]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/volumes.c
btrfs: use a temporary variable for fs_devices in btrfs_init_new_device
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832
CM
6#include <linux/sched.h>
7#include <linux/bio.h>
5a0e3ad6 8#include <linux/slab.h>
8a4b83cc 9#include <linux/buffer_head.h>
f2d8d74d 10#include <linux/blkdev.h>
b765ead5 11#include <linux/iocontext.h>
6f88a440 12#include <linux/capability.h>
442a4f63 13#include <linux/ratelimit.h>
59641015 14#include <linux/kthread.h>
53b381b3 15#include <linux/raid/pq.h>
803b2f54 16#include <linux/semaphore.h>
8da4b8c4 17#include <linux/uuid.h>
f8e10cd3 18#include <linux/list_sort.h>
53b381b3 19#include <asm/div64.h>
0b86a832
CM
20#include "ctree.h"
21#include "extent_map.h"
22#include "disk-io.h"
23#include "transaction.h"
24#include "print-tree.h"
25#include "volumes.h"
53b381b3 26#include "raid56.h"
8b712842 27#include "async-thread.h"
21adbd5c 28#include "check-integrity.h"
606686ee 29#include "rcu-string.h"
3fed40cc 30#include "math.h"
8dabb742 31#include "dev-replace.h"
99994cde 32#include "sysfs.h"
0b86a832 33
af902047
ZL
34const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
8789f4fe 40 .tolerated_failures = 1,
af902047
ZL
41 .devs_increment = 2,
42 .ncopies = 2,
ed23467b 43 .raid_name = "raid10",
41a6e891 44 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 45 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
46 },
47 [BTRFS_RAID_RAID1] = {
48 .sub_stripes = 1,
49 .dev_stripes = 1,
50 .devs_max = 2,
51 .devs_min = 2,
8789f4fe 52 .tolerated_failures = 1,
af902047
ZL
53 .devs_increment = 2,
54 .ncopies = 2,
ed23467b 55 .raid_name = "raid1",
41a6e891 56 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 57 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047
ZL
58 },
59 [BTRFS_RAID_DUP] = {
60 .sub_stripes = 1,
61 .dev_stripes = 2,
62 .devs_max = 1,
63 .devs_min = 1,
8789f4fe 64 .tolerated_failures = 0,
af902047
ZL
65 .devs_increment = 1,
66 .ncopies = 2,
ed23467b 67 .raid_name = "dup",
41a6e891 68 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 69 .mindev_error = 0,
af902047
ZL
70 },
71 [BTRFS_RAID_RAID0] = {
72 .sub_stripes = 1,
73 .dev_stripes = 1,
74 .devs_max = 0,
75 .devs_min = 2,
8789f4fe 76 .tolerated_failures = 0,
af902047
ZL
77 .devs_increment = 1,
78 .ncopies = 1,
ed23467b 79 .raid_name = "raid0",
41a6e891 80 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 81 .mindev_error = 0,
af902047
ZL
82 },
83 [BTRFS_RAID_SINGLE] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 1,
87 .devs_min = 1,
8789f4fe 88 .tolerated_failures = 0,
af902047
ZL
89 .devs_increment = 1,
90 .ncopies = 1,
ed23467b 91 .raid_name = "single",
41a6e891 92 .bg_flag = 0,
f9fbcaa2 93 .mindev_error = 0,
af902047
ZL
94 },
95 [BTRFS_RAID_RAID5] = {
96 .sub_stripes = 1,
97 .dev_stripes = 1,
98 .devs_max = 0,
99 .devs_min = 2,
8789f4fe 100 .tolerated_failures = 1,
af902047
ZL
101 .devs_increment = 1,
102 .ncopies = 2,
ed23467b 103 .raid_name = "raid5",
41a6e891 104 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 105 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
106 },
107 [BTRFS_RAID_RAID6] = {
108 .sub_stripes = 1,
109 .dev_stripes = 1,
110 .devs_max = 0,
111 .devs_min = 3,
8789f4fe 112 .tolerated_failures = 2,
af902047
ZL
113 .devs_increment = 1,
114 .ncopies = 3,
ed23467b 115 .raid_name = "raid6",
41a6e891 116 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 117 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
118 },
119};
120
ed23467b
AJ
121const char *get_raid_name(enum btrfs_raid_types type)
122{
123 if (type >= BTRFS_NR_RAID_TYPES)
124 return NULL;
125
126 return btrfs_raid_array[type].raid_name;
127}
128
2b82032c 129static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 130 struct btrfs_fs_info *fs_info);
2ff7e61e 131static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 132static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 133static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 134static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
135static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
136 enum btrfs_map_op op,
137 u64 logical, u64 *length,
138 struct btrfs_bio **bbio_ret,
139 int mirror_num, int need_raid_map);
2b82032c 140
9c6b1c4d
DS
141/*
142 * Device locking
143 * ==============
144 *
145 * There are several mutexes that protect manipulation of devices and low-level
146 * structures like chunks but not block groups, extents or files
147 *
148 * uuid_mutex (global lock)
149 * ------------------------
150 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
151 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
152 * device) or requested by the device= mount option
153 *
154 * the mutex can be very coarse and can cover long-running operations
155 *
156 * protects: updates to fs_devices counters like missing devices, rw devices,
157 * seeding, structure cloning, openning/closing devices at mount/umount time
158 *
159 * global::fs_devs - add, remove, updates to the global list
160 *
161 * does not protect: manipulation of the fs_devices::devices list!
162 *
163 * btrfs_device::name - renames (write side), read is RCU
164 *
165 * fs_devices::device_list_mutex (per-fs, with RCU)
166 * ------------------------------------------------
167 * protects updates to fs_devices::devices, ie. adding and deleting
168 *
169 * simple list traversal with read-only actions can be done with RCU protection
170 *
171 * may be used to exclude some operations from running concurrently without any
172 * modifications to the list (see write_all_supers)
173 *
9c6b1c4d
DS
174 * balance_mutex
175 * -------------
176 * protects balance structures (status, state) and context accessed from
177 * several places (internally, ioctl)
178 *
179 * chunk_mutex
180 * -----------
181 * protects chunks, adding or removing during allocation, trim or when a new
182 * device is added/removed
183 *
184 * cleaner_mutex
185 * -------------
186 * a big lock that is held by the cleaner thread and prevents running subvolume
187 * cleaning together with relocation or delayed iputs
188 *
189 *
190 * Lock nesting
191 * ============
192 *
193 * uuid_mutex
194 * volume_mutex
195 * device_list_mutex
196 * chunk_mutex
197 * balance_mutex
89595e80
AJ
198 *
199 *
200 * Exclusive operations, BTRFS_FS_EXCL_OP
201 * ======================================
202 *
203 * Maintains the exclusivity of the following operations that apply to the
204 * whole filesystem and cannot run in parallel.
205 *
206 * - Balance (*)
207 * - Device add
208 * - Device remove
209 * - Device replace (*)
210 * - Resize
211 *
212 * The device operations (as above) can be in one of the following states:
213 *
214 * - Running state
215 * - Paused state
216 * - Completed state
217 *
218 * Only device operations marked with (*) can go into the Paused state for the
219 * following reasons:
220 *
221 * - ioctl (only Balance can be Paused through ioctl)
222 * - filesystem remounted as read-only
223 * - filesystem unmounted and mounted as read-only
224 * - system power-cycle and filesystem mounted as read-only
225 * - filesystem or device errors leading to forced read-only
226 *
227 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
228 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
229 * A device operation in Paused or Running state can be canceled or resumed
230 * either by ioctl (Balance only) or when remounted as read-write.
231 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
232 * completed.
9c6b1c4d
DS
233 */
234
67a2c45e 235DEFINE_MUTEX(uuid_mutex);
8a4b83cc 236static LIST_HEAD(fs_uuids);
c73eccf7
AJ
237struct list_head *btrfs_get_fs_uuids(void)
238{
239 return &fs_uuids;
240}
8a4b83cc 241
2dfeca9b
DS
242/*
243 * alloc_fs_devices - allocate struct btrfs_fs_devices
244 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
245 *
246 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
247 * The returned struct is not linked onto any lists and can be destroyed with
248 * kfree() right away.
249 */
250static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
2208a378
ID
251{
252 struct btrfs_fs_devices *fs_devs;
253
78f2c9e6 254 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
255 if (!fs_devs)
256 return ERR_PTR(-ENOMEM);
257
258 mutex_init(&fs_devs->device_list_mutex);
259
260 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 261 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378 262 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 263 INIT_LIST_HEAD(&fs_devs->fs_list);
2208a378
ID
264 if (fsid)
265 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378
ID
266
267 return fs_devs;
268}
269
a425f9d4 270void btrfs_free_device(struct btrfs_device *device)
48dae9cf
DS
271{
272 rcu_string_free(device->name);
273 bio_put(device->flush_bio);
274 kfree(device);
275}
276
e4404d6e
YZ
277static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
278{
279 struct btrfs_device *device;
280 WARN_ON(fs_devices->opened);
281 while (!list_empty(&fs_devices->devices)) {
282 device = list_entry(fs_devices->devices.next,
283 struct btrfs_device, dev_list);
284 list_del(&device->dev_list);
a425f9d4 285 btrfs_free_device(device);
e4404d6e
YZ
286 }
287 kfree(fs_devices);
288}
289
b8b8ff59
LC
290static void btrfs_kobject_uevent(struct block_device *bdev,
291 enum kobject_action action)
292{
293 int ret;
294
295 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
296 if (ret)
efe120a0 297 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
298 action,
299 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
300 &disk_to_dev(bdev->bd_disk)->kobj);
301}
302
ffc5a379 303void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
304{
305 struct btrfs_fs_devices *fs_devices;
8a4b83cc 306
2b82032c
YZ
307 while (!list_empty(&fs_uuids)) {
308 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
309 struct btrfs_fs_devices, fs_list);
310 list_del(&fs_devices->fs_list);
e4404d6e 311 free_fs_devices(fs_devices);
8a4b83cc 312 }
8a4b83cc
CM
313}
314
48dae9cf
DS
315/*
316 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
317 * Returned struct is not linked onto any lists and must be destroyed using
a425f9d4 318 * btrfs_free_device.
48dae9cf 319 */
12bd2fc0
ID
320static struct btrfs_device *__alloc_device(void)
321{
322 struct btrfs_device *dev;
323
78f2c9e6 324 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
325 if (!dev)
326 return ERR_PTR(-ENOMEM);
327
e0ae9994
DS
328 /*
329 * Preallocate a bio that's always going to be used for flushing device
330 * barriers and matches the device lifespan
331 */
332 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
333 if (!dev->flush_bio) {
334 kfree(dev);
335 return ERR_PTR(-ENOMEM);
336 }
e0ae9994 337
12bd2fc0
ID
338 INIT_LIST_HEAD(&dev->dev_list);
339 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 340 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
341
342 spin_lock_init(&dev->io_lock);
343
12bd2fc0 344 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 345 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 346 btrfs_device_data_ordered_init(dev);
9bcaaea7 347 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 348 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
349
350 return dev;
351}
352
35c70103
DS
353/*
354 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
355 * return NULL.
356 *
357 * If devid and uuid are both specified, the match must be exact, otherwise
358 * only devid is used.
359 */
360static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
361 u64 devid, const u8 *uuid)
8a4b83cc
CM
362{
363 struct btrfs_device *dev;
8a4b83cc 364
636d2c9d 365 list_for_each_entry(dev, &fs_devices->devices, dev_list) {
a443755f 366 if (dev->devid == devid &&
8f18cf13 367 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 368 return dev;
a443755f 369 }
8a4b83cc
CM
370 }
371 return NULL;
372}
373
a1b32a59 374static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 375{
8a4b83cc
CM
376 struct btrfs_fs_devices *fs_devices;
377
c4babc5e 378 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
8a4b83cc
CM
379 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
380 return fs_devices;
381 }
382 return NULL;
383}
384
beaf8ab3
SB
385static int
386btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
387 int flush, struct block_device **bdev,
388 struct buffer_head **bh)
389{
390 int ret;
391
392 *bdev = blkdev_get_by_path(device_path, flags, holder);
393
394 if (IS_ERR(*bdev)) {
395 ret = PTR_ERR(*bdev);
beaf8ab3
SB
396 goto error;
397 }
398
399 if (flush)
400 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 401 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
402 if (ret) {
403 blkdev_put(*bdev, flags);
404 goto error;
405 }
406 invalidate_bdev(*bdev);
407 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
408 if (IS_ERR(*bh)) {
409 ret = PTR_ERR(*bh);
beaf8ab3
SB
410 blkdev_put(*bdev, flags);
411 goto error;
412 }
413
414 return 0;
415
416error:
417 *bdev = NULL;
418 *bh = NULL;
419 return ret;
420}
421
ffbd517d
CM
422static void requeue_list(struct btrfs_pending_bios *pending_bios,
423 struct bio *head, struct bio *tail)
424{
425
426 struct bio *old_head;
427
428 old_head = pending_bios->head;
429 pending_bios->head = head;
430 if (pending_bios->tail)
431 tail->bi_next = old_head;
432 else
433 pending_bios->tail = tail;
434}
435
8b712842
CM
436/*
437 * we try to collect pending bios for a device so we don't get a large
438 * number of procs sending bios down to the same device. This greatly
439 * improves the schedulers ability to collect and merge the bios.
440 *
441 * But, it also turns into a long list of bios to process and that is sure
442 * to eventually make the worker thread block. The solution here is to
443 * make some progress and then put this work struct back at the end of
444 * the list if the block device is congested. This way, multiple devices
445 * can make progress from a single worker thread.
446 */
143bede5 447static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 448{
0b246afa 449 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
450 struct bio *pending;
451 struct backing_dev_info *bdi;
ffbd517d 452 struct btrfs_pending_bios *pending_bios;
8b712842
CM
453 struct bio *tail;
454 struct bio *cur;
455 int again = 0;
ffbd517d 456 unsigned long num_run;
d644d8a1 457 unsigned long batch_run = 0;
b765ead5 458 unsigned long last_waited = 0;
d84275c9 459 int force_reg = 0;
0e588859 460 int sync_pending = 0;
211588ad
CM
461 struct blk_plug plug;
462
463 /*
464 * this function runs all the bios we've collected for
465 * a particular device. We don't want to wander off to
466 * another device without first sending all of these down.
467 * So, setup a plug here and finish it off before we return
468 */
469 blk_start_plug(&plug);
8b712842 470
efa7c9f9 471 bdi = device->bdev->bd_bdi;
b64a2851 472
8b712842
CM
473loop:
474 spin_lock(&device->io_lock);
475
a6837051 476loop_lock:
d84275c9 477 num_run = 0;
ffbd517d 478
8b712842
CM
479 /* take all the bios off the list at once and process them
480 * later on (without the lock held). But, remember the
481 * tail and other pointers so the bios can be properly reinserted
482 * into the list if we hit congestion
483 */
d84275c9 484 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 485 pending_bios = &device->pending_sync_bios;
d84275c9
CM
486 force_reg = 1;
487 } else {
ffbd517d 488 pending_bios = &device->pending_bios;
d84275c9
CM
489 force_reg = 0;
490 }
ffbd517d
CM
491
492 pending = pending_bios->head;
493 tail = pending_bios->tail;
8b712842 494 WARN_ON(pending && !tail);
8b712842
CM
495
496 /*
497 * if pending was null this time around, no bios need processing
498 * at all and we can stop. Otherwise it'll loop back up again
499 * and do an additional check so no bios are missed.
500 *
501 * device->running_pending is used to synchronize with the
502 * schedule_bio code.
503 */
ffbd517d
CM
504 if (device->pending_sync_bios.head == NULL &&
505 device->pending_bios.head == NULL) {
8b712842
CM
506 again = 0;
507 device->running_pending = 0;
ffbd517d
CM
508 } else {
509 again = 1;
510 device->running_pending = 1;
8b712842 511 }
ffbd517d
CM
512
513 pending_bios->head = NULL;
514 pending_bios->tail = NULL;
515
8b712842
CM
516 spin_unlock(&device->io_lock);
517
d397712b 518 while (pending) {
ffbd517d
CM
519
520 rmb();
d84275c9
CM
521 /* we want to work on both lists, but do more bios on the
522 * sync list than the regular list
523 */
524 if ((num_run > 32 &&
525 pending_bios != &device->pending_sync_bios &&
526 device->pending_sync_bios.head) ||
527 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
528 device->pending_bios.head)) {
ffbd517d
CM
529 spin_lock(&device->io_lock);
530 requeue_list(pending_bios, pending, tail);
531 goto loop_lock;
532 }
533
8b712842
CM
534 cur = pending;
535 pending = pending->bi_next;
536 cur->bi_next = NULL;
b64a2851 537
dac56212 538 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 539
2ab1ba68
CM
540 /*
541 * if we're doing the sync list, record that our
542 * plug has some sync requests on it
543 *
544 * If we're doing the regular list and there are
545 * sync requests sitting around, unplug before
546 * we add more
547 */
548 if (pending_bios == &device->pending_sync_bios) {
549 sync_pending = 1;
550 } else if (sync_pending) {
551 blk_finish_plug(&plug);
552 blk_start_plug(&plug);
553 sync_pending = 0;
554 }
555
4e49ea4a 556 btrfsic_submit_bio(cur);
5ff7ba3a
CM
557 num_run++;
558 batch_run++;
853d8ec4
DS
559
560 cond_resched();
8b712842
CM
561
562 /*
563 * we made progress, there is more work to do and the bdi
564 * is now congested. Back off and let other work structs
565 * run instead
566 */
57fd5a5f 567 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 568 fs_info->fs_devices->open_devices > 1) {
b765ead5 569 struct io_context *ioc;
8b712842 570
b765ead5
CM
571 ioc = current->io_context;
572
573 /*
574 * the main goal here is that we don't want to
575 * block if we're going to be able to submit
576 * more requests without blocking.
577 *
578 * This code does two great things, it pokes into
579 * the elevator code from a filesystem _and_
580 * it makes assumptions about how batching works.
581 */
582 if (ioc && ioc->nr_batch_requests > 0 &&
583 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
584 (last_waited == 0 ||
585 ioc->last_waited == last_waited)) {
586 /*
587 * we want to go through our batch of
588 * requests and stop. So, we copy out
589 * the ioc->last_waited time and test
590 * against it before looping
591 */
592 last_waited = ioc->last_waited;
853d8ec4 593 cond_resched();
b765ead5
CM
594 continue;
595 }
8b712842 596 spin_lock(&device->io_lock);
ffbd517d 597 requeue_list(pending_bios, pending, tail);
a6837051 598 device->running_pending = 1;
8b712842
CM
599
600 spin_unlock(&device->io_lock);
a8c93d4e
QW
601 btrfs_queue_work(fs_info->submit_workers,
602 &device->work);
8b712842
CM
603 goto done;
604 }
605 }
ffbd517d 606
51684082
CM
607 cond_resched();
608 if (again)
609 goto loop;
610
611 spin_lock(&device->io_lock);
612 if (device->pending_bios.head || device->pending_sync_bios.head)
613 goto loop_lock;
614 spin_unlock(&device->io_lock);
615
8b712842 616done:
211588ad 617 blk_finish_plug(&plug);
8b712842
CM
618}
619
b2950863 620static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
621{
622 struct btrfs_device *device;
623
624 device = container_of(work, struct btrfs_device, work);
625 run_scheduled_bios(device);
626}
627
d8367db3
AJ
628/*
629 * Search and remove all stale (devices which are not mounted) devices.
630 * When both inputs are NULL, it will search and release all stale devices.
631 * path: Optional. When provided will it release all unmounted devices
632 * matching this path only.
633 * skip_dev: Optional. Will skip this device when searching for the stale
634 * devices.
635 */
636static void btrfs_free_stale_devices(const char *path,
637 struct btrfs_device *skip_dev)
4fde46f0 638{
38cf665d
AJ
639 struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
640 struct btrfs_device *dev, *tmp_dev;
4fde46f0 641
c4babc5e 642 list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, fs_list) {
4fde46f0
AJ
643
644 if (fs_devs->opened)
645 continue;
4fde46f0 646
38cf665d
AJ
647 list_for_each_entry_safe(dev, tmp_dev,
648 &fs_devs->devices, dev_list) {
522f1b45 649 int not_found = 0;
4fde46f0 650
d8367db3
AJ
651 if (skip_dev && skip_dev == dev)
652 continue;
653 if (path && !dev->name)
4fde46f0
AJ
654 continue;
655
4fde46f0 656 rcu_read_lock();
d8367db3 657 if (path)
522f1b45 658 not_found = strcmp(rcu_str_deref(dev->name),
d8367db3 659 path);
4fde46f0 660 rcu_read_unlock();
38cf665d
AJ
661 if (not_found)
662 continue;
4fde46f0 663
4fde46f0
AJ
664 /* delete the stale device */
665 if (fs_devs->num_devices == 1) {
666 btrfs_sysfs_remove_fsid(fs_devs);
c4babc5e 667 list_del(&fs_devs->fs_list);
4fde46f0 668 free_fs_devices(fs_devs);
fd649f10 669 break;
4fde46f0
AJ
670 } else {
671 fs_devs->num_devices--;
672 list_del(&dev->dev_list);
a425f9d4 673 btrfs_free_device(dev);
4fde46f0 674 }
4fde46f0
AJ
675 }
676 }
677}
678
0fb08bcc
AJ
679static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
680 struct btrfs_device *device, fmode_t flags,
681 void *holder)
682{
683 struct request_queue *q;
684 struct block_device *bdev;
685 struct buffer_head *bh;
686 struct btrfs_super_block *disk_super;
687 u64 devid;
688 int ret;
689
690 if (device->bdev)
691 return -EINVAL;
692 if (!device->name)
693 return -EINVAL;
694
695 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
696 &bdev, &bh);
697 if (ret)
698 return ret;
699
700 disk_super = (struct btrfs_super_block *)bh->b_data;
701 devid = btrfs_stack_device_id(&disk_super->dev_item);
702 if (devid != device->devid)
703 goto error_brelse;
704
705 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
706 goto error_brelse;
707
708 device->generation = btrfs_super_generation(disk_super);
709
710 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
ebbede42 711 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
712 fs_devices->seeding = 1;
713 } else {
ebbede42
AJ
714 if (bdev_read_only(bdev))
715 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
716 else
717 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
718 }
719
720 q = bdev_get_queue(bdev);
0fb08bcc
AJ
721 if (!blk_queue_nonrot(q))
722 fs_devices->rotating = 1;
723
724 device->bdev = bdev;
e12c9621 725 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
726 device->mode = flags;
727
728 fs_devices->open_devices++;
ebbede42
AJ
729 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
730 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 731 fs_devices->rw_devices++;
b1b8e386 732 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc
AJ
733 }
734 brelse(bh);
735
736 return 0;
737
738error_brelse:
739 brelse(bh);
740 blkdev_put(bdev, flags);
741
742 return -EINVAL;
743}
744
60999ca4
DS
745/*
746 * Add new device to list of registered devices
747 *
748 * Returns:
e124ece5
AJ
749 * device pointer which was just added or updated when successful
750 * error pointer when failed
60999ca4 751 */
e124ece5 752static noinline struct btrfs_device *device_list_add(const char *path,
3acbcbfc 753 struct btrfs_super_block *disk_super)
8a4b83cc
CM
754{
755 struct btrfs_device *device;
756 struct btrfs_fs_devices *fs_devices;
606686ee 757 struct rcu_string *name;
8a4b83cc 758 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 759 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
8a4b83cc
CM
760
761 fs_devices = find_fsid(disk_super->fsid);
762 if (!fs_devices) {
2208a378
ID
763 fs_devices = alloc_fs_devices(disk_super->fsid);
764 if (IS_ERR(fs_devices))
e124ece5 765 return ERR_CAST(fs_devices);
2208a378 766
c4babc5e 767 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 768
8a4b83cc
CM
769 device = NULL;
770 } else {
35c70103
DS
771 device = find_device(fs_devices, devid,
772 disk_super->dev_item.uuid);
8a4b83cc 773 }
443f24fe 774
8a4b83cc 775 if (!device) {
2b82032c 776 if (fs_devices->opened)
e124ece5 777 return ERR_PTR(-EBUSY);
2b82032c 778
12bd2fc0
ID
779 device = btrfs_alloc_device(NULL, &devid,
780 disk_super->dev_item.uuid);
781 if (IS_ERR(device)) {
8a4b83cc 782 /* we can safely leave the fs_devices entry around */
e124ece5 783 return device;
8a4b83cc 784 }
606686ee
JB
785
786 name = rcu_string_strdup(path, GFP_NOFS);
787 if (!name) {
a425f9d4 788 btrfs_free_device(device);
e124ece5 789 return ERR_PTR(-ENOMEM);
8a4b83cc 790 }
606686ee 791 rcu_assign_pointer(device->name, name);
90519d66 792
e5e9a520 793 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 794 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 795 fs_devices->num_devices++;
e5e9a520
CM
796 mutex_unlock(&fs_devices->device_list_mutex);
797
2b82032c 798 device->fs_devices = fs_devices;
d8367db3 799 btrfs_free_stale_devices(path, device);
327f18cc
AJ
800
801 if (disk_super->label[0])
802 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
803 disk_super->label, devid, found_transid, path);
804 else
805 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
806 disk_super->fsid, devid, found_transid, path);
807
606686ee 808 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
809 /*
810 * When FS is already mounted.
811 * 1. If you are here and if the device->name is NULL that
812 * means this device was missing at time of FS mount.
813 * 2. If you are here and if the device->name is different
814 * from 'path' that means either
815 * a. The same device disappeared and reappeared with
816 * different name. or
817 * b. The missing-disk-which-was-replaced, has
818 * reappeared now.
819 *
820 * We must allow 1 and 2a above. But 2b would be a spurious
821 * and unintentional.
822 *
823 * Further in case of 1 and 2a above, the disk at 'path'
824 * would have missed some transaction when it was away and
825 * in case of 2a the stale bdev has to be updated as well.
826 * 2b must not be allowed at all time.
827 */
828
829 /*
0f23ae74
CM
830 * For now, we do allow update to btrfs_fs_device through the
831 * btrfs dev scan cli after FS has been mounted. We're still
832 * tracking a problem where systems fail mount by subvolume id
833 * when we reject replacement on a mounted FS.
b96de000 834 */
0f23ae74 835 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
836 /*
837 * That is if the FS is _not_ mounted and if you
838 * are here, that means there is more than one
839 * disk with same uuid and devid.We keep the one
840 * with larger generation number or the last-in if
841 * generation are equal.
842 */
e124ece5 843 return ERR_PTR(-EEXIST);
77bdae4d 844 }
b96de000 845
606686ee 846 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc 847 if (!name)
e124ece5 848 return ERR_PTR(-ENOMEM);
606686ee
JB
849 rcu_string_free(device->name);
850 rcu_assign_pointer(device->name, name);
e6e674bd 851 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 852 fs_devices->missing_devices--;
e6e674bd 853 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 854 }
8a4b83cc
CM
855 }
856
77bdae4d
AJ
857 /*
858 * Unmount does not free the btrfs_device struct but would zero
859 * generation along with most of the other members. So just update
860 * it back. We need it to pick the disk with largest generation
861 * (as above).
862 */
863 if (!fs_devices->opened)
864 device->generation = found_transid;
865
f2788d2f
AJ
866 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
867
e124ece5 868 return device;
8a4b83cc
CM
869}
870
e4404d6e
YZ
871static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
872{
873 struct btrfs_fs_devices *fs_devices;
874 struct btrfs_device *device;
875 struct btrfs_device *orig_dev;
876
2208a378
ID
877 fs_devices = alloc_fs_devices(orig->fsid);
878 if (IS_ERR(fs_devices))
879 return fs_devices;
e4404d6e 880
adbbb863 881 mutex_lock(&orig->device_list_mutex);
02db0844 882 fs_devices->total_devices = orig->total_devices;
e4404d6e 883
46224705 884 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 885 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
886 struct rcu_string *name;
887
12bd2fc0
ID
888 device = btrfs_alloc_device(NULL, &orig_dev->devid,
889 orig_dev->uuid);
890 if (IS_ERR(device))
e4404d6e
YZ
891 goto error;
892
606686ee
JB
893 /*
894 * This is ok to do without rcu read locked because we hold the
895 * uuid mutex so nothing we touch in here is going to disappear.
896 */
e755f780 897 if (orig_dev->name) {
78f2c9e6
DS
898 name = rcu_string_strdup(orig_dev->name->str,
899 GFP_KERNEL);
e755f780 900 if (!name) {
a425f9d4 901 btrfs_free_device(device);
e755f780
AJ
902 goto error;
903 }
904 rcu_assign_pointer(device->name, name);
fd2696f3 905 }
e4404d6e 906
e4404d6e
YZ
907 list_add(&device->dev_list, &fs_devices->devices);
908 device->fs_devices = fs_devices;
909 fs_devices->num_devices++;
910 }
adbbb863 911 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
912 return fs_devices;
913error:
adbbb863 914 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
915 free_fs_devices(fs_devices);
916 return ERR_PTR(-ENOMEM);
917}
918
9b99b115
AJ
919/*
920 * After we have read the system tree and know devids belonging to
921 * this filesystem, remove the device which does not belong there.
