]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/volumes.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
142static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
2b82032c 147
9c6b1c4d
DS
148/*
149 * Device locking
150 * ==============
151 *
152 * There are several mutexes that protect manipulation of devices and low-level
153 * structures like chunks but not block groups, extents or files
154 *
155 * uuid_mutex (global lock)
156 * ------------------------
157 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
158 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
159 * device) or requested by the device= mount option
160 *
161 * the mutex can be very coarse and can cover long-running operations
162 *
163 * protects: updates to fs_devices counters like missing devices, rw devices,
164 * seeding, structure cloning, openning/closing devices at mount/umount time
165 *
166 * global::fs_devs - add, remove, updates to the global list
167 *
168 * does not protect: manipulation of the fs_devices::devices list!
169 *
170 * btrfs_device::name - renames (write side), read is RCU
171 *
172 * fs_devices::device_list_mutex (per-fs, with RCU)
173 * ------------------------------------------------
174 * protects updates to fs_devices::devices, ie. adding and deleting
175 *
176 * simple list traversal with read-only actions can be done with RCU protection
177 *
178 * may be used to exclude some operations from running concurrently without any
179 * modifications to the list (see write_all_supers)
180 *
181 * volume_mutex
182 * ------------
183 * coarse lock owned by a mounted filesystem; used to exclude some operations
184 * that cannot run in parallel and affect the higher-level properties of the
185 * filesystem like: device add/deleting/resize/replace, or balance
186 *
187 * balance_mutex
188 * -------------
189 * protects balance structures (status, state) and context accessed from
190 * several places (internally, ioctl)
191 *
192 * chunk_mutex
193 * -----------
194 * protects chunks, adding or removing during allocation, trim or when a new
195 * device is added/removed
196 *
197 * cleaner_mutex
198 * -------------
199 * a big lock that is held by the cleaner thread and prevents running subvolume
200 * cleaning together with relocation or delayed iputs
201 *
202 *
203 * Lock nesting
204 * ============
205 *
206 * uuid_mutex
207 * volume_mutex
208 * device_list_mutex
209 * chunk_mutex
210 * balance_mutex
211 */
212
67a2c45e 213DEFINE_MUTEX(uuid_mutex);
8a4b83cc 214static LIST_HEAD(fs_uuids);
c73eccf7
AJ
215struct list_head *btrfs_get_fs_uuids(void)
216{
217 return &fs_uuids;
218}
8a4b83cc 219
2dfeca9b
DS
220/*
221 * alloc_fs_devices - allocate struct btrfs_fs_devices
222 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
223 *
224 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
225 * The returned struct is not linked onto any lists and can be destroyed with
226 * kfree() right away.
227 */
228static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
2208a378
ID
229{
230 struct btrfs_fs_devices *fs_devs;
231
78f2c9e6 232 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
233 if (!fs_devs)
234 return ERR_PTR(-ENOMEM);
235
236 mutex_init(&fs_devs->device_list_mutex);
237
238 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 239 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
240 INIT_LIST_HEAD(&fs_devs->alloc_list);
241 INIT_LIST_HEAD(&fs_devs->list);
2208a378
ID
242 if (fsid)
243 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378
ID
244
245 return fs_devs;
246}
247
48dae9cf
DS
248static void free_device(struct btrfs_device *device)
249{
250 rcu_string_free(device->name);
251 bio_put(device->flush_bio);
252 kfree(device);
253}
254
e4404d6e
YZ
255static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
256{
257 struct btrfs_device *device;
258 WARN_ON(fs_devices->opened);
259 while (!list_empty(&fs_devices->devices)) {
260 device = list_entry(fs_devices->devices.next,
261 struct btrfs_device, dev_list);
262 list_del(&device->dev_list);
55de4803 263 free_device(device);
e4404d6e
YZ
264 }
265 kfree(fs_devices);
266}
267
b8b8ff59
LC
268static void btrfs_kobject_uevent(struct block_device *bdev,
269 enum kobject_action action)
270{
271 int ret;
272
273 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
274 if (ret)
efe120a0 275 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
276 action,
277 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
278 &disk_to_dev(bdev->bd_disk)->kobj);
279}
280
143bede5 281void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
282{
283 struct btrfs_fs_devices *fs_devices;
8a4b83cc 284
2b82032c
YZ
285 while (!list_empty(&fs_uuids)) {
286 fs_devices = list_entry(fs_uuids.next,
287 struct btrfs_fs_devices, list);
288 list_del(&fs_devices->list);
e4404d6e 289 free_fs_devices(fs_devices);
8a4b83cc 290 }
8a4b83cc
CM
291}
292
48dae9cf
DS
293/*
294 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
295 * Returned struct is not linked onto any lists and must be destroyed using
296 * free_device.
297 */
12bd2fc0
ID
298static struct btrfs_device *__alloc_device(void)
299{
300 struct btrfs_device *dev;
301
78f2c9e6 302 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
303 if (!dev)
304 return ERR_PTR(-ENOMEM);
305
e0ae9994
DS
306 /*
307 * Preallocate a bio that's always going to be used for flushing device
308 * barriers and matches the device lifespan
309 */
310 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
311 if (!dev->flush_bio) {
312 kfree(dev);
313 return ERR_PTR(-ENOMEM);
314 }
e0ae9994 315
12bd2fc0
ID
316 INIT_LIST_HEAD(&dev->dev_list);
317 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 318 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
319
320 spin_lock_init(&dev->io_lock);
321
12bd2fc0 322 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 323 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 324 btrfs_device_data_ordered_init(dev);
9bcaaea7 325 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 326 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
327
328 return dev;
329}
330
35c70103
DS
331/*
332 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
333 * return NULL.
334 *
335 * If devid and uuid are both specified, the match must be exact, otherwise
336 * only devid is used.
337 */
338static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
339 u64 devid, const u8 *uuid)
8a4b83cc 340{
35c70103 341 struct list_head *head = &fs_devices->devices;
8a4b83cc 342 struct btrfs_device *dev;
8a4b83cc 343
c6e30871 344 list_for_each_entry(dev, head, dev_list) {
a443755f 345 if (dev->devid == devid &&
8f18cf13 346 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 347 return dev;
a443755f 348 }
8a4b83cc
CM
349 }
350 return NULL;
351}
352
a1b32a59 353static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 354{
8a4b83cc
CM
355 struct btrfs_fs_devices *fs_devices;
356
c6e30871 357 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
358 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
359 return fs_devices;
360 }
361 return NULL;
362}
363
beaf8ab3
SB
364static int
365btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
366 int flush, struct block_device **bdev,
367 struct buffer_head **bh)
368{
369 int ret;
370
371 *bdev = blkdev_get_by_path(device_path, flags, holder);
372
373 if (IS_ERR(*bdev)) {
374 ret = PTR_ERR(*bdev);
beaf8ab3
SB
375 goto error;
376 }
377
378 if (flush)
379 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 380 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
381 if (ret) {
382 blkdev_put(*bdev, flags);
383 goto error;
384 }
385 invalidate_bdev(*bdev);
386 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
387 if (IS_ERR(*bh)) {
388 ret = PTR_ERR(*bh);
beaf8ab3
SB
389 blkdev_put(*bdev, flags);
390 goto error;
391 }
392
393 return 0;
394
395error:
396 *bdev = NULL;
397 *bh = NULL;
398 return ret;
399}
400
ffbd517d
CM
401static void requeue_list(struct btrfs_pending_bios *pending_bios,
402 struct bio *head, struct bio *tail)
403{
404
405 struct bio *old_head;
406
407 old_head = pending_bios->head;
408 pending_bios->head = head;
409 if (pending_bios->tail)
410 tail->bi_next = old_head;
411 else
412 pending_bios->tail = tail;
413}
414
8b712842
CM
415/*
416 * we try to collect pending bios for a device so we don't get a large
417 * number of procs sending bios down to the same device. This greatly
418 * improves the schedulers ability to collect and merge the bios.
419 *
420 * But, it also turns into a long list of bios to process and that is sure
421 * to eventually make the worker thread block. The solution here is to
422 * make some progress and then put this work struct back at the end of
423 * the list if the block device is congested. This way, multiple devices
424 * can make progress from a single worker thread.
425 */
143bede5 426static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 427{
0b246afa 428 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
429 struct bio *pending;
430 struct backing_dev_info *bdi;
ffbd517d 431 struct btrfs_pending_bios *pending_bios;
8b712842
CM
432 struct bio *tail;
433 struct bio *cur;
434 int again = 0;
ffbd517d 435 unsigned long num_run;
d644d8a1 436 unsigned long batch_run = 0;
b765ead5 437 unsigned long last_waited = 0;
d84275c9 438 int force_reg = 0;
0e588859 439 int sync_pending = 0;
211588ad
CM
440 struct blk_plug plug;
441
442 /*
443 * this function runs all the bios we've collected for
444 * a particular device. We don't want to wander off to
445 * another device without first sending all of these down.
446 * So, setup a plug here and finish it off before we return
447 */
448 blk_start_plug(&plug);
8b712842 449
efa7c9f9 450 bdi = device->bdev->bd_bdi;
b64a2851 451
8b712842
CM
452loop:
453 spin_lock(&device->io_lock);
454
a6837051 455loop_lock:
d84275c9 456 num_run = 0;
ffbd517d 457
8b712842
CM
458 /* take all the bios off the list at once and process them
459 * later on (without the lock held). But, remember the
460 * tail and other pointers so the bios can be properly reinserted
461 * into the list if we hit congestion
462 */
d84275c9 463 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 464 pending_bios = &device->pending_sync_bios;
d84275c9
CM
465 force_reg = 1;
466 } else {
ffbd517d 467 pending_bios = &device->pending_bios;
d84275c9
CM
468 force_reg = 0;
469 }
ffbd517d
CM
470
471 pending = pending_bios->head;
472 tail = pending_bios->tail;
8b712842 473 WARN_ON(pending && !tail);
8b712842
CM
474
475 /*
476 * if pending was null this time around, no bios need processing
477 * at all and we can stop. Otherwise it'll loop back up again
478 * and do an additional check so no bios are missed.
479 *
480 * device->running_pending is used to synchronize with the
481 * schedule_bio code.
482 */
ffbd517d
CM
483 if (device->pending_sync_bios.head == NULL &&
484 device->pending_bios.head == NULL) {
8b712842
CM
485 again = 0;
486 device->running_pending = 0;
ffbd517d
CM
487 } else {
488 again = 1;
489 device->running_pending = 1;
8b712842 490 }
ffbd517d
CM
491
492 pending_bios->head = NULL;
493 pending_bios->tail = NULL;
494
8b712842
CM
495 spin_unlock(&device->io_lock);
496
d397712b 497 while (pending) {
ffbd517d
CM
498
499 rmb();
d84275c9
CM
500 /* we want to work on both lists, but do more bios on the
501 * sync list than the regular list
502 */
503 if ((num_run > 32 &&
504 pending_bios != &device->pending_sync_bios &&
505 device->pending_sync_bios.head) ||
506 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
507 device->pending_bios.head)) {
ffbd517d
CM
508 spin_lock(&device->io_lock);
509 requeue_list(pending_bios, pending, tail);
510 goto loop_lock;
511 }
512
8b712842
CM
513 cur = pending;
514 pending = pending->bi_next;
515 cur->bi_next = NULL;
b64a2851 516
dac56212 517 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 518
2ab1ba68
CM
519 /*
520 * if we're doing the sync list, record that our
521 * plug has some sync requests on it
522 *
523 * If we're doing the regular list and there are
524 * sync requests sitting around, unplug before
525 * we add more
526 */
527 if (pending_bios == &device->pending_sync_bios) {
528 sync_pending = 1;
529 } else if (sync_pending) {
530 blk_finish_plug(&plug);
531 blk_start_plug(&plug);
532 sync_pending = 0;
533 }
534
4e49ea4a 535 btrfsic_submit_bio(cur);
5ff7ba3a
CM
536 num_run++;
537 batch_run++;
853d8ec4
DS
538
539 cond_resched();
8b712842
CM
540
541 /*
542 * we made progress, there is more work to do and the bdi
543 * is now congested. Back off and let other work structs
544 * run instead
545 */
57fd5a5f 546 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 547 fs_info->fs_devices->open_devices > 1) {
b765ead5 548 struct io_context *ioc;
8b712842 549
b765ead5
CM
550 ioc = current->io_context;
551
552 /*
553 * the main goal here is that we don't want to
554 * block if we're going to be able to submit
555 * more requests without blocking.
556 *
557 * This code does two great things, it pokes into
558 * the elevator code from a filesystem _and_
559 * it makes assumptions about how batching works.
560 */
561 if (ioc && ioc->nr_batch_requests > 0 &&
562 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
563 (last_waited == 0 ||
564 ioc->last_waited == last_waited)) {
565 /*
566 * we want to go through our batch of
567 * requests and stop. So, we copy out
568 * the ioc->last_waited time and test
569 * against it before looping
570 */
571 last_waited = ioc->last_waited;
853d8ec4 572 cond_resched();
b765ead5
CM
573 continue;
574 }
8b712842 575 spin_lock(&device->io_lock);
ffbd517d 576 requeue_list(pending_bios, pending, tail);
a6837051 577 device->running_pending = 1;
8b712842
CM
578
579 spin_unlock(&device->io_lock);
a8c93d4e
QW
580 btrfs_queue_work(fs_info->submit_workers,
581 &device->work);
8b712842
CM
582 goto done;
583 }
584 }
ffbd517d 585
51684082
CM
586 cond_resched();
587 if (again)
588 goto loop;
589
590 spin_lock(&device->io_lock);
591 if (device->pending_bios.head || device->pending_sync_bios.head)
592 goto loop_lock;
593 spin_unlock(&device->io_lock);
594
8b712842 595done:
211588ad 596 blk_finish_plug(&plug);
8b712842
CM
597}
598
b2950863 599static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
600{
601 struct btrfs_device *device;
602
603 device = container_of(work, struct btrfs_device, work);
604 run_scheduled_bios(device);
605}
606
d8367db3
AJ
607/*
608 * Search and remove all stale (devices which are not mounted) devices.
609 * When both inputs are NULL, it will search and release all stale devices.
610 * path: Optional. When provided will it release all unmounted devices
611 * matching this path only.
612 * skip_dev: Optional. Will skip this device when searching for the stale
613 * devices.
614 */
615static void btrfs_free_stale_devices(const char *path,
616 struct btrfs_device *skip_dev)
4fde46f0 617{
38cf665d
AJ
618 struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
619 struct btrfs_device *dev, *tmp_dev;
4fde46f0 620
38cf665d 621 list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, list) {
4fde46f0
AJ
622
623 if (fs_devs->opened)
624 continue;
4fde46f0 625
38cf665d
AJ
626 list_for_each_entry_safe(dev, tmp_dev,
627 &fs_devs->devices, dev_list) {
522f1b45 628 int not_found = 0;
4fde46f0 629
d8367db3
AJ
630 if (skip_dev && skip_dev == dev)
631 continue;
632 if (path && !dev->name)
4fde46f0
AJ
633 continue;
634
4fde46f0 635 rcu_read_lock();
d8367db3 636 if (path)
522f1b45 637 not_found = strcmp(rcu_str_deref(dev->name),
d8367db3 638 path);
4fde46f0 639 rcu_read_unlock();
38cf665d
AJ
640 if (not_found)
641 continue;
4fde46f0 642
4fde46f0
AJ
643 /* delete the stale device */
644 if (fs_devs->num_devices == 1) {
645 btrfs_sysfs_remove_fsid(fs_devs);
646 list_del(&fs_devs->list);
647 free_fs_devices(fs_devs);
fd649f10 648 break;
4fde46f0
AJ
649 } else {
650 fs_devs->num_devices--;
651 list_del(&dev->dev_list);
55de4803 652 free_device(dev);
4fde46f0 653 }
4fde46f0
AJ
654 }
655 }
656}
657
0fb08bcc
AJ
658static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
659 struct btrfs_device *device, fmode_t flags,
660 void *holder)
661{
662 struct request_queue *q;
663 struct block_device *bdev;
664 struct buffer_head *bh;
665 struct btrfs_super_block *disk_super;
666 u64 devid;
667 int ret;
668
669 if (device->bdev)
670 return -EINVAL;
671 if (!device->name)
672 return -EINVAL;
673
674 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
675 &bdev, &bh);
676 if (ret)
677 return ret;
678
679 disk_super = (struct btrfs_super_block *)bh->b_data;
680 devid = btrfs_stack_device_id(&disk_super->dev_item);
681 if (devid != device->devid)
682 goto error_brelse;
683
684 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
685 goto error_brelse;
686
687 device->generation = btrfs_super_generation(disk_super);
688
689 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
ebbede42 690 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
691 fs_devices->seeding = 1;
692 } else {
ebbede42
AJ
693 if (bdev_read_only(bdev))
694 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
695 else
696 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
697 }
698
699 q = bdev_get_queue(bdev);
0fb08bcc
AJ
700 if (!blk_queue_nonrot(q))
701 fs_devices->rotating = 1;
702
703 device->bdev = bdev;
e12c9621 704 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
705 device->mode = flags;
706
707 fs_devices->open_devices++;
ebbede42
AJ
708 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
709 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc
AJ
710 fs_devices->rw_devices++;
711 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
712 }
713 brelse(bh);
714
715 return 0;
716
717error_brelse:
718 brelse(bh);
719 blkdev_put(bdev, flags);
720
721 return -EINVAL;
722}
723
60999ca4
DS
724/*
725 * Add new device to list of registered devices
726 *
727 * Returns:
e124ece5
AJ
728 * device pointer which was just added or updated when successful
729 * error pointer when failed
60999ca4 730 */
e124ece5 731static noinline struct btrfs_device *device_list_add(const char *path,
3acbcbfc 732 struct btrfs_super_block *disk_super)
8a4b83cc
CM
733{
734 struct btrfs_device *device;
735 struct btrfs_fs_devices *fs_devices;
606686ee 736 struct rcu_string *name;
8a4b83cc 737 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 738 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
8a4b83cc
CM
739
740 fs_devices = find_fsid(disk_super->fsid);
741 if (!fs_devices) {
2208a378
ID
742 fs_devices = alloc_fs_devices(disk_super->fsid);
743 if (IS_ERR(fs_devices))
e124ece5 744 return ERR_CAST(fs_devices);
2208a378 745
8a4b83cc 746 list_add(&fs_devices->list, &fs_uuids);
2208a378 747
8a4b83cc
CM
748 device = NULL;
749 } else {
35c70103
DS
750 device = find_device(fs_devices, devid,
751 disk_super->dev_item.uuid);
8a4b83cc 752 }
443f24fe 753
8a4b83cc 754 if (!device) {
2b82032c 755 if (fs_devices->opened)
e124ece5 756 return ERR_PTR(-EBUSY);
2b82032c 757
12bd2fc0
ID
758 device = btrfs_alloc_device(NULL, &devid,
759 disk_super->dev_item.uuid);
760 if (IS_ERR(device)) {
8a4b83cc 761 /* we can safely leave the fs_devices entry around */
e124ece5 762 return device;
8a4b83cc 763 }
606686ee
JB
764
765 name = rcu_string_strdup(path, GFP_NOFS);
766 if (!name) {
55de4803 767 free_device(device);
e124ece5 768 return ERR_PTR(-ENOMEM);
8a4b83cc 769 }
606686ee 770 rcu_assign_pointer(device->name, name);
90519d66 771
e5e9a520 772 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 773 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 774 fs_devices->num_devices++;
e5e9a520
CM
775 mutex_unlock(&fs_devices->device_list_mutex);
776
2b82032c 777 device->fs_devices = fs_devices;
d8367db3 778 btrfs_free_stale_devices(path, device);
327f18cc
AJ
779
780 if (disk_super->label[0])
781 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
782 disk_super->label, devid, found_transid, path);
783 else
784 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
785 disk_super->fsid, devid, found_transid, path);
786
606686ee 787 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
788 /*
789 * When FS is already mounted.
790 * 1. If you are here and if the device->name is NULL that
791 * means this device was missing at time of FS mount.
792 * 2. If you are here and if the device->name is different
793 * from 'path' that means either
794 * a. The same device disappeared and reappeared with
795 * different name. or
796 * b. The missing-disk-which-was-replaced, has
797 * reappeared now.
798 *
799 * We must allow 1 and 2a above. But 2b would be a spurious
800 * and unintentional.
801 *
802 * Further in case of 1 and 2a above, the disk at 'path'
803 * would have missed some transaction when it was away and
804 * in case of 2a the stale bdev has to be updated as well.
805 * 2b must not be allowed at all time.
806 */
807
808 /*
0f23ae74
CM
809 * For now, we do allow update to btrfs_fs_device through the
810 * btrfs dev scan cli after FS has been mounted. We're still
811 * tracking a problem where systems fail mount by subvolume id
812 * when we reject replacement on a mounted FS.
b96de000 813 */
0f23ae74 814 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
815 /*
816 * That is if the FS is _not_ mounted and if you
817 * are here, that means there is more than one
818 * disk with same uuid and devid.We keep the one
819 * with larger generation number or the last-in if
820 * generation are equal.
821 */
e124ece5 822 return ERR_PTR(-EEXIST);
77bdae4d 823 }
b96de000 824
606686ee 825 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc 826 if (!name)
e124ece5 827 return ERR_PTR(-ENOMEM);
606686ee
JB
828 rcu_string_free(device->name);
829 rcu_assign_pointer(device->name, name);
e6e674bd 830 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 831 fs_devices->missing_devices--;
e6e674bd 832 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 833 }
8a4b83cc
CM
834 }
835
77bdae4d
AJ
836 /*
837 * Unmount does not free the btrfs_device struct but would zero
838 * generation along with most of the other members. So just update
839 * it back. We need it to pick the disk with largest generation
840 * (as above).
841 */
842 if (!fs_devices->opened)
843 device->generation = found_transid;
844
f2788d2f
AJ
845 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
846
e124ece5 847 return device;
8a4b83cc
CM
848}
849
e4404d6e
YZ
850static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
851{
852 struct btrfs_fs_devices *fs_devices;
853 struct btrfs_device *device;
854 struct btrfs_device *orig_dev;
855
2208a378
ID
856 fs_devices = alloc_fs_devices(orig->fsid);
857 if (IS_ERR(fs_devices))
858 return fs_devices;
e4404d6e 859
adbbb863 860 mutex_lock(&orig->device_list_mutex);
02db0844 861 fs_devices->total_devices = orig->total_devices;
e4404d6e 862
46224705 863 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 864 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
865 struct rcu_string *name;
866
12bd2fc0
ID
867 device = btrfs_alloc_device(NULL, &orig_dev->devid,
868 orig_dev->uuid);
869 if (IS_ERR(device))
e4404d6e
YZ
870 goto error;
871
606686ee
JB
872 /*
873 * This is ok to do without rcu read locked because we hold the
874 * uuid mutex so nothing we touch in here is going to disappear.
875 */
e755f780 876 if (orig_dev->name) {
78f2c9e6
DS
877 name = rcu_string_strdup(orig_dev->name->str,
878 GFP_KERNEL);
e755f780 879 if (!name) {
55de4803 880 free_device(device);
e755f780
AJ
881 goto error;
882 }
883 rcu_assign_pointer(device->name, name);
fd2696f3 884 }
e4404d6e 885
e4404d6e
YZ
886 list_add(&device->dev_list, &fs_devices->devices);
887 device->fs_devices = fs_devices;
888 fs_devices->num_devices++;
889 }
adbbb863 890 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
891 return fs_devices;
892error:
adbbb863 893 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
894 free_fs_devices(fs_devices);
895 return ERR_PTR(-ENOMEM);
896}
897
9eaed21e 898void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 899{
c6e30871 900 struct btrfs_device *device, *next;
443f24fe 901 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 902
dfe25020
CM
903 mutex_lock(&uuid_mutex);
904again:
46224705 905 /* This is the initialized path, it is safe to release the devices. */
c6e30871 906 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
e12c9621
AJ
907 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
908 &device->dev_state)) {
401e29c1
AJ
909 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
910 &device->dev_state) &&
911 (!latest_dev ||
912 device->generation > latest_dev->generation)) {
443f24fe 913 latest_dev = device;
a6b0d5c8 914 }
2b82032c 915 continue;
a6b0d5c8 916 }
2b82032c 917
8dabb742
SB
918 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
919 /*
920 * In the first step, keep the device which has
921 * the correct fsid and the devid that is used
922 * for the dev_replace procedure.
923 * In the second step, the dev_replace state is
924 * read from the device tree and it is known
925 * whether the procedure is really active or
926 * not, which means whether this device is
927 * used or whether it should be removed.
928 */
401e29c1
AJ
929 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
930 &device->dev_state)) {
8dabb742
SB
931 continue;
932 }
933 }
2b82032c 934 if (device->bdev) {
d4d77629 935 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
936 device->bdev = NULL;
937 fs_devices->open_devices--;
938 }
ebbede42 939 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 940 list_del_init(&device->dev_alloc_list);
ebbede42 941 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
401e29c1
AJ
942 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
943 &device->dev_state))
8dabb742 944 fs_devices->rw_devices--;
2b82032c 945 }
e4404d6e
YZ
946 list_del_init(&device->dev_list);
947 fs_devices->num_devices--;
55de4803 948 free_device(device);
dfe25020 949 }
2b82032c
YZ
950
951 if (fs_devices->seed) {
952 fs_devices = fs_devices->seed;
2b82032c
YZ
953 goto again;
954 }
955
443f24fe 956 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 957
dfe25020 958 mutex_unlock(&uuid_mutex);
dfe25020 959}
a0af469b 960
f06c5965 961static void free_device_rcu(struct rcu_head *head)
1f78160c
XG
962{
963 struct btrfs_device *device;
964
9f5316c1 965 device = container_of(head, struct btrfs_device, rcu);
55de4803 966 free_device(device);
1f78160c
XG
967}
968
14238819
AJ
969static void btrfs_close_bdev(struct btrfs_device *device)
970{
08ffcae8
DS
971 if (!device->bdev)
972 return;
973
ebbede42 974 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
975 sync_blockdev(device->bdev);
976 invalidate_bdev(device->bdev);
977 }
978
08ffcae8 979 blkdev_put(device->bdev, device->mode);
14238819
AJ
980}
981
0ccd0528 982static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
983{
984 struct btrfs_fs_devices *fs_devices = device->fs_devices;
985 struct btrfs_device *new_device;
986 struct rcu_string *name;
987
988 if (device->bdev)
989 fs_devices->open_devices--;
990
ebbede42 991 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
992 device->devid != BTRFS_DEV_REPLACE_DEVID) {
993 list_del_init(&device->dev_alloc_list);
994 fs_devices->rw_devices--;
995 }
996
e6e674bd 997 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
998 fs_devices->missing_devices--;
999
1000 new_device = btrfs_alloc_device(NULL, &device->devid,
1001 device->uuid);
1002 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1003
1004 /* Safe because we are under uuid_mutex */
1005 if (device->name) {
1006 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1007 BUG_ON(!name); /* -ENOMEM */
1008 rcu_assign_pointer(new_device->name, name);
1009 }
1010
1011 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1012 new_device->fs_devices = device->fs_devices;
f448341a
AJ
1013}
1014
2b82032c 1015static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1016{
2037a093 1017 struct btrfs_device *device, *tmp;
0ccd0528
AJ
1018 struct list_head pending_put;
1019
1020 INIT_LIST_HEAD(&pending_put);
e4404d6e 1021
2b82032c
YZ
1022 if (--fs_devices->opened > 0)
1023 return 0;
8a4b83cc 1024
c9513edb 1025 mutex_lock(&fs_devices->device_list_mutex);
2037a093 1026 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
1027 btrfs_prepare_close_one_device(device);
1028 list_add(&device->dev_list, &pending_put);
8a4b83cc 1029 }
c9513edb
XG
1030 mutex_unlock(&fs_devices->device_list_mutex);
1031
0ccd0528
AJ
1032 /*
1033 * btrfs_show_devname() is using the device_list_mutex,
1034 * sometimes call to blkdev_put() leads vfs calling
1035 * into this func. So do put outside of device_list_mutex,
1036 * as of now.
