]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
btrfs: convert pr_* to btrfs_* where possible
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c
YZ
136static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
733f4fbb 140static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 141static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 142static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 143
67a2c45e 144DEFINE_MUTEX(uuid_mutex);
8a4b83cc 145static LIST_HEAD(fs_uuids);
c73eccf7
AJ
146struct list_head *btrfs_get_fs_uuids(void)
147{
148 return &fs_uuids;
149}
8a4b83cc 150
2208a378
ID
151static struct btrfs_fs_devices *__alloc_fs_devices(void)
152{
153 struct btrfs_fs_devices *fs_devs;
154
78f2c9e6 155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 162 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167}
168
169/**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
178static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179{
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192}
193
e4404d6e
YZ
194static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195{
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
606686ee 202 rcu_string_free(device->name);
e4404d6e
YZ
203 kfree(device);
204 }
205 kfree(fs_devices);
206}
207
b8b8ff59
LC
208static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210{
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
efe120a0 215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219}
220
143bede5 221void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
222{
223 struct btrfs_fs_devices *fs_devices;
8a4b83cc 224
2b82032c
YZ
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
e4404d6e 229 free_fs_devices(fs_devices);
8a4b83cc 230 }
8a4b83cc
CM
231}
232
12bd2fc0
ID
233static struct btrfs_device *__alloc_device(void)
234{
235 struct btrfs_device *dev;
236
78f2c9e6 237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 243 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 249 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 250 btrfs_device_data_ordered_init(dev);
d0164adc
MG
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
253
254 return dev;
255}
256
a1b32a59
CM
257static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
8a4b83cc
CM
259{
260 struct btrfs_device *dev;
8a4b83cc 261
c6e30871 262 list_for_each_entry(dev, head, dev_list) {
a443755f 263 if (dev->devid == devid &&
8f18cf13 264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 265 return dev;
a443755f 266 }
8a4b83cc
CM
267 }
268 return NULL;
269}
270
a1b32a59 271static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 272{
8a4b83cc
CM
273 struct btrfs_fs_devices *fs_devices;
274
c6e30871 275 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280}
281
beaf8ab3
SB
282static int
283btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286{
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
beaf8ab3
SB
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
beaf8ab3
SB
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317}
318
ffbd517d
CM
319static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321{
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331}
332
8b712842
CM
333/*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
143bede5 344static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
345{
346 struct bio *pending;
347 struct backing_dev_info *bdi;
b64a2851 348 struct btrfs_fs_info *fs_info;
ffbd517d 349 struct btrfs_pending_bios *pending_bios;
8b712842
CM
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
ffbd517d 353 unsigned long num_run;
d644d8a1 354 unsigned long batch_run = 0;
b64a2851 355 unsigned long limit;
b765ead5 356 unsigned long last_waited = 0;
d84275c9 357 int force_reg = 0;
0e588859 358 int sync_pending = 0;
211588ad
CM
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
8b712842 368
bedf762b 369 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
373
8b712842
CM
374loop:
375 spin_lock(&device->io_lock);
376
a6837051 377loop_lock:
d84275c9 378 num_run = 0;
ffbd517d 379
8b712842
CM
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
384 */
d84275c9 385 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 386 pending_bios = &device->pending_sync_bios;
d84275c9
CM
387 force_reg = 1;
388 } else {
ffbd517d 389 pending_bios = &device->pending_bios;
d84275c9
CM
390 force_reg = 0;
391 }
ffbd517d
CM
392
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
8b712842 395 WARN_ON(pending && !tail);
8b712842
CM
396
397 /*
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
401 *
402 * device->running_pending is used to synchronize with the
403 * schedule_bio code.
404 */
ffbd517d
CM
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
8b712842
CM
407 again = 0;
408 device->running_pending = 0;
ffbd517d
CM
409 } else {
410 again = 1;
411 device->running_pending = 1;
8b712842 412 }
ffbd517d
CM
413
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
416
8b712842
CM
417 spin_unlock(&device->io_lock);
418
d397712b 419 while (pending) {
ffbd517d
CM
420
421 rmb();
d84275c9
CM
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
424 */
425 if ((num_run > 32 &&
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
ffbd517d
CM
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
432 goto loop_lock;
433 }
434
8b712842
CM
435 cur = pending;
436 pending = pending->bi_next;
437 cur->bi_next = NULL;
b64a2851 438
ee863954
DS
439 /*
440 * atomic_dec_return implies a barrier for waitqueue_active
441 */
66657b31 442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
492bb6de 445
dac56212 446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 447
2ab1ba68
CM
448 /*
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
451 *
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
454 * we add more
455 */
456 if (pending_bios == &device->pending_sync_bios) {
457 sync_pending = 1;
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
461 sync_pending = 0;
462 }
463
4e49ea4a 464 btrfsic_submit_bio(cur);
5ff7ba3a
CM
465 num_run++;
466 batch_run++;
853d8ec4
DS
467
468 cond_resched();
8b712842
CM
469
470 /*
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
473 * run instead
474 */
57fd5a5f 475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 476 fs_info->fs_devices->open_devices > 1) {
b765ead5 477 struct io_context *ioc;
8b712842 478
b765ead5
CM
479 ioc = current->io_context;
480
481 /*
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
485 *
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
489 */
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 (last_waited == 0 ||
493 ioc->last_waited == last_waited)) {
494 /*
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
499 */
500 last_waited = ioc->last_waited;
853d8ec4 501 cond_resched();
b765ead5
CM
502 continue;
503 }
8b712842 504 spin_lock(&device->io_lock);
ffbd517d 505 requeue_list(pending_bios, pending, tail);
a6837051 506 device->running_pending = 1;
8b712842
CM
507
508 spin_unlock(&device->io_lock);
a8c93d4e
QW
509 btrfs_queue_work(fs_info->submit_workers,
510 &device->work);
8b712842
CM
511 goto done;
512 }
d85c8a6f
CM
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
517 sync_pending = 0;
518 }
8b712842 519 }
ffbd517d 520
51684082
CM
521 cond_resched();
522 if (again)
523 goto loop;
524
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
527 goto loop_lock;
528 spin_unlock(&device->io_lock);
529
8b712842 530done:
211588ad 531 blk_finish_plug(&plug);
8b712842
CM
532}
533
b2950863 534static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
535{
536 struct btrfs_device *device;
537
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
540}
541
4fde46f0
AJ
542
543void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544{
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
547
548 if (!cur_dev->name)
549 return;
550
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
552 int del = 1;
553
554 if (fs_devs->opened)
555 continue;
556 if (fs_devs->seeding)
557 continue;
558
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561 if (dev == cur_dev)
562 continue;
563 if (!dev->name)
564 continue;
565
566 /*
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
571 */
572 rcu_read_lock();
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
575 rcu_read_unlock();
576 if (!del)
577 break;
578 }
579
580 if (!del) {
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
586 } else {
587 fs_devs->num_devices--;
588 list_del(&dev->dev_list);
589 rcu_string_free(dev->name);
590 kfree(dev);
591 }
592 break;
593 }
594 }
595}
596
60999ca4
DS
597/*
598 * Add new device to list of registered devices
599 *
600 * Returns:
601 * 1 - first time device is seen
602 * 0 - device already known
603 * < 0 - error
604 */
a1b32a59 605static noinline int device_list_add(const char *path,
8a4b83cc
CM
606 struct btrfs_super_block *disk_super,
607 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
608{
609 struct btrfs_device *device;
610 struct btrfs_fs_devices *fs_devices;
606686ee 611 struct rcu_string *name;
60999ca4 612 int ret = 0;
8a4b83cc
CM
613 u64 found_transid = btrfs_super_generation(disk_super);
614
615 fs_devices = find_fsid(disk_super->fsid);
616 if (!fs_devices) {
2208a378
ID
617 fs_devices = alloc_fs_devices(disk_super->fsid);
618 if (IS_ERR(fs_devices))
619 return PTR_ERR(fs_devices);
620
8a4b83cc 621 list_add(&fs_devices->list, &fs_uuids);
2208a378 622
8a4b83cc
CM
623 device = NULL;
624 } else {
a443755f
CM
625 device = __find_device(&fs_devices->devices, devid,
626 disk_super->dev_item.uuid);
8a4b83cc 627 }
443f24fe 628
8a4b83cc 629 if (!device) {
2b82032c
YZ
630 if (fs_devices->opened)
631 return -EBUSY;
632
12bd2fc0
ID
633 device = btrfs_alloc_device(NULL, &devid,
634 disk_super->dev_item.uuid);
635 if (IS_ERR(device)) {
8a4b83cc 636 /* we can safely leave the fs_devices entry around */
12bd2fc0 637 return PTR_ERR(device);
8a4b83cc 638 }
606686ee
JB
639
640 name = rcu_string_strdup(path, GFP_NOFS);
641 if (!name) {
8a4b83cc
CM
642 kfree(device);
643 return -ENOMEM;
644 }
606686ee 645 rcu_assign_pointer(device->name, name);
90519d66 646
e5e9a520 647 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 648 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 649 fs_devices->num_devices++;
e5e9a520
CM
650 mutex_unlock(&fs_devices->device_list_mutex);
651
60999ca4 652 ret = 1;
2b82032c 653 device->fs_devices = fs_devices;
606686ee 654 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
655 /*
656 * When FS is already mounted.
657 * 1. If you are here and if the device->name is NULL that
658 * means this device was missing at time of FS mount.
659 * 2. If you are here and if the device->name is different
660 * from 'path' that means either
661 * a. The same device disappeared and reappeared with
662 * different name. or
663 * b. The missing-disk-which-was-replaced, has
664 * reappeared now.
665 *
666 * We must allow 1 and 2a above. But 2b would be a spurious
667 * and unintentional.
668 *
669 * Further in case of 1 and 2a above, the disk at 'path'
670 * would have missed some transaction when it was away and
671 * in case of 2a the stale bdev has to be updated as well.
672 * 2b must not be allowed at all time.
673 */
674
675 /*
0f23ae74
CM
676 * For now, we do allow update to btrfs_fs_device through the
677 * btrfs dev scan cli after FS has been mounted. We're still
678 * tracking a problem where systems fail mount by subvolume id
679 * when we reject replacement on a mounted FS.
b96de000 680 */
0f23ae74 681 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
682 /*
683 * That is if the FS is _not_ mounted and if you
684 * are here, that means there is more than one
685 * disk with same uuid and devid.We keep the one
686 * with larger generation number or the last-in if
687 * generation are equal.
688 */
0f23ae74 689 return -EEXIST;
77bdae4d 690 }
b96de000 691
606686ee 692 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
693 if (!name)
694 return -ENOMEM;
606686ee
JB
695 rcu_string_free(device->name);
696 rcu_assign_pointer(device->name, name);
cd02dca5
CM
697 if (device->missing) {
698 fs_devices->missing_devices--;
699 device->missing = 0;
700 }
8a4b83cc
CM
701 }
702
77bdae4d
AJ
703 /*
704 * Unmount does not free the btrfs_device struct but would zero
705 * generation along with most of the other members. So just update
706 * it back. We need it to pick the disk with largest generation
707 * (as above).
708 */
709 if (!fs_devices->opened)
710 device->generation = found_transid;
711
4fde46f0
AJ
712 /*
713 * if there is new btrfs on an already registered device,
714 * then remove the stale device entry.
715 */
02feae3c
AJ
716 if (ret > 0)
717 btrfs_free_stale_device(device);
4fde46f0 718
8a4b83cc 719 *fs_devices_ret = fs_devices;
60999ca4
DS
720
721 return ret;
8a4b83cc
CM
722}
723
e4404d6e
YZ
724static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
725{
726 struct btrfs_fs_devices *fs_devices;
727 struct btrfs_device *device;
728 struct btrfs_device *orig_dev;
729
2208a378
ID
730 fs_devices = alloc_fs_devices(orig->fsid);
731 if (IS_ERR(fs_devices))
732 return fs_devices;
e4404d6e 733
adbbb863 734 mutex_lock(&orig->device_list_mutex);
02db0844 735 fs_devices->total_devices = orig->total_devices;
e4404d6e 736
46224705 737 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 738 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
739 struct rcu_string *name;
740
12bd2fc0
ID
741 device = btrfs_alloc_device(NULL, &orig_dev->devid,
742 orig_dev->uuid);
743 if (IS_ERR(device))
e4404d6e
YZ
744 goto error;
745
606686ee
JB
746 /*
747 * This is ok to do without rcu read locked because we hold the
748 * uuid mutex so nothing we touch in here is going to disappear.
749 */
e755f780 750 if (orig_dev->name) {
78f2c9e6
DS
751 name = rcu_string_strdup(orig_dev->name->str,
752 GFP_KERNEL);
e755f780
AJ
753 if (!name) {
754 kfree(device);
755 goto error;
756 }
757 rcu_assign_pointer(device->name, name);
fd2696f3 758 }
e4404d6e 759
e4404d6e
YZ
760 list_add(&device->dev_list, &fs_devices->devices);
761 device->fs_devices = fs_devices;
762 fs_devices->num_devices++;
763 }
adbbb863 764 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
765 return fs_devices;
766error:
adbbb863 767 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
768 free_fs_devices(fs_devices);
769 return ERR_PTR(-ENOMEM);
770}
771
9eaed21e 772void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 773{
c6e30871 774 struct btrfs_device *device, *next;
443f24fe 775 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 776
dfe25020
CM
777 mutex_lock(&uuid_mutex);
778again:
46224705 779 /* This is the initialized path, it is safe to release the devices. */
c6e30871 780 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 781 if (device->in_fs_metadata) {
63a212ab 782 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
783 (!latest_dev ||
784 device->generation > latest_dev->generation)) {
785 latest_dev = device;
a6b0d5c8 786 }
2b82032c 787 continue;
a6b0d5c8 788 }
2b82032c 789
8dabb742
SB
790 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
791 /*
792 * In the first step, keep the device which has
793 * the correct fsid and the devid that is used
794 * for the dev_replace procedure.
795 * In the second step, the dev_replace state is
796 * read from the device tree and it is known
797 * whether the procedure is really active or
798 * not, which means whether this device is
799 * used or whether it should be removed.
800 */
801 if (step == 0 || device->is_tgtdev_for_dev_replace) {
802 continue;
803 }
804 }
2b82032c 805 if (device->bdev) {
d4d77629 806 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
807 device->bdev = NULL;
808 fs_devices->open_devices--;
809 }
810 if (device->writeable) {
811 list_del_init(&device->dev_alloc_list);
812 device->writeable = 0;
8dabb742
SB
813 if (!device->is_tgtdev_for_dev_replace)
814 fs_devices->rw_devices--;
2b82032c 815 }
e4404d6e
YZ
816 list_del_init(&device->dev_list);
817 fs_devices->num_devices--;
606686ee 818 rcu_string_free(device->name);
e4404d6e 819 kfree(device);
dfe25020 820 }
2b82032c
YZ
821
822 if (fs_devices->seed) {
823 fs_devices = fs_devices->seed;
2b82032c
YZ
824 goto again;
825 }
826
443f24fe 827 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 828
dfe25020 829 mutex_unlock(&uuid_mutex);
dfe25020 830}
a0af469b 831
1f78160c
XG
832static void __free_device(struct work_struct *work)
833{
834 struct btrfs_device *device;
835
836 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 837 rcu_string_free(device->name);
1f78160c
XG
838 kfree(device);
839}
840
841static void free_device(struct rcu_head *head)
842{
843 struct btrfs_device *device;
844
845 device = container_of(head, struct btrfs_device, rcu);
846
847 INIT_WORK(&device->rcu_work, __free_device);
848 schedule_work(&device->rcu_work);
849}
850
14238819
AJ
851static void btrfs_close_bdev(struct btrfs_device *device)
852{
853 if (device->bdev && device->writeable) {
854 sync_blockdev(device->bdev);
855 invalidate_bdev(device->bdev);
856 }
857
858 if (device->bdev)
859 blkdev_put(device->bdev, device->mode);
860}
861
f448341a
AJ
862static void btrfs_close_one_device(struct btrfs_device *device)
863{
864 struct btrfs_fs_devices *fs_devices = device->fs_devices;
865 struct btrfs_device *new_device;
866 struct rcu_string *name;
867
868 if (device->bdev)
869 fs_devices->open_devices--;
870
871 if (device->writeable &&
872 device->devid != BTRFS_DEV_REPLACE_DEVID) {
873 list_del_init(&device->dev_alloc_list);
874 fs_devices->rw_devices--;
875 }
876
877 if (device->missing)
878 fs_devices->missing_devices--;
879
14238819 880 btrfs_close_bdev(device);
e2bf6e89 881
f448341a
AJ
882 new_device = btrfs_alloc_device(NULL, &device->devid,
883 device->uuid);
884 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
885
886 /* Safe because we are under uuid_mutex */
887 if (device->name) {
888 name = rcu_string_strdup(device->name->str, GFP_NOFS);
889 BUG_ON(!name); /* -ENOMEM */
890 rcu_assign_pointer(new_device->name, name);
891 }
892
893 list_replace_rcu(&device->dev_list, &new_device->dev_list);
894 new_device->fs_devices = device->fs_devices;
895
896 call_rcu(&device->rcu, free_device);
897}
898
2b82032c 899static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 900{
2037a093 901 struct btrfs_device *device, *tmp;
e4404d6e 902
2b82032c
YZ
903 if (--fs_devices->opened > 0)
904 return 0;
8a4b83cc 905
c9513edb 906 mutex_lock(&fs_devices->device_list_mutex);
2037a093 907 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
f190aa47 908 btrfs_close_one_device(device);
8a4b83cc 909 }
c9513edb
XG
910 mutex_unlock(&fs_devices->device_list_mutex);
911
e4404d6e
YZ
912 WARN_ON(fs_devices->open_devices);
913 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
914 fs_devices->opened = 0;
915 fs_devices->seeding = 0;
2b82032c 916
8a4b83cc
CM
917 return 0;
918}
919
2b82032c
YZ
920int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
921{
e4404d6e 922 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
923 int ret;
924
925 mutex_lock(&uuid_mutex);
926 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
927 if (!fs_devices->opened) {
928 seed_devices = fs_devices->seed;
929 fs_devices->seed = NULL;
930 }
2b82032c 931 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
932
933 while (seed_devices) {
934 fs_devices = seed_devices;
935 seed_devices = fs_devices->seed;
936 __btrfs_close_devices(fs_devices);
937 free_fs_devices(fs_devices);
938 }
bc178622
ES
939 /*
940 * Wait for rcu kworkers under __btrfs_close_devices
941 * to finish all blkdev_puts so device is really
942 * free when umount is done.
