]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/volumes.c
btrfs: s_bdev is not null after missing replace
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
53b381b3 28#include <linux/raid/pq.h>
803b2f54 29#include <linux/semaphore.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c
YZ
136static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
87ad58c5 143static void btrfs_close_one_device(struct btrfs_device *device);
2b82032c 144
67a2c45e 145DEFINE_MUTEX(uuid_mutex);
8a4b83cc 146static LIST_HEAD(fs_uuids);
c73eccf7
AJ
147struct list_head *btrfs_get_fs_uuids(void)
148{
149 return &fs_uuids;
150}
8a4b83cc 151
2208a378
ID
152static struct btrfs_fs_devices *__alloc_fs_devices(void)
153{
154 struct btrfs_fs_devices *fs_devs;
155
78f2c9e6 156 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
157 if (!fs_devs)
158 return ERR_PTR(-ENOMEM);
159
160 mutex_init(&fs_devs->device_list_mutex);
161
162 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 163 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
164 INIT_LIST_HEAD(&fs_devs->alloc_list);
165 INIT_LIST_HEAD(&fs_devs->list);
166
167 return fs_devs;
168}
169
170/**
171 * alloc_fs_devices - allocate struct btrfs_fs_devices
172 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
173 * generated.
174 *
175 * Return: a pointer to a new &struct btrfs_fs_devices on success;
176 * ERR_PTR() on error. Returned struct is not linked onto any lists and
177 * can be destroyed with kfree() right away.
178 */
179static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
180{
181 struct btrfs_fs_devices *fs_devs;
182
183 fs_devs = __alloc_fs_devices();
184 if (IS_ERR(fs_devs))
185 return fs_devs;
186
187 if (fsid)
188 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
189 else
190 generate_random_uuid(fs_devs->fsid);
191
192 return fs_devs;
193}
194
e4404d6e
YZ
195static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
196{
197 struct btrfs_device *device;
198 WARN_ON(fs_devices->opened);
199 while (!list_empty(&fs_devices->devices)) {
200 device = list_entry(fs_devices->devices.next,
201 struct btrfs_device, dev_list);
202 list_del(&device->dev_list);
606686ee 203 rcu_string_free(device->name);
e4404d6e
YZ
204 kfree(device);
205 }
206 kfree(fs_devices);
207}
208
b8b8ff59
LC
209static void btrfs_kobject_uevent(struct block_device *bdev,
210 enum kobject_action action)
211{
212 int ret;
213
214 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
215 if (ret)
efe120a0 216 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
217 action,
218 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
219 &disk_to_dev(bdev->bd_disk)->kobj);
220}
221
143bede5 222void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
223{
224 struct btrfs_fs_devices *fs_devices;
8a4b83cc 225
2b82032c
YZ
226 while (!list_empty(&fs_uuids)) {
227 fs_devices = list_entry(fs_uuids.next,
228 struct btrfs_fs_devices, list);
229 list_del(&fs_devices->list);
e4404d6e 230 free_fs_devices(fs_devices);
8a4b83cc 231 }
8a4b83cc
CM
232}
233
12bd2fc0
ID
234static struct btrfs_device *__alloc_device(void)
235{
236 struct btrfs_device *dev;
237
78f2c9e6 238 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
239 if (!dev)
240 return ERR_PTR(-ENOMEM);
241
242 INIT_LIST_HEAD(&dev->dev_list);
243 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 244 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
245
246 spin_lock_init(&dev->io_lock);
247
248 spin_lock_init(&dev->reada_lock);
249 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 250 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 251 btrfs_device_data_ordered_init(dev);
d0164adc
MG
252 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
254
255 return dev;
256}
257
a1b32a59
CM
258static noinline struct btrfs_device *__find_device(struct list_head *head,
259 u64 devid, u8 *uuid)
8a4b83cc
CM
260{
261 struct btrfs_device *dev;
8a4b83cc 262
c6e30871 263 list_for_each_entry(dev, head, dev_list) {
a443755f 264 if (dev->devid == devid &&
8f18cf13 265 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 266 return dev;
a443755f 267 }
8a4b83cc
CM
268 }
269 return NULL;
270}
271
a1b32a59 272static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 273{
8a4b83cc
CM
274 struct btrfs_fs_devices *fs_devices;
275
c6e30871 276 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
277 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
278 return fs_devices;
279 }
280 return NULL;
281}
282
beaf8ab3
SB
283static int
284btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
285 int flush, struct block_device **bdev,
286 struct buffer_head **bh)
287{
288 int ret;
289
290 *bdev = blkdev_get_by_path(device_path, flags, holder);
291
292 if (IS_ERR(*bdev)) {
293 ret = PTR_ERR(*bdev);
beaf8ab3
SB
294 goto error;
295 }
296
297 if (flush)
298 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
299 ret = set_blocksize(*bdev, 4096);
300 if (ret) {
301 blkdev_put(*bdev, flags);
302 goto error;
303 }
304 invalidate_bdev(*bdev);
305 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
306 if (IS_ERR(*bh)) {
307 ret = PTR_ERR(*bh);
beaf8ab3
SB
308 blkdev_put(*bdev, flags);
309 goto error;
310 }
311
312 return 0;
313
314error:
315 *bdev = NULL;
316 *bh = NULL;
317 return ret;
318}
319
ffbd517d
CM
320static void requeue_list(struct btrfs_pending_bios *pending_bios,
321 struct bio *head, struct bio *tail)
322{
323
324 struct bio *old_head;
325
326 old_head = pending_bios->head;
327 pending_bios->head = head;
328 if (pending_bios->tail)
329 tail->bi_next = old_head;
330 else
331 pending_bios->tail = tail;
332}
333
8b712842
CM
334/*
335 * we try to collect pending bios for a device so we don't get a large
336 * number of procs sending bios down to the same device. This greatly
337 * improves the schedulers ability to collect and merge the bios.
338 *
339 * But, it also turns into a long list of bios to process and that is sure
340 * to eventually make the worker thread block. The solution here is to
341 * make some progress and then put this work struct back at the end of
342 * the list if the block device is congested. This way, multiple devices
343 * can make progress from a single worker thread.
344 */
143bede5 345static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
346{
347 struct bio *pending;
348 struct backing_dev_info *bdi;
b64a2851 349 struct btrfs_fs_info *fs_info;
ffbd517d 350 struct btrfs_pending_bios *pending_bios;
8b712842
CM
351 struct bio *tail;
352 struct bio *cur;
353 int again = 0;
ffbd517d 354 unsigned long num_run;
d644d8a1 355 unsigned long batch_run = 0;
b64a2851 356 unsigned long limit;
b765ead5 357 unsigned long last_waited = 0;
d84275c9 358 int force_reg = 0;
0e588859 359 int sync_pending = 0;
211588ad
CM
360 struct blk_plug plug;
361
362 /*
363 * this function runs all the bios we've collected for
364 * a particular device. We don't want to wander off to
365 * another device without first sending all of these down.
366 * So, setup a plug here and finish it off before we return
367 */
368 blk_start_plug(&plug);
8b712842 369
bedf762b 370 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
371 fs_info = device->dev_root->fs_info;
372 limit = btrfs_async_submit_limit(fs_info);
373 limit = limit * 2 / 3;
374
8b712842
CM
375loop:
376 spin_lock(&device->io_lock);
377
a6837051 378loop_lock:
d84275c9 379 num_run = 0;
ffbd517d 380
8b712842
CM
381 /* take all the bios off the list at once and process them
382 * later on (without the lock held). But, remember the
383 * tail and other pointers so the bios can be properly reinserted
384 * into the list if we hit congestion
385 */
d84275c9 386 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 387 pending_bios = &device->pending_sync_bios;
d84275c9
CM
388 force_reg = 1;
389 } else {
ffbd517d 390 pending_bios = &device->pending_bios;
d84275c9
CM
391 force_reg = 0;
392 }
ffbd517d
CM
393
394 pending = pending_bios->head;
395 tail = pending_bios->tail;
8b712842 396 WARN_ON(pending && !tail);
8b712842
CM
397
398 /*
399 * if pending was null this time around, no bios need processing
400 * at all and we can stop. Otherwise it'll loop back up again
401 * and do an additional check so no bios are missed.
402 *
403 * device->running_pending is used to synchronize with the
404 * schedule_bio code.
405 */
ffbd517d
CM
406 if (device->pending_sync_bios.head == NULL &&
407 device->pending_bios.head == NULL) {
8b712842
CM
408 again = 0;
409 device->running_pending = 0;
ffbd517d
CM
410 } else {
411 again = 1;
412 device->running_pending = 1;
8b712842 413 }
ffbd517d
CM
414
415 pending_bios->head = NULL;
416 pending_bios->tail = NULL;
417
8b712842
CM
418 spin_unlock(&device->io_lock);
419
d397712b 420 while (pending) {
ffbd517d
CM
421
422 rmb();
d84275c9
CM
423 /* we want to work on both lists, but do more bios on the
424 * sync list than the regular list
425 */
426 if ((num_run > 32 &&
427 pending_bios != &device->pending_sync_bios &&
428 device->pending_sync_bios.head) ||
429 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
430 device->pending_bios.head)) {
ffbd517d
CM
431 spin_lock(&device->io_lock);
432 requeue_list(pending_bios, pending, tail);
433 goto loop_lock;
434 }
435
8b712842
CM
436 cur = pending;
437 pending = pending->bi_next;
438 cur->bi_next = NULL;
b64a2851 439
ee863954
DS
440 /*
441 * atomic_dec_return implies a barrier for waitqueue_active
442 */
66657b31 443 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
444 waitqueue_active(&fs_info->async_submit_wait))
445 wake_up(&fs_info->async_submit_wait);
492bb6de 446
dac56212 447 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 448
2ab1ba68
CM
449 /*
450 * if we're doing the sync list, record that our
451 * plug has some sync requests on it
452 *
453 * If we're doing the regular list and there are
454 * sync requests sitting around, unplug before
455 * we add more
456 */
457 if (pending_bios == &device->pending_sync_bios) {
458 sync_pending = 1;
459 } else if (sync_pending) {
460 blk_finish_plug(&plug);
461 blk_start_plug(&plug);
462 sync_pending = 0;
463 }
464
21adbd5c 465 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
466 num_run++;
467 batch_run++;
853d8ec4
DS
468
469 cond_resched();
8b712842
CM
470
471 /*
472 * we made progress, there is more work to do and the bdi
473 * is now congested. Back off and let other work structs
474 * run instead
475 */
57fd5a5f 476 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 477 fs_info->fs_devices->open_devices > 1) {
b765ead5 478 struct io_context *ioc;
8b712842 479
b765ead5
CM
480 ioc = current->io_context;
481
482 /*
483 * the main goal here is that we don't want to
484 * block if we're going to be able to submit
485 * more requests without blocking.
486 *
487 * This code does two great things, it pokes into
488 * the elevator code from a filesystem _and_
489 * it makes assumptions about how batching works.
490 */
491 if (ioc && ioc->nr_batch_requests > 0 &&
492 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
493 (last_waited == 0 ||
494 ioc->last_waited == last_waited)) {
495 /*
496 * we want to go through our batch of
497 * requests and stop. So, we copy out
498 * the ioc->last_waited time and test
499 * against it before looping
500 */
501 last_waited = ioc->last_waited;
853d8ec4 502 cond_resched();
b765ead5
CM
503 continue;
504 }
8b712842 505 spin_lock(&device->io_lock);
ffbd517d 506 requeue_list(pending_bios, pending, tail);
a6837051 507 device->running_pending = 1;
8b712842
CM
508
509 spin_unlock(&device->io_lock);
a8c93d4e
QW
510 btrfs_queue_work(fs_info->submit_workers,
511 &device->work);
8b712842
CM
512 goto done;
513 }
d85c8a6f
CM
514 /* unplug every 64 requests just for good measure */
515 if (batch_run % 64 == 0) {
516 blk_finish_plug(&plug);
517 blk_start_plug(&plug);
518 sync_pending = 0;
519 }
8b712842 520 }
ffbd517d 521
51684082
CM
522 cond_resched();
523 if (again)
524 goto loop;
525
526 spin_lock(&device->io_lock);
527 if (device->pending_bios.head || device->pending_sync_bios.head)
528 goto loop_lock;
529 spin_unlock(&device->io_lock);
530
8b712842 531done:
211588ad 532 blk_finish_plug(&plug);
8b712842
CM
533}
534
b2950863 535static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
536{
537 struct btrfs_device *device;
538
539 device = container_of(work, struct btrfs_device, work);
540 run_scheduled_bios(device);
541}
542
4fde46f0
AJ
543
544void btrfs_free_stale_device(struct btrfs_device *cur_dev)
545{
546 struct btrfs_fs_devices *fs_devs;
547 struct btrfs_device *dev;
548
549 if (!cur_dev->name)
550 return;
551
552 list_for_each_entry(fs_devs, &fs_uuids, list) {
553 int del = 1;
554
555 if (fs_devs->opened)
556 continue;
557 if (fs_devs->seeding)
558 continue;
559
560 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
561
562 if (dev == cur_dev)
563 continue;
564 if (!dev->name)
565 continue;
566
567 /*
568 * Todo: This won't be enough. What if the same device
569 * comes back (with new uuid and) with its mapper path?
570 * But for now, this does help as mostly an admin will
571 * either use mapper or non mapper path throughout.
572 */
573 rcu_read_lock();
574 del = strcmp(rcu_str_deref(dev->name),
575 rcu_str_deref(cur_dev->name));
576 rcu_read_unlock();
577 if (!del)
578 break;
579 }
580
581 if (!del) {
582 /* delete the stale device */
583 if (fs_devs->num_devices == 1) {
584 btrfs_sysfs_remove_fsid(fs_devs);
585 list_del(&fs_devs->list);
586 free_fs_devices(fs_devs);
587 } else {
588 fs_devs->num_devices--;
589 list_del(&dev->dev_list);
590 rcu_string_free(dev->name);
591 kfree(dev);
592 }
593 break;
594 }
595 }
596}
597
60999ca4
DS
598/*
599 * Add new device to list of registered devices
600 *
601 * Returns:
602 * 1 - first time device is seen
603 * 0 - device already known
604 * < 0 - error
605 */
a1b32a59 606static noinline int device_list_add(const char *path,
8a4b83cc
CM
607 struct btrfs_super_block *disk_super,
608 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
609{
610 struct btrfs_device *device;
611 struct btrfs_fs_devices *fs_devices;
606686ee 612 struct rcu_string *name;
60999ca4 613 int ret = 0;
8a4b83cc
CM
614 u64 found_transid = btrfs_super_generation(disk_super);
615
616 fs_devices = find_fsid(disk_super->fsid);
617 if (!fs_devices) {
2208a378
ID
618 fs_devices = alloc_fs_devices(disk_super->fsid);
619 if (IS_ERR(fs_devices))
620 return PTR_ERR(fs_devices);
621
8a4b83cc 622 list_add(&fs_devices->list, &fs_uuids);
2208a378 623
8a4b83cc
CM
624 device = NULL;
625 } else {
a443755f
CM
626 device = __find_device(&fs_devices->devices, devid,
627 disk_super->dev_item.uuid);
8a4b83cc 628 }
443f24fe 629
8a4b83cc 630 if (!device) {
2b82032c
YZ
631 if (fs_devices->opened)
632 return -EBUSY;
633
12bd2fc0
ID
634 device = btrfs_alloc_device(NULL, &devid,
635 disk_super->dev_item.uuid);
636 if (IS_ERR(device)) {
8a4b83cc 637 /* we can safely leave the fs_devices entry around */
12bd2fc0 638 return PTR_ERR(device);
8a4b83cc 639 }
606686ee
JB
640
641 name = rcu_string_strdup(path, GFP_NOFS);
642 if (!name) {
8a4b83cc
CM
643 kfree(device);
644 return -ENOMEM;
645 }
606686ee 646 rcu_assign_pointer(device->name, name);
90519d66 647
e5e9a520 648 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 649 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 650 fs_devices->num_devices++;
e5e9a520
CM
651 mutex_unlock(&fs_devices->device_list_mutex);
652
60999ca4 653 ret = 1;
2b82032c 654 device->fs_devices = fs_devices;
606686ee 655 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
656 /*
657 * When FS is already mounted.
658 * 1. If you are here and if the device->name is NULL that
659 * means this device was missing at time of FS mount.
660 * 2. If you are here and if the device->name is different
661 * from 'path' that means either
662 * a. The same device disappeared and reappeared with
663 * different name. or
664 * b. The missing-disk-which-was-replaced, has
665 * reappeared now.
666 *
667 * We must allow 1 and 2a above. But 2b would be a spurious
668 * and unintentional.
669 *
670 * Further in case of 1 and 2a above, the disk at 'path'
671 * would have missed some transaction when it was away and
672 * in case of 2a the stale bdev has to be updated as well.
673 * 2b must not be allowed at all time.
674 */
675
676 /*
0f23ae74
CM
677 * For now, we do allow update to btrfs_fs_device through the
678 * btrfs dev scan cli after FS has been mounted. We're still
679 * tracking a problem where systems fail mount by subvolume id
680 * when we reject replacement on a mounted FS.
b96de000 681 */
0f23ae74 682 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
683 /*
684 * That is if the FS is _not_ mounted and if you
685 * are here, that means there is more than one
686 * disk with same uuid and devid.We keep the one
687 * with larger generation number or the last-in if
688 * generation are equal.
689 */
0f23ae74 690 return -EEXIST;
77bdae4d 691 }
b96de000 692
606686ee 693 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
694 if (!name)
695 return -ENOMEM;
606686ee
JB
696 rcu_string_free(device->name);
697 rcu_assign_pointer(device->name, name);
cd02dca5
CM
698 if (device->missing) {
699 fs_devices->missing_devices--;
700 device->missing = 0;
701 }
8a4b83cc
CM
702 }
703
77bdae4d
AJ
704 /*
705 * Unmount does not free the btrfs_device struct but would zero
706 * generation along with most of the other members. So just update
707 * it back. We need it to pick the disk with largest generation
708 * (as above).
709 */
710 if (!fs_devices->opened)
711 device->generation = found_transid;
712
4fde46f0
AJ
713 /*
714 * if there is new btrfs on an already registered device,
715 * then remove the stale device entry.
716 */
02feae3c
AJ
717 if (ret > 0)
718 btrfs_free_stale_device(device);
4fde46f0 719
8a4b83cc 720 *fs_devices_ret = fs_devices;
60999ca4
DS
721
722 return ret;
8a4b83cc
CM
723}
724
e4404d6e
YZ
725static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
726{
727 struct btrfs_fs_devices *fs_devices;
728 struct btrfs_device *device;
729 struct btrfs_device *orig_dev;
730
2208a378
ID
731 fs_devices = alloc_fs_devices(orig->fsid);
732 if (IS_ERR(fs_devices))
733 return fs_devices;
e4404d6e 734
adbbb863 735 mutex_lock(&orig->device_list_mutex);
02db0844 736 fs_devices->total_devices = orig->total_devices;
e4404d6e 737
46224705 738 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 739 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
740 struct rcu_string *name;
741
12bd2fc0
ID
742 device = btrfs_alloc_device(NULL, &orig_dev->devid,
743 orig_dev->uuid);
744 if (IS_ERR(device))
e4404d6e
YZ
745 goto error;
746
606686ee
JB
747 /*
748 * This is ok to do without rcu read locked because we hold the
749 * uuid mutex so nothing we touch in here is going to disappear.
750 */
e755f780 751 if (orig_dev->name) {
78f2c9e6
DS
752 name = rcu_string_strdup(orig_dev->name->str,
753 GFP_KERNEL);
e755f780
AJ
754 if (!name) {
755 kfree(device);
756 goto error;
757 }
758 rcu_assign_pointer(device->name, name);
fd2696f3 759 }
e4404d6e 760
e4404d6e
YZ
761 list_add(&device->dev_list, &fs_devices->devices);
762 device->fs_devices = fs_devices;
763 fs_devices->num_devices++;
764 }
adbbb863 765 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
766 return fs_devices;
767error:
adbbb863 768 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
769 free_fs_devices(fs_devices);
770 return ERR_PTR(-ENOMEM);
771}
772
9eaed21e 773void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 774{
c6e30871 775 struct btrfs_device *device, *next;
443f24fe 776 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 777
dfe25020
CM
778 mutex_lock(&uuid_mutex);
779again:
46224705 780 /* This is the initialized path, it is safe to release the devices. */
c6e30871 781 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 782 if (device->in_fs_metadata) {
63a212ab 783 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
784 (!latest_dev ||
785 device->generation > latest_dev->generation)) {
786 latest_dev = device;
a6b0d5c8 787 }
2b82032c 788 continue;
a6b0d5c8 789 }
2b82032c 790
8dabb742
SB
791 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
792 /*
793 * In the first step, keep the device which has
794 * the correct fsid and the devid that is used
795 * for the dev_replace procedure.
796 * In the second step, the dev_replace state is
797 * read from the device tree and it is known
798 * whether the procedure is really active or
799 * not, which means whether this device is
800 * used or whether it should be removed.
801 */
802 if (step == 0 || device->is_tgtdev_for_dev_replace) {
803 continue;
804 }
805 }
2b82032c 806 if (device->bdev) {
d4d77629 807 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
808 device->bdev = NULL;
809 fs_devices->open_devices--;
810 }
811 if (device->writeable) {
812 list_del_init(&device->dev_alloc_list);
813 device->writeable = 0;
8dabb742
SB
814 if (!device->is_tgtdev_for_dev_replace)
815 fs_devices->rw_devices--;
2b82032c 816 }
e4404d6e
YZ
817 list_del_init(&device->dev_list);
818 fs_devices->num_devices--;
606686ee 819 rcu_string_free(device->name);
e4404d6e 820 kfree(device);
dfe25020 821 }
2b82032c
YZ
822
823 if (fs_devices->seed) {
824 fs_devices = fs_devices->seed;
2b82032c
YZ
825 goto again;
826 }
827
443f24fe 828 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 829
dfe25020 830 mutex_unlock(&uuid_mutex);
dfe25020 831}
a0af469b 832
1f78160c
XG
833static void __free_device(struct work_struct *work)
834{
835 struct btrfs_device *device;
836
837 device = container_of(work, struct btrfs_device, rcu_work);
838
839 if (device->bdev)
840 blkdev_put(device->bdev, device->mode);
841
606686ee 842 rcu_string_free(device->name);
1f78160c
XG
843 kfree(device);
844}
845
846static void free_device(struct rcu_head *head)
847{
848 struct btrfs_device *device;
849
850 device = container_of(head, struct btrfs_device, rcu);
851
852 INIT_WORK(&device->rcu_work, __free_device);
853 schedule_work(&device->rcu_work);
854}
855
2b82032c 856static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 857{
2037a093 858 struct btrfs_device *device, *tmp;
e4404d6e 859
2b82032c
YZ
860 if (--fs_devices->opened > 0)
861 return 0;
8a4b83cc 862
c9513edb 863 mutex_lock(&fs_devices->device_list_mutex);
2037a093 864 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 865 btrfs_close_one_device(device);
8a4b83cc 866 }
c9513edb
XG
867 mutex_unlock(&fs_devices->device_list_mutex);
868
e4404d6e
YZ
869 WARN_ON(fs_devices->open_devices);
870 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
871 fs_devices->opened = 0;
872 fs_devices->seeding = 0;
2b82032c 873
8a4b83cc
CM
874 return 0;
875}
876
2b82032c
YZ
877int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
878{
e4404d6e 879 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
880 int ret;
881
882 mutex_lock(&uuid_mutex);
883 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
884 if (!fs_devices->opened) {
885 seed_devices = fs_devices->seed;
886 fs_devices->seed = NULL;
887 }
2b82032c 888 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
889
890 while (seed_devices) {
891 fs_devices = seed_devices;
892 seed_devices = fs_devices->seed;
893 __btrfs_close_devices(fs_devices);
894 free_fs_devices(fs_devices);
895 }
bc178622
ES
896 /*
897 * Wait for rcu kworkers under __btrfs_close_devices
898 * to finish all blkdev_puts so device is really
899 * free when umount is done.
900 */
901 rcu_barrier();
2b82032c
YZ
902 return ret;
903}
904
e4404d6e
YZ
905static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
906 fmode_t flags, void *holder)
8a4b83cc 907{
d5e2003c 908 struct request_queue *q;
8a4b83cc
CM
909 struct block_device *bdev;
910 struct list_head *head = &fs_devices->devices;
8a4b83cc 911 struct btrfs_device *device;
443f24fe 912 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
913 struct buffer_head *bh;
914 struct btrfs_super_block *disk_super;
a0af469b 915 u64 devid;
2b82032c 916 int seeding = 1;
a0af469b 917 int ret = 0;
8a4b83cc 918
d4d77629
TH
919 flags |= FMODE_EXCL;
920
c6e30871 921 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
922 if (device->bdev)
923 continue;
dfe25020
CM
924 if (!device->name)
925 continue;
926
f63e0cca
ES
927 /* Just open everything we can; ignore failures here */
928 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
929 &bdev, &bh))
beaf8ab3 930 continue;
a0af469b
CM
931
932 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 933 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
934 if (devid != device->devid)
935 goto error_brelse;
936
2b82032c
YZ
937 if (memcmp(device->uuid, disk_super->dev_item.uuid,
938 BTRFS_UUID_SIZE))
939 goto error_brelse;
940
941 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
942 if (!latest_dev ||
943 device->generation > latest_dev->generation)
944 latest_dev = device;
a0af469b 945
2b82032c
YZ
946 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
947 device->writeable = 0;
948 } else {
949 device->writeable = !bdev_read_only(bdev);
950 seeding = 0;
951 }
952
d5e2003c 953 q = bdev_get_queue(bdev);
90180da4 954 if (blk_queue_discard(q))
d5e2003c 955 device->can_discard = 1;
d5e2003c 956
8a4b83cc 957 device->bdev = bdev;
dfe25020 958 device->in_fs_metadata = 0;
15916de8
CM
959 device->mode = flags;
960
c289811c
CM
961 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
962 fs_devices->rotating = 1;
963
a0af469b 964 fs_devices->open_devices++;
55e50e45
ID
965 if (device->writeable &&
966 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
967 fs_devices->rw_devices++;
968 list_add(&device->dev_alloc_list,
969 &fs_devices->alloc_list);
970 }
4f6c9328 971 brelse(bh);
a0af469b 972 continue;
a061fc8d 973
a0af469b
CM
974error_brelse:
975 brelse(bh);
d4d77629 976 blkdev_put(bdev, flags);
a0af469b 977 continue;
8a4b83cc 978 }
a0af469b 979 if (fs_devices->open_devices == 0) {
20bcd649 980 ret = -EINVAL;
a0af469b
CM
981 goto out;
982 }
2b82032c
YZ
983 fs_devices->seeding = seeding;
984 fs_devices->opened = 1;
443f24fe 985 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 986 fs_devices->total_rw_bytes = 0;
a0af469b 987out:
2b82032c
YZ
988 return ret;
989}
990
991int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 992 fmode_t flags, void *holder)
2b82032c
YZ
993{
994 int ret;
995
996 mutex_lock(&uuid_mutex);
997 if (fs_devices->opened) {
e4404d6e
YZ
998 fs_devices->opened++;
999 ret = 0;
2b82032c 1000 } else {
15916de8 1001 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1002 }
8a4b83cc 1003 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1004 return ret;
1005}
1006
6cf86a00
AJ
1007void btrfs_release_disk_super(struct page *page)
1008{
1009 kunmap(page);
1010 put_page(page);
1011}
1012
1013int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1014 struct page **page, struct btrfs_super_block **disk_super)
1015{
1016 void *p;
1017 pgoff_t index;
1018
1019 /* make sure our super fits in the device */
1020 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1021 return 1;
1022
1023 /* make sure our super fits in the page */
1024 if (sizeof(**disk_super) > PAGE_SIZE)
1025 return 1;
1026
1027 /* make sure our super doesn't straddle pages on disk */
1028 index = bytenr >> PAGE_SHIFT;
1029 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1030 return 1;
1031
1032 /* pull in the page with our super */
1033 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1034 index, GFP_KERNEL);
1035
1036 if (IS_ERR_OR_NULL(*page))
1037 return 1;
1038
1039 p = kmap(*page);
1040
1041 /* align our pointer to the offset of the super block */
1042 *disk_super = p + (bytenr & ~PAGE_MASK);
1043
1044 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1045 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1046 btrfs_release_disk_super(*page);
1047 return 1;
1048 }
1049
1050 if ((*disk_super)->label[0] &&
1051 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1052 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1053
1054 return 0;
1055}
1056
6f60cbd3
DS
1057/*
1058 * Look for a btrfs signature on a device. This may be called out of the mount path
1059 * and we are not allowed to call set_blocksize during the scan. The superblock
1060 * is read via pagecache
1061 */
97288f2c 1062int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1063 struct btrfs_fs_devices **fs_devices_ret)
1064{
1065 struct btrfs_super_block *disk_super;
1066 struct block_device *bdev;
6f60cbd3 1067 struct page *page;
6f60cbd3 1068 int ret = -EINVAL;
8a4b83cc 1069 u64 devid;
f2984462 1070 u64 transid;
02db0844 1071 u64 total_devices;
6f60cbd3 1072 u64 bytenr;
8a4b83cc 1073
6f60cbd3
DS
1074 /*
1075 * we would like to check all the supers, but that would make
1076 * a btrfs mount succeed after a mkfs from a different FS.
