]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: Check device uuids along with devids
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
8a4b83cc 20#include <linux/buffer_head.h>
593060d7 21#include <asm/div64.h>
0b86a832
CM
22#include "ctree.h"
23#include "extent_map.h"
24#include "disk-io.h"
25#include "transaction.h"
26#include "print-tree.h"
27#include "volumes.h"
28
593060d7
CM
29struct map_lookup {
30 u64 type;
31 int io_align;
32 int io_width;
33 int stripe_len;
34 int sector_size;
35 int num_stripes;
321aecc6 36 int sub_stripes;
cea9e445 37 struct btrfs_bio_stripe stripes[];
593060d7
CM
38};
39
40#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 41 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 42
8a4b83cc
CM
43static DEFINE_MUTEX(uuid_mutex);
44static LIST_HEAD(fs_uuids);
45
46int btrfs_cleanup_fs_uuids(void)
47{
48 struct btrfs_fs_devices *fs_devices;
49 struct list_head *uuid_cur;
50 struct list_head *devices_cur;
51 struct btrfs_device *dev;
52
53 list_for_each(uuid_cur, &fs_uuids) {
54 fs_devices = list_entry(uuid_cur, struct btrfs_fs_devices,
55 list);
56 while(!list_empty(&fs_devices->devices)) {
57 devices_cur = fs_devices->devices.next;
58 dev = list_entry(devices_cur, struct btrfs_device,
59 dev_list);
60 printk("uuid cleanup finds %s\n", dev->name);
61 if (dev->bdev) {
62 printk("closing\n");
63 close_bdev_excl(dev->bdev);
64 }
65 list_del(&dev->dev_list);
66 kfree(dev);
67 }
68 }
69 return 0;
70}
71
a443755f
CM
72static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
73 u8 *uuid)
8a4b83cc
CM
74{
75 struct btrfs_device *dev;
76 struct list_head *cur;
77
78 list_for_each(cur, head) {
79 dev = list_entry(cur, struct btrfs_device, dev_list);
a443755f
CM
80 if (dev->devid == devid &&
81 !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
8a4b83cc 82 return dev;
a443755f 83 }
8a4b83cc
CM
84 }
85 return NULL;
86}
87
88static struct btrfs_fs_devices *find_fsid(u8 *fsid)
89{
90 struct list_head *cur;
91 struct btrfs_fs_devices *fs_devices;
92
93 list_for_each(cur, &fs_uuids) {
94 fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
95 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
96 return fs_devices;
97 }
98 return NULL;
99}
100
101static int device_list_add(const char *path,
102 struct btrfs_super_block *disk_super,
103 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
104{
105 struct btrfs_device *device;
106 struct btrfs_fs_devices *fs_devices;
107 u64 found_transid = btrfs_super_generation(disk_super);
108
109 fs_devices = find_fsid(disk_super->fsid);
110 if (!fs_devices) {
111 fs_devices = kmalloc(sizeof(*fs_devices), GFP_NOFS);
112 if (!fs_devices)
113 return -ENOMEM;
114 INIT_LIST_HEAD(&fs_devices->devices);
115 list_add(&fs_devices->list, &fs_uuids);
116 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
117 fs_devices->latest_devid = devid;
118 fs_devices->latest_trans = found_transid;
119 fs_devices->lowest_devid = (u64)-1;
120 fs_devices->num_devices = 0;
121 device = NULL;
122 } else {
a443755f
CM
123 device = __find_device(&fs_devices->devices, devid,
124 disk_super->dev_item.uuid);
8a4b83cc
CM
125 }
126 if (!device) {
127 device = kzalloc(sizeof(*device), GFP_NOFS);
128 if (!device) {
129 /* we can safely leave the fs_devices entry around */
130 return -ENOMEM;
131 }
132 device->devid = devid;
a443755f
CM
133 memcpy(device->uuid, disk_super->dev_item.uuid,
134 BTRFS_UUID_SIZE);
f2984462 135 device->barriers = 1;
b248a415 136 spin_lock_init(&device->io_lock);
8a4b83cc
CM
137 device->name = kstrdup(path, GFP_NOFS);
138 if (!device->name) {
139 kfree(device);
140 return -ENOMEM;
141 }
142 list_add(&device->dev_list, &fs_devices->devices);
143 fs_devices->num_devices++;
144 }
145
146 if (found_transid > fs_devices->latest_trans) {
147 fs_devices->latest_devid = devid;
148 fs_devices->latest_trans = found_transid;
149 }
150 if (fs_devices->lowest_devid > devid) {
151 fs_devices->lowest_devid = devid;
152 printk("lowest devid now %Lu\n", devid);
153 }
154 *fs_devices_ret = fs_devices;
155 return 0;
156}
157
158int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
159{
160 struct list_head *head = &fs_devices->devices;
161 struct list_head *cur;
162 struct btrfs_device *device;
163
164 mutex_lock(&uuid_mutex);
165 list_for_each(cur, head) {
166 device = list_entry(cur, struct btrfs_device, dev_list);
