]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/volumes.c
block: add a bi_error field to struct bio
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
67a2c45e 53DEFINE_MUTEX(uuid_mutex);
8a4b83cc 54static LIST_HEAD(fs_uuids);
c73eccf7
AJ
55struct list_head *btrfs_get_fs_uuids(void)
56{
57 return &fs_uuids;
58}
8a4b83cc 59
2208a378
ID
60static struct btrfs_fs_devices *__alloc_fs_devices(void)
61{
62 struct btrfs_fs_devices *fs_devs;
63
64 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
65 if (!fs_devs)
66 return ERR_PTR(-ENOMEM);
67
68 mutex_init(&fs_devs->device_list_mutex);
69
70 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 71 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
72 INIT_LIST_HEAD(&fs_devs->alloc_list);
73 INIT_LIST_HEAD(&fs_devs->list);
74
75 return fs_devs;
76}
77
78/**
79 * alloc_fs_devices - allocate struct btrfs_fs_devices
80 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
81 * generated.
82 *
83 * Return: a pointer to a new &struct btrfs_fs_devices on success;
84 * ERR_PTR() on error. Returned struct is not linked onto any lists and
85 * can be destroyed with kfree() right away.
86 */
87static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
88{
89 struct btrfs_fs_devices *fs_devs;
90
91 fs_devs = __alloc_fs_devices();
92 if (IS_ERR(fs_devs))
93 return fs_devs;
94
95 if (fsid)
96 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
97 else
98 generate_random_uuid(fs_devs->fsid);
99
100 return fs_devs;
101}
102
e4404d6e
YZ
103static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
104{
105 struct btrfs_device *device;
106 WARN_ON(fs_devices->opened);
107 while (!list_empty(&fs_devices->devices)) {
108 device = list_entry(fs_devices->devices.next,
109 struct btrfs_device, dev_list);
110 list_del(&device->dev_list);
606686ee 111 rcu_string_free(device->name);
e4404d6e
YZ
112 kfree(device);
113 }
114 kfree(fs_devices);
115}
116
b8b8ff59
LC
117static void btrfs_kobject_uevent(struct block_device *bdev,
118 enum kobject_action action)
119{
120 int ret;
121
122 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
123 if (ret)
efe120a0 124 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
125 action,
126 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
127 &disk_to_dev(bdev->bd_disk)->kobj);
128}
129
143bede5 130void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
131{
132 struct btrfs_fs_devices *fs_devices;
8a4b83cc 133
2b82032c
YZ
134 while (!list_empty(&fs_uuids)) {
135 fs_devices = list_entry(fs_uuids.next,
136 struct btrfs_fs_devices, list);
137 list_del(&fs_devices->list);
e4404d6e 138 free_fs_devices(fs_devices);
8a4b83cc 139 }
8a4b83cc
CM
140}
141
12bd2fc0
ID
142static struct btrfs_device *__alloc_device(void)
143{
144 struct btrfs_device *dev;
145
146 dev = kzalloc(sizeof(*dev), GFP_NOFS);
147 if (!dev)
148 return ERR_PTR(-ENOMEM);
149
150 INIT_LIST_HEAD(&dev->dev_list);
151 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 152 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
153
154 spin_lock_init(&dev->io_lock);
155
156 spin_lock_init(&dev->reada_lock);
157 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 158 atomic_set(&dev->dev_stats_ccnt, 0);
12bd2fc0
ID
159 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
160 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
161
162 return dev;
163}
164
a1b32a59
CM
165static noinline struct btrfs_device *__find_device(struct list_head *head,
166 u64 devid, u8 *uuid)
8a4b83cc
CM
167{
168 struct btrfs_device *dev;
8a4b83cc 169
c6e30871 170 list_for_each_entry(dev, head, dev_list) {
a443755f 171 if (dev->devid == devid &&
8f18cf13 172 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 173 return dev;
a443755f 174 }
8a4b83cc
CM
175 }
176 return NULL;
177}
178
a1b32a59 179static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 180{
8a4b83cc
CM
181 struct btrfs_fs_devices *fs_devices;
182
c6e30871 183 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
184 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
185 return fs_devices;
186 }
187 return NULL;
188}
189
beaf8ab3
SB
190static int
191btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
192 int flush, struct block_device **bdev,
193 struct buffer_head **bh)
194{
195 int ret;
196
197 *bdev = blkdev_get_by_path(device_path, flags, holder);
198
199 if (IS_ERR(*bdev)) {
200 ret = PTR_ERR(*bdev);
efe120a0 201 printk(KERN_INFO "BTRFS: open %s failed\n", device_path);
beaf8ab3
SB
202 goto error;
203 }
204
205 if (flush)
206 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
207 ret = set_blocksize(*bdev, 4096);
208 if (ret) {
209 blkdev_put(*bdev, flags);
210 goto error;
211 }
212 invalidate_bdev(*bdev);
213 *bh = btrfs_read_dev_super(*bdev);
214 if (!*bh) {
215 ret = -EINVAL;
216 blkdev_put(*bdev, flags);
217 goto error;
218 }
219
220 return 0;
221
222error:
223 *bdev = NULL;
224 *bh = NULL;
225 return ret;
226}
227
ffbd517d
CM
228static void requeue_list(struct btrfs_pending_bios *pending_bios,
229 struct bio *head, struct bio *tail)
230{
231
232 struct bio *old_head;
233
234 old_head = pending_bios->head;
235 pending_bios->head = head;
236 if (pending_bios->tail)
237 tail->bi_next = old_head;
238 else
239 pending_bios->tail = tail;
240}
241
8b712842
CM
242/*
243 * we try to collect pending bios for a device so we don't get a large
244 * number of procs sending bios down to the same device. This greatly
245 * improves the schedulers ability to collect and merge the bios.
246 *
247 * But, it also turns into a long list of bios to process and that is sure
248 * to eventually make the worker thread block. The solution here is to
249 * make some progress and then put this work struct back at the end of
250 * the list if the block device is congested. This way, multiple devices
251 * can make progress from a single worker thread.
252 */
143bede5 253static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
254{
255 struct bio *pending;
256 struct backing_dev_info *bdi;
b64a2851 257 struct btrfs_fs_info *fs_info;
ffbd517d 258 struct btrfs_pending_bios *pending_bios;
8b712842
CM
259 struct bio *tail;
260 struct bio *cur;
261 int again = 0;
ffbd517d 262 unsigned long num_run;
d644d8a1 263 unsigned long batch_run = 0;
b64a2851 264 unsigned long limit;
b765ead5 265 unsigned long last_waited = 0;
d84275c9 266 int force_reg = 0;
0e588859 267 int sync_pending = 0;
211588ad
CM
268 struct blk_plug plug;
269
270 /*
271 * this function runs all the bios we've collected for
272 * a particular device. We don't want to wander off to
273 * another device without first sending all of these down.
274 * So, setup a plug here and finish it off before we return
275 */
276 blk_start_plug(&plug);
8b712842 277
bedf762b 278 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
279 fs_info = device->dev_root->fs_info;
280 limit = btrfs_async_submit_limit(fs_info);
281 limit = limit * 2 / 3;
282
8b712842
CM
283loop:
284 spin_lock(&device->io_lock);
285
a6837051 286loop_lock:
d84275c9 287 num_run = 0;
ffbd517d 288
8b712842
CM
289 /* take all the bios off the list at once and process them
290 * later on (without the lock held). But, remember the
291 * tail and other pointers so the bios can be properly reinserted
292 * into the list if we hit congestion
293 */
d84275c9 294 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 295 pending_bios = &device->pending_sync_bios;
d84275c9
CM
296 force_reg = 1;
297 } else {
ffbd517d 298 pending_bios = &device->pending_bios;
d84275c9
CM
299 force_reg = 0;
300 }
ffbd517d
CM
301
302 pending = pending_bios->head;
303 tail = pending_bios->tail;
8b712842 304 WARN_ON(pending && !tail);
8b712842
CM
305
306 /*
307 * if pending was null this time around, no bios need processing
308 * at all and we can stop. Otherwise it'll loop back up again
309 * and do an additional check so no bios are missed.
310 *
311 * device->running_pending is used to synchronize with the
312 * schedule_bio code.
313 */
ffbd517d
CM
314 if (device->pending_sync_bios.head == NULL &&
315 device->pending_bios.head == NULL) {
8b712842
CM
316 again = 0;
317 device->running_pending = 0;
ffbd517d
CM
318 } else {
319 again = 1;
320 device->running_pending = 1;
8b712842 321 }
ffbd517d
CM
322
323 pending_bios->head = NULL;
324 pending_bios->tail = NULL;
325
8b712842
CM
326 spin_unlock(&device->io_lock);
327
d397712b 328 while (pending) {
ffbd517d
CM
329
330 rmb();
d84275c9
CM
331 /* we want to work on both lists, but do more bios on the
332 * sync list than the regular list
333 */
334 if ((num_run > 32 &&
335 pending_bios != &device->pending_sync_bios &&
336 device->pending_sync_bios.head) ||
337 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
338 device->pending_bios.head)) {
ffbd517d
CM
339 spin_lock(&device->io_lock);
340 requeue_list(pending_bios, pending, tail);
341 goto loop_lock;
342 }
343
8b712842
CM
344 cur = pending;
345 pending = pending->bi_next;
346 cur->bi_next = NULL;
b64a2851 347
66657b31 348 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
349 waitqueue_active(&fs_info->async_submit_wait))
350 wake_up(&fs_info->async_submit_wait);
492bb6de 351
dac56212 352 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 353
2ab1ba68
CM
354 /*
355 * if we're doing the sync list, record that our
356 * plug has some sync requests on it
357 *
358 * If we're doing the regular list and there are
359 * sync requests sitting around, unplug before
360 * we add more
361 */
362 if (pending_bios == &device->pending_sync_bios) {
363 sync_pending = 1;
364 } else if (sync_pending) {
365 blk_finish_plug(&plug);
366 blk_start_plug(&plug);
367 sync_pending = 0;
368 }
369
21adbd5c 370 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
371 num_run++;
372 batch_run++;
853d8ec4
DS
373
374 cond_resched();
8b712842
CM
375
376 /*
377 * we made progress, there is more work to do and the bdi
378 * is now congested. Back off and let other work structs
379 * run instead
380 */
57fd5a5f 381 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 382 fs_info->fs_devices->open_devices > 1) {
b765ead5 383 struct io_context *ioc;
8b712842 384
b765ead5
CM
385 ioc = current->io_context;
386
387 /*
388 * the main goal here is that we don't want to
389 * block if we're going to be able to submit
390 * more requests without blocking.
391 *
392 * This code does two great things, it pokes into
393 * the elevator code from a filesystem _and_
394 * it makes assumptions about how batching works.
395 */
396 if (ioc && ioc->nr_batch_requests > 0 &&
397 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
398 (last_waited == 0 ||
399 ioc->last_waited == last_waited)) {
400 /*
401 * we want to go through our batch of
402 * requests and stop. So, we copy out
403 * the ioc->last_waited time and test
404 * against it before looping
405 */
406 last_waited = ioc->last_waited;
853d8ec4 407 cond_resched();
b765ead5
CM
408 continue;
409 }
8b712842 410 spin_lock(&device->io_lock);
ffbd517d 411 requeue_list(pending_bios, pending, tail);
a6837051 412 device->running_pending = 1;
8b712842
CM
413
414 spin_unlock(&device->io_lock);
a8c93d4e
QW
415 btrfs_queue_work(fs_info->submit_workers,
416 &device->work);
8b712842
CM
417 goto done;
418 }
d85c8a6f
CM
419 /* unplug every 64 requests just for good measure */
420 if (batch_run % 64 == 0) {
421 blk_finish_plug(&plug);
422 blk_start_plug(&plug);
423 sync_pending = 0;
424 }
8b712842 425 }
ffbd517d 426
51684082
CM
427 cond_resched();
428 if (again)
429 goto loop;
430
431 spin_lock(&device->io_lock);
432 if (device->pending_bios.head || device->pending_sync_bios.head)
433 goto loop_lock;
434 spin_unlock(&device->io_lock);
435
8b712842 436done:
211588ad 437 blk_finish_plug(&plug);
8b712842
CM
438}
439
b2950863 440static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
441{
442 struct btrfs_device *device;
443
444 device = container_of(work, struct btrfs_device, work);
445 run_scheduled_bios(device);
446}
447
4fde46f0
AJ
448
449void btrfs_free_stale_device(struct btrfs_device *cur_dev)
450{
451 struct btrfs_fs_devices *fs_devs;
452 struct btrfs_device *dev;
453
454 if (!cur_dev->name)
455 return;
456
457 list_for_each_entry(fs_devs, &fs_uuids, list) {
458 int del = 1;
459
460 if (fs_devs->opened)
461 continue;
462 if (fs_devs->seeding)
463 continue;
464
465 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
466
467 if (dev == cur_dev)
468 continue;
469 if (!dev->name)
470 continue;
471
472 /*
473 * Todo: This won't be enough. What if the same device
474 * comes back (with new uuid and) with its mapper path?
475 * But for now, this does help as mostly an admin will
476 * either use mapper or non mapper path throughout.
477 */
478 rcu_read_lock();
479 del = strcmp(rcu_str_deref(dev->name),
480 rcu_str_deref(cur_dev->name));
481 rcu_read_unlock();
482 if (!del)
483 break;
484 }
485
486 if (!del) {
487 /* delete the stale device */
488 if (fs_devs->num_devices == 1) {
489 btrfs_sysfs_remove_fsid(fs_devs);
490 list_del(&fs_devs->list);
491 free_fs_devices(fs_devs);
492 } else {
493 fs_devs->num_devices--;
494 list_del(&dev->dev_list);
495 rcu_string_free(dev->name);
496 kfree(dev);
497 }
498 break;
499 }
500 }
501}
502
60999ca4
DS
503/*
504 * Add new device to list of registered devices
505 *
506 * Returns:
507 * 1 - first time device is seen
508 * 0 - device already known
509 * < 0 - error
510 */
a1b32a59 511static noinline int device_list_add(const char *path,
8a4b83cc
CM
512 struct btrfs_super_block *disk_super,
513 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
514{
515 struct btrfs_device *device;
516 struct btrfs_fs_devices *fs_devices;
606686ee 517 struct rcu_string *name;
60999ca4 518 int ret = 0;
8a4b83cc
CM
519 u64 found_transid = btrfs_super_generation(disk_super);
520
521 fs_devices = find_fsid(disk_super->fsid);
522 if (!fs_devices) {
2208a378
ID
523 fs_devices = alloc_fs_devices(disk_super->fsid);
524 if (IS_ERR(fs_devices))
525 return PTR_ERR(fs_devices);
526
8a4b83cc 527 list_add(&fs_devices->list, &fs_uuids);
2208a378 528
8a4b83cc
CM
529 device = NULL;
530 } else {
a443755f
CM
531 device = __find_device(&fs_devices->devices, devid,
532 disk_super->dev_item.uuid);
8a4b83cc 533 }
443f24fe 534
8a4b83cc 535 if (!device) {
2b82032c
YZ
536 if (fs_devices->opened)
537 return -EBUSY;
538
12bd2fc0
ID
539 device = btrfs_alloc_device(NULL, &devid,
540 disk_super->dev_item.uuid);
541 if (IS_ERR(device)) {
8a4b83cc 542 /* we can safely leave the fs_devices entry around */
12bd2fc0 543 return PTR_ERR(device);
8a4b83cc 544 }
606686ee
JB
545
546 name = rcu_string_strdup(path, GFP_NOFS);
547 if (!name) {
8a4b83cc
CM
548 kfree(device);
549 return -ENOMEM;
550 }
606686ee 551 rcu_assign_pointer(device->name, name);
90519d66 552
e5e9a520 553 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 554 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 555 fs_devices->num_devices++;
e5e9a520
CM
556 mutex_unlock(&fs_devices->device_list_mutex);
557
60999ca4 558 ret = 1;
2b82032c 559 device->fs_devices = fs_devices;
606686ee 560 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
561 /*
562 * When FS is already mounted.
563 * 1. If you are here and if the device->name is NULL that
564 * means this device was missing at time of FS mount.
565 * 2. If you are here and if the device->name is different
566 * from 'path' that means either
567 * a. The same device disappeared and reappeared with
568 * different name. or
569 * b. The missing-disk-which-was-replaced, has
570 * reappeared now.
571 *
572 * We must allow 1 and 2a above. But 2b would be a spurious
573 * and unintentional.
574 *
575 * Further in case of 1 and 2a above, the disk at 'path'
576 * would have missed some transaction when it was away and
577 * in case of 2a the stale bdev has to be updated as well.
578 * 2b must not be allowed at all time.
579 */
580
581 /*
0f23ae74
CM
582 * For now, we do allow update to btrfs_fs_device through the
583 * btrfs dev scan cli after FS has been mounted. We're still
584 * tracking a problem where systems fail mount by subvolume id
585 * when we reject replacement on a mounted FS.
b96de000 586 */
0f23ae74 587 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
588 /*
589 * That is if the FS is _not_ mounted and if you
590 * are here, that means there is more than one
591 * disk with same uuid and devid.We keep the one
592 * with larger generation number or the last-in if
593 * generation are equal.
594 */
0f23ae74 595 return -EEXIST;
77bdae4d 596 }
b96de000 597
606686ee 598 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
599 if (!name)
600 return -ENOMEM;
606686ee
JB
601 rcu_string_free(device->name);
602 rcu_assign_pointer(device->name, name);
cd02dca5
CM
603 if (device->missing) {
604 fs_devices->missing_devices--;
605 device->missing = 0;
606 }
8a4b83cc
CM
607 }
608
77bdae4d
AJ
609 /*
610 * Unmount does not free the btrfs_device struct but would zero
611 * generation along with most of the other members. So just update
612 * it back. We need it to pick the disk with largest generation
613 * (as above).
614 */
615 if (!fs_devices->opened)
616 device->generation = found_transid;
617
4fde46f0
AJ
618 /*
619 * if there is new btrfs on an already registered device,
620 * then remove the stale device entry.
621 */
622 btrfs_free_stale_device(device);
623
8a4b83cc 624 *fs_devices_ret = fs_devices;
60999ca4
DS
625
626 return ret;
8a4b83cc
CM
627}
628
e4404d6e
YZ
629static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
630{
631 struct btrfs_fs_devices *fs_devices;
632 struct btrfs_device *device;
633 struct btrfs_device *orig_dev;
634
2208a378
ID
635 fs_devices = alloc_fs_devices(orig->fsid);
636 if (IS_ERR(fs_devices))
637 return fs_devices;
e4404d6e 638
adbbb863 639 mutex_lock(&orig->device_list_mutex);
02db0844 640 fs_devices->total_devices = orig->total_devices;
e4404d6e 641
46224705 642 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 643 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
644 struct rcu_string *name;
645
12bd2fc0
ID
646 device = btrfs_alloc_device(NULL, &orig_dev->devid,
647 orig_dev->uuid);
648 if (IS_ERR(device))
e4404d6e
YZ
649 goto error;
650
606686ee
JB
651 /*
652 * This is ok to do without rcu read locked because we hold the
653 * uuid mutex so nothing we touch in here is going to disappear.
654 */
e755f780
AJ
655 if (orig_dev->name) {
656 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
657 if (!name) {
658 kfree(device);
659 goto error;
660 }
661 rcu_assign_pointer(device->name, name);
fd2696f3 662 }
e4404d6e 663
e4404d6e
YZ
664 list_add(&device->dev_list, &fs_devices->devices);
665 device->fs_devices = fs_devices;
666 fs_devices->num_devices++;
667 }
adbbb863 668 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
669 return fs_devices;
670error:
adbbb863 671 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
672 free_fs_devices(fs_devices);
673 return ERR_PTR(-ENOMEM);
674}
675
9eaed21e 676void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 677{
c6e30871 678 struct btrfs_device *device, *next;
443f24fe 679 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 680
dfe25020
CM
681 mutex_lock(&uuid_mutex);
682again:
46224705 683 /* This is the initialized path, it is safe to release the devices. */
c6e30871 684 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 685 if (device->in_fs_metadata) {
63a212ab 686 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
687 (!latest_dev ||
688 device->generation > latest_dev->generation)) {
689 latest_dev = device;
a6b0d5c8 690 }
2b82032c 691 continue;
a6b0d5c8 692 }
2b82032c 693
8dabb742
SB
694 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
695 /*
696 * In the first step, keep the device which has
697 * the correct fsid and the devid that is used
698 * for the dev_replace procedure.
699 * In the second step, the dev_replace state is
700 * read from the device tree and it is known
701 * whether the procedure is really active or
702 * not, which means whether this device is
703 * used or whether it should be removed.
704 */
705 if (step == 0 || device->is_tgtdev_for_dev_replace) {
706 continue;
707 }
708 }
2b82032c 709 if (device->bdev) {
d4d77629 710 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
711 device->bdev = NULL;
712 fs_devices->open_devices--;
713 }
714 if (device->writeable) {
715 list_del_init(&device->dev_alloc_list);
716 device->writeable = 0;
8dabb742
SB
717 if (!device->is_tgtdev_for_dev_replace)
718 fs_devices->rw_devices--;
2b82032c 719 }
e4404d6e
YZ
720 list_del_init(&device->dev_list);
721 fs_devices->num_devices--;
606686ee 722 rcu_string_free(device->name);
e4404d6e 723 kfree(device);
dfe25020 724 }
2b82032c
YZ
725
726 if (fs_devices->seed) {
727 fs_devices = fs_devices->seed;
2b82032c
YZ
728 goto again;
729 }
730
443f24fe 731 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 732
dfe25020 733 mutex_unlock(&uuid_mutex);
dfe25020 734}
a0af469b 735
1f78160c
XG
736static void __free_device(struct work_struct *work)
737{
738 struct btrfs_device *device;
739
740 device = container_of(work, struct btrfs_device, rcu_work);
741
742 if (device->bdev)
743 blkdev_put(device->bdev, device->mode);
744
606686ee 745 rcu_string_free(device->name);
1f78160c
XG
746 kfree(device);
747}
748
749static void free_device(struct rcu_head *head)
750{
751 struct btrfs_device *device;
752
753 device = container_of(head, struct btrfs_device, rcu);
754
755 INIT_WORK(&device->rcu_work, __free_device);
756 schedule_work(&device->rcu_work);
757}
758
2b82032c 759static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 760{
2037a093 761 struct btrfs_device *device, *tmp;
e4404d6e 762
2b82032c
YZ
763 if (--fs_devices->opened > 0)
764 return 0;
8a4b83cc 765
c9513edb 766 mutex_lock(&fs_devices->device_list_mutex);
2037a093 767 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1f78160c 768 struct btrfs_device *new_device;
606686ee 769 struct rcu_string *name;
1f78160c
XG
770
771 if (device->bdev)
a0af469b 772 fs_devices->open_devices--;
1f78160c 773
f747cab7
ID
774 if (device->writeable &&
775 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
776 list_del_init(&device->dev_alloc_list);
777 fs_devices->rw_devices--;
778 }
779
726551eb
JB
780 if (device->missing)
781 fs_devices->missing_devices--;
d5e2003c 782
a1e8780a
ID
783 new_device = btrfs_alloc_device(NULL, &device->devid,
784 device->uuid);
785 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
786
787 /* Safe because we are under uuid_mutex */
99f5944b
JB
788 if (device->name) {
789 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 790 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
791 rcu_assign_pointer(new_device->name, name);
792 }
a1e8780a 793
1f78160c 794 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 795 new_device->fs_devices = device->fs_devices;
1f78160c
XG
796
797 call_rcu(&device->rcu, free_device);
8a4b83cc 798 }
c9513edb
XG
799 mutex_unlock(&fs_devices->device_list_mutex);
800
e4404d6e
YZ
801 WARN_ON(fs_devices->open_devices);
802 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
803 fs_devices->opened = 0;
804 fs_devices->seeding = 0;
2b82032c 805
8a4b83cc
CM
806 return 0;
807}
808
2b82032c
YZ
809int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
810{
e4404d6e 811 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
812 int ret;
813
814 mutex_lock(&uuid_mutex);
815 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
816 if (!fs_devices->opened) {
817 seed_devices = fs_devices->seed;
818 fs_devices->seed = NULL;
819 }
2b82032c 820 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
821
822 while (seed_devices) {
823 fs_devices = seed_devices;
824 seed_devices = fs_devices->seed;
825 __btrfs_close_devices(fs_devices);
826 free_fs_devices(fs_devices);
827 }
bc178622
ES
828 /*
829 * Wait for rcu kworkers under __btrfs_close_devices
830 * to finish all blkdev_puts so device is really
831 * free when umount is done.
832 */
833 rcu_barrier();
2b82032c
YZ
834 return ret;
835}
836
e4404d6e
YZ
837static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
838 fmode_t flags, void *holder)
8a4b83cc 839{
d5e2003c 840 struct request_queue *q;
8a4b83cc
CM
841 struct block_device *bdev;
842 struct list_head *head = &fs_devices->devices;
8a4b83cc 843 struct btrfs_device *device;
443f24fe 844 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
845 struct buffer_head *bh;
846 struct btrfs_super_block *disk_super;
a0af469b 847 u64 devid;
2b82032c 848 int seeding = 1;
a0af469b 849 int ret = 0;
8a4b83cc 850
d4d77629
TH
851 flags |= FMODE_EXCL;
852
c6e30871 853 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
854 if (device->bdev)
855 continue;
dfe25020
CM
856 if (!device->name)
857 continue;
858
f63e0cca
ES
859 /* Just open everything we can; ignore failures here */
860 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
861 &bdev, &bh))
beaf8ab3 862 continue;
a0af469b
CM
863
864 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 865 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
866 if (devid != device->devid)
867 goto error_brelse;
868
2b82032c
YZ
869 if (memcmp(device->uuid, disk_super->dev_item.uuid,
870 BTRFS_UUID_SIZE))
871 goto error_brelse;
872
873 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
874 if (!latest_dev ||
875 device->generation > latest_dev->generation)
876 latest_dev = device;
a0af469b 877
2b82032c
YZ
878 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
879 device->writeable = 0;
880 } else {
881 device->writeable = !bdev_read_only(bdev);
882 seeding = 0;
883 }
884
d5e2003c 885 q = bdev_get_queue(bdev);
90180da4 886 if (blk_queue_discard(q))
d5e2003c 887 device->can_discard = 1;
d5e2003c 888
8a4b83cc 889 device->bdev = bdev;
dfe25020 890 device->in_fs_metadata = 0;
15916de8
CM
891 device->mode = flags;
892
c289811c
CM
893 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
894 fs_devices->rotating = 1;
895
a0af469b 896 fs_devices->open_devices++;
55e50e45
ID
897 if (device->writeable &&
898 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
899 fs_devices->rw_devices++;
900 list_add(&device->dev_alloc_list,
901 &fs_devices->alloc_list);
902 }
4f6c9328 903 brelse(bh);
a0af469b 904 continue;
a061fc8d 905
a0af469b
CM
906error_brelse:
907 brelse(bh);
d4d77629 908 blkdev_put(bdev, flags);
a0af469b 909 continue;
8a4b83cc 910 }
a0af469b 911 if (fs_devices->open_devices == 0) {
20bcd649 912 ret = -EINVAL;
a0af469b
CM
913 goto out;
914 }
2b82032c
YZ
915 fs_devices->seeding = seeding;
916 fs_devices->opened = 1;
443f24fe 917 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 918 fs_devices->total_rw_bytes = 0;
a0af469b 919out:
2b82032c
YZ
920 return ret;
921}
922
923int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 924 fmode_t flags, void *holder)
2b82032c
YZ
925{
926 int ret;
927
928 mutex_lock(&uuid_mutex);
929 if (fs_devices->opened) {
e4404d6e
YZ
930 fs_devices->opened++;
931 ret = 0;
2b82032c 932 } else {
15916de8 933 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 934 }
8a4b83cc 935 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
936 return ret;
937}
938
6f60cbd3
DS
939/*
940 * Look for a btrfs signature on a device. This may be called out of the mount path
941 * and we are not allowed to call set_blocksize during the scan. The superblock
942 * is read via pagecache
943 */
97288f2c 944int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
945 struct btrfs_fs_devices **fs_devices_ret)
946{
947 struct btrfs_super_block *disk_super;
948 struct block_device *bdev;
6f60cbd3
DS
949 struct page *page;
950 void *p;
951 int ret = -EINVAL;
8a4b83cc 952 u64 devid;
f2984462 953 u64 transid;
02db0844 954 u64 total_devices;
6f60cbd3
DS
955 u64 bytenr;
956 pgoff_t index;
8a4b83cc 957
6f60cbd3
DS
958 /*
959 * we would like to check all the supers, but that would make
960 * a btrfs mount succeed after a mkfs from a different FS.