1077 * So, we need to add a special mount option to scan for
1078 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1079 */
1080 bytenr = btrfs_sb_offset(0);
d4d77629 1081 flags |= FMODE_EXCL;
10f6327b 1082 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1083
1084 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1085 if (IS_ERR(bdev)) {
1086 ret = PTR_ERR(bdev);
beaf8ab3 1087 goto error;
6f60cbd3
DS
1088 }
1089
6cf86a00 1090 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1091 goto error_bdev_put;
1092
a343832f 1093 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1094 transid = btrfs_super_generation(disk_super);
02db0844 1095 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1096
8a4b83cc 1097 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1098 if (ret > 0) {
1099 if (disk_super->label[0]) {
60999ca4
DS
1100 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1101 } else {
1102 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1103 }
1104
1105 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1106 ret = 0;
1107 }
02db0844
JB
1108 if (!ret && fs_devices_ret)
1109 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1110
6cf86a00 1111 btrfs_release_disk_super(page);
6f60cbd3
DS
1112
1113error_bdev_put:
d4d77629 1114 blkdev_put(bdev, flags);
8a4b83cc 1115error:
beaf8ab3 1116 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1117 return ret;
1118}
0b86a832 1119
6d07bcec
MX
1120/* helper to account the used device space in the range */
1121int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1122 u64 end, u64 *length)
1123{
1124 struct btrfs_key key;
1125 struct btrfs_root *root = device->dev_root;
1126 struct btrfs_dev_extent *dev_extent;
1127 struct btrfs_path *path;
1128 u64 extent_end;
1129 int ret;
1130 int slot;
1131 struct extent_buffer *l;
1132
1133 *length = 0;
1134
63a212ab 1135 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1136 return 0;
1137
1138 path = btrfs_alloc_path();
1139 if (!path)
1140 return -ENOMEM;
e4058b54 1141 path->reada = READA_FORWARD;
6d07bcec
MX
1142
1143 key.objectid = device->devid;
1144 key.offset = start;
1145 key.type = BTRFS_DEV_EXTENT_KEY;
1146
1147 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1148 if (ret < 0)
1149 goto out;
1150 if (ret > 0) {
1151 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1152 if (ret < 0)
1153 goto out;
1154 }
1155
1156 while (1) {
1157 l = path->nodes[0];
1158 slot = path->slots[0];
1159 if (slot >= btrfs_header_nritems(l)) {
1160 ret = btrfs_next_leaf(root, path);
1161 if (ret == 0)
1162 continue;
1163 if (ret < 0)
1164 goto out;
1165
1166 break;
1167 }
1168 btrfs_item_key_to_cpu(l, &key, slot);
1169
1170 if (key.objectid < device->devid)
1171 goto next;
1172
1173 if (key.objectid > device->devid)
1174 break;
1175
962a298f 1176 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1177 goto next;
1178
1179 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1180 extent_end = key.offset + btrfs_dev_extent_length(l,
1181 dev_extent);
1182 if (key.offset <= start && extent_end > end) {
1183 *length = end - start + 1;
1184 break;
1185 } else if (key.offset <= start && extent_end > start)
1186 *length += extent_end - start;
1187 else if (key.offset > start && extent_end <= end)
1188 *length += extent_end - key.offset;
1189 else if (key.offset > start && key.offset <= end) {
1190 *length += end - key.offset + 1;
1191 break;
1192 } else if (key.offset > end)
1193 break;
1194
1195next:
1196 path->slots[0]++;
1197 }
1198 ret = 0;
1199out:
1200 btrfs_free_path(path);
1201 return ret;
1202}
1203
499f377f 1204static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1205 struct btrfs_device *device,
1206 u64 *start, u64 len)
1207{
499f377f 1208 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1209 struct extent_map *em;
499f377f 1210 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1211 int ret = 0;
1b984508 1212 u64 physical_start = *start;
6df9a95e 1213
499f377f
JM
1214 if (transaction)
1215 search_list = &transaction->pending_chunks;
04216820
FM
1216again:
1217 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1218 struct map_lookup *map;
1219 int i;
1220
95617d69 1221 map = em->map_lookup;
6df9a95e 1222 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1223 u64 end;
1224
6df9a95e
JB
1225 if (map->stripes[i].dev != device)
1226 continue;
1b984508 1227 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1228 map->stripes[i].physical + em->orig_block_len <=
1b984508 1229 physical_start)
6df9a95e 1230 continue;
c152b63e
FM
1231 /*
1232 * Make sure that while processing the pinned list we do
1233 * not override our *start with a lower value, because
1234 * we can have pinned chunks that fall within this
1235 * device hole and that have lower physical addresses
1236 * than the pending chunks we processed before. If we
1237 * do not take this special care we can end up getting
1238 * 2 pending chunks that start at the same physical
1239 * device offsets because the end offset of a pinned
1240 * chunk can be equal to the start offset of some
1241 * pending chunk.
1242 */
1243 end = map->stripes[i].physical + em->orig_block_len;
1244 if (end > *start) {
1245 *start = end;
1246 ret = 1;
1247 }
6df9a95e
JB
1248 }
1249 }
499f377f
JM
1250 if (search_list != &fs_info->pinned_chunks) {
1251 search_list = &fs_info->pinned_chunks;
04216820
FM
1252 goto again;
1253 }
6df9a95e
JB
1254
1255 return ret;
1256}
1257
1258
0b86a832 1259/*
499f377f
JM
1260 * find_free_dev_extent_start - find free space in the specified device
1261 * @device: the device which we search the free space in
1262 * @num_bytes: the size of the free space that we need
1263 * @search_start: the position from which to begin the search
1264 * @start: store the start of the free space.
1265 * @len: the size of the free space. that we find, or the size
1266 * of the max free space if we don't find suitable free space
7bfc837d 1267 *
0b86a832
CM
1268 * this uses a pretty simple search, the expectation is that it is
1269 * called very infrequently and that a given device has a small number
1270 * of extents
7bfc837d
MX
1271 *
1272 * @start is used to store the start of the free space if we find. But if we
1273 * don't find suitable free space, it will be used to store the start position
1274 * of the max free space.
1275 *
1276 * @len is used to store the size of the free space that we find.
1277 * But if we don't find suitable free space, it is used to store the size of
1278 * the max free space.
0b86a832 1279 */
499f377f
JM
1280int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1281 struct btrfs_device *device, u64 num_bytes,
1282 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1283{
1284 struct btrfs_key key;
1285 struct btrfs_root *root = device->dev_root;
7bfc837d 1286 struct btrfs_dev_extent *dev_extent;
2b82032c 1287 struct btrfs_path *path;
7bfc837d
MX
1288 u64 hole_size;
1289 u64 max_hole_start;
1290 u64 max_hole_size;
1291 u64 extent_end;
0b86a832
CM
1292 u64 search_end = device->total_bytes;
1293 int ret;
7bfc837d 1294 int slot;
0b86a832 1295 struct extent_buffer *l;
8cdc7c5b
FM
1296 u64 min_search_start;
1297
1298 /*
1299 * We don't want to overwrite the superblock on the drive nor any area
1300 * used by the boot loader (grub for example), so we make sure to start
1301 * at an offset of at least 1MB.
1302 */
1303 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1304 search_start = max(search_start, min_search_start);
0b86a832 1305
6df9a95e
JB
1306 path = btrfs_alloc_path();
1307 if (!path)
1308 return -ENOMEM;
f2ab7618 1309
7bfc837d
MX
1310 max_hole_start = search_start;
1311 max_hole_size = 0;
1312
f2ab7618 1313again:
63a212ab 1314 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1315 ret = -ENOSPC;
6df9a95e 1316 goto out;
7bfc837d
MX
1317 }
1318
e4058b54 1319 path->reada = READA_FORWARD;
6df9a95e
JB
1320 path->search_commit_root = 1;
1321 path->skip_locking = 1;
7bfc837d 1322
0b86a832
CM
1323 key.objectid = device->devid;
1324 key.offset = search_start;
1325 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1326
125ccb0a 1327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1328 if (ret < 0)
7bfc837d 1329 goto out;
1fcbac58
YZ
1330 if (ret > 0) {
1331 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1332 if (ret < 0)
7bfc837d 1333 goto out;
1fcbac58 1334 }
7bfc837d 1335
0b86a832
CM
1336 while (1) {
1337 l = path->nodes[0];
1338 slot = path->slots[0];
1339 if (slot >= btrfs_header_nritems(l)) {
1340 ret = btrfs_next_leaf(root, path);
1341 if (ret == 0)
1342 continue;
1343 if (ret < 0)
7bfc837d
MX
1344 goto out;
1345
1346 break;
0b86a832
CM
1347 }
1348 btrfs_item_key_to_cpu(l, &key, slot);
1349
1350 if (key.objectid < device->devid)
1351 goto next;
1352
1353 if (key.objectid > device->devid)
7bfc837d 1354 break;
0b86a832 1355
962a298f 1356 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1357 goto next;
9779b72f 1358
7bfc837d
MX
1359 if (key.offset > search_start) {
1360 hole_size = key.offset - search_start;
9779b72f 1361
6df9a95e
JB
1362 /*
1363 * Have to check before we set max_hole_start, otherwise
1364 * we could end up sending back this offset anyway.
1365 */
499f377f 1366 if (contains_pending_extent(transaction, device,
6df9a95e 1367 &search_start,
1b984508
FL
1368 hole_size)) {
1369 if (key.offset >= search_start) {
1370 hole_size = key.offset - search_start;
1371 } else {
1372 WARN_ON_ONCE(1);
1373 hole_size = 0;
1374 }
1375 }
6df9a95e 1376
7bfc837d
MX
1377 if (hole_size > max_hole_size) {
1378 max_hole_start = search_start;
1379 max_hole_size = hole_size;
1380 }
9779b72f 1381
7bfc837d
MX
1382 /*
1383 * If this free space is greater than which we need,
1384 * it must be the max free space that we have found
1385 * until now, so max_hole_start must point to the start
1386 * of this free space and the length of this free space
1387 * is stored in max_hole_size. Thus, we return
1388 * max_hole_start and max_hole_size and go back to the
1389 * caller.
1390 */
1391 if (hole_size >= num_bytes) {
1392 ret = 0;
1393 goto out;
0b86a832
CM
1394 }
1395 }
0b86a832 1396
0b86a832 1397 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1398 extent_end = key.offset + btrfs_dev_extent_length(l,
1399 dev_extent);
1400 if (extent_end > search_start)
1401 search_start = extent_end;
0b86a832
CM
1402next:
1403 path->slots[0]++;
1404 cond_resched();
1405 }
0b86a832 1406
38c01b96 1407 /*
1408 * At this point, search_start should be the end of
1409 * allocated dev extents, and when shrinking the device,
1410 * search_end may be smaller than search_start.
1411 */
f2ab7618 1412 if (search_end > search_start) {
38c01b96 1413 hole_size = search_end - search_start;
1414
499f377f 1415 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1416 hole_size)) {
1417 btrfs_release_path(path);
1418 goto again;
1419 }
0b86a832 1420
f2ab7618
ZL
1421 if (hole_size > max_hole_size) {
1422 max_hole_start = search_start;
1423 max_hole_size = hole_size;
1424 }
6df9a95e
JB
1425 }
1426
7bfc837d 1427 /* See above. */
f2ab7618 1428 if (max_hole_size < num_bytes)
7bfc837d
MX
1429 ret = -ENOSPC;
1430 else
1431 ret = 0;
1432
1433out:
2b82032c 1434 btrfs_free_path(path);
7bfc837d 1435 *start = max_hole_start;
b2117a39 1436 if (len)
7bfc837d 1437 *len = max_hole_size;
0b86a832
CM
1438 return ret;
1439}
1440
499f377f
JM
1441int find_free_dev_extent(struct btrfs_trans_handle *trans,
1442 struct btrfs_device *device, u64 num_bytes,
1443 u64 *start, u64 *len)
1444{
499f377f 1445 /* FIXME use last free of some kind */
499f377f 1446 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1447 num_bytes, 0, start, len);
499f377f
JM
1448}
1449
b2950863 1450static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1451 struct btrfs_device *device,
2196d6e8 1452 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1453{
1454 int ret;
1455 struct btrfs_path *path;
1456 struct btrfs_root *root = device->dev_root;
1457 struct btrfs_key key;
a061fc8d
CM
1458 struct btrfs_key found_key;
1459 struct extent_buffer *leaf = NULL;
1460 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1461
1462 path = btrfs_alloc_path();
1463 if (!path)
1464 return -ENOMEM;
1465
1466 key.objectid = device->devid;
1467 key.offset = start;
1468 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1469again:
8f18cf13 1470 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1471 if (ret > 0) {
1472 ret = btrfs_previous_item(root, path, key.objectid,
1473 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1474 if (ret)
1475 goto out;
a061fc8d
CM
1476 leaf = path->nodes[0];
1477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1478 extent = btrfs_item_ptr(leaf, path->slots[0],
1479 struct btrfs_dev_extent);
1480 BUG_ON(found_key.offset > start || found_key.offset +
1481 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1482 key = found_key;
1483 btrfs_release_path(path);
1484 goto again;
a061fc8d
CM
1485 } else if (ret == 0) {
1486 leaf = path->nodes[0];
1487 extent = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_dev_extent);
79787eaa 1489 } else {
a4553fef 1490 btrfs_std_error(root->fs_info, ret, "Slot search failed");
79787eaa 1491 goto out;
a061fc8d 1492 }
8f18cf13 1493
2196d6e8
MX
1494 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1495
8f18cf13 1496 ret = btrfs_del_item(trans, root, path);
79787eaa 1497 if (ret) {
a4553fef 1498 btrfs_std_error(root->fs_info, ret,
79787eaa 1499 "Failed to remove dev extent item");
13212b54 1500 } else {
3204d33c 1501 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1502 }
b0b802d7 1503out:
8f18cf13
CM
1504 btrfs_free_path(path);
1505 return ret;
1506}
1507
48a3b636
ES
1508static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1509 struct btrfs_device *device,
1510 u64 chunk_tree, u64 chunk_objectid,
1511 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1512{
1513 int ret;
1514 struct btrfs_path *path;
1515 struct btrfs_root *root = device->dev_root;
1516 struct btrfs_dev_extent *extent;
1517 struct extent_buffer *leaf;
1518 struct btrfs_key key;
1519
dfe25020 1520 WARN_ON(!device->in_fs_metadata);
63a212ab 1521 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1522 path = btrfs_alloc_path();
1523 if (!path)
1524 return -ENOMEM;
1525
0b86a832 1526 key.objectid = device->devid;
2b82032c 1527 key.offset = start;
0b86a832
CM
1528 key.type = BTRFS_DEV_EXTENT_KEY;
1529 ret = btrfs_insert_empty_item(trans, root, path, &key,
1530 sizeof(*extent));
2cdcecbc
MF
1531 if (ret)
1532 goto out;
0b86a832
CM
1533
1534 leaf = path->nodes[0];
1535 extent = btrfs_item_ptr(leaf, path->slots[0],
1536 struct btrfs_dev_extent);
e17cade2
CM
1537 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1538 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1539 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1540
1541 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1542 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1543
0b86a832
CM
1544 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1545 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1546out:
0b86a832
CM
1547 btrfs_free_path(path);
1548 return ret;
1549}
1550
6df9a95e 1551static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1552{
6df9a95e
JB
1553 struct extent_map_tree *em_tree;
1554 struct extent_map *em;
1555 struct rb_node *n;
1556 u64 ret = 0;
0b86a832 1557
6df9a95e
JB
1558 em_tree = &fs_info->mapping_tree.map_tree;
1559 read_lock(&em_tree->lock);
1560 n = rb_last(&em_tree->map);
1561 if (n) {
1562 em = rb_entry(n, struct extent_map, rb_node);
1563 ret = em->start + em->len;
0b86a832 1564 }
6df9a95e
JB
1565 read_unlock(&em_tree->lock);
1566
0b86a832
CM
1567 return ret;
1568}
1569
53f10659
ID
1570static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1571 u64 *devid_ret)
0b86a832
CM
1572{
1573 int ret;
1574 struct btrfs_key key;
1575 struct btrfs_key found_key;
2b82032c
YZ
1576 struct btrfs_path *path;
1577
2b82032c
YZ
1578 path = btrfs_alloc_path();
1579 if (!path)
1580 return -ENOMEM;
0b86a832
CM
1581
1582 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1583 key.type = BTRFS_DEV_ITEM_KEY;
1584 key.offset = (u64)-1;
1585
53f10659 1586 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1587 if (ret < 0)
1588 goto error;
1589
79787eaa 1590 BUG_ON(ret == 0); /* Corruption */
0b86a832 1591
53f10659
ID
1592 ret = btrfs_previous_item(fs_info->chunk_root, path,
1593 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1594 BTRFS_DEV_ITEM_KEY);
1595 if (ret) {
53f10659 1596 *devid_ret = 1;
0b86a832
CM
1597 } else {
1598 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1599 path->slots[0]);
53f10659 1600 *devid_ret = found_key.offset + 1;
0b86a832
CM
1601 }
1602 ret = 0;
1603error:
2b82032c 1604 btrfs_free_path(path);
0b86a832
CM
1605 return ret;
1606}
1607
1608/*
1609 * the device information is stored in the chunk root
1610 * the btrfs_device struct should be fully filled in
1611 */
48a3b636
ES
1612static int btrfs_add_device(struct btrfs_trans_handle *trans,
1613 struct btrfs_root *root,
1614 struct btrfs_device *device)
0b86a832
CM
1615{
1616 int ret;
1617 struct btrfs_path *path;
1618 struct btrfs_dev_item *dev_item;
1619 struct extent_buffer *leaf;
1620 struct btrfs_key key;
1621 unsigned long ptr;
0b86a832
CM
1622
1623 root = root->fs_info->chunk_root;
1624
1625 path = btrfs_alloc_path();
1626 if (!path)
1627 return -ENOMEM;
1628
0b86a832
CM
1629 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1630 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1631 key.offset = device->devid;
0b86a832
CM
1632
1633 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1634 sizeof(*dev_item));
0b86a832
CM
1635 if (ret)
1636 goto out;
1637
1638 leaf = path->nodes[0];
1639 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1640
1641 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1642 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1643 btrfs_set_device_type(leaf, dev_item, device->type);
1644 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1645 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1646 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1647 btrfs_set_device_total_bytes(leaf, dev_item,
1648 btrfs_device_get_disk_total_bytes(device));
1649 btrfs_set_device_bytes_used(leaf, dev_item,
1650 btrfs_device_get_bytes_used(device));
e17cade2
CM
1651 btrfs_set_device_group(leaf, dev_item, 0);
1652 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1653 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1654 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1655
410ba3a2 1656 ptr = btrfs_device_uuid(dev_item);
e17cade2 1657 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1658 ptr = btrfs_device_fsid(dev_item);
2b82032c 1659 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1660 btrfs_mark_buffer_dirty(leaf);
0b86a832 1661
2b82032c 1662 ret = 0;
0b86a832
CM
1663out:
1664 btrfs_free_path(path);
1665 return ret;
1666}
8f18cf13 1667
5a1972bd
QW
1668/*
1669 * Function to update ctime/mtime for a given device path.
1670 * Mainly used for ctime/mtime based probe like libblkid.
1671 */
1672static void update_dev_time(char *path_name)
1673{
1674 struct file *filp;
1675
1676 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1677 if (IS_ERR(filp))
5a1972bd
QW
1678 return;
1679 file_update_time(filp);
1680 filp_close(filp, NULL);
5a1972bd
QW
1681}
1682
a061fc8d
CM
1683static int btrfs_rm_dev_item(struct btrfs_root *root,
1684 struct btrfs_device *device)
1685{
1686 int ret;
1687 struct btrfs_path *path;
a061fc8d 1688 struct btrfs_key key;
a061fc8d
CM
1689 struct btrfs_trans_handle *trans;
1690
1691 root = root->fs_info->chunk_root;
1692
1693 path = btrfs_alloc_path();
1694 if (!path)
1695 return -ENOMEM;
1696
a22285a6 1697 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1698 if (IS_ERR(trans)) {
1699 btrfs_free_path(path);
1700 return PTR_ERR(trans);
1701 }
a061fc8d
CM
1702 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1703 key.type = BTRFS_DEV_ITEM_KEY;
1704 key.offset = device->devid;
1705
1706 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1707 if (ret < 0)
1708 goto out;
1709
1710 if (ret > 0) {
1711 ret = -ENOENT;
1712 goto out;
1713 }
1714
1715 ret = btrfs_del_item(trans, root, path);
1716 if (ret)
1717 goto out;
a061fc8d
CM
1718out:
1719 btrfs_free_path(path);
1720 btrfs_commit_transaction(trans, root);
1721 return ret;
1722}
1723
3cc31a0d
DS
1724/*
1725 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1726 * filesystem. It's up to the caller to adjust that number regarding eg. device
1727 * replace.
1728 */
1729static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1730 u64 num_devices)
a061fc8d 1731{
a061fc8d 1732 u64 all_avail;
de98ced9 1733 unsigned seq;
418775a2 1734 int i;
a061fc8d 1735
de98ced9 1736 do {
bd45ffbc 1737 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1738
bd45ffbc
AJ
1739 all_avail = fs_info->avail_data_alloc_bits |
1740 fs_info->avail_system_alloc_bits |
1741 fs_info->avail_metadata_alloc_bits;
1742 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1743
418775a2
DS
1744 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1745 if (!(all_avail & btrfs_raid_group[i]))
1746 continue;
a061fc8d 1747
418775a2
DS
1748 if (num_devices < btrfs_raid_array[i].devs_min) {
1749 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1750
418775a2
DS
1751 if (ret)
1752 return ret;
1753 }
53b381b3
DW
1754 }
1755
bd45ffbc 1756 return 0;
f1fa7f26
AJ
1757}
1758
6b526ed7 1759int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
f1fa7f26
AJ
1760{
1761 struct btrfs_device *device;
1762 struct btrfs_device *next_device;
f1fa7f26 1763 struct btrfs_fs_devices *cur_devices;
f1fa7f26 1764 u64 num_devices;
f1fa7f26
AJ
1765 int ret = 0;
1766 bool clear_super = false;
42b67427 1767 char *dev_name = NULL;
f1fa7f26
AJ
1768
1769 mutex_lock(&uuid_mutex);
1770
3cc31a0d
DS
1771 num_devices = root->fs_info->fs_devices->num_devices;
1772 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1773 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1774 WARN_ON(num_devices < 1);
1775 num_devices--;
1776 }
1777 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1778
1779 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
f1fa7f26
AJ
1780 if (ret)
1781 goto out;
1782
5c5c0df0 1783 ret = btrfs_find_device_by_devspec(root, devid, device_path,
24fc572f
AJ
1784 &device);
1785 if (ret)
1786 goto out;
dfe25020 1787
63a212ab 1788 if (device->is_tgtdev_for_dev_replace) {
183860f6 1789 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1790 goto out;
63a212ab
SB
1791 }
1792
2b82032c 1793 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1794 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1795 goto out;
2b82032c
YZ
1796 }
1797
1798 if (device->writeable) {
0c1daee0 1799 lock_chunks(root);
2b82032c 1800 list_del_init(&device->dev_alloc_list);
c3929c36 1801 device->fs_devices->rw_devices--;
0c1daee0 1802 unlock_chunks(root);
42b67427
AJ
1803 dev_name = kstrdup(device->name->str, GFP_KERNEL);
1804 if (!dev_name) {
1805 ret = -ENOMEM;
1806 goto error_undo;
1807 }
1f78160c 1808 clear_super = true;
dfe25020 1809 }
a061fc8d 1810
d7901554 1811 mutex_unlock(&uuid_mutex);
a061fc8d 1812 ret = btrfs_shrink_device(device, 0);
d7901554 1813 mutex_lock(&uuid_mutex);
a061fc8d 1814 if (ret)
9b3517e9 1815 goto error_undo;
a061fc8d 1816
63a212ab
SB
1817 /*
1818 * TODO: the superblock still includes this device in its num_devices
1819 * counter although write_all_supers() is not locked out. This
1820 * could give a filesystem state which requires a degraded mount.
