]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: fixup error handling in btrfs_reloc_cow
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
4b4e25f2 31#include "compat.h"
0b86a832
CM
32#include "ctree.h"
33#include "extent_map.h"
34#include "disk-io.h"
35#include "transaction.h"
36#include "print-tree.h"
37#include "volumes.h"
53b381b3 38#include "raid56.h"
8b712842 39#include "async-thread.h"
21adbd5c 40#include "check-integrity.h"
606686ee 41#include "rcu-string.h"
3fed40cc 42#include "math.h"
8dabb742 43#include "dev-replace.h"
0b86a832 44
2b82032c
YZ
45static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 struct btrfs_root *root,
47 struct btrfs_device *device);
48static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 49static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 50static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 51static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 52
8a4b83cc
CM
53static DEFINE_MUTEX(uuid_mutex);
54static LIST_HEAD(fs_uuids);
55
7d9eb12c
CM
56static void lock_chunks(struct btrfs_root *root)
57{
7d9eb12c
CM
58 mutex_lock(&root->fs_info->chunk_mutex);
59}
60
61static void unlock_chunks(struct btrfs_root *root)
62{
7d9eb12c
CM
63 mutex_unlock(&root->fs_info->chunk_mutex);
64}
65
2208a378
ID
66static struct btrfs_fs_devices *__alloc_fs_devices(void)
67{
68 struct btrfs_fs_devices *fs_devs;
69
70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 if (!fs_devs)
72 return ERR_PTR(-ENOMEM);
73
74 mutex_init(&fs_devs->device_list_mutex);
75
76 INIT_LIST_HEAD(&fs_devs->devices);
77 INIT_LIST_HEAD(&fs_devs->alloc_list);
78 INIT_LIST_HEAD(&fs_devs->list);
79
80 return fs_devs;
81}
82
83/**
84 * alloc_fs_devices - allocate struct btrfs_fs_devices
85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
86 * generated.
87 *
88 * Return: a pointer to a new &struct btrfs_fs_devices on success;
89 * ERR_PTR() on error. Returned struct is not linked onto any lists and
90 * can be destroyed with kfree() right away.
91 */
92static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93{
94 struct btrfs_fs_devices *fs_devs;
95
96 fs_devs = __alloc_fs_devices();
97 if (IS_ERR(fs_devs))
98 return fs_devs;
99
100 if (fsid)
101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 else
103 generate_random_uuid(fs_devs->fsid);
104
105 return fs_devs;
106}
107
e4404d6e
YZ
108static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109{
110 struct btrfs_device *device;
111 WARN_ON(fs_devices->opened);
112 while (!list_empty(&fs_devices->devices)) {
113 device = list_entry(fs_devices->devices.next,
114 struct btrfs_device, dev_list);
115 list_del(&device->dev_list);
606686ee 116 rcu_string_free(device->name);
e4404d6e
YZ
117 kfree(device);
118 }
119 kfree(fs_devices);
120}
121
b8b8ff59
LC
122static void btrfs_kobject_uevent(struct block_device *bdev,
123 enum kobject_action action)
124{
125 int ret;
126
127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 if (ret)
129 pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 action,
131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 &disk_to_dev(bdev->bd_disk)->kobj);
133}
134
143bede5 135void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
136{
137 struct btrfs_fs_devices *fs_devices;
8a4b83cc 138
2b82032c
YZ
139 while (!list_empty(&fs_uuids)) {
140 fs_devices = list_entry(fs_uuids.next,
141 struct btrfs_fs_devices, list);
142 list_del(&fs_devices->list);
e4404d6e 143 free_fs_devices(fs_devices);
8a4b83cc 144 }
8a4b83cc
CM
145}
146
12bd2fc0
ID
147static struct btrfs_device *__alloc_device(void)
148{
149 struct btrfs_device *dev;
150
151 dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 if (!dev)
153 return ERR_PTR(-ENOMEM);
154
155 INIT_LIST_HEAD(&dev->dev_list);
156 INIT_LIST_HEAD(&dev->dev_alloc_list);
157
158 spin_lock_init(&dev->io_lock);
159
160 spin_lock_init(&dev->reada_lock);
161 atomic_set(&dev->reada_in_flight, 0);
162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164
165 return dev;
166}
167
a1b32a59
CM
168static noinline struct btrfs_device *__find_device(struct list_head *head,
169 u64 devid, u8 *uuid)
8a4b83cc
CM
170{
171 struct btrfs_device *dev;
8a4b83cc 172
c6e30871 173 list_for_each_entry(dev, head, dev_list) {
a443755f 174 if (dev->devid == devid &&
8f18cf13 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 176 return dev;
a443755f 177 }
8a4b83cc
CM
178 }
179 return NULL;
180}
181
a1b32a59 182static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 183{
8a4b83cc
CM
184 struct btrfs_fs_devices *fs_devices;
185
c6e30871 186 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 return fs_devices;
189 }
190 return NULL;
191}
192
beaf8ab3
SB
193static int
194btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 int flush, struct block_device **bdev,
196 struct buffer_head **bh)
197{
198 int ret;
199
200 *bdev = blkdev_get_by_path(device_path, flags, holder);
201
202 if (IS_ERR(*bdev)) {
203 ret = PTR_ERR(*bdev);
204 printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 goto error;
206 }
207
208 if (flush)
209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 ret = set_blocksize(*bdev, 4096);
211 if (ret) {
212 blkdev_put(*bdev, flags);
213 goto error;
214 }
215 invalidate_bdev(*bdev);
216 *bh = btrfs_read_dev_super(*bdev);
217 if (!*bh) {
218 ret = -EINVAL;
219 blkdev_put(*bdev, flags);
220 goto error;
221 }
222
223 return 0;
224
225error:
226 *bdev = NULL;
227 *bh = NULL;
228 return ret;
229}
230
ffbd517d
CM
231static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 struct bio *head, struct bio *tail)
233{
234
235 struct bio *old_head;
236
237 old_head = pending_bios->head;
238 pending_bios->head = head;
239 if (pending_bios->tail)
240 tail->bi_next = old_head;
241 else
242 pending_bios->tail = tail;
243}
244
8b712842
CM
245/*
246 * we try to collect pending bios for a device so we don't get a large
247 * number of procs sending bios down to the same device. This greatly
248 * improves the schedulers ability to collect and merge the bios.
249 *
250 * But, it also turns into a long list of bios to process and that is sure
251 * to eventually make the worker thread block. The solution here is to
252 * make some progress and then put this work struct back at the end of
253 * the list if the block device is congested. This way, multiple devices
254 * can make progress from a single worker thread.
255 */
143bede5 256static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
257{
258 struct bio *pending;
259 struct backing_dev_info *bdi;
b64a2851 260 struct btrfs_fs_info *fs_info;
ffbd517d 261 struct btrfs_pending_bios *pending_bios;
8b712842
CM
262 struct bio *tail;
263 struct bio *cur;
264 int again = 0;
ffbd517d 265 unsigned long num_run;
d644d8a1 266 unsigned long batch_run = 0;
b64a2851 267 unsigned long limit;
b765ead5 268 unsigned long last_waited = 0;
d84275c9 269 int force_reg = 0;
0e588859 270 int sync_pending = 0;
211588ad
CM
271 struct blk_plug plug;
272
273 /*
274 * this function runs all the bios we've collected for
275 * a particular device. We don't want to wander off to
276 * another device without first sending all of these down.
277 * So, setup a plug here and finish it off before we return
278 */
279 blk_start_plug(&plug);
8b712842 280
bedf762b 281 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
282 fs_info = device->dev_root->fs_info;
283 limit = btrfs_async_submit_limit(fs_info);
284 limit = limit * 2 / 3;
285
8b712842
CM
286loop:
287 spin_lock(&device->io_lock);
288
a6837051 289loop_lock:
d84275c9 290 num_run = 0;
ffbd517d 291
8b712842
CM
292 /* take all the bios off the list at once and process them
293 * later on (without the lock held). But, remember the
294 * tail and other pointers so the bios can be properly reinserted
295 * into the list if we hit congestion
296 */
d84275c9 297 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 298 pending_bios = &device->pending_sync_bios;
d84275c9
CM
299 force_reg = 1;
300 } else {
ffbd517d 301 pending_bios = &device->pending_bios;
d84275c9
CM
302 force_reg = 0;
303 }
ffbd517d
CM
304
305 pending = pending_bios->head;
306 tail = pending_bios->tail;
8b712842 307 WARN_ON(pending && !tail);
8b712842
CM
308
309 /*
310 * if pending was null this time around, no bios need processing
311 * at all and we can stop. Otherwise it'll loop back up again
312 * and do an additional check so no bios are missed.
313 *
314 * device->running_pending is used to synchronize with the
315 * schedule_bio code.
316 */
ffbd517d
CM
317 if (device->pending_sync_bios.head == NULL &&
318 device->pending_bios.head == NULL) {
8b712842
CM
319 again = 0;
320 device->running_pending = 0;
ffbd517d
CM
321 } else {
322 again = 1;
323 device->running_pending = 1;
8b712842 324 }
ffbd517d
CM
325
326 pending_bios->head = NULL;
327 pending_bios->tail = NULL;
328
8b712842
CM
329 spin_unlock(&device->io_lock);
330
d397712b 331 while (pending) {
ffbd517d
CM
332
333 rmb();
d84275c9
CM
334 /* we want to work on both lists, but do more bios on the
335 * sync list than the regular list
336 */
337 if ((num_run > 32 &&
338 pending_bios != &device->pending_sync_bios &&
339 device->pending_sync_bios.head) ||
340 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 device->pending_bios.head)) {
ffbd517d
CM
342 spin_lock(&device->io_lock);
343 requeue_list(pending_bios, pending, tail);
344 goto loop_lock;
345 }
346
8b712842
CM
347 cur = pending;
348 pending = pending->bi_next;
349 cur->bi_next = NULL;
b64a2851 350
66657b31 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
352 waitqueue_active(&fs_info->async_submit_wait))
353 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
354
355 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 356
2ab1ba68
CM
357 /*
358 * if we're doing the sync list, record that our
359 * plug has some sync requests on it
360 *
361 * If we're doing the regular list and there are
362 * sync requests sitting around, unplug before
363 * we add more
364 */
365 if (pending_bios == &device->pending_sync_bios) {
366 sync_pending = 1;
367 } else if (sync_pending) {
368 blk_finish_plug(&plug);
369 blk_start_plug(&plug);
370 sync_pending = 0;
371 }
372
21adbd5c 373 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
374 num_run++;
375 batch_run++;
7eaceacc 376 if (need_resched())
ffbd517d 377 cond_resched();
8b712842
CM
378
379 /*
380 * we made progress, there is more work to do and the bdi
381 * is now congested. Back off and let other work structs
382 * run instead
383 */
57fd5a5f 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 385 fs_info->fs_devices->open_devices > 1) {
b765ead5 386 struct io_context *ioc;
8b712842 387
b765ead5
CM
388 ioc = current->io_context;
389
390 /*
391 * the main goal here is that we don't want to
392 * block if we're going to be able to submit
393 * more requests without blocking.
394 *
395 * This code does two great things, it pokes into
396 * the elevator code from a filesystem _and_
397 * it makes assumptions about how batching works.
398 */
399 if (ioc && ioc->nr_batch_requests > 0 &&
400 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 (last_waited == 0 ||
402 ioc->last_waited == last_waited)) {
403 /*
404 * we want to go through our batch of
405 * requests and stop. So, we copy out
406 * the ioc->last_waited time and test
407 * against it before looping
408 */
409 last_waited = ioc->last_waited;
7eaceacc 410 if (need_resched())
ffbd517d 411 cond_resched();
b765ead5
CM
412 continue;
413 }
8b712842 414 spin_lock(&device->io_lock);
ffbd517d 415 requeue_list(pending_bios, pending, tail);
a6837051 416 device->running_pending = 1;
8b712842
CM
417
418 spin_unlock(&device->io_lock);
419 btrfs_requeue_work(&device->work);
420 goto done;
421 }
d85c8a6f
CM
422 /* unplug every 64 requests just for good measure */
423 if (batch_run % 64 == 0) {
424 blk_finish_plug(&plug);
425 blk_start_plug(&plug);
426 sync_pending = 0;
427 }
8b712842 428 }
ffbd517d 429
51684082
CM
430 cond_resched();
431 if (again)
432 goto loop;
433
434 spin_lock(&device->io_lock);
435 if (device->pending_bios.head || device->pending_sync_bios.head)
436 goto loop_lock;
437 spin_unlock(&device->io_lock);
438
8b712842 439done:
211588ad 440 blk_finish_plug(&plug);
8b712842
CM
441}
442
b2950863 443static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
444{
445 struct btrfs_device *device;
446
447 device = container_of(work, struct btrfs_device, work);
448 run_scheduled_bios(device);
449}
450
a1b32a59 451static noinline int device_list_add(const char *path,
8a4b83cc
CM
452 struct btrfs_super_block *disk_super,
453 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454{
455 struct btrfs_device *device;
456 struct btrfs_fs_devices *fs_devices;
606686ee 457 struct rcu_string *name;
8a4b83cc
CM
458 u64 found_transid = btrfs_super_generation(disk_super);
459
460 fs_devices = find_fsid(disk_super->fsid);
461 if (!fs_devices) {
2208a378
ID
462 fs_devices = alloc_fs_devices(disk_super->fsid);
463 if (IS_ERR(fs_devices))
464 return PTR_ERR(fs_devices);
465
8a4b83cc 466 list_add(&fs_devices->list, &fs_uuids);
8a4b83cc
CM
467 fs_devices->latest_devid = devid;
468 fs_devices->latest_trans = found_transid;
2208a378 469
8a4b83cc
CM
470 device = NULL;
471 } else {
a443755f
CM
472 device = __find_device(&fs_devices->devices, devid,
473 disk_super->dev_item.uuid);
8a4b83cc
CM
474 }
475 if (!device) {
2b82032c
YZ
476 if (fs_devices->opened)
477 return -EBUSY;
478
12bd2fc0
ID
479 device = btrfs_alloc_device(NULL, &devid,
480 disk_super->dev_item.uuid);
481 if (IS_ERR(device)) {
8a4b83cc 482 /* we can safely leave the fs_devices entry around */
12bd2fc0 483 return PTR_ERR(device);
8a4b83cc 484 }
606686ee
JB
485
486 name = rcu_string_strdup(path, GFP_NOFS);
487 if (!name) {
8a4b83cc
CM
488 kfree(device);
489 return -ENOMEM;
490 }
606686ee 491 rcu_assign_pointer(device->name, name);
90519d66 492
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 494 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 495 fs_devices->num_devices++;
e5e9a520
CM
496 mutex_unlock(&fs_devices->device_list_mutex);
497
2b82032c 498 device->fs_devices = fs_devices;
606686ee
JB
499 } else if (!device->name || strcmp(device->name->str, path)) {
500 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
501 if (!name)
502 return -ENOMEM;
606686ee
JB
503 rcu_string_free(device->name);
504 rcu_assign_pointer(device->name, name);
cd02dca5
CM
505 if (device->missing) {
506 fs_devices->missing_devices--;
507 device->missing = 0;
508 }
8a4b83cc
CM
509 }
510
511 if (found_transid > fs_devices->latest_trans) {
512 fs_devices->latest_devid = devid;
513 fs_devices->latest_trans = found_transid;
514 }
8a4b83cc
CM
515 *fs_devices_ret = fs_devices;
516 return 0;
517}
518
e4404d6e
YZ
519static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520{
521 struct btrfs_fs_devices *fs_devices;
522 struct btrfs_device *device;
523 struct btrfs_device *orig_dev;
524
2208a378
ID
525 fs_devices = alloc_fs_devices(orig->fsid);
526 if (IS_ERR(fs_devices))
527 return fs_devices;
e4404d6e 528
e4404d6e
YZ
529 fs_devices->latest_devid = orig->latest_devid;
530 fs_devices->latest_trans = orig->latest_trans;
02db0844 531 fs_devices->total_devices = orig->total_devices;
e4404d6e 532
46224705 533 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 534 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
535 struct rcu_string *name;
536
12bd2fc0
ID
537 device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 orig_dev->uuid);
539 if (IS_ERR(device))
e4404d6e
YZ
540 goto error;
541
606686ee
JB
542 /*
543 * This is ok to do without rcu read locked because we hold the
544 * uuid mutex so nothing we touch in here is going to disappear.
545 */
546 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 if (!name) {
fd2696f3 548 kfree(device);
e4404d6e 549 goto error;
fd2696f3 550 }
606686ee 551 rcu_assign_pointer(device->name, name);
e4404d6e 552
e4404d6e
YZ
553 list_add(&device->dev_list, &fs_devices->devices);
554 device->fs_devices = fs_devices;
555 fs_devices->num_devices++;
556 }
557 return fs_devices;
558error:
559 free_fs_devices(fs_devices);
560 return ERR_PTR(-ENOMEM);
561}
562
8dabb742
SB
563void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 struct btrfs_fs_devices *fs_devices, int step)
dfe25020 565{
c6e30871 566 struct btrfs_device *device, *next;
dfe25020 567
a6b0d5c8
CM
568 struct block_device *latest_bdev = NULL;
569 u64 latest_devid = 0;
570 u64 latest_transid = 0;
571
dfe25020
CM
572 mutex_lock(&uuid_mutex);
573again:
46224705 574 /* This is the initialized path, it is safe to release the devices. */
c6e30871 575 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 576 if (device->in_fs_metadata) {
63a212ab
SB
577 if (!device->is_tgtdev_for_dev_replace &&
578 (!latest_transid ||
579 device->generation > latest_transid)) {
a6b0d5c8
CM
580 latest_devid = device->devid;
581 latest_transid = device->generation;
582 latest_bdev = device->bdev;
583 }
2b82032c 584 continue;
a6b0d5c8 585 }
2b82032c 586
8dabb742
SB
587 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 /*
589 * In the first step, keep the device which has
590 * the correct fsid and the devid that is used
591 * for the dev_replace procedure.
592 * In the second step, the dev_replace state is
593 * read from the device tree and it is known
594 * whether the procedure is really active or
595 * not, which means whether this device is
596 * used or whether it should be removed.
597 */
598 if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 continue;
600 }
601 }
2b82032c 602 if (device->bdev) {
d4d77629 603 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
604 device->bdev = NULL;
605 fs_devices->open_devices--;
606 }
607 if (device->writeable) {
608 list_del_init(&device->dev_alloc_list);
609 device->writeable = 0;
8dabb742
SB
610 if (!device->is_tgtdev_for_dev_replace)
611 fs_devices->rw_devices--;
2b82032c 612 }
e4404d6e
YZ
613 list_del_init(&device->dev_list);
614 fs_devices->num_devices--;
606686ee 615 rcu_string_free(device->name);
e4404d6e 616 kfree(device);
dfe25020 617 }
2b82032c
YZ
618
619 if (fs_devices->seed) {
620 fs_devices = fs_devices->seed;
2b82032c
YZ
621 goto again;
622 }
623
a6b0d5c8
CM
624 fs_devices->latest_bdev = latest_bdev;
625 fs_devices->latest_devid = latest_devid;
626 fs_devices->latest_trans = latest_transid;
627
dfe25020 628 mutex_unlock(&uuid_mutex);
dfe25020 629}
a0af469b 630
1f78160c
XG
631static void __free_device(struct work_struct *work)
632{
633 struct btrfs_device *device;
634
635 device = container_of(work, struct btrfs_device, rcu_work);
636
637 if (device->bdev)
638 blkdev_put(device->bdev, device->mode);
639
606686ee 640 rcu_string_free(device->name);
1f78160c
XG
641 kfree(device);
642}
643
644static void free_device(struct rcu_head *head)
645{
646 struct btrfs_device *device;
647
648 device = container_of(head, struct btrfs_device, rcu);
649
650 INIT_WORK(&device->rcu_work, __free_device);
651 schedule_work(&device->rcu_work);
652}
653
2b82032c 654static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 655{
8a4b83cc 656 struct btrfs_device *device;
e4404d6e 657
2b82032c
YZ
658 if (--fs_devices->opened > 0)
659 return 0;
8a4b83cc 660
c9513edb 661 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 662 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c 663 struct btrfs_device *new_device;
606686ee 664 struct rcu_string *name;
1f78160c
XG
665
666 if (device->bdev)
a0af469b 667 fs_devices->open_devices--;
1f78160c 668
8dabb742 669 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
670 list_del_init(&device->dev_alloc_list);
671 fs_devices->rw_devices--;
672 }
673
d5e2003c
JB
674 if (device->can_discard)
675 fs_devices->num_can_discard--;
726551eb
JB
676 if (device->missing)
677 fs_devices->missing_devices--;
d5e2003c 678
a1e8780a
ID
679 new_device = btrfs_alloc_device(NULL, &device->devid,
680 device->uuid);
681 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
606686ee
JB
682
683 /* Safe because we are under uuid_mutex */
99f5944b
JB
684 if (device->name) {
685 name = rcu_string_strdup(device->name->str, GFP_NOFS);
a1e8780a 686 BUG_ON(!name); /* -ENOMEM */
99f5944b
JB
687 rcu_assign_pointer(new_device->name, name);
688 }
a1e8780a 689
1f78160c 690 list_replace_rcu(&device->dev_list, &new_device->dev_list);
a1e8780a 691 new_device->fs_devices = device->fs_devices;
1f78160c
XG
692
693 call_rcu(&device->rcu, free_device);
8a4b83cc 694 }
c9513edb
XG
695 mutex_unlock(&fs_devices->device_list_mutex);
696
e4404d6e
YZ
697 WARN_ON(fs_devices->open_devices);
698 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
699 fs_devices->opened = 0;
700 fs_devices->seeding = 0;
2b82032c 701
8a4b83cc
CM
702 return 0;
703}
704
2b82032c
YZ
705int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
706{
e4404d6e 707 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
708 int ret;
709
710 mutex_lock(&uuid_mutex);
711 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
712 if (!fs_devices->opened) {
713 seed_devices = fs_devices->seed;
714 fs_devices->seed = NULL;
715 }
2b82032c 716 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
717
718 while (seed_devices) {
719 fs_devices = seed_devices;
720 seed_devices = fs_devices->seed;
721 __btrfs_close_devices(fs_devices);
722 free_fs_devices(fs_devices);
723 }
bc178622
ES
724 /*
725 * Wait for rcu kworkers under __btrfs_close_devices
726 * to finish all blkdev_puts so device is really
727 * free when umount is done.
728 */
729 rcu_barrier();
2b82032c
YZ
730 return ret;
731}
732
e4404d6e
YZ
733static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
734 fmode_t flags, void *holder)
8a4b83cc 735{
d5e2003c 736 struct request_queue *q;
8a4b83cc
CM
737 struct block_device *bdev;
738 struct list_head *head = &fs_devices->devices;
8a4b83cc 739 struct btrfs_device *device;
a0af469b
CM
740 struct block_device *latest_bdev = NULL;
741 struct buffer_head *bh;
742 struct btrfs_super_block *disk_super;
743 u64 latest_devid = 0;
744 u64 latest_transid = 0;
a0af469b 745 u64 devid;
2b82032c 746 int seeding = 1;
a0af469b 747 int ret = 0;
8a4b83cc 748
d4d77629
TH
749 flags |= FMODE_EXCL;
750
c6e30871 751 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
752 if (device->bdev)
753 continue;
dfe25020
CM
754 if (!device->name)
755 continue;
756
f63e0cca
ES
757 /* Just open everything we can; ignore failures here */
758 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
759 &bdev, &bh))
beaf8ab3 760 continue;
a0af469b
CM
761
762 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 763 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
764 if (devid != device->devid)
765 goto error_brelse;
766
2b82032c
YZ
767 if (memcmp(device->uuid, disk_super->dev_item.uuid,
768 BTRFS_UUID_SIZE))
769 goto error_brelse;
770
771 device->generation = btrfs_super_generation(disk_super);
772 if (!latest_transid || device->generation > latest_transid) {
a0af469b 773 latest_devid = devid;
2b82032c 774 latest_transid = device->generation;
a0af469b
CM
775 latest_bdev = bdev;
776 }
777
2b82032c
YZ
778 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
779 device->writeable = 0;
780 } else {
781 device->writeable = !bdev_read_only(bdev);
782 seeding = 0;
783 }
784
d5e2003c
JB
785 q = bdev_get_queue(bdev);
786 if (blk_queue_discard(q)) {
787 device->can_discard = 1;
788 fs_devices->num_can_discard++;
789 }
790
8a4b83cc 791 device->bdev = bdev;
dfe25020 792 device->in_fs_metadata = 0;
15916de8
CM
793 device->mode = flags;
794
c289811c
CM
795 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
796 fs_devices->rotating = 1;
797
a0af469b 798 fs_devices->open_devices++;
8dabb742 799 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c
YZ
800 fs_devices->rw_devices++;
801 list_add(&device->dev_alloc_list,
802 &fs_devices->alloc_list);
803 }
4f6c9328 804 brelse(bh);
a0af469b 805 continue;
a061fc8d 806
a0af469b
CM
807error_brelse:
808 brelse(bh);
d4d77629 809 blkdev_put(bdev, flags);
a0af469b 810 continue;
8a4b83cc 811 }
a0af469b 812 if (fs_devices->open_devices == 0) {
20bcd649 813 ret = -EINVAL;
a0af469b
CM
814 goto out;
815 }
2b82032c
YZ
816 fs_devices->seeding = seeding;
817 fs_devices->opened = 1;
a0af469b
CM
818 fs_devices->latest_bdev = latest_bdev;
819 fs_devices->latest_devid = latest_devid;
820 fs_devices->latest_trans = latest_transid;
2b82032c 821 fs_devices->total_rw_bytes = 0;
a0af469b 822out:
2b82032c
YZ
823 return ret;
824}
825
826int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 827 fmode_t flags, void *holder)
2b82032c
YZ
828{
829 int ret;
830
831 mutex_lock(&uuid_mutex);
832 if (fs_devices->opened) {
e4404d6e
YZ
833 fs_devices->opened++;
834 ret = 0;
2b82032c 835 } else {
15916de8 836 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 837 }
8a4b83cc 838 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
839 return ret;
840}
841
6f60cbd3
DS
842/*
843 * Look for a btrfs signature on a device. This may be called out of the mount path
844 * and we are not allowed to call set_blocksize during the scan. The superblock
845 * is read via pagecache
846 */
97288f2c 847int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
848 struct btrfs_fs_devices **fs_devices_ret)
849{
850 struct btrfs_super_block *disk_super;
851 struct block_device *bdev;
6f60cbd3
DS
852 struct page *page;
853 void *p;
854 int ret = -EINVAL;
8a4b83cc 855 u64 devid;
f2984462 856 u64 transid;
02db0844 857 u64 total_devices;
6f60cbd3
DS
858 u64 bytenr;
859 pgoff_t index;
8a4b83cc 860
6f60cbd3
DS
861 /*
862 * we would like to check all the supers, but that would make
863 * a btrfs mount succeed after a mkfs from a different FS.
