]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: make btrfs_rm_device() fail gracefully
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
593060d7 26#include <asm/div64.h>
4b4e25f2 27#include "compat.h"
0b86a832
CM
28#include "ctree.h"
29#include "extent_map.h"
30#include "disk-io.h"
31#include "transaction.h"
32#include "print-tree.h"
33#include "volumes.h"
8b712842 34#include "async-thread.h"
0b86a832 35
593060d7
CM
36struct map_lookup {
37 u64 type;
38 int io_align;
39 int io_width;
40 int stripe_len;
41 int sector_size;
42 int num_stripes;
321aecc6 43 int sub_stripes;
cea9e445 44 struct btrfs_bio_stripe stripes[];
593060d7
CM
45};
46
2b82032c
YZ
47static int init_first_rw_device(struct btrfs_trans_handle *trans,
48 struct btrfs_root *root,
49 struct btrfs_device *device);
50static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
593060d7 52#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 53 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 54
8a4b83cc
CM
55static DEFINE_MUTEX(uuid_mutex);
56static LIST_HEAD(fs_uuids);
57
a061fc8d
CM
58void btrfs_lock_volumes(void)
59{
60 mutex_lock(&uuid_mutex);
61}
62
63void btrfs_unlock_volumes(void)
64{
65 mutex_unlock(&uuid_mutex);
66}
67
7d9eb12c
CM
68static void lock_chunks(struct btrfs_root *root)
69{
7d9eb12c
CM
70 mutex_lock(&root->fs_info->chunk_mutex);
71}
72
73static void unlock_chunks(struct btrfs_root *root)
74{
7d9eb12c
CM
75 mutex_unlock(&root->fs_info->chunk_mutex);
76}
77
e4404d6e
YZ
78static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79{
80 struct btrfs_device *device;
81 WARN_ON(fs_devices->opened);
82 while (!list_empty(&fs_devices->devices)) {
83 device = list_entry(fs_devices->devices.next,
84 struct btrfs_device, dev_list);
85 list_del(&device->dev_list);
86 kfree(device->name);
87 kfree(device);
88 }
89 kfree(fs_devices);
90}
91
8a4b83cc
CM
92int btrfs_cleanup_fs_uuids(void)
93{
94 struct btrfs_fs_devices *fs_devices;
8a4b83cc 95
2b82032c
YZ
96 while (!list_empty(&fs_uuids)) {
97 fs_devices = list_entry(fs_uuids.next,
98 struct btrfs_fs_devices, list);
99 list_del(&fs_devices->list);
e4404d6e 100 free_fs_devices(fs_devices);
8a4b83cc
CM
101 }
102 return 0;
103}
104
a1b32a59
CM
105static noinline struct btrfs_device *__find_device(struct list_head *head,
106 u64 devid, u8 *uuid)
8a4b83cc
CM
107{
108 struct btrfs_device *dev;
8a4b83cc 109
c6e30871 110 list_for_each_entry(dev, head, dev_list) {
a443755f 111 if (dev->devid == devid &&
8f18cf13 112 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 113 return dev;
a443755f 114 }
8a4b83cc
CM
115 }
116 return NULL;
117}
118
a1b32a59 119static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 120{
8a4b83cc
CM
121 struct btrfs_fs_devices *fs_devices;
122
c6e30871 123 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
124 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125 return fs_devices;
126 }
127 return NULL;
128}
129
ffbd517d
CM
130static void requeue_list(struct btrfs_pending_bios *pending_bios,
131 struct bio *head, struct bio *tail)
132{
133
134 struct bio *old_head;
135
136 old_head = pending_bios->head;
137 pending_bios->head = head;
138 if (pending_bios->tail)
139 tail->bi_next = old_head;
140 else
141 pending_bios->tail = tail;
142}
143
8b712842
CM
144/*
145 * we try to collect pending bios for a device so we don't get a large
146 * number of procs sending bios down to the same device. This greatly
147 * improves the schedulers ability to collect and merge the bios.
148 *
149 * But, it also turns into a long list of bios to process and that is sure
150 * to eventually make the worker thread block. The solution here is to
151 * make some progress and then put this work struct back at the end of
152 * the list if the block device is congested. This way, multiple devices
153 * can make progress from a single worker thread.
154 */
d397712b 155static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
156{
157 struct bio *pending;
158 struct backing_dev_info *bdi;
b64a2851 159 struct btrfs_fs_info *fs_info;
ffbd517d 160 struct btrfs_pending_bios *pending_bios;
8b712842
CM
161 struct bio *tail;
162 struct bio *cur;
163 int again = 0;
ffbd517d
CM
164 unsigned long num_run;
165 unsigned long num_sync_run;
d644d8a1 166 unsigned long batch_run = 0;
b64a2851 167 unsigned long limit;
b765ead5 168 unsigned long last_waited = 0;
d84275c9 169 int force_reg = 0;
8b712842 170
bedf762b 171 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
172 fs_info = device->dev_root->fs_info;
173 limit = btrfs_async_submit_limit(fs_info);
174 limit = limit * 2 / 3;
175
ffbd517d
CM
176 /* we want to make sure that every time we switch from the sync
177 * list to the normal list, we unplug
178 */
179 num_sync_run = 0;
180
8b712842
CM
181loop:
182 spin_lock(&device->io_lock);
183
a6837051 184loop_lock:
d84275c9 185 num_run = 0;
ffbd517d 186
8b712842
CM
187 /* take all the bios off the list at once and process them
188 * later on (without the lock held). But, remember the
189 * tail and other pointers so the bios can be properly reinserted
190 * into the list if we hit congestion
191 */
d84275c9 192 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 193 pending_bios = &device->pending_sync_bios;
d84275c9
CM
194 force_reg = 1;
195 } else {
ffbd517d 196 pending_bios = &device->pending_bios;
d84275c9
CM
197 force_reg = 0;
198 }
ffbd517d
CM
199
200 pending = pending_bios->head;
201 tail = pending_bios->tail;
8b712842 202 WARN_ON(pending && !tail);
8b712842
CM
203
204 /*
205 * if pending was null this time around, no bios need processing
206 * at all and we can stop. Otherwise it'll loop back up again
207 * and do an additional check so no bios are missed.
208 *
209 * device->running_pending is used to synchronize with the
210 * schedule_bio code.
211 */
ffbd517d
CM
212 if (device->pending_sync_bios.head == NULL &&
213 device->pending_bios.head == NULL) {
8b712842
CM
214 again = 0;
215 device->running_pending = 0;
ffbd517d
CM
216 } else {
217 again = 1;
218 device->running_pending = 1;
8b712842 219 }
ffbd517d
CM
220
221 pending_bios->head = NULL;
222 pending_bios->tail = NULL;
223
8b712842
CM
224 spin_unlock(&device->io_lock);
225
ffbd517d
CM
226 /*
227 * if we're doing the regular priority list, make sure we unplug
228 * for any high prio bios we've sent down
229 */
230 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231 num_sync_run = 0;
232 blk_run_backing_dev(bdi, NULL);
233 }
234
d397712b 235 while (pending) {
ffbd517d
CM
236
237 rmb();
d84275c9
CM
238 /* we want to work on both lists, but do more bios on the
239 * sync list than the regular list
240 */
241 if ((num_run > 32 &&
242 pending_bios != &device->pending_sync_bios &&
243 device->pending_sync_bios.head) ||
244 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245 device->pending_bios.head)) {
ffbd517d
CM
246 spin_lock(&device->io_lock);
247 requeue_list(pending_bios, pending, tail);
248 goto loop_lock;
249 }
250
8b712842
CM
251 cur = pending;
252 pending = pending->bi_next;
253 cur->bi_next = NULL;
b64a2851
CM
254 atomic_dec(&fs_info->nr_async_bios);
255
256 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257 waitqueue_active(&fs_info->async_submit_wait))
258 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
259
260 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 261
7b6d91da 262 if (cur->bi_rw & REQ_SYNC)
ffbd517d
CM
263 num_sync_run++;
264
5ff7ba3a
CM
265 submit_bio(cur->bi_rw, cur);
266 num_run++;
267 batch_run++;
ffbd517d
CM
268 if (need_resched()) {
269 if (num_sync_run) {
270 blk_run_backing_dev(bdi, NULL);
271 num_sync_run = 0;
272 }
273 cond_resched();
274 }
8b712842
CM
275
276 /*
277 * we made progress, there is more work to do and the bdi
278 * is now congested. Back off and let other work structs
279 * run instead
280 */
57fd5a5f 281 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 282 fs_info->fs_devices->open_devices > 1) {
b765ead5 283 struct io_context *ioc;
8b712842 284
b765ead5
CM
285 ioc = current->io_context;
286
287 /*
288 * the main goal here is that we don't want to
289 * block if we're going to be able to submit
290 * more requests without blocking.
291 *
292 * This code does two great things, it pokes into
293 * the elevator code from a filesystem _and_
294 * it makes assumptions about how batching works.
295 */
296 if (ioc && ioc->nr_batch_requests > 0 &&
297 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298 (last_waited == 0 ||
299 ioc->last_waited == last_waited)) {
300 /*
301 * we want to go through our batch of
302 * requests and stop. So, we copy out
303 * the ioc->last_waited time and test
304 * against it before looping
305 */
306 last_waited = ioc->last_waited;
ffbd517d
CM
307 if (need_resched()) {
308 if (num_sync_run) {
309 blk_run_backing_dev(bdi, NULL);
310 num_sync_run = 0;
311 }
312 cond_resched();
313 }
b765ead5
CM
314 continue;
315 }
8b712842 316 spin_lock(&device->io_lock);
ffbd517d 317 requeue_list(pending_bios, pending, tail);
a6837051 318 device->running_pending = 1;
8b712842
CM
319
320 spin_unlock(&device->io_lock);
321 btrfs_requeue_work(&device->work);
322 goto done;
323 }
324 }
ffbd517d
CM
325
326 if (num_sync_run) {
327 num_sync_run = 0;
328 blk_run_backing_dev(bdi, NULL);
329 }
bedf762b
CM
330 /*
331 * IO has already been through a long path to get here. Checksumming,
332 * async helper threads, perhaps compression. We've done a pretty
333 * good job of collecting a batch of IO and should just unplug
334 * the device right away.
335 *
336 * This will help anyone who is waiting on the IO, they might have
337 * already unplugged, but managed to do so before the bio they
338 * cared about found its way down here.
339 */
340 blk_run_backing_dev(bdi, NULL);
51684082
CM
341
342 cond_resched();
343 if (again)
344 goto loop;
345
346 spin_lock(&device->io_lock);
347 if (device->pending_bios.head || device->pending_sync_bios.head)
348 goto loop_lock;
349 spin_unlock(&device->io_lock);
350
8b712842
CM
351done:
352 return 0;
353}
354
b2950863 355static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
356{
357 struct btrfs_device *device;
358
359 device = container_of(work, struct btrfs_device, work);
360 run_scheduled_bios(device);
361}
362
a1b32a59 363static noinline int device_list_add(const char *path,
8a4b83cc
CM
364 struct btrfs_super_block *disk_super,
365 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366{
367 struct btrfs_device *device;
368 struct btrfs_fs_devices *fs_devices;
369 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 370 char *name;
8a4b83cc
CM
371
372 fs_devices = find_fsid(disk_super->fsid);
373 if (!fs_devices) {
515dc322 374 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
375 if (!fs_devices)
376 return -ENOMEM;
377 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 378 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
379 list_add(&fs_devices->list, &fs_uuids);
380 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381 fs_devices->latest_devid = devid;
382 fs_devices->latest_trans = found_transid;
e5e9a520 383 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
384 device = NULL;
385 } else {
a443755f
CM
386 device = __find_device(&fs_devices->devices, devid,
387 disk_super->dev_item.uuid);
8a4b83cc
CM
388 }
389 if (!device) {
2b82032c
YZ
390 if (fs_devices->opened)
391 return -EBUSY;
392
8a4b83cc
CM
393 device = kzalloc(sizeof(*device), GFP_NOFS);
394 if (!device) {
395 /* we can safely leave the fs_devices entry around */
396 return -ENOMEM;
397 }
398 device->devid = devid;
8b712842 399 device->work.func = pending_bios_fn;
a443755f
CM
400 memcpy(device->uuid, disk_super->dev_item.uuid,
401 BTRFS_UUID_SIZE);
f2984462 402 device->barriers = 1;
b248a415 403 spin_lock_init(&device->io_lock);
8a4b83cc
CM
404 device->name = kstrdup(path, GFP_NOFS);
405 if (!device->name) {
406 kfree(device);
407 return -ENOMEM;
408 }
2b82032c 409 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520
CM
410
411 mutex_lock(&fs_devices->device_list_mutex);
8a4b83cc 412 list_add(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
413 mutex_unlock(&fs_devices->device_list_mutex);
414
2b82032c 415 device->fs_devices = fs_devices;
8a4b83cc 416 fs_devices->num_devices++;
cd02dca5 417 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
418 name = kstrdup(path, GFP_NOFS);
419 if (!name)
420 return -ENOMEM;
421 kfree(device->name);
422 device->name = name;
cd02dca5
CM
423 if (device->missing) {
424 fs_devices->missing_devices--;
425 device->missing = 0;
426 }
8a4b83cc
CM
427 }
428
429 if (found_transid > fs_devices->latest_trans) {
430 fs_devices->latest_devid = devid;
431 fs_devices->latest_trans = found_transid;
432 }
8a4b83cc
CM
433 *fs_devices_ret = fs_devices;
434 return 0;
435}
436
e4404d6e
YZ
437static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
438{
439 struct btrfs_fs_devices *fs_devices;
440 struct btrfs_device *device;
441 struct btrfs_device *orig_dev;
442
443 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
444 if (!fs_devices)
445 return ERR_PTR(-ENOMEM);
446
447 INIT_LIST_HEAD(&fs_devices->devices);
448 INIT_LIST_HEAD(&fs_devices->alloc_list);
449 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 450 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
451 fs_devices->latest_devid = orig->latest_devid;
452 fs_devices->latest_trans = orig->latest_trans;
453 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
454
e5e9a520 455 mutex_lock(&orig->device_list_mutex);
e4404d6e
YZ
456 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
457 device = kzalloc(sizeof(*device), GFP_NOFS);
458 if (!device)
459 goto error;
460
461 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
462 if (!device->name) {
463 kfree(device);
e4404d6e 464 goto error;
fd2696f3 465 }
e4404d6e
YZ
466
467 device->devid = orig_dev->devid;
468 device->work.func = pending_bios_fn;