922 */
923void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 924{
c6e30871 925 struct btrfs_device *device, *next;
443f24fe 926 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 927
dfe25020
CM
928 mutex_lock(&uuid_mutex);
929again:
46224705 930 /* This is the initialized path, it is safe to release the devices. */
c6e30871 931 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
e12c9621
AJ
932 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
933 &device->dev_state)) {
401e29c1
AJ
934 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935 &device->dev_state) &&
936 (!latest_dev ||
937 device->generation > latest_dev->generation)) {
443f24fe 938 latest_dev = device;
a6b0d5c8 939 }
2b82032c 940 continue;
a6b0d5c8 941 }
2b82032c 942
8dabb742
SB
943 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
944 /*
945 * In the first step, keep the device which has
946 * the correct fsid and the devid that is used
947 * for the dev_replace procedure.
948 * In the second step, the dev_replace state is
949 * read from the device tree and it is known
950 * whether the procedure is really active or
951 * not, which means whether this device is
952 * used or whether it should be removed.
953 */
401e29c1
AJ
954 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
955 &device->dev_state)) {
8dabb742
SB
956 continue;
957 }
958 }
2b82032c 959 if (device->bdev) {
d4d77629 960 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
961 device->bdev = NULL;
962 fs_devices->open_devices--;
963 }
ebbede42 964 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 965 list_del_init(&device->dev_alloc_list);
ebbede42 966 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
401e29c1
AJ
967 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
968 &device->dev_state))
8dabb742 969 fs_devices->rw_devices--;
2b82032c 970 }
e4404d6e
YZ
971 list_del_init(&device->dev_list);
972 fs_devices->num_devices--;
a425f9d4 973 btrfs_free_device(device);
dfe25020 974 }
2b82032c
YZ
975
976 if (fs_devices->seed) {
977 fs_devices = fs_devices->seed;
2b82032c
YZ
978 goto again;
979 }
980
443f24fe 981 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 982
dfe25020 983 mutex_unlock(&uuid_mutex);
dfe25020 984}
a0af469b 985
f06c5965 986static void free_device_rcu(struct rcu_head *head)
1f78160c
XG
987{
988 struct btrfs_device *device;
989
9f5316c1 990 device = container_of(head, struct btrfs_device, rcu);
a425f9d4 991 btrfs_free_device(device);
1f78160c
XG
992}
993
14238819
AJ
994static void btrfs_close_bdev(struct btrfs_device *device)
995{
08ffcae8
DS
996 if (!device->bdev)
997 return;
998
ebbede42 999 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1000 sync_blockdev(device->bdev);
1001 invalidate_bdev(device->bdev);
1002 }
1003
08ffcae8 1004 blkdev_put(device->bdev, device->mode);
14238819
AJ
1005}
1006
0ccd0528 1007static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
1008{
1009 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1010 struct btrfs_device *new_device;
1011 struct rcu_string *name;
1012
1013 if (device->bdev)
1014 fs_devices->open_devices--;
1015
ebbede42 1016 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1017 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1018 list_del_init(&device->dev_alloc_list);
1019 fs_devices->rw_devices--;
1020 }
1021
e6e674bd 1022 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1023 fs_devices->missing_devices--;
1024
1025 new_device = btrfs_alloc_device(NULL, &device->devid,
1026 device->uuid);
1027 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1028
1029 /* Safe because we are under uuid_mutex */
1030 if (device->name) {
1031 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1032 BUG_ON(!name); /* -ENOMEM */
1033 rcu_assign_pointer(new_device->name, name);
1034 }
1035
1036 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1037 new_device->fs_devices = device->fs_devices;
f448341a
AJ
1038}
1039
0226e0eb 1040static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1041{
2037a093 1042 struct btrfs_device *device, *tmp;
0ccd0528
AJ
1043 struct list_head pending_put;
1044
1045 INIT_LIST_HEAD(&pending_put);
e4404d6e 1046
2b82032c
YZ
1047 if (--fs_devices->opened > 0)
1048 return 0;
8a4b83cc 1049
c9513edb 1050 mutex_lock(&fs_devices->device_list_mutex);
2037a093 1051 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
1052 btrfs_prepare_close_one_device(device);
1053 list_add(&device->dev_list, &pending_put);
8a4b83cc 1054 }
c9513edb
XG
1055 mutex_unlock(&fs_devices->device_list_mutex);
1056
0ccd0528
AJ
1057 /*
1058 * btrfs_show_devname() is using the device_list_mutex,
1059 * sometimes call to blkdev_put() leads vfs calling
1060 * into this func. So do put outside of device_list_mutex,
1061 * as of now.
1062 */
1063 while (!list_empty(&pending_put)) {
1064 device = list_first_entry(&pending_put,
1065 struct btrfs_device, dev_list);
1066 list_del(&device->dev_list);
1067 btrfs_close_bdev(device);
f06c5965 1068 call_rcu(&device->rcu, free_device_rcu);
0ccd0528
AJ
1069 }
1070
e4404d6e
YZ
1071 WARN_ON(fs_devices->open_devices);
1072 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
1073 fs_devices->opened = 0;
1074 fs_devices->seeding = 0;
2b82032c 1075
8a4b83cc
CM
1076 return 0;
1077}
1078
2b82032c
YZ
1079int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1080{
e4404d6e 1081 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
1082 int ret;
1083
1084 mutex_lock(&uuid_mutex);
0226e0eb 1085 ret = close_fs_devices(fs_devices);
e4404d6e
YZ
1086 if (!fs_devices->opened) {
1087 seed_devices = fs_devices->seed;
1088 fs_devices->seed = NULL;
1089 }
2b82032c 1090 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
1091
1092 while (seed_devices) {
1093 fs_devices = seed_devices;
1094 seed_devices = fs_devices->seed;
0226e0eb 1095 close_fs_devices(fs_devices);
e4404d6e
YZ
1096 free_fs_devices(fs_devices);
1097 }
2b82032c
YZ
1098 return ret;
1099}
1100
897fb573 1101static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1102 fmode_t flags, void *holder)
8a4b83cc 1103{
8a4b83cc 1104 struct btrfs_device *device;
443f24fe 1105 struct btrfs_device *latest_dev = NULL;
a0af469b 1106 int ret = 0;
8a4b83cc 1107
d4d77629
TH
1108 flags |= FMODE_EXCL;
1109
f117e290 1110 list_for_each_entry(device, &fs_devices->devices, dev_list) {
f63e0cca 1111 /* Just open everything we can; ignore failures here */
0fb08bcc 1112 if (btrfs_open_one_device(fs_devices, device, flags, holder))
beaf8ab3 1113 continue;
a0af469b 1114
9f050db4
AJ
1115 if (!latest_dev ||
1116 device->generation > latest_dev->generation)
1117 latest_dev = device;
8a4b83cc 1118 }
a0af469b 1119 if (fs_devices->open_devices == 0) {
20bcd649 1120 ret = -EINVAL;
a0af469b
CM
1121 goto out;
1122 }
2b82032c 1123 fs_devices->opened = 1;
443f24fe 1124 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1125 fs_devices->total_rw_bytes = 0;
a0af469b 1126out:
2b82032c
YZ
1127 return ret;
1128}
1129
f8e10cd3
AJ
1130static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1131{
1132 struct btrfs_device *dev1, *dev2;
1133
1134 dev1 = list_entry(a, struct btrfs_device, dev_list);
1135 dev2 = list_entry(b, struct btrfs_device, dev_list);
1136
1137 if (dev1->devid < dev2->devid)
1138 return -1;
1139 else if (dev1->devid > dev2->devid)
1140 return 1;
1141 return 0;
1142}
1143
2b82032c 1144int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1145 fmode_t flags, void *holder)
2b82032c
YZ
1146{
1147 int ret;
1148
20c5bbc6 1149 mutex_lock(&uuid_mutex);
542c5908 1150 mutex_lock(&fs_devices->device_list_mutex);
2b82032c 1151 if (fs_devices->opened) {
e4404d6e
YZ
1152 fs_devices->opened++;
1153 ret = 0;
2b82032c 1154 } else {
f8e10cd3 1155 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1156 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1157 }
542c5908 1158 mutex_unlock(&fs_devices->device_list_mutex);
20c5bbc6 1159 mutex_unlock(&uuid_mutex);
542c5908 1160
8a4b83cc
CM
1161 return ret;
1162}
1163
c9162bdf 1164static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1165{
1166 kunmap(page);
1167 put_page(page);
1168}
1169
c9162bdf
OS
1170static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1171 struct page **page,
1172 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1173{
1174 void *p;
1175 pgoff_t index;
1176
1177 /* make sure our super fits in the device */
1178 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1179 return 1;
1180
1181 /* make sure our super fits in the page */
1182 if (sizeof(**disk_super) > PAGE_SIZE)
1183 return 1;
1184
1185 /* make sure our super doesn't straddle pages on disk */
1186 index = bytenr >> PAGE_SHIFT;
1187 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1188 return 1;
1189
1190 /* pull in the page with our super */
1191 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1192 index, GFP_KERNEL);
1193
1194 if (IS_ERR_OR_NULL(*page))
1195 return 1;
1196
1197 p = kmap(*page);
1198
1199 /* align our pointer to the offset of the super block */
1200 *disk_super = p + (bytenr & ~PAGE_MASK);
1201
1202 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1203 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1204 btrfs_release_disk_super(*page);
1205 return 1;
1206 }
1207
1208 if ((*disk_super)->label[0] &&
1209 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1210 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1211
1212 return 0;
1213}
1214
6f60cbd3
DS
1215/*
1216 * Look for a btrfs signature on a device. This may be called out of the mount path
1217 * and we are not allowed to call set_blocksize during the scan. The superblock
1218 * is read via pagecache
1219 */
97288f2c 1220int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1221 struct btrfs_fs_devices **fs_devices_ret)
1222{
1223 struct btrfs_super_block *disk_super;
e124ece5 1224 struct btrfs_device *device;
8a4b83cc 1225 struct block_device *bdev;
6f60cbd3 1226 struct page *page;
e124ece5 1227 int ret = 0;
6f60cbd3 1228 u64 bytenr;
8a4b83cc 1229
6f60cbd3
DS
1230 /*
1231 * we would like to check all the supers, but that would make
1232 * a btrfs mount succeed after a mkfs from a different FS.
1233 * So, we need to add a special mount option to scan for
1234 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1235 */
1236 bytenr = btrfs_sb_offset(0);
d4d77629 1237 flags |= FMODE_EXCL;
6f60cbd3
DS
1238
1239 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc
AJ
1240 if (IS_ERR(bdev))
1241 return PTR_ERR(bdev);
6f60cbd3 1242
05a5c55d
AJ
1243 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1244 ret = -EINVAL;
6f60cbd3 1245 goto error_bdev_put;
05a5c55d 1246 }
6f60cbd3 1247
b6ed73bc 1248 mutex_lock(&uuid_mutex);
3acbcbfc 1249 device = device_list_add(path, disk_super);
e124ece5
AJ
1250 if (IS_ERR(device))
1251 ret = PTR_ERR(device);
1252 else
1253 *fs_devices_ret = device->fs_devices;
b6ed73bc 1254 mutex_unlock(&uuid_mutex);
6f60cbd3 1255
6cf86a00 1256 btrfs_release_disk_super(page);
6f60cbd3
DS
1257
1258error_bdev_put:
d4d77629 1259 blkdev_put(bdev, flags);
b6ed73bc 1260
8a4b83cc
CM
1261 return ret;
1262}
0b86a832 1263
6d07bcec
MX
1264/* helper to account the used device space in the range */
1265int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1266 u64 end, u64 *length)
1267{
1268 struct btrfs_key key;
fb456252 1269 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1270 struct btrfs_dev_extent *dev_extent;
1271 struct btrfs_path *path;
1272 u64 extent_end;
1273 int ret;
1274 int slot;
1275 struct extent_buffer *l;
1276
1277 *length = 0;
1278
401e29c1
AJ
1279 if (start >= device->total_bytes ||
1280 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
6d07bcec
MX
1281 return 0;
1282
1283 path = btrfs_alloc_path();
1284 if (!path)
1285 return -ENOMEM;
e4058b54 1286 path->reada = READA_FORWARD;
6d07bcec
MX
1287
1288 key.objectid = device->devid;
1289 key.offset = start;
1290 key.type = BTRFS_DEV_EXTENT_KEY;
1291
1292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1293 if (ret < 0)
1294 goto out;
1295 if (ret > 0) {
1296 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1297 if (ret < 0)
1298 goto out;
1299 }
1300
1301 while (1) {
1302 l = path->nodes[0];
1303 slot = path->slots[0];
1304 if (slot >= btrfs_header_nritems(l)) {
1305 ret = btrfs_next_leaf(root, path);
1306 if (ret == 0)
1307 continue;
1308 if (ret < 0)
1309 goto out;
1310
1311 break;
1312 }
1313 btrfs_item_key_to_cpu(l, &key, slot);
1314
1315 if (key.objectid < device->devid)
1316 goto next;
1317
1318 if (key.objectid > device->devid)
1319 break;
1320
962a298f 1321 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1322 goto next;
1323
1324 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1325 extent_end = key.offset + btrfs_dev_extent_length(l,
1326 dev_extent);
1327 if (key.offset <= start && extent_end > end) {
1328 *length = end - start + 1;
1329 break;
1330 } else if (key.offset <= start && extent_end > start)
1331 *length += extent_end - start;
1332 else if (key.offset > start && extent_end <= end)
1333 *length += extent_end - key.offset;
1334 else if (key.offset > start && key.offset <= end) {
1335 *length += end - key.offset + 1;
1336 break;
1337 } else if (key.offset > end)
1338 break;
1339
1340next:
1341 path->slots[0]++;
1342 }
1343 ret = 0;
1344out:
1345 btrfs_free_path(path);
1346 return ret;
1347}
1348
499f377f 1349static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1350 struct btrfs_device *device,
1351 u64 *start, u64 len)
1352{
fb456252 1353 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1354 struct extent_map *em;
499f377f 1355 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1356 int ret = 0;
1b984508 1357 u64 physical_start = *start;
6df9a95e 1358
499f377f
JM
1359 if (transaction)
1360 search_list = &transaction->pending_chunks;
04216820
FM
1361again:
1362 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1363 struct map_lookup *map;
1364 int i;
1365
95617d69 1366 map = em->map_lookup;
6df9a95e 1367 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1368 u64 end;
1369
6df9a95e
JB
1370 if (map->stripes[i].dev != device)
1371 continue;
1b984508 1372 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1373 map->stripes[i].physical + em->orig_block_len <=
1b984508 1374 physical_start)
6df9a95e 1375 continue;
c152b63e
FM
1376 /*
1377 * Make sure that while processing the pinned list we do
1378 * not override our *start with a lower value, because
1379 * we can have pinned chunks that fall within this
1380 * device hole and that have lower physical addresses
1381 * than the pending chunks we processed before. If we
1382 * do not take this special care we can end up getting
1383 * 2 pending chunks that start at the same physical
1384 * device offsets because the end offset of a pinned
1385 * chunk can be equal to the start offset of some
1386 * pending chunk.
1387 */
1388 end = map->stripes[i].physical + em->orig_block_len;
1389 if (end > *start) {
1390 *start = end;
1391 ret = 1;
1392 }
6df9a95e
JB
1393 }
1394 }
499f377f
JM
1395 if (search_list != &fs_info->pinned_chunks) {
1396 search_list = &fs_info->pinned_chunks;
04216820
FM
1397 goto again;
1398 }
6df9a95e
JB
1399
1400 return ret;
1401}
1402
1403
0b86a832 1404/*
499f377f
JM
1405 * find_free_dev_extent_start - find free space in the specified device
1406 * @device: the device which we search the free space in
1407 * @num_bytes: the size of the free space that we need
1408 * @search_start: the position from which to begin the search
1409 * @start: store the start of the free space.
1410 * @len: the size of the free space. that we find, or the size
1411 * of the max free space if we don't find suitable free space
7bfc837d 1412 *
0b86a832
CM
1413 * this uses a pretty simple search, the expectation is that it is
1414 * called very infrequently and that a given device has a small number
1415 * of extents
7bfc837d
MX
1416 *
1417 * @start is used to store the start of the free space if we find. But if we
1418 * don't find suitable free space, it will be used to store the start position
1419 * of the max free space.
1420 *
1421 * @len is used to store the size of the free space that we find.
1422 * But if we don't find suitable free space, it is used to store the size of
1423 * the max free space.
0b86a832 1424 */
499f377f
JM
1425int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1426 struct btrfs_device *device, u64 num_bytes,
1427 u64 search_start, u64 *start, u64 *len)
0b86a832 1428{
0b246afa
JM
1429 struct btrfs_fs_info *fs_info = device->fs_info;
1430 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1431 struct btrfs_key key;
7bfc837d 1432 struct btrfs_dev_extent *dev_extent;
2b82032c 1433 struct btrfs_path *path;
7bfc837d
MX
1434 u64 hole_size;
1435 u64 max_hole_start;
1436 u64 max_hole_size;
1437 u64 extent_end;
0b86a832
CM
1438 u64 search_end = device->total_bytes;
1439 int ret;
7bfc837d 1440 int slot;
0b86a832 1441 struct extent_buffer *l;
8cdc7c5b
FM
1442
1443 /*
1444 * We don't want to overwrite the superblock on the drive nor any area
1445 * used by the boot loader (grub for example), so we make sure to start
1446 * at an offset of at least 1MB.
1447 */
0d0c71b3 1448 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1449
6df9a95e
JB
1450 path = btrfs_alloc_path();
1451 if (!path)
1452 return -ENOMEM;
f2ab7618 1453
7bfc837d
MX
1454 max_hole_start = search_start;
1455 max_hole_size = 0;
1456
f2ab7618 1457again:
401e29c1
AJ
1458 if (search_start >= search_end ||
1459 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1460 ret = -ENOSPC;
6df9a95e 1461 goto out;
7bfc837d
MX
1462 }
1463
e4058b54 1464 path->reada = READA_FORWARD;
6df9a95e
JB
1465 path->search_commit_root = 1;
1466 path->skip_locking = 1;
7bfc837d 1467
0b86a832
CM
1468 key.objectid = device->devid;
1469 key.offset = search_start;
1470 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1471
125ccb0a 1472 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1473 if (ret < 0)
7bfc837d 1474 goto out;
1fcbac58
YZ
1475 if (ret > 0) {
1476 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1477 if (ret < 0)
7bfc837d 1478 goto out;
1fcbac58 1479 }
7bfc837d 1480
0b86a832
CM
1481 while (1) {
1482 l = path->nodes[0];
1483 slot = path->slots[0];
1484 if (slot >= btrfs_header_nritems(l)) {
1485 ret = btrfs_next_leaf(root, path);
1486 if (ret == 0)
1487 continue;
1488 if (ret < 0)
7bfc837d
MX
1489 goto out;
1490
1491 break;
0b86a832
CM
1492 }
1493 btrfs_item_key_to_cpu(l, &key, slot);
1494
1495 if (key.objectid < device->devid)
1496 goto next;
1497
1498 if (key.objectid > device->devid)
7bfc837d 1499 break;
0b86a832 1500
962a298f 1501 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1502 goto next;
9779b72f 1503
7bfc837d
MX
1504 if (key.offset > search_start) {
1505 hole_size = key.offset - search_start;
9779b72f 1506
6df9a95e
JB
1507 /*
1508 * Have to check before we set max_hole_start, otherwise
1509 * we could end up sending back this offset anyway.
1510 */
499f377f 1511 if (contains_pending_extent(transaction, device,
6df9a95e 1512 &search_start,
1b984508
FL
1513 hole_size)) {
1514 if (key.offset >= search_start) {
1515 hole_size = key.offset - search_start;
1516 } else {
1517 WARN_ON_ONCE(1);
1518 hole_size = 0;
1519 }
1520 }
6df9a95e 1521
7bfc837d
MX
1522 if (hole_size > max_hole_size) {
1523 max_hole_start = search_start;
1524 max_hole_size = hole_size;
1525 }
9779b72f 1526
7bfc837d
MX
1527 /*
1528 * If this free space is greater than which we need,
1529 * it must be the max free space that we have found
1530 * until now, so max_hole_start must point to the start
1531 * of this free space and the length of this free space
1532 * is stored in max_hole_size. Thus, we return
1533 * max_hole_start and max_hole_size and go back to the
1534 * caller.
1535 */
1536 if (hole_size >= num_bytes) {
1537 ret = 0;
1538 goto out;
0b86a832
CM
1539 }
1540 }
0b86a832 1541
0b86a832 1542 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1543 extent_end = key.offset + btrfs_dev_extent_length(l,
1544 dev_extent);
1545 if (extent_end > search_start)
1546 search_start = extent_end;
0b86a832
CM
1547next:
1548 path->slots[0]++;
1549 cond_resched();
1550 }
0b86a832 1551
38c01b96 1552 /*
1553 * At this point, search_start should be the end of
1554 * allocated dev extents, and when shrinking the device,
1555 * search_end may be smaller than search_start.
1556 */
f2ab7618 1557 if (search_end > search_start) {
38c01b96 1558 hole_size = search_end - search_start;
1559
499f377f 1560 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1561 hole_size)) {
1562 btrfs_release_path(path);
1563 goto again;
1564 }
0b86a832 1565
f2ab7618
ZL
1566 if (hole_size > max_hole_size) {
1567 max_hole_start = search_start;
1568 max_hole_size = hole_size;
1569 }
6df9a95e
JB
1570 }
1571
7bfc837d 1572 /* See above. */
f2ab7618 1573 if (max_hole_size < num_bytes)
7bfc837d
MX
1574 ret = -ENOSPC;
1575 else
1576 ret = 0;
1577
1578out:
2b82032c 1579 btrfs_free_path(path);
7bfc837d 1580 *start = max_hole_start;
b2117a39 1581 if (len)
7bfc837d 1582 *len = max_hole_size;
0b86a832
CM
1583 return ret;
1584}
1585
499f377f
JM
1586int find_free_dev_extent(struct btrfs_trans_handle *trans,
1587 struct btrfs_device *device, u64 num_bytes,
1588 u64 *start, u64 *len)
1589{
499f377f 1590 /* FIXME use last free of some kind */
499f377f 1591 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1592 num_bytes, 0, start, len);
499f377f
JM
1593}
1594
b2950863 1595static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1596 struct btrfs_device *device,
2196d6e8 1597 u64 start, u64 *dev_extent_len)
8f18cf13 1598{
0b246afa
JM
1599 struct btrfs_fs_info *fs_info = device->fs_info;
1600 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1601 int ret;
1602 struct btrfs_path *path;
8f18cf13 1603 struct btrfs_key key;
a061fc8d
CM
1604 struct btrfs_key found_key;
1605 struct extent_buffer *leaf = NULL;
1606 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1607
1608 path = btrfs_alloc_path();
1609 if (!path)
1610 return -ENOMEM;
1611
1612 key.objectid = device->devid;
1613 key.offset = start;
1614 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1615again:
8f18cf13 1616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1617 if (ret > 0) {
1618 ret = btrfs_previous_item(root, path, key.objectid,
1619 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1620 if (ret)
1621 goto out;
a061fc8d
CM
1622 leaf = path->nodes[0];
1623 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1624 extent = btrfs_item_ptr(leaf, path->slots[0],
1625 struct btrfs_dev_extent);
1626 BUG_ON(found_key.offset > start || found_key.offset +
1627 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1628 key = found_key;
1629 btrfs_release_path(path);
1630 goto again;
a061fc8d
CM
1631 } else if (ret == 0) {
1632 leaf = path->nodes[0];
1633 extent = btrfs_item_ptr(leaf, path->slots[0],
1634 struct btrfs_dev_extent);
79787eaa 1635 } else {
0b246afa 1636 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1637 goto out;
a061fc8d 1638 }
8f18cf13 1639
2196d6e8
MX
1640 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1641
8f18cf13 1642 ret = btrfs_del_item(trans, root, path);
79787eaa 1643 if (ret) {
0b246afa
JM
1644 btrfs_handle_fs_error(fs_info, ret,
1645 "Failed to remove dev extent item");
13212b54 1646 } else {
3204d33c 1647 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1648 }
b0b802d7 1649out:
8f18cf13
CM
1650 btrfs_free_path(path);
1651 return ret;
1652}
1653
48a3b636
ES
1654static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1655 struct btrfs_device *device,
48a3b636 1656 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1657{
1658 int ret;
1659 struct btrfs_path *path;
0b246afa
JM
1660 struct btrfs_fs_info *fs_info = device->fs_info;
1661 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1662 struct btrfs_dev_extent *extent;
1663 struct extent_buffer *leaf;
1664 struct btrfs_key key;
1665
e12c9621 1666 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
401e29c1 1667 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
0b86a832
CM
1668 path = btrfs_alloc_path();
1669 if (!path)
1670 return -ENOMEM;
1671
0b86a832 1672 key.objectid = device->devid;
2b82032c 1673 key.offset = start;
0b86a832
CM
1674 key.type = BTRFS_DEV_EXTENT_KEY;
1675 ret = btrfs_insert_empty_item(trans, root, path, &key,
1676 sizeof(*extent));
2cdcecbc
MF
1677 if (ret)
1678 goto out;
0b86a832
CM
1679
1680 leaf = path->nodes[0];
1681 extent = btrfs_item_ptr(leaf, path->slots[0],
1682 struct btrfs_dev_extent);
b5d9071c
NB
1683 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1684 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1685 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1686 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1687 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1688
0b86a832
CM
1689 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1690 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1691out:
0b86a832
CM
1692 btrfs_free_path(path);
1693 return ret;
1694}
1695
6df9a95e 1696static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1697{
6df9a95e
JB
1698 struct extent_map_tree *em_tree;
1699 struct extent_map *em;
1700 struct rb_node *n;
1701 u64 ret = 0;
0b86a832 1702
6df9a95e
JB
1703 em_tree = &fs_info->mapping_tree.map_tree;
1704 read_lock(&em_tree->lock);
1705 n = rb_last(&em_tree->map);
1706 if (n) {
1707 em = rb_entry(n, struct extent_map, rb_node);
1708 ret = em->start + em->len;
0b86a832 1709 }
6df9a95e
JB
1710 read_unlock(&em_tree->lock);
1711
0b86a832
CM
1712 return ret;
1713}
1714
53f10659
ID
1715static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1716 u64 *devid_ret)
0b86a832
CM
1717{
1718 int ret;
1719 struct btrfs_key key;
1720 struct btrfs_key found_key;
2b82032c
YZ
1721 struct btrfs_path *path;
1722
2b82032c
YZ
1723 path = btrfs_alloc_path();
1724 if (!path)
1725 return -ENOMEM;
0b86a832
CM
1726
1727 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1728 key.type = BTRFS_DEV_ITEM_KEY;
1729 key.offset = (u64)-1;
1730
53f10659 1731 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1732 if (ret < 0)
1733 goto error;
1734
79787eaa 1735 BUG_ON(ret == 0); /* Corruption */
0b86a832 1736
53f10659
ID
1737 ret = btrfs_previous_item(fs_info->chunk_root, path,
1738 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1739 BTRFS_DEV_ITEM_KEY);
1740 if (ret) {
53f10659 1741 *devid_ret = 1;
0b86a832
CM
1742 } else {
1743 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1744 path->slots[0]);
53f10659 1745 *devid_ret = found_key.offset + 1;
0b86a832
CM
1746 }
1747 ret = 0;
1748error:
2b82032c 1749 btrfs_free_path(path);
0b86a832
CM
1750 return ret;
1751}
1752
1753/*
1754 * the device information is stored in the chunk root
1755 * the btrfs_device struct should be fully filled in
1756 */
c74a0b02 1757static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
5b4aacef 1758 struct btrfs_fs_info *fs_info,
48a3b636 1759 struct btrfs_device *device)
0b86a832 1760{
5b4aacef 1761 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1762 int ret;
1763 struct btrfs_path *path;
1764 struct btrfs_dev_item *dev_item;
1765 struct extent_buffer *leaf;
1766 struct btrfs_key key;
1767 unsigned long ptr;
0b86a832 1768
0b86a832
CM
1769 path = btrfs_alloc_path();
1770 if (!path)
1771 return -ENOMEM;
1772
0b86a832
CM
1773 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1774 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1775 key.offset = device->devid;
0b86a832
CM
1776
1777 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1778 sizeof(*dev_item));
0b86a832
CM
1779 if (ret)
1780 goto out;
1781
1782 leaf = path->nodes[0];
1783 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1784
1785 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1786 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1787 btrfs_set_device_type(leaf, dev_item, device->type);
1788 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1789 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1790 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1791 btrfs_set_device_total_bytes(leaf, dev_item,
1792 btrfs_device_get_disk_total_bytes(device));
1793 btrfs_set_device_bytes_used(leaf, dev_item,
1794 btrfs_device_get_bytes_used(device));
e17cade2
CM
1795 btrfs_set_device_group(leaf, dev_item, 0);
1796 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1797 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1798 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1799
410ba3a2 1800 ptr = btrfs_device_uuid(dev_item);
e17cade2 1801 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1802 ptr = btrfs_device_fsid(dev_item);
44880fdc 1803 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
0b86a832 1804 btrfs_mark_buffer_dirty(leaf);
0b86a832 1805
2b82032c 1806 ret = 0;
0b86a832
CM
1807out:
1808 btrfs_free_path(path);
1809 return ret;
1810}
8f18cf13 1811
5a1972bd
QW
1812/*
1813 * Function to update ctime/mtime for a given device path.
1814 * Mainly used for ctime/mtime based probe like libblkid.
