leaf, dev_item, device->type);
1629 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1630 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1631 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1632 btrfs_set_device_total_bytes(leaf, dev_item,
1633 btrfs_device_get_disk_total_bytes(device));
1634 btrfs_set_device_bytes_used(leaf, dev_item,
1635 btrfs_device_get_bytes_used(device));
e17cade2
CM
1636 btrfs_set_device_group(leaf, dev_item, 0);
1637 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1638 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1639 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1640
410ba3a2 1641 ptr = btrfs_device_uuid(dev_item);
e17cade2 1642 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1643 ptr = btrfs_device_fsid(dev_item);
2b82032c 1644 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1645 btrfs_mark_buffer_dirty(leaf);
0b86a832 1646
2b82032c 1647 ret = 0;
0b86a832
CM
1648out:
1649 btrfs_free_path(path);
1650 return ret;
1651}
8f18cf13 1652
5a1972bd
QW
1653/*
1654 * Function to update ctime/mtime for a given device path.
1655 * Mainly used for ctime/mtime based probe like libblkid.
1656 */
1657static void update_dev_time(char *path_name)
1658{
1659 struct file *filp;
1660
1661 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1662 if (IS_ERR(filp))
5a1972bd
QW
1663 return;
1664 file_update_time(filp);
1665 filp_close(filp, NULL);
5a1972bd
QW
1666}
1667
a061fc8d
CM
1668static int btrfs_rm_dev_item(struct btrfs_root *root,
1669 struct btrfs_device *device)
1670{
1671 int ret;
1672 struct btrfs_path *path;
a061fc8d 1673 struct btrfs_key key;
a061fc8d
CM
1674 struct btrfs_trans_handle *trans;
1675
1676 root = root->fs_info->chunk_root;
1677
1678 path = btrfs_alloc_path();
1679 if (!path)
1680 return -ENOMEM;
1681
a22285a6 1682 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1683 if (IS_ERR(trans)) {
1684 btrfs_free_path(path);
1685 return PTR_ERR(trans);
1686 }
a061fc8d
CM
1687 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688 key.type = BTRFS_DEV_ITEM_KEY;
1689 key.offset = device->devid;
1690
1691 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1692 if (ret < 0)
1693 goto out;
1694
1695 if (ret > 0) {
1696 ret = -ENOENT;
1697 goto out;
1698 }
1699
1700 ret = btrfs_del_item(trans, root, path);
1701 if (ret)
1702 goto out;
a061fc8d
CM
1703out:
1704 btrfs_free_path(path);
1705 btrfs_commit_transaction(trans, root);
1706 return ret;
1707}
1708
3cc31a0d
DS
1709/*
1710 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1711 * filesystem. It's up to the caller to adjust that number regarding eg. device
1712 * replace.
1713 */
1714static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1715 u64 num_devices)
a061fc8d 1716{
a061fc8d 1717 u64 all_avail;
de98ced9 1718 unsigned seq;
a061fc8d 1719
de98ced9 1720 do {
bd45ffbc 1721 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1722
bd45ffbc
AJ
1723 all_avail = fs_info->avail_data_alloc_bits |
1724 fs_info->avail_system_alloc_bits |
1725 fs_info->avail_metadata_alloc_bits;
1726 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1727
3cc31a0d 1728 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices < 4) {
bd45ffbc 1729 return BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1730 }
1731
3cc31a0d 1732 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices < 2) {
bd45ffbc 1733 return BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1734 }
1735
53b381b3 1736 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
3cc31a0d 1737 fs_info->fs_devices->rw_devices < 2) {
bd45ffbc 1738 return BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3 1739 }
bd45ffbc 1740
53b381b3 1741 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
3cc31a0d 1742 fs_info->fs_devices->rw_devices < 3) {
bd45ffbc 1743 return BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1744 }
1745
bd45ffbc 1746 return 0;
f1fa7f26
AJ
1747}
1748
6b526ed7 1749int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
f1fa7f26
AJ
1750{
1751 struct btrfs_device *device;
1752 struct btrfs_device *next_device;
f1fa7f26 1753 struct btrfs_fs_devices *cur_devices;
f1fa7f26 1754 u64 num_devices;
f1fa7f26
AJ
1755 int ret = 0;
1756 bool clear_super = false;
42b67427 1757 char *dev_name = NULL;
f1fa7f26
AJ
1758
1759 mutex_lock(&uuid_mutex);
1760
3cc31a0d
DS
1761 num_devices = root->fs_info->fs_devices->num_devices;
1762 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1763 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1764 WARN_ON(num_devices < 1);
1765 num_devices--;
1766 }
1767 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1768
1769 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
f1fa7f26
AJ
1770 if (ret)
1771 goto out;
1772
6b526ed7 1773 ret = btrfs_find_device_by_user_input(root, devid, device_path,
24fc572f
AJ
1774 &device);
1775 if (ret)
1776 goto out;
dfe25020 1777
63a212ab 1778 if (device->is_tgtdev_for_dev_replace) {
183860f6 1779 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1780 goto out;
63a212ab
SB
1781 }
1782
2b82032c 1783 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1784 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1785 goto out;
2b82032c
YZ
1786 }
1787
1788 if (device->writeable) {
0c1daee0 1789 lock_chunks(root);
2b82032c 1790 list_del_init(&device->dev_alloc_list);
c3929c36 1791 device->fs_devices->rw_devices--;
0c1daee0 1792 unlock_chunks(root);
42b67427
AJ
1793 dev_name = kstrdup(device->name->str, GFP_KERNEL);
1794 if (!dev_name) {
1795 ret = -ENOMEM;
1796 goto error_undo;
1797 }
1f78160c 1798 clear_super = true;
dfe25020 1799 }
a061fc8d 1800
d7901554 1801 mutex_unlock(&uuid_mutex);
a061fc8d 1802 ret = btrfs_shrink_device(device, 0);
d7901554 1803 mutex_lock(&uuid_mutex);
a061fc8d 1804 if (ret)
9b3517e9 1805 goto error_undo;
a061fc8d 1806
63a212ab
SB
1807 /*
1808 * TODO: the superblock still includes this device in its num_devices
1809 * counter although write_all_supers() is not locked out. This
1810 * could give a filesystem state which requires a degraded mount.
1811 */
a061fc8d
CM
1812 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1813 if (ret)
9b3517e9 1814 goto error_undo;
a061fc8d 1815
2b82032c 1816 device->in_fs_metadata = 0;
aa1b8cd4 1817 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1818
1819 /*
1820 * the device list mutex makes sure that we don't change
1821 * the device list while someone else is writing out all
d7306801
FDBM
1822 * the device supers. Whoever is writing all supers, should
1823 * lock the device list mutex before getting the number of
1824 * devices in the super block (super_copy). Conversely,
1825 * whoever updates the number of devices in the super block
1826 * (super_copy) should hold the device list mutex.
e5e9a520 1827 */
1f78160c
XG
1828
1829 cur_devices = device->fs_devices;
e5e9a520 1830 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1831 list_del_rcu(&device->dev_list);
e5e9a520 1832
e4404d6e 1833 device->fs_devices->num_devices--;
02db0844 1834 device->fs_devices->total_devices--;
2b82032c 1835
cd02dca5 1836 if (device->missing)
3a7d55c8 1837 device->fs_devices->missing_devices--;
cd02dca5 1838
2b82032c
YZ
1839 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1840 struct btrfs_device, dev_list);
1841 if (device->bdev == root->fs_info->sb->s_bdev)
1842 root->fs_info->sb->s_bdev = next_device->bdev;
1843 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1844 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1845
0bfaa9c5 1846 if (device->bdev) {
e4404d6e 1847 device->fs_devices->open_devices--;
0bfaa9c5 1848 /* remove sysfs entry */
32576040 1849 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1850 }
99994cde 1851
1f78160c 1852 call_rcu(&device->rcu, free_device);
e4404d6e 1853
6c41761f
DS
1854 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1855 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1856 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1857
1f78160c 1858 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1859 struct btrfs_fs_devices *fs_devices;
1860 fs_devices = root->fs_info->fs_devices;
1861 while (fs_devices) {
8321cf25
RS
1862 if (fs_devices->seed == cur_devices) {
1863 fs_devices->seed = cur_devices->seed;
e4404d6e 1864 break;
8321cf25 1865 }
e4404d6e 1866 fs_devices = fs_devices->seed;
2b82032c 1867 }
1f78160c 1868 cur_devices->seed = NULL;
1f78160c 1869 __btrfs_close_devices(cur_devices);
1f78160c 1870 free_fs_devices(cur_devices);
2b82032c
YZ
1871 }
1872
5af3e8cc
SB
1873 root->fs_info->num_tolerated_disk_barrier_failures =
1874 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1875
2b82032c
YZ
1876 /*
1877 * at this point, the device is zero sized. We want to
1878 * remove it from the devices list and zero out the old super
1879 */
24fc572f 1880 if (clear_super) {
42b67427 1881 struct block_device *bdev;
4d90d28b 1882
42b67427
AJ
1883 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1884 root->fs_info->bdev_holder);
1885 if (!IS_ERR(bdev)) {
1886 btrfs_scratch_superblocks(bdev, dev_name);
24fc572f
AJ
1887 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1888 }
5a1972bd
QW
1889 }
1890
a061fc8d 1891out:
42b67427
AJ
1892 kfree(dev_name);
1893
a061fc8d 1894 mutex_unlock(&uuid_mutex);
a061fc8d 1895 return ret;
24fc572f 1896
9b3517e9
ID
1897error_undo:
1898 if (device->writeable) {
0c1daee0 1899 lock_chunks(root);
9b3517e9
ID
1900 list_add(&device->dev_alloc_list,
1901 &root->fs_info->fs_devices->alloc_list);
c3929c36 1902 device->fs_devices->rw_devices++;
0c1daee0 1903 unlock_chunks(root);
9b3517e9 1904 }
24fc572f 1905 goto out;
a061fc8d
CM
1906}
1907
084b6e7c
QW
1908void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1909 struct btrfs_device *srcdev)
e93c89c1 1910{
d51908ce
AJ
1911 struct btrfs_fs_devices *fs_devices;
1912
e93c89c1 1913 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1914
25e8e911
AJ
1915 /*
1916 * in case of fs with no seed, srcdev->fs_devices will point
1917 * to fs_devices of fs_info. However when the dev being replaced is
1918 * a seed dev it will point to the seed's local fs_devices. In short
1919 * srcdev will have its correct fs_devices in both the cases.
1920 */
1921 fs_devices = srcdev->fs_devices;
d51908ce 1922
e93c89c1
SB
1923 list_del_rcu(&srcdev->dev_list);
1924 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1925 fs_devices->num_devices--;
82372bc8 1926 if (srcdev->missing)
d51908ce 1927 fs_devices->missing_devices--;
e93c89c1 1928
82372bc8
MX
1929 if (srcdev->writeable) {
1930 fs_devices->rw_devices--;
1931 /* zero out the old super if it is writable */
31388ab2 1932 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1357272f
ID
1933 }
1934
82372bc8 1935 if (srcdev->bdev)
d51908ce 1936 fs_devices->open_devices--;
084b6e7c
QW
1937}
1938
1939void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1940 struct btrfs_device *srcdev)
1941{
1942 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1943
1944 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1945
1946 /*
1947 * unless fs_devices is seed fs, num_devices shouldn't go
1948 * zero
1949 */
1950 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1951
1952 /* if this is no devs we rather delete the fs_devices */
1953 if (!fs_devices->num_devices) {
1954 struct btrfs_fs_devices *tmp_fs_devices;
1955
1956 tmp_fs_devices = fs_info->fs_devices;
1957 while (tmp_fs_devices) {
1958 if (tmp_fs_devices->seed == fs_devices) {
1959 tmp_fs_devices->seed = fs_devices->seed;
1960 break;
1961 }
1962 tmp_fs_devices = tmp_fs_devices->seed;
1963 }
1964 fs_devices->seed = NULL;
8bef8401
AJ
1965 __btrfs_close_devices(fs_devices);
1966 free_fs_devices(fs_devices);
94d5f0c2 1967 }
e93c89c1
SB
1968}
1969
1970void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1971 struct btrfs_device *tgtdev)
1972{
1973 struct btrfs_device *next_device;
1974
67a2c45e 1975 mutex_lock(&uuid_mutex);
e93c89c1
SB
1976 WARN_ON(!tgtdev);
1977 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 1978
32576040 1979 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 1980
e93c89c1 1981 if (tgtdev->bdev) {
31388ab2 1982 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
e93c89c1
SB
1983 fs_info->fs_devices->open_devices--;
1984 }
1985 fs_info->fs_devices->num_devices--;
e93c89c1
SB
1986
1987 next_device = list_entry(fs_info->fs_devices->devices.next,
1988 struct btrfs_device, dev_list);
1989 if (tgtdev->bdev == fs_info->sb->s_bdev)
1990 fs_info->sb->s_bdev = next_device->bdev;
1991 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1992 fs_info->fs_devices->latest_bdev = next_device->bdev;
1993 list_del_rcu(&tgtdev->dev_list);
1994
1995 call_rcu(&tgtdev->rcu, free_device);
1996
1997 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 1998 mutex_unlock(&uuid_mutex);
e93c89c1
SB
1999}
2000
48a3b636
ES
2001static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2002 struct btrfs_device **device)
7ba15b7d
SB
2003{
2004 int ret = 0;
2005 struct btrfs_super_block *disk_super;
2006 u64 devid;
2007 u8 *dev_uuid;
2008 struct block_device *bdev;
2009 struct buffer_head *bh;
2010
2011 *device = NULL;
2012 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2013 root->fs_info->bdev_holder, 0, &bdev, &bh);
2014 if (ret)
2015 return ret;
2016 disk_super = (struct btrfs_super_block *)bh->b_data;
2017 devid = btrfs_stack_device_id(&disk_super->dev_item);
2018 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2019 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2020 disk_super->fsid);
2021 brelse(bh);
2022 if (!*device)
2023 ret = -ENOENT;
2024 blkdev_put(bdev, FMODE_READ);
2025 return ret;
2026}
2027
2028int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2029 char *device_path,
2030 struct btrfs_device **device)
2031{
2032 *device = NULL;
2033 if (strcmp(device_path, "missing") == 0) {
2034 struct list_head *devices;
2035 struct btrfs_device *tmp;
2036
2037 devices = &root->fs_info->fs_devices->devices;
2038 /*
2039 * It is safe to read the devices since the volume_mutex
2040 * is held by the caller.
2041 */
2042 list_for_each_entry(tmp, devices, dev_list) {
2043 if (tmp->in_fs_metadata && !tmp->bdev) {
2044 *device = tmp;
2045 break;
2046 }
2047 }
2048
d74a6259
AJ
2049 if (!*device)
2050 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2051
2052 return 0;
2053 } else {
2054 return btrfs_find_device_by_path(root, device_path, device);
2055 }
2056}
2057
24e0474b
AJ
2058int btrfs_find_device_by_user_input(struct btrfs_root *root, u64 srcdevid,
2059 char *srcdev_name,
2060 struct btrfs_device **device)
2061{
2062 int ret;
2063
2064 if (srcdevid) {
2065 ret = 0;
2066 *device = btrfs_find_device(root->fs_info, srcdevid, NULL,
2067 NULL);
2068 if (!*device)
2069 ret = -ENOENT;
2070 } else {
b3d1b153
AJ
2071 if (!srcdev_name || !srcdev_name[0])
2072 return -EINVAL;
2073
24e0474b
AJ
2074 ret = btrfs_find_device_missing_or_by_path(root, srcdev_name,
2075 device);
2076 }
2077 return ret;
2078}
2079
2b82032c
YZ
2080/*
2081 * does all the dirty work required for changing file system's UUID.
2082 */
125ccb0a 2083static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2084{
2085 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2086 struct btrfs_fs_devices *old_devices;
e4404d6e 2087 struct btrfs_fs_devices *seed_devices;
6c41761f 2088 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2089 struct btrfs_device *device;
2090 u64 super_flags;
2091
2092 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2093 if (!fs_devices->seeding)
2b82032c
YZ
2094 return -EINVAL;
2095
2208a378
ID
2096 seed_devices = __alloc_fs_devices();
2097 if (IS_ERR(seed_devices))
2098 return PTR_ERR(seed_devices);
2b82032c 2099
e4404d6e
YZ
2100 old_devices = clone_fs_devices(fs_devices);
2101 if (IS_ERR(old_devices)) {
2102 kfree(seed_devices);
2103 return PTR_ERR(old_devices);
2b82032c 2104 }
e4404d6e 2105
2b82032c
YZ
2106 list_add(&old_devices->list, &fs_uuids);
2107
e4404d6e
YZ
2108 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2109 seed_devices->opened = 1;
2110 INIT_LIST_HEAD(&seed_devices->devices);
2111 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2112 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2113
2114 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2115 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2116 synchronize_rcu);
2196d6e8
MX
2117 list_for_each_entry(device, &seed_devices->devices, dev_list)
2118 device->fs_devices = seed_devices;
c9513edb 2119
2196d6e8 2120 lock_chunks(root);
e4404d6e 2121 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2122 unlock_chunks(root);
e4404d6e 2123
2b82032c
YZ
2124 fs_devices->seeding = 0;
2125 fs_devices->num_devices = 0;
2126 fs_devices->open_devices = 0;
69611ac8 2127 fs_devices->missing_devices = 0;
69611ac8 2128 fs_devices->rotating = 0;
e4404d6e 2129 fs_devices->seed = seed_devices;
2b82032c
YZ
2130
2131 generate_random_uuid(fs_devices->fsid);
2132 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2133 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2134 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2135
2b82032c
YZ
2136 super_flags = btrfs_super_flags(disk_super) &
2137 ~BTRFS_SUPER_FLAG_SEEDING;
2138 btrfs_set_super_flags(disk_super, super_flags);
2139
2140 return 0;
2141}
2142
2143/*
2144 * strore the expected generation for seed devices in device items.