1821 */
a061fc8d
CM
1822 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1823 if (ret)
9b3517e9 1824 goto error_undo;
a061fc8d 1825
2b82032c 1826 device->in_fs_metadata = 0;
aa1b8cd4 1827 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1828
1829 /*
1830 * the device list mutex makes sure that we don't change
1831 * the device list while someone else is writing out all
d7306801
FDBM
1832 * the device supers. Whoever is writing all supers, should
1833 * lock the device list mutex before getting the number of
1834 * devices in the super block (super_copy). Conversely,
1835 * whoever updates the number of devices in the super block
1836 * (super_copy) should hold the device list mutex.
e5e9a520 1837 */
1f78160c
XG
1838
1839 cur_devices = device->fs_devices;
e5e9a520 1840 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1841 list_del_rcu(&device->dev_list);
e5e9a520 1842
e4404d6e 1843 device->fs_devices->num_devices--;
02db0844 1844 device->fs_devices->total_devices--;
2b82032c 1845
cd02dca5 1846 if (device->missing)
3a7d55c8 1847 device->fs_devices->missing_devices--;
cd02dca5 1848
2b82032c
YZ
1849 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1850 struct btrfs_device, dev_list);
8ed01abe
AJ
1851 if (root->fs_info->sb->s_bdev &&
1852 (root->fs_info->sb->s_bdev == device->bdev))
2b82032c
YZ
1853 root->fs_info->sb->s_bdev = next_device->bdev;
1854 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1855 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1856
0bfaa9c5 1857 if (device->bdev) {
e4404d6e 1858 device->fs_devices->open_devices--;
0bfaa9c5 1859 /* remove sysfs entry */
32576040 1860 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1861 }
99994cde 1862
1f78160c 1863 call_rcu(&device->rcu, free_device);
e4404d6e 1864
6c41761f
DS
1865 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1866 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1867 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1868
1f78160c 1869 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1870 struct btrfs_fs_devices *fs_devices;
1871 fs_devices = root->fs_info->fs_devices;
1872 while (fs_devices) {
8321cf25
RS
1873 if (fs_devices->seed == cur_devices) {
1874 fs_devices->seed = cur_devices->seed;
e4404d6e 1875 break;
8321cf25 1876 }
e4404d6e 1877 fs_devices = fs_devices->seed;
2b82032c 1878 }
1f78160c 1879 cur_devices->seed = NULL;
1f78160c 1880 __btrfs_close_devices(cur_devices);
1f78160c 1881 free_fs_devices(cur_devices);
2b82032c
YZ
1882 }
1883
5af3e8cc
SB
1884 root->fs_info->num_tolerated_disk_barrier_failures =
1885 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1886
2b82032c
YZ
1887 /*
1888 * at this point, the device is zero sized. We want to
1889 * remove it from the devices list and zero out the old super
1890 */
24fc572f 1891 if (clear_super) {
42b67427 1892 struct block_device *bdev;
4d90d28b 1893
42b67427
AJ
1894 bdev = blkdev_get_by_path(dev_name, FMODE_READ | FMODE_EXCL,
1895 root->fs_info->bdev_holder);
1896 if (!IS_ERR(bdev)) {
1897 btrfs_scratch_superblocks(bdev, dev_name);
24fc572f
AJ
1898 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1899 }
5a1972bd
QW
1900 }
1901
a061fc8d 1902out:
42b67427
AJ
1903 kfree(dev_name);
1904
a061fc8d 1905 mutex_unlock(&uuid_mutex);
a061fc8d 1906 return ret;
24fc572f 1907
9b3517e9
ID
1908error_undo:
1909 if (device->writeable) {
0c1daee0 1910 lock_chunks(root);
9b3517e9
ID
1911 list_add(&device->dev_alloc_list,
1912 &root->fs_info->fs_devices->alloc_list);
c3929c36 1913 device->fs_devices->rw_devices++;
0c1daee0 1914 unlock_chunks(root);
9b3517e9 1915 }
24fc572f 1916 goto out;
a061fc8d
CM
1917}
1918
084b6e7c
QW
1919void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1920 struct btrfs_device *srcdev)
e93c89c1 1921{
d51908ce
AJ
1922 struct btrfs_fs_devices *fs_devices;
1923
e93c89c1 1924 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1925
25e8e911
AJ
1926 /*
1927 * in case of fs with no seed, srcdev->fs_devices will point
1928 * to fs_devices of fs_info. However when the dev being replaced is
1929 * a seed dev it will point to the seed's local fs_devices. In short
1930 * srcdev will have its correct fs_devices in both the cases.
1931 */
1932 fs_devices = srcdev->fs_devices;
d51908ce 1933
e93c89c1
SB
1934 list_del_rcu(&srcdev->dev_list);
1935 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1936 fs_devices->num_devices--;
82372bc8 1937 if (srcdev->missing)
d51908ce 1938 fs_devices->missing_devices--;
e93c89c1 1939
82372bc8
MX
1940 if (srcdev->writeable) {
1941 fs_devices->rw_devices--;
1942 /* zero out the old super if it is writable */
31388ab2 1943 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1357272f
ID
1944 }
1945
82372bc8 1946 if (srcdev->bdev)
d51908ce 1947 fs_devices->open_devices--;
084b6e7c
QW
1948}
1949
1950void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1951 struct btrfs_device *srcdev)
1952{
1953 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1
SB
1954
1955 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
1956
1957 /*
1958 * unless fs_devices is seed fs, num_devices shouldn't go
1959 * zero
1960 */
1961 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1962
1963 /* if this is no devs we rather delete the fs_devices */
1964 if (!fs_devices->num_devices) {
1965 struct btrfs_fs_devices *tmp_fs_devices;
1966
1967 tmp_fs_devices = fs_info->fs_devices;
1968 while (tmp_fs_devices) {
1969 if (tmp_fs_devices->seed == fs_devices) {
1970 tmp_fs_devices->seed = fs_devices->seed;
1971 break;
1972 }
1973 tmp_fs_devices = tmp_fs_devices->seed;
1974 }
1975 fs_devices->seed = NULL;
8bef8401
AJ
1976 __btrfs_close_devices(fs_devices);
1977 free_fs_devices(fs_devices);
94d5f0c2 1978 }
e93c89c1
SB
1979}
1980
1981void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1982 struct btrfs_device *tgtdev)
1983{
1984 struct btrfs_device *next_device;
1985
67a2c45e 1986 mutex_lock(&uuid_mutex);
e93c89c1
SB
1987 WARN_ON(!tgtdev);
1988 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 1989
32576040 1990 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 1991
e93c89c1 1992 if (tgtdev->bdev) {
31388ab2 1993 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
e93c89c1
SB
1994 fs_info->fs_devices->open_devices--;
1995 }
1996 fs_info->fs_devices->num_devices--;
e93c89c1
SB
1997
1998 next_device = list_entry(fs_info->fs_devices->devices.next,
1999 struct btrfs_device, dev_list);
8ed01abe
AJ
2000 if (fs_info->sb->s_bdev &&
2001 (tgtdev->bdev == fs_info->sb->s_bdev))
e93c89c1
SB
2002 fs_info->sb->s_bdev = next_device->bdev;
2003 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2004 fs_info->fs_devices->latest_bdev = next_device->bdev;
2005 list_del_rcu(&tgtdev->dev_list);
2006
2007 call_rcu(&tgtdev->rcu, free_device);
2008
2009 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2010 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2011}
2012
48a3b636
ES
2013static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2014 struct btrfs_device **device)
7ba15b7d
SB
2015{
2016 int ret = 0;
2017 struct btrfs_super_block *disk_super;
2018 u64 devid;
2019 u8 *dev_uuid;
2020 struct block_device *bdev;
2021 struct buffer_head *bh;
2022
2023 *device = NULL;
2024 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2025 root->fs_info->bdev_holder, 0, &bdev, &bh);
2026 if (ret)
2027 return ret;
2028 disk_super = (struct btrfs_super_block *)bh->b_data;
2029 devid = btrfs_stack_device_id(&disk_super->dev_item);
2030 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2031 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2032 disk_super->fsid);
2033 brelse(bh);
2034 if (!*device)
2035 ret = -ENOENT;
2036 blkdev_put(bdev, FMODE_READ);
2037 return ret;
2038}
2039
2040int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2041 char *device_path,
2042 struct btrfs_device **device)
2043{
2044 *device = NULL;
2045 if (strcmp(device_path, "missing") == 0) {
2046 struct list_head *devices;
2047 struct btrfs_device *tmp;
2048
2049 devices = &root->fs_info->fs_devices->devices;
2050 /*
2051 * It is safe to read the devices since the volume_mutex
2052 * is held by the caller.
2053 */
2054 list_for_each_entry(tmp, devices, dev_list) {
2055 if (tmp->in_fs_metadata && !tmp->bdev) {
2056 *device = tmp;
2057 break;
2058 }
2059 }
2060
d74a6259
AJ
2061 if (!*device)
2062 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2063
2064 return 0;
2065 } else {
2066 return btrfs_find_device_by_path(root, device_path, device);
2067 }
2068}
2069
5c5c0df0
DS
2070/*
2071 * Lookup a device given by device id, or the path if the id is 0.
2072 */
2073int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2074 char *devpath,
24e0474b
AJ
2075 struct btrfs_device **device)
2076{
2077 int ret;
2078
5c5c0df0 2079 if (devid) {
24e0474b 2080 ret = 0;
5c5c0df0 2081 *device = btrfs_find_device(root->fs_info, devid, NULL,
24e0474b
AJ
2082 NULL);
2083 if (!*device)
2084 ret = -ENOENT;
2085 } else {
5c5c0df0 2086 if (!devpath || !devpath[0])
b3d1b153
AJ
2087 return -EINVAL;
2088
5c5c0df0 2089 ret = btrfs_find_device_missing_or_by_path(root, devpath,
24e0474b
AJ
2090 device);
2091 }
2092 return ret;
2093}
2094
2b82032c
YZ
2095/*
2096 * does all the dirty work required for changing file system's UUID.
2097 */
125ccb0a 2098static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2099{
2100 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2101 struct btrfs_fs_devices *old_devices;
e4404d6e 2102 struct btrfs_fs_devices *seed_devices;
6c41761f 2103 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2104 struct btrfs_device *device;
2105 u64 super_flags;
2106
2107 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2108 if (!fs_devices->seeding)
2b82032c
YZ
2109 return -EINVAL;
2110
2208a378
ID
2111 seed_devices = __alloc_fs_devices();
2112 if (IS_ERR(seed_devices))
2113 return PTR_ERR(seed_devices);
2b82032c 2114
e4404d6e
YZ
2115 old_devices = clone_fs_devices(fs_devices);
2116 if (IS_ERR(old_devices)) {
2117 kfree(seed_devices);
2118 return PTR_ERR(old_devices);
2b82032c 2119 }
e4404d6e 2120
2b82032c
YZ
2121 list_add(&old_devices->list, &fs_uuids);
2122
e4404d6e
YZ
2123 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2124 seed_devices->opened = 1;
2125 INIT_LIST_HEAD(&seed_devices->devices);
2126 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2127 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2128
2129 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2130 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2131 synchronize_rcu);
2196d6e8
MX
2132 list_for_each_entry(device, &seed_devices->devices, dev_list)
2133 device->fs_devices = seed_devices;
c9513edb 2134
2196d6e8 2135 lock_chunks(root);
e4404d6e 2136 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2137 unlock_chunks(root);
e4404d6e 2138
2b82032c
YZ
2139 fs_devices->seeding = 0;
2140 fs_devices->num_devices = 0;
2141 fs_devices->open_devices = 0;
69611ac8 2142 fs_devices->missing_devices = 0;
69611ac8 2143 fs_devices->rotating = 0;
e4404d6e 2144 fs_devices->seed = seed_devices;
2b82032c
YZ
2145
2146 generate_random_uuid(fs_devices->fsid);
2147 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2148 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2149 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2150
2b82032c
YZ
2151 super_flags = btrfs_super_flags(disk_super) &
2152 ~BTRFS_SUPER_FLAG_SEEDING;
2153 btrfs_set_super_flags(disk_super, super_flags);
2154
2155 return 0;
2156}
2157
2158/*
2159 * strore the expected generation for seed devices in device items.
2160 */
2161static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2162 struct btrfs_root *root)
2163{
2164 struct btrfs_path *path;
2165 struct extent_buffer *leaf;
2166 struct btrfs_dev_item *dev_item;
2167 struct btrfs_device *device;
2168 struct btrfs_key key;
2169 u8 fs_uuid[BTRFS_UUID_SIZE];
2170 u8 dev_uuid[BTRFS_UUID_SIZE];
2171 u64 devid;
2172 int ret;
2173
2174 path = btrfs_alloc_path();
2175 if (!path)
2176 return -ENOMEM;
2177
2178 root = root->fs_info->chunk_root;
2179 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2180 key.offset = 0;
2181 key.type = BTRFS_DEV_ITEM_KEY;
2182
2183 while (1) {
2184 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2185 if (ret < 0)
2186 goto error;
2187
2188 leaf = path->nodes[0];
2189next_slot:
2190 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2191 ret = btrfs_next_leaf(root, path);
2192 if (ret > 0)
2193 break;
2194 if (ret < 0)
2195 goto error;
2196 leaf = path->nodes[0];
2197 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2198 btrfs_release_path(path);
2b82032c
YZ
2199 continue;
2200 }
2201
2202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2203 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2204 key.type != BTRFS_DEV_ITEM_KEY)
2205 break;
2206
2207 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2208 struct btrfs_dev_item);
2209 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2210 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2211 BTRFS_UUID_SIZE);
1473b24e 2212 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2213 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2214 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2215 fs_uuid);
79787eaa 2216 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2217
2218 if (device->fs_devices->seeding) {
2219 btrfs_set_device_generation(leaf, dev_item,
2220 device->generation);
2221 btrfs_mark_buffer_dirty(leaf);
2222 }
2223
2224 path->slots[0]++;
2225 goto next_slot;
2226 }
2227 ret = 0;
2228error:
2229 btrfs_free_path(path);
2230 return ret;
2231}
2232
788f20eb
CM
2233int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2234{
d5e2003c 2235 struct request_queue *q;
788f20eb
CM
2236 struct btrfs_trans_handle *trans;
2237 struct btrfs_device *device;
2238 struct block_device *bdev;
788f20eb 2239 struct list_head *devices;
2b82032c 2240 struct super_block *sb = root->fs_info->sb;
606686ee 2241 struct rcu_string *name;
3c1dbdf5 2242 u64 tmp;
2b82032c 2243 int seeding_dev = 0;
788f20eb
CM
2244 int ret = 0;
2245
2b82032c 2246 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2247 return -EROFS;
788f20eb 2248
a5d16333 2249 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2250 root->fs_info->bdev_holder);
7f59203a
JB
2251 if (IS_ERR(bdev))
2252 return PTR_ERR(bdev);
a2135011 2253
2b82032c
YZ
2254 if (root->fs_info->fs_devices->seeding) {
2255 seeding_dev = 1;
2256 down_write(&sb->s_umount);
2257 mutex_lock(&uuid_mutex);
2258 }
2259
8c8bee1d 2260 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2261
788f20eb 2262 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2263
2264 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2265 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2266 if (device->bdev == bdev) {
2267 ret = -EEXIST;
d25628bd
LB
2268 mutex_unlock(
2269 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2270 goto error;
788f20eb
CM
2271 }
2272 }
d25628bd 2273 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2274
12bd2fc0
ID
2275 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2276 if (IS_ERR(device)) {
788f20eb 2277 /* we can safely leave the fs_devices entry around */
12bd2fc0 2278 ret = PTR_ERR(device);
2b82032c 2279 goto error;
788f20eb
CM
2280 }
2281
78f2c9e6 2282 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2283 if (!name) {
788f20eb 2284 kfree(device);
2b82032c
YZ
2285 ret = -ENOMEM;
2286 goto error;
788f20eb 2287 }
606686ee 2288 rcu_assign_pointer(device->name, name);
2b82032c 2289
a22285a6 2290 trans = btrfs_start_transaction(root, 0);
98d5dc13 2291 if (IS_ERR(trans)) {
606686ee 2292 rcu_string_free(device->name);
98d5dc13
TI
2293 kfree(device);
2294 ret = PTR_ERR(trans);
2295 goto error;
2296 }
2297
d5e2003c
JB
2298 q = bdev_get_queue(bdev);
2299 if (blk_queue_discard(q))
2300 device->can_discard = 1;
2b82032c 2301 device->writeable = 1;
2b82032c 2302 device->generation = trans->transid;
788f20eb
CM
2303 device->io_width = root->sectorsize;
2304 device->io_align = root->sectorsize;
2305 device->sector_size = root->sectorsize;
2306 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2307 device->disk_total_bytes = device->total_bytes;
935e5cc9 2308 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2309 device->dev_root = root->fs_info->dev_root;
2310 device->bdev = bdev;
dfe25020 2311 device->in_fs_metadata = 1;
63a212ab 2312 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2313 device->mode = FMODE_EXCL;
27087f37 2314 device->dev_stats_valid = 1;
2b82032c 2315 set_blocksize(device->bdev, 4096);
788f20eb 2316
2b82032c
YZ
2317 if (seeding_dev) {
2318 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2319 ret = btrfs_prepare_sprout(root);
79787eaa 2320 BUG_ON(ret); /* -ENOMEM */
2b82032c 2321 }
788f20eb 2322
2b82032c 2323 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2324
e5e9a520 2325 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2326 lock_chunks(root);
1f78160c 2327 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2328 list_add(&device->dev_alloc_list,
2329 &root->fs_info->fs_devices->alloc_list);
2330 root->fs_info->fs_devices->num_devices++;
2331 root->fs_info->fs_devices->open_devices++;
2332 root->fs_info->fs_devices->rw_devices++;
02db0844 2333 root->fs_info->fs_devices->total_devices++;
2b82032c 2334 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2335
2bf64758
JB
2336 spin_lock(&root->fs_info->free_chunk_lock);
2337 root->fs_info->free_chunk_space += device->total_bytes;
2338 spin_unlock(&root->fs_info->free_chunk_lock);
2339
c289811c
CM
2340 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2341 root->fs_info->fs_devices->rotating = 1;
2342
3c1dbdf5 2343 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2344 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2345 tmp + device->total_bytes);
788f20eb 2346
3c1dbdf5 2347 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2348 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2349 tmp + 1);
0d39376a
AJ
2350
2351 /* add sysfs device entry */
e3bd6973 2352 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2353
2196d6e8
MX
2354 /*
2355 * we've got more storage, clear any full flags on the space
2356 * infos
2357 */
2358 btrfs_clear_space_info_full(root->fs_info);
2359
2360 unlock_chunks(root);
e5e9a520 2361 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2362
2b82032c 2363 if (seeding_dev) {
2196d6e8 2364 lock_chunks(root);
2b82032c 2365 ret = init_first_rw_device(trans, root, device);
2196d6e8 2366 unlock_chunks(root);
005d6427
DS
2367 if (ret) {
2368 btrfs_abort_transaction(trans, root, ret);
79787eaa 2369 goto error_trans;
005d6427 2370 }
2196d6e8
MX
2371 }
2372
2373 ret = btrfs_add_device(trans, root, device);
2374 if (ret) {
2375 btrfs_abort_transaction(trans, root, ret);
2376 goto error_trans;
2377 }
2378
2379 if (seeding_dev) {
2380 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2381
2b82032c 2382 ret = btrfs_finish_sprout(trans, root);
005d6427
DS
2383 if (ret) {
2384 btrfs_abort_transaction(trans, root, ret);
79787eaa 2385 goto error_trans;
005d6427 2386 }
b2373f25
AJ
2387
2388 /* Sprouting would change fsid of the mounted root,
2389 * so rename the fsid on the sysfs
2390 */
2391 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2392 root->fs_info->fsid);
c1b7e474 2393 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2394 fsid_buf))
f14d104d
DS
2395 btrfs_warn(root->fs_info,
2396 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2397 }
2398
5af3e8cc
SB
2399 root->fs_info->num_tolerated_disk_barrier_failures =
2400 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2401 ret = btrfs_commit_transaction(trans, root);
a2135011 2402
2b82032c
YZ
2403 if (seeding_dev) {
2404 mutex_unlock(&uuid_mutex);
2405 up_write(&sb->s_umount);
788f20eb 2406
79787eaa
JM
2407 if (ret) /* transaction commit */
2408 return ret;
2409
2b82032c 2410 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2411 if (ret < 0)
a4553fef 2412 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2413 "Failed to relocate sys chunks after "
2414 "device initialization. This can be fixed "
2415 "using the \"btrfs balance\" command.");
671415b7
MX
2416 trans = btrfs_attach_transaction(root);
2417 if (IS_ERR(trans)) {
2418 if (PTR_ERR(trans) == -ENOENT)
2419 return 0;
2420 return PTR_ERR(trans);
2421 }
2422 ret = btrfs_commit_transaction(trans, root);
2b82032c 2423 }
c9e9f97b 2424
5a1972bd
QW
2425 /* Update ctime/mtime for libblkid */
2426 update_dev_time(device_path);
2b82032c 2427 return ret;
79787eaa
JM
2428
2429error_trans:
79787eaa 2430 btrfs_end_transaction(trans, root);
606686ee 2431 rcu_string_free(device->name);
32576040 2432 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2433 kfree(device);
2b82032c 2434error:
e525fd89 2435 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2436 if (seeding_dev) {
2437 mutex_unlock(&uuid_mutex);
2438 up_write(&sb->s_umount);
2439 }
c9e9f97b 2440 return ret;
788f20eb
CM
2441}
2442
e93c89c1 2443int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2444 struct btrfs_device *srcdev,
e93c89c1
SB
2445 struct btrfs_device **device_out)
2446{
2447 struct request_queue *q;
2448 struct btrfs_device *device;
2449 struct block_device *bdev;
2450 struct btrfs_fs_info *fs_info = root->fs_info;
2451 struct list_head *devices;
2452 struct rcu_string *name;
12bd2fc0 2453 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2454 int ret = 0;
2455
2456 *device_out = NULL;
1c43366d
MX
2457 if (fs_info->fs_devices->seeding) {
2458 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2459 return -EINVAL;
1c43366d 2460 }
e93c89c1
SB
2461
2462 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2463 fs_info->bdev_holder);
1c43366d
MX
2464 if (IS_ERR(bdev)) {
2465 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2466 return PTR_ERR(bdev);
1c43366d 2467 }
e93c89c1
SB
2468
2469 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2470
2471 devices = &fs_info->fs_devices->devices;
2472 list_for_each_entry(device, devices, dev_list) {
2473 if (device->bdev == bdev) {
1c43366d 2474 btrfs_err(fs_info, "target device is in the filesystem!");
e93c89c1
SB
2475 ret = -EEXIST;
2476 goto error;
2477 }
2478 }
2479
1c43366d 2480
7cc8e58d
MX
2481 if (i_size_read(bdev->bd_inode) <
2482 btrfs_device_get_total_bytes(srcdev)) {
1c43366d
MX
2483 btrfs_err(fs_info, "target device is smaller than source device!");
2484 ret = -EINVAL;
2485 goto error;
2486 }
2487
2488
12bd2fc0
ID
2489 device = btrfs_alloc_device(NULL, &devid, NULL);
2490 if (IS_ERR(device)) {
2491 ret = PTR_ERR(device);
e93c89c1
SB
2492 goto error;
2493 }
2494
2495 name = rcu_string_strdup(device_path, GFP_NOFS);
2496 if (!name) {
2497 kfree(device);
2498 ret = -ENOMEM;
2499 goto error;
2500 }
2501 rcu_assign_pointer(device->name, name);
2502
2503 q = bdev_get_queue(bdev);
2504 if (blk_queue_discard(q))
2505 device->can_discard = 1;
2506 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2507 device->writeable = 1;
e93c89c1
SB
2508 device->generation = 0;
2509 device->io_width = root->sectorsize;
2510 device->io_align = root->sectorsize;
2511 device->sector_size = root->sectorsize;
7cc8e58d
MX
2512 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2513 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2514 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2515 ASSERT(list_empty(&srcdev->resized_list));
2516 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2517 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2518 device->dev_root = fs_info->dev_root;
2519 device->bdev = bdev;
2520 device->in_fs_metadata = 1;
2521 device->is_tgtdev_for_dev_replace = 1;
2522 device->mode = FMODE_EXCL;
27087f37 2523 device->dev_stats_valid = 1;
e93c89c1
SB
2524 set_blocksize(device->bdev, 4096);
2525 device->fs_devices = fs_info->fs_devices;
2526 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2527 fs_info->fs_devices->num_devices++;
2528 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2529 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2530
2531 *device_out = device;
2532 return ret;
2533
2534error:
2535 blkdev_put(bdev, FMODE_EXCL);
2536 return ret;
2537}
2538
2539void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2540 struct btrfs_device *tgtdev)
2541{
2542 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2543 tgtdev->io_width = fs_info->dev_root->sectorsize;
2544 tgtdev->io_align = fs_info->dev_root->sectorsize;
2545 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2546 tgtdev->dev_root = fs_info->dev_root;
2547 tgtdev->in_fs_metadata = 1;
2548}
2549
d397712b
CM
2550static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2551 struct btrfs_device *device)
0b86a832
CM
2552{
2553 int ret;
2554 struct btrfs_path *path;
2555 struct btrfs_root *root;
2556 struct btrfs_dev_item *dev_item;
2557 struct extent_buffer *leaf;
2558 struct btrfs_key key;
2559
2560 root = device->dev_root->fs_info->chunk_root;
2561
2562 path = btrfs_alloc_path();
2563 if (!path)
2564 return -ENOMEM;
2565
2566 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2567 key.type = BTRFS_DEV_ITEM_KEY;
2568 key.offset = device->devid;
2569
2570 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2571 if (ret < 0)
2572 goto out;
2573
2574 if (ret > 0) {
2575 ret = -ENOENT;
2576 goto out;
2577 }
2578
2579 leaf = path->nodes[0];
2580 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2581
2582 btrfs_set_device_id(leaf, dev_item, device->devid);
2583 btrfs_set_device_type(leaf, dev_item, device->type);
2584 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2585 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2586 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2587 btrfs_set_device_total_bytes(leaf, dev_item,
2588 btrfs_device_get_disk_total_bytes(device));
2589 btrfs_set_device_bytes_used(leaf, dev_item,
2590 btrfs_device_get_bytes_used(device));
0b86a832
CM
2591 btrfs_mark_buffer_dirty(leaf);
2592
2593out:
2594 btrfs_free_path(path);
2595 return ret;
2596}
2597
2196d6e8 2598int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2599 struct btrfs_device *device, u64 new_size)
2600{
2601 struct btrfs_super_block *super_copy =
6c41761f 2602 device->dev_root->fs_info->super_copy;
935e5cc9 2603 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2604 u64 old_total;
2605 u64 diff;
8f18cf13 2606
2b82032c
YZ
2607 if (!device->writeable)
2608 return -EACCES;
2196d6e8
MX
2609
2610 lock_chunks(device->dev_root);
2611 old_total = btrfs_super_total_bytes(super_copy);
2612 diff = new_size - device->total_bytes;
2613
63a212ab 2614 if (new_size <= device->total_bytes ||
2196d6e8
MX
2615 device->is_tgtdev_for_dev_replace) {
2616 unlock_chunks(device->dev_root);
2b82032c 2617 return -EINVAL;
2196d6e8 2618 }
2b82032c 2619
935e5cc9 2620 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2621
8f18cf13 2622 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2623 device->fs_devices->total_rw_bytes += diff;
2624
7cc8e58d
MX
2625 btrfs_device_set_total_bytes(device, new_size);
2626 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2627 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2628 if (list_empty(&device->resized_list))
2629 list_add_tail(&device->resized_list,
2630 &fs_devices->resized_devices);
2196d6e8 2631 unlock_chunks(device->dev_root);
4184ea7f 2632
8f18cf13
CM
2633 return btrfs_update_device(trans, device);
2634}
2635
2636static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2637 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2638 u64 chunk_offset)
2639{
2640 int ret;
2641 struct btrfs_path *path;
2642 struct btrfs_key key;
2643
2644 root = root->fs_info->chunk_root;
2645 path = btrfs_alloc_path();
2646 if (!path)
2647 return -ENOMEM;
2648
2649 key.objectid = chunk_objectid;
2650 key.offset = chunk_offset;
2651 key.type = BTRFS_CHUNK_ITEM_KEY;
2652
2653 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2654 if (ret < 0)
2655 goto out;
2656 else if (ret > 0) { /* Logic error or corruption */
a4553fef 2657 btrfs_std_error(root->fs_info, -ENOENT,
79787eaa
JM
2658 "Failed lookup while freeing chunk.");
2659 ret = -ENOENT;
2660 goto out;
2661 }
8f18cf13
CM
2662
2663 ret = btrfs_del_item(trans, root, path);
79787eaa 2664 if (ret < 0)
a4553fef 2665 btrfs_std_error(root->fs_info, ret,
79787eaa
JM
2666 "Failed to delete chunk item.");
2667out:
8f18cf13 2668 btrfs_free_path(path);
65a246c5 2669 return ret;
8f18cf13
CM
2670}
2671
b2950863 2672static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2673 chunk_offset)
2674{
6c41761f 2675 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2676 struct btrfs_disk_key *disk_key;
2677 struct btrfs_chunk *chunk;
2678 u8 *ptr;
2679 int ret = 0;
2680 u32 num_stripes;
2681 u32 array_size;
2682 u32 len = 0;
2683 u32 cur;
2684 struct btrfs_key key;
2685
2196d6e8 2686 lock_chunks(root);
8f18cf13
CM
2687 array_size = btrfs_super_sys_array_size(super_copy);
2688
2689 ptr = super_copy->sys_chunk_array;
2690 cur = 0;
2691
2692 while (cur < array_size) {
2693 disk_key = (struct btrfs_disk_key *)ptr;
2694 btrfs_disk_key_to_cpu(&key, disk_key);
2695
2696 len = sizeof(*disk_key);
2697
2698 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2699 chunk = (struct btrfs_chunk *)(ptr + len);
2700 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2701 len += btrfs_chunk_item_size(num_stripes);
2702 } else {
2703 ret = -EIO;
2704 break;
2705 }
2706 if (key.objectid == chunk_objectid &&
2707 key.offset == chunk_offset) {
2708 memmove(ptr, ptr + len, array_size - (cur + len));
2709 array_size -= len;
2710 btrfs_set_super_sys_array_size(super_copy, array_size);
2711 } else {
2712 ptr += len;
2713 cur += len;
2714 }
2715 }
2196d6e8 2716 unlock_chunks(root);
8f18cf13
CM
2717 return ret;
2718}
2719
47ab2a6c
JB
2720int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2721 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2722{
2723 struct extent_map_tree *em_tree;
8f18cf13 2724 struct extent_map *em;
47ab2a6c 2725 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2726 struct map_lookup *map;
2196d6e8 2727 u64 dev_extent_len = 0;
47ab2a6c 2728 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2729 int i, ret = 0;
8f18cf13 2730
47ab2a6c 2731 /* Just in case */
8f18cf13 2732 root = root->fs_info->chunk_root;
8f18cf13
CM
2733 em_tree = &root->fs_info->mapping_tree.map_tree;
2734
890871be 2735 read_lock(&em_tree->lock);
8f18cf13 2736 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2737 read_unlock(&em_tree->lock);
8f18cf13 2738
47ab2a6c
JB
2739 if (!em || em->start > chunk_offset ||
2740 em->start + em->len < chunk_offset) {
2741 /*
2742 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2743 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2744 * do anything we still error out.