943 */
944 rcu_barrier();
2b82032c
YZ
945 return ret;
946}
947
e4404d6e
YZ
948static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
949 fmode_t flags, void *holder)
8a4b83cc 950{
d5e2003c 951 struct request_queue *q;
8a4b83cc
CM
952 struct block_device *bdev;
953 struct list_head *head = &fs_devices->devices;
8a4b83cc 954 struct btrfs_device *device;
443f24fe 955 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
956 struct buffer_head *bh;
957 struct btrfs_super_block *disk_super;
a0af469b 958 u64 devid;
2b82032c 959 int seeding = 1;
a0af469b 960 int ret = 0;
8a4b83cc 961
d4d77629
TH
962 flags |= FMODE_EXCL;
963
c6e30871 964 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
965 if (device->bdev)
966 continue;
dfe25020
CM
967 if (!device->name)
968 continue;
969
f63e0cca
ES
970 /* Just open everything we can; ignore failures here */
971 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
972 &bdev, &bh))
beaf8ab3 973 continue;
a0af469b
CM
974
975 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 976 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
977 if (devid != device->devid)
978 goto error_brelse;
979
2b82032c
YZ
980 if (memcmp(device->uuid, disk_super->dev_item.uuid,
981 BTRFS_UUID_SIZE))
982 goto error_brelse;
983
984 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
985 if (!latest_dev ||
986 device->generation > latest_dev->generation)
987 latest_dev = device;
a0af469b 988
2b82032c
YZ
989 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
990 device->writeable = 0;
991 } else {
992 device->writeable = !bdev_read_only(bdev);
993 seeding = 0;
994 }
995
d5e2003c 996 q = bdev_get_queue(bdev);
90180da4 997 if (blk_queue_discard(q))
d5e2003c 998 device->can_discard = 1;
d5e2003c 999
8a4b83cc 1000 device->bdev = bdev;
dfe25020 1001 device->in_fs_metadata = 0;
15916de8
CM
1002 device->mode = flags;
1003
c289811c
CM
1004 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1005 fs_devices->rotating = 1;
1006
a0af469b 1007 fs_devices->open_devices++;
55e50e45
ID
1008 if (device->writeable &&
1009 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1010 fs_devices->rw_devices++;
1011 list_add(&device->dev_alloc_list,
1012 &fs_devices->alloc_list);
1013 }
4f6c9328 1014 brelse(bh);
a0af469b 1015 continue;
a061fc8d 1016
a0af469b
CM
1017error_brelse:
1018 brelse(bh);
d4d77629 1019 blkdev_put(bdev, flags);
a0af469b 1020 continue;
8a4b83cc 1021 }
a0af469b 1022 if (fs_devices->open_devices == 0) {
20bcd649 1023 ret = -EINVAL;
a0af469b
CM
1024 goto out;
1025 }
2b82032c
YZ
1026 fs_devices->seeding = seeding;
1027 fs_devices->opened = 1;
443f24fe 1028 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1029 fs_devices->total_rw_bytes = 0;
a0af469b 1030out:
2b82032c
YZ
1031 return ret;
1032}
1033
1034int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1035 fmode_t flags, void *holder)
2b82032c
YZ
1036{
1037 int ret;
1038
1039 mutex_lock(&uuid_mutex);
1040 if (fs_devices->opened) {
e4404d6e
YZ
1041 fs_devices->opened++;
1042 ret = 0;
2b82032c 1043 } else {
15916de8 1044 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1045 }
8a4b83cc 1046 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1047 return ret;
1048}
1049
6cf86a00
AJ
1050void btrfs_release_disk_super(struct page *page)
1051{
1052 kunmap(page);
1053 put_page(page);
1054}
1055
1056int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1057 struct page **page, struct btrfs_super_block **disk_super)
1058{
1059 void *p;
1060 pgoff_t index;
1061
1062 /* make sure our super fits in the device */
1063 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1064 return 1;
1065
1066 /* make sure our super fits in the page */
1067 if (sizeof(**disk_super) > PAGE_SIZE)
1068 return 1;
1069
1070 /* make sure our super doesn't straddle pages on disk */
1071 index = bytenr >> PAGE_SHIFT;
1072 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1073 return 1;
1074
1075 /* pull in the page with our super */
1076 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1077 index, GFP_KERNEL);
1078
1079 if (IS_ERR_OR_NULL(*page))
1080 return 1;
1081
1082 p = kmap(*page);
1083
1084 /* align our pointer to the offset of the super block */
1085 *disk_super = p + (bytenr & ~PAGE_MASK);
1086
1087 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1088 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1089 btrfs_release_disk_super(*page);
1090 return 1;
1091 }
1092
1093 if ((*disk_super)->label[0] &&
1094 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1095 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1096
1097 return 0;
1098}
1099
6f60cbd3
DS
1100/*
1101 * Look for a btrfs signature on a device. This may be called out of the mount path
1102 * and we are not allowed to call set_blocksize during the scan. The superblock
1103 * is read via pagecache
1104 */
97288f2c 1105int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1106 struct btrfs_fs_devices **fs_devices_ret)
1107{
1108 struct btrfs_super_block *disk_super;
1109 struct block_device *bdev;
6f60cbd3 1110 struct page *page;
6f60cbd3 1111 int ret = -EINVAL;
8a4b83cc 1112 u64 devid;
f2984462 1113 u64 transid;
02db0844 1114 u64 total_devices;
6f60cbd3 1115 u64 bytenr;
8a4b83cc 1116
6f60cbd3
DS
1117 /*
1118 * we would like to check all the supers, but that would make
1119 * a btrfs mount succeed after a mkfs from a different FS.
1120 * So, we need to add a special mount option to scan for
1121 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1122 */
1123 bytenr = btrfs_sb_offset(0);
d4d77629 1124 flags |= FMODE_EXCL;
10f6327b 1125 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1126
1127 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1128 if (IS_ERR(bdev)) {
1129 ret = PTR_ERR(bdev);
beaf8ab3 1130 goto error;
6f60cbd3
DS
1131 }
1132
6cf86a00 1133 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1134 goto error_bdev_put;
1135
a343832f 1136 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1137 transid = btrfs_super_generation(disk_super);
02db0844 1138 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1139
8a4b83cc 1140 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1141 if (ret > 0) {
1142 if (disk_super->label[0]) {
62e85577 1143 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1144 } else {
62e85577 1145 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1146 }
1147
62e85577 1148 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1149 ret = 0;
1150 }
02db0844
JB
1151 if (!ret && fs_devices_ret)
1152 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1153
6cf86a00 1154 btrfs_release_disk_super(page);
6f60cbd3
DS
1155
1156error_bdev_put:
d4d77629 1157 blkdev_put(bdev, flags);
8a4b83cc 1158error:
beaf8ab3 1159 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1160 return ret;
1161}
0b86a832 1162
6d07bcec
MX
1163/* helper to account the used device space in the range */
1164int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1165 u64 end, u64 *length)
1166{
1167 struct btrfs_key key;
1168 struct btrfs_root *root = device->dev_root;
1169 struct btrfs_dev_extent *dev_extent;
1170 struct btrfs_path *path;
1171 u64 extent_end;
1172 int ret;
1173 int slot;
1174 struct extent_buffer *l;
1175
1176 *length = 0;
1177
63a212ab 1178 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1179 return 0;
1180
1181 path = btrfs_alloc_path();
1182 if (!path)
1183 return -ENOMEM;
e4058b54 1184 path->reada = READA_FORWARD;
6d07bcec
MX
1185
1186 key.objectid = device->devid;
1187 key.offset = start;
1188 key.type = BTRFS_DEV_EXTENT_KEY;
1189
1190 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1191 if (ret < 0)
1192 goto out;
1193 if (ret > 0) {
1194 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1195 if (ret < 0)
1196 goto out;
1197 }
1198
1199 while (1) {
1200 l = path->nodes[0];
1201 slot = path->slots[0];
1202 if (slot >= btrfs_header_nritems(l)) {
1203 ret = btrfs_next_leaf(root, path);
1204 if (ret == 0)
1205 continue;
1206 if (ret < 0)
1207 goto out;
1208
1209 break;
1210 }
1211 btrfs_item_key_to_cpu(l, &key, slot);
1212
1213 if (key.objectid < device->devid)
1214 goto next;
1215
1216 if (key.objectid > device->devid)
1217 break;
1218
962a298f 1219 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1220 goto next;
1221
1222 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1223 extent_end = key.offset + btrfs_dev_extent_length(l,
1224 dev_extent);
1225 if (key.offset <= start && extent_end > end) {
1226 *length = end - start + 1;
1227 break;
1228 } else if (key.offset <= start && extent_end > start)
1229 *length += extent_end - start;
1230 else if (key.offset > start && extent_end <= end)
1231 *length += extent_end - key.offset;
1232 else if (key.offset > start && key.offset <= end) {
1233 *length += end - key.offset + 1;
1234 break;
1235 } else if (key.offset > end)
1236 break;
1237
1238next:
1239 path->slots[0]++;
1240 }
1241 ret = 0;
1242out:
1243 btrfs_free_path(path);
1244 return ret;
1245}
1246
499f377f 1247static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1248 struct btrfs_device *device,
1249 u64 *start, u64 len)
1250{
499f377f 1251 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
6df9a95e 1252 struct extent_map *em;
499f377f 1253 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1254 int ret = 0;
1b984508 1255 u64 physical_start = *start;
6df9a95e 1256
499f377f
JM
1257 if (transaction)
1258 search_list = &transaction->pending_chunks;
04216820
FM
1259again:
1260 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1261 struct map_lookup *map;
1262 int i;
1263
95617d69 1264 map = em->map_lookup;
6df9a95e 1265 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1266 u64 end;
1267
6df9a95e
JB
1268 if (map->stripes[i].dev != device)
1269 continue;
1b984508 1270 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1271 map->stripes[i].physical + em->orig_block_len <=
1b984508 1272 physical_start)
6df9a95e 1273 continue;
c152b63e
FM
1274 /*
1275 * Make sure that while processing the pinned list we do
1276 * not override our *start with a lower value, because
1277 * we can have pinned chunks that fall within this
1278 * device hole and that have lower physical addresses
1279 * than the pending chunks we processed before. If we
1280 * do not take this special care we can end up getting
1281 * 2 pending chunks that start at the same physical
1282 * device offsets because the end offset of a pinned
1283 * chunk can be equal to the start offset of some
1284 * pending chunk.
1285 */
1286 end = map->stripes[i].physical + em->orig_block_len;
1287 if (end > *start) {
1288 *start = end;
1289 ret = 1;
1290 }
6df9a95e
JB
1291 }
1292 }
499f377f
JM
1293 if (search_list != &fs_info->pinned_chunks) {
1294 search_list = &fs_info->pinned_chunks;
04216820
FM
1295 goto again;
1296 }
6df9a95e
JB
1297
1298 return ret;
1299}
1300
1301
0b86a832 1302/*
499f377f
JM
1303 * find_free_dev_extent_start - find free space in the specified device
1304 * @device: the device which we search the free space in
1305 * @num_bytes: the size of the free space that we need
1306 * @search_start: the position from which to begin the search
1307 * @start: store the start of the free space.
1308 * @len: the size of the free space. that we find, or the size
1309 * of the max free space if we don't find suitable free space
7bfc837d 1310 *
0b86a832
CM
1311 * this uses a pretty simple search, the expectation is that it is
1312 * called very infrequently and that a given device has a small number
1313 * of extents
7bfc837d
MX
1314 *
1315 * @start is used to store the start of the free space if we find. But if we
1316 * don't find suitable free space, it will be used to store the start position
1317 * of the max free space.
1318 *
1319 * @len is used to store the size of the free space that we find.
1320 * But if we don't find suitable free space, it is used to store the size of
1321 * the max free space.
0b86a832 1322 */
499f377f
JM
1323int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1324 struct btrfs_device *device, u64 num_bytes,
1325 u64 search_start, u64 *start, u64 *len)
0b86a832
CM
1326{
1327 struct btrfs_key key;
1328 struct btrfs_root *root = device->dev_root;
7bfc837d 1329 struct btrfs_dev_extent *dev_extent;
2b82032c 1330 struct btrfs_path *path;
7bfc837d
MX
1331 u64 hole_size;
1332 u64 max_hole_start;
1333 u64 max_hole_size;
1334 u64 extent_end;
0b86a832
CM
1335 u64 search_end = device->total_bytes;
1336 int ret;
7bfc837d 1337 int slot;
0b86a832 1338 struct extent_buffer *l;
8cdc7c5b
FM
1339 u64 min_search_start;
1340
1341 /*
1342 * We don't want to overwrite the superblock on the drive nor any area
1343 * used by the boot loader (grub for example), so we make sure to start
1344 * at an offset of at least 1MB.
1345 */
1346 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1347 search_start = max(search_start, min_search_start);
0b86a832 1348
6df9a95e
JB
1349 path = btrfs_alloc_path();
1350 if (!path)
1351 return -ENOMEM;
f2ab7618 1352
7bfc837d
MX
1353 max_hole_start = search_start;
1354 max_hole_size = 0;
1355
f2ab7618 1356again:
63a212ab 1357 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1358 ret = -ENOSPC;
6df9a95e 1359 goto out;
7bfc837d
MX
1360 }
1361
e4058b54 1362 path->reada = READA_FORWARD;
6df9a95e
JB
1363 path->search_commit_root = 1;
1364 path->skip_locking = 1;
7bfc837d 1365
0b86a832
CM
1366 key.objectid = device->devid;
1367 key.offset = search_start;
1368 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1369
125ccb0a 1370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1371 if (ret < 0)
7bfc837d 1372 goto out;
1fcbac58
YZ
1373 if (ret > 0) {
1374 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1375 if (ret < 0)
7bfc837d 1376 goto out;
1fcbac58 1377 }
7bfc837d 1378
0b86a832
CM
1379 while (1) {
1380 l = path->nodes[0];
1381 slot = path->slots[0];
1382 if (slot >= btrfs_header_nritems(l)) {
1383 ret = btrfs_next_leaf(root, path);
1384 if (ret == 0)
1385 continue;
1386 if (ret < 0)
7bfc837d
MX
1387 goto out;
1388
1389 break;
0b86a832
CM
1390 }
1391 btrfs_item_key_to_cpu(l, &key, slot);
1392
1393 if (key.objectid < device->devid)
1394 goto next;
1395
1396 if (key.objectid > device->devid)
7bfc837d 1397 break;
0b86a832 1398
962a298f 1399 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1400 goto next;
9779b72f 1401
7bfc837d
MX
1402 if (key.offset > search_start) {
1403 hole_size = key.offset - search_start;
9779b72f 1404
6df9a95e
JB
1405 /*
1406 * Have to check before we set max_hole_start, otherwise
1407 * we could end up sending back this offset anyway.
1408 */
499f377f 1409 if (contains_pending_extent(transaction, device,
6df9a95e 1410 &search_start,
1b984508
FL
1411 hole_size)) {
1412 if (key.offset >= search_start) {
1413 hole_size = key.offset - search_start;
1414 } else {
1415 WARN_ON_ONCE(1);
1416 hole_size = 0;
1417 }
1418 }
6df9a95e 1419
7bfc837d
MX
1420 if (hole_size > max_hole_size) {
1421 max_hole_start = search_start;
1422 max_hole_size = hole_size;
1423 }
9779b72f 1424
7bfc837d
MX
1425 /*
1426 * If this free space is greater than which we need,
1427 * it must be the max free space that we have found
1428 * until now, so max_hole_start must point to the start
1429 * of this free space and the length of this free space
1430 * is stored in max_hole_size. Thus, we return
1431 * max_hole_start and max_hole_size and go back to the
1432 * caller.
1433 */
1434 if (hole_size >= num_bytes) {
1435 ret = 0;
1436 goto out;
0b86a832
CM
1437 }
1438 }
0b86a832 1439
0b86a832 1440 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1441 extent_end = key.offset + btrfs_dev_extent_length(l,
1442 dev_extent);
1443 if (extent_end > search_start)
1444 search_start = extent_end;
0b86a832
CM
1445next:
1446 path->slots[0]++;
1447 cond_resched();
1448 }
0b86a832 1449
38c01b96 1450 /*
1451 * At this point, search_start should be the end of
1452 * allocated dev extents, and when shrinking the device,
1453 * search_end may be smaller than search_start.