1815 */
da353f6b 1816static void update_dev_time(const char *path_name)
5a1972bd
QW
1817{
1818 struct file *filp;
1819
1820 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1821 if (IS_ERR(filp))
5a1972bd
QW
1822 return;
1823 file_update_time(filp);
1824 filp_close(filp, NULL);
5a1972bd
QW
1825}
1826
5b4aacef 1827static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1828 struct btrfs_device *device)
1829{
5b4aacef 1830 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1831 int ret;
1832 struct btrfs_path *path;
a061fc8d 1833 struct btrfs_key key;
a061fc8d
CM
1834 struct btrfs_trans_handle *trans;
1835
a061fc8d
CM
1836 path = btrfs_alloc_path();
1837 if (!path)
1838 return -ENOMEM;
1839
a22285a6 1840 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1841 if (IS_ERR(trans)) {
1842 btrfs_free_path(path);
1843 return PTR_ERR(trans);
1844 }
a061fc8d
CM
1845 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1846 key.type = BTRFS_DEV_ITEM_KEY;
1847 key.offset = device->devid;
1848
1849 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1850 if (ret) {
1851 if (ret > 0)
1852 ret = -ENOENT;
1853 btrfs_abort_transaction(trans, ret);
1854 btrfs_end_transaction(trans);
a061fc8d
CM
1855 goto out;
1856 }
1857
1858 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1859 if (ret) {
1860 btrfs_abort_transaction(trans, ret);
1861 btrfs_end_transaction(trans);
1862 }
1863
a061fc8d
CM
1864out:
1865 btrfs_free_path(path);
5e9f2ad5
NB
1866 if (!ret)
1867 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1868 return ret;
1869}
1870
3cc31a0d
DS
1871/*
1872 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1873 * filesystem. It's up to the caller to adjust that number regarding eg. device
1874 * replace.
1875 */
1876static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1877 u64 num_devices)
a061fc8d 1878{
a061fc8d 1879 u64 all_avail;
de98ced9 1880 unsigned seq;
418775a2 1881 int i;
a061fc8d 1882
de98ced9 1883 do {
bd45ffbc 1884 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1885
bd45ffbc
AJ
1886 all_avail = fs_info->avail_data_alloc_bits |
1887 fs_info->avail_system_alloc_bits |
1888 fs_info->avail_metadata_alloc_bits;
1889 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1890
418775a2 1891 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1892 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1893 continue;
a061fc8d 1894
418775a2 1895 if (num_devices < btrfs_raid_array[i].devs_min) {
f9fbcaa2 1896 int ret = btrfs_raid_array[i].mindev_error;
bd45ffbc 1897
418775a2
DS
1898 if (ret)
1899 return ret;
1900 }
53b381b3
DW
1901 }
1902
bd45ffbc 1903 return 0;
f1fa7f26
AJ
1904}
1905
c9162bdf
OS
1906static struct btrfs_device * btrfs_find_next_active_device(
1907 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1908{
2b82032c 1909 struct btrfs_device *next_device;
88acff64
AJ
1910
1911 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1912 if (next_device != device &&
e6e674bd
AJ
1913 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1914 && next_device->bdev)
88acff64
AJ
1915 return next_device;
1916 }
1917
1918 return NULL;
1919}
1920
1921/*
1922 * Helper function to check if the given device is part of s_bdev / latest_bdev
1923 * and replace it with the provided or the next active device, in the context
1924 * where this function called, there should be always be another device (or
1925 * this_dev) which is active.
1926 */
1927void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1928 struct btrfs_device *device, struct btrfs_device *this_dev)
1929{
1930 struct btrfs_device *next_device;
1931
1932 if (this_dev)
1933 next_device = this_dev;
1934 else
1935 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1936 device);
1937 ASSERT(next_device);
1938
1939 if (fs_info->sb->s_bdev &&
1940 (fs_info->sb->s_bdev == device->bdev))
1941 fs_info->sb->s_bdev = next_device->bdev;
1942
1943 if (fs_info->fs_devices->latest_bdev == device->bdev)
1944 fs_info->fs_devices->latest_bdev = next_device->bdev;
1945}
1946
da353f6b
DS
1947int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1948 u64 devid)
f1fa7f26
AJ
1949{
1950 struct btrfs_device *device;
1f78160c 1951 struct btrfs_fs_devices *cur_devices;
b5185197 1952 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 1953 u64 num_devices;
a061fc8d
CM
1954 int ret = 0;
1955
a061fc8d
CM
1956 mutex_lock(&uuid_mutex);
1957
b5185197 1958 num_devices = fs_devices->num_devices;
7e79cb86 1959 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
0b246afa 1960 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1961 WARN_ON(num_devices < 1);
1962 num_devices--;
1963 }
7e79cb86 1964 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
8dabb742 1965
0b246afa 1966 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1967 if (ret)
a061fc8d 1968 goto out;
a061fc8d 1969
2ff7e61e
JM
1970 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1971 &device);
24fc572f 1972 if (ret)
53b381b3 1973 goto out;
dfe25020 1974
401e29c1 1975 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 1976 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1977 goto out;
63a212ab
SB
1978 }
1979
ebbede42
AJ
1980 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1981 fs_info->fs_devices->rw_devices == 1) {
183860f6 1982 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1983 goto out;
2b82032c
YZ
1984 }
1985
ebbede42 1986 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 1987 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1988 list_del_init(&device->dev_alloc_list);
c3929c36 1989 device->fs_devices->rw_devices--;
34441361 1990 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1991 }
a061fc8d 1992
d7901554 1993 mutex_unlock(&uuid_mutex);
a061fc8d 1994 ret = btrfs_shrink_device(device, 0);
d7901554 1995 mutex_lock(&uuid_mutex);
a061fc8d 1996 if (ret)
9b3517e9 1997 goto error_undo;
a061fc8d 1998
63a212ab
SB
1999 /*
2000 * TODO: the superblock still includes this device in its num_devices
2001 * counter although write_all_supers() is not locked out. This
2002 * could give a filesystem state which requires a degraded mount.
2003 */
0b246afa 2004 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 2005 if (ret)
9b3517e9 2006 goto error_undo;
a061fc8d 2007
e12c9621 2008 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0b246afa 2009 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
2010
2011 /*
2012 * the device list mutex makes sure that we don't change
2013 * the device list while someone else is writing out all
d7306801
FDBM
2014 * the device supers. Whoever is writing all supers, should
2015 * lock the device list mutex before getting the number of
2016 * devices in the super block (super_copy). Conversely,
2017 * whoever updates the number of devices in the super block
2018 * (super_copy) should hold the device list mutex.
e5e9a520 2019 */
1f78160c 2020
41a52a0f
AJ
2021 /*
2022 * In normal cases the cur_devices == fs_devices. But in case
2023 * of deleting a seed device, the cur_devices should point to
2024 * its own fs_devices listed under the fs_devices->seed.
2025 */
1f78160c 2026 cur_devices = device->fs_devices;
b5185197 2027 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2028 list_del_rcu(&device->dev_list);
e5e9a520 2029
41a52a0f
AJ
2030 cur_devices->num_devices--;
2031 cur_devices->total_devices--;
2b82032c 2032
e6e674bd 2033 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2034 cur_devices->missing_devices--;
cd02dca5 2035
0b246afa 2036 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 2037
0bfaa9c5 2038 if (device->bdev) {
41a52a0f 2039 cur_devices->open_devices--;
0bfaa9c5 2040 /* remove sysfs entry */
b5185197 2041 btrfs_sysfs_rm_device_link(fs_devices, device);
0bfaa9c5 2042 }
99994cde 2043
0b246afa
JM
2044 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2045 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2046 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2047
cea67ab9
JM
2048 /*
2049 * at this point, the device is zero sized and detached from
2050 * the devices list. All that's left is to zero out the old
2051 * supers and free the device.
2052 */
ebbede42 2053 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
cea67ab9
JM
2054 btrfs_scratch_superblocks(device->bdev, device->name->str);
2055
2056 btrfs_close_bdev(device);
f06c5965 2057 call_rcu(&device->rcu, free_device_rcu);
cea67ab9 2058
1f78160c 2059 if (cur_devices->open_devices == 0) {
e4404d6e 2060 while (fs_devices) {
8321cf25
RS
2061 if (fs_devices->seed == cur_devices) {
2062 fs_devices->seed = cur_devices->seed;
e4404d6e 2063 break;
8321cf25 2064 }
e4404d6e 2065 fs_devices = fs_devices->seed;
2b82032c 2066 }
1f78160c 2067 cur_devices->seed = NULL;
0226e0eb 2068 close_fs_devices(cur_devices);
1f78160c 2069 free_fs_devices(cur_devices);
2b82032c
YZ
2070 }
2071
a061fc8d
CM
2072out:
2073 mutex_unlock(&uuid_mutex);
a061fc8d 2074 return ret;
24fc572f 2075
9b3517e9 2076error_undo:
ebbede42 2077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2078 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2079 list_add(&device->dev_alloc_list,
b5185197 2080 &fs_devices->alloc_list);
c3929c36 2081 device->fs_devices->rw_devices++;
34441361 2082 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2083 }
24fc572f 2084 goto out;
a061fc8d
CM
2085}
2086
084b6e7c
QW
2087void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2088 struct btrfs_device *srcdev)
e93c89c1 2089{
d51908ce
AJ
2090 struct btrfs_fs_devices *fs_devices;
2091
a32bf9a3 2092 lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
1357272f 2093
25e8e911
AJ
2094 /*
2095 * in case of fs with no seed, srcdev->fs_devices will point
2096 * to fs_devices of fs_info. However when the dev being replaced is
2097 * a seed dev it will point to the seed's local fs_devices. In short
2098 * srcdev will have its correct fs_devices in both the cases.
2099 */
2100 fs_devices = srcdev->fs_devices;
d51908ce 2101
e93c89c1 2102 list_del_rcu(&srcdev->dev_list);
619c47f3 2103 list_del(&srcdev->dev_alloc_list);
d51908ce 2104 fs_devices->num_devices--;
e6e674bd 2105 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2106 fs_devices->missing_devices--;
e93c89c1 2107
ebbede42 2108 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2109 fs_devices->rw_devices--;
1357272f 2110
82372bc8 2111 if (srcdev->bdev)
d51908ce 2112 fs_devices->open_devices--;
084b6e7c
QW
2113}
2114
2115void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2116 struct btrfs_device *srcdev)
2117{
2118 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2119
ebbede42 2120 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
48b3b9d4
AJ
2121 /* zero out the old super if it is writable */
2122 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2123 }
14238819
AJ
2124
2125 btrfs_close_bdev(srcdev);
f06c5965 2126 call_rcu(&srcdev->rcu, free_device_rcu);
94d5f0c2 2127
94d5f0c2
AJ
2128 /* if this is no devs we rather delete the fs_devices */
2129 if (!fs_devices->num_devices) {
2130 struct btrfs_fs_devices *tmp_fs_devices;
2131
6dd38f81
AJ
2132 /*
2133 * On a mounted FS, num_devices can't be zero unless it's a
2134 * seed. In case of a seed device being replaced, the replace
2135 * target added to the sprout FS, so there will be no more
2136 * device left under the seed FS.
2137 */
2138 ASSERT(fs_devices->seeding);
2139
94d5f0c2
AJ
2140 tmp_fs_devices = fs_info->fs_devices;
2141 while (tmp_fs_devices) {
2142 if (tmp_fs_devices->seed == fs_devices) {
2143 tmp_fs_devices->seed = fs_devices->seed;
2144 break;
2145 }
2146 tmp_fs_devices = tmp_fs_devices->seed;
2147 }
2148 fs_devices->seed = NULL;
0226e0eb 2149 close_fs_devices(fs_devices);
8bef8401 2150 free_fs_devices(fs_devices);
94d5f0c2 2151 }
e93c89c1
SB
2152}
2153
2154void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2155 struct btrfs_device *tgtdev)
2156{
d9a071f0
AJ
2157 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2158
e93c89c1 2159 WARN_ON(!tgtdev);
d9a071f0 2160 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2161
d9a071f0 2162 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
d2ff1b20 2163
779bf3fe 2164 if (tgtdev->bdev)
d9a071f0 2165 fs_devices->open_devices--;
779bf3fe 2166
d9a071f0 2167 fs_devices->num_devices--;
e93c89c1 2168
88acff64 2169 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2170
e93c89c1 2171 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2172
d9a071f0 2173 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2174
2175 /*
2176 * The update_dev_time() with in btrfs_scratch_superblocks()
2177 * may lead to a call to btrfs_show_devname() which will try
2178 * to hold device_list_mutex. And here this device
2179 * is already out of device list, so we don't have to hold
2180 * the device_list_mutex lock.
2181 */
2182 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2183
2184 btrfs_close_bdev(tgtdev);
f06c5965 2185 call_rcu(&tgtdev->rcu, free_device_rcu);
e93c89c1
SB
2186}
2187
2ff7e61e 2188static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2189 const char *device_path,
48a3b636 2190 struct btrfs_device **device)
7ba15b7d
SB
2191{
2192 int ret = 0;
2193 struct btrfs_super_block *disk_super;
2194 u64 devid;
2195 u8 *dev_uuid;
2196 struct block_device *bdev;
2197 struct buffer_head *bh;
2198
2199 *device = NULL;
2200 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2201 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2202 if (ret)
2203 return ret;
2204 disk_super = (struct btrfs_super_block *)bh->b_data;
2205 devid = btrfs_stack_device_id(&disk_super->dev_item);
2206 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2207 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2208 brelse(bh);
2209 if (!*device)
2210 ret = -ENOENT;
2211 blkdev_put(bdev, FMODE_READ);
2212 return ret;
2213}
2214
2ff7e61e 2215int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2216 const char *device_path,
7ba15b7d
SB
2217 struct btrfs_device **device)
2218{
2219 *device = NULL;
2220 if (strcmp(device_path, "missing") == 0) {
2221 struct list_head *devices;
2222 struct btrfs_device *tmp;
2223
0b246afa 2224 devices = &fs_info->fs_devices->devices;
7ba15b7d 2225 list_for_each_entry(tmp, devices, dev_list) {
e12c9621
AJ
2226 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2227 &tmp->dev_state) && !tmp->bdev) {
7ba15b7d
SB
2228 *device = tmp;
2229 break;
2230 }
2231 }
2232
d74a6259
AJ
2233 if (!*device)
2234 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2235
2236 return 0;
2237 } else {
2ff7e61e 2238 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2239 }
2240}
2241
5c5c0df0
DS
2242/*
2243 * Lookup a device given by device id, or the path if the id is 0.
2244 */
2ff7e61e 2245int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2246 const char *devpath,
2247 struct btrfs_device **device)
24e0474b
AJ
2248{
2249 int ret;
2250
5c5c0df0 2251 if (devid) {
24e0474b 2252 ret = 0;
0b246afa 2253 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2254 if (!*device)
2255 ret = -ENOENT;
2256 } else {
5c5c0df0 2257 if (!devpath || !devpath[0])
b3d1b153
AJ
2258 return -EINVAL;
2259
2ff7e61e 2260 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2261 device);
2262 }
2263 return ret;
2264}
2265
2b82032c
YZ
2266/*
2267 * does all the dirty work required for changing file system's UUID.
2268 */
2ff7e61e 2269static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2270{
0b246afa 2271 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2272 struct btrfs_fs_devices *old_devices;
e4404d6e 2273 struct btrfs_fs_devices *seed_devices;
0b246afa 2274 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2275 struct btrfs_device *device;
2276 u64 super_flags;
2277
a32bf9a3 2278 lockdep_assert_held(&uuid_mutex);
e4404d6e 2279 if (!fs_devices->seeding)
2b82032c
YZ
2280 return -EINVAL;
2281
2dfeca9b 2282 seed_devices = alloc_fs_devices(NULL);
2208a378
ID
2283 if (IS_ERR(seed_devices))
2284 return PTR_ERR(seed_devices);
2b82032c 2285
e4404d6e
YZ
2286 old_devices = clone_fs_devices(fs_devices);
2287 if (IS_ERR(old_devices)) {
2288 kfree(seed_devices);
2289 return PTR_ERR(old_devices);
2b82032c 2290 }
e4404d6e 2291
c4babc5e 2292 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2293
e4404d6e
YZ
2294 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2295 seed_devices->opened = 1;
2296 INIT_LIST_HEAD(&seed_devices->devices);
2297 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2298 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2299
0b246afa 2300 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2301 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2302 synchronize_rcu);
2196d6e8
MX
2303 list_for_each_entry(device, &seed_devices->devices, dev_list)
2304 device->fs_devices = seed_devices;
c9513edb 2305
34441361 2306 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2307 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2308 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2309
2b82032c
YZ
2310 fs_devices->seeding = 0;
2311 fs_devices->num_devices = 0;
2312 fs_devices->open_devices = 0;
69611ac8 2313 fs_devices->missing_devices = 0;
69611ac8 2314 fs_devices->rotating = 0;
e4404d6e 2315 fs_devices->seed = seed_devices;
2b82032c
YZ
2316
2317 generate_random_uuid(fs_devices->fsid);
0b246afa 2318 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2319 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2320 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2321
2b82032c
YZ
2322 super_flags = btrfs_super_flags(disk_super) &
2323 ~BTRFS_SUPER_FLAG_SEEDING;
2324 btrfs_set_super_flags(disk_super, super_flags);
2325
2326 return 0;
2327}
2328
2329/*
01327610 2330 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2331 */
2332static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2333 struct btrfs_fs_info *fs_info)
2b82032c 2334{
5b4aacef 2335 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2336 struct btrfs_path *path;
2337 struct extent_buffer *leaf;
2338 struct btrfs_dev_item *dev_item;
2339 struct btrfs_device *device;
2340 struct btrfs_key key;
44880fdc 2341 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2342 u8 dev_uuid[BTRFS_UUID_SIZE];
2343 u64 devid;
2344 int ret;
2345
2346 path = btrfs_alloc_path();
2347 if (!path)
2348 return -ENOMEM;
2349
2b82032c
YZ
2350 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2351 key.offset = 0;
2352 key.type = BTRFS_DEV_ITEM_KEY;
2353
2354 while (1) {
2355 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2356 if (ret < 0)
2357 goto error;
2358
2359 leaf = path->nodes[0];
2360next_slot:
2361 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2362 ret = btrfs_next_leaf(root, path);
2363 if (ret > 0)
2364 break;
2365 if (ret < 0)
2366 goto error;
2367 leaf = path->nodes[0];
2368 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2369 btrfs_release_path(path);
2b82032c
YZ
2370 continue;
2371 }
2372
2373 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2374 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2375 key.type != BTRFS_DEV_ITEM_KEY)
2376 break;
2377
2378 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2379 struct btrfs_dev_item);
2380 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2381 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2382 BTRFS_UUID_SIZE);
1473b24e 2383 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2384 BTRFS_FSID_SIZE);
0b246afa 2385 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2386 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2387
2388 if (device->fs_devices->seeding) {
2389 btrfs_set_device_generation(leaf, dev_item,
2390 device->generation);
2391 btrfs_mark_buffer_dirty(leaf);
2392 }
2393
2394 path->slots[0]++;
2395 goto next_slot;
2396 }
2397 ret = 0;
2398error:
2399 btrfs_free_path(path);
2400 return ret;
2401}
2402
da353f6b 2403int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2404{
5112febb 2405 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2406 struct request_queue *q;
788f20eb
CM
2407 struct btrfs_trans_handle *trans;
2408 struct btrfs_device *device;
2409 struct block_device *bdev;
788f20eb 2410 struct list_head *devices;
0b246afa 2411 struct super_block *sb = fs_info->sb;
606686ee 2412 struct rcu_string *name;
5da54bc1 2413 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3c1dbdf5 2414 u64 tmp;
2b82032c 2415 int seeding_dev = 0;
788f20eb 2416 int ret = 0;
7132a262 2417 bool unlocked = false;
788f20eb 2418
5da54bc1 2419 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2420 return -EROFS;
788f20eb 2421
a5d16333 2422 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2423 fs_info->bdev_holder);
7f59203a
JB
2424 if (IS_ERR(bdev))
2425 return PTR_ERR(bdev);
a2135011 2426
5da54bc1 2427 if (fs_devices->seeding) {
2b82032c
YZ
2428 seeding_dev = 1;
2429 down_write(&sb->s_umount);
2430 mutex_lock(&uuid_mutex);
2431 }
2432
8c8bee1d 2433 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2434
5da54bc1 2435 devices = &fs_devices->devices;
d25628bd 2436
5da54bc1 2437 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 2438 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2439 if (device->bdev == bdev) {
2440 ret = -EEXIST;
d25628bd 2441 mutex_unlock(
5da54bc1 2442 &fs_devices->device_list_mutex);
2b82032c 2443 goto error;
788f20eb
CM
2444 }
2445 }
5da54bc1 2446 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2447
0b246afa 2448 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2449 if (IS_ERR(device)) {
788f20eb 2450 /* we can safely leave the fs_devices entry around */
12bd2fc0 2451 ret = PTR_ERR(device);
2b82032c 2452 goto error;
788f20eb
CM
2453 }
2454
78f2c9e6 2455 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2456 if (!name) {
2b82032c 2457 ret = -ENOMEM;
5c4cf6c9 2458 goto error_free_device;
788f20eb 2459 }
606686ee 2460 rcu_assign_pointer(device->name, name);
2b82032c 2461
a22285a6 2462 trans = btrfs_start_transaction(root, 0);
98d5dc13 2463 if (IS_ERR(trans)) {
98d5dc13 2464 ret = PTR_ERR(trans);
5c4cf6c9 2465 goto error_free_device;
98d5dc13
TI
2466 }
2467
d5e2003c 2468 q = bdev_get_queue(bdev);
ebbede42 2469 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2470 device->generation = trans->transid;
0b246afa
JM
2471 device->io_width = fs_info->sectorsize;
2472 device->io_align = fs_info->sectorsize;
2473 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2474 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2475 fs_info->sectorsize);
2cc3c559 2476 device->disk_total_bytes = device->total_bytes;
935e5cc9 2477 device->commit_total_bytes = device->total_bytes;
fb456252 2478 device->fs_info = fs_info;
788f20eb 2479 device->bdev = bdev;
e12c9621 2480 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2481 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2482 device->mode = FMODE_EXCL;
27087f37 2483 device->dev_stats_valid = 1;
9f6d2510 2484 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2485
2b82032c 2486 if (seeding_dev) {
1751e8a6 2487 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2488 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2489 if (ret) {
2490 btrfs_abort_transaction(trans, ret);
2491 goto error_trans;
2492 }
2b82032c 2493 }
788f20eb 2494
5da54bc1 2495 device->fs_devices = fs_devices;
e5e9a520 2496
5da54bc1 2497 mutex_lock(&fs_devices->device_list_mutex);
34441361 2498 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2499 list_add_rcu(&device->dev_list, &fs_devices->devices);
2500 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2501 fs_devices->num_devices++;
2502 fs_devices->open_devices++;
2503 fs_devices->rw_devices++;
2504 fs_devices->total_devices++;
2505 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2506
a5ed45f8 2507 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2508
e884f4f0 2509 if (!blk_queue_nonrot(q))
5da54bc1 2510 fs_devices->rotating = 1;
c289811c 2511
0b246afa
JM
2512 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2513 btrfs_set_super_total_bytes(fs_info->super_copy,
7dfb8be1 2514 round_down(tmp + device->total_bytes, fs_info->sectorsize));
788f20eb 2515
0b246afa
JM
2516 tmp = btrfs_super_num_devices(fs_info->super_copy);
2517 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2518
2519 /* add sysfs device entry */
5da54bc1 2520 btrfs_sysfs_add_device_link(fs_devices, device);
0d39376a 2521
2196d6e8
MX
2522 /*
2523 * we've got more storage, clear any full flags on the space
2524 * infos
2525 */
0b246afa 2526 btrfs_clear_space_info_full(fs_info);
2196d6e8 2527
34441361 2528 mutex_unlock(&fs_info->chunk_mutex);
5da54bc1 2529 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2530
2b82032c 2531 if (seeding_dev) {
34441361 2532 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2533 ret = init_first_rw_device(trans, fs_info);
34441361 2534 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2535 if (ret) {
66642832 2536 btrfs_abort_transaction(trans, ret);
d31c32f6 2537 goto error_sysfs;
005d6427 2538 }
2196d6e8
MX
2539 }
2540
c74a0b02 2541 ret = btrfs_add_dev_item(trans, fs_info, device);
2196d6e8 2542 if (ret) {
66642832 2543 btrfs_abort_transaction(trans, ret);
d31c32f6 2544 goto error_sysfs;
2196d6e8
MX
2545 }
2546
2547 if (seeding_dev) {
2548 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2549
0b246afa 2550 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2551 if (ret) {
66642832 2552 btrfs_abort_transaction(trans, ret);
d31c32f6 2553 goto error_sysfs;
005d6427 2554 }
b2373f25
AJ
2555
2556 /* Sprouting would change fsid of the mounted root,
2557 * so rename the fsid on the sysfs
2558 */
2559 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa 2560 fs_info->fsid);
5da54bc1 2561 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
0b246afa
JM
2562 btrfs_warn(fs_info,
2563 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2564 }
2565
3a45bb20 2566 ret = btrfs_commit_transaction(trans);
a2135011 2567
2b82032c
YZ
2568 if (seeding_dev) {
2569 mutex_unlock(&uuid_mutex);
2570 up_write(&sb->s_umount);
7132a262 2571 unlocked = true;
788f20eb 2572
79787eaa
JM
2573 if (ret) /* transaction commit */
2574 return ret;
2575
2ff7e61e 2576 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2577 if (ret < 0)
0b246afa 2578 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2579 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2580 trans = btrfs_attach_transaction(root);
2581 if (IS_ERR(trans)) {
2582 if (PTR_ERR(trans) == -ENOENT)
2583 return 0;
7132a262
AJ
2584 ret = PTR_ERR(trans);
2585 trans = NULL;
2586 goto error_sysfs;
671415b7 2587 }
3a45bb20 2588 ret = btrfs_commit_transaction(trans);
2b82032c 2589 }
c9e9f97b 2590
5a1972bd
QW
2591 /* Update ctime/mtime for libblkid */
2592 update_dev_time(device_path);
2b82032c 2593 return ret;
79787eaa 2594
d31c32f6 2595error_sysfs:
5da54bc1 2596 btrfs_sysfs_rm_device_link(fs_devices, device);
79787eaa 2597error_trans:
0af2c4bf 2598 if (seeding_dev)
1751e8a6 2599 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2600 if (trans)
2601 btrfs_end_transaction(trans);
5c4cf6c9 2602error_free_device:
a425f9d4 2603 btrfs_free_device(device);
2b82032c 2604error:
e525fd89 2605 blkdev_put(bdev, FMODE_EXCL);
7132a262 2606 if (seeding_dev && !unlocked) {
2b82032c
YZ
2607 mutex_unlock(&uuid_mutex);
2608 up_write(&sb->s_umount);
2609 }
c9e9f97b 2610 return ret;
788f20eb
CM
2611}
2612
d397712b
CM
2613static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2614 struct btrfs_device *device)
0b86a832
CM
2615{
2616 int ret;
2617 struct btrfs_path *path;
0b246afa 2618 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2619 struct btrfs_dev_item *dev_item;
2620 struct extent_buffer *leaf;
2621 struct btrfs_key key;
2622
0b86a832
CM
2623 path = btrfs_alloc_path();
2624 if (!path)
2625 return -ENOMEM;
2626
2627 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2628 key.type = BTRFS_DEV_ITEM_KEY;
2629 key.offset = device->devid;
2630
2631 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2632 if (ret < 0)
2633 goto out;
2634
2635 if (ret > 0) {
2636 ret = -ENOENT;
2637 goto out;
2638 }
2639
2640 leaf = path->nodes[0];
2641 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2642
2643 btrfs_set_device_id(leaf, dev_item, device->devid);
2644 btrfs_set_device_type(leaf, dev_item, device->type);
2645 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2646 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2647 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2648 btrfs_set_device_total_bytes(leaf, dev_item,
2649 btrfs_device_get_disk_total_bytes(device));
2650 btrfs_set_device_bytes_used(leaf, dev_item,
2651 btrfs_device_get_bytes_used(device));
0b86a832
CM
2652 btrfs_mark_buffer_dirty(leaf);
2653
2654out:
2655 btrfs_free_path(path);
2656 return ret;
2657}
2658
2196d6e8 2659int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2660 struct btrfs_device *device, u64 new_size)
2661{
0b246afa
JM
2662 struct btrfs_fs_info *fs_info = device->fs_info;
2663 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2664 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2665 u64 old_total;
2666 u64 diff;
8f18cf13 2667
ebbede42 2668 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2669 return -EACCES;
2196d6e8 2670
7dfb8be1
NB
2671 new_size = round_down(new_size, fs_info->sectorsize);
2672
34441361 2673 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2674 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2675 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2676
63a212ab 2677 if (new_size <= device->total_bytes ||
401e29c1 2678 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2679 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2680 return -EINVAL;
2196d6e8 2681 }
2b82032c 2682
0b246afa 2683 fs_devices = fs_info->fs_devices;
2b82032c 2684
7dfb8be1
NB
2685 btrfs_set_super_total_bytes(super_copy,
2686 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2687 device->fs_devices->total_rw_bytes += diff;
2688
7cc8e58d
MX
2689 btrfs_device_set_total_bytes(device, new_size);
2690 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2691 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2692 if (list_empty(&device->resized_list))
2693 list_add_tail(&device->resized_list,
2694 &fs_devices->resized_devices);
34441361 2695 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2696
8f18cf13
CM
2697 return btrfs_update_device(trans, device);
2698}
2699
2700static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
408fbf19 2701 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2702{
5b4aacef 2703 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2704 int ret;
2705 struct btrfs_path *path;
2706 struct btrfs_key key;
2707
8f18cf13
CM
2708 path = btrfs_alloc_path();
2709 if (!path)
2710 return -ENOMEM;
2711
408fbf19 2712 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2713 key.offset = chunk_offset;
2714 key.type = BTRFS_CHUNK_ITEM_KEY;
2715
2716 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2717 if (ret < 0)
2718 goto out;
2719 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2720 btrfs_handle_fs_error(fs_info, -ENOENT,
2721 "Failed lookup while freeing chunk.");
79787eaa
JM
2722 ret = -ENOENT;
2723 goto out;
2724 }
8f18cf13
CM
2725
2726 ret = btrfs_del_item(trans, root, path);
79787eaa 2727 if (ret < 0)
0b246afa
JM
2728 btrfs_handle_fs_error(fs_info, ret,
2729 "Failed to delete chunk item.");
79787eaa 2730out:
8f18cf13 2731 btrfs_free_path(path);
65a246c5 2732 return ret;
8f18cf13
CM
2733}
2734
408fbf19 2735static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2736{
0b246afa 2737 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2738 struct btrfs_disk_key *disk_key;
2739 struct btrfs_chunk *chunk;
2740 u8 *ptr;
2741 int ret = 0;
2742 u32 num_stripes;
2743 u32 array_size;
2744 u32 len = 0;
2745 u32 cur;
2746 struct btrfs_key key;
2747
34441361 2748 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2749 array_size = btrfs_super_sys_array_size(super_copy);
2750
2751 ptr = super_copy->sys_chunk_array;
2752 cur = 0;
2753
2754 while (cur < array_size) {
2755 disk_key = (struct btrfs_disk_key *)ptr;
2756 btrfs_disk_key_to_cpu(&key, disk_key);
2757
2758 len = sizeof(*disk_key);
2759
2760 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2761 chunk = (struct btrfs_chunk *)(ptr + len);
2762 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2763 len += btrfs_chunk_item_size(num_stripes);
2764 } else {
2765 ret = -EIO;
2766 break;
2767 }
408fbf19 2768 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2769 key.offset == chunk_offset) {
2770 memmove(ptr, ptr + len, array_size - (cur + len));
2771 array_size -= len;
2772 btrfs_set_super_sys_array_size(super_copy, array_size);
2773 } else {
2774 ptr += len;
2775 cur += len;
2776 }
2777 }
34441361 2778 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2779 return ret;
2780}
2781
592d92ee
LB
2782static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2783 u64 logical, u64 length)
2784{
2785 struct extent_map_tree *em_tree;
2786 struct extent_map *em;
2787
2788 em_tree = &fs_info->mapping_tree.map_tree;
2789 read_lock(&em_tree->lock);
2790 em = lookup_extent_mapping(em_tree, logical, length);
2791 read_unlock(&em_tree->lock);
2792
2793 if (!em) {
2794 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2795 logical, length);
2796 return ERR_PTR(-EINVAL);
2797 }
2798
2799 if (em->start > logical || em->start + em->len < logical) {
2800 btrfs_crit(fs_info,
2801 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2802 logical, length, em->start, em->start + em->len);
2803 free_extent_map(em);
2804 return ERR_PTR(-EINVAL);
2805 }
2806
2807 /* callers are responsible for dropping em's ref. */
2808 return em;
2809}
2810
47ab2a6c 2811int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2812 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2813{
8f18cf13
CM
2814 struct extent_map *em;
2815 struct map_lookup *map;
2196d6e8 2816 u64 dev_extent_len = 0;
47ab2a6c 2817 int i, ret = 0;
0b246afa 2818 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2819
592d92ee
LB
2820 em = get_chunk_map(fs_info, chunk_offset, 1);
2821 if (IS_ERR(em)) {
47ab2a6c
JB
2822 /*
2823 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2824 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2825 * do anything we still error out.