167 if (device->bdev) {
168 close_bdev_excl(device->bdev);
169 printk("close devices closes %s\n", device->name);
170 }
171 device->bdev = NULL;
172 }
173 mutex_unlock(&uuid_mutex);
174 return 0;
175}
176
177int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
178 int flags, void *holder)
179{
180 struct block_device *bdev;
181 struct list_head *head = &fs_devices->devices;
182 struct list_head *cur;
183 struct btrfs_device *device;
184 int ret;
185
186 mutex_lock(&uuid_mutex);
187 list_for_each(cur, head) {
188 device = list_entry(cur, struct btrfs_device, dev_list);
189 bdev = open_bdev_excl(device->name, flags, holder);
e17cade2 190
8a4b83cc
CM
191 if (IS_ERR(bdev)) {
192 printk("open %s failed\n", device->name);
193 ret = PTR_ERR(bdev);
194 goto fail;
195 }
196 if (device->devid == fs_devices->latest_devid)
197 fs_devices->latest_bdev = bdev;
198 if (device->devid == fs_devices->lowest_devid) {
199 fs_devices->lowest_bdev = bdev;
8a4b83cc
CM
200 }
201 device->bdev = bdev;
202 }
203 mutex_unlock(&uuid_mutex);
204 return 0;
205fail:
206 mutex_unlock(&uuid_mutex);
207 btrfs_close_devices(fs_devices);
208 return ret;
209}
210
211int btrfs_scan_one_device(const char *path, int flags, void *holder,
212 struct btrfs_fs_devices **fs_devices_ret)
213{
214 struct btrfs_super_block *disk_super;
215 struct block_device *bdev;
216 struct buffer_head *bh;
217 int ret;
218 u64 devid;
f2984462 219 u64 transid;
8a4b83cc
CM
220
221 mutex_lock(&uuid_mutex);
222
223 printk("scan one opens %s\n", path);
224 bdev = open_bdev_excl(path, flags, holder);
225
226 if (IS_ERR(bdev)) {
227 printk("open failed\n");
228 ret = PTR_ERR(bdev);
229 goto error;
230 }
231
232 ret = set_blocksize(bdev, 4096);
233 if (ret)
234 goto error_close;
235 bh = __bread(bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
236 if (!bh) {
237 ret = -EIO;
238 goto error_close;
239 }
240 disk_super = (struct btrfs_super_block *)bh->b_data;
241 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
242 sizeof(disk_super->magic))) {
243 printk("no btrfs found on %s\n", path);
e58ca020 244 ret = -EINVAL;
8a4b83cc
CM
245 goto error_brelse;
246 }
247 devid = le64_to_cpu(disk_super->dev_item.devid);
f2984462
CM
248 transid = btrfs_super_generation(disk_super);
249 printk("found device %Lu transid %Lu on %s\n", devid, transid, path);
8a4b83cc
CM
250 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
251
252error_brelse:
253 brelse(bh);
254error_close:
255 close_bdev_excl(bdev);
8a4b83cc
CM
256error:
257 mutex_unlock(&uuid_mutex);
258 return ret;
259}
0b86a832
CM
260
261/*
262 * this uses a pretty simple search, the expectation is that it is
263 * called very infrequently and that a given device has a small number
264 * of extents
265 */
266static int find_free_dev_extent(struct btrfs_trans_handle *trans,
267 struct btrfs_device *device,
268 struct btrfs_path *path,
269 u64 num_bytes, u64 *start)
270{
271 struct btrfs_key key;
272 struct btrfs_root *root = device->dev_root;
273 struct btrfs_dev_extent *dev_extent = NULL;
274 u64 hole_size = 0;
275 u64 last_byte = 0;
276 u64 search_start = 0;
277 u64 search_end = device->total_bytes;
278 int ret;
279 int slot = 0;
280 int start_found;
281 struct extent_buffer *l;
282
283 start_found = 0;
284 path->reada = 2;
285
286 /* FIXME use last free of some kind */
287
8a4b83cc
CM
288 /* we don't want to overwrite the superblock on the drive,
289 * so we make sure to start at an offset of at least 1MB
290 */
291 search_start = max((u64)1024 * 1024, search_start);
0b86a832
CM
292 key.objectid = device->devid;
293 key.offset = search_start;
294 key.type = BTRFS_DEV_EXTENT_KEY;
295 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
296 if (ret < 0)
297 goto error;
298 ret = btrfs_previous_item(root, path, 0, key.type);
299 if (ret < 0)
300 goto error;
301 l = path->nodes[0];
302 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
303 while (1) {
304 l = path->nodes[0];
305 slot = path->slots[0];
306 if (slot >= btrfs_header_nritems(l)) {
307 ret = btrfs_next_leaf(root, path);
308 if (ret == 0)
309 continue;
310 if (ret < 0)
311 goto error;
312no_more_items:
313 if (!start_found) {
314 if (search_start >= search_end) {
315 ret = -ENOSPC;
316 goto error;
317 }
318 *start = search_start;
319 start_found = 1;
320 goto check_pending;
321 }
322 *start = last_byte > search_start ?