1454 */
f2ab7618 1455 if (search_end > search_start) {
38c01b96 1456 hole_size = search_end - search_start;
1457
499f377f 1458 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1459 hole_size)) {
1460 btrfs_release_path(path);
1461 goto again;
1462 }
0b86a832 1463
f2ab7618
ZL
1464 if (hole_size > max_hole_size) {
1465 max_hole_start = search_start;
1466 max_hole_size = hole_size;
1467 }
6df9a95e
JB
1468 }
1469
7bfc837d 1470 /* See above. */
f2ab7618 1471 if (max_hole_size < num_bytes)
7bfc837d
MX
1472 ret = -ENOSPC;
1473 else
1474 ret = 0;
1475
1476out:
2b82032c 1477 btrfs_free_path(path);
7bfc837d 1478 *start = max_hole_start;
b2117a39 1479 if (len)
7bfc837d 1480 *len = max_hole_size;
0b86a832
CM
1481 return ret;
1482}
1483
499f377f
JM
1484int find_free_dev_extent(struct btrfs_trans_handle *trans,
1485 struct btrfs_device *device, u64 num_bytes,
1486 u64 *start, u64 *len)
1487{
499f377f 1488 /* FIXME use last free of some kind */
499f377f 1489 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1490 num_bytes, 0, start, len);
499f377f
JM
1491}
1492
b2950863 1493static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1494 struct btrfs_device *device,
2196d6e8 1495 u64 start, u64 *dev_extent_len)
8f18cf13
CM
1496{
1497 int ret;
1498 struct btrfs_path *path;
1499 struct btrfs_root *root = device->dev_root;
1500 struct btrfs_key key;
a061fc8d
CM
1501 struct btrfs_key found_key;
1502 struct extent_buffer *leaf = NULL;
1503 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1504
1505 path = btrfs_alloc_path();
1506 if (!path)
1507 return -ENOMEM;
1508
1509 key.objectid = device->devid;
1510 key.offset = start;
1511 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1512again:
8f18cf13 1513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1514 if (ret > 0) {
1515 ret = btrfs_previous_item(root, path, key.objectid,
1516 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1517 if (ret)
1518 goto out;
a061fc8d
CM
1519 leaf = path->nodes[0];
1520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1521 extent = btrfs_item_ptr(leaf, path->slots[0],
1522 struct btrfs_dev_extent);
1523 BUG_ON(found_key.offset > start || found_key.offset +
1524 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1525 key = found_key;
1526 btrfs_release_path(path);
1527 goto again;
a061fc8d
CM
1528 } else if (ret == 0) {
1529 leaf = path->nodes[0];
1530 extent = btrfs_item_ptr(leaf, path->slots[0],
1531 struct btrfs_dev_extent);
79787eaa 1532 } else {
34d97007 1533 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
79787eaa 1534 goto out;
a061fc8d 1535 }
8f18cf13 1536
2196d6e8
MX
1537 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1538
8f18cf13 1539 ret = btrfs_del_item(trans, root, path);
79787eaa 1540 if (ret) {
34d97007 1541 btrfs_handle_fs_error(root->fs_info, ret,
79787eaa 1542 "Failed to remove dev extent item");
13212b54 1543 } else {
3204d33c 1544 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1545 }
b0b802d7 1546out:
8f18cf13
CM
1547 btrfs_free_path(path);
1548 return ret;
1549}
1550
48a3b636
ES
1551static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1552 struct btrfs_device *device,
1553 u64 chunk_tree, u64 chunk_objectid,
1554 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1555{
1556 int ret;
1557 struct btrfs_path *path;
1558 struct btrfs_root *root = device->dev_root;
1559 struct btrfs_dev_extent *extent;
1560 struct extent_buffer *leaf;
1561 struct btrfs_key key;
1562
dfe25020 1563 WARN_ON(!device->in_fs_metadata);
63a212ab 1564 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1565 path = btrfs_alloc_path();
1566 if (!path)
1567 return -ENOMEM;
1568
0b86a832 1569 key.objectid = device->devid;
2b82032c 1570 key.offset = start;
0b86a832
CM
1571 key.type = BTRFS_DEV_EXTENT_KEY;
1572 ret = btrfs_insert_empty_item(trans, root, path, &key,
1573 sizeof(*extent));
2cdcecbc
MF
1574 if (ret)
1575 goto out;
0b86a832
CM
1576
1577 leaf = path->nodes[0];
1578 extent = btrfs_item_ptr(leaf, path->slots[0],
1579 struct btrfs_dev_extent);
e17cade2
CM
1580 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1581 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1582 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1583
1584 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
231e88f4 1585 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
e17cade2 1586
0b86a832
CM
1587 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1588 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1589out:
0b86a832
CM
1590 btrfs_free_path(path);
1591 return ret;
1592}
1593
6df9a95e 1594static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1595{
6df9a95e
JB
1596 struct extent_map_tree *em_tree;
1597 struct extent_map *em;
1598 struct rb_node *n;
1599 u64 ret = 0;
0b86a832 1600
6df9a95e
JB
1601 em_tree = &fs_info->mapping_tree.map_tree;
1602 read_lock(&em_tree->lock);
1603 n = rb_last(&em_tree->map);
1604 if (n) {
1605 em = rb_entry(n, struct extent_map, rb_node);
1606 ret = em->start + em->len;
0b86a832 1607 }
6df9a95e
JB
1608 read_unlock(&em_tree->lock);
1609
0b86a832
CM
1610 return ret;
1611}
1612
53f10659
ID
1613static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1614 u64 *devid_ret)
0b86a832
CM
1615{
1616 int ret;
1617 struct btrfs_key key;
1618 struct btrfs_key found_key;
2b82032c
YZ
1619 struct btrfs_path *path;
1620
2b82032c
YZ
1621 path = btrfs_alloc_path();
1622 if (!path)
1623 return -ENOMEM;
0b86a832
CM
1624
1625 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1626 key.type = BTRFS_DEV_ITEM_KEY;
1627 key.offset = (u64)-1;
1628
53f10659 1629 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1630 if (ret < 0)
1631 goto error;
1632
79787eaa 1633 BUG_ON(ret == 0); /* Corruption */
0b86a832 1634
53f10659
ID
1635 ret = btrfs_previous_item(fs_info->chunk_root, path,
1636 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1637 BTRFS_DEV_ITEM_KEY);
1638 if (ret) {
53f10659 1639 *devid_ret = 1;
0b86a832
CM
1640 } else {
1641 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1642 path->slots[0]);
53f10659 1643 *devid_ret = found_key.offset + 1;
0b86a832
CM
1644 }
1645 ret = 0;
1646error:
2b82032c 1647 btrfs_free_path(path);
0b86a832
CM
1648 return ret;
1649}
1650
1651/*
1652 * the device information is stored in the chunk root
1653 * the btrfs_device struct should be fully filled in
1654 */
48a3b636
ES
1655static int btrfs_add_device(struct btrfs_trans_handle *trans,
1656 struct btrfs_root *root,
1657 struct btrfs_device *device)
0b86a832
CM
1658{
1659 int ret;
1660 struct btrfs_path *path;
1661 struct btrfs_dev_item *dev_item;
1662 struct extent_buffer *leaf;
1663 struct btrfs_key key;
1664 unsigned long ptr;
0b86a832
CM
1665
1666 root = root->fs_info->chunk_root;
1667
1668 path = btrfs_alloc_path();
1669 if (!path)
1670 return -ENOMEM;
1671
0b86a832
CM
1672 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1673 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1674 key.offset = device->devid;
0b86a832
CM
1675
1676 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1677 sizeof(*dev_item));
0b86a832
CM
1678 if (ret)
1679 goto out;
1680
1681 leaf = path->nodes[0];
1682 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1683
1684 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1685 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1686 btrfs_set_device_type(leaf, dev_item, device->type);
1687 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1688 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1689 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1690 btrfs_set_device_total_bytes(leaf, dev_item,
1691 btrfs_device_get_disk_total_bytes(device));
1692 btrfs_set_device_bytes_used(leaf, dev_item,
1693 btrfs_device_get_bytes_used(device));
e17cade2
CM
1694 btrfs_set_device_group(leaf, dev_item, 0);
1695 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1696 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1697 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1698
410ba3a2 1699 ptr = btrfs_device_uuid(dev_item);
e17cade2 1700 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1701 ptr = btrfs_device_fsid(dev_item);
2b82032c 1702 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1703 btrfs_mark_buffer_dirty(leaf);
0b86a832 1704
2b82032c 1705 ret = 0;
0b86a832
CM
1706out:
1707 btrfs_free_path(path);
1708 return ret;
1709}
8f18cf13 1710
5a1972bd
QW
1711/*
1712 * Function to update ctime/mtime for a given device path.
1713 * Mainly used for ctime/mtime based probe like libblkid.
1714 */
1715static void update_dev_time(char *path_name)
1716{
1717 struct file *filp;
1718
1719 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1720 if (IS_ERR(filp))
5a1972bd
QW
1721 return;
1722 file_update_time(filp);
1723 filp_close(filp, NULL);
5a1972bd
QW
1724}
1725
a061fc8d
CM
1726static int btrfs_rm_dev_item(struct btrfs_root *root,
1727 struct btrfs_device *device)
1728{
1729 int ret;
1730 struct btrfs_path *path;
a061fc8d 1731 struct btrfs_key key;
a061fc8d
CM
1732 struct btrfs_trans_handle *trans;
1733
1734 root = root->fs_info->chunk_root;
1735
1736 path = btrfs_alloc_path();
1737 if (!path)
1738 return -ENOMEM;
1739
a22285a6 1740 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1741 if (IS_ERR(trans)) {
1742 btrfs_free_path(path);
1743 return PTR_ERR(trans);
1744 }
a061fc8d
CM
1745 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1746 key.type = BTRFS_DEV_ITEM_KEY;
1747 key.offset = device->devid;
1748
1749 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1750 if (ret < 0)
1751 goto out;
1752
1753 if (ret > 0) {
1754 ret = -ENOENT;
1755 goto out;
1756 }
1757
1758 ret = btrfs_del_item(trans, root, path);
1759 if (ret)
1760 goto out;
a061fc8d
CM
1761out:
1762 btrfs_free_path(path);
1763 btrfs_commit_transaction(trans, root);
1764 return ret;
1765}
1766
3cc31a0d
DS
1767/*
1768 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1769 * filesystem. It's up to the caller to adjust that number regarding eg. device
1770 * replace.
1771 */
1772static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1773 u64 num_devices)
a061fc8d 1774{
a061fc8d 1775 u64 all_avail;
de98ced9 1776 unsigned seq;
418775a2 1777 int i;
a061fc8d 1778
de98ced9 1779 do {
bd45ffbc 1780 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1781
bd45ffbc
AJ
1782 all_avail = fs_info->avail_data_alloc_bits |
1783 fs_info->avail_system_alloc_bits |
1784 fs_info->avail_metadata_alloc_bits;
1785 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1786
418775a2
DS
1787 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1788 if (!(all_avail & btrfs_raid_group[i]))
1789 continue;
a061fc8d 1790
418775a2
DS
1791 if (num_devices < btrfs_raid_array[i].devs_min) {
1792 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1793
418775a2
DS
1794 if (ret)
1795 return ret;
1796 }
53b381b3
DW
1797 }
1798
bd45ffbc 1799 return 0;
f1fa7f26
AJ
1800}
1801
88acff64
AJ
1802struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1803 struct btrfs_device *device)
a061fc8d 1804{
2b82032c 1805 struct btrfs_device *next_device;
88acff64
AJ
1806
1807 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1808 if (next_device != device &&
1809 !next_device->missing && next_device->bdev)
1810 return next_device;
1811 }
1812
1813 return NULL;
1814}
1815
1816/*
1817 * Helper function to check if the given device is part of s_bdev / latest_bdev
1818 * and replace it with the provided or the next active device, in the context
1819 * where this function called, there should be always be another device (or
1820 * this_dev) which is active.
1821 */
1822void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1823 struct btrfs_device *device, struct btrfs_device *this_dev)
1824{
1825 struct btrfs_device *next_device;
1826
1827 if (this_dev)
1828 next_device = this_dev;
1829 else
1830 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1831 device);
1832 ASSERT(next_device);
1833
1834 if (fs_info->sb->s_bdev &&
1835 (fs_info->sb->s_bdev == device->bdev))
1836 fs_info->sb->s_bdev = next_device->bdev;
1837
1838 if (fs_info->fs_devices->latest_bdev == device->bdev)
1839 fs_info->fs_devices->latest_bdev = next_device->bdev;
1840}
1841
6b526ed7 1842int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
f1fa7f26
AJ
1843{
1844 struct btrfs_device *device;
1f78160c 1845 struct btrfs_fs_devices *cur_devices;
2b82032c 1846 u64 num_devices;
a061fc8d 1847 int ret = 0;
1f78160c 1848 bool clear_super = false;
a061fc8d 1849
a061fc8d
CM
1850 mutex_lock(&uuid_mutex);
1851
8dabb742 1852 num_devices = root->fs_info->fs_devices->num_devices;
73beece9 1853 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
8dabb742
SB
1854 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1855 WARN_ON(num_devices < 1);
1856 num_devices--;
1857 }
73beece9 1858 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
8dabb742 1859
3cc31a0d 1860 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
f1fa7f26 1861 if (ret)
a061fc8d 1862 goto out;
a061fc8d 1863
5c5c0df0 1864 ret = btrfs_find_device_by_devspec(root, devid, device_path,
24fc572f
AJ
1865 &device);
1866 if (ret)
53b381b3 1867 goto out;
dfe25020 1868
63a212ab 1869 if (device->is_tgtdev_for_dev_replace) {
183860f6 1870 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1871 goto out;
63a212ab
SB
1872 }
1873
2b82032c 1874 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
183860f6 1875 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1876 goto out;
2b82032c
YZ
1877 }
1878
1879 if (device->writeable) {
0c1daee0 1880 lock_chunks(root);
2b82032c 1881 list_del_init(&device->dev_alloc_list);
c3929c36 1882 device->fs_devices->rw_devices--;
0c1daee0 1883 unlock_chunks(root);
1f78160c 1884 clear_super = true;
dfe25020 1885 }
a061fc8d 1886
d7901554 1887 mutex_unlock(&uuid_mutex);
a061fc8d 1888 ret = btrfs_shrink_device(device, 0);
d7901554 1889 mutex_lock(&uuid_mutex);
a061fc8d 1890 if (ret)
9b3517e9 1891 goto error_undo;
a061fc8d 1892
63a212ab
SB
1893 /*
1894 * TODO: the superblock still includes this device in its num_devices
1895 * counter although write_all_supers() is not locked out. This
1896 * could give a filesystem state which requires a degraded mount.
1897 */
a061fc8d
CM
1898 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1899 if (ret)
9b3517e9 1900 goto error_undo;
a061fc8d 1901
2b82032c 1902 device->in_fs_metadata = 0;
aa1b8cd4 1903 btrfs_scrub_cancel_dev(root->fs_info, device);
e5e9a520
CM
1904
1905 /*
1906 * the device list mutex makes sure that we don't change
1907 * the device list while someone else is writing out all
d7306801
FDBM
1908 * the device supers. Whoever is writing all supers, should
1909 * lock the device list mutex before getting the number of
1910 * devices in the super block (super_copy). Conversely,
1911 * whoever updates the number of devices in the super block
1912 * (super_copy) should hold the device list mutex.
e5e9a520 1913 */
1f78160c
XG
1914
1915 cur_devices = device->fs_devices;
e5e9a520 1916 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1917 list_del_rcu(&device->dev_list);
e5e9a520 1918
e4404d6e 1919 device->fs_devices->num_devices--;
02db0844 1920 device->fs_devices->total_devices--;
2b82032c 1921
cd02dca5 1922 if (device->missing)
3a7d55c8 1923 device->fs_devices->missing_devices--;
cd02dca5 1924
88acff64 1925 btrfs_assign_next_active_device(root->fs_info, device, NULL);
2b82032c 1926
0bfaa9c5 1927 if (device->bdev) {
e4404d6e 1928 device->fs_devices->open_devices--;
0bfaa9c5 1929 /* remove sysfs entry */
32576040 1930 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
0bfaa9c5 1931 }
99994cde 1932
6c41761f
DS
1933 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1934 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
d7306801 1935 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c 1936
cea67ab9
JM
1937 /*
1938 * at this point, the device is zero sized and detached from
1939 * the devices list. All that's left is to zero out the old
1940 * supers and free the device.
1941 */
1942 if (device->writeable)
1943 btrfs_scratch_superblocks(device->bdev, device->name->str);
1944
1945 btrfs_close_bdev(device);
1946 call_rcu(&device->rcu, free_device);
1947
1f78160c 1948 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1949 struct btrfs_fs_devices *fs_devices;
1950 fs_devices = root->fs_info->fs_devices;
1951 while (fs_devices) {
8321cf25
RS
1952 if (fs_devices->seed == cur_devices) {
1953 fs_devices->seed = cur_devices->seed;
e4404d6e 1954 break;
8321cf25 1955 }
e4404d6e 1956 fs_devices = fs_devices->seed;
2b82032c 1957 }
1f78160c 1958 cur_devices->seed = NULL;
1f78160c 1959 __btrfs_close_devices(cur_devices);
1f78160c 1960 free_fs_devices(cur_devices);
2b82032c
YZ
1961 }
1962
5af3e8cc
SB
1963 root->fs_info->num_tolerated_disk_barrier_failures =
1964 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1965
a061fc8d
CM
1966out:
1967 mutex_unlock(&uuid_mutex);
a061fc8d 1968 return ret;
24fc572f 1969
9b3517e9
ID
1970error_undo:
1971 if (device->writeable) {
0c1daee0 1972 lock_chunks(root);
9b3517e9
ID
1973 list_add(&device->dev_alloc_list,
1974 &root->fs_info->fs_devices->alloc_list);
c3929c36 1975 device->fs_devices->rw_devices++;
0c1daee0 1976 unlock_chunks(root);
9b3517e9 1977 }
24fc572f 1978 goto out;
a061fc8d
CM
1979}
1980
084b6e7c
QW
1981void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1982 struct btrfs_device *srcdev)
e93c89c1 1983{
d51908ce
AJ
1984 struct btrfs_fs_devices *fs_devices;
1985
e93c89c1 1986 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 1987
25e8e911
AJ
1988 /*
1989 * in case of fs with no seed, srcdev->fs_devices will point
1990 * to fs_devices of fs_info. However when the dev being replaced is
1991 * a seed dev it will point to the seed's local fs_devices. In short
1992 * srcdev will have its correct fs_devices in both the cases.