2745 */
2746 ASSERT(0);
2747 if (em)
2748 free_extent_map(em);
2749 return -EINVAL;
2750 }
95617d69 2751 map = em->map_lookup;
39c2d7fa 2752 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2753 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2754 unlock_chunks(root->fs_info->chunk_root);
8f18cf13
CM
2755
2756 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2757 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2758 ret = btrfs_free_dev_extent(trans, device,
2759 map->stripes[i].physical,
2760 &dev_extent_len);
47ab2a6c
JB
2761 if (ret) {
2762 btrfs_abort_transaction(trans, root, ret);
2763 goto out;
2764 }
a061fc8d 2765
2196d6e8
MX
2766 if (device->bytes_used > 0) {
2767 lock_chunks(root);
2768 btrfs_device_set_bytes_used(device,
2769 device->bytes_used - dev_extent_len);
2770 spin_lock(&root->fs_info->free_chunk_lock);
2771 root->fs_info->free_chunk_space += dev_extent_len;
2772 spin_unlock(&root->fs_info->free_chunk_lock);
2773 btrfs_clear_space_info_full(root->fs_info);
2774 unlock_chunks(root);
2775 }
a061fc8d 2776
dfe25020
CM
2777 if (map->stripes[i].dev) {
2778 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c
JB
2779 if (ret) {
2780 btrfs_abort_transaction(trans, root, ret);
2781 goto out;
2782 }
dfe25020 2783 }
8f18cf13 2784 }
a688a04a 2785 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2786 if (ret) {
2787 btrfs_abort_transaction(trans, root, ret);
2788 goto out;
2789 }
8f18cf13 2790
1abe9b8a 2791 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2792
8f18cf13
CM
2793 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2794 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c
JB
2795 if (ret) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 goto out;
2798 }
8f18cf13
CM
2799 }
2800
04216820 2801 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c
JB
2802 if (ret) {
2803 btrfs_abort_transaction(trans, extent_root, ret);
2804 goto out;
2805 }
2b82032c 2806
47ab2a6c 2807out:
2b82032c
YZ
2808 /* once for us */
2809 free_extent_map(em);
47ab2a6c
JB
2810 return ret;
2811}
2b82032c 2812
dc2ee4e2 2813static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2814{
2815 struct btrfs_root *extent_root;
2816 struct btrfs_trans_handle *trans;
2817 int ret;
2b82032c 2818
47ab2a6c
JB
2819 root = root->fs_info->chunk_root;
2820 extent_root = root->fs_info->extent_root;
2821
67c5e7d4
FM
2822 /*
2823 * Prevent races with automatic removal of unused block groups.
2824 * After we relocate and before we remove the chunk with offset
2825 * chunk_offset, automatic removal of the block group can kick in,
2826 * resulting in a failure when calling btrfs_remove_chunk() below.
2827 *
2828 * Make sure to acquire this mutex before doing a tree search (dev
2829 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2830 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2831 * we release the path used to search the chunk/dev tree and before
2832 * the current task acquires this mutex and calls us.
2833 */
2834 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2835
47ab2a6c
JB
2836 ret = btrfs_can_relocate(extent_root, chunk_offset);
2837 if (ret)
2838 return -ENOSPC;
2839
2840 /* step one, relocate all the extents inside this chunk */
55e3a601 2841 btrfs_scrub_pause(root);
47ab2a6c 2842 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2843 btrfs_scrub_continue(root);
47ab2a6c
JB
2844 if (ret)
2845 return ret;
2846
7fd01182
FM
2847 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2848 chunk_offset);
47ab2a6c
JB
2849 if (IS_ERR(trans)) {
2850 ret = PTR_ERR(trans);
a4553fef 2851 btrfs_std_error(root->fs_info, ret, NULL);
47ab2a6c
JB
2852 return ret;
2853 }
2854
2855 /*
2856 * step two, delete the device extents and the
2857 * chunk tree entries
2858 */
2859 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2b82032c 2860 btrfs_end_transaction(trans, root);
47ab2a6c 2861 return ret;
2b82032c
YZ
2862}
2863
2864static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2865{
2866 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2867 struct btrfs_path *path;
2868 struct extent_buffer *leaf;
2869 struct btrfs_chunk *chunk;
2870 struct btrfs_key key;
2871 struct btrfs_key found_key;
2b82032c 2872 u64 chunk_type;
ba1bf481
JB
2873 bool retried = false;
2874 int failed = 0;
2b82032c
YZ
2875 int ret;
2876
2877 path = btrfs_alloc_path();
2878 if (!path)
2879 return -ENOMEM;
2880
ba1bf481 2881again:
2b82032c
YZ
2882 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2883 key.offset = (u64)-1;
2884 key.type = BTRFS_CHUNK_ITEM_KEY;
2885
2886 while (1) {
67c5e7d4 2887 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2888 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2889 if (ret < 0) {
2890 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2891 goto error;
67c5e7d4 2892 }
79787eaa 2893 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2894
2895 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2896 key.type);
67c5e7d4
FM
2897 if (ret)
2898 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2899 if (ret < 0)
2900 goto error;
2901 if (ret > 0)
2902 break;
1a40e23b 2903
2b82032c
YZ
2904 leaf = path->nodes[0];
2905 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2906
2b82032c
YZ
2907 chunk = btrfs_item_ptr(leaf, path->slots[0],
2908 struct btrfs_chunk);
2909 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2910 btrfs_release_path(path);
8f18cf13 2911
2b82032c 2912 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2913 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2914 found_key.offset);
ba1bf481
JB
2915 if (ret == -ENOSPC)
2916 failed++;
14586651
HS
2917 else
2918 BUG_ON(ret);
2b82032c 2919 }
67c5e7d4 2920 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2921
2b82032c
YZ
2922 if (found_key.offset == 0)
2923 break;
2924 key.offset = found_key.offset - 1;
2925 }
2926 ret = 0;
ba1bf481
JB
2927 if (failed && !retried) {
2928 failed = 0;
2929 retried = true;
2930 goto again;
fae7f21c 2931 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2932 ret = -ENOSPC;
2933 }
2b82032c
YZ
2934error:
2935 btrfs_free_path(path);
2936 return ret;
8f18cf13
CM
2937}
2938
0940ebf6
ID
2939static int insert_balance_item(struct btrfs_root *root,
2940 struct btrfs_balance_control *bctl)
2941{
2942 struct btrfs_trans_handle *trans;
2943 struct btrfs_balance_item *item;
2944 struct btrfs_disk_balance_args disk_bargs;
2945 struct btrfs_path *path;
2946 struct extent_buffer *leaf;
2947 struct btrfs_key key;
2948 int ret, err;
2949
2950 path = btrfs_alloc_path();
2951 if (!path)
2952 return -ENOMEM;
2953
2954 trans = btrfs_start_transaction(root, 0);
2955 if (IS_ERR(trans)) {
2956 btrfs_free_path(path);
2957 return PTR_ERR(trans);
2958 }
2959
2960 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 2961 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
2962 key.offset = 0;
2963
2964 ret = btrfs_insert_empty_item(trans, root, path, &key,
2965 sizeof(*item));
2966 if (ret)
2967 goto out;
2968
2969 leaf = path->nodes[0];
2970 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2971
2972 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2973
2974 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2975 btrfs_set_balance_data(leaf, item, &disk_bargs);
2976 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2977 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2978 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2979 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2980
2981 btrfs_set_balance_flags(leaf, item, bctl->flags);
2982
2983 btrfs_mark_buffer_dirty(leaf);
2984out:
2985 btrfs_free_path(path);
2986 err = btrfs_commit_transaction(trans, root);
2987 if (err && !ret)
2988 ret = err;
2989 return ret;
2990}
2991
2992static int del_balance_item(struct btrfs_root *root)
2993{
2994 struct btrfs_trans_handle *trans;
2995 struct btrfs_path *path;
2996 struct btrfs_key key;
2997 int ret, err;
2998
2999 path = btrfs_alloc_path();
3000 if (!path)
3001 return -ENOMEM;
3002
3003 trans = btrfs_start_transaction(root, 0);
3004 if (IS_ERR(trans)) {
3005 btrfs_free_path(path);
3006 return PTR_ERR(trans);
3007 }
3008
3009 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3010 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3011 key.offset = 0;
3012
3013 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3014 if (ret < 0)
3015 goto out;
3016 if (ret > 0) {
3017 ret = -ENOENT;
3018 goto out;
3019 }
3020
3021 ret = btrfs_del_item(trans, root, path);
3022out:
3023 btrfs_free_path(path);
3024 err = btrfs_commit_transaction(trans, root);
3025 if (err && !ret)
3026 ret = err;
3027 return ret;
3028}
3029
59641015
ID
3030/*
3031 * This is a heuristic used to reduce the number of chunks balanced on
3032 * resume after balance was interrupted.
3033 */
3034static void update_balance_args(struct btrfs_balance_control *bctl)
3035{
3036 /*
3037 * Turn on soft mode for chunk types that were being converted.
3038 */
3039 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3040 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3041 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3042 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3043 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3044 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3045
3046 /*
3047 * Turn on usage filter if is not already used. The idea is
3048 * that chunks that we have already balanced should be
3049 * reasonably full. Don't do it for chunks that are being
3050 * converted - that will keep us from relocating unconverted
3051 * (albeit full) chunks.
3052 */
3053 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3054 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3055 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3056 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3057 bctl->data.usage = 90;
3058 }
3059 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3060 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3061 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3062 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3063 bctl->sys.usage = 90;
3064 }
3065 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3066 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3067 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3068 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3069 bctl->meta.usage = 90;
3070 }
3071}
3072
c9e9f97b
ID
3073/*
3074 * Should be called with both balance and volume mutexes held to
3075 * serialize other volume operations (add_dev/rm_dev/resize) with
3076 * restriper. Same goes for unset_balance_control.
3077 */
3078static void set_balance_control(struct btrfs_balance_control *bctl)
3079{
3080 struct btrfs_fs_info *fs_info = bctl->fs_info;
3081
3082 BUG_ON(fs_info->balance_ctl);
3083
3084 spin_lock(&fs_info->balance_lock);
3085 fs_info->balance_ctl = bctl;
3086 spin_unlock(&fs_info->balance_lock);
3087}
3088
3089static void unset_balance_control(struct btrfs_fs_info *fs_info)
3090{
3091 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3092
3093 BUG_ON(!fs_info->balance_ctl);
3094
3095 spin_lock(&fs_info->balance_lock);
3096 fs_info->balance_ctl = NULL;
3097 spin_unlock(&fs_info->balance_lock);
3098
3099 kfree(bctl);
3100}
3101
ed25e9b2
ID
3102/*
3103 * Balance filters. Return 1 if chunk should be filtered out
3104 * (should not be balanced).
3105 */
899c81ea 3106static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3107 struct btrfs_balance_args *bargs)
3108{
899c81ea
ID
3109 chunk_type = chunk_to_extended(chunk_type) &
3110 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3111
899c81ea 3112 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3113 return 0;
3114
3115 return 1;
3116}
3117
dba72cb3 3118static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3119 struct btrfs_balance_args *bargs)
bc309467
DS
3120{
3121 struct btrfs_block_group_cache *cache;
3122 u64 chunk_used;
3123 u64 user_thresh_min;
3124 u64 user_thresh_max;
3125 int ret = 1;
3126
3127 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3128 chunk_used = btrfs_block_group_used(&cache->item);
3129
3130 if (bargs->usage_min == 0)
3131 user_thresh_min = 0;
3132 else
3133 user_thresh_min = div_factor_fine(cache->key.offset,
3134 bargs->usage_min);
3135
3136 if (bargs->usage_max == 0)
3137 user_thresh_max = 1;
3138 else if (bargs->usage_max > 100)
3139 user_thresh_max = cache->key.offset;
3140 else
3141 user_thresh_max = div_factor_fine(cache->key.offset,
3142 bargs->usage_max);
3143
3144 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3145 ret = 0;
3146
3147 btrfs_put_block_group(cache);
3148 return ret;
3149}
3150
dba72cb3 3151static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3152 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3153{
3154 struct btrfs_block_group_cache *cache;
3155 u64 chunk_used, user_thresh;
3156 int ret = 1;
3157
3158 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3159 chunk_used = btrfs_block_group_used(&cache->item);
3160
bc309467 3161 if (bargs->usage_min == 0)
3e39cea6 3162 user_thresh = 1;
a105bb88
ID
3163 else if (bargs->usage > 100)
3164 user_thresh = cache->key.offset;
3165 else
3166 user_thresh = div_factor_fine(cache->key.offset,
3167 bargs->usage);
3168
5ce5b3c0
ID
3169 if (chunk_used < user_thresh)
3170 ret = 0;
3171
3172 btrfs_put_block_group(cache);
3173 return ret;
3174}
3175
409d404b
ID
3176static int chunk_devid_filter(struct extent_buffer *leaf,
3177 struct btrfs_chunk *chunk,
3178 struct btrfs_balance_args *bargs)
3179{
3180 struct btrfs_stripe *stripe;
3181 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3182 int i;
3183
3184 for (i = 0; i < num_stripes; i++) {
3185 stripe = btrfs_stripe_nr(chunk, i);
3186 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3187 return 0;
3188 }
3189
3190 return 1;
3191}
3192
94e60d5a
ID
3193/* [pstart, pend) */
3194static int chunk_drange_filter(struct extent_buffer *leaf,
3195 struct btrfs_chunk *chunk,
3196 u64 chunk_offset,
3197 struct btrfs_balance_args *bargs)
3198{
3199 struct btrfs_stripe *stripe;
3200 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3201 u64 stripe_offset;
3202 u64 stripe_length;
3203 int factor;
3204 int i;
3205
3206 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3207 return 0;
3208
3209 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3210 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3211 factor = num_stripes / 2;
3212 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3213 factor = num_stripes - 1;
3214 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3215 factor = num_stripes - 2;
3216 } else {
3217 factor = num_stripes;
3218 }
94e60d5a
ID
3219
3220 for (i = 0; i < num_stripes; i++) {
3221 stripe = btrfs_stripe_nr(chunk, i);
3222 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3223 continue;
3224
3225 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3226 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3227 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3228
3229 if (stripe_offset < bargs->pend &&
3230 stripe_offset + stripe_length > bargs->pstart)
3231 return 0;
3232 }
3233
3234 return 1;
3235}
3236
ea67176a
ID
3237/* [vstart, vend) */
3238static int chunk_vrange_filter(struct extent_buffer *leaf,
3239 struct btrfs_chunk *chunk,
3240 u64 chunk_offset,
3241 struct btrfs_balance_args *bargs)
3242{
3243 if (chunk_offset < bargs->vend &&
3244 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3245 /* at least part of the chunk is inside this vrange */
3246 return 0;
3247
3248 return 1;
3249}
3250
dee32d0a
GAP
3251static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3252 struct btrfs_chunk *chunk,
3253 struct btrfs_balance_args *bargs)
3254{
3255 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3256
3257 if (bargs->stripes_min <= num_stripes
3258 && num_stripes <= bargs->stripes_max)
3259 return 0;
3260
3261 return 1;
3262}
3263
899c81ea 3264static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3265 struct btrfs_balance_args *bargs)
3266{
3267 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3268 return 0;
3269
899c81ea
ID
3270 chunk_type = chunk_to_extended(chunk_type) &
3271 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3272
899c81ea 3273 if (bargs->target == chunk_type)
cfa4c961
ID
3274 return 1;
3275
3276 return 0;
3277}
3278
f43ffb60
ID
3279static int should_balance_chunk(struct btrfs_root *root,
3280 struct extent_buffer *leaf,
3281 struct btrfs_chunk *chunk, u64 chunk_offset)
3282{
3283 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3284 struct btrfs_balance_args *bargs = NULL;
3285 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3286
3287 /* type filter */
3288 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3289 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3290 return 0;
3291 }
3292
3293 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3294 bargs = &bctl->data;
3295 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3296 bargs = &bctl->sys;
3297 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3298 bargs = &bctl->meta;
3299
ed25e9b2
ID
3300 /* profiles filter */
3301 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3302 chunk_profiles_filter(chunk_type, bargs)) {
3303 return 0;
5ce5b3c0
ID
3304 }
3305
3306 /* usage filter */
3307 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3308 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3309 return 0;
bc309467
DS
3310 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3311 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3312 return 0;
409d404b
ID
3313 }
3314
3315 /* devid filter */
3316 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3317 chunk_devid_filter(leaf, chunk, bargs)) {
3318 return 0;
94e60d5a
ID
3319 }
3320
3321 /* drange filter, makes sense only with devid filter */
3322 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3323 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3324 return 0;
ea67176a
ID
3325 }
3326
3327 /* vrange filter */
3328 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3329 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3330 return 0;
ed25e9b2
ID
3331 }
3332
dee32d0a
GAP
3333 /* stripes filter */
3334 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3335 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3336 return 0;
3337 }
3338
cfa4c961
ID
3339 /* soft profile changing mode */
3340 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3341 chunk_soft_convert_filter(chunk_type, bargs)) {
3342 return 0;
3343 }
3344
7d824b6f
DS
3345 /*
3346 * limited by count, must be the last filter
3347 */
3348 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3349 if (bargs->limit == 0)
3350 return 0;
3351 else
3352 bargs->limit--;
12907fc7
DS
3353 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3354 /*
3355 * Same logic as the 'limit' filter; the minimum cannot be
3356 * determined here because we do not have the global informatoin
3357 * about the count of all chunks that satisfy the filters.
3358 */
3359 if (bargs->limit_max == 0)
3360 return 0;
3361 else
3362 bargs->limit_max--;
7d824b6f
DS
3363 }
3364
f43ffb60
ID
3365 return 1;
3366}
3367
c9e9f97b 3368static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3369{
19a39dce 3370 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3371 struct btrfs_root *chunk_root = fs_info->chunk_root;
3372 struct btrfs_root *dev_root = fs_info->dev_root;
3373 struct list_head *devices;
ec44a35c
CM
3374 struct btrfs_device *device;
3375 u64 old_size;
3376 u64 size_to_free;
12907fc7 3377 u64 chunk_type;
f43ffb60 3378 struct btrfs_chunk *chunk;
ec44a35c
CM
3379 struct btrfs_path *path;
3380 struct btrfs_key key;
ec44a35c 3381 struct btrfs_key found_key;
c9e9f97b 3382 struct btrfs_trans_handle *trans;
f43ffb60
ID
3383 struct extent_buffer *leaf;
3384 int slot;
c9e9f97b
ID
3385 int ret;
3386 int enospc_errors = 0;
19a39dce 3387 bool counting = true;
12907fc7 3388 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3389 u64 limit_data = bctl->data.limit;
3390 u64 limit_meta = bctl->meta.limit;
3391 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3392 u32 count_data = 0;
3393 u32 count_meta = 0;
3394 u32 count_sys = 0;
2c9fe835 3395 int chunk_reserved = 0;
ec44a35c 3396
ec44a35c 3397 /* step one make some room on all the devices */
c9e9f97b 3398 devices = &fs_info->fs_devices->devices;
c6e30871 3399 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3400 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3401 size_to_free = div_factor(old_size, 1);
ee22184b 3402 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3403 if (!device->writeable ||
7cc8e58d
MX
3404 btrfs_device_get_total_bytes(device) -
3405 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3406 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3407 continue;
3408
3409 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3410 if (ret == -ENOSPC)
3411 break;
ec44a35c
CM
3412 BUG_ON(ret);
3413
a22285a6 3414 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 3415 BUG_ON(IS_ERR(trans));
ec44a35c
CM
3416
3417 ret = btrfs_grow_device(trans, device, old_size);
3418 BUG_ON(ret);
3419
3420 btrfs_end_transaction(trans, dev_root);
3421 }
3422
3423 /* step two, relocate all the chunks */
3424 path = btrfs_alloc_path();
17e9f796
MF
3425 if (!path) {
3426 ret = -ENOMEM;
3427 goto error;
3428 }
19a39dce
ID
3429
3430 /* zero out stat counters */
3431 spin_lock(&fs_info->balance_lock);
3432 memset(&bctl->stat, 0, sizeof(bctl->stat));
3433 spin_unlock(&fs_info->balance_lock);
3434again:
7d824b6f 3435 if (!counting) {
12907fc7
DS
3436 /*
3437 * The single value limit and min/max limits use the same bytes
3438 * in the
3439 */
7d824b6f
DS
3440 bctl->data.limit = limit_data;
3441 bctl->meta.limit = limit_meta;
3442 bctl->sys.limit = limit_sys;
3443 }
ec44a35c
CM
3444 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3445 key.offset = (u64)-1;
3446 key.type = BTRFS_CHUNK_ITEM_KEY;
3447
d397712b 3448 while (1) {
19a39dce 3449 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3450 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3451 ret = -ECANCELED;
3452 goto error;
3453 }
3454
67c5e7d4 3455 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3456 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3457 if (ret < 0) {
3458 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3459 goto error;
67c5e7d4 3460 }
ec44a35c
CM
3461
3462 /*
3463 * this shouldn't happen, it means the last relocate
3464 * failed
3465 */
3466 if (ret == 0)
c9e9f97b 3467 BUG(); /* FIXME break ? */
ec44a35c
CM
3468
3469 ret = btrfs_previous_item(chunk_root, path, 0,
3470 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3471 if (ret) {
67c5e7d4 3472 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3473 ret = 0;
ec44a35c 3474 break;
c9e9f97b 3475 }
7d9eb12c 3476
f43ffb60
ID
3477 leaf = path->nodes[0];
3478 slot = path->slots[0];
3479 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3480
67c5e7d4
FM
3481 if (found_key.objectid != key.objectid) {
3482 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3483 break;
67c5e7d4 3484 }
7d9eb12c 3485
f43ffb60 3486 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3487 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3488
19a39dce
ID
3489 if (!counting) {
3490 spin_lock(&fs_info->balance_lock);
3491 bctl->stat.considered++;
3492 spin_unlock(&fs_info->balance_lock);
3493 }
3494
f43ffb60
ID
3495 ret = should_balance_chunk(chunk_root, leaf, chunk,
3496 found_key.offset);
2c9fe835 3497
b3b4aa74 3498 btrfs_release_path(path);
67c5e7d4
FM
3499 if (!ret) {
3500 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3501 goto loop;
67c5e7d4 3502 }
f43ffb60 3503
19a39dce 3504 if (counting) {
67c5e7d4 3505 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3506 spin_lock(&fs_info->balance_lock);
3507 bctl->stat.expected++;
3508 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3509
3510 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3511 count_data++;
3512 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3513 count_sys++;
3514 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3515 count_meta++;
3516
3517 goto loop;
3518 }
3519
3520 /*
3521 * Apply limit_min filter, no need to check if the LIMITS
3522 * filter is used, limit_min is 0 by default
3523 */
3524 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3525 count_data < bctl->data.limit_min)
3526 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3527 count_meta < bctl->meta.limit_min)
3528 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3529 count_sys < bctl->sys.limit_min)) {
3530 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3531 goto loop;
3532 }
3533
2c9fe835
ZL
3534 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3535 trans = btrfs_start_transaction(chunk_root, 0);
3536 if (IS_ERR(trans)) {
3537 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3538 ret = PTR_ERR(trans);
3539 goto error;
3540 }
3541
3542 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3543 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3544 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3545 if (ret < 0) {
3546 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547 goto error;
3548 }
2c9fe835
ZL
3549 chunk_reserved = 1;
3550 }
3551
ec44a35c 3552 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3553 found_key.offset);
67c5e7d4 3554 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3555 if (ret && ret != -ENOSPC)
3556 goto error;
19a39dce 3557 if (ret == -ENOSPC) {
c9e9f97b 3558 enospc_errors++;
19a39dce
ID
3559 } else {
3560 spin_lock(&fs_info->balance_lock);
3561 bctl->stat.completed++;
3562 spin_unlock(&fs_info->balance_lock);
3563 }
f43ffb60 3564loop:
795a3321
ID
3565 if (found_key.offset == 0)
3566 break;
ba1bf481 3567 key.offset = found_key.offset - 1;
ec44a35c 3568 }
c9e9f97b 3569
19a39dce
ID
3570 if (counting) {
3571 btrfs_release_path(path);
3572 counting = false;
3573 goto again;
3574 }
ec44a35c
CM
3575error:
3576 btrfs_free_path(path);
c9e9f97b 3577 if (enospc_errors) {
efe120a0 3578 btrfs_info(fs_info, "%d enospc errors during balance",
c9e9f97b
ID
3579 enospc_errors);
3580 if (!ret)
3581 ret = -ENOSPC;
3582 }
3583
ec44a35c
CM
3584 return ret;
3585}
3586
0c460c0d
ID
3587/**
3588 * alloc_profile_is_valid - see if a given profile is valid and reduced
3589 * @flags: profile to validate
3590 * @extended: if true @flags is treated as an extended profile
3591 */
3592static int alloc_profile_is_valid(u64 flags, int extended)
3593{
3594 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3595 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3596
3597 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3598
3599 /* 1) check that all other bits are zeroed */
3600 if (flags & ~mask)
3601 return 0;
3602
3603 /* 2) see if profile is reduced */
3604 if (flags == 0)
3605 return !extended; /* "0" is valid for usual profiles */
3606
3607 /* true if exactly one bit set */
3608 return (flags & (flags - 1)) == 0;
3609}
3610
837d5b6e
ID
3611static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3612{
a7e99c69
ID
3613 /* cancel requested || normal exit path */
3614 return atomic_read(&fs_info->balance_cancel_req) ||
3615 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3616 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3617}
3618
c9e9f97b
ID
3619static void __cancel_balance(struct btrfs_fs_info *fs_info)
3620{
0940ebf6
ID
3621 int ret;
3622
c9e9f97b 3623 unset_balance_control(fs_info);
0940ebf6 3624 ret = del_balance_item(fs_info->tree_root);
0f788c58 3625 if (ret)
a4553fef 3626 btrfs_std_error(fs_info, ret, NULL);
ed0fb78f
ID
3627
3628 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3629}
3630
bdcd3c97
AM
3631/* Non-zero return value signifies invalidity */
3632static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3633 u64 allowed)
3634{
3635 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3636 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3637 (bctl_arg->target & ~allowed)));
3638}
3639
c9e9f97b
ID
3640/*
3641 * Should be called with both balance and volume mutexes held
3642 */
3643int btrfs_balance(struct btrfs_balance_control *bctl,
3644 struct btrfs_ioctl_balance_args *bargs)
3645{
3646 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3647 u64 allowed;
e4837f8f 3648 int mixed = 0;
c9e9f97b 3649 int ret;
8dabb742 3650 u64 num_devices;
de98ced9 3651 unsigned seq;
c9e9f97b 3652
837d5b6e 3653 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3654 atomic_read(&fs_info->balance_pause_req) ||
3655 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3656 ret = -EINVAL;
3657 goto out;
3658 }
3659
e4837f8f
ID
3660 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3661 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3662 mixed = 1;
3663
f43ffb60
ID
3664 /*
3665 * In case of mixed groups both data and meta should be picked,
3666 * and identical options should be given for both of them.
