]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: pass fs_info to btrfs_map_block() instead of mapping_tree
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
4b4e25f2 28#include "compat.h"
0b86a832
CM
29#include "ctree.h"
30#include "extent_map.h"
31#include "disk-io.h"
32#include "transaction.h"
33#include "print-tree.h"
34#include "volumes.h"
8b712842 35#include "async-thread.h"
21adbd5c 36#include "check-integrity.h"
606686ee 37#include "rcu-string.h"
3fed40cc 38#include "math.h"
0b86a832 39
2b82032c
YZ
40static int init_first_rw_device(struct btrfs_trans_handle *trans,
41 struct btrfs_root *root,
42 struct btrfs_device *device);
43static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb
SB
44static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 46
8a4b83cc
CM
47static DEFINE_MUTEX(uuid_mutex);
48static LIST_HEAD(fs_uuids);
49
7d9eb12c
CM
50static void lock_chunks(struct btrfs_root *root)
51{
7d9eb12c
CM
52 mutex_lock(&root->fs_info->chunk_mutex);
53}
54
55static void unlock_chunks(struct btrfs_root *root)
56{
7d9eb12c
CM
57 mutex_unlock(&root->fs_info->chunk_mutex);
58}
59
e4404d6e
YZ
60static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61{
62 struct btrfs_device *device;
63 WARN_ON(fs_devices->opened);
64 while (!list_empty(&fs_devices->devices)) {
65 device = list_entry(fs_devices->devices.next,
66 struct btrfs_device, dev_list);
67 list_del(&device->dev_list);
606686ee 68 rcu_string_free(device->name);
e4404d6e
YZ
69 kfree(device);
70 }
71 kfree(fs_devices);
72}
73
143bede5 74void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
75{
76 struct btrfs_fs_devices *fs_devices;
8a4b83cc 77
2b82032c
YZ
78 while (!list_empty(&fs_uuids)) {
79 fs_devices = list_entry(fs_uuids.next,
80 struct btrfs_fs_devices, list);
81 list_del(&fs_devices->list);
e4404d6e 82 free_fs_devices(fs_devices);
8a4b83cc 83 }
8a4b83cc
CM
84}
85
a1b32a59
CM
86static noinline struct btrfs_device *__find_device(struct list_head *head,
87 u64 devid, u8 *uuid)
8a4b83cc
CM
88{
89 struct btrfs_device *dev;
8a4b83cc 90
c6e30871 91 list_for_each_entry(dev, head, dev_list) {
a443755f 92 if (dev->devid == devid &&
8f18cf13 93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 94 return dev;
a443755f 95 }
8a4b83cc
CM
96 }
97 return NULL;
98}
99
a1b32a59 100static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 101{
8a4b83cc
CM
102 struct btrfs_fs_devices *fs_devices;
103
c6e30871 104 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106 return fs_devices;
107 }
108 return NULL;
109}
110
beaf8ab3
SB
111static int
112btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
113 int flush, struct block_device **bdev,
114 struct buffer_head **bh)
115{
116 int ret;
117
118 *bdev = blkdev_get_by_path(device_path, flags, holder);
119
120 if (IS_ERR(*bdev)) {
121 ret = PTR_ERR(*bdev);
122 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
123 goto error;
124 }
125
126 if (flush)
127 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
128 ret = set_blocksize(*bdev, 4096);
129 if (ret) {
130 blkdev_put(*bdev, flags);
131 goto error;
132 }
133 invalidate_bdev(*bdev);
134 *bh = btrfs_read_dev_super(*bdev);
135 if (!*bh) {
136 ret = -EINVAL;
137 blkdev_put(*bdev, flags);
138 goto error;
139 }
140
141 return 0;
142
143error:
144 *bdev = NULL;
145 *bh = NULL;
146 return ret;
147}
148
ffbd517d
CM
149static void requeue_list(struct btrfs_pending_bios *pending_bios,
150 struct bio *head, struct bio *tail)
151{
152
153 struct bio *old_head;
154
155 old_head = pending_bios->head;
156 pending_bios->head = head;
157 if (pending_bios->tail)
158 tail->bi_next = old_head;
159 else
160 pending_bios->tail = tail;
161}
162
8b712842
CM
163/*
164 * we try to collect pending bios for a device so we don't get a large
165 * number of procs sending bios down to the same device. This greatly
166 * improves the schedulers ability to collect and merge the bios.
167 *
168 * But, it also turns into a long list of bios to process and that is sure
169 * to eventually make the worker thread block. The solution here is to
170 * make some progress and then put this work struct back at the end of
171 * the list if the block device is congested. This way, multiple devices
172 * can make progress from a single worker thread.
173 */
143bede5 174static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
175{
176 struct bio *pending;
177 struct backing_dev_info *bdi;
b64a2851 178 struct btrfs_fs_info *fs_info;
ffbd517d 179 struct btrfs_pending_bios *pending_bios;
8b712842
CM
180 struct bio *tail;
181 struct bio *cur;
182 int again = 0;
ffbd517d 183 unsigned long num_run;
d644d8a1 184 unsigned long batch_run = 0;
b64a2851 185 unsigned long limit;
b765ead5 186 unsigned long last_waited = 0;
d84275c9 187 int force_reg = 0;
0e588859 188 int sync_pending = 0;
211588ad
CM
189 struct blk_plug plug;
190
191 /*
192 * this function runs all the bios we've collected for
193 * a particular device. We don't want to wander off to
194 * another device without first sending all of these down.
195 * So, setup a plug here and finish it off before we return
196 */
197 blk_start_plug(&plug);
8b712842 198
bedf762b 199 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
200 fs_info = device->dev_root->fs_info;
201 limit = btrfs_async_submit_limit(fs_info);
202 limit = limit * 2 / 3;
203
8b712842
CM
204loop:
205 spin_lock(&device->io_lock);
206
a6837051 207loop_lock:
d84275c9 208 num_run = 0;
ffbd517d 209
8b712842
CM
210 /* take all the bios off the list at once and process them
211 * later on (without the lock held). But, remember the
212 * tail and other pointers so the bios can be properly reinserted
213 * into the list if we hit congestion
214 */
d84275c9 215 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 216 pending_bios = &device->pending_sync_bios;
d84275c9
CM
217 force_reg = 1;
218 } else {
ffbd517d 219 pending_bios = &device->pending_bios;
d84275c9
CM
220 force_reg = 0;
221 }
ffbd517d
CM
222
223 pending = pending_bios->head;
224 tail = pending_bios->tail;
8b712842 225 WARN_ON(pending && !tail);
8b712842
CM
226
227 /*
228 * if pending was null this time around, no bios need processing
229 * at all and we can stop. Otherwise it'll loop back up again
230 * and do an additional check so no bios are missed.
231 *
232 * device->running_pending is used to synchronize with the
233 * schedule_bio code.
234 */
ffbd517d
CM
235 if (device->pending_sync_bios.head == NULL &&
236 device->pending_bios.head == NULL) {
8b712842
CM
237 again = 0;
238 device->running_pending = 0;
ffbd517d
CM
239 } else {
240 again = 1;
241 device->running_pending = 1;
8b712842 242 }
ffbd517d
CM
243
244 pending_bios->head = NULL;
245 pending_bios->tail = NULL;
246
8b712842
CM
247 spin_unlock(&device->io_lock);
248
d397712b 249 while (pending) {
ffbd517d
CM
250
251 rmb();
d84275c9
CM
252 /* we want to work on both lists, but do more bios on the
253 * sync list than the regular list
254 */
255 if ((num_run > 32 &&
256 pending_bios != &device->pending_sync_bios &&
257 device->pending_sync_bios.head) ||
258 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
259 device->pending_bios.head)) {
ffbd517d
CM
260 spin_lock(&device->io_lock);
261 requeue_list(pending_bios, pending, tail);
262 goto loop_lock;
263 }
264
8b712842
CM
265 cur = pending;
266 pending = pending->bi_next;
267 cur->bi_next = NULL;
b64a2851 268
66657b31 269 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
270 waitqueue_active(&fs_info->async_submit_wait))
271 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
272
273 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 274
2ab1ba68
CM
275 /*
276 * if we're doing the sync list, record that our
277 * plug has some sync requests on it
278 *
279 * If we're doing the regular list and there are
280 * sync requests sitting around, unplug before
281 * we add more
282 */
283 if (pending_bios == &device->pending_sync_bios) {
284 sync_pending = 1;
285 } else if (sync_pending) {
286 blk_finish_plug(&plug);
287 blk_start_plug(&plug);
288 sync_pending = 0;
289 }
290
21adbd5c 291 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
292 num_run++;
293 batch_run++;
7eaceacc 294 if (need_resched())
ffbd517d 295 cond_resched();
8b712842
CM
296
297 /*
298 * we made progress, there is more work to do and the bdi
299 * is now congested. Back off and let other work structs
300 * run instead
301 */
57fd5a5f 302 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 303 fs_info->fs_devices->open_devices > 1) {
b765ead5 304 struct io_context *ioc;
8b712842 305
b765ead5
CM
306 ioc = current->io_context;
307
308 /*
309 * the main goal here is that we don't want to
310 * block if we're going to be able to submit
311 * more requests without blocking.
312 *
313 * This code does two great things, it pokes into
314 * the elevator code from a filesystem _and_
315 * it makes assumptions about how batching works.
316 */
317 if (ioc && ioc->nr_batch_requests > 0 &&
318 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
319 (last_waited == 0 ||
320 ioc->last_waited == last_waited)) {
321 /*
322 * we want to go through our batch of
323 * requests and stop. So, we copy out
324 * the ioc->last_waited time and test
325 * against it before looping
326 */
327 last_waited = ioc->last_waited;
7eaceacc 328 if (need_resched())
ffbd517d 329 cond_resched();
b765ead5
CM
330 continue;
331 }
8b712842 332 spin_lock(&device->io_lock);
ffbd517d 333 requeue_list(pending_bios, pending, tail);
a6837051 334 device->running_pending = 1;
8b712842
CM
335
336 spin_unlock(&device->io_lock);
337 btrfs_requeue_work(&device->work);
338 goto done;
339 }
d85c8a6f
CM
340 /* unplug every 64 requests just for good measure */
341 if (batch_run % 64 == 0) {
342 blk_finish_plug(&plug);
343 blk_start_plug(&plug);
344 sync_pending = 0;
345 }
8b712842 346 }
ffbd517d 347
51684082
CM
348 cond_resched();
349 if (again)
350 goto loop;
351
352 spin_lock(&device->io_lock);
353 if (device->pending_bios.head || device->pending_sync_bios.head)
354 goto loop_lock;
355 spin_unlock(&device->io_lock);
356
8b712842 357done:
211588ad 358 blk_finish_plug(&plug);
8b712842
CM
359}
360
b2950863 361static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
362{
363 struct btrfs_device *device;
364
365 device = container_of(work, struct btrfs_device, work);
366 run_scheduled_bios(device);
367}
368
a1b32a59 369static noinline int device_list_add(const char *path,
8a4b83cc
CM
370 struct btrfs_super_block *disk_super,
371 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
372{
373 struct btrfs_device *device;
374 struct btrfs_fs_devices *fs_devices;
606686ee 375 struct rcu_string *name;
8a4b83cc
CM
376 u64 found_transid = btrfs_super_generation(disk_super);
377
378 fs_devices = find_fsid(disk_super->fsid);
379 if (!fs_devices) {
515dc322 380 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
381 if (!fs_devices)
382 return -ENOMEM;
383 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 384 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
385 list_add(&fs_devices->list, &fs_uuids);
386 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
387 fs_devices->latest_devid = devid;
388 fs_devices->latest_trans = found_transid;
e5e9a520 389 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
390 device = NULL;
391 } else {
a443755f
CM
392 device = __find_device(&fs_devices->devices, devid,
393 disk_super->dev_item.uuid);
8a4b83cc
CM
394 }
395 if (!device) {
2b82032c
YZ
396 if (fs_devices->opened)
397 return -EBUSY;
398
8a4b83cc
CM
399 device = kzalloc(sizeof(*device), GFP_NOFS);
400 if (!device) {
401 /* we can safely leave the fs_devices entry around */
402 return -ENOMEM;
403 }
404 device->devid = devid;
733f4fbb 405 device->dev_stats_valid = 0;
8b712842 406 device->work.func = pending_bios_fn;
a443755f
CM
407 memcpy(device->uuid, disk_super->dev_item.uuid,
408 BTRFS_UUID_SIZE);
b248a415 409 spin_lock_init(&device->io_lock);
606686ee
JB
410
411 name = rcu_string_strdup(path, GFP_NOFS);
412 if (!name) {
8a4b83cc
CM
413 kfree(device);
414 return -ENOMEM;
415 }
606686ee 416 rcu_assign_pointer(device->name, name);
2b82032c 417 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 418
90519d66
AJ
419 /* init readahead state */
420 spin_lock_init(&device->reada_lock);
421 device->reada_curr_zone = NULL;
422 atomic_set(&device->reada_in_flight, 0);
423 device->reada_next = 0;
424 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
425 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
426
e5e9a520 427 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 428 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
429 mutex_unlock(&fs_devices->device_list_mutex);
430
2b82032c 431 device->fs_devices = fs_devices;
8a4b83cc 432 fs_devices->num_devices++;
606686ee
JB
433 } else if (!device->name || strcmp(device->name->str, path)) {
434 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
435 if (!name)
436 return -ENOMEM;
606686ee
JB
437 rcu_string_free(device->name);
438 rcu_assign_pointer(device->name, name);
cd02dca5
CM
439 if (device->missing) {
440 fs_devices->missing_devices--;
441 device->missing = 0;
442 }
8a4b83cc
CM
443 }
444
445 if (found_transid > fs_devices->latest_trans) {
446 fs_devices->latest_devid = devid;
447 fs_devices->latest_trans = found_transid;
448 }
8a4b83cc
CM
449 *fs_devices_ret = fs_devices;
450 return 0;
451}
452
e4404d6e
YZ
453static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
454{
455 struct btrfs_fs_devices *fs_devices;
456 struct btrfs_device *device;
457 struct btrfs_device *orig_dev;
458
459 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
460 if (!fs_devices)
461 return ERR_PTR(-ENOMEM);
462
463 INIT_LIST_HEAD(&fs_devices->devices);
464 INIT_LIST_HEAD(&fs_devices->alloc_list);
465 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 466 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
467 fs_devices->latest_devid = orig->latest_devid;
468 fs_devices->latest_trans = orig->latest_trans;
02db0844 469 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
470 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
471
46224705 472 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 473 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
474 struct rcu_string *name;
475
e4404d6e
YZ
476 device = kzalloc(sizeof(*device), GFP_NOFS);
477 if (!device)
478 goto error;
479
606686ee
JB
480 /*
481 * This is ok to do without rcu read locked because we hold the
482 * uuid mutex so nothing we touch in here is going to disappear.
