]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
btrfs: Fix use-after-free when cleaning up fs_devs with a single stale device
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
142static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
2b82032c 147
67a2c45e 148DEFINE_MUTEX(uuid_mutex);
8a4b83cc 149static LIST_HEAD(fs_uuids);
c73eccf7
AJ
150struct list_head *btrfs_get_fs_uuids(void)
151{
152 return &fs_uuids;
153}
8a4b83cc 154
2dfeca9b
DS
155/*
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
158 *
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
162 */
163static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
2208a378
ID
164{
165 struct btrfs_fs_devices *fs_devs;
166
78f2c9e6 167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
170
171 mutex_init(&fs_devs->device_list_mutex);
172
173 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 174 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
2208a378
ID
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378
ID
179
180 return fs_devs;
181}
182
e4404d6e
YZ
183static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184{
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
606686ee 191 rcu_string_free(device->name);
3065ae5b 192 bio_put(device->flush_bio);
e4404d6e
YZ
193 kfree(device);
194 }
195 kfree(fs_devices);
196}
197
b8b8ff59
LC
198static void btrfs_kobject_uevent(struct block_device *bdev,
199 enum kobject_action action)
200{
201 int ret;
202
203 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
204 if (ret)
efe120a0 205 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
206 action,
207 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
208 &disk_to_dev(bdev->bd_disk)->kobj);
209}
210
143bede5 211void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
212{
213 struct btrfs_fs_devices *fs_devices;
8a4b83cc 214
2b82032c
YZ
215 while (!list_empty(&fs_uuids)) {
216 fs_devices = list_entry(fs_uuids.next,
217 struct btrfs_fs_devices, list);
218 list_del(&fs_devices->list);
e4404d6e 219 free_fs_devices(fs_devices);
8a4b83cc 220 }
8a4b83cc
CM
221}
222
12bd2fc0
ID
223static struct btrfs_device *__alloc_device(void)
224{
225 struct btrfs_device *dev;
226
78f2c9e6 227 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
228 if (!dev)
229 return ERR_PTR(-ENOMEM);
230
e0ae9994
DS
231 /*
232 * Preallocate a bio that's always going to be used for flushing device
233 * barriers and matches the device lifespan
234 */
235 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
236 if (!dev->flush_bio) {
237 kfree(dev);
238 return ERR_PTR(-ENOMEM);
239 }
e0ae9994 240
12bd2fc0
ID
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
9bcaaea7 251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
35c70103
DS
257/*
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259 * return NULL.
260 *
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
263 */
264static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
8a4b83cc 266{
35c70103 267 struct list_head *head = &fs_devices->devices;
8a4b83cc 268 struct btrfs_device *dev;
8a4b83cc 269
c6e30871 270 list_for_each_entry(dev, head, dev_list) {
a443755f 271 if (dev->devid == devid &&
8f18cf13 272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 273 return dev;
a443755f 274 }
8a4b83cc
CM
275 }
276 return NULL;
277}
278
a1b32a59 279static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 280{
8a4b83cc
CM
281 struct btrfs_fs_devices *fs_devices;
282
c6e30871 283 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 return fs_devices;
286 }
287 return NULL;
288}
289
beaf8ab3
SB
290static int
291btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
294{
295 int ret;
296
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299 if (IS_ERR(*bdev)) {
300 ret = PTR_ERR(*bdev);
beaf8ab3
SB
301 goto error;
302 }
303
304 if (flush)
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
307 if (ret) {
308 blkdev_put(*bdev, flags);
309 goto error;
310 }
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
313 if (IS_ERR(*bh)) {
314 ret = PTR_ERR(*bh);
beaf8ab3
SB
315 blkdev_put(*bdev, flags);
316 goto error;
317 }
318
319 return 0;
320
321error:
322 *bdev = NULL;
323 *bh = NULL;
324 return ret;
325}
326
ffbd517d
CM
327static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
329{
330
331 struct bio *old_head;
332
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
337 else
338 pending_bios->tail = tail;
339}
340
8b712842
CM
341/*
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
345 *
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
351 */
143bede5 352static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 353{
0b246afa 354 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
355 struct bio *pending;
356 struct backing_dev_info *bdi;
ffbd517d 357 struct btrfs_pending_bios *pending_bios;
8b712842
CM
358 struct bio *tail;
359 struct bio *cur;
360 int again = 0;
ffbd517d 361 unsigned long num_run;
d644d8a1 362 unsigned long batch_run = 0;
b765ead5 363 unsigned long last_waited = 0;
d84275c9 364 int force_reg = 0;
0e588859 365 int sync_pending = 0;
211588ad
CM
366 struct blk_plug plug;
367
368 /*
369 * this function runs all the bios we've collected for
370 * a particular device. We don't want to wander off to
371 * another device without first sending all of these down.
372 * So, setup a plug here and finish it off before we return
373 */
374 blk_start_plug(&plug);
8b712842 375
efa7c9f9 376 bdi = device->bdev->bd_bdi;
b64a2851 377
8b712842
CM
378loop:
379 spin_lock(&device->io_lock);
380
a6837051 381loop_lock:
d84275c9 382 num_run = 0;
ffbd517d 383
8b712842
CM
384 /* take all the bios off the list at once and process them
385 * later on (without the lock held). But, remember the
386 * tail and other pointers so the bios can be properly reinserted
387 * into the list if we hit congestion
388 */
d84275c9 389 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 390 pending_bios = &device->pending_sync_bios;
d84275c9
CM
391 force_reg = 1;
392 } else {
ffbd517d 393 pending_bios = &device->pending_bios;
d84275c9
CM
394 force_reg = 0;
395 }
ffbd517d
CM
396
397 pending = pending_bios->head;
398 tail = pending_bios->tail;
8b712842 399 WARN_ON(pending && !tail);
8b712842
CM
400
401 /*
402 * if pending was null this time around, no bios need processing
403 * at all and we can stop. Otherwise it'll loop back up again
404 * and do an additional check so no bios are missed.
405 *
406 * device->running_pending is used to synchronize with the
407 * schedule_bio code.
408 */
ffbd517d
CM
409 if (device->pending_sync_bios.head == NULL &&
410 device->pending_bios.head == NULL) {
8b712842
CM
411 again = 0;
412 device->running_pending = 0;
ffbd517d
CM
413 } else {
414 again = 1;
415 device->running_pending = 1;
8b712842 416 }
ffbd517d
CM
417
418 pending_bios->head = NULL;
419 pending_bios->tail = NULL;
420
8b712842
CM
421 spin_unlock(&device->io_lock);
422
d397712b 423 while (pending) {
ffbd517d
CM
424
425 rmb();
d84275c9
CM
426 /* we want to work on both lists, but do more bios on the
427 * sync list than the regular list
428 */
429 if ((num_run > 32 &&
430 pending_bios != &device->pending_sync_bios &&
431 device->pending_sync_bios.head) ||
432 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
433 device->pending_bios.head)) {
ffbd517d
CM
434 spin_lock(&device->io_lock);
435 requeue_list(pending_bios, pending, tail);
436 goto loop_lock;
437 }
438
8b712842
CM
439 cur = pending;
440 pending = pending->bi_next;
441 cur->bi_next = NULL;
b64a2851 442
dac56212 443 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 444
2ab1ba68
CM
445 /*
446 * if we're doing the sync list, record that our
447 * plug has some sync requests on it
448 *
449 * If we're doing the regular list and there are
450 * sync requests sitting around, unplug before
451 * we add more
452 */
453 if (pending_bios == &device->pending_sync_bios) {
454 sync_pending = 1;
455 } else if (sync_pending) {
456 blk_finish_plug(&plug);
457 blk_start_plug(&plug);
458 sync_pending = 0;
459 }
460
4e49ea4a 461 btrfsic_submit_bio(cur);
5ff7ba3a
CM
462 num_run++;
463 batch_run++;
853d8ec4
DS
464
465 cond_resched();
8b712842
CM
466
467 /*
468 * we made progress, there is more work to do and the bdi
469 * is now congested. Back off and let other work structs
470 * run instead
471 */
57fd5a5f 472 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 473 fs_info->fs_devices->open_devices > 1) {
b765ead5 474 struct io_context *ioc;
8b712842 475
b765ead5
CM
476 ioc = current->io_context;
477
478 /*
479 * the main goal here is that we don't want to
480 * block if we're going to be able to submit
481 * more requests without blocking.
482 *
483 * This code does two great things, it pokes into
484 * the elevator code from a filesystem _and_
485 * it makes assumptions about how batching works.
486 */
487 if (ioc && ioc->nr_batch_requests > 0 &&
488 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
489 (last_waited == 0 ||
490 ioc->last_waited == last_waited)) {
491 /*
492 * we want to go through our batch of
493 * requests and stop. So, we copy out
494 * the ioc->last_waited time and test
495 * against it before looping
496 */
497 last_waited = ioc->last_waited;
853d8ec4 498 cond_resched();
b765ead5
CM
499 continue;
500 }
8b712842 501 spin_lock(&device->io_lock);
ffbd517d 502 requeue_list(pending_bios, pending, tail);
a6837051 503 device->running_pending = 1;
8b712842
CM
504
505 spin_unlock(&device->io_lock);
a8c93d4e
QW
506 btrfs_queue_work(fs_info->submit_workers,
507 &device->work);
8b712842
CM
508 goto done;
509 }
510 }
ffbd517d 511
51684082
CM
512 cond_resched();
513 if (again)
514 goto loop;
515
516 spin_lock(&device->io_lock);
517 if (device->pending_bios.head || device->pending_sync_bios.head)
518 goto loop_lock;
519 spin_unlock(&device->io_lock);
520
8b712842 521done:
211588ad 522 blk_finish_plug(&plug);
8b712842
CM
523}
524
b2950863 525static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
526{
527 struct btrfs_device *device;
528
529 device = container_of(work, struct btrfs_device, work);
530 run_scheduled_bios(device);
531}
532
4fde46f0 533
c9162bdf 534static void btrfs_free_stale_device(struct btrfs_device *cur_dev)
4fde46f0
AJ
535{
536 struct btrfs_fs_devices *fs_devs;
537 struct btrfs_device *dev;
538
539 if (!cur_dev->name)
540 return;
541
542 list_for_each_entry(fs_devs, &fs_uuids, list) {
543 int del = 1;
544
545 if (fs_devs->opened)
546 continue;
547 if (fs_devs->seeding)
548 continue;
549
550 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
551
552 if (dev == cur_dev)
553 continue;
554 if (!dev->name)
555 continue;
556
557 /*
558 * Todo: This won't be enough. What if the same device
559 * comes back (with new uuid and) with its mapper path?
560 * But for now, this does help as mostly an admin will
561 * either use mapper or non mapper path throughout.
562 */
563 rcu_read_lock();
564 del = strcmp(rcu_str_deref(dev->name),
565 rcu_str_deref(cur_dev->name));
566 rcu_read_unlock();
567 if (!del)
568 break;
569 }
570
571 if (!del) {
572 /* delete the stale device */
573 if (fs_devs->num_devices == 1) {
574 btrfs_sysfs_remove_fsid(fs_devs);
575 list_del(&fs_devs->list);
576 free_fs_devices(fs_devs);
6b2f4cac 577 break;
4fde46f0
AJ
578 } else {
579 fs_devs->num_devices--;
580 list_del(&dev->dev_list);
581 rcu_string_free(dev->name);
3065ae5b 582 bio_put(dev->flush_bio);
4fde46f0
AJ
583 kfree(dev);
584 }
585 break;
586 }
587 }
588}
589
60999ca4
DS
590/*
591 * Add new device to list of registered devices
592 *
593 * Returns:
594 * 1 - first time device is seen
595 * 0 - device already known
596 * < 0 - error
597 */
a1b32a59 598static noinline int device_list_add(const char *path,
8a4b83cc
CM
599 struct btrfs_super_block *disk_super,
600 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
601{
602 struct btrfs_device *device;
603 struct btrfs_fs_devices *fs_devices;
606686ee 604 struct rcu_string *name;
60999ca4 605 int ret = 0;
8a4b83cc
CM
606 u64 found_transid = btrfs_super_generation(disk_super);
607
608 fs_devices = find_fsid(disk_super->fsid);
609 if (!fs_devices) {
2208a378
ID
610 fs_devices = alloc_fs_devices(disk_super->fsid);
611 if (IS_ERR(fs_devices))
612 return PTR_ERR(fs_devices);
613
8a4b83cc 614 list_add(&fs_devices->list, &fs_uuids);
2208a378 615
8a4b83cc
CM
616 device = NULL;
617 } else {
35c70103
DS
618 device = find_device(fs_devices, devid,
619 disk_super->dev_item.uuid);
8a4b83cc 620 }
443f24fe 621
8a4b83cc 622 if (!device) {
2b82032c
YZ
623 if (fs_devices->opened)
624 return -EBUSY;
625
12bd2fc0
ID
626 device = btrfs_alloc_device(NULL, &devid,
627 disk_super->dev_item.uuid);
628 if (IS_ERR(device)) {
8a4b83cc 629 /* we can safely leave the fs_devices entry around */
12bd2fc0 630 return PTR_ERR(device);
8a4b83cc 631 }
606686ee
JB
632
633 name = rcu_string_strdup(path, GFP_NOFS);
634 if (!name) {
3065ae5b 635 bio_put(device->flush_bio);
8a4b83cc
CM
636 kfree(device);
637 return -ENOMEM;
638 }
606686ee 639 rcu_assign_pointer(device->name, name);
90519d66 640
e5e9a520 641 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 642 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 643 fs_devices->num_devices++;
e5e9a520
CM
644 mutex_unlock(&fs_devices->device_list_mutex);
645
60999ca4 646 ret = 1;
2b82032c 647 device->fs_devices = fs_devices;
606686ee 648 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
649 /*
650 * When FS is already mounted.
651 * 1. If you are here and if the device->name is NULL that
652 * means this device was missing at time of FS mount.
653 * 2. If you are here and if the device->name is different
654 * from 'path' that means either
655 * a. The same device disappeared and reappeared with
656 * different name. or
657 * b. The missing-disk-which-was-replaced, has
658 * reappeared now.
659 *
660 * We must allow 1 and 2a above. But 2b would be a spurious
661 * and unintentional.
662 *
663 * Further in case of 1 and 2a above, the disk at 'path'
664 * would have missed some transaction when it was away and
665 * in case of 2a the stale bdev has to be updated as well.
666 * 2b must not be allowed at all time.
667 */
668
669 /*
0f23ae74
CM
670 * For now, we do allow update to btrfs_fs_device through the
671 * btrfs dev scan cli after FS has been mounted. We're still
672 * tracking a problem where systems fail mount by subvolume id
673 * when we reject replacement on a mounted FS.
b96de000 674 */
0f23ae74 675 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
676 /*
677 * That is if the FS is _not_ mounted and if you
678 * are here, that means there is more than one
679 * disk with same uuid and devid.We keep the one
680 * with larger generation number or the last-in if
681 * generation are equal.
682 */
0f23ae74 683 return -EEXIST;
77bdae4d 684 }
b96de000 685
606686ee 686 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
687 if (!name)
688 return -ENOMEM;
606686ee
JB
689 rcu_string_free(device->name);
690 rcu_assign_pointer(device->name, name);
cd02dca5
CM
691 if (device->missing) {
692 fs_devices->missing_devices--;
693 device->missing = 0;
694 }
8a4b83cc
CM
695 }
696
77bdae4d
AJ
697 /*
698 * Unmount does not free the btrfs_device struct but would zero
699 * generation along with most of the other members. So just update
700 * it back. We need it to pick the disk with largest generation
701 * (as above).
702 */
703 if (!fs_devices->opened)
704 device->generation = found_transid;
705
4fde46f0
AJ
706 /*
707 * if there is new btrfs on an already registered device,
708 * then remove the stale device entry.
709 */
02feae3c
AJ
710 if (ret > 0)
711 btrfs_free_stale_device(device);
4fde46f0 712
8a4b83cc 713 *fs_devices_ret = fs_devices;
60999ca4
DS
714
715 return ret;
8a4b83cc
CM
716}
717
e4404d6e
YZ
718static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
719{
720 struct btrfs_fs_devices *fs_devices;
721 struct btrfs_device *device;
722 struct btrfs_device *orig_dev;
723
2208a378
ID
724 fs_devices = alloc_fs_devices(orig->fsid);
725 if (IS_ERR(fs_devices))
726 return fs_devices;
e4404d6e 727
adbbb863 728 mutex_lock(&orig->device_list_mutex);
02db0844 729 fs_devices->total_devices = orig->total_devices;
e4404d6e 730
46224705 731 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 732 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
733 struct rcu_string *name;
734
12bd2fc0
ID
735 device = btrfs_alloc_device(NULL, &orig_dev->devid,
736 orig_dev->uuid);
737 if (IS_ERR(device))
e4404d6e
YZ
738 goto error;
739
606686ee
JB
740 /*
741 * This is ok to do without rcu read locked because we hold the
742 * uuid mutex so nothing we touch in here is going to disappear.
743 */
e755f780 744 if (orig_dev->name) {
78f2c9e6
DS
745 name = rcu_string_strdup(orig_dev->name->str,
746 GFP_KERNEL);
e755f780 747 if (!name) {
3065ae5b 748 bio_put(device->flush_bio);
e755f780
AJ
749 kfree(device);
750 goto error;
751 }
752 rcu_assign_pointer(device->name, name);
fd2696f3 753 }
e4404d6e 754
e4404d6e
YZ
755 list_add(&device->dev_list, &fs_devices->devices);
756 device->fs_devices = fs_devices;
757 fs_devices->num_devices++;
758 }
adbbb863 759 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
760 return fs_devices;
761error:
adbbb863 762 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
763 free_fs_devices(fs_devices);
764 return ERR_PTR(-ENOMEM);
765}
766
9eaed21e 767void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 768{
c6e30871 769 struct btrfs_device *device, *next;
443f24fe 770 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 771
dfe25020
CM
772 mutex_lock(&uuid_mutex);
773again:
46224705 774 /* This is the initialized path, it is safe to release the devices. */
c6e30871 775 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 776 if (device->in_fs_metadata) {
63a212ab 777 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
778 (!latest_dev ||
779 device->generation > latest_dev->generation)) {
780 latest_dev = device;
a6b0d5c8 781 }
2b82032c 782 continue;
a6b0d5c8 783 }
2b82032c 784
8dabb742
SB
785 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
786 /*
787 * In the first step, keep the device which has
788 * the correct fsid and the devid that is used
789 * for the dev_replace procedure.
790 * In the second step, the dev_replace state is
791 * read from the device tree and it is known
792 * whether the procedure is really active or
793 * not, which means whether this device is
794 * used or whether it should be removed.
795 */
796 if (step == 0 || device->is_tgtdev_for_dev_replace) {
797 continue;
798 }
799 }
2b82032c 800 if (device->bdev) {
d4d77629 801 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
802 device->bdev = NULL;
803 fs_devices->open_devices--;
804 }
805 if (device->writeable) {
806 list_del_init(&device->dev_alloc_list);
807 device->writeable = 0;
8dabb742
SB
808 if (!device->is_tgtdev_for_dev_replace)
809 fs_devices->rw_devices--;
2b82032c 810 }
e4404d6e
YZ
811 list_del_init(&device->dev_list);
812 fs_devices->num_devices--;
606686ee 813 rcu_string_free(device->name);
3065ae5b 814 bio_put(device->flush_bio);
e4404d6e 815 kfree(device);
dfe25020 816 }
2b82032c
YZ
817
818 if (fs_devices->seed) {
819 fs_devices = fs_devices->seed;
2b82032c
YZ
820 goto again;
821 }
822
443f24fe 823 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 824
dfe25020 825 mutex_unlock(&uuid_mutex);
dfe25020 826}
a0af469b 827
1f78160c
XG
828static void __free_device(struct work_struct *work)
829{
830 struct btrfs_device *device;
831
832 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 833 rcu_string_free(device->name);
e0ae9994 834 bio_put(device->flush_bio);
1f78160c
XG
835 kfree(device);
836}
837
838static void free_device(struct rcu_head *head)
839{
840 struct btrfs_device *device;
841
842 device = container_of(head, struct btrfs_device, rcu);
843
844 INIT_WORK(&device->rcu_work, __free_device);
845 schedule_work(&device->rcu_work);
846}
847
14238819
AJ
848static void btrfs_close_bdev(struct btrfs_device *device)
849{
850 if (device->bdev && device->writeable) {
851 sync_blockdev(device->bdev);
852 invalidate_bdev(device->bdev);
853 }
854
855 if (device->bdev)
856 blkdev_put(device->bdev, device->mode);
857}
858
0ccd0528 859static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
860{
861 struct btrfs_fs_devices *fs_devices = device->fs_devices;
862 struct btrfs_device *new_device;
863 struct rcu_string *name;
864
865 if (device->bdev)
866 fs_devices->open_devices--;
867
868 if (device->writeable &&
869 device->devid != BTRFS_DEV_REPLACE_DEVID) {
870 list_del_init(&device->dev_alloc_list);
871 fs_devices->rw_devices--;
872 }
873
874 if (device->missing)
875 fs_devices->missing_devices--;
876
877 new_device = btrfs_alloc_device(NULL, &device->devid,
878 device->uuid);
879 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
880
881 /* Safe because we are under uuid_mutex */
882 if (device->name) {
883 name = rcu_string_strdup(device->name->str, GFP_NOFS);
884 BUG_ON(!name); /* -ENOMEM */
885 rcu_assign_pointer(new_device->name, name);
886 }
887
888 list_replace_rcu(&device->dev_list, &new_device->dev_list);
889 new_device->fs_devices = device->fs_devices;
f448341a
AJ
890}
891
2b82032c 892static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 893{
2037a093 894 struct btrfs_device *device, *tmp;
0ccd0528
AJ
895 struct list_head pending_put;
896
897 INIT_LIST_HEAD(&pending_put);
e4404d6e 898
2b82032c
YZ
899 if (--fs_devices->opened > 0)
900 return 0;
8a4b83cc 901
c9513edb 902 mutex_lock(&fs_devices->device_list_mutex);
2037a093 903 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
904 btrfs_prepare_close_one_device(device);
905 list_add(&device->dev_list, &pending_put);
8a4b83cc 906 }
c9513edb
XG
907 mutex_unlock(&fs_devices->device_list_mutex);
908
0ccd0528
AJ
909 /*
910 * btrfs_show_devname() is using the device_list_mutex,
911 * sometimes call to blkdev_put() leads vfs calling
912 * into this func. So do put outside of device_list_mutex,
913 * as of now.
914 */
915 while (!list_empty(&pending_put)) {
916 device = list_first_entry(&pending_put,
917 struct btrfs_device, dev_list);
918 list_del(&device->dev_list);
919 btrfs_close_bdev(device);
920 call_rcu(&device->rcu, free_device);
921 }
922
e4404d6e
YZ
923 WARN_ON(fs_devices->open_devices);
924 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
925 fs_devices->opened = 0;
926 fs_devices->seeding = 0;
2b82032c 927
8a4b83cc
CM
928 return 0;
929}
930
2b82032c
YZ
931int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
932{
e4404d6e 933 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
934 int ret;
935
936 mutex_lock(&uuid_mutex);
937 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
938 if (!fs_devices->opened) {
939 seed_devices = fs_devices->seed;
940 fs_devices->seed = NULL;
941 }
2b82032c 942 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
943
944 while (seed_devices) {
945 fs_devices = seed_devices;
946 seed_devices = fs_devices->seed;
947 __btrfs_close_devices(fs_devices);
948 free_fs_devices(fs_devices);
949 }
bc178622
ES
950 /*
951 * Wait for rcu kworkers under __btrfs_close_devices
952 * to finish all blkdev_puts so device is really
953 * free when umount is done.
954 */
955 rcu_barrier();
2b82032c
YZ
956 return ret;
957}
958
e4404d6e
YZ
959static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
960 fmode_t flags, void *holder)
8a4b83cc 961{
d5e2003c 962 struct request_queue *q;
8a4b83cc
CM
963 struct block_device *bdev;
964 struct list_head *head = &fs_devices->devices;
8a4b83cc 965 struct btrfs_device *device;
443f24fe 966 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
967 struct buffer_head *bh;
968 struct btrfs_super_block *disk_super;
a0af469b 969 u64 devid;
2b82032c 970 int seeding = 1;
a0af469b 971 int ret = 0;
8a4b83cc 972
d4d77629
TH
973 flags |= FMODE_EXCL;
974
c6e30871 975 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
976 if (device->bdev)
977 continue;
dfe25020
CM
978 if (!device->name)
979 continue;
980
f63e0cca
ES
981 /* Just open everything we can; ignore failures here */
982 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
983 &bdev, &bh))
beaf8ab3 984 continue;
a0af469b
CM
985
986 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 987 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
988 if (devid != device->devid)
989 goto error_brelse;
990
2b82032c
YZ
991 if (memcmp(device->uuid, disk_super->dev_item.uuid,
992 BTRFS_UUID_SIZE))
993 goto error_brelse;
994
995 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
996 if (!latest_dev ||
997 device->generation > latest_dev->generation)
998 latest_dev = device;
a0af469b 999
2b82032c
YZ
1000 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1001 device->writeable = 0;
1002 } else {
1003 device->writeable = !bdev_read_only(bdev);
1004 seeding = 0;
1005 }
1006
d5e2003c 1007 q = bdev_get_queue(bdev);
90180da4 1008 if (blk_queue_discard(q))
d5e2003c 1009 device->can_discard = 1;
e884f4f0
AJ
1010 if (!blk_queue_nonrot(q))
1011 fs_devices->rotating = 1;
d5e2003c 1012
8a4b83cc 1013 device->bdev = bdev;
dfe25020 1014 device->in_fs_metadata = 0;
15916de8
CM
1015 device->mode = flags;
1016
a0af469b 1017 fs_devices->open_devices++;
55e50e45
ID
1018 if (device->writeable &&
1019 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1020 fs_devices->rw_devices++;
1021 list_add(&device->dev_alloc_list,
1022 &fs_devices->alloc_list);
1023 }
4f6c9328 1024 brelse(bh);
a0af469b 1025 continue;
a061fc8d 1026
a0af469b
CM
1027error_brelse:
1028 brelse(bh);
d4d77629 1029 blkdev_put(bdev, flags);
a0af469b 1030 continue;
8a4b83cc 1031 }
a0af469b 1032 if (fs_devices->open_devices == 0) {
20bcd649 1033 ret = -EINVAL;
a0af469b
CM
1034 goto out;
1035 }
2b82032c
YZ
1036 fs_devices->seeding = seeding;
1037 fs_devices->opened = 1;
443f24fe 1038 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1039 fs_devices->total_rw_bytes = 0;
a0af469b 1040out:
2b82032c
YZ
1041 return ret;
1042}
1043
1044int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1045 fmode_t flags, void *holder)
2b82032c
YZ
1046{
1047 int ret;
1048
1049 mutex_lock(&uuid_mutex);
1050 if (fs_devices->opened) {
e4404d6e
YZ
1051 fs_devices->opened++;
1052 ret = 0;
2b82032c 1053 } else {
15916de8 1054 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1055 }
8a4b83cc 1056 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1057 return ret;
1058}
1059
c9162bdf 1060static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1061{
1062 kunmap(page);
1063 put_page(page);
1064}
1065
c9162bdf
OS
1066static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1067 struct page **page,
1068 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1069{
1070 void *p;
1071 pgoff_t index;
1072
1073 /* make sure our super fits in the device */
1074 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1075 return 1;
1076
1077 /* make sure our super fits in the page */
1078 if (sizeof(**disk_super) > PAGE_SIZE)
1079 return 1;
1080
1081 /* make sure our super doesn't straddle pages on disk */
1082 index = bytenr >> PAGE_SHIFT;
1083 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1084 return 1;
1085
1086 /* pull in the page with our super */
1087 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1088 index, GFP_KERNEL);
1089
1090 if (IS_ERR_OR_NULL(*page))
1091 return 1;
1092
1093 p = kmap(*page);
1094
1095 /* align our pointer to the offset of the super block */
1096 *disk_super = p + (bytenr & ~PAGE_MASK);
1097
1098 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1099 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1100 btrfs_release_disk_super(*page);
1101 return 1;
1102 }
1103
1104 if ((*disk_super)->label[0] &&
1105 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1106 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1107
1108 return 0;
1109}
1110
6f60cbd3
DS
1111/*
1112 * Look for a btrfs signature on a device. This may be called out of the mount path
1113 * and we are not allowed to call set_blocksize during the scan. The superblock
1114 * is read via pagecache
1115 */
97288f2c 1116int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1117 struct btrfs_fs_devices **fs_devices_ret)
1118{
1119 struct btrfs_super_block *disk_super;
1120 struct block_device *bdev;
6f60cbd3 1121 struct page *page;
6f60cbd3 1122 int ret = -EINVAL;
8a4b83cc 1123 u64 devid;
f2984462 1124 u64 transid;
02db0844 1125 u64 total_devices;
6f60cbd3 1126 u64 bytenr;
8a4b83cc 1127
6f60cbd3
DS
1128 /*
1129 * we would like to check all the supers, but that would make
1130 * a btrfs mount succeed after a mkfs from a different FS.