2826 */
2827 ASSERT(0);
592d92ee 2828 return PTR_ERR(em);
47ab2a6c 2829 }
95617d69 2830 map = em->map_lookup;
34441361 2831 mutex_lock(&fs_info->chunk_mutex);
451a2c13 2832 check_system_chunk(trans, map->type);
34441361 2833 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2834
57ba4cb8
FM
2835 /*
2836 * Take the device list mutex to prevent races with the final phase of
2837 * a device replace operation that replaces the device object associated
2838 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2839 */
2840 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2841 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2842 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2843 ret = btrfs_free_dev_extent(trans, device,
2844 map->stripes[i].physical,
2845 &dev_extent_len);
47ab2a6c 2846 if (ret) {
57ba4cb8 2847 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2848 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2849 goto out;
2850 }
a061fc8d 2851
2196d6e8 2852 if (device->bytes_used > 0) {
34441361 2853 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2854 btrfs_device_set_bytes_used(device,
2855 device->bytes_used - dev_extent_len);
a5ed45f8 2856 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2857 btrfs_clear_space_info_full(fs_info);
34441361 2858 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2859 }
a061fc8d 2860
dfe25020
CM
2861 if (map->stripes[i].dev) {
2862 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2863 if (ret) {
57ba4cb8 2864 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2865 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2866 goto out;
2867 }
dfe25020 2868 }
8f18cf13 2869 }
57ba4cb8
FM
2870 mutex_unlock(&fs_devices->device_list_mutex);
2871
408fbf19 2872 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
47ab2a6c 2873 if (ret) {
66642832 2874 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2875 goto out;
2876 }
8f18cf13 2877
6bccf3ab 2878 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2879
8f18cf13 2880 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2881 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2882 if (ret) {
66642832 2883 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2884 goto out;
2885 }
8f18cf13
CM
2886 }
2887
5a98ec01 2888 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 2889 if (ret) {
66642832 2890 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2891 goto out;
2892 }
2b82032c 2893
47ab2a6c 2894out:
2b82032c
YZ
2895 /* once for us */
2896 free_extent_map(em);
47ab2a6c
JB
2897 return ret;
2898}
2b82032c 2899
5b4aacef 2900static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2901{
5b4aacef 2902 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2903 struct btrfs_trans_handle *trans;
47ab2a6c 2904 int ret;
2b82032c 2905
67c5e7d4
FM
2906 /*
2907 * Prevent races with automatic removal of unused block groups.
2908 * After we relocate and before we remove the chunk with offset
2909 * chunk_offset, automatic removal of the block group can kick in,
2910 * resulting in a failure when calling btrfs_remove_chunk() below.
2911 *
2912 * Make sure to acquire this mutex before doing a tree search (dev
2913 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2914 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2915 * we release the path used to search the chunk/dev tree and before
2916 * the current task acquires this mutex and calls us.
2917 */
a32bf9a3 2918 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 2919
0b246afa 2920 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2921 if (ret)
2922 return -ENOSPC;
2923
2924 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2925 btrfs_scrub_pause(fs_info);
0b246afa 2926 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2927 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2928 if (ret)
2929 return ret;
2930
75cb379d
JM
2931 /*
2932 * We add the kobjects here (and after forcing data chunk creation)
2933 * since relocation is the only place we'll create chunks of a new
2934 * type at runtime. The only place where we'll remove the last
2935 * chunk of a type is the call immediately below this one. Even
2936 * so, we're protected against races with the cleaner thread since
2937 * we're covered by the delete_unused_bgs_mutex.
2938 */
2939 btrfs_add_raid_kobjects(fs_info);
2940
19c4d2f9
CM
2941 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2942 chunk_offset);
2943 if (IS_ERR(trans)) {
2944 ret = PTR_ERR(trans);
2945 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2946 return ret;
2947 }
2948
47ab2a6c 2949 /*
19c4d2f9
CM
2950 * step two, delete the device extents and the
2951 * chunk tree entries
47ab2a6c 2952 */
5b4aacef 2953 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2954 btrfs_end_transaction(trans);
19c4d2f9 2955 return ret;
2b82032c
YZ
2956}
2957
2ff7e61e 2958static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2959{
0b246afa 2960 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2961 struct btrfs_path *path;
2962 struct extent_buffer *leaf;
2963 struct btrfs_chunk *chunk;
2964 struct btrfs_key key;
2965 struct btrfs_key found_key;
2b82032c 2966 u64 chunk_type;
ba1bf481
JB
2967 bool retried = false;
2968 int failed = 0;
2b82032c
YZ
2969 int ret;
2970
2971 path = btrfs_alloc_path();
2972 if (!path)
2973 return -ENOMEM;
2974
ba1bf481 2975again:
2b82032c
YZ
2976 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2977 key.offset = (u64)-1;
2978 key.type = BTRFS_CHUNK_ITEM_KEY;
2979
2980 while (1) {
0b246afa 2981 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2982 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2983 if (ret < 0) {
0b246afa 2984 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2985 goto error;
67c5e7d4 2986 }
79787eaa 2987 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2988
2989 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2990 key.type);
67c5e7d4 2991 if (ret)
0b246afa 2992 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2993 if (ret < 0)
2994 goto error;
2995 if (ret > 0)
2996 break;
1a40e23b 2997
2b82032c
YZ
2998 leaf = path->nodes[0];
2999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3000
2b82032c
YZ
3001 chunk = btrfs_item_ptr(leaf, path->slots[0],
3002 struct btrfs_chunk);
3003 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3004 btrfs_release_path(path);
8f18cf13 3005
2b82032c 3006 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3007 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3008 if (ret == -ENOSPC)
3009 failed++;
14586651
HS
3010 else
3011 BUG_ON(ret);
2b82032c 3012 }
0b246afa 3013 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3014
2b82032c
YZ
3015 if (found_key.offset == 0)
3016 break;
3017 key.offset = found_key.offset - 1;
3018 }
3019 ret = 0;
ba1bf481
JB
3020 if (failed && !retried) {
3021 failed = 0;
3022 retried = true;
3023 goto again;
fae7f21c 3024 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3025 ret = -ENOSPC;
3026 }
2b82032c
YZ
3027error:
3028 btrfs_free_path(path);
3029 return ret;
8f18cf13
CM
3030}
3031
a6f93c71
LB
3032/*
3033 * return 1 : allocate a data chunk successfully,
3034 * return <0: errors during allocating a data chunk,
3035 * return 0 : no need to allocate a data chunk.
3036 */
3037static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3038 u64 chunk_offset)
3039{
3040 struct btrfs_block_group_cache *cache;
3041 u64 bytes_used;
3042 u64 chunk_type;
3043
3044 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3045 ASSERT(cache);
3046 chunk_type = cache->flags;
3047 btrfs_put_block_group(cache);
3048
3049 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3050 spin_lock(&fs_info->data_sinfo->lock);
3051 bytes_used = fs_info->data_sinfo->bytes_used;
3052 spin_unlock(&fs_info->data_sinfo->lock);
3053
3054 if (!bytes_used) {
3055 struct btrfs_trans_handle *trans;
3056 int ret;
3057
3058 trans = btrfs_join_transaction(fs_info->tree_root);
3059 if (IS_ERR(trans))
3060 return PTR_ERR(trans);
3061
43a7e99d 3062 ret = btrfs_force_chunk_alloc(trans,
a6f93c71
LB
3063 BTRFS_BLOCK_GROUP_DATA);
3064 btrfs_end_transaction(trans);
3065 if (ret < 0)
3066 return ret;
3067
75cb379d
JM
3068 btrfs_add_raid_kobjects(fs_info);
3069
a6f93c71
LB
3070 return 1;
3071 }
3072 }
3073 return 0;
3074}
3075
6bccf3ab 3076static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3077 struct btrfs_balance_control *bctl)
3078{
6bccf3ab 3079 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3080 struct btrfs_trans_handle *trans;
3081 struct btrfs_balance_item *item;
3082 struct btrfs_disk_balance_args disk_bargs;
3083 struct btrfs_path *path;
3084 struct extent_buffer *leaf;
3085 struct btrfs_key key;
3086 int ret, err;
3087
3088 path = btrfs_alloc_path();
3089 if (!path)
3090 return -ENOMEM;
3091
3092 trans = btrfs_start_transaction(root, 0);
3093 if (IS_ERR(trans)) {
3094 btrfs_free_path(path);
3095 return PTR_ERR(trans);
3096 }
3097
3098 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3099 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3100 key.offset = 0;
3101
3102 ret = btrfs_insert_empty_item(trans, root, path, &key,
3103 sizeof(*item));
3104 if (ret)
3105 goto out;
3106
3107 leaf = path->nodes[0];
3108 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3109
b159fa28 3110 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3111
3112 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3113 btrfs_set_balance_data(leaf, item, &disk_bargs);
3114 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3115 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3116 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3117 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3118
3119 btrfs_set_balance_flags(leaf, item, bctl->flags);
3120
3121 btrfs_mark_buffer_dirty(leaf);
3122out:
3123 btrfs_free_path(path);
3a45bb20 3124 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3125 if (err && !ret)
3126 ret = err;
3127 return ret;
3128}
3129
6bccf3ab 3130static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3131{
6bccf3ab 3132 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3133 struct btrfs_trans_handle *trans;
3134 struct btrfs_path *path;
3135 struct btrfs_key key;
3136 int ret, err;
3137
3138 path = btrfs_alloc_path();
3139 if (!path)
3140 return -ENOMEM;
3141
3142 trans = btrfs_start_transaction(root, 0);
3143 if (IS_ERR(trans)) {
3144 btrfs_free_path(path);
3145 return PTR_ERR(trans);
3146 }
3147
3148 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3149 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3150 key.offset = 0;
3151
3152 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3153 if (ret < 0)
3154 goto out;
3155 if (ret > 0) {
3156 ret = -ENOENT;
3157 goto out;
3158 }
3159
3160 ret = btrfs_del_item(trans, root, path);
3161out:
3162 btrfs_free_path(path);
3a45bb20 3163 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3164 if (err && !ret)
3165 ret = err;
3166 return ret;
3167}
3168
59641015
ID
3169/*
3170 * This is a heuristic used to reduce the number of chunks balanced on
3171 * resume after balance was interrupted.
3172 */
3173static void update_balance_args(struct btrfs_balance_control *bctl)
3174{
3175 /*
3176 * Turn on soft mode for chunk types that were being converted.
3177 */
3178 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3179 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3180 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3181 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3182 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3183 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3184
3185 /*
3186 * Turn on usage filter if is not already used. The idea is
3187 * that chunks that we have already balanced should be
3188 * reasonably full. Don't do it for chunks that are being
3189 * converted - that will keep us from relocating unconverted
3190 * (albeit full) chunks.
3191 */
3192 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3193 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3194 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3195 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3196 bctl->data.usage = 90;
3197 }
3198 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3199 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3200 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3201 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3202 bctl->sys.usage = 90;
3203 }
3204 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3205 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3206 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3207 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3208 bctl->meta.usage = 90;
3209 }
3210}
3211
149196a2
DS
3212/*
3213 * Clear the balance status in fs_info and delete the balance item from disk.
3214 */
3215static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3216{
3217 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3218 int ret;
c9e9f97b
ID
3219
3220 BUG_ON(!fs_info->balance_ctl);
3221
3222 spin_lock(&fs_info->balance_lock);
3223 fs_info->balance_ctl = NULL;
3224 spin_unlock(&fs_info->balance_lock);
3225
3226 kfree(bctl);
149196a2
DS
3227 ret = del_balance_item(fs_info);
3228 if (ret)
3229 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3230}
3231
ed25e9b2
ID
3232/*
3233 * Balance filters. Return 1 if chunk should be filtered out
3234 * (should not be balanced).
3235 */
899c81ea 3236static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3237 struct btrfs_balance_args *bargs)
3238{
899c81ea
ID
3239 chunk_type = chunk_to_extended(chunk_type) &
3240 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3241
899c81ea 3242 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3243 return 0;
3244
3245 return 1;
3246}
3247
dba72cb3 3248static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3249 struct btrfs_balance_args *bargs)
bc309467
DS
3250{
3251 struct btrfs_block_group_cache *cache;
3252 u64 chunk_used;
3253 u64 user_thresh_min;
3254 u64 user_thresh_max;
3255 int ret = 1;
3256
3257 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3258 chunk_used = btrfs_block_group_used(&cache->item);
3259
3260 if (bargs->usage_min == 0)
3261 user_thresh_min = 0;
3262 else
3263 user_thresh_min = div_factor_fine(cache->key.offset,
3264 bargs->usage_min);
3265
3266 if (bargs->usage_max == 0)
3267 user_thresh_max = 1;
3268 else if (bargs->usage_max > 100)
3269 user_thresh_max = cache->key.offset;
3270 else
3271 user_thresh_max = div_factor_fine(cache->key.offset,
3272 bargs->usage_max);
3273
3274 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3275 ret = 0;
3276
3277 btrfs_put_block_group(cache);
3278 return ret;
3279}
3280
dba72cb3 3281static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3282 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3283{
3284 struct btrfs_block_group_cache *cache;
3285 u64 chunk_used, user_thresh;
3286 int ret = 1;
3287
3288 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3289 chunk_used = btrfs_block_group_used(&cache->item);
3290
bc309467 3291 if (bargs->usage_min == 0)
3e39cea6 3292 user_thresh = 1;
a105bb88
ID
3293 else if (bargs->usage > 100)
3294 user_thresh = cache->key.offset;
3295 else
3296 user_thresh = div_factor_fine(cache->key.offset,
3297 bargs->usage);
3298
5ce5b3c0
ID
3299 if (chunk_used < user_thresh)
3300 ret = 0;
3301
3302 btrfs_put_block_group(cache);
3303 return ret;
3304}
3305
409d404b
ID
3306static int chunk_devid_filter(struct extent_buffer *leaf,
3307 struct btrfs_chunk *chunk,
3308 struct btrfs_balance_args *bargs)
3309{
3310 struct btrfs_stripe *stripe;
3311 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3312 int i;
3313
3314 for (i = 0; i < num_stripes; i++) {
3315 stripe = btrfs_stripe_nr(chunk, i);
3316 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3317 return 0;
3318 }
3319
3320 return 1;
3321}
3322
94e60d5a
ID
3323/* [pstart, pend) */
3324static int chunk_drange_filter(struct extent_buffer *leaf,
3325 struct btrfs_chunk *chunk,
94e60d5a
ID
3326 struct btrfs_balance_args *bargs)
3327{
3328 struct btrfs_stripe *stripe;
3329 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3330 u64 stripe_offset;
3331 u64 stripe_length;
3332 int factor;
3333 int i;
3334
3335 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3336 return 0;
3337
3338 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3339 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3340 factor = num_stripes / 2;
3341 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3342 factor = num_stripes - 1;
3343 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3344 factor = num_stripes - 2;
3345 } else {
3346 factor = num_stripes;
3347 }
94e60d5a
ID
3348
3349 for (i = 0; i < num_stripes; i++) {
3350 stripe = btrfs_stripe_nr(chunk, i);
3351 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3352 continue;
3353
3354 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3355 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3356 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3357
3358 if (stripe_offset < bargs->pend &&
3359 stripe_offset + stripe_length > bargs->pstart)
3360 return 0;
3361 }
3362
3363 return 1;
3364}
3365
ea67176a
ID
3366/* [vstart, vend) */
3367static int chunk_vrange_filter(struct extent_buffer *leaf,
3368 struct btrfs_chunk *chunk,
3369 u64 chunk_offset,
3370 struct btrfs_balance_args *bargs)
3371{
3372 if (chunk_offset < bargs->vend &&
3373 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3374 /* at least part of the chunk is inside this vrange */
3375 return 0;
3376
3377 return 1;
3378}
3379
dee32d0a
GAP
3380static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3381 struct btrfs_chunk *chunk,
3382 struct btrfs_balance_args *bargs)
3383{
3384 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3385
3386 if (bargs->stripes_min <= num_stripes
3387 && num_stripes <= bargs->stripes_max)
3388 return 0;
3389
3390 return 1;
3391}
3392
899c81ea 3393static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3394 struct btrfs_balance_args *bargs)
3395{
3396 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3397 return 0;
3398
899c81ea
ID
3399 chunk_type = chunk_to_extended(chunk_type) &
3400 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3401
899c81ea 3402 if (bargs->target == chunk_type)
cfa4c961
ID
3403 return 1;
3404
3405 return 0;
3406}
3407
2ff7e61e 3408static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3409 struct extent_buffer *leaf,
3410 struct btrfs_chunk *chunk, u64 chunk_offset)
3411{
0b246afa 3412 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3413 struct btrfs_balance_args *bargs = NULL;
3414 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3415
3416 /* type filter */
3417 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3418 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3419 return 0;
3420 }
3421
3422 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3423 bargs = &bctl->data;
3424 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3425 bargs = &bctl->sys;
3426 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3427 bargs = &bctl->meta;
3428
ed25e9b2
ID
3429 /* profiles filter */
3430 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3431 chunk_profiles_filter(chunk_type, bargs)) {
3432 return 0;
5ce5b3c0
ID
3433 }
3434
3435 /* usage filter */
3436 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3437 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3438 return 0;
bc309467 3439 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3440 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3441 return 0;
409d404b
ID
3442 }
3443
3444 /* devid filter */
3445 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3446 chunk_devid_filter(leaf, chunk, bargs)) {
3447 return 0;
94e60d5a
ID
3448 }
3449
3450 /* drange filter, makes sense only with devid filter */
3451 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3452 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3453 return 0;
ea67176a
ID
3454 }
3455
3456 /* vrange filter */
3457 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3458 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3459 return 0;
ed25e9b2
ID
3460 }
3461
dee32d0a
GAP
3462 /* stripes filter */
3463 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3464 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3465 return 0;
3466 }
3467
cfa4c961
ID
3468 /* soft profile changing mode */
3469 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3470 chunk_soft_convert_filter(chunk_type, bargs)) {
3471 return 0;
3472 }
3473
7d824b6f
DS
3474 /*
3475 * limited by count, must be the last filter
3476 */
3477 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3478 if (bargs->limit == 0)
3479 return 0;
3480 else
3481 bargs->limit--;
12907fc7
DS
3482 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3483 /*
3484 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3485 * determined here because we do not have the global information
12907fc7
DS
3486 * about the count of all chunks that satisfy the filters.
3487 */
3488 if (bargs->limit_max == 0)
3489 return 0;
3490 else
3491 bargs->limit_max--;
7d824b6f
DS
3492 }
3493
f43ffb60
ID
3494 return 1;
3495}
3496
c9e9f97b 3497static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3498{
19a39dce 3499 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3500 struct btrfs_root *chunk_root = fs_info->chunk_root;
3501 struct btrfs_root *dev_root = fs_info->dev_root;
3502 struct list_head *devices;
ec44a35c
CM
3503 struct btrfs_device *device;
3504 u64 old_size;
3505 u64 size_to_free;
12907fc7 3506 u64 chunk_type;
f43ffb60 3507 struct btrfs_chunk *chunk;
5a488b9d 3508 struct btrfs_path *path = NULL;
ec44a35c 3509 struct btrfs_key key;
ec44a35c 3510 struct btrfs_key found_key;
c9e9f97b 3511 struct btrfs_trans_handle *trans;
f43ffb60
ID
3512 struct extent_buffer *leaf;
3513 int slot;
c9e9f97b
ID
3514 int ret;
3515 int enospc_errors = 0;
19a39dce 3516 bool counting = true;
12907fc7 3517 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3518 u64 limit_data = bctl->data.limit;
3519 u64 limit_meta = bctl->meta.limit;
3520 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3521 u32 count_data = 0;
3522 u32 count_meta = 0;
3523 u32 count_sys = 0;
2c9fe835 3524 int chunk_reserved = 0;
ec44a35c 3525
ec44a35c 3526 /* step one make some room on all the devices */
c9e9f97b 3527 devices = &fs_info->fs_devices->devices;
c6e30871 3528 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3529 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3530 size_to_free = div_factor(old_size, 1);
ee22184b 3531 size_to_free = min_t(u64, size_to_free, SZ_1M);
ebbede42 3532 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
7cc8e58d
MX
3533 btrfs_device_get_total_bytes(device) -
3534 btrfs_device_get_bytes_used(device) > size_to_free ||
401e29c1 3535 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
ec44a35c
CM
3536 continue;
3537
3538 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3539 if (ret == -ENOSPC)
3540 break;
5a488b9d
LB
3541 if (ret) {
3542 /* btrfs_shrink_device never returns ret > 0 */
3543 WARN_ON(ret > 0);
3544 goto error;
3545 }
ec44a35c 3546
a22285a6 3547 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3548 if (IS_ERR(trans)) {
3549 ret = PTR_ERR(trans);
3550 btrfs_info_in_rcu(fs_info,
3551 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3552 rcu_str_deref(device->name), ret,
3553 old_size, old_size - size_to_free);
3554 goto error;
3555 }
ec44a35c
CM
3556
3557 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3558 if (ret) {
3a45bb20 3559 btrfs_end_transaction(trans);
5a488b9d
LB
3560 /* btrfs_grow_device never returns ret > 0 */
3561 WARN_ON(ret > 0);
3562 btrfs_info_in_rcu(fs_info,
3563 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3564 rcu_str_deref(device->name), ret,
3565 old_size, old_size - size_to_free);
3566 goto error;
3567 }
ec44a35c 3568
3a45bb20 3569 btrfs_end_transaction(trans);
ec44a35c
CM
3570 }
3571
3572 /* step two, relocate all the chunks */
3573 path = btrfs_alloc_path();
17e9f796
MF
3574 if (!path) {
3575 ret = -ENOMEM;
3576 goto error;
3577 }
19a39dce
ID
3578
3579 /* zero out stat counters */
3580 spin_lock(&fs_info->balance_lock);
3581 memset(&bctl->stat, 0, sizeof(bctl->stat));
3582 spin_unlock(&fs_info->balance_lock);
3583again:
7d824b6f 3584 if (!counting) {
12907fc7
DS
3585 /*
3586 * The single value limit and min/max limits use the same bytes
3587 * in the
3588 */
7d824b6f
DS
3589 bctl->data.limit = limit_data;
3590 bctl->meta.limit = limit_meta;
3591 bctl->sys.limit = limit_sys;
3592 }
ec44a35c
CM
3593 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3594 key.offset = (u64)-1;
3595 key.type = BTRFS_CHUNK_ITEM_KEY;
3596
d397712b 3597 while (1) {
19a39dce 3598 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3599 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3600 ret = -ECANCELED;
3601 goto error;
3602 }
3603
67c5e7d4 3604 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3605 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3606 if (ret < 0) {
3607 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3608 goto error;
67c5e7d4 3609 }
ec44a35c
CM
3610
3611 /*
3612 * this shouldn't happen, it means the last relocate
3613 * failed
3614 */
3615 if (ret == 0)
c9e9f97b 3616 BUG(); /* FIXME break ? */
ec44a35c
CM
3617
3618 ret = btrfs_previous_item(chunk_root, path, 0,
3619 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3620 if (ret) {
67c5e7d4 3621 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3622 ret = 0;
ec44a35c 3623 break;
c9e9f97b 3624 }
7d9eb12c 3625
f43ffb60
ID
3626 leaf = path->nodes[0];
3627 slot = path->slots[0];
3628 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3629
67c5e7d4
FM
3630 if (found_key.objectid != key.objectid) {
3631 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3632 break;
67c5e7d4 3633 }
7d9eb12c 3634
f43ffb60 3635 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3636 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3637
19a39dce
ID
3638 if (!counting) {
3639 spin_lock(&fs_info->balance_lock);
3640 bctl->stat.considered++;
3641 spin_unlock(&fs_info->balance_lock);
3642 }
3643
2ff7e61e 3644 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3645 found_key.offset);
2c9fe835 3646
b3b4aa74 3647 btrfs_release_path(path);
67c5e7d4
FM
3648 if (!ret) {
3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3650 goto loop;
67c5e7d4 3651 }
f43ffb60 3652
19a39dce 3653 if (counting) {
67c5e7d4 3654 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3655 spin_lock(&fs_info->balance_lock);
3656 bctl->stat.expected++;
3657 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3658
3659 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3660 count_data++;
3661 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3662 count_sys++;
3663 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3664 count_meta++;
3665
3666 goto loop;
3667 }
3668
3669 /*
3670 * Apply limit_min filter, no need to check if the LIMITS
3671 * filter is used, limit_min is 0 by default
3672 */
3673 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3674 count_data < bctl->data.limit_min)
3675 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3676 count_meta < bctl->meta.limit_min)
3677 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3678 count_sys < bctl->sys.limit_min)) {
3679 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3680 goto loop;
3681 }
3682
a6f93c71
LB
3683 if (!chunk_reserved) {
3684 /*
3685 * We may be relocating the only data chunk we have,
3686 * which could potentially end up with losing data's
3687 * raid profile, so lets allocate an empty one in
3688 * advance.