1037 */
1038 while (!list_empty(&pending_put)) {
1039 device = list_first_entry(&pending_put,
1040 struct btrfs_device, dev_list);
1041 list_del(&device->dev_list);
1042 btrfs_close_bdev(device);
f06c5965 1043 call_rcu(&device->rcu, free_device_rcu);
0ccd0528
AJ
1044 }
1045
e4404d6e
YZ
1046 WARN_ON(fs_devices->open_devices);
1047 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
1048 fs_devices->opened = 0;
1049 fs_devices->seeding = 0;
2b82032c 1050
8a4b83cc
CM
1051 return 0;
1052}
1053
2b82032c
YZ
1054int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1055{
e4404d6e 1056 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
1057 int ret;
1058
1059 mutex_lock(&uuid_mutex);
1060 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
1061 if (!fs_devices->opened) {
1062 seed_devices = fs_devices->seed;
1063 fs_devices->seed = NULL;
1064 }
2b82032c 1065 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
1066
1067 while (seed_devices) {
1068 fs_devices = seed_devices;
1069 seed_devices = fs_devices->seed;
1070 __btrfs_close_devices(fs_devices);
1071 free_fs_devices(fs_devices);
1072 }
2b82032c
YZ
1073 return ret;
1074}
1075
e4404d6e
YZ
1076static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1077 fmode_t flags, void *holder)
8a4b83cc 1078{
8a4b83cc 1079 struct list_head *head = &fs_devices->devices;
8a4b83cc 1080 struct btrfs_device *device;
443f24fe 1081 struct btrfs_device *latest_dev = NULL;
a0af469b 1082 int ret = 0;
8a4b83cc 1083
d4d77629
TH
1084 flags |= FMODE_EXCL;
1085
c6e30871 1086 list_for_each_entry(device, head, dev_list) {
f63e0cca 1087 /* Just open everything we can; ignore failures here */
0fb08bcc 1088 if (btrfs_open_one_device(fs_devices, device, flags, holder))
beaf8ab3 1089 continue;
a0af469b 1090
9f050db4
AJ
1091 if (!latest_dev ||
1092 device->generation > latest_dev->generation)
1093 latest_dev = device;
8a4b83cc 1094 }
a0af469b 1095 if (fs_devices->open_devices == 0) {
20bcd649 1096 ret = -EINVAL;
a0af469b
CM
1097 goto out;
1098 }
2b82032c 1099 fs_devices->opened = 1;
443f24fe 1100 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1101 fs_devices->total_rw_bytes = 0;
a0af469b 1102out:
2b82032c
YZ
1103 return ret;
1104}
1105
1106int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1107 fmode_t flags, void *holder)
2b82032c
YZ
1108{
1109 int ret;
1110
1111 mutex_lock(&uuid_mutex);
1112 if (fs_devices->opened) {
e4404d6e
YZ
1113 fs_devices->opened++;
1114 ret = 0;
2b82032c 1115 } else {
15916de8 1116 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1117 }
8a4b83cc 1118 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1119 return ret;
1120}
1121
c9162bdf 1122static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1123{
1124 kunmap(page);
1125 put_page(page);
1126}
1127
c9162bdf
OS
1128static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1129 struct page **page,
1130 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1131{
1132 void *p;
1133 pgoff_t index;
1134
1135 /* make sure our super fits in the device */
1136 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1137 return 1;
1138
1139 /* make sure our super fits in the page */
1140 if (sizeof(**disk_super) > PAGE_SIZE)
1141 return 1;
1142
1143 /* make sure our super doesn't straddle pages on disk */
1144 index = bytenr >> PAGE_SHIFT;
1145 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1146 return 1;
1147
1148 /* pull in the page with our super */
1149 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1150 index, GFP_KERNEL);
1151
1152 if (IS_ERR_OR_NULL(*page))
1153 return 1;
1154
1155 p = kmap(*page);
1156
1157 /* align our pointer to the offset of the super block */
1158 *disk_super = p + (bytenr & ~PAGE_MASK);
1159
1160 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1161 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1162 btrfs_release_disk_super(*page);
1163 return 1;
1164 }
1165
1166 if ((*disk_super)->label[0] &&
1167 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1168 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1169
1170 return 0;
1171}
1172
6f60cbd3
DS
1173/*
1174 * Look for a btrfs signature on a device. This may be called out of the mount path
1175 * and we are not allowed to call set_blocksize during the scan. The superblock
1176 * is read via pagecache
1177 */
97288f2c 1178int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1179 struct btrfs_fs_devices **fs_devices_ret)
1180{
1181 struct btrfs_super_block *disk_super;
e124ece5 1182 struct btrfs_device *device;
8a4b83cc 1183 struct block_device *bdev;
6f60cbd3 1184 struct page *page;
e124ece5 1185 int ret = 0;
6f60cbd3 1186 u64 bytenr;
8a4b83cc 1187
6f60cbd3
DS
1188 /*
1189 * we would like to check all the supers, but that would make
1190 * a btrfs mount succeed after a mkfs from a different FS.
1191 * So, we need to add a special mount option to scan for
1192 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1193 */
1194 bytenr = btrfs_sb_offset(0);
d4d77629 1195 flags |= FMODE_EXCL;
10f6327b 1196 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1197
1198 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1199 if (IS_ERR(bdev)) {
1200 ret = PTR_ERR(bdev);
beaf8ab3 1201 goto error;
6f60cbd3
DS
1202 }
1203
05a5c55d
AJ
1204 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1205 ret = -EINVAL;
6f60cbd3 1206 goto error_bdev_put;
05a5c55d 1207 }
6f60cbd3 1208
3acbcbfc 1209 device = device_list_add(path, disk_super);
e124ece5
AJ
1210 if (IS_ERR(device))
1211 ret = PTR_ERR(device);
1212 else
1213 *fs_devices_ret = device->fs_devices;
6f60cbd3 1214
6cf86a00 1215 btrfs_release_disk_super(page);
6f60cbd3
DS
1216
1217error_bdev_put:
d4d77629 1218 blkdev_put(bdev, flags);
8a4b83cc 1219error:
beaf8ab3 1220 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1221 return ret;
1222}
0b86a832 1223
6d07bcec
MX
1224/* helper to account the used device space in the range */
1225int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1226 u64 end, u64 *length)
1227{
1228 struct btrfs_key key;
fb456252 1229 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1230 struct btrfs_dev_extent *dev_extent;
1231 struct btrfs_path *path;
1232 u64 extent_end;
1233 int ret;
1234 int slot;
1235 struct extent_buffer *l;
1236
1237 *length = 0;
1238
401e29c1
AJ
1239 if (start >= device->total_bytes ||
1240 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
6d07bcec
MX
1241 return 0;
1242
1243 path = btrfs_alloc_path();
1244 if (!path)
1245 return -ENOMEM;
e4058b54 1246 path->reada = READA_FORWARD;
6d07bcec
MX
1247
1248 key.objectid = device->devid;
1249 key.offset = start;
1250 key.type = BTRFS_DEV_EXTENT_KEY;
1251
1252 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1253 if (ret < 0)
1254 goto out;
1255 if (ret > 0) {
1256 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1257 if (ret < 0)
1258 goto out;
1259 }
1260
1261 while (1) {
1262 l = path->nodes[0];
1263 slot = path->slots[0];
1264 if (slot >= btrfs_header_nritems(l)) {
1265 ret = btrfs_next_leaf(root, path);
1266 if (ret == 0)
1267 continue;
1268 if (ret < 0)
1269 goto out;
1270
1271 break;
1272 }
1273 btrfs_item_key_to_cpu(l, &key, slot);
1274
1275 if (key.objectid < device->devid)
1276 goto next;
1277
1278 if (key.objectid > device->devid)
1279 break;
1280
962a298f 1281 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1282 goto next;
1283
1284 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1285 extent_end = key.offset + btrfs_dev_extent_length(l,
1286 dev_extent);
1287 if (key.offset <= start && extent_end > end) {
1288 *length = end - start + 1;
1289 break;
1290 } else if (key.offset <= start && extent_end > start)
1291 *length += extent_end - start;
1292 else if (key.offset > start && extent_end <= end)
1293 *length += extent_end - key.offset;
1294 else if (key.offset > start && key.offset <= end) {
1295 *length += end - key.offset + 1;
1296 break;
1297 } else if (key.offset > end)
1298 break;
1299
1300next:
1301 path->slots[0]++;
1302 }
1303 ret = 0;
1304out:
1305 btrfs_free_path(path);
1306 return ret;
1307}
1308
499f377f 1309static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1310 struct btrfs_device *device,
1311 u64 *start, u64 len)
1312{
fb456252 1313 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1314 struct extent_map *em;
499f377f 1315 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1316 int ret = 0;
1b984508 1317 u64 physical_start = *start;
6df9a95e 1318
499f377f
JM
1319 if (transaction)
1320 search_list = &transaction->pending_chunks;
04216820
FM
1321again:
1322 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1323 struct map_lookup *map;
1324 int i;
1325
95617d69 1326 map = em->map_lookup;
6df9a95e 1327 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1328 u64 end;
1329
6df9a95e
JB
1330 if (map->stripes[i].dev != device)
1331 continue;
1b984508 1332 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1333 map->stripes[i].physical + em->orig_block_len <=
1b984508 1334 physical_start)
6df9a95e 1335 continue;
c152b63e
FM
1336 /*
1337 * Make sure that while processing the pinned list we do
1338 * not override our *start with a lower value, because
1339 * we can have pinned chunks that fall within this
1340 * device hole and that have lower physical addresses
1341 * than the pending chunks we processed before. If we
1342 * do not take this special care we can end up getting
1343 * 2 pending chunks that start at the same physical
1344 * device offsets because the end offset of a pinned
1345 * chunk can be equal to the start offset of some
1346 * pending chunk.
1347 */
1348 end = map->stripes[i].physical + em->orig_block_len;
1349 if (end > *start) {
1350 *start = end;
1351 ret = 1;
1352 }
6df9a95e
JB
1353 }
1354 }
499f377f
JM
1355 if (search_list != &fs_info->pinned_chunks) {
1356 search_list = &fs_info->pinned_chunks;
04216820
FM
1357 goto again;
1358 }
6df9a95e
JB
1359
1360 return ret;
1361}
1362
1363
0b86a832 1364/*
499f377f
JM
1365 * find_free_dev_extent_start - find free space in the specified device
1366 * @device: the device which we search the free space in
1367 * @num_bytes: the size of the free space that we need
1368 * @search_start: the position from which to begin the search
1369 * @start: store the start of the free space.
1370 * @len: the size of the free space. that we find, or the size
1371 * of the max free space if we don't find suitable free space
7bfc837d 1372 *
0b86a832
CM
1373 * this uses a pretty simple search, the expectation is that it is
1374 * called very infrequently and that a given device has a small number
1375 * of extents
7bfc837d
MX
1376 *
1377 * @start is used to store the start of the free space if we find. But if we
1378 * don't find suitable free space, it will be used to store the start position
1379 * of the max free space.
1380 *
1381 * @len is used to store the size of the free space that we find.
1382 * But if we don't find suitable free space, it is used to store the size of
1383 * the max free space.
0b86a832 1384 */
499f377f
JM
1385int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1386 struct btrfs_device *device, u64 num_bytes,
1387 u64 search_start, u64 *start, u64 *len)
0b86a832 1388{
0b246afa
JM
1389 struct btrfs_fs_info *fs_info = device->fs_info;
1390 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1391 struct btrfs_key key;
7bfc837d 1392 struct btrfs_dev_extent *dev_extent;
2b82032c 1393 struct btrfs_path *path;
7bfc837d
MX
1394 u64 hole_size;
1395 u64 max_hole_start;
1396 u64 max_hole_size;
1397 u64 extent_end;
0b86a832
CM
1398 u64 search_end = device->total_bytes;
1399 int ret;
7bfc837d 1400 int slot;
0b86a832 1401 struct extent_buffer *l;
8cdc7c5b
FM
1402
1403 /*
1404 * We don't want to overwrite the superblock on the drive nor any area
1405 * used by the boot loader (grub for example), so we make sure to start
1406 * at an offset of at least 1MB.
1407 */
0d0c71b3 1408 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1409
6df9a95e
JB
1410 path = btrfs_alloc_path();
1411 if (!path)
1412 return -ENOMEM;
f2ab7618 1413
7bfc837d
MX
1414 max_hole_start = search_start;
1415 max_hole_size = 0;
1416
f2ab7618 1417again:
401e29c1
AJ
1418 if (search_start >= search_end ||
1419 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1420 ret = -ENOSPC;
6df9a95e 1421 goto out;
7bfc837d
MX
1422 }
1423
e4058b54 1424 path->reada = READA_FORWARD;
6df9a95e
JB
1425 path->search_commit_root = 1;
1426 path->skip_locking = 1;
7bfc837d 1427
0b86a832
CM
1428 key.objectid = device->devid;
1429 key.offset = search_start;
1430 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1431
125ccb0a 1432 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1433 if (ret < 0)
7bfc837d 1434 goto out;
1fcbac58
YZ
1435 if (ret > 0) {
1436 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1437 if (ret < 0)
7bfc837d 1438 goto out;
1fcbac58 1439 }
7bfc837d 1440
0b86a832
CM
1441 while (1) {
1442 l = path->nodes[0];
1443 slot = path->slots[0];
1444 if (slot >= btrfs_header_nritems(l)) {
1445 ret = btrfs_next_leaf(root, path);
1446 if (ret == 0)
1447 continue;
1448 if (ret < 0)
7bfc837d
MX
1449 goto out;
1450
1451 break;
0b86a832
CM
1452 }
1453 btrfs_item_key_to_cpu(l, &key, slot);
1454
1455 if (key.objectid < device->devid)
1456 goto next;
1457
1458 if (key.objectid > device->devid)
7bfc837d 1459 break;
0b86a832 1460
962a298f 1461 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1462 goto next;
9779b72f 1463
7bfc837d
MX
1464 if (key.offset > search_start) {
1465 hole_size = key.offset - search_start;
9779b72f 1466
6df9a95e
JB
1467 /*
1468 * Have to check before we set max_hole_start, otherwise
1469 * we could end up sending back this offset anyway.
1470 */
499f377f 1471 if (contains_pending_extent(transaction, device,
6df9a95e 1472 &search_start,
1b984508
FL
1473 hole_size)) {
1474 if (key.offset >= search_start) {
1475 hole_size = key.offset - search_start;
1476 } else {
1477 WARN_ON_ONCE(1);
1478 hole_size = 0;
1479 }
1480 }
6df9a95e 1481
7bfc837d
MX
1482 if (hole_size > max_hole_size) {
1483 max_hole_start = search_start;
1484 max_hole_size = hole_size;
1485 }
9779b72f 1486
7bfc837d
MX
1487 /*
1488 * If this free space is greater than which we need,
1489 * it must be the max free space that we have found
1490 * until now, so max_hole_start must point to the start
1491 * of this free space and the length of this free space
1492 * is stored in max_hole_size. Thus, we return
1493 * max_hole_start and max_hole_size and go back to the
1494 * caller.
1495 */
1496 if (hole_size >= num_bytes) {
1497 ret = 0;
1498 goto out;
0b86a832
CM
1499 }
1500 }
0b86a832 1501
0b86a832 1502 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1503 extent_end = key.offset + btrfs_dev_extent_length(l,
1504 dev_extent);
1505 if (extent_end > search_start)
1506 search_start = extent_end;
0b86a832
CM
1507next:
1508 path->slots[0]++;
1509 cond_resched();
1510 }
0b86a832 1511
38c01b96 1512 /*
1513 * At this point, search_start should be the end of
1514 * allocated dev extents, and when shrinking the device,
1515 * search_end may be smaller than search_start.
1516 */
f2ab7618 1517 if (search_end > search_start) {
38c01b96 1518 hole_size = search_end - search_start;
1519
499f377f 1520 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1521 hole_size)) {
1522 btrfs_release_path(path);
1523 goto again;
1524 }
0b86a832 1525
f2ab7618
ZL
1526 if (hole_size > max_hole_size) {
1527 max_hole_start = search_start;
1528 max_hole_size = hole_size;
1529 }
6df9a95e
JB
1530 }
1531
7bfc837d 1532 /* See above. */
f2ab7618 1533 if (max_hole_size < num_bytes)
7bfc837d
MX
1534 ret = -ENOSPC;
1535 else
1536 ret = 0;
1537
1538out:
2b82032c 1539 btrfs_free_path(path);
7bfc837d 1540 *start = max_hole_start;
b2117a39 1541 if (len)
7bfc837d 1542 *len = max_hole_size;
0b86a832
CM
1543 return ret;
1544}
1545
499f377f
JM
1546int find_free_dev_extent(struct btrfs_trans_handle *trans,
1547 struct btrfs_device *device, u64 num_bytes,
1548 u64 *start, u64 *len)
1549{
499f377f 1550 /* FIXME use last free of some kind */
499f377f 1551 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1552 num_bytes, 0, start, len);
499f377f
JM
1553}
1554
b2950863 1555static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1556 struct btrfs_device *device,
2196d6e8 1557 u64 start, u64 *dev_extent_len)
8f18cf13 1558{
0b246afa
JM
1559 struct btrfs_fs_info *fs_info = device->fs_info;
1560 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1561 int ret;
1562 struct btrfs_path *path;
8f18cf13 1563 struct btrfs_key key;
a061fc8d
CM
1564 struct btrfs_key found_key;
1565 struct extent_buffer *leaf = NULL;
1566 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1567
1568 path = btrfs_alloc_path();
1569 if (!path)
1570 return -ENOMEM;
1571
1572 key.objectid = device->devid;
1573 key.offset = start;
1574 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1575again:
8f18cf13 1576 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1577 if (ret > 0) {
1578 ret = btrfs_previous_item(root, path, key.objectid,
1579 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1580 if (ret)
1581 goto out;
a061fc8d
CM
1582 leaf = path->nodes[0];
1583 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1584 extent = btrfs_item_ptr(leaf, path->slots[0],
1585 struct btrfs_dev_extent);
1586 BUG_ON(found_key.offset > start || found_key.offset +
1587 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1588 key = found_key;
1589 btrfs_release_path(path);
1590 goto again;
a061fc8d
CM
1591 } else if (ret == 0) {
1592 leaf = path->nodes[0];
1593 extent = btrfs_item_ptr(leaf, path->slots[0],
1594 struct btrfs_dev_extent);
79787eaa 1595 } else {
0b246afa 1596 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1597 goto out;
a061fc8d 1598 }
8f18cf13 1599
2196d6e8
MX
1600 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1601
8f18cf13 1602 ret = btrfs_del_item(trans, root, path);
79787eaa 1603 if (ret) {
0b246afa
JM
1604 btrfs_handle_fs_error(fs_info, ret,
1605 "Failed to remove dev extent item");
13212b54 1606 } else {
3204d33c 1607 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1608 }
b0b802d7 1609out:
8f18cf13
CM
1610 btrfs_free_path(path);
1611 return ret;
1612}
1613
48a3b636
ES
1614static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1615 struct btrfs_device *device,
48a3b636 1616 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1617{
1618 int ret;
1619 struct btrfs_path *path;
0b246afa
JM
1620 struct btrfs_fs_info *fs_info = device->fs_info;
1621 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1622 struct btrfs_dev_extent *extent;
1623 struct extent_buffer *leaf;
1624 struct btrfs_key key;
1625
e12c9621 1626 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
401e29c1 1627 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
0b86a832
CM
1628 path = btrfs_alloc_path();
1629 if (!path)
1630 return -ENOMEM;
1631
0b86a832 1632 key.objectid = device->devid;
2b82032c 1633 key.offset = start;
0b86a832
CM
1634 key.type = BTRFS_DEV_EXTENT_KEY;
1635 ret = btrfs_insert_empty_item(trans, root, path, &key,
1636 sizeof(*extent));
2cdcecbc
MF
1637 if (ret)
1638 goto out;
0b86a832
CM
1639
1640 leaf = path->nodes[0];
1641 extent = btrfs_item_ptr(leaf, path->slots[0],
1642 struct btrfs_dev_extent);
b5d9071c
NB
1643 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1644 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1645 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1646 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1647 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1648
0b86a832
CM
1649 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1650 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1651out:
0b86a832
CM
1652 btrfs_free_path(path);
1653 return ret;
1654}
1655
6df9a95e 1656static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1657{
6df9a95e
JB
1658 struct extent_map_tree *em_tree;
1659 struct extent_map *em;
1660 struct rb_node *n;
1661 u64 ret = 0;
0b86a832 1662
6df9a95e
JB
1663 em_tree = &fs_info->mapping_tree.map_tree;
1664 read_lock(&em_tree->lock);
1665 n = rb_last(&em_tree->map);
1666 if (n) {
1667 em = rb_entry(n, struct extent_map, rb_node);
1668 ret = em->start + em->len;
0b86a832 1669 }
6df9a95e
JB
1670 read_unlock(&em_tree->lock);
1671
0b86a832
CM
1672 return ret;
1673}
1674
53f10659
ID
1675static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1676 u64 *devid_ret)
0b86a832
CM
1677{
1678 int ret;
1679 struct btrfs_key key;
1680 struct btrfs_key found_key;
2b82032c
YZ
1681 struct btrfs_path *path;
1682
2b82032c
YZ
1683 path = btrfs_alloc_path();
1684 if (!path)
1685 return -ENOMEM;
0b86a832
CM
1686
1687 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688 key.type = BTRFS_DEV_ITEM_KEY;
1689 key.offset = (u64)-1;
1690
53f10659 1691 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1692 if (ret < 0)
1693 goto error;
1694
79787eaa 1695 BUG_ON(ret == 0); /* Corruption */
0b86a832 1696
53f10659
ID
1697 ret = btrfs_previous_item(fs_info->chunk_root, path,
1698 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1699 BTRFS_DEV_ITEM_KEY);
1700 if (ret) {
53f10659 1701 *devid_ret = 1;
0b86a832
CM
1702 } else {
1703 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1704 path->slots[0]);
53f10659 1705 *devid_ret = found_key.offset + 1;
0b86a832
CM
1706 }
1707 ret = 0;
1708error:
2b82032c 1709 btrfs_free_path(path);
0b86a832
CM
1710 return ret;
1711}
1712
1713/*
1714 * the device information is stored in the chunk root
1715 * the btrfs_device struct should be fully filled in
1716 */
c74a0b02 1717static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
5b4aacef 1718 struct btrfs_fs_info *fs_info,
48a3b636 1719 struct btrfs_device *device)
0b86a832 1720{
5b4aacef 1721 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1722 int ret;
1723 struct btrfs_path *path;
1724 struct btrfs_dev_item *dev_item;
1725 struct extent_buffer *leaf;
1726 struct btrfs_key key;
1727 unsigned long ptr;
0b86a832 1728
0b86a832
CM
1729 path = btrfs_alloc_path();
1730 if (!path)
1731 return -ENOMEM;
1732
0b86a832
CM
1733 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1734 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1735 key.offset = device->devid;
0b86a832
CM
1736
1737 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1738 sizeof(*dev_item));
0b86a832
CM
1739 if (ret)
1740 goto out;
1741
1742 leaf = path->nodes[0];
1743 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1744
1745 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1746 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1747 btrfs_set_device_type(leaf, dev_item, device->type);
1748 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1749 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1750 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1751 btrfs_set_device_total_bytes(leaf, dev_item,
1752 btrfs_device_get_disk_total_bytes(device));
1753 btrfs_set_device_bytes_used(leaf, dev_item,
1754 btrfs_device_get_bytes_used(device));
e17cade2
CM
1755 btrfs_set_device_group(leaf, dev_item, 0);
1756 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1757 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1758 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1759
410ba3a2 1760 ptr = btrfs_device_uuid(dev_item);
e17cade2 1761 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1762 ptr = btrfs_device_fsid(dev_item);
44880fdc 1763 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
0b86a832 1764 btrfs_mark_buffer_dirty(leaf);
0b86a832 1765
2b82032c 1766 ret = 0;
0b86a832
CM
1767out:
1768 btrfs_free_path(path);
1769 return ret;
1770}
8f18cf13 1771
5a1972bd
QW
1772/*
1773 * Function to update ctime/mtime for a given device path.
1774 * Mainly used for ctime/mtime based probe like libblkid.
1775 */
da353f6b 1776static void update_dev_time(const char *path_name)
5a1972bd
QW
1777{
1778 struct file *filp;
1779
1780 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1781 if (IS_ERR(filp))
5a1972bd
QW
1782 return;
1783 file_update_time(filp);
1784 filp_close(filp, NULL);
5a1972bd
QW
1785}
1786
5b4aacef 1787static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1788 struct btrfs_device *device)
1789{
5b4aacef 1790 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1791 int ret;
1792 struct btrfs_path *path;
a061fc8d 1793 struct btrfs_key key;
a061fc8d
CM
1794 struct btrfs_trans_handle *trans;
1795
a061fc8d
CM
1796 path = btrfs_alloc_path();
1797 if (!path)
1798 return -ENOMEM;
1799
a22285a6 1800 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1801 if (IS_ERR(trans)) {
1802 btrfs_free_path(path);
1803 return PTR_ERR(trans);
1804 }
a061fc8d
CM
1805 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1806 key.type = BTRFS_DEV_ITEM_KEY;
1807 key.offset = device->devid;
1808
1809 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1810 if (ret) {
1811 if (ret > 0)
1812 ret = -ENOENT;
1813 btrfs_abort_transaction(trans, ret);
1814 btrfs_end_transaction(trans);
a061fc8d
CM
1815 goto out;
1816 }
1817
1818 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1819 if (ret) {
1820 btrfs_abort_transaction(trans, ret);
1821 btrfs_end_transaction(trans);
1822 }
1823
a061fc8d
CM
1824out:
1825 btrfs_free_path(path);
5e9f2ad5
NB
1826 if (!ret)
1827 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1828 return ret;
1829}
1830
3cc31a0d
DS
1831/*
1832 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1833 * filesystem. It's up to the caller to adjust that number regarding eg. device
1834 * replace.
1835 */
1836static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1837 u64 num_devices)
a061fc8d 1838{
a061fc8d 1839 u64 all_avail;
de98ced9 1840 unsigned seq;
418775a2 1841 int i;
a061fc8d 1842
de98ced9 1843 do {
bd45ffbc 1844 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1845
bd45ffbc
AJ
1846 all_avail = fs_info->avail_data_alloc_bits |
1847 fs_info->avail_system_alloc_bits |
1848 fs_info->avail_metadata_alloc_bits;
1849 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1850
418775a2
DS
1851 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1852 if (!(all_avail & btrfs_raid_group[i]))
1853 continue;
a061fc8d 1854
418775a2
DS
1855 if (num_devices < btrfs_raid_array[i].devs_min) {
1856 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1857
418775a2
DS
1858 if (ret)
1859 return ret;
1860 }
53b381b3
DW
1861 }
1862
bd45ffbc 1863 return 0;
f1fa7f26
AJ
1864}
1865
c9162bdf
OS
1866static struct btrfs_device * btrfs_find_next_active_device(
1867 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1868{
2b82032c 1869 struct btrfs_device *next_device;
88acff64
AJ
1870
1871 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1872 if (next_device != device &&
e6e674bd
AJ
1873 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1874 && next_device->bdev)
88acff64
AJ
1875 return next_device;
1876 }
1877
1878 return NULL;
1879}
1880
1881/*
1882 * Helper function to check if the given device is part of s_bdev / latest_bdev
1883 * and replace it with the provided or the next active device, in the context
1884 * where this function called, there should be always be another device (or
1885 * this_dev) which is active.
1886 */
1887void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1888 struct btrfs_device *device, struct btrfs_device *this_dev)
1889{
1890 struct btrfs_device *next_device;
1891
1892 if (this_dev)
1893 next_device = this_dev;
1894 else
1895 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1896 device);
1897 ASSERT(next_device);
1898
1899 if (fs_info->sb->s_bdev &&
1900 (fs_info->sb->s_bdev == device->bdev))
1901 fs_info->sb->s_bdev = next_device->bdev;
1902
1903 if (fs_info->fs_devices->latest_bdev == device->bdev)
1904 fs_info->fs_devices->latest_bdev = next_device->bdev;
1905}
1906
da353f6b
DS
1907int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1908 u64 devid)
f1fa7f26
AJ
1909{
1910 struct btrfs_device *device;
1f78160c 1911 struct btrfs_fs_devices *cur_devices;
2b82032c 1912 u64 num_devices;
a061fc8d
CM
1913 int ret = 0;
1914
2c997384 1915 mutex_lock(&fs_info->volume_mutex);
a061fc8d
CM
1916 mutex_lock(&uuid_mutex);
1917
0b246afa
JM
1918 num_devices = fs_info->fs_devices->num_devices;
1919 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1920 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1921 WARN_ON(num_devices < 1);
1922 num_devices--;
1923 }
0b246afa 1924 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1925
0b246afa 1926 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1927 if (ret)
a061fc8d 1928 goto out;
a061fc8d 1929
2ff7e61e
JM
1930 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1931 &device);
24fc572f 1932 if (ret)
53b381b3 1933 goto out;
dfe25020 1934
401e29c1 1935 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 1936 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1937 goto out;
63a212ab
SB
1938 }
1939
ebbede42
AJ
1940 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1941 fs_info->fs_devices->rw_devices == 1) {
183860f6 1942 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1943 goto out;
2b82032c
YZ
1944 }
1945
ebbede42 1946 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 1947 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1948 list_del_init(&device->dev_alloc_list);
c3929c36 1949 device->fs_devices->rw_devices--;
34441361 1950 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1951 }
a061fc8d 1952
d7901554 1953 mutex_unlock(&uuid_mutex);
a061fc8d 1954 ret = btrfs_shrink_device(device, 0);
d7901554 1955 mutex_lock(&uuid_mutex);
a061fc8d 1956 if (ret)
9b3517e9 1957 goto error_undo;
a061fc8d 1958
63a212ab
SB
1959 /*
1960 * TODO: the superblock still includes this device in its num_devices
1961 * counter although write_all_supers() is not locked out. This
1962 * could give a filesystem state which requires a degraded mount.