1131 * So, we need to add a special mount option to scan for
1132 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1133 */
1134 bytenr = btrfs_sb_offset(0);
d4d77629 1135 flags |= FMODE_EXCL;
10f6327b 1136 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1137
1138 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1139 if (IS_ERR(bdev)) {
1140 ret = PTR_ERR(bdev);
beaf8ab3 1141 goto error;
6f60cbd3
DS
1142 }
1143
6cf86a00 1144 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1145 goto error_bdev_put;
1146
a343832f 1147 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1148 transid = btrfs_super_generation(disk_super);
02db0844 1149 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1150
8a4b83cc 1151 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1152 if (ret > 0) {
1153 if (disk_super->label[0]) {
62e85577 1154 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1155 } else {
62e85577 1156 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1157 }
1158
62e85577 1159 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1160 ret = 0;
1161 }
02db0844
JB
1162 if (!ret && fs_devices_ret)
1163 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1164
6cf86a00 1165 btrfs_release_disk_super(page);
6f60cbd3
DS
1166
1167error_bdev_put:
d4d77629 1168 blkdev_put(bdev, flags);
8a4b83cc 1169error:
beaf8ab3 1170 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1171 return ret;
1172}
0b86a832 1173
6d07bcec
MX
1174/* helper to account the used device space in the range */
1175int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1176 u64 end, u64 *length)
1177{
1178 struct btrfs_key key;
fb456252 1179 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1180 struct btrfs_dev_extent *dev_extent;
1181 struct btrfs_path *path;
1182 u64 extent_end;
1183 int ret;
1184 int slot;
1185 struct extent_buffer *l;
1186
1187 *length = 0;
1188
63a212ab 1189 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1190 return 0;
1191
1192 path = btrfs_alloc_path();
1193 if (!path)
1194 return -ENOMEM;
e4058b54 1195 path->reada = READA_FORWARD;
6d07bcec
MX
1196
1197 key.objectid = device->devid;
1198 key.offset = start;
1199 key.type = BTRFS_DEV_EXTENT_KEY;
1200
1201 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1202 if (ret < 0)
1203 goto out;
1204 if (ret > 0) {
1205 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1206 if (ret < 0)
1207 goto out;
1208 }
1209
1210 while (1) {
1211 l = path->nodes[0];
1212 slot = path->slots[0];
1213 if (slot >= btrfs_header_nritems(l)) {
1214 ret = btrfs_next_leaf(root, path);
1215 if (ret == 0)
1216 continue;
1217 if (ret < 0)
1218 goto out;
1219
1220 break;
1221 }
1222 btrfs_item_key_to_cpu(l, &key, slot);
1223
1224 if (key.objectid < device->devid)
1225 goto next;
1226
1227 if (key.objectid > device->devid)
1228 break;
1229
962a298f 1230 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1231 goto next;
1232
1233 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1234 extent_end = key.offset + btrfs_dev_extent_length(l,
1235 dev_extent);
1236 if (key.offset <= start && extent_end > end) {
1237 *length = end - start + 1;
1238 break;
1239 } else if (key.offset <= start && extent_end > start)
1240 *length += extent_end - start;
1241 else if (key.offset > start && extent_end <= end)
1242 *length += extent_end - key.offset;
1243 else if (key.offset > start && key.offset <= end) {
1244 *length += end - key.offset + 1;
1245 break;
1246 } else if (key.offset > end)
1247 break;
1248
1249next:
1250 path->slots[0]++;
1251 }
1252 ret = 0;
1253out:
1254 btrfs_free_path(path);
1255 return ret;
1256}
1257
499f377f 1258static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1259 struct btrfs_device *device,
1260 u64 *start, u64 len)
1261{
fb456252 1262 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1263 struct extent_map *em;
499f377f 1264 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1265 int ret = 0;
1b984508 1266 u64 physical_start = *start;
6df9a95e 1267
499f377f
JM
1268 if (transaction)
1269 search_list = &transaction->pending_chunks;
04216820
FM
1270again:
1271 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1272 struct map_lookup *map;
1273 int i;
1274
95617d69 1275 map = em->map_lookup;
6df9a95e 1276 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1277 u64 end;
1278
6df9a95e
JB
1279 if (map->stripes[i].dev != device)
1280 continue;
1b984508 1281 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1282 map->stripes[i].physical + em->orig_block_len <=
1b984508 1283 physical_start)
6df9a95e 1284 continue;
c152b63e
FM
1285 /*
1286 * Make sure that while processing the pinned list we do
1287 * not override our *start with a lower value, because
1288 * we can have pinned chunks that fall within this
1289 * device hole and that have lower physical addresses
1290 * than the pending chunks we processed before. If we
1291 * do not take this special care we can end up getting
1292 * 2 pending chunks that start at the same physical
1293 * device offsets because the end offset of a pinned
1294 * chunk can be equal to the start offset of some
1295 * pending chunk.
1296 */
1297 end = map->stripes[i].physical + em->orig_block_len;
1298 if (end > *start) {
1299 *start = end;
1300 ret = 1;
1301 }
6df9a95e
JB
1302 }
1303 }
499f377f
JM
1304 if (search_list != &fs_info->pinned_chunks) {
1305 search_list = &fs_info->pinned_chunks;
04216820
FM
1306 goto again;
1307 }
6df9a95e
JB
1308
1309 return ret;
1310}
1311
1312
0b86a832 1313/*
499f377f
JM
1314 * find_free_dev_extent_start - find free space in the specified device
1315 * @device: the device which we search the free space in
1316 * @num_bytes: the size of the free space that we need
1317 * @search_start: the position from which to begin the search
1318 * @start: store the start of the free space.
1319 * @len: the size of the free space. that we find, or the size
1320 * of the max free space if we don't find suitable free space
7bfc837d 1321 *
0b86a832
CM
1322 * this uses a pretty simple search, the expectation is that it is
1323 * called very infrequently and that a given device has a small number
1324 * of extents
7bfc837d
MX
1325 *
1326 * @start is used to store the start of the free space if we find. But if we
1327 * don't find suitable free space, it will be used to store the start position
1328 * of the max free space.
1329 *
1330 * @len is used to store the size of the free space that we find.
1331 * But if we don't find suitable free space, it is used to store the size of
1332 * the max free space.
0b86a832 1333 */
499f377f
JM
1334int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1335 struct btrfs_device *device, u64 num_bytes,
1336 u64 search_start, u64 *start, u64 *len)
0b86a832 1337{
0b246afa
JM
1338 struct btrfs_fs_info *fs_info = device->fs_info;
1339 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1340 struct btrfs_key key;
7bfc837d 1341 struct btrfs_dev_extent *dev_extent;
2b82032c 1342 struct btrfs_path *path;
7bfc837d
MX
1343 u64 hole_size;
1344 u64 max_hole_start;
1345 u64 max_hole_size;
1346 u64 extent_end;
0b86a832
CM
1347 u64 search_end = device->total_bytes;
1348 int ret;
7bfc837d 1349 int slot;
0b86a832 1350 struct extent_buffer *l;
8cdc7c5b
FM
1351
1352 /*
1353 * We don't want to overwrite the superblock on the drive nor any area
1354 * used by the boot loader (grub for example), so we make sure to start
1355 * at an offset of at least 1MB.
1356 */
0d0c71b3 1357 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1358
6df9a95e
JB
1359 path = btrfs_alloc_path();
1360 if (!path)
1361 return -ENOMEM;
f2ab7618 1362
7bfc837d
MX
1363 max_hole_start = search_start;
1364 max_hole_size = 0;
1365
f2ab7618 1366again:
63a212ab 1367 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1368 ret = -ENOSPC;
6df9a95e 1369 goto out;
7bfc837d
MX
1370 }
1371
e4058b54 1372 path->reada = READA_FORWARD;
6df9a95e
JB
1373 path->search_commit_root = 1;
1374 path->skip_locking = 1;
7bfc837d 1375
0b86a832
CM
1376 key.objectid = device->devid;
1377 key.offset = search_start;
1378 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1379
125ccb0a 1380 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1381 if (ret < 0)
7bfc837d 1382 goto out;
1fcbac58
YZ
1383 if (ret > 0) {
1384 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1385 if (ret < 0)
7bfc837d 1386 goto out;
1fcbac58 1387 }
7bfc837d 1388
0b86a832
CM
1389 while (1) {
1390 l = path->nodes[0];
1391 slot = path->slots[0];
1392 if (slot >= btrfs_header_nritems(l)) {
1393 ret = btrfs_next_leaf(root, path);
1394 if (ret == 0)
1395 continue;
1396 if (ret < 0)
7bfc837d
MX
1397 goto out;
1398
1399 break;
0b86a832
CM
1400 }
1401 btrfs_item_key_to_cpu(l, &key, slot);
1402
1403 if (key.objectid < device->devid)
1404 goto next;
1405
1406 if (key.objectid > device->devid)
7bfc837d 1407 break;
0b86a832 1408
962a298f 1409 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1410 goto next;
9779b72f 1411
7bfc837d
MX
1412 if (key.offset > search_start) {
1413 hole_size = key.offset - search_start;
9779b72f 1414
6df9a95e
JB
1415 /*
1416 * Have to check before we set max_hole_start, otherwise
1417 * we could end up sending back this offset anyway.
1418 */
499f377f 1419 if (contains_pending_extent(transaction, device,
6df9a95e 1420 &search_start,
1b984508
FL
1421 hole_size)) {
1422 if (key.offset >= search_start) {
1423 hole_size = key.offset - search_start;
1424 } else {
1425 WARN_ON_ONCE(1);
1426 hole_size = 0;
1427 }
1428 }
6df9a95e 1429
7bfc837d
MX
1430 if (hole_size > max_hole_size) {
1431 max_hole_start = search_start;
1432 max_hole_size = hole_size;
1433 }
9779b72f 1434
7bfc837d
MX
1435 /*
1436 * If this free space is greater than which we need,
1437 * it must be the max free space that we have found
1438 * until now, so max_hole_start must point to the start
1439 * of this free space and the length of this free space
1440 * is stored in max_hole_size. Thus, we return
1441 * max_hole_start and max_hole_size and go back to the
1442 * caller.
1443 */
1444 if (hole_size >= num_bytes) {
1445 ret = 0;
1446 goto out;
0b86a832
CM
1447 }
1448 }
0b86a832 1449
0b86a832 1450 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1451 extent_end = key.offset + btrfs_dev_extent_length(l,
1452 dev_extent);
1453 if (extent_end > search_start)
1454 search_start = extent_end;
0b86a832
CM
1455next:
1456 path->slots[0]++;
1457 cond_resched();
1458 }
0b86a832 1459
38c01b96 1460 /*
1461 * At this point, search_start should be the end of
1462 * allocated dev extents, and when shrinking the device,
1463 * search_end may be smaller than search_start.
1464 */
f2ab7618 1465 if (search_end > search_start) {
38c01b96 1466 hole_size = search_end - search_start;
1467
499f377f 1468 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1469 hole_size)) {
1470 btrfs_release_path(path);
1471 goto again;
1472 }
0b86a832 1473
f2ab7618
ZL
1474 if (hole_size > max_hole_size) {
1475 max_hole_start = search_start;
1476 max_hole_size = hole_size;
1477 }
6df9a95e
JB
1478 }
1479
7bfc837d 1480 /* See above. */
f2ab7618 1481 if (max_hole_size < num_bytes)
7bfc837d
MX
1482 ret = -ENOSPC;
1483 else
1484 ret = 0;
1485
1486out:
2b82032c 1487 btrfs_free_path(path);
7bfc837d 1488 *start = max_hole_start;
b2117a39 1489 if (len)
7bfc837d 1490 *len = max_hole_size;
0b86a832
CM
1491 return ret;
1492}
1493
499f377f
JM
1494int find_free_dev_extent(struct btrfs_trans_handle *trans,
1495 struct btrfs_device *device, u64 num_bytes,
1496 u64 *start, u64 *len)
1497{
499f377f 1498 /* FIXME use last free of some kind */
499f377f 1499 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1500 num_bytes, 0, start, len);
499f377f
JM
1501}
1502
b2950863 1503static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1504 struct btrfs_device *device,
2196d6e8 1505 u64 start, u64 *dev_extent_len)
8f18cf13 1506{
0b246afa
JM
1507 struct btrfs_fs_info *fs_info = device->fs_info;
1508 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1509 int ret;
1510 struct btrfs_path *path;
8f18cf13 1511 struct btrfs_key key;
a061fc8d
CM
1512 struct btrfs_key found_key;
1513 struct extent_buffer *leaf = NULL;
1514 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1515
1516 path = btrfs_alloc_path();
1517 if (!path)
1518 return -ENOMEM;
1519
1520 key.objectid = device->devid;
1521 key.offset = start;
1522 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1523again:
8f18cf13 1524 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1525 if (ret > 0) {
1526 ret = btrfs_previous_item(root, path, key.objectid,
1527 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1528 if (ret)
1529 goto out;
a061fc8d
CM
1530 leaf = path->nodes[0];
1531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1532 extent = btrfs_item_ptr(leaf, path->slots[0],
1533 struct btrfs_dev_extent);
1534 BUG_ON(found_key.offset > start || found_key.offset +
1535 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1536 key = found_key;
1537 btrfs_release_path(path);
1538 goto again;
a061fc8d
CM
1539 } else if (ret == 0) {
1540 leaf = path->nodes[0];
1541 extent = btrfs_item_ptr(leaf, path->slots[0],
1542 struct btrfs_dev_extent);
79787eaa 1543 } else {
0b246afa 1544 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1545 goto out;
a061fc8d 1546 }
8f18cf13 1547
2196d6e8
MX
1548 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1549
8f18cf13 1550 ret = btrfs_del_item(trans, root, path);
79787eaa 1551 if (ret) {
0b246afa
JM
1552 btrfs_handle_fs_error(fs_info, ret,
1553 "Failed to remove dev extent item");
13212b54 1554 } else {
3204d33c 1555 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1556 }
b0b802d7 1557out:
8f18cf13
CM
1558 btrfs_free_path(path);
1559 return ret;
1560}
1561
48a3b636
ES
1562static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1563 struct btrfs_device *device,
48a3b636 1564 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1565{
1566 int ret;
1567 struct btrfs_path *path;
0b246afa
JM
1568 struct btrfs_fs_info *fs_info = device->fs_info;
1569 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1570 struct btrfs_dev_extent *extent;
1571 struct extent_buffer *leaf;
1572 struct btrfs_key key;
1573
dfe25020 1574 WARN_ON(!device->in_fs_metadata);
63a212ab 1575 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1576 path = btrfs_alloc_path();
1577 if (!path)
1578 return -ENOMEM;
1579
0b86a832 1580 key.objectid = device->devid;
2b82032c 1581 key.offset = start;
0b86a832
CM
1582 key.type = BTRFS_DEV_EXTENT_KEY;
1583 ret = btrfs_insert_empty_item(trans, root, path, &key,
1584 sizeof(*extent));
2cdcecbc
MF
1585 if (ret)
1586 goto out;
0b86a832
CM
1587
1588 leaf = path->nodes[0];
1589 extent = btrfs_item_ptr(leaf, path->slots[0],
1590 struct btrfs_dev_extent);
b5d9071c
NB
1591 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1592 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1593 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1594 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1595 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1596
0b86a832
CM
1597 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1598 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1599out:
0b86a832
CM
1600 btrfs_free_path(path);
1601 return ret;
1602}
1603
6df9a95e 1604static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1605{
6df9a95e
JB
1606 struct extent_map_tree *em_tree;
1607 struct extent_map *em;
1608 struct rb_node *n;
1609 u64 ret = 0;
0b86a832 1610
6df9a95e
JB
1611 em_tree = &fs_info->mapping_tree.map_tree;
1612 read_lock(&em_tree->lock);
1613 n = rb_last(&em_tree->map);
1614 if (n) {
1615 em = rb_entry(n, struct extent_map, rb_node);
1616 ret = em->start + em->len;
0b86a832 1617 }
6df9a95e
JB
1618 read_unlock(&em_tree->lock);
1619
0b86a832
CM
1620 return ret;
1621}
1622
53f10659
ID
1623static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1624 u64 *devid_ret)
0b86a832
CM
1625{
1626 int ret;
1627 struct btrfs_key key;
1628 struct btrfs_key found_key;
2b82032c
YZ
1629 struct btrfs_path *path;
1630
2b82032c
YZ
1631 path = btrfs_alloc_path();
1632 if (!path)
1633 return -ENOMEM;
0b86a832
CM
1634
1635 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1636 key.type = BTRFS_DEV_ITEM_KEY;
1637 key.offset = (u64)-1;
1638
53f10659 1639 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1640 if (ret < 0)
1641 goto error;
1642
79787eaa 1643 BUG_ON(ret == 0); /* Corruption */
0b86a832 1644
53f10659
ID
1645 ret = btrfs_previous_item(fs_info->chunk_root, path,
1646 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1647 BTRFS_DEV_ITEM_KEY);
1648 if (ret) {
53f10659 1649 *devid_ret = 1;
0b86a832
CM
1650 } else {
1651 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1652 path->slots[0]);
53f10659 1653 *devid_ret = found_key.offset + 1;
0b86a832
CM
1654 }
1655 ret = 0;
1656error:
2b82032c 1657 btrfs_free_path(path);
0b86a832
CM
1658 return ret;
1659}
1660
1661/*
1662 * the device information is stored in the chunk root
1663 * the btrfs_device struct should be fully filled in
1664 */
48a3b636 1665static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1666 struct btrfs_fs_info *fs_info,
48a3b636 1667 struct btrfs_device *device)
0b86a832 1668{
5b4aacef 1669 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1670 int ret;
1671 struct btrfs_path *path;
1672 struct btrfs_dev_item *dev_item;
1673 struct extent_buffer *leaf;
1674 struct btrfs_key key;
1675 unsigned long ptr;
0b86a832 1676
0b86a832
CM
1677 path = btrfs_alloc_path();
1678 if (!path)
1679 return -ENOMEM;
1680
0b86a832
CM
1681 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1682 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1683 key.offset = device->devid;
0b86a832
CM
1684
1685 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1686 sizeof(*dev_item));
0b86a832
CM
1687 if (ret)
1688 goto out;
1689
1690 leaf = path->nodes[0];
1691 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1692
1693 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1694 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1695 btrfs_set_device_type(leaf, dev_item, device->type);
1696 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1697 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1698 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1699 btrfs_set_device_total_bytes(leaf, dev_item,
1700 btrfs_device_get_disk_total_bytes(device));
1701 btrfs_set_device_bytes_used(leaf, dev_item,
1702 btrfs_device_get_bytes_used(device));
e17cade2
CM
1703 btrfs_set_device_group(leaf, dev_item, 0);
1704 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1705 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1706 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1707
410ba3a2 1708 ptr = btrfs_device_uuid(dev_item);
e17cade2 1709 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1710 ptr = btrfs_device_fsid(dev_item);
44880fdc 1711 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
0b86a832 1712 btrfs_mark_buffer_dirty(leaf);
0b86a832 1713
2b82032c 1714 ret = 0;
0b86a832
CM
1715out:
1716 btrfs_free_path(path);
1717 return ret;
1718}
8f18cf13 1719
5a1972bd
QW
1720/*
1721 * Function to update ctime/mtime for a given device path.
1722 * Mainly used for ctime/mtime based probe like libblkid.
1723 */
da353f6b 1724static void update_dev_time(const char *path_name)
5a1972bd
QW
1725{
1726 struct file *filp;
1727
1728 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1729 if (IS_ERR(filp))
5a1972bd
QW
1730 return;
1731 file_update_time(filp);
1732 filp_close(filp, NULL);
5a1972bd
QW
1733}
1734
5b4aacef 1735static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1736 struct btrfs_device *device)
1737{
5b4aacef 1738 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1739 int ret;
1740 struct btrfs_path *path;
a061fc8d 1741 struct btrfs_key key;
a061fc8d
CM
1742 struct btrfs_trans_handle *trans;
1743
a061fc8d
CM
1744 path = btrfs_alloc_path();
1745 if (!path)
1746 return -ENOMEM;
1747
a22285a6 1748 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1749 if (IS_ERR(trans)) {
1750 btrfs_free_path(path);
1751 return PTR_ERR(trans);
1752 }
a061fc8d
CM
1753 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1754 key.type = BTRFS_DEV_ITEM_KEY;
1755 key.offset = device->devid;
1756
1757 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1758 if (ret) {
1759 if (ret > 0)
1760 ret = -ENOENT;
1761 btrfs_abort_transaction(trans, ret);
1762 btrfs_end_transaction(trans);
a061fc8d
CM
1763 goto out;
1764 }
1765
1766 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1767 if (ret) {
1768 btrfs_abort_transaction(trans, ret);
1769 btrfs_end_transaction(trans);
1770 }
1771
a061fc8d
CM
1772out:
1773 btrfs_free_path(path);
5e9f2ad5
NB
1774 if (!ret)
1775 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1776 return ret;
1777}
1778
3cc31a0d
DS
1779/*
1780 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781 * filesystem. It's up to the caller to adjust that number regarding eg. device
1782 * replace.
1783 */
1784static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1785 u64 num_devices)
a061fc8d 1786{
a061fc8d 1787 u64 all_avail;
de98ced9 1788 unsigned seq;
418775a2 1789 int i;
a061fc8d 1790
de98ced9 1791 do {
bd45ffbc 1792 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1793
bd45ffbc
AJ
1794 all_avail = fs_info->avail_data_alloc_bits |
1795 fs_info->avail_system_alloc_bits |
1796 fs_info->avail_metadata_alloc_bits;
1797 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1798
418775a2
DS
1799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1800 if (!(all_avail & btrfs_raid_group[i]))
1801 continue;
a061fc8d 1802
418775a2
DS
1803 if (num_devices < btrfs_raid_array[i].devs_min) {
1804 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1805
418775a2
DS
1806 if (ret)
1807 return ret;
1808 }
53b381b3
DW
1809 }
1810
bd45ffbc 1811 return 0;
f1fa7f26
AJ
1812}
1813
c9162bdf
OS
1814static struct btrfs_device * btrfs_find_next_active_device(
1815 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1816{
2b82032c 1817 struct btrfs_device *next_device;
88acff64
AJ
1818
1819 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1820 if (next_device != device &&
1821 !next_device->missing && next_device->bdev)
1822 return next_device;
1823 }
1824
1825 return NULL;
1826}
1827
1828/*
1829 * Helper function to check if the given device is part of s_bdev / latest_bdev
1830 * and replace it with the provided or the next active device, in the context
1831 * where this function called, there should be always be another device (or
1832 * this_dev) which is active.
1833 */
1834void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1835 struct btrfs_device *device, struct btrfs_device *this_dev)
1836{
1837 struct btrfs_device *next_device;
1838
1839 if (this_dev)
1840 next_device = this_dev;
1841 else
1842 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1843 device);
1844 ASSERT(next_device);
1845
1846 if (fs_info->sb->s_bdev &&
1847 (fs_info->sb->s_bdev == device->bdev))
1848 fs_info->sb->s_bdev = next_device->bdev;
1849
1850 if (fs_info->fs_devices->latest_bdev == device->bdev)
1851 fs_info->fs_devices->latest_bdev = next_device->bdev;
1852}
1853
da353f6b
DS
1854int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1855 u64 devid)
f1fa7f26
AJ
1856{
1857 struct btrfs_device *device;
1f78160c 1858 struct btrfs_fs_devices *cur_devices;
2b82032c 1859 u64 num_devices;
a061fc8d
CM
1860 int ret = 0;
1861
a061fc8d
CM
1862 mutex_lock(&uuid_mutex);
1863
0b246afa
JM
1864 num_devices = fs_info->fs_devices->num_devices;
1865 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1866 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1867 WARN_ON(num_devices < 1);
1868 num_devices--;
1869 }
0b246afa 1870 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1871
0b246afa 1872 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1873 if (ret)
a061fc8d 1874 goto out;
a061fc8d 1875
2ff7e61e
JM
1876 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1877 &device);
24fc572f 1878 if (ret)
53b381b3 1879 goto out;
dfe25020 1880
63a212ab 1881 if (device->is_tgtdev_for_dev_replace) {
183860f6 1882 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1883 goto out;
63a212ab
SB
1884 }
1885
0b246afa 1886 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1887 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1888 goto out;
2b82032c
YZ
1889 }
1890
1891 if (device->writeable) {
34441361 1892 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1893 list_del_init(&device->dev_alloc_list);
c3929c36 1894 device->fs_devices->rw_devices--;
34441361 1895 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1896 }
a061fc8d 1897
d7901554 1898 mutex_unlock(&uuid_mutex);
a061fc8d 1899 ret = btrfs_shrink_device(device, 0);
d7901554 1900 mutex_lock(&uuid_mutex);
a061fc8d 1901 if (ret)
9b3517e9 1902 goto error_undo;
a061fc8d 1903
63a212ab
SB
1904 /*
1905 * TODO: the superblock still includes this device in its num_devices
1906 * counter although write_all_supers() is not locked out. This
1907 * could give a filesystem state which requires a degraded mount.
1908 */
0b246afa 1909 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1910 if (ret)
9b3517e9 1911 goto error_undo;
a061fc8d 1912
2b82032c 1913 device->in_fs_metadata = 0;
0b246afa 1914 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1915
1916 /*
1917 * the device list mutex makes sure that we don't change
1918 * the device list while someone else is writing out all
d7306801
FDBM
1919 * the device supers. Whoever is writing all supers, should
1920 * lock the device list mutex before getting the number of
1921 * devices in the super block (super_copy). Conversely,
1922 * whoever updates the number of devices in the super block
1923 * (super_copy) should hold the device list mutex.
e5e9a520 1924 */
1f78160c
XG
1925
1926 cur_devices = device->fs_devices;
0b246afa 1927 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1928 list_del_rcu(&device->dev_list);
e5e9a520 1929
e4404d6e 1930 device->fs_devices->num_devices--;
02db0844 1931 device->fs_devices->total_devices--;
2b82032c 1932
cd02dca5 1933 if (device->missing)
3a7d55c8 1934 device->fs_devices->missing_devices--;
cd02dca5 1935
0b246afa 1936 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1937
0bfaa9c5 1938 if (device->bdev) {
e4404d6e 1939 device->fs_devices->open_devices--;
0bfaa9c5 1940 /* remove sysfs entry */
0b246afa 1941 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1942 }
99994cde 1943
0b246afa
JM
1944 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1945 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1946 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1947
cea67ab9
JM
1948 /*
1949 * at this point, the device is zero sized and detached from
1950 * the devices list. All that's left is to zero out the old
1951 * supers and free the device.