469 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
470 device->barriers = 1;
471 spin_lock_init(&device->io_lock);
472 INIT_LIST_HEAD(&device->dev_list);
473 INIT_LIST_HEAD(&device->dev_alloc_list);
474
475 list_add(&device->dev_list, &fs_devices->devices);
476 device->fs_devices = fs_devices;
477 fs_devices->num_devices++;
478 }
e5e9a520 479 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
480 return fs_devices;
481error:
e5e9a520 482 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
483 free_fs_devices(fs_devices);
484 return ERR_PTR(-ENOMEM);
485}
486
dfe25020
CM
487int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
488{
c6e30871 489 struct btrfs_device *device, *next;
dfe25020
CM
490
491 mutex_lock(&uuid_mutex);
492again:
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 494 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
495 if (device->in_fs_metadata)
496 continue;
497
498 if (device->bdev) {
15916de8 499 close_bdev_exclusive(device->bdev, device->mode);
2b82032c
YZ
500 device->bdev = NULL;
501 fs_devices->open_devices--;
502 }
503 if (device->writeable) {
504 list_del_init(&device->dev_alloc_list);
505 device->writeable = 0;
506 fs_devices->rw_devices--;
507 }
e4404d6e
YZ
508 list_del_init(&device->dev_list);
509 fs_devices->num_devices--;
510 kfree(device->name);
511 kfree(device);
dfe25020 512 }
e5e9a520 513 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c
YZ
514
515 if (fs_devices->seed) {
516 fs_devices = fs_devices->seed;
2b82032c
YZ
517 goto again;
518 }
519
dfe25020
CM
520 mutex_unlock(&uuid_mutex);
521 return 0;
522}
a0af469b 523
2b82032c 524static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 525{
8a4b83cc 526 struct btrfs_device *device;
e4404d6e 527
2b82032c
YZ
528 if (--fs_devices->opened > 0)
529 return 0;
8a4b83cc 530
c6e30871 531 list_for_each_entry(device, &fs_devices->devices, dev_list) {
8a4b83cc 532 if (device->bdev) {
15916de8 533 close_bdev_exclusive(device->bdev, device->mode);
a0af469b 534 fs_devices->open_devices--;
8a4b83cc 535 }
2b82032c
YZ
536 if (device->writeable) {
537 list_del_init(&device->dev_alloc_list);
538 fs_devices->rw_devices--;
539 }
540
8a4b83cc 541 device->bdev = NULL;
2b82032c 542 device->writeable = 0;
dfe25020 543 device->in_fs_metadata = 0;
8a4b83cc 544 }
e4404d6e
YZ
545 WARN_ON(fs_devices->open_devices);
546 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
547 fs_devices->opened = 0;
548 fs_devices->seeding = 0;
2b82032c 549
8a4b83cc
CM
550 return 0;
551}
552
2b82032c
YZ
553int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
554{
e4404d6e 555 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
556 int ret;
557
558 mutex_lock(&uuid_mutex);
559 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
560 if (!fs_devices->opened) {
561 seed_devices = fs_devices->seed;
562 fs_devices->seed = NULL;
563 }
2b82032c 564 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
565
566 while (seed_devices) {
567 fs_devices = seed_devices;
568 seed_devices = fs_devices->seed;
569 __btrfs_close_devices(fs_devices);
570 free_fs_devices(fs_devices);
571 }
2b82032c
YZ
572 return ret;
573}
574
e4404d6e
YZ
575static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
576 fmode_t flags, void *holder)
8a4b83cc
CM
577{
578 struct block_device *bdev;
579 struct list_head *head = &fs_devices->devices;
8a4b83cc 580 struct btrfs_device *device;
a0af469b
CM
581 struct block_device *latest_bdev = NULL;
582 struct buffer_head *bh;
583 struct btrfs_super_block *disk_super;
584 u64 latest_devid = 0;
585 u64 latest_transid = 0;
a0af469b 586 u64 devid;
2b82032c 587 int seeding = 1;
a0af469b 588 int ret = 0;
8a4b83cc 589
c6e30871 590 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
591 if (device->bdev)
592 continue;
dfe25020
CM
593 if (!device->name)
594 continue;
595
15916de8 596 bdev = open_bdev_exclusive(device->name, flags, holder);
8a4b83cc 597 if (IS_ERR(bdev)) {
d397712b 598 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 599 goto error;
8a4b83cc 600 }
a061fc8d 601 set_blocksize(bdev, 4096);
a0af469b 602
a512bbf8 603 bh = btrfs_read_dev_super(bdev);
20b45077
DY
604 if (!bh) {
605 ret = -EINVAL;
a0af469b 606 goto error_close;
20b45077 607 }
a0af469b
CM
608
609 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 610 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
611 if (devid != device->devid)
612 goto error_brelse;
613
2b82032c
YZ
614 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615 BTRFS_UUID_SIZE))
616 goto error_brelse;
617
618 device->generation = btrfs_super_generation(disk_super);
619 if (!latest_transid || device->generation > latest_transid) {
a0af469b 620 latest_devid = devid;
2b82032c 621 latest_transid = device->generation;
a0af469b
CM
622 latest_bdev = bdev;
623 }
624
2b82032c
YZ
625 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626 device->writeable = 0;
627 } else {
628 device->writeable = !bdev_read_only(bdev);
629 seeding = 0;
630 }
631
8a4b83cc 632 device->bdev = bdev;
dfe25020 633 device->in_fs_metadata = 0;
15916de8
CM
634 device->mode = flags;
635
c289811c
CM
636 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637 fs_devices->rotating = 1;
638
a0af469b 639 fs_devices->open_devices++;
2b82032c
YZ
640 if (device->writeable) {
641 fs_devices->rw_devices++;
642 list_add(&device->dev_alloc_list,
643 &fs_devices->alloc_list);
644 }
a0af469b 645 continue;
a061fc8d 646
a0af469b
CM
647error_brelse:
648 brelse(bh);
649error_close:
97288f2c 650 close_bdev_exclusive(bdev, FMODE_READ);
a0af469b
CM
651error:
652 continue;
8a4b83cc 653 }
a0af469b
CM
654 if (fs_devices->open_devices == 0) {
655 ret = -EIO;
656 goto out;
657 }
2b82032c
YZ
658 fs_devices->seeding = seeding;
659 fs_devices->opened = 1;
a0af469b
CM
660 fs_devices->latest_bdev = latest_bdev;
661 fs_devices->latest_devid = latest_devid;
662 fs_devices->latest_trans = latest_transid;
2b82032c 663 fs_devices->total_rw_bytes = 0;
a0af469b 664out:
2b82032c
YZ
665 return ret;
666}
667
668int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 669 fmode_t flags, void *holder)
2b82032c
YZ
670{
671 int ret;
672
673 mutex_lock(&uuid_mutex);
674 if (fs_devices->opened) {
e4404d6e
YZ
675 fs_devices->opened++;
676 ret = 0;
2b82032c 677 } else {
15916de8 678 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 679 }
8a4b83cc 680 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
681 return ret;
682}
683
97288f2c 684int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
685 struct btrfs_fs_devices **fs_devices_ret)
686{
687 struct btrfs_super_block *disk_super;
688 struct block_device *bdev;
689 struct buffer_head *bh;
690 int ret;
691 u64 devid;
f2984462 692 u64 transid;
8a4b83cc
CM
693
694 mutex_lock(&uuid_mutex);
695
15916de8 696 bdev = open_bdev_exclusive(path, flags, holder);
8a4b83cc
CM
697
698 if (IS_ERR(bdev)) {
8a4b83cc
CM
699 ret = PTR_ERR(bdev);
700 goto error;
701 }
702
703 ret = set_blocksize(bdev, 4096);
704 if (ret)
705 goto error_close;
a512bbf8 706 bh = btrfs_read_dev_super(bdev);
8a4b83cc 707 if (!bh) {
20b45077 708 ret = -EINVAL;
8a4b83cc
CM
709 goto error_close;
710 }
711 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 712 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 713 transid = btrfs_super_generation(disk_super);
7ae9c09d 714 if (disk_super->label[0])
d397712b 715 printk(KERN_INFO "device label %s ", disk_super->label);
7ae9c09d
CM
716 else {
717 /* FIXME, make a readl uuid parser */
d397712b 718 printk(KERN_INFO "device fsid %llx-%llx ",
7ae9c09d
CM
719 *(unsigned long long *)disk_super->fsid,
720 *(unsigned long long *)(disk_super->fsid + 8));
721 }
119e10cf 722 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 723 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
724 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
725
8a4b83cc
CM
726 brelse(bh);
727error_close:
15916de8 728 close_bdev_exclusive(bdev, flags);
8a4b83cc
CM
729error:
730 mutex_unlock(&uuid_mutex);
731 return ret;
732}
0b86a832 733
6d07bcec
MX
734/* helper to account the used device space in the range */
735int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
736 u64 end, u64 *length)
737{
738 struct btrfs_key key;
739 struct btrfs_root *root = device->dev_root;
740 struct btrfs_dev_extent *dev_extent;
741 struct btrfs_path *path;
742 u64 extent_end;
743 int ret;
744 int slot;
745 struct extent_buffer *l;
746
747 *length = 0;
748
749 if (start >= device->total_bytes)
750 return 0;
751
752 path = btrfs_alloc_path();
753 if (!path)
754 return -ENOMEM;
755 path->reada = 2;
756
757 key.objectid = device->devid;
758 key.offset = start;
759 key.type = BTRFS_DEV_EXTENT_KEY;
760
761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762 if (ret < 0)
763 goto out;
764 if (ret > 0) {
765 ret = btrfs_previous_item(root, path, key.objectid, key.type);
766 if (ret < 0)
767 goto out;
768 }
769
770 while (1) {
771 l = path->nodes[0];
772 slot = path->slots[0];
773 if (slot >= btrfs_header_nritems(l)) {
774 ret = btrfs_next_leaf(root, path);
775 if (ret == 0)
776 continue;
777 if (ret < 0)
778 goto out;
779
780 break;
781 }
782 btrfs_item_key_to_cpu(l, &key, slot);
783
784 if (key.objectid < device->devid)
785 goto next;
786
787 if (key.objectid > device->devid)
788 break;
789
790 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
791 goto next;
792
793 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
794 extent_end = key.offset + btrfs_dev_extent_length(l,
795 dev_extent);
796 if (key.offset <= start && extent_end > end) {
797 *length = end - start + 1;
798 break;
799 } else if (key.offset <= start && extent_end > start)
800 *length += extent_end - start;
801 else if (key.offset > start && extent_end <= end)
802 *length += extent_end - key.offset;
803 else if (key.offset > start && key.offset <= end) {
804 *length += end - key.offset + 1;
805 break;
806 } else if (key.offset > end)
807 break;
808
809next:
810 path->slots[0]++;
811 }
812 ret = 0;
813out:
814 btrfs_free_path(path);
815 return ret;
816}
817
0b86a832 818/*
7bfc837d
MX
819 * find_free_dev_extent - find free space in the specified device
820 * @trans: transaction handler
821 * @device: the device which we search the free space in
822 * @num_bytes: the size of the free space that we need
823 * @start: store the start of the free space.
824 * @len: the size of the free space. that we find, or the size of the max
825 * free space if we don't find suitable free space
826 *
0b86a832
CM
827 * this uses a pretty simple search, the expectation is that it is
828 * called very infrequently and that a given device has a small number
829 * of extents
7bfc837d
MX
830 *
831 * @start is used to store the start of the free space if we find. But if we
832 * don't find suitable free space, it will be used to store the start position
833 * of the max free space.
834 *
835 * @len is used to store the size of the free space that we find.
836 * But if we don't find suitable free space, it is used to store the size of
837 * the max free space.
0b86a832 838 */
ba1bf481
JB
839int find_free_dev_extent(struct btrfs_trans_handle *trans,
840 struct btrfs_device *device, u64 num_bytes,
7bfc837d 841 u64 *start, u64 *len)
0b86a832
CM
842{
843 struct btrfs_key key;
844 struct btrfs_root *root = device->dev_root;
7bfc837d 845 struct btrfs_dev_extent *dev_extent;
2b82032c 846 struct btrfs_path *path;
7bfc837d
MX
847 u64 hole_size;
848 u64 max_hole_start;
849 u64 max_hole_size;
850 u64 extent_end;
851 u64 search_start;
0b86a832
CM
852 u64 search_end = device->total_bytes;
853 int ret;
7bfc837d 854 int slot;
0b86a832
CM
855 struct extent_buffer *l;
856
0b86a832
CM
857 /* FIXME use last free of some kind */
858
8a4b83cc
CM
859 /* we don't want to overwrite the superblock on the drive,
860 * so we make sure to start at an offset of at least 1MB
861 */
7bfc837d 862 search_start = 1024 * 1024;
8f18cf13 863
7bfc837d 864 if (root->fs_info->alloc_start + num_bytes <= search_end)
8f18cf13
CM
865 search_start = max(root->fs_info->alloc_start, search_start);
866
7bfc837d
MX
867 max_hole_start = search_start;
868 max_hole_size = 0;
869
870 if (search_start >= search_end) {
871 ret = -ENOSPC;
872 goto error;
873 }
874
875 path = btrfs_alloc_path();
876 if (!path) {
877 ret = -ENOMEM;
878 goto error;
879 }
880 path->reada = 2;
881
0b86a832
CM
882 key.objectid = device->devid;
883 key.offset = search_start;
884 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 885
0b86a832
CM
886 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
887 if (ret < 0)
7bfc837d 888 goto out;
1fcbac58
YZ
889 if (ret > 0) {
890 ret = btrfs_previous_item(root, path, key.objectid, key.type);
891 if (ret < 0)
7bfc837d 892 goto out;
1fcbac58 893 }
7bfc837d 894
0b86a832
CM
895 while (1) {
896 l = path->nodes[0];
897 slot = path->slots[0];
898 if (slot >= btrfs_header_nritems(l)) {
899 ret = btrfs_next_leaf(root, path);
900 if (ret == 0)
901 continue;
902 if (ret < 0)
7bfc837d
MX
903 goto out;
904
905 break;
0b86a832
CM
906 }
907 btrfs_item_key_to_cpu(l, &key, slot);
908
909 if (key.objectid < device->devid)
910 goto next;
911
912 if (key.objectid > device->devid)
7bfc837d 913 break;
0b86a832 914
7bfc837d
MX
915 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
916 goto next;
9779b72f 917
7bfc837d
MX
918 if (key.offset > search_start) {
919 hole_size = key.offset - search_start;
9779b72f 920
7bfc837d
MX
921 if (hole_size > max_hole_size) {
922 max_hole_start = search_start;
923 max_hole_size = hole_size;
924 }
925
926 /*
927 * If this free space is greater than which we need,
928 * it must be the max free space that we have found
929 * until now, so max_hole_start must point to the start
930 * of this free space and the length of this free space
931 * is stored in max_hole_size. Thus, we return
932 * max_hole_start and max_hole_size and go back to the
933 * caller.