1963 */
0b246afa 1964 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1965 if (ret)
9b3517e9 1966 goto error_undo;
a061fc8d 1967
e12c9621 1968 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0b246afa 1969 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1970
1971 /*
1972 * the device list mutex makes sure that we don't change
1973 * the device list while someone else is writing out all
d7306801
FDBM
1974 * the device supers. Whoever is writing all supers, should
1975 * lock the device list mutex before getting the number of
1976 * devices in the super block (super_copy). Conversely,
1977 * whoever updates the number of devices in the super block
1978 * (super_copy) should hold the device list mutex.
e5e9a520 1979 */
1f78160c
XG
1980
1981 cur_devices = device->fs_devices;
0b246afa 1982 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1983 list_del_rcu(&device->dev_list);
e5e9a520 1984
e4404d6e 1985 device->fs_devices->num_devices--;
02db0844 1986 device->fs_devices->total_devices--;
2b82032c 1987
e6e674bd 1988 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
3a7d55c8 1989 device->fs_devices->missing_devices--;
cd02dca5 1990
0b246afa 1991 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1992
0bfaa9c5 1993 if (device->bdev) {
e4404d6e 1994 device->fs_devices->open_devices--;
0bfaa9c5 1995 /* remove sysfs entry */
0b246afa 1996 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1997 }
99994cde 1998
0b246afa
JM
1999 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2000 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2001 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 2002
cea67ab9
JM
2003 /*
2004 * at this point, the device is zero sized and detached from
2005 * the devices list. All that's left is to zero out the old
2006 * supers and free the device.
2007 */
ebbede42 2008 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
cea67ab9
JM
2009 btrfs_scratch_superblocks(device->bdev, device->name->str);
2010
2011 btrfs_close_bdev(device);
f06c5965 2012 call_rcu(&device->rcu, free_device_rcu);
cea67ab9 2013
1f78160c 2014 if (cur_devices->open_devices == 0) {
e4404d6e 2015 struct btrfs_fs_devices *fs_devices;
0b246afa 2016 fs_devices = fs_info->fs_devices;
e4404d6e 2017 while (fs_devices) {
8321cf25
RS
2018 if (fs_devices->seed == cur_devices) {
2019 fs_devices->seed = cur_devices->seed;
e4404d6e 2020 break;
8321cf25 2021 }
e4404d6e 2022 fs_devices = fs_devices->seed;
2b82032c 2023 }
1f78160c 2024 cur_devices->seed = NULL;
1f78160c 2025 __btrfs_close_devices(cur_devices);
1f78160c 2026 free_fs_devices(cur_devices);
2b82032c
YZ
2027 }
2028
a061fc8d
CM
2029out:
2030 mutex_unlock(&uuid_mutex);
2c997384 2031 mutex_unlock(&fs_info->volume_mutex);
a061fc8d 2032 return ret;
24fc572f 2033
9b3517e9 2034error_undo:
ebbede42 2035 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2036 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2037 list_add(&device->dev_alloc_list,
0b246afa 2038 &fs_info->fs_devices->alloc_list);
c3929c36 2039 device->fs_devices->rw_devices++;
34441361 2040 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2041 }
24fc572f 2042 goto out;
a061fc8d
CM
2043}
2044
084b6e7c
QW
2045void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2046 struct btrfs_device *srcdev)
e93c89c1 2047{
d51908ce
AJ
2048 struct btrfs_fs_devices *fs_devices;
2049
e93c89c1 2050 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 2051
25e8e911
AJ
2052 /*
2053 * in case of fs with no seed, srcdev->fs_devices will point
2054 * to fs_devices of fs_info. However when the dev being replaced is
2055 * a seed dev it will point to the seed's local fs_devices. In short
2056 * srcdev will have its correct fs_devices in both the cases.
2057 */
2058 fs_devices = srcdev->fs_devices;
d51908ce 2059
e93c89c1 2060 list_del_rcu(&srcdev->dev_list);
619c47f3 2061 list_del(&srcdev->dev_alloc_list);
d51908ce 2062 fs_devices->num_devices--;
e6e674bd 2063 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2064 fs_devices->missing_devices--;
e93c89c1 2065
ebbede42 2066 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2067 fs_devices->rw_devices--;
1357272f 2068
82372bc8 2069 if (srcdev->bdev)
d51908ce 2070 fs_devices->open_devices--;
084b6e7c
QW
2071}
2072
2073void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2074 struct btrfs_device *srcdev)
2075{
2076 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2077
ebbede42 2078 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
48b3b9d4
AJ
2079 /* zero out the old super if it is writable */
2080 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2081 }
14238819
AJ
2082
2083 btrfs_close_bdev(srcdev);
f06c5965 2084 call_rcu(&srcdev->rcu, free_device_rcu);
94d5f0c2 2085
94d5f0c2
AJ
2086 /* if this is no devs we rather delete the fs_devices */
2087 if (!fs_devices->num_devices) {
2088 struct btrfs_fs_devices *tmp_fs_devices;
2089
6dd38f81
AJ
2090 /*
2091 * On a mounted FS, num_devices can't be zero unless it's a
2092 * seed. In case of a seed device being replaced, the replace
2093 * target added to the sprout FS, so there will be no more
2094 * device left under the seed FS.
2095 */
2096 ASSERT(fs_devices->seeding);
2097
94d5f0c2
AJ
2098 tmp_fs_devices = fs_info->fs_devices;
2099 while (tmp_fs_devices) {
2100 if (tmp_fs_devices->seed == fs_devices) {
2101 tmp_fs_devices->seed = fs_devices->seed;
2102 break;
2103 }
2104 tmp_fs_devices = tmp_fs_devices->seed;
2105 }
2106 fs_devices->seed = NULL;
8bef8401
AJ
2107 __btrfs_close_devices(fs_devices);
2108 free_fs_devices(fs_devices);
94d5f0c2 2109 }
e93c89c1
SB
2110}
2111
2112void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2113 struct btrfs_device *tgtdev)
2114{
67a2c45e 2115 mutex_lock(&uuid_mutex);
e93c89c1
SB
2116 WARN_ON(!tgtdev);
2117 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2118
32576040 2119 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2120
779bf3fe 2121 if (tgtdev->bdev)
e93c89c1 2122 fs_info->fs_devices->open_devices--;
779bf3fe 2123
e93c89c1 2124 fs_info->fs_devices->num_devices--;
e93c89c1 2125
88acff64 2126 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2127
e93c89c1 2128 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2129
2130 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2131 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2132
2133 /*
2134 * The update_dev_time() with in btrfs_scratch_superblocks()
2135 * may lead to a call to btrfs_show_devname() which will try
2136 * to hold device_list_mutex. And here this device
2137 * is already out of device list, so we don't have to hold
2138 * the device_list_mutex lock.
2139 */
2140 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2141
2142 btrfs_close_bdev(tgtdev);
f06c5965 2143 call_rcu(&tgtdev->rcu, free_device_rcu);
e93c89c1
SB
2144}
2145
2ff7e61e 2146static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2147 const char *device_path,
48a3b636 2148 struct btrfs_device **device)
7ba15b7d
SB
2149{
2150 int ret = 0;
2151 struct btrfs_super_block *disk_super;
2152 u64 devid;
2153 u8 *dev_uuid;
2154 struct block_device *bdev;
2155 struct buffer_head *bh;
2156
2157 *device = NULL;
2158 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2159 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2160 if (ret)
2161 return ret;
2162 disk_super = (struct btrfs_super_block *)bh->b_data;
2163 devid = btrfs_stack_device_id(&disk_super->dev_item);
2164 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2165 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2166 brelse(bh);
2167 if (!*device)
2168 ret = -ENOENT;
2169 blkdev_put(bdev, FMODE_READ);
2170 return ret;
2171}
2172
2ff7e61e 2173int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2174 const char *device_path,
7ba15b7d
SB
2175 struct btrfs_device **device)
2176{
2177 *device = NULL;
2178 if (strcmp(device_path, "missing") == 0) {
2179 struct list_head *devices;
2180 struct btrfs_device *tmp;
2181
0b246afa 2182 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2183 /*
2184 * It is safe to read the devices since the volume_mutex
2185 * is held by the caller.
2186 */
2187 list_for_each_entry(tmp, devices, dev_list) {
e12c9621
AJ
2188 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2189 &tmp->dev_state) && !tmp->bdev) {
7ba15b7d
SB
2190 *device = tmp;
2191 break;
2192 }
2193 }
2194
d74a6259
AJ
2195 if (!*device)
2196 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2197
2198 return 0;
2199 } else {
2ff7e61e 2200 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2201 }
2202}
2203
5c5c0df0
DS
2204/*
2205 * Lookup a device given by device id, or the path if the id is 0.
2206 */
2ff7e61e 2207int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2208 const char *devpath,
2209 struct btrfs_device **device)
24e0474b
AJ
2210{
2211 int ret;
2212
5c5c0df0 2213 if (devid) {
24e0474b 2214 ret = 0;
0b246afa 2215 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2216 if (!*device)
2217 ret = -ENOENT;
2218 } else {
5c5c0df0 2219 if (!devpath || !devpath[0])
b3d1b153
AJ
2220 return -EINVAL;
2221
2ff7e61e 2222 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2223 device);
2224 }
2225 return ret;
2226}
2227
2b82032c
YZ
2228/*
2229 * does all the dirty work required for changing file system's UUID.
2230 */
2ff7e61e 2231static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2232{
0b246afa 2233 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2234 struct btrfs_fs_devices *old_devices;
e4404d6e 2235 struct btrfs_fs_devices *seed_devices;
0b246afa 2236 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2237 struct btrfs_device *device;
2238 u64 super_flags;
2239
2240 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2241 if (!fs_devices->seeding)
2b82032c
YZ
2242 return -EINVAL;
2243
2dfeca9b 2244 seed_devices = alloc_fs_devices(NULL);
2208a378
ID
2245 if (IS_ERR(seed_devices))
2246 return PTR_ERR(seed_devices);
2b82032c 2247
e4404d6e
YZ
2248 old_devices = clone_fs_devices(fs_devices);
2249 if (IS_ERR(old_devices)) {
2250 kfree(seed_devices);
2251 return PTR_ERR(old_devices);
2b82032c 2252 }
e4404d6e 2253
2b82032c
YZ
2254 list_add(&old_devices->list, &fs_uuids);
2255
e4404d6e
YZ
2256 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2257 seed_devices->opened = 1;
2258 INIT_LIST_HEAD(&seed_devices->devices);
2259 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2260 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2261
0b246afa 2262 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2263 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2264 synchronize_rcu);
2196d6e8
MX
2265 list_for_each_entry(device, &seed_devices->devices, dev_list)
2266 device->fs_devices = seed_devices;
c9513edb 2267
34441361 2268 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2269 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2270 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2271
2b82032c
YZ
2272 fs_devices->seeding = 0;
2273 fs_devices->num_devices = 0;
2274 fs_devices->open_devices = 0;
69611ac8 2275 fs_devices->missing_devices = 0;
69611ac8 2276 fs_devices->rotating = 0;
e4404d6e 2277 fs_devices->seed = seed_devices;
2b82032c
YZ
2278
2279 generate_random_uuid(fs_devices->fsid);
0b246afa 2280 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2281 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2282 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2283
2b82032c
YZ
2284 super_flags = btrfs_super_flags(disk_super) &
2285 ~BTRFS_SUPER_FLAG_SEEDING;
2286 btrfs_set_super_flags(disk_super, super_flags);
2287
2288 return 0;
2289}
2290
2291/*
01327610 2292 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2293 */
2294static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2295 struct btrfs_fs_info *fs_info)
2b82032c 2296{
5b4aacef 2297 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2298 struct btrfs_path *path;
2299 struct extent_buffer *leaf;
2300 struct btrfs_dev_item *dev_item;
2301 struct btrfs_device *device;
2302 struct btrfs_key key;
44880fdc 2303 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2304 u8 dev_uuid[BTRFS_UUID_SIZE];
2305 u64 devid;
2306 int ret;
2307
2308 path = btrfs_alloc_path();
2309 if (!path)
2310 return -ENOMEM;
2311
2b82032c
YZ
2312 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2313 key.offset = 0;
2314 key.type = BTRFS_DEV_ITEM_KEY;
2315
2316 while (1) {
2317 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2318 if (ret < 0)
2319 goto error;
2320
2321 leaf = path->nodes[0];
2322next_slot:
2323 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2324 ret = btrfs_next_leaf(root, path);
2325 if (ret > 0)
2326 break;
2327 if (ret < 0)
2328 goto error;
2329 leaf = path->nodes[0];
2330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2331 btrfs_release_path(path);
2b82032c
YZ
2332 continue;
2333 }
2334
2335 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2336 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2337 key.type != BTRFS_DEV_ITEM_KEY)
2338 break;
2339
2340 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2341 struct btrfs_dev_item);
2342 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2343 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2344 BTRFS_UUID_SIZE);
1473b24e 2345 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2346 BTRFS_FSID_SIZE);
0b246afa 2347 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2348 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2349
2350 if (device->fs_devices->seeding) {
2351 btrfs_set_device_generation(leaf, dev_item,
2352 device->generation);
2353 btrfs_mark_buffer_dirty(leaf);
2354 }
2355
2356 path->slots[0]++;
2357 goto next_slot;
2358 }
2359 ret = 0;
2360error:
2361 btrfs_free_path(path);
2362 return ret;
2363}
2364
da353f6b 2365int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2366{
5112febb 2367 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2368 struct request_queue *q;
788f20eb
CM
2369 struct btrfs_trans_handle *trans;
2370 struct btrfs_device *device;
2371 struct block_device *bdev;
788f20eb 2372 struct list_head *devices;
0b246afa 2373 struct super_block *sb = fs_info->sb;
606686ee 2374 struct rcu_string *name;
3c1dbdf5 2375 u64 tmp;
2b82032c 2376 int seeding_dev = 0;
788f20eb 2377 int ret = 0;
7132a262 2378 bool unlocked = false;
788f20eb 2379
bc98a42c 2380 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
f8c5d0b4 2381 return -EROFS;
788f20eb 2382
a5d16333 2383 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2384 fs_info->bdev_holder);
7f59203a
JB
2385 if (IS_ERR(bdev))
2386 return PTR_ERR(bdev);
a2135011 2387
0b246afa 2388 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2389 seeding_dev = 1;
2390 down_write(&sb->s_umount);
2391 mutex_lock(&uuid_mutex);
2392 }
2393
8c8bee1d 2394 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2395
0b246afa 2396 devices = &fs_info->fs_devices->devices;
d25628bd 2397
0b246afa 2398 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2399 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2400 if (device->bdev == bdev) {
2401 ret = -EEXIST;
d25628bd 2402 mutex_unlock(
0b246afa 2403 &fs_info->fs_devices->device_list_mutex);
2b82032c 2404 goto error;
788f20eb
CM
2405 }
2406 }
0b246afa 2407 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2408
0b246afa 2409 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2410 if (IS_ERR(device)) {
788f20eb 2411 /* we can safely leave the fs_devices entry around */
12bd2fc0 2412 ret = PTR_ERR(device);
2b82032c 2413 goto error;
788f20eb
CM
2414 }
2415
78f2c9e6 2416 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2417 if (!name) {
2b82032c 2418 ret = -ENOMEM;
5c4cf6c9 2419 goto error_free_device;
788f20eb 2420 }
606686ee 2421 rcu_assign_pointer(device->name, name);
2b82032c 2422
a22285a6 2423 trans = btrfs_start_transaction(root, 0);
98d5dc13 2424 if (IS_ERR(trans)) {
98d5dc13 2425 ret = PTR_ERR(trans);
5c4cf6c9 2426 goto error_free_device;
98d5dc13
TI
2427 }
2428
d5e2003c 2429 q = bdev_get_queue(bdev);
ebbede42 2430 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2431 device->generation = trans->transid;
0b246afa
JM
2432 device->io_width = fs_info->sectorsize;
2433 device->io_align = fs_info->sectorsize;
2434 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2435 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2436 fs_info->sectorsize);
2cc3c559 2437 device->disk_total_bytes = device->total_bytes;
935e5cc9 2438 device->commit_total_bytes = device->total_bytes;
fb456252 2439 device->fs_info = fs_info;
788f20eb 2440 device->bdev = bdev;
e12c9621 2441 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2442 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2443 device->mode = FMODE_EXCL;
27087f37 2444 device->dev_stats_valid = 1;
9f6d2510 2445 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2446
2b82032c 2447 if (seeding_dev) {
1751e8a6 2448 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2449 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2450 if (ret) {
2451 btrfs_abort_transaction(trans, ret);
2452 goto error_trans;
2453 }
2b82032c 2454 }
788f20eb 2455
0b246afa 2456 device->fs_devices = fs_info->fs_devices;
e5e9a520 2457
0b246afa 2458 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2459 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2460 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2461 list_add(&device->dev_alloc_list,
0b246afa
JM
2462 &fs_info->fs_devices->alloc_list);
2463 fs_info->fs_devices->num_devices++;
2464 fs_info->fs_devices->open_devices++;
2465 fs_info->fs_devices->rw_devices++;
2466 fs_info->fs_devices->total_devices++;
2467 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2468
a5ed45f8 2469 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2470
e884f4f0 2471 if (!blk_queue_nonrot(q))
0b246afa 2472 fs_info->fs_devices->rotating = 1;
c289811c 2473
0b246afa
JM
2474 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2475 btrfs_set_super_total_bytes(fs_info->super_copy,
7dfb8be1 2476 round_down(tmp + device->total_bytes, fs_info->sectorsize));
788f20eb 2477
0b246afa
JM
2478 tmp = btrfs_super_num_devices(fs_info->super_copy);
2479 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2480
2481 /* add sysfs device entry */
0b246afa 2482 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2483
2196d6e8
MX
2484 /*
2485 * we've got more storage, clear any full flags on the space
2486 * infos
2487 */
0b246afa 2488 btrfs_clear_space_info_full(fs_info);
2196d6e8 2489
34441361 2490 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2491 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2492
2b82032c 2493 if (seeding_dev) {
34441361 2494 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2495 ret = init_first_rw_device(trans, fs_info);
34441361 2496 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2497 if (ret) {
66642832 2498 btrfs_abort_transaction(trans, ret);
d31c32f6 2499 goto error_sysfs;
005d6427 2500 }
2196d6e8
MX
2501 }
2502
c74a0b02 2503 ret = btrfs_add_dev_item(trans, fs_info, device);
2196d6e8 2504 if (ret) {
66642832 2505 btrfs_abort_transaction(trans, ret);
d31c32f6 2506 goto error_sysfs;
2196d6e8
MX
2507 }
2508
2509 if (seeding_dev) {
2510 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2511
0b246afa 2512 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2513 if (ret) {
66642832 2514 btrfs_abort_transaction(trans, ret);
d31c32f6 2515 goto error_sysfs;
005d6427 2516 }
b2373f25
AJ
2517
2518 /* Sprouting would change fsid of the mounted root,
2519 * so rename the fsid on the sysfs
2520 */
2521 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2522 fs_info->fsid);
2523 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2524 btrfs_warn(fs_info,
2525 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2526 }
2527
3a45bb20 2528 ret = btrfs_commit_transaction(trans);
a2135011 2529
2b82032c
YZ
2530 if (seeding_dev) {
2531 mutex_unlock(&uuid_mutex);
2532 up_write(&sb->s_umount);
7132a262 2533 unlocked = true;
788f20eb 2534
79787eaa
JM
2535 if (ret) /* transaction commit */
2536 return ret;
2537
2ff7e61e 2538 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2539 if (ret < 0)
0b246afa 2540 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2541 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2542 trans = btrfs_attach_transaction(root);
2543 if (IS_ERR(trans)) {
2544 if (PTR_ERR(trans) == -ENOENT)
2545 return 0;
7132a262
AJ
2546 ret = PTR_ERR(trans);
2547 trans = NULL;
2548 goto error_sysfs;
671415b7 2549 }
3a45bb20 2550 ret = btrfs_commit_transaction(trans);
2b82032c 2551 }
c9e9f97b 2552
5a1972bd
QW
2553 /* Update ctime/mtime for libblkid */
2554 update_dev_time(device_path);
2b82032c 2555 return ret;
79787eaa 2556
d31c32f6
AJ
2557error_sysfs:
2558 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2559error_trans:
0af2c4bf 2560 if (seeding_dev)
1751e8a6 2561 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2562 if (trans)
2563 btrfs_end_transaction(trans);
5c4cf6c9 2564error_free_device:
55de4803 2565 free_device(device);
2b82032c 2566error:
e525fd89 2567 blkdev_put(bdev, FMODE_EXCL);
7132a262 2568 if (seeding_dev && !unlocked) {
2b82032c
YZ
2569 mutex_unlock(&uuid_mutex);
2570 up_write(&sb->s_umount);
2571 }
c9e9f97b 2572 return ret;
788f20eb
CM
2573}
2574
2ff7e61e 2575int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2576 const char *device_path,
1c43366d 2577 struct btrfs_device *srcdev,
e93c89c1
SB
2578 struct btrfs_device **device_out)
2579{
e93c89c1
SB
2580 struct btrfs_device *device;
2581 struct block_device *bdev;
e93c89c1
SB
2582 struct list_head *devices;
2583 struct rcu_string *name;
12bd2fc0 2584 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2585 int ret = 0;
2586
2587 *device_out = NULL;
1c43366d
MX
2588 if (fs_info->fs_devices->seeding) {
2589 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2590 return -EINVAL;
1c43366d 2591 }
e93c89c1
SB
2592
2593 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2594 fs_info->bdev_holder);
1c43366d
MX
2595 if (IS_ERR(bdev)) {
2596 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2597 return PTR_ERR(bdev);
1c43366d 2598 }
e93c89c1
SB
2599
2600 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2601
2602 devices = &fs_info->fs_devices->devices;
2603 list_for_each_entry(device, devices, dev_list) {
2604 if (device->bdev == bdev) {
5d163e0e
JM
2605 btrfs_err(fs_info,
2606 "target device is in the filesystem!");
e93c89c1
SB
2607 ret = -EEXIST;
2608 goto error;
2609 }
2610 }
2611
1c43366d 2612
7cc8e58d
MX
2613 if (i_size_read(bdev->bd_inode) <
2614 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2615 btrfs_err(fs_info,
2616 "target device is smaller than source device!");
1c43366d
MX
2617 ret = -EINVAL;
2618 goto error;
2619 }
2620
2621
12bd2fc0
ID
2622 device = btrfs_alloc_device(NULL, &devid, NULL);
2623 if (IS_ERR(device)) {
2624 ret = PTR_ERR(device);
e93c89c1
SB
2625 goto error;
2626 }
2627
6165572c 2628 name = rcu_string_strdup(device_path, GFP_KERNEL);
e93c89c1 2629 if (!name) {
55de4803 2630 free_device(device);
e93c89c1
SB
2631 ret = -ENOMEM;
2632 goto error;
2633 }
2634 rcu_assign_pointer(device->name, name);
2635
0b246afa 2636 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ebbede42 2637 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
e93c89c1 2638 device->generation = 0;
0b246afa
JM
2639 device->io_width = fs_info->sectorsize;
2640 device->io_align = fs_info->sectorsize;
2641 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2642 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2643 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2644 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2645 ASSERT(list_empty(&srcdev->resized_list));
2646 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2647 device->commit_bytes_used = device->bytes_used;
fb456252 2648 device->fs_info = fs_info;
e93c89c1 2649 device->bdev = bdev;
e12c9621 2650 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2651 set_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
e93c89c1 2652 device->mode = FMODE_EXCL;
27087f37 2653 device->dev_stats_valid = 1;
9f6d2510 2654 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
e93c89c1
SB
2655 device->fs_devices = fs_info->fs_devices;
2656 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2657 fs_info->fs_devices->num_devices++;
2658 fs_info->fs_devices->open_devices++;
0b246afa 2659 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2660
2661 *device_out = device;
2662 return ret;
2663
2664error:
2665 blkdev_put(bdev, FMODE_EXCL);
2666 return ret;
2667}
2668
2669void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2670 struct btrfs_device *tgtdev)
2671{
da17066c
JM
2672 u32 sectorsize = fs_info->sectorsize;
2673
e93c89c1 2674 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2675 tgtdev->io_width = sectorsize;
2676 tgtdev->io_align = sectorsize;
2677 tgtdev->sector_size = sectorsize;
fb456252 2678 tgtdev->fs_info = fs_info;
e12c9621 2679 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &tgtdev->dev_state);
e93c89c1
SB
2680}
2681
d397712b
CM
2682static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2683 struct btrfs_device *device)
0b86a832
CM
2684{
2685 int ret;
2686 struct btrfs_path *path;
0b246afa 2687 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2688 struct btrfs_dev_item *dev_item;
2689 struct extent_buffer *leaf;
2690 struct btrfs_key key;
2691
0b86a832
CM
2692 path = btrfs_alloc_path();
2693 if (!path)
2694 return -ENOMEM;
2695
2696 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2697 key.type = BTRFS_DEV_ITEM_KEY;
2698 key.offset = device->devid;
2699
2700 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2701 if (ret < 0)
2702 goto out;
2703
2704 if (ret > 0) {
2705 ret = -ENOENT;
2706 goto out;
2707 }
2708
2709 leaf = path->nodes[0];
2710 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2711
2712 btrfs_set_device_id(leaf, dev_item, device->devid);
2713 btrfs_set_device_type(leaf, dev_item, device->type);
2714 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2715 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2716 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2717 btrfs_set_device_total_bytes(leaf, dev_item,
2718 btrfs_device_get_disk_total_bytes(device));
2719 btrfs_set_device_bytes_used(leaf, dev_item,
2720 btrfs_device_get_bytes_used(device));
0b86a832
CM
2721 btrfs_mark_buffer_dirty(leaf);
2722
2723out:
2724 btrfs_free_path(path);
2725 return ret;
2726}
2727
2196d6e8 2728int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2729 struct btrfs_device *device, u64 new_size)
2730{
0b246afa
JM
2731 struct btrfs_fs_info *fs_info = device->fs_info;
2732 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2733 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2734 u64 old_total;
2735 u64 diff;
8f18cf13 2736
ebbede42 2737 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2738 return -EACCES;
2196d6e8 2739
7dfb8be1
NB
2740 new_size = round_down(new_size, fs_info->sectorsize);
2741
34441361 2742 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2743 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2744 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2745
63a212ab 2746 if (new_size <= device->total_bytes ||
401e29c1 2747 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2748 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2749 return -EINVAL;
2196d6e8 2750 }
2b82032c 2751
0b246afa 2752 fs_devices = fs_info->fs_devices;
2b82032c 2753
7dfb8be1
NB
2754 btrfs_set_super_total_bytes(super_copy,
2755 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2756 device->fs_devices->total_rw_bytes += diff;
2757
7cc8e58d
MX
2758 btrfs_device_set_total_bytes(device, new_size);
2759 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2760 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2761 if (list_empty(&device->resized_list))
2762 list_add_tail(&device->resized_list,
2763 &fs_devices->resized_devices);
34441361 2764 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2765
8f18cf13
CM
2766 return btrfs_update_device(trans, device);
2767}
2768
2769static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
408fbf19 2770 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2771{
5b4aacef 2772 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2773 int ret;
2774 struct btrfs_path *path;
2775 struct btrfs_key key;
2776
8f18cf13
CM
2777 path = btrfs_alloc_path();
2778 if (!path)
2779 return -ENOMEM;
2780
408fbf19 2781 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2782 key.offset = chunk_offset;
2783 key.type = BTRFS_CHUNK_ITEM_KEY;
2784
2785 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2786 if (ret < 0)
2787 goto out;
2788 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2789 btrfs_handle_fs_error(fs_info, -ENOENT,
2790 "Failed lookup while freeing chunk.");
79787eaa
JM
2791 ret = -ENOENT;
2792 goto out;
2793 }
8f18cf13
CM
2794
2795 ret = btrfs_del_item(trans, root, path);
79787eaa 2796 if (ret < 0)
0b246afa
JM
2797 btrfs_handle_fs_error(fs_info, ret,
2798 "Failed to delete chunk item.");
79787eaa 2799out:
8f18cf13 2800 btrfs_free_path(path);
65a246c5 2801 return ret;
8f18cf13
CM
2802}
2803
408fbf19 2804static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2805{
0b246afa 2806 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2807 struct btrfs_disk_key *disk_key;
2808 struct btrfs_chunk *chunk;
2809 u8 *ptr;
2810 int ret = 0;
2811 u32 num_stripes;
2812 u32 array_size;
2813 u32 len = 0;
2814 u32 cur;
2815 struct btrfs_key key;
2816
34441361 2817 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2818 array_size = btrfs_super_sys_array_size(super_copy);
2819
2820 ptr = super_copy->sys_chunk_array;
2821 cur = 0;
2822
2823 while (cur < array_size) {
2824 disk_key = (struct btrfs_disk_key *)ptr;
2825 btrfs_disk_key_to_cpu(&key, disk_key);
2826
2827 len = sizeof(*disk_key);
2828
2829 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2830 chunk = (struct btrfs_chunk *)(ptr + len);
2831 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2832 len += btrfs_chunk_item_size(num_stripes);
2833 } else {
2834 ret = -EIO;
2835 break;
2836 }
408fbf19 2837 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2838 key.offset == chunk_offset) {
2839 memmove(ptr, ptr + len, array_size - (cur + len));
2840 array_size -= len;
2841 btrfs_set_super_sys_array_size(super_copy, array_size);
2842 } else {
2843 ptr += len;
2844 cur += len;
2845 }
2846 }
34441361 2847 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2848 return ret;
2849}
2850
592d92ee
LB
2851static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2852 u64 logical, u64 length)
2853{
2854 struct extent_map_tree *em_tree;
2855 struct extent_map *em;
2856
2857 em_tree = &fs_info->mapping_tree.map_tree;
2858 read_lock(&em_tree->lock);
2859 em = lookup_extent_mapping(em_tree, logical, length);
2860 read_unlock(&em_tree->lock);
2861
2862 if (!em) {
2863 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2864 logical, length);
2865 return ERR_PTR(-EINVAL);
2866 }
2867
2868 if (em->start > logical || em->start + em->len < logical) {
2869 btrfs_crit(fs_info,
2870 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2871 logical, length, em->start, em->start + em->len);
2872 free_extent_map(em);
2873 return ERR_PTR(-EINVAL);
2874 }
2875
2876 /* callers are responsible for dropping em's ref. */
2877 return em;
2878}
2879
47ab2a6c 2880int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2881 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2882{
8f18cf13
CM
2883 struct extent_map *em;
2884 struct map_lookup *map;
2196d6e8 2885 u64 dev_extent_len = 0;
47ab2a6c 2886 int i, ret = 0;
0b246afa 2887 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2888
592d92ee
LB
2889 em = get_chunk_map(fs_info, chunk_offset, 1);
2890 if (IS_ERR(em)) {
47ab2a6c
JB
2891 /*
2892 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2893 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2894 * do anything we still error out.