3667 */
e4837f8f
ID
3668 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3669 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3670 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3671 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3672 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
efe120a0
FH
3673 btrfs_err(fs_info, "with mixed groups data and "
3674 "metadata balance options must be the same");
f43ffb60
ID
3675 ret = -EINVAL;
3676 goto out;
3677 }
3678 }
3679
8dabb742 3680 num_devices = fs_info->fs_devices->num_devices;
73beece9 3681 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3682 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3683 BUG_ON(num_devices < 1);
3684 num_devices--;
3685 }
73beece9 3686 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
e4d8ec0f 3687 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
8dabb742 3688 if (num_devices == 1)
e4d8ec0f 3689 allowed |= BTRFS_BLOCK_GROUP_DUP;
8250dabe 3690 else if (num_devices > 1)
e4d8ec0f 3691 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3692 if (num_devices > 2)
3693 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3694 if (num_devices > 3)
3695 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3696 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3697 if (validate_convert_profile(&bctl->data, allowed)) {
efe120a0
FH
3698 btrfs_err(fs_info, "unable to start balance with target "
3699 "data profile %llu",
c1c9ff7c 3700 bctl->data.target);
e4d8ec0f
ID
3701 ret = -EINVAL;
3702 goto out;
3703 }
bdcd3c97 3704 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0
FH
3705 btrfs_err(fs_info,
3706 "unable to start balance with target metadata profile %llu",
c1c9ff7c 3707 bctl->meta.target);
e4d8ec0f
ID
3708 ret = -EINVAL;
3709 goto out;
3710 }
bdcd3c97 3711 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0
FH
3712 btrfs_err(fs_info,
3713 "unable to start balance with target system profile %llu",
c1c9ff7c 3714 bctl->sys.target);
e4d8ec0f
ID
3715 ret = -EINVAL;
3716 goto out;
3717 }
3718
e4d8ec0f
ID
3719 /* allow to reduce meta or sys integrity only if force set */
3720 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3721 BTRFS_BLOCK_GROUP_RAID10 |
3722 BTRFS_BLOCK_GROUP_RAID5 |
3723 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3724 do {
3725 seq = read_seqbegin(&fs_info->profiles_lock);
3726
3727 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3728 (fs_info->avail_system_alloc_bits & allowed) &&
3729 !(bctl->sys.target & allowed)) ||
3730 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3731 (fs_info->avail_metadata_alloc_bits & allowed) &&
3732 !(bctl->meta.target & allowed))) {
3733 if (bctl->flags & BTRFS_BALANCE_FORCE) {
efe120a0 3734 btrfs_info(fs_info, "force reducing metadata integrity");
de98ced9 3735 } else {
efe120a0
FH
3736 btrfs_err(fs_info, "balance will reduce metadata "
3737 "integrity, use force if you want this");
de98ced9
MX
3738 ret = -EINVAL;
3739 goto out;
3740 }
e4d8ec0f 3741 }
de98ced9 3742 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3743
ee592d07
ST
3744 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3745 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3746 btrfs_warn(fs_info,
fedc0045 3747 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
ee592d07
ST
3748 bctl->meta.target, bctl->data.target);
3749 }
3750
5af3e8cc 3751 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3752 fs_info->num_tolerated_disk_barrier_failures = min(
3753 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3754 btrfs_get_num_tolerated_disk_barrier_failures(
3755 bctl->sys.target));
5af3e8cc
SB
3756 }
3757
0940ebf6 3758 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3759 if (ret && ret != -EEXIST)
0940ebf6
ID
3760 goto out;
3761
59641015
ID
3762 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3763 BUG_ON(ret == -EEXIST);
3764 set_balance_control(bctl);
3765 } else {
3766 BUG_ON(ret != -EEXIST);
3767 spin_lock(&fs_info->balance_lock);
3768 update_balance_args(bctl);
3769 spin_unlock(&fs_info->balance_lock);
3770 }
c9e9f97b 3771
837d5b6e 3772 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3773 mutex_unlock(&fs_info->balance_mutex);
3774
3775 ret = __btrfs_balance(fs_info);
3776
3777 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3778 atomic_dec(&fs_info->balance_running);
c9e9f97b 3779
bf023ecf
ID
3780 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3781 fs_info->num_tolerated_disk_barrier_failures =
3782 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3783 }
3784
c9e9f97b
ID
3785 if (bargs) {
3786 memset(bargs, 0, sizeof(*bargs));
19a39dce 3787 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3788 }
3789
3a01aa7a
ID
3790 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3791 balance_need_close(fs_info)) {
3792 __cancel_balance(fs_info);
3793 }
3794
837d5b6e 3795 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3796
3797 return ret;
3798out:
59641015
ID
3799 if (bctl->flags & BTRFS_BALANCE_RESUME)
3800 __cancel_balance(fs_info);
ed0fb78f 3801 else {
59641015 3802 kfree(bctl);
ed0fb78f
ID
3803 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3804 }
59641015
ID
3805 return ret;
3806}
3807
3808static int balance_kthread(void *data)
3809{
2b6ba629 3810 struct btrfs_fs_info *fs_info = data;
9555c6c1 3811 int ret = 0;
59641015
ID
3812
3813 mutex_lock(&fs_info->volume_mutex);
3814 mutex_lock(&fs_info->balance_mutex);
3815
2b6ba629 3816 if (fs_info->balance_ctl) {
efe120a0 3817 btrfs_info(fs_info, "continuing balance");
2b6ba629 3818 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3819 }
59641015
ID
3820
3821 mutex_unlock(&fs_info->balance_mutex);
3822 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3823
59641015
ID
3824 return ret;
3825}
3826
2b6ba629
ID
3827int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3828{
3829 struct task_struct *tsk;
3830
3831 spin_lock(&fs_info->balance_lock);
3832 if (!fs_info->balance_ctl) {
3833 spin_unlock(&fs_info->balance_lock);
3834 return 0;
3835 }
3836 spin_unlock(&fs_info->balance_lock);
3837
3838 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
efe120a0 3839 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3840 return 0;
3841 }
3842
3843 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3844 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3845}
3846
68310a5e 3847int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3848{
59641015
ID
3849 struct btrfs_balance_control *bctl;
3850 struct btrfs_balance_item *item;
3851 struct btrfs_disk_balance_args disk_bargs;
3852 struct btrfs_path *path;
3853 struct extent_buffer *leaf;
3854 struct btrfs_key key;
3855 int ret;
3856
3857 path = btrfs_alloc_path();
3858 if (!path)
3859 return -ENOMEM;
3860
59641015 3861 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3862 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3863 key.offset = 0;
3864
68310a5e 3865 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3866 if (ret < 0)
68310a5e 3867 goto out;
59641015
ID
3868 if (ret > 0) { /* ret = -ENOENT; */
3869 ret = 0;
68310a5e
ID
3870 goto out;
3871 }
3872
3873 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3874 if (!bctl) {
3875 ret = -ENOMEM;
3876 goto out;
59641015
ID
3877 }
3878
3879 leaf = path->nodes[0];
3880 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3881
68310a5e
ID
3882 bctl->fs_info = fs_info;
3883 bctl->flags = btrfs_balance_flags(leaf, item);
3884 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3885
3886 btrfs_balance_data(leaf, item, &disk_bargs);
3887 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3888 btrfs_balance_meta(leaf, item, &disk_bargs);
3889 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3890 btrfs_balance_sys(leaf, item, &disk_bargs);
3891 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3892
ed0fb78f
ID
3893 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3894
68310a5e
ID
3895 mutex_lock(&fs_info->volume_mutex);
3896 mutex_lock(&fs_info->balance_mutex);
59641015 3897
68310a5e
ID
3898 set_balance_control(bctl);
3899
3900 mutex_unlock(&fs_info->balance_mutex);
3901 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
3902out:
3903 btrfs_free_path(path);
ec44a35c
CM
3904 return ret;
3905}
3906
837d5b6e
ID
3907int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3908{
3909 int ret = 0;
3910
3911 mutex_lock(&fs_info->balance_mutex);
3912 if (!fs_info->balance_ctl) {
3913 mutex_unlock(&fs_info->balance_mutex);
3914 return -ENOTCONN;
3915 }
3916
3917 if (atomic_read(&fs_info->balance_running)) {
3918 atomic_inc(&fs_info->balance_pause_req);
3919 mutex_unlock(&fs_info->balance_mutex);
3920
3921 wait_event(fs_info->balance_wait_q,
3922 atomic_read(&fs_info->balance_running) == 0);
3923
3924 mutex_lock(&fs_info->balance_mutex);
3925 /* we are good with balance_ctl ripped off from under us */
3926 BUG_ON(atomic_read(&fs_info->balance_running));
3927 atomic_dec(&fs_info->balance_pause_req);
3928 } else {
3929 ret = -ENOTCONN;
3930 }
3931
3932 mutex_unlock(&fs_info->balance_mutex);
3933 return ret;
3934}
3935
a7e99c69
ID
3936int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3937{
e649e587
ID
3938 if (fs_info->sb->s_flags & MS_RDONLY)
3939 return -EROFS;
3940
a7e99c69
ID
3941 mutex_lock(&fs_info->balance_mutex);
3942 if (!fs_info->balance_ctl) {
3943 mutex_unlock(&fs_info->balance_mutex);
3944 return -ENOTCONN;
3945 }
3946
3947 atomic_inc(&fs_info->balance_cancel_req);
3948 /*
3949 * if we are running just wait and return, balance item is
3950 * deleted in btrfs_balance in this case
3951 */
3952 if (atomic_read(&fs_info->balance_running)) {
3953 mutex_unlock(&fs_info->balance_mutex);
3954 wait_event(fs_info->balance_wait_q,
3955 atomic_read(&fs_info->balance_running) == 0);
3956 mutex_lock(&fs_info->balance_mutex);
3957 } else {
3958 /* __cancel_balance needs volume_mutex */
3959 mutex_unlock(&fs_info->balance_mutex);
3960 mutex_lock(&fs_info->volume_mutex);
3961 mutex_lock(&fs_info->balance_mutex);
3962
3963 if (fs_info->balance_ctl)
3964 __cancel_balance(fs_info);
3965
3966 mutex_unlock(&fs_info->volume_mutex);
3967 }
3968
3969 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3970 atomic_dec(&fs_info->balance_cancel_req);
3971 mutex_unlock(&fs_info->balance_mutex);
3972 return 0;
3973}
3974
803b2f54
SB
3975static int btrfs_uuid_scan_kthread(void *data)
3976{
3977 struct btrfs_fs_info *fs_info = data;
3978 struct btrfs_root *root = fs_info->tree_root;
3979 struct btrfs_key key;
3980 struct btrfs_key max_key;
3981 struct btrfs_path *path = NULL;
3982 int ret = 0;
3983 struct extent_buffer *eb;
3984 int slot;
3985 struct btrfs_root_item root_item;
3986 u32 item_size;
f45388f3 3987 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
3988
3989 path = btrfs_alloc_path();
3990 if (!path) {
3991 ret = -ENOMEM;
3992 goto out;
3993 }
3994
3995 key.objectid = 0;
3996 key.type = BTRFS_ROOT_ITEM_KEY;
3997 key.offset = 0;
3998
3999 max_key.objectid = (u64)-1;
4000 max_key.type = BTRFS_ROOT_ITEM_KEY;
4001 max_key.offset = (u64)-1;
4002
803b2f54 4003 while (1) {
6174d3cb 4004 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4005 if (ret) {
4006 if (ret > 0)
4007 ret = 0;
4008 break;
4009 }
4010
4011 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4012 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4013 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4014 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4015 goto skip;
4016
4017 eb = path->nodes[0];
4018 slot = path->slots[0];
4019 item_size = btrfs_item_size_nr(eb, slot);
4020 if (item_size < sizeof(root_item))
4021 goto skip;
4022
803b2f54
SB
4023 read_extent_buffer(eb, &root_item,
4024 btrfs_item_ptr_offset(eb, slot),
4025 (int)sizeof(root_item));
4026 if (btrfs_root_refs(&root_item) == 0)
4027 goto skip;
f45388f3
FDBM
4028
4029 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4030 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4031 if (trans)
4032 goto update_tree;
4033
4034 btrfs_release_path(path);
803b2f54
SB
4035 /*
4036 * 1 - subvol uuid item
4037 * 1 - received_subvol uuid item
4038 */
4039 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4040 if (IS_ERR(trans)) {
4041 ret = PTR_ERR(trans);
4042 break;
4043 }
f45388f3
FDBM
4044 continue;
4045 } else {
4046 goto skip;
4047 }
4048update_tree:
4049 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
4050 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4051 root_item.uuid,
4052 BTRFS_UUID_KEY_SUBVOL,
4053 key.objectid);
4054 if (ret < 0) {
efe120a0 4055 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4056 ret);
803b2f54
SB
4057 break;
4058 }
4059 }
4060
4061 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
4062 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4063 root_item.received_uuid,
4064 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4065 key.objectid);
4066 if (ret < 0) {
efe120a0 4067 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4068 ret);
803b2f54
SB
4069 break;
4070 }
4071 }
4072
f45388f3 4073skip:
803b2f54
SB
4074 if (trans) {
4075 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4076 trans = NULL;
803b2f54
SB
4077 if (ret)
4078 break;
4079 }
4080
803b2f54
SB
4081 btrfs_release_path(path);
4082 if (key.offset < (u64)-1) {
4083 key.offset++;
4084 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4085 key.offset = 0;
4086 key.type = BTRFS_ROOT_ITEM_KEY;
4087 } else if (key.objectid < (u64)-1) {
4088 key.offset = 0;
4089 key.type = BTRFS_ROOT_ITEM_KEY;
4090 key.objectid++;
4091 } else {
4092 break;
4093 }
4094 cond_resched();
4095 }
4096
4097out:
4098 btrfs_free_path(path);
f45388f3
FDBM
4099 if (trans && !IS_ERR(trans))
4100 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4101 if (ret)
efe120a0 4102 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175
SB
4103 else
4104 fs_info->update_uuid_tree_gen = 1;
803b2f54
SB
4105 up(&fs_info->uuid_tree_rescan_sem);
4106 return 0;
4107}
4108
70f80175
SB
4109/*
4110 * Callback for btrfs_uuid_tree_iterate().
4111 * returns:
4112 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4113 * < 0 if an error occurred.
70f80175
SB
4114 * > 0 if the check failed, which means the caller shall remove the entry.
4115 */
4116static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4117 u8 *uuid, u8 type, u64 subid)
4118{
4119 struct btrfs_key key;
4120 int ret = 0;
4121 struct btrfs_root *subvol_root;
4122
4123 if (type != BTRFS_UUID_KEY_SUBVOL &&
4124 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4125 goto out;
4126
4127 key.objectid = subid;
4128 key.type = BTRFS_ROOT_ITEM_KEY;
4129 key.offset = (u64)-1;
4130 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4131 if (IS_ERR(subvol_root)) {
4132 ret = PTR_ERR(subvol_root);
4133 if (ret == -ENOENT)
4134 ret = 1;
4135 goto out;
4136 }
4137
4138 switch (type) {
4139 case BTRFS_UUID_KEY_SUBVOL:
4140 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4141 ret = 1;
4142 break;
4143 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4144 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4145 BTRFS_UUID_SIZE))
4146 ret = 1;
4147 break;
4148 }
4149
4150out:
4151 return ret;
4152}
4153
4154static int btrfs_uuid_rescan_kthread(void *data)
4155{
4156 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4157 int ret;
4158
4159 /*
4160 * 1st step is to iterate through the existing UUID tree and
4161 * to delete all entries that contain outdated data.
4162 * 2nd step is to add all missing entries to the UUID tree.
4163 */
4164 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4165 if (ret < 0) {
efe120a0 4166 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4167 up(&fs_info->uuid_tree_rescan_sem);
4168 return ret;
4169 }
4170 return btrfs_uuid_scan_kthread(data);
4171}
4172
f7a81ea4
SB
4173int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4174{
4175 struct btrfs_trans_handle *trans;
4176 struct btrfs_root *tree_root = fs_info->tree_root;
4177 struct btrfs_root *uuid_root;
803b2f54
SB
4178 struct task_struct *task;
4179 int ret;
f7a81ea4
SB
4180
4181 /*
4182 * 1 - root node
4183 * 1 - root item
4184 */
4185 trans = btrfs_start_transaction(tree_root, 2);
4186 if (IS_ERR(trans))
4187 return PTR_ERR(trans);
4188
4189 uuid_root = btrfs_create_tree(trans, fs_info,
4190 BTRFS_UUID_TREE_OBJECTID);
4191 if (IS_ERR(uuid_root)) {
6d13f549
DS
4192 ret = PTR_ERR(uuid_root);
4193 btrfs_abort_transaction(trans, tree_root, ret);
4194 return ret;
f7a81ea4
SB
4195 }
4196
4197 fs_info->uuid_root = uuid_root;
4198
803b2f54
SB
4199 ret = btrfs_commit_transaction(trans, tree_root);
4200 if (ret)
4201 return ret;
4202
4203 down(&fs_info->uuid_tree_rescan_sem);
4204 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4205 if (IS_ERR(task)) {
70f80175 4206 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4207 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4208 up(&fs_info->uuid_tree_rescan_sem);
4209 return PTR_ERR(task);
4210 }
4211
4212 return 0;
f7a81ea4 4213}
803b2f54 4214
70f80175
SB
4215int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4216{
4217 struct task_struct *task;
4218
4219 down(&fs_info->uuid_tree_rescan_sem);
4220 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4221 if (IS_ERR(task)) {
4222 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4223 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4224 up(&fs_info->uuid_tree_rescan_sem);
4225 return PTR_ERR(task);
4226 }
4227
4228 return 0;
4229}
4230
8f18cf13
CM
4231/*
4232 * shrinking a device means finding all of the device extents past
4233 * the new size, and then following the back refs to the chunks.
4234 * The chunk relocation code actually frees the device extent
4235 */
4236int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4237{
4238 struct btrfs_trans_handle *trans;
4239 struct btrfs_root *root = device->dev_root;
4240 struct btrfs_dev_extent *dev_extent = NULL;
4241 struct btrfs_path *path;
4242 u64 length;
8f18cf13
CM
4243 u64 chunk_offset;
4244 int ret;
4245 int slot;
ba1bf481
JB
4246 int failed = 0;
4247 bool retried = false;
53e489bc 4248 bool checked_pending_chunks = false;
8f18cf13
CM
4249 struct extent_buffer *l;
4250 struct btrfs_key key;
6c41761f 4251 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4252 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4253 u64 old_size = btrfs_device_get_total_bytes(device);
4254 u64 diff = old_size - new_size;
8f18cf13 4255
63a212ab
SB
4256 if (device->is_tgtdev_for_dev_replace)
4257 return -EINVAL;
4258
8f18cf13
CM
4259 path = btrfs_alloc_path();
4260 if (!path)
4261 return -ENOMEM;
4262
e4058b54 4263 path->reada = READA_FORWARD;
8f18cf13 4264
7d9eb12c
CM
4265 lock_chunks(root);
4266
7cc8e58d 4267 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4268 if (device->writeable) {
2b82032c 4269 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4270 spin_lock(&root->fs_info->free_chunk_lock);
4271 root->fs_info->free_chunk_space -= diff;
4272 spin_unlock(&root->fs_info->free_chunk_lock);
4273 }
7d9eb12c 4274 unlock_chunks(root);
8f18cf13 4275
ba1bf481 4276again:
8f18cf13
CM
4277 key.objectid = device->devid;
4278 key.offset = (u64)-1;
4279 key.type = BTRFS_DEV_EXTENT_KEY;
4280
213e64da 4281 do {
67c5e7d4 4282 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4283 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4284 if (ret < 0) {
4285 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4286 goto done;
67c5e7d4 4287 }
8f18cf13
CM
4288
4289 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4290 if (ret)
4291 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4292 if (ret < 0)
4293 goto done;
4294 if (ret) {
4295 ret = 0;
b3b4aa74 4296 btrfs_release_path(path);
bf1fb512 4297 break;
8f18cf13
CM
4298 }
4299
4300 l = path->nodes[0];
4301 slot = path->slots[0];
4302 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4303
ba1bf481 4304 if (key.objectid != device->devid) {
67c5e7d4 4305 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4306 btrfs_release_path(path);
bf1fb512 4307 break;
ba1bf481 4308 }
8f18cf13
CM
4309
4310 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4311 length = btrfs_dev_extent_length(l, dev_extent);
4312
ba1bf481 4313 if (key.offset + length <= new_size) {
67c5e7d4 4314 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4315 btrfs_release_path(path);
d6397bae 4316 break;
ba1bf481 4317 }
8f18cf13 4318
8f18cf13 4319 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4320 btrfs_release_path(path);
8f18cf13 4321
dc2ee4e2 4322 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4323 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4324 if (ret && ret != -ENOSPC)
8f18cf13 4325 goto done;
ba1bf481
JB
4326 if (ret == -ENOSPC)
4327 failed++;
213e64da 4328 } while (key.offset-- > 0);
ba1bf481
JB
4329
4330 if (failed && !retried) {
4331 failed = 0;
4332 retried = true;
4333 goto again;
4334 } else if (failed && retried) {
4335 ret = -ENOSPC;
ba1bf481 4336 goto done;
8f18cf13
CM
4337 }
4338
d6397bae 4339 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4340 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4341 if (IS_ERR(trans)) {
4342 ret = PTR_ERR(trans);
4343 goto done;
4344 }
4345
d6397bae 4346 lock_chunks(root);
53e489bc
FM
4347
4348 /*
4349 * We checked in the above loop all device extents that were already in
4350 * the device tree. However before we have updated the device's
4351 * total_bytes to the new size, we might have had chunk allocations that
4352 * have not complete yet (new block groups attached to transaction
4353 * handles), and therefore their device extents were not yet in the
4354 * device tree and we missed them in the loop above. So if we have any
4355 * pending chunk using a device extent that overlaps the device range
4356 * that we can not use anymore, commit the current transaction and
4357 * repeat the search on the device tree - this way we guarantee we will
4358 * not have chunks using device extents that end beyond 'new_size'.
4359 */
4360 if (!checked_pending_chunks) {
4361 u64 start = new_size;
4362 u64 len = old_size - new_size;
4363
499f377f
JM
4364 if (contains_pending_extent(trans->transaction, device,
4365 &start, len)) {
53e489bc
FM
4366 unlock_chunks(root);
4367 checked_pending_chunks = true;
4368 failed = 0;
4369 retried = false;
4370 ret = btrfs_commit_transaction(trans, root);
4371 if (ret)
4372 goto done;
4373 goto again;
4374 }
4375 }
4376
7cc8e58d 4377 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4378 if (list_empty(&device->resized_list))
4379 list_add_tail(&device->resized_list,
4380 &root->fs_info->fs_devices->resized_devices);
d6397bae 4381
d6397bae
CB
4382 WARN_ON(diff > old_total);
4383 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4384 unlock_chunks(root);
2196d6e8
MX
4385
4386 /* Now btrfs_update_device() will change the on-disk size. */
4387 ret = btrfs_update_device(trans, device);
d6397bae 4388 btrfs_end_transaction(trans, root);
8f18cf13
CM
4389done:
4390 btrfs_free_path(path);
53e489bc
FM
4391 if (ret) {
4392 lock_chunks(root);
4393 btrfs_device_set_total_bytes(device, old_size);
4394 if (device->writeable)
4395 device->fs_devices->total_rw_bytes += diff;
4396 spin_lock(&root->fs_info->free_chunk_lock);
4397 root->fs_info->free_chunk_space += diff;
4398 spin_unlock(&root->fs_info->free_chunk_lock);
4399 unlock_chunks(root);
4400 }
8f18cf13
CM
4401 return ret;
4402}
4403
125ccb0a 4404static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4405 struct btrfs_key *key,
4406 struct btrfs_chunk *chunk, int item_size)
4407{
6c41761f 4408 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4409 struct btrfs_disk_key disk_key;
4410 u32 array_size;
4411 u8 *ptr;
4412
fe48a5c0 4413 lock_chunks(root);
0b86a832 4414 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4415 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4416 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4417 unlock_chunks(root);
0b86a832 4418 return -EFBIG;
fe48a5c0 4419 }
0b86a832
CM
4420
4421 ptr = super_copy->sys_chunk_array + array_size;
4422 btrfs_cpu_key_to_disk(&disk_key, key);
4423 memcpy(ptr, &disk_key, sizeof(disk_key));
4424 ptr += sizeof(disk_key);
4425 memcpy(ptr, chunk, item_size);
4426 item_size += sizeof(disk_key);
4427 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4428 unlock_chunks(root);
4429
0b86a832
CM
4430 return 0;
4431}
4432
73c5de00
AJ
4433/*
4434 * sort the devices in descending order by max_avail, total_avail
4435 */
4436static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4437{
73c5de00
AJ
4438 const struct btrfs_device_info *di_a = a;
4439 const struct btrfs_device_info *di_b = b;
9b3f68b9 4440
73c5de00 4441 if (di_a->max_avail > di_b->max_avail)
b2117a39 4442 return -1;
73c5de00 4443 if (di_a->max_avail < di_b->max_avail)
b2117a39 4444 return 1;
73c5de00
AJ
4445 if (di_a->total_avail > di_b->total_avail)
4446 return -1;
4447 if (di_a->total_avail < di_b->total_avail)
4448 return 1;
4449 return 0;
b2117a39 4450}
0b86a832 4451
53b381b3
DW
4452static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4453{
4454 /* TODO allow them to set a preferred stripe size */
ee22184b 4455 return SZ_64K;
53b381b3
DW
4456}
4457
4458static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4459{
ffe2d203 4460 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4461 return;
4462
ceda0864 4463 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4464}
4465
23f8f9b7
GH
4466#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4467 - sizeof(struct btrfs_item) \
4468 - sizeof(struct btrfs_chunk)) \
4469 / sizeof(struct btrfs_stripe) + 1)
4470
4471#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4472 - 2 * sizeof(struct btrfs_disk_key) \
4473 - 2 * sizeof(struct btrfs_chunk)) \
4474 / sizeof(struct btrfs_stripe) + 1)
4475
73c5de00 4476static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4477 struct btrfs_root *extent_root, u64 start,
4478 u64 type)
b2117a39 4479{
73c5de00
AJ
4480 struct btrfs_fs_info *info = extent_root->fs_info;
4481 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4482 struct list_head *cur;
4483 struct map_lookup *map = NULL;
4484 struct extent_map_tree *em_tree;
4485 struct extent_map *em;
4486 struct btrfs_device_info *devices_info = NULL;
4487 u64 total_avail;
4488 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4489 int data_stripes; /* number of stripes that count for
4490 block group size */
73c5de00
AJ
4491 int sub_stripes; /* sub_stripes info for map */
4492 int dev_stripes; /* stripes per dev */
4493 int devs_max; /* max devs to use */
4494 int devs_min; /* min devs needed */
4495 int devs_increment; /* ndevs has to be a multiple of this */
4496 int ncopies; /* how many copies to data has */
4497 int ret;
4498 u64 max_stripe_size;
4499 u64 max_chunk_size;
4500 u64 stripe_size;
4501 u64 num_bytes;
53b381b3 4502 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4503 int ndevs;
4504 int i;
4505 int j;
31e50229 4506 int index;
593060d7 4507
0c460c0d 4508 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4509
73c5de00
AJ
4510 if (list_empty(&fs_devices->alloc_list))
4511 return -ENOSPC;
b2117a39 4512
31e50229 4513 index = __get_raid_index(type);
73c5de00 4514
31e50229
LB
4515 sub_stripes = btrfs_raid_array[index].sub_stripes;
4516 dev_stripes = btrfs_raid_array[index].dev_stripes;
4517 devs_max = btrfs_raid_array[index].devs_max;
4518 devs_min = btrfs_raid_array[index].devs_min;
4519 devs_increment = btrfs_raid_array[index].devs_increment;
4520 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4521
9b3f68b9 4522 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4523 max_stripe_size = SZ_1G;
73c5de00 4524 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4525 if (!devs_max)
4526 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4527 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4528 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4529 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4530 max_stripe_size = SZ_1G;
1100373f 4531 else
ee22184b 4532 max_stripe_size = SZ_256M;
73c5de00 4533 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4534 if (!devs_max)
4535 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4536 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4537 max_stripe_size = SZ_32M;
73c5de00 4538 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4539 if (!devs_max)
4540 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4541 } else {
351fd353 4542 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4543 type);
4544 BUG_ON(1);
9b3f68b9
CM
4545 }
4546
2b82032c
YZ
4547 /* we don't want a chunk larger than 10% of writeable space */
4548 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4549 max_chunk_size);
9b3f68b9 4550
31e818fe 4551 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4552 GFP_NOFS);
4553 if (!devices_info)
4554 return -ENOMEM;
0cad8a11 4555
73c5de00 4556 cur = fs_devices->alloc_list.next;
9b3f68b9 4557
9f680ce0 4558 /*
73c5de00
AJ
4559 * in the first pass through the devices list, we gather information
4560 * about the available holes on each device.