483 */
484 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
485 if (!name) {
fd2696f3 486 kfree(device);
e4404d6e 487 goto error;
fd2696f3 488 }
606686ee 489 rcu_assign_pointer(device->name, name);
e4404d6e
YZ
490
491 device->devid = orig_dev->devid;
492 device->work.func = pending_bios_fn;
493 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
494 spin_lock_init(&device->io_lock);
495 INIT_LIST_HEAD(&device->dev_list);
496 INIT_LIST_HEAD(&device->dev_alloc_list);
497
498 list_add(&device->dev_list, &fs_devices->devices);
499 device->fs_devices = fs_devices;
500 fs_devices->num_devices++;
501 }
502 return fs_devices;
503error:
504 free_fs_devices(fs_devices);
505 return ERR_PTR(-ENOMEM);
506}
507
143bede5 508void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
dfe25020 509{
c6e30871 510 struct btrfs_device *device, *next;
dfe25020 511
a6b0d5c8
CM
512 struct block_device *latest_bdev = NULL;
513 u64 latest_devid = 0;
514 u64 latest_transid = 0;
515
dfe25020
CM
516 mutex_lock(&uuid_mutex);
517again:
46224705 518 /* This is the initialized path, it is safe to release the devices. */
c6e30871 519 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8
CM
520 if (device->in_fs_metadata) {
521 if (!latest_transid ||
522 device->generation > latest_transid) {
523 latest_devid = device->devid;
524 latest_transid = device->generation;
525 latest_bdev = device->bdev;
526 }
2b82032c 527 continue;
a6b0d5c8 528 }
2b82032c
YZ
529
530 if (device->bdev) {
d4d77629 531 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
532 device->bdev = NULL;
533 fs_devices->open_devices--;
534 }
535 if (device->writeable) {
536 list_del_init(&device->dev_alloc_list);
537 device->writeable = 0;
538 fs_devices->rw_devices--;
539 }
e4404d6e
YZ
540 list_del_init(&device->dev_list);
541 fs_devices->num_devices--;
606686ee 542 rcu_string_free(device->name);
e4404d6e 543 kfree(device);
dfe25020 544 }
2b82032c
YZ
545
546 if (fs_devices->seed) {
547 fs_devices = fs_devices->seed;
2b82032c
YZ
548 goto again;
549 }
550
a6b0d5c8
CM
551 fs_devices->latest_bdev = latest_bdev;
552 fs_devices->latest_devid = latest_devid;
553 fs_devices->latest_trans = latest_transid;
554
dfe25020 555 mutex_unlock(&uuid_mutex);
dfe25020 556}
a0af469b 557
1f78160c
XG
558static void __free_device(struct work_struct *work)
559{
560 struct btrfs_device *device;
561
562 device = container_of(work, struct btrfs_device, rcu_work);
563
564 if (device->bdev)
565 blkdev_put(device->bdev, device->mode);
566
606686ee 567 rcu_string_free(device->name);
1f78160c
XG
568 kfree(device);
569}
570
571static void free_device(struct rcu_head *head)
572{
573 struct btrfs_device *device;
574
575 device = container_of(head, struct btrfs_device, rcu);
576
577 INIT_WORK(&device->rcu_work, __free_device);
578 schedule_work(&device->rcu_work);
579}
580
2b82032c 581static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 582{
8a4b83cc 583 struct btrfs_device *device;
e4404d6e 584
2b82032c
YZ
585 if (--fs_devices->opened > 0)
586 return 0;
8a4b83cc 587
c9513edb 588 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 589 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 590 struct btrfs_device *new_device;
606686ee 591 struct rcu_string *name;
1f78160c
XG
592
593 if (device->bdev)
a0af469b 594 fs_devices->open_devices--;
1f78160c 595
2b82032c
YZ
596 if (device->writeable) {
597 list_del_init(&device->dev_alloc_list);
598 fs_devices->rw_devices--;
599 }
600
d5e2003c
JB
601 if (device->can_discard)
602 fs_devices->num_can_discard--;
603
1f78160c 604 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
79787eaa 605 BUG_ON(!new_device); /* -ENOMEM */
1f78160c 606 memcpy(new_device, device, sizeof(*new_device));
606686ee
JB
607
608 /* Safe because we are under uuid_mutex */
99f5944b
JB
609 if (device->name) {
610 name = rcu_string_strdup(device->name->str, GFP_NOFS);
611 BUG_ON(device->name && !name); /* -ENOMEM */
612 rcu_assign_pointer(new_device->name, name);
613 }
1f78160c
XG
614 new_device->bdev = NULL;
615 new_device->writeable = 0;
616 new_device->in_fs_metadata = 0;
d5e2003c 617 new_device->can_discard = 0;
1f78160c
XG
618 list_replace_rcu(&device->dev_list, &new_device->dev_list);
619
620 call_rcu(&device->rcu, free_device);
8a4b83cc 621 }
c9513edb
XG
622 mutex_unlock(&fs_devices->device_list_mutex);
623
e4404d6e
YZ
624 WARN_ON(fs_devices->open_devices);
625 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
626 fs_devices->opened = 0;
627 fs_devices->seeding = 0;
2b82032c 628
8a4b83cc
CM
629 return 0;
630}
631
2b82032c
YZ
632int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
633{
e4404d6e 634 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
635 int ret;
636
637 mutex_lock(&uuid_mutex);
638 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
639 if (!fs_devices->opened) {
640 seed_devices = fs_devices->seed;
641 fs_devices->seed = NULL;
642 }
2b82032c 643 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
644
645 while (seed_devices) {
646 fs_devices = seed_devices;
647 seed_devices = fs_devices->seed;
648 __btrfs_close_devices(fs_devices);
649 free_fs_devices(fs_devices);
650 }
2b82032c
YZ
651 return ret;
652}
653
e4404d6e
YZ
654static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
655 fmode_t flags, void *holder)
8a4b83cc 656{
d5e2003c 657 struct request_queue *q;
8a4b83cc
CM
658 struct block_device *bdev;
659 struct list_head *head = &fs_devices->devices;
8a4b83cc 660 struct btrfs_device *device;
a0af469b
CM
661 struct block_device *latest_bdev = NULL;
662 struct buffer_head *bh;
663 struct btrfs_super_block *disk_super;
664 u64 latest_devid = 0;
665 u64 latest_transid = 0;
a0af469b 666 u64 devid;
2b82032c 667 int seeding = 1;
a0af469b 668 int ret = 0;
8a4b83cc 669
d4d77629
TH
670 flags |= FMODE_EXCL;
671
c6e30871 672 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
673 if (device->bdev)
674 continue;
dfe25020
CM
675 if (!device->name)
676 continue;
677
beaf8ab3
SB
678 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
679 &bdev, &bh);
680 if (ret)
681 continue;
a0af469b
CM
682
683 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 684 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
685 if (devid != device->devid)
686 goto error_brelse;
687
2b82032c
YZ
688 if (memcmp(device->uuid, disk_super->dev_item.uuid,
689 BTRFS_UUID_SIZE))
690 goto error_brelse;
691
692 device->generation = btrfs_super_generation(disk_super);
693 if (!latest_transid || device->generation > latest_transid) {
a0af469b 694 latest_devid = devid;
2b82032c 695 latest_transid = device->generation;
a0af469b
CM
696 latest_bdev = bdev;
697 }
698
2b82032c
YZ
699 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
700 device->writeable = 0;
701 } else {
702 device->writeable = !bdev_read_only(bdev);
703 seeding = 0;
704 }
705
d5e2003c
JB
706 q = bdev_get_queue(bdev);
707 if (blk_queue_discard(q)) {
708 device->can_discard = 1;
709 fs_devices->num_can_discard++;
710 }
711
8a4b83cc 712 device->bdev = bdev;
dfe25020 713 device->in_fs_metadata = 0;
15916de8
CM
714 device->mode = flags;
715
c289811c
CM
716 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
717 fs_devices->rotating = 1;
718
a0af469b 719 fs_devices->open_devices++;
2b82032c
YZ
720 if (device->writeable) {
721 fs_devices->rw_devices++;
722 list_add(&device->dev_alloc_list,
723 &fs_devices->alloc_list);
724 }
4f6c9328 725 brelse(bh);
a0af469b 726 continue;
a061fc8d 727
a0af469b
CM
728error_brelse:
729 brelse(bh);
d4d77629 730 blkdev_put(bdev, flags);
a0af469b 731 continue;
8a4b83cc 732 }
a0af469b 733 if (fs_devices->open_devices == 0) {
20bcd649 734 ret = -EINVAL;
a0af469b
CM
735 goto out;
736 }
2b82032c
YZ
737 fs_devices->seeding = seeding;
738 fs_devices->opened = 1;
a0af469b
CM
739 fs_devices->latest_bdev = latest_bdev;
740 fs_devices->latest_devid = latest_devid;
741 fs_devices->latest_trans = latest_transid;
2b82032c 742 fs_devices->total_rw_bytes = 0;
a0af469b 743out:
2b82032c
YZ
744 return ret;
745}
746
747int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 748 fmode_t flags, void *holder)
2b82032c
YZ
749{
750 int ret;
751
752 mutex_lock(&uuid_mutex);
753 if (fs_devices->opened) {
e4404d6e
YZ
754 fs_devices->opened++;
755 ret = 0;
2b82032c 756 } else {
15916de8 757 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 758 }
8a4b83cc 759 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
760 return ret;
761}
762
97288f2c 763int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
764 struct btrfs_fs_devices **fs_devices_ret)
765{
766 struct btrfs_super_block *disk_super;
767 struct block_device *bdev;
768 struct buffer_head *bh;
769 int ret;
770 u64 devid;
f2984462 771 u64 transid;
02db0844 772 u64 total_devices;
8a4b83cc 773
d4d77629 774 flags |= FMODE_EXCL;
10f6327b 775 mutex_lock(&uuid_mutex);
beaf8ab3 776 ret = btrfs_get_bdev_and_sb(path, flags, holder, 0, &bdev, &bh);
8a4b83cc 777 if (ret)
beaf8ab3 778 goto error;
8a4b83cc 779 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 780 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 781 transid = btrfs_super_generation(disk_super);
02db0844 782 total_devices = btrfs_super_num_devices(disk_super);
d03f918a
SB
783 if (disk_super->label[0]) {
784 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
785 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 786 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 787 } else {
22b63a29 788 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 789 }
119e10cf 790 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 791 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc 792 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
793 if (!ret && fs_devices_ret)
794 (*fs_devices_ret)->total_devices = total_devices;
8a4b83cc 795 brelse(bh);
d4d77629 796 blkdev_put(bdev, flags);
8a4b83cc 797error:
beaf8ab3 798 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
799 return ret;
800}
0b86a832 801
6d07bcec
MX
802/* helper to account the used device space in the range */
803int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
804 u64 end, u64 *length)
805{
806 struct btrfs_key key;
807 struct btrfs_root *root = device->dev_root;
808 struct btrfs_dev_extent *dev_extent;
809 struct btrfs_path *path;
810 u64 extent_end;
811 int ret;
812 int slot;
813 struct extent_buffer *l;
814
815 *length = 0;
816
817 if (start >= device->total_bytes)
818 return 0;
819
820 path = btrfs_alloc_path();
821 if (!path)
822 return -ENOMEM;
823 path->reada = 2;
824
825 key.objectid = device->devid;
826 key.offset = start;
827 key.type = BTRFS_DEV_EXTENT_KEY;
828
829 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
830 if (ret < 0)
831 goto out;
832 if (ret > 0) {
833 ret = btrfs_previous_item(root, path, key.objectid, key.type);
834 if (ret < 0)
835 goto out;
836 }
837
838 while (1) {
839 l = path->nodes[0];
840 slot = path->slots[0];
841 if (slot >= btrfs_header_nritems(l)) {
842 ret = btrfs_next_leaf(root, path);
843 if (ret == 0)
844 continue;
845 if (ret < 0)
846 goto out;
847
848 break;
849 }
850 btrfs_item_key_to_cpu(l, &key, slot);
851
852 if (key.objectid < device->devid)
853 goto next;
854
855 if (key.objectid > device->devid)
856 break;
857
858 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
859 goto next;
860
861 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
862 extent_end = key.offset + btrfs_dev_extent_length(l,
863 dev_extent);
864 if (key.offset <= start && extent_end > end) {
865 *length = end - start + 1;
866 break;
867 } else if (key.offset <= start && extent_end > start)
868 *length += extent_end - start;
869 else if (key.offset > start && extent_end <= end)
870 *length += extent_end - key.offset;
871 else if (key.offset > start && key.offset <= end) {
872 *length += end - key.offset + 1;
873 break;
874 } else if (key.offset > end)
875 break;
876
877next:
878 path->slots[0]++;
879 }
880 ret = 0;
881out:
882 btrfs_free_path(path);
883 return ret;
884}
885
0b86a832 886/*
7bfc837d 887 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
888 * @device: the device which we search the free space in
889 * @num_bytes: the size of the free space that we need
890 * @start: store the start of the free space.
891 * @len: the size of the free space. that we find, or the size of the max
892 * free space if we don't find suitable free space
893 *
0b86a832
CM
894 * this uses a pretty simple search, the expectation is that it is
895 * called very infrequently and that a given device has a small number
896 * of extents
7bfc837d
MX
897 *
898 * @start is used to store the start of the free space if we find. But if we
899 * don't find suitable free space, it will be used to store the start position
900 * of the max free space.
901 *
902 * @len is used to store the size of the free space that we find.
903 * But if we don't find suitable free space, it is used to store the size of
904 * the max free space.
0b86a832 905 */
125ccb0a 906int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 907 u64 *start, u64 *len)
0b86a832
CM
908{
909 struct btrfs_key key;
910 struct btrfs_root *root = device->dev_root;
7bfc837d 911 struct btrfs_dev_extent *dev_extent;
2b82032c 912 struct btrfs_path *path;
7bfc837d
MX
913 u64 hole_size;
914 u64 max_hole_start;
915 u64 max_hole_size;
916 u64 extent_end;
917 u64 search_start;
0b86a832
CM
918 u64 search_end = device->total_bytes;
919 int ret;
7bfc837d 920 int slot;
0b86a832
CM
921 struct extent_buffer *l;
922
0b86a832
CM
923 /* FIXME use last free of some kind */
924
8a4b83cc
CM
925 /* we don't want to overwrite the superblock on the drive,
926 * so we make sure to start at an offset of at least 1MB
927 */
a9c9bf68 928 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 929
7bfc837d
MX
930 max_hole_start = search_start;
931 max_hole_size = 0;
38c01b96 932 hole_size = 0;
7bfc837d
MX
933
934 if (search_start >= search_end) {
935 ret = -ENOSPC;
936 goto error;
937 }
938
939 path = btrfs_alloc_path();
940 if (!path) {
941 ret = -ENOMEM;
942 goto error;
943 }
944 path->reada = 2;
945
0b86a832
CM
946 key.objectid = device->devid;
947 key.offset = search_start;
948 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 949
125ccb0a 950 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 951 if (ret < 0)
7bfc837d 952 goto out;
1fcbac58
YZ
953 if (ret > 0) {
954 ret = btrfs_previous_item(root, path, key.objectid, key.type);
955 if (ret < 0)
7bfc837d 956 goto out;
1fcbac58 957 }
7bfc837d 958
0b86a832
CM
959 while (1) {
960 l = path->nodes[0];
961 slot = path->slots[0];
962 if (slot >= btrfs_header_nritems(l)) {
963 ret = btrfs_next_leaf(root, path);
964 if (ret == 0)
965 continue;
966 if (ret < 0)
7bfc837d
MX
967 goto out;
968
969 break;
0b86a832
CM
970 }
971 btrfs_item_key_to_cpu(l, &key, slot);
972
973 if (key.objectid < device->devid)
974 goto next;
975
976 if (key.objectid > device->devid)
7bfc837d 977 break;
0b86a832 978
7bfc837d
MX
979 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
980 goto next;
9779b72f 981
7bfc837d
MX
982 if (key.offset > search_start) {
983 hole_size = key.offset - search_start;
9779b72f 984
7bfc837d
MX
985 if (hole_size > max_hole_size) {
986 max_hole_start = search_start;
987 max_hole_size = hole_size;
988 }
9779b72f 989
7bfc837d
MX
990 /*
991 * If this free space is greater than which we need,
992 * it must be the max free space that we have found
993 * until now, so max_hole_start must point to the start
994 * of this free space and the length of this free space
995 * is stored in max_hole_size. Thus, we return
996 * max_hole_start and max_hole_size and go back to the
997 * caller.
998 */
999 if (hole_size >= num_bytes) {
1000 ret = 0;
1001 goto out;
0b86a832
CM
1002 }
1003 }
0b86a832 1004
0b86a832 1005 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1006 extent_end = key.offset + btrfs_dev_extent_length(l,
1007 dev_extent);
1008 if (extent_end > search_start)
1009 search_start = extent_end;
0b86a832
CM
1010next:
1011 path->slots[0]++;
1012 cond_resched();
1013 }
0b86a832 1014
38c01b96 1015 /*
1016 * At this point, search_start should be the end of
1017 * allocated dev extents, and when shrinking the device,
1018 * search_end may be smaller than search_start.
1019 */
1020 if (search_end > search_start)
1021 hole_size = search_end - search_start;
1022
7bfc837d
MX
1023 if (hole_size > max_hole_size) {
1024 max_hole_start = search_start;
1025 max_hole_size = hole_size;
0b86a832 1026 }
0b86a832 1027
7bfc837d
MX
1028 /* See above. */
1029 if (hole_size < num_bytes)
1030 ret = -ENOSPC;
1031 else
1032 ret = 0;
1033
1034out:
2b82032c 1035 btrfs_free_path(path);
7bfc837d
MX
1036error:
1037 *start = max_hole_start;
b2117a39 1038 if (len)
7bfc837d 1039 *len = max_hole_size;
0b86a832
CM
1040 return ret;
1041}
1042
b2950863 1043static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1044 struct btrfs_device *device,
1045 u64 start)
1046{
1047 int ret;
1048 struct btrfs_path *path;
1049 struct btrfs_root *root = device->dev_root;
1050 struct btrfs_key key;
a061fc8d
CM
1051 struct btrfs_key found_key;
1052 struct extent_buffer *leaf = NULL;
1053 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1054
1055 path = btrfs_alloc_path();
1056 if (!path)
1057 return -ENOMEM;
1058
1059 key.objectid = device->devid;
1060 key.offset = start;
1061 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1062again:
8f18cf13 1063 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1064 if (ret > 0) {
1065 ret = btrfs_previous_item(root, path, key.objectid,
1066 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1067 if (ret)
1068 goto out;
a061fc8d
CM
1069 leaf = path->nodes[0];
1070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1071 extent = btrfs_item_ptr(leaf, path->slots[0],
1072 struct btrfs_dev_extent);
1073 BUG_ON(found_key.offset > start || found_key.offset +
1074 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1075 key = found_key;
1076 btrfs_release_path(path);
1077 goto again;
a061fc8d
CM
1078 } else if (ret == 0) {
1079 leaf = path->nodes[0];
1080 extent = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_dev_extent);
79787eaa
JM
1082 } else {
1083 btrfs_error(root->fs_info, ret, "Slot search failed");
1084 goto out;
a061fc8d 1085 }
8f18cf13 1086
2bf64758
JB
1087 if (device->bytes_used > 0) {
1088 u64 len = btrfs_dev_extent_length(leaf, extent);
1089 device->bytes_used -= len;
1090 spin_lock(&root->fs_info->free_chunk_lock);
1091 root->fs_info->free_chunk_space += len;
1092 spin_unlock(&root->fs_info->free_chunk_lock);
1093 }
8f18cf13 1094 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1095 if (ret) {
1096 btrfs_error(root->fs_info, ret,
1097 "Failed to remove dev extent item");
1098 }
b0b802d7 1099out:
8f18cf13
CM
1100 btrfs_free_path(path);
1101 return ret;
1102}
1103
2b82032c 1104int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1105 struct btrfs_device *device,
e17cade2 1106 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1107 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1108{
1109 int ret;
1110 struct btrfs_path *path;
1111 struct btrfs_root *root = device->dev_root;
1112 struct btrfs_dev_extent *extent;
1113 struct extent_buffer *leaf;
1114 struct btrfs_key key;
1115
dfe25020 1116 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1117 path = btrfs_alloc_path();
1118 if (!path)
1119 return -ENOMEM;
1120
0b86a832 1121 key.objectid = device->devid;
2b82032c 1122 key.offset = start;
0b86a832
CM
1123 key.type = BTRFS_DEV_EXTENT_KEY;
1124 ret = btrfs_insert_empty_item(trans, root, path, &key,
1125 sizeof(*extent));
2cdcecbc
MF
1126 if (ret)
1127 goto out;
0b86a832
CM
1128
1129 leaf = path->nodes[0];
1130 extent = btrfs_item_ptr(leaf, path->slots[0],
1131 struct btrfs_dev_extent);
e17cade2
CM
1132 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1133 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1134 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1135
1136 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1137 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1138 BTRFS_UUID_SIZE);
1139
0b86a832
CM
1140 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1141 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1142out:
0b86a832
CM
1143 btrfs_free_path(path);
1144 return ret;
1145}
1146
a1b32a59
CM
1147static noinline int find_next_chunk(struct btrfs_root *root,
1148 u64 objectid, u64 *offset)
0b86a832
CM
1149{
1150 struct btrfs_path *path;
1151 int ret;
1152 struct btrfs_key key;
e17cade2 1153 struct btrfs_chunk *chunk;
0b86a832
CM
1154 struct btrfs_key found_key;
1155
1156 path = btrfs_alloc_path();
92b8e897
MF
1157 if (!path)
1158 return -ENOMEM;
0b86a832 1159
e17cade2 1160 key.objectid = objectid;
0b86a832
CM
1161 key.offset = (u64)-1;
1162 key.type = BTRFS_CHUNK_ITEM_KEY;
1163
1164 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1165 if (ret < 0)
1166 goto error;
1167
79787eaa 1168 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1169
1170 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1171 if (ret) {
e17cade2 1172 *offset = 0;
0b86a832
CM
1173 } else {
1174 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1175 path->slots[0]);
e17cade2
CM
1176 if (found_key.objectid != objectid)
1177 *offset = 0;
1178 else {
1179 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1180 struct btrfs_chunk);
1181 *offset = found_key.offset +
1182 btrfs_chunk_length(path->nodes[0], chunk);
1183 }
0b86a832
CM
1184 }
1185 ret = 0;
1186error:
1187 btrfs_free_path(path);
1188 return ret;
1189}
1190
2b82032c 1191static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1192{
1193 int ret;
1194 struct btrfs_key key;
1195 struct btrfs_key found_key;
2b82032c
YZ
1196 struct btrfs_path *path;
1197
1198 root = root->fs_info->chunk_root;
1199
1200 path = btrfs_alloc_path();
1201 if (!path)
1202 return -ENOMEM;
0b86a832
CM
1203
1204 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1205 key.type = BTRFS_DEV_ITEM_KEY;
1206 key.offset = (u64)-1;
1207
1208 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1209 if (ret < 0)
1210 goto error;
1211
79787eaa 1212 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1213
1214 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1215 BTRFS_DEV_ITEM_KEY);
1216 if (ret) {
1217 *objectid = 1;
1218 } else {
1219 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1220 path->slots[0]);
1221 *objectid = found_key.offset + 1;
1222 }
1223 ret = 0;
1224error:
2b82032c 1225 btrfs_free_path(path);
0b86a832
CM
1226 return ret;
1227}
1228
1229/*
1230 * the device information is stored in the chunk root
1231 * the btrfs_device struct should be fully filled in
1232 */
1233int btrfs_add_device(struct btrfs_trans_handle *trans,
1234 struct btrfs_root *root,
1235 struct btrfs_device *device)
1236{
1237 int ret;
1238 struct btrfs_path *path;
1239 struct btrfs_dev_item *dev_item;
1240 struct extent_buffer *leaf;
1241 struct btrfs_key key;
1242 unsigned long ptr;
0b86a832
CM
1243
1244 root = root->fs_info->chunk_root;
1245
1246 path = btrfs_alloc_path();
1247 if (!path)
1248 return -ENOMEM;
1249
0b86a832
CM
1250 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1251 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1252 key.offset = device->devid;
0b86a832
CM
1253
1254 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1255 sizeof(*dev_item));
0b86a832
CM
1256 if (ret)
1257 goto out;
1258
1259 leaf = path->nodes[0];
1260 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1261
1262 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1263 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1264 btrfs_set_device_type(leaf, dev_item, device->type);
1265 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1266 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1267 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1268 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1269 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1270 btrfs_set_device_group(leaf, dev_item, 0);
1271 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1272 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1273 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1274
0b86a832 1275 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1276 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1277 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1278 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1279 btrfs_mark_buffer_dirty(leaf);
0b86a832 1280
2b82032c 1281 ret = 0;
0b86a832
CM
1282out:
1283 btrfs_free_path(path);
1284 return ret;
1285}
8f18cf13 1286
a061fc8d
CM
1287static int btrfs_rm_dev_item(struct btrfs_root *root,
1288 struct btrfs_device *device)
1289{
1290 int ret;
1291 struct btrfs_path *path;
a061fc8d 1292 struct btrfs_key key;
a061fc8d
CM
1293 struct btrfs_trans_handle *trans;
1294
1295 root = root->fs_info->chunk_root;
1296
1297 path = btrfs_alloc_path();
1298 if (!path)
1299 return -ENOMEM;
1300
a22285a6 1301 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1302 if (IS_ERR(trans)) {
1303 btrfs_free_path(path);
1304 return PTR_ERR(trans);
1305 }
a061fc8d
CM
1306 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1307 key.type = BTRFS_DEV_ITEM_KEY;
1308 key.offset = device->devid;
7d9eb12c 1309 lock_chunks(root);
a061fc8d
CM
1310
1311 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1312 if (ret < 0)
1313 goto out;
1314
1315 if (ret > 0) {
1316 ret = -ENOENT;
1317 goto out;
1318 }
1319
1320 ret = btrfs_del_item(trans, root, path);
1321 if (ret)
1322 goto out;
a061fc8d
CM
1323out:
1324 btrfs_free_path(path);
7d9eb12c 1325 unlock_chunks(root);
a061fc8d
CM
1326 btrfs_commit_transaction(trans, root);
1327 return ret;
1328}
1329
1330int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1331{
1332 struct btrfs_device *device;
2b82032c 1333 struct btrfs_device *next_device;
a061fc8d 1334 struct block_device *bdev;
dfe25020 1335 struct buffer_head *bh = NULL;
a061fc8d 1336 struct btrfs_super_block *disk_super;
1f78160c 1337 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1338 u64 all_avail;
1339 u64 devid;
2b82032c
YZ
1340 u64 num_devices;
1341 u8 *dev_uuid;
a061fc8d 1342 int ret = 0;
1f78160c 1343 bool clear_super = false;
a061fc8d 1344
a061fc8d
CM
1345 mutex_lock(&uuid_mutex);
1346
1347 all_avail = root->fs_info->avail_data_alloc_bits |
1348 root->fs_info->avail_system_alloc_bits |
1349 root->fs_info->avail_metadata_alloc_bits;
1350
1351 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1352 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1353 printk(KERN_ERR "btrfs: unable to go below four devices "
1354 "on raid10\n");
a061fc8d
CM
1355 ret = -EINVAL;
1356 goto out;
1357 }
1358
1359 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1360 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1361 printk(KERN_ERR "btrfs: unable to go below two "
1362 "devices on raid1\n");
a061fc8d
CM
1363 ret = -EINVAL;
1364 goto out;
1365 }
1366
dfe25020 1367 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1368 struct list_head *devices;
1369 struct btrfs_device *tmp;
a061fc8d 1370
dfe25020
CM
1371 device = NULL;
1372 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1373 /*
1374 * It is safe to read the devices since the volume_mutex
1375 * is held.