2895 */
2896 ASSERT(0);
592d92ee 2897 return PTR_ERR(em);
47ab2a6c 2898 }
95617d69 2899 map = em->map_lookup;
34441361 2900 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2901 check_system_chunk(trans, fs_info, map->type);
34441361 2902 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2903
57ba4cb8
FM
2904 /*
2905 * Take the device list mutex to prevent races with the final phase of
2906 * a device replace operation that replaces the device object associated
2907 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2908 */
2909 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2910 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2911 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2912 ret = btrfs_free_dev_extent(trans, device,
2913 map->stripes[i].physical,
2914 &dev_extent_len);
47ab2a6c 2915 if (ret) {
57ba4cb8 2916 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2917 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2918 goto out;
2919 }
a061fc8d 2920
2196d6e8 2921 if (device->bytes_used > 0) {
34441361 2922 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2923 btrfs_device_set_bytes_used(device,
2924 device->bytes_used - dev_extent_len);
a5ed45f8 2925 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2926 btrfs_clear_space_info_full(fs_info);
34441361 2927 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2928 }
a061fc8d 2929
dfe25020
CM
2930 if (map->stripes[i].dev) {
2931 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2932 if (ret) {
57ba4cb8 2933 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2934 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2935 goto out;
2936 }
dfe25020 2937 }
8f18cf13 2938 }
57ba4cb8
FM
2939 mutex_unlock(&fs_devices->device_list_mutex);
2940
408fbf19 2941 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
47ab2a6c 2942 if (ret) {
66642832 2943 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2944 goto out;
2945 }
8f18cf13 2946
6bccf3ab 2947 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2948
8f18cf13 2949 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2950 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2951 if (ret) {
66642832 2952 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2953 goto out;
2954 }
8f18cf13
CM
2955 }
2956
6bccf3ab 2957 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2958 if (ret) {
66642832 2959 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2960 goto out;
2961 }
2b82032c 2962
47ab2a6c 2963out:
2b82032c
YZ
2964 /* once for us */
2965 free_extent_map(em);
47ab2a6c
JB
2966 return ret;
2967}
2b82032c 2968
5b4aacef 2969static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2970{
5b4aacef 2971 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2972 struct btrfs_trans_handle *trans;
47ab2a6c 2973 int ret;
2b82032c 2974
67c5e7d4
FM
2975 /*
2976 * Prevent races with automatic removal of unused block groups.
2977 * After we relocate and before we remove the chunk with offset
2978 * chunk_offset, automatic removal of the block group can kick in,
2979 * resulting in a failure when calling btrfs_remove_chunk() below.
2980 *
2981 * Make sure to acquire this mutex before doing a tree search (dev
2982 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2983 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2984 * we release the path used to search the chunk/dev tree and before
2985 * the current task acquires this mutex and calls us.
2986 */
0b246afa 2987 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2988
0b246afa 2989 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2990 if (ret)
2991 return -ENOSPC;
2992
2993 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2994 btrfs_scrub_pause(fs_info);
0b246afa 2995 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2996 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2997 if (ret)
2998 return ret;
2999
19c4d2f9
CM
3000 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3001 chunk_offset);
3002 if (IS_ERR(trans)) {
3003 ret = PTR_ERR(trans);
3004 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3005 return ret;
3006 }
3007
47ab2a6c 3008 /*
19c4d2f9
CM
3009 * step two, delete the device extents and the
3010 * chunk tree entries
47ab2a6c 3011 */
5b4aacef 3012 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 3013 btrfs_end_transaction(trans);
19c4d2f9 3014 return ret;
2b82032c
YZ
3015}
3016
2ff7e61e 3017static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3018{
0b246afa 3019 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3020 struct btrfs_path *path;
3021 struct extent_buffer *leaf;
3022 struct btrfs_chunk *chunk;
3023 struct btrfs_key key;
3024 struct btrfs_key found_key;
2b82032c 3025 u64 chunk_type;
ba1bf481
JB
3026 bool retried = false;
3027 int failed = 0;
2b82032c
YZ
3028 int ret;
3029
3030 path = btrfs_alloc_path();
3031 if (!path)
3032 return -ENOMEM;
3033
ba1bf481 3034again:
2b82032c
YZ
3035 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3036 key.offset = (u64)-1;
3037 key.type = BTRFS_CHUNK_ITEM_KEY;
3038
3039 while (1) {
0b246afa 3040 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3041 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3042 if (ret < 0) {
0b246afa 3043 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3044 goto error;
67c5e7d4 3045 }
79787eaa 3046 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3047
3048 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3049 key.type);
67c5e7d4 3050 if (ret)
0b246afa 3051 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
3052 if (ret < 0)
3053 goto error;
3054 if (ret > 0)
3055 break;
1a40e23b 3056
2b82032c
YZ
3057 leaf = path->nodes[0];
3058 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3059
2b82032c
YZ
3060 chunk = btrfs_item_ptr(leaf, path->slots[0],
3061 struct btrfs_chunk);
3062 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3063 btrfs_release_path(path);
8f18cf13 3064
2b82032c 3065 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3066 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3067 if (ret == -ENOSPC)
3068 failed++;
14586651
HS
3069 else
3070 BUG_ON(ret);
2b82032c 3071 }
0b246afa 3072 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3073
2b82032c
YZ
3074 if (found_key.offset == 0)
3075 break;
3076 key.offset = found_key.offset - 1;
3077 }
3078 ret = 0;
ba1bf481
JB
3079 if (failed && !retried) {
3080 failed = 0;
3081 retried = true;
3082 goto again;
fae7f21c 3083 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3084 ret = -ENOSPC;
3085 }
2b82032c
YZ
3086error:
3087 btrfs_free_path(path);
3088 return ret;
8f18cf13
CM
3089}
3090
a6f93c71
LB
3091/*
3092 * return 1 : allocate a data chunk successfully,
3093 * return <0: errors during allocating a data chunk,
3094 * return 0 : no need to allocate a data chunk.
3095 */
3096static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3097 u64 chunk_offset)
3098{
3099 struct btrfs_block_group_cache *cache;
3100 u64 bytes_used;
3101 u64 chunk_type;
3102
3103 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3104 ASSERT(cache);
3105 chunk_type = cache->flags;
3106 btrfs_put_block_group(cache);
3107
3108 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3109 spin_lock(&fs_info->data_sinfo->lock);
3110 bytes_used = fs_info->data_sinfo->bytes_used;
3111 spin_unlock(&fs_info->data_sinfo->lock);
3112
3113 if (!bytes_used) {
3114 struct btrfs_trans_handle *trans;
3115 int ret;
3116
3117 trans = btrfs_join_transaction(fs_info->tree_root);
3118 if (IS_ERR(trans))
3119 return PTR_ERR(trans);
3120
3121 ret = btrfs_force_chunk_alloc(trans, fs_info,
3122 BTRFS_BLOCK_GROUP_DATA);
3123 btrfs_end_transaction(trans);
3124 if (ret < 0)
3125 return ret;
3126
3127 return 1;
3128 }
3129 }
3130 return 0;
3131}
3132
6bccf3ab 3133static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3134 struct btrfs_balance_control *bctl)
3135{
6bccf3ab 3136 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3137 struct btrfs_trans_handle *trans;
3138 struct btrfs_balance_item *item;
3139 struct btrfs_disk_balance_args disk_bargs;
3140 struct btrfs_path *path;
3141 struct extent_buffer *leaf;
3142 struct btrfs_key key;
3143 int ret, err;
3144
3145 path = btrfs_alloc_path();
3146 if (!path)
3147 return -ENOMEM;
3148
3149 trans = btrfs_start_transaction(root, 0);
3150 if (IS_ERR(trans)) {
3151 btrfs_free_path(path);
3152 return PTR_ERR(trans);
3153 }
3154
3155 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3156 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3157 key.offset = 0;
3158
3159 ret = btrfs_insert_empty_item(trans, root, path, &key,
3160 sizeof(*item));
3161 if (ret)
3162 goto out;
3163
3164 leaf = path->nodes[0];
3165 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3166
b159fa28 3167 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3168
3169 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3170 btrfs_set_balance_data(leaf, item, &disk_bargs);
3171 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3172 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3173 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3174 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3175
3176 btrfs_set_balance_flags(leaf, item, bctl->flags);
3177
3178 btrfs_mark_buffer_dirty(leaf);
3179out:
3180 btrfs_free_path(path);
3a45bb20 3181 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3182 if (err && !ret)
3183 ret = err;
3184 return ret;
3185}
3186
6bccf3ab 3187static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3188{
6bccf3ab 3189 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3190 struct btrfs_trans_handle *trans;
3191 struct btrfs_path *path;
3192 struct btrfs_key key;
3193 int ret, err;
3194
3195 path = btrfs_alloc_path();
3196 if (!path)
3197 return -ENOMEM;
3198
3199 trans = btrfs_start_transaction(root, 0);
3200 if (IS_ERR(trans)) {
3201 btrfs_free_path(path);
3202 return PTR_ERR(trans);
3203 }
3204
3205 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3206 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3207 key.offset = 0;
3208
3209 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3210 if (ret < 0)
3211 goto out;
3212 if (ret > 0) {
3213 ret = -ENOENT;
3214 goto out;
3215 }
3216
3217 ret = btrfs_del_item(trans, root, path);
3218out:
3219 btrfs_free_path(path);
3a45bb20 3220 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3221 if (err && !ret)
3222 ret = err;
3223 return ret;
3224}
3225
59641015
ID
3226/*
3227 * This is a heuristic used to reduce the number of chunks balanced on
3228 * resume after balance was interrupted.
3229 */
3230static void update_balance_args(struct btrfs_balance_control *bctl)
3231{
3232 /*
3233 * Turn on soft mode for chunk types that were being converted.
3234 */
3235 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3236 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3237 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3238 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3239 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3240 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3241
3242 /*
3243 * Turn on usage filter if is not already used. The idea is
3244 * that chunks that we have already balanced should be
3245 * reasonably full. Don't do it for chunks that are being
3246 * converted - that will keep us from relocating unconverted
3247 * (albeit full) chunks.
3248 */
3249 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3250 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3251 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3252 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3253 bctl->data.usage = 90;
3254 }
3255 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3256 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3257 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3258 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3259 bctl->sys.usage = 90;
3260 }
3261 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3262 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3263 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3264 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3265 bctl->meta.usage = 90;
3266 }
3267}
3268
c9e9f97b
ID
3269/*
3270 * Should be called with both balance and volume mutexes held to
3271 * serialize other volume operations (add_dev/rm_dev/resize) with
3272 * restriper. Same goes for unset_balance_control.
3273 */
3274static void set_balance_control(struct btrfs_balance_control *bctl)
3275{
3276 struct btrfs_fs_info *fs_info = bctl->fs_info;
3277
3278 BUG_ON(fs_info->balance_ctl);
3279
3280 spin_lock(&fs_info->balance_lock);
3281 fs_info->balance_ctl = bctl;
3282 spin_unlock(&fs_info->balance_lock);
3283}
3284
3285static void unset_balance_control(struct btrfs_fs_info *fs_info)
3286{
3287 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3288
3289 BUG_ON(!fs_info->balance_ctl);
3290
3291 spin_lock(&fs_info->balance_lock);
3292 fs_info->balance_ctl = NULL;
3293 spin_unlock(&fs_info->balance_lock);
3294
3295 kfree(bctl);
3296}
3297
ed25e9b2
ID
3298/*
3299 * Balance filters. Return 1 if chunk should be filtered out
3300 * (should not be balanced).
3301 */
899c81ea 3302static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3303 struct btrfs_balance_args *bargs)
3304{
899c81ea
ID
3305 chunk_type = chunk_to_extended(chunk_type) &
3306 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3307
899c81ea 3308 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3309 return 0;
3310
3311 return 1;
3312}
3313
dba72cb3 3314static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3315 struct btrfs_balance_args *bargs)
bc309467
DS
3316{
3317 struct btrfs_block_group_cache *cache;
3318 u64 chunk_used;
3319 u64 user_thresh_min;
3320 u64 user_thresh_max;
3321 int ret = 1;
3322
3323 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3324 chunk_used = btrfs_block_group_used(&cache->item);
3325
3326 if (bargs->usage_min == 0)
3327 user_thresh_min = 0;
3328 else
3329 user_thresh_min = div_factor_fine(cache->key.offset,
3330 bargs->usage_min);
3331
3332 if (bargs->usage_max == 0)
3333 user_thresh_max = 1;
3334 else if (bargs->usage_max > 100)
3335 user_thresh_max = cache->key.offset;
3336 else
3337 user_thresh_max = div_factor_fine(cache->key.offset,
3338 bargs->usage_max);
3339
3340 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3341 ret = 0;
3342
3343 btrfs_put_block_group(cache);
3344 return ret;
3345}
3346
dba72cb3 3347static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3348 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3349{
3350 struct btrfs_block_group_cache *cache;
3351 u64 chunk_used, user_thresh;
3352 int ret = 1;
3353
3354 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3355 chunk_used = btrfs_block_group_used(&cache->item);
3356
bc309467 3357 if (bargs->usage_min == 0)
3e39cea6 3358 user_thresh = 1;
a105bb88
ID
3359 else if (bargs->usage > 100)
3360 user_thresh = cache->key.offset;
3361 else
3362 user_thresh = div_factor_fine(cache->key.offset,
3363 bargs->usage);
3364
5ce5b3c0
ID
3365 if (chunk_used < user_thresh)
3366 ret = 0;
3367
3368 btrfs_put_block_group(cache);
3369 return ret;
3370}
3371
409d404b
ID
3372static int chunk_devid_filter(struct extent_buffer *leaf,
3373 struct btrfs_chunk *chunk,
3374 struct btrfs_balance_args *bargs)
3375{
3376 struct btrfs_stripe *stripe;
3377 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3378 int i;
3379
3380 for (i = 0; i < num_stripes; i++) {
3381 stripe = btrfs_stripe_nr(chunk, i);
3382 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3383 return 0;
3384 }
3385
3386 return 1;
3387}
3388
94e60d5a
ID
3389/* [pstart, pend) */
3390static int chunk_drange_filter(struct extent_buffer *leaf,
3391 struct btrfs_chunk *chunk,
94e60d5a
ID
3392 struct btrfs_balance_args *bargs)
3393{
3394 struct btrfs_stripe *stripe;
3395 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3396 u64 stripe_offset;
3397 u64 stripe_length;
3398 int factor;
3399 int i;
3400
3401 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3402 return 0;
3403
3404 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3405 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3406 factor = num_stripes / 2;
3407 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3408 factor = num_stripes - 1;
3409 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3410 factor = num_stripes - 2;
3411 } else {
3412 factor = num_stripes;
3413 }
94e60d5a
ID
3414
3415 for (i = 0; i < num_stripes; i++) {
3416 stripe = btrfs_stripe_nr(chunk, i);
3417 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3418 continue;
3419
3420 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3421 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3422 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3423
3424 if (stripe_offset < bargs->pend &&
3425 stripe_offset + stripe_length > bargs->pstart)
3426 return 0;
3427 }
3428
3429 return 1;
3430}
3431
ea67176a
ID
3432/* [vstart, vend) */
3433static int chunk_vrange_filter(struct extent_buffer *leaf,
3434 struct btrfs_chunk *chunk,
3435 u64 chunk_offset,
3436 struct btrfs_balance_args *bargs)
3437{
3438 if (chunk_offset < bargs->vend &&
3439 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3440 /* at least part of the chunk is inside this vrange */
3441 return 0;
3442
3443 return 1;
3444}
3445
dee32d0a
GAP
3446static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3447 struct btrfs_chunk *chunk,
3448 struct btrfs_balance_args *bargs)
3449{
3450 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3451
3452 if (bargs->stripes_min <= num_stripes
3453 && num_stripes <= bargs->stripes_max)
3454 return 0;
3455
3456 return 1;
3457}
3458
899c81ea 3459static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3460 struct btrfs_balance_args *bargs)
3461{
3462 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3463 return 0;
3464
899c81ea
ID
3465 chunk_type = chunk_to_extended(chunk_type) &
3466 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3467
899c81ea 3468 if (bargs->target == chunk_type)
cfa4c961
ID
3469 return 1;
3470
3471 return 0;
3472}
3473
2ff7e61e 3474static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3475 struct extent_buffer *leaf,
3476 struct btrfs_chunk *chunk, u64 chunk_offset)
3477{
0b246afa 3478 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3479 struct btrfs_balance_args *bargs = NULL;
3480 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3481
3482 /* type filter */
3483 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3484 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3485 return 0;
3486 }
3487
3488 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3489 bargs = &bctl->data;
3490 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3491 bargs = &bctl->sys;
3492 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3493 bargs = &bctl->meta;
3494
ed25e9b2
ID
3495 /* profiles filter */
3496 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3497 chunk_profiles_filter(chunk_type, bargs)) {
3498 return 0;
5ce5b3c0
ID
3499 }
3500
3501 /* usage filter */
3502 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3503 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3504 return 0;
bc309467 3505 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3506 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3507 return 0;
409d404b
ID
3508 }
3509
3510 /* devid filter */
3511 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3512 chunk_devid_filter(leaf, chunk, bargs)) {
3513 return 0;
94e60d5a
ID
3514 }
3515
3516 /* drange filter, makes sense only with devid filter */
3517 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3518 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3519 return 0;
ea67176a
ID
3520 }
3521
3522 /* vrange filter */
3523 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3524 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3525 return 0;
ed25e9b2
ID
3526 }
3527
dee32d0a
GAP
3528 /* stripes filter */
3529 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3530 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3531 return 0;
3532 }
3533
cfa4c961
ID
3534 /* soft profile changing mode */
3535 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3536 chunk_soft_convert_filter(chunk_type, bargs)) {
3537 return 0;
3538 }
3539
7d824b6f
DS
3540 /*
3541 * limited by count, must be the last filter
3542 */
3543 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3544 if (bargs->limit == 0)
3545 return 0;
3546 else
3547 bargs->limit--;
12907fc7
DS
3548 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3549 /*
3550 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3551 * determined here because we do not have the global information
12907fc7
DS
3552 * about the count of all chunks that satisfy the filters.
3553 */
3554 if (bargs->limit_max == 0)
3555 return 0;
3556 else
3557 bargs->limit_max--;
7d824b6f
DS
3558 }
3559
f43ffb60
ID
3560 return 1;
3561}
3562
c9e9f97b 3563static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3564{
19a39dce 3565 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3566 struct btrfs_root *chunk_root = fs_info->chunk_root;
3567 struct btrfs_root *dev_root = fs_info->dev_root;
3568 struct list_head *devices;
ec44a35c
CM
3569 struct btrfs_device *device;
3570 u64 old_size;
3571 u64 size_to_free;
12907fc7 3572 u64 chunk_type;
f43ffb60 3573 struct btrfs_chunk *chunk;
5a488b9d 3574 struct btrfs_path *path = NULL;
ec44a35c 3575 struct btrfs_key key;
ec44a35c 3576 struct btrfs_key found_key;
c9e9f97b 3577 struct btrfs_trans_handle *trans;
f43ffb60
ID
3578 struct extent_buffer *leaf;
3579 int slot;
c9e9f97b
ID
3580 int ret;
3581 int enospc_errors = 0;
19a39dce 3582 bool counting = true;
12907fc7 3583 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3584 u64 limit_data = bctl->data.limit;
3585 u64 limit_meta = bctl->meta.limit;
3586 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3587 u32 count_data = 0;
3588 u32 count_meta = 0;
3589 u32 count_sys = 0;
2c9fe835 3590 int chunk_reserved = 0;
ec44a35c 3591
ec44a35c 3592 /* step one make some room on all the devices */
c9e9f97b 3593 devices = &fs_info->fs_devices->devices;
c6e30871 3594 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3595 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3596 size_to_free = div_factor(old_size, 1);
ee22184b 3597 size_to_free = min_t(u64, size_to_free, SZ_1M);
ebbede42 3598 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
7cc8e58d
MX
3599 btrfs_device_get_total_bytes(device) -
3600 btrfs_device_get_bytes_used(device) > size_to_free ||
401e29c1 3601 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
ec44a35c
CM
3602 continue;
3603
3604 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3605 if (ret == -ENOSPC)
3606 break;
5a488b9d
LB
3607 if (ret) {
3608 /* btrfs_shrink_device never returns ret > 0 */
3609 WARN_ON(ret > 0);
3610 goto error;
3611 }
ec44a35c 3612
a22285a6 3613 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3614 if (IS_ERR(trans)) {
3615 ret = PTR_ERR(trans);
3616 btrfs_info_in_rcu(fs_info,
3617 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3618 rcu_str_deref(device->name), ret,
3619 old_size, old_size - size_to_free);
3620 goto error;
3621 }
ec44a35c
CM
3622
3623 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3624 if (ret) {
3a45bb20 3625 btrfs_end_transaction(trans);
5a488b9d
LB
3626 /* btrfs_grow_device never returns ret > 0 */
3627 WARN_ON(ret > 0);
3628 btrfs_info_in_rcu(fs_info,
3629 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3630 rcu_str_deref(device->name), ret,
3631 old_size, old_size - size_to_free);
3632 goto error;
3633 }
ec44a35c 3634
3a45bb20 3635 btrfs_end_transaction(trans);
ec44a35c
CM
3636 }
3637
3638 /* step two, relocate all the chunks */
3639 path = btrfs_alloc_path();
17e9f796
MF
3640 if (!path) {
3641 ret = -ENOMEM;
3642 goto error;
3643 }
19a39dce
ID
3644
3645 /* zero out stat counters */
3646 spin_lock(&fs_info->balance_lock);
3647 memset(&bctl->stat, 0, sizeof(bctl->stat));
3648 spin_unlock(&fs_info->balance_lock);
3649again:
7d824b6f 3650 if (!counting) {
12907fc7
DS
3651 /*
3652 * The single value limit and min/max limits use the same bytes
3653 * in the
3654 */
7d824b6f
DS
3655 bctl->data.limit = limit_data;
3656 bctl->meta.limit = limit_meta;
3657 bctl->sys.limit = limit_sys;
3658 }
ec44a35c
CM
3659 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3660 key.offset = (u64)-1;
3661 key.type = BTRFS_CHUNK_ITEM_KEY;
3662
d397712b 3663 while (1) {
19a39dce 3664 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3665 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3666 ret = -ECANCELED;
3667 goto error;
3668 }
3669
67c5e7d4 3670 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3671 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3672 if (ret < 0) {
3673 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3674 goto error;
67c5e7d4 3675 }
ec44a35c
CM
3676
3677 /*
3678 * this shouldn't happen, it means the last relocate
3679 * failed
3680 */
3681 if (ret == 0)
c9e9f97b 3682 BUG(); /* FIXME break ? */
ec44a35c
CM
3683
3684 ret = btrfs_previous_item(chunk_root, path, 0,
3685 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3686 if (ret) {
67c5e7d4 3687 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3688 ret = 0;
ec44a35c 3689 break;
c9e9f97b 3690 }
7d9eb12c 3691
f43ffb60
ID
3692 leaf = path->nodes[0];
3693 slot = path->slots[0];
3694 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3695
67c5e7d4
FM
3696 if (found_key.objectid != key.objectid) {
3697 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3698 break;
67c5e7d4 3699 }
7d9eb12c 3700
f43ffb60 3701 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3702 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3703
19a39dce
ID
3704 if (!counting) {
3705 spin_lock(&fs_info->balance_lock);
3706 bctl->stat.considered++;
3707 spin_unlock(&fs_info->balance_lock);
3708 }
3709
2ff7e61e 3710 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3711 found_key.offset);
2c9fe835 3712
b3b4aa74 3713 btrfs_release_path(path);
67c5e7d4
FM
3714 if (!ret) {
3715 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3716 goto loop;
67c5e7d4 3717 }
f43ffb60 3718
19a39dce 3719 if (counting) {
67c5e7d4 3720 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3721 spin_lock(&fs_info->balance_lock);
3722 bctl->stat.expected++;
3723 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3724
3725 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3726 count_data++;
3727 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3728 count_sys++;
3729 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3730 count_meta++;
3731
3732 goto loop;
3733 }
3734
3735 /*
3736 * Apply limit_min filter, no need to check if the LIMITS
3737 * filter is used, limit_min is 0 by default
3738 */
3739 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3740 count_data < bctl->data.limit_min)
3741 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3742 count_meta < bctl->meta.limit_min)
3743 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3744 count_sys < bctl->sys.limit_min)) {
3745 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3746 goto loop;
3747 }
3748
a6f93c71
LB
3749 if (!chunk_reserved) {
3750 /*
3751 * We may be relocating the only data chunk we have,
3752 * which could potentially end up with losing data's
3753 * raid profile, so lets allocate an empty one in
3754 * advance.