323 last_byte : search_start;
324 if (search_end <= *start) {
325 ret = -ENOSPC;
326 goto error;
327 }
328 goto check_pending;
329 }
330 btrfs_item_key_to_cpu(l, &key, slot);
331
332 if (key.objectid < device->devid)
333 goto next;
334
335 if (key.objectid > device->devid)
336 goto no_more_items;
337
338 if (key.offset >= search_start && key.offset > last_byte &&
339 start_found) {
340 if (last_byte < search_start)
341 last_byte = search_start;
342 hole_size = key.offset - last_byte;
343 if (key.offset > last_byte &&
344 hole_size >= num_bytes) {
345 *start = last_byte;
346 goto check_pending;
347 }
348 }
349 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
350 goto next;
351 }
352
353 start_found = 1;
354 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
355 last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
356next:
357 path->slots[0]++;
358 cond_resched();
359 }
360check_pending:
361 /* we have to make sure we didn't find an extent that has already
362 * been allocated by the map tree or the original allocation
363 */
364 btrfs_release_path(root, path);
365 BUG_ON(*start < search_start);
366
6324fbf3 367 if (*start + num_bytes > search_end) {
0b86a832
CM
368 ret = -ENOSPC;
369 goto error;
370 }
371 /* check for pending inserts here */
372 return 0;
373
374error:
375 btrfs_release_path(root, path);
376 return ret;
377}
378
379int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
380 struct btrfs_device *device,
e17cade2
CM
381 u64 chunk_tree, u64 chunk_objectid,
382 u64 chunk_offset,
383 u64 num_bytes, u64 *start)
0b86a832
CM
384{
385 int ret;
386 struct btrfs_path *path;
387 struct btrfs_root *root = device->dev_root;
388 struct btrfs_dev_extent *extent;
389 struct extent_buffer *leaf;
390 struct btrfs_key key;
391
392 path = btrfs_alloc_path();
393 if (!path)
394 return -ENOMEM;
395
396 ret = find_free_dev_extent(trans, device, path, num_bytes, start);
6324fbf3 397 if (ret) {
0b86a832 398 goto err;
6324fbf3 399 }
0b86a832
CM
400
401 key.objectid = device->devid;
402 key.offset = *start;
403 key.type = BTRFS_DEV_EXTENT_KEY;
404 ret = btrfs_insert_empty_item(trans, root, path, &key,
405 sizeof(*extent));
406 BUG_ON(ret);
407
408 leaf = path->nodes[0];
409 extent = btrfs_item_ptr(leaf, path->slots[0],
410 struct btrfs_dev_extent);
e17cade2
CM
411 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
412 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
413 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
414
415 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
416 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
417 BTRFS_UUID_SIZE);
418
0b86a832
CM
419 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
420 btrfs_mark_buffer_dirty(leaf);
421err:
422 btrfs_free_path(path);
423 return ret;
424}
425
e17cade2 426static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
0b86a832
CM
427{
428 struct btrfs_path *path;
429 int ret;
430 struct btrfs_key key;
e17cade2 431 struct btrfs_chunk *chunk;
0b86a832
CM
432 struct btrfs_key found_key;
433
434 path = btrfs_alloc_path();
435 BUG_ON(!path);
436
e17cade2 437 key.objectid = objectid;
0b86a832
CM
438 key.offset = (u64)-1;
439 key.type = BTRFS_CHUNK_ITEM_KEY;
440
441 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
442 if (ret < 0)
443 goto error;
444
445 BUG_ON(ret == 0);
446
447 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
448 if (ret) {
e17cade2 449 *offset = 0;
0b86a832
CM
450 } else {
451 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
452 path->slots[0]);
e17cade2
CM
453 if (found_key.objectid != objectid)
454 *offset = 0;
455 else {
456 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
457 struct btrfs_chunk);
458 *offset = found_key.offset +
459 btrfs_chunk_length(path->nodes[0], chunk);
460 }
0b86a832
CM
461 }
462 ret = 0;
463error:
464 btrfs_free_path(path);
465 return ret;
466}
467
0b86a832
CM
468static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
469 u64 *objectid)
470{
471 int ret;
472 struct btrfs_key key;
473 struct btrfs_key found_key;
474
475 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
476 key.type = BTRFS_DEV_ITEM_KEY;
477 key.offset = (u64)-1;
478
479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
480 if (ret < 0)
481 goto error;
482
483 BUG_ON(ret == 0);
484
485 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
486 BTRFS_DEV_ITEM_KEY);
487 if (ret) {
488 *objectid = 1;
489 } else {
490 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
491 path->slots[0]);
492 *objectid = found_key.offset + 1;
493 }
494 ret = 0;
495error:
496 btrfs_release_path(root, path);
497 return ret;
498}
499
500/*
501 * the device information is stored in the chunk root
502 * the btrfs_device struct should be fully filled in
503 */
504int btrfs_add_device(struct btrfs_trans_handle *trans,
505 struct btrfs_root *root,
506 struct btrfs_device *device)
507{
508 int ret;
509 struct btrfs_path *path;
510 struct btrfs_dev_item *dev_item;
511 struct extent_buffer *leaf;
512 struct btrfs_key key;
513 unsigned long ptr;
514 u64 free_devid;
515
516 root = root->fs_info->chunk_root;
517
518 path = btrfs_alloc_path();
519 if (!path)
520 return -ENOMEM;
521
522 ret = find_next_devid(root, path, &free_devid);
523 if (ret)
524 goto out;
525
526 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
527 key.type = BTRFS_DEV_ITEM_KEY;
528 key.offset = free_devid;