961 * So, we need to add a special mount option to scan for
962 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
963 */
964 bytenr = btrfs_sb_offset(0);
d4d77629 965 flags |= FMODE_EXCL;
10f6327b 966 mutex_lock(&uuid_mutex);
6f60cbd3
DS
967
968 bdev = blkdev_get_by_path(path, flags, holder);
969
970 if (IS_ERR(bdev)) {
971 ret = PTR_ERR(bdev);
beaf8ab3 972 goto error;
6f60cbd3
DS
973 }
974
975 /* make sure our super fits in the device */
976 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
977 goto error_bdev_put;
978
979 /* make sure our super fits in the page */
980 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
981 goto error_bdev_put;
982
983 /* make sure our super doesn't straddle pages on disk */
984 index = bytenr >> PAGE_CACHE_SHIFT;
985 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
986 goto error_bdev_put;
987
988 /* pull in the page with our super */
989 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
990 index, GFP_NOFS);
991
992 if (IS_ERR_OR_NULL(page))
993 goto error_bdev_put;
994
995 p = kmap(page);
996
997 /* align our pointer to the offset of the super block */
998 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
999
1000 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 1001 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
1002 goto error_unmap;
1003
a343832f 1004 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1005 transid = btrfs_super_generation(disk_super);
02db0844 1006 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1007
8a4b83cc 1008 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1009 if (ret > 0) {
1010 if (disk_super->label[0]) {
1011 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1012 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1013 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1014 } else {
1015 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1016 }
1017
1018 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1019 ret = 0;
1020 }
02db0844
JB
1021 if (!ret && fs_devices_ret)
1022 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
1023
1024error_unmap:
1025 kunmap(page);
1026 page_cache_release(page);
1027
1028error_bdev_put:
d4d77629 1029 blkdev_put(bdev, flags);
8a4b83cc 1030error:
beaf8ab3 1031 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1032 return ret;
1033}
0b86a832 1034
6d07bcec
MX
1035/* helper to account the used device space in the range */
1036int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1037 u64 end, u64 *length)
1038{
1039 struct btrfs_key key;
1040 struct btrfs_root *root = device->dev_root;
1041 struct btrfs_dev_extent *dev_extent;
1042 struct btrfs_path *path;
1043 u64 extent_end;
1044 int ret;
1045 int slot;
1046 struct extent_buffer *l;
1047
1048 *length = 0;
1049
63a212ab 1050 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1051 return 0;
1052
1053 path = btrfs_alloc_path();
1054 if (!path)
1055 return -ENOMEM;
1056 path->reada = 2;
1057
1058 key.objectid = device->devid;
1059 key.offset = start;
1060 key.type = BTRFS_DEV_EXTENT_KEY;
1061
1062 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1063 if (ret < 0)
1064 goto out;
1065 if (ret > 0) {
1066 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1067 if (ret < 0)
1068 goto out;
1069 }
1070
1071 while (1) {
1072 l = path->nodes[0];
1073 slot = path->slots[0];
1074 if (slot >= btrfs_header_nritems(l)) {
1075 ret = btrfs_next_leaf(root, path);
1076 if (ret == 0)
1077 continue;
1078 if (ret < 0)
1079 goto out;
1080
1081 break;
1082 }
1083 btrfs_item_key_to_cpu(l, &key, slot);
1084
1085 if (key.objectid < device->devid)
1086 goto next;
1087
1088 if (key.objectid > device->devid)
1089 break;
1090
962a298f 1091 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1092 goto next;
1093
1094 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1095 extent_end = key.offset + btrfs_dev_extent_length(l,
1096 dev_extent);
1097 if (key.offset <= start && extent_end > end) {
1098 *length = end - start + 1;
1099 break;
1100 } else if (key.offset <= start && extent_end > start)
1101 *length += extent_end - start;
1102 else if (key.offset > start && extent_end <= end)
1103 *length += extent_end - key.offset;
1104 else if (key.offset > start && key.offset <= end) {
1105 *length += end - key.offset + 1;
1106 break;
1107 } else if (key.offset > end)
1108 break;
1109
1110next:
1111 path->slots[0]++;
1112 }
1113 ret = 0;
1114out:
1115 btrfs_free_path(path);
1116 return ret;
1117}
1118
6df9a95e
JB
1119static int contains_pending_extent(struct btrfs_trans_handle *trans,
1120 struct btrfs_device *device,
1121 u64 *start, u64 len)
1122{
1123 struct extent_map *em;
04216820 1124 struct list_head *search_list = &trans->transaction->pending_chunks;
6df9a95e 1125 int ret = 0;
1b984508 1126 u64 physical_start = *start;
6df9a95e 1127
04216820
FM
1128again:
1129 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1130 struct map_lookup *map;
1131 int i;
1132
1133 map = (struct map_lookup *)em->bdev;
1134 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1135 u64 end;
1136
6df9a95e
JB
1137 if (map->stripes[i].dev != device)
1138 continue;
1b984508 1139 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1140 map->stripes[i].physical + em->orig_block_len <=
1b984508 1141 physical_start)
6df9a95e 1142 continue;
c152b63e
FM
1143 /*
1144 * Make sure that while processing the pinned list we do
1145 * not override our *start with a lower value, because
1146 * we can have pinned chunks that fall within this
1147 * device hole and that have lower physical addresses
1148 * than the pending chunks we processed before. If we
1149 * do not take this special care we can end up getting
1150 * 2 pending chunks that start at the same physical
1151 * device offsets because the end offset of a pinned
1152 * chunk can be equal to the start offset of some
1153 * pending chunk.
1154 */
1155 end = map->stripes[i].physical + em->orig_block_len;
1156 if (end > *start) {
1157 *start = end;
1158 ret = 1;
1159 }
6df9a95e
JB
1160 }
1161 }
04216820
FM
1162 if (search_list == &trans->transaction->pending_chunks) {
1163 search_list = &trans->root->fs_info->pinned_chunks;
1164 goto again;
1165 }
6df9a95e
JB
1166
1167 return ret;
1168}
1169
1170
0b86a832 1171/*
7bfc837d 1172 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1173 * @device: the device which we search the free space in
1174 * @num_bytes: the size of the free space that we need
1175 * @start: store the start of the free space.
1176 * @len: the size of the free space. that we find, or the size of the max
1177 * free space if we don't find suitable free space
1178 *
0b86a832
CM
1179 * this uses a pretty simple search, the expectation is that it is
1180 * called very infrequently and that a given device has a small number
1181 * of extents
7bfc837d
MX
1182 *
1183 * @start is used to store the start of the free space if we find. But if we
1184 * don't find suitable free space, it will be used to store the start position
1185 * of the max free space.
1186 *
1187 * @len is used to store the size of the free space that we find.
1188 * But if we don't find suitable free space, it is used to store the size of
1189 * the max free space.
0b86a832 1190 */
6df9a95e
JB
1191int find_free_dev_extent(struct btrfs_trans_handle *trans,
1192 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1193 u64 *start, u64 *len)
0b86a832
CM
1194{
1195 struct btrfs_key key;
1196 struct btrfs_root *root = device->dev_root;
7bfc837d 1197 struct btrfs_dev_extent *dev_extent;
2b82032c 1198 struct btrfs_path *path;
7bfc837d
MX
1199 u64 hole_size;
1200 u64 max_hole_start;
1201 u64 max_hole_size;
1202 u64 extent_end;
1203 u64 search_start;
0b86a832
CM
1204 u64 search_end = device->total_bytes;
1205 int ret;
7bfc837d 1206 int slot;
0b86a832
CM
1207 struct extent_buffer *l;
1208
0b86a832
CM
1209 /* FIXME use last free of some kind */
1210
8a4b83cc
CM
1211 /* we don't want to overwrite the superblock on the drive,
1212 * so we make sure to start at an offset of at least 1MB
1213 */
a9c9bf68 1214 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1215
6df9a95e
JB
1216 path = btrfs_alloc_path();
1217 if (!path)
1218 return -ENOMEM;
f2ab7618 1219
7bfc837d
MX
1220 max_hole_start = search_start;
1221 max_hole_size = 0;
1222
f2ab7618 1223again:
63a212ab 1224 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1225 ret = -ENOSPC;
6df9a95e 1226 goto out;
7bfc837d
MX
1227 }
1228
7bfc837d 1229 path->reada = 2;
6df9a95e
JB
1230 path->search_commit_root = 1;
1231 path->skip_locking = 1;
7bfc837d 1232
0b86a832
CM
1233 key.objectid = device->devid;
1234 key.offset = search_start;
1235 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1236
125ccb0a 1237 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1238 if (ret < 0)
7bfc837d 1239 goto out;
1fcbac58
YZ
1240 if (ret > 0) {
1241 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1242 if (ret < 0)
7bfc837d 1243 goto out;
1fcbac58 1244 }
7bfc837d 1245
0b86a832
CM
1246 while (1) {
1247 l = path->nodes[0];
1248 slot = path->slots[0];
1249 if (slot >= btrfs_header_nritems(l)) {
1250 ret = btrfs_next_leaf(root, path);
1251 if (ret == 0)
1252 continue;
1253 if (ret < 0)
7bfc837d
MX
1254 goto out;
1255
1256 break;
0b86a832
CM
1257 }
1258 btrfs_item_key_to_cpu(l, &key, slot);
1259
1260 if (key.objectid < device->devid)
1261 goto next;
1262
1263 if (key.objectid > device->devid)
7bfc837d 1264 break;
0b86a832 1265
962a298f 1266 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1267 goto next;
9779b72f 1268
7bfc837d
MX
1269 if (key.offset > search_start) {
1270 hole_size = key.offset - search_start;
9779b72f 1271
6df9a95e
JB
1272 /*
1273 * Have to check before we set max_hole_start, otherwise
1274 * we could end up sending back this offset anyway.
1275 */
1276 if (contains_pending_extent(trans, device,
1277 &search_start,
1b984508
FL
1278 hole_size)) {
1279 if (key.offset >= search_start) {
1280 hole_size = key.offset - search_start;
1281 } else {
1282 WARN_ON_ONCE(1);
1283 hole_size = 0;
1284 }
1285 }
6df9a95e 1286
7bfc837d
MX
1287 if (hole_size > max_hole_size) {
1288 max_hole_start = search_start;
1289 max_hole_size = hole_size;
1290 }
9779b72f 1291
7bfc837d
MX
1292 /*
1293 * If this free space is greater than which we need,
1294 * it must be the max free space that we have found
1295 * until now, so max_hole_start must point to the start
1296 * of this free space and the length of this free space
1297 * is stored in max_hole_size. Thus, we return
1298 * max_hole_start and max_hole_size and go back to the
1299 * caller.
1300 */
1301 if (hole_size >= num_bytes) {
1302 ret = 0;
1303 goto out;
0b86a832
CM
1304 }
1305 }
0b86a832 1306
0b86a832 1307 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1308 extent_end = key.offset + btrfs_dev_extent_length(l,
1309 dev_extent);
1310 if (extent_end > search_start)
1311 search_start = extent_end;
0b86a832
CM
1312next:
1313 path->slots[0]++;
1314 cond_resched();
1315 }
0b86a832 1316
38c01b96 1317 /*
1318 * At this point, search_start should be the end of
1319 * allocated dev extents, and when shrinking the device,
1320 * search_end may be smaller than search_start.
1321 */
f2ab7618 1322 if (search_end > search_start) {
38c01b96 1323 hole_size = search_end - search_start;
1324
f2ab7618
ZL
1325 if (contains_pending_extent(trans, device, &search_start,
1326 hole_size)) {
1327 btrfs_release_path(path);
1328 goto again;
1329 }
0b86a832 1330
f2ab7618
ZL
1331 if (hole_size > max_hole_size) {
1332 max_hole_start = search_start;
1333 max_hole_size = hole_size;
1334 }
6df9a95e
JB
1335 }
1336
7bfc837d 1337 /* See above. */
f2ab7618 1338 if (max_hole_size < num_bytes)
7bfc837d
MX
1339 ret = -ENOSPC;
1340 else
1341 ret = 0;
1342
1343out:
2b82032c 1344 btrfs_free_path(path);
7bfc837d 1345 *start = max_hole_start;
b2117a39 1346 if (len)
7bfc837d 1347 *len = max_hole_size;
0b86a832
CM
1348 return ret;
1349}
1350
b2950863 1351static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1352 struct btrfs_device *device,
2196d6e8 1353 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1354{
1355 int ret;
1356 struct btrfs_path *path;
1357 struct btrfs_root *root = device->dev_root;
1358 struct btrfs_key key;
a061fc8d
CM
1359 struct btrfs_key found_key;
1360 struct extent_buffer *leaf = NULL;
1361 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1362
1363 path = btrfs_alloc_path();
1364 if (!path)
1365 return -ENOMEM;
1366
1367 key.objectid = device->devid;
1368 key.offset = start;
1369 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1370again:
8f18cf13 1371 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1372 if (ret > 0) {
1373 ret = btrfs_previous_item(root, path, key.objectid,
1374 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1375 if (ret)
1376 goto out;
a061fc8d
CM
1377 leaf = path->nodes[0];
1378 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1379 extent = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_dev_extent);
1381 BUG_ON(found_key.offset > start || found_key.offset +
1382 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1383 key = found_key;
1384 btrfs_release_path(path);
1385 goto again;
a061fc8d
CM
1386 } else if (ret == 0) {
1387 leaf = path->nodes[0];
1388 extent = btrfs_item_ptr(leaf, path->slots[0],
1389 struct btrfs_dev_extent);
79787eaa
JM
1390 } else {
1391 btrfs_error(root->fs_info, ret, "Slot search failed");
1392 goto out;
a061fc8d 1393 }
8f18cf13 1394
2196d6e8
MX
1395 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1396
8f18cf13 1397 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1398 if (ret) {
1399 btrfs_error(root->fs_info, ret,
1400 "Failed to remove dev extent item");
13212b54
ZL
1401 } else {
1402 trans->transaction->have_free_bgs = 1;
79787eaa 1403 }
b0b802d7 1404out:
8f18cf13
CM
1405 btrfs_free_path(path);
1406 return ret;
1407}
1408
48a3b636
ES
1409static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1410 struct btrfs_device *device,
1411 u64 chunk_tree, u64 chunk_objectid,
1412 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1413{
1414 int ret;
1415 struct btrfs_path *path;
1416 struct btrfs_root *root = device->dev_root;
1417 struct btrfs_dev_extent *extent;
1418 struct extent_buffer *leaf;
1419 struct btrfs_key key;
1420
dfe25020 1421 WARN_ON(!device->in_fs_metadata);
63a212ab 1422 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1423 path = btrfs_alloc_path();
1424 if (!path)
1425 return -ENOMEM;
1426
0b86a832 1427 key.objectid = device->devid;
2b82032c 1428 key.offset = start;
0b86a832
CM
1429 key.type = BTRFS_DEV_EXTENT_KEY;
1430 ret = btrfs_insert_empty_item(trans, root, path, &key,
1431 sizeof(*extent));
2cdcecbc
MF
1432 if (ret)
1433 goto out;
0b86a832
CM
1434
1435 leaf = path->nodes[0];
1436 extent = btrfs_item_ptr(leaf, path->slots[0],
1437 struct btrfs_dev_extent);
e17cade2
CM
1438 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1439 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1440 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1441
1442 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1443 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1444
0b86a832
CM
1445 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1446 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1447out:
0b86a832
CM
1448 btrfs_free_path(path);
1449 return ret;
1450}
1451
6df9a95e 1452static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1453{
6df9a95e
JB
1454 struct extent_map_tree *em_tree;
1455 struct extent_map *em;
1456 struct rb_node *n;
1457 u64 ret = 0;
0b86a832 1458
6df9a95e
JB
1459 em_tree = &fs_info->mapping_tree.map_tree;
1460 read_lock(&em_tree->lock);
1461 n = rb_last(&em_tree->map);
1462 if (n) {
1463 em = rb_entry(n, struct extent_map, rb_node);
1464 ret = em->start + em->len;
0b86a832 1465 }
6df9a95e
JB
1466 read_unlock(&em_tree->lock);
1467
0b86a832
CM
1468 return ret;
1469}
1470
53f10659
ID
1471static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1472 u64 *devid_ret)
0b86a832
CM
1473{
1474 int ret;
1475 struct btrfs_key key;
1476 struct btrfs_key found_key;
2b82032c
YZ
1477 struct btrfs_path *path;
1478
2b82032c
YZ
1479 path = btrfs_alloc_path();
1480 if (!path)
1481 return -ENOMEM;
0b86a832
CM
1482
1483 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1484 key.type = BTRFS_DEV_ITEM_KEY;
1485 key.offset = (u64)-1;
1486
53f10659 1487 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1488 if (ret < 0)
1489 goto error;
1490
79787eaa 1491 BUG_ON(ret == 0); /* Corruption */
0b86a832 1492
53f10659
ID
1493 ret = btrfs_previous_item(fs_info->chunk_root, path,
1494 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1495 BTRFS_DEV_ITEM_KEY);
1496 if (ret) {
53f10659 1497 *devid_ret = 1;
0b86a832
CM
1498 } else {
1499 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1500 path->slots[0]);
53f10659 1501 *devid_ret = found_key.offset + 1;
0b86a832
CM
1502 }
1503 ret = 0;
1504error:
2b82032c 1505 btrfs_free_path(path);
0b86a832
CM
1506 return ret;
1507}
1508
1509/*
1510 * the device information is stored in the chunk root
1511 * the btrfs_device struct should be fully filled in
1512 */
48a3b636
ES
1513static int btrfs_add_device(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *root,
1515 struct btrfs_device *device)
0b86a832
CM
1516{
1517 int ret;
1518 struct btrfs_path *path;
1519 struct btrfs_dev_item *dev_item;
1520 struct extent_buffer *leaf;
1521 struct btrfs_key key;
1522 unsigned long ptr;
0b86a832
CM
1523
1524 root = root->fs_info->chunk_root;
1525
1526 path = btrfs_alloc_path();
1527 if (!path)
1528 return -ENOMEM;
1529
0b86a832
CM
1530 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1531 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1532 key.offset = device->devid;
0b86a832
CM
1533
1534 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1535 sizeof(*dev_item));
0b86a832
CM
1536 if (ret)
1537 goto out;
1538
1539 leaf = path->nodes[0];
1540 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1541
1542 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1543 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1544 btrfs_set_device_type(leaf, dev_item, device->type);
1545 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1546 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1547 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1548 btrfs_set_device_total_bytes(leaf, dev_item,
1549 btrfs_device_get_disk_total_bytes(device));
1550 btrfs_set_device_bytes_used(leaf, dev_item,
1551 btrfs_device_get_bytes_used(device));
e17cade2
CM
1552 btrfs_set_device_group(leaf, dev_item, 0);
1553 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1554 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1555 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1556
410ba3a2 1557 ptr = btrfs_device_uuid(dev_item);
e17cade2 1558 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1559 ptr = btrfs_device_fsid(dev_item);
2b82032c 1560 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1561 btrfs_mark_buffer_dirty(leaf);
0b86a832 1562
2b82032c 1563 ret = 0;
0b86a832
CM
1564out:
1565 btrfs_free_path(path);
1566 return ret;
1567}
8f18cf13 1568
5a1972bd
QW
1569/*
1570 * Function to update ctime/mtime for a given device path.
1571 * Mainly used for ctime/mtime based probe like libblkid.
1572 */
1573static void update_dev_time(char *path_name)
1574{
1575 struct file *filp;
1576
1577 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1578 if (IS_ERR(filp))
5a1972bd
QW
1579 return;
1580 file_update_time(filp);
1581 filp_close(filp, NULL);
1582 return;
1583}
1584
a061fc8d
CM
1585static int btrfs_rm_dev_item(struct btrfs_root *root,
1586 struct btrfs_device *device)
1587{
1588 int ret;
1589 struct btrfs_path *path;
a061fc8d 1590 struct btrfs_key key;
a061fc8d
CM
1591 struct btrfs_trans_handle *trans;
1592
1593 root = root->fs_info->chunk_root;
1594
1595 path = btrfs_alloc_path();
1596 if (!path)
1597 return -ENOMEM;
1598
a22285a6 1599 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1600 if (IS_ERR(trans)) {
1601 btrfs_free_path(path);
1602 return PTR_ERR(trans);
1603 }
a061fc8d
CM
1604 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1605 key.type = BTRFS_DEV_ITEM_KEY;
1606 key.offset = device->devid;
1607
1608 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1609 if (ret < 0)
1610 goto out;
1611
1612 if (ret > 0) {
1613 ret = -ENOENT;
1614 goto out;
1615 }
1616
1617 ret = btrfs_del_item(trans, root, path);
1618 if (ret)
1619 goto out;
a061fc8d
CM
1620out:
1621 btrfs_free_path(path);
1622 btrfs_commit_transaction(trans, root);
1623 return ret;
1624}
1625
1626int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1627{
1628 struct btrfs_device *device;
2b82032c 1629 struct btrfs_device *next_device;
a061fc8d 1630 struct block_device *bdev;
dfe25020 1631 struct buffer_head *bh = NULL;
a061fc8d 1632 struct btrfs_super_block *disk_super;
1f78160c 1633 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1634 u64 all_avail;
1635 u64 devid;
2b82032c
YZ
1636 u64 num_devices;
1637 u8 *dev_uuid;
de98ced9 1638 unsigned seq;
a061fc8d 1639 int ret = 0;
1f78160c 1640 bool clear_super = false;
a061fc8d 1641
a061fc8d
CM
1642 mutex_lock(&uuid_mutex);
1643
de98ced9
MX
1644 do {
1645 seq = read_seqbegin(&root->fs_info->profiles_lock);
1646
1647 all_avail = root->fs_info->avail_data_alloc_bits |
1648 root->fs_info->avail_system_alloc_bits |
1649 root->fs_info->avail_metadata_alloc_bits;
1650 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1651
8dabb742
SB
1652 num_devices = root->fs_info->fs_devices->num_devices;
1653 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1654 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1655 WARN_ON(num_devices < 1);
1656 num_devices--;
1657 }
1658 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1659
1660 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1661 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1662 goto out;
1663 }
1664
8dabb742 1665 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1666 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1667 goto out;
1668 }
1669
53b381b3
DW
1670 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1671 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1672 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1673 goto out;
1674 }
1675 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1676 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1677 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1678 goto out;
1679 }
1680
dfe25020 1681 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1682 struct list_head *devices;
1683 struct btrfs_device *tmp;
a061fc8d 1684
dfe25020
CM
1685 device = NULL;
1686 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1687 /*
1688 * It is safe to read the devices since the volume_mutex
1689 * is held.
1690 */
c6e30871 1691 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1692 if (tmp->in_fs_metadata &&
1693 !tmp->is_tgtdev_for_dev_replace &&
1694 !tmp->bdev) {
dfe25020
CM
1695 device = tmp;
1696 break;
1697 }
1698 }
1699 bdev = NULL;
1700 bh = NULL;
1701 disk_super = NULL;
1702 if (!device) {
183860f6 1703 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1704 goto out;
1705 }
dfe25020 1706 } else {
beaf8ab3 1707 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1708 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1709 root->fs_info->bdev_holder, 0,
1710 &bdev, &bh);
1711 if (ret)
dfe25020 1712 goto out;
dfe25020 1713 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1714 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1715 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1716 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1717 disk_super->fsid);
dfe25020
CM
1718 if (!device) {
1719 ret = -ENOENT;
1720 goto error_brelse;
1721 }
2b82032c 1722 }
dfe25020 1723
63a212ab 1724 if (device->is_tgtdev_for_dev_replace) {
183860f6 1725 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1726 goto error_brelse;
1727 }
1728
2b82032c 1729 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1730 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1731 goto error_brelse;
1732 }
1733
1734 if (device->writeable) {
0c1daee0 1735 lock_chunks(root);
2b82032c 1736 list_del_init(&device->dev_alloc_list);
c3929c36 1737 device->fs_devices->rw_devices--;
0c1daee0 1738 unlock_chunks(root);
1f78160c 1739 clear_super = true;
dfe25020 1740 }
a061fc8d 1741
d7901554 1742 mutex_unlock(&uuid_mutex);
a061fc8d 1743 ret = btrfs_shrink_device(device, 0);
d7901554 1744 mutex_lock(&uuid_mutex);
a061fc8d 1745 if (ret)
9b3517e9 1746 goto error_undo;
a061fc8d 1747
63a212ab
SB
1748 /*
1749 * TODO: the superblock still includes this device in its num_devices
1750 * counter although write_all_supers() is not locked out. This
1751 * could give a filesystem state which requires a degraded mount.