2145 */
2146static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2147 struct btrfs_root *root)
2148{
2149 struct btrfs_path *path;
2150 struct extent_buffer *leaf;
2151 struct btrfs_dev_item *dev_item;
2152 struct btrfs_device *device;
2153 struct btrfs_key key;
2154 u8 fs_uuid[BTRFS_UUID_SIZE];
2155 u8 dev_uuid[BTRFS_UUID_SIZE];
2156 u64 devid;
2157 int ret;
2158
2159 path = btrfs_alloc_path();
2160 if (!path)
2161 return -ENOMEM;
2162
2163 root = root->fs_info->chunk_root;
2164 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2165 key.offset = 0;
2166 key.type = BTRFS_DEV_ITEM_KEY;
2167
2168 while (1) {
2169 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2170 if (ret < 0)
2171 goto error;
2172
2173 leaf = path->nodes[0];
2174next_slot:
2175 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2176 ret = btrfs_next_leaf(root, path);
2177 if (ret > 0)
2178 break;
2179 if (ret < 0)
2180 goto error;
2181 leaf = path->nodes[0];
2182 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2183 btrfs_release_path(path);
2b82032c
YZ
2184 continue;
2185 }
2186
2187 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2188 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2189 key.type != BTRFS_DEV_ITEM_KEY)
2190 break;
2191
2192 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2193 struct btrfs_dev_item);
2194 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2195 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2196 BTRFS_UUID_SIZE);
1473b24e 2197 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2198 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2199 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2200 fs_uuid);
79787eaa 2201 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2202
2203 if (device->fs_devices->seeding) {
2204 btrfs_set_device_generation(leaf, dev_item,
2205 device->generation);
2206 btrfs_mark_buffer_dirty(leaf);
2207 }
2208
2209 path->slots[0]++;
2210 goto next_slot;
2211 }
2212 ret = 0;
2213error:
2214 btrfs_free_path(path);
2215 return ret;
2216}
2217
788f20eb
CM
2218int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2219{
d5e2003c 2220 struct request_queue *q;
788f20eb
CM
2221 struct btrfs_trans_handle *trans;
2222 struct btrfs_device *device;
2223 struct block_device *bdev;
788f20eb 2224 struct list_head *devices;
2b82032c 2225 struct super_block *sb = root->fs_info->sb;
606686ee 2226 struct rcu_string *name;
3c1dbdf5 2227 u64 tmp;
2b82032c 2228 int seeding_dev = 0;
788f20eb
CM
2229 int ret = 0;
2230
2b82032c 2231 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2232 return -EROFS;
788f20eb 2233
a5d16333 2234 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2235 root->fs_info->bdev_holder);
7f59203a
JB
2236 if (IS_ERR(bdev))
2237 return PTR_ERR(bdev);
a2135011 2238
2b82032c
YZ
2239 if (root->fs_info->fs_devices->seeding) {
2240 seeding_dev = 1;
2241 down_write(&sb->s_umount);
2242 mutex_lock(&uuid_mutex);
2243 }
2244
8c8bee1d 2245 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2246
788f20eb 2247 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2248
2249 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2250 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2251 if (device->bdev == bdev) {
2252 ret = -EEXIST;
d25628bd
LB
2253 mutex_unlock(
2254 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2255 goto error;
788f20eb
CM
2256 }
2257 }
d25628bd 2258 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2259
12bd2fc0
ID
2260 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2261 if (IS_ERR(device)) {
788f20eb 2262 /* we can safely leave the fs_devices entry around */
12bd2fc0 2263 ret = PTR_ERR(device);
2b82032c 2264 goto error;
788f20eb
CM
2265 }
2266
78f2c9e6 2267 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2268 if (!name) {
788f20eb 2269 kfree(device);
2b82032c
YZ
2270 ret = -ENOMEM;
2271 goto error;
788f20eb 2272 }
606686ee 2273 rcu_assign_pointer(device->name, name);
2b82032c 2274
a22285a6 2275 trans = btrfs_start_transaction(root, 0);
98d5dc13 2276 if (IS_ERR(trans)) {
606686ee 2277 rcu_string_free(device->name);
98d5dc13
TI
2278 kfree(device);
2279 ret = PTR_ERR(trans);
2280 goto error;
2281 }
2282
d5e2003c
JB
2283 q = bdev_get_queue(bdev);
2284 if (blk_queue_discard(q))
2285 device->can_discard = 1;
2b82032c 2286 device->writeable = 1;
2b82032c 2287 device->generation = trans->transid;
788f20eb
CM
2288 device->io_width = root->sectorsize;
2289 device->io_align = root->sectorsize;
2290 device->sector_size = root->sectorsize;
2291 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2292 device->disk_total_bytes = device->total_bytes;
935e5cc9 2293 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2294 device->dev_root = root->fs_info->dev_root;
2295 device->bdev = bdev;
dfe25020 2296 device->in_fs_metadata = 1;
63a212ab 2297 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2298 device->mode = FMODE_EXCL;
27087f37 2299 device->dev_stats_valid = 1;
2b82032c 2300 set_blocksize(device->bdev, 4096);
788f20eb 2301
2b82032c
YZ
2302 if (seeding_dev) {
2303 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2304 ret = btrfs_prepare_sprout(root);
79787eaa 2305 BUG_ON(ret); /* -ENOMEM */
2b82032c 2306 }
788f20eb 2307
2b82032c 2308 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2309
e5e9a520 2310 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2311 lock_chunks(root);
1f78160c 2312 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2313 list_add(&device->dev_alloc_list,
2314 &root->fs_info->fs_devices->alloc_list);
2315 root->fs_info->fs_devices->num_devices++;
2316 root->fs_info->fs_devices->open_devices++;
2317 root->fs_info->fs_devices->rw_devices++;
02db0844 2318 root->fs_info->fs_devices->total_devices++;
2b82032c 2319 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2320
2bf64758
JB
2321 spin_lock(&root->fs_info->free_chunk_lock);
2322 root->fs_info->free_chunk_space += device->total_bytes;
2323 spin_unlock(&root->fs_info->free_chunk_lock);
2324
c289811c
CM
2325 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2326 root->fs_info->fs_devices->rotating = 1;
2327
3c1dbdf5 2328 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2329 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2330 tmp + device->total_bytes);
788f20eb 2331
3c1dbdf5 2332 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2333 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2334 tmp + 1);
0d39376a
AJ
2335
2336 /* add sysfs device entry */
e3bd6973 2337 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2338
2196d6e8
MX
2339 /*
2340 * we've got more storage, clear any full flags on the space
2341 * infos
2342 */
2343 btrfs_clear_space_info_full(root->fs_info);
2344
2345 unlock_chunks(root);
e5e9a520 2346 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2347
2b82032c 2348 if (seeding_dev) {
2196d6e8 2349 lock_chunks(root);
2b82032c 2350 ret = init_first_rw_device(trans, root, device);
2196d6e8 2351 unlock_chunks(root);
005d6427
DS
2352 if (ret) {
2353 btrfs_abort_transaction(trans, root, ret);
79787eaa 2354 goto error_trans;
005d6427 2355 }
2196d6e8
MX
2356 }
2357
2358 ret = btrfs_add_device(trans, root, device);
2359 if (ret) {
2360 btrfs_abort_transaction(trans, root, ret);
2361 goto error_trans;
2362 }
2363
2364 if (seeding_dev) {
2365 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2366
2b82032c 2367 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2368 if (ret) {
2369 btrfs_abort_transaction(trans, root, ret);
79787eaa 2370 goto error_trans;
005d6427 2371 }
b2373f25
AJ
2372
2373 /* Sprouting would change fsid of the mounted root,
2374 * so rename the fsid on the sysfs
2375 */
2376 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2377 root->fs_info->fsid);
c1b7e474 2378 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2379 fsid_buf))
f14d104d
DS
2380 btrfs_warn(root->fs_info,
2381 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2382 }
2383
5af3e8cc
SB
2384 root->fs_info->num_tolerated_disk_barrier_failures =
2385 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2386 ret = btrfs_commit_transaction(trans, root);
a2135011 2387
2b82032c
YZ
2388 if (seeding_dev) {
2389 mutex_unlock(&uuid_mutex);
2390 up_write(&sb->s_umount);
788f20eb 2391
79787eaa
JM
2392 if (ret) /* transaction commit */
2393 return ret;
2394
2b82032c 2395 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2396 if (ret < 0)
a4553fef 2397 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2398 "Failed to relocate sys chunks after "
2399 "device initialization. This can be fixed "
2400 "using the \"btrfs balance\" command.");
671415b7
MX
2401 trans = btrfs_attach_transaction(root);
2402 if (IS_ERR(trans)) {
2403 if (PTR_ERR(trans) == -ENOENT)
2404 return 0;
2405 return PTR_ERR(trans);
2406 }
2407 ret = btrfs_commit_transaction(trans, root);
2b82032c 2408 }
c9e9f97b 2409
5a1972bd
QW
2410 /* Update ctime/mtime for libblkid */
2411 update_dev_time(device_path);
2b82032c 2412 return ret;
79787eaa
JM
2413
2414error_trans:
79787eaa 2415 btrfs_end_transaction(trans, root);
606686ee 2416 rcu_string_free(device->name);
32576040 2417 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2418 kfree(device);
2b82032c 2419error:
e525fd89 2420 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2421 if (seeding_dev) {
2422 mutex_unlock(&uuid_mutex);
2423 up_write(&sb->s_umount);
2424 }
c9e9f97b 2425 return ret;
788f20eb
CM
2426}
2427
e93c89c1 2428int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2429 struct btrfs_device *srcdev,
e93c89c1
SB
2430 struct btrfs_device **device_out)
2431{
2432 struct request_queue *q;
2433 struct btrfs_device *device;
2434 struct block_device *bdev;
2435 struct btrfs_fs_info *fs_info = root->fs_info;
2436 struct list_head *devices;
2437 struct rcu_string *name;
12bd2fc0 2438 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2439 int ret = 0;
2440
2441 *device_out = NULL;
1c43366d
MX
2442 if (fs_info->fs_devices->seeding) {
2443 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2444 return -EINVAL;
1c43366d 2445 }
e93c89c1
SB
2446
2447 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2448 fs_info->bdev_holder);
1c43366d
MX
2449 if (IS_ERR(bdev)) {
2450 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2451 return PTR_ERR(bdev);
1c43366d 2452 }
e93c89c1
SB
2453
2454 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2455
2456 devices = &fs_info->fs_devices->devices;
2457 list_for_each_entry(device, devices, dev_list) {
2458 if (device->bdev == bdev) {
1c43366d 2459 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2460 ret = -EEXIST;
2461 goto error;
2462 }
2463 }
2464
1c43366d 2465
7cc8e58d
MX
2466 if (i_size_read(bdev->bd_inode) <
2467 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2468 btrfs_err(fs_info, "target device is smaller than source device!");
2469 ret = -EINVAL;
2470 goto error;
2471 }
2472
2473
12bd2fc0
ID
2474 device = btrfs_alloc_device(NULL, &devid, NULL);
2475 if (IS_ERR(device)) {
2476 ret = PTR_ERR(device);
e93c89c1
SB
2477 goto error;
2478 }
2479
2480 name = rcu_string_strdup(device_path, GFP_NOFS);
2481 if (!name) {
2482 kfree(device);
2483 ret = -ENOMEM;
2484 goto error;
2485 }
2486 rcu_assign_pointer(device->name, name);
2487
2488 q = bdev_get_queue(bdev);
2489 if (blk_queue_discard(q))
2490 device->can_discard = 1;
2491 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2492 device->writeable = 1;
e93c89c1
SB
2493 device->generation = 0;
2494 device->io_width = root->sectorsize;
2495 device->io_align = root->sectorsize;
2496 device->sector_size = root->sectorsize;
7cc8e58d
MX
2497 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2498 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2499 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2500 ASSERT(list_empty(&srcdev->resized_list));
2501 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2502 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2503 device->dev_root = fs_info->dev_root;
2504 device->bdev = bdev;
2505 device->in_fs_metadata = 1;
2506 device->is_tgtdev_for_dev_replace = 1;
2507 device->mode = FMODE_EXCL;
27087f37 2508 device->dev_stats_valid = 1;
e93c89c1
SB
2509 set_blocksize(device->bdev, 4096);
2510 device->fs_devices = fs_info->fs_devices;
2511 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2512 fs_info->fs_devices->num_devices++;
2513 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2514 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2515
2516 *device_out = device;
2517 return ret;
2518
2519error:
2520 blkdev_put(bdev, FMODE_EXCL);
2521 return ret;
2522}
2523
2524void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2525 struct btrfs_device *tgtdev)
2526{
2527 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2528 tgtdev->io_width = fs_info->dev_root->sectorsize;
2529 tgtdev->io_align = fs_info->dev_root->sectorsize;
2530 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2531 tgtdev->dev_root = fs_info->dev_root;
2532 tgtdev->in_fs_metadata = 1;
2533}
2534
d397712b
CM
2535static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2536 struct btrfs_device *device)
0b86a832
CM
2537{
2538 int ret;
2539 struct btrfs_path *path;
2540 struct btrfs_root *root;
2541 struct btrfs_dev_item *dev_item;
2542 struct extent_buffer *leaf;
2543 struct btrfs_key key;
2544
2545 root = device->dev_root->fs_info->chunk_root;
2546
2547 path = btrfs_alloc_path();
2548 if (!path)
2549 return -ENOMEM;
2550
2551 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2552 key.type = BTRFS_DEV_ITEM_KEY;
2553 key.offset = device->devid;
2554
2555 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2556 if (ret < 0)
2557 goto out;
2558
2559 if (ret > 0) {
2560 ret = -ENOENT;
2561 goto out;
2562 }
2563
2564 leaf = path->nodes[0];
2565 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2566
2567 btrfs_set_device_id(leaf, dev_item, device->devid);
2568 btrfs_set_device_type(leaf, dev_item, device->type);
2569 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2570 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2571 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2572 btrfs_set_device_total_bytes(leaf, dev_item,
2573 btrfs_device_get_disk_total_bytes(device));
2574 btrfs_set_device_bytes_used(leaf, dev_item,
2575 btrfs_device_get_bytes_used(device));
0b86a832
CM
2576 btrfs_mark_buffer_dirty(leaf);
2577
2578out:
2579 btrfs_free_path(path);
2580 return ret;
2581}
2582
2196d6e8 2583int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2584 struct btrfs_device *device, u64 new_size)
2585{
2586 struct btrfs_super_block *super_copy =
6c41761f 2587 device->dev_root->fs_info->super_copy;
935e5cc9 2588 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2589 u64 old_total;
2590 u64 diff;
8f18cf13 2591
2b82032c
YZ
2592 if (!device->writeable)
2593 return -EACCES;
2196d6e8
MX
2594
2595 lock_chunks(device->dev_root);
2596 old_total = btrfs_super_total_bytes(super_copy);
2597 diff = new_size - device->total_bytes;
2598
63a212ab 2599 if (new_size <= device->total_bytes ||
2196d6e8
MX
2600 device->is_tgtdev_for_dev_replace) {
2601 unlock_chunks(device->dev_root);
2b82032c 2602 return -EINVAL;
2196d6e8 2603 }
2b82032c 2604
935e5cc9 2605 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2606
8f18cf13 2607 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2608 device->fs_devices->total_rw_bytes += diff;
2609
7cc8e58d
MX
2610 btrfs_device_set_total_bytes(device, new_size);
2611 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2612 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2613 if (list_empty(&device->resized_list))
2614 list_add_tail(&device->resized_list,
2615 &fs_devices->resized_devices);
2196d6e8 2616 unlock_chunks(device->dev_root);
4184ea7f 2617
8f18cf13
CM
2618 return btrfs_update_device(trans, device);
2619}
2620
2621static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2622 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2623 u64 chunk_offset)
2624{
2625 int ret;
2626 struct btrfs_path *path;
2627 struct btrfs_key key;
2628
2629 root = root->fs_info->chunk_root;
2630 path = btrfs_alloc_path();
2631 if (!path)
2632 return -ENOMEM;
2633
2634 key.objectid = chunk_objectid;
2635 key.offset = chunk_offset;
2636 key.type = BTRFS_CHUNK_ITEM_KEY;
2637
2638 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2639 if (ret < 0)
2640 goto out;
2641 else if (ret > 0) { /* Logic error or corruption */
a4553fef 2642 btrfs_std_error(root->fs_info, -ENOENT,
79787eaa
JM
2643 "Failed lookup while freeing chunk.");
2644 ret = -ENOENT;
2645 goto out;
2646 }
8f18cf13
CM
2647
2648 ret = btrfs_del_item(trans, root, path);
79787eaa 2649 if (ret < 0)
a4553fef 2650 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2651 "Failed to delete chunk item.");
2652out:
8f18cf13 2653 btrfs_free_path(path);
65a246c5 2654 return ret;
8f18cf13
CM
2655}
2656
b2950863 2657static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2658 chunk_offset)
2659{
6c41761f 2660 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2661 struct btrfs_disk_key *disk_key;
2662 struct btrfs_chunk *chunk;
2663 u8 *ptr;
2664 int ret = 0;
2665 u32 num_stripes;
2666 u32 array_size;
2667 u32 len = 0;
2668 u32 cur;
2669 struct btrfs_key key;
2670
2196d6e8 2671 lock_chunks(root);
8f18cf13
CM
2672 array_size = btrfs_super_sys_array_size(super_copy);
2673
2674 ptr = super_copy->sys_chunk_array;
2675 cur = 0;
2676
2677 while (cur < array_size) {
2678 disk_key = (struct btrfs_disk_key *)ptr;
2679 btrfs_disk_key_to_cpu(&key, disk_key);
2680
2681 len = sizeof(*disk_key);
2682
2683 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2684 chunk = (struct btrfs_chunk *)(ptr + len);
2685 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2686 len += btrfs_chunk_item_size(num_stripes);
2687 } else {
2688 ret = -EIO;
2689 break;
2690 }
2691 if (key.objectid == chunk_objectid &&
2692 key.offset == chunk_offset) {
2693 memmove(ptr, ptr + len, array_size - (cur + len));
2694 array_size -= len;
2695 btrfs_set_super_sys_array_size(super_copy, array_size);
2696 } else {
2697 ptr += len;
2698 cur += len;
2699 }
2700 }
2196d6e8 2701 unlock_chunks(root);
8f18cf13
CM
2702 return ret;
2703}
2704
47ab2a6c
JB
2705int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2706 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2707{
2708 struct extent_map_tree *em_tree;
8f18cf13 2709 struct extent_map *em;
47ab2a6c 2710 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2711 struct map_lookup *map;
2196d6e8 2712 u64 dev_extent_len = 0;
47ab2a6c 2713 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2714 int i, ret = 0;
8f18cf13 2715
47ab2a6c 2716 /* Just in case */
8f18cf13 2717 root = root->fs_info->chunk_root;
8f18cf13
CM
2718 em_tree = &root->fs_info->mapping_tree.map_tree;
2719
890871be 2720 read_lock(&em_tree->lock);
8f18cf13 2721 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2722 read_unlock(&em_tree->lock);
8f18cf13 2723
47ab2a6c
JB
2724 if (!em || em->start > chunk_offset ||
2725 em->start + em->len < chunk_offset) {
2726 /*
2727 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2728 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2729 * do anything we still error out.
2730 */
2731 ASSERT(0);
2732 if (em)
2733 free_extent_map(em);
2734 return -EINVAL;
2735 }
95617d69 2736 map = em->map_lookup;
39c2d7fa 2737 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2738 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2739 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2740
2741 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2742 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2743 ret = btrfs_free_dev_extent(trans, device,
2744 map->stripes[i].physical,
2745 &dev_extent_len);
47ab2a6c
JB
2746 if (ret) {
2747 btrfs_abort_transaction(trans, root, ret);
2748 goto out;
2749 }
a061fc8d 2750
2196d6e8
MX
2751 if (device->bytes_used > 0) {
2752 lock_chunks(root);
2753 btrfs_device_set_bytes_used(device,
2754 device->bytes_used - dev_extent_len);
2755 spin_lock(&root->fs_info->free_chunk_lock);
2756 root->fs_info->free_chunk_space += dev_extent_len;
2757 spin_unlock(&root->fs_info->free_chunk_lock);
2758 btrfs_clear_space_info_full(root->fs_info);
2759 unlock_chunks(root);
2760 }
a061fc8d 2761
dfe25020
CM
2762 if (map->stripes[i].dev) {
2763 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2764 if (ret) {
2765 btrfs_abort_transaction(trans, root, ret);
2766 goto out;
2767 }
dfe25020 2768 }
8f18cf13 2769 }
a688a04a 2770 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2771 if (ret) {
2772 btrfs_abort_transaction(trans, root, ret);
2773 goto out;
2774 }
8f18cf13 2775
1abe9b8a 2776 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2777
8f18cf13
CM
2778 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2779 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2780 if (ret) {
2781 btrfs_abort_transaction(trans, root, ret);
2782 goto out;
2783 }
8f18cf13
CM
2784 }
2785
04216820 2786 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2787 if (ret) {
2788 btrfs_abort_transaction(trans, extent_root, ret);
2789 goto out;
2790 }
2b82032c 2791
47ab2a6c 2792out:
2b82032c
YZ
2793 /* once for us */
2794 free_extent_map(em);
47ab2a6c
JB
2795 return ret;
2796}
2b82032c 2797
dc2ee4e2 2798static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2799{
2800 struct btrfs_root *extent_root;
2801 struct btrfs_trans_handle *trans;
2802 int ret;
2b82032c 2803
47ab2a6c
JB
2804 root = root->fs_info->chunk_root;
2805 extent_root = root->fs_info->extent_root;
2806
67c5e7d4
FM
2807 /*
2808 * Prevent races with automatic removal of unused block groups.
2809 * After we relocate and before we remove the chunk with offset
2810 * chunk_offset, automatic removal of the block group can kick in,
2811 * resulting in a failure when calling btrfs_remove_chunk() below.
2812 *
2813 * Make sure to acquire this mutex before doing a tree search (dev
2814 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2815 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2816 * we release the path used to search the chunk/dev tree and before
2817 * the current task acquires this mutex and calls us.
2818 */
2819 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2820
47ab2a6c
JB
2821 ret = btrfs_can_relocate(extent_root, chunk_offset);
2822 if (ret)
2823 return -ENOSPC;
2824
2825 /* step one, relocate all the extents inside this chunk */
55e3a601 2826 btrfs_scrub_pause(root);
47ab2a6c 2827 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2828 btrfs_scrub_continue(root);
47ab2a6c
JB
2829 if (ret)
2830 return ret;
2831
7fd01182
FM
2832 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2833 chunk_offset);
47ab2a6c
JB
2834 if (IS_ERR(trans)) {
2835 ret = PTR_ERR(trans);
a4553fef 2836 btrfs_std_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2837 return ret;
2838 }
2839
2840 /*
2841 * step two, delete the device extents and the
2842 * chunk tree entries
2843 */
2844 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2845 btrfs_end_transaction(trans, root);
47ab2a6c 2846 return ret;
2b82032c
YZ
2847}
2848
2849static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2850{
2851 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2852 struct btrfs_path *path;
2853 struct extent_buffer *leaf;
2854 struct btrfs_chunk *chunk;
2855 struct btrfs_key key;
2856 struct btrfs_key found_key;
2b82032c 2857 u64 chunk_type;
ba1bf481
JB
2858 bool retried = false;
2859 int failed = 0;
2b82032c
YZ
2860 int ret;
2861
2862 path = btrfs_alloc_path();
2863 if (!path)
2864 return -ENOMEM;
2865
ba1bf481 2866again:
2b82032c
YZ
2867 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2868 key.offset = (u64)-1;
2869 key.type = BTRFS_CHUNK_ITEM_KEY;
2870
2871 while (1) {
67c5e7d4 2872 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2873 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2874 if (ret < 0) {
2875 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2876 goto error;
67c5e7d4 2877 }
79787eaa 2878 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2879
2880 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2881 key.type);
67c5e7d4
FM
2882 if (ret)
2883 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2884 if (ret < 0)
2885 goto error;
2886 if (ret > 0)
2887 break;
1a40e23b 2888
2b82032c
YZ
2889 leaf = path->nodes[0];
2890 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2891
2b82032c
YZ
2892 chunk = btrfs_item_ptr(leaf, path->slots[0],
2893 struct btrfs_chunk);
2894 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2895 btrfs_release_path(path);
8f18cf13 2896
2b82032c 2897 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2898 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2899 found_key.offset);
ba1bf481
JB
2900 if (ret == -ENOSPC)
2901 failed++;
14586651
HS
2902 else
2903 BUG_ON(ret);
2b82032c 2904 }
67c5e7d4 2905 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2906
2b82032c
YZ
2907 if (found_key.offset == 0)
2908 break;
2909 key.offset = found_key.offset - 1;
2910 }
2911 ret = 0;
ba1bf481
JB
2912 if (failed && !retried) {
2913 failed = 0;
2914 retried = true;
2915 goto again;
fae7f21c 2916 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2917 ret = -ENOSPC;
2918 }
2b82032c
YZ
2919error:
2920 btrfs_free_path(path);
2921 return ret;
8f18cf13
CM
2922}
2923
0940ebf6
ID
2924static int insert_balance_item(struct btrfs_root *root,
2925 struct btrfs_balance_control *bctl)
2926{
2927 struct btrfs_trans_handle *trans;
2928 struct btrfs_balance_item *item;
2929 struct btrfs_disk_balance_args disk_bargs;
2930 struct btrfs_path *path;
2931 struct extent_buffer *leaf;
2932 struct btrfs_key key;
2933 int ret, err;
2934
2935 path = btrfs_alloc_path();
2936 if (!path)
2937 return -ENOMEM;
2938
2939 trans = btrfs_start_transaction(root, 0);
2940 if (IS_ERR(trans)) {
2941 btrfs_free_path(path);
2942 return PTR_ERR(trans);
2943 }
2944
2945 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 2946 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
2947 key.offset = 0;
2948
2949 ret = btrfs_insert_empty_item(trans, root, path, &key,
2950 sizeof(*item));
2951 if (ret)
2952 goto out;
2953
2954 leaf = path->nodes[0];
2955 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2956
2957 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2958
2959 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2960 btrfs_set_balance_data(leaf, item, &disk_bargs);
2961 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2962 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2963 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2964 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2965
2966 btrfs_set_balance_flags(leaf, item, bctl->flags);
2967
2968 btrfs_mark_buffer_dirty(leaf);
2969out:
2970 btrfs_free_path(path);
2971 err = btrfs_commit_transaction(trans, root);
2972 if (err && !ret)
2973 ret = err;
2974 return ret;
2975}
2976
2977static int del_balance_item(struct btrfs_root *root)
2978{
2979 struct btrfs_trans_handle *trans;
2980 struct btrfs_path *path;
2981 struct btrfs_key key;
2982 int ret, err;
2983
2984 path = btrfs_alloc_path();
2985 if (!path)
2986 return -ENOMEM;
2987
2988 trans = btrfs_start_transaction(root, 0);
2989 if (IS_ERR(trans)) {
2990 btrfs_free_path(path);
2991 return PTR_ERR(trans);
2992 }
2993
2994 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 2995 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
2996 key.offset = 0;
2997
2998 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2999 if (ret < 0)
3000 goto out;
3001 if (ret > 0) {
3002 ret = -ENOENT;
3003 goto out;
3004 }
3005
3006 ret = btrfs_del_item(trans, root, path);
3007out:
3008 btrfs_free_path(path);
3009 err = btrfs_commit_transaction(trans, root);
3010 if (err && !ret)
3011 ret = err;
3012 return ret;
3013}
3014
59641015
ID
3015/*
3016 * This is a heuristic used to reduce the number of chunks balanced on
3017 * resume after balance was interrupted.