529
530 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 531 sizeof(*dev_item));
0b86a832
CM
532 if (ret)
533 goto out;
534
535 leaf = path->nodes[0];
536 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
537
8a4b83cc 538 device->devid = free_devid;
0b86a832
CM
539 btrfs_set_device_id(leaf, dev_item, device->devid);
540 btrfs_set_device_type(leaf, dev_item, device->type);
541 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
542 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
543 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
544 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
545 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
546 btrfs_set_device_group(leaf, dev_item, 0);
547 btrfs_set_device_seek_speed(leaf, dev_item, 0);
548 btrfs_set_device_bandwidth(leaf, dev_item, 0);
0b86a832 549
0b86a832 550 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 551 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
552 btrfs_mark_buffer_dirty(leaf);
553 ret = 0;
554
555out:
556 btrfs_free_path(path);
557 return ret;
558}
559int btrfs_update_device(struct btrfs_trans_handle *trans,
560 struct btrfs_device *device)
561{
562 int ret;
563 struct btrfs_path *path;
564 struct btrfs_root *root;
565 struct btrfs_dev_item *dev_item;
566 struct extent_buffer *leaf;
567 struct btrfs_key key;
568
569 root = device->dev_root->fs_info->chunk_root;
570
571 path = btrfs_alloc_path();
572 if (!path)
573 return -ENOMEM;
574
575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
576 key.type = BTRFS_DEV_ITEM_KEY;
577 key.offset = device->devid;
578
579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
580 if (ret < 0)
581 goto out;
582
583 if (ret > 0) {
584 ret = -ENOENT;
585 goto out;
586 }
587
588 leaf = path->nodes[0];
589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
590
591 btrfs_set_device_id(leaf, dev_item, device->devid);
592 btrfs_set_device_type(leaf, dev_item, device->type);
593 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
594 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
596 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
597 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
598 btrfs_mark_buffer_dirty(leaf);
599
600out:
601 btrfs_free_path(path);
602 return ret;
603}
604
605int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
606 struct btrfs_root *root,
607 struct btrfs_key *key,
608 struct btrfs_chunk *chunk, int item_size)
609{
610 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
611 struct btrfs_disk_key disk_key;
612 u32 array_size;
613 u8 *ptr;
614
615 array_size = btrfs_super_sys_array_size(super_copy);
616 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
617 return -EFBIG;
618
619 ptr = super_copy->sys_chunk_array + array_size;
620 btrfs_cpu_key_to_disk(&disk_key, key);
621 memcpy(ptr, &disk_key, sizeof(disk_key));
622 ptr += sizeof(disk_key);
623 memcpy(ptr, chunk, item_size);
624 item_size += sizeof(disk_key);
625 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
626 return 0;
627}
628
629int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
630 struct btrfs_root *extent_root, u64 *start,
6324fbf3 631 u64 *num_bytes, u64 type)
0b86a832
CM
632{
633 u64 dev_offset;
593060d7 634 struct btrfs_fs_info *info = extent_root->fs_info;
0b86a832
CM
635 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
636 struct btrfs_stripe *stripes;
637 struct btrfs_device *device = NULL;
638 struct btrfs_chunk *chunk;
6324fbf3 639 struct list_head private_devs;
8a4b83cc 640 struct list_head *dev_list = &extent_root->fs_info->fs_devices->devices;
6324fbf3 641 struct list_head *cur;
0b86a832
CM
642 struct extent_map_tree *em_tree;
643 struct map_lookup *map;
644 struct extent_map *em;
645 u64 physical;
646 u64 calc_size = 1024 * 1024 * 1024;
611f0e00 647 u64 min_free = calc_size;
6324fbf3
CM
648 u64 avail;
649 u64 max_avail = 0;
650 int num_stripes = 1;
321aecc6 651 int sub_stripes = 0;
6324fbf3 652 int looped = 0;
0b86a832 653 int ret;
6324fbf3 654 int index;
593060d7 655 int stripe_len = 64 * 1024;
0b86a832
CM
656 struct btrfs_key key;
657
6324fbf3
CM
658 if (list_empty(dev_list))
659 return -ENOSPC;
593060d7 660
8790d502 661 if (type & (BTRFS_BLOCK_GROUP_RAID0))
593060d7 662 num_stripes = btrfs_super_num_devices(&info->super_copy);
611f0e00
CM
663 if (type & (BTRFS_BLOCK_GROUP_DUP))
664 num_stripes = 2;
8790d502
CM
665 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
666 num_stripes = min_t(u64, 2,
667 btrfs_super_num_devices(&info->super_copy));
668 }
321aecc6
CM
669 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
670 num_stripes = btrfs_super_num_devices(&info->super_copy);
671 if (num_stripes < 4)
672 return -ENOSPC;
673 num_stripes &= ~(u32)1;
674 sub_stripes = 2;
675 }
6324fbf3
CM
676again:
677 INIT_LIST_HEAD(&private_devs);
678 cur = dev_list->next;
679 index = 0;
611f0e00
CM
680
681 if (type & BTRFS_BLOCK_GROUP_DUP)
682 min_free = calc_size * 2;
683
6324fbf3
CM
684 /* build a private list of devices we will allocate from */
685 while(index < num_stripes) {
686 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00 687
6324fbf3
CM
688 avail = device->total_bytes - device->bytes_used;
689 cur = cur->next;
690 if (avail > max_avail)
691 max_avail = avail;
611f0e00 692 if (avail >= min_free) {
6324fbf3
CM
693 list_move_tail(&device->dev_list, &private_devs);
694 index++;
611f0e00
CM