9f680ce0 4561 */
73c5de00
AJ
4562 ndevs = 0;
4563 while (cur != &fs_devices->alloc_list) {
4564 struct btrfs_device *device;
4565 u64 max_avail;
4566 u64 dev_offset;
b2117a39 4567
73c5de00 4568 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4569
73c5de00 4570 cur = cur->next;
b2117a39 4571
73c5de00 4572 if (!device->writeable) {
31b1a2bd 4573 WARN(1, KERN_ERR
efe120a0 4574 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4575 continue;
4576 }
b2117a39 4577
63a212ab
SB
4578 if (!device->in_fs_metadata ||
4579 device->is_tgtdev_for_dev_replace)
73c5de00 4580 continue;
b2117a39 4581
73c5de00
AJ
4582 if (device->total_bytes > device->bytes_used)
4583 total_avail = device->total_bytes - device->bytes_used;
4584 else
4585 total_avail = 0;
38c01b96 4586
4587 /* If there is no space on this device, skip it. */
4588 if (total_avail == 0)
4589 continue;
b2117a39 4590
6df9a95e 4591 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4592 max_stripe_size * dev_stripes,
4593 &dev_offset, &max_avail);
4594 if (ret && ret != -ENOSPC)
4595 goto error;
b2117a39 4596
73c5de00
AJ
4597 if (ret == 0)
4598 max_avail = max_stripe_size * dev_stripes;
b2117a39 4599
73c5de00
AJ
4600 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4601 continue;
b2117a39 4602
063d006f
ES
4603 if (ndevs == fs_devices->rw_devices) {
4604 WARN(1, "%s: found more than %llu devices\n",
4605 __func__, fs_devices->rw_devices);
4606 break;
4607 }
73c5de00
AJ
4608 devices_info[ndevs].dev_offset = dev_offset;
4609 devices_info[ndevs].max_avail = max_avail;
4610 devices_info[ndevs].total_avail = total_avail;
4611 devices_info[ndevs].dev = device;
4612 ++ndevs;
4613 }
b2117a39 4614
73c5de00
AJ
4615 /*
4616 * now sort the devices by hole size / available space
4617 */
4618 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4619 btrfs_cmp_device_info, NULL);
b2117a39 4620
73c5de00
AJ
4621 /* round down to number of usable stripes */
4622 ndevs -= ndevs % devs_increment;
b2117a39 4623
73c5de00
AJ
4624 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4625 ret = -ENOSPC;
4626 goto error;
b2117a39 4627 }
9f680ce0 4628
73c5de00
AJ
4629 if (devs_max && ndevs > devs_max)
4630 ndevs = devs_max;
4631 /*
4632 * the primary goal is to maximize the number of stripes, so use as many
4633 * devices as possible, even if the stripes are not maximum sized.
4634 */
4635 stripe_size = devices_info[ndevs-1].max_avail;
4636 num_stripes = ndevs * dev_stripes;
b2117a39 4637
53b381b3
DW
4638 /*
4639 * this will have to be fixed for RAID1 and RAID10 over
4640 * more drives
4641 */
4642 data_stripes = num_stripes / ncopies;
4643
53b381b3
DW
4644 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4645 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4646 btrfs_super_stripesize(info->super_copy));
4647 data_stripes = num_stripes - 1;
4648 }
4649 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4650 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4651 btrfs_super_stripesize(info->super_copy));
4652 data_stripes = num_stripes - 2;
4653 }
86db2578
CM
4654
4655 /*
4656 * Use the number of data stripes to figure out how big this chunk
4657 * is really going to be in terms of logical address space,
4658 * and compare that answer with the max chunk size
4659 */
4660 if (stripe_size * data_stripes > max_chunk_size) {
4661 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4662
4663 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4664
4665 /* bump the answer up to a 16MB boundary */
4666 stripe_size = (stripe_size + mask) & ~mask;
4667
4668 /* but don't go higher than the limits we found
4669 * while searching for free extents
4670 */
4671 if (stripe_size > devices_info[ndevs-1].max_avail)
4672 stripe_size = devices_info[ndevs-1].max_avail;
4673 }
4674
b8b93add 4675 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4676
4677 /* align to BTRFS_STRIPE_LEN */
b8b93add 4678 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4679 stripe_size *= raid_stripe_len;
b2117a39
MX
4680
4681 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4682 if (!map) {
4683 ret = -ENOMEM;
4684 goto error;
4685 }
4686 map->num_stripes = num_stripes;
9b3f68b9 4687
73c5de00
AJ
4688 for (i = 0; i < ndevs; ++i) {
4689 for (j = 0; j < dev_stripes; ++j) {
4690 int s = i * dev_stripes + j;
4691 map->stripes[s].dev = devices_info[i].dev;
4692 map->stripes[s].physical = devices_info[i].dev_offset +
4693 j * stripe_size;
6324fbf3 4694 }
6324fbf3 4695 }
2b82032c 4696 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4697 map->stripe_len = raid_stripe_len;
4698 map->io_align = raid_stripe_len;
4699 map->io_width = raid_stripe_len;
2b82032c 4700 map->type = type;
2b82032c 4701 map->sub_stripes = sub_stripes;
0b86a832 4702
53b381b3 4703 num_bytes = stripe_size * data_stripes;
0b86a832 4704
73c5de00 4705 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4706
172ddd60 4707 em = alloc_extent_map();
2b82032c 4708 if (!em) {
298a8f9c 4709 kfree(map);
b2117a39
MX
4710 ret = -ENOMEM;
4711 goto error;
593060d7 4712 }
298a8f9c 4713 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4714 em->map_lookup = map;
2b82032c 4715 em->start = start;
73c5de00 4716 em->len = num_bytes;
2b82032c
YZ
4717 em->block_start = 0;
4718 em->block_len = em->len;
6df9a95e 4719 em->orig_block_len = stripe_size;
593060d7 4720
2b82032c 4721 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4722 write_lock(&em_tree->lock);
09a2a8f9 4723 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4724 if (!ret) {
4725 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4726 atomic_inc(&em->refs);
4727 }
890871be 4728 write_unlock(&em_tree->lock);
0f5d42b2
JB
4729 if (ret) {
4730 free_extent_map(em);
1dd4602f 4731 goto error;
0f5d42b2 4732 }
0b86a832 4733
04487488
JB
4734 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4735 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4736 start, num_bytes);
6df9a95e
JB
4737 if (ret)
4738 goto error_del_extent;
2b82032c 4739
7cc8e58d
MX
4740 for (i = 0; i < map->num_stripes; i++) {
4741 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4742 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4743 }
43530c46 4744
1c116187
MX
4745 spin_lock(&extent_root->fs_info->free_chunk_lock);
4746 extent_root->fs_info->free_chunk_space -= (stripe_size *
4747 map->num_stripes);
4748 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4749
0f5d42b2 4750 free_extent_map(em);
53b381b3
DW
4751 check_raid56_incompat_flag(extent_root->fs_info, type);
4752
b2117a39 4753 kfree(devices_info);
2b82032c 4754 return 0;
b2117a39 4755
6df9a95e 4756error_del_extent:
0f5d42b2
JB
4757 write_lock(&em_tree->lock);
4758 remove_extent_mapping(em_tree, em);
4759 write_unlock(&em_tree->lock);
4760
4761 /* One for our allocation */
4762 free_extent_map(em);
4763 /* One for the tree reference */
4764 free_extent_map(em);
495e64f4
FM
4765 /* One for the pending_chunks list reference */
4766 free_extent_map(em);
b2117a39 4767error:
b2117a39
MX
4768 kfree(devices_info);
4769 return ret;
2b82032c
YZ
4770}
4771
6df9a95e 4772int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4773 struct btrfs_root *extent_root,
6df9a95e 4774 u64 chunk_offset, u64 chunk_size)
2b82032c 4775{
2b82032c
YZ
4776 struct btrfs_key key;
4777 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4778 struct btrfs_device *device;
4779 struct btrfs_chunk *chunk;
4780 struct btrfs_stripe *stripe;
6df9a95e
JB
4781 struct extent_map_tree *em_tree;
4782 struct extent_map *em;
4783 struct map_lookup *map;
4784 size_t item_size;
4785 u64 dev_offset;
4786 u64 stripe_size;
4787 int i = 0;
140e639f 4788 int ret = 0;
2b82032c 4789
6df9a95e
JB
4790 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4791 read_lock(&em_tree->lock);
4792 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4793 read_unlock(&em_tree->lock);
4794
4795 if (!em) {
4796 btrfs_crit(extent_root->fs_info, "unable to find logical "
4797 "%Lu len %Lu", chunk_offset, chunk_size);
4798 return -EINVAL;
4799 }
4800
4801 if (em->start != chunk_offset || em->len != chunk_size) {
4802 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
351fd353 4803 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
6df9a95e
JB
4804 chunk_size, em->start, em->len);
4805 free_extent_map(em);
4806 return -EINVAL;
4807 }
4808
95617d69 4809 map = em->map_lookup;
6df9a95e
JB
4810 item_size = btrfs_chunk_item_size(map->num_stripes);
4811 stripe_size = em->orig_block_len;
4812
2b82032c 4813 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4814 if (!chunk) {
4815 ret = -ENOMEM;
4816 goto out;
4817 }
4818
50460e37
FM
4819 /*
4820 * Take the device list mutex to prevent races with the final phase of
4821 * a device replace operation that replaces the device object associated
4822 * with the map's stripes, because the device object's id can change
4823 * at any time during that final phase of the device replace operation
4824 * (dev-replace.c:btrfs_dev_replace_finishing()).
4825 */
4826 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4827 for (i = 0; i < map->num_stripes; i++) {
4828 device = map->stripes[i].dev;
4829 dev_offset = map->stripes[i].physical;
2b82032c 4830
0b86a832 4831 ret = btrfs_update_device(trans, device);
3acd3953 4832 if (ret)
50460e37 4833 break;
6df9a95e
JB
4834 ret = btrfs_alloc_dev_extent(trans, device,
4835 chunk_root->root_key.objectid,
4836 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4837 chunk_offset, dev_offset,
4838 stripe_size);
4839 if (ret)
50460e37
FM
4840 break;
4841 }
4842 if (ret) {
4843 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4844 goto out;
2b82032c
YZ
4845 }
4846
2b82032c 4847 stripe = &chunk->stripe;
6df9a95e
JB
4848 for (i = 0; i < map->num_stripes; i++) {
4849 device = map->stripes[i].dev;
4850 dev_offset = map->stripes[i].physical;
0b86a832 4851
e17cade2
CM
4852 btrfs_set_stack_stripe_devid(stripe, device->devid);
4853 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4854 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4855 stripe++;
0b86a832 4856 }
50460e37 4857 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
0b86a832 4858
2b82032c 4859 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4860 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4861 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4862 btrfs_set_stack_chunk_type(chunk, map->type);
4863 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4864 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4865 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4866 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4867 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4868
2b82032c
YZ
4869 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4870 key.type = BTRFS_CHUNK_ITEM_KEY;
4871 key.offset = chunk_offset;
0b86a832 4872
2b82032c 4873 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4874 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4875 /*
4876 * TODO: Cleanup of inserted chunk root in case of
4877 * failure.
4878 */
125ccb0a 4879 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4880 item_size);
8f18cf13 4881 }
1abe9b8a 4882
6df9a95e 4883out:
0b86a832 4884 kfree(chunk);
6df9a95e 4885 free_extent_map(em);
4ed1d16e 4886 return ret;
2b82032c 4887}
0b86a832 4888
2b82032c
YZ
4889/*
4890 * Chunk allocation falls into two parts. The first part does works
4891 * that make the new allocated chunk useable, but not do any operation
4892 * that modifies the chunk tree. The second part does the works that
4893 * require modifying the chunk tree. This division is important for the
4894 * bootstrap process of adding storage to a seed btrfs.
4895 */
4896int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4897 struct btrfs_root *extent_root, u64 type)
4898{
4899 u64 chunk_offset;
2b82032c 4900
a9629596 4901 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
4902 chunk_offset = find_next_chunk(extent_root->fs_info);
4903 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
4904}
4905
d397712b 4906static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
4907 struct btrfs_root *root,
4908 struct btrfs_device *device)
4909{
4910 u64 chunk_offset;
4911 u64 sys_chunk_offset;
2b82032c 4912 u64 alloc_profile;
2b82032c
YZ
4913 struct btrfs_fs_info *fs_info = root->fs_info;
4914 struct btrfs_root *extent_root = fs_info->extent_root;
4915 int ret;
4916
6df9a95e 4917 chunk_offset = find_next_chunk(fs_info);
de98ced9 4918 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
4919 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4920 alloc_profile);
79787eaa
JM
4921 if (ret)
4922 return ret;
2b82032c 4923
6df9a95e 4924 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 4925 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
4926 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4927 alloc_profile);
79787eaa 4928 return ret;
2b82032c
YZ
4929}
4930
d20983b4
MX
4931static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4932{
4933 int max_errors;
4934
4935 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4936 BTRFS_BLOCK_GROUP_RAID10 |
4937 BTRFS_BLOCK_GROUP_RAID5 |
4938 BTRFS_BLOCK_GROUP_DUP)) {
4939 max_errors = 1;
4940 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4941 max_errors = 2;
4942 } else {
4943 max_errors = 0;
005d6427 4944 }
2b82032c 4945
d20983b4 4946 return max_errors;
2b82032c
YZ
4947}
4948
4949int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4950{
4951 struct extent_map *em;
4952 struct map_lookup *map;
4953 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4954 int readonly = 0;
d20983b4 4955 int miss_ndevs = 0;
2b82032c
YZ
4956 int i;
4957
890871be 4958 read_lock(&map_tree->map_tree.lock);
2b82032c 4959 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 4960 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
4961 if (!em)
4962 return 1;
4963
95617d69 4964 map = em->map_lookup;
2b82032c 4965 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
4966 if (map->stripes[i].dev->missing) {
4967 miss_ndevs++;
4968 continue;
4969 }
4970
2b82032c
YZ
4971 if (!map->stripes[i].dev->writeable) {
4972 readonly = 1;
d20983b4 4973 goto end;
2b82032c
YZ
4974 }
4975 }
d20983b4
MX
4976
4977 /*
4978 * If the number of missing devices is larger than max errors,
4979 * we can not write the data into that chunk successfully, so
4980 * set it readonly.
4981 */
4982 if (miss_ndevs > btrfs_chunk_max_errors(map))
4983 readonly = 1;
4984end:
0b86a832 4985 free_extent_map(em);
2b82032c 4986 return readonly;
0b86a832
CM
4987}
4988
4989void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4990{
a8067e02 4991 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
4992}
4993
4994void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4995{
4996 struct extent_map *em;
4997
d397712b 4998 while (1) {
890871be 4999 write_lock(&tree->map_tree.lock);
0b86a832
CM
5000 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5001 if (em)
5002 remove_extent_mapping(&tree->map_tree, em);
890871be 5003 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5004 if (!em)
5005 break;
0b86a832
CM
5006 /* once for us */
5007 free_extent_map(em);
5008 /* once for the tree */
5009 free_extent_map(em);
5010 }
5011}
5012
5d964051 5013int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5014{
5d964051 5015 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5016 struct extent_map *em;
5017 struct map_lookup *map;
5018 struct extent_map_tree *em_tree = &map_tree->map_tree;
5019 int ret;
5020
890871be 5021 read_lock(&em_tree->lock);
f188591e 5022 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5023 read_unlock(&em_tree->lock);
f188591e 5024
fb7669b5
JB
5025 /*
5026 * We could return errors for these cases, but that could get ugly and
5027 * we'd probably do the same thing which is just not do anything else
5028 * and exit, so return 1 so the callers don't try to use other copies.
5029 */
5030 if (!em) {
351fd353 5031 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5032 logical+len);
5033 return 1;
5034 }
5035
5036 if (em->start > logical || em->start + em->len < logical) {
ccf39f92 5037 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
351fd353 5038 "%Lu-%Lu", logical, logical+len, em->start,
fb7669b5 5039 em->start + em->len);
7d3d1744 5040 free_extent_map(em);
fb7669b5
JB
5041 return 1;
5042 }
5043
95617d69 5044 map = em->map_lookup;
f188591e
CM
5045 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5046 ret = map->num_stripes;
321aecc6
CM
5047 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5048 ret = map->sub_stripes;
53b381b3
DW
5049 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5050 ret = 2;
5051 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5052 ret = 3;
f188591e
CM
5053 else
5054 ret = 1;
5055 free_extent_map(em);
ad6d620e 5056
73beece9 5057 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5058 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5059 ret++;
73beece9 5060 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5061
f188591e
CM
5062 return ret;
5063}
5064
53b381b3
DW
5065unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5066 struct btrfs_mapping_tree *map_tree,
5067 u64 logical)
5068{
5069 struct extent_map *em;
5070 struct map_lookup *map;
5071 struct extent_map_tree *em_tree = &map_tree->map_tree;
5072 unsigned long len = root->sectorsize;
5073
5074 read_lock(&em_tree->lock);
5075 em = lookup_extent_mapping(em_tree, logical, len);
5076 read_unlock(&em_tree->lock);
5077 BUG_ON(!em);
5078
5079 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5080 map = em->map_lookup;
ffe2d203 5081 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5082 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5083 free_extent_map(em);
5084 return len;
5085}
5086
5087int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5088 u64 logical, u64 len, int mirror_num)
5089{
5090 struct extent_map *em;
5091 struct map_lookup *map;
5092 struct extent_map_tree *em_tree = &map_tree->map_tree;
5093 int ret = 0;
5094
5095 read_lock(&em_tree->lock);
5096 em = lookup_extent_mapping(em_tree, logical, len);
5097 read_unlock(&em_tree->lock);
5098 BUG_ON(!em);
5099
5100 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5101 map = em->map_lookup;
ffe2d203 5102 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5103 ret = 1;
5104 free_extent_map(em);
5105 return ret;
5106}
5107
30d9861f
SB
5108static int find_live_mirror(struct btrfs_fs_info *fs_info,
5109 struct map_lookup *map, int first, int num,
5110 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5111{
5112 int i;
30d9861f
SB
5113 int tolerance;
5114 struct btrfs_device *srcdev;
5115
5116 if (dev_replace_is_ongoing &&
5117 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5118 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5119 srcdev = fs_info->dev_replace.srcdev;
5120 else
5121 srcdev = NULL;
5122
5123 /*
5124 * try to avoid the drive that is the source drive for a
5125 * dev-replace procedure, only choose it if no other non-missing
5126 * mirror is available
5127 */
5128 for (tolerance = 0; tolerance < 2; tolerance++) {
5129 if (map->stripes[optimal].dev->bdev &&
5130 (tolerance || map->stripes[optimal].dev != srcdev))
5131 return optimal;
5132 for (i = first; i < first + num; i++) {
5133 if (map->stripes[i].dev->bdev &&
5134 (tolerance || map->stripes[i].dev != srcdev))
5135 return i;
5136 }
dfe25020 5137 }
30d9861f 5138
dfe25020
CM
5139 /* we couldn't find one that doesn't fail. Just return something
5140 * and the io error handling code will clean up eventually
5141 */
5142 return optimal;
5143}
5144
53b381b3
DW
5145static inline int parity_smaller(u64 a, u64 b)
5146{
5147 return a > b;
5148}
5149
5150/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5151static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5152{
5153 struct btrfs_bio_stripe s;
5154 int i;
5155 u64 l;
5156 int again = 1;
5157
5158 while (again) {
5159 again = 0;
cc7539ed 5160 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5161 if (parity_smaller(bbio->raid_map[i],
5162 bbio->raid_map[i+1])) {
53b381b3 5163 s = bbio->stripes[i];
8e5cfb55 5164 l = bbio->raid_map[i];
53b381b3 5165 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5166 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5167 bbio->stripes[i+1] = s;
8e5cfb55 5168 bbio->raid_map[i+1] = l;
2c8cdd6e 5169
53b381b3
DW
5170 again = 1;
5171 }
5172 }
5173 }
5174}
5175
6e9606d2
ZL
5176static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5177{
5178 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5179 /* the size of the btrfs_bio */
6e9606d2 5180 sizeof(struct btrfs_bio) +
e57cf21e 5181 /* plus the variable array for the stripes */
6e9606d2 5182 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5183 /* plus the variable array for the tgt dev */
6e9606d2 5184 sizeof(int) * (real_stripes) +
e57cf21e
CM
5185 /*
5186 * plus the raid_map, which includes both the tgt dev
5187 * and the stripes
5188 */
5189 sizeof(u64) * (total_stripes),
277fb5fc 5190 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5191
5192 atomic_set(&bbio->error, 0);
5193 atomic_set(&bbio->refs, 1);
5194
5195 return bbio;
5196}
5197
5198void btrfs_get_bbio(struct btrfs_bio *bbio)
5199{
5200 WARN_ON(!atomic_read(&bbio->refs));
5201 atomic_inc(&bbio->refs);
5202}
5203
5204void btrfs_put_bbio(struct btrfs_bio *bbio)
5205{
5206 if (!bbio)
5207 return;
5208 if (atomic_dec_and_test(&bbio->refs))
5209 kfree(bbio);
5210}
5211
3ec706c8 5212static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5213 u64 logical, u64 *length,
a1d3c478 5214 struct btrfs_bio **bbio_ret,
8e5cfb55 5215 int mirror_num, int need_raid_map)
0b86a832
CM
5216{
5217 struct extent_map *em;
5218 struct map_lookup *map;
3ec706c8 5219 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5220 struct extent_map_tree *em_tree = &map_tree->map_tree;
5221 u64 offset;
593060d7 5222 u64 stripe_offset;
fce3bb9a 5223 u64 stripe_end_offset;
593060d7 5224 u64 stripe_nr;
fce3bb9a
LD
5225 u64 stripe_nr_orig;
5226 u64 stripe_nr_end;
53b381b3 5227 u64 stripe_len;
9d644a62 5228 u32 stripe_index;
cea9e445 5229 int i;
de11cc12 5230 int ret = 0;
f2d8d74d 5231 int num_stripes;
a236aed1 5232 int max_errors = 0;
2c8cdd6e 5233 int tgtdev_indexes = 0;
a1d3c478 5234 struct btrfs_bio *bbio = NULL;
472262f3
SB
5235 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5236 int dev_replace_is_ongoing = 0;
5237 int num_alloc_stripes;
ad6d620e
SB
5238 int patch_the_first_stripe_for_dev_replace = 0;
5239 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5240 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5241
890871be 5242 read_lock(&em_tree->lock);
0b86a832 5243 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5244 read_unlock(&em_tree->lock);
f2d8d74d 5245
3b951516 5246 if (!em) {
c2cf52eb 5247 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5248 logical, *length);
9bb91873
JB
5249 return -EINVAL;
5250 }
5251
5252 if (em->start > logical || em->start + em->len < logical) {
5253 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
351fd353 5254 "found %Lu-%Lu", logical, em->start,
9bb91873 5255 em->start + em->len);
7d3d1744 5256 free_extent_map(em);
9bb91873 5257 return -EINVAL;
3b951516 5258 }
0b86a832 5259
95617d69 5260 map = em->map_lookup;
0b86a832 5261 offset = logical - em->start;
593060d7 5262
53b381b3 5263 stripe_len = map->stripe_len;
593060d7
CM
5264 stripe_nr = offset;
5265 /*
5266 * stripe_nr counts the total number of stripes we have to stride
5267 * to get to this block
5268 */
47c5713f 5269 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5270
53b381b3 5271 stripe_offset = stripe_nr * stripe_len;
593060d7
CM
5272 BUG_ON(offset < stripe_offset);
5273
5274 /* stripe_offset is the offset of this block in its stripe*/
5275 stripe_offset = offset - stripe_offset;
5276
53b381b3 5277 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5278 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5279 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5280 raid56_full_stripe_start = offset;
5281
5282 /* allow a write of a full stripe, but make sure we don't
5283 * allow straddling of stripes
5284 */
47c5713f
DS
5285 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5286 full_stripe_len);
53b381b3
DW
5287 raid56_full_stripe_start *= full_stripe_len;
5288 }
5289
5290 if (rw & REQ_DISCARD) {
5291 /* we don't discard raid56 yet */
ffe2d203 5292 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5293 ret = -EOPNOTSUPP;
5294 goto out;
5295 }
fce3bb9a 5296 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5297 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5298 u64 max_len;
5299 /* For writes to RAID[56], allow a full stripeset across all disks.
5300 For other RAID types and for RAID[56] reads, just allow a single
5301 stripe (on a single disk). */
ffe2d203 5302 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
53b381b3
DW
5303 (rw & REQ_WRITE)) {
5304 max_len = stripe_len * nr_data_stripes(map) -
5305 (offset - raid56_full_stripe_start);
5306 } else {
5307 /* we limit the length of each bio to what fits in a stripe */
5308 max_len = stripe_len - stripe_offset;
5309 }
5310 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5311 } else {
5312 *length = em->len - offset;
5313 }
f2d8d74d 5314
53b381b3
DW
5315 /* This is for when we're called from btrfs_merge_bio_hook() and all
5316 it cares about is the length */
a1d3c478 5317 if (!bbio_ret)
cea9e445
CM
5318 goto out;
5319
73beece9 5320 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5321 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5322 if (!dev_replace_is_ongoing)
73beece9
LB
5323 btrfs_dev_replace_unlock(dev_replace, 0);
5324 else
5325 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5326
ad6d620e
SB
5327 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5328 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5329 dev_replace->tgtdev != NULL) {
5330 /*
5331 * in dev-replace case, for repair case (that's the only
5332 * case where the mirror is selected explicitly when
5333 * calling btrfs_map_block), blocks left of the left cursor
5334 * can also be read from the target drive.