3689 */
3690 ret = btrfs_may_alloc_data_chunk(fs_info,
3691 found_key.offset);
2c9fe835
ZL
3692 if (ret < 0) {
3693 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3694 goto error;
a6f93c71
LB
3695 } else if (ret == 1) {
3696 chunk_reserved = 1;
2c9fe835 3697 }
2c9fe835
ZL
3698 }
3699
5b4aacef 3700 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3701 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3702 if (ret && ret != -ENOSPC)
3703 goto error;
19a39dce 3704 if (ret == -ENOSPC) {
c9e9f97b 3705 enospc_errors++;
19a39dce
ID
3706 } else {
3707 spin_lock(&fs_info->balance_lock);
3708 bctl->stat.completed++;
3709 spin_unlock(&fs_info->balance_lock);
3710 }
f43ffb60 3711loop:
795a3321
ID
3712 if (found_key.offset == 0)
3713 break;
ba1bf481 3714 key.offset = found_key.offset - 1;
ec44a35c 3715 }
c9e9f97b 3716
19a39dce
ID
3717 if (counting) {
3718 btrfs_release_path(path);
3719 counting = false;
3720 goto again;
3721 }
ec44a35c
CM
3722error:
3723 btrfs_free_path(path);
c9e9f97b 3724 if (enospc_errors) {
efe120a0 3725 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3726 enospc_errors);
c9e9f97b
ID
3727 if (!ret)
3728 ret = -ENOSPC;
3729 }
3730
ec44a35c
CM
3731 return ret;
3732}
3733
0c460c0d
ID
3734/**
3735 * alloc_profile_is_valid - see if a given profile is valid and reduced
3736 * @flags: profile to validate
3737 * @extended: if true @flags is treated as an extended profile
3738 */
3739static int alloc_profile_is_valid(u64 flags, int extended)
3740{
3741 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3742 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3743
3744 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3745
3746 /* 1) check that all other bits are zeroed */
3747 if (flags & ~mask)
3748 return 0;
3749
3750 /* 2) see if profile is reduced */
3751 if (flags == 0)
3752 return !extended; /* "0" is valid for usual profiles */
3753
3754 /* true if exactly one bit set */
3755 return (flags & (flags - 1)) == 0;
3756}
3757
837d5b6e
ID
3758static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3759{
a7e99c69
ID
3760 /* cancel requested || normal exit path */
3761 return atomic_read(&fs_info->balance_cancel_req) ||
3762 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3763 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3764}
3765
bdcd3c97
AM
3766/* Non-zero return value signifies invalidity */
3767static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3768 u64 allowed)
3769{
3770 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3771 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3772 (bctl_arg->target & ~allowed)));
3773}
3774
c9e9f97b 3775/*
dccdb07b 3776 * Should be called with balance mutexe held
c9e9f97b 3777 */
6fcf6e2b
DS
3778int btrfs_balance(struct btrfs_fs_info *fs_info,
3779 struct btrfs_balance_control *bctl,
c9e9f97b
ID
3780 struct btrfs_ioctl_balance_args *bargs)
3781{
14506127 3782 u64 meta_target, data_target;
f43ffb60 3783 u64 allowed;
e4837f8f 3784 int mixed = 0;
c9e9f97b 3785 int ret;
8dabb742 3786 u64 num_devices;
de98ced9 3787 unsigned seq;
c9e9f97b 3788
837d5b6e 3789 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3790 atomic_read(&fs_info->balance_pause_req) ||
3791 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3792 ret = -EINVAL;
3793 goto out;
3794 }
3795
e4837f8f
ID
3796 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3797 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3798 mixed = 1;
3799
f43ffb60
ID
3800 /*
3801 * In case of mixed groups both data and meta should be picked,
3802 * and identical options should be given for both of them.
3803 */
e4837f8f
ID
3804 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3805 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3806 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3807 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3808 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 3809 btrfs_err(fs_info,
6dac13f8 3810 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
3811 ret = -EINVAL;
3812 goto out;
3813 }
3814 }
3815
8dabb742 3816 num_devices = fs_info->fs_devices->num_devices;
7e79cb86 3817 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
8dabb742
SB
3818 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3819 BUG_ON(num_devices < 1);
3820 num_devices--;
3821 }
7e79cb86 3822 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
88be159c
AH
3823 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3824 if (num_devices > 1)
e4d8ec0f 3825 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3826 if (num_devices > 2)
3827 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3828 if (num_devices > 3)
3829 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3830 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3831 if (validate_convert_profile(&bctl->data, allowed)) {
6dac13f8
AJ
3832 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3833
5d163e0e 3834 btrfs_err(fs_info,
6dac13f8
AJ
3835 "balance: invalid convert data profile %s",
3836 get_raid_name(index));
e4d8ec0f
ID
3837 ret = -EINVAL;
3838 goto out;
3839 }
bdcd3c97 3840 if (validate_convert_profile(&bctl->meta, allowed)) {
6dac13f8
AJ
3841 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3842
efe120a0 3843 btrfs_err(fs_info,
6dac13f8
AJ
3844 "balance: invalid convert metadata profile %s",
3845 get_raid_name(index));
e4d8ec0f
ID
3846 ret = -EINVAL;
3847 goto out;
3848 }
bdcd3c97 3849 if (validate_convert_profile(&bctl->sys, allowed)) {
6dac13f8
AJ
3850 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3851
efe120a0 3852 btrfs_err(fs_info,
6dac13f8
AJ
3853 "balance: invalid convert system profile %s",
3854 get_raid_name(index));
e4d8ec0f
ID
3855 ret = -EINVAL;
3856 goto out;
3857 }
3858
e4d8ec0f
ID
3859 /* allow to reduce meta or sys integrity only if force set */
3860 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3861 BTRFS_BLOCK_GROUP_RAID10 |
3862 BTRFS_BLOCK_GROUP_RAID5 |
3863 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3864 do {
3865 seq = read_seqbegin(&fs_info->profiles_lock);
3866
3867 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868 (fs_info->avail_system_alloc_bits & allowed) &&
3869 !(bctl->sys.target & allowed)) ||
3870 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3871 (fs_info->avail_metadata_alloc_bits & allowed) &&
3872 !(bctl->meta.target & allowed))) {
3873 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e 3874 btrfs_info(fs_info,
6dac13f8 3875 "balance: force reducing metadata integrity");
de98ced9 3876 } else {
5d163e0e 3877 btrfs_err(fs_info,
6dac13f8 3878 "balance: reduces metadata integrity, use --force if you want this");
de98ced9
MX
3879 ret = -EINVAL;
3880 goto out;
3881 }
e4d8ec0f 3882 }
de98ced9 3883 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3884
14506127
AB
3885 /* if we're not converting, the target field is uninitialized */
3886 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3887 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3888 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3889 bctl->data.target : fs_info->avail_data_alloc_bits;
3890 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3891 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
6dac13f8
AJ
3892 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3893 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3894
ee592d07 3895 btrfs_warn(fs_info,
6dac13f8
AJ
3896 "balance: metadata profile %s has lower redundancy than data profile %s",
3897 get_raid_name(meta_index), get_raid_name(data_index));
ee592d07
ST
3898 }
3899
6bccf3ab 3900 ret = insert_balance_item(fs_info, bctl);
59641015 3901 if (ret && ret != -EEXIST)
0940ebf6
ID
3902 goto out;
3903
59641015
ID
3904 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3905 BUG_ON(ret == -EEXIST);
833aae18
DS
3906 BUG_ON(fs_info->balance_ctl);
3907 spin_lock(&fs_info->balance_lock);
3908 fs_info->balance_ctl = bctl;
3909 spin_unlock(&fs_info->balance_lock);
59641015
ID
3910 } else {
3911 BUG_ON(ret != -EEXIST);
3912 spin_lock(&fs_info->balance_lock);
3913 update_balance_args(bctl);
3914 spin_unlock(&fs_info->balance_lock);
3915 }
c9e9f97b 3916
3009a62f
DS
3917 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3918 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
3919 mutex_unlock(&fs_info->balance_mutex);
3920
3921 ret = __btrfs_balance(fs_info);
3922
3923 mutex_lock(&fs_info->balance_mutex);
3009a62f 3924 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
3925
3926 if (bargs) {
3927 memset(bargs, 0, sizeof(*bargs));
008ef096 3928 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
3929 }
3930
3a01aa7a
ID
3931 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3932 balance_need_close(fs_info)) {
149196a2 3933 reset_balance_state(fs_info);
a17c95df 3934 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3a01aa7a
ID
3935 }
3936
837d5b6e 3937 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3938
3939 return ret;
3940out:
59641015 3941 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 3942 reset_balance_state(fs_info);
a17c95df 3943 else
59641015 3944 kfree(bctl);
a17c95df
DS
3945 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3946
59641015
ID
3947 return ret;
3948}
3949
3950static int balance_kthread(void *data)
3951{
2b6ba629 3952 struct btrfs_fs_info *fs_info = data;
9555c6c1 3953 int ret = 0;
59641015 3954
59641015 3955 mutex_lock(&fs_info->balance_mutex);
2b6ba629 3956 if (fs_info->balance_ctl) {
6dac13f8 3957 btrfs_info(fs_info, "balance: resuming");
6fcf6e2b 3958 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
9555c6c1 3959 }
59641015 3960 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 3961
59641015
ID
3962 return ret;
3963}
3964
2b6ba629
ID
3965int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3966{
3967 struct task_struct *tsk;
3968
1354e1a1 3969 mutex_lock(&fs_info->balance_mutex);
2b6ba629 3970 if (!fs_info->balance_ctl) {
1354e1a1 3971 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
3972 return 0;
3973 }
1354e1a1 3974 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 3975
3cdde224 3976 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 3977 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
3978 return 0;
3979 }
3980
02ee654d
AJ
3981 /*
3982 * A ro->rw remount sequence should continue with the paused balance
3983 * regardless of who pauses it, system or the user as of now, so set
3984 * the resume flag.
3985 */
3986 spin_lock(&fs_info->balance_lock);
3987 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3988 spin_unlock(&fs_info->balance_lock);
3989
2b6ba629 3990 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3991 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3992}
3993
68310a5e 3994int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3995{
59641015
ID
3996 struct btrfs_balance_control *bctl;
3997 struct btrfs_balance_item *item;
3998 struct btrfs_disk_balance_args disk_bargs;
3999 struct btrfs_path *path;
4000 struct extent_buffer *leaf;
4001 struct btrfs_key key;
4002 int ret;
4003
4004 path = btrfs_alloc_path();
4005 if (!path)
4006 return -ENOMEM;
4007
59641015 4008 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4009 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4010 key.offset = 0;
4011
68310a5e 4012 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4013 if (ret < 0)
68310a5e 4014 goto out;
59641015
ID
4015 if (ret > 0) { /* ret = -ENOENT; */
4016 ret = 0;
68310a5e
ID
4017 goto out;
4018 }
4019
4020 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4021 if (!bctl) {
4022 ret = -ENOMEM;
4023 goto out;
59641015
ID
4024 }
4025
4026 leaf = path->nodes[0];
4027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4028
68310a5e
ID
4029 bctl->flags = btrfs_balance_flags(leaf, item);
4030 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4031
4032 btrfs_balance_data(leaf, item, &disk_bargs);
4033 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4034 btrfs_balance_meta(leaf, item, &disk_bargs);
4035 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4036 btrfs_balance_sys(leaf, item, &disk_bargs);
4037 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4038
eee95e3f
DS
4039 /*
4040 * This should never happen, as the paused balance state is recovered
4041 * during mount without any chance of other exclusive ops to collide.
4042 *
4043 * This gives the exclusive op status to balance and keeps in paused
4044 * state until user intervention (cancel or umount). If the ownership
4045 * cannot be assigned, show a message but do not fail. The balance
4046 * is in a paused state and must have fs_info::balance_ctl properly
4047 * set up.
4048 */
4049 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4050 btrfs_warn(fs_info,
6dac13f8 4051 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4052
68310a5e 4053 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4054 BUG_ON(fs_info->balance_ctl);
4055 spin_lock(&fs_info->balance_lock);
4056 fs_info->balance_ctl = bctl;
4057 spin_unlock(&fs_info->balance_lock);
68310a5e 4058 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4059out:
4060 btrfs_free_path(path);
ec44a35c
CM
4061 return ret;
4062}
4063
837d5b6e
ID
4064int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4065{
4066 int ret = 0;
4067
4068 mutex_lock(&fs_info->balance_mutex);
4069 if (!fs_info->balance_ctl) {
4070 mutex_unlock(&fs_info->balance_mutex);
4071 return -ENOTCONN;
4072 }
4073
3009a62f 4074 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4075 atomic_inc(&fs_info->balance_pause_req);
4076 mutex_unlock(&fs_info->balance_mutex);
4077
4078 wait_event(fs_info->balance_wait_q,
3009a62f 4079 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4080
4081 mutex_lock(&fs_info->balance_mutex);
4082 /* we are good with balance_ctl ripped off from under us */
3009a62f 4083 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4084 atomic_dec(&fs_info->balance_pause_req);
4085 } else {
4086 ret = -ENOTCONN;
4087 }
4088
4089 mutex_unlock(&fs_info->balance_mutex);
4090 return ret;
4091}
4092
a7e99c69
ID
4093int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4094{
4095 mutex_lock(&fs_info->balance_mutex);
4096 if (!fs_info->balance_ctl) {
4097 mutex_unlock(&fs_info->balance_mutex);
4098 return -ENOTCONN;
4099 }
4100
cf7d20f4
DS
4101 /*
4102 * A paused balance with the item stored on disk can be resumed at
4103 * mount time if the mount is read-write. Otherwise it's still paused
4104 * and we must not allow cancelling as it deletes the item.
4105 */
4106 if (sb_rdonly(fs_info->sb)) {
4107 mutex_unlock(&fs_info->balance_mutex);
4108 return -EROFS;
4109 }
4110
a7e99c69
ID
4111 atomic_inc(&fs_info->balance_cancel_req);
4112 /*
4113 * if we are running just wait and return, balance item is
4114 * deleted in btrfs_balance in this case
4115 */
3009a62f 4116 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4117 mutex_unlock(&fs_info->balance_mutex);
4118 wait_event(fs_info->balance_wait_q,
3009a62f 4119 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4120 mutex_lock(&fs_info->balance_mutex);
4121 } else {
a7e99c69 4122 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4123 /*
4124 * Lock released to allow other waiters to continue, we'll
4125 * reexamine the status again.
4126 */
a7e99c69
ID
4127 mutex_lock(&fs_info->balance_mutex);
4128
a17c95df 4129 if (fs_info->balance_ctl) {
149196a2 4130 reset_balance_state(fs_info);
a17c95df 4131 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
6dac13f8 4132 btrfs_info(fs_info, "balance: canceled");
a17c95df 4133 }
a7e99c69
ID
4134 }
4135
3009a62f
DS
4136 BUG_ON(fs_info->balance_ctl ||
4137 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4138 atomic_dec(&fs_info->balance_cancel_req);
4139 mutex_unlock(&fs_info->balance_mutex);
4140 return 0;
4141}
4142
803b2f54
SB
4143static int btrfs_uuid_scan_kthread(void *data)
4144{
4145 struct btrfs_fs_info *fs_info = data;
4146 struct btrfs_root *root = fs_info->tree_root;
4147 struct btrfs_key key;
803b2f54
SB
4148 struct btrfs_path *path = NULL;
4149 int ret = 0;
4150 struct extent_buffer *eb;
4151 int slot;
4152 struct btrfs_root_item root_item;
4153 u32 item_size;
f45388f3 4154 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4155
4156 path = btrfs_alloc_path();
4157 if (!path) {
4158 ret = -ENOMEM;
4159 goto out;
4160 }
4161
4162 key.objectid = 0;
4163 key.type = BTRFS_ROOT_ITEM_KEY;
4164 key.offset = 0;
4165
803b2f54 4166 while (1) {
7c829b72
AJ
4167 ret = btrfs_search_forward(root, &key, path,
4168 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4169 if (ret) {
4170 if (ret > 0)
4171 ret = 0;
4172 break;
4173 }
4174
4175 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4176 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4177 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4178 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4179 goto skip;
4180
4181 eb = path->nodes[0];
4182 slot = path->slots[0];
4183 item_size = btrfs_item_size_nr(eb, slot);
4184 if (item_size < sizeof(root_item))
4185 goto skip;
4186
803b2f54
SB
4187 read_extent_buffer(eb, &root_item,
4188 btrfs_item_ptr_offset(eb, slot),
4189 (int)sizeof(root_item));
4190 if (btrfs_root_refs(&root_item) == 0)
4191 goto skip;
f45388f3
FDBM
4192
4193 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4194 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4195 if (trans)
4196 goto update_tree;
4197
4198 btrfs_release_path(path);
803b2f54
SB
4199 /*
4200 * 1 - subvol uuid item
4201 * 1 - received_subvol uuid item
4202 */
4203 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4204 if (IS_ERR(trans)) {
4205 ret = PTR_ERR(trans);
4206 break;
4207 }
f45388f3
FDBM
4208 continue;
4209 } else {
4210 goto skip;
4211 }
4212update_tree:
4213 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4214 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4215 BTRFS_UUID_KEY_SUBVOL,
4216 key.objectid);
4217 if (ret < 0) {
efe120a0 4218 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4219 ret);
803b2f54
SB
4220 break;
4221 }
4222 }
4223
4224 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4225 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4226 root_item.received_uuid,
4227 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4228 key.objectid);
4229 if (ret < 0) {
efe120a0 4230 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4231 ret);
803b2f54
SB
4232 break;
4233 }
4234 }
4235
f45388f3 4236skip:
803b2f54 4237 if (trans) {
3a45bb20 4238 ret = btrfs_end_transaction(trans);
f45388f3 4239 trans = NULL;
803b2f54
SB
4240 if (ret)
4241 break;
4242 }
4243
803b2f54
SB
4244 btrfs_release_path(path);
4245 if (key.offset < (u64)-1) {
4246 key.offset++;
4247 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4248 key.offset = 0;
4249 key.type = BTRFS_ROOT_ITEM_KEY;
4250 } else if (key.objectid < (u64)-1) {
4251 key.offset = 0;
4252 key.type = BTRFS_ROOT_ITEM_KEY;
4253 key.objectid++;
4254 } else {
4255 break;
4256 }
4257 cond_resched();
4258 }
4259
4260out:
4261 btrfs_free_path(path);
f45388f3 4262 if (trans && !IS_ERR(trans))
3a45bb20 4263 btrfs_end_transaction(trans);
803b2f54 4264 if (ret)
efe120a0 4265 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4266 else
afcdd129 4267 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4268 up(&fs_info->uuid_tree_rescan_sem);
4269 return 0;
4270}
4271
70f80175
SB
4272/*
4273 * Callback for btrfs_uuid_tree_iterate().
4274 * returns:
4275 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4276 * < 0 if an error occurred.
70f80175
SB
4277 * > 0 if the check failed, which means the caller shall remove the entry.
4278 */
4279static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4280 u8 *uuid, u8 type, u64 subid)
4281{
4282 struct btrfs_key key;
4283 int ret = 0;
4284 struct btrfs_root *subvol_root;
4285
4286 if (type != BTRFS_UUID_KEY_SUBVOL &&
4287 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4288 goto out;
4289
4290 key.objectid = subid;
4291 key.type = BTRFS_ROOT_ITEM_KEY;
4292 key.offset = (u64)-1;
4293 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4294 if (IS_ERR(subvol_root)) {
4295 ret = PTR_ERR(subvol_root);
4296 if (ret == -ENOENT)
4297 ret = 1;
4298 goto out;
4299 }
4300
4301 switch (type) {
4302 case BTRFS_UUID_KEY_SUBVOL:
4303 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4304 ret = 1;
4305 break;
4306 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4307 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4308 BTRFS_UUID_SIZE))
4309 ret = 1;
4310 break;
4311 }
4312
4313out:
4314 return ret;
4315}
4316
4317static int btrfs_uuid_rescan_kthread(void *data)
4318{
4319 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4320 int ret;
4321
4322 /*
4323 * 1st step is to iterate through the existing UUID tree and
4324 * to delete all entries that contain outdated data.
4325 * 2nd step is to add all missing entries to the UUID tree.
4326 */
4327 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4328 if (ret < 0) {
efe120a0 4329 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4330 up(&fs_info->uuid_tree_rescan_sem);
4331 return ret;
4332 }
4333 return btrfs_uuid_scan_kthread(data);
4334}
4335
f7a81ea4
SB
4336int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4337{
4338 struct btrfs_trans_handle *trans;
4339 struct btrfs_root *tree_root = fs_info->tree_root;
4340 struct btrfs_root *uuid_root;
803b2f54
SB
4341 struct task_struct *task;
4342 int ret;
f7a81ea4
SB
4343
4344 /*
4345 * 1 - root node
4346 * 1 - root item
4347 */
4348 trans = btrfs_start_transaction(tree_root, 2);
4349 if (IS_ERR(trans))
4350 return PTR_ERR(trans);
4351
4352 uuid_root = btrfs_create_tree(trans, fs_info,
4353 BTRFS_UUID_TREE_OBJECTID);
4354 if (IS_ERR(uuid_root)) {
6d13f549 4355 ret = PTR_ERR(uuid_root);
66642832 4356 btrfs_abort_transaction(trans, ret);
3a45bb20 4357 btrfs_end_transaction(trans);
6d13f549 4358 return ret;
f7a81ea4
SB
4359 }
4360
4361 fs_info->uuid_root = uuid_root;
4362
3a45bb20 4363 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4364 if (ret)
4365 return ret;
4366
4367 down(&fs_info->uuid_tree_rescan_sem);
4368 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4369 if (IS_ERR(task)) {
70f80175 4370 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4371 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4372 up(&fs_info->uuid_tree_rescan_sem);
4373 return PTR_ERR(task);
4374 }
4375
4376 return 0;
f7a81ea4 4377}
803b2f54 4378
70f80175
SB
4379int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4380{
4381 struct task_struct *task;
4382
4383 down(&fs_info->uuid_tree_rescan_sem);
4384 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4385 if (IS_ERR(task)) {
4386 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4387 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4388 up(&fs_info->uuid_tree_rescan_sem);
4389 return PTR_ERR(task);
4390 }
4391
4392 return 0;
4393}
4394
8f18cf13
CM
4395/*
4396 * shrinking a device means finding all of the device extents past
4397 * the new size, and then following the back refs to the chunks.
4398 * The chunk relocation code actually frees the device extent
4399 */
4400int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4401{
0b246afa
JM
4402 struct btrfs_fs_info *fs_info = device->fs_info;
4403 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4404 struct btrfs_trans_handle *trans;
8f18cf13
CM
4405 struct btrfs_dev_extent *dev_extent = NULL;
4406 struct btrfs_path *path;
4407 u64 length;
8f18cf13
CM
4408 u64 chunk_offset;
4409 int ret;
4410 int slot;
ba1bf481
JB
4411 int failed = 0;
4412 bool retried = false;
53e489bc 4413 bool checked_pending_chunks = false;
8f18cf13
CM
4414 struct extent_buffer *l;
4415 struct btrfs_key key;
0b246afa 4416 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4417 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4418 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1
NB
4419 u64 diff;
4420
4421 new_size = round_down(new_size, fs_info->sectorsize);
0e4324a4 4422 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4423
401e29c1 4424 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4425 return -EINVAL;
4426
8f18cf13
CM
4427 path = btrfs_alloc_path();
4428 if (!path)
4429 return -ENOMEM;
4430
0338dff6 4431 path->reada = READA_BACK;
8f18cf13 4432
34441361 4433 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4434
7cc8e58d 4435 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4436 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4437 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4438 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4439 }
34441361 4440 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4441
ba1bf481 4442again:
8f18cf13
CM
4443 key.objectid = device->devid;
4444 key.offset = (u64)-1;
4445 key.type = BTRFS_DEV_EXTENT_KEY;
4446
213e64da 4447 do {
0b246afa 4448 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4449 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4450 if (ret < 0) {
0b246afa 4451 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4452 goto done;
67c5e7d4 4453 }
8f18cf13
CM
4454
4455 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4456 if (ret)
0b246afa 4457 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4458 if (ret < 0)
4459 goto done;
4460 if (ret) {
4461 ret = 0;
b3b4aa74 4462 btrfs_release_path(path);
bf1fb512 4463 break;
8f18cf13
CM
4464 }
4465
4466 l = path->nodes[0];
4467 slot = path->slots[0];
4468 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4469
ba1bf481 4470 if (key.objectid != device->devid) {
0b246afa 4471 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4472 btrfs_release_path(path);
bf1fb512 4473 break;
ba1bf481 4474 }
8f18cf13
CM
4475
4476 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4477 length = btrfs_dev_extent_length(l, dev_extent);
4478
ba1bf481 4479 if (key.offset + length <= new_size) {
0b246afa 4480 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4481 btrfs_release_path(path);
d6397bae 4482 break;
ba1bf481 4483 }
8f18cf13 4484
8f18cf13 4485 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4486 btrfs_release_path(path);
8f18cf13 4487
a6f93c71
LB
4488 /*
4489 * We may be relocating the only data chunk we have,
4490 * which could potentially end up with losing data's
4491 * raid profile, so lets allocate an empty one in
4492 * advance.
4493 */
4494 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4495 if (ret < 0) {
4496 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4497 goto done;
4498 }
4499
0b246afa
JM
4500 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4501 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4502 if (ret && ret != -ENOSPC)
8f18cf13 4503 goto done;
ba1bf481
JB
4504 if (ret == -ENOSPC)
4505 failed++;
213e64da 4506 } while (key.offset-- > 0);
ba1bf481
JB
4507
4508 if (failed && !retried) {
4509 failed = 0;
4510 retried = true;
4511 goto again;
4512 } else if (failed && retried) {
4513 ret = -ENOSPC;
ba1bf481 4514 goto done;
8f18cf13
CM
4515 }
4516
d6397bae 4517 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4518 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4519 if (IS_ERR(trans)) {
4520 ret = PTR_ERR(trans);
4521 goto done;
4522 }
4523
34441361 4524 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4525
4526 /*
4527 * We checked in the above loop all device extents that were already in
4528 * the device tree. However before we have updated the device's
4529 * total_bytes to the new size, we might have had chunk allocations that
4530 * have not complete yet (new block groups attached to transaction
4531 * handles), and therefore their device extents were not yet in the
4532 * device tree and we missed them in the loop above. So if we have any
4533 * pending chunk using a device extent that overlaps the device range
4534 * that we can not use anymore, commit the current transaction and
4535 * repeat the search on the device tree - this way we guarantee we will
4536 * not have chunks using device extents that end beyond 'new_size'.
4537 */
4538 if (!checked_pending_chunks) {
4539 u64 start = new_size;
4540 u64 len = old_size - new_size;
4541
499f377f
JM
4542 if (contains_pending_extent(trans->transaction, device,
4543 &start, len)) {
34441361 4544 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4545 checked_pending_chunks = true;
4546 failed = 0;
4547 retried = false;
3a45bb20 4548 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4549 if (ret)
4550 goto done;
4551 goto again;
4552 }
4553 }
4554
7cc8e58d 4555 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4556 if (list_empty(&device->resized_list))
4557 list_add_tail(&device->resized_list,
0b246afa 4558 &fs_info->fs_devices->resized_devices);
d6397bae 4559
d6397bae 4560 WARN_ON(diff > old_total);
7dfb8be1
NB
4561 btrfs_set_super_total_bytes(super_copy,
4562 round_down(old_total - diff, fs_info->sectorsize));
34441361 4563 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4564
4565 /* Now btrfs_update_device() will change the on-disk size. */
4566 ret = btrfs_update_device(trans, device);
3a45bb20 4567 btrfs_end_transaction(trans);
8f18cf13
CM
4568done:
4569 btrfs_free_path(path);
53e489bc 4570 if (ret) {
34441361 4571 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4572 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4573 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4574 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4575 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4576 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4577 }
8f18cf13
CM
4578 return ret;
4579}
4580
2ff7e61e 4581static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4582 struct btrfs_key *key,
4583 struct btrfs_chunk *chunk, int item_size)
4584{
0b246afa 4585 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4586 struct btrfs_disk_key disk_key;
4587 u32 array_size;
4588 u8 *ptr;
4589
34441361 4590 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4591 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4592 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4593 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4594 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4595 return -EFBIG;
fe48a5c0 4596 }
0b86a832
CM
4597
4598 ptr = super_copy->sys_chunk_array + array_size;
4599 btrfs_cpu_key_to_disk(&disk_key, key);
4600 memcpy(ptr, &disk_key, sizeof(disk_key));
4601 ptr += sizeof(disk_key);
4602 memcpy(ptr, chunk, item_size);
4603 item_size += sizeof(disk_key);
4604 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4605 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4606
0b86a832
CM
4607 return 0;
4608}
4609
73c5de00
AJ
4610/*
4611 * sort the devices in descending order by max_avail, total_avail
4612 */
4613static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4614{
73c5de00
AJ
4615 const struct btrfs_device_info *di_a = a;
4616 const struct btrfs_device_info *di_b = b;
9b3f68b9 4617
73c5de00 4618 if (di_a->max_avail > di_b->max_avail)
b2117a39 4619 return -1;
73c5de00 4620 if (di_a->max_avail < di_b->max_avail)
b2117a39 4621 return 1;
73c5de00
AJ
4622 if (di_a->total_avail > di_b->total_avail)
4623 return -1;
4624 if (di_a->total_avail < di_b->total_avail)
4625 return 1;
4626 return 0;
b2117a39 4627}
0b86a832 4628
53b381b3
DW
4629static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4630{
ffe2d203 4631 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4632 return;
4633
ceda0864 4634 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4635}
4636
062d4d1f 4637#define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
23f8f9b7
GH
4638 - sizeof(struct btrfs_chunk)) \
4639 / sizeof(struct btrfs_stripe) + 1)
4640
4641#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4642 - 2 * sizeof(struct btrfs_disk_key) \
4643 - 2 * sizeof(struct btrfs_chunk)) \
4644 / sizeof(struct btrfs_stripe) + 1)
4645
73c5de00 4646static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4647 u64 start, u64 type)
b2117a39 4648{
2ff7e61e 4649 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4650 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4651 struct btrfs_device *device;
73c5de00
AJ
4652 struct map_lookup *map = NULL;
4653 struct extent_map_tree *em_tree;
4654 struct extent_map *em;
4655 struct btrfs_device_info *devices_info = NULL;
4656 u64 total_avail;
4657 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4658 int data_stripes; /* number of stripes that count for
4659 block group size */
73c5de00
AJ
4660 int sub_stripes; /* sub_stripes info for map */
4661 int dev_stripes; /* stripes per dev */
4662 int devs_max; /* max devs to use */
4663 int devs_min; /* min devs needed */
4664 int devs_increment; /* ndevs has to be a multiple of this */
4665 int ncopies; /* how many copies to data has */
4666 int ret;
4667 u64 max_stripe_size;
4668 u64 max_chunk_size;
4669 u64 stripe_size;
4670 u64 num_bytes;
4671 int ndevs;
4672 int i;
4673 int j;
31e50229 4674 int index;
593060d7 4675
0c460c0d 4676 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4677
4117f207
QW
4678 if (list_empty(&fs_devices->alloc_list)) {
4679 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4680 btrfs_debug(info, "%s: no writable device", __func__);
73c5de00 4681 return -ENOSPC;
4117f207 4682 }
b2117a39 4683
3e72ee88 4684 index = btrfs_bg_flags_to_raid_index(type);
73c5de00 4685
31e50229
LB
4686 sub_stripes = btrfs_raid_array[index].sub_stripes;
4687 dev_stripes = btrfs_raid_array[index].dev_stripes;
4688 devs_max = btrfs_raid_array[index].devs_max;
4689 devs_min = btrfs_raid_array[index].devs_min;
4690 devs_increment = btrfs_raid_array[index].devs_increment;
4691 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4692
9b3f68b9 4693 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4694 max_stripe_size = SZ_1G;
fce466ea 4695 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
23f8f9b7 4696 if (!devs_max)
062d4d1f 4697 devs_max = BTRFS_MAX_DEVS(info);
9b3f68b9 4698 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4699 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4700 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4701 max_stripe_size = SZ_1G;
1100373f 4702 else
ee22184b 4703 max_stripe_size = SZ_256M;
73c5de00 4704 max_chunk_size = max_stripe_size;
23f8f9b7 4705 if (!devs_max)
062d4d1f 4706 devs_max = BTRFS_MAX_DEVS(info);
a40a90a0 4707 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4708 max_stripe_size = SZ_32M;
73c5de00 4709 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4710 if (!devs_max)
4711 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4712 } else {
351fd353 4713 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4714 type);
4715 BUG_ON(1);
9b3f68b9
CM
4716 }
4717
2b82032c
YZ
4718 /* we don't want a chunk larger than 10% of writeable space */
4719 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4720 max_chunk_size);
9b3f68b9 4721
31e818fe 4722 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4723 GFP_NOFS);
4724 if (!devices_info)
4725 return -ENOMEM;
0cad8a11 4726
9f680ce0 4727 /*
73c5de00
AJ
4728 * in the first pass through the devices list, we gather information
4729 * about the available holes on each device.