3018 */
3019static void update_balance_args(struct btrfs_balance_control *bctl)
3020{
3021 /*
3022 * Turn on soft mode for chunk types that were being converted.
3023 */
3024 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3025 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3026 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3027 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3028 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3029 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3030
3031 /*
3032 * Turn on usage filter if is not already used. The idea is
3033 * that chunks that we have already balanced should be
3034 * reasonably full. Don't do it for chunks that are being
3035 * converted - that will keep us from relocating unconverted
3036 * (albeit full) chunks.
3037 */
3038 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3039 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3040 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3041 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3042 bctl->data.usage = 90;
3043 }
3044 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3045 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3046 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3047 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3048 bctl->sys.usage = 90;
3049 }
3050 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3051 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3052 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3053 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3054 bctl->meta.usage = 90;
3055 }
3056}
3057
c9e9f97b
ID
3058/*
3059 * Should be called with both balance and volume mutexes held to
3060 * serialize other volume operations (add_dev/rm_dev/resize) with
3061 * restriper. Same goes for unset_balance_control.
3062 */
3063static void set_balance_control(struct btrfs_balance_control *bctl)
3064{
3065 struct btrfs_fs_info *fs_info = bctl->fs_info;
3066
3067 BUG_ON(fs_info->balance_ctl);
3068
3069 spin_lock(&fs_info->balance_lock);
3070 fs_info->balance_ctl = bctl;
3071 spin_unlock(&fs_info->balance_lock);
3072}
3073
3074static void unset_balance_control(struct btrfs_fs_info *fs_info)
3075{
3076 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3077
3078 BUG_ON(!fs_info->balance_ctl);
3079
3080 spin_lock(&fs_info->balance_lock);
3081 fs_info->balance_ctl = NULL;
3082 spin_unlock(&fs_info->balance_lock);
3083
3084 kfree(bctl);
3085}
3086
ed25e9b2
ID
3087/*
3088 * Balance filters. Return 1 if chunk should be filtered out
3089 * (should not be balanced).
3090 */
899c81ea 3091static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3092 struct btrfs_balance_args *bargs)
3093{
899c81ea
ID
3094 chunk_type = chunk_to_extended(chunk_type) &
3095 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3096
899c81ea 3097 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3098 return 0;
3099
3100 return 1;
3101}
3102
dba72cb3 3103static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3104 struct btrfs_balance_args *bargs)
bc309467
DS
3105{
3106 struct btrfs_block_group_cache *cache;
3107 u64 chunk_used;
3108 u64 user_thresh_min;
3109 u64 user_thresh_max;
3110 int ret = 1;
3111
3112 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3113 chunk_used = btrfs_block_group_used(&cache->item);
3114
3115 if (bargs->usage_min == 0)
3116 user_thresh_min = 0;
3117 else
3118 user_thresh_min = div_factor_fine(cache->key.offset,
3119 bargs->usage_min);
3120
3121 if (bargs->usage_max == 0)
3122 user_thresh_max = 1;
3123 else if (bargs->usage_max > 100)
3124 user_thresh_max = cache->key.offset;
3125 else
3126 user_thresh_max = div_factor_fine(cache->key.offset,
3127 bargs->usage_max);
3128
3129 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3130 ret = 0;
3131
3132 btrfs_put_block_group(cache);
3133 return ret;
3134}
3135
dba72cb3 3136static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3137 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3138{
3139 struct btrfs_block_group_cache *cache;
3140 u64 chunk_used, user_thresh;
3141 int ret = 1;
3142
3143 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3144 chunk_used = btrfs_block_group_used(&cache->item);
3145
bc309467 3146 if (bargs->usage_min == 0)
3e39cea6 3147 user_thresh = 1;
a105bb88
ID
3148 else if (bargs->usage > 100)
3149 user_thresh = cache->key.offset;
3150 else
3151 user_thresh = div_factor_fine(cache->key.offset,
3152 bargs->usage);
3153
5ce5b3c0
ID
3154 if (chunk_used < user_thresh)
3155 ret = 0;
3156
3157 btrfs_put_block_group(cache);
3158 return ret;
3159}
3160
409d404b
ID
3161static int chunk_devid_filter(struct extent_buffer *leaf,
3162 struct btrfs_chunk *chunk,
3163 struct btrfs_balance_args *bargs)
3164{
3165 struct btrfs_stripe *stripe;
3166 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3167 int i;
3168
3169 for (i = 0; i < num_stripes; i++) {
3170 stripe = btrfs_stripe_nr(chunk, i);
3171 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3172 return 0;
3173 }
3174
3175 return 1;
3176}
3177
94e60d5a
ID
3178/* [pstart, pend) */
3179static int chunk_drange_filter(struct extent_buffer *leaf,
3180 struct btrfs_chunk *chunk,
3181 u64 chunk_offset,
3182 struct btrfs_balance_args *bargs)
3183{
3184 struct btrfs_stripe *stripe;
3185 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3186 u64 stripe_offset;
3187 u64 stripe_length;
3188 int factor;
3189 int i;
3190
3191 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3192 return 0;
3193
3194 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3195 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3196 factor = num_stripes / 2;
3197 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3198 factor = num_stripes - 1;
3199 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3200 factor = num_stripes - 2;
3201 } else {
3202 factor = num_stripes;
3203 }
94e60d5a
ID
3204
3205 for (i = 0; i < num_stripes; i++) {
3206 stripe = btrfs_stripe_nr(chunk, i);
3207 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3208 continue;
3209
3210 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3211 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3212 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3213
3214 if (stripe_offset < bargs->pend &&
3215 stripe_offset + stripe_length > bargs->pstart)
3216 return 0;
3217 }
3218
3219 return 1;
3220}
3221
ea67176a
ID
3222/* [vstart, vend) */
3223static int chunk_vrange_filter(struct extent_buffer *leaf,
3224 struct btrfs_chunk *chunk,
3225 u64 chunk_offset,
3226 struct btrfs_balance_args *bargs)
3227{
3228 if (chunk_offset < bargs->vend &&
3229 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3230 /* at least part of the chunk is inside this vrange */
3231 return 0;
3232
3233 return 1;
3234}
3235
dee32d0a
GAP
3236static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3237 struct btrfs_chunk *chunk,
3238 struct btrfs_balance_args *bargs)
3239{
3240 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3241
3242 if (bargs->stripes_min <= num_stripes
3243 && num_stripes <= bargs->stripes_max)
3244 return 0;
3245
3246 return 1;
3247}
3248
899c81ea 3249static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3250 struct btrfs_balance_args *bargs)
3251{
3252 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3253 return 0;
3254
899c81ea
ID
3255 chunk_type = chunk_to_extended(chunk_type) &
3256 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3257
899c81ea 3258 if (bargs->target == chunk_type)
cfa4c961
ID
3259 return 1;
3260
3261 return 0;
3262}
3263
f43ffb60
ID
3264static int should_balance_chunk(struct btrfs_root *root,
3265 struct extent_buffer *leaf,
3266 struct btrfs_chunk *chunk, u64 chunk_offset)
3267{
3268 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3269 struct btrfs_balance_args *bargs = NULL;
3270 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3271
3272 /* type filter */
3273 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3274 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3275 return 0;
3276 }
3277
3278 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3279 bargs = &bctl->data;
3280 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3281 bargs = &bctl->sys;
3282 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3283 bargs = &bctl->meta;
3284
ed25e9b2
ID
3285 /* profiles filter */
3286 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3287 chunk_profiles_filter(chunk_type, bargs)) {
3288 return 0;
5ce5b3c0
ID
3289 }
3290
3291 /* usage filter */
3292 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3293 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3294 return 0;
bc309467
DS
3295 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3296 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3297 return 0;
409d404b
ID
3298 }
3299
3300 /* devid filter */
3301 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3302 chunk_devid_filter(leaf, chunk, bargs)) {
3303 return 0;
94e60d5a
ID
3304 }
3305
3306 /* drange filter, makes sense only with devid filter */
3307 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3308 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3309 return 0;
ea67176a
ID
3310 }
3311
3312 /* vrange filter */
3313 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3314 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3315 return 0;
ed25e9b2
ID
3316 }
3317
dee32d0a
GAP
3318 /* stripes filter */
3319 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3320 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3321 return 0;
3322 }
3323
cfa4c961
ID
3324 /* soft profile changing mode */
3325 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3326 chunk_soft_convert_filter(chunk_type, bargs)) {
3327 return 0;
3328 }
3329
7d824b6f
DS
3330 /*
3331 * limited by count, must be the last filter
3332 */
3333 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3334 if (bargs->limit == 0)
3335 return 0;
3336 else
3337 bargs->limit--;
12907fc7
DS
3338 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3339 /*
3340 * Same logic as the 'limit' filter; the minimum cannot be
3341 * determined here because we do not have the global informatoin
3342 * about the count of all chunks that satisfy the filters.
3343 */
3344 if (bargs->limit_max == 0)
3345 return 0;
3346 else
3347 bargs->limit_max--;
7d824b6f
DS
3348 }
3349
f43ffb60
ID
3350 return 1;
3351}
3352
c9e9f97b 3353static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3354{
19a39dce 3355 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3356 struct btrfs_root *chunk_root = fs_info->chunk_root;
3357 struct btrfs_root *dev_root = fs_info->dev_root;
3358 struct list_head *devices;
ec44a35c
CM
3359 struct btrfs_device *device;
3360 u64 old_size;
3361 u64 size_to_free;
12907fc7 3362 u64 chunk_type;
f43ffb60 3363 struct btrfs_chunk *chunk;
ec44a35c
CM
3364 struct btrfs_path *path;
3365 struct btrfs_key key;
ec44a35c 3366 struct btrfs_key found_key;
c9e9f97b 3367 struct btrfs_trans_handle *trans;
f43ffb60
ID
3368 struct extent_buffer *leaf;
3369 int slot;
c9e9f97b
ID
3370 int ret;
3371 int enospc_errors = 0;
19a39dce 3372 bool counting = true;
12907fc7 3373 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3374 u64 limit_data = bctl->data.limit;
3375 u64 limit_meta = bctl->meta.limit;
3376 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3377 u32 count_data = 0;
3378 u32 count_meta = 0;
3379 u32 count_sys = 0;
2c9fe835 3380 int chunk_reserved = 0;
ec44a35c 3381
ec44a35c 3382 /* step one make some room on all the devices */
c9e9f97b 3383 devices = &fs_info->fs_devices->devices;
c6e30871 3384 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3385 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3386 size_to_free = div_factor(old_size, 1);
ee22184b 3387 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3388 if (!device->writeable ||
7cc8e58d
MX
3389 btrfs_device_get_total_bytes(device) -
3390 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3391 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3392 continue;
3393
3394 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3395 if (ret == -ENOSPC)
3396 break;
ec44a35c
CM
3397 BUG_ON(ret);
3398
a22285a6 3399 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3400 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3401
3402 ret = btrfs_grow_device(trans, device, old_size);
3403 BUG_ON(ret);
3404
3405 btrfs_end_transaction(trans, dev_root);
3406 }
3407
3408 /* step two, relocate all the chunks */
3409 path = btrfs_alloc_path();
17e9f796
MF
3410 if (!path) {
3411 ret = -ENOMEM;
3412 goto error;
3413 }
19a39dce
ID
3414
3415 /* zero out stat counters */
3416 spin_lock(&fs_info->balance_lock);
3417 memset(&bctl->stat, 0, sizeof(bctl->stat));
3418 spin_unlock(&fs_info->balance_lock);
3419again:
7d824b6f 3420 if (!counting) {
12907fc7
DS
3421 /*
3422 * The single value limit and min/max limits use the same bytes
3423 * in the
3424 */
7d824b6f
DS
3425 bctl->data.limit = limit_data;
3426 bctl->meta.limit = limit_meta;
3427 bctl->sys.limit = limit_sys;
3428 }
ec44a35c
CM
3429 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3430 key.offset = (u64)-1;
3431 key.type = BTRFS_CHUNK_ITEM_KEY;
3432
d397712b 3433 while (1) {
19a39dce 3434 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3435 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3436 ret = -ECANCELED;
3437 goto error;
3438 }
3439
67c5e7d4 3440 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3441 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3442 if (ret < 0) {
3443 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3444 goto error;
67c5e7d4 3445 }
ec44a35c
CM
3446
3447 /*
3448 * this shouldn't happen, it means the last relocate
3449 * failed
3450 */
3451 if (ret == 0)
c9e9f97b 3452 BUG(); /* FIXME break ? */
ec44a35c
CM
3453
3454 ret = btrfs_previous_item(chunk_root, path, 0,
3455 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3456 if (ret) {
67c5e7d4 3457 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3458 ret = 0;
ec44a35c 3459 break;
c9e9f97b 3460 }
7d9eb12c 3461
f43ffb60
ID
3462 leaf = path->nodes[0];
3463 slot = path->slots[0];
3464 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3465
67c5e7d4
FM
3466 if (found_key.objectid != key.objectid) {
3467 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3468 break;
67c5e7d4 3469 }
7d9eb12c 3470
f43ffb60 3471 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3472 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3473
19a39dce
ID
3474 if (!counting) {
3475 spin_lock(&fs_info->balance_lock);
3476 bctl->stat.considered++;
3477 spin_unlock(&fs_info->balance_lock);
3478 }
3479
f43ffb60
ID
3480 ret = should_balance_chunk(chunk_root, leaf, chunk,
3481 found_key.offset);
2c9fe835 3482
b3b4aa74 3483 btrfs_release_path(path);
67c5e7d4
FM
3484 if (!ret) {
3485 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3486 goto loop;
67c5e7d4 3487 }
f43ffb60 3488
19a39dce 3489 if (counting) {
67c5e7d4 3490 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3491 spin_lock(&fs_info->balance_lock);
3492 bctl->stat.expected++;
3493 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3494
3495 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3496 count_data++;
3497 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3498 count_sys++;
3499 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3500 count_meta++;
3501
3502 goto loop;
3503 }
3504
3505 /*
3506 * Apply limit_min filter, no need to check if the LIMITS
3507 * filter is used, limit_min is 0 by default
3508 */
3509 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3510 count_data < bctl->data.limit_min)
3511 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3512 count_meta < bctl->meta.limit_min)
3513 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3514 count_sys < bctl->sys.limit_min)) {
3515 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3516 goto loop;
3517 }
3518
2c9fe835
ZL
3519 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3520 trans = btrfs_start_transaction(chunk_root, 0);
3521 if (IS_ERR(trans)) {
3522 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3523 ret = PTR_ERR(trans);
3524 goto error;
3525 }
3526
3527 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3528 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3529 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3530 if (ret < 0) {
3531 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3532 goto error;
3533 }
2c9fe835
ZL
3534 chunk_reserved = 1;
3535 }
3536
ec44a35c 3537 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3538 found_key.offset);
67c5e7d4 3539 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3540 if (ret && ret != -ENOSPC)
3541 goto error;
19a39dce 3542 if (ret == -ENOSPC) {
c9e9f97b 3543 enospc_errors++;
19a39dce
ID
3544 } else {
3545 spin_lock(&fs_info->balance_lock);
3546 bctl->stat.completed++;
3547 spin_unlock(&fs_info->balance_lock);
3548 }
f43ffb60 3549loop:
795a3321
ID
3550 if (found_key.offset == 0)
3551 break;
ba1bf481 3552 key.offset = found_key.offset - 1;
ec44a35c 3553 }
c9e9f97b 3554
19a39dce
ID
3555 if (counting) {
3556 btrfs_release_path(path);
3557 counting = false;
3558 goto again;
3559 }
ec44a35c
CM
3560error:
3561 btrfs_free_path(path);
c9e9f97b 3562 if (enospc_errors) {
efe120a0 3563 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3564 enospc_errors);
3565 if (!ret)
3566 ret = -ENOSPC;
3567 }
3568
ec44a35c
CM
3569 return ret;
3570}
3571
0c460c0d
ID
3572/**
3573 * alloc_profile_is_valid - see if a given profile is valid and reduced
3574 * @flags: profile to validate
3575 * @extended: if true @flags is treated as an extended profile
3576 */
3577static int alloc_profile_is_valid(u64 flags, int extended)
3578{
3579 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3580 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3581
3582 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3583
3584 /* 1) check that all other bits are zeroed */
3585 if (flags & ~mask)
3586 return 0;
3587
3588 /* 2) see if profile is reduced */
3589 if (flags == 0)
3590 return !extended; /* "0" is valid for usual profiles */
3591
3592 /* true if exactly one bit set */
3593 return (flags & (flags - 1)) == 0;
3594}
3595
837d5b6e
ID
3596static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3597{
a7e99c69
ID
3598 /* cancel requested || normal exit path */
3599 return atomic_read(&fs_info->balance_cancel_req) ||
3600 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3601 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3602}
3603
c9e9f97b
ID
3604static void __cancel_balance(struct btrfs_fs_info *fs_info)
3605{
0940ebf6
ID
3606 int ret;
3607
c9e9f97b 3608 unset_balance_control(fs_info);
0940ebf6 3609 ret = del_balance_item(fs_info->tree_root);
0f788c58 3610 if (ret)
a4553fef 3611 btrfs_std_error(fs_info, ret, NULL);
ed0fb78f
ID
3612
3613 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3614}
3615
bdcd3c97
AM
3616/* Non-zero return value signifies invalidity */
3617static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3618 u64 allowed)
3619{
3620 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3621 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3622 (bctl_arg->target & ~allowed)));
3623}
3624
c9e9f97b
ID
3625/*
3626 * Should be called with both balance and volume mutexes held
3627 */
3628int btrfs_balance(struct btrfs_balance_control *bctl,
3629 struct btrfs_ioctl_balance_args *bargs)
3630{
3631 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3632 u64 allowed;
e4837f8f 3633 int mixed = 0;
c9e9f97b 3634 int ret;
8dabb742 3635 u64 num_devices;
de98ced9 3636 unsigned seq;
c9e9f97b 3637
837d5b6e 3638 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3639 atomic_read(&fs_info->balance_pause_req) ||
3640 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3641 ret = -EINVAL;
3642 goto out;
3643 }
3644
e4837f8f
ID
3645 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3646 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3647 mixed = 1;
3648
f43ffb60
ID
3649 /*
3650 * In case of mixed groups both data and meta should be picked,
3651 * and identical options should be given for both of them.