695 if (type & BTRFS_BLOCK_GROUP_DUP)
696 index++;
6324fbf3
CM
697 }
698 if (cur == dev_list)
699 break;
700 }
701 if (index < num_stripes) {
702 list_splice(&private_devs, dev_list);
703 if (!looped && max_avail > 0) {
704 looped = 1;
705 calc_size = max_avail;
706 goto again;
707 }
708 return -ENOSPC;
709 }
0b86a832 710
e17cade2
CM
711 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
712 key.type = BTRFS_CHUNK_ITEM_KEY;
713 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
714 &key.offset);
0b86a832
CM
715 if (ret)
716 return ret;
717
0b86a832
CM
718 chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
719 if (!chunk)
720 return -ENOMEM;
721
593060d7
CM
722 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
723 if (!map) {
724 kfree(chunk);
725 return -ENOMEM;
726 }
727
0b86a832
CM
728 stripes = &chunk->stripe;
729
611f0e00 730 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
8790d502 731 *num_bytes = calc_size;
321aecc6 732 else if (type & BTRFS_BLOCK_GROUP_RAID10)
7bf3b490 733 *num_bytes = calc_size * (num_stripes / sub_stripes);
8790d502
CM
734 else
735 *num_bytes = calc_size * num_stripes;
736
6324fbf3 737 index = 0;
e17cade2 738printk("new chunk type %Lu start %Lu size %Lu\n", type, key.offset, *num_bytes);
0b86a832 739 while(index < num_stripes) {
e17cade2 740 struct btrfs_stripe *stripe;
6324fbf3
CM
741 BUG_ON(list_empty(&private_devs));
742 cur = private_devs.next;
743 device = list_entry(cur, struct btrfs_device, dev_list);
611f0e00
CM
744
745 /* loop over this device again if we're doing a dup group */
746 if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
747 (index == num_stripes - 1))
748 list_move_tail(&device->dev_list, dev_list);
0b86a832
CM
749
750 ret = btrfs_alloc_dev_extent(trans, device,
e17cade2
CM
751 info->chunk_root->root_key.objectid,
752 BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
753 calc_size, &dev_offset);
0b86a832 754 BUG_ON(ret);
e17cade2 755printk("alloc chunk start %Lu size %Lu from dev %Lu type %Lu\n", key.offset, calc_size, device->devid, type);
0b86a832
CM
756 device->bytes_used += calc_size;
757 ret = btrfs_update_device(trans, device);
758 BUG_ON(ret);
759
593060d7
CM
760 map->stripes[index].dev = device;
761 map->stripes[index].physical = dev_offset;
e17cade2
CM
762 stripe = stripes + index;
763 btrfs_set_stack_stripe_devid(stripe, device->devid);
764 btrfs_set_stack_stripe_offset(stripe, dev_offset);
765 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
0b86a832
CM
766 physical = dev_offset;
767 index++;
768 }
6324fbf3 769 BUG_ON(!list_empty(&private_devs));
0b86a832 770
e17cade2
CM
771 /* key was set above */
772 btrfs_set_stack_chunk_length(chunk, *num_bytes);
0b86a832 773 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
593060d7 774 btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
0b86a832
CM
775 btrfs_set_stack_chunk_type(chunk, type);
776 btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
593060d7
CM
777 btrfs_set_stack_chunk_io_align(chunk, stripe_len);
778 btrfs_set_stack_chunk_io_width(chunk, stripe_len);
0b86a832 779 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
321aecc6 780 btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
593060d7
CM
781 map->sector_size = extent_root->sectorsize;
782 map->stripe_len = stripe_len;
783 map->io_align = stripe_len;
784 map->io_width = stripe_len;
785 map->type = type;
786 map->num_stripes = num_stripes;
321aecc6 787 map->sub_stripes = sub_stripes;
0b86a832
CM
788
789 ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
790 btrfs_chunk_item_size(num_stripes));
791 BUG_ON(ret);
e17cade2 792 *start = key.offset;;
0b86a832
CM
793
794 em = alloc_extent_map(GFP_NOFS);
795 if (!em)
796 return -ENOMEM;
0b86a832 797 em->bdev = (struct block_device *)map;
e17cade2
CM
798 em->start = key.offset;
799 em->len = *num_bytes;
0b86a832
CM
800 em->block_start = 0;
801
0b86a832
CM
802 kfree(chunk);
803
804 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
805 spin_lock(&em_tree->lock);
806 ret = add_extent_mapping(em_tree, em);
0b86a832 807 spin_unlock(&em_tree->lock);
b248a415 808 BUG_ON(ret);
0b86a832
CM
809 free_extent_map(em);
810 return ret;
811}
812
813void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
814{
815 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
816}
817
818void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
819{
820 struct extent_map *em;
821
822 while(1) {
823 spin_lock(&tree->map_tree.lock);
824 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
825 if (em)
826 remove_extent_mapping(&tree->map_tree, em);
827 spin_unlock(&tree->map_tree.lock);
828 if (!em)
829 break;
830 kfree(em->bdev);
831 /* once for us */
832 free_extent_map(em);
833 /* once for the tree */
834 free_extent_map(em);
835 }
836}
837
f188591e
CM
838int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
839{
840 struct extent_map *em;
841 struct map_lookup *map;
842 struct extent_map_tree *em_tree = &map_tree->map_tree;
843 int ret;
844
845 spin_lock(&em_tree->lock);
846 em = lookup_extent_mapping(em_tree, logical, len);
b248a415 847 spin_unlock(&em_tree->lock);
f188591e
CM
848 BUG_ON(!em);
849
850 BUG_ON(em->start > logical || em->start + em->len < logical);
851 map = (struct map_lookup *)em->bdev;
852 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
853 ret = map->num_stripes;
321aecc6
CM
854 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