1376 */
c6e30871 1377 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1378 if (tmp->in_fs_metadata && !tmp->bdev) {
1379 device = tmp;
1380 break;
1381 }
1382 }
1383 bdev = NULL;
1384 bh = NULL;
1385 disk_super = NULL;
1386 if (!device) {
d397712b
CM
1387 printk(KERN_ERR "btrfs: no missing devices found to "
1388 "remove\n");
dfe25020
CM
1389 goto out;
1390 }
dfe25020 1391 } else {
beaf8ab3
SB
1392 ret = btrfs_get_bdev_and_sb(device_path,
1393 FMODE_READ | FMODE_EXCL,
1394 root->fs_info->bdev_holder, 0,
1395 &bdev, &bh);
1396 if (ret)
dfe25020 1397 goto out;
dfe25020 1398 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1399 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1400 dev_uuid = disk_super->dev_item.uuid;
1401 device = btrfs_find_device(root, devid, dev_uuid,
1402 disk_super->fsid);
dfe25020
CM
1403 if (!device) {
1404 ret = -ENOENT;
1405 goto error_brelse;
1406 }
2b82032c 1407 }
dfe25020 1408
2b82032c 1409 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1410 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1411 "device\n");
2b82032c
YZ
1412 ret = -EINVAL;
1413 goto error_brelse;
1414 }
1415
1416 if (device->writeable) {
0c1daee0 1417 lock_chunks(root);
2b82032c 1418 list_del_init(&device->dev_alloc_list);
0c1daee0 1419 unlock_chunks(root);
2b82032c 1420 root->fs_info->fs_devices->rw_devices--;
1f78160c 1421 clear_super = true;
dfe25020 1422 }
a061fc8d
CM
1423
1424 ret = btrfs_shrink_device(device, 0);
1425 if (ret)
9b3517e9 1426 goto error_undo;
a061fc8d 1427
a061fc8d
CM
1428 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1429 if (ret)
9b3517e9 1430 goto error_undo;
a061fc8d 1431
2bf64758
JB
1432 spin_lock(&root->fs_info->free_chunk_lock);
1433 root->fs_info->free_chunk_space = device->total_bytes -
1434 device->bytes_used;
1435 spin_unlock(&root->fs_info->free_chunk_lock);
1436
2b82032c 1437 device->in_fs_metadata = 0;
a2de733c 1438 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1439
1440 /*
1441 * the device list mutex makes sure that we don't change
1442 * the device list while someone else is writing out all
1443 * the device supers.
1444 */
1f78160c
XG
1445
1446 cur_devices = device->fs_devices;
e5e9a520 1447 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1448 list_del_rcu(&device->dev_list);
e5e9a520 1449
e4404d6e 1450 device->fs_devices->num_devices--;
02db0844 1451 device->fs_devices->total_devices--;
2b82032c 1452
cd02dca5
CM
1453 if (device->missing)
1454 root->fs_info->fs_devices->missing_devices--;
1455
2b82032c
YZ
1456 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1457 struct btrfs_device, dev_list);
1458 if (device->bdev == root->fs_info->sb->s_bdev)
1459 root->fs_info->sb->s_bdev = next_device->bdev;
1460 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1461 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1462
1f78160c 1463 if (device->bdev)
e4404d6e 1464 device->fs_devices->open_devices--;
1f78160c
XG
1465
1466 call_rcu(&device->rcu, free_device);
1467 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1468
6c41761f
DS
1469 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1470 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1471
1f78160c 1472 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1473 struct btrfs_fs_devices *fs_devices;
1474 fs_devices = root->fs_info->fs_devices;
1475 while (fs_devices) {
1f78160c 1476 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1477 break;
1478 fs_devices = fs_devices->seed;
2b82032c 1479 }
1f78160c
XG
1480 fs_devices->seed = cur_devices->seed;
1481 cur_devices->seed = NULL;
0c1daee0 1482 lock_chunks(root);
1f78160c 1483 __btrfs_close_devices(cur_devices);
0c1daee0 1484 unlock_chunks(root);
1f78160c 1485 free_fs_devices(cur_devices);
2b82032c
YZ
1486 }
1487
5af3e8cc
SB
1488 root->fs_info->num_tolerated_disk_barrier_failures =
1489 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1490
2b82032c
YZ
1491 /*
1492 * at this point, the device is zero sized. We want to
1493 * remove it from the devices list and zero out the old super
1494 */
1f78160c 1495 if (clear_super) {
dfe25020
CM
1496 /* make sure this device isn't detected as part of
1497 * the FS anymore
1498 */
1499 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1500 set_buffer_dirty(bh);
1501 sync_dirty_buffer(bh);
dfe25020 1502 }
a061fc8d 1503
a061fc8d 1504 ret = 0;
a061fc8d
CM
1505
1506error_brelse:
1507 brelse(bh);
1508error_close:
dfe25020 1509 if (bdev)
e525fd89 1510 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1511out:
1512 mutex_unlock(&uuid_mutex);
a061fc8d 1513 return ret;
9b3517e9
ID
1514error_undo:
1515 if (device->writeable) {
0c1daee0 1516 lock_chunks(root);
9b3517e9
ID
1517 list_add(&device->dev_alloc_list,
1518 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1519 unlock_chunks(root);
9b3517e9
ID
1520 root->fs_info->fs_devices->rw_devices++;
1521 }
1522 goto error_brelse;
a061fc8d
CM
1523}
1524
7ba15b7d
SB
1525int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1526 struct btrfs_device **device)
1527{
1528 int ret = 0;
1529 struct btrfs_super_block *disk_super;
1530 u64 devid;
1531 u8 *dev_uuid;
1532 struct block_device *bdev;
1533 struct buffer_head *bh;
1534
1535 *device = NULL;
1536 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1537 root->fs_info->bdev_holder, 0, &bdev, &bh);
1538 if (ret)
1539 return ret;
1540 disk_super = (struct btrfs_super_block *)bh->b_data;
1541 devid = btrfs_stack_device_id(&disk_super->dev_item);
1542 dev_uuid = disk_super->dev_item.uuid;
1543 *device = btrfs_find_device(root, devid, dev_uuid,
1544 disk_super->fsid);
1545 brelse(bh);
1546 if (!*device)
1547 ret = -ENOENT;
1548 blkdev_put(bdev, FMODE_READ);
1549 return ret;
1550}
1551
1552int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1553 char *device_path,
1554 struct btrfs_device **device)
1555{
1556 *device = NULL;
1557 if (strcmp(device_path, "missing") == 0) {
1558 struct list_head *devices;
1559 struct btrfs_device *tmp;
1560
1561 devices = &root->fs_info->fs_devices->devices;
1562 /*
1563 * It is safe to read the devices since the volume_mutex
1564 * is held by the caller.
1565 */
1566 list_for_each_entry(tmp, devices, dev_list) {
1567 if (tmp->in_fs_metadata && !tmp->bdev) {
1568 *device = tmp;
1569 break;
1570 }
1571 }
1572
1573 if (!*device) {
1574 pr_err("btrfs: no missing device found\n");
1575 return -ENOENT;
1576 }
1577
1578 return 0;
1579 } else {
1580 return btrfs_find_device_by_path(root, device_path, device);
1581 }
1582}
1583
2b82032c
YZ
1584/*
1585 * does all the dirty work required for changing file system's UUID.
1586 */
125ccb0a 1587static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1588{
1589 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1590 struct btrfs_fs_devices *old_devices;
e4404d6e 1591 struct btrfs_fs_devices *seed_devices;
6c41761f 1592 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1593 struct btrfs_device *device;
1594 u64 super_flags;
1595
1596 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1597 if (!fs_devices->seeding)
2b82032c
YZ
1598 return -EINVAL;
1599
e4404d6e
YZ
1600 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1601 if (!seed_devices)
2b82032c
YZ
1602 return -ENOMEM;
1603
e4404d6e
YZ
1604 old_devices = clone_fs_devices(fs_devices);
1605 if (IS_ERR(old_devices)) {
1606 kfree(seed_devices);
1607 return PTR_ERR(old_devices);
2b82032c 1608 }
e4404d6e 1609
2b82032c
YZ
1610 list_add(&old_devices->list, &fs_uuids);
1611
e4404d6e
YZ
1612 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1613 seed_devices->opened = 1;
1614 INIT_LIST_HEAD(&seed_devices->devices);
1615 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1616 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1617
1618 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1619 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1620 synchronize_rcu);
c9513edb
XG
1621 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1622
e4404d6e
YZ
1623 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1624 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1625 device->fs_devices = seed_devices;
1626 }
1627
2b82032c
YZ
1628 fs_devices->seeding = 0;
1629 fs_devices->num_devices = 0;
1630 fs_devices->open_devices = 0;
02db0844 1631 fs_devices->total_devices = 0;
e4404d6e 1632 fs_devices->seed = seed_devices;
2b82032c
YZ
1633
1634 generate_random_uuid(fs_devices->fsid);
1635 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1636 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1637 super_flags = btrfs_super_flags(disk_super) &
1638 ~BTRFS_SUPER_FLAG_SEEDING;
1639 btrfs_set_super_flags(disk_super, super_flags);
1640
1641 return 0;
1642}
1643
1644/*
1645 * strore the expected generation for seed devices in device items.
1646 */
1647static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1648 struct btrfs_root *root)
1649{
1650 struct btrfs_path *path;
1651 struct extent_buffer *leaf;
1652 struct btrfs_dev_item *dev_item;
1653 struct btrfs_device *device;
1654 struct btrfs_key key;
1655 u8 fs_uuid[BTRFS_UUID_SIZE];
1656 u8 dev_uuid[BTRFS_UUID_SIZE];
1657 u64 devid;
1658 int ret;
1659
1660 path = btrfs_alloc_path();
1661 if (!path)
1662 return -ENOMEM;
1663
1664 root = root->fs_info->chunk_root;
1665 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1666 key.offset = 0;
1667 key.type = BTRFS_DEV_ITEM_KEY;
1668
1669 while (1) {
1670 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1671 if (ret < 0)
1672 goto error;
1673
1674 leaf = path->nodes[0];
1675next_slot:
1676 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1677 ret = btrfs_next_leaf(root, path);
1678 if (ret > 0)
1679 break;
1680 if (ret < 0)
1681 goto error;
1682 leaf = path->nodes[0];
1683 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1684 btrfs_release_path(path);
2b82032c
YZ
1685 continue;
1686 }
1687
1688 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1689 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1690 key.type != BTRFS_DEV_ITEM_KEY)
1691 break;
1692
1693 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1694 struct btrfs_dev_item);
1695 devid = btrfs_device_id(leaf, dev_item);
1696 read_extent_buffer(leaf, dev_uuid,
1697 (unsigned long)btrfs_device_uuid(dev_item),
1698 BTRFS_UUID_SIZE);
1699 read_extent_buffer(leaf, fs_uuid,
1700 (unsigned long)btrfs_device_fsid(dev_item),
1701 BTRFS_UUID_SIZE);
1702 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
79787eaa 1703 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1704
1705 if (device->fs_devices->seeding) {
1706 btrfs_set_device_generation(leaf, dev_item,
1707 device->generation);
1708 btrfs_mark_buffer_dirty(leaf);
1709 }
1710
1711 path->slots[0]++;
1712 goto next_slot;
1713 }
1714 ret = 0;
1715error:
1716 btrfs_free_path(path);
1717 return ret;
1718}
1719
788f20eb
CM
1720int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1721{
d5e2003c 1722 struct request_queue *q;
788f20eb
CM
1723 struct btrfs_trans_handle *trans;
1724 struct btrfs_device *device;
1725 struct block_device *bdev;
788f20eb 1726 struct list_head *devices;
2b82032c 1727 struct super_block *sb = root->fs_info->sb;
606686ee 1728 struct rcu_string *name;
788f20eb 1729 u64 total_bytes;
2b82032c 1730 int seeding_dev = 0;
788f20eb
CM
1731 int ret = 0;
1732
2b82032c 1733 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1734 return -EROFS;
788f20eb 1735
a5d16333 1736 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1737 root->fs_info->bdev_holder);
7f59203a
JB
1738 if (IS_ERR(bdev))
1739 return PTR_ERR(bdev);
a2135011 1740
2b82032c
YZ
1741 if (root->fs_info->fs_devices->seeding) {
1742 seeding_dev = 1;
1743 down_write(&sb->s_umount);
1744 mutex_lock(&uuid_mutex);
1745 }
1746
8c8bee1d 1747 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1748
788f20eb 1749 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1750
1751 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1752 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1753 if (device->bdev == bdev) {
1754 ret = -EEXIST;
d25628bd
LB
1755 mutex_unlock(
1756 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1757 goto error;
788f20eb
CM
1758 }
1759 }
d25628bd 1760 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb
CM
1761
1762 device = kzalloc(sizeof(*device), GFP_NOFS);
1763 if (!device) {
1764 /* we can safely leave the fs_devices entry around */
1765 ret = -ENOMEM;
2b82032c 1766 goto error;
788f20eb
CM
1767 }
1768
606686ee
JB
1769 name = rcu_string_strdup(device_path, GFP_NOFS);
1770 if (!name) {
788f20eb 1771 kfree(device);
2b82032c
YZ
1772 ret = -ENOMEM;
1773 goto error;
788f20eb 1774 }
606686ee 1775 rcu_assign_pointer(device->name, name);
2b82032c
YZ
1776
1777 ret = find_next_devid(root, &device->devid);
1778 if (ret) {
606686ee 1779 rcu_string_free(device->name);
2b82032c
YZ
1780 kfree(device);
1781 goto error;
1782 }
1783
a22285a6 1784 trans = btrfs_start_transaction(root, 0);
98d5dc13 1785 if (IS_ERR(trans)) {
606686ee 1786 rcu_string_free(device->name);
98d5dc13
TI
1787 kfree(device);
1788 ret = PTR_ERR(trans);
1789 goto error;
1790 }
1791
2b82032c
YZ
1792 lock_chunks(root);
1793
d5e2003c
JB
1794 q = bdev_get_queue(bdev);
1795 if (blk_queue_discard(q))
1796 device->can_discard = 1;
2b82032c
YZ
1797 device->writeable = 1;
1798 device->work.func = pending_bios_fn;
1799 generate_random_uuid(device->uuid);
1800 spin_lock_init(&device->io_lock);
1801 device->generation = trans->transid;
788f20eb
CM
1802 device->io_width = root->sectorsize;
1803 device->io_align = root->sectorsize;
1804 device->sector_size = root->sectorsize;
1805 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1806 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1807 device->dev_root = root->fs_info->dev_root;
1808 device->bdev = bdev;
dfe25020 1809 device->in_fs_metadata = 1;
fb01aa85 1810 device->mode = FMODE_EXCL;
2b82032c 1811 set_blocksize(device->bdev, 4096);
788f20eb 1812
2b82032c
YZ
1813 if (seeding_dev) {
1814 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1815 ret = btrfs_prepare_sprout(root);
79787eaa 1816 BUG_ON(ret); /* -ENOMEM */
2b82032c 1817 }
788f20eb 1818
2b82032c 1819 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 1820
e5e9a520 1821 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1822 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1823 list_add(&device->dev_alloc_list,
1824 &root->fs_info->fs_devices->alloc_list);
1825 root->fs_info->fs_devices->num_devices++;
1826 root->fs_info->fs_devices->open_devices++;
1827 root->fs_info->fs_devices->rw_devices++;
02db0844 1828 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
1829 if (device->can_discard)
1830 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1831 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1832
2bf64758
JB
1833 spin_lock(&root->fs_info->free_chunk_lock);
1834 root->fs_info->free_chunk_space += device->total_bytes;
1835 spin_unlock(&root->fs_info->free_chunk_lock);
1836
c289811c
CM
1837 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1838 root->fs_info->fs_devices->rotating = 1;
1839
6c41761f
DS
1840 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1841 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1842 total_bytes + device->total_bytes);
1843
6c41761f
DS
1844 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1845 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1846 total_bytes + 1);
e5e9a520 1847 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1848
2b82032c
YZ
1849 if (seeding_dev) {
1850 ret = init_first_rw_device(trans, root, device);
005d6427
DS
1851 if (ret) {
1852 btrfs_abort_transaction(trans, root, ret);
79787eaa 1853 goto error_trans;
005d6427 1854 }
2b82032c 1855 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
1856 if (ret) {
1857 btrfs_abort_transaction(trans, root, ret);
79787eaa 1858 goto error_trans;
005d6427 1859 }
2b82032c
YZ
1860 } else {
1861 ret = btrfs_add_device(trans, root, device);
005d6427
DS
1862 if (ret) {
1863 btrfs_abort_transaction(trans, root, ret);
79787eaa 1864 goto error_trans;
005d6427 1865 }
2b82032c
YZ
1866 }
1867
913d952e
CM
1868 /*
1869 * we've got more storage, clear any full flags on the space
1870 * infos
1871 */
1872 btrfs_clear_space_info_full(root->fs_info);
1873
7d9eb12c 1874 unlock_chunks(root);
5af3e8cc
SB
1875 root->fs_info->num_tolerated_disk_barrier_failures =
1876 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 1877 ret = btrfs_commit_transaction(trans, root);
a2135011 1878
2b82032c
YZ
1879 if (seeding_dev) {
1880 mutex_unlock(&uuid_mutex);
1881 up_write(&sb->s_umount);
788f20eb 1882
79787eaa
JM
1883 if (ret) /* transaction commit */
1884 return ret;
1885
2b82032c 1886 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
1887 if (ret < 0)
1888 btrfs_error(root->fs_info, ret,
1889 "Failed to relocate sys chunks after "
1890 "device initialization. This can be fixed "
1891 "using the \"btrfs balance\" command.");
671415b7
MX
1892 trans = btrfs_attach_transaction(root);
1893 if (IS_ERR(trans)) {
1894 if (PTR_ERR(trans) == -ENOENT)
1895 return 0;
1896 return PTR_ERR(trans);
1897 }
1898 ret = btrfs_commit_transaction(trans, root);
2b82032c 1899 }
c9e9f97b 1900
2b82032c 1901 return ret;
79787eaa
JM
1902
1903error_trans:
1904 unlock_chunks(root);
79787eaa 1905 btrfs_end_transaction(trans, root);
606686ee 1906 rcu_string_free(device->name);
79787eaa 1907 kfree(device);
2b82032c 1908error:
e525fd89 1909 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1910 if (seeding_dev) {
1911 mutex_unlock(&uuid_mutex);
1912 up_write(&sb->s_umount);
1913 }
c9e9f97b 1914 return ret;
788f20eb
CM
1915}
1916
d397712b
CM
1917static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1918 struct btrfs_device *device)
0b86a832
CM
1919{
1920 int ret;
1921 struct btrfs_path *path;
1922 struct btrfs_root *root;
1923 struct btrfs_dev_item *dev_item;
1924 struct extent_buffer *leaf;
1925 struct btrfs_key key;
1926
1927 root = device->dev_root->fs_info->chunk_root;
1928
1929 path = btrfs_alloc_path();
1930 if (!path)
1931 return -ENOMEM;
1932
1933 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1934 key.type = BTRFS_DEV_ITEM_KEY;
1935 key.offset = device->devid;
1936
1937 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1938 if (ret < 0)
1939 goto out;
1940
1941 if (ret > 0) {
1942 ret = -ENOENT;
1943 goto out;
1944 }
1945
1946 leaf = path->nodes[0];
1947 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1948
1949 btrfs_set_device_id(leaf, dev_item, device->devid);
1950 btrfs_set_device_type(leaf, dev_item, device->type);
1951 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1952 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1953 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1954 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1955 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1956 btrfs_mark_buffer_dirty(leaf);
1957
1958out:
1959 btrfs_free_path(path);
1960 return ret;
1961}
1962
7d9eb12c 1963static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1964 struct btrfs_device *device, u64 new_size)
1965{
1966 struct btrfs_super_block *super_copy =
6c41761f 1967 device->dev_root->fs_info->super_copy;
8f18cf13
CM
1968 u64 old_total = btrfs_super_total_bytes(super_copy);
1969 u64 diff = new_size - device->total_bytes;
1970
2b82032c
YZ
1971 if (!device->writeable)
1972 return -EACCES;
1973 if (new_size <= device->total_bytes)
1974 return -EINVAL;
1975
8f18cf13 1976 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1977 device->fs_devices->total_rw_bytes += diff;
1978
1979 device->total_bytes = new_size;
9779b72f 1980 device->disk_total_bytes = new_size;
4184ea7f
CM
1981 btrfs_clear_space_info_full(device->dev_root->fs_info);
1982
8f18cf13
CM
1983 return btrfs_update_device(trans, device);
1984}
1985
7d9eb12c
CM
1986int btrfs_grow_device(struct btrfs_trans_handle *trans,
1987 struct btrfs_device *device, u64 new_size)
1988{
1989 int ret;
1990 lock_chunks(device->dev_root);
1991 ret = __btrfs_grow_device(trans, device, new_size);
1992 unlock_chunks(device->dev_root);
1993 return ret;
1994}
1995
8f18cf13
CM
1996static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1997 struct btrfs_root *root,
1998 u64 chunk_tree, u64 chunk_objectid,
1999 u64 chunk_offset)
2000{
2001 int ret;
2002 struct btrfs_path *path;
2003 struct btrfs_key key;
2004
2005 root = root->fs_info->chunk_root;
2006 path = btrfs_alloc_path();
2007 if (!path)
2008 return -ENOMEM;
2009
2010 key.objectid = chunk_objectid;
2011 key.offset = chunk_offset;
2012 key.type = BTRFS_CHUNK_ITEM_KEY;
2013
2014 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2015 if (ret < 0)
2016 goto out;
2017 else if (ret > 0) { /* Logic error or corruption */
2018 btrfs_error(root->fs_info, -ENOENT,
2019 "Failed lookup while freeing chunk.");
2020 ret = -ENOENT;
2021 goto out;
2022 }
8f18cf13
CM
2023
2024 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2025 if (ret < 0)
2026 btrfs_error(root->fs_info, ret,
2027 "Failed to delete chunk item.");
2028out:
8f18cf13 2029 btrfs_free_path(path);
65a246c5 2030 return ret;
8f18cf13
CM
2031}
2032
b2950863 2033static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2034 chunk_offset)
2035{
6c41761f 2036 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2037 struct btrfs_disk_key *disk_key;
2038 struct btrfs_chunk *chunk;
2039 u8 *ptr;
2040 int ret = 0;
2041 u32 num_stripes;
2042 u32 array_size;
2043 u32 len = 0;
2044 u32 cur;
2045 struct btrfs_key key;
2046
2047 array_size = btrfs_super_sys_array_size(super_copy);
2048
2049 ptr = super_copy->sys_chunk_array;
2050 cur = 0;
2051
2052 while (cur < array_size) {
2053 disk_key = (struct btrfs_disk_key *)ptr;
2054 btrfs_disk_key_to_cpu(&key, disk_key);
2055
2056 len = sizeof(*disk_key);
2057
2058 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2059 chunk = (struct btrfs_chunk *)(ptr + len);
2060 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2061 len += btrfs_chunk_item_size(num_stripes);