1993 */
1994 fs_devices = srcdev->fs_devices;
d51908ce 1995
e93c89c1
SB
1996 list_del_rcu(&srcdev->dev_list);
1997 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 1998 fs_devices->num_devices--;
82372bc8 1999 if (srcdev->missing)
d51908ce 2000 fs_devices->missing_devices--;
e93c89c1 2001
48b3b9d4 2002 if (srcdev->writeable)
82372bc8 2003 fs_devices->rw_devices--;
1357272f 2004
82372bc8 2005 if (srcdev->bdev)
d51908ce 2006 fs_devices->open_devices--;
084b6e7c
QW
2007}
2008
2009void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2010 struct btrfs_device *srcdev)
2011{
2012 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2013
48b3b9d4
AJ
2014 if (srcdev->writeable) {
2015 /* zero out the old super if it is writable */
2016 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2017 }
14238819
AJ
2018
2019 btrfs_close_bdev(srcdev);
2020
e93c89c1 2021 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2022
2023 /*
2024 * unless fs_devices is seed fs, num_devices shouldn't go
2025 * zero
2026 */
2027 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2028
2029 /* if this is no devs we rather delete the fs_devices */
2030 if (!fs_devices->num_devices) {
2031 struct btrfs_fs_devices *tmp_fs_devices;
2032
2033 tmp_fs_devices = fs_info->fs_devices;
2034 while (tmp_fs_devices) {
2035 if (tmp_fs_devices->seed == fs_devices) {
2036 tmp_fs_devices->seed = fs_devices->seed;
2037 break;
2038 }
2039 tmp_fs_devices = tmp_fs_devices->seed;
2040 }
2041 fs_devices->seed = NULL;
8bef8401
AJ
2042 __btrfs_close_devices(fs_devices);
2043 free_fs_devices(fs_devices);
94d5f0c2 2044 }
e93c89c1
SB
2045}
2046
2047void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2048 struct btrfs_device *tgtdev)
2049{
67a2c45e 2050 mutex_lock(&uuid_mutex);
e93c89c1
SB
2051 WARN_ON(!tgtdev);
2052 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2053
32576040 2054 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2055
779bf3fe 2056 if (tgtdev->bdev)
e93c89c1 2057 fs_info->fs_devices->open_devices--;
779bf3fe 2058
e93c89c1 2059 fs_info->fs_devices->num_devices--;
e93c89c1 2060
88acff64 2061 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2062
e93c89c1 2063 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2064
2065 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2066 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2067
2068 /*
2069 * The update_dev_time() with in btrfs_scratch_superblocks()
2070 * may lead to a call to btrfs_show_devname() which will try
2071 * to hold device_list_mutex. And here this device
2072 * is already out of device list, so we don't have to hold
2073 * the device_list_mutex lock.
2074 */
2075 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2076
2077 btrfs_close_bdev(tgtdev);
779bf3fe 2078 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2079}
2080
48a3b636
ES
2081static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2082 struct btrfs_device **device)
7ba15b7d
SB
2083{
2084 int ret = 0;
2085 struct btrfs_super_block *disk_super;
2086 u64 devid;
2087 u8 *dev_uuid;
2088 struct block_device *bdev;
2089 struct buffer_head *bh;
2090
2091 *device = NULL;
2092 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2093 root->fs_info->bdev_holder, 0, &bdev, &bh);
2094 if (ret)
2095 return ret;
2096 disk_super = (struct btrfs_super_block *)bh->b_data;
2097 devid = btrfs_stack_device_id(&disk_super->dev_item);
2098 dev_uuid = disk_super->dev_item.uuid;
aa1b8cd4 2099 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
7ba15b7d
SB
2100 disk_super->fsid);
2101 brelse(bh);
2102 if (!*device)
2103 ret = -ENOENT;
2104 blkdev_put(bdev, FMODE_READ);
2105 return ret;
2106}
2107
2108int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2109 char *device_path,
2110 struct btrfs_device **device)
2111{
2112 *device = NULL;
2113 if (strcmp(device_path, "missing") == 0) {
2114 struct list_head *devices;
2115 struct btrfs_device *tmp;
2116
2117 devices = &root->fs_info->fs_devices->devices;
2118 /*
2119 * It is safe to read the devices since the volume_mutex
2120 * is held by the caller.
2121 */
2122 list_for_each_entry(tmp, devices, dev_list) {
2123 if (tmp->in_fs_metadata && !tmp->bdev) {
2124 *device = tmp;
2125 break;
2126 }
2127 }
2128
d74a6259
AJ
2129 if (!*device)
2130 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2131
2132 return 0;
2133 } else {
2134 return btrfs_find_device_by_path(root, device_path, device);
2135 }
2136}
2137
5c5c0df0
DS
2138/*
2139 * Lookup a device given by device id, or the path if the id is 0.
2140 */
2141int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2142 char *devpath,
24e0474b
AJ
2143 struct btrfs_device **device)
2144{
2145 int ret;
2146
5c5c0df0 2147 if (devid) {
24e0474b 2148 ret = 0;
5c5c0df0 2149 *device = btrfs_find_device(root->fs_info, devid, NULL,
24e0474b
AJ
2150 NULL);
2151 if (!*device)
2152 ret = -ENOENT;
2153 } else {
5c5c0df0 2154 if (!devpath || !devpath[0])
b3d1b153
AJ
2155 return -EINVAL;
2156
5c5c0df0 2157 ret = btrfs_find_device_missing_or_by_path(root, devpath,
24e0474b
AJ
2158 device);
2159 }
2160 return ret;
2161}
2162
2b82032c
YZ
2163/*
2164 * does all the dirty work required for changing file system's UUID.
2165 */
125ccb0a 2166static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
2167{
2168 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2169 struct btrfs_fs_devices *old_devices;
e4404d6e 2170 struct btrfs_fs_devices *seed_devices;
6c41761f 2171 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
2172 struct btrfs_device *device;
2173 u64 super_flags;
2174
2175 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2176 if (!fs_devices->seeding)
2b82032c
YZ
2177 return -EINVAL;
2178
2208a378
ID
2179 seed_devices = __alloc_fs_devices();
2180 if (IS_ERR(seed_devices))
2181 return PTR_ERR(seed_devices);
2b82032c 2182
e4404d6e
YZ
2183 old_devices = clone_fs_devices(fs_devices);
2184 if (IS_ERR(old_devices)) {
2185 kfree(seed_devices);
2186 return PTR_ERR(old_devices);
2b82032c 2187 }
e4404d6e 2188
2b82032c
YZ
2189 list_add(&old_devices->list, &fs_uuids);
2190
e4404d6e
YZ
2191 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2192 seed_devices->opened = 1;
2193 INIT_LIST_HEAD(&seed_devices->devices);
2194 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2195 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
2196
2197 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2198 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2199 synchronize_rcu);
2196d6e8
MX
2200 list_for_each_entry(device, &seed_devices->devices, dev_list)
2201 device->fs_devices = seed_devices;
c9513edb 2202
2196d6e8 2203 lock_chunks(root);
e4404d6e 2204 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2196d6e8 2205 unlock_chunks(root);
e4404d6e 2206
2b82032c
YZ
2207 fs_devices->seeding = 0;
2208 fs_devices->num_devices = 0;
2209 fs_devices->open_devices = 0;
69611ac8 2210 fs_devices->missing_devices = 0;
69611ac8 2211 fs_devices->rotating = 0;
e4404d6e 2212 fs_devices->seed = seed_devices;
2b82032c
YZ
2213
2214 generate_random_uuid(fs_devices->fsid);
2215 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2216 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750
FDBM
2217 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2218
2b82032c
YZ
2219 super_flags = btrfs_super_flags(disk_super) &
2220 ~BTRFS_SUPER_FLAG_SEEDING;
2221 btrfs_set_super_flags(disk_super, super_flags);
2222
2223 return 0;
2224}
2225
2226/*
01327610 2227 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2228 */
2229static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2230 struct btrfs_root *root)
2231{
2232 struct btrfs_path *path;
2233 struct extent_buffer *leaf;
2234 struct btrfs_dev_item *dev_item;
2235 struct btrfs_device *device;
2236 struct btrfs_key key;
2237 u8 fs_uuid[BTRFS_UUID_SIZE];
2238 u8 dev_uuid[BTRFS_UUID_SIZE];
2239 u64 devid;
2240 int ret;
2241
2242 path = btrfs_alloc_path();
2243 if (!path)
2244 return -ENOMEM;
2245
2246 root = root->fs_info->chunk_root;
2247 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2248 key.offset = 0;
2249 key.type = BTRFS_DEV_ITEM_KEY;
2250
2251 while (1) {
2252 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2253 if (ret < 0)
2254 goto error;
2255
2256 leaf = path->nodes[0];
2257next_slot:
2258 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2259 ret = btrfs_next_leaf(root, path);
2260 if (ret > 0)
2261 break;
2262 if (ret < 0)
2263 goto error;
2264 leaf = path->nodes[0];
2265 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2266 btrfs_release_path(path);
2b82032c
YZ
2267 continue;
2268 }
2269
2270 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2271 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2272 key.type != BTRFS_DEV_ITEM_KEY)
2273 break;
2274
2275 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2276 struct btrfs_dev_item);
2277 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2278 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2279 BTRFS_UUID_SIZE);
1473b24e 2280 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2281 BTRFS_UUID_SIZE);
aa1b8cd4
SB
2282 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2283 fs_uuid);
79787eaa 2284 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2285
2286 if (device->fs_devices->seeding) {
2287 btrfs_set_device_generation(leaf, dev_item,
2288 device->generation);
2289 btrfs_mark_buffer_dirty(leaf);
2290 }
2291
2292 path->slots[0]++;
2293 goto next_slot;
2294 }
2295 ret = 0;
2296error:
2297 btrfs_free_path(path);
2298 return ret;
2299}
2300
788f20eb
CM
2301int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2302{
d5e2003c 2303 struct request_queue *q;
788f20eb
CM
2304 struct btrfs_trans_handle *trans;
2305 struct btrfs_device *device;
2306 struct block_device *bdev;
788f20eb 2307 struct list_head *devices;
2b82032c 2308 struct super_block *sb = root->fs_info->sb;
606686ee 2309 struct rcu_string *name;
3c1dbdf5 2310 u64 tmp;
2b82032c 2311 int seeding_dev = 0;
788f20eb
CM
2312 int ret = 0;
2313
2b82032c 2314 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 2315 return -EROFS;
788f20eb 2316
a5d16333 2317 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 2318 root->fs_info->bdev_holder);
7f59203a
JB
2319 if (IS_ERR(bdev))
2320 return PTR_ERR(bdev);
a2135011 2321
2b82032c
YZ
2322 if (root->fs_info->fs_devices->seeding) {
2323 seeding_dev = 1;
2324 down_write(&sb->s_umount);
2325 mutex_lock(&uuid_mutex);
2326 }
2327
8c8bee1d 2328 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2329
788f20eb 2330 devices = &root->fs_info->fs_devices->devices;
d25628bd
LB
2331
2332 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 2333 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2334 if (device->bdev == bdev) {
2335 ret = -EEXIST;
d25628bd
LB
2336 mutex_unlock(
2337 &root->fs_info->fs_devices->device_list_mutex);
2b82032c 2338 goto error;
788f20eb
CM
2339 }
2340 }
d25628bd 2341 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2342
12bd2fc0
ID
2343 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2344 if (IS_ERR(device)) {
788f20eb 2345 /* we can safely leave the fs_devices entry around */
12bd2fc0 2346 ret = PTR_ERR(device);
2b82032c 2347 goto error;
788f20eb
CM
2348 }
2349
78f2c9e6 2350 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2351 if (!name) {
788f20eb 2352 kfree(device);
2b82032c
YZ
2353 ret = -ENOMEM;
2354 goto error;
788f20eb 2355 }
606686ee 2356 rcu_assign_pointer(device->name, name);
2b82032c 2357
a22285a6 2358 trans = btrfs_start_transaction(root, 0);
98d5dc13 2359 if (IS_ERR(trans)) {
606686ee 2360 rcu_string_free(device->name);
98d5dc13
TI
2361 kfree(device);
2362 ret = PTR_ERR(trans);
2363 goto error;
2364 }
2365
d5e2003c
JB
2366 q = bdev_get_queue(bdev);
2367 if (blk_queue_discard(q))
2368 device->can_discard = 1;
2b82032c 2369 device->writeable = 1;
2b82032c 2370 device->generation = trans->transid;
788f20eb
CM
2371 device->io_width = root->sectorsize;
2372 device->io_align = root->sectorsize;
2373 device->sector_size = root->sectorsize;
2374 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2375 device->disk_total_bytes = device->total_bytes;
935e5cc9 2376 device->commit_total_bytes = device->total_bytes;
788f20eb
CM
2377 device->dev_root = root->fs_info->dev_root;
2378 device->bdev = bdev;
dfe25020 2379 device->in_fs_metadata = 1;
63a212ab 2380 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2381 device->mode = FMODE_EXCL;
27087f37 2382 device->dev_stats_valid = 1;
2b82032c 2383 set_blocksize(device->bdev, 4096);
788f20eb 2384
2b82032c
YZ
2385 if (seeding_dev) {
2386 sb->s_flags &= ~MS_RDONLY;
125ccb0a 2387 ret = btrfs_prepare_sprout(root);
79787eaa 2388 BUG_ON(ret); /* -ENOMEM */
2b82032c 2389 }
788f20eb 2390
2b82032c 2391 device->fs_devices = root->fs_info->fs_devices;
e5e9a520 2392
e5e9a520 2393 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2196d6e8 2394 lock_chunks(root);
1f78160c 2395 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
2396 list_add(&device->dev_alloc_list,
2397 &root->fs_info->fs_devices->alloc_list);
2398 root->fs_info->fs_devices->num_devices++;
2399 root->fs_info->fs_devices->open_devices++;
2400 root->fs_info->fs_devices->rw_devices++;
02db0844 2401 root->fs_info->fs_devices->total_devices++;
2b82032c 2402 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2403
2bf64758
JB
2404 spin_lock(&root->fs_info->free_chunk_lock);
2405 root->fs_info->free_chunk_space += device->total_bytes;
2406 spin_unlock(&root->fs_info->free_chunk_lock);
2407
c289811c
CM
2408 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2409 root->fs_info->fs_devices->rotating = 1;
2410
3c1dbdf5 2411 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
6c41761f 2412 btrfs_set_super_total_bytes(root->fs_info->super_copy,
3c1dbdf5 2413 tmp + device->total_bytes);
788f20eb 2414
3c1dbdf5 2415 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
6c41761f 2416 btrfs_set_super_num_devices(root->fs_info->super_copy,
3c1dbdf5 2417 tmp + 1);
0d39376a
AJ
2418
2419 /* add sysfs device entry */
e3bd6973 2420 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
0d39376a 2421
2196d6e8
MX
2422 /*
2423 * we've got more storage, clear any full flags on the space
2424 * infos
2425 */
2426 btrfs_clear_space_info_full(root->fs_info);
2427
2428 unlock_chunks(root);
e5e9a520 2429 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 2430
2b82032c 2431 if (seeding_dev) {
2196d6e8 2432 lock_chunks(root);
2b82032c 2433 ret = init_first_rw_device(trans, root, device);
2196d6e8 2434 unlock_chunks(root);
005d6427 2435 if (ret) {
66642832 2436 btrfs_abort_transaction(trans, ret);
79787eaa 2437 goto error_trans;
005d6427 2438 }
2196d6e8
MX
2439 }
2440
2441 ret = btrfs_add_device(trans, root, device);
2442 if (ret) {
66642832 2443 btrfs_abort_transaction(trans, ret);
2196d6e8
MX
2444 goto error_trans;
2445 }
2446
2447 if (seeding_dev) {
2448 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2449
2b82032c 2450 ret = btrfs_finish_sprout(trans, root);
005d6427 2451 if (ret) {
66642832 2452 btrfs_abort_transaction(trans, ret);
79787eaa 2453 goto error_trans;
005d6427 2454 }
b2373f25
AJ
2455
2456 /* Sprouting would change fsid of the mounted root,
2457 * so rename the fsid on the sysfs
2458 */
2459 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2460 root->fs_info->fsid);
c1b7e474 2461 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2e7910d6 2462 fsid_buf))
f14d104d
DS
2463 btrfs_warn(root->fs_info,
2464 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2465 }
2466
5af3e8cc
SB
2467 root->fs_info->num_tolerated_disk_barrier_failures =
2468 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
79787eaa 2469 ret = btrfs_commit_transaction(trans, root);
a2135011 2470
2b82032c
YZ
2471 if (seeding_dev) {
2472 mutex_unlock(&uuid_mutex);
2473 up_write(&sb->s_umount);
788f20eb 2474
79787eaa
JM
2475 if (ret) /* transaction commit */
2476 return ret;
2477
2b82032c 2478 ret = btrfs_relocate_sys_chunks(root);
79787eaa 2479 if (ret < 0)
34d97007 2480 btrfs_handle_fs_error(root->fs_info, ret,
5d163e0e 2481 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2482 trans = btrfs_attach_transaction(root);
2483 if (IS_ERR(trans)) {
2484 if (PTR_ERR(trans) == -ENOENT)
2485 return 0;
2486 return PTR_ERR(trans);
2487 }
2488 ret = btrfs_commit_transaction(trans, root);
2b82032c 2489 }
c9e9f97b 2490
5a1972bd
QW
2491 /* Update ctime/mtime for libblkid */
2492 update_dev_time(device_path);
2b82032c 2493 return ret;
79787eaa
JM
2494
2495error_trans:
79787eaa 2496 btrfs_end_transaction(trans, root);
606686ee 2497 rcu_string_free(device->name);
32576040 2498 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
79787eaa 2499 kfree(device);
2b82032c 2500error:
e525fd89 2501 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2502 if (seeding_dev) {
2503 mutex_unlock(&uuid_mutex);
2504 up_write(&sb->s_umount);
2505 }
c9e9f97b 2506 return ret;
788f20eb
CM
2507}
2508
e93c89c1 2509int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
1c43366d 2510 struct btrfs_device *srcdev,
e93c89c1
SB
2511 struct btrfs_device **device_out)
2512{
2513 struct request_queue *q;
2514 struct btrfs_device *device;
2515 struct block_device *bdev;
2516 struct btrfs_fs_info *fs_info = root->fs_info;
2517 struct list_head *devices;
2518 struct rcu_string *name;
12bd2fc0 2519 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2520 int ret = 0;
2521
2522 *device_out = NULL;
1c43366d
MX
2523 if (fs_info->fs_devices->seeding) {
2524 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2525 return -EINVAL;
1c43366d 2526 }
e93c89c1
SB
2527
2528 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2529 fs_info->bdev_holder);
1c43366d
MX
2530 if (IS_ERR(bdev)) {
2531 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2532 return PTR_ERR(bdev);
1c43366d 2533 }
e93c89c1
SB
2534
2535 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2536
2537 devices = &fs_info->fs_devices->devices;
2538 list_for_each_entry(device, devices, dev_list) {
2539 if (device->bdev == bdev) {
5d163e0e
JM
2540 btrfs_err(fs_info,
2541 "target device is in the filesystem!");