9f680ce0 4730 */
73c5de00 4731 ndevs = 0;
ebcc9301 4732 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4733 u64 max_avail;
4734 u64 dev_offset;
b2117a39 4735
ebbede42 4736 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 4737 WARN(1, KERN_ERR
efe120a0 4738 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4739 continue;
4740 }
b2117a39 4741
e12c9621
AJ
4742 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4743 &device->dev_state) ||
401e29c1 4744 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 4745 continue;
b2117a39 4746
73c5de00
AJ
4747 if (device->total_bytes > device->bytes_used)
4748 total_avail = device->total_bytes - device->bytes_used;
4749 else
4750 total_avail = 0;
38c01b96 4751
4752 /* If there is no space on this device, skip it. */
4753 if (total_avail == 0)
4754 continue;
b2117a39 4755
6df9a95e 4756 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4757 max_stripe_size * dev_stripes,
4758 &dev_offset, &max_avail);
4759 if (ret && ret != -ENOSPC)
4760 goto error;
b2117a39 4761
73c5de00
AJ
4762 if (ret == 0)
4763 max_avail = max_stripe_size * dev_stripes;
b2117a39 4764
4117f207
QW
4765 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4766 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4767 btrfs_debug(info,
4768 "%s: devid %llu has no free space, have=%llu want=%u",
4769 __func__, device->devid, max_avail,
4770 BTRFS_STRIPE_LEN * dev_stripes);
73c5de00 4771 continue;
4117f207 4772 }
b2117a39 4773
063d006f
ES
4774 if (ndevs == fs_devices->rw_devices) {
4775 WARN(1, "%s: found more than %llu devices\n",
4776 __func__, fs_devices->rw_devices);
4777 break;
4778 }
73c5de00
AJ
4779 devices_info[ndevs].dev_offset = dev_offset;
4780 devices_info[ndevs].max_avail = max_avail;
4781 devices_info[ndevs].total_avail = total_avail;
4782 devices_info[ndevs].dev = device;
4783 ++ndevs;
4784 }
b2117a39 4785
73c5de00
AJ
4786 /*
4787 * now sort the devices by hole size / available space
4788 */
4789 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4790 btrfs_cmp_device_info, NULL);
b2117a39 4791
73c5de00 4792 /* round down to number of usable stripes */
e5600fd6 4793 ndevs = round_down(ndevs, devs_increment);
b2117a39 4794
ba89b802 4795 if (ndevs < devs_min) {
73c5de00 4796 ret = -ENOSPC;
4117f207
QW
4797 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4798 btrfs_debug(info,
4799 "%s: not enough devices with free space: have=%d minimum required=%d",
ba89b802 4800 __func__, ndevs, devs_min);
4117f207 4801 }
73c5de00 4802 goto error;
b2117a39 4803 }
9f680ce0 4804
f148ef4d
NB
4805 ndevs = min(ndevs, devs_max);
4806
73c5de00 4807 /*
92e222df
HK
4808 * The primary goal is to maximize the number of stripes, so use as
4809 * many devices as possible, even if the stripes are not maximum sized.
4810 *
4811 * The DUP profile stores more than one stripe per device, the
4812 * max_avail is the total size so we have to adjust.
73c5de00 4813 */
92e222df 4814 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
73c5de00 4815 num_stripes = ndevs * dev_stripes;
b2117a39 4816
53b381b3
DW
4817 /*
4818 * this will have to be fixed for RAID1 and RAID10 over
4819 * more drives
4820 */
4821 data_stripes = num_stripes / ncopies;
4822
500ceed8 4823 if (type & BTRFS_BLOCK_GROUP_RAID5)
53b381b3 4824 data_stripes = num_stripes - 1;
500ceed8
NB
4825
4826 if (type & BTRFS_BLOCK_GROUP_RAID6)
53b381b3 4827 data_stripes = num_stripes - 2;
86db2578
CM
4828
4829 /*
4830 * Use the number of data stripes to figure out how big this chunk
4831 * is really going to be in terms of logical address space,
4832 * and compare that answer with the max chunk size
4833 */
4834 if (stripe_size * data_stripes > max_chunk_size) {
b8b93add 4835 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4836
4837 /* bump the answer up to a 16MB boundary */
793ff2c8 4838 stripe_size = round_up(stripe_size, SZ_16M);
86db2578 4839
793ff2c8
QW
4840 /*
4841 * But don't go higher than the limits we found while searching
4842 * for free extents
86db2578 4843 */
793ff2c8
QW
4844 stripe_size = min(devices_info[ndevs - 1].max_avail,
4845 stripe_size);
86db2578
CM
4846 }
4847
37db63a4 4848 /* align to BTRFS_STRIPE_LEN */
500ceed8 4849 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4850
4851 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4852 if (!map) {
4853 ret = -ENOMEM;
4854 goto error;
4855 }
4856 map->num_stripes = num_stripes;
9b3f68b9 4857
73c5de00
AJ
4858 for (i = 0; i < ndevs; ++i) {
4859 for (j = 0; j < dev_stripes; ++j) {
4860 int s = i * dev_stripes + j;
4861 map->stripes[s].dev = devices_info[i].dev;
4862 map->stripes[s].physical = devices_info[i].dev_offset +
4863 j * stripe_size;
6324fbf3 4864 }
6324fbf3 4865 }
500ceed8
NB
4866 map->stripe_len = BTRFS_STRIPE_LEN;
4867 map->io_align = BTRFS_STRIPE_LEN;
4868 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4869 map->type = type;
2b82032c 4870 map->sub_stripes = sub_stripes;
0b86a832 4871
53b381b3 4872 num_bytes = stripe_size * data_stripes;
0b86a832 4873
6bccf3ab 4874 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4875
172ddd60 4876 em = alloc_extent_map();
2b82032c 4877 if (!em) {
298a8f9c 4878 kfree(map);
b2117a39
MX
4879 ret = -ENOMEM;
4880 goto error;
593060d7 4881 }
298a8f9c 4882 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4883 em->map_lookup = map;
2b82032c 4884 em->start = start;
73c5de00 4885 em->len = num_bytes;
2b82032c
YZ
4886 em->block_start = 0;
4887 em->block_len = em->len;
6df9a95e 4888 em->orig_block_len = stripe_size;
593060d7 4889
0b246afa 4890 em_tree = &info->mapping_tree.map_tree;
890871be 4891 write_lock(&em_tree->lock);
09a2a8f9 4892 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4893 if (ret) {
1efb72a3 4894 write_unlock(&em_tree->lock);
0f5d42b2 4895 free_extent_map(em);
1dd4602f 4896 goto error;
0f5d42b2 4897 }
0b86a832 4898
1efb72a3
NB
4899 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4900 refcount_inc(&em->refs);
4901 write_unlock(&em_tree->lock);
4902
e7e02096 4903 ret = btrfs_make_block_group(trans, 0, type, start, num_bytes);
6df9a95e
JB
4904 if (ret)
4905 goto error_del_extent;
2b82032c 4906
7cc8e58d
MX
4907 for (i = 0; i < map->num_stripes; i++) {
4908 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4909 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4910 }
43530c46 4911
a5ed45f8 4912 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4913
0f5d42b2 4914 free_extent_map(em);
0b246afa 4915 check_raid56_incompat_flag(info, type);
53b381b3 4916
b2117a39 4917 kfree(devices_info);
2b82032c 4918 return 0;
b2117a39 4919
6df9a95e 4920error_del_extent:
0f5d42b2
JB
4921 write_lock(&em_tree->lock);
4922 remove_extent_mapping(em_tree, em);
4923 write_unlock(&em_tree->lock);
4924
4925 /* One for our allocation */
4926 free_extent_map(em);
4927 /* One for the tree reference */
4928 free_extent_map(em);
495e64f4
FM
4929 /* One for the pending_chunks list reference */
4930 free_extent_map(em);
b2117a39 4931error:
b2117a39
MX
4932 kfree(devices_info);
4933 return ret;
2b82032c
YZ
4934}
4935
6df9a95e 4936int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4937 struct btrfs_fs_info *fs_info,
6df9a95e 4938 u64 chunk_offset, u64 chunk_size)
2b82032c 4939{
6bccf3ab
JM
4940 struct btrfs_root *extent_root = fs_info->extent_root;
4941 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4942 struct btrfs_key key;
2b82032c
YZ
4943 struct btrfs_device *device;
4944 struct btrfs_chunk *chunk;
4945 struct btrfs_stripe *stripe;
6df9a95e
JB
4946 struct extent_map *em;
4947 struct map_lookup *map;
4948 size_t item_size;
4949 u64 dev_offset;
4950 u64 stripe_size;
4951 int i = 0;
140e639f 4952 int ret = 0;
2b82032c 4953
592d92ee
LB
4954 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4955 if (IS_ERR(em))
4956 return PTR_ERR(em);
6df9a95e 4957
95617d69 4958 map = em->map_lookup;
6df9a95e
JB
4959 item_size = btrfs_chunk_item_size(map->num_stripes);
4960 stripe_size = em->orig_block_len;
4961
2b82032c 4962 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4963 if (!chunk) {
4964 ret = -ENOMEM;
4965 goto out;
4966 }
4967
50460e37
FM
4968 /*
4969 * Take the device list mutex to prevent races with the final phase of
4970 * a device replace operation that replaces the device object associated
4971 * with the map's stripes, because the device object's id can change
4972 * at any time during that final phase of the device replace operation
4973 * (dev-replace.c:btrfs_dev_replace_finishing()).
4974 */
0b246afa 4975 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4976 for (i = 0; i < map->num_stripes; i++) {
4977 device = map->stripes[i].dev;
4978 dev_offset = map->stripes[i].physical;
2b82032c 4979
0b86a832 4980 ret = btrfs_update_device(trans, device);
3acd3953 4981 if (ret)
50460e37 4982 break;
b5d9071c
NB
4983 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4984 dev_offset, stripe_size);
6df9a95e 4985 if (ret)
50460e37
FM
4986 break;
4987 }
4988 if (ret) {
0b246afa 4989 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4990 goto out;
2b82032c
YZ
4991 }
4992
2b82032c 4993 stripe = &chunk->stripe;
6df9a95e
JB
4994 for (i = 0; i < map->num_stripes; i++) {
4995 device = map->stripes[i].dev;
4996 dev_offset = map->stripes[i].physical;
0b86a832 4997
e17cade2
CM
4998 btrfs_set_stack_stripe_devid(stripe, device->devid);
4999 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5000 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5001 stripe++;
0b86a832 5002 }
0b246afa 5003 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 5004
2b82032c 5005 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 5006 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5007 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5008 btrfs_set_stack_chunk_type(chunk, map->type);
5009 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5010 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5011 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5012 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5013 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5014
2b82032c
YZ
5015 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5016 key.type = BTRFS_CHUNK_ITEM_KEY;
5017 key.offset = chunk_offset;
0b86a832 5018
2b82032c 5019 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
5020 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5021 /*
5022 * TODO: Cleanup of inserted chunk root in case of
5023 * failure.
5024 */
2ff7e61e 5025 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5026 }
1abe9b8a 5027
6df9a95e 5028out:
0b86a832 5029 kfree(chunk);
6df9a95e 5030 free_extent_map(em);
4ed1d16e 5031 return ret;
2b82032c 5032}
0b86a832 5033
2b82032c
YZ
5034/*
5035 * Chunk allocation falls into two parts. The first part does works
5036 * that make the new allocated chunk useable, but not do any operation
5037 * that modifies the chunk tree. The second part does the works that
5038 * require modifying the chunk tree. This division is important for the
5039 * bootstrap process of adding storage to a seed btrfs.
5040 */
c216b203 5041int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
2b82032c
YZ
5042{
5043 u64 chunk_offset;
2b82032c 5044
c216b203
NB
5045 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5046 chunk_offset = find_next_chunk(trans->fs_info);
72b468c8 5047 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5048}
5049
d397712b 5050static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 5051 struct btrfs_fs_info *fs_info)
2b82032c
YZ
5052{
5053 u64 chunk_offset;
5054 u64 sys_chunk_offset;
2b82032c 5055 u64 alloc_profile;
2b82032c
YZ
5056 int ret;
5057
6df9a95e 5058 chunk_offset = find_next_chunk(fs_info);
1b86826d 5059 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5060 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5061 if (ret)
5062 return ret;
2b82032c 5063
0b246afa 5064 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5065 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5066 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5067 return ret;
2b82032c
YZ
5068}
5069
d20983b4
MX
5070static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5071{
5072 int max_errors;
5073
5074 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5075 BTRFS_BLOCK_GROUP_RAID10 |
5076 BTRFS_BLOCK_GROUP_RAID5 |
5077 BTRFS_BLOCK_GROUP_DUP)) {
5078 max_errors = 1;
5079 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5080 max_errors = 2;
5081 } else {
5082 max_errors = 0;
005d6427 5083 }
2b82032c 5084
d20983b4 5085 return max_errors;
2b82032c
YZ
5086}
5087
2ff7e61e 5088int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5089{
5090 struct extent_map *em;
5091 struct map_lookup *map;
2b82032c 5092 int readonly = 0;
d20983b4 5093 int miss_ndevs = 0;
2b82032c
YZ
5094 int i;
5095
592d92ee
LB
5096 em = get_chunk_map(fs_info, chunk_offset, 1);
5097 if (IS_ERR(em))
2b82032c
YZ
5098 return 1;
5099
95617d69 5100 map = em->map_lookup;
2b82032c 5101 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5102 if (test_bit(BTRFS_DEV_STATE_MISSING,
5103 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5104 miss_ndevs++;
5105 continue;
5106 }
ebbede42
AJ
5107 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5108 &map->stripes[i].dev->dev_state)) {
2b82032c 5109 readonly = 1;
d20983b4 5110 goto end;
2b82032c
YZ
5111 }
5112 }
d20983b4
MX
5113
5114 /*
5115 * If the number of missing devices is larger than max errors,
5116 * we can not write the data into that chunk successfully, so
5117 * set it readonly.
5118 */
5119 if (miss_ndevs > btrfs_chunk_max_errors(map))
5120 readonly = 1;
5121end:
0b86a832 5122 free_extent_map(em);
2b82032c 5123 return readonly;
0b86a832
CM
5124}
5125
5126void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5127{
a8067e02 5128 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5129}
5130
5131void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5132{
5133 struct extent_map *em;
5134
d397712b 5135 while (1) {
890871be 5136 write_lock(&tree->map_tree.lock);
0b86a832
CM
5137 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5138 if (em)
5139 remove_extent_mapping(&tree->map_tree, em);
890871be 5140 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5141 if (!em)
5142 break;
0b86a832
CM
5143 /* once for us */
5144 free_extent_map(em);
5145 /* once for the tree */
5146 free_extent_map(em);
5147 }
5148}
5149
5d964051 5150int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5151{
5152 struct extent_map *em;
5153 struct map_lookup *map;
f188591e
CM
5154 int ret;
5155
592d92ee
LB
5156 em = get_chunk_map(fs_info, logical, len);
5157 if (IS_ERR(em))
5158 /*
5159 * We could return errors for these cases, but that could get
5160 * ugly and we'd probably do the same thing which is just not do
5161 * anything else and exit, so return 1 so the callers don't try
5162 * to use other copies.
5163 */
fb7669b5 5164 return 1;
fb7669b5 5165
95617d69 5166 map = em->map_lookup;
f188591e
CM
5167 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5168 ret = map->num_stripes;
321aecc6
CM
5169 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5170 ret = map->sub_stripes;
53b381b3
DW
5171 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5172 ret = 2;
5173 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5174 /*
5175 * There could be two corrupted data stripes, we need
5176 * to loop retry in order to rebuild the correct data.
e7e02096 5177 *
8810f751
LB
5178 * Fail a stripe at a time on every retry except the
5179 * stripe under reconstruction.
5180 */
5181 ret = map->num_stripes;
f188591e
CM
5182 else
5183 ret = 1;
5184 free_extent_map(em);
ad6d620e 5185
7e79cb86 5186 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
6fad823f
LB
5187 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5188 fs_info->dev_replace.tgtdev)
ad6d620e 5189 ret++;
7e79cb86 5190 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
ad6d620e 5191
f188591e
CM
5192 return ret;
5193}
5194
2ff7e61e 5195unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5196 u64 logical)
5197{
5198 struct extent_map *em;
5199 struct map_lookup *map;
0b246afa 5200 unsigned long len = fs_info->sectorsize;
53b381b3 5201
592d92ee 5202 em = get_chunk_map(fs_info, logical, len);
53b381b3 5203
69f03f13
NB
5204 if (!WARN_ON(IS_ERR(em))) {
5205 map = em->map_lookup;
5206 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5207 len = map->stripe_len * nr_data_stripes(map);
5208 free_extent_map(em);
5209 }
53b381b3
DW
5210 return len;
5211}
5212
e4ff5fb5 5213int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5214{
5215 struct extent_map *em;
5216 struct map_lookup *map;
53b381b3
DW
5217 int ret = 0;
5218
592d92ee 5219 em = get_chunk_map(fs_info, logical, len);
53b381b3 5220
69f03f13
NB
5221 if(!WARN_ON(IS_ERR(em))) {
5222 map = em->map_lookup;
5223 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5224 ret = 1;
5225 free_extent_map(em);
5226 }
53b381b3
DW
5227 return ret;
5228}
5229
30d9861f 5230static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5231 struct map_lookup *map, int first,
8ba0ae78 5232 int dev_replace_is_ongoing)
dfe25020
CM
5233{
5234 int i;
99f92a7c 5235 int num_stripes;
8ba0ae78 5236 int preferred_mirror;
30d9861f
SB
5237 int tolerance;
5238 struct btrfs_device *srcdev;
5239
99f92a7c
AJ
5240 ASSERT((map->type &
5241 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5242
5243 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5244 num_stripes = map->sub_stripes;
5245 else
5246 num_stripes = map->num_stripes;
5247
8ba0ae78
AJ
5248 preferred_mirror = first + current->pid % num_stripes;
5249
30d9861f
SB
5250 if (dev_replace_is_ongoing &&
5251 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5252 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5253 srcdev = fs_info->dev_replace.srcdev;
5254 else
5255 srcdev = NULL;
5256
5257 /*
5258 * try to avoid the drive that is the source drive for a
5259 * dev-replace procedure, only choose it if no other non-missing
5260 * mirror is available
5261 */
5262 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5263 if (map->stripes[preferred_mirror].dev->bdev &&
5264 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5265 return preferred_mirror;
99f92a7c 5266 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5267 if (map->stripes[i].dev->bdev &&
5268 (tolerance || map->stripes[i].dev != srcdev))
5269 return i;
5270 }
dfe25020 5271 }
30d9861f 5272
dfe25020
CM
5273 /* we couldn't find one that doesn't fail. Just return something
5274 * and the io error handling code will clean up eventually
5275 */
8ba0ae78 5276 return preferred_mirror;
dfe25020
CM
5277}
5278
53b381b3
DW
5279static inline int parity_smaller(u64 a, u64 b)
5280{
5281 return a > b;
5282}
5283
5284/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5285static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5286{
5287 struct btrfs_bio_stripe s;
5288 int i;
5289 u64 l;
5290 int again = 1;
5291
5292 while (again) {
5293 again = 0;
cc7539ed 5294 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5295 if (parity_smaller(bbio->raid_map[i],
5296 bbio->raid_map[i+1])) {
53b381b3 5297 s = bbio->stripes[i];
8e5cfb55 5298 l = bbio->raid_map[i];
53b381b3 5299 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5300 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5301 bbio->stripes[i+1] = s;
8e5cfb55 5302 bbio->raid_map[i+1] = l;
2c8cdd6e 5303
53b381b3
DW
5304 again = 1;
5305 }
5306 }
5307 }
5308}
5309
6e9606d2
ZL
5310static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5311{
5312 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5313 /* the size of the btrfs_bio */
6e9606d2 5314 sizeof(struct btrfs_bio) +
e57cf21e 5315 /* plus the variable array for the stripes */
6e9606d2 5316 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5317 /* plus the variable array for the tgt dev */
6e9606d2 5318 sizeof(int) * (real_stripes) +
e57cf21e
CM
5319 /*
5320 * plus the raid_map, which includes both the tgt dev
5321 * and the stripes
5322 */
5323 sizeof(u64) * (total_stripes),
277fb5fc 5324 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5325
5326 atomic_set(&bbio->error, 0);
140475ae 5327 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5328
5329 return bbio;
5330}
5331
5332void btrfs_get_bbio(struct btrfs_bio *bbio)
5333{
140475ae
ER
5334 WARN_ON(!refcount_read(&bbio->refs));
5335 refcount_inc(&bbio->refs);
6e9606d2
ZL
5336}
5337
5338void btrfs_put_bbio(struct btrfs_bio *bbio)
5339{
5340 if (!bbio)
5341 return;
140475ae 5342 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5343 kfree(bbio);
5344}
5345
0b3d4cd3
LB
5346/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5347/*
5348 * Please note that, discard won't be sent to target device of device
5349 * replace.
5350 */
5351static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5352 u64 logical, u64 length,
5353 struct btrfs_bio **bbio_ret)
5354{
5355 struct extent_map *em;
5356 struct map_lookup *map;
5357 struct btrfs_bio *bbio;
5358 u64 offset;
5359 u64 stripe_nr;
5360 u64 stripe_nr_end;
5361 u64 stripe_end_offset;
5362 u64 stripe_cnt;
5363 u64 stripe_len;
5364 u64 stripe_offset;
5365 u64 num_stripes;
5366 u32 stripe_index;
5367 u32 factor = 0;
5368 u32 sub_stripes = 0;
5369 u64 stripes_per_dev = 0;
5370 u32 remaining_stripes = 0;
5371 u32 last_stripe = 0;
5372 int ret = 0;
5373 int i;
5374
5375 /* discard always return a bbio */
5376 ASSERT(bbio_ret);
5377
5378 em = get_chunk_map(fs_info, logical, length);
5379 if (IS_ERR(em))
5380 return PTR_ERR(em);
5381
5382 map = em->map_lookup;
5383 /* we don't discard raid56 yet */
5384 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5385 ret = -EOPNOTSUPP;
5386 goto out;
5387 }
5388
5389 offset = logical - em->start;
5390 length = min_t(u64, em->len - offset, length);
5391
5392 stripe_len = map->stripe_len;
5393 /*
5394 * stripe_nr counts the total number of stripes we have to stride
5395 * to get to this block
5396 */
5397 stripe_nr = div64_u64(offset, stripe_len);
5398
5399 /* stripe_offset is the offset of this block in its stripe */
5400 stripe_offset = offset - stripe_nr * stripe_len;
5401
5402 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5403 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5404 stripe_cnt = stripe_nr_end - stripe_nr;
5405 stripe_end_offset = stripe_nr_end * map->stripe_len -
5406 (offset + length);
5407 /*
5408 * after this, stripe_nr is the number of stripes on this
5409 * device we have to walk to find the data, and stripe_index is
5410 * the number of our device in the stripe array
5411 */
5412 num_stripes = 1;
5413 stripe_index = 0;
5414 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5415 BTRFS_BLOCK_GROUP_RAID10)) {
5416 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5417 sub_stripes = 1;
5418 else
5419 sub_stripes = map->sub_stripes;
5420
5421 factor = map->num_stripes / sub_stripes;
5422 num_stripes = min_t(u64, map->num_stripes,
5423 sub_stripes * stripe_cnt);
5424 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5425 stripe_index *= sub_stripes;
5426 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5427 &remaining_stripes);
5428 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5429 last_stripe *= sub_stripes;
5430 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5431 BTRFS_BLOCK_GROUP_DUP)) {
5432 num_stripes = map->num_stripes;
5433 } else {
5434 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5435 &stripe_index);
5436 }
5437
5438 bbio = alloc_btrfs_bio(num_stripes, 0);
5439 if (!bbio) {
5440 ret = -ENOMEM;
5441 goto out;
5442 }
5443
5444 for (i = 0; i < num_stripes; i++) {
5445 bbio->stripes[i].physical =
5446 map->stripes[stripe_index].physical +
5447 stripe_offset + stripe_nr * map->stripe_len;
5448 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5449
5450 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5451 BTRFS_BLOCK_GROUP_RAID10)) {
5452 bbio->stripes[i].length = stripes_per_dev *
5453 map->stripe_len;
5454
5455 if (i / sub_stripes < remaining_stripes)
5456 bbio->stripes[i].length +=
5457 map->stripe_len;
5458
5459 /*
5460 * Special for the first stripe and
5461 * the last stripe:
5462 *
5463 * |-------|...|-------|
5464 * |----------|
5465 * off end_off
5466 */
5467 if (i < sub_stripes)
5468 bbio->stripes[i].length -=
5469 stripe_offset;
5470
5471 if (stripe_index >= last_stripe &&
5472 stripe_index <= (last_stripe +
5473 sub_stripes - 1))
5474 bbio->stripes[i].length -=
5475 stripe_end_offset;
5476
5477 if (i == sub_stripes - 1)
5478 stripe_offset = 0;
5479 } else {
5480 bbio->stripes[i].length = length;
5481 }
5482
5483 stripe_index++;
5484 if (stripe_index == map->num_stripes) {
5485 stripe_index = 0;
5486 stripe_nr++;
5487 }
5488 }
5489
5490 *bbio_ret = bbio;
5491 bbio->map_type = map->type;
5492 bbio->num_stripes = num_stripes;
5493out:
5494 free_extent_map(em);
5495 return ret;
5496}
5497
5ab56090
LB
5498/*
5499 * In dev-replace case, for repair case (that's the only case where the mirror
5500 * is selected explicitly when calling btrfs_map_block), blocks left of the
5501 * left cursor can also be read from the target drive.
5502 *
5503 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5504 * array of stripes.
5505 * For READ, it also needs to be supported using the same mirror number.
5506 *
5507 * If the requested block is not left of the left cursor, EIO is returned. This
5508 * can happen because btrfs_num_copies() returns one more in the dev-replace
5509 * case.
5510 */
5511static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5512 u64 logical, u64 length,
5513 u64 srcdev_devid, int *mirror_num,
5514 u64 *physical)
5515{
5516 struct btrfs_bio *bbio = NULL;
5517 int num_stripes;
5518 int index_srcdev = 0;
5519 int found = 0;
5520 u64 physical_of_found = 0;
5521 int i;
5522 int ret = 0;
5523
5524 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5525 logical, &length, &bbio, 0, 0);
5526 if (ret) {
5527 ASSERT(bbio == NULL);
5528 return ret;
5529 }
5530
5531 num_stripes = bbio->num_stripes;
5532 if (*mirror_num > num_stripes) {
5533 /*
5534 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5535 * that means that the requested area is not left of the left
5536 * cursor
5537 */
5538 btrfs_put_bbio(bbio);
5539 return -EIO;
5540 }
5541
5542 /*
5543 * process the rest of the function using the mirror_num of the source
5544 * drive. Therefore look it up first. At the end, patch the device
5545 * pointer to the one of the target drive.