3652 */
e4837f8f
ID
3653 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3654 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3655 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3656 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3657 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3658 btrfs_err(fs_info, "with mixed groups data and "
3659 "metadata balance options must be the same");
f43ffb60
ID
3660 ret = -EINVAL;
3661 goto out;
3662 }
3663 }
3664
8dabb742 3665 num_devices = fs_info->fs_devices->num_devices;
73beece9 3666 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3667 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3668 BUG_ON(num_devices < 1);
3669 num_devices--;
3670 }
73beece9 3671 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
e4d8ec0f 3672 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3673 if (num_devices == 1)
e4d8ec0f 3674 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3675 else if (num_devices > 1)
e4d8ec0f 3676 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3677 if (num_devices > 2)
3678 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3679 if (num_devices > 3)
3680 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3681 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3682 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3683 btrfs_err(fs_info, "unable to start balance with target "
3684 "data profile %llu",
c1c9ff7c 3685 bctl->data.target);
e4d8ec0f
ID
3686 ret = -EINVAL;
3687 goto out;
3688 }
bdcd3c97 3689 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3690 btrfs_err(fs_info,
3691 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3692 bctl->meta.target);
e4d8ec0f
ID
3693 ret = -EINVAL;
3694 goto out;
3695 }
bdcd3c97 3696 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3697 btrfs_err(fs_info,
3698 "unable to start balance with target system profile %llu",
c1c9ff7c 3699 bctl->sys.target);
e4d8ec0f
ID
3700 ret = -EINVAL;
3701 goto out;
3702 }
3703
e4d8ec0f
ID
3704 /* allow to reduce meta or sys integrity only if force set */
3705 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3706 BTRFS_BLOCK_GROUP_RAID10 |
3707 BTRFS_BLOCK_GROUP_RAID5 |
3708 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3709 do {
3710 seq = read_seqbegin(&fs_info->profiles_lock);
3711
3712 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3713 (fs_info->avail_system_alloc_bits & allowed) &&
3714 !(bctl->sys.target & allowed)) ||
3715 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3716 (fs_info->avail_metadata_alloc_bits & allowed) &&
3717 !(bctl->meta.target & allowed))) {
3718 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3719 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3720 } else {
efe120a0
FH
3721 btrfs_err(fs_info, "balance will reduce metadata "
3722 "integrity, use force if you want this");
de98ced9
MX
3723 ret = -EINVAL;
3724 goto out;
3725 }
e4d8ec0f 3726 }
de98ced9 3727 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3728
ee592d07
ST
3729 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3730 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3731 btrfs_warn(fs_info,
fedc0045 3732 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
ee592d07
ST
3733 bctl->meta.target, bctl->data.target);
3734 }
3735
5af3e8cc 3736 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3737 fs_info->num_tolerated_disk_barrier_failures = min(
3738 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3739 btrfs_get_num_tolerated_disk_barrier_failures(
3740 bctl->sys.target));
5af3e8cc
SB
3741 }
3742
0940ebf6 3743 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3744 if (ret && ret != -EEXIST)
0940ebf6
ID
3745 goto out;
3746
59641015
ID
3747 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3748 BUG_ON(ret == -EEXIST);
3749 set_balance_control(bctl);
3750 } else {
3751 BUG_ON(ret != -EEXIST);
3752 spin_lock(&fs_info->balance_lock);
3753 update_balance_args(bctl);
3754 spin_unlock(&fs_info->balance_lock);
3755 }
c9e9f97b 3756
837d5b6e 3757 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3758 mutex_unlock(&fs_info->balance_mutex);
3759
3760 ret = __btrfs_balance(fs_info);
3761
3762 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3763 atomic_dec(&fs_info->balance_running);
c9e9f97b 3764
bf023ecf
ID
3765 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3766 fs_info->num_tolerated_disk_barrier_failures =
3767 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3768 }
3769
c9e9f97b
ID
3770 if (bargs) {
3771 memset(bargs, 0, sizeof(*bargs));
19a39dce 3772 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3773 }
3774
3a01aa7a
ID
3775 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3776 balance_need_close(fs_info)) {
3777 __cancel_balance(fs_info);
3778 }
3779
837d5b6e 3780 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3781
3782 return ret;
3783out:
59641015
ID
3784 if (bctl->flags & BTRFS_BALANCE_RESUME)
3785 __cancel_balance(fs_info);
ed0fb78f 3786 else {
59641015 3787 kfree(bctl);
ed0fb78f
ID
3788 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3789 }
59641015
ID
3790 return ret;
3791}
3792
3793static int balance_kthread(void *data)
3794{
2b6ba629 3795 struct btrfs_fs_info *fs_info = data;
9555c6c1 3796 int ret = 0;
59641015
ID
3797
3798 mutex_lock(&fs_info->volume_mutex);
3799 mutex_lock(&fs_info->balance_mutex);
3800
2b6ba629 3801 if (fs_info->balance_ctl) {
efe120a0 3802 btrfs_info(fs_info, "continuing balance");
2b6ba629 3803 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3804 }
59641015
ID
3805
3806 mutex_unlock(&fs_info->balance_mutex);
3807 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3808
59641015
ID
3809 return ret;
3810}
3811
2b6ba629
ID
3812int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3813{
3814 struct task_struct *tsk;
3815
3816 spin_lock(&fs_info->balance_lock);
3817 if (!fs_info->balance_ctl) {
3818 spin_unlock(&fs_info->balance_lock);
3819 return 0;
3820 }
3821 spin_unlock(&fs_info->balance_lock);
3822
3823 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3824 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3825 return 0;
3826 }
3827
3828 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3829 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3830}
3831
68310a5e 3832int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3833{
59641015
ID
3834 struct btrfs_balance_control *bctl;
3835 struct btrfs_balance_item *item;
3836 struct btrfs_disk_balance_args disk_bargs;
3837 struct btrfs_path *path;
3838 struct extent_buffer *leaf;
3839 struct btrfs_key key;
3840 int ret;
3841
3842 path = btrfs_alloc_path();
3843 if (!path)
3844 return -ENOMEM;
3845
59641015 3846 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3847 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3848 key.offset = 0;
3849
68310a5e 3850 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3851 if (ret < 0)
68310a5e 3852 goto out;
59641015
ID
3853 if (ret > 0) { /* ret = -ENOENT; */
3854 ret = 0;
68310a5e
ID
3855 goto out;
3856 }
3857
3858 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3859 if (!bctl) {
3860 ret = -ENOMEM;
3861 goto out;
59641015
ID
3862 }
3863
3864 leaf = path->nodes[0];
3865 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3866
68310a5e
ID
3867 bctl->fs_info = fs_info;
3868 bctl->flags = btrfs_balance_flags(leaf, item);
3869 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3870
3871 btrfs_balance_data(leaf, item, &disk_bargs);
3872 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3873 btrfs_balance_meta(leaf, item, &disk_bargs);
3874 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3875 btrfs_balance_sys(leaf, item, &disk_bargs);
3876 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3877
ed0fb78f
ID
3878 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3879
68310a5e
ID
3880 mutex_lock(&fs_info->volume_mutex);
3881 mutex_lock(&fs_info->balance_mutex);
59641015 3882
68310a5e
ID
3883 set_balance_control(bctl);
3884
3885 mutex_unlock(&fs_info->balance_mutex);
3886 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3887out:
3888 btrfs_free_path(path);
ec44a35c
CM
3889 return ret;
3890}
3891
837d5b6e
ID
3892int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3893{
3894 int ret = 0;
3895
3896 mutex_lock(&fs_info->balance_mutex);
3897 if (!fs_info->balance_ctl) {
3898 mutex_unlock(&fs_info->balance_mutex);
3899 return -ENOTCONN;
3900 }
3901
3902 if (atomic_read(&fs_info->balance_running)) {
3903 atomic_inc(&fs_info->balance_pause_req);
3904 mutex_unlock(&fs_info->balance_mutex);
3905
3906 wait_event(fs_info->balance_wait_q,
3907 atomic_read(&fs_info->balance_running) == 0);
3908
3909 mutex_lock(&fs_info->balance_mutex);
3910 /* we are good with balance_ctl ripped off from under us */
3911 BUG_ON(atomic_read(&fs_info->balance_running));
3912 atomic_dec(&fs_info->balance_pause_req);
3913 } else {
3914 ret = -ENOTCONN;
3915 }
3916
3917 mutex_unlock(&fs_info->balance_mutex);
3918 return ret;
3919}
3920
a7e99c69
ID
3921int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3922{
e649e587
ID
3923 if (fs_info->sb->s_flags & MS_RDONLY)
3924 return -EROFS;
3925
a7e99c69
ID
3926 mutex_lock(&fs_info->balance_mutex);
3927 if (!fs_info->balance_ctl) {
3928 mutex_unlock(&fs_info->balance_mutex);
3929 return -ENOTCONN;
3930 }
3931
3932 atomic_inc(&fs_info->balance_cancel_req);
3933 /*
3934 * if we are running just wait and return, balance item is
3935 * deleted in btrfs_balance in this case
3936 */
3937 if (atomic_read(&fs_info->balance_running)) {
3938 mutex_unlock(&fs_info->balance_mutex);
3939 wait_event(fs_info->balance_wait_q,
3940 atomic_read(&fs_info->balance_running) == 0);
3941 mutex_lock(&fs_info->balance_mutex);
3942 } else {
3943 /* __cancel_balance needs volume_mutex */
3944 mutex_unlock(&fs_info->balance_mutex);
3945 mutex_lock(&fs_info->volume_mutex);
3946 mutex_lock(&fs_info->balance_mutex);
3947
3948 if (fs_info->balance_ctl)
3949 __cancel_balance(fs_info);
3950
3951 mutex_unlock(&fs_info->volume_mutex);
3952 }
3953
3954 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3955 atomic_dec(&fs_info->balance_cancel_req);
3956 mutex_unlock(&fs_info->balance_mutex);
3957 return 0;
3958}
3959
803b2f54
SB
3960static int btrfs_uuid_scan_kthread(void *data)
3961{
3962 struct btrfs_fs_info *fs_info = data;
3963 struct btrfs_root *root = fs_info->tree_root;
3964 struct btrfs_key key;
3965 struct btrfs_key max_key;
3966 struct btrfs_path *path = NULL;
3967 int ret = 0;
3968 struct extent_buffer *eb;
3969 int slot;
3970 struct btrfs_root_item root_item;
3971 u32 item_size;
f45388f3 3972 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3973
3974 path = btrfs_alloc_path();
3975 if (!path) {
3976 ret = -ENOMEM;
3977 goto out;
3978 }
3979
3980 key.objectid = 0;
3981 key.type = BTRFS_ROOT_ITEM_KEY;
3982 key.offset = 0;
3983
3984 max_key.objectid = (u64)-1;
3985 max_key.type = BTRFS_ROOT_ITEM_KEY;
3986 max_key.offset = (u64)-1;
3987
803b2f54 3988 while (1) {
6174d3cb 3989 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3990 if (ret) {
3991 if (ret > 0)
3992 ret = 0;
3993 break;
3994 }
3995
3996 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3997 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3998 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3999 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4000 goto skip;
4001
4002 eb = path->nodes[0];
4003 slot = path->slots[0];
4004 item_size = btrfs_item_size_nr(eb, slot);
4005 if (item_size < sizeof(root_item))
4006 goto skip;
4007
803b2f54
SB
4008 read_extent_buffer(eb, &root_item,
4009 btrfs_item_ptr_offset(eb, slot),
4010 (int)sizeof(root_item));
4011 if (btrfs_root_refs(&root_item) == 0)
4012 goto skip;
f45388f3
FDBM
4013
4014 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4015 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4016 if (trans)
4017 goto update_tree;
4018
4019 btrfs_release_path(path);
803b2f54
SB
4020 /*
4021 * 1 - subvol uuid item
4022 * 1 - received_subvol uuid item
4023 */
4024 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4025 if (IS_ERR(trans)) {
4026 ret = PTR_ERR(trans);
4027 break;
4028 }
f45388f3
FDBM
4029 continue;
4030 } else {
4031 goto skip;
4032 }
4033update_tree:
4034 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
4035 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4036 root_item.uuid,
4037 BTRFS_UUID_KEY_SUBVOL,
4038 key.objectid);
4039 if (ret < 0) {
efe120a0 4040 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4041 ret);
803b2f54
SB
4042 break;
4043 }
4044 }
4045
4046 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
4047 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4048 root_item.received_uuid,
4049 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4050 key.objectid);
4051 if (ret < 0) {
efe120a0 4052 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4053 ret);
803b2f54
SB
4054 break;
4055 }
4056 }
4057
f45388f3 4058skip:
803b2f54
SB
4059 if (trans) {
4060 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4061 trans = NULL;
803b2f54
SB
4062 if (ret)
4063 break;
4064 }
4065
803b2f54
SB
4066 btrfs_release_path(path);
4067 if (key.offset < (u64)-1) {
4068 key.offset++;
4069 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4070 key.offset = 0;
4071 key.type = BTRFS_ROOT_ITEM_KEY;
4072 } else if (key.objectid < (u64)-1) {
4073 key.offset = 0;
4074 key.type = BTRFS_ROOT_ITEM_KEY;
4075 key.objectid++;
4076 } else {
4077 break;
4078 }
4079 cond_resched();
4080 }
4081
4082out:
4083 btrfs_free_path(path);
f45388f3
FDBM
4084 if (trans && !IS_ERR(trans))
4085 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4086 if (ret)
efe120a0 4087 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
4088 else
4089 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
4090 up(&fs_info->uuid_tree_rescan_sem);
4091 return 0;
4092}
4093
70f80175
SB
4094/*
4095 * Callback for btrfs_uuid_tree_iterate().
4096 * returns:
4097 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4098 * < 0 if an error occurred.
70f80175
SB
4099 * > 0 if the check failed, which means the caller shall remove the entry.
4100 */
4101static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4102 u8 *uuid, u8 type, u64 subid)
4103{
4104 struct btrfs_key key;
4105 int ret = 0;
4106 struct btrfs_root *subvol_root;
4107
4108 if (type != BTRFS_UUID_KEY_SUBVOL &&
4109 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4110 goto out;
4111
4112 key.objectid = subid;
4113 key.type = BTRFS_ROOT_ITEM_KEY;
4114 key.offset = (u64)-1;
4115 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4116 if (IS_ERR(subvol_root)) {
4117 ret = PTR_ERR(subvol_root);
4118 if (ret == -ENOENT)
4119 ret = 1;
4120 goto out;
4121 }
4122
4123 switch (type) {
4124 case BTRFS_UUID_KEY_SUBVOL:
4125 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4126 ret = 1;
4127 break;
4128 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4129 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4130 BTRFS_UUID_SIZE))
4131 ret = 1;
4132 break;
4133 }
4134
4135out:
4136 return ret;
4137}
4138
4139static int btrfs_uuid_rescan_kthread(void *data)
4140{
4141 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4142 int ret;
4143
4144 /*
4145 * 1st step is to iterate through the existing UUID tree and
4146 * to delete all entries that contain outdated data.
4147 * 2nd step is to add all missing entries to the UUID tree.
4148 */
4149 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4150 if (ret < 0) {
efe120a0 4151 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4152 up(&fs_info->uuid_tree_rescan_sem);
4153 return ret;
4154 }
4155 return btrfs_uuid_scan_kthread(data);
4156}
4157
f7a81ea4
SB
4158int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4159{
4160 struct btrfs_trans_handle *trans;
4161 struct btrfs_root *tree_root = fs_info->tree_root;
4162 struct btrfs_root *uuid_root;
803b2f54
SB
4163 struct task_struct *task;
4164 int ret;
f7a81ea4
SB
4165
4166 /*
4167 * 1 - root node
4168 * 1 - root item
4169 */
4170 trans = btrfs_start_transaction(tree_root, 2);
4171 if (IS_ERR(trans))
4172 return PTR_ERR(trans);
4173
4174 uuid_root = btrfs_create_tree(trans, fs_info,
4175 BTRFS_UUID_TREE_OBJECTID);
4176 if (IS_ERR(uuid_root)) {
6d13f549
DS
4177 ret = PTR_ERR(uuid_root);
4178 btrfs_abort_transaction(trans, tree_root, ret);
4179 return ret;
f7a81ea4
SB
4180 }
4181
4182 fs_info->uuid_root = uuid_root;
4183
803b2f54
SB
4184 ret = btrfs_commit_transaction(trans, tree_root);
4185 if (ret)
4186 return ret;
4187
4188 down(&fs_info->uuid_tree_rescan_sem);
4189 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4190 if (IS_ERR(task)) {
70f80175 4191 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4192 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4193 up(&fs_info->uuid_tree_rescan_sem);
4194 return PTR_ERR(task);
4195 }
4196
4197 return 0;
f7a81ea4 4198}
803b2f54 4199
70f80175
SB
4200int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4201{
4202 struct task_struct *task;
4203
4204 down(&fs_info->uuid_tree_rescan_sem);
4205 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4206 if (IS_ERR(task)) {
4207 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4208 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4209 up(&fs_info->uuid_tree_rescan_sem);
4210 return PTR_ERR(task);
4211 }
4212
4213 return 0;
4214}
4215
8f18cf13
CM
4216/*
4217 * shrinking a device means finding all of the device extents past
4218 * the new size, and then following the back refs to the chunks.
4219 * The chunk relocation code actually frees the device extent
4220 */
4221int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4222{
4223 struct btrfs_trans_handle *trans;
4224 struct btrfs_root *root = device->dev_root;
4225 struct btrfs_dev_extent *dev_extent = NULL;
4226 struct btrfs_path *path;
4227 u64 length;
8f18cf13
CM
4228 u64 chunk_offset;
4229 int ret;
4230 int slot;
ba1bf481
JB
4231 int failed = 0;
4232 bool retried = false;
53e489bc 4233 bool checked_pending_chunks = false;
8f18cf13
CM
4234 struct extent_buffer *l;
4235 struct btrfs_key key;
6c41761f 4236 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4237 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4238 u64 old_size = btrfs_device_get_total_bytes(device);
4239 u64 diff = old_size - new_size;
8f18cf13 4240
63a212ab
SB
4241 if (device->is_tgtdev_for_dev_replace)
4242 return -EINVAL;
4243
8f18cf13
CM
4244 path = btrfs_alloc_path();
4245 if (!path)
4246 return -ENOMEM;
4247
e4058b54 4248 path->reada = READA_FORWARD;
8f18cf13 4249
7d9eb12c
CM
4250 lock_chunks(root);
4251
7cc8e58d 4252 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4253 if (device->writeable) {
2b82032c 4254 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4255 spin_lock(&root->fs_info->free_chunk_lock);
4256 root->fs_info->free_chunk_space -= diff;
4257 spin_unlock(&root->fs_info->free_chunk_lock);
4258 }
7d9eb12c 4259 unlock_chunks(root);
8f18cf13 4260
ba1bf481 4261again:
8f18cf13
CM
4262 key.objectid = device->devid;
4263 key.offset = (u64)-1;
4264 key.type = BTRFS_DEV_EXTENT_KEY;
4265
213e64da 4266 do {
67c5e7d4 4267 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4268 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4269 if (ret < 0) {
4270 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4271 goto done;
67c5e7d4 4272 }
8f18cf13
CM
4273
4274 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4275 if (ret)
4276 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4277 if (ret < 0)
4278 goto done;
4279 if (ret) {
4280 ret = 0;
b3b4aa74 4281 btrfs_release_path(path);
bf1fb512 4282 break;
8f18cf13
CM
4283 }
4284
4285 l = path->nodes[0];
4286 slot = path->slots[0];
4287 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4288
ba1bf481 4289 if (key.objectid != device->devid) {
67c5e7d4 4290 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4291 btrfs_release_path(path);
bf1fb512 4292 break;
ba1bf481 4293 }
8f18cf13
CM
4294
4295 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4296 length = btrfs_dev_extent_length(l, dev_extent);
4297
ba1bf481 4298 if (key.offset + length <= new_size) {
67c5e7d4 4299 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4300 btrfs_release_path(path);
d6397bae 4301 break;
ba1bf481 4302 }
8f18cf13 4303
8f18cf13 4304 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4305 btrfs_release_path(path);
8f18cf13 4306
dc2ee4e2 4307 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4308 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4309 if (ret && ret != -ENOSPC)
8f18cf13 4310 goto done;
ba1bf481
JB
4311 if (ret == -ENOSPC)
4312 failed++;
213e64da 4313 } while (key.offset-- > 0);
ba1bf481
JB
4314
4315 if (failed && !retried) {
4316 failed = 0;
4317 retried = true;
4318 goto again;
4319 } else if (failed && retried) {
4320 ret = -ENOSPC;
ba1bf481 4321 goto done;
8f18cf13
CM
4322 }
4323
d6397bae 4324 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4325 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4326 if (IS_ERR(trans)) {
4327 ret = PTR_ERR(trans);
4328 goto done;
4329 }
4330
d6397bae 4331 lock_chunks(root);
53e489bc
FM
4332
4333 /*
4334 * We checked in the above loop all device extents that were already in
4335 * the device tree. However before we have updated the device's
4336 * total_bytes to the new size, we might have had chunk allocations that
4337 * have not complete yet (new block groups attached to transaction
4338 * handles), and therefore their device extents were not yet in the
4339 * device tree and we missed them in the loop above. So if we have any
4340 * pending chunk using a device extent that overlaps the device range
4341 * that we can not use anymore, commit the current transaction and
4342 * repeat the search on the device tree - this way we guarantee we will
4343 * not have chunks using device extents that end beyond 'new_size'.