864 * So, we need to add a special mount option to scan for
865 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
866 */
867 bytenr = btrfs_sb_offset(0);
d4d77629 868 flags |= FMODE_EXCL;
10f6327b 869 mutex_lock(&uuid_mutex);
6f60cbd3
DS
870
871 bdev = blkdev_get_by_path(path, flags, holder);
872
873 if (IS_ERR(bdev)) {
874 ret = PTR_ERR(bdev);
beaf8ab3 875 goto error;
6f60cbd3
DS
876 }
877
878 /* make sure our super fits in the device */
879 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
880 goto error_bdev_put;
881
882 /* make sure our super fits in the page */
883 if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
884 goto error_bdev_put;
885
886 /* make sure our super doesn't straddle pages on disk */
887 index = bytenr >> PAGE_CACHE_SHIFT;
888 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
889 goto error_bdev_put;
890
891 /* pull in the page with our super */
892 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
893 index, GFP_NOFS);
894
895 if (IS_ERR_OR_NULL(page))
896 goto error_bdev_put;
897
898 p = kmap(page);
899
900 /* align our pointer to the offset of the super block */
901 disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
902
903 if (btrfs_super_bytenr(disk_super) != bytenr ||
3cae210f 904 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
6f60cbd3
DS
905 goto error_unmap;
906
a343832f 907 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 908 transid = btrfs_super_generation(disk_super);
02db0844 909 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 910
d03f918a
SB
911 if (disk_super->label[0]) {
912 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
913 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
d397712b 914 printk(KERN_INFO "device label %s ", disk_super->label);
d03f918a 915 } else {
22b63a29 916 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
d03f918a 917 }
6f60cbd3 918
c1c9ff7c 919 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
6f60cbd3 920
8a4b83cc 921 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
02db0844
JB
922 if (!ret && fs_devices_ret)
923 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3
DS
924
925error_unmap:
926 kunmap(page);
927 page_cache_release(page);
928
929error_bdev_put:
d4d77629 930 blkdev_put(bdev, flags);
8a4b83cc 931error:
beaf8ab3 932 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
933 return ret;
934}
0b86a832 935
6d07bcec
MX
936/* helper to account the used device space in the range */
937int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
938 u64 end, u64 *length)
939{
940 struct btrfs_key key;
941 struct btrfs_root *root = device->dev_root;
942 struct btrfs_dev_extent *dev_extent;
943 struct btrfs_path *path;
944 u64 extent_end;
945 int ret;
946 int slot;
947 struct extent_buffer *l;
948
949 *length = 0;
950
63a212ab 951 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
952 return 0;
953
954 path = btrfs_alloc_path();
955 if (!path)
956 return -ENOMEM;
957 path->reada = 2;
958
959 key.objectid = device->devid;
960 key.offset = start;
961 key.type = BTRFS_DEV_EXTENT_KEY;
962
963 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
964 if (ret < 0)
965 goto out;
966 if (ret > 0) {
967 ret = btrfs_previous_item(root, path, key.objectid, key.type);
968 if (ret < 0)
969 goto out;
970 }
971
972 while (1) {
973 l = path->nodes[0];
974 slot = path->slots[0];
975 if (slot >= btrfs_header_nritems(l)) {
976 ret = btrfs_next_leaf(root, path);
977 if (ret == 0)
978 continue;
979 if (ret < 0)
980 goto out;
981
982 break;
983 }
984 btrfs_item_key_to_cpu(l, &key, slot);
985
986 if (key.objectid < device->devid)
987 goto next;
988
989 if (key.objectid > device->devid)
990 break;
991
992 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
993 goto next;
994
995 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
996 extent_end = key.offset + btrfs_dev_extent_length(l,
997 dev_extent);
998 if (key.offset <= start && extent_end > end) {
999 *length = end - start + 1;
1000 break;
1001 } else if (key.offset <= start && extent_end > start)
1002 *length += extent_end - start;
1003 else if (key.offset > start && extent_end <= end)
1004 *length += extent_end - key.offset;
1005 else if (key.offset > start && key.offset <= end) {
1006 *length += end - key.offset + 1;
1007 break;
1008 } else if (key.offset > end)
1009 break;
1010
1011next:
1012 path->slots[0]++;
1013 }
1014 ret = 0;
1015out:
1016 btrfs_free_path(path);
1017 return ret;
1018}
1019
6df9a95e
JB
1020static int contains_pending_extent(struct btrfs_trans_handle *trans,
1021 struct btrfs_device *device,
1022 u64 *start, u64 len)
1023{
1024 struct extent_map *em;
1025 int ret = 0;
1026
1027 list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1028 struct map_lookup *map;
1029 int i;
1030
1031 map = (struct map_lookup *)em->bdev;
1032 for (i = 0; i < map->num_stripes; i++) {
1033 if (map->stripes[i].dev != device)
1034 continue;
1035 if (map->stripes[i].physical >= *start + len ||
1036 map->stripes[i].physical + em->orig_block_len <=
1037 *start)
1038 continue;
1039 *start = map->stripes[i].physical +
1040 em->orig_block_len;
1041 ret = 1;
1042 }
1043 }
1044
1045 return ret;
1046}
1047
1048
0b86a832 1049/*
7bfc837d 1050 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
1051 * @device: the device which we search the free space in
1052 * @num_bytes: the size of the free space that we need
1053 * @start: store the start of the free space.
1054 * @len: the size of the free space. that we find, or the size of the max
1055 * free space if we don't find suitable free space
1056 *
0b86a832
CM
1057 * this uses a pretty simple search, the expectation is that it is
1058 * called very infrequently and that a given device has a small number
1059 * of extents
7bfc837d
MX
1060 *
1061 * @start is used to store the start of the free space if we find. But if we
1062 * don't find suitable free space, it will be used to store the start position
1063 * of the max free space.
1064 *
1065 * @len is used to store the size of the free space that we find.
1066 * But if we don't find suitable free space, it is used to store the size of
1067 * the max free space.
0b86a832 1068 */
6df9a95e
JB
1069int find_free_dev_extent(struct btrfs_trans_handle *trans,
1070 struct btrfs_device *device, u64 num_bytes,
7bfc837d 1071 u64 *start, u64 *len)
0b86a832
CM
1072{
1073 struct btrfs_key key;
1074 struct btrfs_root *root = device->dev_root;
7bfc837d 1075 struct btrfs_dev_extent *dev_extent;
2b82032c 1076 struct btrfs_path *path;
7bfc837d
MX
1077 u64 hole_size;
1078 u64 max_hole_start;
1079 u64 max_hole_size;
1080 u64 extent_end;
1081 u64 search_start;
0b86a832
CM
1082 u64 search_end = device->total_bytes;
1083 int ret;
7bfc837d 1084 int slot;
0b86a832
CM
1085 struct extent_buffer *l;
1086
0b86a832
CM
1087 /* FIXME use last free of some kind */
1088
8a4b83cc
CM
1089 /* we don't want to overwrite the superblock on the drive,
1090 * so we make sure to start at an offset of at least 1MB
1091 */
a9c9bf68 1092 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 1093
6df9a95e
JB
1094 path = btrfs_alloc_path();
1095 if (!path)
1096 return -ENOMEM;
1097again:
7bfc837d
MX
1098 max_hole_start = search_start;
1099 max_hole_size = 0;
38c01b96 1100 hole_size = 0;
7bfc837d 1101
63a212ab 1102 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1103 ret = -ENOSPC;
6df9a95e 1104 goto out;
7bfc837d
MX
1105 }
1106
7bfc837d 1107 path->reada = 2;
6df9a95e
JB
1108 path->search_commit_root = 1;
1109 path->skip_locking = 1;
7bfc837d 1110
0b86a832
CM
1111 key.objectid = device->devid;
1112 key.offset = search_start;
1113 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1114
125ccb0a 1115 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1116 if (ret < 0)
7bfc837d 1117 goto out;
1fcbac58
YZ
1118 if (ret > 0) {
1119 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1120 if (ret < 0)
7bfc837d 1121 goto out;
1fcbac58 1122 }
7bfc837d 1123
0b86a832
CM
1124 while (1) {
1125 l = path->nodes[0];
1126 slot = path->slots[0];
1127 if (slot >= btrfs_header_nritems(l)) {
1128 ret = btrfs_next_leaf(root, path);
1129 if (ret == 0)
1130 continue;
1131 if (ret < 0)
7bfc837d
MX
1132 goto out;
1133
1134 break;
0b86a832
CM
1135 }
1136 btrfs_item_key_to_cpu(l, &key, slot);
1137
1138 if (key.objectid < device->devid)
1139 goto next;
1140
1141 if (key.objectid > device->devid)
7bfc837d 1142 break;
0b86a832 1143
7bfc837d
MX
1144 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1145 goto next;
9779b72f 1146
7bfc837d
MX
1147 if (key.offset > search_start) {
1148 hole_size = key.offset - search_start;
9779b72f 1149
6df9a95e
JB
1150 /*
1151 * Have to check before we set max_hole_start, otherwise
1152 * we could end up sending back this offset anyway.
1153 */
1154 if (contains_pending_extent(trans, device,
1155 &search_start,
1156 hole_size))
1157 hole_size = 0;
1158
7bfc837d
MX
1159 if (hole_size > max_hole_size) {
1160 max_hole_start = search_start;
1161 max_hole_size = hole_size;
1162 }
9779b72f 1163
7bfc837d
MX
1164 /*
1165 * If this free space is greater than which we need,
1166 * it must be the max free space that we have found
1167 * until now, so max_hole_start must point to the start
1168 * of this free space and the length of this free space
1169 * is stored in max_hole_size. Thus, we return
1170 * max_hole_start and max_hole_size and go back to the
1171 * caller.
1172 */
1173 if (hole_size >= num_bytes) {
1174 ret = 0;
1175 goto out;
0b86a832
CM
1176 }
1177 }
0b86a832 1178
0b86a832 1179 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1180 extent_end = key.offset + btrfs_dev_extent_length(l,
1181 dev_extent);
1182 if (extent_end > search_start)
1183 search_start = extent_end;
0b86a832
CM
1184next:
1185 path->slots[0]++;
1186 cond_resched();
1187 }
0b86a832 1188
38c01b96 1189 /*
1190 * At this point, search_start should be the end of
1191 * allocated dev extents, and when shrinking the device,
1192 * search_end may be smaller than search_start.
1193 */
1194 if (search_end > search_start)
1195 hole_size = search_end - search_start;
1196
7bfc837d
MX
1197 if (hole_size > max_hole_size) {
1198 max_hole_start = search_start;
1199 max_hole_size = hole_size;
0b86a832 1200 }
0b86a832 1201
6df9a95e
JB
1202 if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1203 btrfs_release_path(path);
1204 goto again;
1205 }
1206
7bfc837d
MX
1207 /* See above. */
1208 if (hole_size < num_bytes)
1209 ret = -ENOSPC;
1210 else
1211 ret = 0;
1212
1213out:
2b82032c 1214 btrfs_free_path(path);
7bfc837d 1215 *start = max_hole_start;
b2117a39 1216 if (len)
7bfc837d 1217 *len = max_hole_size;
0b86a832
CM
1218 return ret;
1219}
1220
b2950863 1221static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1222 struct btrfs_device *device,
1223 u64 start)
1224{
1225 int ret;
1226 struct btrfs_path *path;
1227 struct btrfs_root *root = device->dev_root;
1228 struct btrfs_key key;
a061fc8d
CM
1229 struct btrfs_key found_key;
1230 struct extent_buffer *leaf = NULL;
1231 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1232
1233 path = btrfs_alloc_path();
1234 if (!path)
1235 return -ENOMEM;
1236
1237 key.objectid = device->devid;
1238 key.offset = start;
1239 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1240again:
8f18cf13 1241 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1242 if (ret > 0) {
1243 ret = btrfs_previous_item(root, path, key.objectid,
1244 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1245 if (ret)
1246 goto out;
a061fc8d
CM
1247 leaf = path->nodes[0];
1248 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1249 extent = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_dev_extent);
1251 BUG_ON(found_key.offset > start || found_key.offset +
1252 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1253 key = found_key;
1254 btrfs_release_path(path);
1255 goto again;
a061fc8d
CM
1256 } else if (ret == 0) {
1257 leaf = path->nodes[0];
1258 extent = btrfs_item_ptr(leaf, path->slots[0],
1259 struct btrfs_dev_extent);
79787eaa
JM
1260 } else {
1261 btrfs_error(root->fs_info, ret, "Slot search failed");
1262 goto out;
a061fc8d 1263 }
8f18cf13 1264
2bf64758
JB
1265 if (device->bytes_used > 0) {
1266 u64 len = btrfs_dev_extent_length(leaf, extent);
1267 device->bytes_used -= len;
1268 spin_lock(&root->fs_info->free_chunk_lock);
1269 root->fs_info->free_chunk_space += len;
1270 spin_unlock(&root->fs_info->free_chunk_lock);
1271 }
8f18cf13 1272 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1273 if (ret) {
1274 btrfs_error(root->fs_info, ret,
1275 "Failed to remove dev extent item");
1276 }
b0b802d7 1277out:
8f18cf13
CM
1278 btrfs_free_path(path);
1279 return ret;
1280}
1281
48a3b636
ES
1282static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1283 struct btrfs_device *device,
1284 u64 chunk_tree, u64 chunk_objectid,
1285 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1286{
1287 int ret;
1288 struct btrfs_path *path;
1289 struct btrfs_root *root = device->dev_root;
1290 struct btrfs_dev_extent *extent;
1291 struct extent_buffer *leaf;
1292 struct btrfs_key key;
1293
dfe25020 1294 WARN_ON(!device->in_fs_metadata);
63a212ab 1295 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1296 path = btrfs_alloc_path();
1297 if (!path)
1298 return -ENOMEM;
1299
0b86a832 1300 key.objectid = device->devid;
2b82032c 1301 key.offset = start;
0b86a832
CM
1302 key.type = BTRFS_DEV_EXTENT_KEY;
1303 ret = btrfs_insert_empty_item(trans, root, path, &key,
1304 sizeof(*extent));
2cdcecbc
MF
1305 if (ret)
1306 goto out;
0b86a832
CM
1307
1308 leaf = path->nodes[0];
1309 extent = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_dev_extent);
e17cade2
CM
1311 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1312 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1313 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1314
1315 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1316 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1317
0b86a832
CM
1318 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1319 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1320out:
0b86a832
CM
1321 btrfs_free_path(path);
1322 return ret;
1323}
1324
6df9a95e 1325static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1326{
6df9a95e
JB
1327 struct extent_map_tree *em_tree;
1328 struct extent_map *em;
1329 struct rb_node *n;
1330 u64 ret = 0;
0b86a832 1331
6df9a95e
JB
1332 em_tree = &fs_info->mapping_tree.map_tree;
1333 read_lock(&em_tree->lock);
1334 n = rb_last(&em_tree->map);
1335 if (n) {
1336 em = rb_entry(n, struct extent_map, rb_node);
1337 ret = em->start + em->len;
0b86a832 1338 }
6df9a95e
JB
1339 read_unlock(&em_tree->lock);
1340
0b86a832
CM
1341 return ret;
1342}
1343
53f10659
ID
1344static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1345 u64 *devid_ret)
0b86a832
CM
1346{
1347 int ret;
1348 struct btrfs_key key;
1349 struct btrfs_key found_key;
2b82032c
YZ
1350 struct btrfs_path *path;
1351
2b82032c
YZ
1352 path = btrfs_alloc_path();
1353 if (!path)
1354 return -ENOMEM;
0b86a832
CM
1355
1356 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1357 key.type = BTRFS_DEV_ITEM_KEY;
1358 key.offset = (u64)-1;
1359
53f10659 1360 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1361 if (ret < 0)
1362 goto error;
1363
79787eaa 1364 BUG_ON(ret == 0); /* Corruption */
0b86a832 1365
53f10659
ID
1366 ret = btrfs_previous_item(fs_info->chunk_root, path,
1367 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1368 BTRFS_DEV_ITEM_KEY);
1369 if (ret) {
53f10659 1370 *devid_ret = 1;
0b86a832
CM
1371 } else {
1372 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1373 path->slots[0]);
53f10659 1374 *devid_ret = found_key.offset + 1;
0b86a832
CM
1375 }
1376 ret = 0;
1377error:
2b82032c 1378 btrfs_free_path(path);
0b86a832
CM
1379 return ret;
1380}
1381
1382/*
1383 * the device information is stored in the chunk root
1384 * the btrfs_device struct should be fully filled in
1385 */
48a3b636
ES
1386static int btrfs_add_device(struct btrfs_trans_handle *trans,
1387 struct btrfs_root *root,
1388 struct btrfs_device *device)
0b86a832
CM
1389{
1390 int ret;
1391 struct btrfs_path *path;
1392 struct btrfs_dev_item *dev_item;
1393 struct extent_buffer *leaf;
1394 struct btrfs_key key;
1395 unsigned long ptr;
0b86a832
CM
1396
1397 root = root->fs_info->chunk_root;
1398
1399 path = btrfs_alloc_path();
1400 if (!path)
1401 return -ENOMEM;
1402
0b86a832
CM
1403 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1404 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1405 key.offset = device->devid;
0b86a832
CM
1406
1407 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1408 sizeof(*dev_item));
0b86a832
CM
1409 if (ret)
1410 goto out;
1411
1412 leaf = path->nodes[0];
1413 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1414
1415 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1416 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1417 btrfs_set_device_type(leaf, dev_item, device->type);
1418 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1419 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1420 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1421 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1422 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1423 btrfs_set_device_group(leaf, dev_item, 0);
1424 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1425 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1426 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1427
410ba3a2 1428 ptr = btrfs_device_uuid(dev_item);
e17cade2 1429 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1430 ptr = btrfs_device_fsid(dev_item);
2b82032c 1431 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1432 btrfs_mark_buffer_dirty(leaf);
0b86a832 1433
2b82032c 1434 ret = 0;
0b86a832
CM
1435out:
1436 btrfs_free_path(path);
1437 return ret;
1438}
8f18cf13 1439
a061fc8d
CM
1440static int btrfs_rm_dev_item(struct btrfs_root *root,
1441 struct btrfs_device *device)
1442{
1443 int ret;
1444 struct btrfs_path *path;
a061fc8d 1445 struct btrfs_key key;
a061fc8d
CM
1446 struct btrfs_trans_handle *trans;
1447
1448 root = root->fs_info->chunk_root;
1449
1450 path = btrfs_alloc_path();
1451 if (!path)
1452 return -ENOMEM;
1453
a22285a6 1454 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1455 if (IS_ERR(trans)) {
1456 btrfs_free_path(path);
1457 return PTR_ERR(trans);
1458 }
a061fc8d
CM
1459 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1460 key.type = BTRFS_DEV_ITEM_KEY;
1461 key.offset = device->devid;
7d9eb12c 1462 lock_chunks(root);
a061fc8d
CM
1463
1464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465 if (ret < 0)
1466 goto out;
1467
1468 if (ret > 0) {
1469 ret = -ENOENT;
1470 goto out;
1471 }
1472
1473 ret = btrfs_del_item(trans, root, path);
1474 if (ret)
1475 goto out;
a061fc8d
CM
1476out:
1477 btrfs_free_path(path);
7d9eb12c 1478 unlock_chunks(root);
a061fc8d
CM
1479 btrfs_commit_transaction(trans, root);
1480 return ret;
1481}
1482
1483int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1484{
1485 struct btrfs_device *device;
2b82032c 1486 struct btrfs_device *next_device;
a061fc8d 1487 struct block_device *bdev;
dfe25020 1488 struct buffer_head *bh = NULL;
a061fc8d 1489 struct btrfs_super_block *disk_super;
1f78160c 1490 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1491 u64 all_avail;
1492 u64 devid;
2b82032c
YZ
1493 u64 num_devices;
1494 u8 *dev_uuid;
de98ced9 1495 unsigned seq;
a061fc8d 1496 int ret = 0;
1f78160c 1497 bool clear_super = false;
a061fc8d 1498
a061fc8d
CM
1499 mutex_lock(&uuid_mutex);
1500
de98ced9
MX
1501 do {
1502 seq = read_seqbegin(&root->fs_info->profiles_lock);
1503
1504 all_avail = root->fs_info->avail_data_alloc_bits |
1505 root->fs_info->avail_system_alloc_bits |
1506 root->fs_info->avail_metadata_alloc_bits;
1507 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
a061fc8d 1508
8dabb742
SB
1509 num_devices = root->fs_info->fs_devices->num_devices;
1510 btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1511 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1512 WARN_ON(num_devices < 1);
1513 num_devices--;
1514 }
1515 btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1516
1517 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
183860f6 1518 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
a061fc8d
CM
1519 goto out;
1520 }
1521
8dabb742 1522 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
183860f6 1523 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
a061fc8d
CM
1524 goto out;
1525 }
1526
53b381b3
DW
1527 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1528 root->fs_info->fs_devices->rw_devices <= 2) {
183860f6 1529 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
53b381b3
DW
1530 goto out;
1531 }
1532 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1533 root->fs_info->fs_devices->rw_devices <= 3) {
183860f6 1534 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
53b381b3
DW
1535 goto out;
1536 }
1537
dfe25020 1538 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1539 struct list_head *devices;
1540 struct btrfs_device *tmp;
a061fc8d 1541
dfe25020
CM
1542 device = NULL;
1543 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1544 /*
1545 * It is safe to read the devices since the volume_mutex
1546 * is held.
1547 */
c6e30871 1548 list_for_each_entry(tmp, devices, dev_list) {
63a212ab
SB
1549 if (tmp->in_fs_metadata &&
1550 !tmp->is_tgtdev_for_dev_replace &&
1551 !tmp->bdev) {
dfe25020
CM
1552 device = tmp;
1553 break;
1554 }
1555 }
1556 bdev = NULL;
1557 bh = NULL;
1558 disk_super = NULL;
1559 if (!device) {
183860f6 1560 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
dfe25020
CM
1561 goto out;
1562 }
dfe25020 1563 } else {
beaf8ab3 1564 ret = btrfs_get_bdev_and_sb(device_path,
cc975eb4 1565 FMODE_WRITE | FMODE_EXCL,
beaf8ab3
SB
1566 root->fs_info->bdev_holder, 0,
1567 &bdev, &bh);
1568 if (ret)
dfe25020 1569 goto out;
dfe25020 1570 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1571 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c 1572 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1573 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2b82032c 1574 disk_super->fsid);
dfe25020
CM
1575 if (!device) {
1576 ret = -ENOENT;
1577 goto error_brelse;
1578 }
2b82032c 1579 }
dfe25020 1580
63a212ab 1581 if (device->is_tgtdev_for_dev_replace) {
183860f6 1582 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab
SB
1583 goto error_brelse;
1584 }
1585
2b82032c 1586 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1587 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c
YZ
1588 goto error_brelse;
1589 }
1590
1591 if (device->writeable) {
0c1daee0 1592 lock_chunks(root);
2b82032c 1593 list_del_init(&device->dev_alloc_list);
0c1daee0 1594 unlock_chunks(root);
2b82032c 1595 root->fs_info->fs_devices->rw_devices--;
1f78160c 1596 clear_super = true;
dfe25020 1597 }
a061fc8d 1598
d7901554 1599 mutex_unlock(&uuid_mutex);
a061fc8d 1600 ret = btrfs_shrink_device(device, 0);
d7901554 1601 mutex_lock(&uuid_mutex);
a061fc8d 1602 if (ret)
9b3517e9 1603 goto error_undo;
a061fc8d 1604
63a212ab
SB
1605 /*
1606 * TODO: the superblock still includes this device in its num_devices
1607 * counter although write_all_supers() is not locked out. This
1608 * could give a filesystem state which requires a degraded mount.