1752 */
a061fc8d
CM
1753 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1754 if (ret)
9b3517e9 1755 goto error_undo;
a061fc8d 1756
2b82032c 1757 device->in_fs_metadata = 0;
aa1b8cd4 1758 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1759
1760 /*
1761 * the device list mutex makes sure that we don't change
1762 * the device list while someone else is writing out all
d7306801
FDBM
1763 * the device supers. Whoever is writing all supers, should
1764 * lock the device list mutex before getting the number of
1765 * devices in the super block (super_copy). Conversely,
1766 * whoever updates the number of devices in the super block
1767 * (super_copy) should hold the device list mutex.
e5e9a520 1768 */
1f78160c
XG
1769
1770 cur_devices = device->fs_devices;
e5e9a520 1771 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1772 list_del_rcu(&device->dev_list);
e5e9a520 1773
e4404d6e 1774 device->fs_devices->num_devices--;
02db0844 1775 device->fs_devices->total_devices--;
2b82032c 1776
cd02dca5 1777 if (device->missing)
3a7d55c8 1778 device->fs_devices->missing_devices--;
cd02dca5 1779
2b82032c
YZ
1780 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1781 struct btrfs_device, dev_list);
1782 if (device->bdev == root->fs_info->sb->s_bdev)
1783 root->fs_info->sb->s_bdev = next_device->bdev;
1784 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1785 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1786
0bfaa9c5 1787 if (device->bdev) {
e4404d6e 1788 device->fs_devices->open_devices--;
0bfaa9c5 1789 /* remove sysfs entry */
6c14a164 1790 btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
0bfaa9c5 1791 }
99994cde 1792
1f78160c 1793 call_rcu(&device->rcu, free_device);
e4404d6e 1794
6c41761f
DS
1795 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1796 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1797 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1798
1f78160c 1799 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1800 struct btrfs_fs_devices *fs_devices;
1801 fs_devices = root->fs_info->fs_devices;
1802 while (fs_devices) {
8321cf25
RS
1803 if (fs_devices->seed == cur_devices) {
1804 fs_devices->seed = cur_devices->seed;
e4404d6e 1805 break;
8321cf25 1806 }
e4404d6e 1807 fs_devices = fs_devices->seed;
2b82032c 1808 }
1f78160c 1809 cur_devices->seed = NULL;
1f78160c 1810 __btrfs_close_devices(cur_devices);
1f78160c 1811 free_fs_devices(cur_devices);
2b82032c
YZ
1812 }
1813
5af3e8cc
SB
1814 root->fs_info->num_tolerated_disk_barrier_failures =
1815 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1816
2b82032c
YZ
1817 /*
1818 * at this point, the device is zero sized. We want to
1819 * remove it from the devices list and zero out the old super
1820 */
aa1b8cd4 1821 if (clear_super && disk_super) {
4d90d28b
AJ
1822 u64 bytenr;
1823 int i;
1824
dfe25020
CM
1825 /* make sure this device isn't detected as part of
1826 * the FS anymore
1827 */
1828 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1829 set_buffer_dirty(bh);
1830 sync_dirty_buffer(bh);
4d90d28b
AJ
1831
1832 /* clear the mirror copies of super block on the disk
1833 * being removed, 0th copy is been taken care above and
1834 * the below would take of the rest
1835 */
1836 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1837 bytenr = btrfs_sb_offset(i);
1838 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1839 i_size_read(bdev->bd_inode))
1840 break;
1841
1842 brelse(bh);
1843 bh = __bread(bdev, bytenr / 4096,
1844 BTRFS_SUPER_INFO_SIZE);
1845 if (!bh)
1846 continue;
1847
1848 disk_super = (struct btrfs_super_block *)bh->b_data;
1849
1850 if (btrfs_super_bytenr(disk_super) != bytenr ||
1851 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1852 continue;
1853 }
1854 memset(&disk_super->magic, 0,
1855 sizeof(disk_super->magic));
1856 set_buffer_dirty(bh);
1857 sync_dirty_buffer(bh);
1858 }
dfe25020 1859 }
a061fc8d 1860
a061fc8d 1861 ret = 0;
a061fc8d 1862
5a1972bd
QW
1863 if (bdev) {
1864 /* Notify udev that device has changed */
3c911608 1865 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1866
5a1972bd
QW
1867 /* Update ctime/mtime for device path for libblkid */
1868 update_dev_time(device_path);
1869 }
1870
a061fc8d
CM
1871error_brelse:
1872 brelse(bh);
dfe25020 1873 if (bdev)
e525fd89 1874 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1875out:
1876 mutex_unlock(&uuid_mutex);
a061fc8d 1877 return ret;
9b3517e9
ID
1878error_undo:
1879 if (device->writeable) {
0c1daee0 1880 lock_chunks(root);
9b3517e9
ID
1881 list_add(&device->dev_alloc_list,
1882 &root->fs_info->fs_devices->alloc_list);
c3929c36 1883 device->fs_devices->rw_devices++;
0c1daee0 1884 unlock_chunks(root);
9b3517e9
ID
1885 }
1886 goto error_brelse;
a061fc8d
CM
1887}
1888
084b6e7c
QW
1889void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1890 struct btrfs_device *srcdev)
e93c89c1 1891{
d51908ce
AJ
1892 struct btrfs_fs_devices *fs_devices;
1893
e93c89c1 1894 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1895
25e8e911
AJ
1896 /*
1897 * in case of fs with no seed, srcdev->fs_devices will point
1898 * to fs_devices of fs_info. However when the dev being replaced is
1899 * a seed dev it will point to the seed's local fs_devices. In short
1900 * srcdev will have its correct fs_devices in both the cases.
1901 */
1902 fs_devices = srcdev->fs_devices;
d51908ce 1903
e93c89c1
SB
1904 list_del_rcu(&srcdev->dev_list);
1905 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1906 fs_devices->num_devices--;
82372bc8 1907 if (srcdev->missing)
d51908ce 1908 fs_devices->missing_devices--;
e93c89c1 1909
82372bc8
MX
1910 if (srcdev->writeable) {
1911 fs_devices->rw_devices--;
1912 /* zero out the old super if it is writable */
1913 btrfs_scratch_superblock(srcdev);
1357272f
ID
1914 }
1915
82372bc8 1916 if (srcdev->bdev)
d51908ce 1917 fs_devices->open_devices--;
084b6e7c
QW
1918}
1919
1920void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1921 struct btrfs_device *srcdev)
1922{
1923 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1924
1925 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1926
1927 /*
1928 * unless fs_devices is seed fs, num_devices shouldn't go
1929 * zero
1930 */
1931 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1932
1933 /* if this is no devs we rather delete the fs_devices */
1934 if (!fs_devices->num_devices) {
1935 struct btrfs_fs_devices *tmp_fs_devices;
1936
1937 tmp_fs_devices = fs_info->fs_devices;
1938 while (tmp_fs_devices) {
1939 if (tmp_fs_devices->seed == fs_devices) {
1940 tmp_fs_devices->seed = fs_devices->seed;
1941 break;
1942 }
1943 tmp_fs_devices = tmp_fs_devices->seed;
1944 }
1945 fs_devices->seed = NULL;
8bef8401
AJ
1946 __btrfs_close_devices(fs_devices);
1947 free_fs_devices(fs_devices);
94d5f0c2 1948 }
e93c89c1
SB
1949}
1950
1951void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1952 struct btrfs_device *tgtdev)
1953{
1954 struct btrfs_device *next_device;
1955
67a2c45e 1956 mutex_lock(&uuid_mutex);
e93c89c1
SB
1957 WARN_ON(!tgtdev);
1958 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20
AJ
1959
1960 btrfs_kobj_rm_device(fs_info->fs_devices, tgtdev);
1961
e93c89c1
SB
1962 if (tgtdev->bdev) {
1963 btrfs_scratch_superblock(tgtdev);
1964 fs_info->fs_devices->open_devices--;
1965 }
1966 fs_info->fs_devices->num_devices--;
e93c89c1
SB
1967
1968 next_device = list_entry(fs_info->fs_devices->devices.next,
1969 struct btrfs_device, dev_list);
1970 if (tgtdev->bdev == fs_info->sb->s_bdev)
1971 fs_info->sb->s_bdev = next_device->bdev;
1972 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1973 fs_info->fs_devices->latest_bdev = next_device->bdev;
1974 list_del_rcu(&tgtdev->dev_list);
1975
1976 call_rcu(&tgtdev->rcu, free_device);
1977
1978 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 1979 mutex_unlock(&uuid_mutex);
e93c89c1
SB
1980}
1981
48a3b636
ES
1982static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1983 struct btrfs_device **device)
7ba15b7d
SB
1984{
1985 int ret = 0;
1986 struct btrfs_super_block *disk_super;
1987 u64 devid;
1988 u8 *dev_uuid;
1989 struct block_device *bdev;
1990 struct buffer_head *bh;
1991
1992 *device = NULL;
1993 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1994 root->fs_info->bdev_holder, 0, &bdev, &bh);
1995 if (ret)
1996 return ret;
1997 disk_super = (struct btrfs_super_block *)bh->b_data;
1998 devid = btrfs_stack_device_id(&disk_super->dev_item);
1999 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2000 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2001 disk_super->fsid);
2002 brelse(bh);
2003 if (!*device)
2004 ret = -ENOENT;
2005 blkdev_put(bdev, FMODE_READ);
2006 return ret;
2007}
2008
2009int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2010 char *device_path,
2011 struct btrfs_device **device)
2012{
2013 *device = NULL;
2014 if (strcmp(device_path, "missing") == 0) {
2015 struct list_head *devices;
2016 struct btrfs_device *tmp;
2017
2018 devices = &root->fs_info->fs_devices->devices;
2019 /*
2020 * It is safe to read the devices since the volume_mutex
2021 * is held by the caller.
2022 */
2023 list_for_each_entry(tmp, devices, dev_list) {
2024 if (tmp->in_fs_metadata && !tmp->bdev) {
2025 *device = tmp;
2026 break;
2027 }
2028 }
2029
2030 if (!*device) {
efe120a0 2031 btrfs_err(root->fs_info, "no missing device found");
7ba15b7d
SB
2032 return -ENOENT;
2033 }
2034
2035 return 0;
2036 } else {
2037 return btrfs_find_device_by_path(root, device_path, device);
2038 }
2039}
2040
2b82032c
YZ
2041/*
2042 * does all the dirty work required for changing file system's UUID.
2043 */
125ccb0a 2044static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2045{
2046 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2047 struct btrfs_fs_devices *old_devices;
e4404d6e 2048 struct btrfs_fs_devices *seed_devices;
6c41761f 2049 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2050 struct btrfs_device *device;
2051 u64 super_flags;
2052
2053 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2054 if (!fs_devices->seeding)
2b82032c
YZ
2055 return -EINVAL;
2056
2208a378
ID
2057 seed_devices = __alloc_fs_devices();
2058 if (IS_ERR(seed_devices))
2059 return PTR_ERR(seed_devices);
2b82032c 2060
e4404d6e
YZ
2061 old_devices = clone_fs_devices(fs_devices);
2062 if (IS_ERR(old_devices)) {
2063 kfree(seed_devices);
2064 return PTR_ERR(old_devices);
2b82032c 2065 }
e4404d6e 2066
2b82032c
YZ
2067 list_add(&old_devices->list, &fs_uuids);
2068
e4404d6e
YZ
2069 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2070 seed_devices->opened = 1;
2071 INIT_LIST_HEAD(&seed_devices->devices);
2072 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2073 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2074
2075 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2076 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2077 synchronize_rcu);
2196d6e8
MX
2078 list_for_each_entry(device, &seed_devices->devices, dev_list)
2079 device->fs_devices = seed_devices;
c9513edb 2080
2196d6e8 2081 lock_chunks(root);
e4404d6e 2082 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2083 unlock_chunks(root);
e4404d6e 2084
2b82032c
YZ
2085 fs_devices->seeding = 0;
2086 fs_devices->num_devices = 0;
2087 fs_devices->open_devices = 0;
69611ac8 2088 fs_devices->missing_devices = 0;
69611ac8 2089 fs_devices->rotating = 0;
e4404d6e 2090 fs_devices->seed = seed_devices;
2b82032c
YZ
2091
2092 generate_random_uuid(fs_devices->fsid);
2093 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2094 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2095 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2096
2b82032c
YZ
2097 super_flags = btrfs_super_flags(disk_super) &
2098 ~BTRFS_SUPER_FLAG_SEEDING;
2099 btrfs_set_super_flags(disk_super, super_flags);
2100
2101 return 0;
2102}
2103
2104/*
2105 * strore the expected generation for seed devices in device items.
2106 */
2107static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2108 struct btrfs_root *root)
2109{
2110 struct btrfs_path *path;
2111 struct extent_buffer *leaf;
2112 struct btrfs_dev_item *dev_item;
2113 struct btrfs_device *device;
2114 struct btrfs_key key;
2115 u8 fs_uuid[BTRFS_UUID_SIZE];
2116 u8 dev_uuid[BTRFS_UUID_SIZE];
2117 u64 devid;
2118 int ret;
2119
2120 path = btrfs_alloc_path();
2121 if (!path)
2122 return -ENOMEM;
2123
2124 root = root->fs_info->chunk_root;
2125 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2126 key.offset = 0;
2127 key.type = BTRFS_DEV_ITEM_KEY;
2128
2129 while (1) {
2130 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2131 if (ret < 0)
2132 goto error;
2133
2134 leaf = path->nodes[0];
2135next_slot:
2136 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2137 ret = btrfs_next_leaf(root, path);
2138 if (ret > 0)
2139 break;
2140 if (ret < 0)
2141 goto error;
2142 leaf = path->nodes[0];
2143 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2144 btrfs_release_path(path);
2b82032c
YZ
2145 continue;
2146 }
2147
2148 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2149 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2150 key.type != BTRFS_DEV_ITEM_KEY)
2151 break;
2152
2153 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2154 struct btrfs_dev_item);
2155 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2156 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2157 BTRFS_UUID_SIZE);
1473b24e 2158 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2159 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2160 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2161 fs_uuid);
79787eaa 2162 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2163
2164 if (device->fs_devices->seeding) {
2165 btrfs_set_device_generation(leaf, dev_item,
2166 device->generation);
2167 btrfs_mark_buffer_dirty(leaf);
2168 }
2169
2170 path->slots[0]++;
2171 goto next_slot;
2172 }
2173 ret = 0;
2174error:
2175 btrfs_free_path(path);
2176 return ret;
2177}
2178
788f20eb
CM
2179int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2180{
d5e2003c 2181 struct request_queue *q;
788f20eb
CM
2182 struct btrfs_trans_handle *trans;
2183 struct btrfs_device *device;
2184 struct block_device *bdev;
788f20eb 2185 struct list_head *devices;
2b82032c 2186 struct super_block *sb = root->fs_info->sb;
606686ee 2187 struct rcu_string *name;
3c1dbdf5 2188 u64 tmp;
2b82032c 2189 int seeding_dev = 0;
788f20eb
CM
2190 int ret = 0;
2191
2b82032c 2192 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2193 return -EROFS;
788f20eb 2194
a5d16333 2195 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2196 root->fs_info->bdev_holder);
7f59203a
JB
2197 if (IS_ERR(bdev))
2198 return PTR_ERR(bdev);
a2135011 2199
2b82032c
YZ
2200 if (root->fs_info->fs_devices->seeding) {
2201 seeding_dev = 1;
2202 down_write(&sb->s_umount);
2203 mutex_lock(&uuid_mutex);
2204 }
2205
8c8bee1d 2206 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2207
788f20eb 2208 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2209
2210 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2211 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2212 if (device->bdev == bdev) {
2213 ret = -EEXIST;
d25628bd
LB
2214 mutex_unlock(
2215 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2216 goto error;
788f20eb
CM
2217 }
2218 }
d25628bd 2219 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2220
12bd2fc0
ID
2221 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2222 if (IS_ERR(device)) {
788f20eb 2223 /* we can safely leave the fs_devices entry around */
12bd2fc0 2224 ret = PTR_ERR(device);
2b82032c 2225 goto error;
788f20eb
CM
2226 }
2227
606686ee
JB
2228 name = rcu_string_strdup(device_path, GFP_NOFS);
2229 if (!name) {
788f20eb 2230 kfree(device);
2b82032c
YZ
2231 ret = -ENOMEM;
2232 goto error;
788f20eb 2233 }
606686ee 2234 rcu_assign_pointer(device->name, name);
2b82032c 2235
a22285a6 2236 trans = btrfs_start_transaction(root, 0);
98d5dc13 2237 if (IS_ERR(trans)) {
606686ee 2238 rcu_string_free(device->name);
98d5dc13
TI
2239 kfree(device);
2240 ret = PTR_ERR(trans);
2241 goto error;
2242 }
2243
d5e2003c
JB
2244 q = bdev_get_queue(bdev);
2245 if (blk_queue_discard(q))
2246 device->can_discard = 1;
2b82032c 2247 device->writeable = 1;
2b82032c 2248 device->generation = trans->transid;
788f20eb
CM
2249 device->io_width = root->sectorsize;
2250 device->io_align = root->sectorsize;
2251 device->sector_size = root->sectorsize;
2252 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2253 device->disk_total_bytes = device->total_bytes;
935e5cc9 2254 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2255 device->dev_root = root->fs_info->dev_root;
2256 device->bdev = bdev;
dfe25020 2257 device->in_fs_metadata = 1;
63a212ab 2258 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2259 device->mode = FMODE_EXCL;
27087f37 2260 device->dev_stats_valid = 1;
2b82032c 2261 set_blocksize(device->bdev, 4096);
788f20eb 2262
2b82032c
YZ
2263 if (seeding_dev) {
2264 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2265 ret = btrfs_prepare_sprout(root);
79787eaa 2266 BUG_ON(ret); /* -ENOMEM */
2b82032c 2267 }
788f20eb 2268
2b82032c 2269 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2270
e5e9a520 2271 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2272 lock_chunks(root);
1f78160c 2273 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2274 list_add(&device->dev_alloc_list,
2275 &root->fs_info->fs_devices->alloc_list);
2276 root->fs_info->fs_devices->num_devices++;
2277 root->fs_info->fs_devices->open_devices++;
2278 root->fs_info->fs_devices->rw_devices++;
02db0844 2279 root->fs_info->fs_devices->total_devices++;
2b82032c 2280 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2281
2bf64758
JB
2282 spin_lock(&root->fs_info->free_chunk_lock);
2283 root->fs_info->free_chunk_space += device->total_bytes;
2284 spin_unlock(&root->fs_info->free_chunk_lock);
2285
c289811c
CM
2286 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2287 root->fs_info->fs_devices->rotating = 1;
2288
3c1dbdf5 2289 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2290 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2291 tmp + device->total_bytes);
788f20eb 2292
3c1dbdf5 2293 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2294 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2295 tmp + 1);
0d39376a
AJ
2296
2297 /* add sysfs device entry */
1ba43816 2298 btrfs_kobj_add_device(root->fs_info->fs_devices, device);
0d39376a 2299
2196d6e8
MX
2300 /*
2301 * we've got more storage, clear any full flags on the space
2302 * infos
2303 */
2304 btrfs_clear_space_info_full(root->fs_info);
2305
2306 unlock_chunks(root);
e5e9a520 2307 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2308
2b82032c 2309 if (seeding_dev) {
2196d6e8 2310 lock_chunks(root);
2b82032c 2311 ret = init_first_rw_device(trans, root, device);
2196d6e8 2312 unlock_chunks(root);
005d6427
DS
2313 if (ret) {
2314 btrfs_abort_transaction(trans, root, ret);
79787eaa 2315 goto error_trans;
005d6427 2316 }
2196d6e8
MX
2317 }
2318
2319 ret = btrfs_add_device(trans, root, device);
2320 if (ret) {
2321 btrfs_abort_transaction(trans, root, ret);
2322 goto error_trans;
2323 }
2324
2325 if (seeding_dev) {
2326 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2327
2b82032c 2328 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2329 if (ret) {
2330 btrfs_abort_transaction(trans, root, ret);
79787eaa 2331 goto error_trans;
005d6427 2332 }
b2373f25
AJ
2333
2334 /* Sprouting would change fsid of the mounted root,
2335 * so rename the fsid on the sysfs
2336 */
2337 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2338 root->fs_info->fsid);
2e7910d6
AJ
2339 if (kobject_rename(&root->fs_info->fs_devices->super_kobj,
2340 fsid_buf))
2421a8cd 2341 pr_warn("BTRFS: sysfs: failed to create fsid for sprout\n");
2b82032c
YZ
2342 }
2343
5af3e8cc
SB
2344 root->fs_info->num_tolerated_disk_barrier_failures =
2345 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2346 ret = btrfs_commit_transaction(trans, root);
a2135011 2347
2b82032c
YZ
2348 if (seeding_dev) {
2349 mutex_unlock(&uuid_mutex);
2350 up_write(&sb->s_umount);
788f20eb 2351
79787eaa
JM
2352 if (ret) /* transaction commit */
2353 return ret;
2354
2b82032c 2355 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2356 if (ret < 0)
2357 btrfs_error(root->fs_info, ret,
2358 "Failed to relocate sys chunks after "
2359 "device initialization. This can be fixed "
2360 "using the \"btrfs balance\" command.");
671415b7
MX
2361 trans = btrfs_attach_transaction(root);
2362 if (IS_ERR(trans)) {
2363 if (PTR_ERR(trans) == -ENOENT)
2364 return 0;
2365 return PTR_ERR(trans);
2366 }
2367 ret = btrfs_commit_transaction(trans, root);
2b82032c 2368 }
c9e9f97b 2369
5a1972bd
QW
2370 /* Update ctime/mtime for libblkid */
2371 update_dev_time(device_path);
2b82032c 2372 return ret;
79787eaa
JM
2373
2374error_trans:
79787eaa 2375 btrfs_end_transaction(trans, root);
606686ee 2376 rcu_string_free(device->name);
6c14a164 2377 btrfs_kobj_rm_device(root->fs_info->fs_devices, device);
79787eaa 2378 kfree(device);
2b82032c 2379error:
e525fd89 2380 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2381 if (seeding_dev) {
2382 mutex_unlock(&uuid_mutex);
2383 up_write(&sb->s_umount);
2384 }
c9e9f97b 2385 return ret;
788f20eb
CM
2386}
2387
e93c89c1 2388int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2389 struct btrfs_device *srcdev,
e93c89c1
SB
2390 struct btrfs_device **device_out)
2391{
2392 struct request_queue *q;
2393 struct btrfs_device *device;
2394 struct block_device *bdev;
2395 struct btrfs_fs_info *fs_info = root->fs_info;
2396 struct list_head *devices;
2397 struct rcu_string *name;
12bd2fc0 2398 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2399 int ret = 0;
2400
2401 *device_out = NULL;
1c43366d
MX
2402 if (fs_info->fs_devices->seeding) {
2403 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2404 return -EINVAL;
1c43366d 2405 }
e93c89c1
SB
2406
2407 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2408 fs_info->bdev_holder);
1c43366d
MX
2409 if (IS_ERR(bdev)) {
2410 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2411 return PTR_ERR(bdev);
1c43366d 2412 }
e93c89c1
SB
2413
2414 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2415
2416 devices = &fs_info->fs_devices->devices;
2417 list_for_each_entry(device, devices, dev_list) {
2418 if (device->bdev == bdev) {
1c43366d 2419 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2420 ret = -EEXIST;
2421 goto error;
2422 }
2423 }
2424
1c43366d 2425
7cc8e58d
MX
2426 if (i_size_read(bdev->bd_inode) <
2427 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2428 btrfs_err(fs_info, "target device is smaller than source device!");
2429 ret = -EINVAL;
2430 goto error;
2431 }
2432
2433
12bd2fc0
ID
2434 device = btrfs_alloc_device(NULL, &devid, NULL);
2435 if (IS_ERR(device)) {
2436 ret = PTR_ERR(device);
e93c89c1
SB
2437 goto error;
2438 }
2439
2440 name = rcu_string_strdup(device_path, GFP_NOFS);
2441 if (!name) {
2442 kfree(device);
2443 ret = -ENOMEM;
2444 goto error;
2445 }
2446 rcu_assign_pointer(device->name, name);
2447
2448 q = bdev_get_queue(bdev);
2449 if (blk_queue_discard(q))
2450 device->can_discard = 1;
2451 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2452 device->writeable = 1;
e93c89c1
SB
2453 device->generation = 0;
2454 device->io_width = root->sectorsize;
2455 device->io_align = root->sectorsize;
2456 device->sector_size = root->sectorsize;
7cc8e58d
MX
2457 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2458 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2459 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2460 ASSERT(list_empty(&srcdev->resized_list));
2461 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2462 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2463 device->dev_root = fs_info->dev_root;
2464 device->bdev = bdev;
2465 device->in_fs_metadata = 1;
2466 device->is_tgtdev_for_dev_replace = 1;
2467 device->mode = FMODE_EXCL;
27087f37 2468 device->dev_stats_valid = 1;
e93c89c1
SB
2469 set_blocksize(device->bdev, 4096);
2470 device->fs_devices = fs_info->fs_devices;
2471 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2472 fs_info->fs_devices->num_devices++;
2473 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2474 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2475
2476 *device_out = device;
2477 return ret;
2478
2479error:
2480 blkdev_put(bdev, FMODE_EXCL);
2481 return ret;
2482}
2483
2484void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2485 struct btrfs_device *tgtdev)
2486{
2487 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2488 tgtdev->io_width = fs_info->dev_root->sectorsize;
2489 tgtdev->io_align = fs_info->dev_root->sectorsize;
2490 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2491 tgtdev->dev_root = fs_info->dev_root;
2492 tgtdev->in_fs_metadata = 1;
2493}
2494
d397712b
CM
2495static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2496 struct btrfs_device *device)
0b86a832
CM
2497{
2498 int ret;
2499 struct btrfs_path *path;
2500 struct btrfs_root *root;
2501 struct btrfs_dev_item *dev_item;
2502 struct extent_buffer *leaf;
2503 struct btrfs_key key;
2504
2505 root = device->dev_root->fs_info->chunk_root;
2506
2507 path = btrfs_alloc_path();
2508 if (!path)
2509 return -ENOMEM;
2510
2511 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2512 key.type = BTRFS_DEV_ITEM_KEY;
2513 key.offset = device->devid;
2514
2515 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2516 if (ret < 0)
2517 goto out;
2518
2519 if (ret > 0) {
2520 ret = -ENOENT;
2521 goto out;
2522 }
2523
2524 leaf = path->nodes[0];
2525 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2526
2527 btrfs_set_device_id(leaf, dev_item, device->devid);
2528 btrfs_set_device_type(leaf, dev_item, device->type);
2529 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2530 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2531 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2532 btrfs_set_device_total_bytes(leaf, dev_item,
2533 btrfs_device_get_disk_total_bytes(device));
2534 btrfs_set_device_bytes_used(leaf, dev_item,
2535 btrfs_device_get_bytes_used(device));
0b86a832
CM
2536 btrfs_mark_buffer_dirty(leaf);
2537
2538out:
2539 btrfs_free_path(path);
2540 return ret;
2541}
2542
2196d6e8 2543int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2544 struct btrfs_device *device, u64 new_size)
2545{
2546 struct btrfs_super_block *super_copy =
6c41761f 2547 device->dev_root->fs_info->super_copy;
935e5cc9 2548 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2549 u64 old_total;
2550 u64 diff;
8f18cf13 2551
2b82032c
YZ
2552 if (!device->writeable)
2553 return -EACCES;
2196d6e8
MX
2554
2555 lock_chunks(device->dev_root);
2556 old_total = btrfs_super_total_bytes(super_copy);
2557 diff = new_size - device->total_bytes;
2558
63a212ab 2559 if (new_size <= device->total_bytes ||
2196d6e8
MX
2560 device->is_tgtdev_for_dev_replace) {
2561 unlock_chunks(device->dev_root);
2b82032c 2562 return -EINVAL;
2196d6e8 2563 }
2b82032c 2564
935e5cc9 2565 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2566
8f18cf13 2567 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2568 device->fs_devices->total_rw_bytes += diff;
2569
7cc8e58d
MX
2570 btrfs_device_set_total_bytes(device, new_size);
2571 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2572 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2573 if (list_empty(&device->resized_list))
2574 list_add_tail(&device->resized_list,
2575 &fs_devices->resized_devices);
2196d6e8 2576 unlock_chunks(device->dev_root);
4184ea7f 2577
8f18cf13
CM
2578 return btrfs_update_device(trans, device);
2579}
2580
2581static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2582 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2583 u64 chunk_offset)
2584{
2585 int ret;
2586 struct btrfs_path *path;
2587 struct btrfs_key key;
2588
2589 root = root->fs_info->chunk_root;
2590 path = btrfs_alloc_path();
2591 if (!path)
2592 return -ENOMEM;
2593
2594 key.objectid = chunk_objectid;
2595 key.offset = chunk_offset;
2596 key.type = BTRFS_CHUNK_ITEM_KEY;
2597
2598 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2599 if (ret < 0)
2600 goto out;
2601 else if (ret > 0) { /* Logic error or corruption */
2602 btrfs_error(root->fs_info, -ENOENT,
2603 "Failed lookup while freeing chunk.");
2604 ret = -ENOENT;
2605 goto out;
2606 }
8f18cf13
CM
2607
2608 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2609 if (ret < 0)
2610 btrfs_error(root->fs_info, ret,
2611 "Failed to delete chunk item.");
2612out:
8f18cf13 2613 btrfs_free_path(path);
65a246c5 2614 return ret;
8f18cf13
CM
2615}
2616
b2950863 2617static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2618 chunk_offset)
2619{
6c41761f 2620 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2621 struct btrfs_disk_key *disk_key;
2622 struct btrfs_chunk *chunk;
2623 u8 *ptr;
2624 int ret = 0;
2625 u32 num_stripes;
2626 u32 array_size;
2627 u32 len = 0;
2628 u32 cur;
2629 struct btrfs_key key;
2630
2196d6e8 2631 lock_chunks(root);
8f18cf13
CM
2632 array_size = btrfs_super_sys_array_size(super_copy);
2633
2634 ptr = super_copy->sys_chunk_array;
2635 cur = 0;
2636
2637 while (cur < array_size) {
2638 disk_key = (struct btrfs_disk_key *)ptr;
2639 btrfs_disk_key_to_cpu(&key, disk_key);
2640
2641 len = sizeof(*disk_key);
2642
2643 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2644 chunk = (struct btrfs_chunk *)(ptr + len);
2645 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2646 len += btrfs_chunk_item_size(num_stripes);
2647 } else {
2648 ret = -EIO;
2649 break;
2650 }
2651 if (key.objectid == chunk_objectid &&
2652 key.offset == chunk_offset) {
2653 memmove(ptr, ptr + len, array_size - (cur + len));
2654 array_size -= len;
2655 btrfs_set_super_sys_array_size(super_copy, array_size);
2656 } else {
2657 ptr += len;
2658 cur += len;
2659 }
2660 }
2196d6e8 2661 unlock_chunks(root);
8f18cf13
CM
2662 return ret;
2663}
2664
47ab2a6c
JB
2665int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2666 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2667{
2668 struct extent_map_tree *em_tree;
8f18cf13 2669 struct extent_map *em;
47ab2a6c 2670 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2671 struct map_lookup *map;
2196d6e8 2672 u64 dev_extent_len = 0;
47ab2a6c 2673 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2674 int i, ret = 0;
8f18cf13 2675
47ab2a6c 2676 /* Just in case */
8f18cf13 2677 root = root->fs_info->chunk_root;
8f18cf13
CM
2678 em_tree = &root->fs_info->mapping_tree.map_tree;
2679
890871be 2680 read_lock(&em_tree->lock);
8f18cf13 2681 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2682 read_unlock(&em_tree->lock);
8f18cf13 2683
47ab2a6c
JB
2684 if (!em || em->start > chunk_offset ||
2685 em->start + em->len < chunk_offset) {
2686 /*
2687 * This is a logic error, but we don't want to just rely on the
2688 * user having built with ASSERT enabled, so if ASSERT doens't
2689 * do anything we still error out.