1952 */
1953 if (device->writeable)
1954 btrfs_scratch_superblocks(device->bdev, device->name->str);
1955
1956 btrfs_close_bdev(device);
1957 call_rcu(&device->rcu, free_device);
1958
1f78160c 1959 if (cur_devices->open_devices == 0) {
e4404d6e 1960 struct btrfs_fs_devices *fs_devices;
0b246afa 1961 fs_devices = fs_info->fs_devices;
e4404d6e 1962 while (fs_devices) {
8321cf25
RS
1963 if (fs_devices->seed == cur_devices) {
1964 fs_devices->seed = cur_devices->seed;
e4404d6e 1965 break;
8321cf25 1966 }
e4404d6e 1967 fs_devices = fs_devices->seed;
2b82032c 1968 }
1f78160c 1969 cur_devices->seed = NULL;
1f78160c 1970 __btrfs_close_devices(cur_devices);
1f78160c 1971 free_fs_devices(cur_devices);
2b82032c
YZ
1972 }
1973
a061fc8d
CM
1974out:
1975 mutex_unlock(&uuid_mutex);
a061fc8d 1976 return ret;
24fc572f 1977
9b3517e9
ID
1978error_undo:
1979 if (device->writeable) {
34441361 1980 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 1981 list_add(&device->dev_alloc_list,
0b246afa 1982 &fs_info->fs_devices->alloc_list);
c3929c36 1983 device->fs_devices->rw_devices++;
34441361 1984 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 1985 }
24fc572f 1986 goto out;
a061fc8d
CM
1987}
1988
084b6e7c
QW
1989void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1990 struct btrfs_device *srcdev)
e93c89c1 1991{
d51908ce
AJ
1992 struct btrfs_fs_devices *fs_devices;
1993
e93c89c1 1994 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1995
25e8e911
AJ
1996 /*
1997 * in case of fs with no seed, srcdev->fs_devices will point
1998 * to fs_devices of fs_info. However when the dev being replaced is
1999 * a seed dev it will point to the seed's local fs_devices. In short
2000 * srcdev will have its correct fs_devices in both the cases.
2001 */
2002 fs_devices = srcdev->fs_devices;
d51908ce 2003
e93c89c1 2004 list_del_rcu(&srcdev->dev_list);
619c47f3 2005 list_del(&srcdev->dev_alloc_list);
d51908ce 2006 fs_devices->num_devices--;
82372bc8 2007 if (srcdev->missing)
d51908ce 2008 fs_devices->missing_devices--;
e93c89c1 2009
48b3b9d4 2010 if (srcdev->writeable)
82372bc8 2011 fs_devices->rw_devices--;
1357272f 2012
82372bc8 2013 if (srcdev->bdev)
d51908ce 2014 fs_devices->open_devices--;
084b6e7c
QW
2015}
2016
2017void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2018 struct btrfs_device *srcdev)
2019{
2020 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2021
48b3b9d4
AJ
2022 if (srcdev->writeable) {
2023 /* zero out the old super if it is writable */
2024 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2025 }
14238819
AJ
2026
2027 btrfs_close_bdev(srcdev);
e93c89c1 2028 call_rcu(&srcdev->rcu, free_device);
94d5f0c2 2029
94d5f0c2
AJ
2030 /* if this is no devs we rather delete the fs_devices */
2031 if (!fs_devices->num_devices) {
2032 struct btrfs_fs_devices *tmp_fs_devices;
2033
6dd38f81
AJ
2034 /*
2035 * On a mounted FS, num_devices can't be zero unless it's a
2036 * seed. In case of a seed device being replaced, the replace
2037 * target added to the sprout FS, so there will be no more
2038 * device left under the seed FS.
2039 */
2040 ASSERT(fs_devices->seeding);
2041
94d5f0c2
AJ
2042 tmp_fs_devices = fs_info->fs_devices;
2043 while (tmp_fs_devices) {
2044 if (tmp_fs_devices->seed == fs_devices) {
2045 tmp_fs_devices->seed = fs_devices->seed;
2046 break;
2047 }
2048 tmp_fs_devices = tmp_fs_devices->seed;
2049 }
2050 fs_devices->seed = NULL;
8bef8401
AJ
2051 __btrfs_close_devices(fs_devices);
2052 free_fs_devices(fs_devices);
94d5f0c2 2053 }
e93c89c1
SB
2054}
2055
2056void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2057 struct btrfs_device *tgtdev)
2058{
67a2c45e 2059 mutex_lock(&uuid_mutex);
e93c89c1
SB
2060 WARN_ON(!tgtdev);
2061 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2062
32576040 2063 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2064
779bf3fe 2065 if (tgtdev->bdev)
e93c89c1 2066 fs_info->fs_devices->open_devices--;
779bf3fe 2067
e93c89c1 2068 fs_info->fs_devices->num_devices--;
e93c89c1 2069
88acff64 2070 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2071
e93c89c1 2072 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2073
2074 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2075 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2076
2077 /*
2078 * The update_dev_time() with in btrfs_scratch_superblocks()
2079 * may lead to a call to btrfs_show_devname() which will try
2080 * to hold device_list_mutex. And here this device
2081 * is already out of device list, so we don't have to hold
2082 * the device_list_mutex lock.
2083 */
2084 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2085
2086 btrfs_close_bdev(tgtdev);
779bf3fe 2087 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2088}
2089
2ff7e61e 2090static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2091 const char *device_path,
48a3b636 2092 struct btrfs_device **device)
7ba15b7d
SB
2093{
2094 int ret = 0;
2095 struct btrfs_super_block *disk_super;
2096 u64 devid;
2097 u8 *dev_uuid;
2098 struct block_device *bdev;
2099 struct buffer_head *bh;
2100
2101 *device = NULL;
2102 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2103 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2104 if (ret)
2105 return ret;
2106 disk_super = (struct btrfs_super_block *)bh->b_data;
2107 devid = btrfs_stack_device_id(&disk_super->dev_item);
2108 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2109 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2110 brelse(bh);
2111 if (!*device)
2112 ret = -ENOENT;
2113 blkdev_put(bdev, FMODE_READ);
2114 return ret;
2115}
2116
2ff7e61e 2117int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2118 const char *device_path,
7ba15b7d
SB
2119 struct btrfs_device **device)
2120{
2121 *device = NULL;
2122 if (strcmp(device_path, "missing") == 0) {
2123 struct list_head *devices;
2124 struct btrfs_device *tmp;
2125
0b246afa 2126 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2127 /*
2128 * It is safe to read the devices since the volume_mutex
2129 * is held by the caller.
2130 */
2131 list_for_each_entry(tmp, devices, dev_list) {
2132 if (tmp->in_fs_metadata && !tmp->bdev) {
2133 *device = tmp;
2134 break;
2135 }
2136 }
2137
d74a6259
AJ
2138 if (!*device)
2139 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2140
2141 return 0;
2142 } else {
2ff7e61e 2143 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2144 }
2145}
2146
5c5c0df0
DS
2147/*
2148 * Lookup a device given by device id, or the path if the id is 0.
2149 */
2ff7e61e 2150int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2151 const char *devpath,
2152 struct btrfs_device **device)
24e0474b
AJ
2153{
2154 int ret;
2155
5c5c0df0 2156 if (devid) {
24e0474b 2157 ret = 0;
0b246afa 2158 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2159 if (!*device)
2160 ret = -ENOENT;
2161 } else {
5c5c0df0 2162 if (!devpath || !devpath[0])
b3d1b153
AJ
2163 return -EINVAL;
2164
2ff7e61e 2165 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2166 device);
2167 }
2168 return ret;
2169}
2170
2b82032c
YZ
2171/*
2172 * does all the dirty work required for changing file system's UUID.
2173 */
2ff7e61e 2174static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2175{
0b246afa 2176 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2177 struct btrfs_fs_devices *old_devices;
e4404d6e 2178 struct btrfs_fs_devices *seed_devices;
0b246afa 2179 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2180 struct btrfs_device *device;
2181 u64 super_flags;
2182
2183 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2184 if (!fs_devices->seeding)
2b82032c
YZ
2185 return -EINVAL;
2186
2dfeca9b 2187 seed_devices = alloc_fs_devices(NULL);
2208a378
ID
2188 if (IS_ERR(seed_devices))
2189 return PTR_ERR(seed_devices);
2b82032c 2190
e4404d6e
YZ
2191 old_devices = clone_fs_devices(fs_devices);
2192 if (IS_ERR(old_devices)) {
2193 kfree(seed_devices);
2194 return PTR_ERR(old_devices);
2b82032c 2195 }
e4404d6e 2196
2b82032c
YZ
2197 list_add(&old_devices->list, &fs_uuids);
2198
e4404d6e
YZ
2199 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2200 seed_devices->opened = 1;
2201 INIT_LIST_HEAD(&seed_devices->devices);
2202 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2203 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2204
0b246afa 2205 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2206 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2207 synchronize_rcu);
2196d6e8
MX
2208 list_for_each_entry(device, &seed_devices->devices, dev_list)
2209 device->fs_devices = seed_devices;
c9513edb 2210
34441361 2211 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2212 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2213 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2214
2b82032c
YZ
2215 fs_devices->seeding = 0;
2216 fs_devices->num_devices = 0;
2217 fs_devices->open_devices = 0;
69611ac8 2218 fs_devices->missing_devices = 0;
69611ac8 2219 fs_devices->rotating = 0;
e4404d6e 2220 fs_devices->seed = seed_devices;
2b82032c
YZ
2221
2222 generate_random_uuid(fs_devices->fsid);
0b246afa 2223 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2224 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2225 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2226
2b82032c
YZ
2227 super_flags = btrfs_super_flags(disk_super) &
2228 ~BTRFS_SUPER_FLAG_SEEDING;
2229 btrfs_set_super_flags(disk_super, super_flags);
2230
2231 return 0;
2232}
2233
2234/*
01327610 2235 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2236 */
2237static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2238 struct btrfs_fs_info *fs_info)
2b82032c 2239{
5b4aacef 2240 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2241 struct btrfs_path *path;
2242 struct extent_buffer *leaf;
2243 struct btrfs_dev_item *dev_item;
2244 struct btrfs_device *device;
2245 struct btrfs_key key;
44880fdc 2246 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2247 u8 dev_uuid[BTRFS_UUID_SIZE];
2248 u64 devid;
2249 int ret;
2250
2251 path = btrfs_alloc_path();
2252 if (!path)
2253 return -ENOMEM;
2254
2b82032c
YZ
2255 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2256 key.offset = 0;
2257 key.type = BTRFS_DEV_ITEM_KEY;
2258
2259 while (1) {
2260 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2261 if (ret < 0)
2262 goto error;
2263
2264 leaf = path->nodes[0];
2265next_slot:
2266 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2267 ret = btrfs_next_leaf(root, path);
2268 if (ret > 0)
2269 break;
2270 if (ret < 0)
2271 goto error;
2272 leaf = path->nodes[0];
2273 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2274 btrfs_release_path(path);
2b82032c
YZ
2275 continue;
2276 }
2277
2278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2280 key.type != BTRFS_DEV_ITEM_KEY)
2281 break;
2282
2283 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2284 struct btrfs_dev_item);
2285 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2286 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2287 BTRFS_UUID_SIZE);
1473b24e 2288 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2289 BTRFS_FSID_SIZE);
0b246afa 2290 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2291 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2292
2293 if (device->fs_devices->seeding) {
2294 btrfs_set_device_generation(leaf, dev_item,
2295 device->generation);
2296 btrfs_mark_buffer_dirty(leaf);
2297 }
2298
2299 path->slots[0]++;
2300 goto next_slot;
2301 }
2302 ret = 0;
2303error:
2304 btrfs_free_path(path);
2305 return ret;
2306}
2307
da353f6b 2308int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2309{
5112febb 2310 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2311 struct request_queue *q;
788f20eb
CM
2312 struct btrfs_trans_handle *trans;
2313 struct btrfs_device *device;
2314 struct block_device *bdev;
788f20eb 2315 struct list_head *devices;
0b246afa 2316 struct super_block *sb = fs_info->sb;
606686ee 2317 struct rcu_string *name;
3c1dbdf5 2318 u64 tmp;
2b82032c 2319 int seeding_dev = 0;
788f20eb 2320 int ret = 0;
7132a262 2321 bool unlocked = false;
788f20eb 2322
bc98a42c 2323 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
f8c5d0b4 2324 return -EROFS;
788f20eb 2325
a5d16333 2326 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2327 fs_info->bdev_holder);
7f59203a
JB
2328 if (IS_ERR(bdev))
2329 return PTR_ERR(bdev);
a2135011 2330
0b246afa 2331 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2332 seeding_dev = 1;
2333 down_write(&sb->s_umount);
2334 mutex_lock(&uuid_mutex);
2335 }
2336
8c8bee1d 2337 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2338
0b246afa 2339 devices = &fs_info->fs_devices->devices;
d25628bd 2340
0b246afa 2341 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2342 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2343 if (device->bdev == bdev) {
2344 ret = -EEXIST;
d25628bd 2345 mutex_unlock(
0b246afa 2346 &fs_info->fs_devices->device_list_mutex);
2b82032c 2347 goto error;
788f20eb
CM
2348 }
2349 }
0b246afa 2350 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2351
0b246afa 2352 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2353 if (IS_ERR(device)) {
788f20eb 2354 /* we can safely leave the fs_devices entry around */
12bd2fc0 2355 ret = PTR_ERR(device);
2b82032c 2356 goto error;
788f20eb
CM
2357 }
2358
78f2c9e6 2359 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2360 if (!name) {
3065ae5b 2361 bio_put(device->flush_bio);
788f20eb 2362 kfree(device);
2b82032c
YZ
2363 ret = -ENOMEM;
2364 goto error;
788f20eb 2365 }
606686ee 2366 rcu_assign_pointer(device->name, name);
2b82032c 2367
a22285a6 2368 trans = btrfs_start_transaction(root, 0);
98d5dc13 2369 if (IS_ERR(trans)) {
606686ee 2370 rcu_string_free(device->name);
3065ae5b 2371 bio_put(device->flush_bio);
98d5dc13
TI
2372 kfree(device);
2373 ret = PTR_ERR(trans);
2374 goto error;
2375 }
2376
d5e2003c
JB
2377 q = bdev_get_queue(bdev);
2378 if (blk_queue_discard(q))
2379 device->can_discard = 1;
2b82032c 2380 device->writeable = 1;
2b82032c 2381 device->generation = trans->transid;
0b246afa
JM
2382 device->io_width = fs_info->sectorsize;
2383 device->io_align = fs_info->sectorsize;
2384 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2385 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2386 fs_info->sectorsize);
2cc3c559 2387 device->disk_total_bytes = device->total_bytes;
935e5cc9 2388 device->commit_total_bytes = device->total_bytes;
fb456252 2389 device->fs_info = fs_info;
788f20eb 2390 device->bdev = bdev;
dfe25020 2391 device->in_fs_metadata = 1;
63a212ab 2392 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2393 device->mode = FMODE_EXCL;
27087f37 2394 device->dev_stats_valid = 1;
9f6d2510 2395 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2396
2b82032c 2397 if (seeding_dev) {
1751e8a6 2398 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2399 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2400 if (ret) {
2401 btrfs_abort_transaction(trans, ret);
2402 goto error_trans;
2403 }
2b82032c 2404 }
788f20eb 2405
0b246afa 2406 device->fs_devices = fs_info->fs_devices;
e5e9a520 2407
0b246afa 2408 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2409 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2410 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2411 list_add(&device->dev_alloc_list,
0b246afa
JM
2412 &fs_info->fs_devices->alloc_list);
2413 fs_info->fs_devices->num_devices++;
2414 fs_info->fs_devices->open_devices++;
2415 fs_info->fs_devices->rw_devices++;
2416 fs_info->fs_devices->total_devices++;
2417 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2418
a5ed45f8 2419 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2420
e884f4f0 2421 if (!blk_queue_nonrot(q))
0b246afa 2422 fs_info->fs_devices->rotating = 1;
c289811c 2423
0b246afa
JM
2424 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2425 btrfs_set_super_total_bytes(fs_info->super_copy,
7dfb8be1 2426 round_down(tmp + device->total_bytes, fs_info->sectorsize));
788f20eb 2427
0b246afa
JM
2428 tmp = btrfs_super_num_devices(fs_info->super_copy);
2429 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2430
2431 /* add sysfs device entry */
0b246afa 2432 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2433
2196d6e8
MX
2434 /*
2435 * we've got more storage, clear any full flags on the space
2436 * infos
2437 */
0b246afa 2438 btrfs_clear_space_info_full(fs_info);
2196d6e8 2439
34441361 2440 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2441 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2442
2b82032c 2443 if (seeding_dev) {
34441361 2444 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2445 ret = init_first_rw_device(trans, fs_info);
34441361 2446 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2447 if (ret) {
66642832 2448 btrfs_abort_transaction(trans, ret);
d31c32f6 2449 goto error_sysfs;
005d6427 2450 }
2196d6e8
MX
2451 }
2452
0b246afa 2453 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2454 if (ret) {
66642832 2455 btrfs_abort_transaction(trans, ret);
d31c32f6 2456 goto error_sysfs;
2196d6e8
MX
2457 }
2458
2459 if (seeding_dev) {
2460 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2461
0b246afa 2462 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2463 if (ret) {
66642832 2464 btrfs_abort_transaction(trans, ret);
d31c32f6 2465 goto error_sysfs;
005d6427 2466 }
b2373f25
AJ
2467
2468 /* Sprouting would change fsid of the mounted root,
2469 * so rename the fsid on the sysfs
2470 */
2471 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2472 fs_info->fsid);
2473 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2474 btrfs_warn(fs_info,
2475 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2476 }
2477
3a45bb20 2478 ret = btrfs_commit_transaction(trans);
a2135011 2479
2b82032c
YZ
2480 if (seeding_dev) {
2481 mutex_unlock(&uuid_mutex);
2482 up_write(&sb->s_umount);
7132a262 2483 unlocked = true;
788f20eb 2484
79787eaa
JM
2485 if (ret) /* transaction commit */
2486 return ret;
2487
2ff7e61e 2488 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2489 if (ret < 0)
0b246afa 2490 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2491 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2492 trans = btrfs_attach_transaction(root);
2493 if (IS_ERR(trans)) {
2494 if (PTR_ERR(trans) == -ENOENT)
2495 return 0;
7132a262
AJ
2496 ret = PTR_ERR(trans);
2497 trans = NULL;
2498 goto error_sysfs;
671415b7 2499 }
3a45bb20 2500 ret = btrfs_commit_transaction(trans);
2b82032c 2501 }
c9e9f97b 2502
5a1972bd
QW
2503 /* Update ctime/mtime for libblkid */
2504 update_dev_time(device_path);
2b82032c 2505 return ret;
79787eaa 2506
d31c32f6
AJ
2507error_sysfs:
2508 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2509error_trans:
0af2c4bf 2510 if (seeding_dev)
1751e8a6 2511 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2512 if (trans)
2513 btrfs_end_transaction(trans);
606686ee 2514 rcu_string_free(device->name);
3065ae5b 2515 bio_put(device->flush_bio);
79787eaa 2516 kfree(device);
2b82032c 2517error:
e525fd89 2518 blkdev_put(bdev, FMODE_EXCL);
7132a262 2519 if (seeding_dev && !unlocked) {
2b82032c
YZ
2520 mutex_unlock(&uuid_mutex);
2521 up_write(&sb->s_umount);
2522 }
c9e9f97b 2523 return ret;
788f20eb
CM
2524}
2525
2ff7e61e 2526int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2527 const char *device_path,
1c43366d 2528 struct btrfs_device *srcdev,
e93c89c1
SB
2529 struct btrfs_device **device_out)
2530{
2531 struct request_queue *q;
2532 struct btrfs_device *device;
2533 struct block_device *bdev;
e93c89c1
SB
2534 struct list_head *devices;
2535 struct rcu_string *name;
12bd2fc0 2536 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2537 int ret = 0;
2538
2539 *device_out = NULL;
1c43366d
MX
2540 if (fs_info->fs_devices->seeding) {
2541 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2542 return -EINVAL;
1c43366d 2543 }
e93c89c1
SB
2544
2545 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2546 fs_info->bdev_holder);
1c43366d
MX
2547 if (IS_ERR(bdev)) {
2548 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2549 return PTR_ERR(bdev);
1c43366d 2550 }
e93c89c1
SB
2551
2552 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2553
2554 devices = &fs_info->fs_devices->devices;
2555 list_for_each_entry(device, devices, dev_list) {
2556 if (device->bdev == bdev) {
5d163e0e
JM
2557 btrfs_err(fs_info,
2558 "target device is in the filesystem!");
e93c89c1
SB
2559 ret = -EEXIST;
2560 goto error;
2561 }
2562 }
2563
1c43366d 2564
7cc8e58d
MX
2565 if (i_size_read(bdev->bd_inode) <
2566 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2567 btrfs_err(fs_info,
2568 "target device is smaller than source device!");
1c43366d
MX
2569 ret = -EINVAL;
2570 goto error;
2571 }
2572
2573
12bd2fc0
ID
2574 device = btrfs_alloc_device(NULL, &devid, NULL);
2575 if (IS_ERR(device)) {
2576 ret = PTR_ERR(device);
e93c89c1
SB
2577 goto error;
2578 }
2579
6165572c 2580 name = rcu_string_strdup(device_path, GFP_KERNEL);
e93c89c1 2581 if (!name) {
3065ae5b 2582 bio_put(device->flush_bio);
e93c89c1
SB
2583 kfree(device);
2584 ret = -ENOMEM;
2585 goto error;
2586 }
2587 rcu_assign_pointer(device->name, name);
2588
2589 q = bdev_get_queue(bdev);
2590 if (blk_queue_discard(q))
2591 device->can_discard = 1;
0b246afa 2592 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2593 device->writeable = 1;
e93c89c1 2594 device->generation = 0;
0b246afa
JM
2595 device->io_width = fs_info->sectorsize;
2596 device->io_align = fs_info->sectorsize;
2597 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2598 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2599 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2600 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2601 ASSERT(list_empty(&srcdev->resized_list));
2602 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2603 device->commit_bytes_used = device->bytes_used;
fb456252 2604 device->fs_info = fs_info;
e93c89c1
SB
2605 device->bdev = bdev;
2606 device->in_fs_metadata = 1;
2607 device->is_tgtdev_for_dev_replace = 1;
2608 device->mode = FMODE_EXCL;
27087f37 2609 device->dev_stats_valid = 1;
9f6d2510 2610 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
e93c89c1
SB
2611 device->fs_devices = fs_info->fs_devices;
2612 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2613 fs_info->fs_devices->num_devices++;
2614 fs_info->fs_devices->open_devices++;
0b246afa 2615 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2616
2617 *device_out = device;
2618 return ret;
2619
2620error:
2621 blkdev_put(bdev, FMODE_EXCL);
2622 return ret;
2623}
2624
2625void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2626 struct btrfs_device *tgtdev)
2627{
da17066c
JM
2628 u32 sectorsize = fs_info->sectorsize;
2629
e93c89c1 2630 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2631 tgtdev->io_width = sectorsize;
2632 tgtdev->io_align = sectorsize;
2633 tgtdev->sector_size = sectorsize;
fb456252 2634 tgtdev->fs_info = fs_info;
e93c89c1
SB
2635 tgtdev->in_fs_metadata = 1;
2636}
2637
d397712b
CM
2638static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2639 struct btrfs_device *device)
0b86a832
CM
2640{
2641 int ret;
2642 struct btrfs_path *path;
0b246afa 2643 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2644 struct btrfs_dev_item *dev_item;
2645 struct extent_buffer *leaf;
2646 struct btrfs_key key;
2647
0b86a832
CM
2648 path = btrfs_alloc_path();
2649 if (!path)
2650 return -ENOMEM;
2651
2652 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2653 key.type = BTRFS_DEV_ITEM_KEY;
2654 key.offset = device->devid;
2655
2656 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2657 if (ret < 0)
2658 goto out;
2659
2660 if (ret > 0) {
2661 ret = -ENOENT;
2662 goto out;
2663 }
2664
2665 leaf = path->nodes[0];
2666 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2667
2668 btrfs_set_device_id(leaf, dev_item, device->devid);
2669 btrfs_set_device_type(leaf, dev_item, device->type);
2670 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2671 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2672 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2673 btrfs_set_device_total_bytes(leaf, dev_item,
2674 btrfs_device_get_disk_total_bytes(device));
2675 btrfs_set_device_bytes_used(leaf, dev_item,
2676 btrfs_device_get_bytes_used(device));
0b86a832
CM
2677 btrfs_mark_buffer_dirty(leaf);
2678
2679out:
2680 btrfs_free_path(path);
2681 return ret;
2682}
2683
2196d6e8 2684int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2685 struct btrfs_device *device, u64 new_size)
2686{
0b246afa
JM
2687 struct btrfs_fs_info *fs_info = device->fs_info;
2688 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2689 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2690 u64 old_total;
2691 u64 diff;
8f18cf13 2692
2b82032c
YZ
2693 if (!device->writeable)
2694 return -EACCES;
2196d6e8 2695
7dfb8be1
NB
2696 new_size = round_down(new_size, fs_info->sectorsize);
2697
34441361 2698 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2699 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2700 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2701
63a212ab 2702 if (new_size <= device->total_bytes ||
2196d6e8 2703 device->is_tgtdev_for_dev_replace) {
34441361 2704 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2705 return -EINVAL;
2196d6e8 2706 }
2b82032c 2707
0b246afa 2708 fs_devices = fs_info->fs_devices;
2b82032c 2709
7dfb8be1
NB
2710 btrfs_set_super_total_bytes(super_copy,
2711 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2712 device->fs_devices->total_rw_bytes += diff;
2713
7cc8e58d
MX
2714 btrfs_device_set_total_bytes(device, new_size);
2715 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2716 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2717 if (list_empty(&device->resized_list))
2718 list_add_tail(&device->resized_list,
2719 &fs_devices->resized_devices);
34441361 2720 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2721
8f18cf13
CM
2722 return btrfs_update_device(trans, device);
2723}
2724
2725static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
408fbf19 2726 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2727{
5b4aacef 2728 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2729 int ret;
2730 struct btrfs_path *path;
2731 struct btrfs_key key;
2732
8f18cf13
CM
2733 path = btrfs_alloc_path();
2734 if (!path)
2735 return -ENOMEM;
2736
408fbf19 2737 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2738 key.offset = chunk_offset;
2739 key.type = BTRFS_CHUNK_ITEM_KEY;
2740
2741 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2742 if (ret < 0)
2743 goto out;
2744 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2745 btrfs_handle_fs_error(fs_info, -ENOENT,
2746 "Failed lookup while freeing chunk.");
79787eaa
JM
2747 ret = -ENOENT;
2748 goto out;
2749 }
8f18cf13
CM
2750
2751 ret = btrfs_del_item(trans, root, path);
79787eaa 2752 if (ret < 0)
0b246afa
JM
2753 btrfs_handle_fs_error(fs_info, ret,
2754 "Failed to delete chunk item.");
79787eaa 2755out:
8f18cf13 2756 btrfs_free_path(path);
65a246c5 2757 return ret;
8f18cf13
CM
2758}
2759
408fbf19 2760static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2761{
0b246afa 2762 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2763 struct btrfs_disk_key *disk_key;
2764 struct btrfs_chunk *chunk;
2765 u8 *ptr;
2766 int ret = 0;
2767 u32 num_stripes;
2768 u32 array_size;
2769 u32 len = 0;
2770 u32 cur;
2771 struct btrfs_key key;
2772
34441361 2773 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2774 array_size = btrfs_super_sys_array_size(super_copy);
2775
2776 ptr = super_copy->sys_chunk_array;
2777 cur = 0;
2778
2779 while (cur < array_size) {
2780 disk_key = (struct btrfs_disk_key *)ptr;
2781 btrfs_disk_key_to_cpu(&key, disk_key);
2782
2783 len = sizeof(*disk_key);
2784
2785 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2786 chunk = (struct btrfs_chunk *)(ptr + len);
2787 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2788 len += btrfs_chunk_item_size(num_stripes);
2789 } else {
2790 ret = -EIO;
2791 break;
2792 }
408fbf19 2793 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2794 key.offset == chunk_offset) {
2795 memmove(ptr, ptr + len, array_size - (cur + len));
2796 array_size -= len;
2797 btrfs_set_super_sys_array_size(super_copy, array_size);
2798 } else {
2799 ptr += len;
2800 cur += len;
2801 }
2802 }
34441361 2803 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2804 return ret;
2805}
2806
592d92ee
LB
2807static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2808 u64 logical, u64 length)
2809{
2810 struct extent_map_tree *em_tree;
2811 struct extent_map *em;
2812
2813 em_tree = &fs_info->mapping_tree.map_tree;
2814 read_lock(&em_tree->lock);
2815 em = lookup_extent_mapping(em_tree, logical, length);
2816 read_unlock(&em_tree->lock);
2817
2818 if (!em) {
2819 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2820 logical, length);
2821 return ERR_PTR(-EINVAL);
2822 }
2823
2824 if (em->start > logical || em->start + em->len < logical) {
2825 btrfs_crit(fs_info,
2826 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2827 logical, length, em->start, em->start + em->len);
2828 free_extent_map(em);
2829 return ERR_PTR(-EINVAL);
2830 }
2831
2832 /* callers are responsible for dropping em's ref. */
2833 return em;
2834}
2835
47ab2a6c 2836int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2837 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2838{
8f18cf13
CM
2839 struct extent_map *em;
2840 struct map_lookup *map;
2196d6e8 2841 u64 dev_extent_len = 0;
47ab2a6c 2842 int i, ret = 0;
0b246afa 2843 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2844
592d92ee
LB
2845 em = get_chunk_map(fs_info, chunk_offset, 1);
2846 if (IS_ERR(em)) {
47ab2a6c
JB
2847 /*
2848 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2849 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2850 * do anything we still error out.