3755 */
3756 ret = btrfs_may_alloc_data_chunk(fs_info,
3757 found_key.offset);
2c9fe835
ZL
3758 if (ret < 0) {
3759 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760 goto error;
a6f93c71
LB
3761 } else if (ret == 1) {
3762 chunk_reserved = 1;
2c9fe835 3763 }
2c9fe835
ZL
3764 }
3765
5b4aacef 3766 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3768 if (ret && ret != -ENOSPC)
3769 goto error;
19a39dce 3770 if (ret == -ENOSPC) {
c9e9f97b 3771 enospc_errors++;
19a39dce
ID
3772 } else {
3773 spin_lock(&fs_info->balance_lock);
3774 bctl->stat.completed++;
3775 spin_unlock(&fs_info->balance_lock);
3776 }
f43ffb60 3777loop:
795a3321
ID
3778 if (found_key.offset == 0)
3779 break;
ba1bf481 3780 key.offset = found_key.offset - 1;
ec44a35c 3781 }
c9e9f97b 3782
19a39dce
ID
3783 if (counting) {
3784 btrfs_release_path(path);
3785 counting = false;
3786 goto again;
3787 }
ec44a35c
CM
3788error:
3789 btrfs_free_path(path);
c9e9f97b 3790 if (enospc_errors) {
efe120a0 3791 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3792 enospc_errors);
c9e9f97b
ID
3793 if (!ret)
3794 ret = -ENOSPC;
3795 }
3796
ec44a35c
CM
3797 return ret;
3798}
3799
0c460c0d
ID
3800/**
3801 * alloc_profile_is_valid - see if a given profile is valid and reduced
3802 * @flags: profile to validate
3803 * @extended: if true @flags is treated as an extended profile
3804 */
3805static int alloc_profile_is_valid(u64 flags, int extended)
3806{
3807 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3808 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3809
3810 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3811
3812 /* 1) check that all other bits are zeroed */
3813 if (flags & ~mask)
3814 return 0;
3815
3816 /* 2) see if profile is reduced */
3817 if (flags == 0)
3818 return !extended; /* "0" is valid for usual profiles */
3819
3820 /* true if exactly one bit set */
3821 return (flags & (flags - 1)) == 0;
3822}
3823
837d5b6e
ID
3824static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3825{
a7e99c69
ID
3826 /* cancel requested || normal exit path */
3827 return atomic_read(&fs_info->balance_cancel_req) ||
3828 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3829 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3830}
3831
c9e9f97b
ID
3832static void __cancel_balance(struct btrfs_fs_info *fs_info)
3833{
0940ebf6
ID
3834 int ret;
3835
c9e9f97b 3836 unset_balance_control(fs_info);
6bccf3ab 3837 ret = del_balance_item(fs_info);
0f788c58 3838 if (ret)
34d97007 3839 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f 3840
171938e5 3841 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
c9e9f97b
ID
3842}
3843
bdcd3c97
AM
3844/* Non-zero return value signifies invalidity */
3845static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3846 u64 allowed)
3847{
3848 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3850 (bctl_arg->target & ~allowed)));
3851}
3852
c9e9f97b
ID
3853/*
3854 * Should be called with both balance and volume mutexes held
3855 */
3856int btrfs_balance(struct btrfs_balance_control *bctl,
3857 struct btrfs_ioctl_balance_args *bargs)
3858{
3859 struct btrfs_fs_info *fs_info = bctl->fs_info;
14506127 3860 u64 meta_target, data_target;
f43ffb60 3861 u64 allowed;
e4837f8f 3862 int mixed = 0;
c9e9f97b 3863 int ret;
8dabb742 3864 u64 num_devices;
de98ced9 3865 unsigned seq;
c9e9f97b 3866
837d5b6e 3867 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3868 atomic_read(&fs_info->balance_pause_req) ||
3869 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3870 ret = -EINVAL;
3871 goto out;
3872 }
3873
e4837f8f
ID
3874 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3875 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3876 mixed = 1;
3877
f43ffb60
ID
3878 /*
3879 * In case of mixed groups both data and meta should be picked,
3880 * and identical options should be given for both of them.
3881 */
e4837f8f
ID
3882 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3883 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3884 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3885 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3886 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3887 btrfs_err(fs_info,
3888 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3889 ret = -EINVAL;
3890 goto out;
3891 }
3892 }
3893
8dabb742 3894 num_devices = fs_info->fs_devices->num_devices;
73beece9 3895 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3896 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3897 BUG_ON(num_devices < 1);
3898 num_devices--;
3899 }
73beece9 3900 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3901 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3902 if (num_devices > 1)
e4d8ec0f 3903 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3904 if (num_devices > 2)
3905 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3906 if (num_devices > 3)
3907 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3908 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3909 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3910 btrfs_err(fs_info,
3911 "unable to start balance with target data profile %llu",
3912 bctl->data.target);
e4d8ec0f
ID
3913 ret = -EINVAL;
3914 goto out;
3915 }
bdcd3c97 3916 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3917 btrfs_err(fs_info,
5d163e0e
JM
3918 "unable to start balance with target metadata profile %llu",
3919 bctl->meta.target);
e4d8ec0f
ID
3920 ret = -EINVAL;
3921 goto out;
3922 }
bdcd3c97 3923 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3924 btrfs_err(fs_info,
5d163e0e
JM
3925 "unable to start balance with target system profile %llu",
3926 bctl->sys.target);
e4d8ec0f
ID
3927 ret = -EINVAL;
3928 goto out;
3929 }
3930
e4d8ec0f
ID
3931 /* allow to reduce meta or sys integrity only if force set */
3932 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3933 BTRFS_BLOCK_GROUP_RAID10 |
3934 BTRFS_BLOCK_GROUP_RAID5 |
3935 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3936 do {
3937 seq = read_seqbegin(&fs_info->profiles_lock);
3938
3939 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3940 (fs_info->avail_system_alloc_bits & allowed) &&
3941 !(bctl->sys.target & allowed)) ||
3942 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3943 (fs_info->avail_metadata_alloc_bits & allowed) &&
3944 !(bctl->meta.target & allowed))) {
3945 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3946 btrfs_info(fs_info,
3947 "force reducing metadata integrity");
de98ced9 3948 } else {
5d163e0e
JM
3949 btrfs_err(fs_info,
3950 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3951 ret = -EINVAL;
3952 goto out;
3953 }
e4d8ec0f 3954 }
de98ced9 3955 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3956
14506127
AB
3957 /* if we're not converting, the target field is uninitialized */
3958 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3959 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3960 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3961 bctl->data.target : fs_info->avail_data_alloc_bits;
3962 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3963 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3964 btrfs_warn(fs_info,
5d163e0e 3965 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
14506127 3966 meta_target, data_target);
ee592d07
ST
3967 }
3968
6bccf3ab 3969 ret = insert_balance_item(fs_info, bctl);
59641015 3970 if (ret && ret != -EEXIST)
0940ebf6
ID
3971 goto out;
3972
59641015
ID
3973 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3974 BUG_ON(ret == -EEXIST);
3975 set_balance_control(bctl);
3976 } else {
3977 BUG_ON(ret != -EEXIST);
3978 spin_lock(&fs_info->balance_lock);
3979 update_balance_args(bctl);
3980 spin_unlock(&fs_info->balance_lock);
3981 }
c9e9f97b 3982
837d5b6e 3983 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3984 mutex_unlock(&fs_info->balance_mutex);
3985
3986 ret = __btrfs_balance(fs_info);
3987
3988 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3989 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
3990
3991 if (bargs) {
3992 memset(bargs, 0, sizeof(*bargs));
19a39dce 3993 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3994 }
3995
3a01aa7a
ID
3996 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3997 balance_need_close(fs_info)) {
3998 __cancel_balance(fs_info);
3999 }
4000
837d5b6e 4001 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4002
4003 return ret;
4004out:
59641015
ID
4005 if (bctl->flags & BTRFS_BALANCE_RESUME)
4006 __cancel_balance(fs_info);
ed0fb78f 4007 else {
59641015 4008 kfree(bctl);
171938e5 4009 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
ed0fb78f 4010 }
59641015
ID
4011 return ret;
4012}
4013
4014static int balance_kthread(void *data)
4015{
2b6ba629 4016 struct btrfs_fs_info *fs_info = data;
9555c6c1 4017 int ret = 0;
59641015
ID
4018
4019 mutex_lock(&fs_info->volume_mutex);
4020 mutex_lock(&fs_info->balance_mutex);
4021
2b6ba629 4022 if (fs_info->balance_ctl) {
efe120a0 4023 btrfs_info(fs_info, "continuing balance");
2b6ba629 4024 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 4025 }
59641015
ID
4026
4027 mutex_unlock(&fs_info->balance_mutex);
4028 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 4029
59641015
ID
4030 return ret;
4031}
4032
2b6ba629
ID
4033int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4034{
4035 struct task_struct *tsk;
4036
4037 spin_lock(&fs_info->balance_lock);
4038 if (!fs_info->balance_ctl) {
4039 spin_unlock(&fs_info->balance_lock);
4040 return 0;
4041 }
4042 spin_unlock(&fs_info->balance_lock);
4043
3cdde224 4044 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 4045 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
4046 return 0;
4047 }
4048
4049 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4050 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4051}
4052
68310a5e 4053int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4054{
59641015
ID
4055 struct btrfs_balance_control *bctl;
4056 struct btrfs_balance_item *item;
4057 struct btrfs_disk_balance_args disk_bargs;
4058 struct btrfs_path *path;
4059 struct extent_buffer *leaf;
4060 struct btrfs_key key;
4061 int ret;
4062
4063 path = btrfs_alloc_path();
4064 if (!path)
4065 return -ENOMEM;
4066
59641015 4067 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4068 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4069 key.offset = 0;
4070
68310a5e 4071 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4072 if (ret < 0)
68310a5e 4073 goto out;
59641015
ID
4074 if (ret > 0) { /* ret = -ENOENT; */
4075 ret = 0;
68310a5e
ID
4076 goto out;
4077 }
4078
4079 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4080 if (!bctl) {
4081 ret = -ENOMEM;
4082 goto out;
59641015
ID
4083 }
4084
4085 leaf = path->nodes[0];
4086 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4087
68310a5e
ID
4088 bctl->fs_info = fs_info;
4089 bctl->flags = btrfs_balance_flags(leaf, item);
4090 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4091
4092 btrfs_balance_data(leaf, item, &disk_bargs);
4093 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4094 btrfs_balance_meta(leaf, item, &disk_bargs);
4095 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4096 btrfs_balance_sys(leaf, item, &disk_bargs);
4097 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4098
171938e5 4099 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
ed0fb78f 4100
68310a5e
ID
4101 mutex_lock(&fs_info->volume_mutex);
4102 mutex_lock(&fs_info->balance_mutex);
59641015 4103
68310a5e
ID
4104 set_balance_control(bctl);
4105
4106 mutex_unlock(&fs_info->balance_mutex);
4107 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4108out:
4109 btrfs_free_path(path);
ec44a35c
CM
4110 return ret;
4111}
4112
837d5b6e
ID
4113int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4114{
4115 int ret = 0;
4116
4117 mutex_lock(&fs_info->balance_mutex);
4118 if (!fs_info->balance_ctl) {
4119 mutex_unlock(&fs_info->balance_mutex);
4120 return -ENOTCONN;
4121 }
4122
4123 if (atomic_read(&fs_info->balance_running)) {
4124 atomic_inc(&fs_info->balance_pause_req);
4125 mutex_unlock(&fs_info->balance_mutex);
4126
4127 wait_event(fs_info->balance_wait_q,
4128 atomic_read(&fs_info->balance_running) == 0);
4129
4130 mutex_lock(&fs_info->balance_mutex);
4131 /* we are good with balance_ctl ripped off from under us */
4132 BUG_ON(atomic_read(&fs_info->balance_running));
4133 atomic_dec(&fs_info->balance_pause_req);
4134 } else {
4135 ret = -ENOTCONN;
4136 }
4137
4138 mutex_unlock(&fs_info->balance_mutex);
4139 return ret;
4140}
4141
a7e99c69
ID
4142int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4143{
bc98a42c 4144 if (sb_rdonly(fs_info->sb))
e649e587
ID
4145 return -EROFS;
4146
a7e99c69
ID
4147 mutex_lock(&fs_info->balance_mutex);
4148 if (!fs_info->balance_ctl) {
4149 mutex_unlock(&fs_info->balance_mutex);
4150 return -ENOTCONN;
4151 }
4152
4153 atomic_inc(&fs_info->balance_cancel_req);
4154 /*
4155 * if we are running just wait and return, balance item is
4156 * deleted in btrfs_balance in this case
4157 */
4158 if (atomic_read(&fs_info->balance_running)) {
4159 mutex_unlock(&fs_info->balance_mutex);
4160 wait_event(fs_info->balance_wait_q,
4161 atomic_read(&fs_info->balance_running) == 0);
4162 mutex_lock(&fs_info->balance_mutex);
4163 } else {
4164 /* __cancel_balance needs volume_mutex */
4165 mutex_unlock(&fs_info->balance_mutex);
4166 mutex_lock(&fs_info->volume_mutex);
4167 mutex_lock(&fs_info->balance_mutex);
4168
4169 if (fs_info->balance_ctl)
4170 __cancel_balance(fs_info);
4171
4172 mutex_unlock(&fs_info->volume_mutex);
4173 }
4174
4175 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4176 atomic_dec(&fs_info->balance_cancel_req);
4177 mutex_unlock(&fs_info->balance_mutex);
4178 return 0;
4179}
4180
803b2f54
SB
4181static int btrfs_uuid_scan_kthread(void *data)
4182{
4183 struct btrfs_fs_info *fs_info = data;
4184 struct btrfs_root *root = fs_info->tree_root;
4185 struct btrfs_key key;
803b2f54
SB
4186 struct btrfs_path *path = NULL;
4187 int ret = 0;
4188 struct extent_buffer *eb;
4189 int slot;
4190 struct btrfs_root_item root_item;
4191 u32 item_size;
f45388f3 4192 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4193
4194 path = btrfs_alloc_path();
4195 if (!path) {
4196 ret = -ENOMEM;
4197 goto out;
4198 }
4199
4200 key.objectid = 0;
4201 key.type = BTRFS_ROOT_ITEM_KEY;
4202 key.offset = 0;
4203
803b2f54 4204 while (1) {
6174d3cb 4205 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4206 if (ret) {
4207 if (ret > 0)
4208 ret = 0;
4209 break;
4210 }
4211
4212 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4213 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4214 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4215 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4216 goto skip;
4217
4218 eb = path->nodes[0];
4219 slot = path->slots[0];
4220 item_size = btrfs_item_size_nr(eb, slot);
4221 if (item_size < sizeof(root_item))
4222 goto skip;
4223
803b2f54
SB
4224 read_extent_buffer(eb, &root_item,
4225 btrfs_item_ptr_offset(eb, slot),
4226 (int)sizeof(root_item));
4227 if (btrfs_root_refs(&root_item) == 0)
4228 goto skip;
f45388f3
FDBM
4229
4230 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4231 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4232 if (trans)
4233 goto update_tree;
4234
4235 btrfs_release_path(path);
803b2f54
SB
4236 /*
4237 * 1 - subvol uuid item
4238 * 1 - received_subvol uuid item
4239 */
4240 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4241 if (IS_ERR(trans)) {
4242 ret = PTR_ERR(trans);
4243 break;
4244 }
f45388f3
FDBM
4245 continue;
4246 } else {
4247 goto skip;
4248 }
4249update_tree:
4250 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4251 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4252 root_item.uuid,
4253 BTRFS_UUID_KEY_SUBVOL,
4254 key.objectid);
4255 if (ret < 0) {
efe120a0 4256 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4257 ret);
803b2f54
SB
4258 break;
4259 }
4260 }
4261
4262 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4263 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4264 root_item.received_uuid,
4265 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4266 key.objectid);
4267 if (ret < 0) {
efe120a0 4268 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4269 ret);
803b2f54
SB
4270 break;
4271 }
4272 }
4273
f45388f3 4274skip:
803b2f54 4275 if (trans) {
3a45bb20 4276 ret = btrfs_end_transaction(trans);
f45388f3 4277 trans = NULL;
803b2f54
SB
4278 if (ret)
4279 break;
4280 }
4281
803b2f54
SB
4282 btrfs_release_path(path);
4283 if (key.offset < (u64)-1) {
4284 key.offset++;
4285 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4286 key.offset = 0;
4287 key.type = BTRFS_ROOT_ITEM_KEY;
4288 } else if (key.objectid < (u64)-1) {
4289 key.offset = 0;
4290 key.type = BTRFS_ROOT_ITEM_KEY;
4291 key.objectid++;
4292 } else {
4293 break;
4294 }
4295 cond_resched();
4296 }
4297
4298out:
4299 btrfs_free_path(path);
f45388f3 4300 if (trans && !IS_ERR(trans))
3a45bb20 4301 btrfs_end_transaction(trans);
803b2f54 4302 if (ret)
efe120a0 4303 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4304 else
afcdd129 4305 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4306 up(&fs_info->uuid_tree_rescan_sem);
4307 return 0;
4308}
4309
70f80175
SB
4310/*
4311 * Callback for btrfs_uuid_tree_iterate().
4312 * returns:
4313 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4314 * < 0 if an error occurred.
70f80175
SB
4315 * > 0 if the check failed, which means the caller shall remove the entry.
4316 */
4317static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4318 u8 *uuid, u8 type, u64 subid)
4319{
4320 struct btrfs_key key;
4321 int ret = 0;
4322 struct btrfs_root *subvol_root;
4323
4324 if (type != BTRFS_UUID_KEY_SUBVOL &&
4325 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4326 goto out;
4327
4328 key.objectid = subid;
4329 key.type = BTRFS_ROOT_ITEM_KEY;
4330 key.offset = (u64)-1;
4331 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4332 if (IS_ERR(subvol_root)) {
4333 ret = PTR_ERR(subvol_root);
4334 if (ret == -ENOENT)
4335 ret = 1;
4336 goto out;
4337 }
4338
4339 switch (type) {
4340 case BTRFS_UUID_KEY_SUBVOL:
4341 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4342 ret = 1;
4343 break;
4344 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4345 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4346 BTRFS_UUID_SIZE))
4347 ret = 1;
4348 break;
4349 }
4350
4351out:
4352 return ret;
4353}
4354
4355static int btrfs_uuid_rescan_kthread(void *data)
4356{
4357 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4358 int ret;
4359
4360 /*
4361 * 1st step is to iterate through the existing UUID tree and
4362 * to delete all entries that contain outdated data.
4363 * 2nd step is to add all missing entries to the UUID tree.
4364 */
4365 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4366 if (ret < 0) {
efe120a0 4367 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4368 up(&fs_info->uuid_tree_rescan_sem);
4369 return ret;
4370 }
4371 return btrfs_uuid_scan_kthread(data);
4372}
4373
f7a81ea4
SB
4374int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4375{
4376 struct btrfs_trans_handle *trans;
4377 struct btrfs_root *tree_root = fs_info->tree_root;
4378 struct btrfs_root *uuid_root;
803b2f54
SB
4379 struct task_struct *task;
4380 int ret;
f7a81ea4
SB
4381
4382 /*
4383 * 1 - root node
4384 * 1 - root item
4385 */
4386 trans = btrfs_start_transaction(tree_root, 2);
4387 if (IS_ERR(trans))
4388 return PTR_ERR(trans);
4389
4390 uuid_root = btrfs_create_tree(trans, fs_info,
4391 BTRFS_UUID_TREE_OBJECTID);
4392 if (IS_ERR(uuid_root)) {
6d13f549 4393 ret = PTR_ERR(uuid_root);
66642832 4394 btrfs_abort_transaction(trans, ret);
3a45bb20 4395 btrfs_end_transaction(trans);
6d13f549 4396 return ret;
f7a81ea4
SB
4397 }
4398
4399 fs_info->uuid_root = uuid_root;
4400
3a45bb20 4401 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4402 if (ret)
4403 return ret;
4404
4405 down(&fs_info->uuid_tree_rescan_sem);
4406 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4407 if (IS_ERR(task)) {
70f80175 4408 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4409 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4410 up(&fs_info->uuid_tree_rescan_sem);
4411 return PTR_ERR(task);
4412 }
4413
4414 return 0;
f7a81ea4 4415}
803b2f54 4416
70f80175
SB
4417int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4418{
4419 struct task_struct *task;
4420
4421 down(&fs_info->uuid_tree_rescan_sem);
4422 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4423 if (IS_ERR(task)) {
4424 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4425 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4426 up(&fs_info->uuid_tree_rescan_sem);
4427 return PTR_ERR(task);
4428 }
4429
4430 return 0;
4431}
4432
8f18cf13
CM
4433/*
4434 * shrinking a device means finding all of the device extents past
4435 * the new size, and then following the back refs to the chunks.
4436 * The chunk relocation code actually frees the device extent
4437 */
4438int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4439{
0b246afa
JM
4440 struct btrfs_fs_info *fs_info = device->fs_info;
4441 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4442 struct btrfs_trans_handle *trans;
8f18cf13
CM
4443 struct btrfs_dev_extent *dev_extent = NULL;
4444 struct btrfs_path *path;
4445 u64 length;
8f18cf13
CM
4446 u64 chunk_offset;
4447 int ret;
4448 int slot;
ba1bf481
JB
4449 int failed = 0;
4450 bool retried = false;
53e489bc 4451 bool checked_pending_chunks = false;
8f18cf13
CM
4452 struct extent_buffer *l;
4453 struct btrfs_key key;
0b246afa 4454 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4455 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4456 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1
NB
4457 u64 diff;
4458
4459 new_size = round_down(new_size, fs_info->sectorsize);
0e4324a4 4460 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4461
401e29c1 4462 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4463 return -EINVAL;
4464
8f18cf13
CM
4465 path = btrfs_alloc_path();
4466 if (!path)
4467 return -ENOMEM;
4468
e4058b54 4469 path->reada = READA_FORWARD;
8f18cf13 4470
34441361 4471 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4472
7cc8e58d 4473 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4474 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4475 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4476 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4477 }
34441361 4478 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4479
ba1bf481 4480again:
8f18cf13
CM
4481 key.objectid = device->devid;
4482 key.offset = (u64)-1;
4483 key.type = BTRFS_DEV_EXTENT_KEY;
4484
213e64da 4485 do {
0b246afa 4486 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4487 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4488 if (ret < 0) {
0b246afa 4489 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4490 goto done;
67c5e7d4 4491 }
8f18cf13
CM
4492
4493 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4494 if (ret)
0b246afa 4495 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4496 if (ret < 0)
4497 goto done;
4498 if (ret) {
4499 ret = 0;
b3b4aa74 4500 btrfs_release_path(path);
bf1fb512 4501 break;
8f18cf13
CM
4502 }
4503
4504 l = path->nodes[0];
4505 slot = path->slots[0];
4506 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4507
ba1bf481 4508 if (key.objectid != device->devid) {
0b246afa 4509 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4510 btrfs_release_path(path);
bf1fb512 4511 break;
ba1bf481 4512 }
8f18cf13
CM
4513
4514 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4515 length = btrfs_dev_extent_length(l, dev_extent);
4516
ba1bf481 4517 if (key.offset + length <= new_size) {
0b246afa 4518 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4519 btrfs_release_path(path);
d6397bae 4520 break;
ba1bf481 4521 }
8f18cf13 4522
8f18cf13 4523 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4524 btrfs_release_path(path);
8f18cf13 4525
a6f93c71
LB
4526 /*
4527 * We may be relocating the only data chunk we have,
4528 * which could potentially end up with losing data's
4529 * raid profile, so lets allocate an empty one in
4530 * advance.
4531 */
4532 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4533 if (ret < 0) {
4534 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4535 goto done;
4536 }
4537
0b246afa
JM
4538 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4539 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4540 if (ret && ret != -ENOSPC)
8f18cf13 4541 goto done;
ba1bf481
JB
4542 if (ret == -ENOSPC)
4543 failed++;
213e64da 4544 } while (key.offset-- > 0);
ba1bf481
JB
4545
4546 if (failed && !retried) {
4547 failed = 0;
4548 retried = true;
4549 goto again;
4550 } else if (failed && retried) {
4551 ret = -ENOSPC;
ba1bf481 4552 goto done;
8f18cf13
CM
4553 }
4554
d6397bae 4555 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4556 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4557 if (IS_ERR(trans)) {
4558 ret = PTR_ERR(trans);
4559 goto done;
4560 }
4561
34441361 4562 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4563
4564 /*
4565 * We checked in the above loop all device extents that were already in
4566 * the device tree. However before we have updated the device's
4567 * total_bytes to the new size, we might have had chunk allocations that
4568 * have not complete yet (new block groups attached to transaction
4569 * handles), and therefore their device extents were not yet in the
4570 * device tree and we missed them in the loop above. So if we have any
4571 * pending chunk using a device extent that overlaps the device range
4572 * that we can not use anymore, commit the current transaction and
4573 * repeat the search on the device tree - this way we guarantee we will
4574 * not have chunks using device extents that end beyond 'new_size'.
4575 */
4576 if (!checked_pending_chunks) {
4577 u64 start = new_size;
4578 u64 len = old_size - new_size;
4579
499f377f
JM
4580 if (contains_pending_extent(trans->transaction, device,
4581 &start, len)) {
34441361 4582 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4583 checked_pending_chunks = true;
4584 failed = 0;
4585 retried = false;
3a45bb20 4586 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4587 if (ret)
4588 goto done;
4589 goto again;
4590 }
4591 }
4592
7cc8e58d 4593 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4594 if (list_empty(&device->resized_list))
4595 list_add_tail(&device->resized_list,
0b246afa 4596 &fs_info->fs_devices->resized_devices);
d6397bae 4597
d6397bae 4598 WARN_ON(diff > old_total);
7dfb8be1
NB
4599 btrfs_set_super_total_bytes(super_copy,
4600 round_down(old_total - diff, fs_info->sectorsize));
34441361 4601 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4602
4603 /* Now btrfs_update_device() will change the on-disk size. */
4604 ret = btrfs_update_device(trans, device);
3a45bb20 4605 btrfs_end_transaction(trans);
8f18cf13
CM
4606done:
4607 btrfs_free_path(path);
53e489bc 4608 if (ret) {
34441361 4609 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4610 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4611 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4612 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4613 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4614 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4615 }
8f18cf13
CM
4616 return ret;
4617}
4618
2ff7e61e 4619static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4620 struct btrfs_key *key,
4621 struct btrfs_chunk *chunk, int item_size)
4622{
0b246afa 4623 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4624 struct btrfs_disk_key disk_key;
4625 u32 array_size;
4626 u8 *ptr;
4627
34441361 4628 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4629 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4630 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4631 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4632 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4633 return -EFBIG;
fe48a5c0 4634 }
0b86a832
CM
4635
4636 ptr = super_copy->sys_chunk_array + array_size;
4637 btrfs_cpu_key_to_disk(&disk_key, key);
4638 memcpy(ptr, &disk_key, sizeof(disk_key));
4639 ptr += sizeof(disk_key);
4640 memcpy(ptr, chunk, item_size);
4641 item_size += sizeof(disk_key);
4642 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4643 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4644
0b86a832
CM
4645 return 0;
4646}
4647
73c5de00
AJ
4648/*
4649 * sort the devices in descending order by max_avail, total_avail
4650 */
4651static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4652{
73c5de00
AJ
4653 const struct btrfs_device_info *di_a = a;
4654 const struct btrfs_device_info *di_b = b;
9b3f68b9 4655
73c5de00 4656 if (di_a->max_avail > di_b->max_avail)
b2117a39 4657 return -1;
73c5de00 4658 if (di_a->max_avail < di_b->max_avail)
b2117a39 4659 return 1;
73c5de00
AJ
4660 if (di_a->total_avail > di_b->total_avail)
4661 return -1;
4662 if (di_a->total_avail < di_b->total_avail)
4663 return 1;
4664 return 0;
b2117a39 4665}
0b86a832 4666
53b381b3
DW
4667static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4668{
ffe2d203 4669 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4670 return;
4671
ceda0864 4672 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4673}
4674
da17066c 4675#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4676 - sizeof(struct btrfs_chunk)) \
4677 / sizeof(struct btrfs_stripe) + 1)
4678
4679#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4680 - 2 * sizeof(struct btrfs_disk_key) \
4681 - 2 * sizeof(struct btrfs_chunk)) \
4682 / sizeof(struct btrfs_stripe) + 1)
4683
73c5de00 4684static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4685 u64 start, u64 type)
b2117a39 4686{
2ff7e61e 4687 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4688 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4689 struct btrfs_device *device;
73c5de00
AJ
4690 struct map_lookup *map = NULL;
4691 struct extent_map_tree *em_tree;
4692 struct extent_map *em;
4693 struct btrfs_device_info *devices_info = NULL;
4694 u64 total_avail;
4695 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4696 int data_stripes; /* number of stripes that count for
4697 block group size */
73c5de00
AJ
4698 int sub_stripes; /* sub_stripes info for map */
4699 int dev_stripes; /* stripes per dev */
4700 int devs_max; /* max devs to use */
4701 int devs_min; /* min devs needed */
4702 int devs_increment; /* ndevs has to be a multiple of this */
4703 int ncopies; /* how many copies to data has */
4704 int ret;
4705 u64 max_stripe_size;
4706 u64 max_chunk_size;
4707 u64 stripe_size;
4708 u64 num_bytes;
4709 int ndevs;
4710 int i;
4711 int j;
31e50229 4712 int index;
593060d7 4713
0c460c0d 4714 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4715
73c5de00
AJ
4716 if (list_empty(&fs_devices->alloc_list))
4717 return -ENOSPC;
b2117a39 4718
31e50229 4719 index = __get_raid_index(type);
73c5de00 4720
31e50229
LB
4721 sub_stripes = btrfs_raid_array[index].sub_stripes;
4722 dev_stripes = btrfs_raid_array[index].dev_stripes;
4723 devs_max = btrfs_raid_array[index].devs_max;
4724 devs_min = btrfs_raid_array[index].devs_min;
4725 devs_increment = btrfs_raid_array[index].devs_increment;
4726 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4727
9b3f68b9 4728 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4729 max_stripe_size = SZ_1G;
73c5de00 4730 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4731 if (!devs_max)
4732 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4733 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4734 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4735 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4736 max_stripe_size = SZ_1G;
1100373f 4737 else
ee22184b 4738 max_stripe_size = SZ_256M;
73c5de00 4739 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4740 if (!devs_max)
4741 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4742 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4743 max_stripe_size = SZ_32M;
73c5de00 4744 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4745 if (!devs_max)
4746 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4747 } else {
351fd353 4748 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4749 type);
4750 BUG_ON(1);
9b3f68b9
CM
4751 }
4752
2b82032c
YZ
4753 /* we don't want a chunk larger than 10% of writeable space */
4754 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4755 max_chunk_size);
9b3f68b9 4756
31e818fe 4757 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4758 GFP_NOFS);
4759 if (!devices_info)
4760 return -ENOMEM;
0cad8a11 4761
9f680ce0 4762 /*
73c5de00
AJ
4763 * in the first pass through the devices list, we gather information
4764 * about the available holes on each device.