5335 * For REQ_GET_READ_MIRRORS, the target drive is added as
5336 * the last one to the array of stripes. For READ, it also
5337 * needs to be supported using the same mirror number.
5338 * If the requested block is not left of the left cursor,
5339 * EIO is returned. This can happen because btrfs_num_copies()
5340 * returns one more in the dev-replace case.
5341 */
5342 u64 tmp_length = *length;
5343 struct btrfs_bio *tmp_bbio = NULL;
5344 int tmp_num_stripes;
5345 u64 srcdev_devid = dev_replace->srcdev->devid;
5346 int index_srcdev = 0;
5347 int found = 0;
5348 u64 physical_of_found = 0;
5349
5350 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5351 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5352 if (ret) {
5353 WARN_ON(tmp_bbio != NULL);
5354 goto out;
5355 }
5356
5357 tmp_num_stripes = tmp_bbio->num_stripes;
5358 if (mirror_num > tmp_num_stripes) {
5359 /*
5360 * REQ_GET_READ_MIRRORS does not contain this
5361 * mirror, that means that the requested area
5362 * is not left of the left cursor
5363 */
5364 ret = -EIO;
6e9606d2 5365 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5366 goto out;
5367 }
5368
5369 /*
5370 * process the rest of the function using the mirror_num
5371 * of the source drive. Therefore look it up first.
5372 * At the end, patch the device pointer to the one of the
5373 * target drive.
5374 */
5375 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5376 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5377 continue;
5378
5379 /*
5380 * In case of DUP, in order to keep it simple, only add
5381 * the mirror with the lowest physical address
5382 */
5383 if (found &&
5384 physical_of_found <= tmp_bbio->stripes[i].physical)
5385 continue;
5386
5387 index_srcdev = i;
5388 found = 1;
5389 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5390 }
5391
94a97dfe
ZL
5392 btrfs_put_bbio(tmp_bbio);
5393
5394 if (!found) {
ad6d620e
SB
5395 WARN_ON(1);
5396 ret = -EIO;
ad6d620e
SB
5397 goto out;
5398 }
5399
94a97dfe
ZL
5400 mirror_num = index_srcdev + 1;
5401 patch_the_first_stripe_for_dev_replace = 1;
5402 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5403 } else if (mirror_num > map->num_stripes) {
5404 mirror_num = 0;
5405 }
5406
f2d8d74d 5407 num_stripes = 1;
cea9e445 5408 stripe_index = 0;
fce3bb9a 5409 stripe_nr_orig = stripe_nr;
fda2832f 5410 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5411 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5412 stripe_end_offset = stripe_nr_end * map->stripe_len -
5413 (offset + *length);
53b381b3 5414
fce3bb9a
LD
5415 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5416 if (rw & REQ_DISCARD)
5417 num_stripes = min_t(u64, map->num_stripes,
5418 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5419 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5420 &stripe_index);
28e1cc7d
MX
5421 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5422 mirror_num = 1;
fce3bb9a 5423 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
29a8d9a0 5424 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
f2d8d74d 5425 num_stripes = map->num_stripes;
2fff734f 5426 else if (mirror_num)
f188591e 5427 stripe_index = mirror_num - 1;
dfe25020 5428 else {
30d9861f 5429 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5430 map->num_stripes,
30d9861f
SB
5431 current->pid % map->num_stripes,
5432 dev_replace_is_ongoing);
a1d3c478 5433 mirror_num = stripe_index + 1;
dfe25020 5434 }
2fff734f 5435
611f0e00 5436 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
29a8d9a0 5437 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
f2d8d74d 5438 num_stripes = map->num_stripes;
a1d3c478 5439 } else if (mirror_num) {
f188591e 5440 stripe_index = mirror_num - 1;
a1d3c478
JS
5441 } else {
5442 mirror_num = 1;
5443 }
2fff734f 5444
321aecc6 5445 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5446 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5447
47c5713f 5448 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5449 stripe_index *= map->sub_stripes;
5450
29a8d9a0 5451 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
f2d8d74d 5452 num_stripes = map->sub_stripes;
fce3bb9a
LD
5453 else if (rw & REQ_DISCARD)
5454 num_stripes = min_t(u64, map->sub_stripes *
5455 (stripe_nr_end - stripe_nr_orig),
5456 map->num_stripes);
321aecc6
CM
5457 else if (mirror_num)
5458 stripe_index += mirror_num - 1;
dfe25020 5459 else {
3e74317a 5460 int old_stripe_index = stripe_index;
30d9861f
SB
5461 stripe_index = find_live_mirror(fs_info, map,
5462 stripe_index,
dfe25020 5463 map->sub_stripes, stripe_index +
30d9861f
SB
5464 current->pid % map->sub_stripes,
5465 dev_replace_is_ongoing);
3e74317a 5466 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5467 }
53b381b3 5468
ffe2d203 5469 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5470 if (need_raid_map &&
af8e2d1d
MX
5471 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5472 mirror_num > 1)) {
53b381b3 5473 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5474 stripe_nr = div_u64(raid56_full_stripe_start,
5475 stripe_len * nr_data_stripes(map));
53b381b3
DW
5476
5477 /* RAID[56] write or recovery. Return all stripes */
5478 num_stripes = map->num_stripes;
5479 max_errors = nr_parity_stripes(map);
5480
53b381b3
DW
5481 *length = map->stripe_len;
5482 stripe_index = 0;
5483 stripe_offset = 0;
5484 } else {
5485 /*
5486 * Mirror #0 or #1 means the original data block.
5487 * Mirror #2 is RAID5 parity block.
5488 * Mirror #3 is RAID6 Q block.
5489 */
47c5713f
DS
5490 stripe_nr = div_u64_rem(stripe_nr,
5491 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5492 if (mirror_num > 1)
5493 stripe_index = nr_data_stripes(map) +
5494 mirror_num - 2;
5495
5496 /* We distribute the parity blocks across stripes */
47c5713f
DS
5497 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5498 &stripe_index);
28e1cc7d
MX
5499 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5500 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5501 mirror_num = 1;
53b381b3 5502 }
8790d502
CM
5503 } else {
5504 /*
47c5713f
DS
5505 * after this, stripe_nr is the number of stripes on this
5506 * device we have to walk to find the data, and stripe_index is
5507 * the number of our device in the stripe array
8790d502 5508 */
47c5713f
DS
5509 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5510 &stripe_index);
a1d3c478 5511 mirror_num = stripe_index + 1;
8790d502 5512 }
593060d7 5513 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 5514
472262f3 5515 num_alloc_stripes = num_stripes;
ad6d620e
SB
5516 if (dev_replace_is_ongoing) {
5517 if (rw & (REQ_WRITE | REQ_DISCARD))
5518 num_alloc_stripes <<= 1;
5519 if (rw & REQ_GET_READ_MIRRORS)
5520 num_alloc_stripes++;
2c8cdd6e 5521 tgtdev_indexes = num_stripes;
ad6d620e 5522 }
2c8cdd6e 5523
6e9606d2 5524 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5525 if (!bbio) {
5526 ret = -ENOMEM;
5527 goto out;
5528 }
2c8cdd6e
MX
5529 if (dev_replace_is_ongoing)
5530 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5531
8e5cfb55 5532 /* build raid_map */
ffe2d203 5533 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8e5cfb55
ZL
5534 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5535 mirror_num > 1)) {
5536 u64 tmp;
9d644a62 5537 unsigned rot;
8e5cfb55
ZL
5538
5539 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5540 sizeof(struct btrfs_bio_stripe) *
5541 num_alloc_stripes +
5542 sizeof(int) * tgtdev_indexes);
5543
5544 /* Work out the disk rotation on this stripe-set */
47c5713f 5545 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5546
5547 /* Fill in the logical address of each stripe */
5548 tmp = stripe_nr * nr_data_stripes(map);
5549 for (i = 0; i < nr_data_stripes(map); i++)
5550 bbio->raid_map[(i+rot) % num_stripes] =
5551 em->start + (tmp + i) * map->stripe_len;
5552
5553 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5554 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5555 bbio->raid_map[(i+rot+1) % num_stripes] =
5556 RAID6_Q_STRIPE;
5557 }
5558
fce3bb9a 5559 if (rw & REQ_DISCARD) {
9d644a62
DS
5560 u32 factor = 0;
5561 u32 sub_stripes = 0;
ec9ef7a1
LZ
5562 u64 stripes_per_dev = 0;
5563 u32 remaining_stripes = 0;
b89203f7 5564 u32 last_stripe = 0;
ec9ef7a1
LZ
5565
5566 if (map->type &
5567 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5568 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5569 sub_stripes = 1;
5570 else
5571 sub_stripes = map->sub_stripes;
5572
5573 factor = map->num_stripes / sub_stripes;
5574 stripes_per_dev = div_u64_rem(stripe_nr_end -
5575 stripe_nr_orig,
5576 factor,
5577 &remaining_stripes);
b89203f7
LB
5578 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5579 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5580 }
5581
fce3bb9a 5582 for (i = 0; i < num_stripes; i++) {
a1d3c478 5583 bbio->stripes[i].physical =
f2d8d74d
CM
5584 map->stripes[stripe_index].physical +
5585 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5586 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5587
ec9ef7a1
LZ
5588 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5589 BTRFS_BLOCK_GROUP_RAID10)) {
5590 bbio->stripes[i].length = stripes_per_dev *
5591 map->stripe_len;
b89203f7 5592
ec9ef7a1
LZ
5593 if (i / sub_stripes < remaining_stripes)
5594 bbio->stripes[i].length +=
5595 map->stripe_len;
b89203f7
LB
5596
5597 /*
5598 * Special for the first stripe and
5599 * the last stripe:
5600 *
5601 * |-------|...|-------|
5602 * |----------|
5603 * off end_off
5604 */
ec9ef7a1 5605 if (i < sub_stripes)
a1d3c478 5606 bbio->stripes[i].length -=
fce3bb9a 5607 stripe_offset;
b89203f7
LB
5608
5609 if (stripe_index >= last_stripe &&
5610 stripe_index <= (last_stripe +
5611 sub_stripes - 1))
a1d3c478 5612 bbio->stripes[i].length -=
fce3bb9a 5613 stripe_end_offset;
b89203f7 5614
ec9ef7a1
LZ
5615 if (i == sub_stripes - 1)
5616 stripe_offset = 0;
fce3bb9a 5617 } else
a1d3c478 5618 bbio->stripes[i].length = *length;
fce3bb9a
LD
5619
5620 stripe_index++;
5621 if (stripe_index == map->num_stripes) {
5622 /* This could only happen for RAID0/10 */
5623 stripe_index = 0;
5624 stripe_nr++;
5625 }
5626 }
5627 } else {
5628 for (i = 0; i < num_stripes; i++) {
a1d3c478 5629 bbio->stripes[i].physical =
212a17ab
LT
5630 map->stripes[stripe_index].physical +
5631 stripe_offset +
5632 stripe_nr * map->stripe_len;
a1d3c478 5633 bbio->stripes[i].dev =
212a17ab 5634 map->stripes[stripe_index].dev;
fce3bb9a 5635 stripe_index++;
f2d8d74d 5636 }
593060d7 5637 }
de11cc12 5638
d20983b4
MX
5639 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5640 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5641
8e5cfb55
ZL
5642 if (bbio->raid_map)
5643 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5644
2c8cdd6e 5645 tgtdev_indexes = 0;
472262f3
SB
5646 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5647 dev_replace->tgtdev != NULL) {
5648 int index_where_to_add;
5649 u64 srcdev_devid = dev_replace->srcdev->devid;
5650
5651 /*
5652 * duplicate the write operations while the dev replace
5653 * procedure is running. Since the copying of the old disk
5654 * to the new disk takes place at run time while the
5655 * filesystem is mounted writable, the regular write
5656 * operations to the old disk have to be duplicated to go
5657 * to the new disk as well.
5658 * Note that device->missing is handled by the caller, and
5659 * that the write to the old disk is already set up in the
5660 * stripes array.
5661 */
5662 index_where_to_add = num_stripes;
5663 for (i = 0; i < num_stripes; i++) {
5664 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5665 /* write to new disk, too */
5666 struct btrfs_bio_stripe *new =
5667 bbio->stripes + index_where_to_add;
5668 struct btrfs_bio_stripe *old =
5669 bbio->stripes + i;
5670
5671 new->physical = old->physical;
5672 new->length = old->length;
5673 new->dev = dev_replace->tgtdev;
2c8cdd6e 5674 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5675 index_where_to_add++;
5676 max_errors++;
2c8cdd6e 5677 tgtdev_indexes++;
472262f3
SB
5678 }
5679 }
5680 num_stripes = index_where_to_add;
ad6d620e
SB
5681 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5682 dev_replace->tgtdev != NULL) {
5683 u64 srcdev_devid = dev_replace->srcdev->devid;
5684 int index_srcdev = 0;
5685 int found = 0;
5686 u64 physical_of_found = 0;
5687
5688 /*
5689 * During the dev-replace procedure, the target drive can
5690 * also be used to read data in case it is needed to repair
5691 * a corrupt block elsewhere. This is possible if the
5692 * requested area is left of the left cursor. In this area,
5693 * the target drive is a full copy of the source drive.
5694 */
5695 for (i = 0; i < num_stripes; i++) {
5696 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5697 /*
5698 * In case of DUP, in order to keep it
5699 * simple, only add the mirror with the
5700 * lowest physical address
5701 */
5702 if (found &&
5703 physical_of_found <=
5704 bbio->stripes[i].physical)
5705 continue;
5706 index_srcdev = i;
5707 found = 1;
5708 physical_of_found = bbio->stripes[i].physical;
5709 }
5710 }
5711 if (found) {
258ece02 5712 if (physical_of_found + map->stripe_len <=
ad6d620e
SB
5713 dev_replace->cursor_left) {
5714 struct btrfs_bio_stripe *tgtdev_stripe =
5715 bbio->stripes + num_stripes;
5716
5717 tgtdev_stripe->physical = physical_of_found;
5718 tgtdev_stripe->length =
5719 bbio->stripes[index_srcdev].length;
5720 tgtdev_stripe->dev = dev_replace->tgtdev;
2c8cdd6e 5721 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5722
2c8cdd6e 5723 tgtdev_indexes++;
ad6d620e
SB
5724 num_stripes++;
5725 }
5726 }
472262f3
SB
5727 }
5728
de11cc12 5729 *bbio_ret = bbio;
10f11900 5730 bbio->map_type = map->type;
de11cc12
LZ
5731 bbio->num_stripes = num_stripes;
5732 bbio->max_errors = max_errors;
5733 bbio->mirror_num = mirror_num;
2c8cdd6e 5734 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5735
5736 /*
5737 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5738 * mirror_num == num_stripes + 1 && dev_replace target drive is
5739 * available as a mirror
5740 */
5741 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5742 WARN_ON(num_stripes > 1);
5743 bbio->stripes[0].dev = dev_replace->tgtdev;
5744 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5745 bbio->mirror_num = map->num_stripes + 1;
5746 }
cea9e445 5747out:
73beece9
LB
5748 if (dev_replace_is_ongoing) {
5749 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5750 btrfs_dev_replace_unlock(dev_replace, 0);
5751 }
0b86a832 5752 free_extent_map(em);
de11cc12 5753 return ret;
0b86a832
CM
5754}
5755
3ec706c8 5756int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
f2d8d74d 5757 u64 logical, u64 *length,
a1d3c478 5758 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5759{
3ec706c8 5760 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5761 mirror_num, 0);
f2d8d74d
CM
5762}
5763
af8e2d1d
MX
5764/* For Scrub/replace */
5765int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5766 u64 logical, u64 *length,
5767 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5768 int need_raid_map)
af8e2d1d
MX
5769{
5770 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
8e5cfb55 5771 mirror_num, need_raid_map);
af8e2d1d
MX
5772}
5773
a512bbf8
YZ
5774int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5775 u64 chunk_start, u64 physical, u64 devid,
5776 u64 **logical, int *naddrs, int *stripe_len)
5777{
5778 struct extent_map_tree *em_tree = &map_tree->map_tree;
5779 struct extent_map *em;
5780 struct map_lookup *map;
5781 u64 *buf;
5782 u64 bytenr;
5783 u64 length;
5784 u64 stripe_nr;
53b381b3 5785 u64 rmap_len;
a512bbf8
YZ
5786 int i, j, nr = 0;
5787
890871be 5788 read_lock(&em_tree->lock);
a512bbf8 5789 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5790 read_unlock(&em_tree->lock);
a512bbf8 5791
835d974f 5792 if (!em) {
efe120a0 5793 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
835d974f
JB
5794 chunk_start);
5795 return -EIO;
5796 }
5797
5798 if (em->start != chunk_start) {
efe120a0 5799 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
835d974f
JB
5800 em->start, chunk_start);
5801 free_extent_map(em);
5802 return -EIO;
5803 }
95617d69 5804 map = em->map_lookup;
a512bbf8
YZ
5805
5806 length = em->len;
53b381b3
DW
5807 rmap_len = map->stripe_len;
5808
a512bbf8 5809 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5810 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5811 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5812 length = div_u64(length, map->num_stripes);
ffe2d203 5813 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5814 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5815 rmap_len = map->stripe_len * nr_data_stripes(map);
5816 }
a512bbf8 5817
31e818fe 5818 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5819 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5820
5821 for (i = 0; i < map->num_stripes; i++) {
5822 if (devid && map->stripes[i].dev->devid != devid)
5823 continue;
5824 if (map->stripes[i].physical > physical ||
5825 map->stripes[i].physical + length <= physical)
5826 continue;
5827
5828 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5829 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5830
5831 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5832 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5833 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5834 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5835 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5836 } /* else if RAID[56], multiply by nr_data_stripes().
5837 * Alternatively, just use rmap_len below instead of
5838 * map->stripe_len */
5839
5840 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5841 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5842 for (j = 0; j < nr; j++) {
5843 if (buf[j] == bytenr)
5844 break;
5845 }
934d375b
CM
5846 if (j == nr) {
5847 WARN_ON(nr >= map->num_stripes);
a512bbf8 5848 buf[nr++] = bytenr;
934d375b 5849 }
a512bbf8
YZ
5850 }
5851
a512bbf8
YZ
5852 *logical = buf;
5853 *naddrs = nr;
53b381b3 5854 *stripe_len = rmap_len;
a512bbf8
YZ
5855
5856 free_extent_map(em);
5857 return 0;
f2d8d74d
CM
5858}
5859
4246a0b6 5860static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5861{
326e1dbb
MS
5862 bio->bi_private = bbio->private;
5863 bio->bi_end_io = bbio->end_io;
4246a0b6 5864 bio_endio(bio);
326e1dbb 5865
6e9606d2 5866 btrfs_put_bbio(bbio);
8408c716
MX
5867}
5868
4246a0b6 5869static void btrfs_end_bio(struct bio *bio)
8790d502 5870{
9be3395b 5871 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5872 int is_orig_bio = 0;
8790d502 5873
4246a0b6 5874 if (bio->bi_error) {
a1d3c478 5875 atomic_inc(&bbio->error);
4246a0b6 5876 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5877 unsigned int stripe_index =
9be3395b 5878 btrfs_io_bio(bio)->stripe_index;
65f53338 5879 struct btrfs_device *dev;
442a4f63
SB
5880
5881 BUG_ON(stripe_index >= bbio->num_stripes);
5882 dev = bbio->stripes[stripe_index].dev;
597a60fa
SB
5883 if (dev->bdev) {
5884 if (bio->bi_rw & WRITE)
5885 btrfs_dev_stat_inc(dev,
5886 BTRFS_DEV_STAT_WRITE_ERRS);
5887 else
5888 btrfs_dev_stat_inc(dev,
5889 BTRFS_DEV_STAT_READ_ERRS);
5890 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5891 btrfs_dev_stat_inc(dev,
5892 BTRFS_DEV_STAT_FLUSH_ERRS);
5893 btrfs_dev_stat_print_on_error(dev);
5894 }
442a4f63
SB
5895 }
5896 }
8790d502 5897
a1d3c478 5898 if (bio == bbio->orig_bio)
7d2b4daa
CM
5899 is_orig_bio = 1;
5900
c404e0dc
MX
5901 btrfs_bio_counter_dec(bbio->fs_info);
5902
a1d3c478 5903 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
5904 if (!is_orig_bio) {
5905 bio_put(bio);
a1d3c478 5906 bio = bbio->orig_bio;
7d2b4daa 5907 }
c7b22bb1 5908
9be3395b 5909 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 5910 /* only send an error to the higher layers if it is
53b381b3 5911 * beyond the tolerance of the btrfs bio
a236aed1 5912 */
a1d3c478 5913 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 5914 bio->bi_error = -EIO;
5dbc8fca 5915 } else {
1259ab75
CM
5916 /*
5917 * this bio is actually up to date, we didn't
5918 * go over the max number of errors
5919 */
4246a0b6 5920 bio->bi_error = 0;
1259ab75 5921 }
c55f1396 5922
4246a0b6 5923 btrfs_end_bbio(bbio, bio);
7d2b4daa 5924 } else if (!is_orig_bio) {
8790d502
CM
5925 bio_put(bio);
5926 }
8790d502
CM
5927}
5928
8b712842
CM
5929/*
5930 * see run_scheduled_bios for a description of why bios are collected for
5931 * async submit.
5932 *
5933 * This will add one bio to the pending list for a device and make sure
5934 * the work struct is scheduled.
5935 */
48a3b636
ES
5936static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5937 struct btrfs_device *device,
5938 int rw, struct bio *bio)
8b712842
CM
5939{
5940 int should_queue = 1;
ffbd517d 5941 struct btrfs_pending_bios *pending_bios;
8b712842 5942
53b381b3 5943 if (device->missing || !device->bdev) {
4246a0b6 5944 bio_io_error(bio);
53b381b3
DW
5945 return;
5946 }
5947
8b712842 5948 /* don't bother with additional async steps for reads, right now */
7b6d91da 5949 if (!(rw & REQ_WRITE)) {
492bb6de 5950 bio_get(bio);
21adbd5c 5951 btrfsic_submit_bio(rw, bio);
492bb6de 5952 bio_put(bio);
143bede5 5953 return;
8b712842
CM
5954 }
5955
5956 /*
0986fe9e 5957 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
5958 * higher layers. Otherwise, the async bio makes it appear we have
5959 * made progress against dirty pages when we've really just put it
5960 * on a queue for later
5961 */
0986fe9e 5962 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 5963 WARN_ON(bio->bi_next);
8b712842
CM
5964 bio->bi_next = NULL;
5965 bio->bi_rw |= rw;
5966
5967 spin_lock(&device->io_lock);
7b6d91da 5968 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
5969 pending_bios = &device->pending_sync_bios;
5970 else
5971 pending_bios = &device->pending_bios;
8b712842 5972
ffbd517d
CM
5973 if (pending_bios->tail)
5974 pending_bios->tail->bi_next = bio;
8b712842 5975
ffbd517d
CM
5976 pending_bios->tail = bio;
5977 if (!pending_bios->head)
5978 pending_bios->head = bio;
8b712842
CM
5979 if (device->running_pending)
5980 should_queue = 0;
5981
5982 spin_unlock(&device->io_lock);
5983
5984 if (should_queue)
a8c93d4e
QW
5985 btrfs_queue_work(root->fs_info->submit_workers,
5986 &device->work);
8b712842
CM
5987}
5988
de1ee92a
JB
5989static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5990 struct bio *bio, u64 physical, int dev_nr,
5991 int rw, int async)
5992{
5993 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5994
5995 bio->bi_private = bbio;
9be3395b 5996 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 5997 bio->bi_end_io = btrfs_end_bio;
4f024f37 5998 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
5999#ifdef DEBUG
6000 {
6001 struct rcu_string *name;
6002
6003 rcu_read_lock();
6004 name = rcu_dereference(dev->name);
d1423248 6005 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
de1ee92a 6006 "(%s id %llu), size=%u\n", rw,
1b6e4469
FF
6007 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6008 name->str, dev->devid, bio->bi_iter.bi_size);
de1ee92a
JB
6009 rcu_read_unlock();
6010 }
6011#endif
6012 bio->bi_bdev = dev->bdev;
c404e0dc
MX
6013
6014 btrfs_bio_counter_inc_noblocked(root->fs_info);
6015
de1ee92a 6016 if (async)
53b381b3 6017 btrfs_schedule_bio(root, dev, rw, bio);
de1ee92a
JB
6018 else
6019 btrfsic_submit_bio(rw, bio);
6020}
6021
de1ee92a
JB
6022static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6023{
6024 atomic_inc(&bbio->error);
6025 if (atomic_dec_and_test(&bbio->stripes_pending)) {
8408c716
MX
6026 /* Shoud be the original bio. */
6027 WARN_ON(bio != bbio->orig_bio);
6028
9be3395b 6029 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6030 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6031 bio->bi_error = -EIO;
6032 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6033 }
6034}
6035
f188591e 6036int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 6037 int mirror_num, int async_submit)
0b86a832 6038{
0b86a832 6039 struct btrfs_device *dev;
8790d502 6040 struct bio *first_bio = bio;
4f024f37 6041 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6042 u64 length = 0;
6043 u64 map_length;
0b86a832 6044 int ret;
08da757d
ZL
6045 int dev_nr;
6046 int total_devs;
a1d3c478 6047 struct btrfs_bio *bbio = NULL;
0b86a832 6048
4f024f37 6049 length = bio->bi_iter.bi_size;
0b86a832 6050 map_length = length;
cea9e445 6051
c404e0dc 6052 btrfs_bio_counter_inc_blocked(root->fs_info);
53b381b3 6053 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
8e5cfb55 6054 mirror_num, 1);
c404e0dc
MX
6055 if (ret) {
6056 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6057 return ret;
c404e0dc 6058 }
cea9e445 6059
a1d3c478 6060 total_devs = bbio->num_stripes;
53b381b3
DW
6061 bbio->orig_bio = first_bio;
6062 bbio->private = first_bio->bi_private;
6063 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6064 bbio->fs_info = root->fs_info;
53b381b3
DW
6065 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6066
ad1ba2a0
ZL
6067 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6068 ((rw & WRITE) || (mirror_num > 1))) {
53b381b3
DW
6069 /* In this case, map_length has been set to the length of
6070 a single stripe; not the whole write */
6071 if (rw & WRITE) {
8e5cfb55 6072 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6073 } else {
8e5cfb55 6074 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6075 mirror_num, 1);
53b381b3 6076 }
4245215d 6077
c404e0dc
MX
6078 btrfs_bio_counter_dec(root->fs_info);
6079 return ret;
53b381b3
DW
6080 }
6081
cea9e445 6082 if (map_length < length) {
c2cf52eb 6083 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
c1c9ff7c 6084 logical, length, map_length);
cea9e445
CM
6085 BUG();
6086 }
a1d3c478 6087
08da757d 6088 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a
JB
6089 dev = bbio->stripes[dev_nr].dev;
6090 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6091 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6092 continue;
6093 }
6094
a1d3c478 6095 if (dev_nr < total_devs - 1) {
9be3395b 6096 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6097 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6098 } else
a1d3c478 6099 bio = first_bio;
de1ee92a
JB
6100
6101 submit_stripe_bio(root, bbio, bio,
6102 bbio->stripes[dev_nr].physical, dev_nr, rw,
6103 async_submit);
8790d502 6104 }
c404e0dc 6105 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6106 return 0;
6107}
6108
aa1b8cd4 6109struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6110 u8 *uuid, u8 *fsid)
0b86a832 6111{
2b82032c
YZ
6112 struct btrfs_device *device;
6113 struct btrfs_fs_devices *cur_devices;
6114
aa1b8cd4 6115 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6116 while (cur_devices) {
6117 if (!fsid ||
6118 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6119 device = __find_device(&cur_devices->devices,
6120 devid, uuid);
6121 if (device)
6122 return device;
6123 }
6124 cur_devices = cur_devices->seed;
6125 }
6126 return NULL;
0b86a832
CM
6127}
6128
dfe25020 6129static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6130 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6131 u64 devid, u8 *dev_uuid)
6132{
6133 struct btrfs_device *device;
dfe25020 6134
12bd2fc0
ID
6135 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6136 if (IS_ERR(device))
7cbd8a83 6137 return NULL;
12bd2fc0
ID
6138
6139 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6140 device->fs_devices = fs_devices;
dfe25020 6141 fs_devices->num_devices++;
12bd2fc0
ID
6142
6143 device->missing = 1;
cd02dca5 6144 fs_devices->missing_devices++;
12bd2fc0 6145
dfe25020
CM
6146 return device;
6147}
6148
12bd2fc0
ID
6149/**
6150 * btrfs_alloc_device - allocate struct btrfs_device
6151 * @fs_info: used only for generating a new devid, can be NULL if
6152 * devid is provided (i.e. @devid != NULL).