e93c89c1
SB
2542 ret = -EEXIST;
2543 goto error;
2544 }
2545 }
2546
1c43366d 2547
7cc8e58d
MX
2548 if (i_size_read(bdev->bd_inode) <
2549 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2550 btrfs_err(fs_info,
2551 "target device is smaller than source device!");
1c43366d
MX
2552 ret = -EINVAL;
2553 goto error;
2554 }
2555
2556
12bd2fc0
ID
2557 device = btrfs_alloc_device(NULL, &devid, NULL);
2558 if (IS_ERR(device)) {
2559 ret = PTR_ERR(device);
e93c89c1
SB
2560 goto error;
2561 }
2562
2563 name = rcu_string_strdup(device_path, GFP_NOFS);
2564 if (!name) {
2565 kfree(device);
2566 ret = -ENOMEM;
2567 goto error;
2568 }
2569 rcu_assign_pointer(device->name, name);
2570
2571 q = bdev_get_queue(bdev);
2572 if (blk_queue_discard(q))
2573 device->can_discard = 1;
2574 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2575 device->writeable = 1;
e93c89c1
SB
2576 device->generation = 0;
2577 device->io_width = root->sectorsize;
2578 device->io_align = root->sectorsize;
2579 device->sector_size = root->sectorsize;
7cc8e58d
MX
2580 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2581 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2582 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2583 ASSERT(list_empty(&srcdev->resized_list));
2584 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2585 device->commit_bytes_used = device->bytes_used;
e93c89c1
SB
2586 device->dev_root = fs_info->dev_root;
2587 device->bdev = bdev;
2588 device->in_fs_metadata = 1;
2589 device->is_tgtdev_for_dev_replace = 1;
2590 device->mode = FMODE_EXCL;
27087f37 2591 device->dev_stats_valid = 1;
e93c89c1
SB
2592 set_blocksize(device->bdev, 4096);
2593 device->fs_devices = fs_info->fs_devices;
2594 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2595 fs_info->fs_devices->num_devices++;
2596 fs_info->fs_devices->open_devices++;
e93c89c1
SB
2597 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2598
2599 *device_out = device;
2600 return ret;
2601
2602error:
2603 blkdev_put(bdev, FMODE_EXCL);
2604 return ret;
2605}
2606
2607void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2608 struct btrfs_device *tgtdev)
2609{
2610 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2611 tgtdev->io_width = fs_info->dev_root->sectorsize;
2612 tgtdev->io_align = fs_info->dev_root->sectorsize;
2613 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2614 tgtdev->dev_root = fs_info->dev_root;
2615 tgtdev->in_fs_metadata = 1;
2616}
2617
d397712b
CM
2618static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2619 struct btrfs_device *device)
0b86a832
CM
2620{
2621 int ret;
2622 struct btrfs_path *path;
2623 struct btrfs_root *root;
2624 struct btrfs_dev_item *dev_item;
2625 struct extent_buffer *leaf;
2626 struct btrfs_key key;
2627
2628 root = device->dev_root->fs_info->chunk_root;
2629
2630 path = btrfs_alloc_path();
2631 if (!path)
2632 return -ENOMEM;
2633
2634 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2635 key.type = BTRFS_DEV_ITEM_KEY;
2636 key.offset = device->devid;
2637
2638 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2639 if (ret < 0)
2640 goto out;
2641
2642 if (ret > 0) {
2643 ret = -ENOENT;
2644 goto out;
2645 }
2646
2647 leaf = path->nodes[0];
2648 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2649
2650 btrfs_set_device_id(leaf, dev_item, device->devid);
2651 btrfs_set_device_type(leaf, dev_item, device->type);
2652 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2653 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2654 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2655 btrfs_set_device_total_bytes(leaf, dev_item,
2656 btrfs_device_get_disk_total_bytes(device));
2657 btrfs_set_device_bytes_used(leaf, dev_item,
2658 btrfs_device_get_bytes_used(device));
0b86a832
CM
2659 btrfs_mark_buffer_dirty(leaf);
2660
2661out:
2662 btrfs_free_path(path);
2663 return ret;
2664}
2665
2196d6e8 2666int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2667 struct btrfs_device *device, u64 new_size)
2668{
2669 struct btrfs_super_block *super_copy =
6c41761f 2670 device->dev_root->fs_info->super_copy;
935e5cc9 2671 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2672 u64 old_total;
2673 u64 diff;
8f18cf13 2674
2b82032c
YZ
2675 if (!device->writeable)
2676 return -EACCES;
2196d6e8
MX
2677
2678 lock_chunks(device->dev_root);
2679 old_total = btrfs_super_total_bytes(super_copy);
2680 diff = new_size - device->total_bytes;
2681
63a212ab 2682 if (new_size <= device->total_bytes ||
2196d6e8
MX
2683 device->is_tgtdev_for_dev_replace) {
2684 unlock_chunks(device->dev_root);
2b82032c 2685 return -EINVAL;
2196d6e8 2686 }
2b82032c 2687
935e5cc9 2688 fs_devices = device->dev_root->fs_info->fs_devices;
2b82032c 2689
8f18cf13 2690 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2691 device->fs_devices->total_rw_bytes += diff;
2692
7cc8e58d
MX
2693 btrfs_device_set_total_bytes(device, new_size);
2694 btrfs_device_set_disk_total_bytes(device, new_size);
4184ea7f 2695 btrfs_clear_space_info_full(device->dev_root->fs_info);
935e5cc9
MX
2696 if (list_empty(&device->resized_list))
2697 list_add_tail(&device->resized_list,
2698 &fs_devices->resized_devices);
2196d6e8 2699 unlock_chunks(device->dev_root);
4184ea7f 2700
8f18cf13
CM
2701 return btrfs_update_device(trans, device);
2702}
2703
2704static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
a688a04a 2705 struct btrfs_root *root, u64 chunk_objectid,
8f18cf13
CM
2706 u64 chunk_offset)
2707{
2708 int ret;
2709 struct btrfs_path *path;
2710 struct btrfs_key key;
2711
2712 root = root->fs_info->chunk_root;
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 return -ENOMEM;
2716
2717 key.objectid = chunk_objectid;
2718 key.offset = chunk_offset;
2719 key.type = BTRFS_CHUNK_ITEM_KEY;
2720
2721 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2722 if (ret < 0)
2723 goto out;
2724 else if (ret > 0) { /* Logic error or corruption */
34d97007 2725 btrfs_handle_fs_error(root->fs_info, -ENOENT,
79787eaa
JM
2726 "Failed lookup while freeing chunk.");
2727 ret = -ENOENT;
2728 goto out;
2729 }
8f18cf13
CM
2730
2731 ret = btrfs_del_item(trans, root, path);
79787eaa 2732 if (ret < 0)
34d97007 2733 btrfs_handle_fs_error(root->fs_info, ret,
79787eaa
JM
2734 "Failed to delete chunk item.");
2735out:
8f18cf13 2736 btrfs_free_path(path);
65a246c5 2737 return ret;
8f18cf13
CM
2738}
2739
b2950863 2740static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
2741 chunk_offset)
2742{
6c41761f 2743 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
2744 struct btrfs_disk_key *disk_key;
2745 struct btrfs_chunk *chunk;
2746 u8 *ptr;
2747 int ret = 0;
2748 u32 num_stripes;
2749 u32 array_size;
2750 u32 len = 0;
2751 u32 cur;
2752 struct btrfs_key key;
2753
2196d6e8 2754 lock_chunks(root);
8f18cf13
CM
2755 array_size = btrfs_super_sys_array_size(super_copy);
2756
2757 ptr = super_copy->sys_chunk_array;
2758 cur = 0;
2759
2760 while (cur < array_size) {
2761 disk_key = (struct btrfs_disk_key *)ptr;
2762 btrfs_disk_key_to_cpu(&key, disk_key);
2763
2764 len = sizeof(*disk_key);
2765
2766 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2767 chunk = (struct btrfs_chunk *)(ptr + len);
2768 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2769 len += btrfs_chunk_item_size(num_stripes);
2770 } else {
2771 ret = -EIO;
2772 break;
2773 }
2774 if (key.objectid == chunk_objectid &&
2775 key.offset == chunk_offset) {
2776 memmove(ptr, ptr + len, array_size - (cur + len));
2777 array_size -= len;
2778 btrfs_set_super_sys_array_size(super_copy, array_size);
2779 } else {
2780 ptr += len;
2781 cur += len;
2782 }
2783 }
2196d6e8 2784 unlock_chunks(root);
8f18cf13
CM
2785 return ret;
2786}
2787
47ab2a6c
JB
2788int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *root, u64 chunk_offset)
8f18cf13
CM
2790{
2791 struct extent_map_tree *em_tree;
8f18cf13 2792 struct extent_map *em;
47ab2a6c 2793 struct btrfs_root *extent_root = root->fs_info->extent_root;
8f18cf13 2794 struct map_lookup *map;
2196d6e8 2795 u64 dev_extent_len = 0;
47ab2a6c 2796 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2797 int i, ret = 0;
57ba4cb8 2798 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8f18cf13 2799
47ab2a6c 2800 /* Just in case */
8f18cf13 2801 root = root->fs_info->chunk_root;
8f18cf13
CM
2802 em_tree = &root->fs_info->mapping_tree.map_tree;
2803
890871be 2804 read_lock(&em_tree->lock);
8f18cf13 2805 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2806 read_unlock(&em_tree->lock);
8f18cf13 2807
47ab2a6c
JB
2808 if (!em || em->start > chunk_offset ||
2809 em->start + em->len < chunk_offset) {
2810 /*
2811 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2812 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2813 * do anything we still error out.
2814 */
2815 ASSERT(0);
2816 if (em)
2817 free_extent_map(em);
2818 return -EINVAL;
2819 }
95617d69 2820 map = em->map_lookup;
39c2d7fa 2821 lock_chunks(root->fs_info->chunk_root);
4617ea3a 2822 check_system_chunk(trans, extent_root, map->type);
39c2d7fa 2823 unlock_chunks(root->fs_info->chunk_root);
8f18cf13 2824
57ba4cb8
FM
2825 /*
2826 * Take the device list mutex to prevent races with the final phase of
2827 * a device replace operation that replaces the device object associated
2828 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2829 */
2830 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2831 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2832 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2833 ret = btrfs_free_dev_extent(trans, device,
2834 map->stripes[i].physical,
2835 &dev_extent_len);
47ab2a6c 2836 if (ret) {
57ba4cb8 2837 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2838 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2839 goto out;
2840 }
a061fc8d 2841
2196d6e8
MX
2842 if (device->bytes_used > 0) {
2843 lock_chunks(root);
2844 btrfs_device_set_bytes_used(device,
2845 device->bytes_used - dev_extent_len);
2846 spin_lock(&root->fs_info->free_chunk_lock);
2847 root->fs_info->free_chunk_space += dev_extent_len;
2848 spin_unlock(&root->fs_info->free_chunk_lock);
2849 btrfs_clear_space_info_full(root->fs_info);
2850 unlock_chunks(root);
2851 }
a061fc8d 2852
dfe25020
CM
2853 if (map->stripes[i].dev) {
2854 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2855 if (ret) {
57ba4cb8 2856 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2857 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2858 goto out;
2859 }
dfe25020 2860 }
8f18cf13 2861 }
57ba4cb8
FM
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863
a688a04a 2864 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
47ab2a6c 2865 if (ret) {
66642832 2866 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2867 goto out;
2868 }
8f18cf13 2869
1abe9b8a 2870 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2871
8f18cf13
CM
2872 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2873 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
47ab2a6c 2874 if (ret) {
66642832 2875 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2876 goto out;
2877 }
8f18cf13
CM
2878 }
2879
04216820 2880 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
47ab2a6c 2881 if (ret) {
66642832 2882 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2883 goto out;
2884 }
2b82032c 2885
47ab2a6c 2886out:
2b82032c
YZ
2887 /* once for us */
2888 free_extent_map(em);
47ab2a6c
JB
2889 return ret;
2890}
2b82032c 2891
dc2ee4e2 2892static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
47ab2a6c
JB
2893{
2894 struct btrfs_root *extent_root;
47ab2a6c 2895 int ret;
5d8eb6fe 2896 struct btrfs_block_group_cache *block_group;
2b82032c 2897
47ab2a6c
JB
2898 root = root->fs_info->chunk_root;
2899 extent_root = root->fs_info->extent_root;
2900
67c5e7d4
FM
2901 /*
2902 * Prevent races with automatic removal of unused block groups.
2903 * After we relocate and before we remove the chunk with offset
2904 * chunk_offset, automatic removal of the block group can kick in,
2905 * resulting in a failure when calling btrfs_remove_chunk() below.
2906 *
2907 * Make sure to acquire this mutex before doing a tree search (dev
2908 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2909 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2910 * we release the path used to search the chunk/dev tree and before
2911 * the current task acquires this mutex and calls us.
2912 */
2913 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2914
47ab2a6c
JB
2915 ret = btrfs_can_relocate(extent_root, chunk_offset);
2916 if (ret)
2917 return -ENOSPC;
2918
2919 /* step one, relocate all the extents inside this chunk */
55e3a601 2920 btrfs_scrub_pause(root);
47ab2a6c 2921 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
55e3a601 2922 btrfs_scrub_continue(root);
47ab2a6c
JB
2923 if (ret)
2924 return ret;
2925
47ab2a6c 2926 /*
5d8eb6fe
NA
2927 * step two, flag the chunk as removed and let
2928 * btrfs_delete_unused_bgs() remove it.
47ab2a6c 2929 */
5d8eb6fe
NA
2930 block_group = btrfs_lookup_block_group(root->fs_info, chunk_offset);
2931 spin_lock(&block_group->lock);
2932 block_group->removed = 1;
2933 spin_unlock(&block_group->lock);
2934 btrfs_put_block_group(block_group);
2935
2936 return 0;
2b82032c
YZ
2937}
2938
2939static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2940{
2941 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2942 struct btrfs_path *path;
2943 struct extent_buffer *leaf;
2944 struct btrfs_chunk *chunk;
2945 struct btrfs_key key;
2946 struct btrfs_key found_key;
2b82032c 2947 u64 chunk_type;
ba1bf481
JB
2948 bool retried = false;
2949 int failed = 0;
2b82032c
YZ
2950 int ret;
2951
2952 path = btrfs_alloc_path();
2953 if (!path)
2954 return -ENOMEM;
2955
ba1bf481 2956again:
2b82032c
YZ
2957 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2958 key.offset = (u64)-1;
2959 key.type = BTRFS_CHUNK_ITEM_KEY;
2960
2961 while (1) {
67c5e7d4 2962 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2963 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
2964 if (ret < 0) {
2965 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c 2966 goto error;
67c5e7d4 2967 }
79787eaa 2968 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2969
2970 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2971 key.type);
67c5e7d4
FM
2972 if (ret)
2973 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2974 if (ret < 0)
2975 goto error;
2976 if (ret > 0)
2977 break;
1a40e23b 2978
2b82032c
YZ
2979 leaf = path->nodes[0];
2980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2981
2b82032c
YZ
2982 chunk = btrfs_item_ptr(leaf, path->slots[0],
2983 struct btrfs_chunk);
2984 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2985 btrfs_release_path(path);
8f18cf13 2986
2b82032c 2987 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
a688a04a 2988 ret = btrfs_relocate_chunk(chunk_root,
2b82032c 2989 found_key.offset);
ba1bf481
JB
2990 if (ret == -ENOSPC)
2991 failed++;
14586651
HS
2992 else
2993 BUG_ON(ret);
2b82032c 2994 }
67c5e7d4 2995 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 2996
2b82032c
YZ
2997 if (found_key.offset == 0)
2998 break;
2999 key.offset = found_key.offset - 1;
3000 }
3001 ret = 0;
ba1bf481
JB
3002 if (failed && !retried) {
3003 failed = 0;
3004 retried = true;
3005 goto again;
fae7f21c 3006 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3007 ret = -ENOSPC;
3008 }
2b82032c
YZ
3009error:
3010 btrfs_free_path(path);
3011 return ret;
8f18cf13
CM
3012}
3013
0940ebf6
ID
3014static int insert_balance_item(struct btrfs_root *root,
3015 struct btrfs_balance_control *bctl)
3016{
3017 struct btrfs_trans_handle *trans;
3018 struct btrfs_balance_item *item;
3019 struct btrfs_disk_balance_args disk_bargs;
3020 struct btrfs_path *path;
3021 struct extent_buffer *leaf;
3022 struct btrfs_key key;
3023 int ret, err;
3024
3025 path = btrfs_alloc_path();
3026 if (!path)
3027 return -ENOMEM;
3028
3029 trans = btrfs_start_transaction(root, 0);
3030 if (IS_ERR(trans)) {
3031 btrfs_free_path(path);
3032 return PTR_ERR(trans);
3033 }
3034
3035 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3036 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3037 key.offset = 0;
3038
3039 ret = btrfs_insert_empty_item(trans, root, path, &key,
3040 sizeof(*item));
3041 if (ret)
3042 goto out;
3043
3044 leaf = path->nodes[0];
3045 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3046
3047 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3048
3049 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3050 btrfs_set_balance_data(leaf, item, &disk_bargs);
3051 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3052 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3053 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3054 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3055
3056 btrfs_set_balance_flags(leaf, item, bctl->flags);
3057
3058 btrfs_mark_buffer_dirty(leaf);
3059out:
3060 btrfs_free_path(path);
3061 err = btrfs_commit_transaction(trans, root);
3062 if (err && !ret)
3063 ret = err;
3064 return ret;
3065}
3066
3067static int del_balance_item(struct btrfs_root *root)
3068{
3069 struct btrfs_trans_handle *trans;
3070 struct btrfs_path *path;
3071 struct btrfs_key key;
3072 int ret, err;
3073
3074 path = btrfs_alloc_path();
3075 if (!path)
3076 return -ENOMEM;
3077
3078 trans = btrfs_start_transaction(root, 0);
3079 if (IS_ERR(trans)) {
3080 btrfs_free_path(path);
3081 return PTR_ERR(trans);
3082 }
3083
3084 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3085 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3086 key.offset = 0;
3087
3088 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3089 if (ret < 0)
3090 goto out;
3091 if (ret > 0) {
3092 ret = -ENOENT;
3093 goto out;
3094 }
3095
3096 ret = btrfs_del_item(trans, root, path);
3097out:
3098 btrfs_free_path(path);
3099 err = btrfs_commit_transaction(trans, root);
3100 if (err && !ret)
3101 ret = err;
3102 return ret;
3103}
3104
59641015
ID
3105/*
3106 * This is a heuristic used to reduce the number of chunks balanced on
3107 * resume after balance was interrupted.