4344 */
4345 if (!checked_pending_chunks) {
4346 u64 start = new_size;
4347 u64 len = old_size - new_size;
4348
499f377f
JM
4349 if (contains_pending_extent(trans->transaction, device,
4350 &start, len)) {
53e489bc
FM
4351 unlock_chunks(root);
4352 checked_pending_chunks = true;
4353 failed = 0;
4354 retried = false;
4355 ret = btrfs_commit_transaction(trans, root);
4356 if (ret)
4357 goto done;
4358 goto again;
4359 }
4360 }
4361
7cc8e58d 4362 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4363 if (list_empty(&device->resized_list))
4364 list_add_tail(&device->resized_list,
4365 &root->fs_info->fs_devices->resized_devices);
d6397bae 4366
d6397bae
CB
4367 WARN_ON(diff > old_total);
4368 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4369 unlock_chunks(root);
2196d6e8
MX
4370
4371 /* Now btrfs_update_device() will change the on-disk size. */
4372 ret = btrfs_update_device(trans, device);
d6397bae 4373 btrfs_end_transaction(trans, root);
8f18cf13
CM
4374done:
4375 btrfs_free_path(path);
53e489bc
FM
4376 if (ret) {
4377 lock_chunks(root);
4378 btrfs_device_set_total_bytes(device, old_size);
4379 if (device->writeable)
4380 device->fs_devices->total_rw_bytes += diff;
4381 spin_lock(&root->fs_info->free_chunk_lock);
4382 root->fs_info->free_chunk_space += diff;
4383 spin_unlock(&root->fs_info->free_chunk_lock);
4384 unlock_chunks(root);
4385 }
8f18cf13
CM
4386 return ret;
4387}
4388
125ccb0a 4389static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4390 struct btrfs_key *key,
4391 struct btrfs_chunk *chunk, int item_size)
4392{
6c41761f 4393 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4394 struct btrfs_disk_key disk_key;
4395 u32 array_size;
4396 u8 *ptr;
4397
fe48a5c0 4398 lock_chunks(root);
0b86a832 4399 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4400 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4401 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4402 unlock_chunks(root);
0b86a832 4403 return -EFBIG;
fe48a5c0 4404 }
0b86a832
CM
4405
4406 ptr = super_copy->sys_chunk_array + array_size;
4407 btrfs_cpu_key_to_disk(&disk_key, key);
4408 memcpy(ptr, &disk_key, sizeof(disk_key));
4409 ptr += sizeof(disk_key);
4410 memcpy(ptr, chunk, item_size);
4411 item_size += sizeof(disk_key);
4412 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4413 unlock_chunks(root);
4414
0b86a832
CM
4415 return 0;
4416}
4417
73c5de00
AJ
4418/*
4419 * sort the devices in descending order by max_avail, total_avail
4420 */
4421static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4422{
73c5de00
AJ
4423 const struct btrfs_device_info *di_a = a;
4424 const struct btrfs_device_info *di_b = b;
9b3f68b9 4425
73c5de00 4426 if (di_a->max_avail > di_b->max_avail)
b2117a39 4427 return -1;
73c5de00 4428 if (di_a->max_avail < di_b->max_avail)
b2117a39 4429 return 1;
73c5de00
AJ
4430 if (di_a->total_avail > di_b->total_avail)
4431 return -1;
4432 if (di_a->total_avail < di_b->total_avail)
4433 return 1;
4434 return 0;
b2117a39 4435}
0b86a832 4436
53b381b3
DW
4437static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4438{
4439 /* TODO allow them to set a preferred stripe size */
ee22184b 4440 return SZ_64K;
53b381b3
DW
4441}
4442
4443static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4444{
ffe2d203 4445 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4446 return;
4447
ceda0864 4448 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4449}
4450
23f8f9b7
GH
4451#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4452 - sizeof(struct btrfs_item) \
4453 - sizeof(struct btrfs_chunk)) \
4454 / sizeof(struct btrfs_stripe) + 1)
4455
4456#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4457 - 2 * sizeof(struct btrfs_disk_key) \
4458 - 2 * sizeof(struct btrfs_chunk)) \
4459 / sizeof(struct btrfs_stripe) + 1)
4460
73c5de00 4461static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4462 struct btrfs_root *extent_root, u64 start,
4463 u64 type)
b2117a39 4464{
73c5de00
AJ
4465 struct btrfs_fs_info *info = extent_root->fs_info;
4466 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4467 struct list_head *cur;
4468 struct map_lookup *map = NULL;
4469 struct extent_map_tree *em_tree;
4470 struct extent_map *em;
4471 struct btrfs_device_info *devices_info = NULL;
4472 u64 total_avail;
4473 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4474 int data_stripes; /* number of stripes that count for
4475 block group size */
73c5de00
AJ
4476 int sub_stripes; /* sub_stripes info for map */
4477 int dev_stripes; /* stripes per dev */
4478 int devs_max; /* max devs to use */
4479 int devs_min; /* min devs needed */
4480 int devs_increment; /* ndevs has to be a multiple of this */
4481 int ncopies; /* how many copies to data has */
4482 int ret;
4483 u64 max_stripe_size;
4484 u64 max_chunk_size;
4485 u64 stripe_size;
4486 u64 num_bytes;
53b381b3 4487 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4488 int ndevs;
4489 int i;
4490 int j;
31e50229 4491 int index;
593060d7 4492
0c460c0d 4493 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4494
73c5de00
AJ
4495 if (list_empty(&fs_devices->alloc_list))
4496 return -ENOSPC;
b2117a39 4497
31e50229 4498 index = __get_raid_index(type);
73c5de00 4499
31e50229
LB
4500 sub_stripes = btrfs_raid_array[index].sub_stripes;
4501 dev_stripes = btrfs_raid_array[index].dev_stripes;
4502 devs_max = btrfs_raid_array[index].devs_max;
4503 devs_min = btrfs_raid_array[index].devs_min;
4504 devs_increment = btrfs_raid_array[index].devs_increment;
4505 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4506
9b3f68b9 4507 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4508 max_stripe_size = SZ_1G;
73c5de00 4509 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4510 if (!devs_max)
4511 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4512 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4513 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4514 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4515 max_stripe_size = SZ_1G;
1100373f 4516 else
ee22184b 4517 max_stripe_size = SZ_256M;
73c5de00 4518 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4519 if (!devs_max)
4520 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4521 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4522 max_stripe_size = SZ_32M;
73c5de00 4523 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4524 if (!devs_max)
4525 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4526 } else {
351fd353 4527 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4528 type);
4529 BUG_ON(1);
9b3f68b9
CM
4530 }
4531
2b82032c
YZ
4532 /* we don't want a chunk larger than 10% of writeable space */
4533 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4534 max_chunk_size);
9b3f68b9 4535
31e818fe 4536 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4537 GFP_NOFS);
4538 if (!devices_info)
4539 return -ENOMEM;
0cad8a11 4540
73c5de00 4541 cur = fs_devices->alloc_list.next;
9b3f68b9 4542
9f680ce0 4543 /*
73c5de00
AJ
4544 * in the first pass through the devices list, we gather information
4545 * about the available holes on each device.
9f680ce0 4546 */
73c5de00
AJ
4547 ndevs = 0;
4548 while (cur != &fs_devices->alloc_list) {
4549 struct btrfs_device *device;
4550 u64 max_avail;
4551 u64 dev_offset;
b2117a39 4552
73c5de00 4553 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4554
73c5de00 4555 cur = cur->next;
b2117a39 4556
73c5de00 4557 if (!device->writeable) {
31b1a2bd 4558 WARN(1, KERN_ERR
efe120a0 4559 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4560 continue;
4561 }
b2117a39 4562
63a212ab
SB
4563 if (!device->in_fs_metadata ||
4564 device->is_tgtdev_for_dev_replace)
73c5de00 4565 continue;
b2117a39 4566
73c5de00
AJ
4567 if (device->total_bytes > device->bytes_used)
4568 total_avail = device->total_bytes - device->bytes_used;
4569 else
4570 total_avail = 0;
38c01b96 4571
4572 /* If there is no space on this device, skip it. */
4573 if (total_avail == 0)
4574 continue;
b2117a39 4575
6df9a95e 4576 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4577 max_stripe_size * dev_stripes,
4578 &dev_offset, &max_avail);
4579 if (ret && ret != -ENOSPC)
4580 goto error;
b2117a39 4581
73c5de00
AJ
4582 if (ret == 0)
4583 max_avail = max_stripe_size * dev_stripes;
b2117a39 4584
73c5de00
AJ
4585 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4586 continue;
b2117a39 4587
063d006f
ES
4588 if (ndevs == fs_devices->rw_devices) {
4589 WARN(1, "%s: found more than %llu devices\n",
4590 __func__, fs_devices->rw_devices);
4591 break;
4592 }
73c5de00
AJ
4593 devices_info[ndevs].dev_offset = dev_offset;
4594 devices_info[ndevs].max_avail = max_avail;
4595 devices_info[ndevs].total_avail = total_avail;
4596 devices_info[ndevs].dev = device;
4597 ++ndevs;
4598 }
b2117a39 4599
73c5de00
AJ
4600 /*
4601 * now sort the devices by hole size / available space
4602 */
4603 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4604 btrfs_cmp_device_info, NULL);
b2117a39 4605
73c5de00
AJ
4606 /* round down to number of usable stripes */
4607 ndevs -= ndevs % devs_increment;
b2117a39 4608
73c5de00
AJ
4609 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4610 ret = -ENOSPC;
4611 goto error;
b2117a39 4612 }
9f680ce0 4613
73c5de00
AJ
4614 if (devs_max && ndevs > devs_max)
4615 ndevs = devs_max;
4616 /*
4617 * the primary goal is to maximize the number of stripes, so use as many
4618 * devices as possible, even if the stripes are not maximum sized.
4619 */
4620 stripe_size = devices_info[ndevs-1].max_avail;
4621 num_stripes = ndevs * dev_stripes;
b2117a39 4622
53b381b3
DW
4623 /*
4624 * this will have to be fixed for RAID1 and RAID10 over
4625 * more drives
4626 */
4627 data_stripes = num_stripes / ncopies;
4628
53b381b3
DW
4629 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4630 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4631 btrfs_super_stripesize(info->super_copy));
4632 data_stripes = num_stripes - 1;
4633 }
4634 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4635 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4636 btrfs_super_stripesize(info->super_copy));
4637 data_stripes = num_stripes - 2;
4638 }
86db2578
CM
4639
4640 /*
4641 * Use the number of data stripes to figure out how big this chunk
4642 * is really going to be in terms of logical address space,
4643 * and compare that answer with the max chunk size
4644 */
4645 if (stripe_size * data_stripes > max_chunk_size) {
4646 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4647
4648 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4649
4650 /* bump the answer up to a 16MB boundary */
4651 stripe_size = (stripe_size + mask) & ~mask;
4652
4653 /* but don't go higher than the limits we found
4654 * while searching for free extents
4655 */
4656 if (stripe_size > devices_info[ndevs-1].max_avail)
4657 stripe_size = devices_info[ndevs-1].max_avail;
4658 }
4659
b8b93add 4660 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4661
4662 /* align to BTRFS_STRIPE_LEN */
b8b93add 4663 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4664 stripe_size *= raid_stripe_len;
b2117a39
MX
4665
4666 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4667 if (!map) {
4668 ret = -ENOMEM;
4669 goto error;
4670 }
4671 map->num_stripes = num_stripes;
9b3f68b9 4672
73c5de00
AJ
4673 for (i = 0; i < ndevs; ++i) {
4674 for (j = 0; j < dev_stripes; ++j) {
4675 int s = i * dev_stripes + j;
4676 map->stripes[s].dev = devices_info[i].dev;
4677 map->stripes[s].physical = devices_info[i].dev_offset +
4678 j * stripe_size;
6324fbf3 4679 }
6324fbf3 4680 }
2b82032c 4681 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4682 map->stripe_len = raid_stripe_len;
4683 map->io_align = raid_stripe_len;
4684 map->io_width = raid_stripe_len;
2b82032c 4685 map->type = type;
2b82032c 4686 map->sub_stripes = sub_stripes;
0b86a832 4687
53b381b3 4688 num_bytes = stripe_size * data_stripes;
0b86a832 4689
73c5de00 4690 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4691
172ddd60 4692 em = alloc_extent_map();
2b82032c 4693 if (!em) {
298a8f9c 4694 kfree(map);
b2117a39
MX
4695 ret = -ENOMEM;
4696 goto error;
593060d7 4697 }
298a8f9c 4698 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4699 em->map_lookup = map;
2b82032c 4700 em->start = start;
73c5de00 4701 em->len = num_bytes;
2b82032c
YZ
4702 em->block_start = 0;
4703 em->block_len = em->len;
6df9a95e 4704 em->orig_block_len = stripe_size;
593060d7 4705
2b82032c 4706 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4707 write_lock(&em_tree->lock);
09a2a8f9 4708 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4709 if (!ret) {
4710 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4711 atomic_inc(&em->refs);
4712 }
890871be 4713 write_unlock(&em_tree->lock);
0f5d42b2
JB
4714 if (ret) {
4715 free_extent_map(em);
1dd4602f 4716 goto error;
0f5d42b2 4717 }
0b86a832 4718
04487488
JB
4719 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4720 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4721 start, num_bytes);
6df9a95e
JB
4722 if (ret)
4723 goto error_del_extent;
2b82032c 4724
7cc8e58d
MX
4725 for (i = 0; i < map->num_stripes; i++) {
4726 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4727 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4728 }
43530c46 4729
1c116187
MX
4730 spin_lock(&extent_root->fs_info->free_chunk_lock);
4731 extent_root->fs_info->free_chunk_space -= (stripe_size *
4732 map->num_stripes);
4733 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4734
0f5d42b2 4735 free_extent_map(em);
53b381b3
DW
4736 check_raid56_incompat_flag(extent_root->fs_info, type);
4737
b2117a39 4738 kfree(devices_info);
2b82032c 4739 return 0;
b2117a39 4740
6df9a95e 4741error_del_extent:
0f5d42b2
JB
4742 write_lock(&em_tree->lock);
4743 remove_extent_mapping(em_tree, em);
4744 write_unlock(&em_tree->lock);
4745
4746 /* One for our allocation */
4747 free_extent_map(em);
4748 /* One for the tree reference */
4749 free_extent_map(em);
495e64f4
FM
4750 /* One for the pending_chunks list reference */
4751 free_extent_map(em);
b2117a39 4752error:
b2117a39
MX
4753 kfree(devices_info);
4754 return ret;
2b82032c
YZ
4755}
4756
6df9a95e 4757int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4758 struct btrfs_root *extent_root,
6df9a95e 4759 u64 chunk_offset, u64 chunk_size)
2b82032c 4760{
2b82032c
YZ
4761 struct btrfs_key key;
4762 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4763 struct btrfs_device *device;
4764 struct btrfs_chunk *chunk;
4765 struct btrfs_stripe *stripe;
6df9a95e
JB
4766 struct extent_map_tree *em_tree;
4767 struct extent_map *em;
4768 struct map_lookup *map;
4769 size_t item_size;
4770 u64 dev_offset;
4771 u64 stripe_size;
4772 int i = 0;
140e639f 4773 int ret = 0;
2b82032c 4774
6df9a95e
JB
4775 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4776 read_lock(&em_tree->lock);
4777 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4778 read_unlock(&em_tree->lock);
4779
4780 if (!em) {
4781 btrfs_crit(extent_root->fs_info, "unable to find logical "
4782 "%Lu len %Lu", chunk_offset, chunk_size);
4783 return -EINVAL;
4784 }
4785
4786 if (em->start != chunk_offset || em->len != chunk_size) {
4787 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4788 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4789 chunk_size, em->start, em->len);
4790 free_extent_map(em);
4791 return -EINVAL;
4792 }
4793
95617d69 4794 map = em->map_lookup;
6df9a95e
JB
4795 item_size = btrfs_chunk_item_size(map->num_stripes);
4796 stripe_size = em->orig_block_len;
4797
2b82032c 4798 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4799 if (!chunk) {
4800 ret = -ENOMEM;
4801 goto out;
4802 }
4803
50460e37
FM
4804 /*
4805 * Take the device list mutex to prevent races with the final phase of
4806 * a device replace operation that replaces the device object associated
4807 * with the map's stripes, because the device object's id can change
4808 * at any time during that final phase of the device replace operation
4809 * (dev-replace.c:btrfs_dev_replace_finishing()).
4810 */
4811 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4812 for (i = 0; i < map->num_stripes; i++) {
4813 device = map->stripes[i].dev;
4814 dev_offset = map->stripes[i].physical;
2b82032c 4815
0b86a832 4816 ret = btrfs_update_device(trans, device);
3acd3953 4817 if (ret)
50460e37 4818 break;
6df9a95e
JB
4819 ret = btrfs_alloc_dev_extent(trans, device,
4820 chunk_root->root_key.objectid,
4821 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4822 chunk_offset, dev_offset,
4823 stripe_size);
4824 if (ret)
50460e37
FM
4825 break;
4826 }
4827 if (ret) {
4828 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4829 goto out;
2b82032c
YZ
4830 }
4831
2b82032c 4832 stripe = &chunk->stripe;
6df9a95e
JB
4833 for (i = 0; i < map->num_stripes; i++) {
4834 device = map->stripes[i].dev;
4835 dev_offset = map->stripes[i].physical;
0b86a832 4836
e17cade2
CM
4837 btrfs_set_stack_stripe_devid(stripe, device->devid);
4838 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4839 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4840 stripe++;
0b86a832 4841 }
50460e37 4842 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
0b86a832 4843
2b82032c 4844 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4845 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4846 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4847 btrfs_set_stack_chunk_type(chunk, map->type);
4848 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4849 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4850 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4851 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4852 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4853
2b82032c
YZ
4854 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4855 key.type = BTRFS_CHUNK_ITEM_KEY;
4856 key.offset = chunk_offset;
0b86a832 4857
2b82032c 4858 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4859 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4860 /*
4861 * TODO: Cleanup of inserted chunk root in case of
4862 * failure.
4863 */
125ccb0a 4864 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4865 item_size);
8f18cf13 4866 }
1abe9b8a 4867
6df9a95e 4868out:
0b86a832 4869 kfree(chunk);
6df9a95e 4870 free_extent_map(em);
4ed1d16e 4871 return ret;
2b82032c 4872}
0b86a832 4873
2b82032c
YZ
4874/*
4875 * Chunk allocation falls into two parts. The first part does works
4876 * that make the new allocated chunk useable, but not do any operation
4877 * that modifies the chunk tree. The second part does the works that
4878 * require modifying the chunk tree. This division is important for the
4879 * bootstrap process of adding storage to a seed btrfs.
4880 */
4881int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4882 struct btrfs_root *extent_root, u64 type)
4883{
4884 u64 chunk_offset;
2b82032c 4885
a9629596 4886 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4887 chunk_offset = find_next_chunk(extent_root->fs_info);
4888 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4889}
4890
d397712b 4891static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4892 struct btrfs_root *root,
4893 struct btrfs_device *device)
4894{
4895 u64 chunk_offset;
4896 u64 sys_chunk_offset;
2b82032c 4897 u64 alloc_profile;
2b82032c
YZ
4898 struct btrfs_fs_info *fs_info = root->fs_info;
4899 struct btrfs_root *extent_root = fs_info->extent_root;
4900 int ret;
4901
6df9a95e 4902 chunk_offset = find_next_chunk(fs_info);
de98ced9 4903 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4904 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4905 alloc_profile);
79787eaa
JM
4906 if (ret)
4907 return ret;
2b82032c 4908
6df9a95e 4909 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4910 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4911 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4912 alloc_profile);
79787eaa 4913 return ret;
2b82032c
YZ
4914}
4915
d20983b4
MX
4916static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4917{
4918 int max_errors;
4919
4920 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4921 BTRFS_BLOCK_GROUP_RAID10 |
4922 BTRFS_BLOCK_GROUP_RAID5 |
4923 BTRFS_BLOCK_GROUP_DUP)) {
4924 max_errors = 1;
4925 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4926 max_errors = 2;
4927 } else {
4928 max_errors = 0;
005d6427 4929 }
2b82032c 4930
d20983b4 4931 return max_errors;
2b82032c
YZ
4932}
4933
4934int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4935{
4936 struct extent_map *em;
4937 struct map_lookup *map;
4938 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4939 int readonly = 0;
d20983b4 4940 int miss_ndevs = 0;
2b82032c
YZ
4941 int i;
4942
890871be 4943 read_lock(&map_tree->map_tree.lock);
2b82032c 4944 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4945 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4946 if (!em)
4947 return 1;
4948
95617d69 4949 map = em->map_lookup;
2b82032c 4950 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4951 if (map->stripes[i].dev->missing) {
4952 miss_ndevs++;
4953 continue;
4954 }
4955
2b82032c
YZ
4956 if (!map->stripes[i].dev->writeable) {
4957 readonly = 1;
d20983b4 4958 goto end;
2b82032c
YZ
4959 }
4960 }
d20983b4
MX
4961
4962 /*
4963 * If the number of missing devices is larger than max errors,
4964 * we can not write the data into that chunk successfully, so
4965 * set it readonly.
4966 */
4967 if (miss_ndevs > btrfs_chunk_max_errors(map))
4968 readonly = 1;
4969end:
0b86a832 4970 free_extent_map(em);
2b82032c 4971 return readonly;
0b86a832
CM
4972}
4973
4974void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4975{
a8067e02 4976 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4977}
4978
4979void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4980{
4981 struct extent_map *em;
4982
d397712b 4983 while (1) {
890871be 4984 write_lock(&tree->map_tree.lock);
0b86a832
CM
4985 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4986 if (em)
4987 remove_extent_mapping(&tree->map_tree, em);
890871be 4988 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4989 if (!em)
4990 break;
0b86a832
CM
4991 /* once for us */
4992 free_extent_map(em);
4993 /* once for the tree */
4994 free_extent_map(em);
4995 }
4996}
4997
5d964051 4998int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4999{
5d964051 5000 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5001 struct extent_map *em;
5002 struct map_lookup *map;
5003 struct extent_map_tree *em_tree = &map_tree->map_tree;
5004 int ret;
5005
890871be 5006 read_lock(&em_tree->lock);
f188591e 5007 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5008 read_unlock(&em_tree->lock);
f188591e 5009
fb7669b5
JB
5010 /*
5011 * We could return errors for these cases, but that could get ugly and
5012 * we'd probably do the same thing which is just not do anything else
5013 * and exit, so return 1 so the callers don't try to use other copies.