2690 */
2691 ASSERT(0);
2692 if (em)
2693 free_extent_map(em);
2694 return -EINVAL;
2695 }
8f18cf13 2696 map = (struct map_lookup *)em->bdev;
39c2d7fa 2697 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2698 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2699 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2700
2701 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2702 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2703 ret = btrfs_free_dev_extent(trans, device,
2704 map->stripes[i].physical,
2705 &dev_extent_len);
47ab2a6c
JB
2706 if (ret) {
2707 btrfs_abort_transaction(trans, root, ret);
2708 goto out;
2709 }
a061fc8d 2710
2196d6e8
MX
2711 if (device->bytes_used > 0) {
2712 lock_chunks(root);
2713 btrfs_device_set_bytes_used(device,
2714 device->bytes_used - dev_extent_len);
2715 spin_lock(&root->fs_info->free_chunk_lock);
2716 root->fs_info->free_chunk_space += dev_extent_len;
2717 spin_unlock(&root->fs_info->free_chunk_lock);
2718 btrfs_clear_space_info_full(root->fs_info);
2719 unlock_chunks(root);
2720 }
a061fc8d 2721
dfe25020
CM
2722 if (map->stripes[i].dev) {
2723 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2724 if (ret) {
2725 btrfs_abort_transaction(trans, root, ret);
2726 goto out;
2727 }
dfe25020 2728 }
8f18cf13 2729 }
a688a04a 2730 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2731 if (ret) {
2732 btrfs_abort_transaction(trans, root, ret);
2733 goto out;
2734 }
8f18cf13 2735
1abe9b8a 2736 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2737
8f18cf13
CM
2738 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2739 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2740 if (ret) {
2741 btrfs_abort_transaction(trans, root, ret);
2742 goto out;
2743 }
8f18cf13
CM
2744 }
2745
04216820 2746 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2747 if (ret) {
2748 btrfs_abort_transaction(trans, extent_root, ret);
2749 goto out;
2750 }
2b82032c 2751
47ab2a6c 2752out:
2b82032c
YZ
2753 /* once for us */
2754 free_extent_map(em);
47ab2a6c
JB
2755 return ret;
2756}
2b82032c 2757
47ab2a6c 2758static int btrfs_relocate_chunk(struct btrfs_root *root,
a688a04a
ZL
2759 u64 chunk_objectid,
2760 u64 chunk_offset)
47ab2a6c
JB
2761{
2762 struct btrfs_root *extent_root;
2763 struct btrfs_trans_handle *trans;
2764 int ret;
2b82032c 2765
47ab2a6c
JB
2766 root = root->fs_info->chunk_root;
2767 extent_root = root->fs_info->extent_root;
2768
67c5e7d4
FM
2769 /*
2770 * Prevent races with automatic removal of unused block groups.
2771 * After we relocate and before we remove the chunk with offset
2772 * chunk_offset, automatic removal of the block group can kick in,
2773 * resulting in a failure when calling btrfs_remove_chunk() below.
2774 *
2775 * Make sure to acquire this mutex before doing a tree search (dev
2776 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2777 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2778 * we release the path used to search the chunk/dev tree and before
2779 * the current task acquires this mutex and calls us.
2780 */
2781 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2782
47ab2a6c
JB
2783 ret = btrfs_can_relocate(extent_root, chunk_offset);
2784 if (ret)
2785 return -ENOSPC;
2786
2787 /* step one, relocate all the extents inside this chunk */
2788 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2789 if (ret)
2790 return ret;
2791
2792 trans = btrfs_start_transaction(root, 0);
2793 if (IS_ERR(trans)) {
2794 ret = PTR_ERR(trans);
2795 btrfs_std_error(root->fs_info, ret);
2796 return ret;
2797 }
2798
2799 /*
2800 * step two, delete the device extents and the
2801 * chunk tree entries
2802 */
2803 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2804 btrfs_end_transaction(trans, root);
47ab2a6c 2805 return ret;
2b82032c
YZ
2806}
2807
2808static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2809{
2810 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2811 struct btrfs_path *path;
2812 struct extent_buffer *leaf;
2813 struct btrfs_chunk *chunk;
2814 struct btrfs_key key;
2815 struct btrfs_key found_key;
2b82032c 2816 u64 chunk_type;
ba1bf481
JB
2817 bool retried = false;
2818 int failed = 0;
2b82032c
YZ
2819 int ret;
2820
2821 path = btrfs_alloc_path();
2822 if (!path)
2823 return -ENOMEM;
2824
ba1bf481 2825again:
2b82032c
YZ
2826 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2827 key.offset = (u64)-1;
2828 key.type = BTRFS_CHUNK_ITEM_KEY;
2829
2830 while (1) {
67c5e7d4 2831 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2832 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2833 if (ret < 0) {
2834 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2835 goto error;
67c5e7d4 2836 }
79787eaa 2837 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2838
2839 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2840 key.type);
67c5e7d4
FM
2841 if (ret)
2842 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2843 if (ret < 0)
2844 goto error;
2845 if (ret > 0)
2846 break;
1a40e23b 2847
2b82032c
YZ
2848 leaf = path->nodes[0];
2849 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2850
2b82032c
YZ
2851 chunk = btrfs_item_ptr(leaf, path->slots[0],
2852 struct btrfs_chunk);
2853 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2854 btrfs_release_path(path);
8f18cf13 2855
2b82032c 2856 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2857 ret = btrfs_relocate_chunk(chunk_root,
2b82032c
YZ
2858 found_key.objectid,
2859 found_key.offset);
ba1bf481
JB
2860 if (ret == -ENOSPC)
2861 failed++;
14586651
HS
2862 else
2863 BUG_ON(ret);
2b82032c 2864 }
67c5e7d4 2865 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2866
2b82032c
YZ
2867 if (found_key.offset == 0)
2868 break;
2869 key.offset = found_key.offset - 1;
2870 }
2871 ret = 0;
ba1bf481
JB
2872 if (failed && !retried) {
2873 failed = 0;
2874 retried = true;
2875 goto again;
fae7f21c 2876 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2877 ret = -ENOSPC;
2878 }
2b82032c
YZ
2879error:
2880 btrfs_free_path(path);
2881 return ret;
8f18cf13
CM
2882}
2883
0940ebf6
ID
2884static int insert_balance_item(struct btrfs_root *root,
2885 struct btrfs_balance_control *bctl)
2886{
2887 struct btrfs_trans_handle *trans;
2888 struct btrfs_balance_item *item;
2889 struct btrfs_disk_balance_args disk_bargs;
2890 struct btrfs_path *path;
2891 struct extent_buffer *leaf;
2892 struct btrfs_key key;
2893 int ret, err;
2894
2895 path = btrfs_alloc_path();
2896 if (!path)
2897 return -ENOMEM;
2898
2899 trans = btrfs_start_transaction(root, 0);
2900 if (IS_ERR(trans)) {
2901 btrfs_free_path(path);
2902 return PTR_ERR(trans);
2903 }
2904
2905 key.objectid = BTRFS_BALANCE_OBJECTID;
2906 key.type = BTRFS_BALANCE_ITEM_KEY;
2907 key.offset = 0;
2908
2909 ret = btrfs_insert_empty_item(trans, root, path, &key,
2910 sizeof(*item));
2911 if (ret)
2912 goto out;
2913
2914 leaf = path->nodes[0];
2915 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2916
2917 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2918
2919 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2920 btrfs_set_balance_data(leaf, item, &disk_bargs);
2921 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2922 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2923 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2924 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2925
2926 btrfs_set_balance_flags(leaf, item, bctl->flags);
2927
2928 btrfs_mark_buffer_dirty(leaf);
2929out:
2930 btrfs_free_path(path);
2931 err = btrfs_commit_transaction(trans, root);
2932 if (err && !ret)
2933 ret = err;
2934 return ret;
2935}
2936
2937static int del_balance_item(struct btrfs_root *root)
2938{
2939 struct btrfs_trans_handle *trans;
2940 struct btrfs_path *path;
2941 struct btrfs_key key;
2942 int ret, err;
2943
2944 path = btrfs_alloc_path();
2945 if (!path)
2946 return -ENOMEM;
2947
2948 trans = btrfs_start_transaction(root, 0);
2949 if (IS_ERR(trans)) {
2950 btrfs_free_path(path);
2951 return PTR_ERR(trans);
2952 }
2953
2954 key.objectid = BTRFS_BALANCE_OBJECTID;
2955 key.type = BTRFS_BALANCE_ITEM_KEY;
2956 key.offset = 0;
2957
2958 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2959 if (ret < 0)
2960 goto out;
2961 if (ret > 0) {
2962 ret = -ENOENT;
2963 goto out;
2964 }
2965
2966 ret = btrfs_del_item(trans, root, path);
2967out:
2968 btrfs_free_path(path);
2969 err = btrfs_commit_transaction(trans, root);
2970 if (err && !ret)
2971 ret = err;
2972 return ret;
2973}
2974
59641015
ID
2975/*
2976 * This is a heuristic used to reduce the number of chunks balanced on
2977 * resume after balance was interrupted.
2978 */
2979static void update_balance_args(struct btrfs_balance_control *bctl)
2980{
2981 /*
2982 * Turn on soft mode for chunk types that were being converted.
2983 */
2984 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2985 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2986 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2987 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2988 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2989 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2990
2991 /*
2992 * Turn on usage filter if is not already used. The idea is
2993 * that chunks that we have already balanced should be
2994 * reasonably full. Don't do it for chunks that are being
2995 * converted - that will keep us from relocating unconverted
2996 * (albeit full) chunks.
2997 */
2998 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2999 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3000 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3001 bctl->data.usage = 90;
3002 }
3003 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3004 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3005 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3006 bctl->sys.usage = 90;
3007 }
3008 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3009 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3010 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3011 bctl->meta.usage = 90;
3012 }
3013}
3014
c9e9f97b
ID
3015/*
3016 * Should be called with both balance and volume mutexes held to
3017 * serialize other volume operations (add_dev/rm_dev/resize) with
3018 * restriper. Same goes for unset_balance_control.
3019 */
3020static void set_balance_control(struct btrfs_balance_control *bctl)
3021{
3022 struct btrfs_fs_info *fs_info = bctl->fs_info;
3023
3024 BUG_ON(fs_info->balance_ctl);
3025
3026 spin_lock(&fs_info->balance_lock);
3027 fs_info->balance_ctl = bctl;
3028 spin_unlock(&fs_info->balance_lock);
3029}
3030
3031static void unset_balance_control(struct btrfs_fs_info *fs_info)
3032{
3033 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3034
3035 BUG_ON(!fs_info->balance_ctl);
3036
3037 spin_lock(&fs_info->balance_lock);
3038 fs_info->balance_ctl = NULL;
3039 spin_unlock(&fs_info->balance_lock);
3040
3041 kfree(bctl);
3042}
3043
ed25e9b2
ID
3044/*
3045 * Balance filters. Return 1 if chunk should be filtered out
3046 * (should not be balanced).
3047 */
899c81ea 3048static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3049 struct btrfs_balance_args *bargs)
3050{
899c81ea
ID
3051 chunk_type = chunk_to_extended(chunk_type) &
3052 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3053
899c81ea 3054 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3055 return 0;
3056
3057 return 1;
3058}
3059
5ce5b3c0
ID
3060static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3061 struct btrfs_balance_args *bargs)
3062{
3063 struct btrfs_block_group_cache *cache;
3064 u64 chunk_used, user_thresh;
3065 int ret = 1;
3066
3067 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3068 chunk_used = btrfs_block_group_used(&cache->item);
3069
a105bb88 3070 if (bargs->usage == 0)
3e39cea6 3071 user_thresh = 1;
a105bb88
ID
3072 else if (bargs->usage > 100)
3073 user_thresh = cache->key.offset;
3074 else
3075 user_thresh = div_factor_fine(cache->key.offset,
3076 bargs->usage);
3077
5ce5b3c0
ID
3078 if (chunk_used < user_thresh)
3079 ret = 0;
3080
3081 btrfs_put_block_group(cache);
3082 return ret;
3083}
3084
409d404b
ID
3085static int chunk_devid_filter(struct extent_buffer *leaf,
3086 struct btrfs_chunk *chunk,
3087 struct btrfs_balance_args *bargs)
3088{
3089 struct btrfs_stripe *stripe;
3090 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3091 int i;
3092
3093 for (i = 0; i < num_stripes; i++) {
3094 stripe = btrfs_stripe_nr(chunk, i);
3095 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3096 return 0;
3097 }
3098
3099 return 1;
3100}
3101
94e60d5a
ID
3102/* [pstart, pend) */
3103static int chunk_drange_filter(struct extent_buffer *leaf,
3104 struct btrfs_chunk *chunk,
3105 u64 chunk_offset,
3106 struct btrfs_balance_args *bargs)
3107{
3108 struct btrfs_stripe *stripe;
3109 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3110 u64 stripe_offset;
3111 u64 stripe_length;
3112 int factor;
3113 int i;
3114
3115 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3116 return 0;
3117
3118 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3119 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3120 factor = num_stripes / 2;
3121 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3122 factor = num_stripes - 1;
3123 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3124 factor = num_stripes - 2;
3125 } else {
3126 factor = num_stripes;
3127 }
94e60d5a
ID
3128
3129 for (i = 0; i < num_stripes; i++) {
3130 stripe = btrfs_stripe_nr(chunk, i);
3131 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3132 continue;
3133
3134 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3135 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3136 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3137
3138 if (stripe_offset < bargs->pend &&
3139 stripe_offset + stripe_length > bargs->pstart)
3140 return 0;
3141 }
3142
3143 return 1;
3144}
3145
ea67176a
ID
3146/* [vstart, vend) */
3147static int chunk_vrange_filter(struct extent_buffer *leaf,
3148 struct btrfs_chunk *chunk,
3149 u64 chunk_offset,
3150 struct btrfs_balance_args *bargs)
3151{
3152 if (chunk_offset < bargs->vend &&
3153 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3154 /* at least part of the chunk is inside this vrange */
3155 return 0;
3156
3157 return 1;
3158}
3159
899c81ea 3160static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3161 struct btrfs_balance_args *bargs)
3162{
3163 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3164 return 0;
3165
899c81ea
ID
3166 chunk_type = chunk_to_extended(chunk_type) &
3167 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3168
899c81ea 3169 if (bargs->target == chunk_type)
cfa4c961
ID
3170 return 1;
3171
3172 return 0;
3173}
3174
f43ffb60
ID
3175static int should_balance_chunk(struct btrfs_root *root,
3176 struct extent_buffer *leaf,
3177 struct btrfs_chunk *chunk, u64 chunk_offset)
3178{
3179 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3180 struct btrfs_balance_args *bargs = NULL;
3181 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3182
3183 /* type filter */
3184 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3185 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3186 return 0;
3187 }
3188
3189 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3190 bargs = &bctl->data;
3191 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3192 bargs = &bctl->sys;
3193 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3194 bargs = &bctl->meta;
3195
ed25e9b2
ID
3196 /* profiles filter */
3197 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3198 chunk_profiles_filter(chunk_type, bargs)) {
3199 return 0;
5ce5b3c0
ID
3200 }
3201
3202 /* usage filter */
3203 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3204 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3205 return 0;
409d404b
ID
3206 }
3207
3208 /* devid filter */
3209 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3210 chunk_devid_filter(leaf, chunk, bargs)) {
3211 return 0;
94e60d5a
ID
3212 }
3213
3214 /* drange filter, makes sense only with devid filter */
3215 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3216 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3217 return 0;
ea67176a
ID
3218 }
3219
3220 /* vrange filter */
3221 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3222 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3223 return 0;
ed25e9b2
ID
3224 }
3225
cfa4c961
ID
3226 /* soft profile changing mode */
3227 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3228 chunk_soft_convert_filter(chunk_type, bargs)) {
3229 return 0;
3230 }
3231
7d824b6f
DS
3232 /*
3233 * limited by count, must be the last filter
3234 */
3235 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3236 if (bargs->limit == 0)
3237 return 0;
3238 else
3239 bargs->limit--;
3240 }
3241
f43ffb60
ID
3242 return 1;
3243}
3244
c9e9f97b 3245static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3246{
19a39dce 3247 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3248 struct btrfs_root *chunk_root = fs_info->chunk_root;
3249 struct btrfs_root *dev_root = fs_info->dev_root;
3250 struct list_head *devices;
ec44a35c
CM
3251 struct btrfs_device *device;
3252 u64 old_size;
3253 u64 size_to_free;
f43ffb60 3254 struct btrfs_chunk *chunk;
ec44a35c
CM
3255 struct btrfs_path *path;
3256 struct btrfs_key key;
ec44a35c 3257 struct btrfs_key found_key;
c9e9f97b 3258 struct btrfs_trans_handle *trans;
f43ffb60
ID
3259 struct extent_buffer *leaf;
3260 int slot;
c9e9f97b
ID
3261 int ret;
3262 int enospc_errors = 0;
19a39dce 3263 bool counting = true;
7d824b6f
DS
3264 u64 limit_data = bctl->data.limit;
3265 u64 limit_meta = bctl->meta.limit;
3266 u64 limit_sys = bctl->sys.limit;
ec44a35c 3267
ec44a35c 3268 /* step one make some room on all the devices */
c9e9f97b 3269 devices = &fs_info->fs_devices->devices;
c6e30871 3270 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3271 old_size = btrfs_device_get_total_bytes(device);
ec44a35c
CM
3272 size_to_free = div_factor(old_size, 1);
3273 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 3274 if (!device->writeable ||
7cc8e58d
MX
3275 btrfs_device_get_total_bytes(device) -
3276 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3277 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3278 continue;
3279
3280 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3281 if (ret == -ENOSPC)
3282 break;
ec44a35c
CM
3283 BUG_ON(ret);
3284
a22285a6 3285 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3286 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3287
3288 ret = btrfs_grow_device(trans, device, old_size);
3289 BUG_ON(ret);
3290
3291 btrfs_end_transaction(trans, dev_root);
3292 }
3293
3294 /* step two, relocate all the chunks */
3295 path = btrfs_alloc_path();
17e9f796
MF
3296 if (!path) {
3297 ret = -ENOMEM;
3298 goto error;
3299 }
19a39dce
ID
3300
3301 /* zero out stat counters */
3302 spin_lock(&fs_info->balance_lock);
3303 memset(&bctl->stat, 0, sizeof(bctl->stat));
3304 spin_unlock(&fs_info->balance_lock);
3305again:
7d824b6f
DS
3306 if (!counting) {
3307 bctl->data.limit = limit_data;
3308 bctl->meta.limit = limit_meta;
3309 bctl->sys.limit = limit_sys;
3310 }
ec44a35c
CM
3311 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3312 key.offset = (u64)-1;
3313 key.type = BTRFS_CHUNK_ITEM_KEY;
3314
d397712b 3315 while (1) {
19a39dce 3316 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3317 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3318 ret = -ECANCELED;
3319 goto error;
3320 }
3321
67c5e7d4 3322 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3323 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3324 if (ret < 0) {
3325 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3326 goto error;
67c5e7d4 3327 }
ec44a35c
CM
3328
3329 /*
3330 * this shouldn't happen, it means the last relocate
3331 * failed
3332 */
3333 if (ret == 0)
c9e9f97b 3334 BUG(); /* FIXME break ? */
ec44a35c
CM
3335
3336 ret = btrfs_previous_item(chunk_root, path, 0,
3337 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3338 if (ret) {
67c5e7d4 3339 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3340 ret = 0;
ec44a35c 3341 break;
c9e9f97b 3342 }
7d9eb12c 3343
f43ffb60
ID
3344 leaf = path->nodes[0];
3345 slot = path->slots[0];
3346 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3347
67c5e7d4
FM
3348 if (found_key.objectid != key.objectid) {
3349 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3350 break;
67c5e7d4 3351 }
7d9eb12c 3352
f43ffb60
ID
3353 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3354
19a39dce
ID
3355 if (!counting) {
3356 spin_lock(&fs_info->balance_lock);
3357 bctl->stat.considered++;
3358 spin_unlock(&fs_info->balance_lock);
3359 }
3360
f43ffb60
ID
3361 ret = should_balance_chunk(chunk_root, leaf, chunk,
3362 found_key.offset);
b3b4aa74 3363 btrfs_release_path(path);
67c5e7d4
FM
3364 if (!ret) {
3365 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3366 goto loop;
67c5e7d4 3367 }
f43ffb60 3368
19a39dce 3369 if (counting) {
67c5e7d4 3370 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3371 spin_lock(&fs_info->balance_lock);
3372 bctl->stat.expected++;
3373 spin_unlock(&fs_info->balance_lock);
3374 goto loop;
3375 }
3376
ec44a35c 3377 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c
CM
3378 found_key.objectid,
3379 found_key.offset);
67c5e7d4 3380 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3381 if (ret && ret != -ENOSPC)
3382 goto error;
19a39dce 3383 if (ret == -ENOSPC) {
c9e9f97b 3384 enospc_errors++;
19a39dce
ID
3385 } else {
3386 spin_lock(&fs_info->balance_lock);
3387 bctl->stat.completed++;
3388 spin_unlock(&fs_info->balance_lock);
3389 }
f43ffb60 3390loop:
795a3321
ID
3391 if (found_key.offset == 0)
3392 break;
ba1bf481 3393 key.offset = found_key.offset - 1;
ec44a35c 3394 }
c9e9f97b 3395
19a39dce
ID
3396 if (counting) {
3397 btrfs_release_path(path);
3398 counting = false;
3399 goto again;
3400 }
ec44a35c
CM
3401error:
3402 btrfs_free_path(path);
c9e9f97b 3403 if (enospc_errors) {
efe120a0 3404 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3405 enospc_errors);
3406 if (!ret)
3407 ret = -ENOSPC;
3408 }
3409
ec44a35c
CM
3410 return ret;
3411}
3412
0c460c0d
ID
3413/**
3414 * alloc_profile_is_valid - see if a given profile is valid and reduced
3415 * @flags: profile to validate
3416 * @extended: if true @flags is treated as an extended profile
3417 */
3418static int alloc_profile_is_valid(u64 flags, int extended)
3419{
3420 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3421 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3422
3423 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3424
3425 /* 1) check that all other bits are zeroed */
3426 if (flags & ~mask)
3427 return 0;
3428
3429 /* 2) see if profile is reduced */
3430 if (flags == 0)
3431 return !extended; /* "0" is valid for usual profiles */
3432
3433 /* true if exactly one bit set */
3434 return (flags & (flags - 1)) == 0;
3435}
3436
837d5b6e
ID
3437static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3438{
a7e99c69
ID
3439 /* cancel requested || normal exit path */
3440 return atomic_read(&fs_info->balance_cancel_req) ||
3441 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3442 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3443}
3444
c9e9f97b
ID
3445static void __cancel_balance(struct btrfs_fs_info *fs_info)
3446{
0940ebf6
ID
3447 int ret;
3448
c9e9f97b 3449 unset_balance_control(fs_info);
0940ebf6 3450 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3451 if (ret)
3452 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3453
3454 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3455}
3456
c9e9f97b
ID
3457/*
3458 * Should be called with both balance and volume mutexes held
3459 */
3460int btrfs_balance(struct btrfs_balance_control *bctl,
3461 struct btrfs_ioctl_balance_args *bargs)
3462{
3463 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3464 u64 allowed;
e4837f8f 3465 int mixed = 0;
c9e9f97b 3466 int ret;
8dabb742 3467 u64 num_devices;
de98ced9 3468 unsigned seq;
c9e9f97b 3469
837d5b6e 3470 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3471 atomic_read(&fs_info->balance_pause_req) ||
3472 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3473 ret = -EINVAL;
3474 goto out;
3475 }
3476
e4837f8f
ID
3477 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3478 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3479 mixed = 1;
3480
f43ffb60
ID
3481 /*
3482 * In case of mixed groups both data and meta should be picked,
3483 * and identical options should be given for both of them.