855 ret = map->sub_stripes;
f188591e
CM
856 else
857 ret = 1;
858 free_extent_map(em);
f188591e
CM
859 return ret;
860}
861
8790d502 862int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
cea9e445 863 u64 logical, u64 *length,
f188591e 864 struct btrfs_multi_bio **multi_ret, int mirror_num)
0b86a832
CM
865{
866 struct extent_map *em;
867 struct map_lookup *map;
868 struct extent_map_tree *em_tree = &map_tree->map_tree;
869 u64 offset;
593060d7
CM
870 u64 stripe_offset;
871 u64 stripe_nr;
cea9e445 872 int stripes_allocated = 8;
321aecc6 873 int stripes_required = 1;
593060d7 874 int stripe_index;
cea9e445
CM
875 int i;
876 struct btrfs_multi_bio *multi = NULL;
0b86a832 877
cea9e445
CM
878 if (multi_ret && !(rw & (1 << BIO_RW))) {
879 stripes_allocated = 1;
880 }
881again:
882 if (multi_ret) {
883 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
884 GFP_NOFS);
885 if (!multi)
886 return -ENOMEM;
887 }
0b86a832
CM
888
889 spin_lock(&em_tree->lock);
890 em = lookup_extent_mapping(em_tree, logical, *length);
b248a415 891 spin_unlock(&em_tree->lock);
3b951516
CM
892 if (!em) {
893 printk("unable to find logical %Lu\n", logical);
894 }
0b86a832
CM
895 BUG_ON(!em);
896
897 BUG_ON(em->start > logical || em->start + em->len < logical);
898 map = (struct map_lookup *)em->bdev;
899 offset = logical - em->start;
593060d7 900
f188591e
CM
901 if (mirror_num > map->num_stripes)
902 mirror_num = 0;
903
cea9e445 904 /* if our multi bio struct is too small, back off and try again */
321aecc6
CM
905 if (rw & (1 << BIO_RW)) {
906 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
907 BTRFS_BLOCK_GROUP_DUP)) {
908 stripes_required = map->num_stripes;
909 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
910 stripes_required = map->sub_stripes;
911 }
912 }
913 if (multi_ret && rw == WRITE &&
914 stripes_allocated < stripes_required) {
cea9e445 915 stripes_allocated = map->num_stripes;
cea9e445
CM
916 free_extent_map(em);
917 kfree(multi);
918 goto again;
919 }
593060d7
CM
920 stripe_nr = offset;
921 /*
922 * stripe_nr counts the total number of stripes we have to stride
923 * to get to this block
924 */
925 do_div(stripe_nr, map->stripe_len);
926
927 stripe_offset = stripe_nr * map->stripe_len;
928 BUG_ON(offset < stripe_offset);
929
930 /* stripe_offset is the offset of this block in its stripe*/
931 stripe_offset = offset - stripe_offset;
932
cea9e445 933 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 934 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
935 BTRFS_BLOCK_GROUP_DUP)) {
936 /* we limit the length of each bio to what fits in a stripe */
937 *length = min_t(u64, em->len - offset,
938 map->stripe_len - stripe_offset);
939 } else {
940 *length = em->len - offset;
941 }
942 if (!multi_ret)
943 goto out;
944
945 multi->num_stripes = 1;
946 stripe_index = 0;
8790d502 947 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
8790d502 948 if (rw & (1 << BIO_RW))
cea9e445 949 multi->num_stripes = map->num_stripes;
f188591e
CM
950 else if (mirror_num) {
951 stripe_index = mirror_num - 1;
952 } else {
8790d502
CM
953 int i;
954 u64 least = (u64)-1;
955 struct btrfs_device *cur;
956
957 for (i = 0; i < map->num_stripes; i++) {
958 cur = map->stripes[i].dev;
959 spin_lock(&cur->io_lock);
960 if (cur->total_ios < least) {
961 least = cur->total_ios;
962 stripe_index = i;
963 }
964 spin_unlock(&cur->io_lock);
965 }
8790d502 966 }
611f0e00 967 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
cea9e445
CM
968 if (rw & (1 << BIO_RW))
969 multi->num_stripes = map->num_stripes;
f188591e
CM
970 else if (mirror_num)
971 stripe_index = mirror_num - 1;
321aecc6
CM
972 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
973 int factor = map->num_stripes / map->sub_stripes;
974 int orig_stripe_nr = stripe_nr;
975
976 stripe_index = do_div(stripe_nr, factor);
977 stripe_index *= map->sub_stripes;
978
979 if (rw & (1 << BIO_RW))
980 multi->num_stripes = map->sub_stripes;
981 else if (mirror_num)
982 stripe_index += mirror_num - 1;
983 else
984 stripe_index += orig_stripe_nr % map->sub_stripes;
8790d502
CM
985 } else {
986 /*
987 * after this do_div call, stripe_nr is the number of stripes
988 * on this device we have to walk to find the data, and
989 * stripe_index is the number of our device in the stripe array
990 */
991 stripe_index = do_div(stripe_nr, map->num_stripes);
992 }
593060d7 993 BUG_ON(stripe_index >= map->num_stripes);
cea9e445
CM
994
995 for (i = 0; i < multi->num_stripes; i++) {
996 multi->stripes[i].physical =
997 map->stripes[stripe_index].physical + stripe_offset +
998 stripe_nr * map->stripe_len;
999 multi->stripes[i].dev = map->stripes[stripe_index].dev;
1000 stripe_index++;
593060d7 1001 }
cea9e445
CM
1002 *multi_ret = multi;
1003out:
0b86a832 1004 free_extent_map(em);
0b86a832
CM
1005 return 0;
1006}
1007
8790d502
CM
1008#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1009static void end_bio_multi_stripe(struct bio *bio, int err)
1010#else
1011static int end_bio_multi_stripe(struct bio *bio,
1012 unsigned int bytes_done, int err)
1013#endif
1014{
cea9e445 1015 struct btrfs_multi_bio *multi = bio->bi_private;
8790d502
CM
1016
1017#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1018 if (bio->bi_size)
1019 return 1;
1020#endif
1021 if (err)
1022 multi->error = err;
1023
cea9e445 1024 if (atomic_dec_and_test(&multi->stripes_pending)) {