5014 */
5015 if (!em) {
351fd353 5016 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5017 logical+len);
5018 return 1;
5019 }
5020
5021 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 5022 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 5023 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 5024 em->start + em->len);
7d3d1744 5025 free_extent_map(em);
fb7669b5
JB
5026 return 1;
5027 }
5028
95617d69 5029 map = em->map_lookup;
f188591e
CM
5030 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5031 ret = map->num_stripes;
321aecc6
CM
5032 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5033 ret = map->sub_stripes;
53b381b3
DW
5034 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5035 ret = 2;
5036 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5037 ret = 3;
f188591e
CM
5038 else
5039 ret = 1;
5040 free_extent_map(em);
ad6d620e 5041
73beece9 5042 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5043 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5044 ret++;
73beece9 5045 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5046
f188591e
CM
5047 return ret;
5048}
5049
53b381b3
DW
5050unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5051 struct btrfs_mapping_tree *map_tree,
5052 u64 logical)
5053{
5054 struct extent_map *em;
5055 struct map_lookup *map;
5056 struct extent_map_tree *em_tree = &map_tree->map_tree;
5057 unsigned long len = root->sectorsize;
5058
5059 read_lock(&em_tree->lock);
5060 em = lookup_extent_mapping(em_tree, logical, len);
5061 read_unlock(&em_tree->lock);
5062 BUG_ON(!em);
5063
5064 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5065 map = em->map_lookup;
ffe2d203 5066 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5067 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5068 free_extent_map(em);
5069 return len;
5070}
5071
5072int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5073 u64 logical, u64 len, int mirror_num)
5074{
5075 struct extent_map *em;
5076 struct map_lookup *map;
5077 struct extent_map_tree *em_tree = &map_tree->map_tree;
5078 int ret = 0;
5079
5080 read_lock(&em_tree->lock);
5081 em = lookup_extent_mapping(em_tree, logical, len);
5082 read_unlock(&em_tree->lock);
5083 BUG_ON(!em);
5084
5085 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5086 map = em->map_lookup;
ffe2d203 5087 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5088 ret = 1;
5089 free_extent_map(em);
5090 return ret;
5091}
5092
30d9861f
SB
5093static int find_live_mirror(struct btrfs_fs_info *fs_info,
5094 struct map_lookup *map, int first, int num,
5095 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5096{
5097 int i;
30d9861f
SB
5098 int tolerance;
5099 struct btrfs_device *srcdev;
5100
5101 if (dev_replace_is_ongoing &&
5102 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5103 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5104 srcdev = fs_info->dev_replace.srcdev;
5105 else
5106 srcdev = NULL;
5107
5108 /*
5109 * try to avoid the drive that is the source drive for a
5110 * dev-replace procedure, only choose it if no other non-missing
5111 * mirror is available
5112 */
5113 for (tolerance = 0; tolerance < 2; tolerance++) {
5114 if (map->stripes[optimal].dev->bdev &&
5115 (tolerance || map->stripes[optimal].dev != srcdev))
5116 return optimal;
5117 for (i = first; i < first + num; i++) {
5118 if (map->stripes[i].dev->bdev &&
5119 (tolerance || map->stripes[i].dev != srcdev))
5120 return i;
5121 }
dfe25020 5122 }
30d9861f 5123
dfe25020
CM
5124 /* we couldn't find one that doesn't fail. Just return something
5125 * and the io error handling code will clean up eventually
5126 */
5127 return optimal;
5128}
5129
53b381b3
DW
5130static inline int parity_smaller(u64 a, u64 b)
5131{
5132 return a > b;
5133}
5134
5135/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5136static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5137{
5138 struct btrfs_bio_stripe s;
5139 int i;
5140 u64 l;
5141 int again = 1;
5142
5143 while (again) {
5144 again = 0;
cc7539ed 5145 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5146 if (parity_smaller(bbio->raid_map[i],
5147 bbio->raid_map[i+1])) {
53b381b3 5148 s = bbio->stripes[i];
8e5cfb55 5149 l = bbio->raid_map[i];
53b381b3 5150 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5151 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5152 bbio->stripes[i+1] = s;
8e5cfb55 5153 bbio->raid_map[i+1] = l;
2c8cdd6e 5154
53b381b3
DW
5155 again = 1;
5156 }
5157 }
5158 }
5159}
5160
6e9606d2
ZL
5161static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5162{
5163 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5164 /* the size of the btrfs_bio */
6e9606d2 5165 sizeof(struct btrfs_bio) +
e57cf21e 5166 /* plus the variable array for the stripes */
6e9606d2 5167 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5168 /* plus the variable array for the tgt dev */
6e9606d2 5169 sizeof(int) * (real_stripes) +
e57cf21e
CM
5170 /*
5171 * plus the raid_map, which includes both the tgt dev
5172 * and the stripes
5173 */
5174 sizeof(u64) * (total_stripes),
277fb5fc 5175 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5176
5177 atomic_set(&bbio->error, 0);
5178 atomic_set(&bbio->refs, 1);
5179
5180 return bbio;
5181}
5182
5183void btrfs_get_bbio(struct btrfs_bio *bbio)
5184{
5185 WARN_ON(!atomic_read(&bbio->refs));
5186 atomic_inc(&bbio->refs);
5187}
5188
5189void btrfs_put_bbio(struct btrfs_bio *bbio)
5190{
5191 if (!bbio)
5192 return;
5193 if (atomic_dec_and_test(&bbio->refs))
5194 kfree(bbio);
5195}
5196
3ec706c8 5197static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5198 u64 logical, u64 *length,
a1d3c478 5199 struct btrfs_bio **bbio_ret,
8e5cfb55 5200 int mirror_num, int need_raid_map)
0b86a832
CM
5201{
5202 struct extent_map *em;
5203 struct map_lookup *map;
3ec706c8 5204 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5205 struct extent_map_tree *em_tree = &map_tree->map_tree;
5206 u64 offset;
593060d7 5207 u64 stripe_offset;
fce3bb9a 5208 u64 stripe_end_offset;
593060d7 5209 u64 stripe_nr;
fce3bb9a
LD
5210 u64 stripe_nr_orig;
5211 u64 stripe_nr_end;
53b381b3 5212 u64 stripe_len;
9d644a62 5213 u32 stripe_index;
cea9e445 5214 int i;
de11cc12 5215 int ret = 0;
f2d8d74d 5216 int num_stripes;
a236aed1 5217 int max_errors = 0;
2c8cdd6e 5218 int tgtdev_indexes = 0;
a1d3c478 5219 struct btrfs_bio *bbio = NULL;
472262f3
SB
5220 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5221 int dev_replace_is_ongoing = 0;
5222 int num_alloc_stripes;
ad6d620e
SB
5223 int patch_the_first_stripe_for_dev_replace = 0;
5224 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5225 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5226
890871be 5227 read_lock(&em_tree->lock);
0b86a832 5228 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5229 read_unlock(&em_tree->lock);
f2d8d74d 5230
3b951516 5231 if (!em) {
c2cf52eb 5232 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5233 logical, *length);
9bb91873
JB
5234 return -EINVAL;
5235 }
5236
5237 if (em->start > logical || em->start + em->len < logical) {
5238 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5239 "found %Lu-%Lu", logical, em->start,
9bb91873 5240 em->start + em->len);
7d3d1744 5241 free_extent_map(em);
9bb91873 5242 return -EINVAL;
3b951516 5243 }
0b86a832 5244
95617d69 5245 map = em->map_lookup;
0b86a832 5246 offset = logical - em->start;
593060d7 5247
53b381b3 5248 stripe_len = map->stripe_len;
593060d7
CM
5249 stripe_nr = offset;
5250 /*
5251 * stripe_nr counts the total number of stripes we have to stride
5252 * to get to this block
5253 */
47c5713f 5254 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5255
53b381b3 5256 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5257 BUG_ON(offset < stripe_offset);
5258
5259 /* stripe_offset is the offset of this block in its stripe*/
5260 stripe_offset = offset - stripe_offset;
5261
53b381b3 5262 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5263 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5264 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5265 raid56_full_stripe_start = offset;
5266
5267 /* allow a write of a full stripe, but make sure we don't
5268 * allow straddling of stripes
5269 */
47c5713f
DS
5270 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5271 full_stripe_len);
53b381b3
DW
5272 raid56_full_stripe_start *= full_stripe_len;
5273 }
5274
5275 if (rw & REQ_DISCARD) {
5276 /* we don't discard raid56 yet */
ffe2d203 5277 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5278 ret = -EOPNOTSUPP;
5279 goto out;
5280 }
fce3bb9a 5281 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5282 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5283 u64 max_len;
5284 /* For writes to RAID[56], allow a full stripeset across all disks.
5285 For other RAID types and for RAID[56] reads, just allow a single
5286 stripe (on a single disk). */
ffe2d203 5287 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5288 (rw & REQ_WRITE)) {
5289 max_len = stripe_len * nr_data_stripes(map) -
5290 (offset - raid56_full_stripe_start);
5291 } else {
5292 /* we limit the length of each bio to what fits in a stripe */
5293 max_len = stripe_len - stripe_offset;
5294 }
5295 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5296 } else {
5297 *length = em->len - offset;
5298 }
f2d8d74d 5299
53b381b3
DW
5300 /* This is for when we're called from btrfs_merge_bio_hook() and all
5301 it cares about is the length */
a1d3c478 5302 if (!bbio_ret)
cea9e445
CM
5303 goto out;
5304
73beece9 5305 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5306 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5307 if (!dev_replace_is_ongoing)
73beece9
LB
5308 btrfs_dev_replace_unlock(dev_replace, 0);
5309 else
5310 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5311
ad6d620e
SB
5312 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5313 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5314 dev_replace->tgtdev != NULL) {
5315 /*
5316 * in dev-replace case, for repair case (that's the only
5317 * case where the mirror is selected explicitly when
5318 * calling btrfs_map_block), blocks left of the left cursor
5319 * can also be read from the target drive.
5320 * For REQ_GET_READ_MIRRORS, the target drive is added as
5321 * the last one to the array of stripes. For READ, it also
5322 * needs to be supported using the same mirror number.
5323 * If the requested block is not left of the left cursor,
5324 * EIO is returned. This can happen because btrfs_num_copies()
5325 * returns one more in the dev-replace case.
5326 */
5327 u64 tmp_length = *length;
5328 struct btrfs_bio *tmp_bbio = NULL;
5329 int tmp_num_stripes;
5330 u64 srcdev_devid = dev_replace->srcdev->devid;
5331 int index_srcdev = 0;
5332 int found = 0;
5333 u64 physical_of_found = 0;
5334
5335 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5336 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5337 if (ret) {
5338 WARN_ON(tmp_bbio != NULL);
5339 goto out;
5340 }
5341
5342 tmp_num_stripes = tmp_bbio->num_stripes;
5343 if (mirror_num > tmp_num_stripes) {
5344 /*
5345 * REQ_GET_READ_MIRRORS does not contain this
5346 * mirror, that means that the requested area
5347 * is not left of the left cursor
5348 */
5349 ret = -EIO;
6e9606d2 5350 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5351 goto out;
5352 }
5353
5354 /*
5355 * process the rest of the function using the mirror_num
5356 * of the source drive. Therefore look it up first.
5357 * At the end, patch the device pointer to the one of the
5358 * target drive.
5359 */
5360 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5361 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5362 continue;
5363
5364 /*
5365 * In case of DUP, in order to keep it simple, only add
5366 * the mirror with the lowest physical address
5367 */
5368 if (found &&
5369 physical_of_found <= tmp_bbio->stripes[i].physical)
5370 continue;
5371
5372 index_srcdev = i;
5373 found = 1;
5374 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5375 }
5376
94a97dfe
ZL
5377 btrfs_put_bbio(tmp_bbio);
5378
5379 if (!found) {
ad6d620e
SB
5380 WARN_ON(1);
5381 ret = -EIO;
ad6d620e
SB
5382 goto out;
5383 }
5384
94a97dfe
ZL
5385 mirror_num = index_srcdev + 1;
5386 patch_the_first_stripe_for_dev_replace = 1;
5387 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5388 } else if (mirror_num > map->num_stripes) {
5389 mirror_num = 0;
5390 }
5391
f2d8d74d 5392 num_stripes = 1;
cea9e445 5393 stripe_index = 0;
fce3bb9a 5394 stripe_nr_orig = stripe_nr;
fda2832f 5395 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5396 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5397 stripe_end_offset = stripe_nr_end * map->stripe_len -
5398 (offset + *length);
53b381b3 5399
fce3bb9a
LD
5400 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5401 if (rw & REQ_DISCARD)
5402 num_stripes = min_t(u64, map->num_stripes,
5403 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5404 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5405 &stripe_index);
28e1cc7d
MX
5406 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5407 mirror_num = 1;
fce3bb9a 5408 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5409 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5410 num_stripes = map->num_stripes;
2fff734f 5411 else if (mirror_num)
f188591e 5412 stripe_index = mirror_num - 1;
dfe25020 5413 else {
30d9861f 5414 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5415 map->num_stripes,
30d9861f
SB
5416 current->pid % map->num_stripes,
5417 dev_replace_is_ongoing);
a1d3c478 5418 mirror_num = stripe_index + 1;
dfe25020 5419 }
2fff734f 5420
611f0e00 5421 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5422 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5423 num_stripes = map->num_stripes;
a1d3c478 5424 } else if (mirror_num) {
f188591e 5425 stripe_index = mirror_num - 1;
a1d3c478
JS
5426 } else {
5427 mirror_num = 1;
5428 }
2fff734f 5429
321aecc6 5430 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5431 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5432
47c5713f 5433 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5434 stripe_index *= map->sub_stripes;
5435
29a8d9a0 5436 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5437 num_stripes = map->sub_stripes;
fce3bb9a
LD
5438 else if (rw & REQ_DISCARD)
5439 num_stripes = min_t(u64, map->sub_stripes *
5440 (stripe_nr_end - stripe_nr_orig),
5441 map->num_stripes);
321aecc6
CM
5442 else if (mirror_num)
5443 stripe_index += mirror_num - 1;
dfe25020 5444 else {
3e74317a 5445 int old_stripe_index = stripe_index;
30d9861f
SB
5446 stripe_index = find_live_mirror(fs_info, map,
5447 stripe_index,
dfe25020 5448 map->sub_stripes, stripe_index +
30d9861f
SB
5449 current->pid % map->sub_stripes,
5450 dev_replace_is_ongoing);
3e74317a 5451 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5452 }
53b381b3 5453
ffe2d203 5454 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5455 if (need_raid_map &&
af8e2d1d
MX
5456 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5457 mirror_num > 1)) {
53b381b3 5458 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5459 stripe_nr = div_u64(raid56_full_stripe_start,
5460 stripe_len * nr_data_stripes(map));
53b381b3
DW
5461
5462 /* RAID[56] write or recovery. Return all stripes */
5463 num_stripes = map->num_stripes;
5464 max_errors = nr_parity_stripes(map);
5465
53b381b3
DW
5466 *length = map->stripe_len;
5467 stripe_index = 0;
5468 stripe_offset = 0;
5469 } else {
5470 /*
5471 * Mirror #0 or #1 means the original data block.
5472 * Mirror #2 is RAID5 parity block.
5473 * Mirror #3 is RAID6 Q block.
5474 */
47c5713f
DS
5475 stripe_nr = div_u64_rem(stripe_nr,
5476 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5477 if (mirror_num > 1)
5478 stripe_index = nr_data_stripes(map) +
5479 mirror_num - 2;
5480
5481 /* We distribute the parity blocks across stripes */
47c5713f
DS
5482 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5483 &stripe_index);
28e1cc7d
MX
5484 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5485 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5486 mirror_num = 1;
53b381b3 5487 }
8790d502
CM
5488 } else {
5489 /*
47c5713f
DS
5490 * after this, stripe_nr is the number of stripes on this
5491 * device we have to walk to find the data, and stripe_index is
5492 * the number of our device in the stripe array
8790d502 5493 */
47c5713f
DS
5494 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5495 &stripe_index);
a1d3c478 5496 mirror_num = stripe_index + 1;
8790d502 5497 }
593060d7 5498 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5499
472262f3 5500 num_alloc_stripes = num_stripes;
ad6d620e
SB
5501 if (dev_replace_is_ongoing) {
5502 if (rw & (REQ_WRITE | REQ_DISCARD))
5503 num_alloc_stripes <<= 1;
5504 if (rw & REQ_GET_READ_MIRRORS)
5505 num_alloc_stripes++;
2c8cdd6e 5506 tgtdev_indexes = num_stripes;
ad6d620e 5507 }
2c8cdd6e 5508
6e9606d2 5509 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5510 if (!bbio) {
5511 ret = -ENOMEM;
5512 goto out;
5513 }
2c8cdd6e
MX
5514 if (dev_replace_is_ongoing)
5515 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5516
8e5cfb55 5517 /* build raid_map */
ffe2d203 5518 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5519 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5520 mirror_num > 1)) {
5521 u64 tmp;
9d644a62 5522 unsigned rot;
8e5cfb55
ZL
5523
5524 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5525 sizeof(struct btrfs_bio_stripe) *
5526 num_alloc_stripes +
5527 sizeof(int) * tgtdev_indexes);
5528
5529 /* Work out the disk rotation on this stripe-set */
47c5713f 5530 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5531
5532 /* Fill in the logical address of each stripe */
5533 tmp = stripe_nr * nr_data_stripes(map);
5534 for (i = 0; i < nr_data_stripes(map); i++)
5535 bbio->raid_map[(i+rot) % num_stripes] =
5536 em->start + (tmp + i) * map->stripe_len;
5537
5538 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5539 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5540 bbio->raid_map[(i+rot+1) % num_stripes] =
5541 RAID6_Q_STRIPE;
5542 }
5543
fce3bb9a 5544 if (rw & REQ_DISCARD) {
9d644a62
DS
5545 u32 factor = 0;
5546 u32 sub_stripes = 0;
ec9ef7a1
LZ
5547 u64 stripes_per_dev = 0;
5548 u32 remaining_stripes = 0;
b89203f7 5549 u32 last_stripe = 0;
ec9ef7a1
LZ
5550
5551 if (map->type &
5552 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5553 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5554 sub_stripes = 1;
5555 else
5556 sub_stripes = map->sub_stripes;
5557
5558 factor = map->num_stripes / sub_stripes;
5559 stripes_per_dev = div_u64_rem(stripe_nr_end -
5560 stripe_nr_orig,
5561 factor,
5562 &remaining_stripes);
b89203f7
LB
5563 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5564 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5565 }
5566
fce3bb9a 5567 for (i = 0; i < num_stripes; i++) {
a1d3c478 5568 bbio->stripes[i].physical =
f2d8d74d
CM
5569 map->stripes[stripe_index].physical +
5570 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5571 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5572
ec9ef7a1
LZ
5573 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5574 BTRFS_BLOCK_GROUP_RAID10)) {
5575 bbio->stripes[i].length = stripes_per_dev *
5576 map->stripe_len;
b89203f7 5577
ec9ef7a1
LZ
5578 if (i / sub_stripes < remaining_stripes)
5579 bbio->stripes[i].length +=
5580 map->stripe_len;
b89203f7
LB
5581
5582 /*
5583 * Special for the first stripe and
5584 * the last stripe:
5585 *
5586 * |-------|...|-------|
5587 * |----------|
5588 * off end_off
5589 */
ec9ef7a1 5590 if (i < sub_stripes)
a1d3c478 5591 bbio->stripes[i].length -=
fce3bb9a 5592 stripe_offset;
b89203f7
LB
5593
5594 if (stripe_index >= last_stripe &&
5595 stripe_index <= (last_stripe +
5596 sub_stripes - 1))
a1d3c478 5597 bbio->stripes[i].length -=
fce3bb9a 5598 stripe_end_offset;
b89203f7 5599
ec9ef7a1
LZ
5600 if (i == sub_stripes - 1)
5601 stripe_offset = 0;
fce3bb9a 5602 } else
a1d3c478 5603 bbio->stripes[i].length = *length;
fce3bb9a
LD
5604
5605 stripe_index++;
5606 if (stripe_index == map->num_stripes) {
5607 /* This could only happen for RAID0/10 */
5608 stripe_index = 0;
5609 stripe_nr++;
5610 }
5611 }
5612 } else {
5613 for (i = 0; i < num_stripes; i++) {
a1d3c478 5614 bbio->stripes[i].physical =
212a17ab
LT
5615 map->stripes[stripe_index].physical +
5616 stripe_offset +
5617 stripe_nr * map->stripe_len;
a1d3c478 5618 bbio->stripes[i].dev =
212a17ab 5619 map->stripes[stripe_index].dev;
fce3bb9a 5620 stripe_index++;
f2d8d74d 5621 }
593060d7 5622 }
de11cc12 5623
d20983b4
MX
5624 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5625 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5626
8e5cfb55
ZL
5627 if (bbio->raid_map)
5628 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5629
2c8cdd6e 5630 tgtdev_indexes = 0;
472262f3
SB
5631 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5632 dev_replace->tgtdev != NULL) {
5633 int index_where_to_add;
5634 u64 srcdev_devid = dev_replace->srcdev->devid;
5635
5636 /*
5637 * duplicate the write operations while the dev replace
5638 * procedure is running. Since the copying of the old disk
5639 * to the new disk takes place at run time while the
5640 * filesystem is mounted writable, the regular write
5641 * operations to the old disk have to be duplicated to go
5642 * to the new disk as well.