9f680ce0 4765 */
73c5de00 4766 ndevs = 0;
ebcc9301 4767 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4768 u64 max_avail;
4769 u64 dev_offset;
b2117a39 4770
ebbede42 4771 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 4772 WARN(1, KERN_ERR
efe120a0 4773 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4774 continue;
4775 }
b2117a39 4776
e12c9621
AJ
4777 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4778 &device->dev_state) ||
401e29c1 4779 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 4780 continue;
b2117a39 4781
73c5de00
AJ
4782 if (device->total_bytes > device->bytes_used)
4783 total_avail = device->total_bytes - device->bytes_used;
4784 else
4785 total_avail = 0;
38c01b96 4786
4787 /* If there is no space on this device, skip it. */
4788 if (total_avail == 0)
4789 continue;
b2117a39 4790
6df9a95e 4791 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4792 max_stripe_size * dev_stripes,
4793 &dev_offset, &max_avail);
4794 if (ret && ret != -ENOSPC)
4795 goto error;
b2117a39 4796
73c5de00
AJ
4797 if (ret == 0)
4798 max_avail = max_stripe_size * dev_stripes;
b2117a39 4799
73c5de00
AJ
4800 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4801 continue;
b2117a39 4802
063d006f
ES
4803 if (ndevs == fs_devices->rw_devices) {
4804 WARN(1, "%s: found more than %llu devices\n",
4805 __func__, fs_devices->rw_devices);
4806 break;
4807 }
73c5de00
AJ
4808 devices_info[ndevs].dev_offset = dev_offset;
4809 devices_info[ndevs].max_avail = max_avail;
4810 devices_info[ndevs].total_avail = total_avail;
4811 devices_info[ndevs].dev = device;
4812 ++ndevs;
4813 }
b2117a39 4814
73c5de00
AJ
4815 /*
4816 * now sort the devices by hole size / available space
4817 */
4818 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4819 btrfs_cmp_device_info, NULL);
b2117a39 4820
73c5de00 4821 /* round down to number of usable stripes */
e5600fd6 4822 ndevs = round_down(ndevs, devs_increment);
b2117a39 4823
73c5de00
AJ
4824 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4825 ret = -ENOSPC;
4826 goto error;
b2117a39 4827 }
9f680ce0 4828
f148ef4d
NB
4829 ndevs = min(ndevs, devs_max);
4830
73c5de00
AJ
4831 /*
4832 * the primary goal is to maximize the number of stripes, so use as many
4833 * devices as possible, even if the stripes are not maximum sized.
4834 */
4835 stripe_size = devices_info[ndevs-1].max_avail;
4836 num_stripes = ndevs * dev_stripes;
b2117a39 4837
53b381b3
DW
4838 /*
4839 * this will have to be fixed for RAID1 and RAID10 over
4840 * more drives
4841 */
4842 data_stripes = num_stripes / ncopies;
4843
500ceed8 4844 if (type & BTRFS_BLOCK_GROUP_RAID5)
53b381b3 4845 data_stripes = num_stripes - 1;
500ceed8
NB
4846
4847 if (type & BTRFS_BLOCK_GROUP_RAID6)
53b381b3 4848 data_stripes = num_stripes - 2;
86db2578
CM
4849
4850 /*
4851 * Use the number of data stripes to figure out how big this chunk
4852 * is really going to be in terms of logical address space,
4853 * and compare that answer with the max chunk size
4854 */
4855 if (stripe_size * data_stripes > max_chunk_size) {
4856 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4857
4858 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4859
4860 /* bump the answer up to a 16MB boundary */
4861 stripe_size = (stripe_size + mask) & ~mask;
4862
4863 /* but don't go higher than the limits we found
4864 * while searching for free extents
4865 */
4866 if (stripe_size > devices_info[ndevs-1].max_avail)
4867 stripe_size = devices_info[ndevs-1].max_avail;
4868 }
4869
b8b93add 4870 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4871
4872 /* align to BTRFS_STRIPE_LEN */
500ceed8 4873 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4874
4875 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4876 if (!map) {
4877 ret = -ENOMEM;
4878 goto error;
4879 }
4880 map->num_stripes = num_stripes;
9b3f68b9 4881
73c5de00
AJ
4882 for (i = 0; i < ndevs; ++i) {
4883 for (j = 0; j < dev_stripes; ++j) {
4884 int s = i * dev_stripes + j;
4885 map->stripes[s].dev = devices_info[i].dev;
4886 map->stripes[s].physical = devices_info[i].dev_offset +
4887 j * stripe_size;
6324fbf3 4888 }
6324fbf3 4889 }
500ceed8
NB
4890 map->stripe_len = BTRFS_STRIPE_LEN;
4891 map->io_align = BTRFS_STRIPE_LEN;
4892 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4893 map->type = type;
2b82032c 4894 map->sub_stripes = sub_stripes;
0b86a832 4895
53b381b3 4896 num_bytes = stripe_size * data_stripes;
0b86a832 4897
6bccf3ab 4898 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4899
172ddd60 4900 em = alloc_extent_map();
2b82032c 4901 if (!em) {
298a8f9c 4902 kfree(map);
b2117a39
MX
4903 ret = -ENOMEM;
4904 goto error;
593060d7 4905 }
298a8f9c 4906 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4907 em->map_lookup = map;
2b82032c 4908 em->start = start;
73c5de00 4909 em->len = num_bytes;
2b82032c
YZ
4910 em->block_start = 0;
4911 em->block_len = em->len;
6df9a95e 4912 em->orig_block_len = stripe_size;
593060d7 4913
0b246afa 4914 em_tree = &info->mapping_tree.map_tree;
890871be 4915 write_lock(&em_tree->lock);
09a2a8f9 4916 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4917 if (ret) {
1efb72a3 4918 write_unlock(&em_tree->lock);
0f5d42b2 4919 free_extent_map(em);
1dd4602f 4920 goto error;
0f5d42b2 4921 }
0b86a832 4922
1efb72a3
NB
4923 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4924 refcount_inc(&em->refs);
4925 write_unlock(&em_tree->lock);
4926
0174484d 4927 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
6df9a95e
JB
4928 if (ret)
4929 goto error_del_extent;
2b82032c 4930
7cc8e58d
MX
4931 for (i = 0; i < map->num_stripes; i++) {
4932 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4933 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4934 }
43530c46 4935
a5ed45f8 4936 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4937
0f5d42b2 4938 free_extent_map(em);
0b246afa 4939 check_raid56_incompat_flag(info, type);
53b381b3 4940
b2117a39 4941 kfree(devices_info);
2b82032c 4942 return 0;
b2117a39 4943
6df9a95e 4944error_del_extent:
0f5d42b2
JB
4945 write_lock(&em_tree->lock);
4946 remove_extent_mapping(em_tree, em);
4947 write_unlock(&em_tree->lock);
4948
4949 /* One for our allocation */
4950 free_extent_map(em);
4951 /* One for the tree reference */
4952 free_extent_map(em);
495e64f4
FM
4953 /* One for the pending_chunks list reference */
4954 free_extent_map(em);
b2117a39 4955error:
b2117a39
MX
4956 kfree(devices_info);
4957 return ret;
2b82032c
YZ
4958}
4959
6df9a95e 4960int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4961 struct btrfs_fs_info *fs_info,
6df9a95e 4962 u64 chunk_offset, u64 chunk_size)
2b82032c 4963{
6bccf3ab
JM
4964 struct btrfs_root *extent_root = fs_info->extent_root;
4965 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4966 struct btrfs_key key;
2b82032c
YZ
4967 struct btrfs_device *device;
4968 struct btrfs_chunk *chunk;
4969 struct btrfs_stripe *stripe;
6df9a95e
JB
4970 struct extent_map *em;
4971 struct map_lookup *map;
4972 size_t item_size;
4973 u64 dev_offset;
4974 u64 stripe_size;
4975 int i = 0;
140e639f 4976 int ret = 0;
2b82032c 4977
592d92ee
LB
4978 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4979 if (IS_ERR(em))
4980 return PTR_ERR(em);
6df9a95e 4981
95617d69 4982 map = em->map_lookup;
6df9a95e
JB
4983 item_size = btrfs_chunk_item_size(map->num_stripes);
4984 stripe_size = em->orig_block_len;
4985
2b82032c 4986 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4987 if (!chunk) {
4988 ret = -ENOMEM;
4989 goto out;
4990 }
4991
50460e37
FM
4992 /*
4993 * Take the device list mutex to prevent races with the final phase of
4994 * a device replace operation that replaces the device object associated
4995 * with the map's stripes, because the device object's id can change
4996 * at any time during that final phase of the device replace operation
4997 * (dev-replace.c:btrfs_dev_replace_finishing()).
4998 */
0b246afa 4999 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
5000 for (i = 0; i < map->num_stripes; i++) {
5001 device = map->stripes[i].dev;
5002 dev_offset = map->stripes[i].physical;
2b82032c 5003
0b86a832 5004 ret = btrfs_update_device(trans, device);
3acd3953 5005 if (ret)
50460e37 5006 break;
b5d9071c
NB
5007 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5008 dev_offset, stripe_size);
6df9a95e 5009 if (ret)
50460e37
FM
5010 break;
5011 }
5012 if (ret) {
0b246afa 5013 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 5014 goto out;
2b82032c
YZ
5015 }
5016
2b82032c 5017 stripe = &chunk->stripe;
6df9a95e
JB
5018 for (i = 0; i < map->num_stripes; i++) {
5019 device = map->stripes[i].dev;
5020 dev_offset = map->stripes[i].physical;
0b86a832 5021
e17cade2
CM
5022 btrfs_set_stack_stripe_devid(stripe, device->devid);
5023 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5024 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5025 stripe++;
0b86a832 5026 }
0b246afa 5027 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 5028
2b82032c 5029 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 5030 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5031 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5032 btrfs_set_stack_chunk_type(chunk, map->type);
5033 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5034 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5035 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5036 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5037 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5038
2b82032c
YZ
5039 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5040 key.type = BTRFS_CHUNK_ITEM_KEY;
5041 key.offset = chunk_offset;
0b86a832 5042
2b82032c 5043 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
5044 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5045 /*
5046 * TODO: Cleanup of inserted chunk root in case of
5047 * failure.
5048 */
2ff7e61e 5049 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5050 }
1abe9b8a 5051
6df9a95e 5052out:
0b86a832 5053 kfree(chunk);
6df9a95e 5054 free_extent_map(em);
4ed1d16e 5055 return ret;
2b82032c 5056}
0b86a832 5057
2b82032c
YZ
5058/*
5059 * Chunk allocation falls into two parts. The first part does works
5060 * that make the new allocated chunk useable, but not do any operation
5061 * that modifies the chunk tree. The second part does the works that
5062 * require modifying the chunk tree. This division is important for the
5063 * bootstrap process of adding storage to a seed btrfs.
5064 */
5065int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 5066 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
5067{
5068 u64 chunk_offset;
2b82032c 5069
0b246afa
JM
5070 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5071 chunk_offset = find_next_chunk(fs_info);
72b468c8 5072 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5073}
5074
d397712b 5075static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 5076 struct btrfs_fs_info *fs_info)
2b82032c
YZ
5077{
5078 u64 chunk_offset;
5079 u64 sys_chunk_offset;
2b82032c 5080 u64 alloc_profile;
2b82032c
YZ
5081 int ret;
5082
6df9a95e 5083 chunk_offset = find_next_chunk(fs_info);
1b86826d 5084 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5085 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5086 if (ret)
5087 return ret;
2b82032c 5088
0b246afa 5089 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5090 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5091 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5092 return ret;
2b82032c
YZ
5093}
5094
d20983b4
MX
5095static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5096{
5097 int max_errors;
5098
5099 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5100 BTRFS_BLOCK_GROUP_RAID10 |
5101 BTRFS_BLOCK_GROUP_RAID5 |
5102 BTRFS_BLOCK_GROUP_DUP)) {
5103 max_errors = 1;
5104 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5105 max_errors = 2;
5106 } else {
5107 max_errors = 0;
005d6427 5108 }
2b82032c 5109
d20983b4 5110 return max_errors;
2b82032c
YZ
5111}
5112
2ff7e61e 5113int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5114{
5115 struct extent_map *em;
5116 struct map_lookup *map;
2b82032c 5117 int readonly = 0;
d20983b4 5118 int miss_ndevs = 0;
2b82032c
YZ
5119 int i;
5120
592d92ee
LB
5121 em = get_chunk_map(fs_info, chunk_offset, 1);
5122 if (IS_ERR(em))
2b82032c
YZ
5123 return 1;
5124
95617d69 5125 map = em->map_lookup;
2b82032c 5126 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5127 if (test_bit(BTRFS_DEV_STATE_MISSING,
5128 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5129 miss_ndevs++;
5130 continue;
5131 }
ebbede42
AJ
5132 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5133 &map->stripes[i].dev->dev_state)) {
2b82032c 5134 readonly = 1;
d20983b4 5135 goto end;
2b82032c
YZ
5136 }
5137 }
d20983b4
MX
5138
5139 /*
5140 * If the number of missing devices is larger than max errors,
5141 * we can not write the data into that chunk successfully, so
5142 * set it readonly.
5143 */
5144 if (miss_ndevs > btrfs_chunk_max_errors(map))
5145 readonly = 1;
5146end:
0b86a832 5147 free_extent_map(em);
2b82032c 5148 return readonly;
0b86a832
CM
5149}
5150
5151void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5152{
a8067e02 5153 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5154}
5155
5156void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5157{
5158 struct extent_map *em;
5159
d397712b 5160 while (1) {
890871be 5161 write_lock(&tree->map_tree.lock);
0b86a832
CM
5162 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5163 if (em)
5164 remove_extent_mapping(&tree->map_tree, em);
890871be 5165 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5166 if (!em)
5167 break;
0b86a832
CM
5168 /* once for us */
5169 free_extent_map(em);
5170 /* once for the tree */
5171 free_extent_map(em);
5172 }
5173}
5174
5d964051 5175int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5176{
5177 struct extent_map *em;
5178 struct map_lookup *map;
f188591e
CM
5179 int ret;
5180
592d92ee
LB
5181 em = get_chunk_map(fs_info, logical, len);
5182 if (IS_ERR(em))
5183 /*
5184 * We could return errors for these cases, but that could get
5185 * ugly and we'd probably do the same thing which is just not do
5186 * anything else and exit, so return 1 so the callers don't try
5187 * to use other copies.
5188 */
fb7669b5 5189 return 1;
fb7669b5 5190
95617d69 5191 map = em->map_lookup;
f188591e
CM
5192 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5193 ret = map->num_stripes;
321aecc6
CM
5194 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5195 ret = map->sub_stripes;
53b381b3
DW
5196 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5197 ret = 2;
5198 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5199 /*
5200 * There could be two corrupted data stripes, we need
5201 * to loop retry in order to rebuild the correct data.
5202 *
5203 * Fail a stripe at a time on every retry except the
5204 * stripe under reconstruction.
5205 */
5206 ret = map->num_stripes;
f188591e
CM
5207 else
5208 ret = 1;
5209 free_extent_map(em);
ad6d620e 5210
73beece9 5211 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
6fad823f
LB
5212 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5213 fs_info->dev_replace.tgtdev)
ad6d620e 5214 ret++;
73beece9 5215 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5216
f188591e
CM
5217 return ret;
5218}
5219
2ff7e61e 5220unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5221 u64 logical)
5222{
5223 struct extent_map *em;
5224 struct map_lookup *map;
0b246afa 5225 unsigned long len = fs_info->sectorsize;
53b381b3 5226
592d92ee 5227 em = get_chunk_map(fs_info, logical, len);
53b381b3 5228
69f03f13
NB
5229 if (!WARN_ON(IS_ERR(em))) {
5230 map = em->map_lookup;
5231 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5232 len = map->stripe_len * nr_data_stripes(map);
5233 free_extent_map(em);
5234 }
53b381b3
DW
5235 return len;
5236}
5237
e4ff5fb5 5238int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5239{
5240 struct extent_map *em;
5241 struct map_lookup *map;
53b381b3
DW
5242 int ret = 0;
5243
592d92ee 5244 em = get_chunk_map(fs_info, logical, len);
53b381b3 5245
69f03f13
NB
5246 if(!WARN_ON(IS_ERR(em))) {
5247 map = em->map_lookup;
5248 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5249 ret = 1;
5250 free_extent_map(em);
5251 }
53b381b3
DW
5252 return ret;
5253}
5254
30d9861f
SB
5255static int find_live_mirror(struct btrfs_fs_info *fs_info,
5256 struct map_lookup *map, int first, int num,
5257 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5258{
5259 int i;
30d9861f
SB
5260 int tolerance;
5261 struct btrfs_device *srcdev;
5262
5263 if (dev_replace_is_ongoing &&
5264 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5265 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5266 srcdev = fs_info->dev_replace.srcdev;
5267 else
5268 srcdev = NULL;
5269
5270 /*
5271 * try to avoid the drive that is the source drive for a
5272 * dev-replace procedure, only choose it if no other non-missing
5273 * mirror is available
5274 */
5275 for (tolerance = 0; tolerance < 2; tolerance++) {
5276 if (map->stripes[optimal].dev->bdev &&
5277 (tolerance || map->stripes[optimal].dev != srcdev))
5278 return optimal;
5279 for (i = first; i < first + num; i++) {
5280 if (map->stripes[i].dev->bdev &&
5281 (tolerance || map->stripes[i].dev != srcdev))
5282 return i;
5283 }
dfe25020 5284 }
30d9861f 5285
dfe25020
CM
5286 /* we couldn't find one that doesn't fail. Just return something
5287 * and the io error handling code will clean up eventually
5288 */
5289 return optimal;
5290}
5291
53b381b3
DW
5292static inline int parity_smaller(u64 a, u64 b)
5293{
5294 return a > b;
5295}
5296
5297/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5298static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5299{
5300 struct btrfs_bio_stripe s;
5301 int i;
5302 u64 l;
5303 int again = 1;
5304
5305 while (again) {
5306 again = 0;
cc7539ed 5307 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5308 if (parity_smaller(bbio->raid_map[i],
5309 bbio->raid_map[i+1])) {
53b381b3 5310 s = bbio->stripes[i];
8e5cfb55 5311 l = bbio->raid_map[i];
53b381b3 5312 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5313 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5314 bbio->stripes[i+1] = s;
8e5cfb55 5315 bbio->raid_map[i+1] = l;
2c8cdd6e 5316
53b381b3
DW
5317 again = 1;
5318 }
5319 }
5320 }
5321}
5322
6e9606d2
ZL
5323static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5324{
5325 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5326 /* the size of the btrfs_bio */
6e9606d2 5327 sizeof(struct btrfs_bio) +
e57cf21e 5328 /* plus the variable array for the stripes */
6e9606d2 5329 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5330 /* plus the variable array for the tgt dev */
6e9606d2 5331 sizeof(int) * (real_stripes) +
e57cf21e
CM
5332 /*
5333 * plus the raid_map, which includes both the tgt dev
5334 * and the stripes
5335 */
5336 sizeof(u64) * (total_stripes),
277fb5fc 5337 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5338
5339 atomic_set(&bbio->error, 0);
140475ae 5340 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5341
5342 return bbio;
5343}
5344
5345void btrfs_get_bbio(struct btrfs_bio *bbio)
5346{
140475ae
ER
5347 WARN_ON(!refcount_read(&bbio->refs));
5348 refcount_inc(&bbio->refs);
6e9606d2
ZL
5349}
5350
5351void btrfs_put_bbio(struct btrfs_bio *bbio)
5352{
5353 if (!bbio)
5354 return;
140475ae 5355 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5356 kfree(bbio);
5357}
5358
0b3d4cd3
LB
5359/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5360/*
5361 * Please note that, discard won't be sent to target device of device
5362 * replace.
5363 */
5364static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5365 u64 logical, u64 length,
5366 struct btrfs_bio **bbio_ret)
5367{
5368 struct extent_map *em;
5369 struct map_lookup *map;
5370 struct btrfs_bio *bbio;
5371 u64 offset;
5372 u64 stripe_nr;
5373 u64 stripe_nr_end;
5374 u64 stripe_end_offset;
5375 u64 stripe_cnt;
5376 u64 stripe_len;
5377 u64 stripe_offset;
5378 u64 num_stripes;
5379 u32 stripe_index;
5380 u32 factor = 0;
5381 u32 sub_stripes = 0;
5382 u64 stripes_per_dev = 0;
5383 u32 remaining_stripes = 0;
5384 u32 last_stripe = 0;
5385 int ret = 0;
5386 int i;
5387
5388 /* discard always return a bbio */
5389 ASSERT(bbio_ret);
5390
5391 em = get_chunk_map(fs_info, logical, length);
5392 if (IS_ERR(em))
5393 return PTR_ERR(em);
5394
5395 map = em->map_lookup;
5396 /* we don't discard raid56 yet */
5397 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5398 ret = -EOPNOTSUPP;
5399 goto out;
5400 }
5401
5402 offset = logical - em->start;
5403 length = min_t(u64, em->len - offset, length);
5404
5405 stripe_len = map->stripe_len;
5406 /*
5407 * stripe_nr counts the total number of stripes we have to stride
5408 * to get to this block
5409 */
5410 stripe_nr = div64_u64(offset, stripe_len);
5411
5412 /* stripe_offset is the offset of this block in its stripe */
5413 stripe_offset = offset - stripe_nr * stripe_len;
5414
5415 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5416 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5417 stripe_cnt = stripe_nr_end - stripe_nr;
5418 stripe_end_offset = stripe_nr_end * map->stripe_len -
5419 (offset + length);
5420 /*
5421 * after this, stripe_nr is the number of stripes on this
5422 * device we have to walk to find the data, and stripe_index is
5423 * the number of our device in the stripe array
5424 */
5425 num_stripes = 1;
5426 stripe_index = 0;
5427 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5428 BTRFS_BLOCK_GROUP_RAID10)) {
5429 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5430 sub_stripes = 1;
5431 else
5432 sub_stripes = map->sub_stripes;
5433
5434 factor = map->num_stripes / sub_stripes;
5435 num_stripes = min_t(u64, map->num_stripes,
5436 sub_stripes * stripe_cnt);
5437 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5438 stripe_index *= sub_stripes;
5439 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5440 &remaining_stripes);
5441 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5442 last_stripe *= sub_stripes;
5443 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5444 BTRFS_BLOCK_GROUP_DUP)) {
5445 num_stripes = map->num_stripes;
5446 } else {
5447 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5448 &stripe_index);
5449 }
5450
5451 bbio = alloc_btrfs_bio(num_stripes, 0);
5452 if (!bbio) {
5453 ret = -ENOMEM;
5454 goto out;
5455 }
5456
5457 for (i = 0; i < num_stripes; i++) {
5458 bbio->stripes[i].physical =
5459 map->stripes[stripe_index].physical +
5460 stripe_offset + stripe_nr * map->stripe_len;
5461 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5462
5463 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5464 BTRFS_BLOCK_GROUP_RAID10)) {
5465 bbio->stripes[i].length = stripes_per_dev *
5466 map->stripe_len;
5467
5468 if (i / sub_stripes < remaining_stripes)
5469 bbio->stripes[i].length +=
5470 map->stripe_len;
5471
5472 /*
5473 * Special for the first stripe and
5474 * the last stripe:
5475 *
5476 * |-------|...|-------|
5477 * |----------|
5478 * off end_off
5479 */
5480 if (i < sub_stripes)
5481 bbio->stripes[i].length -=
5482 stripe_offset;
5483
5484 if (stripe_index >= last_stripe &&
5485 stripe_index <= (last_stripe +
5486 sub_stripes - 1))
5487 bbio->stripes[i].length -=
5488 stripe_end_offset;
5489
5490 if (i == sub_stripes - 1)
5491 stripe_offset = 0;
5492 } else {
5493 bbio->stripes[i].length = length;
5494 }
5495
5496 stripe_index++;
5497 if (stripe_index == map->num_stripes) {
5498 stripe_index = 0;
5499 stripe_nr++;
5500 }
5501 }
5502
5503 *bbio_ret = bbio;
5504 bbio->map_type = map->type;
5505 bbio->num_stripes = num_stripes;
5506out:
5507 free_extent_map(em);
5508 return ret;
5509}
5510
5ab56090
LB
5511/*
5512 * In dev-replace case, for repair case (that's the only case where the mirror
5513 * is selected explicitly when calling btrfs_map_block), blocks left of the
5514 * left cursor can also be read from the target drive.
5515 *
5516 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5517 * array of stripes.
5518 * For READ, it also needs to be supported using the same mirror number.
5519 *
5520 * If the requested block is not left of the left cursor, EIO is returned. This
5521 * can happen because btrfs_num_copies() returns one more in the dev-replace
5522 * case.
5523 */
5524static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5525 u64 logical, u64 length,
5526 u64 srcdev_devid, int *mirror_num,
5527 u64 *physical)
5528{
5529 struct btrfs_bio *bbio = NULL;
5530 int num_stripes;
5531 int index_srcdev = 0;
5532 int found = 0;
5533 u64 physical_of_found = 0;
5534 int i;
5535 int ret = 0;
5536
5537 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5538 logical, &length, &bbio, 0, 0);
5539 if (ret) {
5540 ASSERT(bbio == NULL);
5541 return ret;
5542 }
5543
5544 num_stripes = bbio->num_stripes;
5545 if (*mirror_num > num_stripes) {
5546 /*
5547 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5548 * that means that the requested area is not left of the left
5549 * cursor
5550 */
5551 btrfs_put_bbio(bbio);
5552 return -EIO;
5553 }
5554
5555 /*
5556 * process the rest of the function using the mirror_num of the source
5557 * drive. Therefore look it up first. At the end, patch the device
5558 * pointer to the one of the target drive.
5559 */
5560 for (i = 0; i < num_stripes; i++) {
5561 if (bbio->stripes[i].dev->devid != srcdev_devid)
5562 continue;
5563
5564 /*
5565 * In case of DUP, in order to keep it simple, only add the
5566 * mirror with the lowest physical address
5567 */
5568 if (found &&
5569 physical_of_found <= bbio->stripes[i].physical)
5570 continue;
5571
5572 index_srcdev = i;
5573 found = 1;
5574 physical_of_found = bbio->stripes[i].physical;
5575 }
5576
5577 btrfs_put_bbio(bbio);
5578
5579 ASSERT(found);
5580 if (!found)
5581 return -EIO;
5582
5583 *mirror_num = index_srcdev + 1;
5584 *physical = physical_of_found;
5585 return ret;
5586}
5587
73c0f228
LB
5588static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5589 struct btrfs_bio **bbio_ret,
5590 struct btrfs_dev_replace *dev_replace,
5591 int *num_stripes_ret, int *max_errors_ret)
5592{
5593 struct btrfs_bio *bbio = *bbio_ret;
5594 u64 srcdev_devid = dev_replace->srcdev->devid;
5595 int tgtdev_indexes = 0;
5596 int num_stripes = *num_stripes_ret;
5597 int max_errors = *max_errors_ret;
5598 int i;
5599
5600 if (op == BTRFS_MAP_WRITE) {
5601 int index_where_to_add;
5602
5603 /*
5604 * duplicate the write operations while the dev replace
5605 * procedure is running. Since the copying of the old disk to
5606 * the new disk takes place at run time while the filesystem is
5607 * mounted writable, the regular write operations to the old
5608 * disk have to be duplicated to go to the new disk as well.