1609 */
a061fc8d
CM
1610 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1611 if (ret)
9b3517e9 1612 goto error_undo;
a061fc8d 1613
2bf64758
JB
1614 spin_lock(&root->fs_info->free_chunk_lock);
1615 root->fs_info->free_chunk_space = device->total_bytes -
1616 device->bytes_used;
1617 spin_unlock(&root->fs_info->free_chunk_lock);
1618
2b82032c 1619 device->in_fs_metadata = 0;
aa1b8cd4 1620 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1621
1622 /*
1623 * the device list mutex makes sure that we don't change
1624 * the device list while someone else is writing out all
d7306801
FDBM
1625 * the device supers. Whoever is writing all supers, should
1626 * lock the device list mutex before getting the number of
1627 * devices in the super block (super_copy). Conversely,
1628 * whoever updates the number of devices in the super block
1629 * (super_copy) should hold the device list mutex.
e5e9a520 1630 */
1f78160c
XG
1631
1632 cur_devices = device->fs_devices;
e5e9a520 1633 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1634 list_del_rcu(&device->dev_list);
e5e9a520 1635
e4404d6e 1636 device->fs_devices->num_devices--;
02db0844 1637 device->fs_devices->total_devices--;
2b82032c 1638
cd02dca5
CM
1639 if (device->missing)
1640 root->fs_info->fs_devices->missing_devices--;
1641
2b82032c
YZ
1642 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1643 struct btrfs_device, dev_list);
1644 if (device->bdev == root->fs_info->sb->s_bdev)
1645 root->fs_info->sb->s_bdev = next_device->bdev;
1646 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1647 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1648
1f78160c 1649 if (device->bdev)
e4404d6e 1650 device->fs_devices->open_devices--;
1f78160c
XG
1651
1652 call_rcu(&device->rcu, free_device);
e4404d6e 1653
6c41761f
DS
1654 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1655 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1656 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1657
1f78160c 1658 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1659 struct btrfs_fs_devices *fs_devices;
1660 fs_devices = root->fs_info->fs_devices;
1661 while (fs_devices) {
1f78160c 1662 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1663 break;
1664 fs_devices = fs_devices->seed;
2b82032c 1665 }
1f78160c
XG
1666 fs_devices->seed = cur_devices->seed;
1667 cur_devices->seed = NULL;
0c1daee0 1668 lock_chunks(root);
1f78160c 1669 __btrfs_close_devices(cur_devices);
0c1daee0 1670 unlock_chunks(root);
1f78160c 1671 free_fs_devices(cur_devices);
2b82032c
YZ
1672 }
1673
5af3e8cc
SB
1674 root->fs_info->num_tolerated_disk_barrier_failures =
1675 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1676
2b82032c
YZ
1677 /*
1678 * at this point, the device is zero sized. We want to
1679 * remove it from the devices list and zero out the old super
1680 */
aa1b8cd4 1681 if (clear_super && disk_super) {
dfe25020
CM
1682 /* make sure this device isn't detected as part of
1683 * the FS anymore
1684 */
1685 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1686 set_buffer_dirty(bh);
1687 sync_dirty_buffer(bh);
dfe25020 1688 }
a061fc8d 1689
a061fc8d 1690 ret = 0;
a061fc8d 1691
b8b8ff59 1692 /* Notify udev that device has changed */
3c911608
ES
1693 if (bdev)
1694 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
b8b8ff59 1695
a061fc8d
CM
1696error_brelse:
1697 brelse(bh);
dfe25020 1698 if (bdev)
e525fd89 1699 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1700out:
1701 mutex_unlock(&uuid_mutex);
a061fc8d 1702 return ret;
9b3517e9
ID
1703error_undo:
1704 if (device->writeable) {
0c1daee0 1705 lock_chunks(root);
9b3517e9
ID
1706 list_add(&device->dev_alloc_list,
1707 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1708 unlock_chunks(root);
9b3517e9
ID
1709 root->fs_info->fs_devices->rw_devices++;
1710 }
1711 goto error_brelse;
a061fc8d
CM
1712}
1713
e93c89c1
SB
1714void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1715 struct btrfs_device *srcdev)
1716{
1717 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1718 list_del_rcu(&srcdev->dev_list);
1719 list_del_rcu(&srcdev->dev_alloc_list);
1720 fs_info->fs_devices->num_devices--;
1721 if (srcdev->missing) {
1722 fs_info->fs_devices->missing_devices--;
1723 fs_info->fs_devices->rw_devices++;
1724 }
1725 if (srcdev->can_discard)
1726 fs_info->fs_devices->num_can_discard--;
1727 if (srcdev->bdev)
1728 fs_info->fs_devices->open_devices--;
1729
1730 call_rcu(&srcdev->rcu, free_device);
1731}
1732
1733void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1734 struct btrfs_device *tgtdev)
1735{
1736 struct btrfs_device *next_device;
1737
1738 WARN_ON(!tgtdev);
1739 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1740 if (tgtdev->bdev) {
1741 btrfs_scratch_superblock(tgtdev);
1742 fs_info->fs_devices->open_devices--;
1743 }
1744 fs_info->fs_devices->num_devices--;
1745 if (tgtdev->can_discard)
1746 fs_info->fs_devices->num_can_discard++;
1747
1748 next_device = list_entry(fs_info->fs_devices->devices.next,
1749 struct btrfs_device, dev_list);
1750 if (tgtdev->bdev == fs_info->sb->s_bdev)
1751 fs_info->sb->s_bdev = next_device->bdev;
1752 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1753 fs_info->fs_devices->latest_bdev = next_device->bdev;
1754 list_del_rcu(&tgtdev->dev_list);
1755
1756 call_rcu(&tgtdev->rcu, free_device);
1757
1758 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1759}
1760
48a3b636
ES
1761static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1762 struct btrfs_device **device)
7ba15b7d
SB
1763{
1764 int ret = 0;
1765 struct btrfs_super_block *disk_super;
1766 u64 devid;
1767 u8 *dev_uuid;
1768 struct block_device *bdev;
1769 struct buffer_head *bh;
1770
1771 *device = NULL;
1772 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1773 root->fs_info->bdev_holder, 0, &bdev, &bh);
1774 if (ret)
1775 return ret;
1776 disk_super = (struct btrfs_super_block *)bh->b_data;
1777 devid = btrfs_stack_device_id(&disk_super->dev_item);
1778 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 1779 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
1780 disk_super->fsid);
1781 brelse(bh);
1782 if (!*device)
1783 ret = -ENOENT;
1784 blkdev_put(bdev, FMODE_READ);
1785 return ret;
1786}
1787
1788int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1789 char *device_path,
1790 struct btrfs_device **device)
1791{
1792 *device = NULL;
1793 if (strcmp(device_path, "missing") == 0) {
1794 struct list_head *devices;
1795 struct btrfs_device *tmp;
1796
1797 devices = &root->fs_info->fs_devices->devices;
1798 /*
1799 * It is safe to read the devices since the volume_mutex
1800 * is held by the caller.
1801 */
1802 list_for_each_entry(tmp, devices, dev_list) {
1803 if (tmp->in_fs_metadata && !tmp->bdev) {
1804 *device = tmp;
1805 break;
1806 }
1807 }
1808
1809 if (!*device) {
1810 pr_err("btrfs: no missing device found\n");
1811 return -ENOENT;
1812 }
1813
1814 return 0;
1815 } else {
1816 return btrfs_find_device_by_path(root, device_path, device);
1817 }
1818}
1819
2b82032c
YZ
1820/*
1821 * does all the dirty work required for changing file system's UUID.
1822 */
125ccb0a 1823static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1824{
1825 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1826 struct btrfs_fs_devices *old_devices;
e4404d6e 1827 struct btrfs_fs_devices *seed_devices;
6c41761f 1828 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1829 struct btrfs_device *device;
1830 u64 super_flags;
1831
1832 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1833 if (!fs_devices->seeding)
2b82032c
YZ
1834 return -EINVAL;
1835
2208a378
ID
1836 seed_devices = __alloc_fs_devices();
1837 if (IS_ERR(seed_devices))
1838 return PTR_ERR(seed_devices);
2b82032c 1839
e4404d6e
YZ
1840 old_devices = clone_fs_devices(fs_devices);
1841 if (IS_ERR(old_devices)) {
1842 kfree(seed_devices);
1843 return PTR_ERR(old_devices);
2b82032c 1844 }
e4404d6e 1845
2b82032c
YZ
1846 list_add(&old_devices->list, &fs_uuids);
1847
e4404d6e
YZ
1848 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1849 seed_devices->opened = 1;
1850 INIT_LIST_HEAD(&seed_devices->devices);
1851 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1852 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1853
1854 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1855 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1856 synchronize_rcu);
c9513edb 1857
e4404d6e
YZ
1858 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1859 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1860 device->fs_devices = seed_devices;
1861 }
1862
2b82032c
YZ
1863 fs_devices->seeding = 0;
1864 fs_devices->num_devices = 0;
1865 fs_devices->open_devices = 0;
02db0844 1866 fs_devices->total_devices = 0;
e4404d6e 1867 fs_devices->seed = seed_devices;
2b82032c
YZ
1868
1869 generate_random_uuid(fs_devices->fsid);
1870 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1871 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
1872 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1873
2b82032c
YZ
1874 super_flags = btrfs_super_flags(disk_super) &
1875 ~BTRFS_SUPER_FLAG_SEEDING;
1876 btrfs_set_super_flags(disk_super, super_flags);
1877
1878 return 0;
1879}
1880
1881/*
1882 * strore the expected generation for seed devices in device items.
1883 */
1884static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root)
1886{
1887 struct btrfs_path *path;
1888 struct extent_buffer *leaf;
1889 struct btrfs_dev_item *dev_item;
1890 struct btrfs_device *device;
1891 struct btrfs_key key;
1892 u8 fs_uuid[BTRFS_UUID_SIZE];
1893 u8 dev_uuid[BTRFS_UUID_SIZE];
1894 u64 devid;
1895 int ret;
1896
1897 path = btrfs_alloc_path();
1898 if (!path)
1899 return -ENOMEM;
1900
1901 root = root->fs_info->chunk_root;
1902 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1903 key.offset = 0;
1904 key.type = BTRFS_DEV_ITEM_KEY;
1905
1906 while (1) {
1907 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1908 if (ret < 0)
1909 goto error;
1910
1911 leaf = path->nodes[0];
1912next_slot:
1913 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1914 ret = btrfs_next_leaf(root, path);
1915 if (ret > 0)
1916 break;
1917 if (ret < 0)
1918 goto error;
1919 leaf = path->nodes[0];
1920 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1921 btrfs_release_path(path);
2b82032c
YZ
1922 continue;
1923 }
1924
1925 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1926 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1927 key.type != BTRFS_DEV_ITEM_KEY)
1928 break;
1929
1930 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1931 struct btrfs_dev_item);
1932 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 1933 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 1934 BTRFS_UUID_SIZE);
1473b24e 1935 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 1936 BTRFS_UUID_SIZE);
aa1b8cd4
SB
1937 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1938 fs_uuid);
79787eaa 1939 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1940
1941 if (device->fs_devices->seeding) {
1942 btrfs_set_device_generation(leaf, dev_item,
1943 device->generation);
1944 btrfs_mark_buffer_dirty(leaf);
1945 }
1946
1947 path->slots[0]++;
1948 goto next_slot;
1949 }
1950 ret = 0;
1951error:
1952 btrfs_free_path(path);
1953 return ret;
1954}
1955
788f20eb
CM
1956int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1957{
d5e2003c 1958 struct request_queue *q;
788f20eb
CM
1959 struct btrfs_trans_handle *trans;
1960 struct btrfs_device *device;
1961 struct block_device *bdev;
788f20eb 1962 struct list_head *devices;
2b82032c 1963 struct super_block *sb = root->fs_info->sb;
606686ee 1964 struct rcu_string *name;
788f20eb 1965 u64 total_bytes;
2b82032c 1966 int seeding_dev = 0;
788f20eb
CM
1967 int ret = 0;
1968
2b82032c 1969 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1970 return -EROFS;
788f20eb 1971
a5d16333 1972 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1973 root->fs_info->bdev_holder);
7f59203a
JB
1974 if (IS_ERR(bdev))
1975 return PTR_ERR(bdev);
a2135011 1976
2b82032c
YZ
1977 if (root->fs_info->fs_devices->seeding) {
1978 seeding_dev = 1;
1979 down_write(&sb->s_umount);
1980 mutex_lock(&uuid_mutex);
1981 }
1982
8c8bee1d 1983 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1984
788f20eb 1985 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
1986
1987 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1988 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1989 if (device->bdev == bdev) {
1990 ret = -EEXIST;
d25628bd
LB
1991 mutex_unlock(
1992 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 1993 goto error;
788f20eb
CM
1994 }
1995 }
d25628bd 1996 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1997
12bd2fc0
ID
1998 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
1999 if (IS_ERR(device)) {
788f20eb 2000 /* we can safely leave the fs_devices entry around */
12bd2fc0 2001 ret = PTR_ERR(device);
2b82032c 2002 goto error;
788f20eb
CM
2003 }
2004
606686ee
JB
2005 name = rcu_string_strdup(device_path, GFP_NOFS);
2006 if (!name) {
788f20eb 2007 kfree(device);
2b82032c
YZ
2008 ret = -ENOMEM;
2009 goto error;
788f20eb 2010 }
606686ee 2011 rcu_assign_pointer(device->name, name);
2b82032c 2012
a22285a6 2013 trans = btrfs_start_transaction(root, 0);
98d5dc13 2014 if (IS_ERR(trans)) {
606686ee 2015 rcu_string_free(device->name);
98d5dc13
TI
2016 kfree(device);
2017 ret = PTR_ERR(trans);
2018 goto error;
2019 }
2020
2b82032c
YZ
2021 lock_chunks(root);
2022
d5e2003c
JB
2023 q = bdev_get_queue(bdev);
2024 if (blk_queue_discard(q))
2025 device->can_discard = 1;
2b82032c 2026 device->writeable = 1;
2b82032c 2027 device->generation = trans->transid;
788f20eb
CM
2028 device->io_width = root->sectorsize;
2029 device->io_align = root->sectorsize;
2030 device->sector_size = root->sectorsize;
2031 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2032 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
2033 device->dev_root = root->fs_info->dev_root;
2034 device->bdev = bdev;
dfe25020 2035 device->in_fs_metadata = 1;
63a212ab 2036 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2037 device->mode = FMODE_EXCL;
2b82032c 2038 set_blocksize(device->bdev, 4096);
788f20eb 2039
2b82032c
YZ
2040 if (seeding_dev) {
2041 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2042 ret = btrfs_prepare_sprout(root);
79787eaa 2043 BUG_ON(ret); /* -ENOMEM */
2b82032c 2044 }
788f20eb 2045
2b82032c 2046 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2047
e5e9a520 2048 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 2049 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2050 list_add(&device->dev_alloc_list,
2051 &root->fs_info->fs_devices->alloc_list);
2052 root->fs_info->fs_devices->num_devices++;
2053 root->fs_info->fs_devices->open_devices++;
2054 root->fs_info->fs_devices->rw_devices++;
02db0844 2055 root->fs_info->fs_devices->total_devices++;
d5e2003c
JB
2056 if (device->can_discard)
2057 root->fs_info->fs_devices->num_can_discard++;
2b82032c 2058 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2059
2bf64758
JB
2060 spin_lock(&root->fs_info->free_chunk_lock);
2061 root->fs_info->free_chunk_space += device->total_bytes;
2062 spin_unlock(&root->fs_info->free_chunk_lock);
2063
c289811c
CM
2064 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2065 root->fs_info->fs_devices->rotating = 1;
2066
6c41761f
DS
2067 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2068 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
2069 total_bytes + device->total_bytes);
2070
6c41761f
DS
2071 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2072 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 2073 total_bytes + 1);
e5e9a520 2074 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2075
2b82032c
YZ
2076 if (seeding_dev) {
2077 ret = init_first_rw_device(trans, root, device);
005d6427
DS
2078 if (ret) {
2079 btrfs_abort_transaction(trans, root, ret);
79787eaa 2080 goto error_trans;
005d6427 2081 }
2b82032c 2082 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2083 if (ret) {
2084 btrfs_abort_transaction(trans, root, ret);
79787eaa 2085 goto error_trans;
005d6427 2086 }
2b82032c
YZ
2087 } else {
2088 ret = btrfs_add_device(trans, root, device);
005d6427
DS
2089 if (ret) {
2090 btrfs_abort_transaction(trans, root, ret);
79787eaa 2091 goto error_trans;
005d6427 2092 }
2b82032c
YZ
2093 }
2094
913d952e
CM
2095 /*
2096 * we've got more storage, clear any full flags on the space
2097 * infos
2098 */
2099 btrfs_clear_space_info_full(root->fs_info);
2100
7d9eb12c 2101 unlock_chunks(root);
5af3e8cc
SB
2102 root->fs_info->num_tolerated_disk_barrier_failures =
2103 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2104 ret = btrfs_commit_transaction(trans, root);
a2135011 2105
2b82032c
YZ
2106 if (seeding_dev) {
2107 mutex_unlock(&uuid_mutex);
2108 up_write(&sb->s_umount);
788f20eb 2109
79787eaa
JM
2110 if (ret) /* transaction commit */
2111 return ret;
2112
2b82032c 2113 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
2114 if (ret < 0)
2115 btrfs_error(root->fs_info, ret,
2116 "Failed to relocate sys chunks after "
2117 "device initialization. This can be fixed "
2118 "using the \"btrfs balance\" command.");
671415b7
MX
2119 trans = btrfs_attach_transaction(root);
2120 if (IS_ERR(trans)) {
2121 if (PTR_ERR(trans) == -ENOENT)
2122 return 0;
2123 return PTR_ERR(trans);
2124 }
2125 ret = btrfs_commit_transaction(trans, root);
2b82032c 2126 }
c9e9f97b 2127
2b82032c 2128 return ret;
79787eaa
JM
2129
2130error_trans:
2131 unlock_chunks(root);
79787eaa 2132 btrfs_end_transaction(trans, root);
606686ee 2133 rcu_string_free(device->name);
79787eaa 2134 kfree(device);
2b82032c 2135error:
e525fd89 2136 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2137 if (seeding_dev) {
2138 mutex_unlock(&uuid_mutex);
2139 up_write(&sb->s_umount);
2140 }
c9e9f97b 2141 return ret;
788f20eb
CM
2142}
2143
e93c89c1
SB
2144int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2145 struct btrfs_device **device_out)
2146{
2147 struct request_queue *q;
2148 struct btrfs_device *device;
2149 struct block_device *bdev;
2150 struct btrfs_fs_info *fs_info = root->fs_info;
2151 struct list_head *devices;
2152 struct rcu_string *name;
12bd2fc0 2153 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2154 int ret = 0;
2155
2156 *device_out = NULL;
2157 if (fs_info->fs_devices->seeding)
2158 return -EINVAL;
2159
2160 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2161 fs_info->bdev_holder);
2162 if (IS_ERR(bdev))
2163 return PTR_ERR(bdev);
2164
2165 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2166
2167 devices = &fs_info->fs_devices->devices;
2168 list_for_each_entry(device, devices, dev_list) {
2169 if (device->bdev == bdev) {
2170 ret = -EEXIST;
2171 goto error;
2172 }
2173 }
2174
12bd2fc0
ID
2175 device = btrfs_alloc_device(NULL, &devid, NULL);
2176 if (IS_ERR(device)) {
2177 ret = PTR_ERR(device);
e93c89c1
SB
2178 goto error;
2179 }
2180
2181 name = rcu_string_strdup(device_path, GFP_NOFS);
2182 if (!name) {
2183 kfree(device);
2184 ret = -ENOMEM;
2185 goto error;
2186 }
2187 rcu_assign_pointer(device->name, name);
2188
2189 q = bdev_get_queue(bdev);
2190 if (blk_queue_discard(q))
2191 device->can_discard = 1;
2192 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2193 device->writeable = 1;
e93c89c1
SB
2194 device->generation = 0;
2195 device->io_width = root->sectorsize;
2196 device->io_align = root->sectorsize;
2197 device->sector_size = root->sectorsize;
2198 device->total_bytes = i_size_read(bdev->bd_inode);
2199 device->disk_total_bytes = device->total_bytes;
2200 device->dev_root = fs_info->dev_root;
2201 device->bdev = bdev;
2202 device->in_fs_metadata = 1;
2203 device->is_tgtdev_for_dev_replace = 1;
2204 device->mode = FMODE_EXCL;
2205 set_blocksize(device->bdev, 4096);
2206 device->fs_devices = fs_info->fs_devices;
2207 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2208 fs_info->fs_devices->num_devices++;
2209 fs_info->fs_devices->open_devices++;
2210 if (device->can_discard)
2211 fs_info->fs_devices->num_can_discard++;
2212 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2213
2214 *device_out = device;
2215 return ret;
2216
2217error:
2218 blkdev_put(bdev, FMODE_EXCL);
2219 return ret;
2220}
2221
2222void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2223 struct btrfs_device *tgtdev)
2224{
2225 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2226 tgtdev->io_width = fs_info->dev_root->sectorsize;
2227 tgtdev->io_align = fs_info->dev_root->sectorsize;
2228 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2229 tgtdev->dev_root = fs_info->dev_root;
2230 tgtdev->in_fs_metadata = 1;
2231}
2232
d397712b
CM
2233static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2234 struct btrfs_device *device)
0b86a832
CM
2235{
2236 int ret;
2237 struct btrfs_path *path;
2238 struct btrfs_root *root;
2239 struct btrfs_dev_item *dev_item;
2240 struct extent_buffer *leaf;
2241 struct btrfs_key key;
2242
2243 root = device->dev_root->fs_info->chunk_root;
2244
2245 path = btrfs_alloc_path();
2246 if (!path)
2247 return -ENOMEM;
2248
2249 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2250 key.type = BTRFS_DEV_ITEM_KEY;
2251 key.offset = device->devid;
2252
2253 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2254 if (ret < 0)
2255 goto out;
2256
2257 if (ret > 0) {
2258 ret = -ENOENT;
2259 goto out;
2260 }
2261
2262 leaf = path->nodes[0];
2263 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2264
2265 btrfs_set_device_id(leaf, dev_item, device->devid);
2266 btrfs_set_device_type(leaf, dev_item, device->type);
2267 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2268 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2269 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 2270 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
2271 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2272 btrfs_mark_buffer_dirty(leaf);
2273
2274out:
2275 btrfs_free_path(path);
2276 return ret;
2277}
2278
7d9eb12c 2279static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2280 struct btrfs_device *device, u64 new_size)
2281{
2282 struct btrfs_super_block *super_copy =
6c41761f 2283 device->dev_root->fs_info->super_copy;
8f18cf13
CM
2284 u64 old_total = btrfs_super_total_bytes(super_copy);
2285 u64 diff = new_size - device->total_bytes;
2286
2b82032c
YZ
2287 if (!device->writeable)
2288 return -EACCES;
63a212ab
SB
2289 if (new_size <= device->total_bytes ||
2290 device->is_tgtdev_for_dev_replace)
2b82032c
YZ
2291 return -EINVAL;
2292
8f18cf13 2293 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2294 device->fs_devices->total_rw_bytes += diff;
2295
2296 device->total_bytes = new_size;
9779b72f 2297 device->disk_total_bytes = new_size;
4184ea7f
CM
2298 btrfs_clear_space_info_full(device->dev_root->fs_info);
2299
8f18cf13
CM
2300 return btrfs_update_device(trans, device);
2301}
2302
7d9eb12c
CM
2303int btrfs_grow_device(struct btrfs_trans_handle *trans,
2304 struct btrfs_device *device, u64 new_size)
2305{
2306 int ret;
2307 lock_chunks(device->dev_root);
2308 ret = __btrfs_grow_device(trans, device, new_size);
2309 unlock_chunks(device->dev_root);
2310 return ret;
2311}
2312
8f18cf13
CM
2313static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2314 struct btrfs_root *root,
2315 u64 chunk_tree, u64 chunk_objectid,
2316 u64 chunk_offset)
2317{
2318 int ret;
2319 struct btrfs_path *path;
2320 struct btrfs_key key;
2321
2322 root = root->fs_info->chunk_root;
2323 path = btrfs_alloc_path();
2324 if (!path)
2325 return -ENOMEM;
2326
2327 key.objectid = chunk_objectid;
2328 key.offset = chunk_offset;
2329 key.type = BTRFS_CHUNK_ITEM_KEY;
2330
2331 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2332 if (ret < 0)