2062 } else {
2063 ret = -EIO;
2064 break;
2065 }
2066 if (key.objectid == chunk_objectid &&
2067 key.offset == chunk_offset) {
2068 memmove(ptr, ptr + len, array_size - (cur + len));
2069 array_size -= len;
2070 btrfs_set_super_sys_array_size(super_copy, array_size);
2071 } else {
2072 ptr += len;
2073 cur += len;
2074 }
2075 }
2076 return ret;
2077}
2078
b2950863 2079static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2080 u64 chunk_tree, u64 chunk_objectid,
2081 u64 chunk_offset)
2082{
2083 struct extent_map_tree *em_tree;
2084 struct btrfs_root *extent_root;
2085 struct btrfs_trans_handle *trans;
2086 struct extent_map *em;
2087 struct map_lookup *map;
2088 int ret;
2089 int i;
2090
2091 root = root->fs_info->chunk_root;
2092 extent_root = root->fs_info->extent_root;
2093 em_tree = &root->fs_info->mapping_tree.map_tree;
2094
ba1bf481
JB
2095 ret = btrfs_can_relocate(extent_root, chunk_offset);
2096 if (ret)
2097 return -ENOSPC;
2098
8f18cf13 2099 /* step one, relocate all the extents inside this chunk */
1a40e23b 2100 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2101 if (ret)
2102 return ret;
8f18cf13 2103
a22285a6 2104 trans = btrfs_start_transaction(root, 0);
98d5dc13 2105 BUG_ON(IS_ERR(trans));
8f18cf13 2106
7d9eb12c
CM
2107 lock_chunks(root);
2108
8f18cf13
CM
2109 /*
2110 * step two, delete the device extents and the
2111 * chunk tree entries
2112 */
890871be 2113 read_lock(&em_tree->lock);
8f18cf13 2114 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2115 read_unlock(&em_tree->lock);
8f18cf13 2116
285190d9 2117 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2118 em->start + em->len < chunk_offset);
8f18cf13
CM
2119 map = (struct map_lookup *)em->bdev;
2120
2121 for (i = 0; i < map->num_stripes; i++) {
2122 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2123 map->stripes[i].physical);
2124 BUG_ON(ret);
a061fc8d 2125
dfe25020
CM
2126 if (map->stripes[i].dev) {
2127 ret = btrfs_update_device(trans, map->stripes[i].dev);
2128 BUG_ON(ret);
2129 }
8f18cf13
CM
2130 }
2131 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2132 chunk_offset);
2133
2134 BUG_ON(ret);
2135
1abe9b8a 2136 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2137
8f18cf13
CM
2138 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2139 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2140 BUG_ON(ret);
8f18cf13
CM
2141 }
2142
2b82032c
YZ
2143 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2144 BUG_ON(ret);
2145
890871be 2146 write_lock(&em_tree->lock);
2b82032c 2147 remove_extent_mapping(em_tree, em);
890871be 2148 write_unlock(&em_tree->lock);
2b82032c
YZ
2149
2150 kfree(map);
2151 em->bdev = NULL;
2152
2153 /* once for the tree */
2154 free_extent_map(em);
2155 /* once for us */
2156 free_extent_map(em);
2157
2158 unlock_chunks(root);
2159 btrfs_end_transaction(trans, root);
2160 return 0;
2161}
2162
2163static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2164{
2165 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2166 struct btrfs_path *path;
2167 struct extent_buffer *leaf;
2168 struct btrfs_chunk *chunk;
2169 struct btrfs_key key;
2170 struct btrfs_key found_key;
2171 u64 chunk_tree = chunk_root->root_key.objectid;
2172 u64 chunk_type;
ba1bf481
JB
2173 bool retried = false;
2174 int failed = 0;
2b82032c
YZ
2175 int ret;
2176
2177 path = btrfs_alloc_path();
2178 if (!path)
2179 return -ENOMEM;
2180
ba1bf481 2181again:
2b82032c
YZ
2182 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2183 key.offset = (u64)-1;
2184 key.type = BTRFS_CHUNK_ITEM_KEY;
2185
2186 while (1) {
2187 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2188 if (ret < 0)
2189 goto error;
79787eaa 2190 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2191
2192 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2193 key.type);
2194 if (ret < 0)
2195 goto error;
2196 if (ret > 0)
2197 break;
1a40e23b 2198
2b82032c
YZ
2199 leaf = path->nodes[0];
2200 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2201
2b82032c
YZ
2202 chunk = btrfs_item_ptr(leaf, path->slots[0],
2203 struct btrfs_chunk);
2204 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2205 btrfs_release_path(path);
8f18cf13 2206
2b82032c
YZ
2207 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2208 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2209 found_key.objectid,
2210 found_key.offset);
ba1bf481
JB
2211 if (ret == -ENOSPC)
2212 failed++;
2213 else if (ret)
2214 BUG();
2b82032c 2215 }
8f18cf13 2216
2b82032c
YZ
2217 if (found_key.offset == 0)
2218 break;
2219 key.offset = found_key.offset - 1;
2220 }
2221 ret = 0;
ba1bf481
JB
2222 if (failed && !retried) {
2223 failed = 0;
2224 retried = true;
2225 goto again;
2226 } else if (failed && retried) {
2227 WARN_ON(1);
2228 ret = -ENOSPC;
2229 }
2b82032c
YZ
2230error:
2231 btrfs_free_path(path);
2232 return ret;
8f18cf13
CM
2233}
2234
0940ebf6
ID
2235static int insert_balance_item(struct btrfs_root *root,
2236 struct btrfs_balance_control *bctl)
2237{
2238 struct btrfs_trans_handle *trans;
2239 struct btrfs_balance_item *item;
2240 struct btrfs_disk_balance_args disk_bargs;
2241 struct btrfs_path *path;
2242 struct extent_buffer *leaf;
2243 struct btrfs_key key;
2244 int ret, err;
2245
2246 path = btrfs_alloc_path();
2247 if (!path)
2248 return -ENOMEM;
2249
2250 trans = btrfs_start_transaction(root, 0);
2251 if (IS_ERR(trans)) {
2252 btrfs_free_path(path);
2253 return PTR_ERR(trans);
2254 }
2255
2256 key.objectid = BTRFS_BALANCE_OBJECTID;
2257 key.type = BTRFS_BALANCE_ITEM_KEY;
2258 key.offset = 0;
2259
2260 ret = btrfs_insert_empty_item(trans, root, path, &key,
2261 sizeof(*item));
2262 if (ret)
2263 goto out;
2264
2265 leaf = path->nodes[0];
2266 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2267
2268 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2269
2270 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2271 btrfs_set_balance_data(leaf, item, &disk_bargs);
2272 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2273 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2274 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2275 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2276
2277 btrfs_set_balance_flags(leaf, item, bctl->flags);
2278
2279 btrfs_mark_buffer_dirty(leaf);
2280out:
2281 btrfs_free_path(path);
2282 err = btrfs_commit_transaction(trans, root);
2283 if (err && !ret)
2284 ret = err;
2285 return ret;
2286}
2287
2288static int del_balance_item(struct btrfs_root *root)
2289{
2290 struct btrfs_trans_handle *trans;
2291 struct btrfs_path *path;
2292 struct btrfs_key key;
2293 int ret, err;
2294
2295 path = btrfs_alloc_path();
2296 if (!path)
2297 return -ENOMEM;
2298
2299 trans = btrfs_start_transaction(root, 0);
2300 if (IS_ERR(trans)) {
2301 btrfs_free_path(path);
2302 return PTR_ERR(trans);
2303 }
2304
2305 key.objectid = BTRFS_BALANCE_OBJECTID;
2306 key.type = BTRFS_BALANCE_ITEM_KEY;
2307 key.offset = 0;
2308
2309 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2310 if (ret < 0)
2311 goto out;
2312 if (ret > 0) {
2313 ret = -ENOENT;
2314 goto out;
2315 }
2316
2317 ret = btrfs_del_item(trans, root, path);
2318out:
2319 btrfs_free_path(path);
2320 err = btrfs_commit_transaction(trans, root);
2321 if (err && !ret)
2322 ret = err;
2323 return ret;
2324}
2325
59641015
ID
2326/*
2327 * This is a heuristic used to reduce the number of chunks balanced on
2328 * resume after balance was interrupted.
2329 */
2330static void update_balance_args(struct btrfs_balance_control *bctl)
2331{
2332 /*
2333 * Turn on soft mode for chunk types that were being converted.
2334 */
2335 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2336 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2337 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2338 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2339 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2340 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2341
2342 /*
2343 * Turn on usage filter if is not already used. The idea is
2344 * that chunks that we have already balanced should be
2345 * reasonably full. Don't do it for chunks that are being
2346 * converted - that will keep us from relocating unconverted
2347 * (albeit full) chunks.
2348 */
2349 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2350 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2351 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2352 bctl->data.usage = 90;
2353 }
2354 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2355 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2356 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2357 bctl->sys.usage = 90;
2358 }
2359 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2360 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2361 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2362 bctl->meta.usage = 90;
2363 }
2364}
2365
c9e9f97b
ID
2366/*
2367 * Should be called with both balance and volume mutexes held to
2368 * serialize other volume operations (add_dev/rm_dev/resize) with
2369 * restriper. Same goes for unset_balance_control.
2370 */
2371static void set_balance_control(struct btrfs_balance_control *bctl)
2372{
2373 struct btrfs_fs_info *fs_info = bctl->fs_info;
2374
2375 BUG_ON(fs_info->balance_ctl);
2376
2377 spin_lock(&fs_info->balance_lock);
2378 fs_info->balance_ctl = bctl;
2379 spin_unlock(&fs_info->balance_lock);
2380}
2381
2382static void unset_balance_control(struct btrfs_fs_info *fs_info)
2383{
2384 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2385
2386 BUG_ON(!fs_info->balance_ctl);
2387
2388 spin_lock(&fs_info->balance_lock);
2389 fs_info->balance_ctl = NULL;
2390 spin_unlock(&fs_info->balance_lock);
2391
2392 kfree(bctl);
2393}
2394
ed25e9b2
ID
2395/*
2396 * Balance filters. Return 1 if chunk should be filtered out
2397 * (should not be balanced).
2398 */
899c81ea 2399static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2400 struct btrfs_balance_args *bargs)
2401{
899c81ea
ID
2402 chunk_type = chunk_to_extended(chunk_type) &
2403 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2404
899c81ea 2405 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2406 return 0;
2407
2408 return 1;
2409}
2410
5ce5b3c0
ID
2411static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2412 struct btrfs_balance_args *bargs)
2413{
2414 struct btrfs_block_group_cache *cache;
2415 u64 chunk_used, user_thresh;
2416 int ret = 1;
2417
2418 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2419 chunk_used = btrfs_block_group_used(&cache->item);
2420
2421 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2422 if (chunk_used < user_thresh)
2423 ret = 0;
2424
2425 btrfs_put_block_group(cache);
2426 return ret;
2427}
2428
409d404b
ID
2429static int chunk_devid_filter(struct extent_buffer *leaf,
2430 struct btrfs_chunk *chunk,
2431 struct btrfs_balance_args *bargs)
2432{
2433 struct btrfs_stripe *stripe;
2434 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2435 int i;
2436
2437 for (i = 0; i < num_stripes; i++) {
2438 stripe = btrfs_stripe_nr(chunk, i);
2439 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2440 return 0;
2441 }
2442
2443 return 1;
2444}
2445
94e60d5a
ID
2446/* [pstart, pend) */
2447static int chunk_drange_filter(struct extent_buffer *leaf,
2448 struct btrfs_chunk *chunk,
2449 u64 chunk_offset,
2450 struct btrfs_balance_args *bargs)
2451{
2452 struct btrfs_stripe *stripe;
2453 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2454 u64 stripe_offset;
2455 u64 stripe_length;
2456 int factor;
2457 int i;
2458
2459 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2460 return 0;
2461
2462 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2463 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2464 factor = 2;
2465 else
2466 factor = 1;
2467 factor = num_stripes / factor;
2468
2469 for (i = 0; i < num_stripes; i++) {
2470 stripe = btrfs_stripe_nr(chunk, i);
2471 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2472 continue;
2473
2474 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2475 stripe_length = btrfs_chunk_length(leaf, chunk);
2476 do_div(stripe_length, factor);
2477
2478 if (stripe_offset < bargs->pend &&
2479 stripe_offset + stripe_length > bargs->pstart)
2480 return 0;
2481 }
2482
2483 return 1;
2484}
2485
ea67176a
ID
2486/* [vstart, vend) */
2487static int chunk_vrange_filter(struct extent_buffer *leaf,
2488 struct btrfs_chunk *chunk,
2489 u64 chunk_offset,
2490 struct btrfs_balance_args *bargs)
2491{
2492 if (chunk_offset < bargs->vend &&
2493 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2494 /* at least part of the chunk is inside this vrange */
2495 return 0;
2496
2497 return 1;
2498}
2499
899c81ea 2500static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2501 struct btrfs_balance_args *bargs)
2502{
2503 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2504 return 0;
2505
899c81ea
ID
2506 chunk_type = chunk_to_extended(chunk_type) &
2507 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2508
899c81ea 2509 if (bargs->target == chunk_type)
cfa4c961
ID
2510 return 1;
2511
2512 return 0;
2513}
2514
f43ffb60
ID
2515static int should_balance_chunk(struct btrfs_root *root,
2516 struct extent_buffer *leaf,
2517 struct btrfs_chunk *chunk, u64 chunk_offset)
2518{
2519 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2520 struct btrfs_balance_args *bargs = NULL;
2521 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2522
2523 /* type filter */
2524 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2525 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2526 return 0;
2527 }
2528
2529 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2530 bargs = &bctl->data;
2531 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2532 bargs = &bctl->sys;
2533 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2534 bargs = &bctl->meta;
2535
ed25e9b2
ID
2536 /* profiles filter */
2537 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2538 chunk_profiles_filter(chunk_type, bargs)) {
2539 return 0;
5ce5b3c0
ID
2540 }
2541
2542 /* usage filter */
2543 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2544 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2545 return 0;
409d404b
ID
2546 }
2547
2548 /* devid filter */
2549 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2550 chunk_devid_filter(leaf, chunk, bargs)) {
2551 return 0;
94e60d5a
ID
2552 }
2553
2554 /* drange filter, makes sense only with devid filter */
2555 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2556 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2557 return 0;
ea67176a
ID
2558 }
2559
2560 /* vrange filter */
2561 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2562 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2563 return 0;
ed25e9b2
ID
2564 }
2565
cfa4c961
ID
2566 /* soft profile changing mode */
2567 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2568 chunk_soft_convert_filter(chunk_type, bargs)) {
2569 return 0;
2570 }
2571
f43ffb60
ID
2572 return 1;
2573}
2574
c9e9f97b 2575static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2576{
19a39dce 2577 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2578 struct btrfs_root *chunk_root = fs_info->chunk_root;
2579 struct btrfs_root *dev_root = fs_info->dev_root;
2580 struct list_head *devices;
ec44a35c
CM
2581 struct btrfs_device *device;
2582 u64 old_size;
2583 u64 size_to_free;
f43ffb60 2584 struct btrfs_chunk *chunk;
ec44a35c
CM
2585 struct btrfs_path *path;
2586 struct btrfs_key key;
ec44a35c 2587 struct btrfs_key found_key;
c9e9f97b 2588 struct btrfs_trans_handle *trans;
f43ffb60
ID
2589 struct extent_buffer *leaf;
2590 int slot;
c9e9f97b
ID
2591 int ret;
2592 int enospc_errors = 0;
19a39dce 2593 bool counting = true;
ec44a35c 2594
ec44a35c 2595 /* step one make some room on all the devices */
c9e9f97b 2596 devices = &fs_info->fs_devices->devices;
c6e30871 2597 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2598 old_size = device->total_bytes;
2599 size_to_free = div_factor(old_size, 1);
2600 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2601 if (!device->writeable ||
2602 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2603 continue;
2604
2605 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2606 if (ret == -ENOSPC)
2607 break;
ec44a35c
CM
2608 BUG_ON(ret);
2609
a22285a6 2610 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2611 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2612
2613 ret = btrfs_grow_device(trans, device, old_size);
2614 BUG_ON(ret);
2615
2616 btrfs_end_transaction(trans, dev_root);
2617 }
2618
2619 /* step two, relocate all the chunks */
2620 path = btrfs_alloc_path();
17e9f796
MF
2621 if (!path) {
2622 ret = -ENOMEM;
2623 goto error;
2624 }
19a39dce
ID
2625
2626 /* zero out stat counters */
2627 spin_lock(&fs_info->balance_lock);
2628 memset(&bctl->stat, 0, sizeof(bctl->stat));
2629 spin_unlock(&fs_info->balance_lock);
2630again:
ec44a35c
CM
2631 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2632 key.offset = (u64)-1;
2633 key.type = BTRFS_CHUNK_ITEM_KEY;
2634
d397712b 2635 while (1) {
19a39dce 2636 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2637 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2638 ret = -ECANCELED;
2639 goto error;
2640 }
2641
ec44a35c
CM
2642 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2643 if (ret < 0)
2644 goto error;
2645
2646 /*
2647 * this shouldn't happen, it means the last relocate
2648 * failed
2649 */
2650 if (ret == 0)
c9e9f97b 2651 BUG(); /* FIXME break ? */
ec44a35c
CM
2652
2653 ret = btrfs_previous_item(chunk_root, path, 0,
2654 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2655 if (ret) {
2656 ret = 0;
ec44a35c 2657 break;
c9e9f97b 2658 }
7d9eb12c 2659
f43ffb60
ID
2660 leaf = path->nodes[0];
2661 slot = path->slots[0];
2662 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2663
ec44a35c
CM
2664 if (found_key.objectid != key.objectid)
2665 break;
7d9eb12c 2666
ec44a35c 2667 /* chunk zero is special */
ba1bf481 2668 if (found_key.offset == 0)
ec44a35c
CM
2669 break;
2670
f43ffb60
ID
2671 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2672
19a39dce
ID
2673 if (!counting) {
2674 spin_lock(&fs_info->balance_lock);
2675 bctl->stat.considered++;
2676 spin_unlock(&fs_info->balance_lock);
2677 }
2678
f43ffb60
ID
2679 ret = should_balance_chunk(chunk_root, leaf, chunk,
2680 found_key.offset);
b3b4aa74 2681 btrfs_release_path(path);
f43ffb60
ID
2682 if (!ret)
2683 goto loop;
2684
19a39dce
ID
2685 if (counting) {
2686 spin_lock(&fs_info->balance_lock);
2687 bctl->stat.expected++;
2688 spin_unlock(&fs_info->balance_lock);
2689 goto loop;
2690 }
2691
ec44a35c
CM
2692 ret = btrfs_relocate_chunk(chunk_root,
2693 chunk_root->root_key.objectid,
2694 found_key.objectid,
2695 found_key.offset);
508794eb
JB
2696 if (ret && ret != -ENOSPC)
2697 goto error;
19a39dce 2698 if (ret == -ENOSPC) {
c9e9f97b 2699 enospc_errors++;
19a39dce
ID
2700 } else {
2701 spin_lock(&fs_info->balance_lock);
2702 bctl->stat.completed++;
2703 spin_unlock(&fs_info->balance_lock);
2704 }
f43ffb60 2705loop:
ba1bf481 2706 key.offset = found_key.offset - 1;
ec44a35c 2707 }
c9e9f97b 2708
19a39dce
ID
2709 if (counting) {
2710 btrfs_release_path(path);
2711 counting = false;
2712 goto again;
2713 }
ec44a35c
CM
2714error:
2715 btrfs_free_path(path);
c9e9f97b
ID
2716 if (enospc_errors) {
2717 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2718 enospc_errors);
2719 if (!ret)
2720 ret = -ENOSPC;
2721 }
2722
ec44a35c
CM
2723 return ret;
2724}
2725
0c460c0d
ID
2726/**
2727 * alloc_profile_is_valid - see if a given profile is valid and reduced
2728 * @flags: profile to validate
2729 * @extended: if true @flags is treated as an extended profile
2730 */
2731static int alloc_profile_is_valid(u64 flags, int extended)
2732{
2733 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2734 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2735
2736 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2737
2738 /* 1) check that all other bits are zeroed */
2739 if (flags & ~mask)
2740 return 0;
2741
2742 /* 2) see if profile is reduced */
2743 if (flags == 0)
2744 return !extended; /* "0" is valid for usual profiles */
2745
2746 /* true if exactly one bit set */
2747 return (flags & (flags - 1)) == 0;
2748}
2749
837d5b6e
ID
2750static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2751{
a7e99c69
ID
2752 /* cancel requested || normal exit path */
2753 return atomic_read(&fs_info->balance_cancel_req) ||
2754 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2755 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
2756}
2757
c9e9f97b
ID
2758static void __cancel_balance(struct btrfs_fs_info *fs_info)
2759{
0940ebf6
ID
2760 int ret;
2761
c9e9f97b 2762 unset_balance_control(fs_info);
0940ebf6
ID
2763 ret = del_balance_item(fs_info->tree_root);
2764 BUG_ON(ret);
c9e9f97b
ID
2765}
2766
19a39dce 2767void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
2768 struct btrfs_ioctl_balance_args *bargs);
2769
2770/*
2771 * Should be called with both balance and volume mutexes held
2772 */
2773int btrfs_balance(struct btrfs_balance_control *bctl,
2774 struct btrfs_ioctl_balance_args *bargs)
2775{
2776 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 2777 u64 allowed;
e4837f8f 2778 int mixed = 0;
c9e9f97b
ID
2779 int ret;
2780
837d5b6e 2781 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
2782 atomic_read(&fs_info->balance_pause_req) ||
2783 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
2784 ret = -EINVAL;
2785 goto out;
2786 }
2787
e4837f8f
ID
2788 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2789 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2790 mixed = 1;
2791
f43ffb60
ID
2792 /*
2793 * In case of mixed groups both data and meta should be picked,
2794 * and identical options should be given for both of them.