2851 */
2852 ASSERT(0);
592d92ee 2853 return PTR_ERR(em);
47ab2a6c 2854 }
95617d69 2855 map = em->map_lookup;
34441361 2856 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2857 check_system_chunk(trans, fs_info, map->type);
34441361 2858 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2859
57ba4cb8
FM
2860 /*
2861 * Take the device list mutex to prevent races with the final phase of
2862 * a device replace operation that replaces the device object associated
2863 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2864 */
2865 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2866 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2867 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2868 ret = btrfs_free_dev_extent(trans, device,
2869 map->stripes[i].physical,
2870 &dev_extent_len);
47ab2a6c 2871 if (ret) {
57ba4cb8 2872 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2873 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2874 goto out;
2875 }
a061fc8d 2876
2196d6e8 2877 if (device->bytes_used > 0) {
34441361 2878 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2879 btrfs_device_set_bytes_used(device,
2880 device->bytes_used - dev_extent_len);
a5ed45f8 2881 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2882 btrfs_clear_space_info_full(fs_info);
34441361 2883 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2884 }
a061fc8d 2885
dfe25020
CM
2886 if (map->stripes[i].dev) {
2887 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2888 if (ret) {
57ba4cb8 2889 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2890 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2891 goto out;
2892 }
dfe25020 2893 }
8f18cf13 2894 }
57ba4cb8
FM
2895 mutex_unlock(&fs_devices->device_list_mutex);
2896
408fbf19 2897 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
47ab2a6c 2898 if (ret) {
66642832 2899 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2900 goto out;
2901 }
8f18cf13 2902
6bccf3ab 2903 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2904
8f18cf13 2905 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2906 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2907 if (ret) {
66642832 2908 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2909 goto out;
2910 }
8f18cf13
CM
2911 }
2912
6bccf3ab 2913 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2914 if (ret) {
66642832 2915 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2916 goto out;
2917 }
2b82032c 2918
47ab2a6c 2919out:
2b82032c
YZ
2920 /* once for us */
2921 free_extent_map(em);
47ab2a6c
JB
2922 return ret;
2923}
2b82032c 2924
5b4aacef 2925static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2926{
5b4aacef 2927 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2928 struct btrfs_trans_handle *trans;
47ab2a6c 2929 int ret;
2b82032c 2930
67c5e7d4
FM
2931 /*
2932 * Prevent races with automatic removal of unused block groups.
2933 * After we relocate and before we remove the chunk with offset
2934 * chunk_offset, automatic removal of the block group can kick in,
2935 * resulting in a failure when calling btrfs_remove_chunk() below.
2936 *
2937 * Make sure to acquire this mutex before doing a tree search (dev
2938 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2939 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2940 * we release the path used to search the chunk/dev tree and before
2941 * the current task acquires this mutex and calls us.
2942 */
0b246afa 2943 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2944
0b246afa 2945 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2946 if (ret)
2947 return -ENOSPC;
2948
2949 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2950 btrfs_scrub_pause(fs_info);
0b246afa 2951 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2952 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2953 if (ret)
2954 return ret;
2955
19c4d2f9
CM
2956 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2957 chunk_offset);
2958 if (IS_ERR(trans)) {
2959 ret = PTR_ERR(trans);
2960 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2961 return ret;
2962 }
2963
47ab2a6c 2964 /*
19c4d2f9
CM
2965 * step two, delete the device extents and the
2966 * chunk tree entries
47ab2a6c 2967 */
5b4aacef 2968 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2969 btrfs_end_transaction(trans);
19c4d2f9 2970 return ret;
2b82032c
YZ
2971}
2972
2ff7e61e 2973static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2974{
0b246afa 2975 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2976 struct btrfs_path *path;
2977 struct extent_buffer *leaf;
2978 struct btrfs_chunk *chunk;
2979 struct btrfs_key key;
2980 struct btrfs_key found_key;
2b82032c 2981 u64 chunk_type;
ba1bf481
JB
2982 bool retried = false;
2983 int failed = 0;
2b82032c
YZ
2984 int ret;
2985
2986 path = btrfs_alloc_path();
2987 if (!path)
2988 return -ENOMEM;
2989
ba1bf481 2990again:
2b82032c
YZ
2991 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2992 key.offset = (u64)-1;
2993 key.type = BTRFS_CHUNK_ITEM_KEY;
2994
2995 while (1) {
0b246afa 2996 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2997 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2998 if (ret < 0) {
0b246afa 2999 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3000 goto error;
67c5e7d4 3001 }
79787eaa 3002 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3003
3004 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3005 key.type);
67c5e7d4 3006 if (ret)
0b246afa 3007 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
3008 if (ret < 0)
3009 goto error;
3010 if (ret > 0)
3011 break;
1a40e23b 3012
2b82032c
YZ
3013 leaf = path->nodes[0];
3014 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3015
2b82032c
YZ
3016 chunk = btrfs_item_ptr(leaf, path->slots[0],
3017 struct btrfs_chunk);
3018 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3019 btrfs_release_path(path);
8f18cf13 3020
2b82032c 3021 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3022 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3023 if (ret == -ENOSPC)
3024 failed++;
14586651
HS
3025 else
3026 BUG_ON(ret);
2b82032c 3027 }
0b246afa 3028 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3029
2b82032c
YZ
3030 if (found_key.offset == 0)
3031 break;
3032 key.offset = found_key.offset - 1;
3033 }
3034 ret = 0;
ba1bf481
JB
3035 if (failed && !retried) {
3036 failed = 0;
3037 retried = true;
3038 goto again;
fae7f21c 3039 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3040 ret = -ENOSPC;
3041 }
2b82032c
YZ
3042error:
3043 btrfs_free_path(path);
3044 return ret;
8f18cf13
CM
3045}
3046
6bccf3ab 3047static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3048 struct btrfs_balance_control *bctl)
3049{
6bccf3ab 3050 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3051 struct btrfs_trans_handle *trans;
3052 struct btrfs_balance_item *item;
3053 struct btrfs_disk_balance_args disk_bargs;
3054 struct btrfs_path *path;
3055 struct extent_buffer *leaf;
3056 struct btrfs_key key;
3057 int ret, err;
3058
3059 path = btrfs_alloc_path();
3060 if (!path)
3061 return -ENOMEM;
3062
3063 trans = btrfs_start_transaction(root, 0);
3064 if (IS_ERR(trans)) {
3065 btrfs_free_path(path);
3066 return PTR_ERR(trans);
3067 }
3068
3069 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3070 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3071 key.offset = 0;
3072
3073 ret = btrfs_insert_empty_item(trans, root, path, &key,
3074 sizeof(*item));
3075 if (ret)
3076 goto out;
3077
3078 leaf = path->nodes[0];
3079 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3080
b159fa28 3081 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3082
3083 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3084 btrfs_set_balance_data(leaf, item, &disk_bargs);
3085 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3086 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3087 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3088 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3089
3090 btrfs_set_balance_flags(leaf, item, bctl->flags);
3091
3092 btrfs_mark_buffer_dirty(leaf);
3093out:
3094 btrfs_free_path(path);
3a45bb20 3095 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3096 if (err && !ret)
3097 ret = err;
3098 return ret;
3099}
3100
6bccf3ab 3101static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3102{
6bccf3ab 3103 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3104 struct btrfs_trans_handle *trans;
3105 struct btrfs_path *path;
3106 struct btrfs_key key;
3107 int ret, err;
3108
3109 path = btrfs_alloc_path();
3110 if (!path)
3111 return -ENOMEM;
3112
3113 trans = btrfs_start_transaction(root, 0);
3114 if (IS_ERR(trans)) {
3115 btrfs_free_path(path);
3116 return PTR_ERR(trans);
3117 }
3118
3119 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3120 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3121 key.offset = 0;
3122
3123 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3124 if (ret < 0)
3125 goto out;
3126 if (ret > 0) {
3127 ret = -ENOENT;
3128 goto out;
3129 }
3130
3131 ret = btrfs_del_item(trans, root, path);
3132out:
3133 btrfs_free_path(path);
3a45bb20 3134 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3135 if (err && !ret)
3136 ret = err;
3137 return ret;
3138}
3139
59641015
ID
3140/*
3141 * This is a heuristic used to reduce the number of chunks balanced on
3142 * resume after balance was interrupted.
3143 */
3144static void update_balance_args(struct btrfs_balance_control *bctl)
3145{
3146 /*
3147 * Turn on soft mode for chunk types that were being converted.
3148 */
3149 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3150 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3151 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3152 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3153 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3154 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3155
3156 /*
3157 * Turn on usage filter if is not already used. The idea is
3158 * that chunks that we have already balanced should be
3159 * reasonably full. Don't do it for chunks that are being
3160 * converted - that will keep us from relocating unconverted
3161 * (albeit full) chunks.
3162 */
3163 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3164 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3165 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3166 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3167 bctl->data.usage = 90;
3168 }
3169 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3170 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3171 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3172 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3173 bctl->sys.usage = 90;
3174 }
3175 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3176 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3177 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3178 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3179 bctl->meta.usage = 90;
3180 }
3181}
3182
c9e9f97b
ID
3183/*
3184 * Should be called with both balance and volume mutexes held to
3185 * serialize other volume operations (add_dev/rm_dev/resize) with
3186 * restriper. Same goes for unset_balance_control.
3187 */
3188static void set_balance_control(struct btrfs_balance_control *bctl)
3189{
3190 struct btrfs_fs_info *fs_info = bctl->fs_info;
3191
3192 BUG_ON(fs_info->balance_ctl);
3193
3194 spin_lock(&fs_info->balance_lock);
3195 fs_info->balance_ctl = bctl;
3196 spin_unlock(&fs_info->balance_lock);
3197}
3198
3199static void unset_balance_control(struct btrfs_fs_info *fs_info)
3200{
3201 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3202
3203 BUG_ON(!fs_info->balance_ctl);
3204
3205 spin_lock(&fs_info->balance_lock);
3206 fs_info->balance_ctl = NULL;
3207 spin_unlock(&fs_info->balance_lock);
3208
3209 kfree(bctl);
3210}
3211
ed25e9b2
ID
3212/*
3213 * Balance filters. Return 1 if chunk should be filtered out
3214 * (should not be balanced).
3215 */
899c81ea 3216static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3217 struct btrfs_balance_args *bargs)
3218{
899c81ea
ID
3219 chunk_type = chunk_to_extended(chunk_type) &
3220 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3221
899c81ea 3222 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3223 return 0;
3224
3225 return 1;
3226}
3227
dba72cb3 3228static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3229 struct btrfs_balance_args *bargs)
bc309467
DS
3230{
3231 struct btrfs_block_group_cache *cache;
3232 u64 chunk_used;
3233 u64 user_thresh_min;
3234 u64 user_thresh_max;
3235 int ret = 1;
3236
3237 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3238 chunk_used = btrfs_block_group_used(&cache->item);
3239
3240 if (bargs->usage_min == 0)
3241 user_thresh_min = 0;
3242 else
3243 user_thresh_min = div_factor_fine(cache->key.offset,
3244 bargs->usage_min);
3245
3246 if (bargs->usage_max == 0)
3247 user_thresh_max = 1;
3248 else if (bargs->usage_max > 100)
3249 user_thresh_max = cache->key.offset;
3250 else
3251 user_thresh_max = div_factor_fine(cache->key.offset,
3252 bargs->usage_max);
3253
3254 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3255 ret = 0;
3256
3257 btrfs_put_block_group(cache);
3258 return ret;
3259}
3260
dba72cb3 3261static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3262 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3263{
3264 struct btrfs_block_group_cache *cache;
3265 u64 chunk_used, user_thresh;
3266 int ret = 1;
3267
3268 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3269 chunk_used = btrfs_block_group_used(&cache->item);
3270
bc309467 3271 if (bargs->usage_min == 0)
3e39cea6 3272 user_thresh = 1;
a105bb88
ID
3273 else if (bargs->usage > 100)
3274 user_thresh = cache->key.offset;
3275 else
3276 user_thresh = div_factor_fine(cache->key.offset,
3277 bargs->usage);
3278
5ce5b3c0
ID
3279 if (chunk_used < user_thresh)
3280 ret = 0;
3281
3282 btrfs_put_block_group(cache);
3283 return ret;
3284}
3285
409d404b
ID
3286static int chunk_devid_filter(struct extent_buffer *leaf,
3287 struct btrfs_chunk *chunk,
3288 struct btrfs_balance_args *bargs)
3289{
3290 struct btrfs_stripe *stripe;
3291 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3292 int i;
3293
3294 for (i = 0; i < num_stripes; i++) {
3295 stripe = btrfs_stripe_nr(chunk, i);
3296 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3297 return 0;
3298 }
3299
3300 return 1;
3301}
3302
94e60d5a
ID
3303/* [pstart, pend) */
3304static int chunk_drange_filter(struct extent_buffer *leaf,
3305 struct btrfs_chunk *chunk,
94e60d5a
ID
3306 struct btrfs_balance_args *bargs)
3307{
3308 struct btrfs_stripe *stripe;
3309 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3310 u64 stripe_offset;
3311 u64 stripe_length;
3312 int factor;
3313 int i;
3314
3315 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3316 return 0;
3317
3318 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3319 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3320 factor = num_stripes / 2;
3321 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3322 factor = num_stripes - 1;
3323 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3324 factor = num_stripes - 2;
3325 } else {
3326 factor = num_stripes;
3327 }
94e60d5a
ID
3328
3329 for (i = 0; i < num_stripes; i++) {
3330 stripe = btrfs_stripe_nr(chunk, i);
3331 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3332 continue;
3333
3334 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3335 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3336 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3337
3338 if (stripe_offset < bargs->pend &&
3339 stripe_offset + stripe_length > bargs->pstart)
3340 return 0;
3341 }
3342
3343 return 1;
3344}
3345
ea67176a
ID
3346/* [vstart, vend) */
3347static int chunk_vrange_filter(struct extent_buffer *leaf,
3348 struct btrfs_chunk *chunk,
3349 u64 chunk_offset,
3350 struct btrfs_balance_args *bargs)
3351{
3352 if (chunk_offset < bargs->vend &&
3353 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3354 /* at least part of the chunk is inside this vrange */
3355 return 0;
3356
3357 return 1;
3358}
3359
dee32d0a
GAP
3360static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3361 struct btrfs_chunk *chunk,
3362 struct btrfs_balance_args *bargs)
3363{
3364 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3365
3366 if (bargs->stripes_min <= num_stripes
3367 && num_stripes <= bargs->stripes_max)
3368 return 0;
3369
3370 return 1;
3371}
3372
899c81ea 3373static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3374 struct btrfs_balance_args *bargs)
3375{
3376 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3377 return 0;
3378
899c81ea
ID
3379 chunk_type = chunk_to_extended(chunk_type) &
3380 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3381
899c81ea 3382 if (bargs->target == chunk_type)
cfa4c961
ID
3383 return 1;
3384
3385 return 0;
3386}
3387
2ff7e61e 3388static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3389 struct extent_buffer *leaf,
3390 struct btrfs_chunk *chunk, u64 chunk_offset)
3391{
0b246afa 3392 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3393 struct btrfs_balance_args *bargs = NULL;
3394 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3395
3396 /* type filter */
3397 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3398 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3399 return 0;
3400 }
3401
3402 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3403 bargs = &bctl->data;
3404 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3405 bargs = &bctl->sys;
3406 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3407 bargs = &bctl->meta;
3408
ed25e9b2
ID
3409 /* profiles filter */
3410 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3411 chunk_profiles_filter(chunk_type, bargs)) {
3412 return 0;
5ce5b3c0
ID
3413 }
3414
3415 /* usage filter */
3416 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3417 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3418 return 0;
bc309467 3419 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3420 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3421 return 0;
409d404b
ID
3422 }
3423
3424 /* devid filter */
3425 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3426 chunk_devid_filter(leaf, chunk, bargs)) {
3427 return 0;
94e60d5a
ID
3428 }
3429
3430 /* drange filter, makes sense only with devid filter */
3431 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3432 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3433 return 0;
ea67176a
ID
3434 }
3435
3436 /* vrange filter */
3437 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3438 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3439 return 0;
ed25e9b2
ID
3440 }
3441
dee32d0a
GAP
3442 /* stripes filter */
3443 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3444 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3445 return 0;
3446 }
3447
cfa4c961
ID
3448 /* soft profile changing mode */
3449 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3450 chunk_soft_convert_filter(chunk_type, bargs)) {
3451 return 0;
3452 }
3453
7d824b6f
DS
3454 /*
3455 * limited by count, must be the last filter
3456 */
3457 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3458 if (bargs->limit == 0)
3459 return 0;
3460 else
3461 bargs->limit--;
12907fc7
DS
3462 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3463 /*
3464 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3465 * determined here because we do not have the global information
12907fc7
DS
3466 * about the count of all chunks that satisfy the filters.
3467 */
3468 if (bargs->limit_max == 0)
3469 return 0;
3470 else
3471 bargs->limit_max--;
7d824b6f
DS
3472 }
3473
f43ffb60
ID
3474 return 1;
3475}
3476
c9e9f97b 3477static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3478{
19a39dce 3479 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3480 struct btrfs_root *chunk_root = fs_info->chunk_root;
3481 struct btrfs_root *dev_root = fs_info->dev_root;
3482 struct list_head *devices;
ec44a35c
CM
3483 struct btrfs_device *device;
3484 u64 old_size;
3485 u64 size_to_free;
12907fc7 3486 u64 chunk_type;
f43ffb60 3487 struct btrfs_chunk *chunk;
5a488b9d 3488 struct btrfs_path *path = NULL;
ec44a35c 3489 struct btrfs_key key;
ec44a35c 3490 struct btrfs_key found_key;
c9e9f97b 3491 struct btrfs_trans_handle *trans;
f43ffb60
ID
3492 struct extent_buffer *leaf;
3493 int slot;
c9e9f97b
ID
3494 int ret;
3495 int enospc_errors = 0;
19a39dce 3496 bool counting = true;
12907fc7 3497 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3498 u64 limit_data = bctl->data.limit;
3499 u64 limit_meta = bctl->meta.limit;
3500 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3501 u32 count_data = 0;
3502 u32 count_meta = 0;
3503 u32 count_sys = 0;
2c9fe835 3504 int chunk_reserved = 0;
cf25ce51 3505 u64 bytes_used = 0;
ec44a35c 3506
ec44a35c 3507 /* step one make some room on all the devices */
c9e9f97b 3508 devices = &fs_info->fs_devices->devices;
c6e30871 3509 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3510 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3511 size_to_free = div_factor(old_size, 1);
ee22184b 3512 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3513 if (!device->writeable ||
7cc8e58d
MX
3514 btrfs_device_get_total_bytes(device) -
3515 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3516 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3517 continue;
3518
3519 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3520 if (ret == -ENOSPC)
3521 break;
5a488b9d
LB
3522 if (ret) {
3523 /* btrfs_shrink_device never returns ret > 0 */
3524 WARN_ON(ret > 0);
3525 goto error;
3526 }
ec44a35c 3527
a22285a6 3528 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3529 if (IS_ERR(trans)) {
3530 ret = PTR_ERR(trans);
3531 btrfs_info_in_rcu(fs_info,
3532 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3533 rcu_str_deref(device->name), ret,
3534 old_size, old_size - size_to_free);
3535 goto error;
3536 }
ec44a35c
CM
3537
3538 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3539 if (ret) {
3a45bb20 3540 btrfs_end_transaction(trans);
5a488b9d
LB
3541 /* btrfs_grow_device never returns ret > 0 */
3542 WARN_ON(ret > 0);
3543 btrfs_info_in_rcu(fs_info,
3544 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3545 rcu_str_deref(device->name), ret,
3546 old_size, old_size - size_to_free);
3547 goto error;
3548 }
ec44a35c 3549
3a45bb20 3550 btrfs_end_transaction(trans);
ec44a35c
CM
3551 }
3552
3553 /* step two, relocate all the chunks */
3554 path = btrfs_alloc_path();
17e9f796
MF
3555 if (!path) {
3556 ret = -ENOMEM;
3557 goto error;
3558 }
19a39dce
ID
3559
3560 /* zero out stat counters */
3561 spin_lock(&fs_info->balance_lock);
3562 memset(&bctl->stat, 0, sizeof(bctl->stat));
3563 spin_unlock(&fs_info->balance_lock);
3564again:
7d824b6f 3565 if (!counting) {
12907fc7
DS
3566 /*
3567 * The single value limit and min/max limits use the same bytes
3568 * in the
3569 */
7d824b6f
DS
3570 bctl->data.limit = limit_data;
3571 bctl->meta.limit = limit_meta;
3572 bctl->sys.limit = limit_sys;
3573 }
ec44a35c
CM
3574 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3575 key.offset = (u64)-1;
3576 key.type = BTRFS_CHUNK_ITEM_KEY;
3577
d397712b 3578 while (1) {
19a39dce 3579 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3580 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3581 ret = -ECANCELED;
3582 goto error;
3583 }
3584
67c5e7d4 3585 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3586 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3587 if (ret < 0) {
3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3589 goto error;
67c5e7d4 3590 }
ec44a35c
CM
3591
3592 /*
3593 * this shouldn't happen, it means the last relocate
3594 * failed
3595 */
3596 if (ret == 0)
c9e9f97b 3597 BUG(); /* FIXME break ? */
ec44a35c
CM
3598
3599 ret = btrfs_previous_item(chunk_root, path, 0,
3600 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3601 if (ret) {
67c5e7d4 3602 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3603 ret = 0;
ec44a35c 3604 break;
c9e9f97b 3605 }
7d9eb12c 3606
f43ffb60
ID
3607 leaf = path->nodes[0];
3608 slot = path->slots[0];
3609 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3610
67c5e7d4
FM
3611 if (found_key.objectid != key.objectid) {
3612 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3613 break;
67c5e7d4 3614 }
7d9eb12c 3615
f43ffb60 3616 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3617 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3618
19a39dce
ID
3619 if (!counting) {
3620 spin_lock(&fs_info->balance_lock);
3621 bctl->stat.considered++;
3622 spin_unlock(&fs_info->balance_lock);
3623 }
3624
2ff7e61e 3625 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3626 found_key.offset);
2c9fe835 3627
b3b4aa74 3628 btrfs_release_path(path);
67c5e7d4
FM
3629 if (!ret) {
3630 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3631 goto loop;
67c5e7d4 3632 }
f43ffb60 3633
19a39dce 3634 if (counting) {
67c5e7d4 3635 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3636 spin_lock(&fs_info->balance_lock);
3637 bctl->stat.expected++;
3638 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3639
3640 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3641 count_data++;
3642 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3643 count_sys++;
3644 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3645 count_meta++;
3646
3647 goto loop;
3648 }
3649
3650 /*
3651 * Apply limit_min filter, no need to check if the LIMITS
3652 * filter is used, limit_min is 0 by default
3653 */
3654 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655 count_data < bctl->data.limit_min)
3656 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3657 count_meta < bctl->meta.limit_min)
3658 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3659 count_sys < bctl->sys.limit_min)) {
3660 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3661 goto loop;
3662 }
3663
cf25ce51
LB
3664 ASSERT(fs_info->data_sinfo);
3665 spin_lock(&fs_info->data_sinfo->lock);
3666 bytes_used = fs_info->data_sinfo->bytes_used;
3667 spin_unlock(&fs_info->data_sinfo->lock);
3668
3669 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3670 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3671 trans = btrfs_start_transaction(chunk_root, 0);
3672 if (IS_ERR(trans)) {
3673 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 ret = PTR_ERR(trans);
3675 goto error;
3676 }
3677
2ff7e61e 3678 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3679 BTRFS_BLOCK_GROUP_DATA);
3a45bb20 3680 btrfs_end_transaction(trans);
2c9fe835
ZL
3681 if (ret < 0) {
3682 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3683 goto error;
3684 }
2c9fe835
ZL
3685 chunk_reserved = 1;
3686 }
3687
5b4aacef 3688 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3689 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3690 if (ret && ret != -ENOSPC)
3691 goto error;
19a39dce 3692 if (ret == -ENOSPC) {
c9e9f97b 3693 enospc_errors++;
19a39dce
ID
3694 } else {
3695 spin_lock(&fs_info->balance_lock);
3696 bctl->stat.completed++;
3697 spin_unlock(&fs_info->balance_lock);
3698 }
f43ffb60 3699loop:
795a3321
ID
3700 if (found_key.offset == 0)
3701 break;
ba1bf481 3702 key.offset = found_key.offset - 1;
ec44a35c 3703 }
c9e9f97b 3704
19a39dce
ID
3705 if (counting) {
3706 btrfs_release_path(path);
3707 counting = false;
3708 goto again;
3709 }
ec44a35c
CM
3710error:
3711 btrfs_free_path(path);
c9e9f97b 3712 if (enospc_errors) {
efe120a0 3713 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3714 enospc_errors);
c9e9f97b
ID
3715 if (!ret)
3716 ret = -ENOSPC;
3717 }
3718
ec44a35c
CM
3719 return ret;
3720}
3721
0c460c0d
ID
3722/**
3723 * alloc_profile_is_valid - see if a given profile is valid and reduced
3724 * @flags: profile to validate
3725 * @extended: if true @flags is treated as an extended profile
3726 */
3727static int alloc_profile_is_valid(u64 flags, int extended)
3728{
3729 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3730 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3731
3732 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3733
3734 /* 1) check that all other bits are zeroed */
3735 if (flags & ~mask)
3736 return 0;
3737
3738 /* 2) see if profile is reduced */
3739 if (flags == 0)
3740 return !extended; /* "0" is valid for usual profiles */
3741
3742 /* true if exactly one bit set */
3743 return (flags & (flags - 1)) == 0;
3744}
3745
837d5b6e
ID
3746static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3747{
a7e99c69
ID
3748 /* cancel requested || normal exit path */
3749 return atomic_read(&fs_info->balance_cancel_req) ||
3750 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3751 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3752}
3753
c9e9f97b
ID
3754static void __cancel_balance(struct btrfs_fs_info *fs_info)
3755{
0940ebf6
ID
3756 int ret;
3757
c9e9f97b 3758 unset_balance_control(fs_info);
6bccf3ab 3759 ret = del_balance_item(fs_info);
0f788c58 3760 if (ret)
34d97007 3761 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f 3762
171938e5 3763 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
c9e9f97b
ID
3764}
3765
bdcd3c97
AM
3766/* Non-zero return value signifies invalidity */
3767static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3768 u64 allowed)
3769{
3770 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3771 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3772 (bctl_arg->target & ~allowed)));
3773}
3774
c9e9f97b
ID
3775/*
3776 * Should be called with both balance and volume mutexes held
3777 */
3778int btrfs_balance(struct btrfs_balance_control *bctl,
3779 struct btrfs_ioctl_balance_args *bargs)
3780{
3781 struct btrfs_fs_info *fs_info = bctl->fs_info;
14506127 3782 u64 meta_target, data_target;
f43ffb60 3783 u64 allowed;
e4837f8f 3784 int mixed = 0;
c9e9f97b 3785 int ret;
8dabb742 3786 u64 num_devices;
de98ced9 3787 unsigned seq;
c9e9f97b 3788
837d5b6e 3789 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3790 atomic_read(&fs_info->balance_pause_req) ||
3791 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3792 ret = -EINVAL;
3793 goto out;
3794 }
3795
e4837f8f
ID
3796 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3797 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3798 mixed = 1;
3799
f43ffb60
ID
3800 /*
3801 * In case of mixed groups both data and meta should be picked,
3802 * and identical options should be given for both of them.