2333 goto out;
2334 else if (ret > 0) { /* Logic error or corruption */
2335 btrfs_error(root->fs_info, -ENOENT,
2336 "Failed lookup while freeing chunk.");
2337 ret = -ENOENT;
2338 goto out;
2339 }
8f18cf13
CM
2340
2341 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
2342 if (ret < 0)
2343 btrfs_error(root->fs_info, ret,
2344 "Failed to delete chunk item.");
2345out:
8f18cf13 2346 btrfs_free_path(path);
65a246c5 2347 return ret;
8f18cf13
CM
2348}
2349
b2950863 2350static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2351 chunk_offset)
2352{
6c41761f 2353 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2354 struct btrfs_disk_key *disk_key;
2355 struct btrfs_chunk *chunk;
2356 u8 *ptr;
2357 int ret = 0;
2358 u32 num_stripes;
2359 u32 array_size;
2360 u32 len = 0;
2361 u32 cur;
2362 struct btrfs_key key;
2363
2364 array_size = btrfs_super_sys_array_size(super_copy);
2365
2366 ptr = super_copy->sys_chunk_array;
2367 cur = 0;
2368
2369 while (cur < array_size) {
2370 disk_key = (struct btrfs_disk_key *)ptr;
2371 btrfs_disk_key_to_cpu(&key, disk_key);
2372
2373 len = sizeof(*disk_key);
2374
2375 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2376 chunk = (struct btrfs_chunk *)(ptr + len);
2377 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2378 len += btrfs_chunk_item_size(num_stripes);
2379 } else {
2380 ret = -EIO;
2381 break;
2382 }
2383 if (key.objectid == chunk_objectid &&
2384 key.offset == chunk_offset) {
2385 memmove(ptr, ptr + len, array_size - (cur + len));
2386 array_size -= len;
2387 btrfs_set_super_sys_array_size(super_copy, array_size);
2388 } else {
2389 ptr += len;
2390 cur += len;
2391 }
2392 }
2393 return ret;
2394}
2395
b2950863 2396static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
2397 u64 chunk_tree, u64 chunk_objectid,
2398 u64 chunk_offset)
2399{
2400 struct extent_map_tree *em_tree;
2401 struct btrfs_root *extent_root;
2402 struct btrfs_trans_handle *trans;
2403 struct extent_map *em;
2404 struct map_lookup *map;
2405 int ret;
2406 int i;
2407
2408 root = root->fs_info->chunk_root;
2409 extent_root = root->fs_info->extent_root;
2410 em_tree = &root->fs_info->mapping_tree.map_tree;
2411
ba1bf481
JB
2412 ret = btrfs_can_relocate(extent_root, chunk_offset);
2413 if (ret)
2414 return -ENOSPC;
2415
8f18cf13 2416 /* step one, relocate all the extents inside this chunk */
1a40e23b 2417 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
2418 if (ret)
2419 return ret;
8f18cf13 2420
a22285a6 2421 trans = btrfs_start_transaction(root, 0);
0f788c58
LB
2422 if (IS_ERR(trans)) {
2423 ret = PTR_ERR(trans);
2424 btrfs_std_error(root->fs_info, ret);
2425 return ret;
2426 }
8f18cf13 2427
7d9eb12c
CM
2428 lock_chunks(root);
2429
8f18cf13
CM
2430 /*
2431 * step two, delete the device extents and the
2432 * chunk tree entries
2433 */
890871be 2434 read_lock(&em_tree->lock);
8f18cf13 2435 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2436 read_unlock(&em_tree->lock);
8f18cf13 2437
285190d9 2438 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2439 em->start + em->len < chunk_offset);
8f18cf13
CM
2440 map = (struct map_lookup *)em->bdev;
2441
2442 for (i = 0; i < map->num_stripes; i++) {
2443 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2444 map->stripes[i].physical);
2445 BUG_ON(ret);
a061fc8d 2446
dfe25020
CM
2447 if (map->stripes[i].dev) {
2448 ret = btrfs_update_device(trans, map->stripes[i].dev);
2449 BUG_ON(ret);
2450 }
8f18cf13
CM
2451 }
2452 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2453 chunk_offset);
2454
2455 BUG_ON(ret);
2456
1abe9b8a 2457 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2458
8f18cf13
CM
2459 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2460 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2461 BUG_ON(ret);
8f18cf13
CM
2462 }
2463
2b82032c
YZ
2464 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2465 BUG_ON(ret);
2466
890871be 2467 write_lock(&em_tree->lock);
2b82032c 2468 remove_extent_mapping(em_tree, em);
890871be 2469 write_unlock(&em_tree->lock);
2b82032c
YZ
2470
2471 kfree(map);
2472 em->bdev = NULL;
2473
2474 /* once for the tree */
2475 free_extent_map(em);
2476 /* once for us */
2477 free_extent_map(em);
2478
2479 unlock_chunks(root);
2480 btrfs_end_transaction(trans, root);
2481 return 0;
2482}
2483
2484static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2485{
2486 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2487 struct btrfs_path *path;
2488 struct extent_buffer *leaf;
2489 struct btrfs_chunk *chunk;
2490 struct btrfs_key key;
2491 struct btrfs_key found_key;
2492 u64 chunk_tree = chunk_root->root_key.objectid;
2493 u64 chunk_type;
ba1bf481
JB
2494 bool retried = false;
2495 int failed = 0;
2b82032c
YZ
2496 int ret;
2497
2498 path = btrfs_alloc_path();
2499 if (!path)
2500 return -ENOMEM;
2501
ba1bf481 2502again:
2b82032c
YZ
2503 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2504 key.offset = (u64)-1;
2505 key.type = BTRFS_CHUNK_ITEM_KEY;
2506
2507 while (1) {
2508 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2509 if (ret < 0)
2510 goto error;
79787eaa 2511 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2512
2513 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2514 key.type);
2515 if (ret < 0)
2516 goto error;
2517 if (ret > 0)
2518 break;
1a40e23b 2519
2b82032c
YZ
2520 leaf = path->nodes[0];
2521 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2522
2b82032c
YZ
2523 chunk = btrfs_item_ptr(leaf, path->slots[0],
2524 struct btrfs_chunk);
2525 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2526 btrfs_release_path(path);
8f18cf13 2527
2b82032c
YZ
2528 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2529 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2530 found_key.objectid,
2531 found_key.offset);
ba1bf481
JB
2532 if (ret == -ENOSPC)
2533 failed++;
2534 else if (ret)
2535 BUG();
2b82032c 2536 }
8f18cf13 2537
2b82032c
YZ
2538 if (found_key.offset == 0)
2539 break;
2540 key.offset = found_key.offset - 1;
2541 }
2542 ret = 0;
ba1bf481
JB
2543 if (failed && !retried) {
2544 failed = 0;
2545 retried = true;
2546 goto again;
2547 } else if (failed && retried) {
2548 WARN_ON(1);
2549 ret = -ENOSPC;
2550 }
2b82032c
YZ
2551error:
2552 btrfs_free_path(path);
2553 return ret;
8f18cf13
CM
2554}
2555
0940ebf6
ID
2556static int insert_balance_item(struct btrfs_root *root,
2557 struct btrfs_balance_control *bctl)
2558{
2559 struct btrfs_trans_handle *trans;
2560 struct btrfs_balance_item *item;
2561 struct btrfs_disk_balance_args disk_bargs;
2562 struct btrfs_path *path;
2563 struct extent_buffer *leaf;
2564 struct btrfs_key key;
2565 int ret, err;
2566
2567 path = btrfs_alloc_path();
2568 if (!path)
2569 return -ENOMEM;
2570
2571 trans = btrfs_start_transaction(root, 0);
2572 if (IS_ERR(trans)) {
2573 btrfs_free_path(path);
2574 return PTR_ERR(trans);
2575 }
2576
2577 key.objectid = BTRFS_BALANCE_OBJECTID;
2578 key.type = BTRFS_BALANCE_ITEM_KEY;
2579 key.offset = 0;
2580
2581 ret = btrfs_insert_empty_item(trans, root, path, &key,
2582 sizeof(*item));
2583 if (ret)
2584 goto out;
2585
2586 leaf = path->nodes[0];
2587 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2588
2589 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2590
2591 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2592 btrfs_set_balance_data(leaf, item, &disk_bargs);
2593 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2594 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2595 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2596 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2597
2598 btrfs_set_balance_flags(leaf, item, bctl->flags);
2599
2600 btrfs_mark_buffer_dirty(leaf);
2601out:
2602 btrfs_free_path(path);
2603 err = btrfs_commit_transaction(trans, root);
2604 if (err && !ret)
2605 ret = err;
2606 return ret;
2607}
2608
2609static int del_balance_item(struct btrfs_root *root)
2610{
2611 struct btrfs_trans_handle *trans;
2612 struct btrfs_path *path;
2613 struct btrfs_key key;
2614 int ret, err;
2615
2616 path = btrfs_alloc_path();
2617 if (!path)
2618 return -ENOMEM;
2619
2620 trans = btrfs_start_transaction(root, 0);
2621 if (IS_ERR(trans)) {
2622 btrfs_free_path(path);
2623 return PTR_ERR(trans);
2624 }
2625
2626 key.objectid = BTRFS_BALANCE_OBJECTID;
2627 key.type = BTRFS_BALANCE_ITEM_KEY;
2628 key.offset = 0;
2629
2630 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2631 if (ret < 0)
2632 goto out;
2633 if (ret > 0) {
2634 ret = -ENOENT;
2635 goto out;
2636 }
2637
2638 ret = btrfs_del_item(trans, root, path);
2639out:
2640 btrfs_free_path(path);
2641 err = btrfs_commit_transaction(trans, root);
2642 if (err && !ret)
2643 ret = err;
2644 return ret;
2645}
2646
59641015
ID
2647/*
2648 * This is a heuristic used to reduce the number of chunks balanced on
2649 * resume after balance was interrupted.
2650 */
2651static void update_balance_args(struct btrfs_balance_control *bctl)
2652{
2653 /*
2654 * Turn on soft mode for chunk types that were being converted.
2655 */
2656 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2657 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2658 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2659 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2660 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2661 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2662
2663 /*
2664 * Turn on usage filter if is not already used. The idea is
2665 * that chunks that we have already balanced should be
2666 * reasonably full. Don't do it for chunks that are being
2667 * converted - that will keep us from relocating unconverted
2668 * (albeit full) chunks.
2669 */
2670 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2671 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2672 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2673 bctl->data.usage = 90;
2674 }
2675 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2676 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2677 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2678 bctl->sys.usage = 90;
2679 }
2680 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2681 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2682 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2683 bctl->meta.usage = 90;
2684 }
2685}
2686
c9e9f97b
ID
2687/*
2688 * Should be called with both balance and volume mutexes held to
2689 * serialize other volume operations (add_dev/rm_dev/resize) with
2690 * restriper. Same goes for unset_balance_control.
2691 */
2692static void set_balance_control(struct btrfs_balance_control *bctl)
2693{
2694 struct btrfs_fs_info *fs_info = bctl->fs_info;
2695
2696 BUG_ON(fs_info->balance_ctl);
2697
2698 spin_lock(&fs_info->balance_lock);
2699 fs_info->balance_ctl = bctl;
2700 spin_unlock(&fs_info->balance_lock);
2701}
2702
2703static void unset_balance_control(struct btrfs_fs_info *fs_info)
2704{
2705 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2706
2707 BUG_ON(!fs_info->balance_ctl);
2708
2709 spin_lock(&fs_info->balance_lock);
2710 fs_info->balance_ctl = NULL;
2711 spin_unlock(&fs_info->balance_lock);
2712
2713 kfree(bctl);
2714}
2715
ed25e9b2
ID
2716/*
2717 * Balance filters. Return 1 if chunk should be filtered out
2718 * (should not be balanced).
2719 */
899c81ea 2720static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2721 struct btrfs_balance_args *bargs)
2722{
899c81ea
ID
2723 chunk_type = chunk_to_extended(chunk_type) &
2724 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2725
899c81ea 2726 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2727 return 0;
2728
2729 return 1;
2730}
2731
5ce5b3c0
ID
2732static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2733 struct btrfs_balance_args *bargs)
2734{
2735 struct btrfs_block_group_cache *cache;
2736 u64 chunk_used, user_thresh;
2737 int ret = 1;
2738
2739 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2740 chunk_used = btrfs_block_group_used(&cache->item);
2741
a105bb88 2742 if (bargs->usage == 0)
3e39cea6 2743 user_thresh = 1;
a105bb88
ID
2744 else if (bargs->usage > 100)
2745 user_thresh = cache->key.offset;
2746 else
2747 user_thresh = div_factor_fine(cache->key.offset,
2748 bargs->usage);
2749
5ce5b3c0
ID
2750 if (chunk_used < user_thresh)
2751 ret = 0;
2752
2753 btrfs_put_block_group(cache);
2754 return ret;
2755}
2756
409d404b
ID
2757static int chunk_devid_filter(struct extent_buffer *leaf,
2758 struct btrfs_chunk *chunk,
2759 struct btrfs_balance_args *bargs)
2760{
2761 struct btrfs_stripe *stripe;
2762 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2763 int i;
2764
2765 for (i = 0; i < num_stripes; i++) {
2766 stripe = btrfs_stripe_nr(chunk, i);
2767 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2768 return 0;
2769 }
2770
2771 return 1;
2772}
2773
94e60d5a
ID
2774/* [pstart, pend) */
2775static int chunk_drange_filter(struct extent_buffer *leaf,
2776 struct btrfs_chunk *chunk,
2777 u64 chunk_offset,
2778 struct btrfs_balance_args *bargs)
2779{
2780 struct btrfs_stripe *stripe;
2781 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2782 u64 stripe_offset;
2783 u64 stripe_length;
2784 int factor;
2785 int i;
2786
2787 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2788 return 0;
2789
2790 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
2791 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2792 factor = num_stripes / 2;
2793 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2794 factor = num_stripes - 1;
2795 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2796 factor = num_stripes - 2;
2797 } else {
2798 factor = num_stripes;
2799 }
94e60d5a
ID
2800
2801 for (i = 0; i < num_stripes; i++) {
2802 stripe = btrfs_stripe_nr(chunk, i);
2803 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2804 continue;
2805
2806 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2807 stripe_length = btrfs_chunk_length(leaf, chunk);
2808 do_div(stripe_length, factor);
2809
2810 if (stripe_offset < bargs->pend &&
2811 stripe_offset + stripe_length > bargs->pstart)
2812 return 0;
2813 }
2814
2815 return 1;
2816}
2817
ea67176a
ID
2818/* [vstart, vend) */
2819static int chunk_vrange_filter(struct extent_buffer *leaf,
2820 struct btrfs_chunk *chunk,
2821 u64 chunk_offset,
2822 struct btrfs_balance_args *bargs)
2823{
2824 if (chunk_offset < bargs->vend &&
2825 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2826 /* at least part of the chunk is inside this vrange */
2827 return 0;
2828
2829 return 1;
2830}
2831
899c81ea 2832static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2833 struct btrfs_balance_args *bargs)
2834{
2835 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2836 return 0;
2837
899c81ea
ID
2838 chunk_type = chunk_to_extended(chunk_type) &
2839 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2840
899c81ea 2841 if (bargs->target == chunk_type)
cfa4c961
ID
2842 return 1;
2843
2844 return 0;
2845}
2846
f43ffb60
ID
2847static int should_balance_chunk(struct btrfs_root *root,
2848 struct extent_buffer *leaf,
2849 struct btrfs_chunk *chunk, u64 chunk_offset)
2850{
2851 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2852 struct btrfs_balance_args *bargs = NULL;
2853 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2854
2855 /* type filter */
2856 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2857 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2858 return 0;
2859 }
2860
2861 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2862 bargs = &bctl->data;
2863 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2864 bargs = &bctl->sys;
2865 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2866 bargs = &bctl->meta;
2867
ed25e9b2
ID
2868 /* profiles filter */
2869 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2870 chunk_profiles_filter(chunk_type, bargs)) {
2871 return 0;
5ce5b3c0
ID
2872 }
2873
2874 /* usage filter */
2875 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2876 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2877 return 0;
409d404b
ID
2878 }
2879
2880 /* devid filter */
2881 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2882 chunk_devid_filter(leaf, chunk, bargs)) {
2883 return 0;
94e60d5a
ID
2884 }
2885
2886 /* drange filter, makes sense only with devid filter */
2887 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2888 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2889 return 0;
ea67176a
ID
2890 }
2891
2892 /* vrange filter */
2893 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2894 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2895 return 0;
ed25e9b2
ID
2896 }
2897
cfa4c961
ID
2898 /* soft profile changing mode */
2899 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2900 chunk_soft_convert_filter(chunk_type, bargs)) {
2901 return 0;
2902 }
2903
f43ffb60
ID
2904 return 1;
2905}
2906
c9e9f97b 2907static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2908{
19a39dce 2909 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2910 struct btrfs_root *chunk_root = fs_info->chunk_root;
2911 struct btrfs_root *dev_root = fs_info->dev_root;
2912 struct list_head *devices;
ec44a35c
CM
2913 struct btrfs_device *device;
2914 u64 old_size;
2915 u64 size_to_free;
f43ffb60 2916 struct btrfs_chunk *chunk;
ec44a35c
CM
2917 struct btrfs_path *path;
2918 struct btrfs_key key;
ec44a35c 2919 struct btrfs_key found_key;
c9e9f97b 2920 struct btrfs_trans_handle *trans;
f43ffb60
ID
2921 struct extent_buffer *leaf;
2922 int slot;
c9e9f97b
ID
2923 int ret;
2924 int enospc_errors = 0;
19a39dce 2925 bool counting = true;
ec44a35c 2926
ec44a35c 2927 /* step one make some room on all the devices */
c9e9f97b 2928 devices = &fs_info->fs_devices->devices;
c6e30871 2929 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2930 old_size = device->total_bytes;
2931 size_to_free = div_factor(old_size, 1);
2932 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c 2933 if (!device->writeable ||
63a212ab
SB
2934 device->total_bytes - device->bytes_used > size_to_free ||
2935 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
2936 continue;
2937
2938 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2939 if (ret == -ENOSPC)
2940 break;
ec44a35c
CM
2941 BUG_ON(ret);
2942
a22285a6 2943 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2944 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2945
2946 ret = btrfs_grow_device(trans, device, old_size);
2947 BUG_ON(ret);
2948
2949 btrfs_end_transaction(trans, dev_root);
2950 }
2951
2952 /* step two, relocate all the chunks */
2953 path = btrfs_alloc_path();
17e9f796
MF
2954 if (!path) {
2955 ret = -ENOMEM;
2956 goto error;
2957 }
19a39dce
ID
2958
2959 /* zero out stat counters */
2960 spin_lock(&fs_info->balance_lock);
2961 memset(&bctl->stat, 0, sizeof(bctl->stat));
2962 spin_unlock(&fs_info->balance_lock);
2963again:
ec44a35c
CM
2964 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2965 key.offset = (u64)-1;
2966 key.type = BTRFS_CHUNK_ITEM_KEY;
2967
d397712b 2968 while (1) {
19a39dce 2969 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2970 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2971 ret = -ECANCELED;
2972 goto error;
2973 }
2974
ec44a35c
CM
2975 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2976 if (ret < 0)
2977 goto error;
2978
2979 /*
2980 * this shouldn't happen, it means the last relocate
2981 * failed
2982 */
2983 if (ret == 0)
c9e9f97b 2984 BUG(); /* FIXME break ? */
ec44a35c
CM
2985
2986 ret = btrfs_previous_item(chunk_root, path, 0,
2987 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2988 if (ret) {
2989 ret = 0;
ec44a35c 2990 break;
c9e9f97b 2991 }
7d9eb12c 2992
f43ffb60
ID
2993 leaf = path->nodes[0];
2994 slot = path->slots[0];
2995 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2996
ec44a35c
CM
2997 if (found_key.objectid != key.objectid)
2998 break;
7d9eb12c 2999
f43ffb60
ID
3000 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3001
19a39dce
ID
3002 if (!counting) {
3003 spin_lock(&fs_info->balance_lock);
3004 bctl->stat.considered++;
3005 spin_unlock(&fs_info->balance_lock);
3006 }
3007
f43ffb60
ID
3008 ret = should_balance_chunk(chunk_root, leaf, chunk,
3009 found_key.offset);
b3b4aa74 3010 btrfs_release_path(path);
f43ffb60
ID
3011 if (!ret)
3012 goto loop;
3013
19a39dce
ID
3014 if (counting) {
3015 spin_lock(&fs_info->balance_lock);
3016 bctl->stat.expected++;
3017 spin_unlock(&fs_info->balance_lock);
3018 goto loop;
3019 }
3020
ec44a35c
CM
3021 ret = btrfs_relocate_chunk(chunk_root,
3022 chunk_root->root_key.objectid,
3023 found_key.objectid,
3024 found_key.offset);
508794eb
JB
3025 if (ret && ret != -ENOSPC)
3026 goto error;
19a39dce 3027 if (ret == -ENOSPC) {
c9e9f97b 3028 enospc_errors++;
19a39dce
ID
3029 } else {
3030 spin_lock(&fs_info->balance_lock);
3031 bctl->stat.completed++;
3032 spin_unlock(&fs_info->balance_lock);
3033 }
f43ffb60 3034loop:
795a3321
ID
3035 if (found_key.offset == 0)
3036 break;
ba1bf481 3037 key.offset = found_key.offset - 1;
ec44a35c 3038 }
c9e9f97b 3039
19a39dce
ID
3040 if (counting) {
3041 btrfs_release_path(path);
3042 counting = false;
3043 goto again;
3044 }
ec44a35c
CM
3045error:
3046 btrfs_free_path(path);
c9e9f97b
ID
3047 if (enospc_errors) {
3048 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3049 enospc_errors);
3050 if (!ret)
3051 ret = -ENOSPC;
3052 }
3053
ec44a35c
CM
3054 return ret;
3055}
3056
0c460c0d
ID
3057/**
3058 * alloc_profile_is_valid - see if a given profile is valid and reduced
3059 * @flags: profile to validate
3060 * @extended: if true @flags is treated as an extended profile
3061 */
3062static int alloc_profile_is_valid(u64 flags, int extended)
3063{
3064 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3065 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3066
3067 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3068
3069 /* 1) check that all other bits are zeroed */
3070 if (flags & ~mask)
3071 return 0;
3072
3073 /* 2) see if profile is reduced */
3074 if (flags == 0)
3075 return !extended; /* "0" is valid for usual profiles */
3076
3077 /* true if exactly one bit set */
3078 return (flags & (flags - 1)) == 0;
3079}
3080
837d5b6e
ID
3081static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3082{
a7e99c69
ID
3083 /* cancel requested || normal exit path */
3084 return atomic_read(&fs_info->balance_cancel_req) ||
3085 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3086 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3087}
3088
c9e9f97b
ID
3089static void __cancel_balance(struct btrfs_fs_info *fs_info)
3090{
0940ebf6
ID
3091 int ret;
3092
c9e9f97b 3093 unset_balance_control(fs_info);
0940ebf6 3094 ret = del_balance_item(fs_info->tree_root);
0f788c58
LB
3095 if (ret)
3096 btrfs_std_error(fs_info, ret);
ed0fb78f
ID
3097
3098 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3099}
3100
c9e9f97b
ID
3101/*
3102 * Should be called with both balance and volume mutexes held
3103 */
3104int btrfs_balance(struct btrfs_balance_control *bctl,
3105 struct btrfs_ioctl_balance_args *bargs)
3106{
3107 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3108 u64 allowed;
e4837f8f 3109 int mixed = 0;
c9e9f97b 3110 int ret;
8dabb742 3111 u64 num_devices;
de98ced9 3112 unsigned seq;
c9e9f97b 3113
837d5b6e 3114 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3115 atomic_read(&fs_info->balance_pause_req) ||
3116 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3117 ret = -EINVAL;
3118 goto out;
3119 }
3120
e4837f8f
ID
3121 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3122 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3123 mixed = 1;
3124
f43ffb60
ID
3125 /*
3126 * In case of mixed groups both data and meta should be picked,
3127 * and identical options should be given for both of them.