2795 */
e4837f8f
ID
2796 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2797 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
2798 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2799 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2800 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2801 printk(KERN_ERR "btrfs: with mixed groups data and "
2802 "metadata balance options must be the same\n");
2803 ret = -EINVAL;
2804 goto out;
2805 }
2806 }
2807
e4d8ec0f
ID
2808 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2809 if (fs_info->fs_devices->num_devices == 1)
2810 allowed |= BTRFS_BLOCK_GROUP_DUP;
2811 else if (fs_info->fs_devices->num_devices < 4)
2812 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2813 else
2814 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2815 BTRFS_BLOCK_GROUP_RAID10);
2816
6728b198
ID
2817 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2818 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2819 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
2820 printk(KERN_ERR "btrfs: unable to start balance with target "
2821 "data profile %llu\n",
2822 (unsigned long long)bctl->data.target);
2823 ret = -EINVAL;
2824 goto out;
2825 }
6728b198
ID
2826 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2827 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2828 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
2829 printk(KERN_ERR "btrfs: unable to start balance with target "
2830 "metadata profile %llu\n",
2831 (unsigned long long)bctl->meta.target);
2832 ret = -EINVAL;
2833 goto out;
2834 }
6728b198
ID
2835 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2836 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2837 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
2838 printk(KERN_ERR "btrfs: unable to start balance with target "
2839 "system profile %llu\n",
2840 (unsigned long long)bctl->sys.target);
2841 ret = -EINVAL;
2842 goto out;
2843 }
2844
e4837f8f
ID
2845 /* allow dup'ed data chunks only in mixed mode */
2846 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 2847 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
2848 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2849 ret = -EINVAL;
2850 goto out;
2851 }
2852
2853 /* allow to reduce meta or sys integrity only if force set */
2854 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2855 BTRFS_BLOCK_GROUP_RAID10;
2856 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2857 (fs_info->avail_system_alloc_bits & allowed) &&
2858 !(bctl->sys.target & allowed)) ||
2859 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2860 (fs_info->avail_metadata_alloc_bits & allowed) &&
2861 !(bctl->meta.target & allowed))) {
2862 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2863 printk(KERN_INFO "btrfs: force reducing metadata "
2864 "integrity\n");
2865 } else {
2866 printk(KERN_ERR "btrfs: balance will reduce metadata "
2867 "integrity, use force if you want this\n");
2868 ret = -EINVAL;
2869 goto out;
2870 }
2871 }
2872
5af3e8cc
SB
2873 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
2874 int num_tolerated_disk_barrier_failures;
2875 u64 target = bctl->sys.target;
2876
2877 num_tolerated_disk_barrier_failures =
2878 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2879 if (num_tolerated_disk_barrier_failures > 0 &&
2880 (target &
2881 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
2882 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
2883 num_tolerated_disk_barrier_failures = 0;
2884 else if (num_tolerated_disk_barrier_failures > 1 &&
2885 (target &
2886 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
2887 num_tolerated_disk_barrier_failures = 1;
2888
2889 fs_info->num_tolerated_disk_barrier_failures =
2890 num_tolerated_disk_barrier_failures;
2891 }
2892
0940ebf6 2893 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 2894 if (ret && ret != -EEXIST)
0940ebf6
ID
2895 goto out;
2896
59641015
ID
2897 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2898 BUG_ON(ret == -EEXIST);
2899 set_balance_control(bctl);
2900 } else {
2901 BUG_ON(ret != -EEXIST);
2902 spin_lock(&fs_info->balance_lock);
2903 update_balance_args(bctl);
2904 spin_unlock(&fs_info->balance_lock);
2905 }
c9e9f97b 2906
837d5b6e 2907 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
2908 mutex_unlock(&fs_info->balance_mutex);
2909
2910 ret = __btrfs_balance(fs_info);
2911
2912 mutex_lock(&fs_info->balance_mutex);
837d5b6e 2913 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
2914
2915 if (bargs) {
2916 memset(bargs, 0, sizeof(*bargs));
19a39dce 2917 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
2918 }
2919
837d5b6e
ID
2920 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2921 balance_need_close(fs_info)) {
2922 __cancel_balance(fs_info);
2923 }
2924
5af3e8cc
SB
2925 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
2926 fs_info->num_tolerated_disk_barrier_failures =
2927 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2928 }
2929
837d5b6e 2930 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
2931
2932 return ret;
2933out:
59641015
ID
2934 if (bctl->flags & BTRFS_BALANCE_RESUME)
2935 __cancel_balance(fs_info);
2936 else
2937 kfree(bctl);
2938 return ret;
2939}
2940
2941static int balance_kthread(void *data)
2942{
2b6ba629 2943 struct btrfs_fs_info *fs_info = data;
9555c6c1 2944 int ret = 0;
59641015
ID
2945
2946 mutex_lock(&fs_info->volume_mutex);
2947 mutex_lock(&fs_info->balance_mutex);
2948
2b6ba629 2949 if (fs_info->balance_ctl) {
9555c6c1 2950 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 2951 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 2952 }
59641015
ID
2953
2954 mutex_unlock(&fs_info->balance_mutex);
2955 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 2956
59641015
ID
2957 return ret;
2958}
2959
2b6ba629
ID
2960int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2961{
2962 struct task_struct *tsk;
2963
2964 spin_lock(&fs_info->balance_lock);
2965 if (!fs_info->balance_ctl) {
2966 spin_unlock(&fs_info->balance_lock);
2967 return 0;
2968 }
2969 spin_unlock(&fs_info->balance_lock);
2970
2971 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2972 printk(KERN_INFO "btrfs: force skipping balance\n");
2973 return 0;
2974 }
2975
2976 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2977 if (IS_ERR(tsk))
2978 return PTR_ERR(tsk);
2979
2980 return 0;
2981}
2982
68310a5e 2983int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 2984{
59641015
ID
2985 struct btrfs_balance_control *bctl;
2986 struct btrfs_balance_item *item;
2987 struct btrfs_disk_balance_args disk_bargs;
2988 struct btrfs_path *path;
2989 struct extent_buffer *leaf;
2990 struct btrfs_key key;
2991 int ret;
2992
2993 path = btrfs_alloc_path();
2994 if (!path)
2995 return -ENOMEM;
2996
59641015
ID
2997 key.objectid = BTRFS_BALANCE_OBJECTID;
2998 key.type = BTRFS_BALANCE_ITEM_KEY;
2999 key.offset = 0;
3000
68310a5e 3001 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3002 if (ret < 0)
68310a5e 3003 goto out;
59641015
ID
3004 if (ret > 0) { /* ret = -ENOENT; */
3005 ret = 0;
68310a5e
ID
3006 goto out;
3007 }
3008
3009 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3010 if (!bctl) {
3011 ret = -ENOMEM;
3012 goto out;
59641015
ID
3013 }
3014
3015 leaf = path->nodes[0];
3016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3017
68310a5e
ID
3018 bctl->fs_info = fs_info;
3019 bctl->flags = btrfs_balance_flags(leaf, item);
3020 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3021
3022 btrfs_balance_data(leaf, item, &disk_bargs);
3023 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3024 btrfs_balance_meta(leaf, item, &disk_bargs);
3025 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3026 btrfs_balance_sys(leaf, item, &disk_bargs);
3027 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3028
68310a5e
ID
3029 mutex_lock(&fs_info->volume_mutex);
3030 mutex_lock(&fs_info->balance_mutex);
59641015 3031
68310a5e
ID
3032 set_balance_control(bctl);
3033
3034 mutex_unlock(&fs_info->balance_mutex);
3035 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3036out:
3037 btrfs_free_path(path);
ec44a35c
CM
3038 return ret;
3039}
3040
837d5b6e
ID
3041int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3042{
3043 int ret = 0;
3044
3045 mutex_lock(&fs_info->balance_mutex);
3046 if (!fs_info->balance_ctl) {
3047 mutex_unlock(&fs_info->balance_mutex);
3048 return -ENOTCONN;
3049 }
3050
3051 if (atomic_read(&fs_info->balance_running)) {
3052 atomic_inc(&fs_info->balance_pause_req);
3053 mutex_unlock(&fs_info->balance_mutex);
3054
3055 wait_event(fs_info->balance_wait_q,
3056 atomic_read(&fs_info->balance_running) == 0);
3057
3058 mutex_lock(&fs_info->balance_mutex);
3059 /* we are good with balance_ctl ripped off from under us */
3060 BUG_ON(atomic_read(&fs_info->balance_running));
3061 atomic_dec(&fs_info->balance_pause_req);
3062 } else {
3063 ret = -ENOTCONN;
3064 }
3065
3066 mutex_unlock(&fs_info->balance_mutex);
3067 return ret;
3068}
3069
a7e99c69
ID
3070int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3071{
3072 mutex_lock(&fs_info->balance_mutex);
3073 if (!fs_info->balance_ctl) {
3074 mutex_unlock(&fs_info->balance_mutex);
3075 return -ENOTCONN;
3076 }
3077
3078 atomic_inc(&fs_info->balance_cancel_req);
3079 /*
3080 * if we are running just wait and return, balance item is
3081 * deleted in btrfs_balance in this case
3082 */
3083 if (atomic_read(&fs_info->balance_running)) {
3084 mutex_unlock(&fs_info->balance_mutex);
3085 wait_event(fs_info->balance_wait_q,
3086 atomic_read(&fs_info->balance_running) == 0);
3087 mutex_lock(&fs_info->balance_mutex);
3088 } else {
3089 /* __cancel_balance needs volume_mutex */
3090 mutex_unlock(&fs_info->balance_mutex);
3091 mutex_lock(&fs_info->volume_mutex);
3092 mutex_lock(&fs_info->balance_mutex);
3093
3094 if (fs_info->balance_ctl)
3095 __cancel_balance(fs_info);
3096
3097 mutex_unlock(&fs_info->volume_mutex);
3098 }
3099
3100 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3101 atomic_dec(&fs_info->balance_cancel_req);
3102 mutex_unlock(&fs_info->balance_mutex);
3103 return 0;
3104}
3105
8f18cf13
CM
3106/*
3107 * shrinking a device means finding all of the device extents past
3108 * the new size, and then following the back refs to the chunks.
3109 * The chunk relocation code actually frees the device extent
3110 */
3111int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3112{
3113 struct btrfs_trans_handle *trans;
3114 struct btrfs_root *root = device->dev_root;
3115 struct btrfs_dev_extent *dev_extent = NULL;
3116 struct btrfs_path *path;
3117 u64 length;
3118 u64 chunk_tree;
3119 u64 chunk_objectid;
3120 u64 chunk_offset;
3121 int ret;
3122 int slot;
ba1bf481
JB
3123 int failed = 0;
3124 bool retried = false;
8f18cf13
CM
3125 struct extent_buffer *l;
3126 struct btrfs_key key;
6c41761f 3127 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3128 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3129 u64 old_size = device->total_bytes;
8f18cf13
CM
3130 u64 diff = device->total_bytes - new_size;
3131
8f18cf13
CM
3132 path = btrfs_alloc_path();
3133 if (!path)
3134 return -ENOMEM;
3135
8f18cf13
CM
3136 path->reada = 2;
3137
7d9eb12c
CM
3138 lock_chunks(root);
3139
8f18cf13 3140 device->total_bytes = new_size;
2bf64758 3141 if (device->writeable) {
2b82032c 3142 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3143 spin_lock(&root->fs_info->free_chunk_lock);
3144 root->fs_info->free_chunk_space -= diff;
3145 spin_unlock(&root->fs_info->free_chunk_lock);
3146 }
7d9eb12c 3147 unlock_chunks(root);
8f18cf13 3148
ba1bf481 3149again:
8f18cf13
CM
3150 key.objectid = device->devid;
3151 key.offset = (u64)-1;
3152 key.type = BTRFS_DEV_EXTENT_KEY;
3153
213e64da 3154 do {
8f18cf13
CM
3155 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3156 if (ret < 0)
3157 goto done;
3158
3159 ret = btrfs_previous_item(root, path, 0, key.type);
3160 if (ret < 0)
3161 goto done;
3162 if (ret) {
3163 ret = 0;
b3b4aa74 3164 btrfs_release_path(path);
bf1fb512 3165 break;
8f18cf13
CM
3166 }
3167
3168 l = path->nodes[0];
3169 slot = path->slots[0];
3170 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3171
ba1bf481 3172 if (key.objectid != device->devid) {
b3b4aa74 3173 btrfs_release_path(path);
bf1fb512 3174 break;
ba1bf481 3175 }
8f18cf13
CM
3176
3177 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3178 length = btrfs_dev_extent_length(l, dev_extent);
3179
ba1bf481 3180 if (key.offset + length <= new_size) {
b3b4aa74 3181 btrfs_release_path(path);
d6397bae 3182 break;
ba1bf481 3183 }
8f18cf13
CM
3184
3185 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3186 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3187 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3188 btrfs_release_path(path);
8f18cf13
CM
3189
3190 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3191 chunk_offset);
ba1bf481 3192 if (ret && ret != -ENOSPC)
8f18cf13 3193 goto done;
ba1bf481
JB
3194 if (ret == -ENOSPC)
3195 failed++;
213e64da 3196 } while (key.offset-- > 0);
ba1bf481
JB
3197
3198 if (failed && !retried) {
3199 failed = 0;
3200 retried = true;
3201 goto again;
3202 } else if (failed && retried) {
3203 ret = -ENOSPC;
3204 lock_chunks(root);
3205
3206 device->total_bytes = old_size;
3207 if (device->writeable)
3208 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3209 spin_lock(&root->fs_info->free_chunk_lock);
3210 root->fs_info->free_chunk_space += diff;
3211 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3212 unlock_chunks(root);
3213 goto done;
8f18cf13
CM
3214 }
3215
d6397bae 3216 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3217 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3218 if (IS_ERR(trans)) {
3219 ret = PTR_ERR(trans);
3220 goto done;
3221 }
3222
d6397bae
CB
3223 lock_chunks(root);
3224
3225 device->disk_total_bytes = new_size;
3226 /* Now btrfs_update_device() will change the on-disk size. */
3227 ret = btrfs_update_device(trans, device);
3228 if (ret) {
3229 unlock_chunks(root);
3230 btrfs_end_transaction(trans, root);
3231 goto done;
3232 }
3233 WARN_ON(diff > old_total);
3234 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3235 unlock_chunks(root);
3236 btrfs_end_transaction(trans, root);
8f18cf13
CM
3237done:
3238 btrfs_free_path(path);
3239 return ret;
3240}
3241
125ccb0a 3242static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3243 struct btrfs_key *key,
3244 struct btrfs_chunk *chunk, int item_size)
3245{
6c41761f 3246 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3247 struct btrfs_disk_key disk_key;
3248 u32 array_size;
3249 u8 *ptr;
3250
3251 array_size = btrfs_super_sys_array_size(super_copy);
3252 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3253 return -EFBIG;
3254
3255 ptr = super_copy->sys_chunk_array + array_size;
3256 btrfs_cpu_key_to_disk(&disk_key, key);
3257 memcpy(ptr, &disk_key, sizeof(disk_key));
3258 ptr += sizeof(disk_key);
3259 memcpy(ptr, chunk, item_size);
3260 item_size += sizeof(disk_key);
3261 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3262 return 0;
3263}
3264
73c5de00
AJ
3265/*
3266 * sort the devices in descending order by max_avail, total_avail
3267 */
3268static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3269{
73c5de00
AJ
3270 const struct btrfs_device_info *di_a = a;
3271 const struct btrfs_device_info *di_b = b;
9b3f68b9 3272
73c5de00 3273 if (di_a->max_avail > di_b->max_avail)
b2117a39 3274 return -1;
73c5de00 3275 if (di_a->max_avail < di_b->max_avail)
b2117a39 3276 return 1;
73c5de00
AJ
3277 if (di_a->total_avail > di_b->total_avail)
3278 return -1;
3279 if (di_a->total_avail < di_b->total_avail)
3280 return 1;
3281 return 0;
b2117a39 3282}
0b86a832 3283
73c5de00
AJ
3284static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3285 struct btrfs_root *extent_root,
3286 struct map_lookup **map_ret,
3287 u64 *num_bytes_out, u64 *stripe_size_out,
3288 u64 start, u64 type)
b2117a39 3289{
73c5de00
AJ
3290 struct btrfs_fs_info *info = extent_root->fs_info;
3291 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3292 struct list_head *cur;
3293 struct map_lookup *map = NULL;
3294 struct extent_map_tree *em_tree;
3295 struct extent_map *em;
3296 struct btrfs_device_info *devices_info = NULL;
3297 u64 total_avail;
3298 int num_stripes; /* total number of stripes to allocate */
3299 int sub_stripes; /* sub_stripes info for map */
3300 int dev_stripes; /* stripes per dev */
3301 int devs_max; /* max devs to use */
3302 int devs_min; /* min devs needed */
3303 int devs_increment; /* ndevs has to be a multiple of this */
3304 int ncopies; /* how many copies to data has */
3305 int ret;
3306 u64 max_stripe_size;
3307 u64 max_chunk_size;
3308 u64 stripe_size;
3309 u64 num_bytes;
3310 int ndevs;
3311 int i;
3312 int j;
593060d7 3313
0c460c0d 3314 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3315
73c5de00
AJ
3316 if (list_empty(&fs_devices->alloc_list))
3317 return -ENOSPC;
b2117a39 3318
73c5de00
AJ
3319 sub_stripes = 1;
3320 dev_stripes = 1;
3321 devs_increment = 1;
3322 ncopies = 1;
3323 devs_max = 0; /* 0 == as many as possible */
3324 devs_min = 1;
3325
3326 /*
3327 * define the properties of each RAID type.