5546 */
5547 for (i = 0; i < num_stripes; i++) {
5548 if (bbio->stripes[i].dev->devid != srcdev_devid)
5549 continue;
5550
5551 /*
5552 * In case of DUP, in order to keep it simple, only add the
5553 * mirror with the lowest physical address
5554 */
5555 if (found &&
5556 physical_of_found <= bbio->stripes[i].physical)
5557 continue;
5558
5559 index_srcdev = i;
5560 found = 1;
5561 physical_of_found = bbio->stripes[i].physical;
5562 }
5563
5564 btrfs_put_bbio(bbio);
5565
5566 ASSERT(found);
5567 if (!found)
5568 return -EIO;
5569
5570 *mirror_num = index_srcdev + 1;
5571 *physical = physical_of_found;
5572 return ret;
5573}
5574
73c0f228
LB
5575static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5576 struct btrfs_bio **bbio_ret,
5577 struct btrfs_dev_replace *dev_replace,
5578 int *num_stripes_ret, int *max_errors_ret)
5579{
5580 struct btrfs_bio *bbio = *bbio_ret;
5581 u64 srcdev_devid = dev_replace->srcdev->devid;
5582 int tgtdev_indexes = 0;
5583 int num_stripes = *num_stripes_ret;
5584 int max_errors = *max_errors_ret;
5585 int i;
5586
5587 if (op == BTRFS_MAP_WRITE) {
5588 int index_where_to_add;
5589
5590 /*
5591 * duplicate the write operations while the dev replace
5592 * procedure is running. Since the copying of the old disk to
5593 * the new disk takes place at run time while the filesystem is
5594 * mounted writable, the regular write operations to the old
5595 * disk have to be duplicated to go to the new disk as well.
5596 *
5597 * Note that device->missing is handled by the caller, and that
5598 * the write to the old disk is already set up in the stripes
5599 * array.
5600 */
5601 index_where_to_add = num_stripes;
5602 for (i = 0; i < num_stripes; i++) {
5603 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5604 /* write to new disk, too */
5605 struct btrfs_bio_stripe *new =
5606 bbio->stripes + index_where_to_add;
5607 struct btrfs_bio_stripe *old =
5608 bbio->stripes + i;
5609
5610 new->physical = old->physical;
5611 new->length = old->length;
5612 new->dev = dev_replace->tgtdev;
5613 bbio->tgtdev_map[i] = index_where_to_add;
5614 index_where_to_add++;
5615 max_errors++;
5616 tgtdev_indexes++;
5617 }
5618 }
5619 num_stripes = index_where_to_add;
5620 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5621 int index_srcdev = 0;
5622 int found = 0;
5623 u64 physical_of_found = 0;
5624
5625 /*
5626 * During the dev-replace procedure, the target drive can also
5627 * be used to read data in case it is needed to repair a corrupt
5628 * block elsewhere. This is possible if the requested area is
5629 * left of the left cursor. In this area, the target drive is a
5630 * full copy of the source drive.
5631 */
5632 for (i = 0; i < num_stripes; i++) {
5633 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5634 /*
5635 * In case of DUP, in order to keep it simple,
5636 * only add the mirror with the lowest physical
5637 * address
5638 */
5639 if (found &&
5640 physical_of_found <=
5641 bbio->stripes[i].physical)
5642 continue;
5643 index_srcdev = i;
5644 found = 1;
5645 physical_of_found = bbio->stripes[i].physical;
5646 }
5647 }
5648 if (found) {
5649 struct btrfs_bio_stripe *tgtdev_stripe =
5650 bbio->stripes + num_stripes;
5651
5652 tgtdev_stripe->physical = physical_of_found;
5653 tgtdev_stripe->length =
5654 bbio->stripes[index_srcdev].length;
5655 tgtdev_stripe->dev = dev_replace->tgtdev;
5656 bbio->tgtdev_map[index_srcdev] = num_stripes;
5657
5658 tgtdev_indexes++;
5659 num_stripes++;
5660 }
5661 }
5662
5663 *num_stripes_ret = num_stripes;
5664 *max_errors_ret = max_errors;
5665 bbio->num_tgtdevs = tgtdev_indexes;
5666 *bbio_ret = bbio;
5667}
5668
2b19a1fe
LB
5669static bool need_full_stripe(enum btrfs_map_op op)
5670{
5671 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5672}
5673
cf8cddd3
CH
5674static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5675 enum btrfs_map_op op,
f2d8d74d 5676 u64 logical, u64 *length,
a1d3c478 5677 struct btrfs_bio **bbio_ret,
8e5cfb55 5678 int mirror_num, int need_raid_map)
0b86a832
CM
5679{
5680 struct extent_map *em;
5681 struct map_lookup *map;
0b86a832 5682 u64 offset;
593060d7
CM
5683 u64 stripe_offset;
5684 u64 stripe_nr;
53b381b3 5685 u64 stripe_len;
9d644a62 5686 u32 stripe_index;
cea9e445 5687 int i;
de11cc12 5688 int ret = 0;
f2d8d74d 5689 int num_stripes;
a236aed1 5690 int max_errors = 0;
2c8cdd6e 5691 int tgtdev_indexes = 0;
a1d3c478 5692 struct btrfs_bio *bbio = NULL;
472262f3
SB
5693 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5694 int dev_replace_is_ongoing = 0;
5695 int num_alloc_stripes;
ad6d620e
SB
5696 int patch_the_first_stripe_for_dev_replace = 0;
5697 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5698 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5699
0b3d4cd3
LB
5700 if (op == BTRFS_MAP_DISCARD)
5701 return __btrfs_map_block_for_discard(fs_info, logical,
5702 *length, bbio_ret);
5703
592d92ee
LB
5704 em = get_chunk_map(fs_info, logical, *length);
5705 if (IS_ERR(em))
5706 return PTR_ERR(em);
0b86a832 5707
95617d69 5708 map = em->map_lookup;
0b86a832 5709 offset = logical - em->start;
593060d7 5710
53b381b3 5711 stripe_len = map->stripe_len;
593060d7
CM
5712 stripe_nr = offset;
5713 /*
5714 * stripe_nr counts the total number of stripes we have to stride
5715 * to get to this block
5716 */
47c5713f 5717 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5718
53b381b3 5719 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5720 if (offset < stripe_offset) {
5d163e0e
JM
5721 btrfs_crit(fs_info,
5722 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5723 stripe_offset, offset, em->start, logical,
5724 stripe_len);
5725 free_extent_map(em);
5726 return -EINVAL;
5727 }
593060d7
CM
5728
5729 /* stripe_offset is the offset of this block in its stripe*/
5730 stripe_offset = offset - stripe_offset;
5731
53b381b3 5732 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5733 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5734 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5735 raid56_full_stripe_start = offset;
5736
5737 /* allow a write of a full stripe, but make sure we don't
5738 * allow straddling of stripes
5739 */
47c5713f
DS
5740 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5741 full_stripe_len);
53b381b3
DW
5742 raid56_full_stripe_start *= full_stripe_len;
5743 }
5744
0b3d4cd3 5745 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5746 u64 max_len;
5747 /* For writes to RAID[56], allow a full stripeset across all disks.
5748 For other RAID types and for RAID[56] reads, just allow a single
5749 stripe (on a single disk). */
ffe2d203 5750 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5751 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5752 max_len = stripe_len * nr_data_stripes(map) -
5753 (offset - raid56_full_stripe_start);
5754 } else {
5755 /* we limit the length of each bio to what fits in a stripe */
5756 max_len = stripe_len - stripe_offset;
5757 }
5758 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5759 } else {
5760 *length = em->len - offset;
5761 }
f2d8d74d 5762
53b381b3
DW
5763 /* This is for when we're called from btrfs_merge_bio_hook() and all
5764 it cares about is the length */
a1d3c478 5765 if (!bbio_ret)
cea9e445
CM
5766 goto out;
5767
7e79cb86 5768 btrfs_dev_replace_read_lock(dev_replace);
472262f3
SB
5769 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5770 if (!dev_replace_is_ongoing)
7e79cb86 5771 btrfs_dev_replace_read_unlock(dev_replace);
73beece9
LB
5772 else
5773 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5774
ad6d620e 5775 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5776 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5777 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5778 dev_replace->srcdev->devid,
5779 &mirror_num,
5780 &physical_to_patch_in_first_stripe);
5781 if (ret)
ad6d620e 5782 goto out;
5ab56090
LB
5783 else
5784 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5785 } else if (mirror_num > map->num_stripes) {
5786 mirror_num = 0;
5787 }
5788
f2d8d74d 5789 num_stripes = 1;
cea9e445 5790 stripe_index = 0;
fce3bb9a 5791 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5792 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5793 &stripe_index);
de483734 5794 if (!need_full_stripe(op))
28e1cc7d 5795 mirror_num = 1;
fce3bb9a 5796 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
de483734 5797 if (need_full_stripe(op))
f2d8d74d 5798 num_stripes = map->num_stripes;
2fff734f 5799 else if (mirror_num)
f188591e 5800 stripe_index = mirror_num - 1;
dfe25020 5801 else {
30d9861f 5802 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 5803 dev_replace_is_ongoing);
a1d3c478 5804 mirror_num = stripe_index + 1;
dfe25020 5805 }
2fff734f 5806
611f0e00 5807 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5808 if (need_full_stripe(op)) {
f2d8d74d 5809 num_stripes = map->num_stripes;
a1d3c478 5810 } else if (mirror_num) {
f188591e 5811 stripe_index = mirror_num - 1;
a1d3c478
JS
5812 } else {
5813 mirror_num = 1;
5814 }
2fff734f 5815
321aecc6 5816 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5817 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5818
47c5713f 5819 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5820 stripe_index *= map->sub_stripes;
5821
de483734 5822 if (need_full_stripe(op))
f2d8d74d 5823 num_stripes = map->sub_stripes;
321aecc6
CM
5824 else if (mirror_num)
5825 stripe_index += mirror_num - 1;
dfe25020 5826 else {
3e74317a 5827 int old_stripe_index = stripe_index;
30d9861f
SB
5828 stripe_index = find_live_mirror(fs_info, map,
5829 stripe_index,
30d9861f 5830 dev_replace_is_ongoing);
3e74317a 5831 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5832 }
53b381b3 5833
ffe2d203 5834 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5835 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5836 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5837 stripe_nr = div64_u64(raid56_full_stripe_start,
b8b93add 5838 stripe_len * nr_data_stripes(map));
53b381b3
DW
5839
5840 /* RAID[56] write or recovery. Return all stripes */
5841 num_stripes = map->num_stripes;
5842 max_errors = nr_parity_stripes(map);
5843
53b381b3
DW
5844 *length = map->stripe_len;
5845 stripe_index = 0;
5846 stripe_offset = 0;
5847 } else {
5848 /*
5849 * Mirror #0 or #1 means the original data block.
5850 * Mirror #2 is RAID5 parity block.
5851 * Mirror #3 is RAID6 Q block.
5852 */
47c5713f
DS
5853 stripe_nr = div_u64_rem(stripe_nr,
5854 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5855 if (mirror_num > 1)
5856 stripe_index = nr_data_stripes(map) +
5857 mirror_num - 2;
5858
5859 /* We distribute the parity blocks across stripes */
47c5713f
DS
5860 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5861 &stripe_index);
de483734 5862 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5863 mirror_num = 1;
53b381b3 5864 }
8790d502
CM
5865 } else {
5866 /*
47c5713f
DS
5867 * after this, stripe_nr is the number of stripes on this
5868 * device we have to walk to find the data, and stripe_index is
5869 * the number of our device in the stripe array
8790d502 5870 */
47c5713f
DS
5871 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5872 &stripe_index);
a1d3c478 5873 mirror_num = stripe_index + 1;
8790d502 5874 }
e042d1ec 5875 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5876 btrfs_crit(fs_info,
5877 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5878 stripe_index, map->num_stripes);
5879 ret = -EINVAL;
5880 goto out;
5881 }
cea9e445 5882
472262f3 5883 num_alloc_stripes = num_stripes;
6fad823f 5884 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5885 if (op == BTRFS_MAP_WRITE)
ad6d620e 5886 num_alloc_stripes <<= 1;
cf8cddd3 5887 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5888 num_alloc_stripes++;
2c8cdd6e 5889 tgtdev_indexes = num_stripes;
ad6d620e 5890 }
2c8cdd6e 5891
6e9606d2 5892 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5893 if (!bbio) {
5894 ret = -ENOMEM;
5895 goto out;
5896 }
6fad823f 5897 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5898 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5899
8e5cfb55 5900 /* build raid_map */
2b19a1fe
LB
5901 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5902 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5903 u64 tmp;
9d644a62 5904 unsigned rot;
8e5cfb55
ZL
5905
5906 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5907 sizeof(struct btrfs_bio_stripe) *
5908 num_alloc_stripes +
5909 sizeof(int) * tgtdev_indexes);
5910
5911 /* Work out the disk rotation on this stripe-set */
47c5713f 5912 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5913
5914 /* Fill in the logical address of each stripe */
5915 tmp = stripe_nr * nr_data_stripes(map);
5916 for (i = 0; i < nr_data_stripes(map); i++)
5917 bbio->raid_map[(i+rot) % num_stripes] =
5918 em->start + (tmp + i) * map->stripe_len;
5919
5920 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5921 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5922 bbio->raid_map[(i+rot+1) % num_stripes] =
5923 RAID6_Q_STRIPE;
5924 }
5925
b89203f7 5926
0b3d4cd3
LB
5927 for (i = 0; i < num_stripes; i++) {
5928 bbio->stripes[i].physical =
5929 map->stripes[stripe_index].physical +
5930 stripe_offset +
5931 stripe_nr * map->stripe_len;
5932 bbio->stripes[i].dev =
5933 map->stripes[stripe_index].dev;
5934 stripe_index++;
593060d7 5935 }
de11cc12 5936
2b19a1fe 5937 if (need_full_stripe(op))
d20983b4 5938 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5939
8e5cfb55
ZL
5940 if (bbio->raid_map)
5941 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5942
73c0f228 5943 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5944 need_full_stripe(op)) {
73c0f228
LB
5945 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5946 &max_errors);
472262f3
SB
5947 }
5948
de11cc12 5949 *bbio_ret = bbio;
10f11900 5950 bbio->map_type = map->type;
de11cc12
LZ
5951 bbio->num_stripes = num_stripes;
5952 bbio->max_errors = max_errors;
5953 bbio->mirror_num = mirror_num;
ad6d620e
SB
5954
5955 /*
5956 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5957 * mirror_num == num_stripes + 1 && dev_replace target drive is
5958 * available as a mirror
5959 */
5960 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5961 WARN_ON(num_stripes > 1);
5962 bbio->stripes[0].dev = dev_replace->tgtdev;
5963 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5964 bbio->mirror_num = map->num_stripes + 1;
5965 }
cea9e445 5966out:
73beece9
LB
5967 if (dev_replace_is_ongoing) {
5968 btrfs_dev_replace_clear_lock_blocking(dev_replace);
7e79cb86 5969 btrfs_dev_replace_read_unlock(dev_replace);
73beece9 5970 }
0b86a832 5971 free_extent_map(em);
de11cc12 5972 return ret;
0b86a832
CM
5973}
5974
cf8cddd3 5975int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5976 u64 logical, u64 *length,
a1d3c478 5977 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5978{
b3d3fa51 5979 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5980 mirror_num, 0);
f2d8d74d
CM
5981}
5982
af8e2d1d 5983/* For Scrub/replace */
cf8cddd3 5984int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 5985 u64 logical, u64 *length,
825ad4c9 5986 struct btrfs_bio **bbio_ret)
af8e2d1d 5987{
825ad4c9 5988 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
5989}
5990
63a9c7b9
NB
5991int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5992 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
a512bbf8 5993{
a512bbf8
YZ
5994 struct extent_map *em;
5995 struct map_lookup *map;
5996 u64 *buf;
5997 u64 bytenr;
5998 u64 length;
5999 u64 stripe_nr;
53b381b3 6000 u64 rmap_len;
a512bbf8
YZ
6001 int i, j, nr = 0;
6002
592d92ee
LB
6003 em = get_chunk_map(fs_info, chunk_start, 1);
6004 if (IS_ERR(em))
835d974f 6005 return -EIO;
835d974f 6006
95617d69 6007 map = em->map_lookup;
a512bbf8 6008 length = em->len;
53b381b3
DW
6009 rmap_len = map->stripe_len;
6010
a512bbf8 6011 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 6012 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 6013 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 6014 length = div_u64(length, map->num_stripes);
ffe2d203 6015 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 6016 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
6017 rmap_len = map->stripe_len * nr_data_stripes(map);
6018 }
a512bbf8 6019
31e818fe 6020 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 6021 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
6022
6023 for (i = 0; i < map->num_stripes; i++) {
a512bbf8
YZ
6024 if (map->stripes[i].physical > physical ||
6025 map->stripes[i].physical + length <= physical)
6026 continue;
6027
6028 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 6029 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6030
6031 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6032 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6033 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6034 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6035 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6036 } /* else if RAID[56], multiply by nr_data_stripes().
6037 * Alternatively, just use rmap_len below instead of
6038 * map->stripe_len */
6039
6040 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6041 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6042 for (j = 0; j < nr; j++) {
6043 if (buf[j] == bytenr)
6044 break;
6045 }
934d375b
CM
6046 if (j == nr) {
6047 WARN_ON(nr >= map->num_stripes);
a512bbf8 6048 buf[nr++] = bytenr;
934d375b 6049 }
a512bbf8
YZ
6050 }
6051
a512bbf8
YZ
6052 *logical = buf;
6053 *naddrs = nr;
53b381b3 6054 *stripe_len = rmap_len;
a512bbf8
YZ
6055
6056 free_extent_map(em);
6057 return 0;
f2d8d74d
CM
6058}
6059
4246a0b6 6060static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6061{
326e1dbb
MS
6062 bio->bi_private = bbio->private;
6063 bio->bi_end_io = bbio->end_io;
4246a0b6 6064 bio_endio(bio);
326e1dbb 6065
6e9606d2 6066 btrfs_put_bbio(bbio);
8408c716
MX
6067}
6068
4246a0b6 6069static void btrfs_end_bio(struct bio *bio)
8790d502 6070{
9be3395b 6071 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6072 int is_orig_bio = 0;
8790d502 6073
4e4cbee9 6074 if (bio->bi_status) {
a1d3c478 6075 atomic_inc(&bbio->error);
4e4cbee9
CH
6076 if (bio->bi_status == BLK_STS_IOERR ||
6077 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6078 unsigned int stripe_index =
9be3395b 6079 btrfs_io_bio(bio)->stripe_index;
65f53338 6080 struct btrfs_device *dev;
442a4f63
SB
6081
6082 BUG_ON(stripe_index >= bbio->num_stripes);
6083 dev = bbio->stripes[stripe_index].dev;
597a60fa 6084 if (dev->bdev) {
37226b21 6085 if (bio_op(bio) == REQ_OP_WRITE)
1cb34c8e 6086 btrfs_dev_stat_inc_and_print(dev,
597a60fa
SB
6087 BTRFS_DEV_STAT_WRITE_ERRS);
6088 else
1cb34c8e 6089 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6090 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6091 if (bio->bi_opf & REQ_PREFLUSH)
1cb34c8e 6092 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6093 BTRFS_DEV_STAT_FLUSH_ERRS);
597a60fa 6094 }
442a4f63
SB
6095 }
6096 }
8790d502 6097
a1d3c478 6098 if (bio == bbio->orig_bio)
7d2b4daa
CM
6099 is_orig_bio = 1;
6100
c404e0dc
MX
6101 btrfs_bio_counter_dec(bbio->fs_info);
6102
a1d3c478 6103 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6104 if (!is_orig_bio) {
6105 bio_put(bio);
a1d3c478 6106 bio = bbio->orig_bio;
7d2b4daa 6107 }
c7b22bb1 6108
9be3395b 6109 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6110 /* only send an error to the higher layers if it is
53b381b3 6111 * beyond the tolerance of the btrfs bio
a236aed1 6112 */
a1d3c478 6113 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6114 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6115 } else {
1259ab75
CM
6116 /*
6117 * this bio is actually up to date, we didn't
6118 * go over the max number of errors
6119 */
2dbe0c77 6120 bio->bi_status = BLK_STS_OK;
1259ab75 6121 }
c55f1396 6122
4246a0b6 6123 btrfs_end_bbio(bbio, bio);
7d2b4daa 6124 } else if (!is_orig_bio) {
8790d502
CM
6125 bio_put(bio);
6126 }
8790d502
CM
6127}
6128
8b712842
CM
6129/*
6130 * see run_scheduled_bios for a description of why bios are collected for
6131 * async submit.
6132 *
6133 * This will add one bio to the pending list for a device and make sure
6134 * the work struct is scheduled.
6135 */
2ff7e61e 6136static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6137 struct bio *bio)
8b712842 6138{
0b246afa 6139 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6140 int should_queue = 1;
ffbd517d 6141 struct btrfs_pending_bios *pending_bios;
8b712842 6142
e6e674bd
AJ
6143 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6144 !device->bdev) {
4246a0b6 6145 bio_io_error(bio);
53b381b3
DW
6146 return;
6147 }
6148
8b712842 6149 /* don't bother with additional async steps for reads, right now */
37226b21 6150 if (bio_op(bio) == REQ_OP_READ) {
4e49ea4a 6151 btrfsic_submit_bio(bio);
143bede5 6152 return;
8b712842
CM
6153 }
6154
492bb6de 6155 WARN_ON(bio->bi_next);
8b712842 6156 bio->bi_next = NULL;
8b712842
CM
6157
6158 spin_lock(&device->io_lock);
67f055c7 6159 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6160 pending_bios = &device->pending_sync_bios;
6161 else
6162 pending_bios = &device->pending_bios;
8b712842 6163
ffbd517d
CM
6164 if (pending_bios->tail)
6165 pending_bios->tail->bi_next = bio;
8b712842 6166
ffbd517d
CM
6167 pending_bios->tail = bio;
6168 if (!pending_bios->head)
6169 pending_bios->head = bio;
8b712842
CM
6170 if (device->running_pending)
6171 should_queue = 0;
6172
6173 spin_unlock(&device->io_lock);
6174
6175 if (should_queue)
0b246afa 6176 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6177}
6178
2ff7e61e
JM
6179static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6180 u64 physical, int dev_nr, int async)
de1ee92a
JB
6181{
6182 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6183 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6184
6185 bio->bi_private = bbio;
9be3395b 6186 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6187 bio->bi_end_io = btrfs_end_bio;
4f024f37 6188 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6189#ifdef DEBUG
6190 {
6191 struct rcu_string *name;
6192
6193 rcu_read_lock();
6194 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6195 btrfs_debug(fs_info,
6196 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6197 bio_op(bio), bio->bi_opf,
6198 (u64)bio->bi_iter.bi_sector,
6199 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6200 bio->bi_iter.bi_size);
de1ee92a
JB
6201 rcu_read_unlock();
6202 }
6203#endif
74d46992 6204 bio_set_dev(bio, dev->bdev);
c404e0dc 6205
2ff7e61e 6206 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6207
de1ee92a 6208 if (async)
2ff7e61e 6209 btrfs_schedule_bio(dev, bio);
de1ee92a 6210 else
4e49ea4a 6211 btrfsic_submit_bio(bio);
de1ee92a
JB
6212}
6213
de1ee92a
JB
6214static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6215{
6216 atomic_inc(&bbio->error);
6217 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6218 /* Should be the original bio. */
8408c716
MX
6219 WARN_ON(bio != bbio->orig_bio);
6220
9be3395b 6221 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6222 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6223 if (atomic_read(&bbio->error) > bbio->max_errors)
6224 bio->bi_status = BLK_STS_IOERR;
6225 else
6226 bio->bi_status = BLK_STS_OK;
4246a0b6 6227 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6228 }
6229}
6230
58efbc9f
OS
6231blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6232 int mirror_num, int async_submit)
0b86a832 6233{
0b86a832 6234 struct btrfs_device *dev;
8790d502 6235 struct bio *first_bio = bio;
4f024f37 6236 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6237 u64 length = 0;
6238 u64 map_length;
0b86a832 6239 int ret;
08da757d
ZL
6240 int dev_nr;
6241 int total_devs;
a1d3c478 6242 struct btrfs_bio *bbio = NULL;
0b86a832 6243
4f024f37 6244 length = bio->bi_iter.bi_size;
0b86a832 6245 map_length = length;
cea9e445 6246
0b246afa 6247 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6248 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6249 &map_length, &bbio, mirror_num, 1);
c404e0dc 6250 if (ret) {
0b246afa 6251 btrfs_bio_counter_dec(fs_info);
58efbc9f 6252 return errno_to_blk_status(ret);
c404e0dc 6253 }
cea9e445 6254
a1d3c478 6255 total_devs = bbio->num_stripes;
53b381b3
DW
6256 bbio->orig_bio = first_bio;
6257 bbio->private = first_bio->bi_private;
6258 bbio->end_io = first_bio->bi_end_io;
0b246afa 6259 bbio->fs_info = fs_info;
53b381b3
DW
6260 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6261
ad1ba2a0 6262 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6263 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6264 /* In this case, map_length has been set to the length of
6265 a single stripe; not the whole write */
37226b21 6266 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6267 ret = raid56_parity_write(fs_info, bio, bbio,
6268 map_length);
53b381b3 6269 } else {
2ff7e61e
JM
6270 ret = raid56_parity_recover(fs_info, bio, bbio,
6271 map_length, mirror_num, 1);
53b381b3 6272 }
4245215d 6273
0b246afa 6274 btrfs_bio_counter_dec(fs_info);
58efbc9f 6275 return errno_to_blk_status(ret);
53b381b3
DW
6276 }
6277
cea9e445 6278 if (map_length < length) {
0b246afa 6279 btrfs_crit(fs_info,
5d163e0e
JM
6280 "mapping failed logical %llu bio len %llu len %llu",
6281 logical, length, map_length);
cea9e445
CM
6282 BUG();
6283 }
a1d3c478 6284
08da757d 6285 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6286 dev = bbio->stripes[dev_nr].dev;
37226b21 6287 if (!dev || !dev->bdev ||
ebbede42
AJ
6288 (bio_op(first_bio) == REQ_OP_WRITE &&
6289 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6290 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6291 continue;
6292 }
6293
3aa8e074 6294 if (dev_nr < total_devs - 1)
8b6c1d56 6295 bio = btrfs_bio_clone(first_bio);
3aa8e074 6296 else
a1d3c478 6297 bio = first_bio;
de1ee92a 6298
2ff7e61e
JM
6299 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6300 dev_nr, async_submit);
8790d502 6301 }
0b246afa 6302 btrfs_bio_counter_dec(fs_info);
58efbc9f 6303 return BLK_STS_OK;
0b86a832
CM
6304}
6305
aa1b8cd4 6306struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6307 u8 *uuid, u8 *fsid)
0b86a832 6308{
2b82032c
YZ
6309 struct btrfs_device *device;
6310 struct btrfs_fs_devices *cur_devices;
6311
aa1b8cd4 6312 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6313 while (cur_devices) {
6314 if (!fsid ||
44880fdc 6315 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
35c70103 6316 device = find_device(cur_devices, devid, uuid);
2b82032c
YZ
6317 if (device)
6318 return device;
6319 }
6320 cur_devices = cur_devices->seed;
6321 }
6322 return NULL;
0b86a832
CM
6323}
6324
2ff7e61e 6325static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6326 u64 devid, u8 *dev_uuid)
6327{
6328 struct btrfs_device *device;
dfe25020 6329
12bd2fc0
ID
6330 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6331 if (IS_ERR(device))
adfb69af 6332 return device;
12bd2fc0
ID
6333
6334 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6335 device->fs_devices = fs_devices;
dfe25020 6336 fs_devices->num_devices++;
12bd2fc0 6337
e6e674bd 6338 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6339 fs_devices->missing_devices++;
12bd2fc0 6340
dfe25020
CM
6341 return device;
6342}
6343
12bd2fc0
ID
6344/**
6345 * btrfs_alloc_device - allocate struct btrfs_device
6346 * @fs_info: used only for generating a new devid, can be NULL if
6347 * devid is provided (i.e. @devid != NULL).
6348 * @devid: a pointer to devid for this device. If NULL a new devid
6349 * is generated.
6350 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6351 * is generated.
6352 *
6353 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6354 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6355 * destroyed with btrfs_free_device.