5643 * Note that device->missing is handled by the caller, and
5644 * that the write to the old disk is already set up in the
5645 * stripes array.
5646 */
5647 index_where_to_add = num_stripes;
5648 for (i = 0; i < num_stripes; i++) {
5649 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5650 /* write to new disk, too */
5651 struct btrfs_bio_stripe *new =
5652 bbio->stripes + index_where_to_add;
5653 struct btrfs_bio_stripe *old =
5654 bbio->stripes + i;
5655
5656 new->physical = old->physical;
5657 new->length = old->length;
5658 new->dev = dev_replace->tgtdev;
2c8cdd6e 5659 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5660 index_where_to_add++;
5661 max_errors++;
2c8cdd6e 5662 tgtdev_indexes++;
472262f3
SB
5663 }
5664 }
5665 num_stripes = index_where_to_add;
ad6d620e
SB
5666 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5667 dev_replace->tgtdev != NULL) {
5668 u64 srcdev_devid = dev_replace->srcdev->devid;
5669 int index_srcdev = 0;
5670 int found = 0;
5671 u64 physical_of_found = 0;
5672
5673 /*
5674 * During the dev-replace procedure, the target drive can
5675 * also be used to read data in case it is needed to repair
5676 * a corrupt block elsewhere. This is possible if the
5677 * requested area is left of the left cursor. In this area,
5678 * the target drive is a full copy of the source drive.
5679 */
5680 for (i = 0; i < num_stripes; i++) {
5681 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5682 /*
5683 * In case of DUP, in order to keep it
5684 * simple, only add the mirror with the
5685 * lowest physical address
5686 */
5687 if (found &&
5688 physical_of_found <=
5689 bbio->stripes[i].physical)
5690 continue;
5691 index_srcdev = i;
5692 found = 1;
5693 physical_of_found = bbio->stripes[i].physical;
5694 }
5695 }
5696 if (found) {
258ece02 5697 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5698 dev_replace->cursor_left) {
5699 struct btrfs_bio_stripe *tgtdev_stripe =
5700 bbio->stripes + num_stripes;
5701
5702 tgtdev_stripe->physical = physical_of_found;
5703 tgtdev_stripe->length =
5704 bbio->stripes[index_srcdev].length;
5705 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5706 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5707
2c8cdd6e 5708 tgtdev_indexes++;
ad6d620e
SB
5709 num_stripes++;
5710 }
5711 }
472262f3
SB
5712 }
5713
de11cc12 5714 *bbio_ret = bbio;
10f11900 5715 bbio->map_type = map->type;
de11cc12
LZ
5716 bbio->num_stripes = num_stripes;
5717 bbio->max_errors = max_errors;
5718 bbio->mirror_num = mirror_num;
2c8cdd6e 5719 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5720
5721 /*
5722 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5723 * mirror_num == num_stripes + 1 && dev_replace target drive is
5724 * available as a mirror
5725 */
5726 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5727 WARN_ON(num_stripes > 1);
5728 bbio->stripes[0].dev = dev_replace->tgtdev;
5729 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5730 bbio->mirror_num = map->num_stripes + 1;
5731 }
cea9e445 5732out:
73beece9
LB
5733 if (dev_replace_is_ongoing) {
5734 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5735 btrfs_dev_replace_unlock(dev_replace, 0);
5736 }
0b86a832 5737 free_extent_map(em);
de11cc12 5738 return ret;
0b86a832
CM
5739}
5740
3ec706c8 5741int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5742 u64 logical, u64 *length,
a1d3c478 5743 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5744{
3ec706c8 5745 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5746 mirror_num, 0);
f2d8d74d
CM
5747}
5748
af8e2d1d
MX
5749/* For Scrub/replace */
5750int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5751 u64 logical, u64 *length,
5752 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5753 int need_raid_map)
af8e2d1d
MX
5754{
5755 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5756 mirror_num, need_raid_map);
af8e2d1d
MX
5757}
5758
a512bbf8
YZ
5759int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5760 u64 chunk_start, u64 physical, u64 devid,
5761 u64 **logical, int *naddrs, int *stripe_len)
5762{
5763 struct extent_map_tree *em_tree = &map_tree->map_tree;
5764 struct extent_map *em;
5765 struct map_lookup *map;
5766 u64 *buf;
5767 u64 bytenr;
5768 u64 length;
5769 u64 stripe_nr;
53b381b3 5770 u64 rmap_len;
a512bbf8
YZ
5771 int i, j, nr = 0;
5772
890871be 5773 read_lock(&em_tree->lock);
a512bbf8 5774 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5775 read_unlock(&em_tree->lock);
a512bbf8 5776
835d974f 5777 if (!em) {
efe120a0 5778 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5779 chunk_start);
5780 return -EIO;
5781 }
5782
5783 if (em->start != chunk_start) {
efe120a0 5784 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5785 em->start, chunk_start);
5786 free_extent_map(em);
5787 return -EIO;
5788 }
95617d69 5789 map = em->map_lookup;
a512bbf8
YZ
5790
5791 length = em->len;
53b381b3
DW
5792 rmap_len = map->stripe_len;
5793
a512bbf8 5794 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5795 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5796 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5797 length = div_u64(length, map->num_stripes);
ffe2d203 5798 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5799 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5800 rmap_len = map->stripe_len * nr_data_stripes(map);
5801 }
a512bbf8 5802
31e818fe 5803 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5804 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5805
5806 for (i = 0; i < map->num_stripes; i++) {
5807 if (devid && map->stripes[i].dev->devid != devid)
5808 continue;
5809 if (map->stripes[i].physical > physical ||
5810 map->stripes[i].physical + length <= physical)
5811 continue;
5812
5813 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5814 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5815
5816 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5817 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5818 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5819 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5820 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5821 } /* else if RAID[56], multiply by nr_data_stripes().
5822 * Alternatively, just use rmap_len below instead of
5823 * map->stripe_len */
5824
5825 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5826 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5827 for (j = 0; j < nr; j++) {
5828 if (buf[j] == bytenr)
5829 break;
5830 }
934d375b
CM
5831 if (j == nr) {
5832 WARN_ON(nr >= map->num_stripes);
a512bbf8 5833 buf[nr++] = bytenr;
934d375b 5834 }
a512bbf8
YZ
5835 }
5836
a512bbf8
YZ
5837 *logical = buf;
5838 *naddrs = nr;
53b381b3 5839 *stripe_len = rmap_len;
a512bbf8
YZ
5840
5841 free_extent_map(em);
5842 return 0;
f2d8d74d
CM
5843}
5844
4246a0b6 5845static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5846{
326e1dbb
MS
5847 bio->bi_private = bbio->private;
5848 bio->bi_end_io = bbio->end_io;
4246a0b6 5849 bio_endio(bio);
326e1dbb 5850
6e9606d2 5851 btrfs_put_bbio(bbio);
8408c716
MX
5852}
5853
4246a0b6 5854static void btrfs_end_bio(struct bio *bio)
8790d502 5855{
9be3395b 5856 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5857 int is_orig_bio = 0;
8790d502 5858
4246a0b6 5859 if (bio->bi_error) {
a1d3c478 5860 atomic_inc(&bbio->error);
4246a0b6 5861 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5862 unsigned int stripe_index =
9be3395b 5863 btrfs_io_bio(bio)->stripe_index;
65f53338 5864 struct btrfs_device *dev;
442a4f63
SB
5865
5866 BUG_ON(stripe_index >= bbio->num_stripes);
5867 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5868 if (dev->bdev) {
5869 if (bio->bi_rw & WRITE)
5870 btrfs_dev_stat_inc(dev,
5871 BTRFS_DEV_STAT_WRITE_ERRS);
5872 else
5873 btrfs_dev_stat_inc(dev,
5874 BTRFS_DEV_STAT_READ_ERRS);
5875 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5876 btrfs_dev_stat_inc(dev,
5877 BTRFS_DEV_STAT_FLUSH_ERRS);
5878 btrfs_dev_stat_print_on_error(dev);
5879 }
442a4f63
SB
5880 }
5881 }
8790d502 5882
a1d3c478 5883 if (bio == bbio->orig_bio)
7d2b4daa
CM
5884 is_orig_bio = 1;
5885
c404e0dc
MX
5886 btrfs_bio_counter_dec(bbio->fs_info);
5887
a1d3c478 5888 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5889 if (!is_orig_bio) {
5890 bio_put(bio);
a1d3c478 5891 bio = bbio->orig_bio;
7d2b4daa 5892 }
c7b22bb1 5893
9be3395b 5894 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5895 /* only send an error to the higher layers if it is
53b381b3 5896 * beyond the tolerance of the btrfs bio
a236aed1 5897 */
a1d3c478 5898 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 5899 bio->bi_error = -EIO;
5dbc8fca 5900 } else {
1259ab75
CM
5901 /*
5902 * this bio is actually up to date, we didn't
5903 * go over the max number of errors
5904 */
4246a0b6 5905 bio->bi_error = 0;
1259ab75 5906 }
c55f1396 5907
4246a0b6 5908 btrfs_end_bbio(bbio, bio);
7d2b4daa 5909 } else if (!is_orig_bio) {
8790d502
CM
5910 bio_put(bio);
5911 }
8790d502
CM
5912}
5913
8b712842
CM
5914/*
5915 * see run_scheduled_bios for a description of why bios are collected for
5916 * async submit.
5917 *
5918 * This will add one bio to the pending list for a device and make sure
5919 * the work struct is scheduled.
5920 */
48a3b636
ES
5921static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5922 struct btrfs_device *device,
5923 int rw, struct bio *bio)
8b712842
CM
5924{
5925 int should_queue = 1;
ffbd517d 5926 struct btrfs_pending_bios *pending_bios;
8b712842 5927
53b381b3 5928 if (device->missing || !device->bdev) {
4246a0b6 5929 bio_io_error(bio);
53b381b3
DW
5930 return;
5931 }
5932
8b712842 5933 /* don't bother with additional async steps for reads, right now */
7b6d91da 5934 if (!(rw & REQ_WRITE)) {
492bb6de 5935 bio_get(bio);
21adbd5c 5936 btrfsic_submit_bio(rw, bio);
492bb6de 5937 bio_put(bio);
143bede5 5938 return;
8b712842
CM
5939 }
5940
5941 /*
0986fe9e 5942 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5943 * higher layers. Otherwise, the async bio makes it appear we have
5944 * made progress against dirty pages when we've really just put it
5945 * on a queue for later
5946 */
0986fe9e 5947 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5948 WARN_ON(bio->bi_next);
8b712842
CM
5949 bio->bi_next = NULL;
5950 bio->bi_rw |= rw;
5951
5952 spin_lock(&device->io_lock);
7b6d91da 5953 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5954 pending_bios = &device->pending_sync_bios;
5955 else
5956 pending_bios = &device->pending_bios;
8b712842 5957
ffbd517d
CM
5958 if (pending_bios->tail)
5959 pending_bios->tail->bi_next = bio;
8b712842 5960
ffbd517d
CM
5961 pending_bios->tail = bio;
5962 if (!pending_bios->head)
5963 pending_bios->head = bio;
8b712842
CM
5964 if (device->running_pending)
5965 should_queue = 0;
5966
5967 spin_unlock(&device->io_lock);
5968
5969 if (should_queue)
a8c93d4e
QW
5970 btrfs_queue_work(root->fs_info->submit_workers,
5971 &device->work);
8b712842
CM
5972}
5973
de1ee92a
JB
5974static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5975 struct bio *bio, u64 physical, int dev_nr,
5976 int rw, int async)
5977{
5978 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5979
5980 bio->bi_private = bbio;
9be3395b 5981 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5982 bio->bi_end_io = btrfs_end_bio;
4f024f37 5983 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5984#ifdef DEBUG
5985 {
5986 struct rcu_string *name;
5987
5988 rcu_read_lock();
5989 name = rcu_dereference(dev->name);
d1423248 5990 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 5991 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
5992 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5993 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
5994 rcu_read_unlock();
5995 }
5996#endif
5997 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5998
5999 btrfs_bio_counter_inc_noblocked(root->fs_info);
6000
de1ee92a 6001 if (async)
53b381b3 6002 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
6003 else
6004 btrfsic_submit_bio(rw, bio);
6005}
6006
de1ee92a
JB
6007static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6008{
6009 atomic_inc(&bbio->error);
6010 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
6011 /* Shoud be the original bio. */
6012 WARN_ON(bio != bbio->orig_bio);
6013
9be3395b 6014 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6015 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6016 bio->bi_error = -EIO;
6017 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6018 }
6019}
6020
f188591e 6021int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 6022 int mirror_num, int async_submit)
0b86a832 6023{
0b86a832 6024 struct btrfs_device *dev;
8790d502 6025 struct bio *first_bio = bio;
4f024f37 6026 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6027 u64 length = 0;
6028 u64 map_length;
0b86a832 6029 int ret;
08da757d
ZL
6030 int dev_nr;
6031 int total_devs;
a1d3c478 6032 struct btrfs_bio *bbio = NULL;
0b86a832 6033
4f024f37 6034 length = bio->bi_iter.bi_size;
0b86a832 6035 map_length = length;
cea9e445 6036
c404e0dc 6037 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 6038 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 6039 mirror_num, 1);
c404e0dc
MX
6040 if (ret) {
6041 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6042 return ret;
c404e0dc 6043 }
cea9e445 6044
a1d3c478 6045 total_devs = bbio->num_stripes;
53b381b3
DW
6046 bbio->orig_bio = first_bio;
6047 bbio->private = first_bio->bi_private;
6048 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6049 bbio->fs_info = root->fs_info;
53b381b3
DW
6050 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6051
ad1ba2a0
ZL
6052 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6053 ((rw & WRITE) || (mirror_num > 1))) {
53b381b3
DW
6054 /* In this case, map_length has been set to the length of
6055 a single stripe; not the whole write */
6056 if (rw & WRITE) {
8e5cfb55 6057 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6058 } else {
8e5cfb55 6059 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6060 mirror_num, 1);
53b381b3 6061 }
4245215d 6062
c404e0dc
MX
6063 btrfs_bio_counter_dec(root->fs_info);
6064 return ret;
53b381b3
DW
6065 }
6066
cea9e445 6067 if (map_length < length) {
c2cf52eb 6068 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6069 logical, length, map_length);
cea9e445
CM
6070 BUG();
6071 }
a1d3c478 6072
08da757d 6073 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6074 dev = bbio->stripes[dev_nr].dev;
6075 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6076 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6077 continue;
6078 }
6079
a1d3c478 6080 if (dev_nr < total_devs - 1) {
9be3395b 6081 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6082 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6083 } else
a1d3c478 6084 bio = first_bio;
de1ee92a
JB
6085
6086 submit_stripe_bio(root, bbio, bio,
6087 bbio->stripes[dev_nr].physical, dev_nr, rw,
6088 async_submit);
8790d502 6089 }
c404e0dc 6090 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6091 return 0;
6092}
6093
aa1b8cd4 6094struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6095 u8 *uuid, u8 *fsid)
0b86a832 6096{
2b82032c
YZ
6097 struct btrfs_device *device;
6098 struct btrfs_fs_devices *cur_devices;
6099
aa1b8cd4 6100 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6101 while (cur_devices) {
6102 if (!fsid ||
6103 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6104 device = __find_device(&cur_devices->devices,
6105 devid, uuid);
6106 if (device)
6107 return device;
6108 }
6109 cur_devices = cur_devices->seed;
6110 }
6111 return NULL;
0b86a832
CM
6112}
6113
dfe25020 6114static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6115 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6116 u64 devid, u8 *dev_uuid)
6117{
6118 struct btrfs_device *device;
dfe25020 6119
12bd2fc0
ID
6120 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6121 if (IS_ERR(device))
7cbd8a83 6122 return NULL;
12bd2fc0
ID
6123
6124 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6125 device->fs_devices = fs_devices;
dfe25020 6126 fs_devices->num_devices++;
12bd2fc0
ID
6127
6128 device->missing = 1;
cd02dca5 6129 fs_devices->missing_devices++;
12bd2fc0 6130
dfe25020
CM
6131 return device;
6132}
6133
12bd2fc0
ID
6134/**
6135 * btrfs_alloc_device - allocate struct btrfs_device
6136 * @fs_info: used only for generating a new devid, can be NULL if
6137 * devid is provided (i.e. @devid != NULL).
6138 * @devid: a pointer to devid for this device. If NULL a new devid
6139 * is generated.
6140 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6141 * is generated.
6142 *
6143 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6144 * on error. Returned struct is not linked onto any lists and can be
6145 * destroyed with kfree() right away.
6146 */
6147struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6148 const u64 *devid,
6149 const u8 *uuid)
6150{
6151 struct btrfs_device *dev;
6152 u64 tmp;
6153
fae7f21c 6154 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6155 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6156
6157 dev = __alloc_device();
6158 if (IS_ERR(dev))
6159 return dev;
6160
6161 if (devid)
6162 tmp = *devid;
6163 else {
6164 int ret;
6165
6166 ret = find_next_devid(fs_info, &tmp);
6167 if (ret) {
6168 kfree(dev);
6169 return ERR_PTR(ret);
6170 }
6171 }
6172 dev->devid = tmp;
6173
6174 if (uuid)
6175 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6176 else
6177 generate_random_uuid(dev->uuid);
6178
9e0af237
LB
6179 btrfs_init_work(&dev->work, btrfs_submit_helper,
6180 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6181
6182 return dev;
6183}
6184
0b86a832
CM
6185static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6186 struct extent_buffer *leaf,
6187 struct btrfs_chunk *chunk)
6188{
6189 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6190 struct map_lookup *map;
6191 struct extent_map *em;
6192 u64 logical;
6193 u64 length;
f04b772b 6194 u64 stripe_len;
0b86a832 6195 u64 devid;
a443755f 6196 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6197 int num_stripes;
0b86a832 6198 int ret;
593060d7 6199 int i;
0b86a832 6200
e17cade2
CM
6201 logical = key->offset;
6202 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6203 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6204 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6205 /* Validation check */
6206 if (!num_stripes) {
6207 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6208 num_stripes);
6209 return -EIO;
6210 }
6211 if (!IS_ALIGNED(logical, root->sectorsize)) {
6212 btrfs_err(root->fs_info,
6213 "invalid chunk logical %llu", logical);
6214 return -EIO;
6215 }
6216 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6217 btrfs_err(root->fs_info,
6218 "invalid chunk length %llu", length);
6219 return -EIO;
6220 }
6221 if (!is_power_of_2(stripe_len)) {
6222 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6223 stripe_len);
6224 return -EIO;
6225 }
6226 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6227 btrfs_chunk_type(leaf, chunk)) {
6228 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6229 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6230 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6231 btrfs_chunk_type(leaf, chunk));
6232 return -EIO;
6233 }
a061fc8d 6234
890871be 6235 read_lock(&map_tree->map_tree.lock);
0b86a832 6236 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6237 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6238
6239 /* already mapped? */
6240 if (em && em->start <= logical && em->start + em->len > logical) {
6241 free_extent_map(em);
0b86a832
CM
6242 return 0;
6243 } else if (em) {
6244 free_extent_map(em);
6245 }
0b86a832 6246
172ddd60 6247 em = alloc_extent_map();
0b86a832
CM
6248 if (!em)
6249 return -ENOMEM;
593060d7 6250 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6251 if (!map) {
6252 free_extent_map(em);
6253 return -ENOMEM;
6254 }
6255
298a8f9c 6256 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6257 em->map_lookup = map;
0b86a832
CM
6258 em->start = logical;
6259 em->len = length;
70c8a91c 6260 em->orig_start = 0;
0b86a832 6261 em->block_start = 0;
c8b97818 6262 em->block_len = em->len;
0b86a832 6263
593060d7
CM
6264 map->num_stripes = num_stripes;
6265 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6266 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6267 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6268 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6269 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6270 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6271 for (i = 0; i < num_stripes; i++) {
6272 map->stripes[i].physical =
6273 btrfs_stripe_offset_nr(leaf, chunk, i);
6274 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6275 read_extent_buffer(leaf, uuid, (unsigned long)
6276 btrfs_stripe_dev_uuid_nr(chunk, i),
6277 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6278 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6279 uuid, NULL);
dfe25020 6280 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6281 free_extent_map(em);
6282 return -EIO;
6283 }
dfe25020
CM
6284 if (!map->stripes[i].dev) {
6285 map->stripes[i].dev =
5f375835
MX
6286 add_missing_dev(root, root->fs_info->fs_devices,
6287 devid, uuid);
dfe25020 6288 if (!map->stripes[i].dev) {
dfe25020
CM
6289 free_extent_map(em);
6290 return -EIO;
6291 }
816fcebe
AJ
6292 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6293 devid, uuid);
dfe25020
CM
6294 }
6295 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6296 }
6297
890871be 6298 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6299 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6300 write_unlock(&map_tree->map_tree.lock);
79787eaa 6301 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6302 free_extent_map(em);
6303
6304 return 0;
6305}
6306
143bede5 6307static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6308 struct btrfs_dev_item *dev_item,
6309 struct btrfs_device *device)
6310{
6311 unsigned long ptr;
0b86a832
CM
6312
6313 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6314 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6315 device->total_bytes = device->disk_total_bytes;
935e5cc9 6316 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6317 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6318 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6319 device->type = btrfs_device_type(leaf, dev_item);
6320 device->io_align = btrfs_device_io_align(leaf, dev_item);
6321 device->io_width = btrfs_device_io_width(leaf, dev_item);
6322 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6323 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6324 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6325
410ba3a2 6326 ptr = btrfs_device_uuid(dev_item);
e17cade2 6327 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6328}
6329
5f375835
MX
6330static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6331 u8 *fsid)
2b82032c
YZ
6332{
6333 struct btrfs_fs_devices *fs_devices;
6334 int ret;
6335
b367e47f 6336 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6337
6338 fs_devices = root->fs_info->fs_devices->seed;
6339 while (fs_devices) {
5f375835
MX
6340 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6341 return fs_devices;
6342
2b82032c
YZ
6343 fs_devices = fs_devices->seed;
6344 }
6345
6346 fs_devices = find_fsid(fsid);
6347 if (!fs_devices) {
5f375835
MX
6348 if (!btrfs_test_opt(root, DEGRADED))
6349 return ERR_PTR(-ENOENT);
6350
6351 fs_devices = alloc_fs_devices(fsid);
6352 if (IS_ERR(fs_devices))
6353 return fs_devices;
6354
6355 fs_devices->seeding = 1;
6356 fs_devices->opened = 1;
6357 return fs_devices;
2b82032c 6358 }
e4404d6e
YZ
6359
6360 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6361 if (IS_ERR(fs_devices))
6362 return fs_devices;
2b82032c 6363
97288f2c 6364 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6365 root->fs_info->bdev_holder);
48d28232
JL
6366 if (ret) {
6367 free_fs_devices(fs_devices);
5f375835 6368 fs_devices = ERR_PTR(ret);
2b82032c 6369 goto out;
48d28232 6370 }
2b82032c
YZ
6371
6372 if (!fs_devices->seeding) {
6373 __btrfs_close_devices(fs_devices);
e4404d6e 6374 free_fs_devices(fs_devices);
5f375835 6375 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6376 goto out;
6377 }
6378
6379 fs_devices->seed = root->fs_info->fs_devices->seed;
6380 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6381out:
5f375835 6382 return fs_devices;
2b82032c
YZ
6383}
6384
0d81ba5d 6385static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6386 struct extent_buffer *leaf,
6387 struct btrfs_dev_item *dev_item)
6388{
5f375835 6389 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6390 struct btrfs_device *device;
6391 u64 devid;
6392 int ret;
2b82032c 6393 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6394 u8 dev_uuid[BTRFS_UUID_SIZE];
6395
0b86a832 6396 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6397 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6398 BTRFS_UUID_SIZE);
1473b24e 6399 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6400 BTRFS_UUID_SIZE);
6401
6402 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6403 fs_devices = open_seed_devices(root, fs_uuid);
6404 if (IS_ERR(fs_devices))
6405 return PTR_ERR(fs_devices);
2b82032c
YZ
6406 }
6407
aa1b8cd4 6408 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6409 if (!device) {
e4404d6e 6410 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6411 return -EIO;
6412
5f375835
MX
6413 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6414 if (!device)
6415 return -ENOMEM;
33b97e43
AJ
6416 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6417 devid, dev_uuid);
5f375835
MX
6418 } else {
6419 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6420 return -EIO;
6421
6422 if(!device->bdev && !device->missing) {
cd02dca5
CM
6423 /*
6424 * this happens when a device that was properly setup
6425 * in the device info lists suddenly goes bad.