3328 * FIXME: move this to a global table and use it in all RAID
3329 * calculation code
3330 */
3331 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3332 dev_stripes = 2;
b2117a39 3333 ncopies = 2;
73c5de00
AJ
3334 devs_max = 1;
3335 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3336 devs_min = 2;
3337 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3338 devs_increment = 2;
b2117a39 3339 ncopies = 2;
73c5de00
AJ
3340 devs_max = 2;
3341 devs_min = 2;
3342 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3343 sub_stripes = 2;
3344 devs_increment = 2;
3345 ncopies = 2;
3346 devs_min = 4;
3347 } else {
3348 devs_max = 1;
3349 }
b2117a39 3350
9b3f68b9 3351 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3352 max_stripe_size = 1024 * 1024 * 1024;
3353 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3354 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3355 /* for larger filesystems, use larger metadata chunks */
3356 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3357 max_stripe_size = 1024 * 1024 * 1024;
3358 else
3359 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3360 max_chunk_size = max_stripe_size;
a40a90a0 3361 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3362 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3363 max_chunk_size = 2 * max_stripe_size;
3364 } else {
3365 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3366 type);
3367 BUG_ON(1);
9b3f68b9
CM
3368 }
3369
2b82032c
YZ
3370 /* we don't want a chunk larger than 10% of writeable space */
3371 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3372 max_chunk_size);
9b3f68b9 3373
73c5de00
AJ
3374 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3375 GFP_NOFS);
3376 if (!devices_info)
3377 return -ENOMEM;
0cad8a11 3378
73c5de00 3379 cur = fs_devices->alloc_list.next;
9b3f68b9 3380
9f680ce0 3381 /*
73c5de00
AJ
3382 * in the first pass through the devices list, we gather information
3383 * about the available holes on each device.
9f680ce0 3384 */
73c5de00
AJ
3385 ndevs = 0;
3386 while (cur != &fs_devices->alloc_list) {
3387 struct btrfs_device *device;
3388 u64 max_avail;
3389 u64 dev_offset;
b2117a39 3390
73c5de00 3391 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3392
73c5de00 3393 cur = cur->next;
b2117a39 3394
73c5de00 3395 if (!device->writeable) {
31b1a2bd 3396 WARN(1, KERN_ERR
73c5de00 3397 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
3398 continue;
3399 }
b2117a39 3400
73c5de00
AJ
3401 if (!device->in_fs_metadata)
3402 continue;
b2117a39 3403
73c5de00
AJ
3404 if (device->total_bytes > device->bytes_used)
3405 total_avail = device->total_bytes - device->bytes_used;
3406 else
3407 total_avail = 0;
38c01b96 3408
3409 /* If there is no space on this device, skip it. */
3410 if (total_avail == 0)
3411 continue;
b2117a39 3412
125ccb0a 3413 ret = find_free_dev_extent(device,
73c5de00
AJ
3414 max_stripe_size * dev_stripes,
3415 &dev_offset, &max_avail);
3416 if (ret && ret != -ENOSPC)
3417 goto error;
b2117a39 3418
73c5de00
AJ
3419 if (ret == 0)
3420 max_avail = max_stripe_size * dev_stripes;
b2117a39 3421
73c5de00
AJ
3422 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3423 continue;
b2117a39 3424
73c5de00
AJ
3425 devices_info[ndevs].dev_offset = dev_offset;
3426 devices_info[ndevs].max_avail = max_avail;
3427 devices_info[ndevs].total_avail = total_avail;
3428 devices_info[ndevs].dev = device;
3429 ++ndevs;
3430 }
b2117a39 3431
73c5de00
AJ
3432 /*
3433 * now sort the devices by hole size / available space
3434 */
3435 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3436 btrfs_cmp_device_info, NULL);
b2117a39 3437
73c5de00
AJ
3438 /* round down to number of usable stripes */
3439 ndevs -= ndevs % devs_increment;
b2117a39 3440
73c5de00
AJ
3441 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3442 ret = -ENOSPC;
3443 goto error;
b2117a39 3444 }
9f680ce0 3445
73c5de00
AJ
3446 if (devs_max && ndevs > devs_max)
3447 ndevs = devs_max;
3448 /*
3449 * the primary goal is to maximize the number of stripes, so use as many
3450 * devices as possible, even if the stripes are not maximum sized.
3451 */
3452 stripe_size = devices_info[ndevs-1].max_avail;
3453 num_stripes = ndevs * dev_stripes;
b2117a39 3454
37db63a4 3455 if (stripe_size * ndevs > max_chunk_size * ncopies) {
73c5de00 3456 stripe_size = max_chunk_size * ncopies;
37db63a4 3457 do_div(stripe_size, ndevs);
b2117a39 3458 }
b2117a39 3459
73c5de00 3460 do_div(stripe_size, dev_stripes);
37db63a4
ID
3461
3462 /* align to BTRFS_STRIPE_LEN */
73c5de00
AJ
3463 do_div(stripe_size, BTRFS_STRIPE_LEN);
3464 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
3465
3466 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3467 if (!map) {
3468 ret = -ENOMEM;
3469 goto error;
3470 }
3471 map->num_stripes = num_stripes;
9b3f68b9 3472
73c5de00
AJ
3473 for (i = 0; i < ndevs; ++i) {
3474 for (j = 0; j < dev_stripes; ++j) {
3475 int s = i * dev_stripes + j;
3476 map->stripes[s].dev = devices_info[i].dev;
3477 map->stripes[s].physical = devices_info[i].dev_offset +
3478 j * stripe_size;
6324fbf3 3479 }
6324fbf3 3480 }
2b82032c 3481 map->sector_size = extent_root->sectorsize;
b2117a39
MX
3482 map->stripe_len = BTRFS_STRIPE_LEN;
3483 map->io_align = BTRFS_STRIPE_LEN;
3484 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 3485 map->type = type;
2b82032c 3486 map->sub_stripes = sub_stripes;
0b86a832 3487
2b82032c 3488 *map_ret = map;
73c5de00 3489 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 3490
73c5de00
AJ
3491 *stripe_size_out = stripe_size;
3492 *num_bytes_out = num_bytes;
0b86a832 3493
73c5de00 3494 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3495
172ddd60 3496 em = alloc_extent_map();
2b82032c 3497 if (!em) {
b2117a39
MX
3498 ret = -ENOMEM;
3499 goto error;
593060d7 3500 }
2b82032c
YZ
3501 em->bdev = (struct block_device *)map;
3502 em->start = start;
73c5de00 3503 em->len = num_bytes;
2b82032c
YZ
3504 em->block_start = 0;
3505 em->block_len = em->len;
593060d7 3506
2b82032c 3507 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3508 write_lock(&em_tree->lock);
2b82032c 3509 ret = add_extent_mapping(em_tree, em);
890871be 3510 write_unlock(&em_tree->lock);
2b82032c 3511 free_extent_map(em);
1dd4602f
MF
3512 if (ret)
3513 goto error;
0b86a832 3514
2b82032c
YZ
3515 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3516 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3517 start, num_bytes);
79787eaa
JM
3518 if (ret)
3519 goto error;
611f0e00 3520
73c5de00
AJ
3521 for (i = 0; i < map->num_stripes; ++i) {
3522 struct btrfs_device *device;
3523 u64 dev_offset;
3524
3525 device = map->stripes[i].dev;
3526 dev_offset = map->stripes[i].physical;
0b86a832
CM
3527
3528 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3529 info->chunk_root->root_key.objectid,
3530 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3531 start, dev_offset, stripe_size);
79787eaa
JM
3532 if (ret) {
3533 btrfs_abort_transaction(trans, extent_root, ret);
3534 goto error;
3535 }
2b82032c
YZ
3536 }
3537
b2117a39 3538 kfree(devices_info);
2b82032c 3539 return 0;
b2117a39
MX
3540
3541error:
3542 kfree(map);
3543 kfree(devices_info);
3544 return ret;
2b82032c
YZ
3545}
3546
3547static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3548 struct btrfs_root *extent_root,
3549 struct map_lookup *map, u64 chunk_offset,
3550 u64 chunk_size, u64 stripe_size)
3551{
3552 u64 dev_offset;
3553 struct btrfs_key key;
3554 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3555 struct btrfs_device *device;
3556 struct btrfs_chunk *chunk;
3557 struct btrfs_stripe *stripe;
3558 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3559 int index = 0;
3560 int ret;
3561
3562 chunk = kzalloc(item_size, GFP_NOFS);
3563 if (!chunk)
3564 return -ENOMEM;
3565
3566 index = 0;
3567 while (index < map->num_stripes) {
3568 device = map->stripes[index].dev;
3569 device->bytes_used += stripe_size;
0b86a832 3570 ret = btrfs_update_device(trans, device);
3acd3953
MF
3571 if (ret)
3572 goto out_free;
2b82032c
YZ
3573 index++;
3574 }
3575
2bf64758
JB
3576 spin_lock(&extent_root->fs_info->free_chunk_lock);
3577 extent_root->fs_info->free_chunk_space -= (stripe_size *
3578 map->num_stripes);
3579 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3580
2b82032c
YZ
3581 index = 0;
3582 stripe = &chunk->stripe;
3583 while (index < map->num_stripes) {
3584 device = map->stripes[index].dev;
3585 dev_offset = map->stripes[index].physical;
0b86a832 3586
e17cade2
CM
3587 btrfs_set_stack_stripe_devid(stripe, device->devid);
3588 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3589 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 3590 stripe++;
0b86a832
CM
3591 index++;
3592 }
3593
2b82032c 3594 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 3595 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
3596 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3597 btrfs_set_stack_chunk_type(chunk, map->type);
3598 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3599 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3600 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 3601 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 3602 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 3603
2b82032c
YZ
3604 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3605 key.type = BTRFS_CHUNK_ITEM_KEY;
3606 key.offset = chunk_offset;
0b86a832 3607
2b82032c 3608 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
0b86a832 3609
4ed1d16e
MF
3610 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3611 /*
3612 * TODO: Cleanup of inserted chunk root in case of
3613 * failure.
3614 */
125ccb0a 3615 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 3616 item_size);
8f18cf13 3617 }
1abe9b8a 3618
3acd3953 3619out_free:
0b86a832 3620 kfree(chunk);
4ed1d16e 3621 return ret;
2b82032c 3622}
0b86a832 3623
2b82032c
YZ
3624/*
3625 * Chunk allocation falls into two parts. The first part does works
3626 * that make the new allocated chunk useable, but not do any operation
3627 * that modifies the chunk tree. The second part does the works that
3628 * require modifying the chunk tree. This division is important for the
3629 * bootstrap process of adding storage to a seed btrfs.
3630 */
3631int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3632 struct btrfs_root *extent_root, u64 type)
3633{
3634 u64 chunk_offset;
3635 u64 chunk_size;
3636 u64 stripe_size;
3637 struct map_lookup *map;
3638 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3639 int ret;
3640
3641 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3642 &chunk_offset);
3643 if (ret)
3644 return ret;
3645
3646 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3647 &stripe_size, chunk_offset, type);
3648 if (ret)
3649 return ret;
3650
3651 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3652 chunk_size, stripe_size);
79787eaa
JM
3653 if (ret)
3654 return ret;
2b82032c
YZ
3655 return 0;
3656}
3657
d397712b 3658static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
3659 struct btrfs_root *root,
3660 struct btrfs_device *device)
3661{
3662 u64 chunk_offset;
3663 u64 sys_chunk_offset;
3664 u64 chunk_size;
3665 u64 sys_chunk_size;
3666 u64 stripe_size;
3667 u64 sys_stripe_size;
3668 u64 alloc_profile;
3669 struct map_lookup *map;
3670 struct map_lookup *sys_map;
3671 struct btrfs_fs_info *fs_info = root->fs_info;
3672 struct btrfs_root *extent_root = fs_info->extent_root;
3673 int ret;
3674
3675 ret = find_next_chunk(fs_info->chunk_root,
3676 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
3677 if (ret)
3678 return ret;
2b82032c
YZ
3679
3680 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 3681 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
3682 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3683
3684 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3685 &stripe_size, chunk_offset, alloc_profile);
79787eaa
JM
3686 if (ret)
3687 return ret;
2b82032c
YZ
3688
3689 sys_chunk_offset = chunk_offset + chunk_size;
3690
3691 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 3692 fs_info->avail_system_alloc_bits;
2b82032c
YZ
3693 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3694
3695 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3696 &sys_chunk_size, &sys_stripe_size,
3697 sys_chunk_offset, alloc_profile);
005d6427
DS
3698 if (ret) {
3699 btrfs_abort_transaction(trans, root, ret);
3700 goto out;
3701 }
2b82032c
YZ
3702
3703 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
005d6427
DS
3704 if (ret) {
3705 btrfs_abort_transaction(trans, root, ret);
3706 goto out;
3707 }
2b82032c
YZ
3708
3709 /*
3710 * Modifying chunk tree needs allocating new blocks from both
3711 * system block group and metadata block group. So we only can
3712 * do operations require modifying the chunk tree after both
3713 * block groups were created.