3484 */
e4837f8f
ID
3485 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3486 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3487 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3488 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3489 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3490 btrfs_err(fs_info, "with mixed groups data and "
3491 "metadata balance options must be the same");
f43ffb60
ID
3492 ret = -EINVAL;
3493 goto out;
3494 }
3495 }
3496
8dabb742
SB
3497 num_devices = fs_info->fs_devices->num_devices;
3498 btrfs_dev_replace_lock(&fs_info->dev_replace);
3499 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3500 BUG_ON(num_devices < 1);
3501 num_devices--;
3502 }
3503 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3504 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3505 if (num_devices == 1)
e4d8ec0f 3506 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3507 else if (num_devices > 1)
e4d8ec0f 3508 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3509 if (num_devices > 2)
3510 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3511 if (num_devices > 3)
3512 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3513 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3514 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3515 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3516 (bctl->data.target & ~allowed))) {
efe120a0
FH
3517 btrfs_err(fs_info, "unable to start balance with target "
3518 "data profile %llu",
c1c9ff7c 3519 bctl->data.target);
e4d8ec0f
ID
3520 ret = -EINVAL;
3521 goto out;
3522 }
6728b198
ID
3523 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3524 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3525 (bctl->meta.target & ~allowed))) {
efe120a0
FH
3526 btrfs_err(fs_info,
3527 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3528 bctl->meta.target);
e4d8ec0f
ID
3529 ret = -EINVAL;
3530 goto out;
3531 }
6728b198
ID
3532 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3533 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3534 (bctl->sys.target & ~allowed))) {
efe120a0
FH
3535 btrfs_err(fs_info,
3536 "unable to start balance with target system profile %llu",
c1c9ff7c 3537 bctl->sys.target);
e4d8ec0f
ID
3538 ret = -EINVAL;
3539 goto out;
3540 }
3541
e4837f8f
ID
3542 /* allow dup'ed data chunks only in mixed mode */
3543 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3544 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
efe120a0 3545 btrfs_err(fs_info, "dup for data is not allowed");
e4d8ec0f
ID
3546 ret = -EINVAL;
3547 goto out;
3548 }
3549
3550 /* allow to reduce meta or sys integrity only if force set */
3551 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3552 BTRFS_BLOCK_GROUP_RAID10 |
3553 BTRFS_BLOCK_GROUP_RAID5 |
3554 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3555 do {
3556 seq = read_seqbegin(&fs_info->profiles_lock);
3557
3558 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3559 (fs_info->avail_system_alloc_bits & allowed) &&
3560 !(bctl->sys.target & allowed)) ||
3561 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3562 (fs_info->avail_metadata_alloc_bits & allowed) &&
3563 !(bctl->meta.target & allowed))) {
3564 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3565 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3566 } else {
efe120a0
FH
3567 btrfs_err(fs_info, "balance will reduce metadata "
3568 "integrity, use force if you want this");
de98ced9
MX
3569 ret = -EINVAL;
3570 goto out;
3571 }
e4d8ec0f 3572 }
de98ced9 3573 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3574
5af3e8cc
SB
3575 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3576 int num_tolerated_disk_barrier_failures;
3577 u64 target = bctl->sys.target;
3578
3579 num_tolerated_disk_barrier_failures =
3580 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3581 if (num_tolerated_disk_barrier_failures > 0 &&
3582 (target &
3583 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3584 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3585 num_tolerated_disk_barrier_failures = 0;
3586 else if (num_tolerated_disk_barrier_failures > 1 &&
3587 (target &
3588 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3589 num_tolerated_disk_barrier_failures = 1;
3590
3591 fs_info->num_tolerated_disk_barrier_failures =
3592 num_tolerated_disk_barrier_failures;
3593 }
3594
0940ebf6 3595 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3596 if (ret && ret != -EEXIST)
0940ebf6
ID
3597 goto out;
3598
59641015
ID
3599 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3600 BUG_ON(ret == -EEXIST);
3601 set_balance_control(bctl);
3602 } else {
3603 BUG_ON(ret != -EEXIST);
3604 spin_lock(&fs_info->balance_lock);
3605 update_balance_args(bctl);
3606 spin_unlock(&fs_info->balance_lock);
3607 }
c9e9f97b 3608
837d5b6e 3609 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3610 mutex_unlock(&fs_info->balance_mutex);
3611
3612 ret = __btrfs_balance(fs_info);
3613
3614 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3615 atomic_dec(&fs_info->balance_running);
c9e9f97b 3616
bf023ecf
ID
3617 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3618 fs_info->num_tolerated_disk_barrier_failures =
3619 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3620 }
3621
c9e9f97b
ID
3622 if (bargs) {
3623 memset(bargs, 0, sizeof(*bargs));
19a39dce 3624 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3625 }
3626
3a01aa7a
ID
3627 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3628 balance_need_close(fs_info)) {
3629 __cancel_balance(fs_info);
3630 }
3631
837d5b6e 3632 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3633
3634 return ret;
3635out:
59641015
ID
3636 if (bctl->flags & BTRFS_BALANCE_RESUME)
3637 __cancel_balance(fs_info);
ed0fb78f 3638 else {
59641015 3639 kfree(bctl);
ed0fb78f
ID
3640 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3641 }
59641015
ID
3642 return ret;
3643}
3644
3645static int balance_kthread(void *data)
3646{
2b6ba629 3647 struct btrfs_fs_info *fs_info = data;
9555c6c1 3648 int ret = 0;
59641015
ID
3649
3650 mutex_lock(&fs_info->volume_mutex);
3651 mutex_lock(&fs_info->balance_mutex);
3652
2b6ba629 3653 if (fs_info->balance_ctl) {
efe120a0 3654 btrfs_info(fs_info, "continuing balance");
2b6ba629 3655 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3656 }
59641015
ID
3657
3658 mutex_unlock(&fs_info->balance_mutex);
3659 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3660
59641015
ID
3661 return ret;
3662}
3663
2b6ba629
ID
3664int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3665{
3666 struct task_struct *tsk;
3667
3668 spin_lock(&fs_info->balance_lock);
3669 if (!fs_info->balance_ctl) {
3670 spin_unlock(&fs_info->balance_lock);
3671 return 0;
3672 }
3673 spin_unlock(&fs_info->balance_lock);
3674
3675 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3676 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3677 return 0;
3678 }
3679
3680 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3681 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3682}
3683
68310a5e 3684int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3685{
59641015
ID
3686 struct btrfs_balance_control *bctl;
3687 struct btrfs_balance_item *item;
3688 struct btrfs_disk_balance_args disk_bargs;
3689 struct btrfs_path *path;
3690 struct extent_buffer *leaf;
3691 struct btrfs_key key;
3692 int ret;
3693
3694 path = btrfs_alloc_path();
3695 if (!path)
3696 return -ENOMEM;
3697
59641015
ID
3698 key.objectid = BTRFS_BALANCE_OBJECTID;
3699 key.type = BTRFS_BALANCE_ITEM_KEY;
3700 key.offset = 0;
3701
68310a5e 3702 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3703 if (ret < 0)
68310a5e 3704 goto out;
59641015
ID
3705 if (ret > 0) { /* ret = -ENOENT; */
3706 ret = 0;
68310a5e
ID
3707 goto out;
3708 }
3709
3710 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3711 if (!bctl) {
3712 ret = -ENOMEM;
3713 goto out;
59641015
ID
3714 }
3715
3716 leaf = path->nodes[0];
3717 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3718
68310a5e
ID
3719 bctl->fs_info = fs_info;
3720 bctl->flags = btrfs_balance_flags(leaf, item);
3721 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3722
3723 btrfs_balance_data(leaf, item, &disk_bargs);
3724 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3725 btrfs_balance_meta(leaf, item, &disk_bargs);
3726 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3727 btrfs_balance_sys(leaf, item, &disk_bargs);
3728 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3729
ed0fb78f
ID
3730 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3731
68310a5e
ID
3732 mutex_lock(&fs_info->volume_mutex);
3733 mutex_lock(&fs_info->balance_mutex);
59641015 3734
68310a5e
ID
3735 set_balance_control(bctl);
3736
3737 mutex_unlock(&fs_info->balance_mutex);
3738 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3739out:
3740 btrfs_free_path(path);
ec44a35c
CM
3741 return ret;
3742}
3743
837d5b6e
ID
3744int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3745{
3746 int ret = 0;
3747
3748 mutex_lock(&fs_info->balance_mutex);
3749 if (!fs_info->balance_ctl) {
3750 mutex_unlock(&fs_info->balance_mutex);
3751 return -ENOTCONN;
3752 }
3753
3754 if (atomic_read(&fs_info->balance_running)) {
3755 atomic_inc(&fs_info->balance_pause_req);
3756 mutex_unlock(&fs_info->balance_mutex);
3757
3758 wait_event(fs_info->balance_wait_q,
3759 atomic_read(&fs_info->balance_running) == 0);
3760
3761 mutex_lock(&fs_info->balance_mutex);
3762 /* we are good with balance_ctl ripped off from under us */
3763 BUG_ON(atomic_read(&fs_info->balance_running));
3764 atomic_dec(&fs_info->balance_pause_req);
3765 } else {
3766 ret = -ENOTCONN;
3767 }
3768
3769 mutex_unlock(&fs_info->balance_mutex);
3770 return ret;
3771}
3772
a7e99c69
ID
3773int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3774{
e649e587
ID
3775 if (fs_info->sb->s_flags & MS_RDONLY)
3776 return -EROFS;
3777
a7e99c69
ID
3778 mutex_lock(&fs_info->balance_mutex);
3779 if (!fs_info->balance_ctl) {
3780 mutex_unlock(&fs_info->balance_mutex);
3781 return -ENOTCONN;
3782 }
3783
3784 atomic_inc(&fs_info->balance_cancel_req);
3785 /*
3786 * if we are running just wait and return, balance item is
3787 * deleted in btrfs_balance in this case
3788 */
3789 if (atomic_read(&fs_info->balance_running)) {
3790 mutex_unlock(&fs_info->balance_mutex);
3791 wait_event(fs_info->balance_wait_q,
3792 atomic_read(&fs_info->balance_running) == 0);
3793 mutex_lock(&fs_info->balance_mutex);
3794 } else {
3795 /* __cancel_balance needs volume_mutex */
3796 mutex_unlock(&fs_info->balance_mutex);
3797 mutex_lock(&fs_info->volume_mutex);
3798 mutex_lock(&fs_info->balance_mutex);
3799
3800 if (fs_info->balance_ctl)
3801 __cancel_balance(fs_info);
3802
3803 mutex_unlock(&fs_info->volume_mutex);
3804 }
3805
3806 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3807 atomic_dec(&fs_info->balance_cancel_req);
3808 mutex_unlock(&fs_info->balance_mutex);
3809 return 0;
3810}
3811
803b2f54
SB
3812static int btrfs_uuid_scan_kthread(void *data)
3813{
3814 struct btrfs_fs_info *fs_info = data;
3815 struct btrfs_root *root = fs_info->tree_root;
3816 struct btrfs_key key;
3817 struct btrfs_key max_key;
3818 struct btrfs_path *path = NULL;
3819 int ret = 0;
3820 struct extent_buffer *eb;
3821 int slot;
3822 struct btrfs_root_item root_item;
3823 u32 item_size;
f45388f3 3824 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3825
3826 path = btrfs_alloc_path();
3827 if (!path) {
3828 ret = -ENOMEM;
3829 goto out;
3830 }
3831
3832 key.objectid = 0;
3833 key.type = BTRFS_ROOT_ITEM_KEY;
3834 key.offset = 0;
3835
3836 max_key.objectid = (u64)-1;
3837 max_key.type = BTRFS_ROOT_ITEM_KEY;
3838 max_key.offset = (u64)-1;
3839
803b2f54 3840 while (1) {
6174d3cb 3841 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
3842 if (ret) {
3843 if (ret > 0)
3844 ret = 0;
3845 break;
3846 }
3847
3848 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3849 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3850 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3851 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3852 goto skip;
3853
3854 eb = path->nodes[0];
3855 slot = path->slots[0];
3856 item_size = btrfs_item_size_nr(eb, slot);
3857 if (item_size < sizeof(root_item))
3858 goto skip;
3859
803b2f54
SB
3860 read_extent_buffer(eb, &root_item,
3861 btrfs_item_ptr_offset(eb, slot),
3862 (int)sizeof(root_item));
3863 if (btrfs_root_refs(&root_item) == 0)
3864 goto skip;
f45388f3
FDBM
3865
3866 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3867 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3868 if (trans)
3869 goto update_tree;
3870
3871 btrfs_release_path(path);
803b2f54
SB
3872 /*
3873 * 1 - subvol uuid item
3874 * 1 - received_subvol uuid item
3875 */
3876 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3877 if (IS_ERR(trans)) {
3878 ret = PTR_ERR(trans);
3879 break;
3880 }
f45388f3
FDBM
3881 continue;
3882 } else {
3883 goto skip;
3884 }
3885update_tree:
3886 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3887 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3888 root_item.uuid,
3889 BTRFS_UUID_KEY_SUBVOL,
3890 key.objectid);
3891 if (ret < 0) {
efe120a0 3892 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3893 ret);
803b2f54
SB
3894 break;
3895 }
3896 }
3897
3898 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3899 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3900 root_item.received_uuid,
3901 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3902 key.objectid);
3903 if (ret < 0) {
efe120a0 3904 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 3905 ret);
803b2f54
SB
3906 break;
3907 }
3908 }
3909
f45388f3 3910skip:
803b2f54
SB
3911 if (trans) {
3912 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3913 trans = NULL;
803b2f54
SB
3914 if (ret)
3915 break;
3916 }
3917
803b2f54
SB
3918 btrfs_release_path(path);
3919 if (key.offset < (u64)-1) {
3920 key.offset++;
3921 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3922 key.offset = 0;
3923 key.type = BTRFS_ROOT_ITEM_KEY;
3924 } else if (key.objectid < (u64)-1) {
3925 key.offset = 0;
3926 key.type = BTRFS_ROOT_ITEM_KEY;
3927 key.objectid++;
3928 } else {
3929 break;
3930 }
3931 cond_resched();
3932 }
3933
3934out:
3935 btrfs_free_path(path);
f45388f3
FDBM
3936 if (trans && !IS_ERR(trans))
3937 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 3938 if (ret)
efe120a0 3939 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
3940 else
3941 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3942 up(&fs_info->uuid_tree_rescan_sem);
3943 return 0;
3944}
3945
70f80175
SB
3946/*
3947 * Callback for btrfs_uuid_tree_iterate().
3948 * returns:
3949 * 0 check succeeded, the entry is not outdated.
3950 * < 0 if an error occured.
3951 * > 0 if the check failed, which means the caller shall remove the entry.
3952 */
3953static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3954 u8 *uuid, u8 type, u64 subid)
3955{
3956 struct btrfs_key key;
3957 int ret = 0;
3958 struct btrfs_root *subvol_root;
3959
3960 if (type != BTRFS_UUID_KEY_SUBVOL &&
3961 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3962 goto out;
3963
3964 key.objectid = subid;
3965 key.type = BTRFS_ROOT_ITEM_KEY;
3966 key.offset = (u64)-1;
3967 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3968 if (IS_ERR(subvol_root)) {
3969 ret = PTR_ERR(subvol_root);
3970 if (ret == -ENOENT)
3971 ret = 1;
3972 goto out;
3973 }
3974
3975 switch (type) {
3976 case BTRFS_UUID_KEY_SUBVOL:
3977 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3978 ret = 1;
3979 break;
3980 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3981 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3982 BTRFS_UUID_SIZE))
3983 ret = 1;
3984 break;
3985 }
3986
3987out:
3988 return ret;
3989}
3990
3991static int btrfs_uuid_rescan_kthread(void *data)
3992{
3993 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3994 int ret;
3995
3996 /*
3997 * 1st step is to iterate through the existing UUID tree and
3998 * to delete all entries that contain outdated data.
3999 * 2nd step is to add all missing entries to the UUID tree.
4000 */
4001 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4002 if (ret < 0) {
efe120a0 4003 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4004 up(&fs_info->uuid_tree_rescan_sem);
4005 return ret;
4006 }
4007 return btrfs_uuid_scan_kthread(data);
4008}
4009
f7a81ea4
SB
4010int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4011{
4012 struct btrfs_trans_handle *trans;
4013 struct btrfs_root *tree_root = fs_info->tree_root;
4014 struct btrfs_root *uuid_root;
803b2f54
SB
4015 struct task_struct *task;
4016 int ret;
f7a81ea4
SB
4017
4018 /*
4019 * 1 - root node
4020 * 1 - root item
4021 */
4022 trans = btrfs_start_transaction(tree_root, 2);
4023 if (IS_ERR(trans))
4024 return PTR_ERR(trans);
4025
4026 uuid_root = btrfs_create_tree(trans, fs_info,
4027 BTRFS_UUID_TREE_OBJECTID);
4028 if (IS_ERR(uuid_root)) {
6d13f549
DS
4029 ret = PTR_ERR(uuid_root);
4030 btrfs_abort_transaction(trans, tree_root, ret);
4031 return ret;
f7a81ea4
SB
4032 }
4033
4034 fs_info->uuid_root = uuid_root;
4035
803b2f54
SB
4036 ret = btrfs_commit_transaction(trans, tree_root);
4037 if (ret)
4038 return ret;
4039
4040 down(&fs_info->uuid_tree_rescan_sem);
4041 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4042 if (IS_ERR(task)) {
70f80175 4043 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4044 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4045 up(&fs_info->uuid_tree_rescan_sem);
4046 return PTR_ERR(task);
4047 }
4048
4049 return 0;
f7a81ea4 4050}
803b2f54 4051
70f80175
SB
4052int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4053{
4054 struct task_struct *task;
4055
4056 down(&fs_info->uuid_tree_rescan_sem);
4057 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4058 if (IS_ERR(task)) {
4059 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4060 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4061 up(&fs_info->uuid_tree_rescan_sem);
4062 return PTR_ERR(task);
4063 }
4064
4065 return 0;
4066}
4067
8f18cf13
CM
4068/*
4069 * shrinking a device means finding all of the device extents past
4070 * the new size, and then following the back refs to the chunks.
4071 * The chunk relocation code actually frees the device extent
4072 */
4073int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4074{
4075 struct btrfs_trans_handle *trans;
4076 struct btrfs_root *root = device->dev_root;
4077 struct btrfs_dev_extent *dev_extent = NULL;
4078 struct btrfs_path *path;
4079 u64 length;
8f18cf13
CM
4080 u64 chunk_objectid;
4081 u64 chunk_offset;
4082 int ret;
4083 int slot;
ba1bf481
JB
4084 int failed = 0;
4085 bool retried = false;
53e489bc 4086 bool checked_pending_chunks = false;
8f18cf13
CM
4087 struct extent_buffer *l;
4088 struct btrfs_key key;
6c41761f 4089 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4090 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4091 u64 old_size = btrfs_device_get_total_bytes(device);
4092 u64 diff = old_size - new_size;
8f18cf13 4093
63a212ab
SB
4094 if (device->is_tgtdev_for_dev_replace)
4095 return -EINVAL;
4096
8f18cf13
CM
4097 path = btrfs_alloc_path();
4098 if (!path)
4099 return -ENOMEM;
4100
8f18cf13
CM
4101 path->reada = 2;
4102
7d9eb12c
CM
4103 lock_chunks(root);
4104
7cc8e58d 4105 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4106 if (device->writeable) {
2b82032c 4107 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4108 spin_lock(&root->fs_info->free_chunk_lock);
4109 root->fs_info->free_chunk_space -= diff;
4110 spin_unlock(&root->fs_info->free_chunk_lock);
4111 }
7d9eb12c 4112 unlock_chunks(root);
8f18cf13 4113
ba1bf481 4114again:
8f18cf13
CM
4115 key.objectid = device->devid;
4116 key.offset = (u64)-1;
4117 key.type = BTRFS_DEV_EXTENT_KEY;
4118
213e64da 4119 do {
67c5e7d4 4120 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4122 if (ret < 0) {
4123 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4124 goto done;
67c5e7d4 4125 }
8f18cf13
CM
4126
4127 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4128 if (ret)
4129 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4130 if (ret < 0)
4131 goto done;
4132 if (ret) {
4133 ret = 0;
b3b4aa74 4134 btrfs_release_path(path);
bf1fb512 4135 break;
8f18cf13
CM
4136 }
4137
4138 l = path->nodes[0];
4139 slot = path->slots[0];
4140 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4141
ba1bf481 4142 if (key.objectid != device->devid) {
67c5e7d4 4143 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4144 btrfs_release_path(path);
bf1fb512 4145 break;
ba1bf481 4146 }
8f18cf13
CM
4147
4148 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4149 length = btrfs_dev_extent_length(l, dev_extent);
4150
ba1bf481 4151 if (key.offset + length <= new_size) {
67c5e7d4 4152 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4153 btrfs_release_path(path);
d6397bae 4154 break;
ba1bf481 4155 }
8f18cf13 4156
8f18cf13
CM
4157 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
4158 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4159 btrfs_release_path(path);
8f18cf13 4160
a688a04a 4161 ret = btrfs_relocate_chunk(root, chunk_objectid, chunk_offset);
67c5e7d4 4162 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4163 if (ret && ret != -ENOSPC)
8f18cf13 4164 goto done;
ba1bf481
JB
4165 if (ret == -ENOSPC)
4166 failed++;
213e64da 4167 } while (key.offset-- > 0);
ba1bf481
JB
4168
4169 if (failed && !retried) {
4170 failed = 0;
4171 retried = true;
4172 goto again;
4173 } else if (failed && retried) {
4174 ret = -ENOSPC;
ba1bf481 4175 goto done;
8f18cf13
CM
4176 }
4177
d6397bae 4178 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4179 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4180 if (IS_ERR(trans)) {
4181 ret = PTR_ERR(trans);
4182 goto done;
4183 }
4184
d6397bae 4185 lock_chunks(root);
53e489bc
FM
4186
4187 /*
4188 * We checked in the above loop all device extents that were already in
4189 * the device tree. However before we have updated the device's
4190 * total_bytes to the new size, we might have had chunk allocations that
4191 * have not complete yet (new block groups attached to transaction
4192 * handles), and therefore their device extents were not yet in the
4193 * device tree and we missed them in the loop above. So if we have any
4194 * pending chunk using a device extent that overlaps the device range
4195 * that we can not use anymore, commit the current transaction and
4196 * repeat the search on the device tree - this way we guarantee we will
4197 * not have chunks using device extents that end beyond 'new_size'.
4198 */
4199 if (!checked_pending_chunks) {
4200 u64 start = new_size;
4201 u64 len = old_size - new_size;
4202
4203 if (contains_pending_extent(trans, device, &start, len)) {
4204 unlock_chunks(root);
4205 checked_pending_chunks = true;
4206 failed = 0;
4207 retried = false;
4208 ret = btrfs_commit_transaction(trans, root);
4209 if (ret)
4210 goto done;
4211 goto again;
4212 }
4213 }
4214
7cc8e58d 4215 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4216 if (list_empty(&device->resized_list))
4217 list_add_tail(&device->resized_list,
4218 &root->fs_info->fs_devices->resized_devices);
d6397bae 4219
d6397bae
CB
4220 WARN_ON(diff > old_total);
4221 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4222 unlock_chunks(root);
2196d6e8
MX
4223
4224 /* Now btrfs_update_device() will change the on-disk size. */
4225 ret = btrfs_update_device(trans, device);
d6397bae 4226 btrfs_end_transaction(trans, root);
8f18cf13
CM
4227done:
4228 btrfs_free_path(path);
53e489bc
FM
4229 if (ret) {
4230 lock_chunks(root);
4231 btrfs_device_set_total_bytes(device, old_size);
4232 if (device->writeable)
4233 device->fs_devices->total_rw_bytes += diff;
4234 spin_lock(&root->fs_info->free_chunk_lock);
4235 root->fs_info->free_chunk_space += diff;
4236 spin_unlock(&root->fs_info->free_chunk_lock);
4237 unlock_chunks(root);
4238 }
8f18cf13
CM
4239 return ret;
4240}
4241
125ccb0a 4242static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4243 struct btrfs_key *key,
4244 struct btrfs_chunk *chunk, int item_size)
4245{
6c41761f 4246 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4247 struct btrfs_disk_key disk_key;
4248 u32 array_size;
4249 u8 *ptr;
4250
fe48a5c0 4251 lock_chunks(root);
0b86a832 4252 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4253 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4254 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4255 unlock_chunks(root);
0b86a832 4256 return -EFBIG;
fe48a5c0 4257 }
0b86a832
CM
4258
4259 ptr = super_copy->sys_chunk_array + array_size;
4260 btrfs_cpu_key_to_disk(&disk_key, key);
4261 memcpy(ptr, &disk_key, sizeof(disk_key));
4262 ptr += sizeof(disk_key);
4263 memcpy(ptr, chunk, item_size);
4264 item_size += sizeof(disk_key);
4265 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4266 unlock_chunks(root);
4267
0b86a832
CM
4268 return 0;
4269}
4270
73c5de00
AJ
4271/*
4272 * sort the devices in descending order by max_avail, total_avail
4273 */
4274static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4275{
73c5de00
AJ
4276 const struct btrfs_device_info *di_a = a;
4277 const struct btrfs_device_info *di_b = b;
9b3f68b9 4278
73c5de00 4279 if (di_a->max_avail > di_b->max_avail)
b2117a39 4280 return -1;
73c5de00 4281 if (di_a->max_avail < di_b->max_avail)
b2117a39 4282 return 1;
73c5de00
AJ
4283 if (di_a->total_avail > di_b->total_avail)
4284 return -1;
4285 if (di_a->total_avail < di_b->total_avail)
4286 return 1;
4287 return 0;
b2117a39 4288}
0b86a832 4289
e8c9f186 4290static const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
4291 [BTRFS_RAID_RAID10] = {
4292 .sub_stripes = 2,
4293 .dev_stripes = 1,
4294 .devs_max = 0, /* 0 == as many as possible */
4295 .devs_min = 4,
4296 .devs_increment = 2,
4297 .ncopies = 2,
4298 },
4299 [BTRFS_RAID_RAID1] = {
4300 .sub_stripes = 1,
4301 .dev_stripes = 1,
4302 .devs_max = 2,
4303 .devs_min = 2,
4304 .devs_increment = 2,
4305 .ncopies = 2,
4306 },
4307 [BTRFS_RAID_DUP] = {
4308 .sub_stripes = 1,
4309 .dev_stripes = 2,
4310 .devs_max = 1,
4311 .devs_min = 1,
4312 .devs_increment = 1,
4313 .ncopies = 2,
4314 },
4315 [BTRFS_RAID_RAID0] = {
4316 .sub_stripes = 1,
4317 .dev_stripes = 1,
4318 .devs_max = 0,
4319 .devs_min = 2,
4320 .devs_increment = 1,
4321 .ncopies = 1,
4322 },
4323 [BTRFS_RAID_SINGLE] = {
4324 .sub_stripes = 1,
4325 .dev_stripes = 1,
4326 .devs_max = 1,
4327 .devs_min = 1,
4328 .devs_increment = 1,
4329 .ncopies = 1,
4330 },
e942f883
CM
4331 [BTRFS_RAID_RAID5] = {
4332 .sub_stripes = 1,
4333 .dev_stripes = 1,
4334 .devs_max = 0,
4335 .devs_min = 2,
4336 .devs_increment = 1,
4337 .ncopies = 2,
4338 },
4339 [BTRFS_RAID_RAID6] = {
4340 .sub_stripes = 1,
4341 .dev_stripes = 1,
4342 .devs_max = 0,
4343 .devs_min = 3,
4344 .devs_increment = 1,
4345 .ncopies = 3,
4346 },
31e50229
LB
4347};
4348
53b381b3
DW
4349static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4350{
4351 /* TODO allow them to set a preferred stripe size */
4352 return 64 * 1024;
4353}
4354
4355static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4356{
ffe2d203 4357 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4358 return;
4359
ceda0864 4360 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4361}
4362
23f8f9b7
GH
4363#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4364 - sizeof(struct btrfs_item) \
4365 - sizeof(struct btrfs_chunk)) \
4366 / sizeof(struct btrfs_stripe) + 1)
4367
4368#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4369 - 2 * sizeof(struct btrfs_disk_key) \
4370 - 2 * sizeof(struct btrfs_chunk)) \
4371 / sizeof(struct btrfs_stripe) + 1)
4372
73c5de00 4373static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4374 struct btrfs_root *extent_root, u64 start,
4375 u64 type)
b2117a39 4376{
73c5de00
AJ
4377 struct btrfs_fs_info *info = extent_root->fs_info;
4378 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4379 struct list_head *cur;
4380 struct map_lookup *map = NULL;
4381 struct extent_map_tree *em_tree;
4382 struct extent_map *em;
4383 struct btrfs_device_info *devices_info = NULL;
4384 u64 total_avail;
4385 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4386 int data_stripes; /* number of stripes that count for
4387 block group size */
73c5de00
AJ
4388 int sub_stripes; /* sub_stripes info for map */
4389 int dev_stripes; /* stripes per dev */
4390 int devs_max; /* max devs to use */
4391 int devs_min; /* min devs needed */
4392 int devs_increment; /* ndevs has to be a multiple of this */
4393 int ncopies; /* how many copies to data has */
4394 int ret;
4395 u64 max_stripe_size;
4396 u64 max_chunk_size;
4397 u64 stripe_size;
4398 u64 num_bytes;
53b381b3 4399 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4400 int ndevs;
4401 int i;
4402 int j;
31e50229 4403 int index;
593060d7 4404
0c460c0d 4405 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4406
73c5de00
AJ
4407 if (list_empty(&fs_devices->alloc_list))
4408 return -ENOSPC;
b2117a39 4409
31e50229 4410 index = __get_raid_index(type);
73c5de00 4411
31e50229
LB
4412 sub_stripes = btrfs_raid_array[index].sub_stripes;
4413 dev_stripes = btrfs_raid_array[index].dev_stripes;
4414 devs_max = btrfs_raid_array[index].devs_max;
4415 devs_min = btrfs_raid_array[index].devs_min;
4416 devs_increment = btrfs_raid_array[index].devs_increment;
4417 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4418
9b3f68b9 4419 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4420 max_stripe_size = 1024 * 1024 * 1024;
4421 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4422 if (!devs_max)
4423 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4424 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4425 /* for larger filesystems, use larger metadata chunks */
4426 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4427 max_stripe_size = 1024 * 1024 * 1024;
4428 else
4429 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4430 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4431 if (!devs_max)
4432 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4433 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4434 max_stripe_size = 32 * 1024 * 1024;
73c5de00 4435 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4436 if (!devs_max)
4437 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4438 } else {
351fd353 4439 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4440 type);
4441 BUG_ON(1);
9b3f68b9
CM
4442 }
4443
2b82032c
YZ
4444 /* we don't want a chunk larger than 10% of writeable space */
4445 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4446 max_chunk_size);
9b3f68b9 4447
31e818fe 4448 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4449 GFP_NOFS);
4450 if (!devices_info)
4451 return -ENOMEM;
0cad8a11 4452
73c5de00 4453 cur = fs_devices->alloc_list.next;
9b3f68b9 4454
9f680ce0 4455 /*
73c5de00
AJ
4456 * in the first pass through the devices list, we gather information
4457 * about the available holes on each device.