12bd2fc0
ID
6356 */
6357struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6358 const u64 *devid,
6359 const u8 *uuid)
6360{
6361 struct btrfs_device *dev;
6362 u64 tmp;
6363
fae7f21c 6364 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6365 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6366
6367 dev = __alloc_device();
6368 if (IS_ERR(dev))
6369 return dev;
6370
6371 if (devid)
6372 tmp = *devid;
6373 else {
6374 int ret;
6375
6376 ret = find_next_devid(fs_info, &tmp);
6377 if (ret) {
a425f9d4 6378 btrfs_free_device(dev);
12bd2fc0
ID
6379 return ERR_PTR(ret);
6380 }
6381 }
6382 dev->devid = tmp;
6383
6384 if (uuid)
6385 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6386 else
6387 generate_random_uuid(dev->uuid);
6388
9e0af237
LB
6389 btrfs_init_work(&dev->work, btrfs_submit_helper,
6390 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6391
6392 return dev;
6393}
6394
e06cd3dd 6395/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6396static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6397 struct extent_buffer *leaf,
6398 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6399{
0b86a832 6400 u64 length;
f04b772b 6401 u64 stripe_len;
e06cd3dd
LB
6402 u16 num_stripes;
6403 u16 sub_stripes;
6404 u64 type;
0b86a832 6405
e17cade2 6406 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6407 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6408 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6409 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6410 type = btrfs_chunk_type(leaf, chunk);
6411
f04b772b 6412 if (!num_stripes) {
0b246afa 6413 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6414 num_stripes);
6415 return -EIO;
6416 }
0b246afa
JM
6417 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6418 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6419 return -EIO;
6420 }
0b246afa
JM
6421 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6422 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6423 btrfs_chunk_sector_size(leaf, chunk));
6424 return -EIO;
6425 }
0b246afa
JM
6426 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6427 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6428 return -EIO;
6429 }
3d8da678 6430 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6431 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6432 stripe_len);
6433 return -EIO;
6434 }
6435 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6436 type) {
0b246afa 6437 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6438 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6439 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6440 btrfs_chunk_type(leaf, chunk));
6441 return -EIO;
6442 }
e06cd3dd
LB
6443 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6444 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6445 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6446 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6447 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6448 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6449 num_stripes != 1)) {
0b246afa 6450 btrfs_err(fs_info,
e06cd3dd
LB
6451 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6452 num_stripes, sub_stripes,
6453 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6454 return -EIO;
6455 }
6456
6457 return 0;
6458}
6459
5a2b8e60 6460static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6461 u64 devid, u8 *uuid, bool error)
5a2b8e60 6462{
2b902dfc
AJ
6463 if (error)
6464 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6465 devid, uuid);
6466 else
6467 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6468 devid, uuid);
5a2b8e60
AJ
6469}
6470
2ff7e61e 6471static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6472 struct extent_buffer *leaf,
6473 struct btrfs_chunk *chunk)
6474{
0b246afa 6475 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6476 struct map_lookup *map;
6477 struct extent_map *em;
6478 u64 logical;
6479 u64 length;
e06cd3dd
LB
6480 u64 devid;
6481 u8 uuid[BTRFS_UUID_SIZE];
6482 int num_stripes;
6483 int ret;
6484 int i;
6485
6486 logical = key->offset;
6487 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6488 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6489
2ff7e61e 6490 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6491 if (ret)
6492 return ret;
a061fc8d 6493
890871be 6494 read_lock(&map_tree->map_tree.lock);
0b86a832 6495 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6496 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6497
6498 /* already mapped? */
6499 if (em && em->start <= logical && em->start + em->len > logical) {
6500 free_extent_map(em);
0b86a832
CM
6501 return 0;
6502 } else if (em) {
6503 free_extent_map(em);
6504 }
0b86a832 6505
172ddd60 6506 em = alloc_extent_map();
0b86a832
CM
6507 if (!em)
6508 return -ENOMEM;
593060d7 6509 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6510 if (!map) {
6511 free_extent_map(em);
6512 return -ENOMEM;
6513 }
6514
298a8f9c 6515 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6516 em->map_lookup = map;
0b86a832
CM
6517 em->start = logical;
6518 em->len = length;
70c8a91c 6519 em->orig_start = 0;
0b86a832 6520 em->block_start = 0;
c8b97818 6521 em->block_len = em->len;
0b86a832 6522
593060d7
CM
6523 map->num_stripes = num_stripes;
6524 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6525 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6526 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6527 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6528 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6529 for (i = 0; i < num_stripes; i++) {
6530 map->stripes[i].physical =
6531 btrfs_stripe_offset_nr(leaf, chunk, i);
6532 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6533 read_extent_buffer(leaf, uuid, (unsigned long)
6534 btrfs_stripe_dev_uuid_nr(chunk, i),
6535 BTRFS_UUID_SIZE);
0b246afa 6536 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6537 uuid, NULL);
3cdde224 6538 if (!map->stripes[i].dev &&
0b246afa 6539 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6540 free_extent_map(em);
2b902dfc 6541 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6542 return -ENOENT;
593060d7 6543 }
dfe25020
CM
6544 if (!map->stripes[i].dev) {
6545 map->stripes[i].dev =
2ff7e61e
JM
6546 add_missing_dev(fs_info->fs_devices, devid,
6547 uuid);
adfb69af 6548 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6549 free_extent_map(em);
adfb69af
AJ
6550 btrfs_err(fs_info,
6551 "failed to init missing dev %llu: %ld",
6552 devid, PTR_ERR(map->stripes[i].dev));
6553 return PTR_ERR(map->stripes[i].dev);
dfe25020 6554 }
2b902dfc 6555 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 6556 }
e12c9621
AJ
6557 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6558 &(map->stripes[i].dev->dev_state));
6559
0b86a832
CM
6560 }
6561
890871be 6562 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6563 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6564 write_unlock(&map_tree->map_tree.lock);
79787eaa 6565 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6566 free_extent_map(em);
6567
6568 return 0;
6569}
6570
143bede5 6571static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6572 struct btrfs_dev_item *dev_item,
6573 struct btrfs_device *device)
6574{
6575 unsigned long ptr;
0b86a832
CM
6576
6577 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6578 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6579 device->total_bytes = device->disk_total_bytes;
935e5cc9 6580 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6581 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6582 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6583 device->type = btrfs_device_type(leaf, dev_item);
6584 device->io_align = btrfs_device_io_align(leaf, dev_item);
6585 device->io_width = btrfs_device_io_width(leaf, dev_item);
6586 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6587 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6588 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6589
410ba3a2 6590 ptr = btrfs_device_uuid(dev_item);
e17cade2 6591 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6592}
6593
2ff7e61e 6594static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6595 u8 *fsid)
2b82032c
YZ
6596{
6597 struct btrfs_fs_devices *fs_devices;
6598 int ret;
6599
a32bf9a3 6600 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6601 ASSERT(fsid);
2b82032c 6602
0b246afa 6603 fs_devices = fs_info->fs_devices->seed;
2b82032c 6604 while (fs_devices) {
44880fdc 6605 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6606 return fs_devices;
6607
2b82032c
YZ
6608 fs_devices = fs_devices->seed;
6609 }
6610
6611 fs_devices = find_fsid(fsid);
6612 if (!fs_devices) {
0b246afa 6613 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6614 return ERR_PTR(-ENOENT);
6615
6616 fs_devices = alloc_fs_devices(fsid);
6617 if (IS_ERR(fs_devices))
6618 return fs_devices;
6619
6620 fs_devices->seeding = 1;
6621 fs_devices->opened = 1;
6622 return fs_devices;
2b82032c 6623 }
e4404d6e
YZ
6624
6625 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6626 if (IS_ERR(fs_devices))
6627 return fs_devices;
2b82032c 6628
897fb573 6629 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
6630 if (ret) {
6631 free_fs_devices(fs_devices);
5f375835 6632 fs_devices = ERR_PTR(ret);
2b82032c 6633 goto out;
48d28232 6634 }
2b82032c
YZ
6635
6636 if (!fs_devices->seeding) {
0226e0eb 6637 close_fs_devices(fs_devices);
e4404d6e 6638 free_fs_devices(fs_devices);
5f375835 6639 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6640 goto out;
6641 }
6642
0b246afa
JM
6643 fs_devices->seed = fs_info->fs_devices->seed;
6644 fs_info->fs_devices->seed = fs_devices;
2b82032c 6645out:
5f375835 6646 return fs_devices;
2b82032c
YZ
6647}
6648
2ff7e61e 6649static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6650 struct extent_buffer *leaf,
6651 struct btrfs_dev_item *dev_item)
6652{
0b246afa 6653 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6654 struct btrfs_device *device;
6655 u64 devid;
6656 int ret;
44880fdc 6657 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6658 u8 dev_uuid[BTRFS_UUID_SIZE];
6659
0b86a832 6660 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6661 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6662 BTRFS_UUID_SIZE);
1473b24e 6663 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6664 BTRFS_FSID_SIZE);
2b82032c 6665
44880fdc 6666 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
2ff7e61e 6667 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6668 if (IS_ERR(fs_devices))
6669 return PTR_ERR(fs_devices);
2b82032c
YZ
6670 }
6671
0b246afa 6672 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6673 if (!device) {
c5502451 6674 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6675 btrfs_report_missing_device(fs_info, devid,
6676 dev_uuid, true);
45dbdbc9 6677 return -ENOENT;
c5502451 6678 }
2b82032c 6679
2ff7e61e 6680 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6681 if (IS_ERR(device)) {
6682 btrfs_err(fs_info,
6683 "failed to add missing dev %llu: %ld",
6684 devid, PTR_ERR(device));
6685 return PTR_ERR(device);
6686 }
2b902dfc 6687 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6688 } else {
c5502451 6689 if (!device->bdev) {
2b902dfc
AJ
6690 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6691 btrfs_report_missing_device(fs_info,
6692 devid, dev_uuid, true);
45dbdbc9 6693 return -ENOENT;
2b902dfc
AJ
6694 }
6695 btrfs_report_missing_device(fs_info, devid,
6696 dev_uuid, false);
c5502451 6697 }
5f375835 6698
e6e674bd
AJ
6699 if (!device->bdev &&
6700 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6701 /*
6702 * this happens when a device that was properly setup
6703 * in the device info lists suddenly goes bad.
6704 * device->bdev is NULL, and so we have to set
6705 * device->missing to one here
6706 */
5f375835 6707 device->fs_devices->missing_devices++;
e6e674bd 6708 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6709 }
5f375835
MX
6710
6711 /* Move the device to its own fs_devices */
6712 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6713 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6714 &device->dev_state));
5f375835
MX
6715
6716 list_move(&device->dev_list, &fs_devices->devices);
6717 device->fs_devices->num_devices--;
6718 fs_devices->num_devices++;
6719
6720 device->fs_devices->missing_devices--;
6721 fs_devices->missing_devices++;
6722
6723 device->fs_devices = fs_devices;
6724 }
2b82032c
YZ
6725 }
6726
0b246afa 6727 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 6728 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
6729 if (device->generation !=
6730 btrfs_device_generation(leaf, dev_item))
6731 return -EINVAL;
6324fbf3 6732 }
0b86a832
CM
6733
6734 fill_device_from_item(leaf, dev_item, device);
e12c9621 6735 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 6736 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 6737 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 6738 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6739 atomic64_add(device->total_bytes - device->bytes_used,
6740 &fs_info->free_chunk_space);
2bf64758 6741 }
0b86a832 6742 ret = 0;
0b86a832
CM
6743 return ret;
6744}
6745
6bccf3ab 6746int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6747{
6bccf3ab 6748 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6749 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6750 struct extent_buffer *sb;
0b86a832 6751 struct btrfs_disk_key *disk_key;
0b86a832 6752 struct btrfs_chunk *chunk;
1ffb22cf
DS
6753 u8 *array_ptr;
6754 unsigned long sb_array_offset;
84eed90f 6755 int ret = 0;
0b86a832
CM
6756 u32 num_stripes;
6757 u32 array_size;
6758 u32 len = 0;
1ffb22cf 6759 u32 cur_offset;
e06cd3dd 6760 u64 type;
84eed90f 6761 struct btrfs_key key;
0b86a832 6762
0b246afa 6763 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6764 /*
6765 * This will create extent buffer of nodesize, superblock size is
6766 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6767 * overallocate but we can keep it as-is, only the first page is used.
6768 */
2ff7e61e 6769 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6770 if (IS_ERR(sb))
6771 return PTR_ERR(sb);
4db8c528 6772 set_extent_buffer_uptodate(sb);
85d4e461 6773 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6774 /*
01327610 6775 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6776 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6777 * pages up-to-date when the page is larger: extent does not cover the
6778 * whole page and consequently check_page_uptodate does not find all
6779 * the page's extents up-to-date (the hole beyond sb),
6780 * write_extent_buffer then triggers a WARN_ON.
6781 *
6782 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6783 * but sb spans only this function. Add an explicit SetPageUptodate call
6784 * to silence the warning eg. on PowerPC 64.
6785 */
09cbfeaf 6786 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6787 SetPageUptodate(sb->pages[0]);
4008c04a 6788
a061fc8d 6789 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6790 array_size = btrfs_super_sys_array_size(super_copy);
6791
1ffb22cf
DS
6792 array_ptr = super_copy->sys_chunk_array;
6793 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6794 cur_offset = 0;
0b86a832 6795
1ffb22cf
DS
6796 while (cur_offset < array_size) {
6797 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6798 len = sizeof(*disk_key);
6799 if (cur_offset + len > array_size)
6800 goto out_short_read;
6801
0b86a832
CM
6802 btrfs_disk_key_to_cpu(&key, disk_key);
6803
1ffb22cf
DS
6804 array_ptr += len;
6805 sb_array_offset += len;
6806 cur_offset += len;
0b86a832 6807
0d81ba5d 6808 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6809 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6810 /*
6811 * At least one btrfs_chunk with one stripe must be
6812 * present, exact stripe count check comes afterwards
6813 */
6814 len = btrfs_chunk_item_size(1);
6815 if (cur_offset + len > array_size)
6816 goto out_short_read;
6817
6818 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6819 if (!num_stripes) {
ab8d0fc4
JM
6820 btrfs_err(fs_info,
6821 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6822 num_stripes, cur_offset);
6823 ret = -EIO;
6824 break;
6825 }
6826
e06cd3dd
LB
6827 type = btrfs_chunk_type(sb, chunk);
6828 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6829 btrfs_err(fs_info,
e06cd3dd
LB
6830 "invalid chunk type %llu in sys_array at offset %u",
6831 type, cur_offset);
6832 ret = -EIO;
6833 break;
6834 }
6835
e3540eab
DS
6836 len = btrfs_chunk_item_size(num_stripes);
6837 if (cur_offset + len > array_size)
6838 goto out_short_read;
6839
2ff7e61e 6840 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6841 if (ret)
6842 break;
0b86a832 6843 } else {
ab8d0fc4
JM
6844 btrfs_err(fs_info,
6845 "unexpected item type %u in sys_array at offset %u",
6846 (u32)key.type, cur_offset);
84eed90f
CM
6847 ret = -EIO;
6848 break;
0b86a832 6849 }
1ffb22cf
DS
6850 array_ptr += len;
6851 sb_array_offset += len;
6852 cur_offset += len;
0b86a832 6853 }
d865177a 6854 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6855 free_extent_buffer_stale(sb);
84eed90f 6856 return ret;
e3540eab
DS
6857
6858out_short_read:
ab8d0fc4 6859 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6860 len, cur_offset);
d865177a 6861 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6862 free_extent_buffer_stale(sb);
e3540eab 6863 return -EIO;
0b86a832
CM
6864}
6865
21634a19
QW
6866/*
6867 * Check if all chunks in the fs are OK for read-write degraded mount
6868 *
6528b99d
AJ
6869 * If the @failing_dev is specified, it's accounted as missing.
6870 *
21634a19
QW
6871 * Return true if all chunks meet the minimal RW mount requirements.
6872 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6873 */
6528b99d
AJ
6874bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6875 struct btrfs_device *failing_dev)
21634a19
QW
6876{
6877 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6878 struct extent_map *em;
6879 u64 next_start = 0;
6880 bool ret = true;
6881
6882 read_lock(&map_tree->map_tree.lock);
6883 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6884 read_unlock(&map_tree->map_tree.lock);
6885 /* No chunk at all? Return false anyway */
6886 if (!em) {
6887 ret = false;
6888 goto out;
6889 }
6890 while (em) {
6891 struct map_lookup *map;
6892 int missing = 0;
6893 int max_tolerated;
6894 int i;
6895
6896 map = em->map_lookup;
6897 max_tolerated =
6898 btrfs_get_num_tolerated_disk_barrier_failures(
6899 map->type);
6900 for (i = 0; i < map->num_stripes; i++) {
6901 struct btrfs_device *dev = map->stripes[i].dev;
6902
e6e674bd
AJ
6903 if (!dev || !dev->bdev ||
6904 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
6905 dev->last_flush_error)
6906 missing++;
6528b99d
AJ
6907 else if (failing_dev && failing_dev == dev)
6908 missing++;
21634a19
QW
6909 }
6910 if (missing > max_tolerated) {
6528b99d
AJ
6911 if (!failing_dev)
6912 btrfs_warn(fs_info,
21634a19
QW
6913 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6914 em->start, missing, max_tolerated);
6915 free_extent_map(em);
6916 ret = false;
6917 goto out;
6918 }
6919 next_start = extent_map_end(em);
6920 free_extent_map(em);
6921
6922 read_lock(&map_tree->map_tree.lock);
6923 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6924 (u64)(-1) - next_start);
6925 read_unlock(&map_tree->map_tree.lock);
6926 }
6927out:
6928 return ret;
6929}
6930
5b4aacef 6931int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6932{
5b4aacef 6933 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6934 struct btrfs_path *path;
6935 struct extent_buffer *leaf;
6936 struct btrfs_key key;
6937 struct btrfs_key found_key;
6938 int ret;
6939 int slot;
99e3ecfc 6940 u64 total_dev = 0;
0b86a832 6941
0b86a832
CM
6942 path = btrfs_alloc_path();
6943 if (!path)
6944 return -ENOMEM;
6945
3dd0f7a3
AJ
6946 /*
6947 * uuid_mutex is needed only if we are mounting a sprout FS
6948 * otherwise we don't need it.
6949 */
b367e47f 6950 mutex_lock(&uuid_mutex);
34441361 6951 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6952
395927a9
FDBM
6953 /*
6954 * Read all device items, and then all the chunk items. All
6955 * device items are found before any chunk item (their object id
6956 * is smaller than the lowest possible object id for a chunk
6957 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6958 */
6959 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6960 key.offset = 0;
6961 key.type = 0;
0b86a832 6962 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6963 if (ret < 0)
6964 goto error;
d397712b 6965 while (1) {
0b86a832
CM
6966 leaf = path->nodes[0];
6967 slot = path->slots[0];
6968 if (slot >= btrfs_header_nritems(leaf)) {
6969 ret = btrfs_next_leaf(root, path);
6970 if (ret == 0)
6971 continue;
6972 if (ret < 0)
6973 goto error;
6974 break;
6975 }
6976 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6977 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6978 struct btrfs_dev_item *dev_item;
6979 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6980 struct btrfs_dev_item);
2ff7e61e 6981 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6982 if (ret)
6983 goto error;
99e3ecfc 6984 total_dev++;
0b86a832
CM
6985 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6986 struct btrfs_chunk *chunk;
6987 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6988 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6989 if (ret)
6990 goto error;
0b86a832
CM
6991 }
6992 path->slots[0]++;
6993 }
99e3ecfc
LB
6994
6995 /*
6996 * After loading chunk tree, we've got all device information,
6997 * do another round of validation checks.
6998 */
0b246afa
JM
6999 if (total_dev != fs_info->fs_devices->total_devices) {
7000 btrfs_err(fs_info,
99e3ecfc 7001 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7002 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7003 total_dev);
7004 ret = -EINVAL;
7005 goto error;
7006 }
0b246afa
JM
7007 if (btrfs_super_total_bytes(fs_info->super_copy) <
7008 fs_info->fs_devices->total_rw_bytes) {
7009 btrfs_err(fs_info,
99e3ecfc 7010 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7011 btrfs_super_total_bytes(fs_info->super_copy),
7012 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7013 ret = -EINVAL;
7014 goto error;
7015 }
0b86a832
CM
7016 ret = 0;
7017error:
34441361 7018 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
7019 mutex_unlock(&uuid_mutex);
7020
2b82032c 7021 btrfs_free_path(path);
0b86a832
CM
7022 return ret;
7023}
442a4f63 7024
cb517eab
MX
7025void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7026{
7027 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7028 struct btrfs_device *device;
7029
29cc83f6
LB
7030 while (fs_devices) {
7031 mutex_lock(&fs_devices->device_list_mutex);
7032 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 7033 device->fs_info = fs_info;
29cc83f6
LB
7034 mutex_unlock(&fs_devices->device_list_mutex);
7035
7036 fs_devices = fs_devices->seed;
7037 }
cb517eab
MX
7038}
7039
733f4fbb
SB
7040static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7041{
7042 int i;
7043
7044 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7045 btrfs_dev_stat_reset(dev, i);
7046}
7047
7048int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7049{
7050 struct btrfs_key key;
7051 struct btrfs_key found_key;
7052 struct btrfs_root *dev_root = fs_info->dev_root;
7053 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7054 struct extent_buffer *eb;
7055 int slot;
7056 int ret = 0;
7057 struct btrfs_device *device;
7058 struct btrfs_path *path = NULL;
7059 int i;
7060
7061 path = btrfs_alloc_path();
7062 if (!path) {
7063 ret = -ENOMEM;
7064 goto out;
7065 }
7066
7067 mutex_lock(&fs_devices->device_list_mutex);
7068 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7069 int item_size;
7070 struct btrfs_dev_stats_item *ptr;
7071
242e2956
DS
7072 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7073 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7074 key.offset = device->devid;
7075 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7076 if (ret) {
733f4fbb
SB
7077 __btrfs_reset_dev_stats(device);
7078 device->dev_stats_valid = 1;
7079 btrfs_release_path(path);
7080 continue;
7081 }
7082 slot = path->slots[0];
7083 eb = path->nodes[0];
7084 btrfs_item_key_to_cpu(eb, &found_key, slot);
7085 item_size = btrfs_item_size_nr(eb, slot);
7086
7087 ptr = btrfs_item_ptr(eb, slot,
7088 struct btrfs_dev_stats_item);
7089
7090 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7091 if (item_size >= (1 + i) * sizeof(__le64))
7092 btrfs_dev_stat_set(device, i,
7093 btrfs_dev_stats_value(eb, ptr, i));
7094 else
7095 btrfs_dev_stat_reset(device, i);
7096 }
7097
7098 device->dev_stats_valid = 1;
7099 btrfs_dev_stat_print_on_load(device);
7100 btrfs_release_path(path);
7101 }
7102 mutex_unlock(&fs_devices->device_list_mutex);
7103
7104out:
7105 btrfs_free_path(path);
7106 return ret < 0 ? ret : 0;
7107}
7108
7109static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 7110 struct btrfs_fs_info *fs_info,
733f4fbb
SB
7111 struct btrfs_device *device)
7112{
6bccf3ab 7113 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7114 struct btrfs_path *path;
7115 struct btrfs_key key;
7116 struct extent_buffer *eb;
7117 struct btrfs_dev_stats_item *ptr;
7118 int ret;
7119 int i;
7120
242e2956
DS
7121 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7122 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7123 key.offset = device->devid;
7124
7125 path = btrfs_alloc_path();
fa252992
DS
7126 if (!path)
7127 return -ENOMEM;
733f4fbb
SB
7128 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7129 if (ret < 0) {
0b246afa 7130 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7131 "error %d while searching for dev_stats item for device %s",
606686ee 7132 ret, rcu_str_deref(device->name));
733f4fbb
SB
7133 goto out;
7134 }
7135
7136 if (ret == 0 &&
7137 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7138 /* need to delete old one and insert a new one */
7139 ret = btrfs_del_item(trans, dev_root, path);
7140 if (ret != 0) {
0b246afa 7141 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7142 "delete too small dev_stats item for device %s failed %d",
606686ee 7143 rcu_str_deref(device->name), ret);
733f4fbb
SB
7144 goto out;
7145 }
7146 ret = 1;
7147 }
7148
7149 if (ret == 1) {
7150 /* need to insert a new item */
7151 btrfs_release_path(path);
7152 ret = btrfs_insert_empty_item(trans, dev_root, path,
7153 &key, sizeof(*ptr));
7154 if (ret < 0) {
0b246afa 7155 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7156 "insert dev_stats item for device %s failed %d",
7157 rcu_str_deref(device->name), ret);
733f4fbb
SB
7158 goto out;
7159 }
7160 }
7161
7162 eb = path->nodes[0];
7163 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7164 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7165 btrfs_set_dev_stats_value(eb, ptr, i,
7166 btrfs_dev_stat_read(device, i));
7167 btrfs_mark_buffer_dirty(eb);
7168
7169out:
7170 btrfs_free_path(path);
7171 return ret;
7172}
7173
7174/*
7175 * called from commit_transaction. Writes all changed device stats to disk.
7176 */
7177int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7178 struct btrfs_fs_info *fs_info)
7179{
733f4fbb
SB
7180 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7181 struct btrfs_device *device;
addc3fa7 7182 int stats_cnt;
733f4fbb
SB
7183 int ret = 0;
7184
7185 mutex_lock(&fs_devices->device_list_mutex);
7186 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7187 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7188 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7189 continue;
7190
9deae968
NB
7191
7192 /*
7193 * There is a LOAD-LOAD control dependency between the value of
7194 * dev_stats_ccnt and updating the on-disk values which requires
7195 * reading the in-memory counters. Such control dependencies
7196 * require explicit read memory barriers.
7197 *
7198 * This memory barriers pairs with smp_mb__before_atomic in
7199 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7200 * barrier implied by atomic_xchg in
7201 * btrfs_dev_stats_read_and_reset
7202 */
7203 smp_rmb();
7204
6bccf3ab 7205 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7206 if (!ret)
addc3fa7 7207 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7208 }
7209 mutex_unlock(&fs_devices->device_list_mutex);
7210
7211 return ret;
7212}
7213
442a4f63
SB
7214void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7215{
7216 btrfs_dev_stat_inc(dev, index);
7217 btrfs_dev_stat_print_on_error(dev);
7218}
7219
48a3b636 7220static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7221{
733f4fbb
SB
7222 if (!dev->dev_stats_valid)
7223 return;
fb456252 7224 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7225 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7226 rcu_str_deref(dev->name),
442a4f63
SB
7227 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7228 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7229 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7230 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7231 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7232}
c11d2c23 7233
733f4fbb
SB
7234static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7235{
a98cdb85
SB
7236 int i;
7237
7238 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7239 if (btrfs_dev_stat_read(dev, i) != 0)
7240 break;
7241 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7242 return; /* all values == 0, suppress message */
7243
fb456252 7244 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7245 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7246 rcu_str_deref(dev->name),
733f4fbb
SB
7247 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7248 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7249 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7250 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7251 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7252}
7253
2ff7e61e 7254int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7255 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7256{
7257 struct btrfs_device *dev;
0b246afa 7258 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7259 int i;
7260
7261 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7262 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7263 mutex_unlock(&fs_devices->device_list_mutex);
7264
7265 if (!dev) {
0b246afa 7266 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7267 return -ENODEV;
733f4fbb 7268 } else if (!dev->dev_stats_valid) {
0b246afa 7269 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7270 return -ENODEV;
b27f7c0c 7271 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7272 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7273 if (stats->nr_items > i)
7274 stats->values[i] =
7275 btrfs_dev_stat_read_and_reset(dev, i);
7276 else
7277 btrfs_dev_stat_reset(dev, i);
7278 }
7279 } else {
7280 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7281 if (stats->nr_items > i)
7282 stats->values[i] = btrfs_dev_stat_read(dev, i);
7283 }
7284 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7285 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7286 return 0;
7287}
a8a6dab7 7288
da353f6b 7289void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7290{
7291 struct buffer_head *bh;
7292 struct btrfs_super_block *disk_super;
12b1c263 7293 int copy_num;
a8a6dab7 7294
12b1c263
AJ
7295 if (!bdev)
7296 return;
a8a6dab7 7297
12b1c263
AJ
7298 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7299 copy_num++) {
a8a6dab7 7300
12b1c263
AJ
7301 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7302 continue;
7303
7304 disk_super = (struct btrfs_super_block *)bh->b_data;
7305
7306 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7307 set_buffer_dirty(bh);
7308 sync_dirty_buffer(bh);
7309 brelse(bh);
7310 }
7311
7312 /* Notify udev that device has changed */
7313 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7314
7315 /* Update ctime/mtime for device path for libblkid */
7316 update_dev_time(device_path);
a8a6dab7 7317}
935e5cc9
MX
7318
7319/*
7320 * Update the size of all devices, which is used for writing out the
7321 * super blocks.
7322 */
7323void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7324{
7325 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7326 struct btrfs_device *curr, *next;
7327
7328 if (list_empty(&fs_devices->resized_devices))
7329 return;
7330
7331 mutex_lock(&fs_devices->device_list_mutex);
34441361 7332 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7333 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7334 resized_list) {
7335 list_del_init(&curr->resized_list);
7336 curr->commit_total_bytes = curr->disk_total_bytes;
7337 }
34441361 7338 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7339 mutex_unlock(&fs_devices->device_list_mutex);
7340}
ce7213c7
MX
7341
7342/* Must be invoked during the transaction commit */
e9b919b1 7343void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
ce7213c7 7344{
e9b919b1 7345 struct btrfs_fs_info *fs_info = trans->fs_info;
ce7213c7
MX
7346 struct extent_map *em;
7347 struct map_lookup *map;
7348 struct btrfs_device *dev;
7349 int i;
7350
e9b919b1 7351 if (list_empty(&trans->pending_chunks))
ce7213c7
MX
7352 return;
7353
7354 /* In order to kick the device replace finish process */
34441361 7355 mutex_lock(&fs_info->chunk_mutex);
e9b919b1 7356 list_for_each_entry(em, &trans->pending_chunks, list) {
95617d69 7357 map = em->map_lookup;
ce7213c7
MX
7358
7359 for (i = 0; i < map->num_stripes; i++) {
7360 dev = map->stripes[i].dev;
7361 dev->commit_bytes_used = dev->bytes_used;
7362 }
7363 }
34441361 7364 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7365}
5a13f430
AJ
7366
7367void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7368{
7369 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7370 while (fs_devices) {
7371 fs_devices->fs_info = fs_info;
7372 fs_devices = fs_devices->seed;
7373 }
7374}
7375
7376void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7377{
7378 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7379 while (fs_devices) {
7380 fs_devices->fs_info = NULL;
7381 fs_devices = fs_devices->seed;
7382 }
7383}