934 */
935 if (hole_size >= num_bytes) {
936 ret = 0;
937 goto out;
0b86a832
CM
938 }
939 }
0b86a832 940
0b86a832 941 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
942 extent_end = key.offset + btrfs_dev_extent_length(l,
943 dev_extent);
944 if (extent_end > search_start)
945 search_start = extent_end;
0b86a832
CM
946next:
947 path->slots[0]++;
948 cond_resched();
949 }
0b86a832 950
7bfc837d
MX
951 hole_size = search_end- search_start;
952 if (hole_size > max_hole_size) {
953 max_hole_start = search_start;
954 max_hole_size = hole_size;
0b86a832 955 }
0b86a832 956
7bfc837d
MX
957 /* See above. */
958 if (hole_size < num_bytes)
959 ret = -ENOSPC;
960 else
961 ret = 0;
962
963out:
2b82032c 964 btrfs_free_path(path);
7bfc837d
MX
965error:
966 *start = max_hole_start;
b2117a39 967 if (len)
7bfc837d 968 *len = max_hole_size;
0b86a832
CM
969 return ret;
970}
971
b2950863 972static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
973 struct btrfs_device *device,
974 u64 start)
975{
976 int ret;
977 struct btrfs_path *path;
978 struct btrfs_root *root = device->dev_root;
979 struct btrfs_key key;
a061fc8d
CM
980 struct btrfs_key found_key;
981 struct extent_buffer *leaf = NULL;
982 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
983
984 path = btrfs_alloc_path();
985 if (!path)
986 return -ENOMEM;
987
988 key.objectid = device->devid;
989 key.offset = start;
990 key.type = BTRFS_DEV_EXTENT_KEY;
991
992 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
993 if (ret > 0) {
994 ret = btrfs_previous_item(root, path, key.objectid,
995 BTRFS_DEV_EXTENT_KEY);
996 BUG_ON(ret);
997 leaf = path->nodes[0];
998 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
999 extent = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_dev_extent);
1001 BUG_ON(found_key.offset > start || found_key.offset +
1002 btrfs_dev_extent_length(leaf, extent) < start);
1003 ret = 0;
1004 } else if (ret == 0) {
1005 leaf = path->nodes[0];
1006 extent = btrfs_item_ptr(leaf, path->slots[0],
1007 struct btrfs_dev_extent);
1008 }
8f18cf13
CM
1009 BUG_ON(ret);
1010
dfe25020
CM
1011 if (device->bytes_used > 0)
1012 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
1013 ret = btrfs_del_item(trans, root, path);
1014 BUG_ON(ret);
1015
1016 btrfs_free_path(path);
1017 return ret;
1018}
1019
2b82032c 1020int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1021 struct btrfs_device *device,
e17cade2 1022 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1023 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1024{
1025 int ret;
1026 struct btrfs_path *path;
1027 struct btrfs_root *root = device->dev_root;
1028 struct btrfs_dev_extent *extent;
1029 struct extent_buffer *leaf;
1030 struct btrfs_key key;
1031
dfe25020 1032 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1033 path = btrfs_alloc_path();
1034 if (!path)
1035 return -ENOMEM;
1036
0b86a832 1037 key.objectid = device->devid;
2b82032c 1038 key.offset = start;
0b86a832
CM
1039 key.type = BTRFS_DEV_EXTENT_KEY;
1040 ret = btrfs_insert_empty_item(trans, root, path, &key,
1041 sizeof(*extent));
1042 BUG_ON(ret);
1043
1044 leaf = path->nodes[0];
1045 extent = btrfs_item_ptr(leaf, path->slots[0],
1046 struct btrfs_dev_extent);
e17cade2
CM
1047 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1048 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1049 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1050
1051 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1052 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1053 BTRFS_UUID_SIZE);
1054
0b86a832
CM
1055 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1056 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1057 btrfs_free_path(path);
1058 return ret;
1059}
1060
a1b32a59
CM
1061static noinline int find_next_chunk(struct btrfs_root *root,
1062 u64 objectid, u64 *offset)
0b86a832
CM
1063{
1064 struct btrfs_path *path;
1065 int ret;
1066 struct btrfs_key key;
e17cade2 1067 struct btrfs_chunk *chunk;
0b86a832
CM
1068 struct btrfs_key found_key;
1069
1070 path = btrfs_alloc_path();
1071 BUG_ON(!path);
1072
e17cade2 1073 key.objectid = objectid;
0b86a832
CM
1074 key.offset = (u64)-1;
1075 key.type = BTRFS_CHUNK_ITEM_KEY;
1076
1077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1078 if (ret < 0)
1079 goto error;
1080
1081 BUG_ON(ret == 0);
1082
1083 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1084 if (ret) {
e17cade2 1085 *offset = 0;
0b86a832
CM
1086 } else {
1087 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1088 path->slots[0]);
e17cade2
CM
1089 if (found_key.objectid != objectid)
1090 *offset = 0;
1091 else {
1092 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1093 struct btrfs_chunk);
1094 *offset = found_key.offset +
1095 btrfs_chunk_length(path->nodes[0], chunk);
1096 }
0b86a832
CM
1097 }
1098 ret = 0;
1099error:
1100 btrfs_free_path(path);
1101 return ret;
1102}
1103
2b82032c 1104static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1105{
1106 int ret;
1107 struct btrfs_key key;
1108 struct btrfs_key found_key;
2b82032c
YZ
1109 struct btrfs_path *path;
1110
1111 root = root->fs_info->chunk_root;
1112
1113 path = btrfs_alloc_path();
1114 if (!path)
1115 return -ENOMEM;
0b86a832
CM
1116
1117 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1118 key.type = BTRFS_DEV_ITEM_KEY;
1119 key.offset = (u64)-1;
1120
1121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1122 if (ret < 0)
1123 goto error;
1124
1125 BUG_ON(ret == 0);
1126
1127 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1128 BTRFS_DEV_ITEM_KEY);
1129 if (ret) {
1130 *objectid = 1;
1131 } else {
1132 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1133 path->slots[0]);
1134 *objectid = found_key.offset + 1;
1135 }
1136 ret = 0;
1137error:
2b82032c 1138 btrfs_free_path(path);
0b86a832
CM
1139 return ret;
1140}
1141
1142/*
1143 * the device information is stored in the chunk root
1144 * the btrfs_device struct should be fully filled in
1145 */
1146int btrfs_add_device(struct btrfs_trans_handle *trans,
1147 struct btrfs_root *root,
1148 struct btrfs_device *device)
1149{
1150 int ret;
1151 struct btrfs_path *path;
1152 struct btrfs_dev_item *dev_item;
1153 struct extent_buffer *leaf;
1154 struct btrfs_key key;
1155 unsigned long ptr;
0b86a832
CM
1156
1157 root = root->fs_info->chunk_root;
1158
1159 path = btrfs_alloc_path();
1160 if (!path)
1161 return -ENOMEM;
1162
0b86a832
CM
1163 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1164 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1165 key.offset = device->devid;
0b86a832
CM
1166
1167 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1168 sizeof(*dev_item));
0b86a832
CM
1169 if (ret)
1170 goto out;
1171
1172 leaf = path->nodes[0];
1173 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1174
1175 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1176 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1177 btrfs_set_device_type(leaf, dev_item, device->type);
1178 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1179 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1180 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1181 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1182 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1183 btrfs_set_device_group(leaf, dev_item, 0);
1184 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1185 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1186 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1187
0b86a832 1188 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1189 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1190 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1191 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1192 btrfs_mark_buffer_dirty(leaf);
0b86a832 1193
2b82032c 1194 ret = 0;
0b86a832
CM
1195out:
1196 btrfs_free_path(path);
1197 return ret;
1198}
8f18cf13 1199
a061fc8d
CM
1200static int btrfs_rm_dev_item(struct btrfs_root *root,
1201 struct btrfs_device *device)
1202{
1203 int ret;
1204 struct btrfs_path *path;
a061fc8d 1205 struct btrfs_key key;
a061fc8d
CM
1206 struct btrfs_trans_handle *trans;
1207
1208 root = root->fs_info->chunk_root;
1209
1210 path = btrfs_alloc_path();
1211 if (!path)
1212 return -ENOMEM;
1213
a22285a6 1214 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1215 if (IS_ERR(trans)) {
1216 btrfs_free_path(path);
1217 return PTR_ERR(trans);
1218 }
a061fc8d
CM
1219 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1220 key.type = BTRFS_DEV_ITEM_KEY;
1221 key.offset = device->devid;
7d9eb12c 1222 lock_chunks(root);
a061fc8d
CM
1223
1224 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1225 if (ret < 0)
1226 goto out;
1227
1228 if (ret > 0) {
1229 ret = -ENOENT;
1230 goto out;
1231 }
1232
1233 ret = btrfs_del_item(trans, root, path);
1234 if (ret)
1235 goto out;
a061fc8d
CM
1236out:
1237 btrfs_free_path(path);
7d9eb12c 1238 unlock_chunks(root);
a061fc8d
CM
1239 btrfs_commit_transaction(trans, root);
1240 return ret;
1241}
1242
1243int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1244{
1245 struct btrfs_device *device;
2b82032c 1246 struct btrfs_device *next_device;
a061fc8d 1247 struct block_device *bdev;
dfe25020 1248 struct buffer_head *bh = NULL;
a061fc8d
CM
1249 struct btrfs_super_block *disk_super;
1250 u64 all_avail;
1251 u64 devid;
2b82032c
YZ
1252 u64 num_devices;
1253 u8 *dev_uuid;
a061fc8d
CM
1254 int ret = 0;
1255
a061fc8d 1256 mutex_lock(&uuid_mutex);
7d9eb12c 1257 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1258
1259 all_avail = root->fs_info->avail_data_alloc_bits |
1260 root->fs_info->avail_system_alloc_bits |
1261 root->fs_info->avail_metadata_alloc_bits;
1262
1263 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1264 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1265 printk(KERN_ERR "btrfs: unable to go below four devices "
1266 "on raid10\n");
a061fc8d
CM
1267 ret = -EINVAL;
1268 goto out;
1269 }
1270
1271 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1272 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1273 printk(KERN_ERR "btrfs: unable to go below two "
1274 "devices on raid1\n");
a061fc8d
CM
1275 ret = -EINVAL;
1276 goto out;
1277 }
1278
dfe25020 1279 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1280 struct list_head *devices;
1281 struct btrfs_device *tmp;
a061fc8d 1282
dfe25020
CM
1283 device = NULL;
1284 devices = &root->fs_info->fs_devices->devices;
e5e9a520 1285 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1286 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1287 if (tmp->in_fs_metadata && !tmp->bdev) {
1288 device = tmp;
1289 break;
1290 }
1291 }
e5e9a520 1292 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
dfe25020
CM
1293 bdev = NULL;
1294 bh = NULL;
1295 disk_super = NULL;
1296 if (!device) {
d397712b
CM
1297 printk(KERN_ERR "btrfs: no missing devices found to "
1298 "remove\n");
dfe25020
CM
1299 goto out;
1300 }
dfe25020 1301 } else {
97288f2c 1302 bdev = open_bdev_exclusive(device_path, FMODE_READ,
dfe25020
CM
1303 root->fs_info->bdev_holder);
1304 if (IS_ERR(bdev)) {
1305 ret = PTR_ERR(bdev);
1306 goto out;
1307 }
a061fc8d 1308
2b82032c 1309 set_blocksize(bdev, 4096);
a512bbf8 1310 bh = btrfs_read_dev_super(bdev);
dfe25020 1311 if (!bh) {
20b45077 1312 ret = -EINVAL;
dfe25020
CM
1313 goto error_close;
1314 }
1315 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1316 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1317 dev_uuid = disk_super->dev_item.uuid;
1318 device = btrfs_find_device(root, devid, dev_uuid,
1319 disk_super->fsid);
dfe25020
CM
1320 if (!device) {
1321 ret = -ENOENT;
1322 goto error_brelse;
1323 }
2b82032c 1324 }
dfe25020 1325
2b82032c 1326 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1327 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1328 "device\n");
2b82032c
YZ
1329 ret = -EINVAL;
1330 goto error_brelse;
1331 }
1332
1333 if (device->writeable) {
1334 list_del_init(&device->dev_alloc_list);
1335 root->fs_info->fs_devices->rw_devices--;
dfe25020 1336 }
a061fc8d
CM
1337
1338 ret = btrfs_shrink_device(device, 0);
1339 if (ret)
9b3517e9 1340 goto error_undo;
a061fc8d 1341
a061fc8d
CM
1342 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1343 if (ret)
9b3517e9 1344 goto error_undo;
a061fc8d 1345
2b82032c 1346 device->in_fs_metadata = 0;
e5e9a520
CM
1347
1348 /*
1349 * the device list mutex makes sure that we don't change
1350 * the device list while someone else is writing out all
1351 * the device supers.
1352 */
1353 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1354 list_del_init(&device->dev_list);
e5e9a520
CM
1355 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1356
e4404d6e 1357 device->fs_devices->num_devices--;
2b82032c 1358
cd02dca5
CM
1359 if (device->missing)
1360 root->fs_info->fs_devices->missing_devices--;
1361
2b82032c
YZ
1362 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1363 struct btrfs_device, dev_list);
1364 if (device->bdev == root->fs_info->sb->s_bdev)
1365 root->fs_info->sb->s_bdev = next_device->bdev;
1366 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1367 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1368
e4404d6e
YZ
1369 if (device->bdev) {
1370 close_bdev_exclusive(device->bdev, device->mode);
1371 device->bdev = NULL;
1372 device->fs_devices->open_devices--;
1373 }
1374
2b82032c
YZ
1375 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1376 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1377
e4404d6e
YZ
1378 if (device->fs_devices->open_devices == 0) {
1379 struct btrfs_fs_devices *fs_devices;
1380 fs_devices = root->fs_info->fs_devices;
1381 while (fs_devices) {
1382 if (fs_devices->seed == device->fs_devices)
1383 break;
1384 fs_devices = fs_devices->seed;
2b82032c 1385 }
e4404d6e
YZ
1386 fs_devices->seed = device->fs_devices->seed;
1387 device->fs_devices->seed = NULL;
1388 __btrfs_close_devices(device->fs_devices);
1389 free_fs_devices(device->fs_devices);
2b82032c
YZ
1390 }
1391
1392 /*
1393 * at this point, the device is zero sized. We want to
1394 * remove it from the devices list and zero out the old super
1395 */
1396 if (device->writeable) {
dfe25020
CM
1397 /* make sure this device isn't detected as part of
1398 * the FS anymore
1399 */
1400 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1401 set_buffer_dirty(bh);
1402 sync_dirty_buffer(bh);
dfe25020 1403 }
a061fc8d
CM
1404
1405 kfree(device->name);
1406 kfree(device);
1407 ret = 0;
a061fc8d
CM
1408
1409error_brelse:
1410 brelse(bh);
1411error_close:
dfe25020 1412 if (bdev)
97288f2c 1413 close_bdev_exclusive(bdev, FMODE_READ);
a061fc8d 1414out:
7d9eb12c 1415 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1416 mutex_unlock(&uuid_mutex);
a061fc8d 1417 return ret;
9b3517e9
ID
1418error_undo:
1419 if (device->writeable) {
1420 list_add(&device->dev_alloc_list,
1421 &root->fs_info->fs_devices->alloc_list);
1422 root->fs_info->fs_devices->rw_devices++;
1423 }
1424 goto error_brelse;
a061fc8d
CM
1425}
1426
2b82032c
YZ
1427/*
1428 * does all the dirty work required for changing file system's UUID.