9f680ce0 4458 */
73c5de00
AJ
4459 ndevs = 0;
4460 while (cur != &fs_devices->alloc_list) {
4461 struct btrfs_device *device;
4462 u64 max_avail;
4463 u64 dev_offset;
b2117a39 4464
73c5de00 4465 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4466
73c5de00 4467 cur = cur->next;
b2117a39 4468
73c5de00 4469 if (!device->writeable) {
31b1a2bd 4470 WARN(1, KERN_ERR
efe120a0 4471 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4472 continue;
4473 }
b2117a39 4474
63a212ab
SB
4475 if (!device->in_fs_metadata ||
4476 device->is_tgtdev_for_dev_replace)
73c5de00 4477 continue;
b2117a39 4478
73c5de00
AJ
4479 if (device->total_bytes > device->bytes_used)
4480 total_avail = device->total_bytes - device->bytes_used;
4481 else
4482 total_avail = 0;
38c01b96 4483
4484 /* If there is no space on this device, skip it. */
4485 if (total_avail == 0)
4486 continue;
b2117a39 4487
6df9a95e 4488 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4489 max_stripe_size * dev_stripes,
4490 &dev_offset, &max_avail);
4491 if (ret && ret != -ENOSPC)
4492 goto error;
b2117a39 4493
73c5de00
AJ
4494 if (ret == 0)
4495 max_avail = max_stripe_size * dev_stripes;
b2117a39 4496
73c5de00
AJ
4497 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4498 continue;
b2117a39 4499
063d006f
ES
4500 if (ndevs == fs_devices->rw_devices) {
4501 WARN(1, "%s: found more than %llu devices\n",
4502 __func__, fs_devices->rw_devices);
4503 break;
4504 }
73c5de00
AJ
4505 devices_info[ndevs].dev_offset = dev_offset;
4506 devices_info[ndevs].max_avail = max_avail;
4507 devices_info[ndevs].total_avail = total_avail;
4508 devices_info[ndevs].dev = device;
4509 ++ndevs;
4510 }
b2117a39 4511
73c5de00
AJ
4512 /*
4513 * now sort the devices by hole size / available space
4514 */
4515 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4516 btrfs_cmp_device_info, NULL);
b2117a39 4517
73c5de00
AJ
4518 /* round down to number of usable stripes */
4519 ndevs -= ndevs % devs_increment;
b2117a39 4520
73c5de00
AJ
4521 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4522 ret = -ENOSPC;
4523 goto error;
b2117a39 4524 }
9f680ce0 4525
73c5de00
AJ
4526 if (devs_max && ndevs > devs_max)
4527 ndevs = devs_max;
4528 /*
4529 * the primary goal is to maximize the number of stripes, so use as many
4530 * devices as possible, even if the stripes are not maximum sized.
4531 */
4532 stripe_size = devices_info[ndevs-1].max_avail;
4533 num_stripes = ndevs * dev_stripes;
b2117a39 4534
53b381b3
DW
4535 /*
4536 * this will have to be fixed for RAID1 and RAID10 over
4537 * more drives
4538 */
4539 data_stripes = num_stripes / ncopies;
4540
53b381b3
DW
4541 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4542 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4543 btrfs_super_stripesize(info->super_copy));
4544 data_stripes = num_stripes - 1;
4545 }
4546 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4547 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4548 btrfs_super_stripesize(info->super_copy));
4549 data_stripes = num_stripes - 2;
4550 }
86db2578
CM
4551
4552 /*
4553 * Use the number of data stripes to figure out how big this chunk
4554 * is really going to be in terms of logical address space,
4555 * and compare that answer with the max chunk size
4556 */
4557 if (stripe_size * data_stripes > max_chunk_size) {
4558 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4559
4560 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4561
4562 /* bump the answer up to a 16MB boundary */
4563 stripe_size = (stripe_size + mask) & ~mask;
4564
4565 /* but don't go higher than the limits we found
4566 * while searching for free extents
4567 */
4568 if (stripe_size > devices_info[ndevs-1].max_avail)
4569 stripe_size = devices_info[ndevs-1].max_avail;
4570 }
4571
b8b93add 4572 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4573
4574 /* align to BTRFS_STRIPE_LEN */
b8b93add 4575 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4576 stripe_size *= raid_stripe_len;
b2117a39
MX
4577
4578 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4579 if (!map) {
4580 ret = -ENOMEM;
4581 goto error;
4582 }
4583 map->num_stripes = num_stripes;
9b3f68b9 4584
73c5de00
AJ
4585 for (i = 0; i < ndevs; ++i) {
4586 for (j = 0; j < dev_stripes; ++j) {
4587 int s = i * dev_stripes + j;
4588 map->stripes[s].dev = devices_info[i].dev;
4589 map->stripes[s].physical = devices_info[i].dev_offset +
4590 j * stripe_size;
6324fbf3 4591 }
6324fbf3 4592 }
2b82032c 4593 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4594 map->stripe_len = raid_stripe_len;
4595 map->io_align = raid_stripe_len;
4596 map->io_width = raid_stripe_len;
2b82032c 4597 map->type = type;
2b82032c 4598 map->sub_stripes = sub_stripes;
0b86a832 4599
53b381b3 4600 num_bytes = stripe_size * data_stripes;
0b86a832 4601
73c5de00 4602 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4603
172ddd60 4604 em = alloc_extent_map();
2b82032c 4605 if (!em) {
298a8f9c 4606 kfree(map);
b2117a39
MX
4607 ret = -ENOMEM;
4608 goto error;
593060d7 4609 }
298a8f9c 4610 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
2b82032c
YZ
4611 em->bdev = (struct block_device *)map;
4612 em->start = start;
73c5de00 4613 em->len = num_bytes;
2b82032c
YZ
4614 em->block_start = 0;
4615 em->block_len = em->len;
6df9a95e 4616 em->orig_block_len = stripe_size;
593060d7 4617
2b82032c 4618 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4619 write_lock(&em_tree->lock);
09a2a8f9 4620 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4621 if (!ret) {
4622 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4623 atomic_inc(&em->refs);
4624 }
890871be 4625 write_unlock(&em_tree->lock);
0f5d42b2
JB
4626 if (ret) {
4627 free_extent_map(em);
1dd4602f 4628 goto error;
0f5d42b2 4629 }
0b86a832 4630
04487488
JB
4631 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4632 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4633 start, num_bytes);
6df9a95e
JB
4634 if (ret)
4635 goto error_del_extent;
2b82032c 4636
7cc8e58d
MX
4637 for (i = 0; i < map->num_stripes; i++) {
4638 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4639 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4640 }
43530c46 4641
1c116187
MX
4642 spin_lock(&extent_root->fs_info->free_chunk_lock);
4643 extent_root->fs_info->free_chunk_space -= (stripe_size *
4644 map->num_stripes);
4645 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4646
0f5d42b2 4647 free_extent_map(em);
53b381b3
DW
4648 check_raid56_incompat_flag(extent_root->fs_info, type);
4649
b2117a39 4650 kfree(devices_info);
2b82032c 4651 return 0;
b2117a39 4652
6df9a95e 4653error_del_extent:
0f5d42b2
JB
4654 write_lock(&em_tree->lock);
4655 remove_extent_mapping(em_tree, em);
4656 write_unlock(&em_tree->lock);
4657
4658 /* One for our allocation */
4659 free_extent_map(em);
4660 /* One for the tree reference */
4661 free_extent_map(em);
495e64f4
FM
4662 /* One for the pending_chunks list reference */
4663 free_extent_map(em);
b2117a39 4664error:
b2117a39
MX
4665 kfree(devices_info);
4666 return ret;
2b82032c
YZ
4667}
4668
6df9a95e 4669int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4670 struct btrfs_root *extent_root,
6df9a95e 4671 u64 chunk_offset, u64 chunk_size)
2b82032c 4672{
2b82032c
YZ
4673 struct btrfs_key key;
4674 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4675 struct btrfs_device *device;
4676 struct btrfs_chunk *chunk;
4677 struct btrfs_stripe *stripe;
6df9a95e
JB
4678 struct extent_map_tree *em_tree;
4679 struct extent_map *em;
4680 struct map_lookup *map;
4681 size_t item_size;
4682 u64 dev_offset;
4683 u64 stripe_size;
4684 int i = 0;
2b82032c
YZ
4685 int ret;
4686
6df9a95e
JB
4687 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4688 read_lock(&em_tree->lock);
4689 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4690 read_unlock(&em_tree->lock);
4691
4692 if (!em) {
4693 btrfs_crit(extent_root->fs_info, "unable to find logical "
4694 "%Lu len %Lu", chunk_offset, chunk_size);
4695 return -EINVAL;
4696 }
4697
4698 if (em->start != chunk_offset || em->len != chunk_size) {
4699 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4700 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4701 chunk_size, em->start, em->len);
4702 free_extent_map(em);
4703 return -EINVAL;
4704 }
4705
4706 map = (struct map_lookup *)em->bdev;
4707 item_size = btrfs_chunk_item_size(map->num_stripes);
4708 stripe_size = em->orig_block_len;
4709
2b82032c 4710 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4711 if (!chunk) {
4712 ret = -ENOMEM;
4713 goto out;
4714 }
4715
4716 for (i = 0; i < map->num_stripes; i++) {
4717 device = map->stripes[i].dev;
4718 dev_offset = map->stripes[i].physical;
2b82032c 4719
0b86a832 4720 ret = btrfs_update_device(trans, device);
3acd3953 4721 if (ret)
6df9a95e
JB
4722 goto out;
4723 ret = btrfs_alloc_dev_extent(trans, device,
4724 chunk_root->root_key.objectid,
4725 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4726 chunk_offset, dev_offset,
4727 stripe_size);
4728 if (ret)
4729 goto out;
2b82032c
YZ
4730 }
4731
2b82032c 4732 stripe = &chunk->stripe;
6df9a95e
JB
4733 for (i = 0; i < map->num_stripes; i++) {
4734 device = map->stripes[i].dev;
4735 dev_offset = map->stripes[i].physical;
0b86a832 4736
e17cade2
CM
4737 btrfs_set_stack_stripe_devid(stripe, device->devid);
4738 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4739 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4740 stripe++;
0b86a832
CM
4741 }
4742
2b82032c 4743 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4744 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4745 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4746 btrfs_set_stack_chunk_type(chunk, map->type);
4747 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4748 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4749 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4750 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4751 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4752
2b82032c
YZ
4753 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4754 key.type = BTRFS_CHUNK_ITEM_KEY;
4755 key.offset = chunk_offset;
0b86a832 4756
2b82032c 4757 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4758 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4759 /*
4760 * TODO: Cleanup of inserted chunk root in case of
4761 * failure.
4762 */
125ccb0a 4763 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4764 item_size);
8f18cf13 4765 }
1abe9b8a 4766
6df9a95e 4767out:
0b86a832 4768 kfree(chunk);
6df9a95e 4769 free_extent_map(em);
4ed1d16e 4770 return ret;
2b82032c 4771}
0b86a832 4772
2b82032c
YZ
4773/*
4774 * Chunk allocation falls into two parts. The first part does works
4775 * that make the new allocated chunk useable, but not do any operation
4776 * that modifies the chunk tree. The second part does the works that
4777 * require modifying the chunk tree. This division is important for the
4778 * bootstrap process of adding storage to a seed btrfs.
4779 */
4780int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4781 struct btrfs_root *extent_root, u64 type)
4782{
4783 u64 chunk_offset;
2b82032c 4784
a9629596 4785 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4786 chunk_offset = find_next_chunk(extent_root->fs_info);
4787 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4788}
4789
d397712b 4790static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4791 struct btrfs_root *root,
4792 struct btrfs_device *device)
4793{
4794 u64 chunk_offset;
4795 u64 sys_chunk_offset;
2b82032c 4796 u64 alloc_profile;
2b82032c
YZ
4797 struct btrfs_fs_info *fs_info = root->fs_info;
4798 struct btrfs_root *extent_root = fs_info->extent_root;
4799 int ret;
4800
6df9a95e 4801 chunk_offset = find_next_chunk(fs_info);
de98ced9 4802 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4803 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4804 alloc_profile);
79787eaa
JM
4805 if (ret)
4806 return ret;
2b82032c 4807
6df9a95e 4808 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4809 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4810 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4811 alloc_profile);
79787eaa 4812 return ret;
2b82032c
YZ
4813}
4814
d20983b4
MX
4815static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4816{
4817 int max_errors;
4818
4819 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4820 BTRFS_BLOCK_GROUP_RAID10 |
4821 BTRFS_BLOCK_GROUP_RAID5 |
4822 BTRFS_BLOCK_GROUP_DUP)) {
4823 max_errors = 1;
4824 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4825 max_errors = 2;
4826 } else {
4827 max_errors = 0;
005d6427 4828 }
2b82032c 4829
d20983b4 4830 return max_errors;
2b82032c
YZ
4831}
4832
4833int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4834{
4835 struct extent_map *em;
4836 struct map_lookup *map;
4837 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4838 int readonly = 0;
d20983b4 4839 int miss_ndevs = 0;
2b82032c
YZ
4840 int i;
4841
890871be 4842 read_lock(&map_tree->map_tree.lock);
2b82032c 4843 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4844 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4845 if (!em)
4846 return 1;
4847
4848 map = (struct map_lookup *)em->bdev;
4849 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4850 if (map->stripes[i].dev->missing) {
4851 miss_ndevs++;
4852 continue;
4853 }
4854
2b82032c
YZ
4855 if (!map->stripes[i].dev->writeable) {
4856 readonly = 1;
d20983b4 4857 goto end;
2b82032c
YZ
4858 }
4859 }
d20983b4
MX
4860
4861 /*
4862 * If the number of missing devices is larger than max errors,
4863 * we can not write the data into that chunk successfully, so
4864 * set it readonly.
4865 */
4866 if (miss_ndevs > btrfs_chunk_max_errors(map))
4867 readonly = 1;
4868end:
0b86a832 4869 free_extent_map(em);
2b82032c 4870 return readonly;
0b86a832
CM
4871}
4872
4873void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4874{
a8067e02 4875 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4876}
4877
4878void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4879{
4880 struct extent_map *em;
4881
d397712b 4882 while (1) {
890871be 4883 write_lock(&tree->map_tree.lock);
0b86a832
CM
4884 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4885 if (em)
4886 remove_extent_mapping(&tree->map_tree, em);
890871be 4887 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4888 if (!em)
4889 break;
0b86a832
CM
4890 /* once for us */
4891 free_extent_map(em);
4892 /* once for the tree */
4893 free_extent_map(em);
4894 }
4895}
4896
5d964051 4897int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4898{
5d964051 4899 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4900 struct extent_map *em;
4901 struct map_lookup *map;
4902 struct extent_map_tree *em_tree = &map_tree->map_tree;
4903 int ret;
4904
890871be 4905 read_lock(&em_tree->lock);
f188591e 4906 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4907 read_unlock(&em_tree->lock);
f188591e 4908
fb7669b5
JB
4909 /*
4910 * We could return errors for these cases, but that could get ugly and
4911 * we'd probably do the same thing which is just not do anything else
4912 * and exit, so return 1 so the callers don't try to use other copies.
4913 */
4914 if (!em) {
351fd353 4915 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
4916 logical+len);
4917 return 1;
4918 }
4919
4920 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4921 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 4922 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 4923 em->start + em->len);
7d3d1744 4924 free_extent_map(em);
fb7669b5
JB
4925 return 1;
4926 }
4927
f188591e
CM
4928 map = (struct map_lookup *)em->bdev;
4929 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4930 ret = map->num_stripes;
321aecc6
CM
4931 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4932 ret = map->sub_stripes;
53b381b3
DW
4933 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4934 ret = 2;
4935 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4936 ret = 3;
f188591e
CM
4937 else
4938 ret = 1;
4939 free_extent_map(em);
ad6d620e
SB
4940
4941 btrfs_dev_replace_lock(&fs_info->dev_replace);
4942 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4943 ret++;
4944 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4945
f188591e
CM
4946 return ret;
4947}
4948
53b381b3
DW
4949unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4950 struct btrfs_mapping_tree *map_tree,
4951 u64 logical)
4952{
4953 struct extent_map *em;
4954 struct map_lookup *map;
4955 struct extent_map_tree *em_tree = &map_tree->map_tree;
4956 unsigned long len = root->sectorsize;
4957
4958 read_lock(&em_tree->lock);
4959 em = lookup_extent_mapping(em_tree, logical, len);
4960 read_unlock(&em_tree->lock);
4961 BUG_ON(!em);
4962
4963 BUG_ON(em->start > logical || em->start + em->len < logical);
4964 map = (struct map_lookup *)em->bdev;
ffe2d203 4965 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 4966 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
4967 free_extent_map(em);
4968 return len;
4969}
4970
4971int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4972 u64 logical, u64 len, int mirror_num)
4973{
4974 struct extent_map *em;
4975 struct map_lookup *map;
4976 struct extent_map_tree *em_tree = &map_tree->map_tree;
4977 int ret = 0;
4978
4979 read_lock(&em_tree->lock);
4980 em = lookup_extent_mapping(em_tree, logical, len);
4981 read_unlock(&em_tree->lock);
4982 BUG_ON(!em);
4983
4984 BUG_ON(em->start > logical || em->start + em->len < logical);
4985 map = (struct map_lookup *)em->bdev;
ffe2d203 4986 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
4987 ret = 1;
4988 free_extent_map(em);
4989 return ret;
4990}
4991
30d9861f
SB
4992static int find_live_mirror(struct btrfs_fs_info *fs_info,
4993 struct map_lookup *map, int first, int num,
4994 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4995{
4996 int i;
30d9861f
SB
4997 int tolerance;
4998 struct btrfs_device *srcdev;
4999
5000 if (dev_replace_is_ongoing &&
5001 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5002 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5003 srcdev = fs_info->dev_replace.srcdev;
5004 else
5005 srcdev = NULL;
5006
5007 /*
5008 * try to avoid the drive that is the source drive for a
5009 * dev-replace procedure, only choose it if no other non-missing
5010 * mirror is available
5011 */
5012 for (tolerance = 0; tolerance < 2; tolerance++) {
5013 if (map->stripes[optimal].dev->bdev &&
5014 (tolerance || map->stripes[optimal].dev != srcdev))
5015 return optimal;
5016 for (i = first; i < first + num; i++) {
5017 if (map->stripes[i].dev->bdev &&
5018 (tolerance || map->stripes[i].dev != srcdev))
5019 return i;
5020 }
dfe25020 5021 }
30d9861f 5022
dfe25020
CM
5023 /* we couldn't find one that doesn't fail. Just return something
5024 * and the io error handling code will clean up eventually
5025 */
5026 return optimal;
5027}
5028
53b381b3
DW
5029static inline int parity_smaller(u64 a, u64 b)
5030{
5031 return a > b;
5032}
5033
5034/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5035static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5036{
5037 struct btrfs_bio_stripe s;
5038 int i;
5039 u64 l;
5040 int again = 1;
5041
5042 while (again) {
5043 again = 0;
cc7539ed 5044 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5045 if (parity_smaller(bbio->raid_map[i],
5046 bbio->raid_map[i+1])) {
53b381b3 5047 s = bbio->stripes[i];
8e5cfb55 5048 l = bbio->raid_map[i];
53b381b3 5049 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5050 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5051 bbio->stripes[i+1] = s;
8e5cfb55 5052 bbio->raid_map[i+1] = l;
2c8cdd6e 5053
53b381b3
DW
5054 again = 1;
5055 }
5056 }
5057 }
5058}
5059
6e9606d2
ZL
5060static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5061{
5062 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5063 /* the size of the btrfs_bio */
6e9606d2 5064 sizeof(struct btrfs_bio) +
e57cf21e 5065 /* plus the variable array for the stripes */
6e9606d2 5066 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5067 /* plus the variable array for the tgt dev */
6e9606d2 5068 sizeof(int) * (real_stripes) +
e57cf21e
CM
5069 /*
5070 * plus the raid_map, which includes both the tgt dev
5071 * and the stripes
5072 */
5073 sizeof(u64) * (total_stripes),
6e9606d2
ZL
5074 GFP_NOFS);
5075 if (!bbio)
5076 return NULL;
5077
5078 atomic_set(&bbio->error, 0);
5079 atomic_set(&bbio->refs, 1);
5080
5081 return bbio;
5082}
5083
5084void btrfs_get_bbio(struct btrfs_bio *bbio)
5085{
5086 WARN_ON(!atomic_read(&bbio->refs));
5087 atomic_inc(&bbio->refs);
5088}
5089
5090void btrfs_put_bbio(struct btrfs_bio *bbio)
5091{
5092 if (!bbio)
5093 return;
5094 if (atomic_dec_and_test(&bbio->refs))
5095 kfree(bbio);
5096}
5097
3ec706c8 5098static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5099 u64 logical, u64 *length,
a1d3c478 5100 struct btrfs_bio **bbio_ret,
8e5cfb55 5101 int mirror_num, int need_raid_map)
0b86a832
CM
5102{
5103 struct extent_map *em;
5104 struct map_lookup *map;
3ec706c8 5105 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5106 struct extent_map_tree *em_tree = &map_tree->map_tree;
5107 u64 offset;
593060d7 5108 u64 stripe_offset;
fce3bb9a 5109 u64 stripe_end_offset;
593060d7 5110 u64 stripe_nr;
fce3bb9a
LD
5111 u64 stripe_nr_orig;
5112 u64 stripe_nr_end;
53b381b3 5113 u64 stripe_len;
9d644a62 5114 u32 stripe_index;
cea9e445 5115 int i;
de11cc12 5116 int ret = 0;
f2d8d74d 5117 int num_stripes;
a236aed1 5118 int max_errors = 0;
2c8cdd6e 5119 int tgtdev_indexes = 0;
a1d3c478 5120 struct btrfs_bio *bbio = NULL;
472262f3
SB
5121 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5122 int dev_replace_is_ongoing = 0;
5123 int num_alloc_stripes;
ad6d620e
SB
5124 int patch_the_first_stripe_for_dev_replace = 0;
5125 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5126 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5127
890871be 5128 read_lock(&em_tree->lock);
0b86a832 5129 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5130 read_unlock(&em_tree->lock);
f2d8d74d 5131
3b951516 5132 if (!em) {
c2cf52eb 5133 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5134 logical, *length);
9bb91873
JB
5135 return -EINVAL;
5136 }
5137
5138 if (em->start > logical || em->start + em->len < logical) {
5139 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5140 "found %Lu-%Lu", logical, em->start,
9bb91873 5141 em->start + em->len);
7d3d1744 5142 free_extent_map(em);
9bb91873 5143 return -EINVAL;
3b951516 5144 }
0b86a832 5145
0b86a832
CM
5146 map = (struct map_lookup *)em->bdev;
5147 offset = logical - em->start;
593060d7 5148
53b381b3 5149 stripe_len = map->stripe_len;
593060d7
CM
5150 stripe_nr = offset;
5151 /*
5152 * stripe_nr counts the total number of stripes we have to stride
5153 * to get to this block
5154 */
47c5713f 5155 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5156
53b381b3 5157 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5158 BUG_ON(offset < stripe_offset);
5159
5160 /* stripe_offset is the offset of this block in its stripe*/
5161 stripe_offset = offset - stripe_offset;
5162
53b381b3 5163 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5164 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5165 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5166 raid56_full_stripe_start = offset;
5167
5168 /* allow a write of a full stripe, but make sure we don't
5169 * allow straddling of stripes
5170 */
47c5713f
DS
5171 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5172 full_stripe_len);
53b381b3
DW
5173 raid56_full_stripe_start *= full_stripe_len;
5174 }
5175
5176 if (rw & REQ_DISCARD) {
5177 /* we don't discard raid56 yet */
ffe2d203 5178 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5179 ret = -EOPNOTSUPP;
5180 goto out;
5181 }
fce3bb9a 5182 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5183 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5184 u64 max_len;
5185 /* For writes to RAID[56], allow a full stripeset across all disks.