3803 */
e4837f8f
ID
3804 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3805 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3806 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3807 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3808 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3809 btrfs_err(fs_info,
3810 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3811 ret = -EINVAL;
3812 goto out;
3813 }
3814 }
3815
8dabb742 3816 num_devices = fs_info->fs_devices->num_devices;
73beece9 3817 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3818 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3819 BUG_ON(num_devices < 1);
3820 num_devices--;
3821 }
73beece9 3822 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3823 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3824 if (num_devices > 1)
e4d8ec0f 3825 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3826 if (num_devices > 2)
3827 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3828 if (num_devices > 3)
3829 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3830 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3831 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3832 btrfs_err(fs_info,
3833 "unable to start balance with target data profile %llu",
3834 bctl->data.target);
e4d8ec0f
ID
3835 ret = -EINVAL;
3836 goto out;
3837 }
bdcd3c97 3838 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3839 btrfs_err(fs_info,
5d163e0e
JM
3840 "unable to start balance with target metadata profile %llu",
3841 bctl->meta.target);
e4d8ec0f
ID
3842 ret = -EINVAL;
3843 goto out;
3844 }
bdcd3c97 3845 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3846 btrfs_err(fs_info,
5d163e0e
JM
3847 "unable to start balance with target system profile %llu",
3848 bctl->sys.target);
e4d8ec0f
ID
3849 ret = -EINVAL;
3850 goto out;
3851 }
3852
e4d8ec0f
ID
3853 /* allow to reduce meta or sys integrity only if force set */
3854 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3855 BTRFS_BLOCK_GROUP_RAID10 |
3856 BTRFS_BLOCK_GROUP_RAID5 |
3857 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3858 do {
3859 seq = read_seqbegin(&fs_info->profiles_lock);
3860
3861 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3862 (fs_info->avail_system_alloc_bits & allowed) &&
3863 !(bctl->sys.target & allowed)) ||
3864 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3865 (fs_info->avail_metadata_alloc_bits & allowed) &&
3866 !(bctl->meta.target & allowed))) {
3867 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3868 btrfs_info(fs_info,
3869 "force reducing metadata integrity");
de98ced9 3870 } else {
5d163e0e
JM
3871 btrfs_err(fs_info,
3872 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3873 ret = -EINVAL;
3874 goto out;
3875 }
e4d8ec0f 3876 }
de98ced9 3877 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3878
14506127
AB
3879 /* if we're not converting, the target field is uninitialized */
3880 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3881 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3882 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3883 bctl->data.target : fs_info->avail_data_alloc_bits;
3884 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3885 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3886 btrfs_warn(fs_info,
5d163e0e 3887 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
14506127 3888 meta_target, data_target);
ee592d07
ST
3889 }
3890
6bccf3ab 3891 ret = insert_balance_item(fs_info, bctl);
59641015 3892 if (ret && ret != -EEXIST)
0940ebf6
ID
3893 goto out;
3894
59641015
ID
3895 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3896 BUG_ON(ret == -EEXIST);
3897 set_balance_control(bctl);
3898 } else {
3899 BUG_ON(ret != -EEXIST);
3900 spin_lock(&fs_info->balance_lock);
3901 update_balance_args(bctl);
3902 spin_unlock(&fs_info->balance_lock);
3903 }
c9e9f97b 3904
837d5b6e 3905 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3906 mutex_unlock(&fs_info->balance_mutex);
3907
3908 ret = __btrfs_balance(fs_info);
3909
3910 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3911 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
3912
3913 if (bargs) {
3914 memset(bargs, 0, sizeof(*bargs));
19a39dce 3915 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3916 }
3917
3a01aa7a
ID
3918 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3919 balance_need_close(fs_info)) {
3920 __cancel_balance(fs_info);
3921 }
3922
837d5b6e 3923 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3924
3925 return ret;
3926out:
59641015
ID
3927 if (bctl->flags & BTRFS_BALANCE_RESUME)
3928 __cancel_balance(fs_info);
ed0fb78f 3929 else {
59641015 3930 kfree(bctl);
171938e5 3931 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
ed0fb78f 3932 }
59641015
ID
3933 return ret;
3934}
3935
3936static int balance_kthread(void *data)
3937{
2b6ba629 3938 struct btrfs_fs_info *fs_info = data;
9555c6c1 3939 int ret = 0;
59641015
ID
3940
3941 mutex_lock(&fs_info->volume_mutex);
3942 mutex_lock(&fs_info->balance_mutex);
3943
2b6ba629 3944 if (fs_info->balance_ctl) {
efe120a0 3945 btrfs_info(fs_info, "continuing balance");
2b6ba629 3946 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3947 }
59641015
ID
3948
3949 mutex_unlock(&fs_info->balance_mutex);
3950 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3951
59641015
ID
3952 return ret;
3953}
3954
2b6ba629
ID
3955int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3956{
3957 struct task_struct *tsk;
3958
3959 spin_lock(&fs_info->balance_lock);
3960 if (!fs_info->balance_ctl) {
3961 spin_unlock(&fs_info->balance_lock);
3962 return 0;
3963 }
3964 spin_unlock(&fs_info->balance_lock);
3965
3cdde224 3966 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3967 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3968 return 0;
3969 }
3970
3971 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3972 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3973}
3974
68310a5e 3975int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3976{
59641015
ID
3977 struct btrfs_balance_control *bctl;
3978 struct btrfs_balance_item *item;
3979 struct btrfs_disk_balance_args disk_bargs;
3980 struct btrfs_path *path;
3981 struct extent_buffer *leaf;
3982 struct btrfs_key key;
3983 int ret;
3984
3985 path = btrfs_alloc_path();
3986 if (!path)
3987 return -ENOMEM;
3988
59641015 3989 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3990 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3991 key.offset = 0;
3992
68310a5e 3993 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3994 if (ret < 0)
68310a5e 3995 goto out;
59641015
ID
3996 if (ret > 0) { /* ret = -ENOENT; */
3997 ret = 0;
68310a5e
ID
3998 goto out;
3999 }
4000
4001 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4002 if (!bctl) {
4003 ret = -ENOMEM;
4004 goto out;
59641015
ID
4005 }
4006
4007 leaf = path->nodes[0];
4008 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4009
68310a5e
ID
4010 bctl->fs_info = fs_info;
4011 bctl->flags = btrfs_balance_flags(leaf, item);
4012 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4013
4014 btrfs_balance_data(leaf, item, &disk_bargs);
4015 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4016 btrfs_balance_meta(leaf, item, &disk_bargs);
4017 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4018 btrfs_balance_sys(leaf, item, &disk_bargs);
4019 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4020
171938e5 4021 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
ed0fb78f 4022
68310a5e
ID
4023 mutex_lock(&fs_info->volume_mutex);
4024 mutex_lock(&fs_info->balance_mutex);
59641015 4025
68310a5e
ID
4026 set_balance_control(bctl);
4027
4028 mutex_unlock(&fs_info->balance_mutex);
4029 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4030out:
4031 btrfs_free_path(path);
ec44a35c
CM
4032 return ret;
4033}
4034
837d5b6e
ID
4035int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4036{
4037 int ret = 0;
4038
4039 mutex_lock(&fs_info->balance_mutex);
4040 if (!fs_info->balance_ctl) {
4041 mutex_unlock(&fs_info->balance_mutex);
4042 return -ENOTCONN;
4043 }
4044
4045 if (atomic_read(&fs_info->balance_running)) {
4046 atomic_inc(&fs_info->balance_pause_req);
4047 mutex_unlock(&fs_info->balance_mutex);
4048
4049 wait_event(fs_info->balance_wait_q,
4050 atomic_read(&fs_info->balance_running) == 0);
4051
4052 mutex_lock(&fs_info->balance_mutex);
4053 /* we are good with balance_ctl ripped off from under us */
4054 BUG_ON(atomic_read(&fs_info->balance_running));
4055 atomic_dec(&fs_info->balance_pause_req);
4056 } else {
4057 ret = -ENOTCONN;
4058 }
4059
4060 mutex_unlock(&fs_info->balance_mutex);
4061 return ret;
4062}
4063
a7e99c69
ID
4064int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4065{
bc98a42c 4066 if (sb_rdonly(fs_info->sb))
e649e587
ID
4067 return -EROFS;
4068
a7e99c69
ID
4069 mutex_lock(&fs_info->balance_mutex);
4070 if (!fs_info->balance_ctl) {
4071 mutex_unlock(&fs_info->balance_mutex);
4072 return -ENOTCONN;
4073 }
4074
4075 atomic_inc(&fs_info->balance_cancel_req);
4076 /*
4077 * if we are running just wait and return, balance item is
4078 * deleted in btrfs_balance in this case
4079 */
4080 if (atomic_read(&fs_info->balance_running)) {
4081 mutex_unlock(&fs_info->balance_mutex);
4082 wait_event(fs_info->balance_wait_q,
4083 atomic_read(&fs_info->balance_running) == 0);
4084 mutex_lock(&fs_info->balance_mutex);
4085 } else {
4086 /* __cancel_balance needs volume_mutex */
4087 mutex_unlock(&fs_info->balance_mutex);
4088 mutex_lock(&fs_info->volume_mutex);
4089 mutex_lock(&fs_info->balance_mutex);
4090
4091 if (fs_info->balance_ctl)
4092 __cancel_balance(fs_info);
4093
4094 mutex_unlock(&fs_info->volume_mutex);
4095 }
4096
4097 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4098 atomic_dec(&fs_info->balance_cancel_req);
4099 mutex_unlock(&fs_info->balance_mutex);
4100 return 0;
4101}
4102
803b2f54
SB
4103static int btrfs_uuid_scan_kthread(void *data)
4104{
4105 struct btrfs_fs_info *fs_info = data;
4106 struct btrfs_root *root = fs_info->tree_root;
4107 struct btrfs_key key;
803b2f54
SB
4108 struct btrfs_path *path = NULL;
4109 int ret = 0;
4110 struct extent_buffer *eb;
4111 int slot;
4112 struct btrfs_root_item root_item;
4113 u32 item_size;
f45388f3 4114 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4115
4116 path = btrfs_alloc_path();
4117 if (!path) {
4118 ret = -ENOMEM;
4119 goto out;
4120 }
4121
4122 key.objectid = 0;
4123 key.type = BTRFS_ROOT_ITEM_KEY;
4124 key.offset = 0;
4125
803b2f54 4126 while (1) {
6174d3cb 4127 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4128 if (ret) {
4129 if (ret > 0)
4130 ret = 0;
4131 break;
4132 }
4133
4134 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4135 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4136 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4137 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4138 goto skip;
4139
4140 eb = path->nodes[0];
4141 slot = path->slots[0];
4142 item_size = btrfs_item_size_nr(eb, slot);
4143 if (item_size < sizeof(root_item))
4144 goto skip;
4145
803b2f54
SB
4146 read_extent_buffer(eb, &root_item,
4147 btrfs_item_ptr_offset(eb, slot),
4148 (int)sizeof(root_item));
4149 if (btrfs_root_refs(&root_item) == 0)
4150 goto skip;
f45388f3
FDBM
4151
4152 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4153 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4154 if (trans)
4155 goto update_tree;
4156
4157 btrfs_release_path(path);
803b2f54
SB
4158 /*
4159 * 1 - subvol uuid item
4160 * 1 - received_subvol uuid item
4161 */
4162 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4163 if (IS_ERR(trans)) {
4164 ret = PTR_ERR(trans);
4165 break;
4166 }
f45388f3
FDBM
4167 continue;
4168 } else {
4169 goto skip;
4170 }
4171update_tree:
4172 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4173 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4174 root_item.uuid,
4175 BTRFS_UUID_KEY_SUBVOL,
4176 key.objectid);
4177 if (ret < 0) {
efe120a0 4178 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4179 ret);
803b2f54
SB
4180 break;
4181 }
4182 }
4183
4184 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4185 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4186 root_item.received_uuid,
4187 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4188 key.objectid);
4189 if (ret < 0) {
efe120a0 4190 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4191 ret);
803b2f54
SB
4192 break;
4193 }
4194 }
4195
f45388f3 4196skip:
803b2f54 4197 if (trans) {
3a45bb20 4198 ret = btrfs_end_transaction(trans);
f45388f3 4199 trans = NULL;
803b2f54
SB
4200 if (ret)
4201 break;
4202 }
4203
803b2f54
SB
4204 btrfs_release_path(path);
4205 if (key.offset < (u64)-1) {
4206 key.offset++;
4207 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4208 key.offset = 0;
4209 key.type = BTRFS_ROOT_ITEM_KEY;
4210 } else if (key.objectid < (u64)-1) {
4211 key.offset = 0;
4212 key.type = BTRFS_ROOT_ITEM_KEY;
4213 key.objectid++;
4214 } else {
4215 break;
4216 }
4217 cond_resched();
4218 }
4219
4220out:
4221 btrfs_free_path(path);
f45388f3 4222 if (trans && !IS_ERR(trans))
3a45bb20 4223 btrfs_end_transaction(trans);
803b2f54 4224 if (ret)
efe120a0 4225 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4226 else
afcdd129 4227 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4228 up(&fs_info->uuid_tree_rescan_sem);
4229 return 0;
4230}
4231
70f80175
SB
4232/*
4233 * Callback for btrfs_uuid_tree_iterate().
4234 * returns:
4235 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4236 * < 0 if an error occurred.
70f80175
SB
4237 * > 0 if the check failed, which means the caller shall remove the entry.
4238 */
4239static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4240 u8 *uuid, u8 type, u64 subid)
4241{
4242 struct btrfs_key key;
4243 int ret = 0;
4244 struct btrfs_root *subvol_root;
4245
4246 if (type != BTRFS_UUID_KEY_SUBVOL &&
4247 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4248 goto out;
4249
4250 key.objectid = subid;
4251 key.type = BTRFS_ROOT_ITEM_KEY;
4252 key.offset = (u64)-1;
4253 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4254 if (IS_ERR(subvol_root)) {
4255 ret = PTR_ERR(subvol_root);
4256 if (ret == -ENOENT)
4257 ret = 1;
4258 goto out;
4259 }
4260
4261 switch (type) {
4262 case BTRFS_UUID_KEY_SUBVOL:
4263 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4264 ret = 1;
4265 break;
4266 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4267 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4268 BTRFS_UUID_SIZE))
4269 ret = 1;
4270 break;
4271 }
4272
4273out:
4274 return ret;
4275}
4276
4277static int btrfs_uuid_rescan_kthread(void *data)
4278{
4279 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4280 int ret;
4281
4282 /*
4283 * 1st step is to iterate through the existing UUID tree and
4284 * to delete all entries that contain outdated data.
4285 * 2nd step is to add all missing entries to the UUID tree.
4286 */
4287 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4288 if (ret < 0) {
efe120a0 4289 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4290 up(&fs_info->uuid_tree_rescan_sem);
4291 return ret;
4292 }
4293 return btrfs_uuid_scan_kthread(data);
4294}
4295
f7a81ea4
SB
4296int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4297{
4298 struct btrfs_trans_handle *trans;
4299 struct btrfs_root *tree_root = fs_info->tree_root;
4300 struct btrfs_root *uuid_root;
803b2f54
SB
4301 struct task_struct *task;
4302 int ret;
f7a81ea4
SB
4303
4304 /*
4305 * 1 - root node
4306 * 1 - root item
4307 */
4308 trans = btrfs_start_transaction(tree_root, 2);
4309 if (IS_ERR(trans))
4310 return PTR_ERR(trans);
4311
4312 uuid_root = btrfs_create_tree(trans, fs_info,
4313 BTRFS_UUID_TREE_OBJECTID);
4314 if (IS_ERR(uuid_root)) {
6d13f549 4315 ret = PTR_ERR(uuid_root);
66642832 4316 btrfs_abort_transaction(trans, ret);
3a45bb20 4317 btrfs_end_transaction(trans);
6d13f549 4318 return ret;
f7a81ea4
SB
4319 }
4320
4321 fs_info->uuid_root = uuid_root;
4322
3a45bb20 4323 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4324 if (ret)
4325 return ret;
4326
4327 down(&fs_info->uuid_tree_rescan_sem);
4328 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4329 if (IS_ERR(task)) {
70f80175 4330 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4331 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4332 up(&fs_info->uuid_tree_rescan_sem);
4333 return PTR_ERR(task);
4334 }
4335
4336 return 0;
f7a81ea4 4337}
803b2f54 4338
70f80175
SB
4339int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4340{
4341 struct task_struct *task;
4342
4343 down(&fs_info->uuid_tree_rescan_sem);
4344 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4345 if (IS_ERR(task)) {
4346 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4347 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4348 up(&fs_info->uuid_tree_rescan_sem);
4349 return PTR_ERR(task);
4350 }
4351
4352 return 0;
4353}
4354
8f18cf13
CM
4355/*
4356 * shrinking a device means finding all of the device extents past
4357 * the new size, and then following the back refs to the chunks.
4358 * The chunk relocation code actually frees the device extent
4359 */
4360int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4361{
0b246afa
JM
4362 struct btrfs_fs_info *fs_info = device->fs_info;
4363 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4364 struct btrfs_trans_handle *trans;
8f18cf13
CM
4365 struct btrfs_dev_extent *dev_extent = NULL;
4366 struct btrfs_path *path;
4367 u64 length;
8f18cf13
CM
4368 u64 chunk_offset;
4369 int ret;
4370 int slot;
ba1bf481
JB
4371 int failed = 0;
4372 bool retried = false;
53e489bc 4373 bool checked_pending_chunks = false;
8f18cf13
CM
4374 struct extent_buffer *l;
4375 struct btrfs_key key;
0b246afa 4376 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4377 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4378 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1
NB
4379 u64 diff;
4380
4381 new_size = round_down(new_size, fs_info->sectorsize);
0e4324a4 4382 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4383
63a212ab
SB
4384 if (device->is_tgtdev_for_dev_replace)
4385 return -EINVAL;
4386
8f18cf13
CM
4387 path = btrfs_alloc_path();
4388 if (!path)
4389 return -ENOMEM;
4390
e4058b54 4391 path->reada = READA_FORWARD;
8f18cf13 4392
34441361 4393 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4394
7cc8e58d 4395 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4396 if (device->writeable) {
2b82032c 4397 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4398 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4399 }
34441361 4400 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4401
ba1bf481 4402again:
8f18cf13
CM
4403 key.objectid = device->devid;
4404 key.offset = (u64)-1;
4405 key.type = BTRFS_DEV_EXTENT_KEY;
4406
213e64da 4407 do {
0b246afa 4408 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4409 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4410 if (ret < 0) {
0b246afa 4411 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4412 goto done;
67c5e7d4 4413 }
8f18cf13
CM
4414
4415 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4416 if (ret)
0b246afa 4417 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4418 if (ret < 0)
4419 goto done;
4420 if (ret) {
4421 ret = 0;
b3b4aa74 4422 btrfs_release_path(path);
bf1fb512 4423 break;
8f18cf13
CM
4424 }
4425
4426 l = path->nodes[0];
4427 slot = path->slots[0];
4428 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4429
ba1bf481 4430 if (key.objectid != device->devid) {
0b246afa 4431 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4432 btrfs_release_path(path);
bf1fb512 4433 break;
ba1bf481 4434 }
8f18cf13
CM
4435
4436 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4437 length = btrfs_dev_extent_length(l, dev_extent);
4438
ba1bf481 4439 if (key.offset + length <= new_size) {
0b246afa 4440 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4441 btrfs_release_path(path);
d6397bae 4442 break;
ba1bf481 4443 }
8f18cf13 4444
8f18cf13 4445 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4446 btrfs_release_path(path);
8f18cf13 4447
0b246afa
JM
4448 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4449 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4450 if (ret && ret != -ENOSPC)
8f18cf13 4451 goto done;
ba1bf481
JB
4452 if (ret == -ENOSPC)
4453 failed++;
213e64da 4454 } while (key.offset-- > 0);
ba1bf481
JB
4455
4456 if (failed && !retried) {
4457 failed = 0;
4458 retried = true;
4459 goto again;
4460 } else if (failed && retried) {
4461 ret = -ENOSPC;
ba1bf481 4462 goto done;
8f18cf13
CM
4463 }
4464
d6397bae 4465 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4466 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4467 if (IS_ERR(trans)) {
4468 ret = PTR_ERR(trans);
4469 goto done;
4470 }
4471
34441361 4472 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4473
4474 /*
4475 * We checked in the above loop all device extents that were already in
4476 * the device tree. However before we have updated the device's
4477 * total_bytes to the new size, we might have had chunk allocations that
4478 * have not complete yet (new block groups attached to transaction
4479 * handles), and therefore their device extents were not yet in the
4480 * device tree and we missed them in the loop above. So if we have any
4481 * pending chunk using a device extent that overlaps the device range
4482 * that we can not use anymore, commit the current transaction and
4483 * repeat the search on the device tree - this way we guarantee we will
4484 * not have chunks using device extents that end beyond 'new_size'.
4485 */
4486 if (!checked_pending_chunks) {
4487 u64 start = new_size;
4488 u64 len = old_size - new_size;
4489
499f377f
JM
4490 if (contains_pending_extent(trans->transaction, device,
4491 &start, len)) {
34441361 4492 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4493 checked_pending_chunks = true;
4494 failed = 0;
4495 retried = false;
3a45bb20 4496 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4497 if (ret)
4498 goto done;
4499 goto again;
4500 }
4501 }
4502
7cc8e58d 4503 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4504 if (list_empty(&device->resized_list))
4505 list_add_tail(&device->resized_list,
0b246afa 4506 &fs_info->fs_devices->resized_devices);
d6397bae 4507
d6397bae 4508 WARN_ON(diff > old_total);
7dfb8be1
NB
4509 btrfs_set_super_total_bytes(super_copy,
4510 round_down(old_total - diff, fs_info->sectorsize));
34441361 4511 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4512
4513 /* Now btrfs_update_device() will change the on-disk size. */
4514 ret = btrfs_update_device(trans, device);
3a45bb20 4515 btrfs_end_transaction(trans);
8f18cf13
CM
4516done:
4517 btrfs_free_path(path);
53e489bc 4518 if (ret) {
34441361 4519 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4520 btrfs_device_set_total_bytes(device, old_size);
4521 if (device->writeable)
4522 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4523 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4524 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4525 }
8f18cf13
CM
4526 return ret;
4527}
4528
2ff7e61e 4529static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4530 struct btrfs_key *key,
4531 struct btrfs_chunk *chunk, int item_size)
4532{
0b246afa 4533 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4534 struct btrfs_disk_key disk_key;
4535 u32 array_size;
4536 u8 *ptr;
4537
34441361 4538 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4539 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4540 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4541 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4542 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4543 return -EFBIG;
fe48a5c0 4544 }
0b86a832
CM
4545
4546 ptr = super_copy->sys_chunk_array + array_size;
4547 btrfs_cpu_key_to_disk(&disk_key, key);
4548 memcpy(ptr, &disk_key, sizeof(disk_key));
4549 ptr += sizeof(disk_key);
4550 memcpy(ptr, chunk, item_size);
4551 item_size += sizeof(disk_key);
4552 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4553 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4554
0b86a832
CM
4555 return 0;
4556}
4557
73c5de00
AJ
4558/*
4559 * sort the devices in descending order by max_avail, total_avail
4560 */
4561static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4562{
73c5de00
AJ
4563 const struct btrfs_device_info *di_a = a;
4564 const struct btrfs_device_info *di_b = b;
9b3f68b9 4565
73c5de00 4566 if (di_a->max_avail > di_b->max_avail)
b2117a39 4567 return -1;
73c5de00 4568 if (di_a->max_avail < di_b->max_avail)
b2117a39 4569 return 1;
73c5de00
AJ
4570 if (di_a->total_avail > di_b->total_avail)
4571 return -1;
4572 if (di_a->total_avail < di_b->total_avail)
4573 return 1;
4574 return 0;
b2117a39 4575}
0b86a832 4576
53b381b3
DW
4577static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4578{
ffe2d203 4579 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4580 return;
4581
ceda0864 4582 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4583}
4584
da17066c 4585#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4586 - sizeof(struct btrfs_chunk)) \
4587 / sizeof(struct btrfs_stripe) + 1)
4588
4589#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4590 - 2 * sizeof(struct btrfs_disk_key) \
4591 - 2 * sizeof(struct btrfs_chunk)) \
4592 / sizeof(struct btrfs_stripe) + 1)
4593
73c5de00 4594static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4595 u64 start, u64 type)
b2117a39 4596{
2ff7e61e 4597 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4598 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4599 struct btrfs_device *device;
73c5de00
AJ
4600 struct map_lookup *map = NULL;
4601 struct extent_map_tree *em_tree;
4602 struct extent_map *em;
4603 struct btrfs_device_info *devices_info = NULL;
4604 u64 total_avail;
4605 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4606 int data_stripes; /* number of stripes that count for
4607 block group size */
73c5de00
AJ
4608 int sub_stripes; /* sub_stripes info for map */
4609 int dev_stripes; /* stripes per dev */
4610 int devs_max; /* max devs to use */
4611 int devs_min; /* min devs needed */
4612 int devs_increment; /* ndevs has to be a multiple of this */
4613 int ncopies; /* how many copies to data has */
4614 int ret;
4615 u64 max_stripe_size;
4616 u64 max_chunk_size;
4617 u64 stripe_size;
4618 u64 num_bytes;
4619 int ndevs;
4620 int i;
4621 int j;
31e50229 4622 int index;
593060d7 4623
0c460c0d 4624 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4625
73c5de00
AJ
4626 if (list_empty(&fs_devices->alloc_list))
4627 return -ENOSPC;
b2117a39 4628
31e50229 4629 index = __get_raid_index(type);
73c5de00 4630
31e50229
LB
4631 sub_stripes = btrfs_raid_array[index].sub_stripes;
4632 dev_stripes = btrfs_raid_array[index].dev_stripes;
4633 devs_max = btrfs_raid_array[index].devs_max;
4634 devs_min = btrfs_raid_array[index].devs_min;
4635 devs_increment = btrfs_raid_array[index].devs_increment;
4636 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4637
9b3f68b9 4638 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4639 max_stripe_size = SZ_1G;
73c5de00 4640 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4641 if (!devs_max)
4642 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4643 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4644 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4645 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4646 max_stripe_size = SZ_1G;
1100373f 4647 else
ee22184b 4648 max_stripe_size = SZ_256M;
73c5de00 4649 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4650 if (!devs_max)
4651 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4652 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4653 max_stripe_size = SZ_32M;
73c5de00 4654 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4655 if (!devs_max)
4656 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4657 } else {
351fd353 4658 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4659 type);
4660 BUG_ON(1);
9b3f68b9
CM
4661 }
4662
2b82032c
YZ
4663 /* we don't want a chunk larger than 10% of writeable space */
4664 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4665 max_chunk_size);
9b3f68b9 4666
31e818fe 4667 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4668 GFP_NOFS);
4669 if (!devices_info)
4670 return -ENOMEM;
0cad8a11 4671
9f680ce0 4672 /*
73c5de00
AJ
4673 * in the first pass through the devices list, we gather information
4674 * about the available holes on each device.