3714 */
3715 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3716 chunk_size, stripe_size);
005d6427
DS
3717 if (ret) {
3718 btrfs_abort_transaction(trans, root, ret);
3719 goto out;
3720 }
2b82032c
YZ
3721
3722 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3723 sys_chunk_offset, sys_chunk_size,
3724 sys_stripe_size);
79787eaa 3725 if (ret)
005d6427 3726 btrfs_abort_transaction(trans, root, ret);
79787eaa 3727
005d6427 3728out:
79787eaa 3729
79787eaa 3730 return ret;
2b82032c
YZ
3731}
3732
3733int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3734{
3735 struct extent_map *em;
3736 struct map_lookup *map;
3737 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3738 int readonly = 0;
3739 int i;
3740
890871be 3741 read_lock(&map_tree->map_tree.lock);
2b82032c 3742 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 3743 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
3744 if (!em)
3745 return 1;
3746
f48b9075
JB
3747 if (btrfs_test_opt(root, DEGRADED)) {
3748 free_extent_map(em);
3749 return 0;
3750 }
3751
2b82032c
YZ
3752 map = (struct map_lookup *)em->bdev;
3753 for (i = 0; i < map->num_stripes; i++) {
3754 if (!map->stripes[i].dev->writeable) {
3755 readonly = 1;
3756 break;
3757 }
3758 }
0b86a832 3759 free_extent_map(em);
2b82032c 3760 return readonly;
0b86a832
CM
3761}
3762
3763void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3764{
a8067e02 3765 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
3766}
3767
3768void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3769{
3770 struct extent_map *em;
3771
d397712b 3772 while (1) {
890871be 3773 write_lock(&tree->map_tree.lock);
0b86a832
CM
3774 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3775 if (em)
3776 remove_extent_mapping(&tree->map_tree, em);
890871be 3777 write_unlock(&tree->map_tree.lock);
0b86a832
CM
3778 if (!em)
3779 break;
3780 kfree(em->bdev);
3781 /* once for us */
3782 free_extent_map(em);
3783 /* once for the tree */
3784 free_extent_map(em);
3785 }
3786}
3787
5d964051 3788int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 3789{
5d964051 3790 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
3791 struct extent_map *em;
3792 struct map_lookup *map;
3793 struct extent_map_tree *em_tree = &map_tree->map_tree;
3794 int ret;
3795
890871be 3796 read_lock(&em_tree->lock);
f188591e 3797 em = lookup_extent_mapping(em_tree, logical, len);
890871be 3798 read_unlock(&em_tree->lock);
f188591e
CM
3799 BUG_ON(!em);
3800
3801 BUG_ON(em->start > logical || em->start + em->len < logical);
3802 map = (struct map_lookup *)em->bdev;
3803 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3804 ret = map->num_stripes;
321aecc6
CM
3805 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3806 ret = map->sub_stripes;
f188591e
CM
3807 else
3808 ret = 1;
3809 free_extent_map(em);
f188591e
CM
3810 return ret;
3811}
3812
dfe25020
CM
3813static int find_live_mirror(struct map_lookup *map, int first, int num,
3814 int optimal)
3815{
3816 int i;
3817 if (map->stripes[optimal].dev->bdev)
3818 return optimal;
3819 for (i = first; i < first + num; i++) {
3820 if (map->stripes[i].dev->bdev)
3821 return i;
3822 }
3823 /* we couldn't find one that doesn't fail. Just return something
3824 * and the io error handling code will clean up eventually
3825 */
3826 return optimal;
3827}
3828
3ec706c8 3829static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 3830 u64 logical, u64 *length,
a1d3c478 3831 struct btrfs_bio **bbio_ret,
7eaceacc 3832 int mirror_num)
0b86a832
CM
3833{
3834 struct extent_map *em;
3835 struct map_lookup *map;
3ec706c8 3836 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
3837 struct extent_map_tree *em_tree = &map_tree->map_tree;
3838 u64 offset;
593060d7 3839 u64 stripe_offset;
fce3bb9a 3840 u64 stripe_end_offset;
593060d7 3841 u64 stripe_nr;
fce3bb9a
LD
3842 u64 stripe_nr_orig;
3843 u64 stripe_nr_end;
593060d7 3844 int stripe_index;
cea9e445 3845 int i;
de11cc12 3846 int ret = 0;
f2d8d74d 3847 int num_stripes;
a236aed1 3848 int max_errors = 0;
a1d3c478 3849 struct btrfs_bio *bbio = NULL;
0b86a832 3850
890871be 3851 read_lock(&em_tree->lock);
0b86a832 3852 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 3853 read_unlock(&em_tree->lock);
f2d8d74d 3854
3b951516 3855 if (!em) {
48940662 3856 printk(KERN_CRIT "btrfs: unable to find logical %llu len %llu\n",
d397712b
CM
3857 (unsigned long long)logical,
3858 (unsigned long long)*length);
f2d8d74d 3859 BUG();
3b951516 3860 }
0b86a832
CM
3861
3862 BUG_ON(em->start > logical || em->start + em->len < logical);
3863 map = (struct map_lookup *)em->bdev;
3864 offset = logical - em->start;
593060d7 3865
f188591e
CM
3866 if (mirror_num > map->num_stripes)
3867 mirror_num = 0;
3868
593060d7
CM
3869 stripe_nr = offset;
3870 /*
3871 * stripe_nr counts the total number of stripes we have to stride
3872 * to get to this block
3873 */
3874 do_div(stripe_nr, map->stripe_len);
3875
3876 stripe_offset = stripe_nr * map->stripe_len;
3877 BUG_ON(offset < stripe_offset);
3878
3879 /* stripe_offset is the offset of this block in its stripe*/
3880 stripe_offset = offset - stripe_offset;
3881
fce3bb9a
LD
3882 if (rw & REQ_DISCARD)
3883 *length = min_t(u64, em->len - offset, *length);
52ba6929 3884 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
3885 /* we limit the length of each bio to what fits in a stripe */
3886 *length = min_t(u64, em->len - offset,
fce3bb9a 3887 map->stripe_len - stripe_offset);
cea9e445
CM
3888 } else {
3889 *length = em->len - offset;
3890 }
f2d8d74d 3891
a1d3c478 3892 if (!bbio_ret)
cea9e445
CM
3893 goto out;
3894
f2d8d74d 3895 num_stripes = 1;
cea9e445 3896 stripe_index = 0;
fce3bb9a
LD
3897 stripe_nr_orig = stripe_nr;
3898 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3899 (~(map->stripe_len - 1));
3900 do_div(stripe_nr_end, map->stripe_len);
3901 stripe_end_offset = stripe_nr_end * map->stripe_len -
3902 (offset + *length);
3903 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3904 if (rw & REQ_DISCARD)
3905 num_stripes = min_t(u64, map->num_stripes,
3906 stripe_nr_end - stripe_nr_orig);
3907 stripe_index = do_div(stripe_nr, map->num_stripes);
3908 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3909 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3910 num_stripes = map->num_stripes;
2fff734f 3911 else if (mirror_num)
f188591e 3912 stripe_index = mirror_num - 1;
dfe25020
CM
3913 else {
3914 stripe_index = find_live_mirror(map, 0,
3915 map->num_stripes,
3916 current->pid % map->num_stripes);
a1d3c478 3917 mirror_num = stripe_index + 1;
dfe25020 3918 }
2fff734f 3919
611f0e00 3920 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
a1d3c478 3921 if (rw & (REQ_WRITE | REQ_DISCARD)) {
f2d8d74d 3922 num_stripes = map->num_stripes;
a1d3c478 3923 } else if (mirror_num) {
f188591e 3924 stripe_index = mirror_num - 1;
a1d3c478
JS
3925 } else {
3926 mirror_num = 1;
3927 }
2fff734f 3928
321aecc6
CM
3929 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3930 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3931
3932 stripe_index = do_div(stripe_nr, factor);
3933 stripe_index *= map->sub_stripes;
3934
7eaceacc 3935 if (rw & REQ_WRITE)
f2d8d74d 3936 num_stripes = map->sub_stripes;
fce3bb9a
LD
3937 else if (rw & REQ_DISCARD)
3938 num_stripes = min_t(u64, map->sub_stripes *
3939 (stripe_nr_end - stripe_nr_orig),
3940 map->num_stripes);
321aecc6
CM
3941 else if (mirror_num)
3942 stripe_index += mirror_num - 1;
dfe25020 3943 else {
3e74317a 3944 int old_stripe_index = stripe_index;
dfe25020
CM
3945 stripe_index = find_live_mirror(map, stripe_index,
3946 map->sub_stripes, stripe_index +
3947 current->pid % map->sub_stripes);
3e74317a 3948 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 3949 }
8790d502
CM
3950 } else {
3951 /*
3952 * after this do_div call, stripe_nr is the number of stripes
3953 * on this device we have to walk to find the data, and
3954 * stripe_index is the number of our device in the stripe array
3955 */
3956 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 3957 mirror_num = stripe_index + 1;
8790d502 3958 }
593060d7 3959 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3960
de11cc12
LZ
3961 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3962 if (!bbio) {
3963 ret = -ENOMEM;
3964 goto out;
3965 }
3966 atomic_set(&bbio->error, 0);
3967
fce3bb9a 3968 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
3969 int factor = 0;
3970 int sub_stripes = 0;
3971 u64 stripes_per_dev = 0;
3972 u32 remaining_stripes = 0;
b89203f7 3973 u32 last_stripe = 0;
ec9ef7a1
LZ
3974
3975 if (map->type &
3976 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3977 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3978 sub_stripes = 1;
3979 else
3980 sub_stripes = map->sub_stripes;
3981
3982 factor = map->num_stripes / sub_stripes;
3983 stripes_per_dev = div_u64_rem(stripe_nr_end -
3984 stripe_nr_orig,
3985 factor,
3986 &remaining_stripes);
b89203f7
LB
3987 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3988 last_stripe *= sub_stripes;
ec9ef7a1
LZ
3989 }
3990
fce3bb9a 3991 for (i = 0; i < num_stripes; i++) {
a1d3c478 3992 bbio->stripes[i].physical =
f2d8d74d
CM
3993 map->stripes[stripe_index].physical +
3994 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 3995 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 3996
ec9ef7a1
LZ
3997 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3998 BTRFS_BLOCK_GROUP_RAID10)) {
3999 bbio->stripes[i].length = stripes_per_dev *
4000 map->stripe_len;
b89203f7 4001
ec9ef7a1
LZ
4002 if (i / sub_stripes < remaining_stripes)
4003 bbio->stripes[i].length +=
4004 map->stripe_len;
b89203f7
LB
4005
4006 /*
4007 * Special for the first stripe and
4008 * the last stripe:
4009 *
4010 * |-------|...|-------|
4011 * |----------|
4012 * off end_off
4013 */
ec9ef7a1 4014 if (i < sub_stripes)
a1d3c478 4015 bbio->stripes[i].length -=
fce3bb9a 4016 stripe_offset;
b89203f7
LB
4017
4018 if (stripe_index >= last_stripe &&
4019 stripe_index <= (last_stripe +
4020 sub_stripes - 1))
a1d3c478 4021 bbio->stripes[i].length -=
fce3bb9a 4022 stripe_end_offset;
b89203f7 4023
ec9ef7a1
LZ
4024 if (i == sub_stripes - 1)
4025 stripe_offset = 0;
fce3bb9a 4026 } else
a1d3c478 4027 bbio->stripes[i].length = *length;
fce3bb9a
LD
4028
4029 stripe_index++;
4030 if (stripe_index == map->num_stripes) {
4031 /* This could only happen for RAID0/10 */
4032 stripe_index = 0;
4033 stripe_nr++;
4034 }
4035 }
4036 } else {
4037 for (i = 0; i < num_stripes; i++) {
a1d3c478 4038 bbio->stripes[i].physical =
212a17ab
LT
4039 map->stripes[stripe_index].physical +
4040 stripe_offset +
4041 stripe_nr * map->stripe_len;
a1d3c478 4042 bbio->stripes[i].dev =
212a17ab 4043 map->stripes[stripe_index].dev;
fce3bb9a 4044 stripe_index++;
f2d8d74d 4045 }
593060d7 4046 }
de11cc12
LZ
4047
4048 if (rw & REQ_WRITE) {
4049 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4050 BTRFS_BLOCK_GROUP_RAID10 |
4051 BTRFS_BLOCK_GROUP_DUP)) {
4052 max_errors = 1;
4053 }
f2d8d74d 4054 }
de11cc12
LZ
4055
4056 *bbio_ret = bbio;
4057 bbio->num_stripes = num_stripes;
4058 bbio->max_errors = max_errors;
4059 bbio->mirror_num = mirror_num;
cea9e445 4060out:
0b86a832 4061 free_extent_map(em);
de11cc12 4062 return ret;
0b86a832
CM
4063}
4064
3ec706c8 4065int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4066 u64 logical, u64 *length,
a1d3c478 4067 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 4068{
3ec706c8 4069 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
7eaceacc 4070 mirror_num);
f2d8d74d
CM
4071}
4072
a512bbf8
YZ
4073int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
4074 u64 chunk_start, u64 physical, u64 devid,
4075 u64 **logical, int *naddrs, int *stripe_len)
4076{
4077 struct extent_map_tree *em_tree = &map_tree->map_tree;
4078 struct extent_map *em;
4079 struct map_lookup *map;
4080 u64 *buf;
4081 u64 bytenr;
4082 u64 length;
4083 u64 stripe_nr;
4084 int i, j, nr = 0;
4085
890871be 4086 read_lock(&em_tree->lock);
a512bbf8 4087 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 4088 read_unlock(&em_tree->lock);
a512bbf8
YZ
4089
4090 BUG_ON(!em || em->start != chunk_start);
4091 map = (struct map_lookup *)em->bdev;
4092
4093 length = em->len;
4094 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4095 do_div(length, map->num_stripes / map->sub_stripes);
4096 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4097 do_div(length, map->num_stripes);
4098
4099 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 4100 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
4101
4102 for (i = 0; i < map->num_stripes; i++) {
4103 if (devid && map->stripes[i].dev->devid != devid)
4104 continue;
4105 if (map->stripes[i].physical > physical ||
4106 map->stripes[i].physical + length <= physical)
4107 continue;
4108
4109 stripe_nr = physical - map->stripes[i].physical;
4110 do_div(stripe_nr, map->stripe_len);
4111
4112 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4113 stripe_nr = stripe_nr * map->num_stripes + i;
4114 do_div(stripe_nr, map->sub_stripes);
4115 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4116 stripe_nr = stripe_nr * map->num_stripes + i;
4117 }
4118 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 4119 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
4120 for (j = 0; j < nr; j++) {
4121 if (buf[j] == bytenr)
4122 break;
4123 }
934d375b
CM
4124 if (j == nr) {
4125 WARN_ON(nr >= map->num_stripes);
a512bbf8 4126 buf[nr++] = bytenr;
934d375b 4127 }
a512bbf8
YZ
4128 }
4129
a512bbf8
YZ
4130 *logical = buf;
4131 *naddrs = nr;
4132 *stripe_len = map->stripe_len;
4133
4134 free_extent_map(em);
4135 return 0;
f2d8d74d
CM
4136}
4137
442a4f63
SB
4138static void *merge_stripe_index_into_bio_private(void *bi_private,
4139 unsigned int stripe_index)
4140{
4141 /*
4142 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4143 * at most 1.
4144 * The alternative solution (instead of stealing bits from the
4145 * pointer) would be to allocate an intermediate structure
4146 * that contains the old private pointer plus the stripe_index.
4147 */
4148 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4149 BUG_ON(stripe_index > 3);
4150 return (void *)(((uintptr_t)bi_private) | stripe_index);
4151}
4152
4153static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4154{
4155 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4156}
4157
4158static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4159{
4160 return (unsigned int)((uintptr_t)bi_private) & 3;
4161}
4162
a1d3c478 4163static void btrfs_end_bio(struct bio *bio, int err)
8790d502 4164{
442a4f63 4165 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
7d2b4daa 4166 int is_orig_bio = 0;
8790d502 4167
442a4f63 4168 if (err) {
a1d3c478 4169 atomic_inc(&bbio->error);
442a4f63
SB
4170 if (err == -EIO || err == -EREMOTEIO) {
4171 unsigned int stripe_index =
4172 extract_stripe_index_from_bio_private(
4173 bio->bi_private);
4174 struct btrfs_device *dev;
4175
4176 BUG_ON(stripe_index >= bbio->num_stripes);
4177 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
4178 if (dev->bdev) {
4179 if (bio->bi_rw & WRITE)
4180 btrfs_dev_stat_inc(dev,
4181 BTRFS_DEV_STAT_WRITE_ERRS);
4182 else
4183 btrfs_dev_stat_inc(dev,
4184 BTRFS_DEV_STAT_READ_ERRS);
4185 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4186 btrfs_dev_stat_inc(dev,
4187 BTRFS_DEV_STAT_FLUSH_ERRS);
4188 btrfs_dev_stat_print_on_error(dev);
4189 }
442a4f63
SB
4190 }
4191 }
8790d502 4192
a1d3c478 4193 if (bio == bbio->orig_bio)
7d2b4daa
CM
4194 is_orig_bio = 1;
4195
a1d3c478 4196 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
4197 if (!is_orig_bio) {
4198 bio_put(bio);
a1d3c478 4199 bio = bbio->orig_bio;
7d2b4daa 4200 }
a1d3c478
JS
4201 bio->bi_private = bbio->private;
4202 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
4203 bio->bi_bdev = (struct block_device *)
4204 (unsigned long)bbio->mirror_num;
a236aed1
CM
4205 /* only send an error to the higher layers if it is
4206 * beyond the tolerance of the multi-bio
4207 */
a1d3c478 4208 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 4209 err = -EIO;
5dbc8fca 4210 } else {
1259ab75
CM
4211 /*
4212 * this bio is actually up to date, we didn't
4213 * go over the max number of errors
4214 */
4215 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 4216 err = 0;
1259ab75 4217 }
a1d3c478 4218 kfree(bbio);
8790d502
CM
4219
4220 bio_endio(bio, err);
7d2b4daa 4221 } else if (!is_orig_bio) {
8790d502
CM
4222 bio_put(bio);
4223 }
8790d502
CM
4224}
4225
8b712842
CM
4226struct async_sched {
4227 struct bio *bio;
4228 int rw;
4229 struct btrfs_fs_info *info;
4230 struct btrfs_work work;
4231};
4232
4233/*
4234 * see run_scheduled_bios for a description of why bios are collected for
4235 * async submit.
4236 *
4237 * This will add one bio to the pending list for a device and make sure
4238 * the work struct is scheduled.
4239 */
143bede5 4240static noinline void schedule_bio(struct btrfs_root *root,
a1b32a59
CM
4241 struct btrfs_device *device,
4242 int rw, struct bio *bio)
8b712842
CM
4243{
4244 int should_queue = 1;
ffbd517d 4245 struct btrfs_pending_bios *pending_bios;
8b712842
CM
4246
4247 /* don't bother with additional async steps for reads, right now */
7b6d91da 4248 if (!(rw & REQ_WRITE)) {
492bb6de 4249 bio_get(bio);
21adbd5c 4250 btrfsic_submit_bio(rw, bio);
492bb6de 4251 bio_put(bio);
143bede5 4252 return;
8b712842
CM
4253 }
4254
4255 /*
0986fe9e 4256 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
4257 * higher layers. Otherwise, the async bio makes it appear we have
4258 * made progress against dirty pages when we've really just put it
4259 * on a queue for later
4260 */
0986fe9e 4261 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 4262 WARN_ON(bio->bi_next);
8b712842
CM
4263 bio->bi_next = NULL;
4264 bio->bi_rw |= rw;
4265
4266 spin_lock(&device->io_lock);
7b6d91da 4267 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
4268 pending_bios = &device->pending_sync_bios;
4269 else
4270 pending_bios = &device->pending_bios;
8b712842 4271
ffbd517d
CM
4272 if (pending_bios->tail)
4273 pending_bios->tail->bi_next = bio;
8b712842 4274
ffbd517d
CM
4275 pending_bios->tail = bio;
4276 if (!pending_bios->head)
4277 pending_bios->head = bio;
8b712842
CM
4278 if (device->running_pending)
4279 should_queue = 0;
4280
4281 spin_unlock(&device->io_lock);
4282
4283 if (should_queue)
1cc127b5
CM
4284 btrfs_queue_worker(&root->fs_info->submit_workers,
4285 &device->work);
8b712842
CM
4286}
4287
de1ee92a
JB
4288static int bio_size_ok(struct block_device *bdev, struct bio *bio,
4289 sector_t sector)
4290{
4291 struct bio_vec *prev;
4292 struct request_queue *q = bdev_get_queue(bdev);
4293 unsigned short max_sectors = queue_max_sectors(q);
4294 struct bvec_merge_data bvm = {
4295 .bi_bdev = bdev,
4296 .bi_sector = sector,
4297 .bi_rw = bio->bi_rw,
4298 };
4299
4300 if (bio->bi_vcnt == 0) {
4301 WARN_ON(1);
4302 return 1;
4303 }
4304
4305 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
4306 if ((bio->bi_size >> 9) > max_sectors)
4307 return 0;
4308
4309 if (!q->merge_bvec_fn)
4310 return 1;
4311
4312 bvm.bi_size = bio->bi_size - prev->bv_len;
4313 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
4314 return 0;
4315 return 1;
4316}
4317
4318static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
4319 struct bio *bio, u64 physical, int dev_nr,
4320 int rw, int async)
4321{
4322 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
4323
4324 bio->bi_private = bbio;
4325 bio->bi_private = merge_stripe_index_into_bio_private(
4326 bio->bi_private, (unsigned int)dev_nr);
4327 bio->bi_end_io = btrfs_end_bio;
4328 bio->bi_sector = physical >> 9;
4329#ifdef DEBUG
4330 {
4331 struct rcu_string *name;
4332
4333 rcu_read_lock();
4334 name = rcu_dereference(dev->name);
d1423248 4335 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
4336 "(%s id %llu), size=%u\n", rw,
4337 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4338 name->str, dev->devid, bio->bi_size);
4339 rcu_read_unlock();
4340 }
4341#endif
4342 bio->bi_bdev = dev->bdev;
4343 if (async)
4344 schedule_bio(root, dev, rw, bio);
4345 else
4346 btrfsic_submit_bio(rw, bio);
4347}
4348
4349static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
4350 struct bio *first_bio, struct btrfs_device *dev,
4351 int dev_nr, int rw, int async)
4352{
4353 struct bio_vec *bvec = first_bio->bi_io_vec;
4354 struct bio *bio;
4355 int nr_vecs = bio_get_nr_vecs(dev->bdev);
4356 u64 physical = bbio->stripes[dev_nr].physical;
4357
4358again:
4359 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
4360 if (!bio)
4361 return -ENOMEM;
4362
4363 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
4364 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
4365 bvec->bv_offset) < bvec->bv_len) {
4366 u64 len = bio->bi_size;
4367
4368 atomic_inc(&bbio->stripes_pending);
4369 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
4370 rw, async);
4371 physical += len;
4372 goto again;
4373 }
4374 bvec++;
4375 }
4376
4377 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
4378 return 0;
4379}
4380
4381static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
4382{
4383 atomic_inc(&bbio->error);
4384 if (atomic_dec_and_test(&bbio->stripes_pending)) {
4385 bio->bi_private = bbio->private;
4386 bio->bi_end_io = bbio->end_io;
4387 bio->bi_bdev = (struct block_device *)
4388 (unsigned long)bbio->mirror_num;
4389 bio->bi_sector = logical >> 9;
4390 kfree(bbio);
4391 bio_endio(bio, -EIO);
4392 }
4393}
4394
f188591e 4395int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 4396 int mirror_num, int async_submit)
0b86a832 4397{
0b86a832 4398 struct btrfs_device *dev;
8790d502 4399 struct bio *first_bio = bio;
a62b9401 4400 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
4401 u64 length = 0;
4402 u64 map_length;
0b86a832 4403 int ret;
8790d502
CM
4404 int dev_nr = 0;
4405 int total_devs = 1;
a1d3c478 4406 struct btrfs_bio *bbio = NULL;
0b86a832 4407
f2d8d74d 4408 length = bio->bi_size;
0b86a832 4409 map_length = length;
cea9e445 4410
3ec706c8 4411 ret = btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
f188591e 4412 mirror_num);
79787eaa
JM
4413 if (ret) /* -ENOMEM */
4414 return ret;
cea9e445 4415
a1d3c478 4416 total_devs = bbio->num_stripes;
cea9e445 4417 if (map_length < length) {
48940662 4418 printk(KERN_CRIT "btrfs: mapping failed logical %llu bio len %llu "
d397712b
CM
4419 "len %llu\n", (unsigned long long)logical,
4420 (unsigned long long)length,
4421 (unsigned long long)map_length);
cea9e445
CM
4422 BUG();
4423 }
a1d3c478
JS
4424
4425 bbio->orig_bio = first_bio;
4426 bbio->private = first_bio->bi_private;
4427 bbio->end_io = first_bio->bi_end_io;
4428 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 4429
d397712b 4430 while (dev_nr < total_devs) {
de1ee92a
JB
4431 dev = bbio->stripes[dev_nr].dev;
4432 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
4433 bbio_error(bbio, first_bio, logical);
4434 dev_nr++;
4435 continue;
4436 }
4437
4438 /*
4439 * Check and see if we're ok with this bio based on it's size
4440 * and offset with the given device.