1429 */
1430static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1431 struct btrfs_root *root)
1432{
1433 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1434 struct btrfs_fs_devices *old_devices;
e4404d6e 1435 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1436 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1437 struct btrfs_device *device;
1438 u64 super_flags;
1439
1440 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1441 if (!fs_devices->seeding)
2b82032c
YZ
1442 return -EINVAL;
1443
e4404d6e
YZ
1444 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1445 if (!seed_devices)
2b82032c
YZ
1446 return -ENOMEM;
1447
e4404d6e
YZ
1448 old_devices = clone_fs_devices(fs_devices);
1449 if (IS_ERR(old_devices)) {
1450 kfree(seed_devices);
1451 return PTR_ERR(old_devices);
2b82032c 1452 }
e4404d6e 1453
2b82032c
YZ
1454 list_add(&old_devices->list, &fs_uuids);
1455
e4404d6e
YZ
1456 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1457 seed_devices->opened = 1;
1458 INIT_LIST_HEAD(&seed_devices->devices);
1459 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1460 mutex_init(&seed_devices->device_list_mutex);
e4404d6e
YZ
1461 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1462 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1463 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1464 device->fs_devices = seed_devices;
1465 }
1466
2b82032c
YZ
1467 fs_devices->seeding = 0;
1468 fs_devices->num_devices = 0;
1469 fs_devices->open_devices = 0;
e4404d6e 1470 fs_devices->seed = seed_devices;
2b82032c
YZ
1471
1472 generate_random_uuid(fs_devices->fsid);
1473 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1474 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1475 super_flags = btrfs_super_flags(disk_super) &
1476 ~BTRFS_SUPER_FLAG_SEEDING;
1477 btrfs_set_super_flags(disk_super, super_flags);
1478
1479 return 0;
1480}
1481
1482/*
1483 * strore the expected generation for seed devices in device items.
1484 */
1485static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1486 struct btrfs_root *root)
1487{
1488 struct btrfs_path *path;
1489 struct extent_buffer *leaf;
1490 struct btrfs_dev_item *dev_item;
1491 struct btrfs_device *device;
1492 struct btrfs_key key;
1493 u8 fs_uuid[BTRFS_UUID_SIZE];
1494 u8 dev_uuid[BTRFS_UUID_SIZE];
1495 u64 devid;
1496 int ret;
1497
1498 path = btrfs_alloc_path();
1499 if (!path)
1500 return -ENOMEM;
1501
1502 root = root->fs_info->chunk_root;
1503 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1504 key.offset = 0;
1505 key.type = BTRFS_DEV_ITEM_KEY;
1506
1507 while (1) {
1508 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1509 if (ret < 0)
1510 goto error;
1511
1512 leaf = path->nodes[0];
1513next_slot:
1514 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1515 ret = btrfs_next_leaf(root, path);
1516 if (ret > 0)
1517 break;
1518 if (ret < 0)
1519 goto error;
1520 leaf = path->nodes[0];
1521 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1522 btrfs_release_path(root, path);
1523 continue;
1524 }
1525
1526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1527 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1528 key.type != BTRFS_DEV_ITEM_KEY)
1529 break;
1530
1531 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1532 struct btrfs_dev_item);
1533 devid = btrfs_device_id(leaf, dev_item);
1534 read_extent_buffer(leaf, dev_uuid,
1535 (unsigned long)btrfs_device_uuid(dev_item),
1536 BTRFS_UUID_SIZE);
1537 read_extent_buffer(leaf, fs_uuid,
1538 (unsigned long)btrfs_device_fsid(dev_item),
1539 BTRFS_UUID_SIZE);
1540 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1541 BUG_ON(!device);
1542
1543 if (device->fs_devices->seeding) {
1544 btrfs_set_device_generation(leaf, dev_item,
1545 device->generation);
1546 btrfs_mark_buffer_dirty(leaf);
1547 }
1548
1549 path->slots[0]++;
1550 goto next_slot;
1551 }
1552 ret = 0;
1553error:
1554 btrfs_free_path(path);
1555 return ret;
1556}
1557
788f20eb
CM
1558int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1559{
1560 struct btrfs_trans_handle *trans;
1561 struct btrfs_device *device;
1562 struct block_device *bdev;
788f20eb 1563 struct list_head *devices;
2b82032c 1564 struct super_block *sb = root->fs_info->sb;
788f20eb 1565 u64 total_bytes;
2b82032c 1566 int seeding_dev = 0;
788f20eb
CM
1567 int ret = 0;
1568
2b82032c
YZ
1569 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1570 return -EINVAL;
788f20eb 1571
15916de8 1572 bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
7f59203a
JB
1573 if (IS_ERR(bdev))
1574 return PTR_ERR(bdev);
a2135011 1575
2b82032c
YZ
1576 if (root->fs_info->fs_devices->seeding) {
1577 seeding_dev = 1;
1578 down_write(&sb->s_umount);
1579 mutex_lock(&uuid_mutex);
1580 }
1581
8c8bee1d 1582 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1583 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1584
788f20eb 1585 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1586 /*
1587 * we have the volume lock, so we don't need the extra
1588 * device list mutex while reading the list here.
1589 */
c6e30871 1590 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1591 if (device->bdev == bdev) {
1592 ret = -EEXIST;
2b82032c 1593 goto error;
788f20eb
CM
1594 }
1595 }
1596
1597 device = kzalloc(sizeof(*device), GFP_NOFS);
1598 if (!device) {
1599 /* we can safely leave the fs_devices entry around */
1600 ret = -ENOMEM;
2b82032c 1601 goto error;
788f20eb
CM
1602 }
1603
788f20eb
CM
1604 device->name = kstrdup(device_path, GFP_NOFS);
1605 if (!device->name) {
1606 kfree(device);
2b82032c
YZ
1607 ret = -ENOMEM;
1608 goto error;
788f20eb 1609 }
2b82032c
YZ
1610
1611 ret = find_next_devid(root, &device->devid);
1612 if (ret) {
67100f25 1613 kfree(device->name);
2b82032c
YZ
1614 kfree(device);
1615 goto error;
1616 }
1617
a22285a6 1618 trans = btrfs_start_transaction(root, 0);
98d5dc13 1619 if (IS_ERR(trans)) {
67100f25 1620 kfree(device->name);
98d5dc13
TI
1621 kfree(device);
1622 ret = PTR_ERR(trans);
1623 goto error;
1624 }
1625
2b82032c
YZ
1626 lock_chunks(root);
1627
1628 device->barriers = 1;
1629 device->writeable = 1;
1630 device->work.func = pending_bios_fn;
1631 generate_random_uuid(device->uuid);
1632 spin_lock_init(&device->io_lock);
1633 device->generation = trans->transid;
788f20eb
CM
1634 device->io_width = root->sectorsize;
1635 device->io_align = root->sectorsize;
1636 device->sector_size = root->sectorsize;
1637 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1638 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1639 device->dev_root = root->fs_info->dev_root;
1640 device->bdev = bdev;
dfe25020 1641 device->in_fs_metadata = 1;
15916de8 1642 device->mode = 0;
2b82032c 1643 set_blocksize(device->bdev, 4096);
788f20eb 1644
2b82032c
YZ
1645 if (seeding_dev) {
1646 sb->s_flags &= ~MS_RDONLY;
1647 ret = btrfs_prepare_sprout(trans, root);
1648 BUG_ON(ret);
1649 }
788f20eb 1650
2b82032c 1651 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1652
1653 /*
1654 * we don't want write_supers to jump in here with our device
1655 * half setup
1656 */
1657 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c
YZ
1658 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1659 list_add(&device->dev_alloc_list,
1660 &root->fs_info->fs_devices->alloc_list);
1661 root->fs_info->fs_devices->num_devices++;
1662 root->fs_info->fs_devices->open_devices++;
1663 root->fs_info->fs_devices->rw_devices++;
1664 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1665
c289811c
CM
1666 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1667 root->fs_info->fs_devices->rotating = 1;
1668
788f20eb
CM
1669 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1670 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1671 total_bytes + device->total_bytes);
1672
1673 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1674 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1675 total_bytes + 1);
e5e9a520 1676 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1677
2b82032c
YZ
1678 if (seeding_dev) {
1679 ret = init_first_rw_device(trans, root, device);
1680 BUG_ON(ret);
1681 ret = btrfs_finish_sprout(trans, root);
1682 BUG_ON(ret);
1683 } else {
1684 ret = btrfs_add_device(trans, root, device);
1685 }
1686
913d952e
CM
1687 /*
1688 * we've got more storage, clear any full flags on the space
1689 * infos
1690 */
1691 btrfs_clear_space_info_full(root->fs_info);
1692
7d9eb12c 1693 unlock_chunks(root);
2b82032c 1694 btrfs_commit_transaction(trans, root);
a2135011 1695
2b82032c
YZ
1696 if (seeding_dev) {
1697 mutex_unlock(&uuid_mutex);
1698 up_write(&sb->s_umount);
788f20eb 1699
2b82032c
YZ
1700 ret = btrfs_relocate_sys_chunks(root);
1701 BUG_ON(ret);
1702 }
1703out:
1704 mutex_unlock(&root->fs_info->volume_mutex);
1705 return ret;
1706error:
15916de8 1707 close_bdev_exclusive(bdev, 0);
2b82032c
YZ
1708 if (seeding_dev) {
1709 mutex_unlock(&uuid_mutex);
1710 up_write(&sb->s_umount);
1711 }
788f20eb
CM
1712 goto out;
1713}
1714
d397712b
CM
1715static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1716 struct btrfs_device *device)
0b86a832
CM
1717{
1718 int ret;
1719 struct btrfs_path *path;
1720 struct btrfs_root *root;
1721 struct btrfs_dev_item *dev_item;
1722 struct extent_buffer *leaf;
1723 struct btrfs_key key;
1724
1725 root = device->dev_root->fs_info->chunk_root;
1726
1727 path = btrfs_alloc_path();
1728 if (!path)
1729 return -ENOMEM;
1730
1731 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1732 key.type = BTRFS_DEV_ITEM_KEY;
1733 key.offset = device->devid;
1734
1735 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1736 if (ret < 0)
1737 goto out;
1738
1739 if (ret > 0) {
1740 ret = -ENOENT;
1741 goto out;
1742 }
1743
1744 leaf = path->nodes[0];
1745 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1746
1747 btrfs_set_device_id(leaf, dev_item, device->devid);
1748 btrfs_set_device_type(leaf, dev_item, device->type);
1749 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1750 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1751 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1752 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1753 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1754 btrfs_mark_buffer_dirty(leaf);
1755
1756out:
1757 btrfs_free_path(path);
1758 return ret;
1759}
1760
7d9eb12c 1761static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1762 struct btrfs_device *device, u64 new_size)
1763{
1764 struct btrfs_super_block *super_copy =
1765 &device->dev_root->fs_info->super_copy;
1766 u64 old_total = btrfs_super_total_bytes(super_copy);
1767 u64 diff = new_size - device->total_bytes;
1768
2b82032c
YZ
1769 if (!device->writeable)
1770 return -EACCES;
1771 if (new_size <= device->total_bytes)
1772 return -EINVAL;
1773
8f18cf13 1774 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1775 device->fs_devices->total_rw_bytes += diff;
1776
1777 device->total_bytes = new_size;
9779b72f 1778 device->disk_total_bytes = new_size;
4184ea7f
CM
1779 btrfs_clear_space_info_full(device->dev_root->fs_info);
1780
8f18cf13
CM
1781 return btrfs_update_device(trans, device);
1782}
1783
7d9eb12c
CM
1784int btrfs_grow_device(struct btrfs_trans_handle *trans,
1785 struct btrfs_device *device, u64 new_size)
1786{
1787 int ret;
1788 lock_chunks(device->dev_root);
1789 ret = __btrfs_grow_device(trans, device, new_size);
1790 unlock_chunks(device->dev_root);
1791 return ret;
1792}
1793
8f18cf13
CM
1794static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1795 struct btrfs_root *root,
1796 u64 chunk_tree, u64 chunk_objectid,
1797 u64 chunk_offset)
1798{
1799 int ret;
1800 struct btrfs_path *path;
1801 struct btrfs_key key;
1802
1803 root = root->fs_info->chunk_root;
1804 path = btrfs_alloc_path();
1805 if (!path)
1806 return -ENOMEM;
1807
1808 key.objectid = chunk_objectid;
1809 key.offset = chunk_offset;
1810 key.type = BTRFS_CHUNK_ITEM_KEY;
1811
1812 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1813 BUG_ON(ret);
1814
1815 ret = btrfs_del_item(trans, root, path);
1816 BUG_ON(ret);
1817
1818 btrfs_free_path(path);
1819 return 0;
1820}
1821
b2950863 1822static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1823 chunk_offset)
1824{
1825 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1826 struct btrfs_disk_key *disk_key;
1827 struct btrfs_chunk *chunk;
1828 u8 *ptr;
1829 int ret = 0;
1830 u32 num_stripes;
1831 u32 array_size;
1832 u32 len = 0;
1833 u32 cur;
1834 struct btrfs_key key;
1835
1836 array_size = btrfs_super_sys_array_size(super_copy);
1837
1838 ptr = super_copy->sys_chunk_array;
1839 cur = 0;
1840
1841 while (cur < array_size) {
1842 disk_key = (struct btrfs_disk_key *)ptr;
1843 btrfs_disk_key_to_cpu(&key, disk_key);
1844
1845 len = sizeof(*disk_key);
1846
1847 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1848 chunk = (struct btrfs_chunk *)(ptr + len);
1849 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1850 len += btrfs_chunk_item_size(num_stripes);
1851 } else {
1852 ret = -EIO;
1853 break;
1854 }
1855 if (key.objectid == chunk_objectid &&
1856 key.offset == chunk_offset) {
1857 memmove(ptr, ptr + len, array_size - (cur + len));
1858 array_size -= len;
1859 btrfs_set_super_sys_array_size(super_copy, array_size);
1860 } else {
1861 ptr += len;
1862 cur += len;
1863 }
1864 }
1865 return ret;
1866}
1867
b2950863 1868static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1869 u64 chunk_tree, u64 chunk_objectid,
1870 u64 chunk_offset)
1871{
1872 struct extent_map_tree *em_tree;
1873 struct btrfs_root *extent_root;
1874 struct btrfs_trans_handle *trans;
1875 struct extent_map *em;
1876 struct map_lookup *map;
1877 int ret;
1878 int i;
1879
1880 root = root->fs_info->chunk_root;
1881 extent_root = root->fs_info->extent_root;
1882 em_tree = &root->fs_info->mapping_tree.map_tree;
1883
ba1bf481
JB
1884 ret = btrfs_can_relocate(extent_root, chunk_offset);
1885 if (ret)
1886 return -ENOSPC;
1887
8f18cf13 1888 /* step one, relocate all the extents inside this chunk */
1a40e23b 1889 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1890 if (ret)
1891 return ret;
8f18cf13 1892
a22285a6 1893 trans = btrfs_start_transaction(root, 0);
98d5dc13 1894 BUG_ON(IS_ERR(trans));
8f18cf13 1895
7d9eb12c
CM
1896 lock_chunks(root);
1897
8f18cf13
CM
1898 /*
1899 * step two, delete the device extents and the
1900 * chunk tree entries
1901 */
890871be 1902 read_lock(&em_tree->lock);
8f18cf13 1903 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1904 read_unlock(&em_tree->lock);
8f18cf13 1905
a061fc8d
CM
1906 BUG_ON(em->start > chunk_offset ||
1907 em->start + em->len < chunk_offset);
8f18cf13
CM
1908 map = (struct map_lookup *)em->bdev;
1909
1910 for (i = 0; i < map->num_stripes; i++) {
1911 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1912 map->stripes[i].physical);
1913 BUG_ON(ret);
a061fc8d 1914
dfe25020
CM
1915 if (map->stripes[i].dev) {
1916 ret = btrfs_update_device(trans, map->stripes[i].dev);
1917 BUG_ON(ret);
1918 }
8f18cf13
CM
1919 }
1920 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1921 chunk_offset);