3128 */
e4837f8f
ID
3129 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3130 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3131 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3132 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3133 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3134 printk(KERN_ERR "btrfs: with mixed groups data and "
3135 "metadata balance options must be the same\n");
3136 ret = -EINVAL;
3137 goto out;
3138 }
3139 }
3140
8dabb742
SB
3141 num_devices = fs_info->fs_devices->num_devices;
3142 btrfs_dev_replace_lock(&fs_info->dev_replace);
3143 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3144 BUG_ON(num_devices < 1);
3145 num_devices--;
3146 }
3147 btrfs_dev_replace_unlock(&fs_info->dev_replace);
e4d8ec0f 3148 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3149 if (num_devices == 1)
e4d8ec0f 3150 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3151 else if (num_devices > 1)
e4d8ec0f 3152 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3153 if (num_devices > 2)
3154 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3155 if (num_devices > 3)
3156 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3157 BTRFS_BLOCK_GROUP_RAID6);
6728b198
ID
3158 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3159 (!alloc_profile_is_valid(bctl->data.target, 1) ||
3160 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
3161 printk(KERN_ERR "btrfs: unable to start balance with target "
3162 "data profile %llu\n",
c1c9ff7c 3163 bctl->data.target);
e4d8ec0f
ID
3164 ret = -EINVAL;
3165 goto out;
3166 }
6728b198
ID
3167 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3168 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3169 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
3170 printk(KERN_ERR "btrfs: unable to start balance with target "
3171 "metadata profile %llu\n",
c1c9ff7c 3172 bctl->meta.target);
e4d8ec0f
ID
3173 ret = -EINVAL;
3174 goto out;
3175 }
6728b198
ID
3176 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3177 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3178 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
3179 printk(KERN_ERR "btrfs: unable to start balance with target "
3180 "system profile %llu\n",
c1c9ff7c 3181 bctl->sys.target);
e4d8ec0f
ID
3182 ret = -EINVAL;
3183 goto out;
3184 }
3185
e4837f8f
ID
3186 /* allow dup'ed data chunks only in mixed mode */
3187 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 3188 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
3189 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3190 ret = -EINVAL;
3191 goto out;
3192 }
3193
3194 /* allow to reduce meta or sys integrity only if force set */
3195 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3196 BTRFS_BLOCK_GROUP_RAID10 |
3197 BTRFS_BLOCK_GROUP_RAID5 |
3198 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3199 do {
3200 seq = read_seqbegin(&fs_info->profiles_lock);
3201
3202 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3203 (fs_info->avail_system_alloc_bits & allowed) &&
3204 !(bctl->sys.target & allowed)) ||
3205 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3206 (fs_info->avail_metadata_alloc_bits & allowed) &&
3207 !(bctl->meta.target & allowed))) {
3208 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3209 printk(KERN_INFO "btrfs: force reducing metadata "
3210 "integrity\n");
3211 } else {
3212 printk(KERN_ERR "btrfs: balance will reduce metadata "
3213 "integrity, use force if you want this\n");
3214 ret = -EINVAL;
3215 goto out;
3216 }
e4d8ec0f 3217 }
de98ced9 3218 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3219
5af3e8cc
SB
3220 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3221 int num_tolerated_disk_barrier_failures;
3222 u64 target = bctl->sys.target;
3223
3224 num_tolerated_disk_barrier_failures =
3225 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3226 if (num_tolerated_disk_barrier_failures > 0 &&
3227 (target &
3228 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3229 BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3230 num_tolerated_disk_barrier_failures = 0;
3231 else if (num_tolerated_disk_barrier_failures > 1 &&
3232 (target &
3233 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3234 num_tolerated_disk_barrier_failures = 1;
3235
3236 fs_info->num_tolerated_disk_barrier_failures =
3237 num_tolerated_disk_barrier_failures;
3238 }
3239
0940ebf6 3240 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3241 if (ret && ret != -EEXIST)
0940ebf6
ID
3242 goto out;
3243
59641015
ID
3244 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3245 BUG_ON(ret == -EEXIST);
3246 set_balance_control(bctl);
3247 } else {
3248 BUG_ON(ret != -EEXIST);
3249 spin_lock(&fs_info->balance_lock);
3250 update_balance_args(bctl);
3251 spin_unlock(&fs_info->balance_lock);
3252 }
c9e9f97b 3253
837d5b6e 3254 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3255 mutex_unlock(&fs_info->balance_mutex);
3256
3257 ret = __btrfs_balance(fs_info);
3258
3259 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3260 atomic_dec(&fs_info->balance_running);
c9e9f97b 3261
bf023ecf
ID
3262 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3263 fs_info->num_tolerated_disk_barrier_failures =
3264 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3265 }
3266
c9e9f97b
ID
3267 if (bargs) {
3268 memset(bargs, 0, sizeof(*bargs));
19a39dce 3269 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3270 }
3271
3a01aa7a
ID
3272 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3273 balance_need_close(fs_info)) {
3274 __cancel_balance(fs_info);
3275 }
3276
837d5b6e 3277 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3278
3279 return ret;
3280out:
59641015
ID
3281 if (bctl->flags & BTRFS_BALANCE_RESUME)
3282 __cancel_balance(fs_info);
ed0fb78f 3283 else {
59641015 3284 kfree(bctl);
ed0fb78f
ID
3285 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3286 }
59641015
ID
3287 return ret;
3288}
3289
3290static int balance_kthread(void *data)
3291{
2b6ba629 3292 struct btrfs_fs_info *fs_info = data;
9555c6c1 3293 int ret = 0;
59641015
ID
3294
3295 mutex_lock(&fs_info->volume_mutex);
3296 mutex_lock(&fs_info->balance_mutex);
3297
2b6ba629 3298 if (fs_info->balance_ctl) {
9555c6c1 3299 printk(KERN_INFO "btrfs: continuing balance\n");
2b6ba629 3300 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3301 }
59641015
ID
3302
3303 mutex_unlock(&fs_info->balance_mutex);
3304 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3305
59641015
ID
3306 return ret;
3307}
3308
2b6ba629
ID
3309int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3310{
3311 struct task_struct *tsk;
3312
3313 spin_lock(&fs_info->balance_lock);
3314 if (!fs_info->balance_ctl) {
3315 spin_unlock(&fs_info->balance_lock);
3316 return 0;
3317 }
3318 spin_unlock(&fs_info->balance_lock);
3319
3320 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3321 printk(KERN_INFO "btrfs: force skipping balance\n");
3322 return 0;
3323 }
3324
3325 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
97a184fe 3326 return PTR_RET(tsk);
2b6ba629
ID
3327}
3328
68310a5e 3329int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3330{
59641015
ID
3331 struct btrfs_balance_control *bctl;
3332 struct btrfs_balance_item *item;
3333 struct btrfs_disk_balance_args disk_bargs;
3334 struct btrfs_path *path;
3335 struct extent_buffer *leaf;
3336 struct btrfs_key key;
3337 int ret;
3338
3339 path = btrfs_alloc_path();
3340 if (!path)
3341 return -ENOMEM;
3342
59641015
ID
3343 key.objectid = BTRFS_BALANCE_OBJECTID;
3344 key.type = BTRFS_BALANCE_ITEM_KEY;
3345 key.offset = 0;
3346
68310a5e 3347 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3348 if (ret < 0)
68310a5e 3349 goto out;
59641015
ID
3350 if (ret > 0) { /* ret = -ENOENT; */
3351 ret = 0;
68310a5e
ID
3352 goto out;
3353 }
3354
3355 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3356 if (!bctl) {
3357 ret = -ENOMEM;
3358 goto out;
59641015
ID
3359 }
3360
3361 leaf = path->nodes[0];
3362 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3363
68310a5e
ID
3364 bctl->fs_info = fs_info;
3365 bctl->flags = btrfs_balance_flags(leaf, item);
3366 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3367
3368 btrfs_balance_data(leaf, item, &disk_bargs);
3369 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3370 btrfs_balance_meta(leaf, item, &disk_bargs);
3371 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3372 btrfs_balance_sys(leaf, item, &disk_bargs);
3373 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3374
ed0fb78f
ID
3375 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3376
68310a5e
ID
3377 mutex_lock(&fs_info->volume_mutex);
3378 mutex_lock(&fs_info->balance_mutex);
59641015 3379
68310a5e
ID
3380 set_balance_control(bctl);
3381
3382 mutex_unlock(&fs_info->balance_mutex);
3383 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3384out:
3385 btrfs_free_path(path);
ec44a35c
CM
3386 return ret;
3387}
3388
837d5b6e
ID
3389int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3390{
3391 int ret = 0;
3392
3393 mutex_lock(&fs_info->balance_mutex);
3394 if (!fs_info->balance_ctl) {
3395 mutex_unlock(&fs_info->balance_mutex);
3396 return -ENOTCONN;
3397 }
3398
3399 if (atomic_read(&fs_info->balance_running)) {
3400 atomic_inc(&fs_info->balance_pause_req);
3401 mutex_unlock(&fs_info->balance_mutex);
3402
3403 wait_event(fs_info->balance_wait_q,
3404 atomic_read(&fs_info->balance_running) == 0);
3405
3406 mutex_lock(&fs_info->balance_mutex);
3407 /* we are good with balance_ctl ripped off from under us */
3408 BUG_ON(atomic_read(&fs_info->balance_running));
3409 atomic_dec(&fs_info->balance_pause_req);
3410 } else {
3411 ret = -ENOTCONN;
3412 }
3413
3414 mutex_unlock(&fs_info->balance_mutex);
3415 return ret;
3416}
3417
a7e99c69
ID
3418int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3419{
3420 mutex_lock(&fs_info->balance_mutex);
3421 if (!fs_info->balance_ctl) {
3422 mutex_unlock(&fs_info->balance_mutex);
3423 return -ENOTCONN;
3424 }
3425
3426 atomic_inc(&fs_info->balance_cancel_req);
3427 /*
3428 * if we are running just wait and return, balance item is
3429 * deleted in btrfs_balance in this case
3430 */
3431 if (atomic_read(&fs_info->balance_running)) {
3432 mutex_unlock(&fs_info->balance_mutex);
3433 wait_event(fs_info->balance_wait_q,
3434 atomic_read(&fs_info->balance_running) == 0);
3435 mutex_lock(&fs_info->balance_mutex);
3436 } else {
3437 /* __cancel_balance needs volume_mutex */
3438 mutex_unlock(&fs_info->balance_mutex);
3439 mutex_lock(&fs_info->volume_mutex);
3440 mutex_lock(&fs_info->balance_mutex);
3441
3442 if (fs_info->balance_ctl)
3443 __cancel_balance(fs_info);
3444
3445 mutex_unlock(&fs_info->volume_mutex);
3446 }
3447
3448 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3449 atomic_dec(&fs_info->balance_cancel_req);
3450 mutex_unlock(&fs_info->balance_mutex);
3451 return 0;
3452}
3453
803b2f54
SB
3454static int btrfs_uuid_scan_kthread(void *data)
3455{
3456 struct btrfs_fs_info *fs_info = data;
3457 struct btrfs_root *root = fs_info->tree_root;
3458 struct btrfs_key key;
3459 struct btrfs_key max_key;
3460 struct btrfs_path *path = NULL;
3461 int ret = 0;
3462 struct extent_buffer *eb;
3463 int slot;
3464 struct btrfs_root_item root_item;
3465 u32 item_size;
f45388f3 3466 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3467
3468 path = btrfs_alloc_path();
3469 if (!path) {
3470 ret = -ENOMEM;
3471 goto out;
3472 }
3473
3474 key.objectid = 0;
3475 key.type = BTRFS_ROOT_ITEM_KEY;
3476 key.offset = 0;
3477
3478 max_key.objectid = (u64)-1;
3479 max_key.type = BTRFS_ROOT_ITEM_KEY;
3480 max_key.offset = (u64)-1;
3481
3482 path->keep_locks = 1;
3483
3484 while (1) {
3485 ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3486 if (ret) {
3487 if (ret > 0)
3488 ret = 0;
3489 break;
3490 }
3491
3492 if (key.type != BTRFS_ROOT_ITEM_KEY ||
3493 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3494 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3495 key.objectid > BTRFS_LAST_FREE_OBJECTID)
3496 goto skip;
3497
3498 eb = path->nodes[0];
3499 slot = path->slots[0];
3500 item_size = btrfs_item_size_nr(eb, slot);
3501 if (item_size < sizeof(root_item))
3502 goto skip;
3503
803b2f54
SB
3504 read_extent_buffer(eb, &root_item,
3505 btrfs_item_ptr_offset(eb, slot),
3506 (int)sizeof(root_item));
3507 if (btrfs_root_refs(&root_item) == 0)
3508 goto skip;
f45388f3
FDBM
3509
3510 if (!btrfs_is_empty_uuid(root_item.uuid) ||
3511 !btrfs_is_empty_uuid(root_item.received_uuid)) {
3512 if (trans)
3513 goto update_tree;
3514
3515 btrfs_release_path(path);
803b2f54
SB
3516 /*
3517 * 1 - subvol uuid item
3518 * 1 - received_subvol uuid item
3519 */
3520 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3521 if (IS_ERR(trans)) {
3522 ret = PTR_ERR(trans);
3523 break;
3524 }
f45388f3
FDBM
3525 continue;
3526 } else {
3527 goto skip;
3528 }
3529update_tree:
3530 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
3531 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3532 root_item.uuid,
3533 BTRFS_UUID_KEY_SUBVOL,
3534 key.objectid);
3535 if (ret < 0) {
3536 pr_warn("btrfs: uuid_tree_add failed %d\n",
3537 ret);
803b2f54
SB
3538 break;
3539 }
3540 }
3541
3542 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
3543 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3544 root_item.received_uuid,
3545 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3546 key.objectid);
3547 if (ret < 0) {
3548 pr_warn("btrfs: uuid_tree_add failed %d\n",
3549 ret);
803b2f54
SB
3550 break;
3551 }
3552 }
3553
f45388f3 3554skip:
803b2f54
SB
3555 if (trans) {
3556 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 3557 trans = NULL;
803b2f54
SB
3558 if (ret)
3559 break;
3560 }
3561
803b2f54
SB
3562 btrfs_release_path(path);
3563 if (key.offset < (u64)-1) {
3564 key.offset++;
3565 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3566 key.offset = 0;
3567 key.type = BTRFS_ROOT_ITEM_KEY;
3568 } else if (key.objectid < (u64)-1) {
3569 key.offset = 0;
3570 key.type = BTRFS_ROOT_ITEM_KEY;
3571 key.objectid++;
3572 } else {
3573 break;
3574 }
3575 cond_resched();
3576 }
3577
3578out:
3579 btrfs_free_path(path);
f45388f3
FDBM
3580 if (trans && !IS_ERR(trans))
3581 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54
SB
3582 if (ret)
3583 pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
70f80175
SB
3584 else
3585 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
3586 up(&fs_info->uuid_tree_rescan_sem);
3587 return 0;
3588}
3589
70f80175
SB
3590/*
3591 * Callback for btrfs_uuid_tree_iterate().
3592 * returns:
3593 * 0 check succeeded, the entry is not outdated.
3594 * < 0 if an error occured.
3595 * > 0 if the check failed, which means the caller shall remove the entry.
3596 */
3597static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3598 u8 *uuid, u8 type, u64 subid)
3599{
3600 struct btrfs_key key;
3601 int ret = 0;
3602 struct btrfs_root *subvol_root;
3603
3604 if (type != BTRFS_UUID_KEY_SUBVOL &&
3605 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3606 goto out;
3607
3608 key.objectid = subid;
3609 key.type = BTRFS_ROOT_ITEM_KEY;
3610 key.offset = (u64)-1;
3611 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3612 if (IS_ERR(subvol_root)) {
3613 ret = PTR_ERR(subvol_root);
3614 if (ret == -ENOENT)
3615 ret = 1;
3616 goto out;
3617 }
3618
3619 switch (type) {
3620 case BTRFS_UUID_KEY_SUBVOL:
3621 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3622 ret = 1;
3623 break;
3624 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3625 if (memcmp(uuid, subvol_root->root_item.received_uuid,
3626 BTRFS_UUID_SIZE))
3627 ret = 1;
3628 break;
3629 }
3630
3631out:
3632 return ret;
3633}
3634
3635static int btrfs_uuid_rescan_kthread(void *data)
3636{
3637 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3638 int ret;
3639
3640 /*
3641 * 1st step is to iterate through the existing UUID tree and
3642 * to delete all entries that contain outdated data.
3643 * 2nd step is to add all missing entries to the UUID tree.
3644 */
3645 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3646 if (ret < 0) {
3647 pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3648 up(&fs_info->uuid_tree_rescan_sem);
3649 return ret;
3650 }
3651 return btrfs_uuid_scan_kthread(data);
3652}
3653
f7a81ea4
SB
3654int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3655{
3656 struct btrfs_trans_handle *trans;
3657 struct btrfs_root *tree_root = fs_info->tree_root;
3658 struct btrfs_root *uuid_root;
803b2f54
SB
3659 struct task_struct *task;
3660 int ret;
f7a81ea4
SB
3661
3662 /*
3663 * 1 - root node
3664 * 1 - root item
3665 */
3666 trans = btrfs_start_transaction(tree_root, 2);
3667 if (IS_ERR(trans))
3668 return PTR_ERR(trans);
3669
3670 uuid_root = btrfs_create_tree(trans, fs_info,
3671 BTRFS_UUID_TREE_OBJECTID);
3672 if (IS_ERR(uuid_root)) {
3673 btrfs_abort_transaction(trans, tree_root,
3674 PTR_ERR(uuid_root));
3675 return PTR_ERR(uuid_root);
3676 }
3677
3678 fs_info->uuid_root = uuid_root;
3679
803b2f54
SB
3680 ret = btrfs_commit_transaction(trans, tree_root);
3681 if (ret)
3682 return ret;
3683
3684 down(&fs_info->uuid_tree_rescan_sem);
3685 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3686 if (IS_ERR(task)) {
70f80175 3687 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
803b2f54
SB
3688 pr_warn("btrfs: failed to start uuid_scan task\n");
3689 up(&fs_info->uuid_tree_rescan_sem);
3690 return PTR_ERR(task);
3691 }
3692
3693 return 0;
f7a81ea4 3694}
803b2f54 3695
70f80175
SB
3696int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3697{
3698 struct task_struct *task;
3699
3700 down(&fs_info->uuid_tree_rescan_sem);
3701 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3702 if (IS_ERR(task)) {
3703 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3704 pr_warn("btrfs: failed to start uuid_rescan task\n");
3705 up(&fs_info->uuid_tree_rescan_sem);
3706 return PTR_ERR(task);
3707 }
3708
3709 return 0;
3710}
3711
8f18cf13
CM
3712/*
3713 * shrinking a device means finding all of the device extents past
3714 * the new size, and then following the back refs to the chunks.
3715 * The chunk relocation code actually frees the device extent
3716 */
3717int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3718{
3719 struct btrfs_trans_handle *trans;
3720 struct btrfs_root *root = device->dev_root;
3721 struct btrfs_dev_extent *dev_extent = NULL;
3722 struct btrfs_path *path;
3723 u64 length;
3724 u64 chunk_tree;
3725 u64 chunk_objectid;
3726 u64 chunk_offset;
3727 int ret;
3728 int slot;
ba1bf481
JB
3729 int failed = 0;
3730 bool retried = false;
8f18cf13
CM
3731 struct extent_buffer *l;
3732 struct btrfs_key key;
6c41761f 3733 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 3734 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 3735 u64 old_size = device->total_bytes;
8f18cf13
CM
3736 u64 diff = device->total_bytes - new_size;
3737
63a212ab
SB
3738 if (device->is_tgtdev_for_dev_replace)
3739 return -EINVAL;
3740
8f18cf13
CM
3741 path = btrfs_alloc_path();
3742 if (!path)
3743 return -ENOMEM;
3744
8f18cf13
CM
3745 path->reada = 2;
3746
7d9eb12c
CM
3747 lock_chunks(root);
3748
8f18cf13 3749 device->total_bytes = new_size;
2bf64758 3750 if (device->writeable) {
2b82032c 3751 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3752 spin_lock(&root->fs_info->free_chunk_lock);
3753 root->fs_info->free_chunk_space -= diff;
3754 spin_unlock(&root->fs_info->free_chunk_lock);
3755 }
7d9eb12c 3756 unlock_chunks(root);
8f18cf13 3757
ba1bf481 3758again:
8f18cf13
CM
3759 key.objectid = device->devid;
3760 key.offset = (u64)-1;
3761 key.type = BTRFS_DEV_EXTENT_KEY;
3762
213e64da 3763 do {
8f18cf13
CM
3764 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3765 if (ret < 0)
3766 goto done;
3767
3768 ret = btrfs_previous_item(root, path, 0, key.type);
3769 if (ret < 0)
3770 goto done;
3771 if (ret) {
3772 ret = 0;
b3b4aa74 3773 btrfs_release_path(path);
bf1fb512 3774 break;
8f18cf13
CM
3775 }
3776
3777 l = path->nodes[0];
3778 slot = path->slots[0];
3779 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3780
ba1bf481 3781 if (key.objectid != device->devid) {
b3b4aa74 3782 btrfs_release_path(path);
bf1fb512 3783 break;
ba1bf481 3784 }
8f18cf13
CM
3785
3786 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3787 length = btrfs_dev_extent_length(l, dev_extent);
3788
ba1bf481 3789 if (key.offset + length <= new_size) {
b3b4aa74 3790 btrfs_release_path(path);
d6397bae 3791 break;
ba1bf481 3792 }
8f18cf13
CM
3793
3794 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3795 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3796 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3797 btrfs_release_path(path);
8f18cf13
CM
3798
3799 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3800 chunk_offset);
ba1bf481 3801 if (ret && ret != -ENOSPC)
8f18cf13 3802 goto done;
ba1bf481
JB
3803 if (ret == -ENOSPC)
3804 failed++;
213e64da 3805 } while (key.offset-- > 0);
ba1bf481
JB
3806
3807 if (failed && !retried) {
3808 failed = 0;
3809 retried = true;
3810 goto again;
3811 } else if (failed && retried) {
3812 ret = -ENOSPC;
3813 lock_chunks(root);
3814
3815 device->total_bytes = old_size;
3816 if (device->writeable)
3817 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3818 spin_lock(&root->fs_info->free_chunk_lock);
3819 root->fs_info->free_chunk_space += diff;
3820 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3821 unlock_chunks(root);
3822 goto done;
8f18cf13
CM
3823 }
3824
d6397bae 3825 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3826 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3827 if (IS_ERR(trans)) {
3828 ret = PTR_ERR(trans);
3829 goto done;
3830 }
3831
d6397bae
CB
3832 lock_chunks(root);
3833
3834 device->disk_total_bytes = new_size;
3835 /* Now btrfs_update_device() will change the on-disk size. */
3836 ret = btrfs_update_device(trans, device);
3837 if (ret) {
3838 unlock_chunks(root);
3839 btrfs_end_transaction(trans, root);
3840 goto done;
3841 }
3842 WARN_ON(diff > old_total);
3843 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3844 unlock_chunks(root);
3845 btrfs_end_transaction(trans, root);
8f18cf13
CM
3846done:
3847 btrfs_free_path(path);
3848 return ret;
3849}
3850
125ccb0a 3851static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3852 struct btrfs_key *key,
3853 struct btrfs_chunk *chunk, int item_size)
3854{
6c41761f 3855 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3856 struct btrfs_disk_key disk_key;
3857 u32 array_size;
3858 u8 *ptr;
3859
3860 array_size = btrfs_super_sys_array_size(super_copy);
3861 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3862 return -EFBIG;
3863
3864 ptr = super_copy->sys_chunk_array + array_size;
3865 btrfs_cpu_key_to_disk(&disk_key, key);
3866 memcpy(ptr, &disk_key, sizeof(disk_key));
3867 ptr += sizeof(disk_key);
3868 memcpy(ptr, chunk, item_size);
3869 item_size += sizeof(disk_key);
3870 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3871 return 0;
3872}
3873
73c5de00
AJ
3874/*
3875 * sort the devices in descending order by max_avail, total_avail
3876 */
3877static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3878{
73c5de00
AJ
3879 const struct btrfs_device_info *di_a = a;
3880 const struct btrfs_device_info *di_b = b;
9b3f68b9 3881
73c5de00 3882 if (di_a->max_avail > di_b->max_avail)
b2117a39 3883 return -1;
73c5de00 3884 if (di_a->max_avail < di_b->max_avail)
b2117a39 3885 return 1;
73c5de00
AJ
3886 if (di_a->total_avail > di_b->total_avail)
3887 return -1;
3888 if (di_a->total_avail < di_b->total_avail)
3889 return 1;
3890 return 0;
b2117a39 3891}
0b86a832 3892
48a3b636 3893static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
e6ec716f
MX
3894 [BTRFS_RAID_RAID10] = {
3895 .sub_stripes = 2,
3896 .dev_stripes = 1,
3897 .devs_max = 0, /* 0 == as many as possible */
3898 .devs_min = 4,
3899 .devs_increment = 2,
3900 .ncopies = 2,
3901 },
3902 [BTRFS_RAID_RAID1] = {
3903 .sub_stripes = 1,
3904 .dev_stripes = 1,
3905 .devs_max = 2,
3906 .devs_min = 2,
3907 .devs_increment = 2,
3908 .ncopies = 2,
3909 },
3910 [BTRFS_RAID_DUP] = {
3911 .sub_stripes = 1,
3912 .dev_stripes = 2,
3913 .devs_max = 1,
3914 .devs_min = 1,
3915 .devs_increment = 1,
3916 .ncopies = 2,
3917 },
3918 [BTRFS_RAID_RAID0] = {
3919 .sub_stripes = 1,
3920 .dev_stripes = 1,
3921 .devs_max = 0,
3922 .devs_min = 2,
3923 .devs_increment = 1,
3924 .ncopies = 1,
3925 },
3926 [BTRFS_RAID_SINGLE] = {
3927 .sub_stripes = 1,
3928 .dev_stripes = 1,
3929 .devs_max = 1,
3930 .devs_min = 1,
3931 .devs_increment = 1,
3932 .ncopies = 1,
3933 },
e942f883
CM
3934 [BTRFS_RAID_RAID5] = {
3935 .sub_stripes = 1,
3936 .dev_stripes = 1,
3937 .devs_max = 0,
3938 .devs_min = 2,
3939 .devs_increment = 1,
3940 .ncopies = 2,
3941 },
3942 [BTRFS_RAID_RAID6] = {
3943 .sub_stripes = 1,
3944 .dev_stripes = 1,
3945 .devs_max = 0,
3946 .devs_min = 3,
3947 .devs_increment = 1,
3948 .ncopies = 3,
3949 },
31e50229
LB
3950};
3951
53b381b3
DW
3952static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3953{
3954 /* TODO allow them to set a preferred stripe size */
3955 return 64 * 1024;
3956}
3957
3958static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3959{
53b381b3
DW
3960 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3961 return;
3962
ceda0864 3963 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
3964}
3965
73c5de00 3966static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
3967 struct btrfs_root *extent_root, u64 start,
3968 u64 type)
b2117a39 3969{
73c5de00
AJ
3970 struct btrfs_fs_info *info = extent_root->fs_info;
3971 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3972 struct list_head *cur;
3973 struct map_lookup *map = NULL;
3974 struct extent_map_tree *em_tree;
3975 struct extent_map *em;
3976 struct btrfs_device_info *devices_info = NULL;
3977 u64 total_avail;
3978 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
3979 int data_stripes; /* number of stripes that count for
3980 block group size */
73c5de00
AJ
3981 int sub_stripes; /* sub_stripes info for map */
3982 int dev_stripes; /* stripes per dev */
3983 int devs_max; /* max devs to use */
3984 int devs_min; /* min devs needed */
3985 int devs_increment; /* ndevs has to be a multiple of this */
3986 int ncopies; /* how many copies to data has */
3987 int ret;
3988 u64 max_stripe_size;
3989 u64 max_chunk_size;
3990 u64 stripe_size;
3991 u64 num_bytes;
53b381b3 3992 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
3993 int ndevs;
3994 int i;
3995 int j;
31e50229 3996 int index;
593060d7 3997
0c460c0d 3998 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3999
73c5de00
AJ
4000 if (list_empty(&fs_devices->alloc_list))
4001 return -ENOSPC;
b2117a39 4002
31e50229 4003 index = __get_raid_index(type);
73c5de00 4004
31e50229
LB
4005 sub_stripes = btrfs_raid_array[index].sub_stripes;
4006 dev_stripes = btrfs_raid_array[index].dev_stripes;
4007 devs_max = btrfs_raid_array[index].devs_max;
4008 devs_min = btrfs_raid_array[index].devs_min;
4009 devs_increment = btrfs_raid_array[index].devs_increment;
4010 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4011
9b3f68b9 4012 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
4013 max_stripe_size = 1024 * 1024 * 1024;
4014 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 4015 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
4016 /* for larger filesystems, use larger metadata chunks */
4017 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4018 max_stripe_size = 1024 * 1024 * 1024;
4019 else
4020 max_stripe_size = 256 * 1024 * 1024;
73c5de00 4021 max_chunk_size = max_stripe_size;
a40a90a0 4022 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 4023 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
4024 max_chunk_size = 2 * max_stripe_size;
4025 } else {
4026 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4027 type);
4028 BUG_ON(1);
9b3f68b9
CM
4029 }
4030
2b82032c
YZ
4031 /* we don't want a chunk larger than 10% of writeable space */
4032 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4033 max_chunk_size);
9b3f68b9 4034
73c5de00
AJ
4035 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4036 GFP_NOFS);
4037 if (!devices_info)
4038 return -ENOMEM;
0cad8a11 4039
73c5de00 4040 cur = fs_devices->alloc_list.next;
9b3f68b9 4041
9f680ce0 4042 /*
73c5de00
AJ
4043 * in the first pass through the devices list, we gather information
4044 * about the available holes on each device.