8790d502
CM
1025 bio->bi_private = multi->private;
1026 bio->bi_end_io = multi->end_io;
1027
1028 if (!err && multi->error)
1029 err = multi->error;
1030 kfree(multi);
1031
73f61b2a
M
1032#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1033 bio_endio(bio, bio->bi_size, err);
1034#else
8790d502 1035 bio_endio(bio, err);
73f61b2a 1036#endif
8790d502
CM
1037 } else {
1038 bio_put(bio);
1039 }
1040#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1041 return 0;
1042#endif
1043}
1044
f188591e
CM
1045int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
1046 int mirror_num)
0b86a832
CM
1047{
1048 struct btrfs_mapping_tree *map_tree;
1049 struct btrfs_device *dev;
8790d502 1050 struct bio *first_bio = bio;
0b86a832 1051 u64 logical = bio->bi_sector << 9;
0b86a832
CM
1052 u64 length = 0;
1053 u64 map_length;
1054 struct bio_vec *bvec;
cea9e445 1055 struct btrfs_multi_bio *multi = NULL;
0b86a832
CM
1056 int i;
1057 int ret;
8790d502
CM
1058 int dev_nr = 0;
1059 int total_devs = 1;
0b86a832
CM
1060
1061 bio_for_each_segment(bvec, bio, i) {
1062 length += bvec->bv_len;
1063 }
8790d502 1064
0b86a832
CM
1065 map_tree = &root->fs_info->mapping_tree;
1066 map_length = length;
cea9e445 1067
f188591e
CM
1068 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
1069 mirror_num);
cea9e445
CM
1070 BUG_ON(ret);
1071
1072 total_devs = multi->num_stripes;
1073 if (map_length < length) {
1074 printk("mapping failed logical %Lu bio len %Lu "
1075 "len %Lu\n", logical, length, map_length);
1076 BUG();
1077 }
1078 multi->end_io = first_bio->bi_end_io;
1079 multi->private = first_bio->bi_private;
1080 atomic_set(&multi->stripes_pending, multi->num_stripes);
1081
8790d502 1082 while(dev_nr < total_devs) {
8790d502 1083 if (total_devs > 1) {
8790d502
CM
1084 if (dev_nr < total_devs - 1) {
1085 bio = bio_clone(first_bio, GFP_NOFS);
1086 BUG_ON(!bio);
1087 } else {
1088 bio = first_bio;
1089 }
1090 bio->bi_private = multi;
1091 bio->bi_end_io = end_bio_multi_stripe;
1092 }
cea9e445
CM
1093 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
1094 dev = multi->stripes[dev_nr].dev;
8790d502
CM
1095 bio->bi_bdev = dev->bdev;
1096 spin_lock(&dev->io_lock);
1097 dev->total_ios++;
1098 spin_unlock(&dev->io_lock);
1099 submit_bio(rw, bio);
1100 dev_nr++;
1101 }
cea9e445
CM
1102 if (total_devs == 1)
1103 kfree(multi);
0b86a832
CM
1104 return 0;
1105}
1106
a443755f
CM
1107struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
1108 u8 *uuid)
0b86a832 1109{
8a4b83cc 1110 struct list_head *head = &root->fs_info->fs_devices->devices;
0b86a832 1111
a443755f 1112 return __find_device(head, devid, uuid);
0b86a832
CM
1113}
1114
1115static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
1116 struct extent_buffer *leaf,
1117 struct btrfs_chunk *chunk)
1118{
1119 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1120 struct map_lookup *map;
1121 struct extent_map *em;
1122 u64 logical;
1123 u64 length;
1124 u64 devid;
a443755f 1125 u8 uuid[BTRFS_UUID_SIZE];
593060d7 1126 int num_stripes;
0b86a832 1127 int ret;
593060d7 1128 int i;
0b86a832 1129
e17cade2
CM
1130 logical = key->offset;
1131 length = btrfs_chunk_length(leaf, chunk);
0b86a832
CM
1132 spin_lock(&map_tree->map_tree.lock);
1133 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
b248a415 1134 spin_unlock(&map_tree->map_tree.lock);
0b86a832
CM
1135
1136 /* already mapped? */
1137 if (em && em->start <= logical && em->start + em->len > logical) {
1138 free_extent_map(em);
0b86a832
CM
1139 return 0;
1140 } else if (em) {
1141 free_extent_map(em);
1142 }
0b86a832
CM
1143
1144 map = kzalloc(sizeof(*map), GFP_NOFS);
1145 if (!map)
1146 return -ENOMEM;
1147
1148 em = alloc_extent_map(GFP_NOFS);
1149 if (!em)
1150 return -ENOMEM;
593060d7
CM
1151 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
1152 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
1153 if (!map) {
1154 free_extent_map(em);
1155 return -ENOMEM;
1156 }
1157
1158 em->bdev = (struct block_device *)map;
1159 em->start = logical;
1160 em->len = length;
1161 em->block_start = 0;
1162
593060d7
CM
1163 map->num_stripes = num_stripes;
1164 map->io_width = btrfs_chunk_io_width(leaf, chunk);
1165 map->io_align = btrfs_chunk_io_align(leaf, chunk);
1166 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
1167 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
1168 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 1169 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
1170 for (i = 0; i < num_stripes; i++) {
1171 map->stripes[i].physical =
1172 btrfs_stripe_offset_nr(leaf, chunk, i);
1173 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
1174 read_extent_buffer(leaf, uuid, (unsigned long)
1175 btrfs_stripe_dev_uuid_nr(chunk, i),
1176 BTRFS_UUID_SIZE);
1177 map->stripes[i].dev = btrfs_find_device(root, devid, uuid);
593060d7
CM
1178 if (!map->stripes[i].dev) {
1179 kfree(map);
1180 free_extent_map(em);
1181 return -EIO;
1182 }
0b86a832
CM
1183 }
1184
1185 spin_lock(&map_tree->map_tree.lock);
1186 ret = add_extent_mapping(&map_tree->map_tree, em);
0b86a832 1187 spin_unlock(&map_tree->map_tree.lock);
b248a415 1188 BUG_ON(ret);
0b86a832
CM
1189 free_extent_map(em);
1190
1191 return 0;
1192}
1193
1194static int fill_device_from_item(struct extent_buffer *leaf,
1195 struct btrfs_dev_item *dev_item,
1196 struct btrfs_device *device)
1197{
1198 unsigned long ptr;
0b86a832