1922
1923 BUG_ON(ret);
1924
1925 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1926 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1927 BUG_ON(ret);
8f18cf13
CM
1928 }
1929
2b82032c
YZ
1930 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1931 BUG_ON(ret);
1932
890871be 1933 write_lock(&em_tree->lock);
2b82032c 1934 remove_extent_mapping(em_tree, em);
890871be 1935 write_unlock(&em_tree->lock);
2b82032c
YZ
1936
1937 kfree(map);
1938 em->bdev = NULL;
1939
1940 /* once for the tree */
1941 free_extent_map(em);
1942 /* once for us */
1943 free_extent_map(em);
1944
1945 unlock_chunks(root);
1946 btrfs_end_transaction(trans, root);
1947 return 0;
1948}
1949
1950static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1951{
1952 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1953 struct btrfs_path *path;
1954 struct extent_buffer *leaf;
1955 struct btrfs_chunk *chunk;
1956 struct btrfs_key key;
1957 struct btrfs_key found_key;
1958 u64 chunk_tree = chunk_root->root_key.objectid;
1959 u64 chunk_type;
ba1bf481
JB
1960 bool retried = false;
1961 int failed = 0;
2b82032c
YZ
1962 int ret;
1963
1964 path = btrfs_alloc_path();
1965 if (!path)
1966 return -ENOMEM;
1967
ba1bf481 1968again:
2b82032c
YZ
1969 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1970 key.offset = (u64)-1;
1971 key.type = BTRFS_CHUNK_ITEM_KEY;
1972
1973 while (1) {
1974 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1975 if (ret < 0)
1976 goto error;
1977 BUG_ON(ret == 0);
1978
1979 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1980 key.type);
1981 if (ret < 0)
1982 goto error;
1983 if (ret > 0)
1984 break;
1a40e23b 1985
2b82032c
YZ
1986 leaf = path->nodes[0];
1987 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1988
2b82032c
YZ
1989 chunk = btrfs_item_ptr(leaf, path->slots[0],
1990 struct btrfs_chunk);
1991 chunk_type = btrfs_chunk_type(leaf, chunk);
1992 btrfs_release_path(chunk_root, path);
8f18cf13 1993
2b82032c
YZ
1994 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1995 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1996 found_key.objectid,
1997 found_key.offset);
ba1bf481
JB
1998 if (ret == -ENOSPC)
1999 failed++;
2000 else if (ret)
2001 BUG();
2b82032c 2002 }
8f18cf13 2003
2b82032c
YZ
2004 if (found_key.offset == 0)
2005 break;
2006 key.offset = found_key.offset - 1;
2007 }
2008 ret = 0;
ba1bf481
JB
2009 if (failed && !retried) {
2010 failed = 0;
2011 retried = true;
2012 goto again;
2013 } else if (failed && retried) {
2014 WARN_ON(1);
2015 ret = -ENOSPC;
2016 }
2b82032c
YZ
2017error:
2018 btrfs_free_path(path);
2019 return ret;
8f18cf13
CM
2020}
2021
ec44a35c
CM
2022static u64 div_factor(u64 num, int factor)
2023{
2024 if (factor == 10)
2025 return num;
2026 num *= factor;
2027 do_div(num, 10);
2028 return num;
2029}
2030
ec44a35c
CM
2031int btrfs_balance(struct btrfs_root *dev_root)
2032{
2033 int ret;
ec44a35c
CM
2034 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2035 struct btrfs_device *device;
2036 u64 old_size;
2037 u64 size_to_free;
2038 struct btrfs_path *path;
2039 struct btrfs_key key;
ec44a35c
CM
2040 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2041 struct btrfs_trans_handle *trans;
2042 struct btrfs_key found_key;
2043
2b82032c
YZ
2044 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2045 return -EROFS;
ec44a35c 2046
6f88a440
BH
2047 if (!capable(CAP_SYS_ADMIN))
2048 return -EPERM;
2049
7d9eb12c 2050 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2051 dev_root = dev_root->fs_info->dev_root;
2052
ec44a35c 2053 /* step one make some room on all the devices */
c6e30871 2054 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2055 old_size = device->total_bytes;
2056 size_to_free = div_factor(old_size, 1);
2057 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2058 if (!device->writeable ||
2059 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2060 continue;
2061
2062 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2063 if (ret == -ENOSPC)
2064 break;
ec44a35c
CM
2065 BUG_ON(ret);
2066
a22285a6 2067 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2068 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2069
2070 ret = btrfs_grow_device(trans, device, old_size);
2071 BUG_ON(ret);
2072
2073 btrfs_end_transaction(trans, dev_root);
2074 }
2075
2076 /* step two, relocate all the chunks */
2077 path = btrfs_alloc_path();
2078 BUG_ON(!path);
2079
2080 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2081 key.offset = (u64)-1;
2082 key.type = BTRFS_CHUNK_ITEM_KEY;
2083
d397712b 2084 while (1) {
ec44a35c
CM
2085 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2086 if (ret < 0)
2087 goto error;
2088
2089 /*
2090 * this shouldn't happen, it means the last relocate
2091 * failed
2092 */
2093 if (ret == 0)
2094 break;
2095
2096 ret = btrfs_previous_item(chunk_root, path, 0,
2097 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 2098 if (ret)
ec44a35c 2099 break;
7d9eb12c 2100
ec44a35c
CM
2101 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2102 path->slots[0]);
2103 if (found_key.objectid != key.objectid)
2104 break;
7d9eb12c 2105
ec44a35c 2106 /* chunk zero is special */
ba1bf481 2107 if (found_key.offset == 0)
ec44a35c
CM
2108 break;
2109
7d9eb12c 2110 btrfs_release_path(chunk_root, path);
ec44a35c
CM
2111 ret = btrfs_relocate_chunk(chunk_root,
2112 chunk_root->root_key.objectid,
2113 found_key.objectid,
2114 found_key.offset);
ba1bf481
JB
2115 BUG_ON(ret && ret != -ENOSPC);
2116 key.offset = found_key.offset - 1;
ec44a35c
CM
2117 }
2118 ret = 0;
2119error:
2120 btrfs_free_path(path);
7d9eb12c 2121 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2122 return ret;
2123}
2124
8f18cf13
CM
2125/*
2126 * shrinking a device means finding all of the device extents past
2127 * the new size, and then following the back refs to the chunks.
2128 * The chunk relocation code actually frees the device extent
2129 */
2130int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2131{
2132 struct btrfs_trans_handle *trans;
2133 struct btrfs_root *root = device->dev_root;
2134 struct btrfs_dev_extent *dev_extent = NULL;
2135 struct btrfs_path *path;
2136 u64 length;
2137 u64 chunk_tree;
2138 u64 chunk_objectid;
2139 u64 chunk_offset;
2140 int ret;
2141 int slot;
ba1bf481
JB
2142 int failed = 0;
2143 bool retried = false;
8f18cf13
CM
2144 struct extent_buffer *l;
2145 struct btrfs_key key;
2146 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2147 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2148 u64 old_size = device->total_bytes;
8f18cf13
CM
2149 u64 diff = device->total_bytes - new_size;
2150
2b82032c
YZ
2151 if (new_size >= device->total_bytes)
2152 return -EINVAL;
8f18cf13
CM
2153
2154 path = btrfs_alloc_path();
2155 if (!path)
2156 return -ENOMEM;
2157
8f18cf13
CM
2158 path->reada = 2;
2159
7d9eb12c
CM
2160 lock_chunks(root);
2161
8f18cf13 2162 device->total_bytes = new_size;
2b82032c
YZ
2163 if (device->writeable)
2164 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 2165 unlock_chunks(root);
8f18cf13 2166
ba1bf481 2167again:
8f18cf13
CM
2168 key.objectid = device->devid;
2169 key.offset = (u64)-1;
2170 key.type = BTRFS_DEV_EXTENT_KEY;
2171
2172 while (1) {
2173 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2174 if (ret < 0)
2175 goto done;
2176
2177 ret = btrfs_previous_item(root, path, 0, key.type);
2178 if (ret < 0)
2179 goto done;
2180 if (ret) {
2181 ret = 0;
ba1bf481 2182 btrfs_release_path(root, path);
bf1fb512 2183 break;
8f18cf13
CM
2184 }
2185
2186 l = path->nodes[0];
2187 slot = path->slots[0];
2188 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2189
ba1bf481
JB
2190 if (key.objectid != device->devid) {
2191 btrfs_release_path(root, path);
bf1fb512 2192 break;
ba1bf481 2193 }
8f18cf13
CM
2194
2195 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2196 length = btrfs_dev_extent_length(l, dev_extent);
2197
ba1bf481
JB
2198 if (key.offset + length <= new_size) {
2199 btrfs_release_path(root, path);
d6397bae 2200 break;
ba1bf481 2201 }
8f18cf13
CM
2202
2203 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2204 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2205 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2206 btrfs_release_path(root, path);
2207
2208 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2209 chunk_offset);
ba1bf481 2210 if (ret && ret != -ENOSPC)
8f18cf13 2211 goto done;
ba1bf481
JB
2212 if (ret == -ENOSPC)
2213 failed++;
2214 key.offset -= 1;
2215 }
2216
2217 if (failed && !retried) {
2218 failed = 0;
2219 retried = true;
2220 goto again;
2221 } else if (failed && retried) {
2222 ret = -ENOSPC;
2223 lock_chunks(root);
2224
2225 device->total_bytes = old_size;
2226 if (device->writeable)
2227 device->fs_devices->total_rw_bytes += diff;
2228 unlock_chunks(root);
2229 goto done;
8f18cf13
CM
2230 }
2231
d6397bae 2232 /* Shrinking succeeded, else we would be at "done". */
a22285a6 2233 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
2234 if (IS_ERR(trans)) {
2235 ret = PTR_ERR(trans);
2236 goto done;
2237 }
2238
d6397bae
CB
2239 lock_chunks(root);
2240
2241 device->disk_total_bytes = new_size;
2242 /* Now btrfs_update_device() will change the on-disk size. */
2243 ret = btrfs_update_device(trans, device);
2244 if (ret) {
2245 unlock_chunks(root);
2246 btrfs_end_transaction(trans, root);
2247 goto done;
2248 }
2249 WARN_ON(diff > old_total);
2250 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2251 unlock_chunks(root);
2252 btrfs_end_transaction(trans, root);
8f18cf13
CM
2253done:
2254 btrfs_free_path(path);
2255 return ret;
2256}
2257
b2950863 2258static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2259 struct btrfs_root *root,
2260 struct btrfs_key *key,
2261 struct btrfs_chunk *chunk, int item_size)
2262{
2263 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2264 struct btrfs_disk_key disk_key;
2265 u32 array_size;
2266 u8 *ptr;
2267
2268 array_size = btrfs_super_sys_array_size(super_copy);
2269 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2270 return -EFBIG;
2271
2272 ptr = super_copy->sys_chunk_array + array_size;
2273 btrfs_cpu_key_to_disk(&disk_key, key);
2274 memcpy(ptr, &disk_key, sizeof(disk_key));
2275 ptr += sizeof(disk_key);
2276 memcpy(ptr, chunk, item_size);
2277 item_size += sizeof(disk_key);
2278 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2279 return 0;
2280}
2281
d397712b 2282static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
a1b32a59 2283 int num_stripes, int sub_stripes)
9b3f68b9
CM
2284{
2285 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2286 return calc_size;
2287 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2288 return calc_size * (num_stripes / sub_stripes);
2289 else
2290 return calc_size * num_stripes;
2291}
2292
b2117a39
MX
2293/* Used to sort the devices by max_avail(descending sort) */
2294int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
0b86a832 2295{
b2117a39
MX
2296 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2297 ((struct btrfs_device_info *)dev_info2)->max_avail)
2298 return -1;
2299 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2300 ((struct btrfs_device_info *)dev_info2)->max_avail)
2301 return 1;
2302 else
2303 return 0;
2304}
0b86a832 2305
b2117a39
MX
2306static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2307 int *num_stripes, int *min_stripes,
2308 int *sub_stripes)
2309{
2310 *num_stripes = 1;
2311 *min_stripes = 1;
2312 *sub_stripes = 0;
593060d7 2313
a40a90a0 2314 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
b2117a39
MX
2315 *num_stripes = fs_devices->rw_devices;
2316 *min_stripes = 2;
a40a90a0
CM
2317 }
2318 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
b2117a39
MX
2319 *num_stripes = 2;
2320 *min_stripes = 2;
a40a90a0 2321 }
8790d502 2322 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
f3eae7e8 2323 if (fs_devices->rw_devices < 2)
9b3f68b9 2324 return -ENOSPC;
b2117a39
MX
2325 *num_stripes = 2;
2326 *min_stripes = 2;
8790d502 2327 }
321aecc6 2328 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
b2117a39
MX
2329 *num_stripes = fs_devices->rw_devices;
2330 if (*num_stripes < 4)
321aecc6 2331 return -ENOSPC;
b2117a39
MX
2332 *num_stripes &= ~(u32)1;
2333 *sub_stripes = 2;
2334 *min_stripes = 4;
321aecc6 2335 }
9b3f68b9 2336
b2117a39
MX
2337 return 0;
2338}
2339
2340static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2341 u64 proposed_size, u64 type,
2342 int num_stripes, int small_stripe)
2343{
2344 int min_stripe_size = 1 * 1024 * 1024;
2345 u64 calc_size = proposed_size;
2346 u64 max_chunk_size = calc_size;
2347 int ncopies = 1;
2348
2349 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2350 BTRFS_BLOCK_GROUP_DUP |
2351 BTRFS_BLOCK_GROUP_RAID10))
2352 ncopies = 2;
2353
9b3f68b9
CM
2354 if (type & BTRFS_BLOCK_GROUP_DATA) {
2355 max_chunk_size = 10 * calc_size;
a40a90a0 2356 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9 2357 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
83d3c969 2358 max_chunk_size = 256 * 1024 * 1024;
a40a90a0
CM
2359 min_stripe_size = 32 * 1024 * 1024;
2360 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2361 calc_size = 8 * 1024 * 1024;
2362 max_chunk_size = calc_size * 2;
2363 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
2364 }
2365
2b82032c
YZ
2366 /* we don't want a chunk larger than 10% of writeable space */
2367 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2368 max_chunk_size);
9b3f68b9 2369
1974a3b4
MX
2370 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2371 calc_size = max_chunk_size * ncopies;
9b3f68b9 2372 do_div(calc_size, num_stripes);
b2117a39
MX
2373 do_div(calc_size, BTRFS_STRIPE_LEN);
2374 calc_size *= BTRFS_STRIPE_LEN;
9b3f68b9 2375 }
0cad8a11 2376
9b3f68b9 2377 /* we don't want tiny stripes */
b2117a39 2378 if (!small_stripe)
0cad8a11 2379 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2380
9f680ce0 2381 /*
b2117a39 2382 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
9f680ce0
CM
2383 * we end up with something bigger than a stripe
2384 */
b2117a39
MX
2385 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2386
2387 do_div(calc_size, BTRFS_STRIPE_LEN);
2388 calc_size *= BTRFS_STRIPE_LEN;
2389
2390 return calc_size;
2391}
2392
2393static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2394 int num_stripes)
2395{
2396 struct map_lookup *new;
2397 size_t len = map_lookup_size(num_stripes);
2398
2399 BUG_ON(map->num_stripes < num_stripes);
2400
2401 if (map->num_stripes == num_stripes)
2402 return map;
2403
2404 new = kmalloc(len, GFP_NOFS);
2405 if (!new) {
2406 /* just change map->num_stripes */
2407 map->num_stripes = num_stripes;
2408 return map;
2409 }
2410
2411 memcpy(new, map, len);
2412 new->num_stripes = num_stripes;
2413 kfree(map);
2414 return new;
2415}
2416
2417/*
2418 * helper to allocate device space from btrfs_device_info, in which we stored
2419 * max free space information of every device. It is used when we can not
2420 * allocate chunks by default size.