9f680ce0 4045 */
73c5de00
AJ
4046 ndevs = 0;
4047 while (cur != &fs_devices->alloc_list) {
4048 struct btrfs_device *device;
4049 u64 max_avail;
4050 u64 dev_offset;
b2117a39 4051
73c5de00 4052 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4053
73c5de00 4054 cur = cur->next;
b2117a39 4055
73c5de00 4056 if (!device->writeable) {
31b1a2bd 4057 WARN(1, KERN_ERR
73c5de00 4058 "btrfs: read-only device in alloc_list\n");
73c5de00
AJ
4059 continue;
4060 }
b2117a39 4061
63a212ab
SB
4062 if (!device->in_fs_metadata ||
4063 device->is_tgtdev_for_dev_replace)
73c5de00 4064 continue;
b2117a39 4065
73c5de00
AJ
4066 if (device->total_bytes > device->bytes_used)
4067 total_avail = device->total_bytes - device->bytes_used;
4068 else
4069 total_avail = 0;
38c01b96 4070
4071 /* If there is no space on this device, skip it. */
4072 if (total_avail == 0)
4073 continue;
b2117a39 4074
6df9a95e 4075 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4076 max_stripe_size * dev_stripes,
4077 &dev_offset, &max_avail);
4078 if (ret && ret != -ENOSPC)
4079 goto error;
b2117a39 4080
73c5de00
AJ
4081 if (ret == 0)
4082 max_avail = max_stripe_size * dev_stripes;
b2117a39 4083
73c5de00
AJ
4084 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4085 continue;
b2117a39 4086
063d006f
ES
4087 if (ndevs == fs_devices->rw_devices) {
4088 WARN(1, "%s: found more than %llu devices\n",
4089 __func__, fs_devices->rw_devices);
4090 break;
4091 }
73c5de00
AJ
4092 devices_info[ndevs].dev_offset = dev_offset;
4093 devices_info[ndevs].max_avail = max_avail;
4094 devices_info[ndevs].total_avail = total_avail;
4095 devices_info[ndevs].dev = device;
4096 ++ndevs;
4097 }
b2117a39 4098
73c5de00
AJ
4099 /*
4100 * now sort the devices by hole size / available space
4101 */
4102 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4103 btrfs_cmp_device_info, NULL);
b2117a39 4104
73c5de00
AJ
4105 /* round down to number of usable stripes */
4106 ndevs -= ndevs % devs_increment;
b2117a39 4107
73c5de00
AJ
4108 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4109 ret = -ENOSPC;
4110 goto error;
b2117a39 4111 }
9f680ce0 4112
73c5de00
AJ
4113 if (devs_max && ndevs > devs_max)
4114 ndevs = devs_max;
4115 /*
4116 * the primary goal is to maximize the number of stripes, so use as many
4117 * devices as possible, even if the stripes are not maximum sized.
4118 */
4119 stripe_size = devices_info[ndevs-1].max_avail;
4120 num_stripes = ndevs * dev_stripes;
b2117a39 4121
53b381b3
DW
4122 /*
4123 * this will have to be fixed for RAID1 and RAID10 over
4124 * more drives
4125 */
4126 data_stripes = num_stripes / ncopies;
4127
53b381b3
DW
4128 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4129 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4130 btrfs_super_stripesize(info->super_copy));
4131 data_stripes = num_stripes - 1;
4132 }
4133 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4134 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4135 btrfs_super_stripesize(info->super_copy));
4136 data_stripes = num_stripes - 2;
4137 }
86db2578
CM
4138
4139 /*
4140 * Use the number of data stripes to figure out how big this chunk
4141 * is really going to be in terms of logical address space,
4142 * and compare that answer with the max chunk size
4143 */
4144 if (stripe_size * data_stripes > max_chunk_size) {
4145 u64 mask = (1ULL << 24) - 1;
4146 stripe_size = max_chunk_size;
4147 do_div(stripe_size, data_stripes);
4148
4149 /* bump the answer up to a 16MB boundary */
4150 stripe_size = (stripe_size + mask) & ~mask;
4151
4152 /* but don't go higher than the limits we found
4153 * while searching for free extents
4154 */
4155 if (stripe_size > devices_info[ndevs-1].max_avail)
4156 stripe_size = devices_info[ndevs-1].max_avail;
4157 }
4158
73c5de00 4159 do_div(stripe_size, dev_stripes);
37db63a4
ID
4160
4161 /* align to BTRFS_STRIPE_LEN */
53b381b3
DW
4162 do_div(stripe_size, raid_stripe_len);
4163 stripe_size *= raid_stripe_len;
b2117a39
MX
4164
4165 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4166 if (!map) {
4167 ret = -ENOMEM;
4168 goto error;
4169 }
4170 map->num_stripes = num_stripes;
9b3f68b9 4171
73c5de00
AJ
4172 for (i = 0; i < ndevs; ++i) {
4173 for (j = 0; j < dev_stripes; ++j) {
4174 int s = i * dev_stripes + j;
4175 map->stripes[s].dev = devices_info[i].dev;
4176 map->stripes[s].physical = devices_info[i].dev_offset +
4177 j * stripe_size;
6324fbf3 4178 }
6324fbf3 4179 }
2b82032c 4180 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4181 map->stripe_len = raid_stripe_len;
4182 map->io_align = raid_stripe_len;
4183 map->io_width = raid_stripe_len;
2b82032c 4184 map->type = type;
2b82032c 4185 map->sub_stripes = sub_stripes;
0b86a832 4186
53b381b3 4187 num_bytes = stripe_size * data_stripes;
0b86a832 4188
73c5de00 4189 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4190
172ddd60 4191 em = alloc_extent_map();
2b82032c 4192 if (!em) {
b2117a39
MX
4193 ret = -ENOMEM;
4194 goto error;
593060d7 4195 }
2b82032c
YZ
4196 em->bdev = (struct block_device *)map;
4197 em->start = start;
73c5de00 4198 em->len = num_bytes;
2b82032c
YZ
4199 em->block_start = 0;
4200 em->block_len = em->len;
6df9a95e 4201 em->orig_block_len = stripe_size;
593060d7 4202
2b82032c 4203 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4204 write_lock(&em_tree->lock);
09a2a8f9 4205 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4206 if (!ret) {
4207 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4208 atomic_inc(&em->refs);
4209 }
890871be 4210 write_unlock(&em_tree->lock);
0f5d42b2
JB
4211 if (ret) {
4212 free_extent_map(em);
1dd4602f 4213 goto error;
0f5d42b2 4214 }
0b86a832 4215
04487488
JB
4216 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4217 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4218 start, num_bytes);
6df9a95e
JB
4219 if (ret)
4220 goto error_del_extent;
2b82032c 4221
0f5d42b2 4222 free_extent_map(em);
53b381b3
DW
4223 check_raid56_incompat_flag(extent_root->fs_info, type);
4224
b2117a39 4225 kfree(devices_info);
2b82032c 4226 return 0;
b2117a39 4227
6df9a95e 4228error_del_extent:
0f5d42b2
JB
4229 write_lock(&em_tree->lock);
4230 remove_extent_mapping(em_tree, em);
4231 write_unlock(&em_tree->lock);
4232
4233 /* One for our allocation */
4234 free_extent_map(em);
4235 /* One for the tree reference */
4236 free_extent_map(em);
b2117a39
MX
4237error:
4238 kfree(map);
4239 kfree(devices_info);
4240 return ret;
2b82032c
YZ
4241}
4242
6df9a95e 4243int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4244 struct btrfs_root *extent_root,
6df9a95e 4245 u64 chunk_offset, u64 chunk_size)
2b82032c 4246{
2b82032c
YZ
4247 struct btrfs_key key;
4248 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4249 struct btrfs_device *device;
4250 struct btrfs_chunk *chunk;
4251 struct btrfs_stripe *stripe;
6df9a95e
JB
4252 struct extent_map_tree *em_tree;
4253 struct extent_map *em;
4254 struct map_lookup *map;
4255 size_t item_size;
4256 u64 dev_offset;
4257 u64 stripe_size;
4258 int i = 0;
2b82032c
YZ
4259 int ret;
4260
6df9a95e
JB
4261 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4262 read_lock(&em_tree->lock);
4263 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4264 read_unlock(&em_tree->lock);
4265
4266 if (!em) {
4267 btrfs_crit(extent_root->fs_info, "unable to find logical "
4268 "%Lu len %Lu", chunk_offset, chunk_size);
4269 return -EINVAL;
4270 }
4271
4272 if (em->start != chunk_offset || em->len != chunk_size) {
4273 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4274 " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4275 chunk_size, em->start, em->len);
4276 free_extent_map(em);
4277 return -EINVAL;
4278 }
4279
4280 map = (struct map_lookup *)em->bdev;
4281 item_size = btrfs_chunk_item_size(map->num_stripes);
4282 stripe_size = em->orig_block_len;
4283
2b82032c 4284 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4285 if (!chunk) {
4286 ret = -ENOMEM;
4287 goto out;
4288 }
4289
4290 for (i = 0; i < map->num_stripes; i++) {
4291 device = map->stripes[i].dev;
4292 dev_offset = map->stripes[i].physical;
2b82032c 4293
2b82032c 4294 device->bytes_used += stripe_size;
0b86a832 4295 ret = btrfs_update_device(trans, device);
3acd3953 4296 if (ret)
6df9a95e
JB
4297 goto out;
4298 ret = btrfs_alloc_dev_extent(trans, device,
4299 chunk_root->root_key.objectid,
4300 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4301 chunk_offset, dev_offset,
4302 stripe_size);
4303 if (ret)
4304 goto out;
2b82032c
YZ
4305 }
4306
2bf64758
JB
4307 spin_lock(&extent_root->fs_info->free_chunk_lock);
4308 extent_root->fs_info->free_chunk_space -= (stripe_size *
4309 map->num_stripes);
4310 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4311
2b82032c 4312 stripe = &chunk->stripe;
6df9a95e
JB
4313 for (i = 0; i < map->num_stripes; i++) {
4314 device = map->stripes[i].dev;
4315 dev_offset = map->stripes[i].physical;
0b86a832 4316
e17cade2
CM
4317 btrfs_set_stack_stripe_devid(stripe, device->devid);
4318 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4319 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4320 stripe++;
0b86a832
CM
4321 }
4322
2b82032c 4323 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4324 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4325 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4326 btrfs_set_stack_chunk_type(chunk, map->type);
4327 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4328 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4329 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4330 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4331 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4332
2b82032c
YZ
4333 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4334 key.type = BTRFS_CHUNK_ITEM_KEY;
4335 key.offset = chunk_offset;
0b86a832 4336
2b82032c 4337 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4338 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4339 /*
4340 * TODO: Cleanup of inserted chunk root in case of
4341 * failure.
4342 */
125ccb0a 4343 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4344 item_size);
8f18cf13 4345 }
1abe9b8a 4346
6df9a95e 4347out:
0b86a832 4348 kfree(chunk);
6df9a95e 4349 free_extent_map(em);
4ed1d16e 4350 return ret;
2b82032c 4351}
0b86a832 4352
2b82032c
YZ
4353/*
4354 * Chunk allocation falls into two parts. The first part does works
4355 * that make the new allocated chunk useable, but not do any operation
4356 * that modifies the chunk tree. The second part does the works that
4357 * require modifying the chunk tree. This division is important for the
4358 * bootstrap process of adding storage to a seed btrfs.
4359 */
4360int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4361 struct btrfs_root *extent_root, u64 type)
4362{
4363 u64 chunk_offset;
2b82032c 4364
6df9a95e
JB
4365 chunk_offset = find_next_chunk(extent_root->fs_info);
4366 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4367}
4368
d397712b 4369static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4370 struct btrfs_root *root,
4371 struct btrfs_device *device)
4372{
4373 u64 chunk_offset;
4374 u64 sys_chunk_offset;
2b82032c 4375 u64 alloc_profile;
2b82032c
YZ
4376 struct btrfs_fs_info *fs_info = root->fs_info;
4377 struct btrfs_root *extent_root = fs_info->extent_root;
4378 int ret;
4379
6df9a95e 4380 chunk_offset = find_next_chunk(fs_info);
de98ced9 4381 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4382 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4383 alloc_profile);
79787eaa
JM
4384 if (ret)
4385 return ret;
2b82032c 4386
6df9a95e 4387 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4388 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4389 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4390 alloc_profile);
005d6427
DS
4391 if (ret) {
4392 btrfs_abort_transaction(trans, root, ret);
4393 goto out;
4394 }
2b82032c
YZ
4395
4396 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa 4397 if (ret)
005d6427 4398 btrfs_abort_transaction(trans, root, ret);
005d6427 4399out:
79787eaa 4400 return ret;
2b82032c
YZ
4401}
4402
4403int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4404{
4405 struct extent_map *em;
4406 struct map_lookup *map;
4407 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4408 int readonly = 0;
4409 int i;
4410
890871be 4411 read_lock(&map_tree->map_tree.lock);
2b82032c 4412 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4413 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4414 if (!em)
4415 return 1;
4416
f48b9075
JB
4417 if (btrfs_test_opt(root, DEGRADED)) {
4418 free_extent_map(em);
4419 return 0;
4420 }
4421
2b82032c
YZ
4422 map = (struct map_lookup *)em->bdev;
4423 for (i = 0; i < map->num_stripes; i++) {
4424 if (!map->stripes[i].dev->writeable) {
4425 readonly = 1;
4426 break;
4427 }
4428 }
0b86a832 4429 free_extent_map(em);
2b82032c 4430 return readonly;
0b86a832
CM
4431}
4432
4433void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4434{
a8067e02 4435 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4436}
4437
4438void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4439{
4440 struct extent_map *em;
4441
d397712b 4442 while (1) {
890871be 4443 write_lock(&tree->map_tree.lock);
0b86a832
CM
4444 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4445 if (em)
4446 remove_extent_mapping(&tree->map_tree, em);
890871be 4447 write_unlock(&tree->map_tree.lock);
0b86a832
CM
4448 if (!em)
4449 break;
4450 kfree(em->bdev);
4451 /* once for us */
4452 free_extent_map(em);
4453 /* once for the tree */
4454 free_extent_map(em);
4455 }
4456}
4457
5d964051 4458int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 4459{
5d964051 4460 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
4461 struct extent_map *em;
4462 struct map_lookup *map;
4463 struct extent_map_tree *em_tree = &map_tree->map_tree;
4464 int ret;
4465
890871be 4466 read_lock(&em_tree->lock);
f188591e 4467 em = lookup_extent_mapping(em_tree, logical, len);
890871be 4468 read_unlock(&em_tree->lock);
f188591e 4469
fb7669b5
JB
4470 /*
4471 * We could return errors for these cases, but that could get ugly and
4472 * we'd probably do the same thing which is just not do anything else
4473 * and exit, so return 1 so the callers don't try to use other copies.
4474 */
4475 if (!em) {
ccf39f92 4476 btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
fb7669b5
JB
4477 logical+len);
4478 return 1;
4479 }
4480
4481 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 4482 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
fb7669b5
JB
4483 "%Lu-%Lu\n", logical, logical+len, em->start,
4484 em->start + em->len);
4485 return 1;
4486 }
4487
f188591e
CM
4488 map = (struct map_lookup *)em->bdev;
4489 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4490 ret = map->num_stripes;
321aecc6
CM
4491 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4492 ret = map->sub_stripes;
53b381b3
DW
4493 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4494 ret = 2;
4495 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4496 ret = 3;
f188591e
CM
4497 else
4498 ret = 1;
4499 free_extent_map(em);
ad6d620e
SB
4500
4501 btrfs_dev_replace_lock(&fs_info->dev_replace);
4502 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4503 ret++;
4504 btrfs_dev_replace_unlock(&fs_info->dev_replace);
4505
f188591e
CM
4506 return ret;
4507}
4508
53b381b3
DW
4509unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4510 struct btrfs_mapping_tree *map_tree,
4511 u64 logical)
4512{
4513 struct extent_map *em;
4514 struct map_lookup *map;
4515 struct extent_map_tree *em_tree = &map_tree->map_tree;
4516 unsigned long len = root->sectorsize;
4517
4518 read_lock(&em_tree->lock);
4519 em = lookup_extent_mapping(em_tree, logical, len);
4520 read_unlock(&em_tree->lock);
4521 BUG_ON(!em);
4522
4523 BUG_ON(em->start > logical || em->start + em->len < logical);
4524 map = (struct map_lookup *)em->bdev;
4525 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4526 BTRFS_BLOCK_GROUP_RAID6)) {
4527 len = map->stripe_len * nr_data_stripes(map);
4528 }
4529 free_extent_map(em);
4530 return len;
4531}
4532
4533int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4534 u64 logical, u64 len, int mirror_num)
4535{
4536 struct extent_map *em;
4537 struct map_lookup *map;
4538 struct extent_map_tree *em_tree = &map_tree->map_tree;
4539 int ret = 0;
4540
4541 read_lock(&em_tree->lock);
4542 em = lookup_extent_mapping(em_tree, logical, len);
4543 read_unlock(&em_tree->lock);
4544 BUG_ON(!em);
4545
4546 BUG_ON(em->start > logical || em->start + em->len < logical);
4547 map = (struct map_lookup *)em->bdev;
4548 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4549 BTRFS_BLOCK_GROUP_RAID6))
4550 ret = 1;
4551 free_extent_map(em);
4552 return ret;
4553}
4554
30d9861f
SB
4555static int find_live_mirror(struct btrfs_fs_info *fs_info,
4556 struct map_lookup *map, int first, int num,
4557 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
4558{
4559 int i;
30d9861f
SB
4560 int tolerance;
4561 struct btrfs_device *srcdev;
4562
4563 if (dev_replace_is_ongoing &&
4564 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4565 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4566 srcdev = fs_info->dev_replace.srcdev;
4567 else
4568 srcdev = NULL;
4569
4570 /*
4571 * try to avoid the drive that is the source drive for a
4572 * dev-replace procedure, only choose it if no other non-missing
4573 * mirror is available
4574 */
4575 for (tolerance = 0; tolerance < 2; tolerance++) {
4576 if (map->stripes[optimal].dev->bdev &&
4577 (tolerance || map->stripes[optimal].dev != srcdev))
4578 return optimal;
4579 for (i = first; i < first + num; i++) {
4580 if (map->stripes[i].dev->bdev &&
4581 (tolerance || map->stripes[i].dev != srcdev))
4582 return i;
4583 }
dfe25020 4584 }
30d9861f 4585
dfe25020
CM
4586 /* we couldn't find one that doesn't fail. Just return something
4587 * and the io error handling code will clean up eventually
4588 */
4589 return optimal;
4590}
4591
53b381b3
DW
4592static inline int parity_smaller(u64 a, u64 b)
4593{
4594 return a > b;
4595}
4596
4597/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4598static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4599{
4600 struct btrfs_bio_stripe s;
4601 int i;
4602 u64 l;
4603 int again = 1;
4604
4605 while (again) {
4606 again = 0;
4607 for (i = 0; i < bbio->num_stripes - 1; i++) {
4608 if (parity_smaller(raid_map[i], raid_map[i+1])) {
4609 s = bbio->stripes[i];
4610 l = raid_map[i];
4611 bbio->stripes[i] = bbio->stripes[i+1];
4612 raid_map[i] = raid_map[i+1];
4613 bbio->stripes[i+1] = s;
4614 raid_map[i+1] = l;
4615 again = 1;
4616 }
4617 }
4618 }
4619}
4620
3ec706c8 4621static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 4622 u64 logical, u64 *length,
a1d3c478 4623 struct btrfs_bio **bbio_ret,
53b381b3 4624 int mirror_num, u64 **raid_map_ret)
0b86a832
CM
4625{
4626 struct extent_map *em;
4627 struct map_lookup *map;
3ec706c8 4628 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
4629 struct extent_map_tree *em_tree = &map_tree->map_tree;
4630 u64 offset;
593060d7 4631 u64 stripe_offset;
fce3bb9a 4632 u64 stripe_end_offset;
593060d7 4633 u64 stripe_nr;
fce3bb9a
LD
4634 u64 stripe_nr_orig;
4635 u64 stripe_nr_end;
53b381b3
DW
4636 u64 stripe_len;
4637 u64 *raid_map = NULL;
593060d7 4638 int stripe_index;
cea9e445 4639 int i;
de11cc12 4640 int ret = 0;
f2d8d74d 4641 int num_stripes;
a236aed1 4642 int max_errors = 0;
a1d3c478 4643 struct btrfs_bio *bbio = NULL;
472262f3
SB
4644 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4645 int dev_replace_is_ongoing = 0;
4646 int num_alloc_stripes;
ad6d620e
SB
4647 int patch_the_first_stripe_for_dev_replace = 0;
4648 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 4649 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 4650
890871be 4651 read_lock(&em_tree->lock);
0b86a832 4652 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 4653 read_unlock(&em_tree->lock);
f2d8d74d 4654
3b951516 4655 if (!em) {
c2cf52eb 4656 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 4657 logical, *length);
9bb91873
JB
4658 return -EINVAL;
4659 }
4660
4661 if (em->start > logical || em->start + em->len < logical) {
4662 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4663 "found %Lu-%Lu\n", logical, em->start,
4664 em->start + em->len);
4665 return -EINVAL;
3b951516 4666 }
0b86a832 4667
0b86a832
CM
4668 map = (struct map_lookup *)em->bdev;
4669 offset = logical - em->start;
593060d7 4670
53b381b3 4671 stripe_len = map->stripe_len;
593060d7
CM
4672 stripe_nr = offset;
4673 /*
4674 * stripe_nr counts the total number of stripes we have to stride
4675 * to get to this block
4676 */
53b381b3 4677 do_div(stripe_nr, stripe_len);
593060d7 4678
53b381b3 4679 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
4680 BUG_ON(offset < stripe_offset);
4681
4682 /* stripe_offset is the offset of this block in its stripe*/
4683 stripe_offset = offset - stripe_offset;
4684
53b381b3
DW
4685 /* if we're here for raid56, we need to know the stripe aligned start */
4686 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4687 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4688 raid56_full_stripe_start = offset;
4689
4690 /* allow a write of a full stripe, but make sure we don't
4691 * allow straddling of stripes
4692 */
4693 do_div(raid56_full_stripe_start, full_stripe_len);
4694 raid56_full_stripe_start *= full_stripe_len;
4695 }
4696
4697 if (rw & REQ_DISCARD) {
4698 /* we don't discard raid56 yet */
4699 if (map->type &
4700 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4701 ret = -EOPNOTSUPP;
4702 goto out;
4703 }
fce3bb9a 4704 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
4705 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4706 u64 max_len;
4707 /* For writes to RAID[56], allow a full stripeset across all disks.
4708 For other RAID types and for RAID[56] reads, just allow a single
4709 stripe (on a single disk). */
4710 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4711 (rw & REQ_WRITE)) {
4712 max_len = stripe_len * nr_data_stripes(map) -
4713 (offset - raid56_full_stripe_start);
4714 } else {
4715 /* we limit the length of each bio to what fits in a stripe */
4716 max_len = stripe_len - stripe_offset;
4717 }
4718 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
4719 } else {
4720 *length = em->len - offset;
4721 }
f2d8d74d 4722
53b381b3
DW
4723 /* This is for when we're called from btrfs_merge_bio_hook() and all
4724 it cares about is the length */
a1d3c478 4725 if (!bbio_ret)
cea9e445
CM
4726 goto out;
4727
472262f3
SB
4728 btrfs_dev_replace_lock(dev_replace);
4729 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4730 if (!dev_replace_is_ongoing)
4731 btrfs_dev_replace_unlock(dev_replace);
4732
ad6d620e
SB
4733 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4734 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4735 dev_replace->tgtdev != NULL) {
4736 /*
4737 * in dev-replace case, for repair case (that's the only
4738 * case where the mirror is selected explicitly when
4739 * calling btrfs_map_block), blocks left of the left cursor
4740 * can also be read from the target drive.