3108 */
3109static void update_balance_args(struct btrfs_balance_control *bctl)
3110{
3111 /*
3112 * Turn on soft mode for chunk types that were being converted.
3113 */
3114 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3115 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3116 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3117 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3118 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3119 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3120
3121 /*
3122 * Turn on usage filter if is not already used. The idea is
3123 * that chunks that we have already balanced should be
3124 * reasonably full. Don't do it for chunks that are being
3125 * converted - that will keep us from relocating unconverted
3126 * (albeit full) chunks.
3127 */
3128 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3129 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3130 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3131 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3132 bctl->data.usage = 90;
3133 }
3134 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3135 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3136 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3137 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3138 bctl->sys.usage = 90;
3139 }
3140 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3141 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3142 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3143 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3144 bctl->meta.usage = 90;
3145 }
3146}
3147
c9e9f97b
ID
3148/*
3149 * Should be called with both balance and volume mutexes held to
3150 * serialize other volume operations (add_dev/rm_dev/resize) with
3151 * restriper. Same goes for unset_balance_control.
3152 */
3153static void set_balance_control(struct btrfs_balance_control *bctl)
3154{
3155 struct btrfs_fs_info *fs_info = bctl->fs_info;
3156
3157 BUG_ON(fs_info->balance_ctl);
3158
3159 spin_lock(&fs_info->balance_lock);
3160 fs_info->balance_ctl = bctl;
3161 spin_unlock(&fs_info->balance_lock);
3162}
3163
3164static void unset_balance_control(struct btrfs_fs_info *fs_info)
3165{
3166 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3167
3168 BUG_ON(!fs_info->balance_ctl);
3169
3170 spin_lock(&fs_info->balance_lock);
3171 fs_info->balance_ctl = NULL;
3172 spin_unlock(&fs_info->balance_lock);
3173
3174 kfree(bctl);
3175}
3176
ed25e9b2
ID
3177/*
3178 * Balance filters. Return 1 if chunk should be filtered out
3179 * (should not be balanced).
3180 */
899c81ea 3181static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3182 struct btrfs_balance_args *bargs)
3183{
899c81ea
ID
3184 chunk_type = chunk_to_extended(chunk_type) &
3185 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3186
899c81ea 3187 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3188 return 0;
3189
3190 return 1;
3191}
3192
dba72cb3 3193static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3194 struct btrfs_balance_args *bargs)
bc309467
DS
3195{
3196 struct btrfs_block_group_cache *cache;
3197 u64 chunk_used;
3198 u64 user_thresh_min;
3199 u64 user_thresh_max;
3200 int ret = 1;
3201
3202 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3203 chunk_used = btrfs_block_group_used(&cache->item);
3204
3205 if (bargs->usage_min == 0)
3206 user_thresh_min = 0;
3207 else
3208 user_thresh_min = div_factor_fine(cache->key.offset,
3209 bargs->usage_min);
3210
3211 if (bargs->usage_max == 0)
3212 user_thresh_max = 1;
3213 else if (bargs->usage_max > 100)
3214 user_thresh_max = cache->key.offset;
3215 else
3216 user_thresh_max = div_factor_fine(cache->key.offset,
3217 bargs->usage_max);
3218
3219 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3220 ret = 0;
3221
3222 btrfs_put_block_group(cache);
3223 return ret;
3224}
3225
dba72cb3 3226static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3227 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3228{
3229 struct btrfs_block_group_cache *cache;
3230 u64 chunk_used, user_thresh;
3231 int ret = 1;
3232
3233 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3234 chunk_used = btrfs_block_group_used(&cache->item);
3235
bc309467 3236 if (bargs->usage_min == 0)
3e39cea6 3237 user_thresh = 1;
a105bb88
ID
3238 else if (bargs->usage > 100)
3239 user_thresh = cache->key.offset;
3240 else
3241 user_thresh = div_factor_fine(cache->key.offset,
3242 bargs->usage);
3243
5ce5b3c0
ID
3244 if (chunk_used < user_thresh)
3245 ret = 0;
3246
3247 btrfs_put_block_group(cache);
3248 return ret;
3249}
3250
409d404b
ID
3251static int chunk_devid_filter(struct extent_buffer *leaf,
3252 struct btrfs_chunk *chunk,
3253 struct btrfs_balance_args *bargs)
3254{
3255 struct btrfs_stripe *stripe;
3256 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3257 int i;
3258
3259 for (i = 0; i < num_stripes; i++) {
3260 stripe = btrfs_stripe_nr(chunk, i);
3261 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3262 return 0;
3263 }
3264
3265 return 1;
3266}
3267
94e60d5a
ID
3268/* [pstart, pend) */
3269static int chunk_drange_filter(struct extent_buffer *leaf,
3270 struct btrfs_chunk *chunk,
3271 u64 chunk_offset,
3272 struct btrfs_balance_args *bargs)
3273{
3274 struct btrfs_stripe *stripe;
3275 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3276 u64 stripe_offset;
3277 u64 stripe_length;
3278 int factor;
3279 int i;
3280
3281 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3282 return 0;
3283
3284 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3285 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3286 factor = num_stripes / 2;
3287 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3288 factor = num_stripes - 1;
3289 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3290 factor = num_stripes - 2;
3291 } else {
3292 factor = num_stripes;
3293 }
94e60d5a
ID
3294
3295 for (i = 0; i < num_stripes; i++) {
3296 stripe = btrfs_stripe_nr(chunk, i);
3297 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3298 continue;
3299
3300 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3301 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3302 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3303
3304 if (stripe_offset < bargs->pend &&
3305 stripe_offset + stripe_length > bargs->pstart)
3306 return 0;
3307 }
3308
3309 return 1;
3310}
3311
ea67176a
ID
3312/* [vstart, vend) */
3313static int chunk_vrange_filter(struct extent_buffer *leaf,
3314 struct btrfs_chunk *chunk,
3315 u64 chunk_offset,
3316 struct btrfs_balance_args *bargs)
3317{
3318 if (chunk_offset < bargs->vend &&
3319 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3320 /* at least part of the chunk is inside this vrange */
3321 return 0;
3322
3323 return 1;
3324}
3325
dee32d0a
GAP
3326static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3327 struct btrfs_chunk *chunk,
3328 struct btrfs_balance_args *bargs)
3329{
3330 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3331
3332 if (bargs->stripes_min <= num_stripes
3333 && num_stripes <= bargs->stripes_max)
3334 return 0;
3335
3336 return 1;
3337}
3338
899c81ea 3339static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3340 struct btrfs_balance_args *bargs)
3341{
3342 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3343 return 0;
3344
899c81ea
ID
3345 chunk_type = chunk_to_extended(chunk_type) &
3346 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3347
899c81ea 3348 if (bargs->target == chunk_type)
cfa4c961
ID
3349 return 1;
3350
3351 return 0;
3352}
3353
f43ffb60
ID
3354static int should_balance_chunk(struct btrfs_root *root,
3355 struct extent_buffer *leaf,
3356 struct btrfs_chunk *chunk, u64 chunk_offset)
3357{
3358 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3359 struct btrfs_balance_args *bargs = NULL;
3360 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3361
3362 /* type filter */
3363 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3364 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3365 return 0;
3366 }
3367
3368 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3369 bargs = &bctl->data;
3370 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3371 bargs = &bctl->sys;
3372 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3373 bargs = &bctl->meta;
3374
ed25e9b2
ID
3375 /* profiles filter */
3376 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3377 chunk_profiles_filter(chunk_type, bargs)) {
3378 return 0;
5ce5b3c0
ID
3379 }
3380
3381 /* usage filter */
3382 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3383 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3384 return 0;
bc309467
DS
3385 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3386 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3387 return 0;
409d404b
ID
3388 }
3389
3390 /* devid filter */
3391 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3392 chunk_devid_filter(leaf, chunk, bargs)) {
3393 return 0;
94e60d5a
ID
3394 }
3395
3396 /* drange filter, makes sense only with devid filter */
3397 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3398 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3399 return 0;
ea67176a
ID
3400 }
3401
3402 /* vrange filter */
3403 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3404 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3405 return 0;
ed25e9b2
ID
3406 }
3407
dee32d0a
GAP
3408 /* stripes filter */
3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3410 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3411 return 0;
3412 }
3413
cfa4c961
ID
3414 /* soft profile changing mode */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3416 chunk_soft_convert_filter(chunk_type, bargs)) {
3417 return 0;
3418 }
3419
7d824b6f
DS
3420 /*
3421 * limited by count, must be the last filter
3422 */
3423 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3424 if (bargs->limit == 0)
3425 return 0;
3426 else
3427 bargs->limit--;
12907fc7
DS
3428 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3429 /*
3430 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3431 * determined here because we do not have the global information
12907fc7
DS
3432 * about the count of all chunks that satisfy the filters.
3433 */
3434 if (bargs->limit_max == 0)
3435 return 0;
3436 else
3437 bargs->limit_max--;
7d824b6f
DS
3438 }
3439
f43ffb60
ID
3440 return 1;
3441}
3442
c9e9f97b 3443static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3444{
19a39dce 3445 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3446 struct btrfs_root *chunk_root = fs_info->chunk_root;
3447 struct btrfs_root *dev_root = fs_info->dev_root;
3448 struct list_head *devices;
ec44a35c
CM
3449 struct btrfs_device *device;
3450 u64 old_size;
3451 u64 size_to_free;
12907fc7 3452 u64 chunk_type;
f43ffb60 3453 struct btrfs_chunk *chunk;
5a488b9d 3454 struct btrfs_path *path = NULL;
ec44a35c 3455 struct btrfs_key key;
ec44a35c 3456 struct btrfs_key found_key;
c9e9f97b 3457 struct btrfs_trans_handle *trans;
f43ffb60
ID
3458 struct extent_buffer *leaf;
3459 int slot;
c9e9f97b
ID
3460 int ret;
3461 int enospc_errors = 0;
19a39dce 3462 bool counting = true;
12907fc7 3463 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3464 u64 limit_data = bctl->data.limit;
3465 u64 limit_meta = bctl->meta.limit;
3466 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3467 u32 count_data = 0;
3468 u32 count_meta = 0;
3469 u32 count_sys = 0;
2c9fe835 3470 int chunk_reserved = 0;
cf25ce51 3471 u64 bytes_used = 0;
ec44a35c 3472
ec44a35c 3473 /* step one make some room on all the devices */
c9e9f97b 3474 devices = &fs_info->fs_devices->devices;
c6e30871 3475 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3476 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3477 size_to_free = div_factor(old_size, 1);
ee22184b 3478 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3479 if (!device->writeable ||
7cc8e58d
MX
3480 btrfs_device_get_total_bytes(device) -
3481 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3482 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3483 continue;
3484
3485 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3486 if (ret == -ENOSPC)
3487 break;
5a488b9d
LB
3488 if (ret) {
3489 /* btrfs_shrink_device never returns ret > 0 */
3490 WARN_ON(ret > 0);
3491 goto error;
3492 }
ec44a35c 3493
a22285a6 3494 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3495 if (IS_ERR(trans)) {
3496 ret = PTR_ERR(trans);
3497 btrfs_info_in_rcu(fs_info,
3498 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3499 rcu_str_deref(device->name), ret,
3500 old_size, old_size - size_to_free);
3501 goto error;
3502 }
ec44a35c
CM
3503
3504 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d
LB
3505 if (ret) {
3506 btrfs_end_transaction(trans, dev_root);
3507 /* btrfs_grow_device never returns ret > 0 */
3508 WARN_ON(ret > 0);
3509 btrfs_info_in_rcu(fs_info,
3510 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3511 rcu_str_deref(device->name), ret,
3512 old_size, old_size - size_to_free);
3513 goto error;
3514 }
ec44a35c
CM
3515
3516 btrfs_end_transaction(trans, dev_root);
3517 }
3518
3519 /* step two, relocate all the chunks */
3520 path = btrfs_alloc_path();
17e9f796
MF
3521 if (!path) {
3522 ret = -ENOMEM;
3523 goto error;
3524 }
19a39dce
ID
3525
3526 /* zero out stat counters */
3527 spin_lock(&fs_info->balance_lock);
3528 memset(&bctl->stat, 0, sizeof(bctl->stat));
3529 spin_unlock(&fs_info->balance_lock);
3530again:
7d824b6f 3531 if (!counting) {
12907fc7
DS
3532 /*
3533 * The single value limit and min/max limits use the same bytes
3534 * in the
3535 */
7d824b6f
DS
3536 bctl->data.limit = limit_data;
3537 bctl->meta.limit = limit_meta;
3538 bctl->sys.limit = limit_sys;
3539 }
ec44a35c
CM
3540 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3541 key.offset = (u64)-1;
3542 key.type = BTRFS_CHUNK_ITEM_KEY;
3543
d397712b 3544 while (1) {
19a39dce 3545 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3546 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3547 ret = -ECANCELED;
3548 goto error;
3549 }
3550
67c5e7d4 3551 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3552 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3553 if (ret < 0) {
3554 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3555 goto error;
67c5e7d4 3556 }
ec44a35c
CM
3557
3558 /*
3559 * this shouldn't happen, it means the last relocate
3560 * failed
3561 */
3562 if (ret == 0)
c9e9f97b 3563 BUG(); /* FIXME break ? */
ec44a35c
CM
3564
3565 ret = btrfs_previous_item(chunk_root, path, 0,
3566 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3567 if (ret) {
67c5e7d4 3568 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3569 ret = 0;
ec44a35c 3570 break;
c9e9f97b 3571 }
7d9eb12c 3572
f43ffb60
ID
3573 leaf = path->nodes[0];
3574 slot = path->slots[0];
3575 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3576
67c5e7d4
FM
3577 if (found_key.objectid != key.objectid) {
3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3579 break;
67c5e7d4 3580 }
7d9eb12c 3581
f43ffb60 3582 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3583 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3584
19a39dce
ID
3585 if (!counting) {
3586 spin_lock(&fs_info->balance_lock);
3587 bctl->stat.considered++;
3588 spin_unlock(&fs_info->balance_lock);
3589 }
3590
f43ffb60
ID
3591 ret = should_balance_chunk(chunk_root, leaf, chunk,
3592 found_key.offset);
2c9fe835 3593
b3b4aa74 3594 btrfs_release_path(path);
67c5e7d4
FM
3595 if (!ret) {
3596 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3597 goto loop;
67c5e7d4 3598 }
f43ffb60 3599
19a39dce 3600 if (counting) {
67c5e7d4 3601 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3602 spin_lock(&fs_info->balance_lock);
3603 bctl->stat.expected++;
3604 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3605
3606 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3607 count_data++;
3608 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3609 count_sys++;
3610 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3611 count_meta++;
3612
3613 goto loop;
3614 }
3615
3616 /*
3617 * Apply limit_min filter, no need to check if the LIMITS
3618 * filter is used, limit_min is 0 by default
3619 */
3620 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3621 count_data < bctl->data.limit_min)
3622 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3623 count_meta < bctl->meta.limit_min)
3624 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3625 count_sys < bctl->sys.limit_min)) {
3626 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3627 goto loop;
3628 }
3629
cf25ce51
LB
3630 ASSERT(fs_info->data_sinfo);
3631 spin_lock(&fs_info->data_sinfo->lock);
3632 bytes_used = fs_info->data_sinfo->bytes_used;
3633 spin_unlock(&fs_info->data_sinfo->lock);
3634
3635 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3636 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3637 trans = btrfs_start_transaction(chunk_root, 0);
3638 if (IS_ERR(trans)) {
3639 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3640 ret = PTR_ERR(trans);
3641 goto error;
3642 }
3643
3644 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3645 BTRFS_BLOCK_GROUP_DATA);
8a7d656f 3646 btrfs_end_transaction(trans, chunk_root);
2c9fe835
ZL
3647 if (ret < 0) {
3648 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3649 goto error;
3650 }
2c9fe835
ZL
3651 chunk_reserved = 1;
3652 }
3653
ec44a35c 3654 ret = btrfs_relocate_chunk(chunk_root,
ec44a35c 3655 found_key.offset);
67c5e7d4 3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3657 if (ret && ret != -ENOSPC)
3658 goto error;
19a39dce 3659 if (ret == -ENOSPC) {
c9e9f97b 3660 enospc_errors++;
19a39dce
ID
3661 } else {
3662 spin_lock(&fs_info->balance_lock);
3663 bctl->stat.completed++;
3664 spin_unlock(&fs_info->balance_lock);
3665 }
f43ffb60 3666loop:
795a3321
ID
3667 if (found_key.offset == 0)
3668 break;
ba1bf481 3669 key.offset = found_key.offset - 1;
ec44a35c 3670 }
c9e9f97b 3671
19a39dce
ID
3672 if (counting) {
3673 btrfs_release_path(path);
3674 counting = false;
3675 goto again;
3676 }
ec44a35c
CM
3677error:
3678 btrfs_free_path(path);
c9e9f97b 3679 if (enospc_errors) {
efe120a0 3680 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3681 enospc_errors);
c9e9f97b
ID
3682 if (!ret)
3683 ret = -ENOSPC;
3684 }
3685
ec44a35c
CM
3686 return ret;
3687}
3688
0c460c0d
ID
3689/**
3690 * alloc_profile_is_valid - see if a given profile is valid and reduced
3691 * @flags: profile to validate
3692 * @extended: if true @flags is treated as an extended profile
3693 */
3694static int alloc_profile_is_valid(u64 flags, int extended)
3695{
3696 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3697 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3698
3699 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3700
3701 /* 1) check that all other bits are zeroed */
3702 if (flags & ~mask)
3703 return 0;
3704
3705 /* 2) see if profile is reduced */
3706 if (flags == 0)
3707 return !extended; /* "0" is valid for usual profiles */
3708
3709 /* true if exactly one bit set */
3710 return (flags & (flags - 1)) == 0;
3711}
3712
837d5b6e
ID
3713static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3714{
a7e99c69
ID
3715 /* cancel requested || normal exit path */
3716 return atomic_read(&fs_info->balance_cancel_req) ||
3717 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3718 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3719}
3720
c9e9f97b
ID
3721static void __cancel_balance(struct btrfs_fs_info *fs_info)
3722{
0940ebf6
ID
3723 int ret;
3724
c9e9f97b 3725 unset_balance_control(fs_info);
0940ebf6 3726 ret = del_balance_item(fs_info->tree_root);
0f788c58 3727 if (ret)
34d97007 3728 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f
ID
3729
3730 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3731}
3732
bdcd3c97
AM
3733/* Non-zero return value signifies invalidity */
3734static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3735 u64 allowed)
3736{
3737 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3738 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3739 (bctl_arg->target & ~allowed)));
3740}
3741
c9e9f97b
ID
3742/*
3743 * Should be called with both balance and volume mutexes held
3744 */
3745int btrfs_balance(struct btrfs_balance_control *bctl,
3746 struct btrfs_ioctl_balance_args *bargs)
3747{
3748 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 3749 u64 allowed;
e4837f8f 3750 int mixed = 0;
c9e9f97b 3751 int ret;
8dabb742 3752 u64 num_devices;
de98ced9 3753 unsigned seq;
c9e9f97b 3754
837d5b6e 3755 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3756 atomic_read(&fs_info->balance_pause_req) ||
3757 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3758 ret = -EINVAL;
3759 goto out;
3760 }
3761
e4837f8f
ID
3762 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3763 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3764 mixed = 1;
3765
f43ffb60
ID
3766 /*
3767 * In case of mixed groups both data and meta should be picked,
3768 * and identical options should be given for both of them.