5609 *
5610 * Note that device->missing is handled by the caller, and that
5611 * the write to the old disk is already set up in the stripes
5612 * array.
5613 */
5614 index_where_to_add = num_stripes;
5615 for (i = 0; i < num_stripes; i++) {
5616 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5617 /* write to new disk, too */
5618 struct btrfs_bio_stripe *new =
5619 bbio->stripes + index_where_to_add;
5620 struct btrfs_bio_stripe *old =
5621 bbio->stripes + i;
5622
5623 new->physical = old->physical;
5624 new->length = old->length;
5625 new->dev = dev_replace->tgtdev;
5626 bbio->tgtdev_map[i] = index_where_to_add;
5627 index_where_to_add++;
5628 max_errors++;
5629 tgtdev_indexes++;
5630 }
5631 }
5632 num_stripes = index_where_to_add;
5633 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5634 int index_srcdev = 0;
5635 int found = 0;
5636 u64 physical_of_found = 0;
5637
5638 /*
5639 * During the dev-replace procedure, the target drive can also
5640 * be used to read data in case it is needed to repair a corrupt
5641 * block elsewhere. This is possible if the requested area is
5642 * left of the left cursor. In this area, the target drive is a
5643 * full copy of the source drive.
5644 */
5645 for (i = 0; i < num_stripes; i++) {
5646 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5647 /*
5648 * In case of DUP, in order to keep it simple,
5649 * only add the mirror with the lowest physical
5650 * address
5651 */
5652 if (found &&
5653 physical_of_found <=
5654 bbio->stripes[i].physical)
5655 continue;
5656 index_srcdev = i;
5657 found = 1;
5658 physical_of_found = bbio->stripes[i].physical;
5659 }
5660 }
5661 if (found) {
5662 struct btrfs_bio_stripe *tgtdev_stripe =
5663 bbio->stripes + num_stripes;
5664
5665 tgtdev_stripe->physical = physical_of_found;
5666 tgtdev_stripe->length =
5667 bbio->stripes[index_srcdev].length;
5668 tgtdev_stripe->dev = dev_replace->tgtdev;
5669 bbio->tgtdev_map[index_srcdev] = num_stripes;
5670
5671 tgtdev_indexes++;
5672 num_stripes++;
5673 }
5674 }
5675
5676 *num_stripes_ret = num_stripes;
5677 *max_errors_ret = max_errors;
5678 bbio->num_tgtdevs = tgtdev_indexes;
5679 *bbio_ret = bbio;
5680}
5681
2b19a1fe
LB
5682static bool need_full_stripe(enum btrfs_map_op op)
5683{
5684 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5685}
5686
cf8cddd3
CH
5687static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5688 enum btrfs_map_op op,
f2d8d74d 5689 u64 logical, u64 *length,
a1d3c478 5690 struct btrfs_bio **bbio_ret,
8e5cfb55 5691 int mirror_num, int need_raid_map)
0b86a832
CM
5692{
5693 struct extent_map *em;
5694 struct map_lookup *map;
0b86a832 5695 u64 offset;
593060d7
CM
5696 u64 stripe_offset;
5697 u64 stripe_nr;
53b381b3 5698 u64 stripe_len;
9d644a62 5699 u32 stripe_index;
cea9e445 5700 int i;
de11cc12 5701 int ret = 0;
f2d8d74d 5702 int num_stripes;
a236aed1 5703 int max_errors = 0;
2c8cdd6e 5704 int tgtdev_indexes = 0;
a1d3c478 5705 struct btrfs_bio *bbio = NULL;
472262f3
SB
5706 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5707 int dev_replace_is_ongoing = 0;
5708 int num_alloc_stripes;
ad6d620e
SB
5709 int patch_the_first_stripe_for_dev_replace = 0;
5710 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5711 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5712
0b3d4cd3
LB
5713 if (op == BTRFS_MAP_DISCARD)
5714 return __btrfs_map_block_for_discard(fs_info, logical,
5715 *length, bbio_ret);
5716
592d92ee
LB
5717 em = get_chunk_map(fs_info, logical, *length);
5718 if (IS_ERR(em))
5719 return PTR_ERR(em);
0b86a832 5720
95617d69 5721 map = em->map_lookup;
0b86a832 5722 offset = logical - em->start;
593060d7 5723
53b381b3 5724 stripe_len = map->stripe_len;
593060d7
CM
5725 stripe_nr = offset;
5726 /*
5727 * stripe_nr counts the total number of stripes we have to stride
5728 * to get to this block
5729 */
47c5713f 5730 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5731
53b381b3 5732 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5733 if (offset < stripe_offset) {
5d163e0e
JM
5734 btrfs_crit(fs_info,
5735 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5736 stripe_offset, offset, em->start, logical,
5737 stripe_len);
5738 free_extent_map(em);
5739 return -EINVAL;
5740 }
593060d7
CM
5741
5742 /* stripe_offset is the offset of this block in its stripe*/
5743 stripe_offset = offset - stripe_offset;
5744
53b381b3 5745 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5746 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5747 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5748 raid56_full_stripe_start = offset;
5749
5750 /* allow a write of a full stripe, but make sure we don't
5751 * allow straddling of stripes
5752 */
47c5713f
DS
5753 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5754 full_stripe_len);
53b381b3
DW
5755 raid56_full_stripe_start *= full_stripe_len;
5756 }
5757
0b3d4cd3 5758 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5759 u64 max_len;
5760 /* For writes to RAID[56], allow a full stripeset across all disks.
5761 For other RAID types and for RAID[56] reads, just allow a single
5762 stripe (on a single disk). */
ffe2d203 5763 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5764 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5765 max_len = stripe_len * nr_data_stripes(map) -
5766 (offset - raid56_full_stripe_start);
5767 } else {
5768 /* we limit the length of each bio to what fits in a stripe */
5769 max_len = stripe_len - stripe_offset;
5770 }
5771 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5772 } else {
5773 *length = em->len - offset;
5774 }
f2d8d74d 5775
53b381b3
DW
5776 /* This is for when we're called from btrfs_merge_bio_hook() and all
5777 it cares about is the length */
a1d3c478 5778 if (!bbio_ret)
cea9e445
CM
5779 goto out;
5780
73beece9 5781 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5782 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5783 if (!dev_replace_is_ongoing)
73beece9
LB
5784 btrfs_dev_replace_unlock(dev_replace, 0);
5785 else
5786 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5787
ad6d620e 5788 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5789 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5790 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5791 dev_replace->srcdev->devid,
5792 &mirror_num,
5793 &physical_to_patch_in_first_stripe);
5794 if (ret)
ad6d620e 5795 goto out;
5ab56090
LB
5796 else
5797 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5798 } else if (mirror_num > map->num_stripes) {
5799 mirror_num = 0;
5800 }
5801
f2d8d74d 5802 num_stripes = 1;
cea9e445 5803 stripe_index = 0;
fce3bb9a 5804 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5805 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5806 &stripe_index);
de483734 5807 if (!need_full_stripe(op))
28e1cc7d 5808 mirror_num = 1;
fce3bb9a 5809 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
de483734 5810 if (need_full_stripe(op))
f2d8d74d 5811 num_stripes = map->num_stripes;
2fff734f 5812 else if (mirror_num)
f188591e 5813 stripe_index = mirror_num - 1;
dfe25020 5814 else {
30d9861f 5815 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5816 map->num_stripes,
30d9861f
SB
5817 current->pid % map->num_stripes,
5818 dev_replace_is_ongoing);
a1d3c478 5819 mirror_num = stripe_index + 1;
dfe25020 5820 }
2fff734f 5821
611f0e00 5822 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5823 if (need_full_stripe(op)) {
f2d8d74d 5824 num_stripes = map->num_stripes;
a1d3c478 5825 } else if (mirror_num) {
f188591e 5826 stripe_index = mirror_num - 1;
a1d3c478
JS
5827 } else {
5828 mirror_num = 1;
5829 }
2fff734f 5830
321aecc6 5831 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5832 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5833
47c5713f 5834 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5835 stripe_index *= map->sub_stripes;
5836
de483734 5837 if (need_full_stripe(op))
f2d8d74d 5838 num_stripes = map->sub_stripes;
321aecc6
CM
5839 else if (mirror_num)
5840 stripe_index += mirror_num - 1;
dfe25020 5841 else {
3e74317a 5842 int old_stripe_index = stripe_index;
30d9861f
SB
5843 stripe_index = find_live_mirror(fs_info, map,
5844 stripe_index,
dfe25020 5845 map->sub_stripes, stripe_index +
30d9861f
SB
5846 current->pid % map->sub_stripes,
5847 dev_replace_is_ongoing);
3e74317a 5848 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5849 }
53b381b3 5850
ffe2d203 5851 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5852 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5853 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5854 stripe_nr = div64_u64(raid56_full_stripe_start,
b8b93add 5855 stripe_len * nr_data_stripes(map));
53b381b3
DW
5856
5857 /* RAID[56] write or recovery. Return all stripes */
5858 num_stripes = map->num_stripes;
5859 max_errors = nr_parity_stripes(map);
5860
53b381b3
DW
5861 *length = map->stripe_len;
5862 stripe_index = 0;
5863 stripe_offset = 0;
5864 } else {
5865 /*
5866 * Mirror #0 or #1 means the original data block.
5867 * Mirror #2 is RAID5 parity block.
5868 * Mirror #3 is RAID6 Q block.
5869 */
47c5713f
DS
5870 stripe_nr = div_u64_rem(stripe_nr,
5871 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5872 if (mirror_num > 1)
5873 stripe_index = nr_data_stripes(map) +
5874 mirror_num - 2;
5875
5876 /* We distribute the parity blocks across stripes */
47c5713f
DS
5877 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5878 &stripe_index);
de483734 5879 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5880 mirror_num = 1;
53b381b3 5881 }
8790d502
CM
5882 } else {
5883 /*
47c5713f
DS
5884 * after this, stripe_nr is the number of stripes on this
5885 * device we have to walk to find the data, and stripe_index is
5886 * the number of our device in the stripe array
8790d502 5887 */
47c5713f
DS
5888 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5889 &stripe_index);
a1d3c478 5890 mirror_num = stripe_index + 1;
8790d502 5891 }
e042d1ec 5892 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5893 btrfs_crit(fs_info,
5894 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5895 stripe_index, map->num_stripes);
5896 ret = -EINVAL;
5897 goto out;
5898 }
cea9e445 5899
472262f3 5900 num_alloc_stripes = num_stripes;
6fad823f 5901 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5902 if (op == BTRFS_MAP_WRITE)
ad6d620e 5903 num_alloc_stripes <<= 1;
cf8cddd3 5904 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5905 num_alloc_stripes++;
2c8cdd6e 5906 tgtdev_indexes = num_stripes;
ad6d620e 5907 }
2c8cdd6e 5908
6e9606d2 5909 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5910 if (!bbio) {
5911 ret = -ENOMEM;
5912 goto out;
5913 }
6fad823f 5914 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5915 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5916
8e5cfb55 5917 /* build raid_map */
2b19a1fe
LB
5918 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5919 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5920 u64 tmp;
9d644a62 5921 unsigned rot;
8e5cfb55
ZL
5922
5923 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5924 sizeof(struct btrfs_bio_stripe) *
5925 num_alloc_stripes +
5926 sizeof(int) * tgtdev_indexes);
5927
5928 /* Work out the disk rotation on this stripe-set */
47c5713f 5929 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5930
5931 /* Fill in the logical address of each stripe */
5932 tmp = stripe_nr * nr_data_stripes(map);
5933 for (i = 0; i < nr_data_stripes(map); i++)
5934 bbio->raid_map[(i+rot) % num_stripes] =
5935 em->start + (tmp + i) * map->stripe_len;
5936
5937 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5938 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5939 bbio->raid_map[(i+rot+1) % num_stripes] =
5940 RAID6_Q_STRIPE;
5941 }
5942
b89203f7 5943
0b3d4cd3
LB
5944 for (i = 0; i < num_stripes; i++) {
5945 bbio->stripes[i].physical =
5946 map->stripes[stripe_index].physical +
5947 stripe_offset +
5948 stripe_nr * map->stripe_len;
5949 bbio->stripes[i].dev =
5950 map->stripes[stripe_index].dev;
5951 stripe_index++;
593060d7 5952 }
de11cc12 5953
2b19a1fe 5954 if (need_full_stripe(op))
d20983b4 5955 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5956
8e5cfb55
ZL
5957 if (bbio->raid_map)
5958 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5959
73c0f228 5960 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5961 need_full_stripe(op)) {
73c0f228
LB
5962 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5963 &max_errors);
472262f3
SB
5964 }
5965
de11cc12 5966 *bbio_ret = bbio;
10f11900 5967 bbio->map_type = map->type;
de11cc12
LZ
5968 bbio->num_stripes = num_stripes;
5969 bbio->max_errors = max_errors;
5970 bbio->mirror_num = mirror_num;
ad6d620e
SB
5971
5972 /*
5973 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5974 * mirror_num == num_stripes + 1 && dev_replace target drive is
5975 * available as a mirror
5976 */
5977 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5978 WARN_ON(num_stripes > 1);
5979 bbio->stripes[0].dev = dev_replace->tgtdev;
5980 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5981 bbio->mirror_num = map->num_stripes + 1;
5982 }
cea9e445 5983out:
73beece9
LB
5984 if (dev_replace_is_ongoing) {
5985 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5986 btrfs_dev_replace_unlock(dev_replace, 0);
5987 }
0b86a832 5988 free_extent_map(em);
de11cc12 5989 return ret;
0b86a832
CM
5990}
5991
cf8cddd3 5992int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5993 u64 logical, u64 *length,
a1d3c478 5994 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5995{
b3d3fa51 5996 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5997 mirror_num, 0);
f2d8d74d
CM
5998}
5999
af8e2d1d 6000/* For Scrub/replace */
cf8cddd3 6001int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6002 u64 logical, u64 *length,
825ad4c9 6003 struct btrfs_bio **bbio_ret)
af8e2d1d 6004{
825ad4c9 6005 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6006}
6007
ab8d0fc4 6008int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
6009 u64 chunk_start, u64 physical, u64 devid,
6010 u64 **logical, int *naddrs, int *stripe_len)
6011{
a512bbf8
YZ
6012 struct extent_map *em;
6013 struct map_lookup *map;
6014 u64 *buf;
6015 u64 bytenr;
6016 u64 length;
6017 u64 stripe_nr;
53b381b3 6018 u64 rmap_len;
a512bbf8
YZ
6019 int i, j, nr = 0;
6020
592d92ee
LB
6021 em = get_chunk_map(fs_info, chunk_start, 1);
6022 if (IS_ERR(em))
835d974f 6023 return -EIO;
835d974f 6024
95617d69 6025 map = em->map_lookup;
a512bbf8 6026 length = em->len;
53b381b3
DW
6027 rmap_len = map->stripe_len;
6028
a512bbf8 6029 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 6030 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 6031 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 6032 length = div_u64(length, map->num_stripes);
ffe2d203 6033 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 6034 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
6035 rmap_len = map->stripe_len * nr_data_stripes(map);
6036 }
a512bbf8 6037
31e818fe 6038 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 6039 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
6040
6041 for (i = 0; i < map->num_stripes; i++) {
6042 if (devid && map->stripes[i].dev->devid != devid)
6043 continue;
6044 if (map->stripes[i].physical > physical ||
6045 map->stripes[i].physical + length <= physical)
6046 continue;
6047
6048 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 6049 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6050
6051 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6052 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6053 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6054 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6055 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6056 } /* else if RAID[56], multiply by nr_data_stripes().
6057 * Alternatively, just use rmap_len below instead of
6058 * map->stripe_len */
6059
6060 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6061 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6062 for (j = 0; j < nr; j++) {
6063 if (buf[j] == bytenr)
6064 break;
6065 }
934d375b
CM
6066 if (j == nr) {
6067 WARN_ON(nr >= map->num_stripes);
a512bbf8 6068 buf[nr++] = bytenr;
934d375b 6069 }
a512bbf8
YZ
6070 }
6071
a512bbf8
YZ
6072 *logical = buf;
6073 *naddrs = nr;
53b381b3 6074 *stripe_len = rmap_len;
a512bbf8
YZ
6075
6076 free_extent_map(em);
6077 return 0;
f2d8d74d
CM
6078}
6079
4246a0b6 6080static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6081{
326e1dbb
MS
6082 bio->bi_private = bbio->private;
6083 bio->bi_end_io = bbio->end_io;
4246a0b6 6084 bio_endio(bio);
326e1dbb 6085
6e9606d2 6086 btrfs_put_bbio(bbio);
8408c716
MX
6087}
6088
4246a0b6 6089static void btrfs_end_bio(struct bio *bio)
8790d502 6090{
9be3395b 6091 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6092 int is_orig_bio = 0;
8790d502 6093
4e4cbee9 6094 if (bio->bi_status) {
a1d3c478 6095 atomic_inc(&bbio->error);
4e4cbee9
CH
6096 if (bio->bi_status == BLK_STS_IOERR ||
6097 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6098 unsigned int stripe_index =
9be3395b 6099 btrfs_io_bio(bio)->stripe_index;
65f53338 6100 struct btrfs_device *dev;
442a4f63
SB
6101
6102 BUG_ON(stripe_index >= bbio->num_stripes);
6103 dev = bbio->stripes[stripe_index].dev;
597a60fa 6104 if (dev->bdev) {
37226b21 6105 if (bio_op(bio) == REQ_OP_WRITE)
1cb34c8e 6106 btrfs_dev_stat_inc_and_print(dev,
597a60fa
SB
6107 BTRFS_DEV_STAT_WRITE_ERRS);
6108 else
1cb34c8e 6109 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6110 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6111 if (bio->bi_opf & REQ_PREFLUSH)
1cb34c8e 6112 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6113 BTRFS_DEV_STAT_FLUSH_ERRS);
597a60fa 6114 }
442a4f63
SB
6115 }
6116 }
8790d502 6117
a1d3c478 6118 if (bio == bbio->orig_bio)
7d2b4daa
CM
6119 is_orig_bio = 1;
6120
c404e0dc
MX
6121 btrfs_bio_counter_dec(bbio->fs_info);
6122
a1d3c478 6123 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6124 if (!is_orig_bio) {
6125 bio_put(bio);
a1d3c478 6126 bio = bbio->orig_bio;
7d2b4daa 6127 }
c7b22bb1 6128
9be3395b 6129 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6130 /* only send an error to the higher layers if it is
53b381b3 6131 * beyond the tolerance of the btrfs bio
a236aed1 6132 */
a1d3c478 6133 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6134 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6135 } else {
1259ab75
CM
6136 /*
6137 * this bio is actually up to date, we didn't
6138 * go over the max number of errors
6139 */
2dbe0c77 6140 bio->bi_status = BLK_STS_OK;
1259ab75 6141 }
c55f1396 6142
4246a0b6 6143 btrfs_end_bbio(bbio, bio);
7d2b4daa 6144 } else if (!is_orig_bio) {
8790d502
CM
6145 bio_put(bio);
6146 }
8790d502
CM
6147}
6148
8b712842
CM
6149/*
6150 * see run_scheduled_bios for a description of why bios are collected for
6151 * async submit.
6152 *
6153 * This will add one bio to the pending list for a device and make sure
6154 * the work struct is scheduled.
6155 */
2ff7e61e 6156static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6157 struct bio *bio)
8b712842 6158{
0b246afa 6159 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6160 int should_queue = 1;
ffbd517d 6161 struct btrfs_pending_bios *pending_bios;
8b712842 6162
e6e674bd
AJ
6163 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6164 !device->bdev) {
4246a0b6 6165 bio_io_error(bio);
53b381b3
DW
6166 return;
6167 }
6168
8b712842 6169 /* don't bother with additional async steps for reads, right now */
37226b21 6170 if (bio_op(bio) == REQ_OP_READ) {
4e49ea4a 6171 btrfsic_submit_bio(bio);
143bede5 6172 return;
8b712842
CM
6173 }
6174
492bb6de 6175 WARN_ON(bio->bi_next);
8b712842 6176 bio->bi_next = NULL;
8b712842
CM
6177
6178 spin_lock(&device->io_lock);
67f055c7 6179 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6180 pending_bios = &device->pending_sync_bios;
6181 else
6182 pending_bios = &device->pending_bios;
8b712842 6183
ffbd517d
CM
6184 if (pending_bios->tail)
6185 pending_bios->tail->bi_next = bio;
8b712842 6186
ffbd517d
CM
6187 pending_bios->tail = bio;
6188 if (!pending_bios->head)
6189 pending_bios->head = bio;
8b712842
CM
6190 if (device->running_pending)
6191 should_queue = 0;
6192
6193 spin_unlock(&device->io_lock);
6194
6195 if (should_queue)
0b246afa 6196 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6197}
6198
2ff7e61e
JM
6199static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6200 u64 physical, int dev_nr, int async)
de1ee92a
JB
6201{
6202 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6203 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6204
6205 bio->bi_private = bbio;
9be3395b 6206 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6207 bio->bi_end_io = btrfs_end_bio;
4f024f37 6208 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6209#ifdef DEBUG
6210 {
6211 struct rcu_string *name;
6212
6213 rcu_read_lock();
6214 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6215 btrfs_debug(fs_info,
6216 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6217 bio_op(bio), bio->bi_opf,
6218 (u64)bio->bi_iter.bi_sector,
6219 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6220 bio->bi_iter.bi_size);
de1ee92a
JB
6221 rcu_read_unlock();
6222 }
6223#endif
74d46992 6224 bio_set_dev(bio, dev->bdev);
c404e0dc 6225
2ff7e61e 6226 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6227
de1ee92a 6228 if (async)
2ff7e61e 6229 btrfs_schedule_bio(dev, bio);
de1ee92a 6230 else
4e49ea4a 6231 btrfsic_submit_bio(bio);
de1ee92a
JB
6232}
6233
de1ee92a
JB
6234static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6235{
6236 atomic_inc(&bbio->error);
6237 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6238 /* Should be the original bio. */
8408c716
MX
6239 WARN_ON(bio != bbio->orig_bio);
6240
9be3395b 6241 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6242 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6243 if (atomic_read(&bbio->error) > bbio->max_errors)
6244 bio->bi_status = BLK_STS_IOERR;
6245 else
6246 bio->bi_status = BLK_STS_OK;
4246a0b6 6247 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6248 }
6249}
6250
58efbc9f
OS
6251blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6252 int mirror_num, int async_submit)
0b86a832 6253{
0b86a832 6254 struct btrfs_device *dev;
8790d502 6255 struct bio *first_bio = bio;
4f024f37 6256 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6257 u64 length = 0;
6258 u64 map_length;
0b86a832 6259 int ret;
08da757d
ZL
6260 int dev_nr;
6261 int total_devs;
a1d3c478 6262 struct btrfs_bio *bbio = NULL;
0b86a832 6263
4f024f37 6264 length = bio->bi_iter.bi_size;
0b86a832 6265 map_length = length;
cea9e445 6266
0b246afa 6267 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6268 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6269 &map_length, &bbio, mirror_num, 1);
c404e0dc 6270 if (ret) {
0b246afa 6271 btrfs_bio_counter_dec(fs_info);
58efbc9f 6272 return errno_to_blk_status(ret);
c404e0dc 6273 }
cea9e445 6274
a1d3c478 6275 total_devs = bbio->num_stripes;
53b381b3
DW
6276 bbio->orig_bio = first_bio;
6277 bbio->private = first_bio->bi_private;
6278 bbio->end_io = first_bio->bi_end_io;
0b246afa 6279 bbio->fs_info = fs_info;
53b381b3
DW
6280 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6281
ad1ba2a0 6282 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6283 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6284 /* In this case, map_length has been set to the length of
6285 a single stripe; not the whole write */
37226b21 6286 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6287 ret = raid56_parity_write(fs_info, bio, bbio,
6288 map_length);
53b381b3 6289 } else {
2ff7e61e
JM
6290 ret = raid56_parity_recover(fs_info, bio, bbio,
6291 map_length, mirror_num, 1);
53b381b3 6292 }
4245215d 6293
0b246afa 6294 btrfs_bio_counter_dec(fs_info);
58efbc9f 6295 return errno_to_blk_status(ret);
53b381b3
DW
6296 }
6297
cea9e445 6298 if (map_length < length) {
0b246afa 6299 btrfs_crit(fs_info,
5d163e0e
JM
6300 "mapping failed logical %llu bio len %llu len %llu",
6301 logical, length, map_length);
cea9e445
CM
6302 BUG();
6303 }
a1d3c478 6304
08da757d 6305 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6306 dev = bbio->stripes[dev_nr].dev;
37226b21 6307 if (!dev || !dev->bdev ||
ebbede42
AJ
6308 (bio_op(first_bio) == REQ_OP_WRITE &&
6309 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6310 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6311 continue;
6312 }
6313
3aa8e074 6314 if (dev_nr < total_devs - 1)
8b6c1d56 6315 bio = btrfs_bio_clone(first_bio);
3aa8e074 6316 else
a1d3c478 6317 bio = first_bio;
de1ee92a 6318
2ff7e61e
JM
6319 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6320 dev_nr, async_submit);
8790d502 6321 }
0b246afa 6322 btrfs_bio_counter_dec(fs_info);
58efbc9f 6323 return BLK_STS_OK;
0b86a832
CM
6324}
6325
aa1b8cd4 6326struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6327 u8 *uuid, u8 *fsid)
0b86a832 6328{
2b82032c
YZ
6329 struct btrfs_device *device;
6330 struct btrfs_fs_devices *cur_devices;
6331
aa1b8cd4 6332 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6333 while (cur_devices) {
6334 if (!fsid ||
44880fdc 6335 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
35c70103 6336 device = find_device(cur_devices, devid, uuid);
2b82032c
YZ
6337 if (device)
6338 return device;
6339 }
6340 cur_devices = cur_devices->seed;
6341 }
6342 return NULL;
0b86a832
CM
6343}
6344
2ff7e61e 6345static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6346 u64 devid, u8 *dev_uuid)
6347{
6348 struct btrfs_device *device;
dfe25020 6349
12bd2fc0
ID
6350 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6351 if (IS_ERR(device))
adfb69af 6352 return device;
12bd2fc0
ID
6353
6354 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6355 device->fs_devices = fs_devices;
dfe25020 6356 fs_devices->num_devices++;
12bd2fc0 6357
e6e674bd 6358 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6359 fs_devices->missing_devices++;
12bd2fc0 6360
dfe25020
CM
6361 return device;
6362}
6363
12bd2fc0
ID
6364/**
6365 * btrfs_alloc_device - allocate struct btrfs_device
6366 * @fs_info: used only for generating a new devid, can be NULL if
6367 * devid is provided (i.e. @devid != NULL).
6368 * @devid: a pointer to devid for this device. If NULL a new devid
6369 * is generated.
6370 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6371 * is generated.
6372 *
6373 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf
DS
6374 * on error. Returned struct is not linked onto any lists and must be
6375 * destroyed with free_device.