4741 * For REQ_GET_READ_MIRRORS, the target drive is added as
4742 * the last one to the array of stripes. For READ, it also
4743 * needs to be supported using the same mirror number.
4744 * If the requested block is not left of the left cursor,
4745 * EIO is returned. This can happen because btrfs_num_copies()
4746 * returns one more in the dev-replace case.
4747 */
4748 u64 tmp_length = *length;
4749 struct btrfs_bio *tmp_bbio = NULL;
4750 int tmp_num_stripes;
4751 u64 srcdev_devid = dev_replace->srcdev->devid;
4752 int index_srcdev = 0;
4753 int found = 0;
4754 u64 physical_of_found = 0;
4755
4756 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
53b381b3 4757 logical, &tmp_length, &tmp_bbio, 0, NULL);
ad6d620e
SB
4758 if (ret) {
4759 WARN_ON(tmp_bbio != NULL);
4760 goto out;
4761 }
4762
4763 tmp_num_stripes = tmp_bbio->num_stripes;
4764 if (mirror_num > tmp_num_stripes) {
4765 /*
4766 * REQ_GET_READ_MIRRORS does not contain this
4767 * mirror, that means that the requested area
4768 * is not left of the left cursor
4769 */
4770 ret = -EIO;
4771 kfree(tmp_bbio);
4772 goto out;
4773 }
4774
4775 /*
4776 * process the rest of the function using the mirror_num
4777 * of the source drive. Therefore look it up first.
4778 * At the end, patch the device pointer to the one of the
4779 * target drive.
4780 */
4781 for (i = 0; i < tmp_num_stripes; i++) {
4782 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4783 /*
4784 * In case of DUP, in order to keep it
4785 * simple, only add the mirror with the
4786 * lowest physical address
4787 */
4788 if (found &&
4789 physical_of_found <=
4790 tmp_bbio->stripes[i].physical)
4791 continue;
4792 index_srcdev = i;
4793 found = 1;
4794 physical_of_found =
4795 tmp_bbio->stripes[i].physical;
4796 }
4797 }
4798
4799 if (found) {
4800 mirror_num = index_srcdev + 1;
4801 patch_the_first_stripe_for_dev_replace = 1;
4802 physical_to_patch_in_first_stripe = physical_of_found;
4803 } else {
4804 WARN_ON(1);
4805 ret = -EIO;
4806 kfree(tmp_bbio);
4807 goto out;
4808 }
4809
4810 kfree(tmp_bbio);
4811 } else if (mirror_num > map->num_stripes) {
4812 mirror_num = 0;
4813 }
4814
f2d8d74d 4815 num_stripes = 1;
cea9e445 4816 stripe_index = 0;
fce3bb9a 4817 stripe_nr_orig = stripe_nr;
fda2832f 4818 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
fce3bb9a
LD
4819 do_div(stripe_nr_end, map->stripe_len);
4820 stripe_end_offset = stripe_nr_end * map->stripe_len -
4821 (offset + *length);
53b381b3 4822
fce3bb9a
LD
4823 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4824 if (rw & REQ_DISCARD)
4825 num_stripes = min_t(u64, map->num_stripes,
4826 stripe_nr_end - stripe_nr_orig);
4827 stripe_index = do_div(stripe_nr, map->num_stripes);
4828 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 4829 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 4830 num_stripes = map->num_stripes;
2fff734f 4831 else if (mirror_num)
f188591e 4832 stripe_index = mirror_num - 1;
dfe25020 4833 else {
30d9861f 4834 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 4835 map->num_stripes,
30d9861f
SB
4836 current->pid % map->num_stripes,
4837 dev_replace_is_ongoing);
a1d3c478 4838 mirror_num = stripe_index + 1;
dfe25020 4839 }
2fff734f 4840
611f0e00 4841 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 4842 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 4843 num_stripes = map->num_stripes;
a1d3c478 4844 } else if (mirror_num) {
f188591e 4845 stripe_index = mirror_num - 1;
a1d3c478
JS
4846 } else {
4847 mirror_num = 1;
4848 }
2fff734f 4849
321aecc6
CM
4850 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4851 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
4852
4853 stripe_index = do_div(stripe_nr, factor);
4854 stripe_index *= map->sub_stripes;
4855
29a8d9a0 4856 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 4857 num_stripes = map->sub_stripes;
fce3bb9a
LD
4858 else if (rw & REQ_DISCARD)
4859 num_stripes = min_t(u64, map->sub_stripes *
4860 (stripe_nr_end - stripe_nr_orig),
4861 map->num_stripes);
321aecc6
CM
4862 else if (mirror_num)
4863 stripe_index += mirror_num - 1;
dfe25020 4864 else {
3e74317a 4865 int old_stripe_index = stripe_index;
30d9861f
SB
4866 stripe_index = find_live_mirror(fs_info, map,
4867 stripe_index,
dfe25020 4868 map->sub_stripes, stripe_index +
30d9861f
SB
4869 current->pid % map->sub_stripes,
4870 dev_replace_is_ongoing);
3e74317a 4871 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 4872 }
53b381b3
DW
4873
4874 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4875 BTRFS_BLOCK_GROUP_RAID6)) {
4876 u64 tmp;
4877
4878 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4879 && raid_map_ret) {
4880 int i, rot;
4881
4882 /* push stripe_nr back to the start of the full stripe */
4883 stripe_nr = raid56_full_stripe_start;
4884 do_div(stripe_nr, stripe_len);
4885
4886 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4887
4888 /* RAID[56] write or recovery. Return all stripes */
4889 num_stripes = map->num_stripes;
4890 max_errors = nr_parity_stripes(map);
4891
4892 raid_map = kmalloc(sizeof(u64) * num_stripes,
4893 GFP_NOFS);
4894 if (!raid_map) {
4895 ret = -ENOMEM;
4896 goto out;
4897 }
4898
4899 /* Work out the disk rotation on this stripe-set */
4900 tmp = stripe_nr;
4901 rot = do_div(tmp, num_stripes);
4902
4903 /* Fill in the logical address of each stripe */
4904 tmp = stripe_nr * nr_data_stripes(map);
4905 for (i = 0; i < nr_data_stripes(map); i++)
4906 raid_map[(i+rot) % num_stripes] =
4907 em->start + (tmp + i) * map->stripe_len;
4908
4909 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4910 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4911 raid_map[(i+rot+1) % num_stripes] =
4912 RAID6_Q_STRIPE;
4913
4914 *length = map->stripe_len;
4915 stripe_index = 0;
4916 stripe_offset = 0;
4917 } else {
4918 /*
4919 * Mirror #0 or #1 means the original data block.
4920 * Mirror #2 is RAID5 parity block.
4921 * Mirror #3 is RAID6 Q block.
4922 */
4923 stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4924 if (mirror_num > 1)
4925 stripe_index = nr_data_stripes(map) +
4926 mirror_num - 2;
4927
4928 /* We distribute the parity blocks across stripes */
4929 tmp = stripe_nr + stripe_index;
4930 stripe_index = do_div(tmp, map->num_stripes);
4931 }
8790d502
CM
4932 } else {
4933 /*
4934 * after this do_div call, stripe_nr is the number of stripes
4935 * on this device we have to walk to find the data, and
4936 * stripe_index is the number of our device in the stripe array
4937 */
4938 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 4939 mirror_num = stripe_index + 1;
8790d502 4940 }
593060d7 4941 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 4942
472262f3 4943 num_alloc_stripes = num_stripes;
ad6d620e
SB
4944 if (dev_replace_is_ongoing) {
4945 if (rw & (REQ_WRITE | REQ_DISCARD))
4946 num_alloc_stripes <<= 1;
4947 if (rw & REQ_GET_READ_MIRRORS)
4948 num_alloc_stripes++;
4949 }
472262f3 4950 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
de11cc12 4951 if (!bbio) {
eb2067f7 4952 kfree(raid_map);
de11cc12
LZ
4953 ret = -ENOMEM;
4954 goto out;
4955 }
4956 atomic_set(&bbio->error, 0);
4957
fce3bb9a 4958 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
4959 int factor = 0;
4960 int sub_stripes = 0;
4961 u64 stripes_per_dev = 0;
4962 u32 remaining_stripes = 0;
b89203f7 4963 u32 last_stripe = 0;
ec9ef7a1
LZ
4964
4965 if (map->type &
4966 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4967 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4968 sub_stripes = 1;
4969 else
4970 sub_stripes = map->sub_stripes;
4971
4972 factor = map->num_stripes / sub_stripes;
4973 stripes_per_dev = div_u64_rem(stripe_nr_end -
4974 stripe_nr_orig,
4975 factor,
4976 &remaining_stripes);
b89203f7
LB
4977 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4978 last_stripe *= sub_stripes;
ec9ef7a1
LZ
4979 }
4980
fce3bb9a 4981 for (i = 0; i < num_stripes; i++) {
a1d3c478 4982 bbio->stripes[i].physical =
f2d8d74d
CM
4983 map->stripes[stripe_index].physical +
4984 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 4985 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 4986
ec9ef7a1
LZ
4987 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4988 BTRFS_BLOCK_GROUP_RAID10)) {
4989 bbio->stripes[i].length = stripes_per_dev *
4990 map->stripe_len;
b89203f7 4991
ec9ef7a1
LZ
4992 if (i / sub_stripes < remaining_stripes)
4993 bbio->stripes[i].length +=
4994 map->stripe_len;
b89203f7
LB
4995
4996 /*
4997 * Special for the first stripe and
4998 * the last stripe:
4999 *
5000 * |-------|...|-------|
5001 * |----------|
5002 * off end_off
5003 */
ec9ef7a1 5004 if (i < sub_stripes)
a1d3c478 5005 bbio->stripes[i].length -=
fce3bb9a 5006 stripe_offset;
b89203f7
LB
5007
5008 if (stripe_index >= last_stripe &&
5009 stripe_index <= (last_stripe +
5010 sub_stripes - 1))
a1d3c478 5011 bbio->stripes[i].length -=
fce3bb9a 5012 stripe_end_offset;
b89203f7 5013
ec9ef7a1
LZ
5014 if (i == sub_stripes - 1)
5015 stripe_offset = 0;
fce3bb9a 5016 } else
a1d3c478 5017 bbio->stripes[i].length = *length;
fce3bb9a
LD
5018
5019 stripe_index++;
5020 if (stripe_index == map->num_stripes) {
5021 /* This could only happen for RAID0/10 */
5022 stripe_index = 0;
5023 stripe_nr++;
5024 }
5025 }
5026 } else {
5027 for (i = 0; i < num_stripes; i++) {
a1d3c478 5028 bbio->stripes[i].physical =
212a17ab
LT
5029 map->stripes[stripe_index].physical +
5030 stripe_offset +
5031 stripe_nr * map->stripe_len;
a1d3c478 5032 bbio->stripes[i].dev =
212a17ab 5033 map->stripes[stripe_index].dev;
fce3bb9a 5034 stripe_index++;
f2d8d74d 5035 }
593060d7 5036 }
de11cc12 5037
29a8d9a0 5038 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
de11cc12
LZ
5039 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5040 BTRFS_BLOCK_GROUP_RAID10 |
53b381b3 5041 BTRFS_BLOCK_GROUP_RAID5 |
de11cc12
LZ
5042 BTRFS_BLOCK_GROUP_DUP)) {
5043 max_errors = 1;
53b381b3
DW
5044 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5045 max_errors = 2;
de11cc12 5046 }
f2d8d74d 5047 }
de11cc12 5048
472262f3
SB
5049 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5050 dev_replace->tgtdev != NULL) {
5051 int index_where_to_add;
5052 u64 srcdev_devid = dev_replace->srcdev->devid;
5053
5054 /*
5055 * duplicate the write operations while the dev replace
5056 * procedure is running. Since the copying of the old disk
5057 * to the new disk takes place at run time while the
5058 * filesystem is mounted writable, the regular write
5059 * operations to the old disk have to be duplicated to go
5060 * to the new disk as well.
5061 * Note that device->missing is handled by the caller, and
5062 * that the write to the old disk is already set up in the
5063 * stripes array.
5064 */
5065 index_where_to_add = num_stripes;
5066 for (i = 0; i < num_stripes; i++) {
5067 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5068 /* write to new disk, too */
5069 struct btrfs_bio_stripe *new =
5070 bbio->stripes + index_where_to_add;
5071 struct btrfs_bio_stripe *old =
5072 bbio->stripes + i;
5073
5074 new->physical = old->physical;
5075 new->length = old->length;
5076 new->dev = dev_replace->tgtdev;
5077 index_where_to_add++;
5078 max_errors++;
5079 }
5080 }
5081 num_stripes = index_where_to_add;
ad6d620e
SB
5082 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5083 dev_replace->tgtdev != NULL) {
5084 u64 srcdev_devid = dev_replace->srcdev->devid;
5085 int index_srcdev = 0;
5086 int found = 0;
5087 u64 physical_of_found = 0;
5088
5089 /*
5090 * During the dev-replace procedure, the target drive can
5091 * also be used to read data in case it is needed to repair
5092 * a corrupt block elsewhere. This is possible if the
5093 * requested area is left of the left cursor. In this area,
5094 * the target drive is a full copy of the source drive.
5095 */
5096 for (i = 0; i < num_stripes; i++) {
5097 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5098 /*
5099 * In case of DUP, in order to keep it
5100 * simple, only add the mirror with the
5101 * lowest physical address
5102 */
5103 if (found &&
5104 physical_of_found <=
5105 bbio->stripes[i].physical)
5106 continue;
5107 index_srcdev = i;
5108 found = 1;
5109 physical_of_found = bbio->stripes[i].physical;
5110 }
5111 }
5112 if (found) {
5113 u64 length = map->stripe_len;
5114
5115 if (physical_of_found + length <=
5116 dev_replace->cursor_left) {
5117 struct btrfs_bio_stripe *tgtdev_stripe =
5118 bbio->stripes + num_stripes;
5119
5120 tgtdev_stripe->physical = physical_of_found;
5121 tgtdev_stripe->length =
5122 bbio->stripes[index_srcdev].length;
5123 tgtdev_stripe->dev = dev_replace->tgtdev;
5124
5125 num_stripes++;
5126 }
5127 }
472262f3
SB
5128 }
5129
de11cc12
LZ
5130 *bbio_ret = bbio;
5131 bbio->num_stripes = num_stripes;
5132 bbio->max_errors = max_errors;
5133 bbio->mirror_num = mirror_num;
ad6d620e
SB
5134
5135 /*
5136 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5137 * mirror_num == num_stripes + 1 && dev_replace target drive is
5138 * available as a mirror
5139 */
5140 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5141 WARN_ON(num_stripes > 1);
5142 bbio->stripes[0].dev = dev_replace->tgtdev;
5143 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5144 bbio->mirror_num = map->num_stripes + 1;
5145 }
53b381b3
DW
5146 if (raid_map) {
5147 sort_parity_stripes(bbio, raid_map);
5148 *raid_map_ret = raid_map;
5149 }
cea9e445 5150out:
472262f3
SB
5151 if (dev_replace_is_ongoing)
5152 btrfs_dev_replace_unlock(dev_replace);
0b86a832 5153 free_extent_map(em);
de11cc12 5154 return ret;
0b86a832
CM
5155}
5156
3ec706c8 5157int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5158 u64 logical, u64 *length,
a1d3c478 5159 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5160{
3ec706c8 5161 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
53b381b3 5162 mirror_num, NULL);
f2d8d74d
CM
5163}
5164
a512bbf8
YZ
5165int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5166 u64 chunk_start, u64 physical, u64 devid,
5167 u64 **logical, int *naddrs, int *stripe_len)
5168{
5169 struct extent_map_tree *em_tree = &map_tree->map_tree;
5170 struct extent_map *em;
5171 struct map_lookup *map;
5172 u64 *buf;
5173 u64 bytenr;
5174 u64 length;
5175 u64 stripe_nr;
53b381b3 5176 u64 rmap_len;
a512bbf8
YZ
5177 int i, j, nr = 0;
5178
890871be 5179 read_lock(&em_tree->lock);
a512bbf8 5180 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5181 read_unlock(&em_tree->lock);
a512bbf8 5182
835d974f
JB
5183 if (!em) {
5184 printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5185 chunk_start);
5186 return -EIO;
5187 }
5188
5189 if (em->start != chunk_start) {
5190 printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5191 em->start, chunk_start);
5192 free_extent_map(em);
5193 return -EIO;
5194 }
a512bbf8
YZ
5195 map = (struct map_lookup *)em->bdev;
5196
5197 length = em->len;
53b381b3
DW
5198 rmap_len = map->stripe_len;
5199
a512bbf8
YZ
5200 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5201 do_div(length, map->num_stripes / map->sub_stripes);
5202 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5203 do_div(length, map->num_stripes);
53b381b3
DW
5204 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5205 BTRFS_BLOCK_GROUP_RAID6)) {
5206 do_div(length, nr_data_stripes(map));
5207 rmap_len = map->stripe_len * nr_data_stripes(map);
5208 }
a512bbf8
YZ
5209
5210 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 5211 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5212
5213 for (i = 0; i < map->num_stripes; i++) {
5214 if (devid && map->stripes[i].dev->devid != devid)
5215 continue;
5216 if (map->stripes[i].physical > physical ||
5217 map->stripes[i].physical + length <= physical)
5218 continue;
5219
5220 stripe_nr = physical - map->stripes[i].physical;
5221 do_div(stripe_nr, map->stripe_len);
5222
5223 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5224 stripe_nr = stripe_nr * map->num_stripes + i;
5225 do_div(stripe_nr, map->sub_stripes);
5226 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5227 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5228 } /* else if RAID[56], multiply by nr_data_stripes().
5229 * Alternatively, just use rmap_len below instead of
5230 * map->stripe_len */
5231
5232 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5233 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5234 for (j = 0; j < nr; j++) {
5235 if (buf[j] == bytenr)
5236 break;
5237 }
934d375b
CM
5238 if (j == nr) {
5239 WARN_ON(nr >= map->num_stripes);
a512bbf8 5240 buf[nr++] = bytenr;
934d375b 5241 }
a512bbf8
YZ
5242 }
5243
a512bbf8
YZ
5244 *logical = buf;
5245 *naddrs = nr;
53b381b3 5246 *stripe_len = rmap_len;
a512bbf8
YZ
5247
5248 free_extent_map(em);
5249 return 0;
f2d8d74d
CM
5250}
5251
a1d3c478 5252static void btrfs_end_bio(struct bio *bio, int err)
8790d502 5253{
9be3395b 5254 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5255 int is_orig_bio = 0;
8790d502 5256
442a4f63 5257 if (err) {
a1d3c478 5258 atomic_inc(&bbio->error);
442a4f63
SB
5259 if (err == -EIO || err == -EREMOTEIO) {
5260 unsigned int stripe_index =
9be3395b 5261 btrfs_io_bio(bio)->stripe_index;
442a4f63
SB
5262 struct btrfs_device *dev;
5263
5264 BUG_ON(stripe_index >= bbio->num_stripes);
5265 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5266 if (dev->bdev) {
5267 if (bio->bi_rw & WRITE)
5268 btrfs_dev_stat_inc(dev,
5269 BTRFS_DEV_STAT_WRITE_ERRS);
5270 else
5271 btrfs_dev_stat_inc(dev,
5272 BTRFS_DEV_STAT_READ_ERRS);
5273 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5274 btrfs_dev_stat_inc(dev,
5275 BTRFS_DEV_STAT_FLUSH_ERRS);
5276 btrfs_dev_stat_print_on_error(dev);
5277 }
442a4f63
SB
5278 }
5279 }
8790d502 5280
a1d3c478 5281 if (bio == bbio->orig_bio)
7d2b4daa
CM
5282 is_orig_bio = 1;
5283
a1d3c478 5284 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5285 if (!is_orig_bio) {
5286 bio_put(bio);
a1d3c478 5287 bio = bbio->orig_bio;
7d2b4daa 5288 }
a1d3c478
JS
5289 bio->bi_private = bbio->private;
5290 bio->bi_end_io = bbio->end_io;
9be3395b 5291 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5292 /* only send an error to the higher layers if it is
53b381b3 5293 * beyond the tolerance of the btrfs bio
a236aed1 5294 */
a1d3c478 5295 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 5296 err = -EIO;
5dbc8fca 5297 } else {
1259ab75
CM
5298 /*
5299 * this bio is actually up to date, we didn't
5300 * go over the max number of errors
5301 */
5302 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 5303 err = 0;
1259ab75 5304 }
a1d3c478 5305 kfree(bbio);
8790d502
CM
5306
5307 bio_endio(bio, err);
7d2b4daa 5308 } else if (!is_orig_bio) {
8790d502
CM
5309 bio_put(bio);
5310 }
8790d502
CM
5311}
5312
8b712842
CM
5313struct async_sched {
5314 struct bio *bio;
5315 int rw;
5316 struct btrfs_fs_info *info;
5317 struct btrfs_work work;
5318};
5319
5320/*
5321 * see run_scheduled_bios for a description of why bios are collected for
5322 * async submit.
5323 *
5324 * This will add one bio to the pending list for a device and make sure
5325 * the work struct is scheduled.
5326 */
48a3b636
ES
5327static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5328 struct btrfs_device *device,
5329 int rw, struct bio *bio)
8b712842
CM
5330{
5331 int should_queue = 1;
ffbd517d 5332 struct btrfs_pending_bios *pending_bios;
8b712842 5333
53b381b3
DW
5334 if (device->missing || !device->bdev) {
5335 bio_endio(bio, -EIO);
5336 return;
5337 }
5338
8b712842 5339 /* don't bother with additional async steps for reads, right now */
7b6d91da 5340 if (!(rw & REQ_WRITE)) {
492bb6de 5341 bio_get(bio);
21adbd5c 5342 btrfsic_submit_bio(rw, bio);
492bb6de 5343 bio_put(bio);
143bede5 5344 return;
8b712842
CM
5345 }
5346
5347 /*
0986fe9e 5348 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5349 * higher layers. Otherwise, the async bio makes it appear we have
5350 * made progress against dirty pages when we've really just put it
5351 * on a queue for later
5352 */
0986fe9e 5353 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5354 WARN_ON(bio->bi_next);
8b712842
CM
5355 bio->bi_next = NULL;
5356 bio->bi_rw |= rw;
5357
5358 spin_lock(&device->io_lock);
7b6d91da 5359 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5360 pending_bios = &device->pending_sync_bios;
5361 else
5362 pending_bios = &device->pending_bios;
8b712842 5363
ffbd517d
CM
5364 if (pending_bios->tail)
5365 pending_bios->tail->bi_next = bio;
8b712842 5366
ffbd517d
CM
5367 pending_bios->tail = bio;
5368 if (!pending_bios->head)
5369 pending_bios->head = bio;
8b712842
CM
5370 if (device->running_pending)
5371 should_queue = 0;
5372
5373 spin_unlock(&device->io_lock);
5374
5375 if (should_queue)
1cc127b5
CM
5376 btrfs_queue_worker(&root->fs_info->submit_workers,
5377 &device->work);
8b712842
CM
5378}
5379
de1ee92a
JB
5380static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5381 sector_t sector)
5382{
5383 struct bio_vec *prev;
5384 struct request_queue *q = bdev_get_queue(bdev);
5385 unsigned short max_sectors = queue_max_sectors(q);
5386 struct bvec_merge_data bvm = {
5387 .bi_bdev = bdev,
5388 .bi_sector = sector,
5389 .bi_rw = bio->bi_rw,
5390 };
5391
5392 if (bio->bi_vcnt == 0) {
5393 WARN_ON(1);
5394 return 1;
5395 }
5396
5397 prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
aa8b57aa 5398 if (bio_sectors(bio) > max_sectors)
de1ee92a
JB
5399 return 0;
5400
5401 if (!q->merge_bvec_fn)
5402 return 1;
5403
5404 bvm.bi_size = bio->bi_size - prev->bv_len;
5405 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5406 return 0;
5407 return 1;
5408}
5409
5410static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5411 struct bio *bio, u64 physical, int dev_nr,
5412 int rw, int async)
5413{
5414 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5415
5416 bio->bi_private = bbio;
9be3395b 5417 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a
JB
5418 bio->bi_end_io = btrfs_end_bio;
5419 bio->bi_sector = physical >> 9;
5420#ifdef DEBUG
5421 {
5422 struct rcu_string *name;
5423
5424 rcu_read_lock();
5425 name = rcu_dereference(dev->name);
d1423248 5426 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a
JB
5427 "(%s id %llu), size=%u\n", rw,
5428 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5429 name->str, dev->devid, bio->bi_size);
5430 rcu_read_unlock();
5431 }
5432#endif
5433 bio->bi_bdev = dev->bdev;
5434 if (async)
53b381b3 5435 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
5436 else
5437 btrfsic_submit_bio(rw, bio);
5438}
5439
5440static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5441 struct bio *first_bio, struct btrfs_device *dev,
5442 int dev_nr, int rw, int async)
5443{
5444 struct bio_vec *bvec = first_bio->bi_io_vec;
5445 struct bio *bio;
5446 int nr_vecs = bio_get_nr_vecs(dev->bdev);
5447 u64 physical = bbio->stripes[dev_nr].physical;
5448
5449again:
5450 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5451 if (!bio)
5452 return -ENOMEM;
5453
5454 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5455 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5456 bvec->bv_offset) < bvec->bv_len) {
5457 u64 len = bio->bi_size;
5458
5459 atomic_inc(&bbio->stripes_pending);
5460 submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5461 rw, async);
5462 physical += len;
5463 goto again;
5464 }
5465 bvec++;
5466 }
5467
5468 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5469 return 0;
5470}
5471
5472static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5473{
5474 atomic_inc(&bbio->error);
5475 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5476 bio->bi_private = bbio->private;
5477 bio->bi_end_io = bbio->end_io;
9be3395b 5478 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
de1ee92a
JB
5479 bio->bi_sector = logical >> 9;
5480 kfree(bbio);
5481 bio_endio(bio, -EIO);
5482 }
5483}
5484
f188591e 5485int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 5486 int mirror_num, int async_submit)
0b86a832 5487{
0b86a832 5488 struct btrfs_device *dev;
8790d502 5489 struct bio *first_bio = bio;
a62b9401 5490 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
5491 u64 length = 0;
5492 u64 map_length;
53b381b3 5493 u64 *raid_map = NULL;
0b86a832 5494 int ret;
8790d502
CM
5495 int dev_nr = 0;
5496 int total_devs = 1;
a1d3c478 5497 struct btrfs_bio *bbio = NULL;
0b86a832 5498
f2d8d74d 5499 length = bio->bi_size;
0b86a832 5500 map_length = length;
cea9e445 5501
53b381b3
DW
5502 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5503 mirror_num, &raid_map);
5504 if (ret) /* -ENOMEM */
79787eaa 5505 return ret;
cea9e445 5506
a1d3c478 5507 total_devs = bbio->num_stripes;
53b381b3
DW
5508 bbio->orig_bio = first_bio;
5509 bbio->private = first_bio->bi_private;
5510 bbio->end_io = first_bio->bi_end_io;
5511 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5512
5513 if (raid_map) {
5514 /* In this case, map_length has been set to the length of
5515 a single stripe; not the whole write */
5516 if (rw & WRITE) {
5517 return raid56_parity_write(root, bio, bbio,
5518 raid_map, map_length);
5519 } else {
5520 return raid56_parity_recover(root, bio, bbio,
5521 raid_map, map_length,
5522 mirror_num);
5523 }
5524 }
5525
cea9e445 5526 if (map_length < length) {
c2cf52eb 5527 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 5528 logical, length, map_length);
cea9e445
CM
5529 BUG();
5530 }
a1d3c478 5531
d397712b 5532 while (dev_nr < total_devs) {
de1ee92a
JB
5533 dev = bbio->stripes[dev_nr].dev;
5534 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5535 bbio_error(bbio, first_bio, logical);
5536 dev_nr++;
5537 continue;
5538 }
5539
5540 /*
5541 * Check and see if we're ok with this bio based on it's size
5542 * and offset with the given device.