CM
1199
1200 device->devid = btrfs_device_id(leaf, dev_item);
1201 device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
1202 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
1203 device->type = btrfs_device_type(leaf, dev_item);
1204 device->io_align = btrfs_device_io_align(leaf, dev_item);
1205 device->io_width = btrfs_device_io_width(leaf, dev_item);
1206 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
1207
1208 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1209 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 1210
0b86a832
CM
1211 return 0;
1212}
1213
0d81ba5d 1214static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
1215 struct extent_buffer *leaf,
1216 struct btrfs_dev_item *dev_item)
1217{
1218 struct btrfs_device *device;
1219 u64 devid;
1220 int ret;
a443755f
CM
1221 u8 dev_uuid[BTRFS_UUID_SIZE];
1222
0b86a832 1223 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
1224 read_extent_buffer(leaf, dev_uuid,
1225 (unsigned long)btrfs_device_uuid(dev_item),
1226 BTRFS_UUID_SIZE);
1227 device = btrfs_find_device(root, devid, dev_uuid);
6324fbf3 1228 if (!device) {
8a4b83cc 1229 printk("warning devid %Lu not found already\n", devid);
f2984462 1230 device = kzalloc(sizeof(*device), GFP_NOFS);
6324fbf3
CM
1231 if (!device)
1232 return -ENOMEM;
8a4b83cc
CM
1233 list_add(&device->dev_list,
1234 &root->fs_info->fs_devices->devices);
b248a415 1235 device->barriers = 1;
8790d502 1236 spin_lock_init(&device->io_lock);
6324fbf3 1237 }
0b86a832
CM
1238
1239 fill_device_from_item(leaf, dev_item, device);
1240 device->dev_root = root->fs_info->dev_root;
0b86a832
CM
1241 ret = 0;
1242#if 0
1243 ret = btrfs_open_device(device);
1244 if (ret) {
1245 kfree(device);
1246 }
1247#endif
1248 return ret;
1249}
1250
0d81ba5d
CM
1251int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
1252{
1253 struct btrfs_dev_item *dev_item;
1254
1255 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1256 dev_item);
1257 return read_one_dev(root, buf, dev_item);
1258}
1259
0b86a832
CM
1260int btrfs_read_sys_array(struct btrfs_root *root)
1261{
1262 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1263 struct extent_buffer *sb = root->fs_info->sb_buffer;
1264 struct btrfs_disk_key *disk_key;
0b86a832
CM
1265 struct btrfs_chunk *chunk;
1266 struct btrfs_key key;
1267 u32 num_stripes;
1268 u32 array_size;
1269 u32 len = 0;
1270 u8 *ptr;
1271 unsigned long sb_ptr;
1272 u32 cur;
1273 int ret;
0b86a832
CM
1274
1275 array_size = btrfs_super_sys_array_size(super_copy);
1276
1277 /*
1278 * we do this loop twice, once for the device items and
1279 * once for all of the chunks. This way there are device
1280 * structs filled in for every chunk
1281 */
0b86a832
CM
1282 ptr = super_copy->sys_chunk_array;
1283 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
1284 cur = 0;
1285
1286 while (cur < array_size) {
1287 disk_key = (struct btrfs_disk_key *)ptr;
1288 btrfs_disk_key_to_cpu(&key, disk_key);
1289
1290 len = sizeof(*disk_key);
1291 ptr += len;
1292 sb_ptr += len;
1293 cur += len;
1294
0d81ba5d 1295 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 1296 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d
CM
1297 ret = read_one_chunk(root, &key, sb, chunk);
1298 BUG_ON(ret);
0b86a832
CM
1299 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
1300 len = btrfs_chunk_item_size(num_stripes);
1301 } else {
1302 BUG();
1303 }
1304 ptr += len;
1305 sb_ptr += len;
1306 cur += len;
1307 }
0b86a832
CM
1308 return 0;
1309}
1310
1311int btrfs_read_chunk_tree(struct btrfs_root *root)
1312{
1313 struct btrfs_path *path;
1314 struct extent_buffer *leaf;
1315 struct btrfs_key key;
1316 struct btrfs_key found_key;
1317 int ret;
1318 int slot;
1319
1320 root = root->fs_info->chunk_root;
1321
1322 path = btrfs_alloc_path();
1323 if (!path)
1324 return -ENOMEM;
1325
1326 /* first we search for all of the device items, and then we
1327 * read in all of the chunk items. This way we can create chunk
1328 * mappings that reference all of the devices that are afound
1329 */
1330 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1331 key.offset = 0;
1332 key.type = 0;
1333again:
1334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1335 while(1) {
1336 leaf = path->nodes[0];
1337 slot = path->slots[0];
1338 if (slot >= btrfs_header_nritems(leaf)) {
1339 ret = btrfs_next_leaf(root, path);
1340 if (ret == 0)
1341 continue;
1342 if (ret < 0)
1343 goto error;
1344 break;
1345 }
1346 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1347 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1348 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
1349 break;
1350 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
1351 struct btrfs_dev_item *dev_item;
1352 dev_item = btrfs_item_ptr(leaf, slot,
1353 struct btrfs_dev_item);
0d81ba5d 1354 ret = read_one_dev(root, leaf, dev_item);
0b86a832
CM
1355 BUG_ON(ret);
1356 }
1357 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
1358 struct btrfs_chunk *chunk;
1359 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1360 ret = read_one_chunk(root, &found_key, leaf, chunk);
1361 }
1362 path->slots[0]++;
1363 }
1364 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
1365 key.objectid = 0;
1366 btrfs_release_path(root, path);
1367 goto again;
1368 }
1369
1370 btrfs_free_path(path);
1371 ret = 0;
1372error:
1373 return ret;
1374}
1375