6153 * @devid: a pointer to devid for this device. If NULL a new devid
6154 * is generated.
6155 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6156 * is generated.
6157 *
6158 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6159 * on error. Returned struct is not linked onto any lists and can be
6160 * destroyed with kfree() right away.
6161 */
6162struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6163 const u64 *devid,
6164 const u8 *uuid)
6165{
6166 struct btrfs_device *dev;
6167 u64 tmp;
6168
fae7f21c 6169 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6170 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6171
6172 dev = __alloc_device();
6173 if (IS_ERR(dev))
6174 return dev;
6175
6176 if (devid)
6177 tmp = *devid;
6178 else {
6179 int ret;
6180
6181 ret = find_next_devid(fs_info, &tmp);
6182 if (ret) {
6183 kfree(dev);
6184 return ERR_PTR(ret);
6185 }
6186 }
6187 dev->devid = tmp;
6188
6189 if (uuid)
6190 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6191 else
6192 generate_random_uuid(dev->uuid);
6193
9e0af237
LB
6194 btrfs_init_work(&dev->work, btrfs_submit_helper,
6195 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6196
6197 return dev;
6198}
6199
0b86a832
CM
6200static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6201 struct extent_buffer *leaf,
6202 struct btrfs_chunk *chunk)
6203{
6204 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6205 struct map_lookup *map;
6206 struct extent_map *em;
6207 u64 logical;
6208 u64 length;
f04b772b 6209 u64 stripe_len;
0b86a832 6210 u64 devid;
a443755f 6211 u8 uuid[BTRFS_UUID_SIZE];
593060d7 6212 int num_stripes;
0b86a832 6213 int ret;
593060d7 6214 int i;
0b86a832 6215
e17cade2
CM
6216 logical = key->offset;
6217 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6218 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6219 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6220 /* Validation check */
6221 if (!num_stripes) {
6222 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6223 num_stripes);
6224 return -EIO;
6225 }
6226 if (!IS_ALIGNED(logical, root->sectorsize)) {
6227 btrfs_err(root->fs_info,
6228 "invalid chunk logical %llu", logical);
6229 return -EIO;
6230 }
6231 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6232 btrfs_err(root->fs_info,
6233 "invalid chunk length %llu", length);
6234 return -EIO;
6235 }
6236 if (!is_power_of_2(stripe_len)) {
6237 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6238 stripe_len);
6239 return -EIO;
6240 }
6241 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6242 btrfs_chunk_type(leaf, chunk)) {
6243 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6244 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6245 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6246 btrfs_chunk_type(leaf, chunk));
6247 return -EIO;
6248 }
a061fc8d 6249
890871be 6250 read_lock(&map_tree->map_tree.lock);
0b86a832 6251 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6252 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6253
6254 /* already mapped? */
6255 if (em && em->start <= logical && em->start + em->len > logical) {
6256 free_extent_map(em);
0b86a832
CM
6257 return 0;
6258 } else if (em) {
6259 free_extent_map(em);
6260 }
0b86a832 6261
172ddd60 6262 em = alloc_extent_map();
0b86a832
CM
6263 if (!em)
6264 return -ENOMEM;
593060d7 6265 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6266 if (!map) {
6267 free_extent_map(em);
6268 return -ENOMEM;
6269 }
6270
298a8f9c 6271 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6272 em->map_lookup = map;
0b86a832
CM
6273 em->start = logical;
6274 em->len = length;
70c8a91c 6275 em->orig_start = 0;
0b86a832 6276 em->block_start = 0;
c8b97818 6277 em->block_len = em->len;
0b86a832 6278
593060d7
CM
6279 map->num_stripes = num_stripes;
6280 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6281 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6282 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6283 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6284 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6285 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6286 for (i = 0; i < num_stripes; i++) {
6287 map->stripes[i].physical =
6288 btrfs_stripe_offset_nr(leaf, chunk, i);
6289 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6290 read_extent_buffer(leaf, uuid, (unsigned long)
6291 btrfs_stripe_dev_uuid_nr(chunk, i),
6292 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6293 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6294 uuid, NULL);
dfe25020 6295 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
6296 free_extent_map(em);
6297 return -EIO;
6298 }
dfe25020
CM
6299 if (!map->stripes[i].dev) {
6300 map->stripes[i].dev =
5f375835
MX
6301 add_missing_dev(root, root->fs_info->fs_devices,
6302 devid, uuid);
dfe25020 6303 if (!map->stripes[i].dev) {
dfe25020
CM
6304 free_extent_map(em);
6305 return -EIO;
6306 }
816fcebe
AJ
6307 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6308 devid, uuid);
dfe25020
CM
6309 }
6310 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6311 }
6312
890871be 6313 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6314 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6315 write_unlock(&map_tree->map_tree.lock);
79787eaa 6316 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6317 free_extent_map(em);
6318
6319 return 0;
6320}
6321
143bede5 6322static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6323 struct btrfs_dev_item *dev_item,
6324 struct btrfs_device *device)
6325{
6326 unsigned long ptr;
0b86a832
CM
6327
6328 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6329 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6330 device->total_bytes = device->disk_total_bytes;
935e5cc9 6331 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6332 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6333 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6334 device->type = btrfs_device_type(leaf, dev_item);
6335 device->io_align = btrfs_device_io_align(leaf, dev_item);
6336 device->io_width = btrfs_device_io_width(leaf, dev_item);
6337 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6338 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6339 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6340
410ba3a2 6341 ptr = btrfs_device_uuid(dev_item);
e17cade2 6342 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6343}
6344
5f375835
MX
6345static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6346 u8 *fsid)
2b82032c
YZ
6347{
6348 struct btrfs_fs_devices *fs_devices;
6349 int ret;
6350
b367e47f 6351 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6352
6353 fs_devices = root->fs_info->fs_devices->seed;
6354 while (fs_devices) {
5f375835
MX
6355 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6356 return fs_devices;
6357
2b82032c
YZ
6358 fs_devices = fs_devices->seed;
6359 }
6360
6361 fs_devices = find_fsid(fsid);
6362 if (!fs_devices) {
5f375835
MX
6363 if (!btrfs_test_opt(root, DEGRADED))
6364 return ERR_PTR(-ENOENT);
6365
6366 fs_devices = alloc_fs_devices(fsid);
6367 if (IS_ERR(fs_devices))
6368 return fs_devices;
6369
6370 fs_devices->seeding = 1;
6371 fs_devices->opened = 1;
6372 return fs_devices;
2b82032c 6373 }
e4404d6e
YZ
6374
6375 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6376 if (IS_ERR(fs_devices))
6377 return fs_devices;
2b82032c 6378
97288f2c 6379 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6380 root->fs_info->bdev_holder);
48d28232
JL
6381 if (ret) {
6382 free_fs_devices(fs_devices);
5f375835 6383 fs_devices = ERR_PTR(ret);
2b82032c 6384 goto out;
48d28232 6385 }
2b82032c
YZ
6386
6387 if (!fs_devices->seeding) {
6388 __btrfs_close_devices(fs_devices);
e4404d6e 6389 free_fs_devices(fs_devices);
5f375835 6390 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6391 goto out;
6392 }
6393
6394 fs_devices->seed = root->fs_info->fs_devices->seed;
6395 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6396out:
5f375835 6397 return fs_devices;
2b82032c
YZ
6398}
6399
0d81ba5d 6400static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6401 struct extent_buffer *leaf,
6402 struct btrfs_dev_item *dev_item)
6403{
5f375835 6404 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6405 struct btrfs_device *device;
6406 u64 devid;
6407 int ret;
2b82032c 6408 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6409 u8 dev_uuid[BTRFS_UUID_SIZE];
6410
0b86a832 6411 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6412 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6413 BTRFS_UUID_SIZE);
1473b24e 6414 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6415 BTRFS_UUID_SIZE);
6416
6417 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6418 fs_devices = open_seed_devices(root, fs_uuid);
6419 if (IS_ERR(fs_devices))
6420 return PTR_ERR(fs_devices);
2b82032c
YZ
6421 }
6422
aa1b8cd4 6423 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6424 if (!device) {
e4404d6e 6425 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
6426 return -EIO;
6427
5f375835
MX
6428 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6429 if (!device)
6430 return -ENOMEM;
33b97e43
AJ
6431 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6432 devid, dev_uuid);
5f375835
MX
6433 } else {
6434 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6435 return -EIO;
6436
6437 if(!device->bdev && !device->missing) {
cd02dca5
CM
6438 /*
6439 * this happens when a device that was properly setup
6440 * in the device info lists suddenly goes bad.
6441 * device->bdev is NULL, and so we have to set
6442 * device->missing to one here
6443 */
5f375835 6444 device->fs_devices->missing_devices++;
cd02dca5 6445 device->missing = 1;
2b82032c 6446 }
5f375835
MX
6447
6448 /* Move the device to its own fs_devices */
6449 if (device->fs_devices != fs_devices) {
6450 ASSERT(device->missing);
6451
6452 list_move(&device->dev_list, &fs_devices->devices);
6453 device->fs_devices->num_devices--;
6454 fs_devices->num_devices++;
6455
6456 device->fs_devices->missing_devices--;
6457 fs_devices->missing_devices++;
6458
6459 device->fs_devices = fs_devices;
6460 }
2b82032c
YZ
6461 }
6462
6463 if (device->fs_devices != root->fs_info->fs_devices) {
6464 BUG_ON(device->writeable);
6465 if (device->generation !=
6466 btrfs_device_generation(leaf, dev_item))
6467 return -EINVAL;
6324fbf3 6468 }
0b86a832
CM
6469
6470 fill_device_from_item(leaf, dev_item, device);
dfe25020 6471 device->in_fs_metadata = 1;
63a212ab 6472 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6473 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6474 spin_lock(&root->fs_info->free_chunk_lock);
6475 root->fs_info->free_chunk_space += device->total_bytes -
6476 device->bytes_used;
6477 spin_unlock(&root->fs_info->free_chunk_lock);
6478 }
0b86a832 6479 ret = 0;
0b86a832
CM
6480 return ret;
6481}
6482
e4404d6e 6483int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6484{
6c41761f 6485 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 6486 struct extent_buffer *sb;
0b86a832 6487 struct btrfs_disk_key *disk_key;
0b86a832 6488 struct btrfs_chunk *chunk;
1ffb22cf
DS
6489 u8 *array_ptr;
6490 unsigned long sb_array_offset;
84eed90f 6491 int ret = 0;
0b86a832
CM
6492 u32 num_stripes;
6493 u32 array_size;
6494 u32 len = 0;
1ffb22cf 6495 u32 cur_offset;
84eed90f 6496 struct btrfs_key key;
0b86a832 6497
a83fffb7
DS
6498 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6499 /*
6500 * This will create extent buffer of nodesize, superblock size is
6501 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6502 * overallocate but we can keep it as-is, only the first page is used.
6503 */
6504 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
a061fc8d
CM
6505 if (!sb)
6506 return -ENOMEM;
4db8c528 6507 set_extent_buffer_uptodate(sb);
85d4e461 6508 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
6509 /*
6510 * The sb extent buffer is artifical and just used to read the system array.
4db8c528 6511 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6512 * pages up-to-date when the page is larger: extent does not cover the
6513 * whole page and consequently check_page_uptodate does not find all
6514 * the page's extents up-to-date (the hole beyond sb),
6515 * write_extent_buffer then triggers a WARN_ON.
6516 *
6517 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6518 * but sb spans only this function. Add an explicit SetPageUptodate call
6519 * to silence the warning eg. on PowerPC 64.
6520 */
09cbfeaf 6521 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6522 SetPageUptodate(sb->pages[0]);
4008c04a 6523
a061fc8d 6524 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6525 array_size = btrfs_super_sys_array_size(super_copy);
6526
1ffb22cf
DS
6527 array_ptr = super_copy->sys_chunk_array;
6528 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6529 cur_offset = 0;
0b86a832 6530
1ffb22cf
DS
6531 while (cur_offset < array_size) {
6532 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6533 len = sizeof(*disk_key);
6534 if (cur_offset + len > array_size)
6535 goto out_short_read;
6536
0b86a832
CM
6537 btrfs_disk_key_to_cpu(&key, disk_key);
6538
1ffb22cf
DS
6539 array_ptr += len;
6540 sb_array_offset += len;
6541 cur_offset += len;
0b86a832 6542
0d81ba5d 6543 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6544 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6545 /*
6546 * At least one btrfs_chunk with one stripe must be
6547 * present, exact stripe count check comes afterwards
6548 */
6549 len = btrfs_chunk_item_size(1);
6550 if (cur_offset + len > array_size)
6551 goto out_short_read;
6552
6553 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7
DS
6554 if (!num_stripes) {
6555 printk(KERN_ERR
6556 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6557 num_stripes, cur_offset);
6558 ret = -EIO;
6559 break;
6560 }
6561
e3540eab
DS
6562 len = btrfs_chunk_item_size(num_stripes);
6563 if (cur_offset + len > array_size)
6564 goto out_short_read;
6565
0d81ba5d 6566 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6567 if (ret)
6568 break;
0b86a832 6569 } else {
93a3d467
DS
6570 printk(KERN_ERR
6571 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6572 (u32)key.type, cur_offset);
84eed90f
CM
6573 ret = -EIO;
6574 break;
0b86a832 6575 }
1ffb22cf
DS
6576 array_ptr += len;
6577 sb_array_offset += len;
6578 cur_offset += len;
0b86a832 6579 }
a061fc8d 6580 free_extent_buffer(sb);
84eed90f 6581 return ret;
e3540eab
DS
6582
6583out_short_read:
6584 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6585 len, cur_offset);
6586 free_extent_buffer(sb);
6587 return -EIO;
0b86a832
CM
6588}
6589
6590int btrfs_read_chunk_tree(struct btrfs_root *root)
6591{
6592 struct btrfs_path *path;
6593 struct extent_buffer *leaf;
6594 struct btrfs_key key;
6595 struct btrfs_key found_key;
6596 int ret;
6597 int slot;
6598
6599 root = root->fs_info->chunk_root;
6600
6601 path = btrfs_alloc_path();
6602 if (!path)
6603 return -ENOMEM;
6604
b367e47f
LZ
6605 mutex_lock(&uuid_mutex);
6606 lock_chunks(root);
6607
395927a9
FDBM
6608 /*
6609 * Read all device items, and then all the chunk items. All
6610 * device items are found before any chunk item (their object id
6611 * is smaller than the lowest possible object id for a chunk
6612 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6613 */
6614 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6615 key.offset = 0;
6616 key.type = 0;
0b86a832 6617 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6618 if (ret < 0)
6619 goto error;
d397712b 6620 while (1) {
0b86a832
CM
6621 leaf = path->nodes[0];
6622 slot = path->slots[0];
6623 if (slot >= btrfs_header_nritems(leaf)) {
6624 ret = btrfs_next_leaf(root, path);
6625 if (ret == 0)
6626 continue;
6627 if (ret < 0)
6628 goto error;
6629 break;
6630 }
6631 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6632 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6633 struct btrfs_dev_item *dev_item;
6634 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6635 struct btrfs_dev_item);
395927a9
FDBM
6636 ret = read_one_dev(root, leaf, dev_item);
6637 if (ret)
6638 goto error;
0b86a832
CM
6639 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6640 struct btrfs_chunk *chunk;
6641 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6642 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6643 if (ret)
6644 goto error;
0b86a832
CM
6645 }
6646 path->slots[0]++;
6647 }
0b86a832
CM
6648 ret = 0;
6649error:
b367e47f
LZ
6650 unlock_chunks(root);
6651 mutex_unlock(&uuid_mutex);
6652
2b82032c 6653 btrfs_free_path(path);
0b86a832
CM
6654 return ret;
6655}
442a4f63 6656
cb517eab
MX
6657void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6658{
6659 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6660 struct btrfs_device *device;
6661
29cc83f6
LB
6662 while (fs_devices) {
6663 mutex_lock(&fs_devices->device_list_mutex);
6664 list_for_each_entry(device, &fs_devices->devices, dev_list)
6665 device->dev_root = fs_info->dev_root;
6666 mutex_unlock(&fs_devices->device_list_mutex);
6667
6668 fs_devices = fs_devices->seed;
6669 }
cb517eab
MX
6670}
6671
733f4fbb
SB
6672static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6673{
6674 int i;
6675
6676 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6677 btrfs_dev_stat_reset(dev, i);
6678}
6679
6680int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6681{
6682 struct btrfs_key key;
6683 struct btrfs_key found_key;
6684 struct btrfs_root *dev_root = fs_info->dev_root;
6685 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6686 struct extent_buffer *eb;
6687 int slot;
6688 int ret = 0;
6689 struct btrfs_device *device;
6690 struct btrfs_path *path = NULL;
6691 int i;
6692
6693 path = btrfs_alloc_path();
6694 if (!path) {
6695 ret = -ENOMEM;
6696 goto out;
6697 }
6698
6699 mutex_lock(&fs_devices->device_list_mutex);
6700 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6701 int item_size;
6702 struct btrfs_dev_stats_item *ptr;
6703
242e2956
DS
6704 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6705 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6706 key.offset = device->devid;
6707 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6708 if (ret) {
733f4fbb
SB
6709 __btrfs_reset_dev_stats(device);
6710 device->dev_stats_valid = 1;
6711 btrfs_release_path(path);
6712 continue;
6713 }
6714 slot = path->slots[0];
6715 eb = path->nodes[0];
6716 btrfs_item_key_to_cpu(eb, &found_key, slot);
6717 item_size = btrfs_item_size_nr(eb, slot);
6718
6719 ptr = btrfs_item_ptr(eb, slot,
6720 struct btrfs_dev_stats_item);
6721
6722 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6723 if (item_size >= (1 + i) * sizeof(__le64))
6724 btrfs_dev_stat_set(device, i,
6725 btrfs_dev_stats_value(eb, ptr, i));
6726 else
6727 btrfs_dev_stat_reset(device, i);
6728 }
6729
6730 device->dev_stats_valid = 1;
6731 btrfs_dev_stat_print_on_load(device);
6732 btrfs_release_path(path);
6733 }
6734 mutex_unlock(&fs_devices->device_list_mutex);
6735
6736out:
6737 btrfs_free_path(path);
6738 return ret < 0 ? ret : 0;
6739}
6740
6741static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6742 struct btrfs_root *dev_root,
6743 struct btrfs_device *device)
6744{
6745 struct btrfs_path *path;
6746 struct btrfs_key key;
6747 struct extent_buffer *eb;
6748 struct btrfs_dev_stats_item *ptr;
6749 int ret;
6750 int i;
6751
242e2956
DS
6752 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6753 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6754 key.offset = device->devid;
6755
6756 path = btrfs_alloc_path();
6757 BUG_ON(!path);
6758 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6759 if (ret < 0) {
ecaeb14b
DS
6760 btrfs_warn_in_rcu(dev_root->fs_info,
6761 "error %d while searching for dev_stats item for device %s",
606686ee 6762 ret, rcu_str_deref(device->name));
733f4fbb
SB
6763 goto out;
6764 }
6765
6766 if (ret == 0 &&
6767 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6768 /* need to delete old one and insert a new one */
6769 ret = btrfs_del_item(trans, dev_root, path);
6770 if (ret != 0) {
ecaeb14b
DS
6771 btrfs_warn_in_rcu(dev_root->fs_info,
6772 "delete too small dev_stats item for device %s failed %d",
606686ee 6773 rcu_str_deref(device->name), ret);
733f4fbb
SB
6774 goto out;
6775 }
6776 ret = 1;
6777 }
6778
6779 if (ret == 1) {
6780 /* need to insert a new item */
6781 btrfs_release_path(path);
6782 ret = btrfs_insert_empty_item(trans, dev_root, path,
6783 &key, sizeof(*ptr));
6784 if (ret < 0) {
ecaeb14b
DS
6785 btrfs_warn_in_rcu(dev_root->fs_info,
6786 "insert dev_stats item for device %s failed %d",
6787 rcu_str_deref(device->name), ret);
733f4fbb
SB
6788 goto out;
6789 }
6790 }
6791
6792 eb = path->nodes[0];
6793 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6794 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6795 btrfs_set_dev_stats_value(eb, ptr, i,
6796 btrfs_dev_stat_read(device, i));
6797 btrfs_mark_buffer_dirty(eb);
6798
6799out:
6800 btrfs_free_path(path);
6801 return ret;
6802}
6803
6804/*
6805 * called from commit_transaction. Writes all changed device stats to disk.
6806 */
6807int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6808 struct btrfs_fs_info *fs_info)
6809{
6810 struct btrfs_root *dev_root = fs_info->dev_root;
6811 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6812 struct btrfs_device *device;
addc3fa7 6813 int stats_cnt;
733f4fbb
SB
6814 int ret = 0;
6815
6816 mutex_lock(&fs_devices->device_list_mutex);
6817 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 6818 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
6819 continue;
6820
addc3fa7 6821 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
6822 ret = update_dev_stat_item(trans, dev_root, device);
6823 if (!ret)
addc3fa7 6824 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
6825 }
6826 mutex_unlock(&fs_devices->device_list_mutex);
6827
6828 return ret;
6829}
6830
442a4f63
SB
6831void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6832{
6833 btrfs_dev_stat_inc(dev, index);
6834 btrfs_dev_stat_print_on_error(dev);
6835}
6836
48a3b636 6837static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 6838{
733f4fbb
SB
6839 if (!dev->dev_stats_valid)
6840 return;
b14af3b4
DS
6841 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6842 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6843 rcu_str_deref(dev->name),
442a4f63
SB
6844 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6845 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6846 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
6847 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6848 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 6849}
c11d2c23 6850
733f4fbb
SB
6851static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6852{
a98cdb85
SB
6853 int i;
6854
6855 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6856 if (btrfs_dev_stat_read(dev, i) != 0)
6857 break;
6858 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6859 return; /* all values == 0, suppress message */
6860
ecaeb14b
DS
6861 btrfs_info_in_rcu(dev->dev_root->fs_info,
6862 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 6863 rcu_str_deref(dev->name),
733f4fbb
SB
6864 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6865 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6866 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6867 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6868 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6869}
6870
c11d2c23 6871int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 6872 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
6873{
6874 struct btrfs_device *dev;
6875 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6876 int i;
6877
6878 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 6879 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
6880 mutex_unlock(&fs_devices->device_list_mutex);
6881
6882 if (!dev) {
efe120a0 6883 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
c11d2c23 6884 return -ENODEV;
733f4fbb 6885 } else if (!dev->dev_stats_valid) {
efe120a0 6886 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
733f4fbb 6887 return -ENODEV;
b27f7c0c 6888 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
6889 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6890 if (stats->nr_items > i)
6891 stats->values[i] =
6892 btrfs_dev_stat_read_and_reset(dev, i);
6893 else
6894 btrfs_dev_stat_reset(dev, i);
6895 }
6896 } else {
6897 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6898 if (stats->nr_items > i)
6899 stats->values[i] = btrfs_dev_stat_read(dev, i);
6900 }
6901 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6902 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6903 return 0;
6904}
a8a6dab7 6905
12b1c263 6906void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
6907{
6908 struct buffer_head *bh;
6909 struct btrfs_super_block *disk_super;
12b1c263 6910 int copy_num;
a8a6dab7 6911
12b1c263
AJ
6912 if (!bdev)
6913 return;
a8a6dab7 6914
12b1c263
AJ
6915 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6916 copy_num++) {
a8a6dab7 6917
12b1c263
AJ
6918 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6919 continue;
6920
6921 disk_super = (struct btrfs_super_block *)bh->b_data;
6922
6923 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6924 set_buffer_dirty(bh);
6925 sync_dirty_buffer(bh);
6926 brelse(bh);
6927 }
6928
6929 /* Notify udev that device has changed */
6930 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6931
6932 /* Update ctime/mtime for device path for libblkid */
6933 update_dev_time(device_path);
a8a6dab7 6934}
935e5cc9
MX
6935
6936/*
6937 * Update the size of all devices, which is used for writing out the
6938 * super blocks.
6939 */
6940void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6941{
6942 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6943 struct btrfs_device *curr, *next;
6944
6945 if (list_empty(&fs_devices->resized_devices))
6946 return;
6947
6948 mutex_lock(&fs_devices->device_list_mutex);
6949 lock_chunks(fs_info->dev_root);
6950 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6951 resized_list) {
6952 list_del_init(&curr->resized_list);
6953 curr->commit_total_bytes = curr->disk_total_bytes;
6954 }
6955 unlock_chunks(fs_info->dev_root);
6956 mutex_unlock(&fs_devices->device_list_mutex);
6957}
ce7213c7
MX
6958
6959/* Must be invoked during the transaction commit */
6960void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6961 struct btrfs_transaction *transaction)
6962{
6963 struct extent_map *em;
6964 struct map_lookup *map;
6965 struct btrfs_device *dev;
6966 int i;
6967
6968 if (list_empty(&transaction->pending_chunks))
6969 return;
6970
6971 /* In order to kick the device replace finish process */
6972 lock_chunks(root);
6973 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 6974 map = em->map_lookup;
ce7213c7
MX
6975
6976 for (i = 0; i < map->num_stripes; i++) {
6977 dev = map->stripes[i].dev;
6978 dev->commit_bytes_used = dev->bytes_used;
6979 }
6980 }
6981 unlock_chunks(root);
6982}
5a13f430
AJ
6983
6984void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6985{
6986 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6987 while (fs_devices) {
6988 fs_devices->fs_info = fs_info;
6989 fs_devices = fs_devices->seed;
6990 }
6991}
6992
6993void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
6994{
6995 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6996 while (fs_devices) {
6997 fs_devices->fs_info = NULL;
6998 fs_devices = fs_devices->seed;
6999 }
7000}
f190aa47 7001
87ad58c5 7002static void btrfs_close_one_device(struct btrfs_device *device)
f190aa47
AJ
7003{
7004 struct btrfs_fs_devices *fs_devices = device->fs_devices;
7005 struct btrfs_device *new_device;
7006 struct rcu_string *name;
7007
7008 if (device->bdev)
7009 fs_devices->open_devices--;
7010
7011 if (device->writeable &&
7012 device->devid != BTRFS_DEV_REPLACE_DEVID) {
7013 list_del_init(&device->dev_alloc_list);
7014 fs_devices->rw_devices--;
7015 }
7016
7017 if (device->missing)
7018 fs_devices->missing_devices--;
7019
7020 new_device = btrfs_alloc_device(NULL, &device->devid,
7021 device->uuid);
7022 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7023
7024 /* Safe because we are under uuid_mutex */
7025 if (device->name) {
7026 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7027 BUG_ON(!name); /* -ENOMEM */
7028 rcu_assign_pointer(new_device->name, name);
7029 }
7030
7031 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7032 new_device->fs_devices = device->fs_devices;
7033
7034 call_rcu(&device->rcu, free_device);
7035}