5186 For other RAID types and for RAID[56] reads, just allow a single
5187 stripe (on a single disk). */
ffe2d203 5188 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5189 (rw & REQ_WRITE)) {
5190 max_len = stripe_len * nr_data_stripes(map) -
5191 (offset - raid56_full_stripe_start);
5192 } else {
5193 /* we limit the length of each bio to what fits in a stripe */
5194 max_len = stripe_len - stripe_offset;
5195 }
5196 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5197 } else {
5198 *length = em->len - offset;
5199 }
f2d8d74d 5200
53b381b3
DW
5201 /* This is for when we're called from btrfs_merge_bio_hook() and all
5202 it cares about is the length */
a1d3c478 5203 if (!bbio_ret)
cea9e445
CM
5204 goto out;
5205
472262f3
SB
5206 btrfs_dev_replace_lock(dev_replace);
5207 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5208 if (!dev_replace_is_ongoing)
5209 btrfs_dev_replace_unlock(dev_replace);
5210
ad6d620e
SB
5211 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5212 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5213 dev_replace->tgtdev != NULL) {
5214 /*
5215 * in dev-replace case, for repair case (that's the only
5216 * case where the mirror is selected explicitly when
5217 * calling btrfs_map_block), blocks left of the left cursor
5218 * can also be read from the target drive.
5219 * For REQ_GET_READ_MIRRORS, the target drive is added as
5220 * the last one to the array of stripes. For READ, it also
5221 * needs to be supported using the same mirror number.
5222 * If the requested block is not left of the left cursor,
5223 * EIO is returned. This can happen because btrfs_num_copies()
5224 * returns one more in the dev-replace case.
5225 */
5226 u64 tmp_length = *length;
5227 struct btrfs_bio *tmp_bbio = NULL;
5228 int tmp_num_stripes;
5229 u64 srcdev_devid = dev_replace->srcdev->devid;
5230 int index_srcdev = 0;
5231 int found = 0;
5232 u64 physical_of_found = 0;
5233
5234 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5235 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5236 if (ret) {
5237 WARN_ON(tmp_bbio != NULL);
5238 goto out;
5239 }
5240
5241 tmp_num_stripes = tmp_bbio->num_stripes;
5242 if (mirror_num > tmp_num_stripes) {
5243 /*
5244 * REQ_GET_READ_MIRRORS does not contain this
5245 * mirror, that means that the requested area
5246 * is not left of the left cursor
5247 */
5248 ret = -EIO;
6e9606d2 5249 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5250 goto out;
5251 }
5252
5253 /*
5254 * process the rest of the function using the mirror_num
5255 * of the source drive. Therefore look it up first.
5256 * At the end, patch the device pointer to the one of the
5257 * target drive.
5258 */
5259 for (i = 0; i < tmp_num_stripes; i++) {
5260 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
5261 /*
5262 * In case of DUP, in order to keep it
5263 * simple, only add the mirror with the
5264 * lowest physical address
5265 */
5266 if (found &&
5267 physical_of_found <=
5268 tmp_bbio->stripes[i].physical)
5269 continue;
5270 index_srcdev = i;
5271 found = 1;
5272 physical_of_found =
5273 tmp_bbio->stripes[i].physical;
5274 }
5275 }
5276
5277 if (found) {
5278 mirror_num = index_srcdev + 1;
5279 patch_the_first_stripe_for_dev_replace = 1;
5280 physical_to_patch_in_first_stripe = physical_of_found;
5281 } else {
5282 WARN_ON(1);
5283 ret = -EIO;
6e9606d2 5284 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5285 goto out;
5286 }
5287
6e9606d2 5288 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5289 } else if (mirror_num > map->num_stripes) {
5290 mirror_num = 0;
5291 }
5292
f2d8d74d 5293 num_stripes = 1;
cea9e445 5294 stripe_index = 0;
fce3bb9a 5295 stripe_nr_orig = stripe_nr;
fda2832f 5296 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5297 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5298 stripe_end_offset = stripe_nr_end * map->stripe_len -
5299 (offset + *length);
53b381b3 5300
fce3bb9a
LD
5301 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5302 if (rw & REQ_DISCARD)
5303 num_stripes = min_t(u64, map->num_stripes,
5304 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5305 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5306 &stripe_index);
28e1cc7d
MX
5307 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5308 mirror_num = 1;
fce3bb9a 5309 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5310 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5311 num_stripes = map->num_stripes;
2fff734f 5312 else if (mirror_num)
f188591e 5313 stripe_index = mirror_num - 1;
dfe25020 5314 else {
30d9861f 5315 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5316 map->num_stripes,
30d9861f
SB
5317 current->pid % map->num_stripes,
5318 dev_replace_is_ongoing);
a1d3c478 5319 mirror_num = stripe_index + 1;
dfe25020 5320 }
2fff734f 5321
611f0e00 5322 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5323 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5324 num_stripes = map->num_stripes;
a1d3c478 5325 } else if (mirror_num) {
f188591e 5326 stripe_index = mirror_num - 1;
a1d3c478
JS
5327 } else {
5328 mirror_num = 1;
5329 }
2fff734f 5330
321aecc6 5331 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5332 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5333
47c5713f 5334 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5335 stripe_index *= map->sub_stripes;
5336
29a8d9a0 5337 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5338 num_stripes = map->sub_stripes;
fce3bb9a
LD
5339 else if (rw & REQ_DISCARD)
5340 num_stripes = min_t(u64, map->sub_stripes *
5341 (stripe_nr_end - stripe_nr_orig),
5342 map->num_stripes);
321aecc6
CM
5343 else if (mirror_num)
5344 stripe_index += mirror_num - 1;
dfe25020 5345 else {
3e74317a 5346 int old_stripe_index = stripe_index;
30d9861f
SB
5347 stripe_index = find_live_mirror(fs_info, map,
5348 stripe_index,
dfe25020 5349 map->sub_stripes, stripe_index +
30d9861f
SB
5350 current->pid % map->sub_stripes,
5351 dev_replace_is_ongoing);
3e74317a 5352 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5353 }
53b381b3 5354
ffe2d203 5355 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5356 if (need_raid_map &&
af8e2d1d
MX
5357 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5358 mirror_num > 1)) {
53b381b3 5359 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5360 stripe_nr = div_u64(raid56_full_stripe_start,
5361 stripe_len * nr_data_stripes(map));
53b381b3
DW
5362
5363 /* RAID[56] write or recovery. Return all stripes */
5364 num_stripes = map->num_stripes;
5365 max_errors = nr_parity_stripes(map);
5366
53b381b3
DW
5367 *length = map->stripe_len;
5368 stripe_index = 0;
5369 stripe_offset = 0;
5370 } else {
5371 /*
5372 * Mirror #0 or #1 means the original data block.
5373 * Mirror #2 is RAID5 parity block.
5374 * Mirror #3 is RAID6 Q block.
5375 */
47c5713f
DS
5376 stripe_nr = div_u64_rem(stripe_nr,
5377 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5378 if (mirror_num > 1)
5379 stripe_index = nr_data_stripes(map) +
5380 mirror_num - 2;
5381
5382 /* We distribute the parity blocks across stripes */
47c5713f
DS
5383 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5384 &stripe_index);
28e1cc7d
MX
5385 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5386 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5387 mirror_num = 1;
53b381b3 5388 }
8790d502
CM
5389 } else {
5390 /*
47c5713f
DS
5391 * after this, stripe_nr is the number of stripes on this
5392 * device we have to walk to find the data, and stripe_index is
5393 * the number of our device in the stripe array
8790d502 5394 */
47c5713f
DS
5395 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5396 &stripe_index);
a1d3c478 5397 mirror_num = stripe_index + 1;
8790d502 5398 }
593060d7 5399 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5400
472262f3 5401 num_alloc_stripes = num_stripes;
ad6d620e
SB
5402 if (dev_replace_is_ongoing) {
5403 if (rw & (REQ_WRITE | REQ_DISCARD))
5404 num_alloc_stripes <<= 1;
5405 if (rw & REQ_GET_READ_MIRRORS)
5406 num_alloc_stripes++;
2c8cdd6e 5407 tgtdev_indexes = num_stripes;
ad6d620e 5408 }
2c8cdd6e 5409
6e9606d2 5410 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5411 if (!bbio) {
5412 ret = -ENOMEM;
5413 goto out;
5414 }
2c8cdd6e
MX
5415 if (dev_replace_is_ongoing)
5416 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5417
8e5cfb55 5418 /* build raid_map */
ffe2d203 5419 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5420 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5421 mirror_num > 1)) {
5422 u64 tmp;
9d644a62 5423 unsigned rot;
8e5cfb55
ZL
5424
5425 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5426 sizeof(struct btrfs_bio_stripe) *
5427 num_alloc_stripes +
5428 sizeof(int) * tgtdev_indexes);
5429
5430 /* Work out the disk rotation on this stripe-set */
47c5713f 5431 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5432
5433 /* Fill in the logical address of each stripe */
5434 tmp = stripe_nr * nr_data_stripes(map);
5435 for (i = 0; i < nr_data_stripes(map); i++)
5436 bbio->raid_map[(i+rot) % num_stripes] =
5437 em->start + (tmp + i) * map->stripe_len;
5438
5439 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5440 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5441 bbio->raid_map[(i+rot+1) % num_stripes] =
5442 RAID6_Q_STRIPE;
5443 }
5444
fce3bb9a 5445 if (rw & REQ_DISCARD) {
9d644a62
DS
5446 u32 factor = 0;
5447 u32 sub_stripes = 0;
ec9ef7a1
LZ
5448 u64 stripes_per_dev = 0;
5449 u32 remaining_stripes = 0;
b89203f7 5450 u32 last_stripe = 0;
ec9ef7a1
LZ
5451
5452 if (map->type &
5453 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5454 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5455 sub_stripes = 1;
5456 else
5457 sub_stripes = map->sub_stripes;
5458
5459 factor = map->num_stripes / sub_stripes;
5460 stripes_per_dev = div_u64_rem(stripe_nr_end -
5461 stripe_nr_orig,
5462 factor,
5463 &remaining_stripes);
b89203f7
LB
5464 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5465 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5466 }
5467
fce3bb9a 5468 for (i = 0; i < num_stripes; i++) {
a1d3c478 5469 bbio->stripes[i].physical =
f2d8d74d
CM
5470 map->stripes[stripe_index].physical +
5471 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5472 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5473
ec9ef7a1
LZ
5474 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5475 BTRFS_BLOCK_GROUP_RAID10)) {
5476 bbio->stripes[i].length = stripes_per_dev *
5477 map->stripe_len;
b89203f7 5478
ec9ef7a1
LZ
5479 if (i / sub_stripes < remaining_stripes)
5480 bbio->stripes[i].length +=
5481 map->stripe_len;
b89203f7
LB
5482
5483 /*
5484 * Special for the first stripe and
5485 * the last stripe:
5486 *
5487 * |-------|...|-------|
5488 * |----------|
5489 * off end_off
5490 */
ec9ef7a1 5491 if (i < sub_stripes)
a1d3c478 5492 bbio->stripes[i].length -=
fce3bb9a 5493 stripe_offset;
b89203f7
LB
5494
5495 if (stripe_index >= last_stripe &&
5496 stripe_index <= (last_stripe +
5497 sub_stripes - 1))
a1d3c478 5498 bbio->stripes[i].length -=
fce3bb9a 5499 stripe_end_offset;
b89203f7 5500
ec9ef7a1
LZ
5501 if (i == sub_stripes - 1)
5502 stripe_offset = 0;
fce3bb9a 5503 } else
a1d3c478 5504 bbio->stripes[i].length = *length;
fce3bb9a
LD
5505
5506 stripe_index++;
5507 if (stripe_index == map->num_stripes) {
5508 /* This could only happen for RAID0/10 */
5509 stripe_index = 0;
5510 stripe_nr++;
5511 }
5512 }
5513 } else {
5514 for (i = 0; i < num_stripes; i++) {
a1d3c478 5515 bbio->stripes[i].physical =
212a17ab
LT
5516 map->stripes[stripe_index].physical +
5517 stripe_offset +
5518 stripe_nr * map->stripe_len;
a1d3c478 5519 bbio->stripes[i].dev =
212a17ab 5520 map->stripes[stripe_index].dev;
fce3bb9a 5521 stripe_index++;
f2d8d74d 5522 }
593060d7 5523 }
de11cc12 5524
d20983b4
MX
5525 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5526 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5527
8e5cfb55
ZL
5528 if (bbio->raid_map)
5529 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5530
2c8cdd6e 5531 tgtdev_indexes = 0;
472262f3
SB
5532 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5533 dev_replace->tgtdev != NULL) {
5534 int index_where_to_add;
5535 u64 srcdev_devid = dev_replace->srcdev->devid;
5536
5537 /*
5538 * duplicate the write operations while the dev replace
5539 * procedure is running. Since the copying of the old disk
5540 * to the new disk takes place at run time while the
5541 * filesystem is mounted writable, the regular write
5542 * operations to the old disk have to be duplicated to go
5543 * to the new disk as well.
5544 * Note that device->missing is handled by the caller, and
5545 * that the write to the old disk is already set up in the
5546 * stripes array.
5547 */
5548 index_where_to_add = num_stripes;
5549 for (i = 0; i < num_stripes; i++) {
5550 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5551 /* write to new disk, too */
5552 struct btrfs_bio_stripe *new =
5553 bbio->stripes + index_where_to_add;
5554 struct btrfs_bio_stripe *old =
5555 bbio->stripes + i;
5556
5557 new->physical = old->physical;
5558 new->length = old->length;
5559 new->dev = dev_replace->tgtdev;
2c8cdd6e 5560 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5561 index_where_to_add++;
5562 max_errors++;
2c8cdd6e 5563 tgtdev_indexes++;
472262f3
SB
5564 }
5565 }
5566 num_stripes = index_where_to_add;
ad6d620e
SB
5567 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5568 dev_replace->tgtdev != NULL) {
5569 u64 srcdev_devid = dev_replace->srcdev->devid;
5570 int index_srcdev = 0;
5571 int found = 0;
5572 u64 physical_of_found = 0;
5573
5574 /*
5575 * During the dev-replace procedure, the target drive can
5576 * also be used to read data in case it is needed to repair
5577 * a corrupt block elsewhere. This is possible if the
5578 * requested area is left of the left cursor. In this area,
5579 * the target drive is a full copy of the source drive.
5580 */
5581 for (i = 0; i < num_stripes; i++) {
5582 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5583 /*
5584 * In case of DUP, in order to keep it
5585 * simple, only add the mirror with the
5586 * lowest physical address
5587 */
5588 if (found &&
5589 physical_of_found <=
5590 bbio->stripes[i].physical)
5591 continue;
5592 index_srcdev = i;
5593 found = 1;
5594 physical_of_found = bbio->stripes[i].physical;
5595 }
5596 }
5597 if (found) {
258ece02 5598 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5599 dev_replace->cursor_left) {
5600 struct btrfs_bio_stripe *tgtdev_stripe =
5601 bbio->stripes + num_stripes;
5602
5603 tgtdev_stripe->physical = physical_of_found;
5604 tgtdev_stripe->length =
5605 bbio->stripes[index_srcdev].length;
5606 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5607 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5608
2c8cdd6e 5609 tgtdev_indexes++;
ad6d620e
SB
5610 num_stripes++;
5611 }
5612 }
472262f3
SB
5613 }
5614
de11cc12 5615 *bbio_ret = bbio;
10f11900 5616 bbio->map_type = map->type;
de11cc12
LZ
5617 bbio->num_stripes = num_stripes;
5618 bbio->max_errors = max_errors;
5619 bbio->mirror_num = mirror_num;
2c8cdd6e 5620 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5621
5622 /*
5623 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5624 * mirror_num == num_stripes + 1 && dev_replace target drive is
5625 * available as a mirror
5626 */
5627 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5628 WARN_ON(num_stripes > 1);
5629 bbio->stripes[0].dev = dev_replace->tgtdev;
5630 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5631 bbio->mirror_num = map->num_stripes + 1;
5632 }
cea9e445 5633out:
472262f3
SB
5634 if (dev_replace_is_ongoing)
5635 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5636 free_extent_map(em);
de11cc12 5637 return ret;
0b86a832
CM
5638}
5639
3ec706c8 5640int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5641 u64 logical, u64 *length,
a1d3c478 5642 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5643{
3ec706c8 5644 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5645 mirror_num, 0);
f2d8d74d
CM
5646}
5647
af8e2d1d
MX
5648/* For Scrub/replace */
5649int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5650 u64 logical, u64 *length,
5651 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5652 int need_raid_map)
af8e2d1d
MX
5653{
5654 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5655 mirror_num, need_raid_map);
af8e2d1d
MX
5656}
5657
a512bbf8
YZ
5658int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5659 u64 chunk_start, u64 physical, u64 devid,
5660 u64 **logical, int *naddrs, int *stripe_len)
5661{
5662 struct extent_map_tree *em_tree = &map_tree->map_tree;
5663 struct extent_map *em;
5664 struct map_lookup *map;
5665 u64 *buf;
5666 u64 bytenr;
5667 u64 length;
5668 u64 stripe_nr;
53b381b3 5669 u64 rmap_len;
a512bbf8
YZ
5670 int i, j, nr = 0;
5671
890871be 5672 read_lock(&em_tree->lock);
a512bbf8 5673 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5674 read_unlock(&em_tree->lock);
a512bbf8 5675
835d974f 5676 if (!em) {
efe120a0 5677 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5678 chunk_start);
5679 return -EIO;
5680 }
5681
5682 if (em->start != chunk_start) {
efe120a0 5683 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5684 em->start, chunk_start);
5685 free_extent_map(em);
5686 return -EIO;
5687 }
a512bbf8
YZ
5688 map = (struct map_lookup *)em->bdev;
5689
5690 length = em->len;
53b381b3
DW
5691 rmap_len = map->stripe_len;
5692
a512bbf8 5693 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5694 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5695 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5696 length = div_u64(length, map->num_stripes);
ffe2d203 5697 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5698 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5699 rmap_len = map->stripe_len * nr_data_stripes(map);
5700 }
a512bbf8 5701
31e818fe 5702 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5703 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5704
5705 for (i = 0; i < map->num_stripes; i++) {
5706 if (devid && map->stripes[i].dev->devid != devid)
5707 continue;
5708 if (map->stripes[i].physical > physical ||
5709 map->stripes[i].physical + length <= physical)
5710 continue;
5711
5712 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5713 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5714
5715 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5716 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5717 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5718 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5719 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5720 } /* else if RAID[56], multiply by nr_data_stripes().
5721 * Alternatively, just use rmap_len below instead of
5722 * map->stripe_len */
5723
5724 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5725 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5726 for (j = 0; j < nr; j++) {
5727 if (buf[j] == bytenr)
5728 break;
5729 }
934d375b
CM
5730 if (j == nr) {
5731 WARN_ON(nr >= map->num_stripes);
a512bbf8 5732 buf[nr++] = bytenr;
934d375b 5733 }
a512bbf8
YZ
5734 }
5735
a512bbf8
YZ
5736 *logical = buf;
5737 *naddrs = nr;
53b381b3 5738 *stripe_len = rmap_len;
a512bbf8
YZ
5739
5740 free_extent_map(em);
5741 return 0;
f2d8d74d
CM
5742}
5743
4246a0b6 5744static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5745{
326e1dbb
MS
5746 bio->bi_private = bbio->private;
5747 bio->bi_end_io = bbio->end_io;
4246a0b6 5748 bio_endio(bio);
326e1dbb 5749
6e9606d2 5750 btrfs_put_bbio(bbio);
8408c716
MX
5751}
5752
4246a0b6 5753static void btrfs_end_bio(struct bio *bio)
8790d502 5754{
9be3395b 5755 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5756 int is_orig_bio = 0;
8790d502 5757
4246a0b6 5758 if (bio->bi_error) {
a1d3c478 5759 atomic_inc(&bbio->error);
4246a0b6 5760 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5761 unsigned int stripe_index =
9be3395b 5762 btrfs_io_bio(bio)->stripe_index;
65f53338 5763 struct btrfs_device *dev;
442a4f63
SB
5764
5765 BUG_ON(stripe_index >= bbio->num_stripes);
5766 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5767 if (dev->bdev) {
5768 if (bio->bi_rw & WRITE)
5769 btrfs_dev_stat_inc(dev,
5770 BTRFS_DEV_STAT_WRITE_ERRS);
5771 else
5772 btrfs_dev_stat_inc(dev,
5773 BTRFS_DEV_STAT_READ_ERRS);
5774 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5775 btrfs_dev_stat_inc(dev,
5776 BTRFS_DEV_STAT_FLUSH_ERRS);
5777 btrfs_dev_stat_print_on_error(dev);
5778 }
442a4f63
SB
5779 }
5780 }
8790d502 5781
a1d3c478 5782 if (bio == bbio->orig_bio)
7d2b4daa
CM
5783 is_orig_bio = 1;
5784
c404e0dc
MX
5785 btrfs_bio_counter_dec(bbio->fs_info);
5786
a1d3c478 5787 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5788 if (!is_orig_bio) {
5789 bio_put(bio);
a1d3c478 5790 bio = bbio->orig_bio;
7d2b4daa 5791 }
c7b22bb1 5792
9be3395b 5793 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5794 /* only send an error to the higher layers if it is
53b381b3 5795 * beyond the tolerance of the btrfs bio
a236aed1 5796 */
a1d3c478 5797 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 5798 bio->bi_error = -EIO;
5dbc8fca 5799 } else {
1259ab75
CM
5800 /*
5801 * this bio is actually up to date, we didn't
5802 * go over the max number of errors
5803 */
4246a0b6 5804 bio->bi_error = 0;
1259ab75 5805 }
c55f1396 5806
4246a0b6 5807 btrfs_end_bbio(bbio, bio);
7d2b4daa 5808 } else if (!is_orig_bio) {
8790d502
CM
5809 bio_put(bio);
5810 }
8790d502
CM
5811}
5812
8b712842
CM
5813/*
5814 * see run_scheduled_bios for a description of why bios are collected for
5815 * async submit.
5816 *
5817 * This will add one bio to the pending list for a device and make sure
5818 * the work struct is scheduled.
5819 */
48a3b636
ES
5820static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5821 struct btrfs_device *device,
5822 int rw, struct bio *bio)
8b712842
CM
5823{
5824 int should_queue = 1;
ffbd517d 5825 struct btrfs_pending_bios *pending_bios;
8b712842 5826
53b381b3 5827 if (device->missing || !device->bdev) {
4246a0b6 5828 bio_io_error(bio);
53b381b3
DW
5829 return;
5830 }
5831
8b712842 5832 /* don't bother with additional async steps for reads, right now */
7b6d91da 5833 if (!(rw & REQ_WRITE)) {
492bb6de 5834 bio_get(bio);
21adbd5c 5835 btrfsic_submit_bio(rw, bio);
492bb6de 5836 bio_put(bio);
143bede5 5837 return;
8b712842
CM
5838 }
5839
5840 /*
0986fe9e 5841 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5842 * higher layers. Otherwise, the async bio makes it appear we have
5843 * made progress against dirty pages when we've really just put it
5844 * on a queue for later
5845 */
0986fe9e 5846 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5847 WARN_ON(bio->bi_next);
8b712842
CM
5848 bio->bi_next = NULL;
5849 bio->bi_rw |= rw;
5850
5851 spin_lock(&device->io_lock);
7b6d91da 5852 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5853 pending_bios = &device->pending_sync_bios;
5854 else
5855 pending_bios = &device->pending_bios;
8b712842 5856
ffbd517d
CM
5857 if (pending_bios->tail)
5858 pending_bios->tail->bi_next = bio;
8b712842 5859
ffbd517d
CM
5860 pending_bios->tail = bio;
5861 if (!pending_bios->head)
5862 pending_bios->head = bio;
8b712842
CM
5863 if (device->running_pending)
5864 should_queue = 0;
5865
5866 spin_unlock(&device->io_lock);
5867
5868 if (should_queue)
a8c93d4e
QW
5869 btrfs_queue_work(root->fs_info->submit_workers,
5870 &device->work);
8b712842
CM
5871}
5872
de1ee92a
JB
5873static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5874 sector_t sector)
5875{
5876 struct bio_vec *prev;
5877 struct request_queue *q = bdev_get_queue(bdev);
475bf36f 5878 unsigned int max_sectors = queue_max_sectors(q);
de1ee92a
JB
5879 struct bvec_merge_data bvm = {
5880 .bi_bdev = bdev,
5881 .bi_sector = sector,
5882 .bi_rw = bio->bi_rw,
5883 };
5884
fae7f21c 5885 if (WARN_ON(bio->bi_vcnt == 0))
de1ee92a 5886 return 1;
de1ee92a
JB
5887
5888 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5889 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5890 return 0;
5891
5892 if (!q->merge_bvec_fn)
5893 return 1;
5894
4f024f37 5895 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len;
de1ee92a
JB
5896 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5897 return 0;
5898 return 1;
5899}
5900
5901static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5902 struct bio *bio, u64 physical, int dev_nr,
5903 int rw, int async)
5904{
5905 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5906
5907 bio->bi_private = bbio;
9be3395b 5908 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5909 bio->bi_end_io = btrfs_end_bio;
4f024f37 5910 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5911#ifdef DEBUG
5912 {
5913 struct rcu_string *name;
5914
5915 rcu_read_lock();
5916 name = rcu_dereference(dev->name);
d1423248 5917 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 5918 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
5919 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
5920 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
5921 rcu_read_unlock();
5922 }
5923#endif
5924 bio->bi_bdev = dev->bdev;
c404e0dc
MX
5925
5926 btrfs_bio_counter_inc_noblocked(root->fs_info);
5927
de1ee92a 5928 if (async)
53b381b3 5929 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5930 else
5931 btrfsic_submit_bio(rw, bio);
5932}
5933
5934static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5935 struct bio *first_bio, struct btrfs_device *dev,
5936 int dev_nr, int rw, int async)
5937{
5938 struct bio_vec *bvec = first_bio->bi_io_vec;
5939 struct bio *bio;
5940 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5941 u64 physical = bbio->stripes[dev_nr].physical;
5942
5943again:
5944 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5945 if (!bio)
5946 return -ENOMEM;
5947
5948 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5949 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5950 bvec->bv_offset) < bvec->bv_len) {
4f024f37 5951 u64 len = bio->bi_iter.bi_size;
de1ee92a
JB
5952
5953 atomic_inc(&bbio->stripes_pending);
5954 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5955 rw, async);
5956 physical += len;
5957 goto again;
5958 }
5959 bvec++;
5960 }
5961
5962 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5963 return 0;
5964}
5965
5966static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5967{
5968 atomic_inc(&bbio->error);
5969 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
5970 /* Shoud be the original bio. */
5971 WARN_ON(bio != bbio->orig_bio);
5972
9be3395b 5973 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 5974 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
5975 bio->bi_error = -EIO;
5976 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
5977 }
5978}
5979
f188591e 5980int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5981 int mirror_num, int async_submit)
0b86a832 5982{
0b86a832 5983 struct btrfs_device *dev;
8790d502 5984 struct bio *first_bio = bio;
4f024f37 5985 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
5986 u64 length = 0;
5987 u64 map_length;
0b86a832 5988 int ret;
08da757d
ZL
5989 int dev_nr;
5990 int total_devs;
a1d3c478 5991 struct btrfs_bio *bbio = NULL;
0b86a832 5992
4f024f37 5993 length = bio->bi_iter.bi_size;
0b86a832 5994 map_length = length;
cea9e445 5995
c404e0dc 5996 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 5997 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 5998 mirror_num, 1);
c404e0dc
MX
5999 if (ret) {
6000 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6001 return ret;
c404e0dc 6002 }
cea9e445 6003
a1d3c478 6004 total_devs = bbio->num_stripes;
53b381b3
DW
6005 bbio->orig_bio = first_bio;
6006 bbio->private = first_bio->bi_private;
6007 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6008 bbio->fs_info = root->fs_info;
53b381b3
DW
6009 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6010
8e5cfb55 6011 if (bbio->raid_map) {
53b381b3
DW
6012 /* In this case, map_length has been set to the length of
6013 a single stripe; not the whole write */
6014 if (rw & WRITE) {
8e5cfb55 6015 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6016 } else {
8e5cfb55 6017 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6018 mirror_num, 1);
53b381b3 6019 }
4245215d 6020
c404e0dc
MX
6021 btrfs_bio_counter_dec(root->fs_info);
6022 return ret;
53b381b3
DW
6023 }
6024
cea9e445 6025 if (map_length < length) {
c2cf52eb 6026 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6027 logical, length, map_length);
cea9e445
CM
6028 BUG();
6029 }
a1d3c478 6030
08da757d 6031 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6032 dev = bbio->stripes[dev_nr].dev;
6033 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6034 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6035 continue;
6036 }
6037
6038 /*
6039 * Check and see if we're ok with this bio based on it's size
6040 * and offset with the given device.