2421 *
2422 * By this helper, we can allocate a new chunk as larger as possible.
2423 */
2424static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2425 struct btrfs_fs_devices *fs_devices,
2426 struct btrfs_device_info *devices,
2427 int nr_device, u64 type,
2428 struct map_lookup **map_lookup,
2429 int min_stripes, u64 *stripe_size)
2430{
2431 int i, index, sort_again = 0;
2432 int min_devices = min_stripes;
2433 u64 max_avail, min_free;
2434 struct map_lookup *map = *map_lookup;
2435 int ret;
9f680ce0 2436
b2117a39
MX
2437 if (nr_device < min_stripes)
2438 return -ENOSPC;
2439
2440 btrfs_descending_sort_devices(devices, nr_device);
2441
2442 max_avail = devices[0].max_avail;
2443 if (!max_avail)
2444 return -ENOSPC;
2445
2446 for (i = 0; i < nr_device; i++) {
2447 /*
2448 * if dev_offset = 0, it means the free space of this device
2449 * is less than what we need, and we didn't search max avail
2450 * extent on this device, so do it now.
2451 */
2452 if (!devices[i].dev_offset) {
2453 ret = find_free_dev_extent(trans, devices[i].dev,
2454 max_avail,
2455 &devices[i].dev_offset,
2456 &devices[i].max_avail);
2457 if (ret != 0 && ret != -ENOSPC)
2458 return ret;
2459 sort_again = 1;
2460 }
2461 }
2462
2463 /* we update the max avail free extent of each devices, sort again */
2464 if (sort_again)
2465 btrfs_descending_sort_devices(devices, nr_device);
2466
2467 if (type & BTRFS_BLOCK_GROUP_DUP)
2468 min_devices = 1;
2469
2470 if (!devices[min_devices - 1].max_avail)
2471 return -ENOSPC;
2472
2473 max_avail = devices[min_devices - 1].max_avail;
2474 if (type & BTRFS_BLOCK_GROUP_DUP)
2475 do_div(max_avail, 2);
2476
2477 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2478 min_stripes, 1);
2479 if (type & BTRFS_BLOCK_GROUP_DUP)
2480 min_free = max_avail * 2;
2481 else
2482 min_free = max_avail;
2483
2484 if (min_free > devices[min_devices - 1].max_avail)
2485 return -ENOSPC;
2486
2487 map = __shrink_map_lookup_stripes(map, min_stripes);
2488 *stripe_size = max_avail;
2489
2490 index = 0;
2491 for (i = 0; i < min_stripes; i++) {
2492 map->stripes[i].dev = devices[index].dev;
2493 map->stripes[i].physical = devices[index].dev_offset;
2494 if (type & BTRFS_BLOCK_GROUP_DUP) {
2495 i++;
2496 map->stripes[i].dev = devices[index].dev;
2497 map->stripes[i].physical = devices[index].dev_offset +
2498 max_avail;
2499 }
2500 index++;
2501 }
2502 *map_lookup = map;
2503
2504 return 0;
2505}
2506
2507static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2508 struct btrfs_root *extent_root,
2509 struct map_lookup **map_ret,
2510 u64 *num_bytes, u64 *stripe_size,
2511 u64 start, u64 type)
2512{
2513 struct btrfs_fs_info *info = extent_root->fs_info;
2514 struct btrfs_device *device = NULL;
2515 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2516 struct list_head *cur;
2517 struct map_lookup *map;
2518 struct extent_map_tree *em_tree;
2519 struct extent_map *em;
2520 struct btrfs_device_info *devices_info;
2521 struct list_head private_devs;
2522 u64 calc_size = 1024 * 1024 * 1024;
2523 u64 min_free;
2524 u64 avail;
2525 u64 dev_offset;
2526 int num_stripes;
2527 int min_stripes;
2528 int sub_stripes;
2529 int min_devices; /* the min number of devices we need */
2530 int i;
2531 int ret;
2532 int index;
2533
2534 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2535 (type & BTRFS_BLOCK_GROUP_DUP)) {
2536 WARN_ON(1);
2537 type &= ~BTRFS_BLOCK_GROUP_DUP;
2538 }
2539 if (list_empty(&fs_devices->alloc_list))
2540 return -ENOSPC;
2541
2542 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2543 &min_stripes, &sub_stripes);
2544 if (ret)
2545 return ret;
2546
2547 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2548 GFP_NOFS);
2549 if (!devices_info)
2550 return -ENOMEM;
2551
2552 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2553 if (!map) {
2554 ret = -ENOMEM;
2555 goto error;
2556 }
2557 map->num_stripes = num_stripes;
9b3f68b9 2558
2b82032c 2559 cur = fs_devices->alloc_list.next;
6324fbf3 2560 index = 0;
b2117a39 2561 i = 0;
611f0e00 2562
b2117a39
MX
2563 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2564 num_stripes, 0);
2565
2566 if (type & BTRFS_BLOCK_GROUP_DUP) {
611f0e00 2567 min_free = calc_size * 2;
b2117a39
MX
2568 min_devices = 1;
2569 } else {
9b3f68b9 2570 min_free = calc_size;
b2117a39
MX
2571 min_devices = min_stripes;
2572 }
ad5bd91e 2573
2b82032c 2574 INIT_LIST_HEAD(&private_devs);
d397712b 2575 while (index < num_stripes) {
b3075717 2576 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2577 BUG_ON(!device->writeable);
dfe25020
CM
2578 if (device->total_bytes > device->bytes_used)
2579 avail = device->total_bytes - device->bytes_used;
2580 else
2581 avail = 0;
6324fbf3 2582 cur = cur->next;
8f18cf13 2583
dfe25020 2584 if (device->in_fs_metadata && avail >= min_free) {
b2117a39
MX
2585 ret = find_free_dev_extent(trans, device, min_free,
2586 &devices_info[i].dev_offset,
2587 &devices_info[i].max_avail);
8f18cf13
CM
2588 if (ret == 0) {
2589 list_move_tail(&device->dev_alloc_list,
2590 &private_devs);
2b82032c 2591 map->stripes[index].dev = device;
b2117a39
MX
2592 map->stripes[index].physical =
2593 devices_info[i].dev_offset;
611f0e00 2594 index++;
2b82032c
YZ
2595 if (type & BTRFS_BLOCK_GROUP_DUP) {
2596 map->stripes[index].dev = device;
2597 map->stripes[index].physical =
b2117a39
MX
2598 devices_info[i].dev_offset +
2599 calc_size;
8f18cf13 2600 index++;
2b82032c 2601 }
b2117a39
MX
2602 } else if (ret != -ENOSPC)
2603 goto error;
2604
2605 devices_info[i].dev = device;
2606 i++;
2607 } else if (device->in_fs_metadata &&
2608 avail >= BTRFS_STRIPE_LEN) {
2609 devices_info[i].dev = device;
2610 devices_info[i].max_avail = avail;
2611 i++;
2612 }
2613
2b82032c 2614 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2615 break;
2616 }
b2117a39 2617
2b82032c 2618 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2619 if (index < num_stripes) {
a40a90a0
CM
2620 if (index >= min_stripes) {
2621 num_stripes = index;
2622 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2623 num_stripes /= sub_stripes;
2624 num_stripes *= sub_stripes;
2625 }
b2117a39
MX
2626
2627 map = __shrink_map_lookup_stripes(map, num_stripes);
2628 } else if (i >= min_devices) {
2629 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2630 devices_info, i, type,
2631 &map, min_stripes,
2632 &calc_size);
2633 if (ret)
2634 goto error;
2635 } else {
2636 ret = -ENOSPC;
2637 goto error;
6324fbf3 2638 }
6324fbf3 2639 }
2b82032c 2640 map->sector_size = extent_root->sectorsize;
b2117a39
MX
2641 map->stripe_len = BTRFS_STRIPE_LEN;
2642 map->io_align = BTRFS_STRIPE_LEN;
2643 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 2644 map->type = type;
2b82032c 2645 map->sub_stripes = sub_stripes;
0b86a832 2646
2b82032c
YZ
2647 *map_ret = map;
2648 *stripe_size = calc_size;
2649 *num_bytes = chunk_bytes_by_type(type, calc_size,
b2117a39 2650 map->num_stripes, sub_stripes);
0b86a832 2651
2b82032c
YZ
2652 em = alloc_extent_map(GFP_NOFS);
2653 if (!em) {
b2117a39
MX
2654 ret = -ENOMEM;
2655 goto error;
593060d7 2656 }
2b82032c
YZ
2657 em->bdev = (struct block_device *)map;
2658 em->start = start;
2659 em->len = *num_bytes;
2660 em->block_start = 0;
2661 em->block_len = em->len;
593060d7 2662
2b82032c 2663 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 2664 write_lock(&em_tree->lock);
2b82032c 2665 ret = add_extent_mapping(em_tree, em);
890871be 2666 write_unlock(&em_tree->lock);
2b82032c
YZ
2667 BUG_ON(ret);
2668 free_extent_map(em);
0b86a832 2669
2b82032c
YZ
2670 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2671 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2672 start, *num_bytes);
2673 BUG_ON(ret);
611f0e00 2674
2b82032c
YZ
2675 index = 0;
2676 while (index < map->num_stripes) {
2677 device = map->stripes[index].dev;
2678 dev_offset = map->stripes[index].physical;
0b86a832
CM
2679
2680 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2681 info->chunk_root->root_key.objectid,
2682 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2683 start, dev_offset, calc_size);
0b86a832 2684 BUG_ON(ret);
2b82032c
YZ
2685 index++;
2686 }
2687
b2117a39 2688 kfree(devices_info);
2b82032c 2689 return 0;
b2117a39
MX
2690
2691error:
2692 kfree(map);
2693 kfree(devices_info);
2694 return ret;
2b82032c
YZ
2695}
2696
2697static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2698 struct btrfs_root *extent_root,
2699 struct map_lookup *map, u64 chunk_offset,
2700 u64 chunk_size, u64 stripe_size)
2701{
2702 u64 dev_offset;
2703 struct btrfs_key key;
2704 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2705 struct btrfs_device *device;
2706 struct btrfs_chunk *chunk;
2707 struct btrfs_stripe *stripe;
2708 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2709 int index = 0;
2710 int ret;
2711
2712 chunk = kzalloc(item_size, GFP_NOFS);
2713 if (!chunk)
2714 return -ENOMEM;
2715
2716 index = 0;
2717 while (index < map->num_stripes) {
2718 device = map->stripes[index].dev;
2719 device->bytes_used += stripe_size;
0b86a832
CM
2720 ret = btrfs_update_device(trans, device);
2721 BUG_ON(ret);
2b82032c
YZ
2722 index++;
2723 }
2724
2725 index = 0;
2726 stripe = &chunk->stripe;
2727 while (index < map->num_stripes) {
2728 device = map->stripes[index].dev;
2729 dev_offset = map->stripes[index].physical;
0b86a832 2730
e17cade2
CM
2731 btrfs_set_stack_stripe_devid(stripe, device->devid);
2732 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2733 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2734 stripe++;
0b86a832
CM
2735 index++;
2736 }
2737
2b82032c 2738 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2739 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2740 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2741 btrfs_set_stack_chunk_type(chunk, map->type);
2742 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2743 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2744 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2745 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2746 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2747
2b82032c
YZ
2748 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2749 key.type = BTRFS_CHUNK_ITEM_KEY;
2750 key.offset = chunk_offset;
0b86a832 2751
2b82032c
YZ
2752 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2753 BUG_ON(ret);
0b86a832 2754
2b82032c
YZ
2755 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2756 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2757 item_size);
8f18cf13
CM
2758 BUG_ON(ret);
2759 }
0b86a832 2760 kfree(chunk);
2b82032c
YZ
2761 return 0;
2762}
0b86a832 2763
2b82032c
YZ
2764/*
2765 * Chunk allocation falls into two parts. The first part does works
2766 * that make the new allocated chunk useable, but not do any operation
2767 * that modifies the chunk tree. The second part does the works that
2768 * require modifying the chunk tree. This division is important for the
2769 * bootstrap process of adding storage to a seed btrfs.
2770 */
2771int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2772 struct btrfs_root *extent_root, u64 type)
2773{
2774 u64 chunk_offset;
2775 u64 chunk_size;
2776 u64 stripe_size;
2777 struct map_lookup *map;
2778 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2779 int ret;
2780
2781 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2782 &chunk_offset);
2783 if (ret)
2784 return ret;
2785
2786 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2787 &stripe_size, chunk_offset, type);
2788 if (ret)
2789 return ret;
2790
2791 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2792 chunk_size, stripe_size);
2793 BUG_ON(ret);
2794 return 0;
2795}
2796
d397712b 2797static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2798 struct btrfs_root *root,
2799 struct btrfs_device *device)
2800{
2801 u64 chunk_offset;
2802 u64 sys_chunk_offset;
2803 u64 chunk_size;
2804 u64 sys_chunk_size;
2805 u64 stripe_size;
2806 u64 sys_stripe_size;
2807 u64 alloc_profile;
2808 struct map_lookup *map;
2809 struct map_lookup *sys_map;
2810 struct btrfs_fs_info *fs_info = root->fs_info;
2811 struct btrfs_root *extent_root = fs_info->extent_root;
2812 int ret;
2813
2814 ret = find_next_chunk(fs_info->chunk_root,
2815 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2816 BUG_ON(ret);
2817
2818 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2819 (fs_info->metadata_alloc_profile &
2820 fs_info->avail_metadata_alloc_bits);
2821 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2822
2823 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2824 &stripe_size, chunk_offset, alloc_profile);
2825 BUG_ON(ret);
2826
2827 sys_chunk_offset = chunk_offset + chunk_size;
2828
2829 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2830 (fs_info->system_alloc_profile &
2831 fs_info->avail_system_alloc_bits);
2832 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2833
2834 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2835 &sys_chunk_size, &sys_stripe_size,
2836 sys_chunk_offset, alloc_profile);
2837 BUG_ON(ret);
2838
2839 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2840 BUG_ON(ret);
2841
2842 /*
2843 * Modifying chunk tree needs allocating new blocks from both
2844 * system block group and metadata block group. So we only can
2845 * do operations require modifying the chunk tree after both
2846 * block groups were created.