3769 */
e4837f8f
ID
3770 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3771 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3772 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3773 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3774 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3775 btrfs_err(fs_info,
3776 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3777 ret = -EINVAL;
3778 goto out;
3779 }
3780 }
3781
8dabb742 3782 num_devices = fs_info->fs_devices->num_devices;
73beece9 3783 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3784 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3785 BUG_ON(num_devices < 1);
3786 num_devices--;
3787 }
73beece9 3788 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3789 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3790 if (num_devices > 1)
e4d8ec0f 3791 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3792 if (num_devices > 2)
3793 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3794 if (num_devices > 3)
3795 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3796 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3797 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3798 btrfs_err(fs_info,
3799 "unable to start balance with target data profile %llu",
3800 bctl->data.target);
e4d8ec0f
ID
3801 ret = -EINVAL;
3802 goto out;
3803 }
bdcd3c97 3804 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3805 btrfs_err(fs_info,
5d163e0e
JM
3806 "unable to start balance with target metadata profile %llu",
3807 bctl->meta.target);
e4d8ec0f
ID
3808 ret = -EINVAL;
3809 goto out;
3810 }
bdcd3c97 3811 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3812 btrfs_err(fs_info,
5d163e0e
JM
3813 "unable to start balance with target system profile %llu",
3814 bctl->sys.target);
e4d8ec0f
ID
3815 ret = -EINVAL;
3816 goto out;
3817 }
3818
e4d8ec0f
ID
3819 /* allow to reduce meta or sys integrity only if force set */
3820 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3821 BTRFS_BLOCK_GROUP_RAID10 |
3822 BTRFS_BLOCK_GROUP_RAID5 |
3823 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3824 do {
3825 seq = read_seqbegin(&fs_info->profiles_lock);
3826
3827 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3828 (fs_info->avail_system_alloc_bits & allowed) &&
3829 !(bctl->sys.target & allowed)) ||
3830 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3831 (fs_info->avail_metadata_alloc_bits & allowed) &&
3832 !(bctl->meta.target & allowed))) {
3833 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3834 btrfs_info(fs_info,
3835 "force reducing metadata integrity");
de98ced9 3836 } else {
5d163e0e
JM
3837 btrfs_err(fs_info,
3838 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3839 ret = -EINVAL;
3840 goto out;
3841 }
e4d8ec0f 3842 }
de98ced9 3843 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3844
ee592d07
ST
3845 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3846 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3847 btrfs_warn(fs_info,
5d163e0e
JM
3848 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3849 bctl->meta.target, bctl->data.target);
ee592d07
ST
3850 }
3851
5af3e8cc 3852 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3853 fs_info->num_tolerated_disk_barrier_failures = min(
3854 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3855 btrfs_get_num_tolerated_disk_barrier_failures(
3856 bctl->sys.target));
5af3e8cc
SB
3857 }
3858
0940ebf6 3859 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 3860 if (ret && ret != -EEXIST)
0940ebf6
ID
3861 goto out;
3862
59641015
ID
3863 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3864 BUG_ON(ret == -EEXIST);
3865 set_balance_control(bctl);
3866 } else {
3867 BUG_ON(ret != -EEXIST);
3868 spin_lock(&fs_info->balance_lock);
3869 update_balance_args(bctl);
3870 spin_unlock(&fs_info->balance_lock);
3871 }
c9e9f97b 3872
837d5b6e 3873 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3874 mutex_unlock(&fs_info->balance_mutex);
3875
3876 ret = __btrfs_balance(fs_info);
3877
3878 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3879 atomic_dec(&fs_info->balance_running);
c9e9f97b 3880
bf023ecf
ID
3881 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3882 fs_info->num_tolerated_disk_barrier_failures =
3883 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3884 }
3885
c9e9f97b
ID
3886 if (bargs) {
3887 memset(bargs, 0, sizeof(*bargs));
19a39dce 3888 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3889 }
3890
3a01aa7a
ID
3891 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3892 balance_need_close(fs_info)) {
3893 __cancel_balance(fs_info);
3894 }
3895
837d5b6e 3896 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3897
3898 return ret;
3899out:
59641015
ID
3900 if (bctl->flags & BTRFS_BALANCE_RESUME)
3901 __cancel_balance(fs_info);
ed0fb78f 3902 else {
59641015 3903 kfree(bctl);
ed0fb78f
ID
3904 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3905 }
59641015
ID
3906 return ret;
3907}
3908
3909static int balance_kthread(void *data)
3910{
2b6ba629 3911 struct btrfs_fs_info *fs_info = data;
9555c6c1 3912 int ret = 0;
59641015
ID
3913
3914 mutex_lock(&fs_info->volume_mutex);
3915 mutex_lock(&fs_info->balance_mutex);
3916
2b6ba629 3917 if (fs_info->balance_ctl) {
efe120a0 3918 btrfs_info(fs_info, "continuing balance");
2b6ba629 3919 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3920 }
59641015
ID
3921
3922 mutex_unlock(&fs_info->balance_mutex);
3923 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3924
59641015
ID
3925 return ret;
3926}
3927
2b6ba629
ID
3928int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3929{
3930 struct task_struct *tsk;
3931
3932 spin_lock(&fs_info->balance_lock);
3933 if (!fs_info->balance_ctl) {
3934 spin_unlock(&fs_info->balance_lock);
3935 return 0;
3936 }
3937 spin_unlock(&fs_info->balance_lock);
3938
3cdde224 3939 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3940 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3941 return 0;
3942 }
3943
3944 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3945 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3946}
3947
68310a5e 3948int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3949{
59641015
ID
3950 struct btrfs_balance_control *bctl;
3951 struct btrfs_balance_item *item;
3952 struct btrfs_disk_balance_args disk_bargs;
3953 struct btrfs_path *path;
3954 struct extent_buffer *leaf;
3955 struct btrfs_key key;
3956 int ret;
3957
3958 path = btrfs_alloc_path();
3959 if (!path)
3960 return -ENOMEM;
3961
59641015 3962 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3963 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3964 key.offset = 0;
3965
68310a5e 3966 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 3967 if (ret < 0)
68310a5e 3968 goto out;
59641015
ID
3969 if (ret > 0) { /* ret = -ENOENT; */
3970 ret = 0;
68310a5e
ID
3971 goto out;
3972 }
3973
3974 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3975 if (!bctl) {
3976 ret = -ENOMEM;
3977 goto out;
59641015
ID
3978 }
3979
3980 leaf = path->nodes[0];
3981 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3982
68310a5e
ID
3983 bctl->fs_info = fs_info;
3984 bctl->flags = btrfs_balance_flags(leaf, item);
3985 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
3986
3987 btrfs_balance_data(leaf, item, &disk_bargs);
3988 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3989 btrfs_balance_meta(leaf, item, &disk_bargs);
3990 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3991 btrfs_balance_sys(leaf, item, &disk_bargs);
3992 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3993
ed0fb78f
ID
3994 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3995
68310a5e
ID
3996 mutex_lock(&fs_info->volume_mutex);
3997 mutex_lock(&fs_info->balance_mutex);
59641015 3998
68310a5e
ID
3999 set_balance_control(bctl);
4000
4001 mutex_unlock(&fs_info->balance_mutex);
4002 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4003out:
4004 btrfs_free_path(path);
ec44a35c
CM
4005 return ret;
4006}
4007
837d5b6e
ID
4008int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4009{
4010 int ret = 0;
4011
4012 mutex_lock(&fs_info->balance_mutex);
4013 if (!fs_info->balance_ctl) {
4014 mutex_unlock(&fs_info->balance_mutex);
4015 return -ENOTCONN;
4016 }
4017
4018 if (atomic_read(&fs_info->balance_running)) {
4019 atomic_inc(&fs_info->balance_pause_req);
4020 mutex_unlock(&fs_info->balance_mutex);
4021
4022 wait_event(fs_info->balance_wait_q,
4023 atomic_read(&fs_info->balance_running) == 0);
4024
4025 mutex_lock(&fs_info->balance_mutex);
4026 /* we are good with balance_ctl ripped off from under us */
4027 BUG_ON(atomic_read(&fs_info->balance_running));
4028 atomic_dec(&fs_info->balance_pause_req);
4029 } else {
4030 ret = -ENOTCONN;
4031 }
4032
4033 mutex_unlock(&fs_info->balance_mutex);
4034 return ret;
4035}
4036
a7e99c69
ID
4037int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4038{
e649e587
ID
4039 if (fs_info->sb->s_flags & MS_RDONLY)
4040 return -EROFS;
4041
a7e99c69
ID
4042 mutex_lock(&fs_info->balance_mutex);
4043 if (!fs_info->balance_ctl) {
4044 mutex_unlock(&fs_info->balance_mutex);
4045 return -ENOTCONN;
4046 }
4047
4048 atomic_inc(&fs_info->balance_cancel_req);
4049 /*
4050 * if we are running just wait and return, balance item is
4051 * deleted in btrfs_balance in this case
4052 */
4053 if (atomic_read(&fs_info->balance_running)) {
4054 mutex_unlock(&fs_info->balance_mutex);
4055 wait_event(fs_info->balance_wait_q,
4056 atomic_read(&fs_info->balance_running) == 0);
4057 mutex_lock(&fs_info->balance_mutex);
4058 } else {
4059 /* __cancel_balance needs volume_mutex */
4060 mutex_unlock(&fs_info->balance_mutex);
4061 mutex_lock(&fs_info->volume_mutex);
4062 mutex_lock(&fs_info->balance_mutex);
4063
4064 if (fs_info->balance_ctl)
4065 __cancel_balance(fs_info);
4066
4067 mutex_unlock(&fs_info->volume_mutex);
4068 }
4069
4070 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4071 atomic_dec(&fs_info->balance_cancel_req);
4072 mutex_unlock(&fs_info->balance_mutex);
4073 return 0;
4074}
4075
803b2f54
SB
4076static int btrfs_uuid_scan_kthread(void *data)
4077{
4078 struct btrfs_fs_info *fs_info = data;
4079 struct btrfs_root *root = fs_info->tree_root;
4080 struct btrfs_key key;
4081 struct btrfs_key max_key;
4082 struct btrfs_path *path = NULL;
4083 int ret = 0;
4084 struct extent_buffer *eb;
4085 int slot;
4086 struct btrfs_root_item root_item;
4087 u32 item_size;
f45388f3 4088 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4089
4090 path = btrfs_alloc_path();
4091 if (!path) {
4092 ret = -ENOMEM;
4093 goto out;
4094 }
4095
4096 key.objectid = 0;
4097 key.type = BTRFS_ROOT_ITEM_KEY;
4098 key.offset = 0;
4099
4100 max_key.objectid = (u64)-1;
4101 max_key.type = BTRFS_ROOT_ITEM_KEY;
4102 max_key.offset = (u64)-1;
4103
803b2f54 4104 while (1) {
6174d3cb 4105 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4106 if (ret) {
4107 if (ret > 0)
4108 ret = 0;
4109 break;
4110 }
4111
4112 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4113 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4114 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4115 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4116 goto skip;
4117
4118 eb = path->nodes[0];
4119 slot = path->slots[0];
4120 item_size = btrfs_item_size_nr(eb, slot);
4121 if (item_size < sizeof(root_item))
4122 goto skip;
4123
803b2f54
SB
4124 read_extent_buffer(eb, &root_item,
4125 btrfs_item_ptr_offset(eb, slot),
4126 (int)sizeof(root_item));
4127 if (btrfs_root_refs(&root_item) == 0)
4128 goto skip;
f45388f3
FDBM
4129
4130 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4131 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4132 if (trans)
4133 goto update_tree;
4134
4135 btrfs_release_path(path);
803b2f54
SB
4136 /*
4137 * 1 - subvol uuid item
4138 * 1 - received_subvol uuid item
4139 */
4140 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4141 if (IS_ERR(trans)) {
4142 ret = PTR_ERR(trans);
4143 break;
4144 }
f45388f3
FDBM
4145 continue;
4146 } else {
4147 goto skip;
4148 }
4149update_tree:
4150 if (!btrfs_is_empty_uuid(root_item.uuid)) {
803b2f54
SB
4151 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4152 root_item.uuid,
4153 BTRFS_UUID_KEY_SUBVOL,
4154 key.objectid);
4155 if (ret < 0) {
efe120a0 4156 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4157 ret);
803b2f54
SB
4158 break;
4159 }
4160 }
4161
4162 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
803b2f54
SB
4163 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4164 root_item.received_uuid,
4165 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4166 key.objectid);
4167 if (ret < 0) {
efe120a0 4168 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4169 ret);
803b2f54
SB
4170 break;
4171 }
4172 }
4173
f45388f3 4174skip:
803b2f54
SB
4175 if (trans) {
4176 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
f45388f3 4177 trans = NULL;
803b2f54
SB
4178 if (ret)
4179 break;
4180 }
4181
803b2f54
SB
4182 btrfs_release_path(path);
4183 if (key.offset < (u64)-1) {
4184 key.offset++;
4185 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4186 key.offset = 0;
4187 key.type = BTRFS_ROOT_ITEM_KEY;
4188 } else if (key.objectid < (u64)-1) {
4189 key.offset = 0;
4190 key.type = BTRFS_ROOT_ITEM_KEY;
4191 key.objectid++;
4192 } else {
4193 break;
4194 }
4195 cond_resched();
4196 }
4197
4198out:
4199 btrfs_free_path(path);
f45388f3
FDBM
4200 if (trans && !IS_ERR(trans))
4201 btrfs_end_transaction(trans, fs_info->uuid_root);
803b2f54 4202 if (ret)
efe120a0 4203 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4204 else
afcdd129 4205 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4206 up(&fs_info->uuid_tree_rescan_sem);
4207 return 0;
4208}
4209
70f80175
SB
4210/*
4211 * Callback for btrfs_uuid_tree_iterate().
4212 * returns:
4213 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4214 * < 0 if an error occurred.
70f80175
SB
4215 * > 0 if the check failed, which means the caller shall remove the entry.
4216 */
4217static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4218 u8 *uuid, u8 type, u64 subid)
4219{
4220 struct btrfs_key key;
4221 int ret = 0;
4222 struct btrfs_root *subvol_root;
4223
4224 if (type != BTRFS_UUID_KEY_SUBVOL &&
4225 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4226 goto out;
4227
4228 key.objectid = subid;
4229 key.type = BTRFS_ROOT_ITEM_KEY;
4230 key.offset = (u64)-1;
4231 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4232 if (IS_ERR(subvol_root)) {
4233 ret = PTR_ERR(subvol_root);
4234 if (ret == -ENOENT)
4235 ret = 1;
4236 goto out;
4237 }
4238
4239 switch (type) {
4240 case BTRFS_UUID_KEY_SUBVOL:
4241 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4242 ret = 1;
4243 break;
4244 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4245 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4246 BTRFS_UUID_SIZE))
4247 ret = 1;
4248 break;
4249 }
4250
4251out:
4252 return ret;
4253}
4254
4255static int btrfs_uuid_rescan_kthread(void *data)
4256{
4257 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4258 int ret;
4259
4260 /*
4261 * 1st step is to iterate through the existing UUID tree and
4262 * to delete all entries that contain outdated data.