5543 */
5544 if (!bio_size_ok(dev->bdev, first_bio,
5545 bbio->stripes[dev_nr].physical >> 9)) {
5546 ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5547 dev_nr, rw, async_submit);
5548 BUG_ON(ret);
5549 dev_nr++;
5550 continue;
5551 }
5552
a1d3c478 5553 if (dev_nr < total_devs - 1) {
9be3395b 5554 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 5555 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
5556 } else {
5557 bio = first_bio;
8790d502 5558 }
de1ee92a
JB
5559
5560 submit_stripe_bio(root, bbio, bio,
5561 bbio->stripes[dev_nr].physical, dev_nr, rw,
5562 async_submit);
8790d502
CM
5563 dev_nr++;
5564 }
0b86a832
CM
5565 return 0;
5566}
5567
aa1b8cd4 5568struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 5569 u8 *uuid, u8 *fsid)
0b86a832 5570{
2b82032c
YZ
5571 struct btrfs_device *device;
5572 struct btrfs_fs_devices *cur_devices;
5573
aa1b8cd4 5574 cur_devices = fs_info->fs_devices;
2b82032c
YZ
5575 while (cur_devices) {
5576 if (!fsid ||
5577 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5578 device = __find_device(&cur_devices->devices,
5579 devid, uuid);
5580 if (device)
5581 return device;
5582 }
5583 cur_devices = cur_devices->seed;
5584 }
5585 return NULL;
0b86a832
CM
5586}
5587
dfe25020
CM
5588static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5589 u64 devid, u8 *dev_uuid)
5590{
5591 struct btrfs_device *device;
5592 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5593
12bd2fc0
ID
5594 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5595 if (IS_ERR(device))
7cbd8a83 5596 return NULL;
12bd2fc0
ID
5597
5598 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 5599 device->fs_devices = fs_devices;
dfe25020 5600 fs_devices->num_devices++;
12bd2fc0
ID
5601
5602 device->missing = 1;
cd02dca5 5603 fs_devices->missing_devices++;
12bd2fc0 5604
dfe25020
CM
5605 return device;
5606}
5607
12bd2fc0
ID
5608/**
5609 * btrfs_alloc_device - allocate struct btrfs_device
5610 * @fs_info: used only for generating a new devid, can be NULL if
5611 * devid is provided (i.e. @devid != NULL).
5612 * @devid: a pointer to devid for this device. If NULL a new devid
5613 * is generated.
5614 * @uuid: a pointer to UUID for this device. If NULL a new UUID
5615 * is generated.
5616 *
5617 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5618 * on error. Returned struct is not linked onto any lists and can be
5619 * destroyed with kfree() right away.
5620 */
5621struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5622 const u64 *devid,
5623 const u8 *uuid)
5624{
5625 struct btrfs_device *dev;
5626 u64 tmp;
5627
5628 if (!devid && !fs_info) {
5629 WARN_ON(1);
5630 return ERR_PTR(-EINVAL);
5631 }
5632
5633 dev = __alloc_device();
5634 if (IS_ERR(dev))
5635 return dev;
5636
5637 if (devid)
5638 tmp = *devid;
5639 else {
5640 int ret;
5641
5642 ret = find_next_devid(fs_info, &tmp);
5643 if (ret) {
5644 kfree(dev);
5645 return ERR_PTR(ret);
5646 }
5647 }
5648 dev->devid = tmp;
5649
5650 if (uuid)
5651 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5652 else
5653 generate_random_uuid(dev->uuid);
5654
5655 dev->work.func = pending_bios_fn;
5656
5657 return dev;
5658}
5659
0b86a832
CM
5660static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5661 struct extent_buffer *leaf,
5662 struct btrfs_chunk *chunk)
5663{
5664 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5665 struct map_lookup *map;
5666 struct extent_map *em;
5667 u64 logical;
5668 u64 length;
5669 u64 devid;
a443755f 5670 u8 uuid[BTRFS_UUID_SIZE];
593060d7 5671 int num_stripes;
0b86a832 5672 int ret;
593060d7 5673 int i;
0b86a832 5674
e17cade2
CM
5675 logical = key->offset;
5676 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 5677
890871be 5678 read_lock(&map_tree->map_tree.lock);
0b86a832 5679 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 5680 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
5681
5682 /* already mapped? */
5683 if (em && em->start <= logical && em->start + em->len > logical) {
5684 free_extent_map(em);
0b86a832
CM
5685 return 0;
5686 } else if (em) {
5687 free_extent_map(em);
5688 }
0b86a832 5689
172ddd60 5690 em = alloc_extent_map();
0b86a832
CM
5691 if (!em)
5692 return -ENOMEM;
593060d7
CM
5693 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5694 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
5695 if (!map) {
5696 free_extent_map(em);
5697 return -ENOMEM;
5698 }
5699
5700 em->bdev = (struct block_device *)map;
5701 em->start = logical;
5702 em->len = length;
70c8a91c 5703 em->orig_start = 0;
0b86a832 5704 em->block_start = 0;
c8b97818 5705 em->block_len = em->len;
0b86a832 5706
593060d7
CM
5707 map->num_stripes = num_stripes;
5708 map->io_width = btrfs_chunk_io_width(leaf, chunk);
5709 map->io_align = btrfs_chunk_io_align(leaf, chunk);
5710 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5711 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5712 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 5713 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
5714 for (i = 0; i < num_stripes; i++) {
5715 map->stripes[i].physical =
5716 btrfs_stripe_offset_nr(leaf, chunk, i);
5717 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
5718 read_extent_buffer(leaf, uuid, (unsigned long)
5719 btrfs_stripe_dev_uuid_nr(chunk, i),
5720 BTRFS_UUID_SIZE);
aa1b8cd4
SB
5721 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5722 uuid, NULL);
dfe25020 5723 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
5724 kfree(map);
5725 free_extent_map(em);
5726 return -EIO;
5727 }
dfe25020
CM
5728 if (!map->stripes[i].dev) {
5729 map->stripes[i].dev =
5730 add_missing_dev(root, devid, uuid);
5731 if (!map->stripes[i].dev) {
5732 kfree(map);
5733 free_extent_map(em);
5734 return -EIO;
5735 }
5736 }
5737 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
5738 }
5739
890871be 5740 write_lock(&map_tree->map_tree.lock);
09a2a8f9 5741 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 5742 write_unlock(&map_tree->map_tree.lock);
79787eaa 5743 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
5744 free_extent_map(em);
5745
5746 return 0;
5747}
5748
143bede5 5749static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
5750 struct btrfs_dev_item *dev_item,
5751 struct btrfs_device *device)
5752{
5753 unsigned long ptr;
0b86a832
CM
5754
5755 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
5756 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5757 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
5758 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5759 device->type = btrfs_device_type(leaf, dev_item);
5760 device->io_align = btrfs_device_io_align(leaf, dev_item);
5761 device->io_width = btrfs_device_io_width(leaf, dev_item);
5762 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 5763 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 5764 device->is_tgtdev_for_dev_replace = 0;
0b86a832 5765
410ba3a2 5766 ptr = btrfs_device_uuid(dev_item);
e17cade2 5767 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
5768}
5769
2b82032c
YZ
5770static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5771{
5772 struct btrfs_fs_devices *fs_devices;
5773 int ret;
5774
b367e47f 5775 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
5776
5777 fs_devices = root->fs_info->fs_devices->seed;
5778 while (fs_devices) {
5779 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5780 ret = 0;
5781 goto out;
5782 }
5783 fs_devices = fs_devices->seed;
5784 }
5785
5786 fs_devices = find_fsid(fsid);
5787 if (!fs_devices) {
5788 ret = -ENOENT;
5789 goto out;
5790 }
e4404d6e
YZ
5791
5792 fs_devices = clone_fs_devices(fs_devices);
5793 if (IS_ERR(fs_devices)) {
5794 ret = PTR_ERR(fs_devices);
2b82032c
YZ
5795 goto out;
5796 }
5797
97288f2c 5798 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 5799 root->fs_info->bdev_holder);
48d28232
JL
5800 if (ret) {
5801 free_fs_devices(fs_devices);
2b82032c 5802 goto out;
48d28232 5803 }
2b82032c
YZ
5804
5805 if (!fs_devices->seeding) {
5806 __btrfs_close_devices(fs_devices);
e4404d6e 5807 free_fs_devices(fs_devices);
2b82032c
YZ
5808 ret = -EINVAL;
5809 goto out;
5810 }
5811
5812 fs_devices->seed = root->fs_info->fs_devices->seed;
5813 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 5814out:
2b82032c
YZ
5815 return ret;
5816}
5817
0d81ba5d 5818static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
5819 struct extent_buffer *leaf,
5820 struct btrfs_dev_item *dev_item)
5821{
5822 struct btrfs_device *device;
5823 u64 devid;
5824 int ret;
2b82032c 5825 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
5826 u8 dev_uuid[BTRFS_UUID_SIZE];
5827
0b86a832 5828 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 5829 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 5830 BTRFS_UUID_SIZE);
1473b24e 5831 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
5832 BTRFS_UUID_SIZE);
5833
5834 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5835 ret = open_seed_devices(root, fs_uuid);
e4404d6e 5836 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 5837 return ret;
2b82032c
YZ
5838 }
5839
aa1b8cd4 5840 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
2b82032c 5841 if (!device || !device->bdev) {
e4404d6e 5842 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
5843 return -EIO;
5844
5845 if (!device) {
c1c9ff7c 5846 btrfs_warn(root->fs_info, "devid %llu missing", devid);
2b82032c
YZ
5847 device = add_missing_dev(root, devid, dev_uuid);
5848 if (!device)
5849 return -ENOMEM;
cd02dca5
CM
5850 } else if (!device->missing) {
5851 /*
5852 * this happens when a device that was properly setup
5853 * in the device info lists suddenly goes bad.
5854 * device->bdev is NULL, and so we have to set
5855 * device->missing to one here
5856 */
5857 root->fs_info->fs_devices->missing_devices++;
5858 device->missing = 1;
2b82032c
YZ
5859 }
5860 }
5861
5862 if (device->fs_devices != root->fs_info->fs_devices) {
5863 BUG_ON(device->writeable);
5864 if (device->generation !=
5865 btrfs_device_generation(leaf, dev_item))
5866 return -EINVAL;
6324fbf3 5867 }
0b86a832
CM
5868
5869 fill_device_from_item(leaf, dev_item, device);
dfe25020 5870 device->in_fs_metadata = 1;
63a212ab 5871 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 5872 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
5873 spin_lock(&root->fs_info->free_chunk_lock);
5874 root->fs_info->free_chunk_space += device->total_bytes -
5875 device->bytes_used;
5876 spin_unlock(&root->fs_info->free_chunk_lock);
5877 }
0b86a832 5878 ret = 0;
0b86a832
CM
5879 return ret;
5880}
5881
e4404d6e 5882int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 5883{
6c41761f 5884 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 5885 struct extent_buffer *sb;
0b86a832 5886 struct btrfs_disk_key *disk_key;
0b86a832 5887 struct btrfs_chunk *chunk;
84eed90f
CM
5888 u8 *ptr;
5889 unsigned long sb_ptr;
5890 int ret = 0;
0b86a832
CM
5891 u32 num_stripes;
5892 u32 array_size;
5893 u32 len = 0;
0b86a832 5894 u32 cur;
84eed90f 5895 struct btrfs_key key;
0b86a832 5896
e4404d6e 5897 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
5898 BTRFS_SUPER_INFO_SIZE);
5899 if (!sb)
5900 return -ENOMEM;
5901 btrfs_set_buffer_uptodate(sb);
85d4e461 5902 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
5903 /*
5904 * The sb extent buffer is artifical and just used to read the system array.
5905 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5906 * pages up-to-date when the page is larger: extent does not cover the
5907 * whole page and consequently check_page_uptodate does not find all
5908 * the page's extents up-to-date (the hole beyond sb),
5909 * write_extent_buffer then triggers a WARN_ON.
5910 *
5911 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5912 * but sb spans only this function. Add an explicit SetPageUptodate call
5913 * to silence the warning eg. on PowerPC 64.
5914 */
5915 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 5916 SetPageUptodate(sb->pages[0]);
4008c04a 5917
a061fc8d 5918 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
5919 array_size = btrfs_super_sys_array_size(super_copy);
5920
0b86a832
CM
5921 ptr = super_copy->sys_chunk_array;
5922 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5923 cur = 0;
5924
5925 while (cur < array_size) {
5926 disk_key = (struct btrfs_disk_key *)ptr;
5927 btrfs_disk_key_to_cpu(&key, disk_key);
5928
a061fc8d 5929 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
5930 sb_ptr += len;
5931 cur += len;
5932
0d81ba5d 5933 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 5934 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 5935 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
5936 if (ret)
5937 break;
0b86a832
CM
5938 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5939 len = btrfs_chunk_item_size(num_stripes);
5940 } else {
84eed90f
CM
5941 ret = -EIO;
5942 break;
0b86a832
CM
5943 }
5944 ptr += len;
5945 sb_ptr += len;
5946 cur += len;
5947 }
a061fc8d 5948 free_extent_buffer(sb);
84eed90f 5949 return ret;
0b86a832
CM
5950}
5951
5952int btrfs_read_chunk_tree(struct btrfs_root *root)
5953{
5954 struct btrfs_path *path;
5955 struct extent_buffer *leaf;
5956 struct btrfs_key key;
5957 struct btrfs_key found_key;
5958 int ret;
5959 int slot;
5960
5961 root = root->fs_info->chunk_root;
5962
5963 path = btrfs_alloc_path();
5964 if (!path)
5965 return -ENOMEM;
5966
b367e47f
LZ
5967 mutex_lock(&uuid_mutex);
5968 lock_chunks(root);
5969
395927a9
FDBM
5970 /*
5971 * Read all device items, and then all the chunk items. All
5972 * device items are found before any chunk item (their object id
5973 * is smaller than the lowest possible object id for a chunk
5974 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
5975 */
5976 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5977 key.offset = 0;
5978 key.type = 0;
0b86a832 5979 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
5980 if (ret < 0)
5981 goto error;
d397712b 5982 while (1) {
0b86a832
CM
5983 leaf = path->nodes[0];
5984 slot = path->slots[0];
5985 if (slot >= btrfs_header_nritems(leaf)) {
5986 ret = btrfs_next_leaf(root, path);
5987 if (ret == 0)
5988 continue;
5989 if (ret < 0)
5990 goto error;
5991 break;
5992 }
5993 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
5994 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5995 struct btrfs_dev_item *dev_item;
5996 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 5997 struct btrfs_dev_item);
395927a9
FDBM
5998 ret = read_one_dev(root, leaf, dev_item);
5999 if (ret)
6000 goto error;
0b86a832
CM
6001 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6002 struct btrfs_chunk *chunk;
6003 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6004 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6005 if (ret)
6006 goto error;
0b86a832
CM
6007 }
6008 path->slots[0]++;
6009 }
0b86a832
CM
6010 ret = 0;
6011error:
b367e47f
LZ
6012 unlock_chunks(root);
6013 mutex_unlock(&uuid_mutex);
6014
2b82032c 6015 btrfs_free_path(path);
0b86a832
CM
6016 return ret;
6017}
442a4f63 6018
cb517eab
MX
6019void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6020{
6021 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6022 struct btrfs_device *device;
6023
6024 mutex_lock(&fs_devices->device_list_mutex);
6025 list_for_each_entry(device, &fs_devices->devices, dev_list)
6026 device->dev_root = fs_info->dev_root;
6027 mutex_unlock(&fs_devices->device_list_mutex);
6028}
6029
733f4fbb
SB
6030static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6031{
6032 int i;
6033
6034 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6035 btrfs_dev_stat_reset(dev, i);
6036}
6037
6038int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6039{
6040 struct btrfs_key key;
6041 struct btrfs_key found_key;
6042 struct btrfs_root *dev_root = fs_info->dev_root;
6043 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6044 struct extent_buffer *eb;
6045 int slot;
6046 int ret = 0;
6047 struct btrfs_device *device;
6048 struct btrfs_path *path = NULL;
6049 int i;
6050
6051 path = btrfs_alloc_path();
6052 if (!path) {
6053 ret = -ENOMEM;
6054 goto out;
6055 }
6056
6057 mutex_lock(&fs_devices->device_list_mutex);
6058 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6059 int item_size;
6060 struct btrfs_dev_stats_item *ptr;
6061
6062 key.objectid = 0;
6063 key.type = BTRFS_DEV_STATS_KEY;
6064 key.offset = device->devid;
6065 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6066 if (ret) {
733f4fbb
SB
6067 __btrfs_reset_dev_stats(device);
6068 device->dev_stats_valid = 1;
6069 btrfs_release_path(path);
6070 continue;
6071 }
6072 slot = path->slots[0];
6073 eb = path->nodes[0];
6074 btrfs_item_key_to_cpu(eb, &found_key, slot);
6075 item_size = btrfs_item_size_nr(eb, slot);
6076
6077 ptr = btrfs_item_ptr(eb, slot,
6078 struct btrfs_dev_stats_item);
6079
6080 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6081 if (item_size >= (1 + i) * sizeof(__le64))
6082 btrfs_dev_stat_set(device, i,
6083 btrfs_dev_stats_value(eb, ptr, i));
6084 else
6085 btrfs_dev_stat_reset(device, i);
6086 }
6087
6088 device->dev_stats_valid = 1;
6089 btrfs_dev_stat_print_on_load(device);
6090 btrfs_release_path(path);
6091 }
6092 mutex_unlock(&fs_devices->device_list_mutex);
6093
6094out:
6095 btrfs_free_path(path);
6096 return ret < 0 ? ret : 0;
6097}
6098
6099static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6100 struct btrfs_root *dev_root,
6101 struct btrfs_device *device)
6102{
6103 struct btrfs_path *path;
6104 struct btrfs_key key;
6105 struct extent_buffer *eb;
6106 struct btrfs_dev_stats_item *ptr;
6107 int ret;
6108 int i;
6109
6110 key.objectid = 0;
6111 key.type = BTRFS_DEV_STATS_KEY;
6112 key.offset = device->devid;
6113
6114 path = btrfs_alloc_path();
6115 BUG_ON(!path);
6116 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6117 if (ret < 0) {
606686ee
JB
6118 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6119 ret, rcu_str_deref(device->name));
733f4fbb
SB
6120 goto out;
6121 }
6122
6123 if (ret == 0 &&
6124 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6125 /* need to delete old one and insert a new one */
6126 ret = btrfs_del_item(trans, dev_root, path);
6127 if (ret != 0) {
606686ee
JB
6128 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6129 rcu_str_deref(device->name), ret);
733f4fbb
SB
6130 goto out;
6131 }
6132 ret = 1;
6133 }
6134
6135 if (ret == 1) {
6136 /* need to insert a new item */
6137 btrfs_release_path(path);
6138 ret = btrfs_insert_empty_item(trans, dev_root, path,
6139 &key, sizeof(*ptr));
6140 if (ret < 0) {
606686ee
JB
6141 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6142 rcu_str_deref(device->name), ret);
733f4fbb
SB
6143 goto out;
6144 }
6145 }
6146
6147 eb = path->nodes[0];
6148 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6149 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6150 btrfs_set_dev_stats_value(eb, ptr, i,
6151 btrfs_dev_stat_read(device, i));
6152 btrfs_mark_buffer_dirty(eb);
6153
6154out:
6155 btrfs_free_path(path);
6156 return ret;
6157}
6158
6159/*
6160 * called from commit_transaction. Writes all changed device stats to disk.
6161 */
6162int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6163 struct btrfs_fs_info *fs_info)
6164{
6165 struct btrfs_root *dev_root = fs_info->dev_root;
6166 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6167 struct btrfs_device *device;
6168 int ret = 0;
6169
6170 mutex_lock(&fs_devices->device_list_mutex);
6171 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6172 if (!device->dev_stats_valid || !device->dev_stats_dirty)
6173 continue;
6174
6175 ret = update_dev_stat_item(trans, dev_root, device);
6176 if (!ret)
6177 device->dev_stats_dirty = 0;
6178 }
6179 mutex_unlock(&fs_devices->device_list_mutex);
6180
6181 return ret;
6182}
6183
442a4f63
SB
6184void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6185{
6186 btrfs_dev_stat_inc(dev, index);
6187 btrfs_dev_stat_print_on_error(dev);
6188}
6189
48a3b636 6190static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6191{
733f4fbb
SB
6192 if (!dev->dev_stats_valid)
6193 return;
606686ee 6194 printk_ratelimited_in_rcu(KERN_ERR
442a4f63 6195 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
606686ee 6196 rcu_str_deref(dev->name),
442a4f63
SB
6197 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6198 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6199 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6200 btrfs_dev_stat_read(dev,
6201 BTRFS_DEV_STAT_CORRUPTION_ERRS),
6202 btrfs_dev_stat_read(dev,
6203 BTRFS_DEV_STAT_GENERATION_ERRS));
6204}
c11d2c23 6205
733f4fbb
SB
6206static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6207{
a98cdb85
SB
6208 int i;
6209
6210 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6211 if (btrfs_dev_stat_read(dev, i) != 0)
6212 break;
6213 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6214 return; /* all values == 0, suppress message */
6215
606686ee
JB
6216 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6217 rcu_str_deref(dev->name),
733f4fbb
SB
6218 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6219 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6220 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6221 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6222 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6223}
6224
c11d2c23 6225int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6226 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6227{
6228 struct btrfs_device *dev;
6229 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6230 int i;
6231
6232 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6233 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6234 mutex_unlock(&fs_devices->device_list_mutex);
6235
6236 if (!dev) {
6237 printk(KERN_WARNING
6238 "btrfs: get dev_stats failed, device not found\n");
6239 return -ENODEV;
733f4fbb
SB
6240 } else if (!dev->dev_stats_valid) {
6241 printk(KERN_WARNING
6242 "btrfs: get dev_stats failed, not yet valid\n");
6243 return -ENODEV;
b27f7c0c 6244 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6245 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6246 if (stats->nr_items > i)
6247 stats->values[i] =
6248 btrfs_dev_stat_read_and_reset(dev, i);
6249 else
6250 btrfs_dev_stat_reset(dev, i);
6251 }
6252 } else {
6253 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6254 if (stats->nr_items > i)
6255 stats->values[i] = btrfs_dev_stat_read(dev, i);
6256 }
6257 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6258 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6259 return 0;
6260}
a8a6dab7
SB
6261
6262int btrfs_scratch_superblock(struct btrfs_device *device)
6263{
6264 struct buffer_head *bh;
6265 struct btrfs_super_block *disk_super;
6266
6267 bh = btrfs_read_dev_super(device->bdev);
6268 if (!bh)
6269 return -EINVAL;
6270 disk_super = (struct btrfs_super_block *)bh->b_data;
6271
6272 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6273 set_buffer_dirty(bh);
6274 sync_dirty_buffer(bh);
6275 brelse(bh);
6276
6277 return 0;
6278}