2847 */
2848 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2849 chunk_size, stripe_size);
2850 BUG_ON(ret);
2851
2852 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2853 sys_chunk_offset, sys_chunk_size,
2854 sys_stripe_size);
b248a415 2855 BUG_ON(ret);
2b82032c
YZ
2856 return 0;
2857}
2858
2859int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2860{
2861 struct extent_map *em;
2862 struct map_lookup *map;
2863 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2864 int readonly = 0;
2865 int i;
2866
890871be 2867 read_lock(&map_tree->map_tree.lock);
2b82032c 2868 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 2869 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
2870 if (!em)
2871 return 1;
2872
f48b9075
JB
2873 if (btrfs_test_opt(root, DEGRADED)) {
2874 free_extent_map(em);
2875 return 0;
2876 }
2877
2b82032c
YZ
2878 map = (struct map_lookup *)em->bdev;
2879 for (i = 0; i < map->num_stripes; i++) {
2880 if (!map->stripes[i].dev->writeable) {
2881 readonly = 1;
2882 break;
2883 }
2884 }
0b86a832 2885 free_extent_map(em);
2b82032c 2886 return readonly;
0b86a832
CM
2887}
2888
2889void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2890{
2891 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2892}
2893
2894void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2895{
2896 struct extent_map *em;
2897
d397712b 2898 while (1) {
890871be 2899 write_lock(&tree->map_tree.lock);
0b86a832
CM
2900 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2901 if (em)
2902 remove_extent_mapping(&tree->map_tree, em);
890871be 2903 write_unlock(&tree->map_tree.lock);
0b86a832
CM
2904 if (!em)
2905 break;
2906 kfree(em->bdev);
2907 /* once for us */
2908 free_extent_map(em);
2909 /* once for the tree */
2910 free_extent_map(em);
2911 }
2912}
2913
f188591e
CM
2914int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2915{
2916 struct extent_map *em;
2917 struct map_lookup *map;
2918 struct extent_map_tree *em_tree = &map_tree->map_tree;
2919 int ret;
2920
890871be 2921 read_lock(&em_tree->lock);
f188591e 2922 em = lookup_extent_mapping(em_tree, logical, len);
890871be 2923 read_unlock(&em_tree->lock);
f188591e
CM
2924 BUG_ON(!em);
2925
2926 BUG_ON(em->start > logical || em->start + em->len < logical);
2927 map = (struct map_lookup *)em->bdev;
2928 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2929 ret = map->num_stripes;
321aecc6
CM
2930 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2931 ret = map->sub_stripes;
f188591e
CM
2932 else
2933 ret = 1;
2934 free_extent_map(em);
f188591e
CM
2935 return ret;
2936}
2937
dfe25020
CM
2938static int find_live_mirror(struct map_lookup *map, int first, int num,
2939 int optimal)
2940{
2941 int i;
2942 if (map->stripes[optimal].dev->bdev)
2943 return optimal;
2944 for (i = first; i < first + num; i++) {
2945 if (map->stripes[i].dev->bdev)
2946 return i;
2947 }
2948 /* we couldn't find one that doesn't fail. Just return something
2949 * and the io error handling code will clean up eventually
2950 */
2951 return optimal;
2952}
2953
f2d8d74d
CM
2954static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2955 u64 logical, u64 *length,
2956 struct btrfs_multi_bio **multi_ret,
2957 int mirror_num, struct page *unplug_page)
0b86a832
CM
2958{
2959 struct extent_map *em;
2960 struct map_lookup *map;
2961 struct extent_map_tree *em_tree = &map_tree->map_tree;
2962 u64 offset;
593060d7
CM
2963 u64 stripe_offset;
2964 u64 stripe_nr;
cea9e445 2965 int stripes_allocated = 8;
321aecc6 2966 int stripes_required = 1;
593060d7 2967 int stripe_index;
cea9e445 2968 int i;
f2d8d74d 2969 int num_stripes;
a236aed1 2970 int max_errors = 0;
cea9e445 2971 struct btrfs_multi_bio *multi = NULL;
0b86a832 2972
7b6d91da 2973 if (multi_ret && !(rw & REQ_WRITE))
cea9e445 2974 stripes_allocated = 1;
cea9e445
CM
2975again:
2976 if (multi_ret) {
2977 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2978 GFP_NOFS);
2979 if (!multi)
2980 return -ENOMEM;
a236aed1
CM
2981
2982 atomic_set(&multi->error, 0);
cea9e445 2983 }
0b86a832 2984
890871be 2985 read_lock(&em_tree->lock);
0b86a832 2986 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 2987 read_unlock(&em_tree->lock);
f2d8d74d 2988
2423fdfb
JS
2989 if (!em && unplug_page) {
2990 kfree(multi);
f2d8d74d 2991 return 0;
2423fdfb 2992 }
f2d8d74d 2993
3b951516 2994 if (!em) {
d397712b
CM
2995 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2996 (unsigned long long)logical,
2997 (unsigned long long)*length);
f2d8d74d 2998 BUG();
3b951516 2999 }
0b86a832
CM
3000
3001 BUG_ON(em->start > logical || em->start + em->len < logical);
3002 map = (struct map_lookup *)em->bdev;
3003 offset = logical - em->start;
593060d7 3004
f188591e
CM
3005 if (mirror_num > map->num_stripes)
3006 mirror_num = 0;
3007
cea9e445 3008 /* if our multi bio struct is too small, back off and try again */
7b6d91da 3009 if (rw & REQ_WRITE) {
321aecc6
CM
3010 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3011 BTRFS_BLOCK_GROUP_DUP)) {
3012 stripes_required = map->num_stripes;
a236aed1 3013 max_errors = 1;
321aecc6
CM
3014 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3015 stripes_required = map->sub_stripes;
a236aed1 3016 max_errors = 1;
321aecc6
CM
3017 }
3018 }
7b6d91da 3019 if (multi_ret && (rw & REQ_WRITE) &&
321aecc6 3020 stripes_allocated < stripes_required) {
cea9e445 3021 stripes_allocated = map->num_stripes;
cea9e445
CM
3022 free_extent_map(em);
3023 kfree(multi);
3024 goto again;
3025 }
593060d7
CM
3026 stripe_nr = offset;
3027 /*
3028 * stripe_nr counts the total number of stripes we have to stride
3029 * to get to this block
3030 */
3031 do_div(stripe_nr, map->stripe_len);
3032
3033 stripe_offset = stripe_nr * map->stripe_len;
3034 BUG_ON(offset < stripe_offset);
3035
3036 /* stripe_offset is the offset of this block in its stripe*/
3037 stripe_offset = offset - stripe_offset;
3038
cea9e445 3039 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 3040 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
3041 BTRFS_BLOCK_GROUP_DUP)) {
3042 /* we limit the length of each bio to what fits in a stripe */
3043 *length = min_t(u64, em->len - offset,
3044 map->stripe_len - stripe_offset);
3045 } else {
3046 *length = em->len - offset;
3047 }
f2d8d74d
CM
3048
3049 if (!multi_ret && !unplug_page)
cea9e445
CM
3050 goto out;
3051
f2d8d74d 3052 num_stripes = 1;
cea9e445 3053 stripe_index = 0;
8790d502 3054 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
7b6d91da 3055 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 3056 num_stripes = map->num_stripes;
2fff734f 3057 else if (mirror_num)
f188591e 3058 stripe_index = mirror_num - 1;
dfe25020
CM
3059 else {
3060 stripe_index = find_live_mirror(map, 0,
3061 map->num_stripes,
3062 current->pid % map->num_stripes);
3063 }
2fff734f 3064
611f0e00 3065 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
7b6d91da 3066 if (rw & REQ_WRITE)
f2d8d74d 3067 num_stripes = map->num_stripes;
f188591e
CM
3068 else if (mirror_num)
3069 stripe_index = mirror_num - 1;
2fff734f 3070
321aecc6
CM
3071 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3072 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3073
3074 stripe_index = do_div(stripe_nr, factor);
3075 stripe_index *= map->sub_stripes;
3076
7b6d91da 3077 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 3078 num_stripes = map->sub_stripes;
321aecc6
CM
3079 else if (mirror_num)
3080 stripe_index += mirror_num - 1;
dfe25020
CM
3081 else {
3082 stripe_index = find_live_mirror(map, stripe_index,
3083 map->sub_stripes, stripe_index +
3084 current->pid % map->sub_stripes);
3085 }
8790d502
CM
3086 } else {
3087 /*
3088 * after this do_div call, stripe_nr is the number of stripes
3089 * on this device we have to walk to find the data, and
3090 * stripe_index is the number of our device in the stripe array
3091 */
3092 stripe_index = do_div(stripe_nr, map->num_stripes);
3093 }
593060d7 3094 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3095
f2d8d74d
CM
3096 for (i = 0; i < num_stripes; i++) {
3097 if (unplug_page) {
3098 struct btrfs_device *device;
3099 struct backing_dev_info *bdi;
3100
3101 device = map->stripes[stripe_index].dev;
dfe25020
CM
3102 if (device->bdev) {
3103 bdi = blk_get_backing_dev_info(device->bdev);
d397712b 3104 if (bdi->unplug_io_fn)
dfe25020 3105 bdi->unplug_io_fn(bdi, unplug_page);
f2d8d74d
CM
3106 }
3107 } else {
3108 multi->stripes[i].physical =
3109 map->stripes[stripe_index].physical +
3110 stripe_offset + stripe_nr * map->stripe_len;
3111 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3112 }
cea9e445 3113 stripe_index++;
593060d7 3114 }
f2d8d74d
CM
3115 if (multi_ret) {
3116 *multi_ret = multi;
3117 multi->num_stripes = num_stripes;
a236aed1 3118 multi->max_errors = max_errors;
f2d8d74d 3119 }
cea9e445 3120out:
0b86a832 3121 free_extent_map(em);
0b86a832
CM
3122 return 0;
3123}
3124
f2d8d74d
CM
3125int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3126 u64 logical, u64 *length,
3127 struct btrfs_multi_bio **multi_ret, int mirror_num)
3128{
3129 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3130 mirror_num, NULL);
3131}
3132
a512bbf8
YZ
3133int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3134 u64 chunk_start, u64 physical, u64 devid,
3135 u64 **logical, int *naddrs, int *stripe_len)
3136{
3137 struct extent_map_tree *em_tree = &map_tree->map_tree;
3138 struct extent_map *em;
3139 struct map_lookup *map;
3140 u64 *buf;
3141 u64 bytenr;
3142 u64 length;
3143 u64 stripe_nr;
3144 int i, j, nr = 0;
3145
890871be 3146 read_lock(&em_tree->lock);
a512bbf8 3147 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3148 read_unlock(&em_tree->lock);
a512bbf8
YZ
3149
3150 BUG_ON(!em || em->start != chunk_start);
3151 map = (struct map_lookup *)em->bdev;
3152
3153 length = em->len;
3154 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3155 do_div(length, map->num_stripes / map->sub_stripes);
3156 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3157 do_div(length, map->num_stripes);
3158
3159 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3160 BUG_ON(!buf);
3161
3162 for (i = 0; i < map->num_stripes; i++) {
3163 if (devid && map->stripes[i].dev->devid != devid)
3164 continue;
3165 if (map->stripes[i].physical > physical ||
3166 map->stripes[i].physical + length <= physical)
3167 continue;
3168
3169 stripe_nr = physical - map->stripes[i].physical;
3170 do_div(stripe_nr, map->stripe_len);
3171
3172 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3173 stripe_nr = stripe_nr * map->num_stripes + i;
3174 do_div(stripe_nr, map->sub_stripes);
3175 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3176 stripe_nr = stripe_nr * map->num_stripes + i;
3177 }
3178 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3179 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3180 for (j = 0; j < nr; j++) {
3181 if (buf[j] == bytenr)
3182 break;
3183 }
934d375b
CM
3184 if (j == nr) {
3185 WARN_ON(nr >= map->num_stripes);
a512bbf8 3186 buf[nr++] = bytenr;
934d375b 3187 }
a512bbf8
YZ
3188 }
3189
a512bbf8
YZ
3190 *logical = buf;
3191 *naddrs = nr;
3192 *stripe_len = map->stripe_len;
3193
3194 free_extent_map(em);
3195 return 0;
3196}
3197
f2d8d74d
CM
3198int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3199 u64 logical, struct page *page)
3200{
3201 u64 length = PAGE_CACHE_SIZE;
3202 return __btrfs_map_block(map_tree, READ, logical, &length,
3203 NULL, 0, page);
3204}
3205
8790d502 3206static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 3207{
cea9e445 3208 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 3209 int is_orig_bio = 0;
8790d502 3210
8790d502 3211 if (err)
a236aed1 3212 atomic_inc(&multi->error);
8790d502 3213
7d2b4daa
CM
3214 if (bio == multi->orig_bio)
3215 is_orig_bio = 1;
3216
cea9e445 3217 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
3218 if (!is_orig_bio) {
3219 bio_put(bio);
3220 bio = multi->orig_bio;
3221 }
8790d502
CM
3222 bio->bi_private = multi->private;
3223 bio->bi_end_io = multi->end_io;
a236aed1
CM
3224 /* only send an error to the higher layers if it is
3225 * beyond the tolerance of the multi-bio
3226 */
1259ab75 3227 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 3228 err = -EIO;
1259ab75
CM
3229 } else if (err) {
3230 /*
3231 * this bio is actually up to date, we didn't
3232 * go over the max number of errors
3233 */
3234 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3235 err = 0;
1259ab75 3236 }
8790d502
CM
3237 kfree(multi);
3238
3239 bio_endio(bio, err);
7d2b4daa 3240 } else if (!is_orig_bio) {
8790d502
CM
3241 bio_put(bio);
3242 }
8790d502
CM
3243}
3244
8b712842
CM
3245struct async_sched {
3246 struct bio *bio;
3247 int rw;
3248 struct btrfs_fs_info *info;
3249 struct btrfs_work work;
3250};
3251
3252/*
3253 * see run_scheduled_bios for a description of why bios are collected for
3254 * async submit.
3255 *
3256 * This will add one bio to the pending list for a device and make sure
3257 * the work struct is scheduled.