9f680ce0 4675 */
73c5de00 4676 ndevs = 0;
ebcc9301 4677 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4678 u64 max_avail;
4679 u64 dev_offset;
b2117a39 4680
73c5de00 4681 if (!device->writeable) {
31b1a2bd 4682 WARN(1, KERN_ERR
efe120a0 4683 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4684 continue;
4685 }
b2117a39 4686
63a212ab
SB
4687 if (!device->in_fs_metadata ||
4688 device->is_tgtdev_for_dev_replace)
73c5de00 4689 continue;
b2117a39 4690
73c5de00
AJ
4691 if (device->total_bytes > device->bytes_used)
4692 total_avail = device->total_bytes - device->bytes_used;
4693 else
4694 total_avail = 0;
38c01b96 4695
4696 /* If there is no space on this device, skip it. */
4697 if (total_avail == 0)
4698 continue;
b2117a39 4699
6df9a95e 4700 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4701 max_stripe_size * dev_stripes,
4702 &dev_offset, &max_avail);
4703 if (ret && ret != -ENOSPC)
4704 goto error;
b2117a39 4705
73c5de00
AJ
4706 if (ret == 0)
4707 max_avail = max_stripe_size * dev_stripes;
b2117a39 4708
73c5de00
AJ
4709 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4710 continue;
b2117a39 4711
063d006f
ES
4712 if (ndevs == fs_devices->rw_devices) {
4713 WARN(1, "%s: found more than %llu devices\n",
4714 __func__, fs_devices->rw_devices);
4715 break;
4716 }
73c5de00
AJ
4717 devices_info[ndevs].dev_offset = dev_offset;
4718 devices_info[ndevs].max_avail = max_avail;
4719 devices_info[ndevs].total_avail = total_avail;
4720 devices_info[ndevs].dev = device;
4721 ++ndevs;
4722 }
b2117a39 4723
73c5de00
AJ
4724 /*
4725 * now sort the devices by hole size / available space
4726 */
4727 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4728 btrfs_cmp_device_info, NULL);
b2117a39 4729
73c5de00 4730 /* round down to number of usable stripes */
e5600fd6 4731 ndevs = round_down(ndevs, devs_increment);
b2117a39 4732
73c5de00
AJ
4733 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4734 ret = -ENOSPC;
4735 goto error;
b2117a39 4736 }
9f680ce0 4737
f148ef4d
NB
4738 ndevs = min(ndevs, devs_max);
4739
73c5de00 4740 /*
272b3be7
HK
4741 * The primary goal is to maximize the number of stripes, so use as
4742 * many devices as possible, even if the stripes are not maximum sized.
4743 *
4744 * The DUP profile stores more than one stripe per device, the
4745 * max_avail is the total size so we have to adjust.
73c5de00 4746 */
272b3be7 4747 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
73c5de00 4748 num_stripes = ndevs * dev_stripes;
b2117a39 4749
53b381b3
DW
4750 /*
4751 * this will have to be fixed for RAID1 and RAID10 over
4752 * more drives
4753 */
4754 data_stripes = num_stripes / ncopies;
4755
500ceed8 4756 if (type & BTRFS_BLOCK_GROUP_RAID5)
53b381b3 4757 data_stripes = num_stripes - 1;
500ceed8
NB
4758
4759 if (type & BTRFS_BLOCK_GROUP_RAID6)
53b381b3 4760 data_stripes = num_stripes - 2;
86db2578
CM
4761
4762 /*
4763 * Use the number of data stripes to figure out how big this chunk
4764 * is really going to be in terms of logical address space,
4765 * and compare that answer with the max chunk size
4766 */
4767 if (stripe_size * data_stripes > max_chunk_size) {
4768 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4769
4770 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4771
4772 /* bump the answer up to a 16MB boundary */
4773 stripe_size = (stripe_size + mask) & ~mask;
4774
4775 /* but don't go higher than the limits we found
4776 * while searching for free extents
4777 */
4778 if (stripe_size > devices_info[ndevs-1].max_avail)
4779 stripe_size = devices_info[ndevs-1].max_avail;
4780 }
4781
37db63a4 4782 /* align to BTRFS_STRIPE_LEN */
500ceed8 4783 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4784
4785 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4786 if (!map) {
4787 ret = -ENOMEM;
4788 goto error;
4789 }
4790 map->num_stripes = num_stripes;
9b3f68b9 4791
73c5de00
AJ
4792 for (i = 0; i < ndevs; ++i) {
4793 for (j = 0; j < dev_stripes; ++j) {
4794 int s = i * dev_stripes + j;
4795 map->stripes[s].dev = devices_info[i].dev;
4796 map->stripes[s].physical = devices_info[i].dev_offset +
4797 j * stripe_size;
6324fbf3 4798 }
6324fbf3 4799 }
500ceed8
NB
4800 map->stripe_len = BTRFS_STRIPE_LEN;
4801 map->io_align = BTRFS_STRIPE_LEN;
4802 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4803 map->type = type;
2b82032c 4804 map->sub_stripes = sub_stripes;
0b86a832 4805
53b381b3 4806 num_bytes = stripe_size * data_stripes;
0b86a832 4807
6bccf3ab 4808 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4809
172ddd60 4810 em = alloc_extent_map();
2b82032c 4811 if (!em) {
298a8f9c 4812 kfree(map);
b2117a39
MX
4813 ret = -ENOMEM;
4814 goto error;
593060d7 4815 }
298a8f9c 4816 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4817 em->map_lookup = map;
2b82032c 4818 em->start = start;
73c5de00 4819 em->len = num_bytes;
2b82032c
YZ
4820 em->block_start = 0;
4821 em->block_len = em->len;
6df9a95e 4822 em->orig_block_len = stripe_size;
593060d7 4823
0b246afa 4824 em_tree = &info->mapping_tree.map_tree;
890871be 4825 write_lock(&em_tree->lock);
09a2a8f9 4826 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4827 if (ret) {
1efb72a3 4828 write_unlock(&em_tree->lock);
0f5d42b2 4829 free_extent_map(em);
1dd4602f 4830 goto error;
0f5d42b2 4831 }
0b86a832 4832
1efb72a3
NB
4833 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4834 refcount_inc(&em->refs);
4835 write_unlock(&em_tree->lock);
4836
0174484d 4837 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
6df9a95e
JB
4838 if (ret)
4839 goto error_del_extent;
2b82032c 4840
7cc8e58d
MX
4841 for (i = 0; i < map->num_stripes; i++) {
4842 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4843 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4844 }
43530c46 4845
a5ed45f8 4846 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4847
0f5d42b2 4848 free_extent_map(em);
0b246afa 4849 check_raid56_incompat_flag(info, type);
53b381b3 4850
b2117a39 4851 kfree(devices_info);
2b82032c 4852 return 0;
b2117a39 4853
6df9a95e 4854error_del_extent:
0f5d42b2
JB
4855 write_lock(&em_tree->lock);
4856 remove_extent_mapping(em_tree, em);
4857 write_unlock(&em_tree->lock);
4858
4859 /* One for our allocation */
4860 free_extent_map(em);
4861 /* One for the tree reference */
4862 free_extent_map(em);
495e64f4
FM
4863 /* One for the pending_chunks list reference */
4864 free_extent_map(em);
b2117a39 4865error:
b2117a39
MX
4866 kfree(devices_info);
4867 return ret;
2b82032c
YZ
4868}
4869
6df9a95e 4870int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4871 struct btrfs_fs_info *fs_info,
6df9a95e 4872 u64 chunk_offset, u64 chunk_size)
2b82032c 4873{
6bccf3ab
JM
4874 struct btrfs_root *extent_root = fs_info->extent_root;
4875 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4876 struct btrfs_key key;
2b82032c
YZ
4877 struct btrfs_device *device;
4878 struct btrfs_chunk *chunk;
4879 struct btrfs_stripe *stripe;
6df9a95e
JB
4880 struct extent_map *em;
4881 struct map_lookup *map;
4882 size_t item_size;
4883 u64 dev_offset;
4884 u64 stripe_size;
4885 int i = 0;
140e639f 4886 int ret = 0;
2b82032c 4887
592d92ee
LB
4888 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4889 if (IS_ERR(em))
4890 return PTR_ERR(em);
6df9a95e 4891
95617d69 4892 map = em->map_lookup;
6df9a95e
JB
4893 item_size = btrfs_chunk_item_size(map->num_stripes);
4894 stripe_size = em->orig_block_len;
4895
2b82032c 4896 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4897 if (!chunk) {
4898 ret = -ENOMEM;
4899 goto out;
4900 }
4901
50460e37
FM
4902 /*
4903 * Take the device list mutex to prevent races with the final phase of
4904 * a device replace operation that replaces the device object associated
4905 * with the map's stripes, because the device object's id can change
4906 * at any time during that final phase of the device replace operation
4907 * (dev-replace.c:btrfs_dev_replace_finishing()).
4908 */
0b246afa 4909 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4910 for (i = 0; i < map->num_stripes; i++) {
4911 device = map->stripes[i].dev;
4912 dev_offset = map->stripes[i].physical;
2b82032c 4913
0b86a832 4914 ret = btrfs_update_device(trans, device);
3acd3953 4915 if (ret)
50460e37 4916 break;
b5d9071c
NB
4917 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4918 dev_offset, stripe_size);
6df9a95e 4919 if (ret)
50460e37
FM
4920 break;
4921 }
4922 if (ret) {
0b246afa 4923 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4924 goto out;
2b82032c
YZ
4925 }
4926
2b82032c 4927 stripe = &chunk->stripe;
6df9a95e
JB
4928 for (i = 0; i < map->num_stripes; i++) {
4929 device = map->stripes[i].dev;
4930 dev_offset = map->stripes[i].physical;
0b86a832 4931
e17cade2
CM
4932 btrfs_set_stack_stripe_devid(stripe, device->devid);
4933 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4934 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4935 stripe++;
0b86a832 4936 }
0b246afa 4937 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4938
2b82032c 4939 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4940 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4941 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4942 btrfs_set_stack_chunk_type(chunk, map->type);
4943 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4944 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4945 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4946 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4947 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4948
2b82032c
YZ
4949 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4950 key.type = BTRFS_CHUNK_ITEM_KEY;
4951 key.offset = chunk_offset;
0b86a832 4952
2b82032c 4953 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4954 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4955 /*
4956 * TODO: Cleanup of inserted chunk root in case of
4957 * failure.
4958 */
2ff7e61e 4959 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 4960 }
1abe9b8a 4961
6df9a95e 4962out:
0b86a832 4963 kfree(chunk);
6df9a95e 4964 free_extent_map(em);
4ed1d16e 4965 return ret;
2b82032c 4966}
0b86a832 4967
2b82032c
YZ
4968/*
4969 * Chunk allocation falls into two parts. The first part does works
4970 * that make the new allocated chunk useable, but not do any operation
4971 * that modifies the chunk tree. The second part does the works that
4972 * require modifying the chunk tree. This division is important for the
4973 * bootstrap process of adding storage to a seed btrfs.
4974 */
4975int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4976 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
4977{
4978 u64 chunk_offset;
2b82032c 4979
0b246afa
JM
4980 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4981 chunk_offset = find_next_chunk(fs_info);
72b468c8 4982 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
4983}
4984
d397712b 4985static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 4986 struct btrfs_fs_info *fs_info)
2b82032c
YZ
4987{
4988 u64 chunk_offset;
4989 u64 sys_chunk_offset;
2b82032c 4990 u64 alloc_profile;
2b82032c
YZ
4991 int ret;
4992
6df9a95e 4993 chunk_offset = find_next_chunk(fs_info);
1b86826d 4994 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 4995 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
4996 if (ret)
4997 return ret;
2b82032c 4998
0b246afa 4999 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5000 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5001 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5002 return ret;
2b82032c
YZ
5003}
5004
d20983b4
MX
5005static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5006{
5007 int max_errors;
5008
5009 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5010 BTRFS_BLOCK_GROUP_RAID10 |
5011 BTRFS_BLOCK_GROUP_RAID5 |
5012 BTRFS_BLOCK_GROUP_DUP)) {
5013 max_errors = 1;
5014 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5015 max_errors = 2;
5016 } else {
5017 max_errors = 0;
005d6427 5018 }
2b82032c 5019
d20983b4 5020 return max_errors;
2b82032c
YZ
5021}
5022
2ff7e61e 5023int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5024{
5025 struct extent_map *em;
5026 struct map_lookup *map;
2b82032c 5027 int readonly = 0;
d20983b4 5028 int miss_ndevs = 0;
2b82032c
YZ
5029 int i;
5030
592d92ee
LB
5031 em = get_chunk_map(fs_info, chunk_offset, 1);
5032 if (IS_ERR(em))
2b82032c
YZ
5033 return 1;
5034
95617d69 5035 map = em->map_lookup;
2b82032c 5036 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5037 if (map->stripes[i].dev->missing) {
5038 miss_ndevs++;
5039 continue;
5040 }
5041
2b82032c
YZ
5042 if (!map->stripes[i].dev->writeable) {
5043 readonly = 1;
d20983b4 5044 goto end;
2b82032c
YZ
5045 }
5046 }
d20983b4
MX
5047
5048 /*
5049 * If the number of missing devices is larger than max errors,
5050 * we can not write the data into that chunk successfully, so
5051 * set it readonly.
5052 */
5053 if (miss_ndevs > btrfs_chunk_max_errors(map))
5054 readonly = 1;
5055end:
0b86a832 5056 free_extent_map(em);
2b82032c 5057 return readonly;
0b86a832
CM
5058}
5059
5060void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5061{
a8067e02 5062 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5063}
5064
5065void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5066{
5067 struct extent_map *em;
5068
d397712b 5069 while (1) {
890871be 5070 write_lock(&tree->map_tree.lock);
0b86a832
CM
5071 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5072 if (em)
5073 remove_extent_mapping(&tree->map_tree, em);
890871be 5074 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5075 if (!em)
5076 break;
0b86a832
CM
5077 /* once for us */
5078 free_extent_map(em);
5079 /* once for the tree */
5080 free_extent_map(em);
5081 }
5082}
5083
5d964051 5084int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5085{
5086 struct extent_map *em;
5087 struct map_lookup *map;
f188591e
CM
5088 int ret;
5089
592d92ee
LB
5090 em = get_chunk_map(fs_info, logical, len);
5091 if (IS_ERR(em))
5092 /*
5093 * We could return errors for these cases, but that could get
5094 * ugly and we'd probably do the same thing which is just not do
5095 * anything else and exit, so return 1 so the callers don't try
5096 * to use other copies.
5097 */
fb7669b5 5098 return 1;
fb7669b5 5099
95617d69 5100 map = em->map_lookup;
f188591e
CM
5101 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5102 ret = map->num_stripes;
321aecc6
CM
5103 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5104 ret = map->sub_stripes;
53b381b3
DW
5105 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5106 ret = 2;
5107 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5108 ret = 3;
f188591e
CM
5109 else
5110 ret = 1;
5111 free_extent_map(em);
ad6d620e 5112
73beece9 5113 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
6fad823f
LB
5114 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5115 fs_info->dev_replace.tgtdev)
ad6d620e 5116 ret++;
73beece9 5117 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5118
f188591e
CM
5119 return ret;
5120}
5121
2ff7e61e 5122unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5123 u64 logical)
5124{
5125 struct extent_map *em;
5126 struct map_lookup *map;
0b246afa 5127 unsigned long len = fs_info->sectorsize;
53b381b3 5128
592d92ee 5129 em = get_chunk_map(fs_info, logical, len);
53b381b3 5130
69f03f13
NB
5131 if (!WARN_ON(IS_ERR(em))) {
5132 map = em->map_lookup;
5133 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5134 len = map->stripe_len * nr_data_stripes(map);
5135 free_extent_map(em);
5136 }
53b381b3
DW
5137 return len;
5138}
5139
e4ff5fb5 5140int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5141{
5142 struct extent_map *em;
5143 struct map_lookup *map;
53b381b3
DW
5144 int ret = 0;
5145
592d92ee 5146 em = get_chunk_map(fs_info, logical, len);
53b381b3 5147
69f03f13
NB
5148 if(!WARN_ON(IS_ERR(em))) {
5149 map = em->map_lookup;
5150 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5151 ret = 1;
5152 free_extent_map(em);
5153 }
53b381b3
DW
5154 return ret;
5155}
5156
30d9861f
SB
5157static int find_live_mirror(struct btrfs_fs_info *fs_info,
5158 struct map_lookup *map, int first, int num,
5159 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5160{
5161 int i;
30d9861f
SB
5162 int tolerance;
5163 struct btrfs_device *srcdev;
5164
5165 if (dev_replace_is_ongoing &&
5166 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5167 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5168 srcdev = fs_info->dev_replace.srcdev;
5169 else
5170 srcdev = NULL;
5171
5172 /*
5173 * try to avoid the drive that is the source drive for a
5174 * dev-replace procedure, only choose it if no other non-missing
5175 * mirror is available
5176 */
5177 for (tolerance = 0; tolerance < 2; tolerance++) {
5178 if (map->stripes[optimal].dev->bdev &&
5179 (tolerance || map->stripes[optimal].dev != srcdev))
5180 return optimal;
5181 for (i = first; i < first + num; i++) {
5182 if (map->stripes[i].dev->bdev &&
5183 (tolerance || map->stripes[i].dev != srcdev))
5184 return i;
5185 }
dfe25020 5186 }
30d9861f 5187
dfe25020
CM
5188 /* we couldn't find one that doesn't fail. Just return something
5189 * and the io error handling code will clean up eventually
5190 */
5191 return optimal;
5192}
5193
53b381b3
DW
5194static inline int parity_smaller(u64 a, u64 b)
5195{
5196 return a > b;
5197}
5198
5199/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5200static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5201{
5202 struct btrfs_bio_stripe s;
5203 int i;
5204 u64 l;
5205 int again = 1;
5206
5207 while (again) {
5208 again = 0;
cc7539ed 5209 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5210 if (parity_smaller(bbio->raid_map[i],
5211 bbio->raid_map[i+1])) {
53b381b3 5212 s = bbio->stripes[i];
8e5cfb55 5213 l = bbio->raid_map[i];
53b381b3 5214 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5215 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5216 bbio->stripes[i+1] = s;
8e5cfb55 5217 bbio->raid_map[i+1] = l;
2c8cdd6e 5218
53b381b3
DW
5219 again = 1;
5220 }
5221 }
5222 }
5223}
5224
6e9606d2
ZL
5225static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5226{
5227 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5228 /* the size of the btrfs_bio */
6e9606d2 5229 sizeof(struct btrfs_bio) +
e57cf21e 5230 /* plus the variable array for the stripes */
6e9606d2 5231 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5232 /* plus the variable array for the tgt dev */
6e9606d2 5233 sizeof(int) * (real_stripes) +
e57cf21e
CM
5234 /*
5235 * plus the raid_map, which includes both the tgt dev
5236 * and the stripes
5237 */
5238 sizeof(u64) * (total_stripes),
277fb5fc 5239 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5240
5241 atomic_set(&bbio->error, 0);
140475ae 5242 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5243
5244 return bbio;
5245}
5246
5247void btrfs_get_bbio(struct btrfs_bio *bbio)
5248{
140475ae
ER
5249 WARN_ON(!refcount_read(&bbio->refs));
5250 refcount_inc(&bbio->refs);
6e9606d2
ZL
5251}
5252
5253void btrfs_put_bbio(struct btrfs_bio *bbio)
5254{
5255 if (!bbio)
5256 return;
140475ae 5257 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5258 kfree(bbio);
5259}
5260
0b3d4cd3
LB
5261/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5262/*
5263 * Please note that, discard won't be sent to target device of device
5264 * replace.
5265 */
5266static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5267 u64 logical, u64 length,
5268 struct btrfs_bio **bbio_ret)
5269{
5270 struct extent_map *em;
5271 struct map_lookup *map;
5272 struct btrfs_bio *bbio;
5273 u64 offset;
5274 u64 stripe_nr;
5275 u64 stripe_nr_end;
5276 u64 stripe_end_offset;
5277 u64 stripe_cnt;
5278 u64 stripe_len;
5279 u64 stripe_offset;
5280 u64 num_stripes;
5281 u32 stripe_index;
5282 u32 factor = 0;
5283 u32 sub_stripes = 0;
5284 u64 stripes_per_dev = 0;
5285 u32 remaining_stripes = 0;
5286 u32 last_stripe = 0;
5287 int ret = 0;
5288 int i;
5289
5290 /* discard always return a bbio */
5291 ASSERT(bbio_ret);
5292
5293 em = get_chunk_map(fs_info, logical, length);
5294 if (IS_ERR(em))
5295 return PTR_ERR(em);
5296
5297 map = em->map_lookup;
5298 /* we don't discard raid56 yet */
5299 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5300 ret = -EOPNOTSUPP;
5301 goto out;
5302 }
5303
5304 offset = logical - em->start;
5305 length = min_t(u64, em->len - offset, length);
5306
5307 stripe_len = map->stripe_len;
5308 /*
5309 * stripe_nr counts the total number of stripes we have to stride
5310 * to get to this block
5311 */
5312 stripe_nr = div64_u64(offset, stripe_len);
5313
5314 /* stripe_offset is the offset of this block in its stripe */
5315 stripe_offset = offset - stripe_nr * stripe_len;
5316
5317 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5318 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5319 stripe_cnt = stripe_nr_end - stripe_nr;
5320 stripe_end_offset = stripe_nr_end * map->stripe_len -
5321 (offset + length);
5322 /*
5323 * after this, stripe_nr is the number of stripes on this
5324 * device we have to walk to find the data, and stripe_index is
5325 * the number of our device in the stripe array
5326 */
5327 num_stripes = 1;
5328 stripe_index = 0;
5329 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5330 BTRFS_BLOCK_GROUP_RAID10)) {
5331 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5332 sub_stripes = 1;
5333 else
5334 sub_stripes = map->sub_stripes;
5335
5336 factor = map->num_stripes / sub_stripes;
5337 num_stripes = min_t(u64, map->num_stripes,
5338 sub_stripes * stripe_cnt);
5339 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5340 stripe_index *= sub_stripes;
5341 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5342 &remaining_stripes);
5343 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5344 last_stripe *= sub_stripes;
5345 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5346 BTRFS_BLOCK_GROUP_DUP)) {
5347 num_stripes = map->num_stripes;
5348 } else {
5349 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5350 &stripe_index);
5351 }
5352
5353 bbio = alloc_btrfs_bio(num_stripes, 0);
5354 if (!bbio) {
5355 ret = -ENOMEM;
5356 goto out;
5357 }
5358
5359 for (i = 0; i < num_stripes; i++) {
5360 bbio->stripes[i].physical =
5361 map->stripes[stripe_index].physical +
5362 stripe_offset + stripe_nr * map->stripe_len;
5363 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5364
5365 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5366 BTRFS_BLOCK_GROUP_RAID10)) {
5367 bbio->stripes[i].length = stripes_per_dev *
5368 map->stripe_len;
5369
5370 if (i / sub_stripes < remaining_stripes)
5371 bbio->stripes[i].length +=
5372 map->stripe_len;
5373
5374 /*
5375 * Special for the first stripe and
5376 * the last stripe:
5377 *
5378 * |-------|...|-------|
5379 * |----------|
5380 * off end_off
5381 */
5382 if (i < sub_stripes)
5383 bbio->stripes[i].length -=
5384 stripe_offset;
5385
5386 if (stripe_index >= last_stripe &&
5387 stripe_index <= (last_stripe +
5388 sub_stripes - 1))
5389 bbio->stripes[i].length -=
5390 stripe_end_offset;
5391
5392 if (i == sub_stripes - 1)
5393 stripe_offset = 0;
5394 } else {
5395 bbio->stripes[i].length = length;
5396 }
5397
5398 stripe_index++;
5399 if (stripe_index == map->num_stripes) {
5400 stripe_index = 0;
5401 stripe_nr++;
5402 }
5403 }
5404
5405 *bbio_ret = bbio;
5406 bbio->map_type = map->type;
5407 bbio->num_stripes = num_stripes;
5408out:
5409 free_extent_map(em);
5410 return ret;
5411}
5412
5ab56090
LB
5413/*
5414 * In dev-replace case, for repair case (that's the only case where the mirror
5415 * is selected explicitly when calling btrfs_map_block), blocks left of the
5416 * left cursor can also be read from the target drive.
5417 *
5418 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5419 * array of stripes.
5420 * For READ, it also needs to be supported using the same mirror number.
5421 *
5422 * If the requested block is not left of the left cursor, EIO is returned. This
5423 * can happen because btrfs_num_copies() returns one more in the dev-replace
5424 * case.
5425 */
5426static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5427 u64 logical, u64 length,
5428 u64 srcdev_devid, int *mirror_num,
5429 u64 *physical)
5430{
5431 struct btrfs_bio *bbio = NULL;
5432 int num_stripes;
5433 int index_srcdev = 0;
5434 int found = 0;
5435 u64 physical_of_found = 0;
5436 int i;
5437 int ret = 0;
5438
5439 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5440 logical, &length, &bbio, 0, 0);
5441 if (ret) {
5442 ASSERT(bbio == NULL);
5443 return ret;
5444 }
5445
5446 num_stripes = bbio->num_stripes;
5447 if (*mirror_num > num_stripes) {
5448 /*
5449 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5450 * that means that the requested area is not left of the left
5451 * cursor
5452 */
5453 btrfs_put_bbio(bbio);
5454 return -EIO;
5455 }
5456
5457 /*
5458 * process the rest of the function using the mirror_num of the source
5459 * drive. Therefore look it up first. At the end, patch the device
5460 * pointer to the one of the target drive.
5461 */
5462 for (i = 0; i < num_stripes; i++) {
5463 if (bbio->stripes[i].dev->devid != srcdev_devid)
5464 continue;
5465
5466 /*
5467 * In case of DUP, in order to keep it simple, only add the
5468 * mirror with the lowest physical address
5469 */
5470 if (found &&
5471 physical_of_found <= bbio->stripes[i].physical)
5472 continue;
5473
5474 index_srcdev = i;
5475 found = 1;
5476 physical_of_found = bbio->stripes[i].physical;
5477 }
5478
5479 btrfs_put_bbio(bbio);
5480
5481 ASSERT(found);
5482 if (!found)
5483 return -EIO;
5484
5485 *mirror_num = index_srcdev + 1;
5486 *physical = physical_of_found;
5487 return ret;
5488}
5489
73c0f228
LB
5490static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5491 struct btrfs_bio **bbio_ret,
5492 struct btrfs_dev_replace *dev_replace,
5493 int *num_stripes_ret, int *max_errors_ret)
5494{
5495 struct btrfs_bio *bbio = *bbio_ret;
5496 u64 srcdev_devid = dev_replace->srcdev->devid;
5497 int tgtdev_indexes = 0;
5498 int num_stripes = *num_stripes_ret;
5499 int max_errors = *max_errors_ret;
5500 int i;
5501
5502 if (op == BTRFS_MAP_WRITE) {
5503 int index_where_to_add;
5504
5505 /*
5506 * duplicate the write operations while the dev replace
5507 * procedure is running. Since the copying of the old disk to
5508 * the new disk takes place at run time while the filesystem is
5509 * mounted writable, the regular write operations to the old
5510 * disk have to be duplicated to go to the new disk as well.
5511 *
5512 * Note that device->missing is handled by the caller, and that
5513 * the write to the old disk is already set up in the stripes
5514 * array.