6041 */
6042 if (!bio_size_ok(dev->bdev, first_bio,
6043 bbio->stripes[dev_nr].physical >> 9)) {
6044 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
6045 dev_nr, rw, async_submit);
6046 BUG_ON(ret);
de1ee92a
JB
6047 continue;
6048 }
6049
a1d3c478 6050 if (dev_nr < total_devs - 1) {
9be3395b 6051 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6052 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6053 } else
a1d3c478 6054 bio = first_bio;
de1ee92a
JB
6055
6056 submit_stripe_bio(root, bbio, bio,
6057 bbio->stripes[dev_nr].physical, dev_nr, rw,
6058 async_submit);
8790d502 6059 }
c404e0dc 6060 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6061 return 0;
6062}
6063
aa1b8cd4 6064struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6065 u8 *uuid, u8 *fsid)
0b86a832 6066{
2b82032c
YZ
6067 struct btrfs_device *device;
6068 struct btrfs_fs_devices *cur_devices;
6069
aa1b8cd4 6070 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6071 while (cur_devices) {
6072 if (!fsid ||
6073 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6074 device = __find_device(&cur_devices->devices,
6075 devid, uuid);
6076 if (device)
6077 return device;
6078 }
6079 cur_devices = cur_devices->seed;
6080 }
6081 return NULL;
0b86a832
CM
6082}
6083
dfe25020 6084static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6085 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6086 u64 devid, u8 *dev_uuid)
6087{
6088 struct btrfs_device *device;
dfe25020 6089
12bd2fc0
ID
6090 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6091 if (IS_ERR(device))
7cbd8a83 6092 return NULL;
12bd2fc0
ID
6093
6094 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6095 device->fs_devices = fs_devices;
dfe25020 6096 fs_devices->num_devices++;
12bd2fc0
ID
6097
6098 device->missing = 1;
cd02dca5 6099 fs_devices->missing_devices++;
12bd2fc0 6100
dfe25020
CM
6101 return device;
6102}
6103
12bd2fc0
ID
6104/**
6105 * btrfs_alloc_device - allocate struct btrfs_device
6106 * @fs_info: used only for generating a new devid, can be NULL if
6107 * devid is provided (i.e. @devid != NULL).
6108 * @devid: a pointer to devid for this device. If NULL a new devid
6109 * is generated.
6110 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6111 * is generated.
6112 *
6113 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6114 * on error. Returned struct is not linked onto any lists and can be
6115 * destroyed with kfree() right away.
6116 */
6117struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6118 const u64 *devid,
6119 const u8 *uuid)
6120{
6121 struct btrfs_device *dev;
6122 u64 tmp;
6123
fae7f21c 6124 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6125 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6126
6127 dev = __alloc_device();
6128 if (IS_ERR(dev))
6129 return dev;
6130
6131 if (devid)
6132 tmp = *devid;
6133 else {
6134 int ret;
6135
6136 ret = find_next_devid(fs_info, &tmp);
6137 if (ret) {
6138 kfree(dev);
6139 return ERR_PTR(ret);
6140 }
6141 }
6142 dev->devid = tmp;
6143
6144 if (uuid)
6145 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6146 else
6147 generate_random_uuid(dev->uuid);
6148
9e0af237
LB
6149 btrfs_init_work(&dev->work, btrfs_submit_helper,
6150 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6151
6152 return dev;
6153}
6154
0b86a832
CM
6155static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6156 struct extent_buffer *leaf,
6157 struct btrfs_chunk *chunk)
6158{
6159 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6160 struct map_lookup *map;
6161 struct extent_map *em;
6162 u64 logical;
6163 u64 length;
6164 u64 devid;
a443755f 6165 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6166 int num_stripes;
0b86a832 6167 int ret;
593060d7 6168 int i;
0b86a832 6169
e17cade2
CM
6170 logical = key->offset;
6171 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 6172
890871be 6173 read_lock(&map_tree->map_tree.lock);
0b86a832 6174 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6175 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6176
6177 /* already mapped? */
6178 if (em && em->start <= logical && em->start + em->len > logical) {
6179 free_extent_map(em);
0b86a832
CM
6180 return 0;
6181 } else if (em) {
6182 free_extent_map(em);
6183 }
0b86a832 6184
172ddd60 6185 em = alloc_extent_map();
0b86a832
CM
6186 if (!em)
6187 return -ENOMEM;
593060d7
CM
6188 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6189 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6190 if (!map) {
6191 free_extent_map(em);
6192 return -ENOMEM;
6193 }
6194
298a8f9c 6195 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
0b86a832
CM
6196 em->bdev = (struct block_device *)map;
6197 em->start = logical;
6198 em->len = length;
70c8a91c 6199 em->orig_start = 0;
0b86a832 6200 em->block_start = 0;
c8b97818 6201 em->block_len = em->len;
0b86a832 6202
593060d7
CM
6203 map->num_stripes = num_stripes;
6204 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6205 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6206 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6207 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6208 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6209 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6210 for (i = 0; i < num_stripes; i++) {
6211 map->stripes[i].physical =
6212 btrfs_stripe_offset_nr(leaf, chunk, i);
6213 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6214 read_extent_buffer(leaf, uuid, (unsigned long)
6215 btrfs_stripe_dev_uuid_nr(chunk, i),
6216 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6217 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6218 uuid, NULL);
dfe25020 6219 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6220 free_extent_map(em);
6221 return -EIO;
6222 }
dfe25020
CM
6223 if (!map->stripes[i].dev) {
6224 map->stripes[i].dev =
5f375835
MX
6225 add_missing_dev(root, root->fs_info->fs_devices,
6226 devid, uuid);
dfe25020 6227 if (!map->stripes[i].dev) {
dfe25020
CM
6228 free_extent_map(em);
6229 return -EIO;
6230 }
816fcebe
AJ
6231 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6232 devid, uuid);
dfe25020
CM
6233 }
6234 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6235 }
6236
890871be 6237 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6238 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6239 write_unlock(&map_tree->map_tree.lock);
79787eaa 6240 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6241 free_extent_map(em);
6242
6243 return 0;
6244}
6245
143bede5 6246static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6247 struct btrfs_dev_item *dev_item,
6248 struct btrfs_device *device)
6249{
6250 unsigned long ptr;
0b86a832
CM
6251
6252 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6253 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6254 device->total_bytes = device->disk_total_bytes;
935e5cc9 6255 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6256 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6257 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6258 device->type = btrfs_device_type(leaf, dev_item);
6259 device->io_align = btrfs_device_io_align(leaf, dev_item);
6260 device->io_width = btrfs_device_io_width(leaf, dev_item);
6261 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6262 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6263 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6264
410ba3a2 6265 ptr = btrfs_device_uuid(dev_item);
e17cade2 6266 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6267}
6268
5f375835
MX
6269static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6270 u8 *fsid)
2b82032c
YZ
6271{
6272 struct btrfs_fs_devices *fs_devices;
6273 int ret;
6274
b367e47f 6275 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6276
6277 fs_devices = root->fs_info->fs_devices->seed;
6278 while (fs_devices) {
5f375835
MX
6279 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6280 return fs_devices;
6281
2b82032c
YZ
6282 fs_devices = fs_devices->seed;
6283 }
6284
6285 fs_devices = find_fsid(fsid);
6286 if (!fs_devices) {
5f375835
MX
6287 if (!btrfs_test_opt(root, DEGRADED))
6288 return ERR_PTR(-ENOENT);
6289
6290 fs_devices = alloc_fs_devices(fsid);
6291 if (IS_ERR(fs_devices))
6292 return fs_devices;
6293
6294 fs_devices->seeding = 1;
6295 fs_devices->opened = 1;
6296 return fs_devices;
2b82032c 6297 }
e4404d6e
YZ
6298
6299 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6300 if (IS_ERR(fs_devices))
6301 return fs_devices;
2b82032c 6302
97288f2c 6303 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6304 root->fs_info->bdev_holder);
48d28232
JL
6305 if (ret) {
6306 free_fs_devices(fs_devices);
5f375835 6307 fs_devices = ERR_PTR(ret);
2b82032c 6308 goto out;
48d28232 6309 }
2b82032c
YZ
6310
6311 if (!fs_devices->seeding) {
6312 __btrfs_close_devices(fs_devices);
e4404d6e 6313 free_fs_devices(fs_devices);
5f375835 6314 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6315 goto out;
6316 }
6317
6318 fs_devices->seed = root->fs_info->fs_devices->seed;
6319 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6320out:
5f375835 6321 return fs_devices;
2b82032c
YZ
6322}
6323
0d81ba5d 6324static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6325 struct extent_buffer *leaf,
6326 struct btrfs_dev_item *dev_item)
6327{
5f375835 6328 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6329 struct btrfs_device *device;
6330 u64 devid;
6331 int ret;
2b82032c 6332 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6333 u8 dev_uuid[BTRFS_UUID_SIZE];
6334
0b86a832 6335 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6336 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6337 BTRFS_UUID_SIZE);
1473b24e 6338 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6339 BTRFS_UUID_SIZE);
6340
6341 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6342 fs_devices = open_seed_devices(root, fs_uuid);
6343 if (IS_ERR(fs_devices))
6344 return PTR_ERR(fs_devices);
2b82032c
YZ
6345 }
6346
aa1b8cd4 6347 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6348 if (!device) {
e4404d6e 6349 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6350 return -EIO;
6351
5f375835
MX
6352 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6353 if (!device)
6354 return -ENOMEM;
33b97e43
AJ
6355 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6356 devid, dev_uuid);
5f375835
MX
6357 } else {
6358 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6359 return -EIO;
6360
6361 if(!device->bdev && !device->missing) {
cd02dca5
CM
6362 /*
6363 * this happens when a device that was properly setup
6364 * in the device info lists suddenly goes bad.
6365 * device->bdev is NULL, and so we have to set
6366 * device->missing to one here
6367 */
5f375835 6368 device->fs_devices->missing_devices++;
cd02dca5 6369 device->missing = 1;
2b82032c 6370 }
5f375835
MX
6371
6372 /* Move the device to its own fs_devices */
6373 if (device->fs_devices != fs_devices) {
6374 ASSERT(device->missing);
6375
6376 list_move(&device->dev_list, &fs_devices->devices);
6377 device->fs_devices->num_devices--;
6378 fs_devices->num_devices++;
6379
6380 device->fs_devices->missing_devices--;
6381 fs_devices->missing_devices++;
6382
6383 device->fs_devices = fs_devices;
6384 }
2b82032c
YZ
6385 }
6386
6387 if (device->fs_devices != root->fs_info->fs_devices) {
6388 BUG_ON(device->writeable);
6389 if (device->generation !=
6390 btrfs_device_generation(leaf, dev_item))
6391 return -EINVAL;
6324fbf3 6392 }
0b86a832
CM
6393
6394 fill_device_from_item(leaf, dev_item, device);
dfe25020 6395 device->in_fs_metadata = 1;
63a212ab 6396 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6397 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6398 spin_lock(&root->fs_info->free_chunk_lock);
6399 root->fs_info->free_chunk_space += device->total_bytes -
6400 device->bytes_used;
6401 spin_unlock(&root->fs_info->free_chunk_lock);
6402 }
0b86a832 6403 ret = 0;
0b86a832
CM
6404 return ret;
6405}
6406
e4404d6e 6407int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6408{
6c41761f 6409 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6410 struct extent_buffer *sb;
0b86a832 6411 struct btrfs_disk_key *disk_key;
0b86a832 6412 struct btrfs_chunk *chunk;
1ffb22cf
DS
6413 u8 *array_ptr;
6414 unsigned long sb_array_offset;
84eed90f 6415 int ret = 0;
0b86a832
CM
6416 u32 num_stripes;
6417 u32 array_size;
6418 u32 len = 0;
1ffb22cf 6419 u32 cur_offset;
84eed90f 6420 struct btrfs_key key;
0b86a832 6421
a83fffb7
DS
6422 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6423 /*
6424 * This will create extent buffer of nodesize, superblock size is
6425 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6426 * overallocate but we can keep it as-is, only the first page is used.
6427 */
6428 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6429 if (!sb)
6430 return -ENOMEM;
6431 btrfs_set_buffer_uptodate(sb);
85d4e461 6432 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6433 /*
6434 * The sb extent buffer is artifical and just used to read the system array.
6435 * btrfs_set_buffer_uptodate() call does not properly mark all it's
6436 * pages up-to-date when the page is larger: extent does not cover the
6437 * whole page and consequently check_page_uptodate does not find all
6438 * the page's extents up-to-date (the hole beyond sb),
6439 * write_extent_buffer then triggers a WARN_ON.
6440 *
6441 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6442 * but sb spans only this function. Add an explicit SetPageUptodate call
6443 * to silence the warning eg. on PowerPC 64.
6444 */
6445 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6446 SetPageUptodate(sb->pages[0]);
4008c04a 6447
a061fc8d 6448 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6449 array_size = btrfs_super_sys_array_size(super_copy);
6450
1ffb22cf
DS
6451 array_ptr = super_copy->sys_chunk_array;
6452 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6453 cur_offset = 0;
0b86a832 6454
1ffb22cf
DS
6455 while (cur_offset < array_size) {
6456 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6457 len = sizeof(*disk_key);
6458 if (cur_offset + len > array_size)
6459 goto out_short_read;
6460
0b86a832
CM
6461 btrfs_disk_key_to_cpu(&key, disk_key);
6462
1ffb22cf
DS
6463 array_ptr += len;
6464 sb_array_offset += len;
6465 cur_offset += len;
0b86a832 6466
0d81ba5d 6467 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6468 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6469 /*
6470 * At least one btrfs_chunk with one stripe must be
6471 * present, exact stripe count check comes afterwards
6472 */
6473 len = btrfs_chunk_item_size(1);
6474 if (cur_offset + len > array_size)
6475 goto out_short_read;
6476
6477 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6478 len = btrfs_chunk_item_size(num_stripes);
6479 if (cur_offset + len > array_size)
6480 goto out_short_read;
6481
0d81ba5d 6482 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6483 if (ret)
6484 break;
0b86a832 6485 } else {
84eed90f
CM
6486 ret = -EIO;
6487 break;
0b86a832 6488 }
1ffb22cf
DS
6489 array_ptr += len;
6490 sb_array_offset += len;
6491 cur_offset += len;
0b86a832 6492 }
a061fc8d 6493 free_extent_buffer(sb);
84eed90f 6494 return ret;
e3540eab
DS
6495
6496out_short_read:
6497 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6498 len, cur_offset);
6499 free_extent_buffer(sb);
6500 return -EIO;
0b86a832
CM
6501}
6502
6503int btrfs_read_chunk_tree(struct btrfs_root *root)
6504{
6505 struct btrfs_path *path;
6506 struct extent_buffer *leaf;
6507 struct btrfs_key key;
6508 struct btrfs_key found_key;
6509 int ret;
6510 int slot;
6511
6512 root = root->fs_info->chunk_root;
6513
6514 path = btrfs_alloc_path();
6515 if (!path)
6516 return -ENOMEM;
6517
b367e47f
LZ
6518 mutex_lock(&uuid_mutex);
6519 lock_chunks(root);
6520
395927a9
FDBM
6521 /*
6522 * Read all device items, and then all the chunk items. All
6523 * device items are found before any chunk item (their object id
6524 * is smaller than the lowest possible object id for a chunk
6525 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6526 */
6527 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6528 key.offset = 0;
6529 key.type = 0;
0b86a832 6530 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6531 if (ret < 0)
6532 goto error;
d397712b 6533 while (1) {
0b86a832
CM
6534 leaf = path->nodes[0];
6535 slot = path->slots[0];
6536 if (slot >= btrfs_header_nritems(leaf)) {
6537 ret = btrfs_next_leaf(root, path);
6538 if (ret == 0)
6539 continue;
6540 if (ret < 0)
6541 goto error;
6542 break;
6543 }
6544 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6545 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6546 struct btrfs_dev_item *dev_item;
6547 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6548 struct btrfs_dev_item);
395927a9
FDBM
6549 ret = read_one_dev(root, leaf, dev_item);
6550 if (ret)
6551 goto error;
0b86a832
CM
6552 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6553 struct btrfs_chunk *chunk;
6554 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6555 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6556 if (ret)
6557 goto error;
0b86a832
CM
6558 }
6559 path->slots[0]++;
6560 }
0b86a832
CM
6561 ret = 0;
6562error:
b367e47f
LZ
6563 unlock_chunks(root);
6564 mutex_unlock(&uuid_mutex);
6565
2b82032c 6566 btrfs_free_path(path);
0b86a832
CM
6567 return ret;
6568}
442a4f63 6569
cb517eab
MX
6570void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6571{
6572 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6573 struct btrfs_device *device;
6574
29cc83f6
LB
6575 while (fs_devices) {
6576 mutex_lock(&fs_devices->device_list_mutex);
6577 list_for_each_entry(device, &fs_devices->devices, dev_list)
6578 device->dev_root = fs_info->dev_root;
6579 mutex_unlock(&fs_devices->device_list_mutex);
6580
6581 fs_devices = fs_devices->seed;
6582 }
cb517eab
MX
6583}
6584
733f4fbb
SB
6585static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6586{
6587 int i;
6588
6589 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6590 btrfs_dev_stat_reset(dev, i);
6591}
6592
6593int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6594{
6595 struct btrfs_key key;
6596 struct btrfs_key found_key;
6597 struct btrfs_root *dev_root = fs_info->dev_root;
6598 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6599 struct extent_buffer *eb;
6600 int slot;
6601 int ret = 0;
6602 struct btrfs_device *device;
6603 struct btrfs_path *path = NULL;
6604 int i;
6605
6606 path = btrfs_alloc_path();
6607 if (!path) {
6608 ret = -ENOMEM;
6609 goto out;
6610 }
6611
6612 mutex_lock(&fs_devices->device_list_mutex);
6613 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6614 int item_size;
6615 struct btrfs_dev_stats_item *ptr;
6616
6617 key.objectid = 0;
6618 key.type = BTRFS_DEV_STATS_KEY;
6619 key.offset = device->devid;
6620 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6621 if (ret) {
733f4fbb
SB
6622 __btrfs_reset_dev_stats(device);
6623 device->dev_stats_valid = 1;
6624 btrfs_release_path(path);
6625 continue;
6626 }
6627 slot = path->slots[0];
6628 eb = path->nodes[0];
6629 btrfs_item_key_to_cpu(eb, &found_key, slot);
6630 item_size = btrfs_item_size_nr(eb, slot);
6631
6632 ptr = btrfs_item_ptr(eb, slot,
6633 struct btrfs_dev_stats_item);
6634
6635 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6636 if (item_size >= (1 + i) * sizeof(__le64))
6637 btrfs_dev_stat_set(device, i,
6638 btrfs_dev_stats_value(eb, ptr, i));
6639 else
6640 btrfs_dev_stat_reset(device, i);
6641 }
6642
6643 device->dev_stats_valid = 1;
6644 btrfs_dev_stat_print_on_load(device);
6645 btrfs_release_path(path);
6646 }
6647 mutex_unlock(&fs_devices->device_list_mutex);
6648
6649out:
6650 btrfs_free_path(path);
6651 return ret < 0 ? ret : 0;
6652}
6653
6654static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6655 struct btrfs_root *dev_root,
6656 struct btrfs_device *device)
6657{
6658 struct btrfs_path *path;
6659 struct btrfs_key key;
6660 struct extent_buffer *eb;
6661 struct btrfs_dev_stats_item *ptr;
6662 int ret;
6663 int i;
6664
6665 key.objectid = 0;
6666 key.type = BTRFS_DEV_STATS_KEY;
6667 key.offset = device->devid;
6668
6669 path = btrfs_alloc_path();
6670 BUG_ON(!path);
6671 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6672 if (ret < 0) {
efe120a0
FH
6673 printk_in_rcu(KERN_WARNING "BTRFS: "
6674 "error %d while searching for dev_stats item for device %s!\n",
606686ee 6675 ret, rcu_str_deref(device->name));
733f4fbb
SB
6676 goto out;
6677 }
6678
6679 if (ret == 0 &&
6680 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6681 /* need to delete old one and insert a new one */
6682 ret = btrfs_del_item(trans, dev_root, path);
6683 if (ret != 0) {
efe120a0
FH
6684 printk_in_rcu(KERN_WARNING "BTRFS: "
6685 "delete too small dev_stats item for device %s failed %d!\n",
606686ee 6686 rcu_str_deref(device->name), ret);
733f4fbb
SB
6687 goto out;
6688 }
6689 ret = 1;
6690 }
6691
6692 if (ret == 1) {
6693 /* need to insert a new item */
6694 btrfs_release_path(path);
6695 ret = btrfs_insert_empty_item(trans, dev_root, path,
6696 &key, sizeof(*ptr));
6697 if (ret < 0) {
efe120a0
FH
6698 printk_in_rcu(KERN_WARNING "BTRFS: "
6699 "insert dev_stats item for device %s failed %d!\n",
606686ee 6700 rcu_str_deref(device->name), ret);
733f4fbb
SB
6701 goto out;
6702 }
6703 }
6704
6705 eb = path->nodes[0];
6706 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6707 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6708 btrfs_set_dev_stats_value(eb, ptr, i,
6709 btrfs_dev_stat_read(device, i));
6710 btrfs_mark_buffer_dirty(eb);
6711
6712out:
6713 btrfs_free_path(path);
6714 return ret;
6715}
6716
6717/*
6718 * called from commit_transaction. Writes all changed device stats to disk.
6719 */
6720int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6721 struct btrfs_fs_info *fs_info)
6722{
6723 struct btrfs_root *dev_root = fs_info->dev_root;
6724 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6725 struct btrfs_device *device;
addc3fa7 6726 int stats_cnt;
733f4fbb
SB
6727 int ret = 0;
6728
6729 mutex_lock(&fs_devices->device_list_mutex);
6730 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6731 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6732 continue;
6733
addc3fa7 6734 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6735 ret = update_dev_stat_item(trans, dev_root, device);
6736 if (!ret)
addc3fa7 6737 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6738 }
6739 mutex_unlock(&fs_devices->device_list_mutex);
6740
6741 return ret;
6742}
6743
442a4f63
SB
6744void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6745{
6746 btrfs_dev_stat_inc(dev, index);
6747 btrfs_dev_stat_print_on_error(dev);
6748}
6749
48a3b636 6750static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6751{
733f4fbb
SB
6752 if (!dev->dev_stats_valid)
6753 return;
efe120a0
FH
6754 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
6755 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6756 rcu_str_deref(dev->name),
442a4f63
SB
6757 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6758 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6759 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6760 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6761 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6762}
c11d2c23 6763
733f4fbb
SB
6764static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6765{
a98cdb85
SB
6766 int i;
6767
6768 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6769 if (btrfs_dev_stat_read(dev, i) != 0)
6770 break;
6771 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6772 return; /* all values == 0, suppress message */
6773
efe120a0
FH
6774 printk_in_rcu(KERN_INFO "BTRFS: "
6775 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6776 rcu_str_deref(dev->name),
733f4fbb
SB
6777 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6778 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6779 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6780 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6781 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6782}
6783
c11d2c23 6784int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6785 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6786{
6787 struct btrfs_device *dev;
6788 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6789 int i;
6790
6791 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6792 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6793 mutex_unlock(&fs_devices->device_list_mutex);
6794
6795 if (!dev) {
efe120a0 6796 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6797 return -ENODEV;
733f4fbb 6798 } else if (!dev->dev_stats_valid) {
efe120a0 6799 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6800 return -ENODEV;
b27f7c0c 6801 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6802 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6803 if (stats->nr_items > i)
6804 stats->values[i] =
6805 btrfs_dev_stat_read_and_reset(dev, i);
6806 else
6807 btrfs_dev_stat_reset(dev, i);
6808 }
6809 } else {
6810 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6811 if (stats->nr_items > i)
6812 stats->values[i] = btrfs_dev_stat_read(dev, i);
6813 }
6814 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6815 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6816 return 0;
6817}
a8a6dab7
SB
6818
6819int btrfs_scratch_superblock(struct btrfs_device *device)
6820{
6821 struct buffer_head *bh;
6822 struct btrfs_super_block *disk_super;
6823
6824 bh = btrfs_read_dev_super(device->bdev);
6825 if (!bh)
6826 return -EINVAL;
6827 disk_super = (struct btrfs_super_block *)bh->b_data;
6828
6829 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6830 set_buffer_dirty(bh);
6831 sync_dirty_buffer(bh);
6832 brelse(bh);
6833
6834 return 0;
6835}
935e5cc9
MX
6836
6837/*
6838 * Update the size of all devices, which is used for writing out the
6839 * super blocks.
6840 */
6841void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6842{
6843 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6844 struct btrfs_device *curr, *next;
6845
6846 if (list_empty(&fs_devices->resized_devices))
6847 return;
6848
6849 mutex_lock(&fs_devices->device_list_mutex);
6850 lock_chunks(fs_info->dev_root);
6851 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6852 resized_list) {
6853 list_del_init(&curr->resized_list);
6854 curr->commit_total_bytes = curr->disk_total_bytes;
6855 }
6856 unlock_chunks(fs_info->dev_root);
6857 mutex_unlock(&fs_devices->device_list_mutex);
6858}
ce7213c7
MX
6859
6860/* Must be invoked during the transaction commit */
6861void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6862 struct btrfs_transaction *transaction)
6863{
6864 struct extent_map *em;
6865 struct map_lookup *map;
6866 struct btrfs_device *dev;
6867 int i;
6868
6869 if (list_empty(&transaction->pending_chunks))
6870 return;
6871
6872 /* In order to kick the device replace finish process */
6873 lock_chunks(root);
6874 list_for_each_entry(em, &transaction->pending_chunks, list) {
6875 map = (struct map_lookup *)em->bdev;
6876
6877 for (i = 0; i < map->num_stripes; i++) {
6878 dev = map->stripes[i].dev;
6879 dev->commit_bytes_used = dev->bytes_used;
6880 }
6881 }
6882 unlock_chunks(root);
6883}
5a13f430
AJ
6884
6885void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6886{
6887 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6888 while (fs_devices) {
6889 fs_devices->fs_info = fs_info;
6890 fs_devices = fs_devices->seed;
6891 }
6892}
6893
6894void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6895{
6896 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6897 while (fs_devices) {
6898 fs_devices->fs_info = NULL;
6899 fs_devices = fs_devices->seed;
6900 }
6901}