3258 */
d397712b 3259static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3260 struct btrfs_device *device,
3261 int rw, struct bio *bio)
8b712842
CM
3262{
3263 int should_queue = 1;
ffbd517d 3264 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3265
3266 /* don't bother with additional async steps for reads, right now */
7b6d91da 3267 if (!(rw & REQ_WRITE)) {
492bb6de 3268 bio_get(bio);
8b712842 3269 submit_bio(rw, bio);
492bb6de 3270 bio_put(bio);
8b712842
CM
3271 return 0;
3272 }
3273
3274 /*
0986fe9e 3275 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
3276 * higher layers. Otherwise, the async bio makes it appear we have
3277 * made progress against dirty pages when we've really just put it
3278 * on a queue for later
3279 */
0986fe9e 3280 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 3281 WARN_ON(bio->bi_next);
8b712842
CM
3282 bio->bi_next = NULL;
3283 bio->bi_rw |= rw;
3284
3285 spin_lock(&device->io_lock);
7b6d91da 3286 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
3287 pending_bios = &device->pending_sync_bios;
3288 else
3289 pending_bios = &device->pending_bios;
8b712842 3290
ffbd517d
CM
3291 if (pending_bios->tail)
3292 pending_bios->tail->bi_next = bio;
8b712842 3293
ffbd517d
CM
3294 pending_bios->tail = bio;
3295 if (!pending_bios->head)
3296 pending_bios->head = bio;
8b712842
CM
3297 if (device->running_pending)
3298 should_queue = 0;
3299
3300 spin_unlock(&device->io_lock);
3301
3302 if (should_queue)
1cc127b5
CM
3303 btrfs_queue_worker(&root->fs_info->submit_workers,
3304 &device->work);
8b712842
CM
3305 return 0;
3306}
3307
f188591e 3308int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 3309 int mirror_num, int async_submit)
0b86a832
CM
3310{
3311 struct btrfs_mapping_tree *map_tree;
3312 struct btrfs_device *dev;
8790d502 3313 struct bio *first_bio = bio;
a62b9401 3314 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
3315 u64 length = 0;
3316 u64 map_length;
cea9e445 3317 struct btrfs_multi_bio *multi = NULL;
0b86a832 3318 int ret;
8790d502
CM
3319 int dev_nr = 0;
3320 int total_devs = 1;
0b86a832 3321
f2d8d74d 3322 length = bio->bi_size;
0b86a832
CM
3323 map_tree = &root->fs_info->mapping_tree;
3324 map_length = length;
cea9e445 3325
f188591e
CM
3326 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3327 mirror_num);
cea9e445
CM
3328 BUG_ON(ret);
3329
3330 total_devs = multi->num_stripes;
3331 if (map_length < length) {
d397712b
CM
3332 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3333 "len %llu\n", (unsigned long long)logical,
3334 (unsigned long long)length,
3335 (unsigned long long)map_length);
cea9e445
CM
3336 BUG();
3337 }
3338 multi->end_io = first_bio->bi_end_io;
3339 multi->private = first_bio->bi_private;
7d2b4daa 3340 multi->orig_bio = first_bio;
cea9e445
CM
3341 atomic_set(&multi->stripes_pending, multi->num_stripes);
3342
d397712b 3343 while (dev_nr < total_devs) {
8790d502 3344 if (total_devs > 1) {
8790d502
CM
3345 if (dev_nr < total_devs - 1) {
3346 bio = bio_clone(first_bio, GFP_NOFS);
3347 BUG_ON(!bio);
3348 } else {
3349 bio = first_bio;
3350 }
3351 bio->bi_private = multi;
3352 bio->bi_end_io = end_bio_multi_stripe;
3353 }
cea9e445
CM
3354 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3355 dev = multi->stripes[dev_nr].dev;
18e503d6 3356 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
dfe25020 3357 bio->bi_bdev = dev->bdev;
8b712842
CM
3358 if (async_submit)
3359 schedule_bio(root, dev, rw, bio);
3360 else
3361 submit_bio(rw, bio);
dfe25020
CM
3362 } else {
3363 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3364 bio->bi_sector = logical >> 9;
dfe25020 3365 bio_endio(bio, -EIO);
dfe25020 3366 }
8790d502
CM
3367 dev_nr++;
3368 }
cea9e445
CM
3369 if (total_devs == 1)
3370 kfree(multi);
0b86a832
CM
3371 return 0;
3372}
3373
a443755f 3374struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 3375 u8 *uuid, u8 *fsid)
0b86a832 3376{
2b82032c
YZ
3377 struct btrfs_device *device;
3378 struct btrfs_fs_devices *cur_devices;
3379
3380 cur_devices = root->fs_info->fs_devices;
3381 while (cur_devices) {
3382 if (!fsid ||
3383 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3384 device = __find_device(&cur_devices->devices,
3385 devid, uuid);
3386 if (device)
3387 return device;
3388 }
3389 cur_devices = cur_devices->seed;
3390 }
3391 return NULL;
0b86a832
CM
3392}
3393
dfe25020
CM
3394static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3395 u64 devid, u8 *dev_uuid)
3396{
3397 struct btrfs_device *device;
3398 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3399
3400 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 3401 if (!device)
3402 return NULL;
dfe25020
CM
3403 list_add(&device->dev_list,
3404 &fs_devices->devices);
dfe25020
CM
3405 device->barriers = 1;
3406 device->dev_root = root->fs_info->dev_root;
3407 device->devid = devid;
8b712842 3408 device->work.func = pending_bios_fn;
e4404d6e 3409 device->fs_devices = fs_devices;
cd02dca5 3410 device->missing = 1;
dfe25020 3411 fs_devices->num_devices++;
cd02dca5 3412 fs_devices->missing_devices++;
dfe25020 3413 spin_lock_init(&device->io_lock);
d20f7043 3414 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3415 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3416 return device;
3417}
3418
0b86a832
CM
3419static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3420 struct extent_buffer *leaf,
3421 struct btrfs_chunk *chunk)
3422{
3423 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3424 struct map_lookup *map;
3425 struct extent_map *em;
3426 u64 logical;
3427 u64 length;
3428 u64 devid;
a443755f 3429 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3430 int num_stripes;
0b86a832 3431 int ret;
593060d7 3432 int i;
0b86a832 3433
e17cade2
CM
3434 logical = key->offset;
3435 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3436
890871be 3437 read_lock(&map_tree->map_tree.lock);
0b86a832 3438 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 3439 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3440
3441 /* already mapped? */
3442 if (em && em->start <= logical && em->start + em->len > logical) {
3443 free_extent_map(em);
0b86a832
CM
3444 return 0;
3445 } else if (em) {
3446 free_extent_map(em);
3447 }
0b86a832 3448
0b86a832
CM
3449 em = alloc_extent_map(GFP_NOFS);
3450 if (!em)
3451 return -ENOMEM;
593060d7
CM
3452 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3453 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3454 if (!map) {
3455 free_extent_map(em);
3456 return -ENOMEM;
3457 }
3458
3459 em->bdev = (struct block_device *)map;
3460 em->start = logical;
3461 em->len = length;
3462 em->block_start = 0;
c8b97818 3463 em->block_len = em->len;
0b86a832 3464
593060d7
CM
3465 map->num_stripes = num_stripes;
3466 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3467 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3468 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3469 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3470 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3471 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3472 for (i = 0; i < num_stripes; i++) {
3473 map->stripes[i].physical =
3474 btrfs_stripe_offset_nr(leaf, chunk, i);
3475 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3476 read_extent_buffer(leaf, uuid, (unsigned long)
3477 btrfs_stripe_dev_uuid_nr(chunk, i),
3478 BTRFS_UUID_SIZE);
2b82032c
YZ
3479 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3480 NULL);
dfe25020 3481 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3482 kfree(map);
3483 free_extent_map(em);
3484 return -EIO;
3485 }
dfe25020
CM
3486 if (!map->stripes[i].dev) {
3487 map->stripes[i].dev =
3488 add_missing_dev(root, devid, uuid);
3489 if (!map->stripes[i].dev) {
3490 kfree(map);
3491 free_extent_map(em);
3492 return -EIO;
3493 }
3494 }
3495 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3496 }
3497
890871be 3498 write_lock(&map_tree->map_tree.lock);
0b86a832 3499 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 3500 write_unlock(&map_tree->map_tree.lock);
b248a415 3501 BUG_ON(ret);
0b86a832
CM
3502 free_extent_map(em);
3503
3504 return 0;
3505}
3506
3507static int fill_device_from_item(struct extent_buffer *leaf,
3508 struct btrfs_dev_item *dev_item,
3509 struct btrfs_device *device)
3510{
3511 unsigned long ptr;
0b86a832
CM
3512
3513 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3514 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3515 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3516 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3517 device->type = btrfs_device_type(leaf, dev_item);
3518 device->io_align = btrfs_device_io_align(leaf, dev_item);
3519 device->io_width = btrfs_device_io_width(leaf, dev_item);
3520 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3521
3522 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3523 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3524
0b86a832
CM
3525 return 0;
3526}
3527
2b82032c
YZ
3528static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3529{
3530 struct btrfs_fs_devices *fs_devices;
3531 int ret;
3532
3533 mutex_lock(&uuid_mutex);
3534
3535 fs_devices = root->fs_info->fs_devices->seed;
3536 while (fs_devices) {
3537 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3538 ret = 0;
3539 goto out;
3540 }
3541 fs_devices = fs_devices->seed;
3542 }
3543
3544 fs_devices = find_fsid(fsid);
3545 if (!fs_devices) {
3546 ret = -ENOENT;
3547 goto out;
3548 }
e4404d6e
YZ
3549
3550 fs_devices = clone_fs_devices(fs_devices);
3551 if (IS_ERR(fs_devices)) {
3552 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3553 goto out;
3554 }
3555
97288f2c 3556 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3557 root->fs_info->bdev_holder);
2b82032c
YZ
3558 if (ret)
3559 goto out;
3560
3561 if (!fs_devices->seeding) {
3562 __btrfs_close_devices(fs_devices);
e4404d6e 3563 free_fs_devices(fs_devices);
2b82032c
YZ
3564 ret = -EINVAL;
3565 goto out;
3566 }
3567
3568 fs_devices->seed = root->fs_info->fs_devices->seed;
3569 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3570out:
3571 mutex_unlock(&uuid_mutex);
3572 return ret;
3573}
3574
0d81ba5d 3575static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3576 struct extent_buffer *leaf,
3577 struct btrfs_dev_item *dev_item)
3578{
3579 struct btrfs_device *device;
3580 u64 devid;
3581 int ret;
2b82032c 3582 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3583 u8 dev_uuid[BTRFS_UUID_SIZE];
3584
0b86a832 3585 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3586 read_extent_buffer(leaf, dev_uuid,
3587 (unsigned long)btrfs_device_uuid(dev_item),
3588 BTRFS_UUID_SIZE);
2b82032c
YZ
3589 read_extent_buffer(leaf, fs_uuid,
3590 (unsigned long)btrfs_device_fsid(dev_item),
3591 BTRFS_UUID_SIZE);
3592
3593 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3594 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3595 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3596 return ret;
2b82032c
YZ
3597 }
3598
3599 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3600 if (!device || !device->bdev) {
e4404d6e 3601 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3602 return -EIO;
3603
3604 if (!device) {
d397712b
CM
3605 printk(KERN_WARNING "warning devid %llu missing\n",
3606 (unsigned long long)devid);
2b82032c
YZ
3607 device = add_missing_dev(root, devid, dev_uuid);
3608 if (!device)
3609 return -ENOMEM;
cd02dca5
CM
3610 } else if (!device->missing) {
3611 /*
3612 * this happens when a device that was properly setup
3613 * in the device info lists suddenly goes bad.
3614 * device->bdev is NULL, and so we have to set
3615 * device->missing to one here
3616 */
3617 root->fs_info->fs_devices->missing_devices++;
3618 device->missing = 1;
2b82032c
YZ
3619 }
3620 }
3621
3622 if (device->fs_devices != root->fs_info->fs_devices) {
3623 BUG_ON(device->writeable);
3624 if (device->generation !=
3625 btrfs_device_generation(leaf, dev_item))
3626 return -EINVAL;
6324fbf3 3627 }
0b86a832
CM
3628
3629 fill_device_from_item(leaf, dev_item, device);
3630 device->dev_root = root->fs_info->dev_root;
dfe25020 3631 device->in_fs_metadata = 1;
2b82032c
YZ
3632 if (device->writeable)
3633 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3634 ret = 0;
0b86a832
CM
3635 return ret;
3636}
3637
0d81ba5d
CM
3638int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3639{
3640 struct btrfs_dev_item *dev_item;
3641
3642 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3643 dev_item);
3644 return read_one_dev(root, buf, dev_item);
3645}
3646
e4404d6e 3647int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3648{
3649 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3650 struct extent_buffer *sb;
0b86a832 3651 struct btrfs_disk_key *disk_key;
0b86a832 3652 struct btrfs_chunk *chunk;
84eed90f
CM
3653 u8 *ptr;
3654 unsigned long sb_ptr;
3655 int ret = 0;
0b86a832
CM
3656 u32 num_stripes;
3657 u32 array_size;
3658 u32 len = 0;
0b86a832 3659 u32 cur;
84eed90f 3660 struct btrfs_key key;
0b86a832 3661
e4404d6e 3662 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3663 BTRFS_SUPER_INFO_SIZE);
3664 if (!sb)
3665 return -ENOMEM;
3666 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3667 btrfs_set_buffer_lockdep_class(sb, 0);
3668
a061fc8d 3669 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3670 array_size = btrfs_super_sys_array_size(super_copy);
3671
0b86a832
CM
3672 ptr = super_copy->sys_chunk_array;
3673 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3674 cur = 0;
3675
3676 while (cur < array_size) {
3677 disk_key = (struct btrfs_disk_key *)ptr;
3678 btrfs_disk_key_to_cpu(&key, disk_key);
3679
a061fc8d 3680 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3681 sb_ptr += len;
3682 cur += len;
3683
0d81ba5d 3684 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3685 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3686 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3687 if (ret)
3688 break;
0b86a832
CM
3689 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3690 len = btrfs_chunk_item_size(num_stripes);
3691 } else {
84eed90f
CM
3692 ret = -EIO;
3693 break;
0b86a832
CM
3694 }
3695 ptr += len;
3696 sb_ptr += len;
3697 cur += len;
3698 }
a061fc8d 3699 free_extent_buffer(sb);
84eed90f 3700 return ret;
0b86a832
CM
3701}
3702
3703int btrfs_read_chunk_tree(struct btrfs_root *root)
3704{
3705 struct btrfs_path *path;
3706 struct extent_buffer *leaf;
3707 struct btrfs_key key;
3708 struct btrfs_key found_key;
3709 int ret;
3710 int slot;
3711
3712 root = root->fs_info->chunk_root;
3713
3714 path = btrfs_alloc_path();
3715 if (!path)
3716 return -ENOMEM;
3717
3718 /* first we search for all of the device items, and then we
3719 * read in all of the chunk items. This way we can create chunk
3720 * mappings that reference all of the devices that are afound
3721 */
3722 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3723 key.offset = 0;
3724 key.type = 0;
3725again:
3726 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
3727 if (ret < 0)
3728 goto error;
d397712b 3729 while (1) {
0b86a832
CM
3730 leaf = path->nodes[0];
3731 slot = path->slots[0];
3732 if (slot >= btrfs_header_nritems(leaf)) {
3733 ret = btrfs_next_leaf(root, path);
3734 if (ret == 0)
3735 continue;
3736 if (ret < 0)
3737 goto error;
3738 break;
3739 }
3740 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3741 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3742 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3743 break;
3744 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3745 struct btrfs_dev_item *dev_item;
3746 dev_item = btrfs_item_ptr(leaf, slot,
3747 struct btrfs_dev_item);
0d81ba5d 3748 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3749 if (ret)
3750 goto error;
0b86a832
CM
3751 }
3752 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3753 struct btrfs_chunk *chunk;
3754 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3755 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3756 if (ret)
3757 goto error;
0b86a832
CM
3758 }
3759 path->slots[0]++;
3760 }
3761 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3762 key.objectid = 0;
3763 btrfs_release_path(root, path);
3764 goto again;
3765 }
0b86a832
CM
3766 ret = 0;
3767error:
2b82032c 3768 btrfs_free_path(path);
0b86a832
CM
3769 return ret;
3770}