5515 */
5516 index_where_to_add = num_stripes;
5517 for (i = 0; i < num_stripes; i++) {
5518 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5519 /* write to new disk, too */
5520 struct btrfs_bio_stripe *new =
5521 bbio->stripes + index_where_to_add;
5522 struct btrfs_bio_stripe *old =
5523 bbio->stripes + i;
5524
5525 new->physical = old->physical;
5526 new->length = old->length;
5527 new->dev = dev_replace->tgtdev;
5528 bbio->tgtdev_map[i] = index_where_to_add;
5529 index_where_to_add++;
5530 max_errors++;
5531 tgtdev_indexes++;
5532 }
5533 }
5534 num_stripes = index_where_to_add;
5535 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5536 int index_srcdev = 0;
5537 int found = 0;
5538 u64 physical_of_found = 0;
5539
5540 /*
5541 * During the dev-replace procedure, the target drive can also
5542 * be used to read data in case it is needed to repair a corrupt
5543 * block elsewhere. This is possible if the requested area is
5544 * left of the left cursor. In this area, the target drive is a
5545 * full copy of the source drive.
5546 */
5547 for (i = 0; i < num_stripes; i++) {
5548 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5549 /*
5550 * In case of DUP, in order to keep it simple,
5551 * only add the mirror with the lowest physical
5552 * address
5553 */
5554 if (found &&
5555 physical_of_found <=
5556 bbio->stripes[i].physical)
5557 continue;
5558 index_srcdev = i;
5559 found = 1;
5560 physical_of_found = bbio->stripes[i].physical;
5561 }
5562 }
5563 if (found) {
5564 struct btrfs_bio_stripe *tgtdev_stripe =
5565 bbio->stripes + num_stripes;
5566
5567 tgtdev_stripe->physical = physical_of_found;
5568 tgtdev_stripe->length =
5569 bbio->stripes[index_srcdev].length;
5570 tgtdev_stripe->dev = dev_replace->tgtdev;
5571 bbio->tgtdev_map[index_srcdev] = num_stripes;
5572
5573 tgtdev_indexes++;
5574 num_stripes++;
5575 }
5576 }
5577
5578 *num_stripes_ret = num_stripes;
5579 *max_errors_ret = max_errors;
5580 bbio->num_tgtdevs = tgtdev_indexes;
5581 *bbio_ret = bbio;
5582}
5583
2b19a1fe
LB
5584static bool need_full_stripe(enum btrfs_map_op op)
5585{
5586 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5587}
5588
cf8cddd3
CH
5589static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5590 enum btrfs_map_op op,
f2d8d74d 5591 u64 logical, u64 *length,
a1d3c478 5592 struct btrfs_bio **bbio_ret,
8e5cfb55 5593 int mirror_num, int need_raid_map)
0b86a832
CM
5594{
5595 struct extent_map *em;
5596 struct map_lookup *map;
0b86a832 5597 u64 offset;
593060d7
CM
5598 u64 stripe_offset;
5599 u64 stripe_nr;
53b381b3 5600 u64 stripe_len;
9d644a62 5601 u32 stripe_index;
cea9e445 5602 int i;
de11cc12 5603 int ret = 0;
f2d8d74d 5604 int num_stripes;
a236aed1 5605 int max_errors = 0;
2c8cdd6e 5606 int tgtdev_indexes = 0;
a1d3c478 5607 struct btrfs_bio *bbio = NULL;
472262f3
SB
5608 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5609 int dev_replace_is_ongoing = 0;
5610 int num_alloc_stripes;
ad6d620e
SB
5611 int patch_the_first_stripe_for_dev_replace = 0;
5612 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5613 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5614
0b3d4cd3
LB
5615 if (op == BTRFS_MAP_DISCARD)
5616 return __btrfs_map_block_for_discard(fs_info, logical,
5617 *length, bbio_ret);
5618
592d92ee
LB
5619 em = get_chunk_map(fs_info, logical, *length);
5620 if (IS_ERR(em))
5621 return PTR_ERR(em);
0b86a832 5622
95617d69 5623 map = em->map_lookup;
0b86a832 5624 offset = logical - em->start;
593060d7 5625
53b381b3 5626 stripe_len = map->stripe_len;
593060d7
CM
5627 stripe_nr = offset;
5628 /*
5629 * stripe_nr counts the total number of stripes we have to stride
5630 * to get to this block
5631 */
47c5713f 5632 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5633
53b381b3 5634 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5635 if (offset < stripe_offset) {
5d163e0e
JM
5636 btrfs_crit(fs_info,
5637 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5638 stripe_offset, offset, em->start, logical,
5639 stripe_len);
5640 free_extent_map(em);
5641 return -EINVAL;
5642 }
593060d7
CM
5643
5644 /* stripe_offset is the offset of this block in its stripe*/
5645 stripe_offset = offset - stripe_offset;
5646
53b381b3 5647 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5648 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5649 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5650 raid56_full_stripe_start = offset;
5651
5652 /* allow a write of a full stripe, but make sure we don't
5653 * allow straddling of stripes
5654 */
47c5713f
DS
5655 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5656 full_stripe_len);
53b381b3
DW
5657 raid56_full_stripe_start *= full_stripe_len;
5658 }
5659
0b3d4cd3 5660 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5661 u64 max_len;
5662 /* For writes to RAID[56], allow a full stripeset across all disks.
5663 For other RAID types and for RAID[56] reads, just allow a single
5664 stripe (on a single disk). */
ffe2d203 5665 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5666 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5667 max_len = stripe_len * nr_data_stripes(map) -
5668 (offset - raid56_full_stripe_start);
5669 } else {
5670 /* we limit the length of each bio to what fits in a stripe */
5671 max_len = stripe_len - stripe_offset;
5672 }
5673 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5674 } else {
5675 *length = em->len - offset;
5676 }
f2d8d74d 5677
53b381b3
DW
5678 /* This is for when we're called from btrfs_merge_bio_hook() and all
5679 it cares about is the length */
a1d3c478 5680 if (!bbio_ret)
cea9e445
CM
5681 goto out;
5682
73beece9 5683 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5684 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5685 if (!dev_replace_is_ongoing)
73beece9
LB
5686 btrfs_dev_replace_unlock(dev_replace, 0);
5687 else
5688 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5689
ad6d620e 5690 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5691 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5692 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5693 dev_replace->srcdev->devid,
5694 &mirror_num,
5695 &physical_to_patch_in_first_stripe);
5696 if (ret)
ad6d620e 5697 goto out;
5ab56090
LB
5698 else
5699 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5700 } else if (mirror_num > map->num_stripes) {
5701 mirror_num = 0;
5702 }
5703
f2d8d74d 5704 num_stripes = 1;
cea9e445 5705 stripe_index = 0;
fce3bb9a 5706 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5707 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5708 &stripe_index);
de483734 5709 if (!need_full_stripe(op))
28e1cc7d 5710 mirror_num = 1;
fce3bb9a 5711 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
de483734 5712 if (need_full_stripe(op))
f2d8d74d 5713 num_stripes = map->num_stripes;
2fff734f 5714 else if (mirror_num)
f188591e 5715 stripe_index = mirror_num - 1;
dfe25020 5716 else {
30d9861f 5717 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5718 map->num_stripes,
30d9861f
SB
5719 current->pid % map->num_stripes,
5720 dev_replace_is_ongoing);
a1d3c478 5721 mirror_num = stripe_index + 1;
dfe25020 5722 }
2fff734f 5723
611f0e00 5724 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5725 if (need_full_stripe(op)) {
f2d8d74d 5726 num_stripes = map->num_stripes;
a1d3c478 5727 } else if (mirror_num) {
f188591e 5728 stripe_index = mirror_num - 1;
a1d3c478
JS
5729 } else {
5730 mirror_num = 1;
5731 }
2fff734f 5732
321aecc6 5733 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5734 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5735
47c5713f 5736 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5737 stripe_index *= map->sub_stripes;
5738
de483734 5739 if (need_full_stripe(op))
f2d8d74d 5740 num_stripes = map->sub_stripes;
321aecc6
CM
5741 else if (mirror_num)
5742 stripe_index += mirror_num - 1;
dfe25020 5743 else {
3e74317a 5744 int old_stripe_index = stripe_index;
30d9861f
SB
5745 stripe_index = find_live_mirror(fs_info, map,
5746 stripe_index,
dfe25020 5747 map->sub_stripes, stripe_index +
30d9861f
SB
5748 current->pid % map->sub_stripes,
5749 dev_replace_is_ongoing);
3e74317a 5750 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5751 }
53b381b3 5752
ffe2d203 5753 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5754 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5755 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5756 stripe_nr = div64_u64(raid56_full_stripe_start,
b8b93add 5757 stripe_len * nr_data_stripes(map));
53b381b3
DW
5758
5759 /* RAID[56] write or recovery. Return all stripes */
5760 num_stripes = map->num_stripes;
5761 max_errors = nr_parity_stripes(map);
5762
53b381b3
DW
5763 *length = map->stripe_len;
5764 stripe_index = 0;
5765 stripe_offset = 0;
5766 } else {
5767 /*
5768 * Mirror #0 or #1 means the original data block.
5769 * Mirror #2 is RAID5 parity block.
5770 * Mirror #3 is RAID6 Q block.
5771 */
47c5713f
DS
5772 stripe_nr = div_u64_rem(stripe_nr,
5773 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5774 if (mirror_num > 1)
5775 stripe_index = nr_data_stripes(map) +
5776 mirror_num - 2;
5777
5778 /* We distribute the parity blocks across stripes */
47c5713f
DS
5779 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5780 &stripe_index);
de483734 5781 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5782 mirror_num = 1;
53b381b3 5783 }
8790d502
CM
5784 } else {
5785 /*
47c5713f
DS
5786 * after this, stripe_nr is the number of stripes on this
5787 * device we have to walk to find the data, and stripe_index is
5788 * the number of our device in the stripe array
8790d502 5789 */
47c5713f
DS
5790 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5791 &stripe_index);
a1d3c478 5792 mirror_num = stripe_index + 1;
8790d502 5793 }
e042d1ec 5794 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5795 btrfs_crit(fs_info,
5796 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5797 stripe_index, map->num_stripes);
5798 ret = -EINVAL;
5799 goto out;
5800 }
cea9e445 5801
472262f3 5802 num_alloc_stripes = num_stripes;
6fad823f 5803 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5804 if (op == BTRFS_MAP_WRITE)
ad6d620e 5805 num_alloc_stripes <<= 1;
cf8cddd3 5806 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5807 num_alloc_stripes++;
2c8cdd6e 5808 tgtdev_indexes = num_stripes;
ad6d620e 5809 }
2c8cdd6e 5810
6e9606d2 5811 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5812 if (!bbio) {
5813 ret = -ENOMEM;
5814 goto out;
5815 }
6fad823f 5816 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5817 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5818
8e5cfb55 5819 /* build raid_map */
2b19a1fe
LB
5820 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5821 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5822 u64 tmp;
9d644a62 5823 unsigned rot;
8e5cfb55
ZL
5824
5825 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5826 sizeof(struct btrfs_bio_stripe) *
5827 num_alloc_stripes +
5828 sizeof(int) * tgtdev_indexes);
5829
5830 /* Work out the disk rotation on this stripe-set */
47c5713f 5831 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5832
5833 /* Fill in the logical address of each stripe */
5834 tmp = stripe_nr * nr_data_stripes(map);
5835 for (i = 0; i < nr_data_stripes(map); i++)
5836 bbio->raid_map[(i+rot) % num_stripes] =
5837 em->start + (tmp + i) * map->stripe_len;
5838
5839 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5840 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5841 bbio->raid_map[(i+rot+1) % num_stripes] =
5842 RAID6_Q_STRIPE;
5843 }
5844
b89203f7 5845
0b3d4cd3
LB
5846 for (i = 0; i < num_stripes; i++) {
5847 bbio->stripes[i].physical =
5848 map->stripes[stripe_index].physical +
5849 stripe_offset +
5850 stripe_nr * map->stripe_len;
5851 bbio->stripes[i].dev =
5852 map->stripes[stripe_index].dev;
5853 stripe_index++;
593060d7 5854 }
de11cc12 5855
2b19a1fe 5856 if (need_full_stripe(op))
d20983b4 5857 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5858
8e5cfb55
ZL
5859 if (bbio->raid_map)
5860 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5861
73c0f228 5862 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5863 need_full_stripe(op)) {
73c0f228
LB
5864 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5865 &max_errors);
472262f3
SB
5866 }
5867
de11cc12 5868 *bbio_ret = bbio;
10f11900 5869 bbio->map_type = map->type;
de11cc12
LZ
5870 bbio->num_stripes = num_stripes;
5871 bbio->max_errors = max_errors;
5872 bbio->mirror_num = mirror_num;
ad6d620e
SB
5873
5874 /*
5875 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5876 * mirror_num == num_stripes + 1 && dev_replace target drive is
5877 * available as a mirror
5878 */
5879 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5880 WARN_ON(num_stripes > 1);
5881 bbio->stripes[0].dev = dev_replace->tgtdev;
5882 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5883 bbio->mirror_num = map->num_stripes + 1;
5884 }
cea9e445 5885out:
73beece9
LB
5886 if (dev_replace_is_ongoing) {
5887 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5888 btrfs_dev_replace_unlock(dev_replace, 0);
5889 }
0b86a832 5890 free_extent_map(em);
de11cc12 5891 return ret;
0b86a832
CM
5892}
5893
cf8cddd3 5894int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5895 u64 logical, u64 *length,
a1d3c478 5896 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5897{
b3d3fa51 5898 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5899 mirror_num, 0);
f2d8d74d
CM
5900}
5901
af8e2d1d 5902/* For Scrub/replace */
cf8cddd3 5903int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 5904 u64 logical, u64 *length,
825ad4c9 5905 struct btrfs_bio **bbio_ret)
af8e2d1d 5906{
825ad4c9 5907 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
5908}
5909
ab8d0fc4 5910int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5911 u64 chunk_start, u64 physical, u64 devid,
5912 u64 **logical, int *naddrs, int *stripe_len)
5913{
a512bbf8
YZ
5914 struct extent_map *em;
5915 struct map_lookup *map;
5916 u64 *buf;
5917 u64 bytenr;
5918 u64 length;
5919 u64 stripe_nr;
53b381b3 5920 u64 rmap_len;
a512bbf8
YZ
5921 int i, j, nr = 0;
5922
592d92ee
LB
5923 em = get_chunk_map(fs_info, chunk_start, 1);
5924 if (IS_ERR(em))
835d974f 5925 return -EIO;
835d974f 5926
95617d69 5927 map = em->map_lookup;
a512bbf8 5928 length = em->len;
53b381b3
DW
5929 rmap_len = map->stripe_len;
5930
a512bbf8 5931 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5932 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5933 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5934 length = div_u64(length, map->num_stripes);
ffe2d203 5935 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5936 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5937 rmap_len = map->stripe_len * nr_data_stripes(map);
5938 }
a512bbf8 5939
31e818fe 5940 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5941 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5942
5943 for (i = 0; i < map->num_stripes; i++) {
5944 if (devid && map->stripes[i].dev->devid != devid)
5945 continue;
5946 if (map->stripes[i].physical > physical ||
5947 map->stripes[i].physical + length <= physical)
5948 continue;
5949
5950 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 5951 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5952
5953 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5954 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5955 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5956 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5957 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5958 } /* else if RAID[56], multiply by nr_data_stripes().
5959 * Alternatively, just use rmap_len below instead of
5960 * map->stripe_len */
5961
5962 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5963 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5964 for (j = 0; j < nr; j++) {
5965 if (buf[j] == bytenr)
5966 break;
5967 }
934d375b
CM
5968 if (j == nr) {
5969 WARN_ON(nr >= map->num_stripes);
a512bbf8 5970 buf[nr++] = bytenr;
934d375b 5971 }
a512bbf8
YZ
5972 }
5973
a512bbf8
YZ
5974 *logical = buf;
5975 *naddrs = nr;
53b381b3 5976 *stripe_len = rmap_len;
a512bbf8
YZ
5977
5978 free_extent_map(em);
5979 return 0;
f2d8d74d
CM
5980}
5981
4246a0b6 5982static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5983{
326e1dbb
MS
5984 bio->bi_private = bbio->private;
5985 bio->bi_end_io = bbio->end_io;
4246a0b6 5986 bio_endio(bio);
326e1dbb 5987
6e9606d2 5988 btrfs_put_bbio(bbio);
8408c716
MX
5989}
5990
4246a0b6 5991static void btrfs_end_bio(struct bio *bio)
8790d502 5992{
9be3395b 5993 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5994 int is_orig_bio = 0;
8790d502 5995
4e4cbee9 5996 if (bio->bi_status) {
a1d3c478 5997 atomic_inc(&bbio->error);
4e4cbee9
CH
5998 if (bio->bi_status == BLK_STS_IOERR ||
5999 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6000 unsigned int stripe_index =
9be3395b 6001 btrfs_io_bio(bio)->stripe_index;
65f53338 6002 struct btrfs_device *dev;
442a4f63
SB
6003
6004 BUG_ON(stripe_index >= bbio->num_stripes);
6005 dev = bbio->stripes[stripe_index].dev;
597a60fa 6006 if (dev->bdev) {
37226b21 6007 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6008 btrfs_dev_stat_inc(dev,
6009 BTRFS_DEV_STAT_WRITE_ERRS);
6010 else
6011 btrfs_dev_stat_inc(dev,
6012 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6013 if (bio->bi_opf & REQ_PREFLUSH)
597a60fa
SB
6014 btrfs_dev_stat_inc(dev,
6015 BTRFS_DEV_STAT_FLUSH_ERRS);
6016 btrfs_dev_stat_print_on_error(dev);
6017 }
442a4f63
SB
6018 }
6019 }
8790d502 6020
a1d3c478 6021 if (bio == bbio->orig_bio)
7d2b4daa
CM
6022 is_orig_bio = 1;
6023
c404e0dc
MX
6024 btrfs_bio_counter_dec(bbio->fs_info);
6025
a1d3c478 6026 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6027 if (!is_orig_bio) {
6028 bio_put(bio);
a1d3c478 6029 bio = bbio->orig_bio;
7d2b4daa 6030 }
c7b22bb1 6031
9be3395b 6032 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6033 /* only send an error to the higher layers if it is
53b381b3 6034 * beyond the tolerance of the btrfs bio
a236aed1 6035 */
a1d3c478 6036 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6037 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6038 } else {
1259ab75
CM
6039 /*
6040 * this bio is actually up to date, we didn't
6041 * go over the max number of errors
6042 */
2dbe0c77 6043 bio->bi_status = BLK_STS_OK;
1259ab75 6044 }
c55f1396 6045
4246a0b6 6046 btrfs_end_bbio(bbio, bio);
7d2b4daa 6047 } else if (!is_orig_bio) {
8790d502
CM
6048 bio_put(bio);
6049 }
8790d502
CM
6050}
6051
8b712842
CM
6052/*
6053 * see run_scheduled_bios for a description of why bios are collected for
6054 * async submit.
6055 *
6056 * This will add one bio to the pending list for a device and make sure
6057 * the work struct is scheduled.
6058 */
2ff7e61e 6059static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6060 struct bio *bio)
8b712842 6061{
0b246afa 6062 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6063 int should_queue = 1;
ffbd517d 6064 struct btrfs_pending_bios *pending_bios;
8b712842 6065
53b381b3 6066 if (device->missing || !device->bdev) {
4246a0b6 6067 bio_io_error(bio);
53b381b3
DW
6068 return;
6069 }
6070
8b712842 6071 /* don't bother with additional async steps for reads, right now */
37226b21 6072 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6073 bio_get(bio);
4e49ea4a 6074 btrfsic_submit_bio(bio);
492bb6de 6075 bio_put(bio);
143bede5 6076 return;
8b712842
CM
6077 }
6078
492bb6de 6079 WARN_ON(bio->bi_next);
8b712842 6080 bio->bi_next = NULL;
8b712842
CM
6081
6082 spin_lock(&device->io_lock);
67f055c7 6083 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6084 pending_bios = &device->pending_sync_bios;
6085 else
6086 pending_bios = &device->pending_bios;
8b712842 6087
ffbd517d
CM
6088 if (pending_bios->tail)
6089 pending_bios->tail->bi_next = bio;
8b712842 6090
ffbd517d
CM
6091 pending_bios->tail = bio;
6092 if (!pending_bios->head)
6093 pending_bios->head = bio;
8b712842
CM
6094 if (device->running_pending)
6095 should_queue = 0;
6096
6097 spin_unlock(&device->io_lock);
6098
6099 if (should_queue)
0b246afa 6100 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6101}
6102
2ff7e61e
JM
6103static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6104 u64 physical, int dev_nr, int async)
de1ee92a
JB
6105{
6106 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6107 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6108
6109 bio->bi_private = bbio;
9be3395b 6110 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6111 bio->bi_end_io = btrfs_end_bio;
4f024f37 6112 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6113#ifdef DEBUG
6114 {
6115 struct rcu_string *name;
6116
6117 rcu_read_lock();
6118 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6119 btrfs_debug(fs_info,
6120 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6121 bio_op(bio), bio->bi_opf,
6122 (u64)bio->bi_iter.bi_sector,
6123 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6124 bio->bi_iter.bi_size);
de1ee92a
JB
6125 rcu_read_unlock();
6126 }
6127#endif
74d46992 6128 bio_set_dev(bio, dev->bdev);
c404e0dc 6129
2ff7e61e 6130 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6131
de1ee92a 6132 if (async)
2ff7e61e 6133 btrfs_schedule_bio(dev, bio);
de1ee92a 6134 else
4e49ea4a 6135 btrfsic_submit_bio(bio);
de1ee92a
JB
6136}
6137
de1ee92a
JB
6138static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6139{
6140 atomic_inc(&bbio->error);
6141 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6142 /* Should be the original bio. */
8408c716
MX
6143 WARN_ON(bio != bbio->orig_bio);
6144
9be3395b 6145 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6146 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6147 if (atomic_read(&bbio->error) > bbio->max_errors)
6148 bio->bi_status = BLK_STS_IOERR;
6149 else
6150 bio->bi_status = BLK_STS_OK;
4246a0b6 6151 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6152 }
6153}
6154
58efbc9f
OS
6155blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6156 int mirror_num, int async_submit)
0b86a832 6157{
0b86a832 6158 struct btrfs_device *dev;
8790d502 6159 struct bio *first_bio = bio;
4f024f37 6160 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6161 u64 length = 0;
6162 u64 map_length;
0b86a832 6163 int ret;
08da757d
ZL
6164 int dev_nr;
6165 int total_devs;
a1d3c478 6166 struct btrfs_bio *bbio = NULL;
0b86a832 6167
4f024f37 6168 length = bio->bi_iter.bi_size;
0b86a832 6169 map_length = length;
cea9e445 6170
0b246afa 6171 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6172 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6173 &map_length, &bbio, mirror_num, 1);
c404e0dc 6174 if (ret) {
0b246afa 6175 btrfs_bio_counter_dec(fs_info);
58efbc9f 6176 return errno_to_blk_status(ret);
c404e0dc 6177 }
cea9e445 6178
a1d3c478 6179 total_devs = bbio->num_stripes;
53b381b3
DW
6180 bbio->orig_bio = first_bio;
6181 bbio->private = first_bio->bi_private;
6182 bbio->end_io = first_bio->bi_end_io;
0b246afa 6183 bbio->fs_info = fs_info;
53b381b3
DW
6184 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6185
ad1ba2a0 6186 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6187 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6188 /* In this case, map_length has been set to the length of
6189 a single stripe; not the whole write */
37226b21 6190 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6191 ret = raid56_parity_write(fs_info, bio, bbio,
6192 map_length);
53b381b3 6193 } else {
2ff7e61e
JM
6194 ret = raid56_parity_recover(fs_info, bio, bbio,
6195 map_length, mirror_num, 1);
53b381b3 6196 }
4245215d 6197
0b246afa 6198 btrfs_bio_counter_dec(fs_info);
58efbc9f 6199 return errno_to_blk_status(ret);
53b381b3
DW
6200 }
6201
cea9e445 6202 if (map_length < length) {
0b246afa 6203 btrfs_crit(fs_info,
5d163e0e
JM
6204 "mapping failed logical %llu bio len %llu len %llu",
6205 logical, length, map_length);
cea9e445
CM
6206 BUG();
6207 }
a1d3c478 6208
08da757d 6209 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6210 dev = bbio->stripes[dev_nr].dev;
37226b21 6211 if (!dev || !dev->bdev ||
a967efb3 6212 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6213 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6214 continue;
6215 }
6216
3aa8e074 6217 if (dev_nr < total_devs - 1)
8b6c1d56 6218 bio = btrfs_bio_clone(first_bio);
3aa8e074 6219 else
a1d3c478 6220 bio = first_bio;
de1ee92a 6221
2ff7e61e
JM
6222 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6223 dev_nr, async_submit);
8790d502 6224 }
0b246afa 6225 btrfs_bio_counter_dec(fs_info);
58efbc9f 6226 return BLK_STS_OK;
0b86a832
CM
6227}
6228
aa1b8cd4 6229struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6230 u8 *uuid, u8 *fsid)
0b86a832 6231{
2b82032c
YZ
6232 struct btrfs_device *device;
6233 struct btrfs_fs_devices *cur_devices;
6234
aa1b8cd4 6235 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6236 while (cur_devices) {
6237 if (!fsid ||
44880fdc 6238 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
35c70103 6239 device = find_device(cur_devices, devid, uuid);
2b82032c
YZ
6240 if (device)
6241 return device;
6242 }
6243 cur_devices = cur_devices->seed;
6244 }
6245 return NULL;
0b86a832
CM
6246}
6247
2ff7e61e 6248static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6249 u64 devid, u8 *dev_uuid)
6250{
6251 struct btrfs_device *device;
dfe25020 6252
12bd2fc0
ID
6253 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6254 if (IS_ERR(device))
adfb69af 6255 return device;
12bd2fc0
ID
6256
6257 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6258 device->fs_devices = fs_devices;
dfe25020 6259 fs_devices->num_devices++;
12bd2fc0
ID
6260
6261 device->missing = 1;
cd02dca5 6262 fs_devices->missing_devices++;
12bd2fc0 6263
dfe25020
CM
6264 return device;
6265}
6266
12bd2fc0
ID
6267/**
6268 * btrfs_alloc_device - allocate struct btrfs_device
6269 * @fs_info: used only for generating a new devid, can be NULL if
6270 * devid is provided (i.e. @devid != NULL).
6271 * @devid: a pointer to devid for this device. If NULL a new devid
6272 * is generated.
6273 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6274 * is generated.
6275 *
6276 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6277 * on error. Returned struct is not linked onto any lists and can be
6278 * destroyed with kfree() right away.