6426 * device->bdev is NULL, and so we have to set
6427 * device->missing to one here
6428 */
5f375835 6429 device->fs_devices->missing_devices++;
cd02dca5 6430 device->missing = 1;
2b82032c 6431 }
5f375835
MX
6432
6433 /* Move the device to its own fs_devices */
6434 if (device->fs_devices != fs_devices) {
6435 ASSERT(device->missing);
6436
6437 list_move(&device->dev_list, &fs_devices->devices);
6438 device->fs_devices->num_devices--;
6439 fs_devices->num_devices++;
6440
6441 device->fs_devices->missing_devices--;
6442 fs_devices->missing_devices++;
6443
6444 device->fs_devices = fs_devices;
6445 }
2b82032c
YZ
6446 }
6447
6448 if (device->fs_devices != root->fs_info->fs_devices) {
6449 BUG_ON(device->writeable);
6450 if (device->generation !=
6451 btrfs_device_generation(leaf, dev_item))
6452 return -EINVAL;
6324fbf3 6453 }
0b86a832
CM
6454
6455 fill_device_from_item(leaf, dev_item, device);
dfe25020 6456 device->in_fs_metadata = 1;
63a212ab 6457 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6458 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6459 spin_lock(&root->fs_info->free_chunk_lock);
6460 root->fs_info->free_chunk_space += device->total_bytes -
6461 device->bytes_used;
6462 spin_unlock(&root->fs_info->free_chunk_lock);
6463 }
0b86a832 6464 ret = 0;
0b86a832
CM
6465 return ret;
6466}
6467
e4404d6e 6468int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6469{
6c41761f 6470 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6471 struct extent_buffer *sb;
0b86a832 6472 struct btrfs_disk_key *disk_key;
0b86a832 6473 struct btrfs_chunk *chunk;
1ffb22cf
DS
6474 u8 *array_ptr;
6475 unsigned long sb_array_offset;
84eed90f 6476 int ret = 0;
0b86a832
CM
6477 u32 num_stripes;
6478 u32 array_size;
6479 u32 len = 0;
1ffb22cf 6480 u32 cur_offset;
84eed90f 6481 struct btrfs_key key;
0b86a832 6482
a83fffb7
DS
6483 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6484 /*
6485 * This will create extent buffer of nodesize, superblock size is
6486 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6487 * overallocate but we can keep it as-is, only the first page is used.
6488 */
6489 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6490 if (!sb)
6491 return -ENOMEM;
4db8c528 6492 set_extent_buffer_uptodate(sb);
85d4e461 6493 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6494 /*
6495 * The sb extent buffer is artifical and just used to read the system array.
4db8c528 6496 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6497 * pages up-to-date when the page is larger: extent does not cover the
6498 * whole page and consequently check_page_uptodate does not find all
6499 * the page's extents up-to-date (the hole beyond sb),
6500 * write_extent_buffer then triggers a WARN_ON.
6501 *
6502 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6503 * but sb spans only this function. Add an explicit SetPageUptodate call
6504 * to silence the warning eg. on PowerPC 64.
6505 */
09cbfeaf 6506 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6507 SetPageUptodate(sb->pages[0]);
4008c04a 6508
a061fc8d 6509 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6510 array_size = btrfs_super_sys_array_size(super_copy);
6511
1ffb22cf
DS
6512 array_ptr = super_copy->sys_chunk_array;
6513 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6514 cur_offset = 0;
0b86a832 6515
1ffb22cf
DS
6516 while (cur_offset < array_size) {
6517 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6518 len = sizeof(*disk_key);
6519 if (cur_offset + len > array_size)
6520 goto out_short_read;
6521
0b86a832
CM
6522 btrfs_disk_key_to_cpu(&key, disk_key);
6523
1ffb22cf
DS
6524 array_ptr += len;
6525 sb_array_offset += len;
6526 cur_offset += len;
0b86a832 6527
0d81ba5d 6528 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6529 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6530 /*
6531 * At least one btrfs_chunk with one stripe must be
6532 * present, exact stripe count check comes afterwards
6533 */
6534 len = btrfs_chunk_item_size(1);
6535 if (cur_offset + len > array_size)
6536 goto out_short_read;
6537
6538 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7
DS
6539 if (!num_stripes) {
6540 printk(KERN_ERR
6541 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6542 num_stripes, cur_offset);
6543 ret = -EIO;
6544 break;
6545 }
6546
e3540eab
DS
6547 len = btrfs_chunk_item_size(num_stripes);
6548 if (cur_offset + len > array_size)
6549 goto out_short_read;
6550
0d81ba5d 6551 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6552 if (ret)
6553 break;
0b86a832 6554 } else {
93a3d467
DS
6555 printk(KERN_ERR
6556 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6557 (u32)key.type, cur_offset);
84eed90f
CM
6558 ret = -EIO;
6559 break;
0b86a832 6560 }
1ffb22cf
DS
6561 array_ptr += len;
6562 sb_array_offset += len;
6563 cur_offset += len;
0b86a832 6564 }
a061fc8d 6565 free_extent_buffer(sb);
84eed90f 6566 return ret;
e3540eab
DS
6567
6568out_short_read:
6569 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6570 len, cur_offset);
6571 free_extent_buffer(sb);
6572 return -EIO;
0b86a832
CM
6573}
6574
6575int btrfs_read_chunk_tree(struct btrfs_root *root)
6576{
6577 struct btrfs_path *path;
6578 struct extent_buffer *leaf;
6579 struct btrfs_key key;
6580 struct btrfs_key found_key;
6581 int ret;
6582 int slot;
6583
6584 root = root->fs_info->chunk_root;
6585
6586 path = btrfs_alloc_path();
6587 if (!path)
6588 return -ENOMEM;
6589
b367e47f
LZ
6590 mutex_lock(&uuid_mutex);
6591 lock_chunks(root);
6592
395927a9
FDBM
6593 /*
6594 * Read all device items, and then all the chunk items. All
6595 * device items are found before any chunk item (their object id
6596 * is smaller than the lowest possible object id for a chunk
6597 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6598 */
6599 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6600 key.offset = 0;
6601 key.type = 0;
0b86a832 6602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6603 if (ret < 0)
6604 goto error;
d397712b 6605 while (1) {
0b86a832
CM
6606 leaf = path->nodes[0];
6607 slot = path->slots[0];
6608 if (slot >= btrfs_header_nritems(leaf)) {
6609 ret = btrfs_next_leaf(root, path);
6610 if (ret == 0)
6611 continue;
6612 if (ret < 0)
6613 goto error;
6614 break;
6615 }
6616 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6617 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6618 struct btrfs_dev_item *dev_item;
6619 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6620 struct btrfs_dev_item);
395927a9
FDBM
6621 ret = read_one_dev(root, leaf, dev_item);
6622 if (ret)
6623 goto error;
0b86a832
CM
6624 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6625 struct btrfs_chunk *chunk;
6626 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6627 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6628 if (ret)
6629 goto error;
0b86a832
CM
6630 }
6631 path->slots[0]++;
6632 }
0b86a832
CM
6633 ret = 0;
6634error:
b367e47f
LZ
6635 unlock_chunks(root);
6636 mutex_unlock(&uuid_mutex);
6637
2b82032c 6638 btrfs_free_path(path);
0b86a832
CM
6639 return ret;
6640}
442a4f63 6641
cb517eab
MX
6642void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6643{
6644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6645 struct btrfs_device *device;
6646
29cc83f6
LB
6647 while (fs_devices) {
6648 mutex_lock(&fs_devices->device_list_mutex);
6649 list_for_each_entry(device, &fs_devices->devices, dev_list)
6650 device->dev_root = fs_info->dev_root;
6651 mutex_unlock(&fs_devices->device_list_mutex);
6652
6653 fs_devices = fs_devices->seed;
6654 }
cb517eab
MX
6655}
6656
733f4fbb
SB
6657static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6658{
6659 int i;
6660
6661 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6662 btrfs_dev_stat_reset(dev, i);
6663}
6664
6665int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6666{
6667 struct btrfs_key key;
6668 struct btrfs_key found_key;
6669 struct btrfs_root *dev_root = fs_info->dev_root;
6670 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6671 struct extent_buffer *eb;
6672 int slot;
6673 int ret = 0;
6674 struct btrfs_device *device;
6675 struct btrfs_path *path = NULL;
6676 int i;
6677
6678 path = btrfs_alloc_path();
6679 if (!path) {
6680 ret = -ENOMEM;
6681 goto out;
6682 }
6683
6684 mutex_lock(&fs_devices->device_list_mutex);
6685 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6686 int item_size;
6687 struct btrfs_dev_stats_item *ptr;
6688
242e2956
DS
6689 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6690 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6691 key.offset = device->devid;
6692 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6693 if (ret) {
733f4fbb
SB
6694 __btrfs_reset_dev_stats(device);
6695 device->dev_stats_valid = 1;
6696 btrfs_release_path(path);
6697 continue;
6698 }
6699 slot = path->slots[0];
6700 eb = path->nodes[0];
6701 btrfs_item_key_to_cpu(eb, &found_key, slot);
6702 item_size = btrfs_item_size_nr(eb, slot);
6703
6704 ptr = btrfs_item_ptr(eb, slot,
6705 struct btrfs_dev_stats_item);
6706
6707 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6708 if (item_size >= (1 + i) * sizeof(__le64))
6709 btrfs_dev_stat_set(device, i,
6710 btrfs_dev_stats_value(eb, ptr, i));
6711 else
6712 btrfs_dev_stat_reset(device, i);
6713 }
6714
6715 device->dev_stats_valid = 1;
6716 btrfs_dev_stat_print_on_load(device);
6717 btrfs_release_path(path);
6718 }
6719 mutex_unlock(&fs_devices->device_list_mutex);
6720
6721out:
6722 btrfs_free_path(path);
6723 return ret < 0 ? ret : 0;
6724}
6725
6726static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6727 struct btrfs_root *dev_root,
6728 struct btrfs_device *device)
6729{
6730 struct btrfs_path *path;
6731 struct btrfs_key key;
6732 struct extent_buffer *eb;
6733 struct btrfs_dev_stats_item *ptr;
6734 int ret;
6735 int i;
6736
242e2956
DS
6737 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6738 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6739 key.offset = device->devid;
6740
6741 path = btrfs_alloc_path();
6742 BUG_ON(!path);
6743 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6744 if (ret < 0) {
ecaeb14b
DS
6745 btrfs_warn_in_rcu(dev_root->fs_info,
6746 "error %d while searching for dev_stats item for device %s",
606686ee 6747 ret, rcu_str_deref(device->name));
733f4fbb
SB
6748 goto out;
6749 }
6750
6751 if (ret == 0 &&
6752 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6753 /* need to delete old one and insert a new one */
6754 ret = btrfs_del_item(trans, dev_root, path);
6755 if (ret != 0) {
ecaeb14b
DS
6756 btrfs_warn_in_rcu(dev_root->fs_info,
6757 "delete too small dev_stats item for device %s failed %d",
606686ee 6758 rcu_str_deref(device->name), ret);
733f4fbb
SB
6759 goto out;
6760 }
6761 ret = 1;
6762 }
6763
6764 if (ret == 1) {
6765 /* need to insert a new item */
6766 btrfs_release_path(path);
6767 ret = btrfs_insert_empty_item(trans, dev_root, path,
6768 &key, sizeof(*ptr));
6769 if (ret < 0) {
ecaeb14b
DS
6770 btrfs_warn_in_rcu(dev_root->fs_info,
6771 "insert dev_stats item for device %s failed %d",
6772 rcu_str_deref(device->name), ret);
733f4fbb
SB
6773 goto out;
6774 }
6775 }
6776
6777 eb = path->nodes[0];
6778 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6779 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6780 btrfs_set_dev_stats_value(eb, ptr, i,
6781 btrfs_dev_stat_read(device, i));
6782 btrfs_mark_buffer_dirty(eb);
6783
6784out:
6785 btrfs_free_path(path);
6786 return ret;
6787}
6788
6789/*
6790 * called from commit_transaction. Writes all changed device stats to disk.
6791 */
6792int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6793 struct btrfs_fs_info *fs_info)
6794{
6795 struct btrfs_root *dev_root = fs_info->dev_root;
6796 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6797 struct btrfs_device *device;
addc3fa7 6798 int stats_cnt;
733f4fbb
SB
6799 int ret = 0;
6800
6801 mutex_lock(&fs_devices->device_list_mutex);
6802 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6803 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6804 continue;
6805
addc3fa7 6806 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6807 ret = update_dev_stat_item(trans, dev_root, device);
6808 if (!ret)
addc3fa7 6809 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6810 }
6811 mutex_unlock(&fs_devices->device_list_mutex);
6812
6813 return ret;
6814}
6815
442a4f63
SB
6816void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6817{
6818 btrfs_dev_stat_inc(dev, index);
6819 btrfs_dev_stat_print_on_error(dev);
6820}
6821
48a3b636 6822static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6823{
733f4fbb
SB
6824 if (!dev->dev_stats_valid)
6825 return;
b14af3b4
DS
6826 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6827 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6828 rcu_str_deref(dev->name),
442a4f63
SB
6829 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6830 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6831 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6833 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6834}
c11d2c23 6835
733f4fbb
SB
6836static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6837{
a98cdb85
SB
6838 int i;
6839
6840 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6841 if (btrfs_dev_stat_read(dev, i) != 0)
6842 break;
6843 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6844 return; /* all values == 0, suppress message */
6845
ecaeb14b
DS
6846 btrfs_info_in_rcu(dev->dev_root->fs_info,
6847 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6848 rcu_str_deref(dev->name),
733f4fbb
SB
6849 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6850 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6851 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6852 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6853 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6854}
6855
c11d2c23 6856int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6857 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6858{
6859 struct btrfs_device *dev;
6860 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6861 int i;
6862
6863 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6864 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6865 mutex_unlock(&fs_devices->device_list_mutex);
6866
6867 if (!dev) {
efe120a0 6868 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6869 return -ENODEV;
733f4fbb 6870 } else if (!dev->dev_stats_valid) {
efe120a0 6871 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6872 return -ENODEV;
b27f7c0c 6873 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6874 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6875 if (stats->nr_items > i)
6876 stats->values[i] =
6877 btrfs_dev_stat_read_and_reset(dev, i);
6878 else
6879 btrfs_dev_stat_reset(dev, i);
6880 }
6881 } else {
6882 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6883 if (stats->nr_items > i)
6884 stats->values[i] = btrfs_dev_stat_read(dev, i);
6885 }
6886 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6887 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6888 return 0;
6889}
a8a6dab7 6890
12b1c263 6891void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
6892{
6893 struct buffer_head *bh;
6894 struct btrfs_super_block *disk_super;
12b1c263 6895 int copy_num;
a8a6dab7 6896
12b1c263
AJ
6897 if (!bdev)
6898 return;
a8a6dab7 6899
12b1c263
AJ
6900 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6901 copy_num++) {
a8a6dab7 6902
12b1c263
AJ
6903 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6904 continue;
6905
6906 disk_super = (struct btrfs_super_block *)bh->b_data;
6907
6908 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6909 set_buffer_dirty(bh);
6910 sync_dirty_buffer(bh);
6911 brelse(bh);
6912 }
6913
6914 /* Notify udev that device has changed */
6915 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6916
6917 /* Update ctime/mtime for device path for libblkid */
6918 update_dev_time(device_path);
a8a6dab7 6919}
935e5cc9
MX
6920
6921/*
6922 * Update the size of all devices, which is used for writing out the
6923 * super blocks.
6924 */
6925void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6926{
6927 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6928 struct btrfs_device *curr, *next;
6929
6930 if (list_empty(&fs_devices->resized_devices))
6931 return;
6932
6933 mutex_lock(&fs_devices->device_list_mutex);
6934 lock_chunks(fs_info->dev_root);
6935 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6936 resized_list) {
6937 list_del_init(&curr->resized_list);
6938 curr->commit_total_bytes = curr->disk_total_bytes;
6939 }
6940 unlock_chunks(fs_info->dev_root);
6941 mutex_unlock(&fs_devices->device_list_mutex);
6942}
ce7213c7
MX
6943
6944/* Must be invoked during the transaction commit */
6945void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6946 struct btrfs_transaction *transaction)
6947{
6948 struct extent_map *em;
6949 struct map_lookup *map;
6950 struct btrfs_device *dev;
6951 int i;
6952
6953 if (list_empty(&transaction->pending_chunks))
6954 return;
6955
6956 /* In order to kick the device replace finish process */
6957 lock_chunks(root);
6958 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 6959 map = em->map_lookup;
ce7213c7
MX
6960
6961 for (i = 0; i < map->num_stripes; i++) {
6962 dev = map->stripes[i].dev;
6963 dev->commit_bytes_used = dev->bytes_used;
6964 }
6965 }
6966 unlock_chunks(root);
6967}
5a13f430
AJ
6968
6969void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6970{
6971 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6972 while (fs_devices) {
6973 fs_devices->fs_info = fs_info;
6974 fs_devices = fs_devices->seed;
6975 }
6976}
6977
6978void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6979{
6980 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6981 while (fs_devices) {
6982 fs_devices->fs_info = NULL;
6983 fs_devices = fs_devices->seed;
6984 }
6985}
f190aa47 6986
87ad58c5 6987static void btrfs_close_one_device(struct btrfs_device *device)
f190aa47
AJ
6988{
6989 struct btrfs_fs_devices *fs_devices = device->fs_devices;
6990 struct btrfs_device *new_device;
6991 struct rcu_string *name;
6992
6993 if (device->bdev)
6994 fs_devices->open_devices--;
6995
6996 if (device->writeable &&
6997 device->devid != BTRFS_DEV_REPLACE_DEVID) {
6998 list_del_init(&device->dev_alloc_list);
6999 fs_devices->rw_devices--;
7000 }
7001
7002 if (device->missing)
7003 fs_devices->missing_devices--;
7004
7005 new_device = btrfs_alloc_device(NULL, &device->devid,
7006 device->uuid);
7007 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7008
7009 /* Safe because we are under uuid_mutex */
7010 if (device->name) {
7011 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7012 BUG_ON(!name); /* -ENOMEM */
7013 rcu_assign_pointer(new_device->name, name);
7014 }
7015
7016 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7017 new_device->fs_devices = device->fs_devices;
7018
7019 call_rcu(&device->rcu, free_device);
7020}