12bd2fc0
ID
6376 */
6377struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6378 const u64 *devid,
6379 const u8 *uuid)
6380{
6381 struct btrfs_device *dev;
6382 u64 tmp;
6383
fae7f21c 6384 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6385 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6386
6387 dev = __alloc_device();
6388 if (IS_ERR(dev))
6389 return dev;
6390
6391 if (devid)
6392 tmp = *devid;
6393 else {
6394 int ret;
6395
6396 ret = find_next_devid(fs_info, &tmp);
6397 if (ret) {
55de4803 6398 free_device(dev);
12bd2fc0
ID
6399 return ERR_PTR(ret);
6400 }
6401 }
6402 dev->devid = tmp;
6403
6404 if (uuid)
6405 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6406 else
6407 generate_random_uuid(dev->uuid);
6408
9e0af237
LB
6409 btrfs_init_work(&dev->work, btrfs_submit_helper,
6410 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6411
6412 return dev;
6413}
6414
e06cd3dd 6415/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6416static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6417 struct extent_buffer *leaf,
6418 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6419{
0b86a832 6420 u64 length;
f04b772b 6421 u64 stripe_len;
e06cd3dd
LB
6422 u16 num_stripes;
6423 u16 sub_stripes;
6424 u64 type;
0b86a832 6425
e17cade2 6426 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6427 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6428 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6429 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6430 type = btrfs_chunk_type(leaf, chunk);
6431
f04b772b 6432 if (!num_stripes) {
0b246afa 6433 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6434 num_stripes);
6435 return -EIO;
6436 }
0b246afa
JM
6437 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6438 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6439 return -EIO;
6440 }
0b246afa
JM
6441 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6442 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6443 btrfs_chunk_sector_size(leaf, chunk));
6444 return -EIO;
6445 }
0b246afa
JM
6446 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6447 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6448 return -EIO;
6449 }
3d8da678 6450 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6451 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6452 stripe_len);
6453 return -EIO;
6454 }
6455 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6456 type) {
0b246afa 6457 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6458 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6459 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6460 btrfs_chunk_type(leaf, chunk));
6461 return -EIO;
6462 }
e06cd3dd
LB
6463 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6464 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6465 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6466 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6467 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6468 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6469 num_stripes != 1)) {
0b246afa 6470 btrfs_err(fs_info,
e06cd3dd
LB
6471 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6472 num_stripes, sub_stripes,
6473 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6474 return -EIO;
6475 }
6476
6477 return 0;
6478}
6479
5a2b8e60 6480static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6481 u64 devid, u8 *uuid, bool error)
5a2b8e60 6482{
2b902dfc
AJ
6483 if (error)
6484 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6485 devid, uuid);
6486 else
6487 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6488 devid, uuid);
5a2b8e60
AJ
6489}
6490
2ff7e61e 6491static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6492 struct extent_buffer *leaf,
6493 struct btrfs_chunk *chunk)
6494{
0b246afa 6495 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6496 struct map_lookup *map;
6497 struct extent_map *em;
6498 u64 logical;
6499 u64 length;
e06cd3dd
LB
6500 u64 devid;
6501 u8 uuid[BTRFS_UUID_SIZE];
6502 int num_stripes;
6503 int ret;
6504 int i;
6505
6506 logical = key->offset;
6507 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6508 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6509
2ff7e61e 6510 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6511 if (ret)
6512 return ret;
a061fc8d 6513
890871be 6514 read_lock(&map_tree->map_tree.lock);
0b86a832 6515 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6516 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6517
6518 /* already mapped? */
6519 if (em && em->start <= logical && em->start + em->len > logical) {
6520 free_extent_map(em);
0b86a832
CM
6521 return 0;
6522 } else if (em) {
6523 free_extent_map(em);
6524 }
0b86a832 6525
172ddd60 6526 em = alloc_extent_map();
0b86a832
CM
6527 if (!em)
6528 return -ENOMEM;
593060d7 6529 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6530 if (!map) {
6531 free_extent_map(em);
6532 return -ENOMEM;
6533 }
6534
298a8f9c 6535 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6536 em->map_lookup = map;
0b86a832
CM
6537 em->start = logical;
6538 em->len = length;
70c8a91c 6539 em->orig_start = 0;
0b86a832 6540 em->block_start = 0;
c8b97818 6541 em->block_len = em->len;
0b86a832 6542
593060d7
CM
6543 map->num_stripes = num_stripes;
6544 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6545 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6546 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6547 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6548 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6549 for (i = 0; i < num_stripes; i++) {
6550 map->stripes[i].physical =
6551 btrfs_stripe_offset_nr(leaf, chunk, i);
6552 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6553 read_extent_buffer(leaf, uuid, (unsigned long)
6554 btrfs_stripe_dev_uuid_nr(chunk, i),
6555 BTRFS_UUID_SIZE);
0b246afa 6556 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6557 uuid, NULL);
3cdde224 6558 if (!map->stripes[i].dev &&
0b246afa 6559 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6560 free_extent_map(em);
2b902dfc 6561 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6562 return -ENOENT;
593060d7 6563 }
dfe25020
CM
6564 if (!map->stripes[i].dev) {
6565 map->stripes[i].dev =
2ff7e61e
JM
6566 add_missing_dev(fs_info->fs_devices, devid,
6567 uuid);
adfb69af 6568 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6569 free_extent_map(em);
adfb69af
AJ
6570 btrfs_err(fs_info,
6571 "failed to init missing dev %llu: %ld",
6572 devid, PTR_ERR(map->stripes[i].dev));
6573 return PTR_ERR(map->stripes[i].dev);
dfe25020 6574 }
2b902dfc 6575 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 6576 }
e12c9621
AJ
6577 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6578 &(map->stripes[i].dev->dev_state));
6579
0b86a832
CM
6580 }
6581
890871be 6582 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6583 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6584 write_unlock(&map_tree->map_tree.lock);
79787eaa 6585 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6586 free_extent_map(em);
6587
6588 return 0;
6589}
6590
143bede5 6591static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6592 struct btrfs_dev_item *dev_item,
6593 struct btrfs_device *device)
6594{
6595 unsigned long ptr;
0b86a832
CM
6596
6597 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6598 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6599 device->total_bytes = device->disk_total_bytes;
935e5cc9 6600 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6601 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6602 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6603 device->type = btrfs_device_type(leaf, dev_item);
6604 device->io_align = btrfs_device_io_align(leaf, dev_item);
6605 device->io_width = btrfs_device_io_width(leaf, dev_item);
6606 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6607 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6608 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6609
410ba3a2 6610 ptr = btrfs_device_uuid(dev_item);
e17cade2 6611 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6612}
6613
2ff7e61e 6614static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6615 u8 *fsid)
2b82032c
YZ
6616{
6617 struct btrfs_fs_devices *fs_devices;
6618 int ret;
6619
b367e47f 6620 BUG_ON(!mutex_is_locked(&uuid_mutex));
2dfeca9b 6621 ASSERT(fsid);
2b82032c 6622
0b246afa 6623 fs_devices = fs_info->fs_devices->seed;
2b82032c 6624 while (fs_devices) {
44880fdc 6625 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6626 return fs_devices;
6627
2b82032c
YZ
6628 fs_devices = fs_devices->seed;
6629 }
6630
6631 fs_devices = find_fsid(fsid);
6632 if (!fs_devices) {
0b246afa 6633 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6634 return ERR_PTR(-ENOENT);
6635
6636 fs_devices = alloc_fs_devices(fsid);
6637 if (IS_ERR(fs_devices))
6638 return fs_devices;
6639
6640 fs_devices->seeding = 1;
6641 fs_devices->opened = 1;
6642 return fs_devices;
2b82032c 6643 }
e4404d6e
YZ
6644
6645 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6646 if (IS_ERR(fs_devices))
6647 return fs_devices;
2b82032c 6648
97288f2c 6649 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6650 fs_info->bdev_holder);
48d28232
JL
6651 if (ret) {
6652 free_fs_devices(fs_devices);
5f375835 6653 fs_devices = ERR_PTR(ret);
2b82032c 6654 goto out;
48d28232 6655 }
2b82032c
YZ
6656
6657 if (!fs_devices->seeding) {
6658 __btrfs_close_devices(fs_devices);
e4404d6e 6659 free_fs_devices(fs_devices);
5f375835 6660 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6661 goto out;
6662 }
6663
0b246afa
JM
6664 fs_devices->seed = fs_info->fs_devices->seed;
6665 fs_info->fs_devices->seed = fs_devices;
2b82032c 6666out:
5f375835 6667 return fs_devices;
2b82032c
YZ
6668}
6669
2ff7e61e 6670static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6671 struct extent_buffer *leaf,
6672 struct btrfs_dev_item *dev_item)
6673{
0b246afa 6674 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6675 struct btrfs_device *device;
6676 u64 devid;
6677 int ret;
44880fdc 6678 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6679 u8 dev_uuid[BTRFS_UUID_SIZE];
6680
0b86a832 6681 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6682 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6683 BTRFS_UUID_SIZE);
1473b24e 6684 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6685 BTRFS_FSID_SIZE);
2b82032c 6686
44880fdc 6687 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
2ff7e61e 6688 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6689 if (IS_ERR(fs_devices))
6690 return PTR_ERR(fs_devices);
2b82032c
YZ
6691 }
6692
0b246afa 6693 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6694 if (!device) {
c5502451 6695 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6696 btrfs_report_missing_device(fs_info, devid,
6697 dev_uuid, true);
45dbdbc9 6698 return -ENOENT;
c5502451 6699 }
2b82032c 6700
2ff7e61e 6701 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6702 if (IS_ERR(device)) {
6703 btrfs_err(fs_info,
6704 "failed to add missing dev %llu: %ld",
6705 devid, PTR_ERR(device));
6706 return PTR_ERR(device);
6707 }
2b902dfc 6708 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6709 } else {
c5502451 6710 if (!device->bdev) {
2b902dfc
AJ
6711 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6712 btrfs_report_missing_device(fs_info,
6713 devid, dev_uuid, true);
45dbdbc9 6714 return -ENOENT;
2b902dfc
AJ
6715 }
6716 btrfs_report_missing_device(fs_info, devid,
6717 dev_uuid, false);
c5502451 6718 }
5f375835 6719
e6e674bd
AJ
6720 if (!device->bdev &&
6721 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6722 /*
6723 * this happens when a device that was properly setup
6724 * in the device info lists suddenly goes bad.
6725 * device->bdev is NULL, and so we have to set
6726 * device->missing to one here
6727 */
5f375835 6728 device->fs_devices->missing_devices++;
e6e674bd 6729 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6730 }
5f375835
MX
6731
6732 /* Move the device to its own fs_devices */
6733 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6734 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6735 &device->dev_state));
5f375835
MX
6736
6737 list_move(&device->dev_list, &fs_devices->devices);
6738 device->fs_devices->num_devices--;
6739 fs_devices->num_devices++;
6740
6741 device->fs_devices->missing_devices--;
6742 fs_devices->missing_devices++;
6743
6744 device->fs_devices = fs_devices;
6745 }
2b82032c
YZ
6746 }
6747
0b246afa 6748 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 6749 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
6750 if (device->generation !=
6751 btrfs_device_generation(leaf, dev_item))
6752 return -EINVAL;
6324fbf3 6753 }
0b86a832
CM
6754
6755 fill_device_from_item(leaf, dev_item, device);
e12c9621 6756 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 6757 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 6758 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 6759 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6760 atomic64_add(device->total_bytes - device->bytes_used,
6761 &fs_info->free_chunk_space);
2bf64758 6762 }
0b86a832 6763 ret = 0;
0b86a832
CM
6764 return ret;
6765}
6766
6bccf3ab 6767int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6768{
6bccf3ab 6769 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6770 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6771 struct extent_buffer *sb;
0b86a832 6772 struct btrfs_disk_key *disk_key;
0b86a832 6773 struct btrfs_chunk *chunk;
1ffb22cf
DS
6774 u8 *array_ptr;
6775 unsigned long sb_array_offset;
84eed90f 6776 int ret = 0;
0b86a832
CM
6777 u32 num_stripes;
6778 u32 array_size;
6779 u32 len = 0;
1ffb22cf 6780 u32 cur_offset;
e06cd3dd 6781 u64 type;
84eed90f 6782 struct btrfs_key key;
0b86a832 6783
0b246afa 6784 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6785 /*
6786 * This will create extent buffer of nodesize, superblock size is
6787 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6788 * overallocate but we can keep it as-is, only the first page is used.
6789 */
2ff7e61e 6790 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6791 if (IS_ERR(sb))
6792 return PTR_ERR(sb);
4db8c528 6793 set_extent_buffer_uptodate(sb);
85d4e461 6794 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6795 /*
01327610 6796 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6797 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6798 * pages up-to-date when the page is larger: extent does not cover the
6799 * whole page and consequently check_page_uptodate does not find all
6800 * the page's extents up-to-date (the hole beyond sb),
6801 * write_extent_buffer then triggers a WARN_ON.
6802 *
6803 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6804 * but sb spans only this function. Add an explicit SetPageUptodate call
6805 * to silence the warning eg. on PowerPC 64.
6806 */
09cbfeaf 6807 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6808 SetPageUptodate(sb->pages[0]);
4008c04a 6809
a061fc8d 6810 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6811 array_size = btrfs_super_sys_array_size(super_copy);
6812
1ffb22cf
DS
6813 array_ptr = super_copy->sys_chunk_array;
6814 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6815 cur_offset = 0;
0b86a832 6816
1ffb22cf
DS
6817 while (cur_offset < array_size) {
6818 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6819 len = sizeof(*disk_key);
6820 if (cur_offset + len > array_size)
6821 goto out_short_read;
6822
0b86a832
CM
6823 btrfs_disk_key_to_cpu(&key, disk_key);
6824
1ffb22cf
DS
6825 array_ptr += len;
6826 sb_array_offset += len;
6827 cur_offset += len;
0b86a832 6828
0d81ba5d 6829 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6830 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6831 /*
6832 * At least one btrfs_chunk with one stripe must be
6833 * present, exact stripe count check comes afterwards
6834 */
6835 len = btrfs_chunk_item_size(1);
6836 if (cur_offset + len > array_size)
6837 goto out_short_read;
6838
6839 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6840 if (!num_stripes) {
ab8d0fc4
JM
6841 btrfs_err(fs_info,
6842 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6843 num_stripes, cur_offset);
6844 ret = -EIO;
6845 break;
6846 }
6847
e06cd3dd
LB
6848 type = btrfs_chunk_type(sb, chunk);
6849 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6850 btrfs_err(fs_info,
e06cd3dd
LB
6851 "invalid chunk type %llu in sys_array at offset %u",
6852 type, cur_offset);
6853 ret = -EIO;
6854 break;
6855 }
6856
e3540eab
DS
6857 len = btrfs_chunk_item_size(num_stripes);
6858 if (cur_offset + len > array_size)
6859 goto out_short_read;
6860
2ff7e61e 6861 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6862 if (ret)
6863 break;
0b86a832 6864 } else {
ab8d0fc4
JM
6865 btrfs_err(fs_info,
6866 "unexpected item type %u in sys_array at offset %u",
6867 (u32)key.type, cur_offset);
84eed90f
CM
6868 ret = -EIO;
6869 break;
0b86a832 6870 }
1ffb22cf
DS
6871 array_ptr += len;
6872 sb_array_offset += len;
6873 cur_offset += len;
0b86a832 6874 }
d865177a 6875 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6876 free_extent_buffer_stale(sb);
84eed90f 6877 return ret;
e3540eab
DS
6878
6879out_short_read:
ab8d0fc4 6880 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6881 len, cur_offset);
d865177a 6882 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6883 free_extent_buffer_stale(sb);
e3540eab 6884 return -EIO;
0b86a832
CM
6885}
6886
21634a19
QW
6887/*
6888 * Check if all chunks in the fs are OK for read-write degraded mount
6889 *
6528b99d
AJ
6890 * If the @failing_dev is specified, it's accounted as missing.
6891 *
21634a19
QW
6892 * Return true if all chunks meet the minimal RW mount requirements.
6893 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6894 */
6528b99d
AJ
6895bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6896 struct btrfs_device *failing_dev)
21634a19
QW
6897{
6898 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6899 struct extent_map *em;
6900 u64 next_start = 0;
6901 bool ret = true;
6902
6903 read_lock(&map_tree->map_tree.lock);
6904 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6905 read_unlock(&map_tree->map_tree.lock);
6906 /* No chunk at all? Return false anyway */
6907 if (!em) {
6908 ret = false;
6909 goto out;
6910 }
6911 while (em) {
6912 struct map_lookup *map;
6913 int missing = 0;
6914 int max_tolerated;
6915 int i;
6916
6917 map = em->map_lookup;
6918 max_tolerated =
6919 btrfs_get_num_tolerated_disk_barrier_failures(
6920 map->type);
6921 for (i = 0; i < map->num_stripes; i++) {
6922 struct btrfs_device *dev = map->stripes[i].dev;
6923
e6e674bd
AJ
6924 if (!dev || !dev->bdev ||
6925 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
6926 dev->last_flush_error)
6927 missing++;
6528b99d
AJ
6928 else if (failing_dev && failing_dev == dev)
6929 missing++;
21634a19
QW
6930 }
6931 if (missing > max_tolerated) {
6528b99d
AJ
6932 if (!failing_dev)
6933 btrfs_warn(fs_info,
21634a19
QW
6934 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6935 em->start, missing, max_tolerated);
6936 free_extent_map(em);
6937 ret = false;
6938 goto out;
6939 }
6940 next_start = extent_map_end(em);
6941 free_extent_map(em);
6942
6943 read_lock(&map_tree->map_tree.lock);
6944 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6945 (u64)(-1) - next_start);
6946 read_unlock(&map_tree->map_tree.lock);
6947 }
6948out:
6949 return ret;
6950}
6951
5b4aacef 6952int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6953{
5b4aacef 6954 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6955 struct btrfs_path *path;
6956 struct extent_buffer *leaf;
6957 struct btrfs_key key;
6958 struct btrfs_key found_key;
6959 int ret;
6960 int slot;
99e3ecfc 6961 u64 total_dev = 0;
0b86a832 6962
0b86a832
CM
6963 path = btrfs_alloc_path();
6964 if (!path)
6965 return -ENOMEM;
6966
b367e47f 6967 mutex_lock(&uuid_mutex);
34441361 6968 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6969
395927a9
FDBM
6970 /*
6971 * Read all device items, and then all the chunk items. All
6972 * device items are found before any chunk item (their object id
6973 * is smaller than the lowest possible object id for a chunk
6974 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6975 */
6976 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6977 key.offset = 0;
6978 key.type = 0;
0b86a832 6979 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6980 if (ret < 0)
6981 goto error;
d397712b 6982 while (1) {
0b86a832
CM
6983 leaf = path->nodes[0];
6984 slot = path->slots[0];
6985 if (slot >= btrfs_header_nritems(leaf)) {
6986 ret = btrfs_next_leaf(root, path);
6987 if (ret == 0)
6988 continue;
6989 if (ret < 0)
6990 goto error;
6991 break;
6992 }
6993 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6994 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6995 struct btrfs_dev_item *dev_item;
6996 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6997 struct btrfs_dev_item);
2ff7e61e 6998 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6999 if (ret)
7000 goto error;
99e3ecfc 7001 total_dev++;
0b86a832
CM
7002 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7003 struct btrfs_chunk *chunk;
7004 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 7005 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
7006 if (ret)
7007 goto error;
0b86a832
CM
7008 }
7009 path->slots[0]++;
7010 }
99e3ecfc
LB
7011
7012 /*
7013 * After loading chunk tree, we've got all device information,
7014 * do another round of validation checks.
7015 */
0b246afa
JM
7016 if (total_dev != fs_info->fs_devices->total_devices) {
7017 btrfs_err(fs_info,
99e3ecfc 7018 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7019 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7020 total_dev);
7021 ret = -EINVAL;
7022 goto error;
7023 }
0b246afa
JM
7024 if (btrfs_super_total_bytes(fs_info->super_copy) <
7025 fs_info->fs_devices->total_rw_bytes) {
7026 btrfs_err(fs_info,
99e3ecfc 7027 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7028 btrfs_super_total_bytes(fs_info->super_copy),
7029 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7030 ret = -EINVAL;
7031 goto error;
7032 }
0b86a832
CM
7033 ret = 0;
7034error:
34441361 7035 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
7036 mutex_unlock(&uuid_mutex);
7037
2b82032c 7038 btrfs_free_path(path);
0b86a832
CM
7039 return ret;
7040}
442a4f63 7041
cb517eab
MX
7042void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7043{
7044 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7045 struct btrfs_device *device;
7046
29cc83f6
LB
7047 while (fs_devices) {
7048 mutex_lock(&fs_devices->device_list_mutex);
7049 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 7050 device->fs_info = fs_info;
29cc83f6
LB
7051 mutex_unlock(&fs_devices->device_list_mutex);
7052
7053 fs_devices = fs_devices->seed;
7054 }
cb517eab
MX
7055}
7056
733f4fbb
SB
7057static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7058{
7059 int i;
7060
7061 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7062 btrfs_dev_stat_reset(dev, i);
7063}
7064
7065int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7066{
7067 struct btrfs_key key;
7068 struct btrfs_key found_key;
7069 struct btrfs_root *dev_root = fs_info->dev_root;
7070 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7071 struct extent_buffer *eb;
7072 int slot;
7073 int ret = 0;
7074 struct btrfs_device *device;
7075 struct btrfs_path *path = NULL;
7076 int i;
7077
7078 path = btrfs_alloc_path();
7079 if (!path) {
7080 ret = -ENOMEM;
7081 goto out;
7082 }
7083
7084 mutex_lock(&fs_devices->device_list_mutex);
7085 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7086 int item_size;
7087 struct btrfs_dev_stats_item *ptr;
7088
242e2956
DS
7089 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7090 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7091 key.offset = device->devid;
7092 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7093 if (ret) {
733f4fbb
SB
7094 __btrfs_reset_dev_stats(device);
7095 device->dev_stats_valid = 1;
7096 btrfs_release_path(path);
7097 continue;
7098 }
7099 slot = path->slots[0];
7100 eb = path->nodes[0];
7101 btrfs_item_key_to_cpu(eb, &found_key, slot);
7102 item_size = btrfs_item_size_nr(eb, slot);
7103
7104 ptr = btrfs_item_ptr(eb, slot,
7105 struct btrfs_dev_stats_item);
7106
7107 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7108 if (item_size >= (1 + i) * sizeof(__le64))
7109 btrfs_dev_stat_set(device, i,
7110 btrfs_dev_stats_value(eb, ptr, i));
7111 else
7112 btrfs_dev_stat_reset(device, i);
7113 }
7114
7115 device->dev_stats_valid = 1;
7116 btrfs_dev_stat_print_on_load(device);
7117 btrfs_release_path(path);
7118 }
7119 mutex_unlock(&fs_devices->device_list_mutex);
7120
7121out:
7122 btrfs_free_path(path);
7123 return ret < 0 ? ret : 0;
7124}
7125
7126static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 7127 struct btrfs_fs_info *fs_info,
733f4fbb
SB
7128 struct btrfs_device *device)
7129{
6bccf3ab 7130 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7131 struct btrfs_path *path;
7132 struct btrfs_key key;
7133 struct extent_buffer *eb;
7134 struct btrfs_dev_stats_item *ptr;
7135 int ret;
7136 int i;
7137
242e2956
DS
7138 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7139 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7140 key.offset = device->devid;
7141
7142 path = btrfs_alloc_path();
fa252992
DS
7143 if (!path)
7144 return -ENOMEM;
733f4fbb
SB
7145 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7146 if (ret < 0) {
0b246afa 7147 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7148 "error %d while searching for dev_stats item for device %s",
606686ee 7149 ret, rcu_str_deref(device->name));
733f4fbb
SB
7150 goto out;
7151 }
7152
7153 if (ret == 0 &&
7154 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7155 /* need to delete old one and insert a new one */
7156 ret = btrfs_del_item(trans, dev_root, path);
7157 if (ret != 0) {
0b246afa 7158 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7159 "delete too small dev_stats item for device %s failed %d",
606686ee 7160 rcu_str_deref(device->name), ret);
733f4fbb
SB
7161 goto out;
7162 }
7163 ret = 1;
7164 }
7165
7166 if (ret == 1) {
7167 /* need to insert a new item */
7168 btrfs_release_path(path);
7169 ret = btrfs_insert_empty_item(trans, dev_root, path,
7170 &key, sizeof(*ptr));
7171 if (ret < 0) {
0b246afa 7172 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7173 "insert dev_stats item for device %s failed %d",
7174 rcu_str_deref(device->name), ret);
733f4fbb
SB
7175 goto out;
7176 }
7177 }
7178
7179 eb = path->nodes[0];
7180 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7181 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7182 btrfs_set_dev_stats_value(eb, ptr, i,
7183 btrfs_dev_stat_read(device, i));
7184 btrfs_mark_buffer_dirty(eb);
7185
7186out:
7187 btrfs_free_path(path);
7188 return ret;
7189}
7190
7191/*
7192 * called from commit_transaction. Writes all changed device stats to disk.
7193 */
7194int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7195 struct btrfs_fs_info *fs_info)
7196{
733f4fbb
SB
7197 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7198 struct btrfs_device *device;
addc3fa7 7199 int stats_cnt;
733f4fbb
SB
7200 int ret = 0;
7201
7202 mutex_lock(&fs_devices->device_list_mutex);
7203 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7204 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7205 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7206 continue;
7207
9deae968
NB
7208
7209 /*
7210 * There is a LOAD-LOAD control dependency between the value of
7211 * dev_stats_ccnt and updating the on-disk values which requires
7212 * reading the in-memory counters. Such control dependencies
7213 * require explicit read memory barriers.
7214 *
7215 * This memory barriers pairs with smp_mb__before_atomic in
7216 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7217 * barrier implied by atomic_xchg in
7218 * btrfs_dev_stats_read_and_reset
7219 */
7220 smp_rmb();
7221
6bccf3ab 7222 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7223 if (!ret)
addc3fa7 7224 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7225 }
7226 mutex_unlock(&fs_devices->device_list_mutex);
7227
7228 return ret;
7229}
7230
442a4f63
SB
7231void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7232{
7233 btrfs_dev_stat_inc(dev, index);
7234 btrfs_dev_stat_print_on_error(dev);
7235}
7236
48a3b636 7237static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7238{
733f4fbb
SB
7239 if (!dev->dev_stats_valid)
7240 return;
fb456252 7241 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7242 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7243 rcu_str_deref(dev->name),
442a4f63
SB
7244 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7245 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7246 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7247 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7248 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7249}
c11d2c23 7250
733f4fbb
SB
7251static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7252{
a98cdb85
SB
7253 int i;
7254
7255 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7256 if (btrfs_dev_stat_read(dev, i) != 0)
7257 break;
7258 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7259 return; /* all values == 0, suppress message */
7260
fb456252 7261 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7262 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7263 rcu_str_deref(dev->name),
733f4fbb
SB
7264 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7265 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7266 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7267 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7268 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7269}
7270
2ff7e61e 7271int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7272 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7273{
7274 struct btrfs_device *dev;
0b246afa 7275 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7276 int i;
7277
7278 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7279 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7280 mutex_unlock(&fs_devices->device_list_mutex);
7281
7282 if (!dev) {
0b246afa 7283 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7284 return -ENODEV;
733f4fbb 7285 } else if (!dev->dev_stats_valid) {
0b246afa 7286 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7287 return -ENODEV;
b27f7c0c 7288 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7289 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7290 if (stats->nr_items > i)
7291 stats->values[i] =
7292 btrfs_dev_stat_read_and_reset(dev, i);
7293 else
7294 btrfs_dev_stat_reset(dev, i);
7295 }
7296 } else {
7297 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7298 if (stats->nr_items > i)
7299 stats->values[i] = btrfs_dev_stat_read(dev, i);
7300 }
7301 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7302 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7303 return 0;
7304}
a8a6dab7 7305
da353f6b 7306void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7307{
7308 struct buffer_head *bh;
7309 struct btrfs_super_block *disk_super;
12b1c263 7310 int copy_num;
a8a6dab7 7311
12b1c263
AJ
7312 if (!bdev)
7313 return;
a8a6dab7 7314
12b1c263
AJ
7315 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7316 copy_num++) {
a8a6dab7 7317
12b1c263
AJ
7318 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7319 continue;
7320
7321 disk_super = (struct btrfs_super_block *)bh->b_data;
7322
7323 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7324 set_buffer_dirty(bh);
7325 sync_dirty_buffer(bh);
7326 brelse(bh);
7327 }
7328
7329 /* Notify udev that device has changed */
7330 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7331
7332 /* Update ctime/mtime for device path for libblkid */
7333 update_dev_time(device_path);
a8a6dab7 7334}
935e5cc9
MX
7335
7336/*
7337 * Update the size of all devices, which is used for writing out the
7338 * super blocks.
7339 */
7340void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7341{
7342 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7343 struct btrfs_device *curr, *next;
7344
7345 if (list_empty(&fs_devices->resized_devices))
7346 return;
7347
7348 mutex_lock(&fs_devices->device_list_mutex);
34441361 7349 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7350 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7351 resized_list) {
7352 list_del_init(&curr->resized_list);
7353 curr->commit_total_bytes = curr->disk_total_bytes;
7354 }
34441361 7355 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7356 mutex_unlock(&fs_devices->device_list_mutex);
7357}
ce7213c7
MX
7358
7359/* Must be invoked during the transaction commit */
2ff7e61e 7360void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7361 struct btrfs_transaction *transaction)
7362{
7363 struct extent_map *em;
7364 struct map_lookup *map;
7365 struct btrfs_device *dev;
7366 int i;
7367
7368 if (list_empty(&transaction->pending_chunks))
7369 return;
7370
7371 /* In order to kick the device replace finish process */
34441361 7372 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7373 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7374 map = em->map_lookup;
ce7213c7
MX
7375
7376 for (i = 0; i < map->num_stripes; i++) {
7377 dev = map->stripes[i].dev;
7378 dev->commit_bytes_used = dev->bytes_used;
7379 }
7380 }
34441361 7381 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7382}
5a13f430
AJ
7383
7384void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7385{
7386 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7387 while (fs_devices) {
7388 fs_devices->fs_info = fs_info;
7389 fs_devices = fs_devices->seed;
7390 }
7391}
7392
7393void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7394{
7395 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7396 while (fs_devices) {
7397 fs_devices->fs_info = NULL;
7398 fs_devices = fs_devices->seed;
7399 }
7400}