6279 */
6280struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6281 const u64 *devid,
6282 const u8 *uuid)
6283{
6284 struct btrfs_device *dev;
6285 u64 tmp;
6286
fae7f21c 6287 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6288 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6289
6290 dev = __alloc_device();
6291 if (IS_ERR(dev))
6292 return dev;
6293
6294 if (devid)
6295 tmp = *devid;
6296 else {
6297 int ret;
6298
6299 ret = find_next_devid(fs_info, &tmp);
6300 if (ret) {
3065ae5b 6301 bio_put(dev->flush_bio);
12bd2fc0
ID
6302 kfree(dev);
6303 return ERR_PTR(ret);
6304 }
6305 }
6306 dev->devid = tmp;
6307
6308 if (uuid)
6309 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6310 else
6311 generate_random_uuid(dev->uuid);
6312
9e0af237
LB
6313 btrfs_init_work(&dev->work, btrfs_submit_helper,
6314 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6315
6316 return dev;
6317}
6318
e06cd3dd 6319/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6320static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6321 struct extent_buffer *leaf,
6322 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6323{
0b86a832 6324 u64 length;
f04b772b 6325 u64 stripe_len;
e06cd3dd
LB
6326 u16 num_stripes;
6327 u16 sub_stripes;
6328 u64 type;
0b86a832 6329
e17cade2 6330 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6331 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6332 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6333 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6334 type = btrfs_chunk_type(leaf, chunk);
6335
f04b772b 6336 if (!num_stripes) {
0b246afa 6337 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6338 num_stripes);
6339 return -EIO;
6340 }
0b246afa
JM
6341 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6342 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6343 return -EIO;
6344 }
0b246afa
JM
6345 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6346 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6347 btrfs_chunk_sector_size(leaf, chunk));
6348 return -EIO;
6349 }
0b246afa
JM
6350 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6351 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6352 return -EIO;
6353 }
3d8da678 6354 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6355 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6356 stripe_len);
6357 return -EIO;
6358 }
6359 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6360 type) {
0b246afa 6361 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6362 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6363 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6364 btrfs_chunk_type(leaf, chunk));
6365 return -EIO;
6366 }
e06cd3dd
LB
6367 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6368 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6369 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6370 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6371 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6372 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6373 num_stripes != 1)) {
0b246afa 6374 btrfs_err(fs_info,
e06cd3dd
LB
6375 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6376 num_stripes, sub_stripes,
6377 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6378 return -EIO;
6379 }
6380
6381 return 0;
6382}
6383
5a2b8e60 6384static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6385 u64 devid, u8 *uuid, bool error)
5a2b8e60 6386{
2b902dfc
AJ
6387 if (error)
6388 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6389 devid, uuid);
6390 else
6391 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6392 devid, uuid);
5a2b8e60
AJ
6393}
6394
2ff7e61e 6395static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6396 struct extent_buffer *leaf,
6397 struct btrfs_chunk *chunk)
6398{
0b246afa 6399 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6400 struct map_lookup *map;
6401 struct extent_map *em;
6402 u64 logical;
6403 u64 length;
e06cd3dd
LB
6404 u64 devid;
6405 u8 uuid[BTRFS_UUID_SIZE];
6406 int num_stripes;
6407 int ret;
6408 int i;
6409
6410 logical = key->offset;
6411 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6412 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6413
2ff7e61e 6414 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6415 if (ret)
6416 return ret;
a061fc8d 6417
890871be 6418 read_lock(&map_tree->map_tree.lock);
0b86a832 6419 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6420 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6421
6422 /* already mapped? */
6423 if (em && em->start <= logical && em->start + em->len > logical) {
6424 free_extent_map(em);
0b86a832
CM
6425 return 0;
6426 } else if (em) {
6427 free_extent_map(em);
6428 }
0b86a832 6429
172ddd60 6430 em = alloc_extent_map();
0b86a832
CM
6431 if (!em)
6432 return -ENOMEM;
593060d7 6433 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6434 if (!map) {
6435 free_extent_map(em);
6436 return -ENOMEM;
6437 }
6438
298a8f9c 6439 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6440 em->map_lookup = map;
0b86a832
CM
6441 em->start = logical;
6442 em->len = length;
70c8a91c 6443 em->orig_start = 0;
0b86a832 6444 em->block_start = 0;
c8b97818 6445 em->block_len = em->len;
0b86a832 6446
593060d7
CM
6447 map->num_stripes = num_stripes;
6448 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6449 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6450 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6451 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6452 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6453 for (i = 0; i < num_stripes; i++) {
6454 map->stripes[i].physical =
6455 btrfs_stripe_offset_nr(leaf, chunk, i);
6456 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6457 read_extent_buffer(leaf, uuid, (unsigned long)
6458 btrfs_stripe_dev_uuid_nr(chunk, i),
6459 BTRFS_UUID_SIZE);
0b246afa 6460 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6461 uuid, NULL);
3cdde224 6462 if (!map->stripes[i].dev &&
0b246afa 6463 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6464 free_extent_map(em);
2b902dfc 6465 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6466 return -ENOENT;
593060d7 6467 }
dfe25020
CM
6468 if (!map->stripes[i].dev) {
6469 map->stripes[i].dev =
2ff7e61e
JM
6470 add_missing_dev(fs_info->fs_devices, devid,
6471 uuid);
adfb69af 6472 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6473 free_extent_map(em);
adfb69af
AJ
6474 btrfs_err(fs_info,
6475 "failed to init missing dev %llu: %ld",
6476 devid, PTR_ERR(map->stripes[i].dev));
6477 return PTR_ERR(map->stripes[i].dev);
dfe25020 6478 }
2b902dfc 6479 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020
CM
6480 }
6481 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6482 }
6483
890871be 6484 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6485 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6486 write_unlock(&map_tree->map_tree.lock);
79787eaa 6487 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6488 free_extent_map(em);
6489
6490 return 0;
6491}
6492
143bede5 6493static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6494 struct btrfs_dev_item *dev_item,
6495 struct btrfs_device *device)
6496{
6497 unsigned long ptr;
0b86a832
CM
6498
6499 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6500 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6501 device->total_bytes = device->disk_total_bytes;
935e5cc9 6502 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6503 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6504 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6505 device->type = btrfs_device_type(leaf, dev_item);
6506 device->io_align = btrfs_device_io_align(leaf, dev_item);
6507 device->io_width = btrfs_device_io_width(leaf, dev_item);
6508 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6509 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6510 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6511
410ba3a2 6512 ptr = btrfs_device_uuid(dev_item);
e17cade2 6513 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6514}
6515
2ff7e61e 6516static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6517 u8 *fsid)
2b82032c
YZ
6518{
6519 struct btrfs_fs_devices *fs_devices;
6520 int ret;
6521
b367e47f 6522 BUG_ON(!mutex_is_locked(&uuid_mutex));
2dfeca9b 6523 ASSERT(fsid);
2b82032c 6524
0b246afa 6525 fs_devices = fs_info->fs_devices->seed;
2b82032c 6526 while (fs_devices) {
44880fdc 6527 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6528 return fs_devices;
6529
2b82032c
YZ
6530 fs_devices = fs_devices->seed;
6531 }
6532
6533 fs_devices = find_fsid(fsid);
6534 if (!fs_devices) {
0b246afa 6535 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6536 return ERR_PTR(-ENOENT);
6537
6538 fs_devices = alloc_fs_devices(fsid);
6539 if (IS_ERR(fs_devices))
6540 return fs_devices;
6541
6542 fs_devices->seeding = 1;
6543 fs_devices->opened = 1;
6544 return fs_devices;
2b82032c 6545 }
e4404d6e
YZ
6546
6547 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6548 if (IS_ERR(fs_devices))
6549 return fs_devices;
2b82032c 6550
97288f2c 6551 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6552 fs_info->bdev_holder);
48d28232
JL
6553 if (ret) {
6554 free_fs_devices(fs_devices);
5f375835 6555 fs_devices = ERR_PTR(ret);
2b82032c 6556 goto out;
48d28232 6557 }
2b82032c
YZ
6558
6559 if (!fs_devices->seeding) {
6560 __btrfs_close_devices(fs_devices);
e4404d6e 6561 free_fs_devices(fs_devices);
5f375835 6562 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6563 goto out;
6564 }
6565
0b246afa
JM
6566 fs_devices->seed = fs_info->fs_devices->seed;
6567 fs_info->fs_devices->seed = fs_devices;
2b82032c 6568out:
5f375835 6569 return fs_devices;
2b82032c
YZ
6570}
6571
2ff7e61e 6572static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6573 struct extent_buffer *leaf,
6574 struct btrfs_dev_item *dev_item)
6575{
0b246afa 6576 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6577 struct btrfs_device *device;
6578 u64 devid;
6579 int ret;
44880fdc 6580 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6581 u8 dev_uuid[BTRFS_UUID_SIZE];
6582
0b86a832 6583 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6584 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6585 BTRFS_UUID_SIZE);
1473b24e 6586 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6587 BTRFS_FSID_SIZE);
2b82032c 6588
44880fdc 6589 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
2ff7e61e 6590 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6591 if (IS_ERR(fs_devices))
6592 return PTR_ERR(fs_devices);
2b82032c
YZ
6593 }
6594
0b246afa 6595 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6596 if (!device) {
c5502451 6597 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6598 btrfs_report_missing_device(fs_info, devid,
6599 dev_uuid, true);
45dbdbc9 6600 return -ENOENT;
c5502451 6601 }
2b82032c 6602
2ff7e61e 6603 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6604 if (IS_ERR(device)) {
6605 btrfs_err(fs_info,
6606 "failed to add missing dev %llu: %ld",
6607 devid, PTR_ERR(device));
6608 return PTR_ERR(device);
6609 }
2b902dfc 6610 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6611 } else {
c5502451 6612 if (!device->bdev) {
2b902dfc
AJ
6613 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6614 btrfs_report_missing_device(fs_info,
6615 devid, dev_uuid, true);
45dbdbc9 6616 return -ENOENT;
2b902dfc
AJ
6617 }
6618 btrfs_report_missing_device(fs_info, devid,
6619 dev_uuid, false);
c5502451 6620 }
5f375835
MX
6621
6622 if(!device->bdev && !device->missing) {
cd02dca5
CM
6623 /*
6624 * this happens when a device that was properly setup
6625 * in the device info lists suddenly goes bad.
6626 * device->bdev is NULL, and so we have to set
6627 * device->missing to one here
6628 */
5f375835 6629 device->fs_devices->missing_devices++;
cd02dca5 6630 device->missing = 1;
2b82032c 6631 }
5f375835
MX
6632
6633 /* Move the device to its own fs_devices */
6634 if (device->fs_devices != fs_devices) {
6635 ASSERT(device->missing);
6636
6637 list_move(&device->dev_list, &fs_devices->devices);
6638 device->fs_devices->num_devices--;
6639 fs_devices->num_devices++;
6640
6641 device->fs_devices->missing_devices--;
6642 fs_devices->missing_devices++;
6643
6644 device->fs_devices = fs_devices;
6645 }
2b82032c
YZ
6646 }
6647
0b246afa 6648 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6649 BUG_ON(device->writeable);
6650 if (device->generation !=
6651 btrfs_device_generation(leaf, dev_item))
6652 return -EINVAL;
6324fbf3 6653 }
0b86a832
CM
6654
6655 fill_device_from_item(leaf, dev_item, device);
dfe25020 6656 device->in_fs_metadata = 1;
63a212ab 6657 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6658 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6659 atomic64_add(device->total_bytes - device->bytes_used,
6660 &fs_info->free_chunk_space);
2bf64758 6661 }
0b86a832 6662 ret = 0;
0b86a832
CM
6663 return ret;
6664}
6665
6bccf3ab 6666int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6667{
6bccf3ab 6668 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6669 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6670 struct extent_buffer *sb;
0b86a832 6671 struct btrfs_disk_key *disk_key;
0b86a832 6672 struct btrfs_chunk *chunk;
1ffb22cf
DS
6673 u8 *array_ptr;
6674 unsigned long sb_array_offset;
84eed90f 6675 int ret = 0;
0b86a832
CM
6676 u32 num_stripes;
6677 u32 array_size;
6678 u32 len = 0;
1ffb22cf 6679 u32 cur_offset;
e06cd3dd 6680 u64 type;
84eed90f 6681 struct btrfs_key key;
0b86a832 6682
0b246afa 6683 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6684 /*
6685 * This will create extent buffer of nodesize, superblock size is
6686 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6687 * overallocate but we can keep it as-is, only the first page is used.
6688 */
2ff7e61e 6689 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6690 if (IS_ERR(sb))
6691 return PTR_ERR(sb);
4db8c528 6692 set_extent_buffer_uptodate(sb);
85d4e461 6693 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6694 /*
01327610 6695 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6696 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6697 * pages up-to-date when the page is larger: extent does not cover the
6698 * whole page and consequently check_page_uptodate does not find all
6699 * the page's extents up-to-date (the hole beyond sb),
6700 * write_extent_buffer then triggers a WARN_ON.
6701 *
6702 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6703 * but sb spans only this function. Add an explicit SetPageUptodate call
6704 * to silence the warning eg. on PowerPC 64.
6705 */
09cbfeaf 6706 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6707 SetPageUptodate(sb->pages[0]);
4008c04a 6708
a061fc8d 6709 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6710 array_size = btrfs_super_sys_array_size(super_copy);
6711
1ffb22cf
DS
6712 array_ptr = super_copy->sys_chunk_array;
6713 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6714 cur_offset = 0;
0b86a832 6715
1ffb22cf
DS
6716 while (cur_offset < array_size) {
6717 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6718 len = sizeof(*disk_key);
6719 if (cur_offset + len > array_size)
6720 goto out_short_read;
6721
0b86a832
CM
6722 btrfs_disk_key_to_cpu(&key, disk_key);
6723
1ffb22cf
DS
6724 array_ptr += len;
6725 sb_array_offset += len;
6726 cur_offset += len;
0b86a832 6727
0d81ba5d 6728 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6729 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6730 /*
6731 * At least one btrfs_chunk with one stripe must be
6732 * present, exact stripe count check comes afterwards
6733 */
6734 len = btrfs_chunk_item_size(1);
6735 if (cur_offset + len > array_size)
6736 goto out_short_read;
6737
6738 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6739 if (!num_stripes) {
ab8d0fc4
JM
6740 btrfs_err(fs_info,
6741 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6742 num_stripes, cur_offset);
6743 ret = -EIO;
6744 break;
6745 }
6746
e06cd3dd
LB
6747 type = btrfs_chunk_type(sb, chunk);
6748 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6749 btrfs_err(fs_info,
e06cd3dd
LB
6750 "invalid chunk type %llu in sys_array at offset %u",
6751 type, cur_offset);
6752 ret = -EIO;
6753 break;
6754 }
6755
e3540eab
DS
6756 len = btrfs_chunk_item_size(num_stripes);
6757 if (cur_offset + len > array_size)
6758 goto out_short_read;
6759
2ff7e61e 6760 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6761 if (ret)
6762 break;
0b86a832 6763 } else {
ab8d0fc4
JM
6764 btrfs_err(fs_info,
6765 "unexpected item type %u in sys_array at offset %u",
6766 (u32)key.type, cur_offset);
84eed90f
CM
6767 ret = -EIO;
6768 break;
0b86a832 6769 }
1ffb22cf
DS
6770 array_ptr += len;
6771 sb_array_offset += len;
6772 cur_offset += len;
0b86a832 6773 }
d865177a 6774 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6775 free_extent_buffer_stale(sb);
84eed90f 6776 return ret;
e3540eab
DS
6777
6778out_short_read:
ab8d0fc4 6779 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6780 len, cur_offset);
d865177a 6781 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6782 free_extent_buffer_stale(sb);
e3540eab 6783 return -EIO;
0b86a832
CM
6784}
6785
21634a19
QW
6786/*
6787 * Check if all chunks in the fs are OK for read-write degraded mount
6788 *
6789 * Return true if all chunks meet the minimal RW mount requirements.
6790 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6791 */
6792bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6793{
6794 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6795 struct extent_map *em;
6796 u64 next_start = 0;
6797 bool ret = true;
6798
6799 read_lock(&map_tree->map_tree.lock);
6800 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6801 read_unlock(&map_tree->map_tree.lock);
6802 /* No chunk at all? Return false anyway */
6803 if (!em) {
6804 ret = false;
6805 goto out;
6806 }
6807 while (em) {
6808 struct map_lookup *map;
6809 int missing = 0;
6810 int max_tolerated;
6811 int i;
6812
6813 map = em->map_lookup;
6814 max_tolerated =
6815 btrfs_get_num_tolerated_disk_barrier_failures(
6816 map->type);
6817 for (i = 0; i < map->num_stripes; i++) {
6818 struct btrfs_device *dev = map->stripes[i].dev;
6819
6820 if (!dev || !dev->bdev || dev->missing ||
6821 dev->last_flush_error)
6822 missing++;
6823 }
6824 if (missing > max_tolerated) {
6825 btrfs_warn(fs_info,
6826 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6827 em->start, missing, max_tolerated);
6828 free_extent_map(em);
6829 ret = false;
6830 goto out;
6831 }
6832 next_start = extent_map_end(em);
6833 free_extent_map(em);
6834
6835 read_lock(&map_tree->map_tree.lock);
6836 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6837 (u64)(-1) - next_start);
6838 read_unlock(&map_tree->map_tree.lock);
6839 }
6840out:
6841 return ret;
6842}
6843
5b4aacef 6844int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6845{
5b4aacef 6846 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6847 struct btrfs_path *path;
6848 struct extent_buffer *leaf;
6849 struct btrfs_key key;
6850 struct btrfs_key found_key;
6851 int ret;
6852 int slot;
99e3ecfc 6853 u64 total_dev = 0;
0b86a832 6854
0b86a832
CM
6855 path = btrfs_alloc_path();
6856 if (!path)
6857 return -ENOMEM;
6858
b367e47f 6859 mutex_lock(&uuid_mutex);
34441361 6860 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6861
395927a9
FDBM
6862 /*
6863 * Read all device items, and then all the chunk items. All
6864 * device items are found before any chunk item (their object id
6865 * is smaller than the lowest possible object id for a chunk
6866 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6867 */
6868 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6869 key.offset = 0;
6870 key.type = 0;
0b86a832 6871 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6872 if (ret < 0)
6873 goto error;
d397712b 6874 while (1) {
0b86a832
CM
6875 leaf = path->nodes[0];
6876 slot = path->slots[0];
6877 if (slot >= btrfs_header_nritems(leaf)) {
6878 ret = btrfs_next_leaf(root, path);
6879 if (ret == 0)
6880 continue;
6881 if (ret < 0)
6882 goto error;
6883 break;
6884 }
6885 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6886 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6887 struct btrfs_dev_item *dev_item;
6888 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6889 struct btrfs_dev_item);
2ff7e61e 6890 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6891 if (ret)
6892 goto error;
99e3ecfc 6893 total_dev++;
0b86a832
CM
6894 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6895 struct btrfs_chunk *chunk;
6896 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6897 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6898 if (ret)
6899 goto error;
0b86a832
CM
6900 }
6901 path->slots[0]++;
6902 }
99e3ecfc
LB
6903
6904 /*
6905 * After loading chunk tree, we've got all device information,
6906 * do another round of validation checks.
6907 */
0b246afa
JM
6908 if (total_dev != fs_info->fs_devices->total_devices) {
6909 btrfs_err(fs_info,
99e3ecfc 6910 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6911 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6912 total_dev);
6913 ret = -EINVAL;
6914 goto error;
6915 }
0b246afa
JM
6916 if (btrfs_super_total_bytes(fs_info->super_copy) <
6917 fs_info->fs_devices->total_rw_bytes) {
6918 btrfs_err(fs_info,
99e3ecfc 6919 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6920 btrfs_super_total_bytes(fs_info->super_copy),
6921 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6922 ret = -EINVAL;
6923 goto error;
6924 }
0b86a832
CM
6925 ret = 0;
6926error:
34441361 6927 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
6928 mutex_unlock(&uuid_mutex);
6929
2b82032c 6930 btrfs_free_path(path);
0b86a832
CM
6931 return ret;
6932}
442a4f63 6933
cb517eab
MX
6934void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6935{
6936 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6937 struct btrfs_device *device;
6938
29cc83f6
LB
6939 while (fs_devices) {
6940 mutex_lock(&fs_devices->device_list_mutex);
6941 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6942 device->fs_info = fs_info;
29cc83f6
LB
6943 mutex_unlock(&fs_devices->device_list_mutex);
6944
6945 fs_devices = fs_devices->seed;
6946 }
cb517eab
MX
6947}
6948
733f4fbb
SB
6949static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6950{
6951 int i;
6952
6953 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6954 btrfs_dev_stat_reset(dev, i);
6955}
6956
6957int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6958{
6959 struct btrfs_key key;
6960 struct btrfs_key found_key;
6961 struct btrfs_root *dev_root = fs_info->dev_root;
6962 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6963 struct extent_buffer *eb;
6964 int slot;
6965 int ret = 0;
6966 struct btrfs_device *device;
6967 struct btrfs_path *path = NULL;
6968 int i;
6969
6970 path = btrfs_alloc_path();
6971 if (!path) {
6972 ret = -ENOMEM;
6973 goto out;
6974 }
6975
6976 mutex_lock(&fs_devices->device_list_mutex);
6977 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6978 int item_size;
6979 struct btrfs_dev_stats_item *ptr;
6980
242e2956
DS
6981 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6982 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6983 key.offset = device->devid;
6984 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6985 if (ret) {
733f4fbb
SB
6986 __btrfs_reset_dev_stats(device);
6987 device->dev_stats_valid = 1;
6988 btrfs_release_path(path);
6989 continue;
6990 }
6991 slot = path->slots[0];
6992 eb = path->nodes[0];
6993 btrfs_item_key_to_cpu(eb, &found_key, slot);
6994 item_size = btrfs_item_size_nr(eb, slot);
6995
6996 ptr = btrfs_item_ptr(eb, slot,
6997 struct btrfs_dev_stats_item);
6998
6999 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7000 if (item_size >= (1 + i) * sizeof(__le64))
7001 btrfs_dev_stat_set(device, i,
7002 btrfs_dev_stats_value(eb, ptr, i));
7003 else
7004 btrfs_dev_stat_reset(device, i);
7005 }
7006
7007 device->dev_stats_valid = 1;
7008 btrfs_dev_stat_print_on_load(device);
7009 btrfs_release_path(path);
7010 }
7011 mutex_unlock(&fs_devices->device_list_mutex);
7012
7013out:
7014 btrfs_free_path(path);
7015 return ret < 0 ? ret : 0;
7016}
7017
7018static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 7019 struct btrfs_fs_info *fs_info,
733f4fbb
SB
7020 struct btrfs_device *device)
7021{
6bccf3ab 7022 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7023 struct btrfs_path *path;
7024 struct btrfs_key key;
7025 struct extent_buffer *eb;
7026 struct btrfs_dev_stats_item *ptr;
7027 int ret;
7028 int i;
7029
242e2956
DS
7030 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7031 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7032 key.offset = device->devid;
7033
7034 path = btrfs_alloc_path();
fa252992
DS
7035 if (!path)
7036 return -ENOMEM;
733f4fbb
SB
7037 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7038 if (ret < 0) {
0b246afa 7039 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7040 "error %d while searching for dev_stats item for device %s",
606686ee 7041 ret, rcu_str_deref(device->name));
733f4fbb
SB
7042 goto out;
7043 }
7044
7045 if (ret == 0 &&
7046 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7047 /* need to delete old one and insert a new one */
7048 ret = btrfs_del_item(trans, dev_root, path);
7049 if (ret != 0) {
0b246afa 7050 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7051 "delete too small dev_stats item for device %s failed %d",
606686ee 7052 rcu_str_deref(device->name), ret);
733f4fbb
SB
7053 goto out;
7054 }
7055 ret = 1;
7056 }
7057
7058 if (ret == 1) {
7059 /* need to insert a new item */
7060 btrfs_release_path(path);
7061 ret = btrfs_insert_empty_item(trans, dev_root, path,
7062 &key, sizeof(*ptr));
7063 if (ret < 0) {
0b246afa 7064 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7065 "insert dev_stats item for device %s failed %d",
7066 rcu_str_deref(device->name), ret);
733f4fbb
SB
7067 goto out;
7068 }
7069 }
7070
7071 eb = path->nodes[0];
7072 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7073 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7074 btrfs_set_dev_stats_value(eb, ptr, i,
7075 btrfs_dev_stat_read(device, i));
7076 btrfs_mark_buffer_dirty(eb);
7077
7078out:
7079 btrfs_free_path(path);
7080 return ret;
7081}
7082
7083/*
7084 * called from commit_transaction. Writes all changed device stats to disk.
7085 */
7086int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7087 struct btrfs_fs_info *fs_info)
7088{
733f4fbb
SB
7089 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7090 struct btrfs_device *device;
addc3fa7 7091 int stats_cnt;
733f4fbb
SB
7092 int ret = 0;
7093
7094 mutex_lock(&fs_devices->device_list_mutex);
7095 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7096 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7097 continue;
7098
addc3fa7 7099 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7100 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7101 if (!ret)
addc3fa7 7102 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7103 }
7104 mutex_unlock(&fs_devices->device_list_mutex);
7105
7106 return ret;
7107}
7108
442a4f63
SB
7109void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7110{
7111 btrfs_dev_stat_inc(dev, index);
7112 btrfs_dev_stat_print_on_error(dev);
7113}
7114
48a3b636 7115static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7116{
733f4fbb
SB
7117 if (!dev->dev_stats_valid)
7118 return;
fb456252 7119 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7120 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7121 rcu_str_deref(dev->name),
442a4f63
SB
7122 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7123 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7124 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7125 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7126 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7127}
c11d2c23 7128
733f4fbb
SB
7129static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7130{
a98cdb85
SB
7131 int i;
7132
7133 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7134 if (btrfs_dev_stat_read(dev, i) != 0)
7135 break;
7136 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7137 return; /* all values == 0, suppress message */
7138
fb456252 7139 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7140 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7141 rcu_str_deref(dev->name),
733f4fbb
SB
7142 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7143 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7144 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7145 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7146 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7147}
7148
2ff7e61e 7149int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7150 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7151{
7152 struct btrfs_device *dev;
0b246afa 7153 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7154 int i;
7155
7156 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7157 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7158 mutex_unlock(&fs_devices->device_list_mutex);
7159
7160 if (!dev) {
0b246afa 7161 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7162 return -ENODEV;
733f4fbb 7163 } else if (!dev->dev_stats_valid) {
0b246afa 7164 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7165 return -ENODEV;
b27f7c0c 7166 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7167 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7168 if (stats->nr_items > i)
7169 stats->values[i] =
7170 btrfs_dev_stat_read_and_reset(dev, i);
7171 else
7172 btrfs_dev_stat_reset(dev, i);
7173 }
7174 } else {
7175 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7176 if (stats->nr_items > i)
7177 stats->values[i] = btrfs_dev_stat_read(dev, i);
7178 }
7179 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7180 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7181 return 0;
7182}
a8a6dab7 7183
da353f6b 7184void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7185{
7186 struct buffer_head *bh;
7187 struct btrfs_super_block *disk_super;
12b1c263 7188 int copy_num;
a8a6dab7 7189
12b1c263
AJ
7190 if (!bdev)
7191 return;
a8a6dab7 7192
12b1c263
AJ
7193 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7194 copy_num++) {
a8a6dab7 7195
12b1c263
AJ
7196 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7197 continue;
7198
7199 disk_super = (struct btrfs_super_block *)bh->b_data;
7200
7201 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7202 set_buffer_dirty(bh);
7203 sync_dirty_buffer(bh);
7204 brelse(bh);
7205 }
7206
7207 /* Notify udev that device has changed */
7208 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7209
7210 /* Update ctime/mtime for device path for libblkid */
7211 update_dev_time(device_path);
a8a6dab7 7212}
935e5cc9
MX
7213
7214/*
7215 * Update the size of all devices, which is used for writing out the
7216 * super blocks.
7217 */
7218void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7219{
7220 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7221 struct btrfs_device *curr, *next;
7222
7223 if (list_empty(&fs_devices->resized_devices))
7224 return;
7225
7226 mutex_lock(&fs_devices->device_list_mutex);
34441361 7227 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7228 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7229 resized_list) {
7230 list_del_init(&curr->resized_list);
7231 curr->commit_total_bytes = curr->disk_total_bytes;
7232 }
34441361 7233 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7234 mutex_unlock(&fs_devices->device_list_mutex);
7235}
ce7213c7
MX
7236
7237/* Must be invoked during the transaction commit */
2ff7e61e 7238void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7239 struct btrfs_transaction *transaction)
7240{
7241 struct extent_map *em;
7242 struct map_lookup *map;
7243 struct btrfs_device *dev;
7244 int i;
7245
7246 if (list_empty(&transaction->pending_chunks))
7247 return;
7248
7249 /* In order to kick the device replace finish process */
34441361 7250 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7251 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7252 map = em->map_lookup;
ce7213c7
MX
7253
7254 for (i = 0; i < map->num_stripes; i++) {
7255 dev = map->stripes[i].dev;
7256 dev->commit_bytes_used = dev->bytes_used;
7257 }
7258 }
34441361 7259 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7260}
5a13f430
AJ
7261
7262void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7263{
7264 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7265 while (fs_devices) {
7266 fs_devices->fs_info = fs_info;
7267 fs_devices = fs_devices->seed;
7268 }
7269}
7270
7271void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7272{
7273 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7274 while (fs_devices) {
7275 fs_devices->fs_info = NULL;
7276 fs_devices = fs_devices->seed;
7277 }
7278}