4441 */
4442 if (!bio_size_ok(dev->bdev, first_bio,
4443 bbio->stripes[dev_nr].physical >> 9)) {
4444 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
4445 dev_nr, rw, async_submit);
4446 BUG_ON(ret);
4447 dev_nr++;
4448 continue;
4449 }
4450
a1d3c478
JS
4451 if (dev_nr < total_devs - 1) {
4452 bio = bio_clone(first_bio, GFP_NOFS);
79787eaa 4453 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
4454 } else {
4455 bio = first_bio;
8790d502 4456 }
de1ee92a
JB
4457
4458 submit_stripe_bio(root, bbio, bio,
4459 bbio->stripes[dev_nr].physical, dev_nr, rw,
4460 async_submit);
8790d502
CM
4461 dev_nr++;
4462 }
0b86a832
CM
4463 return 0;
4464}
4465
a443755f 4466struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 4467 u8 *uuid, u8 *fsid)
0b86a832 4468{
2b82032c
YZ
4469 struct btrfs_device *device;
4470 struct btrfs_fs_devices *cur_devices;
4471
4472 cur_devices = root->fs_info->fs_devices;
4473 while (cur_devices) {
4474 if (!fsid ||
4475 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4476 device = __find_device(&cur_devices->devices,
4477 devid, uuid);
4478 if (device)
4479 return device;
4480 }
4481 cur_devices = cur_devices->seed;
4482 }
4483 return NULL;
0b86a832
CM
4484}
4485
dfe25020
CM
4486static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4487 u64 devid, u8 *dev_uuid)
4488{
4489 struct btrfs_device *device;
4490 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4491
4492 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 4493 if (!device)
4494 return NULL;
dfe25020
CM
4495 list_add(&device->dev_list,
4496 &fs_devices->devices);
dfe25020
CM
4497 device->dev_root = root->fs_info->dev_root;
4498 device->devid = devid;
8b712842 4499 device->work.func = pending_bios_fn;
e4404d6e 4500 device->fs_devices = fs_devices;
cd02dca5 4501 device->missing = 1;
dfe25020 4502 fs_devices->num_devices++;
cd02dca5 4503 fs_devices->missing_devices++;
dfe25020 4504 spin_lock_init(&device->io_lock);
d20f7043 4505 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
4506 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4507 return device;
4508}
4509
0b86a832
CM
4510static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4511 struct extent_buffer *leaf,
4512 struct btrfs_chunk *chunk)
4513{
4514 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4515 struct map_lookup *map;
4516 struct extent_map *em;
4517 u64 logical;
4518 u64 length;
4519 u64 devid;
a443755f 4520 u8 uuid[BTRFS_UUID_SIZE];
593060d7 4521 int num_stripes;
0b86a832 4522 int ret;
593060d7 4523 int i;
0b86a832 4524
e17cade2
CM
4525 logical = key->offset;
4526 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 4527
890871be 4528 read_lock(&map_tree->map_tree.lock);
0b86a832 4529 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 4530 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
4531
4532 /* already mapped? */
4533 if (em && em->start <= logical && em->start + em->len > logical) {
4534 free_extent_map(em);
0b86a832
CM
4535 return 0;
4536 } else if (em) {
4537 free_extent_map(em);
4538 }
0b86a832 4539
172ddd60 4540 em = alloc_extent_map();
0b86a832
CM
4541 if (!em)
4542 return -ENOMEM;
593060d7
CM
4543 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4544 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
4545 if (!map) {
4546 free_extent_map(em);
4547 return -ENOMEM;
4548 }
4549
4550 em->bdev = (struct block_device *)map;
4551 em->start = logical;
4552 em->len = length;
4553 em->block_start = 0;
c8b97818 4554 em->block_len = em->len;
0b86a832 4555
593060d7
CM
4556 map->num_stripes = num_stripes;
4557 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4558 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4559 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4560 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4561 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 4562 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
4563 for (i = 0; i < num_stripes; i++) {
4564 map->stripes[i].physical =
4565 btrfs_stripe_offset_nr(leaf, chunk, i);
4566 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
4567 read_extent_buffer(leaf, uuid, (unsigned long)
4568 btrfs_stripe_dev_uuid_nr(chunk, i),
4569 BTRFS_UUID_SIZE);
2b82032c
YZ
4570 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4571 NULL);
dfe25020 4572 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
4573 kfree(map);
4574 free_extent_map(em);
4575 return -EIO;
4576 }
dfe25020
CM
4577 if (!map->stripes[i].dev) {
4578 map->stripes[i].dev =
4579 add_missing_dev(root, devid, uuid);
4580 if (!map->stripes[i].dev) {
4581 kfree(map);
4582 free_extent_map(em);
4583 return -EIO;
4584 }
4585 }
4586 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
4587 }
4588
890871be 4589 write_lock(&map_tree->map_tree.lock);
0b86a832 4590 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 4591 write_unlock(&map_tree->map_tree.lock);
79787eaa 4592 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
4593 free_extent_map(em);
4594
4595 return 0;
4596}
4597
143bede5 4598static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
4599 struct btrfs_dev_item *dev_item,
4600 struct btrfs_device *device)
4601{
4602 unsigned long ptr;
0b86a832
CM
4603
4604 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
4605 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4606 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
4607 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4608 device->type = btrfs_device_type(leaf, dev_item);
4609 device->io_align = btrfs_device_io_align(leaf, dev_item);
4610 device->io_width = btrfs_device_io_width(leaf, dev_item);
4611 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
4612
4613 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 4614 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
4615}
4616
2b82032c
YZ
4617static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4618{
4619 struct btrfs_fs_devices *fs_devices;
4620 int ret;
4621
b367e47f 4622 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
4623
4624 fs_devices = root->fs_info->fs_devices->seed;
4625 while (fs_devices) {
4626 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4627 ret = 0;
4628 goto out;
4629 }
4630 fs_devices = fs_devices->seed;
4631 }
4632
4633 fs_devices = find_fsid(fsid);
4634 if (!fs_devices) {
4635 ret = -ENOENT;
4636 goto out;
4637 }
e4404d6e
YZ
4638
4639 fs_devices = clone_fs_devices(fs_devices);
4640 if (IS_ERR(fs_devices)) {
4641 ret = PTR_ERR(fs_devices);
2b82032c
YZ
4642 goto out;
4643 }
4644
97288f2c 4645 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 4646 root->fs_info->bdev_holder);
48d28232
JL
4647 if (ret) {
4648 free_fs_devices(fs_devices);
2b82032c 4649 goto out;
48d28232 4650 }
2b82032c
YZ
4651
4652 if (!fs_devices->seeding) {
4653 __btrfs_close_devices(fs_devices);
e4404d6e 4654 free_fs_devices(fs_devices);
2b82032c
YZ
4655 ret = -EINVAL;
4656 goto out;
4657 }
4658
4659 fs_devices->seed = root->fs_info->fs_devices->seed;
4660 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 4661out:
2b82032c
YZ
4662 return ret;
4663}
4664
0d81ba5d 4665static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
4666 struct extent_buffer *leaf,
4667 struct btrfs_dev_item *dev_item)
4668{
4669 struct btrfs_device *device;
4670 u64 devid;
4671 int ret;
2b82032c 4672 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
4673 u8 dev_uuid[BTRFS_UUID_SIZE];
4674
0b86a832 4675 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
4676 read_extent_buffer(leaf, dev_uuid,
4677 (unsigned long)btrfs_device_uuid(dev_item),
4678 BTRFS_UUID_SIZE);
2b82032c
YZ
4679 read_extent_buffer(leaf, fs_uuid,
4680 (unsigned long)btrfs_device_fsid(dev_item),
4681 BTRFS_UUID_SIZE);
4682
4683 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4684 ret = open_seed_devices(root, fs_uuid);
e4404d6e 4685 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 4686 return ret;
2b82032c
YZ
4687 }
4688
4689 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4690 if (!device || !device->bdev) {
e4404d6e 4691 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
4692 return -EIO;
4693
4694 if (!device) {
d397712b
CM
4695 printk(KERN_WARNING "warning devid %llu missing\n",
4696 (unsigned long long)devid);
2b82032c
YZ
4697 device = add_missing_dev(root, devid, dev_uuid);
4698 if (!device)
4699 return -ENOMEM;
cd02dca5
CM
4700 } else if (!device->missing) {
4701 /*
4702 * this happens when a device that was properly setup
4703 * in the device info lists suddenly goes bad.
4704 * device->bdev is NULL, and so we have to set
4705 * device->missing to one here
4706 */
4707 root->fs_info->fs_devices->missing_devices++;
4708 device->missing = 1;
2b82032c
YZ
4709 }
4710 }
4711
4712 if (device->fs_devices != root->fs_info->fs_devices) {
4713 BUG_ON(device->writeable);
4714 if (device->generation !=
4715 btrfs_device_generation(leaf, dev_item))
4716 return -EINVAL;
6324fbf3 4717 }
0b86a832
CM
4718
4719 fill_device_from_item(leaf, dev_item, device);
4720 device->dev_root = root->fs_info->dev_root;
dfe25020 4721 device->in_fs_metadata = 1;
2bf64758 4722 if (device->writeable) {
2b82032c 4723 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
4724 spin_lock(&root->fs_info->free_chunk_lock);
4725 root->fs_info->free_chunk_space += device->total_bytes -
4726 device->bytes_used;
4727 spin_unlock(&root->fs_info->free_chunk_lock);
4728 }
0b86a832 4729 ret = 0;
0b86a832
CM
4730 return ret;
4731}
4732
e4404d6e 4733int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 4734{
6c41761f 4735 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 4736 struct extent_buffer *sb;
0b86a832 4737 struct btrfs_disk_key *disk_key;
0b86a832 4738 struct btrfs_chunk *chunk;
84eed90f
CM
4739 u8 *ptr;
4740 unsigned long sb_ptr;
4741 int ret = 0;
0b86a832
CM
4742 u32 num_stripes;
4743 u32 array_size;
4744 u32 len = 0;
0b86a832 4745 u32 cur;
84eed90f 4746 struct btrfs_key key;
0b86a832 4747
e4404d6e 4748 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
4749 BTRFS_SUPER_INFO_SIZE);
4750 if (!sb)
4751 return -ENOMEM;
4752 btrfs_set_buffer_uptodate(sb);
85d4e461 4753 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
4754 /*
4755 * The sb extent buffer is artifical and just used to read the system array.
4756 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4757 * pages up-to-date when the page is larger: extent does not cover the
4758 * whole page and consequently check_page_uptodate does not find all
4759 * the page's extents up-to-date (the hole beyond sb),
4760 * write_extent_buffer then triggers a WARN_ON.
4761 *
4762 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4763 * but sb spans only this function. Add an explicit SetPageUptodate call
4764 * to silence the warning eg. on PowerPC 64.
4765 */
4766 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 4767 SetPageUptodate(sb->pages[0]);
4008c04a 4768
a061fc8d 4769 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
4770 array_size = btrfs_super_sys_array_size(super_copy);
4771
0b86a832
CM
4772 ptr = super_copy->sys_chunk_array;
4773 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4774 cur = 0;
4775
4776 while (cur < array_size) {
4777 disk_key = (struct btrfs_disk_key *)ptr;
4778 btrfs_disk_key_to_cpu(&key, disk_key);
4779
a061fc8d 4780 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
4781 sb_ptr += len;
4782 cur += len;
4783
0d81ba5d 4784 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 4785 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 4786 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
4787 if (ret)
4788 break;
0b86a832
CM
4789 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4790 len = btrfs_chunk_item_size(num_stripes);
4791 } else {
84eed90f
CM
4792 ret = -EIO;
4793 break;
0b86a832
CM
4794 }
4795 ptr += len;
4796 sb_ptr += len;
4797 cur += len;
4798 }
a061fc8d 4799 free_extent_buffer(sb);
84eed90f 4800 return ret;
0b86a832
CM
4801}
4802
4803int btrfs_read_chunk_tree(struct btrfs_root *root)
4804{
4805 struct btrfs_path *path;
4806 struct extent_buffer *leaf;
4807 struct btrfs_key key;
4808 struct btrfs_key found_key;
4809 int ret;
4810 int slot;
4811
4812 root = root->fs_info->chunk_root;
4813
4814 path = btrfs_alloc_path();
4815 if (!path)
4816 return -ENOMEM;
4817
b367e47f
LZ
4818 mutex_lock(&uuid_mutex);
4819 lock_chunks(root);
4820
0b86a832
CM
4821 /* first we search for all of the device items, and then we
4822 * read in all of the chunk items. This way we can create chunk
4823 * mappings that reference all of the devices that are afound
4824 */
4825 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4826 key.offset = 0;
4827 key.type = 0;
4828again:
4829 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
4830 if (ret < 0)
4831 goto error;
d397712b 4832 while (1) {
0b86a832
CM
4833 leaf = path->nodes[0];
4834 slot = path->slots[0];
4835 if (slot >= btrfs_header_nritems(leaf)) {
4836 ret = btrfs_next_leaf(root, path);
4837 if (ret == 0)
4838 continue;
4839 if (ret < 0)
4840 goto error;
4841 break;
4842 }
4843 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4844 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4845 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4846 break;
4847 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4848 struct btrfs_dev_item *dev_item;
4849 dev_item = btrfs_item_ptr(leaf, slot,
4850 struct btrfs_dev_item);
0d81ba5d 4851 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
4852 if (ret)
4853 goto error;
0b86a832
CM
4854 }
4855 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4856 struct btrfs_chunk *chunk;
4857 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4858 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
4859 if (ret)
4860 goto error;
0b86a832
CM
4861 }
4862 path->slots[0]++;
4863 }
4864 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4865 key.objectid = 0;
b3b4aa74 4866 btrfs_release_path(path);
0b86a832
CM
4867 goto again;
4868 }
0b86a832
CM
4869 ret = 0;
4870error:
b367e47f
LZ
4871 unlock_chunks(root);
4872 mutex_unlock(&uuid_mutex);
4873
2b82032c 4874 btrfs_free_path(path);
0b86a832
CM
4875 return ret;
4876}
442a4f63 4877
733f4fbb
SB
4878static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4879{
4880 int i;
4881
4882 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4883 btrfs_dev_stat_reset(dev, i);
4884}
4885
4886int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4887{
4888 struct btrfs_key key;
4889 struct btrfs_key found_key;
4890 struct btrfs_root *dev_root = fs_info->dev_root;
4891 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4892 struct extent_buffer *eb;
4893 int slot;
4894 int ret = 0;
4895 struct btrfs_device *device;
4896 struct btrfs_path *path = NULL;
4897 int i;
4898
4899 path = btrfs_alloc_path();
4900 if (!path) {
4901 ret = -ENOMEM;
4902 goto out;
4903 }
4904
4905 mutex_lock(&fs_devices->device_list_mutex);
4906 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4907 int item_size;
4908 struct btrfs_dev_stats_item *ptr;
4909
4910 key.objectid = 0;
4911 key.type = BTRFS_DEV_STATS_KEY;
4912 key.offset = device->devid;
4913 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4914 if (ret) {
733f4fbb
SB
4915 __btrfs_reset_dev_stats(device);
4916 device->dev_stats_valid = 1;
4917 btrfs_release_path(path);
4918 continue;
4919 }
4920 slot = path->slots[0];
4921 eb = path->nodes[0];
4922 btrfs_item_key_to_cpu(eb, &found_key, slot);
4923 item_size = btrfs_item_size_nr(eb, slot);
4924
4925 ptr = btrfs_item_ptr(eb, slot,
4926 struct btrfs_dev_stats_item);
4927
4928 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4929 if (item_size >= (1 + i) * sizeof(__le64))
4930 btrfs_dev_stat_set(device, i,
4931 btrfs_dev_stats_value(eb, ptr, i));
4932 else
4933 btrfs_dev_stat_reset(device, i);
4934 }
4935
4936 device->dev_stats_valid = 1;
4937 btrfs_dev_stat_print_on_load(device);
4938 btrfs_release_path(path);
4939 }
4940 mutex_unlock(&fs_devices->device_list_mutex);
4941
4942out:
4943 btrfs_free_path(path);
4944 return ret < 0 ? ret : 0;
4945}
4946
4947static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4948 struct btrfs_root *dev_root,
4949 struct btrfs_device *device)
4950{
4951 struct btrfs_path *path;
4952 struct btrfs_key key;
4953 struct extent_buffer *eb;
4954 struct btrfs_dev_stats_item *ptr;
4955 int ret;
4956 int i;
4957
4958 key.objectid = 0;
4959 key.type = BTRFS_DEV_STATS_KEY;
4960 key.offset = device->devid;
4961
4962 path = btrfs_alloc_path();
4963 BUG_ON(!path);
4964 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4965 if (ret < 0) {
606686ee
JB
4966 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4967 ret, rcu_str_deref(device->name));
733f4fbb
SB
4968 goto out;
4969 }
4970
4971 if (ret == 0 &&
4972 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4973 /* need to delete old one and insert a new one */
4974 ret = btrfs_del_item(trans, dev_root, path);
4975 if (ret != 0) {
606686ee
JB
4976 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4977 rcu_str_deref(device->name), ret);
733f4fbb
SB
4978 goto out;
4979 }
4980 ret = 1;
4981 }
4982
4983 if (ret == 1) {
4984 /* need to insert a new item */
4985 btrfs_release_path(path);
4986 ret = btrfs_insert_empty_item(trans, dev_root, path,
4987 &key, sizeof(*ptr));
4988 if (ret < 0) {
606686ee
JB
4989 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4990 rcu_str_deref(device->name), ret);
733f4fbb
SB
4991 goto out;
4992 }
4993 }
4994
4995 eb = path->nodes[0];
4996 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4997 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4998 btrfs_set_dev_stats_value(eb, ptr, i,
4999 btrfs_dev_stat_read(device, i));
5000 btrfs_mark_buffer_dirty(eb);
5001
5002out:
5003 btrfs_free_path(path);
5004 return ret;
5005}
5006
5007/*
5008 * called from commit_transaction. Writes all changed device stats to disk.
5009 */
5010int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
5011 struct btrfs_fs_info *fs_info)
5012{
5013 struct btrfs_root *dev_root = fs_info->dev_root;
5014 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
5015 struct btrfs_device *device;
5016 int ret = 0;
5017
5018 mutex_lock(&fs_devices->device_list_mutex);
5019 list_for_each_entry(device, &fs_devices->devices, dev_list) {
5020 if (!device->dev_stats_valid || !device->dev_stats_dirty)
5021 continue;
5022
5023 ret = update_dev_stat_item(trans, dev_root, device);
5024 if (!ret)
5025 device->dev_stats_dirty = 0;
5026 }
5027 mutex_unlock(&fs_devices->device_list_mutex);
5028
5029 return ret;
5030}
5031
442a4f63
SB
5032void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
5033{
5034 btrfs_dev_stat_inc(dev, index);
5035 btrfs_dev_stat_print_on_error(dev);
5036}
5037
5038void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
5039{
733f4fbb
SB
5040 if (!dev->dev_stats_valid)
5041 return;
606686ee 5042 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 5043 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 5044 rcu_str_deref(dev->name),
442a4f63
SB
5045 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5048 btrfs_dev_stat_read(dev,
5049 BTRFS_DEV_STAT_CORRUPTION_ERRS),
5050 btrfs_dev_stat_read(dev,
5051 BTRFS_DEV_STAT_GENERATION_ERRS));
5052}
c11d2c23 5053
733f4fbb
SB
5054static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
5055{
a98cdb85
SB
5056 int i;
5057
5058 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5059 if (btrfs_dev_stat_read(dev, i) != 0)
5060 break;
5061 if (i == BTRFS_DEV_STAT_VALUES_MAX)
5062 return; /* all values == 0, suppress message */
5063
606686ee
JB
5064 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
5065 rcu_str_deref(dev->name),
733f4fbb
SB
5066 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
5067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
5068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
5069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
5070 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
5071}
5072
c11d2c23 5073int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 5074 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
5075{
5076 struct btrfs_device *dev;
5077 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5078 int i;
5079
5080 mutex_lock(&fs_devices->device_list_mutex);
5081 dev = btrfs_find_device(root, stats->devid, NULL, NULL);
5082 mutex_unlock(&fs_devices->device_list_mutex);
5083
5084 if (!dev) {
5085 printk(KERN_WARNING
5086 "btrfs: get dev_stats failed, device not found\n");
5087 return -ENODEV;
733f4fbb
SB
5088 } else if (!dev->dev_stats_valid) {
5089 printk(KERN_WARNING
5090 "btrfs: get dev_stats failed, not yet valid\n");
5091 return -ENODEV;
b27f7c0c 5092 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
5093 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
5094 if (stats->nr_items > i)
5095 stats->values[i] =
5096 btrfs_dev_stat_read_and_reset(dev, i);
5097 else
5098 btrfs_dev_stat_reset(dev, i);
5099 }
5100 } else {
5101 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
5102 if (stats->nr_items > i)
5103 stats->values[i] = btrfs_dev_stat_read(dev, i);
5104 }
5105 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
5106 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
5107 return 0;
5108}