4263 * 2nd step is to add all missing entries to the UUID tree.
4264 */
4265 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4266 if (ret < 0) {
efe120a0 4267 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4268 up(&fs_info->uuid_tree_rescan_sem);
4269 return ret;
4270 }
4271 return btrfs_uuid_scan_kthread(data);
4272}
4273
f7a81ea4
SB
4274int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4275{
4276 struct btrfs_trans_handle *trans;
4277 struct btrfs_root *tree_root = fs_info->tree_root;
4278 struct btrfs_root *uuid_root;
803b2f54
SB
4279 struct task_struct *task;
4280 int ret;
f7a81ea4
SB
4281
4282 /*
4283 * 1 - root node
4284 * 1 - root item
4285 */
4286 trans = btrfs_start_transaction(tree_root, 2);
4287 if (IS_ERR(trans))
4288 return PTR_ERR(trans);
4289
4290 uuid_root = btrfs_create_tree(trans, fs_info,
4291 BTRFS_UUID_TREE_OBJECTID);
4292 if (IS_ERR(uuid_root)) {
6d13f549 4293 ret = PTR_ERR(uuid_root);
66642832 4294 btrfs_abort_transaction(trans, ret);
65d4f4c1 4295 btrfs_end_transaction(trans, tree_root);
6d13f549 4296 return ret;
f7a81ea4
SB
4297 }
4298
4299 fs_info->uuid_root = uuid_root;
4300
803b2f54
SB
4301 ret = btrfs_commit_transaction(trans, tree_root);
4302 if (ret)
4303 return ret;
4304
4305 down(&fs_info->uuid_tree_rescan_sem);
4306 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4307 if (IS_ERR(task)) {
70f80175 4308 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4309 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4310 up(&fs_info->uuid_tree_rescan_sem);
4311 return PTR_ERR(task);
4312 }
4313
4314 return 0;
f7a81ea4 4315}
803b2f54 4316
70f80175
SB
4317int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4318{
4319 struct task_struct *task;
4320
4321 down(&fs_info->uuid_tree_rescan_sem);
4322 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4323 if (IS_ERR(task)) {
4324 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4325 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4326 up(&fs_info->uuid_tree_rescan_sem);
4327 return PTR_ERR(task);
4328 }
4329
4330 return 0;
4331}
4332
8f18cf13
CM
4333/*
4334 * shrinking a device means finding all of the device extents past
4335 * the new size, and then following the back refs to the chunks.
4336 * The chunk relocation code actually frees the device extent
4337 */
4338int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4339{
4340 struct btrfs_trans_handle *trans;
4341 struct btrfs_root *root = device->dev_root;
4342 struct btrfs_dev_extent *dev_extent = NULL;
4343 struct btrfs_path *path;
4344 u64 length;
8f18cf13
CM
4345 u64 chunk_offset;
4346 int ret;
4347 int slot;
ba1bf481
JB
4348 int failed = 0;
4349 bool retried = false;
53e489bc 4350 bool checked_pending_chunks = false;
8f18cf13
CM
4351 struct extent_buffer *l;
4352 struct btrfs_key key;
6c41761f 4353 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 4354 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4355 u64 old_size = btrfs_device_get_total_bytes(device);
4356 u64 diff = old_size - new_size;
8f18cf13 4357
63a212ab
SB
4358 if (device->is_tgtdev_for_dev_replace)
4359 return -EINVAL;
4360
8f18cf13
CM
4361 path = btrfs_alloc_path();
4362 if (!path)
4363 return -ENOMEM;
4364
e4058b54 4365 path->reada = READA_FORWARD;
8f18cf13 4366
7d9eb12c
CM
4367 lock_chunks(root);
4368
7cc8e58d 4369 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4370 if (device->writeable) {
2b82032c 4371 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
4372 spin_lock(&root->fs_info->free_chunk_lock);
4373 root->fs_info->free_chunk_space -= diff;
4374 spin_unlock(&root->fs_info->free_chunk_lock);
4375 }
7d9eb12c 4376 unlock_chunks(root);
8f18cf13 4377
ba1bf481 4378again:
8f18cf13
CM
4379 key.objectid = device->devid;
4380 key.offset = (u64)-1;
4381 key.type = BTRFS_DEV_EXTENT_KEY;
4382
213e64da 4383 do {
67c5e7d4 4384 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4
FM
4386 if (ret < 0) {
4387 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13 4388 goto done;
67c5e7d4 4389 }
8f18cf13
CM
4390
4391 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4
FM
4392 if (ret)
4393 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4394 if (ret < 0)
4395 goto done;
4396 if (ret) {
4397 ret = 0;
b3b4aa74 4398 btrfs_release_path(path);
bf1fb512 4399 break;
8f18cf13
CM
4400 }
4401
4402 l = path->nodes[0];
4403 slot = path->slots[0];
4404 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4405
ba1bf481 4406 if (key.objectid != device->devid) {
67c5e7d4 4407 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4408 btrfs_release_path(path);
bf1fb512 4409 break;
ba1bf481 4410 }
8f18cf13
CM
4411
4412 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4413 length = btrfs_dev_extent_length(l, dev_extent);
4414
ba1bf481 4415 if (key.offset + length <= new_size) {
67c5e7d4 4416 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
b3b4aa74 4417 btrfs_release_path(path);
d6397bae 4418 break;
ba1bf481 4419 }
8f18cf13 4420
8f18cf13 4421 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4422 btrfs_release_path(path);
8f18cf13 4423
dc2ee4e2 4424 ret = btrfs_relocate_chunk(root, chunk_offset);
67c5e7d4 4425 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
ba1bf481 4426 if (ret && ret != -ENOSPC)
8f18cf13 4427 goto done;
ba1bf481
JB
4428 if (ret == -ENOSPC)
4429 failed++;
213e64da 4430 } while (key.offset-- > 0);
ba1bf481
JB
4431
4432 if (failed && !retried) {
4433 failed = 0;
4434 retried = true;
4435 goto again;
4436 } else if (failed && retried) {
4437 ret = -ENOSPC;
ba1bf481 4438 goto done;
8f18cf13
CM
4439 }
4440
d6397bae 4441 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4442 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4443 if (IS_ERR(trans)) {
4444 ret = PTR_ERR(trans);
4445 goto done;
4446 }
4447
d6397bae 4448 lock_chunks(root);
53e489bc
FM
4449
4450 /*
4451 * We checked in the above loop all device extents that were already in
4452 * the device tree. However before we have updated the device's
4453 * total_bytes to the new size, we might have had chunk allocations that
4454 * have not complete yet (new block groups attached to transaction
4455 * handles), and therefore their device extents were not yet in the
4456 * device tree and we missed them in the loop above. So if we have any
4457 * pending chunk using a device extent that overlaps the device range
4458 * that we can not use anymore, commit the current transaction and
4459 * repeat the search on the device tree - this way we guarantee we will
4460 * not have chunks using device extents that end beyond 'new_size'.
4461 */
4462 if (!checked_pending_chunks) {
4463 u64 start = new_size;
4464 u64 len = old_size - new_size;
4465
499f377f
JM
4466 if (contains_pending_extent(trans->transaction, device,
4467 &start, len)) {
53e489bc
FM
4468 unlock_chunks(root);
4469 checked_pending_chunks = true;
4470 failed = 0;
4471 retried = false;
4472 ret = btrfs_commit_transaction(trans, root);
4473 if (ret)
4474 goto done;
4475 goto again;
4476 }
4477 }
4478
7cc8e58d 4479 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4480 if (list_empty(&device->resized_list))
4481 list_add_tail(&device->resized_list,
4482 &root->fs_info->fs_devices->resized_devices);
d6397bae 4483
d6397bae
CB
4484 WARN_ON(diff > old_total);
4485 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4486 unlock_chunks(root);
2196d6e8
MX
4487
4488 /* Now btrfs_update_device() will change the on-disk size. */
4489 ret = btrfs_update_device(trans, device);
d6397bae 4490 btrfs_end_transaction(trans, root);
8f18cf13
CM
4491done:
4492 btrfs_free_path(path);
53e489bc
FM
4493 if (ret) {
4494 lock_chunks(root);
4495 btrfs_device_set_total_bytes(device, old_size);
4496 if (device->writeable)
4497 device->fs_devices->total_rw_bytes += diff;
4498 spin_lock(&root->fs_info->free_chunk_lock);
4499 root->fs_info->free_chunk_space += diff;
4500 spin_unlock(&root->fs_info->free_chunk_lock);
4501 unlock_chunks(root);
4502 }
8f18cf13
CM
4503 return ret;
4504}
4505
125ccb0a 4506static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
4507 struct btrfs_key *key,
4508 struct btrfs_chunk *chunk, int item_size)
4509{
6c41761f 4510 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
4511 struct btrfs_disk_key disk_key;
4512 u32 array_size;
4513 u8 *ptr;
4514
fe48a5c0 4515 lock_chunks(root);
0b86a832 4516 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4517 if (array_size + item_size + sizeof(disk_key)
fe48a5c0
MX
4518 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4519 unlock_chunks(root);
0b86a832 4520 return -EFBIG;
fe48a5c0 4521 }
0b86a832
CM
4522
4523 ptr = super_copy->sys_chunk_array + array_size;
4524 btrfs_cpu_key_to_disk(&disk_key, key);
4525 memcpy(ptr, &disk_key, sizeof(disk_key));
4526 ptr += sizeof(disk_key);
4527 memcpy(ptr, chunk, item_size);
4528 item_size += sizeof(disk_key);
4529 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0
MX
4530 unlock_chunks(root);
4531
0b86a832
CM
4532 return 0;
4533}
4534
73c5de00
AJ
4535/*
4536 * sort the devices in descending order by max_avail, total_avail
4537 */
4538static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4539{
73c5de00
AJ
4540 const struct btrfs_device_info *di_a = a;
4541 const struct btrfs_device_info *di_b = b;
9b3f68b9 4542
73c5de00 4543 if (di_a->max_avail > di_b->max_avail)
b2117a39 4544 return -1;
73c5de00 4545 if (di_a->max_avail < di_b->max_avail)
b2117a39 4546 return 1;
73c5de00
AJ
4547 if (di_a->total_avail > di_b->total_avail)
4548 return -1;
4549 if (di_a->total_avail < di_b->total_avail)
4550 return 1;
4551 return 0;
b2117a39 4552}
0b86a832 4553
53b381b3
DW
4554static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4555{
4556 /* TODO allow them to set a preferred stripe size */
ee22184b 4557 return SZ_64K;
53b381b3
DW
4558}
4559
4560static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4561{
ffe2d203 4562 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4563 return;
4564
ceda0864 4565 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4566}
4567
14a1e067 4568#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
23f8f9b7
GH
4569 - sizeof(struct btrfs_chunk)) \
4570 / sizeof(struct btrfs_stripe) + 1)
4571
4572#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4573 - 2 * sizeof(struct btrfs_disk_key) \
4574 - 2 * sizeof(struct btrfs_chunk)) \
4575 / sizeof(struct btrfs_stripe) + 1)
4576
73c5de00 4577static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
6df9a95e
JB
4578 struct btrfs_root *extent_root, u64 start,
4579 u64 type)
b2117a39 4580{
73c5de00
AJ
4581 struct btrfs_fs_info *info = extent_root->fs_info;
4582 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4583 struct list_head *cur;
4584 struct map_lookup *map = NULL;
4585 struct extent_map_tree *em_tree;
4586 struct extent_map *em;
4587 struct btrfs_device_info *devices_info = NULL;
4588 u64 total_avail;
4589 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4590 int data_stripes; /* number of stripes that count for
4591 block group size */
73c5de00
AJ
4592 int sub_stripes; /* sub_stripes info for map */
4593 int dev_stripes; /* stripes per dev */
4594 int devs_max; /* max devs to use */
4595 int devs_min; /* min devs needed */
4596 int devs_increment; /* ndevs has to be a multiple of this */
4597 int ncopies; /* how many copies to data has */
4598 int ret;
4599 u64 max_stripe_size;
4600 u64 max_chunk_size;
4601 u64 stripe_size;
4602 u64 num_bytes;
53b381b3 4603 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4604 int ndevs;
4605 int i;
4606 int j;
31e50229 4607 int index;
593060d7 4608
0c460c0d 4609 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4610
73c5de00
AJ
4611 if (list_empty(&fs_devices->alloc_list))
4612 return -ENOSPC;
b2117a39 4613
31e50229 4614 index = __get_raid_index(type);
73c5de00 4615
31e50229
LB
4616 sub_stripes = btrfs_raid_array[index].sub_stripes;
4617 dev_stripes = btrfs_raid_array[index].dev_stripes;
4618 devs_max = btrfs_raid_array[index].devs_max;
4619 devs_min = btrfs_raid_array[index].devs_min;
4620 devs_increment = btrfs_raid_array[index].devs_increment;
4621 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4622
9b3f68b9 4623 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4624 max_stripe_size = SZ_1G;
73c5de00 4625 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4626 if (!devs_max)
4627 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4628 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4629 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4630 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4631 max_stripe_size = SZ_1G;
1100373f 4632 else
ee22184b 4633 max_stripe_size = SZ_256M;
73c5de00 4634 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4635 if (!devs_max)
4636 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4637 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4638 max_stripe_size = SZ_32M;
73c5de00 4639 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4640 if (!devs_max)
4641 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4642 } else {
351fd353 4643 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4644 type);
4645 BUG_ON(1);
9b3f68b9
CM
4646 }
4647
2b82032c
YZ
4648 /* we don't want a chunk larger than 10% of writeable space */
4649 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4650 max_chunk_size);
9b3f68b9 4651
31e818fe 4652 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4653 GFP_NOFS);
4654 if (!devices_info)
4655 return -ENOMEM;
0cad8a11 4656
73c5de00 4657 cur = fs_devices->alloc_list.next;
9b3f68b9 4658
9f680ce0 4659 /*
73c5de00
AJ
4660 * in the first pass through the devices list, we gather information
4661 * about the available holes on each device.
9f680ce0 4662 */
73c5de00
AJ
4663 ndevs = 0;
4664 while (cur != &fs_devices->alloc_list) {
4665 struct btrfs_device *device;
4666 u64 max_avail;
4667 u64 dev_offset;
b2117a39 4668
73c5de00 4669 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4670
73c5de00 4671 cur = cur->next;
b2117a39 4672
73c5de00 4673 if (!device->writeable) {
31b1a2bd 4674 WARN(1, KERN_ERR
efe120a0 4675 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4676 continue;
4677 }
b2117a39 4678
63a212ab
SB
4679 if (!device->in_fs_metadata ||
4680 device->is_tgtdev_for_dev_replace)
73c5de00 4681 continue;
b2117a39 4682
73c5de00
AJ
4683 if (device->total_bytes > device->bytes_used)
4684 total_avail = device->total_bytes - device->bytes_used;
4685 else
4686 total_avail = 0;
38c01b96 4687
4688 /* If there is no space on this device, skip it. */
4689 if (total_avail == 0)
4690 continue;
b2117a39 4691
6df9a95e 4692 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4693 max_stripe_size * dev_stripes,
4694 &dev_offset, &max_avail);
4695 if (ret && ret != -ENOSPC)
4696 goto error;
b2117a39 4697
73c5de00
AJ
4698 if (ret == 0)
4699 max_avail = max_stripe_size * dev_stripes;
b2117a39 4700
73c5de00
AJ
4701 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4702 continue;
b2117a39 4703
063d006f
ES
4704 if (ndevs == fs_devices->rw_devices) {
4705 WARN(1, "%s: found more than %llu devices\n",
4706 __func__, fs_devices->rw_devices);
4707 break;
4708 }
73c5de00
AJ
4709 devices_info[ndevs].dev_offset = dev_offset;
4710 devices_info[ndevs].max_avail = max_avail;
4711 devices_info[ndevs].total_avail = total_avail;
4712 devices_info[ndevs].dev = device;
4713 ++ndevs;
4714 }
b2117a39 4715
73c5de00
AJ
4716 /*
4717 * now sort the devices by hole size / available space
4718 */
4719 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4720 btrfs_cmp_device_info, NULL);
b2117a39 4721
73c5de00
AJ
4722 /* round down to number of usable stripes */
4723 ndevs -= ndevs % devs_increment;
b2117a39 4724
73c5de00
AJ
4725 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4726 ret = -ENOSPC;
4727 goto error;
b2117a39 4728 }
9f680ce0 4729
73c5de00
AJ
4730 if (devs_max && ndevs > devs_max)
4731 ndevs = devs_max;
4732 /*
4733 * the primary goal is to maximize the number of stripes, so use as many
4734 * devices as possible, even if the stripes are not maximum sized.
4735 */
4736 stripe_size = devices_info[ndevs-1].max_avail;
4737 num_stripes = ndevs * dev_stripes;
b2117a39 4738
53b381b3
DW
4739 /*
4740 * this will have to be fixed for RAID1 and RAID10 over
4741 * more drives
4742 */
4743 data_stripes = num_stripes / ncopies;
4744
53b381b3
DW
4745 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4746 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
b7f67055 4747 extent_root->stripesize);
53b381b3
DW
4748 data_stripes = num_stripes - 1;
4749 }
4750 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4751 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
b7f67055 4752 extent_root->stripesize);
53b381b3
DW
4753 data_stripes = num_stripes - 2;
4754 }
86db2578
CM
4755
4756 /*
4757 * Use the number of data stripes to figure out how big this chunk
4758 * is really going to be in terms of logical address space,
4759 * and compare that answer with the max chunk size
4760 */
4761 if (stripe_size * data_stripes > max_chunk_size) {
4762 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4763
4764 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4765
4766 /* bump the answer up to a 16MB boundary */
4767 stripe_size = (stripe_size + mask) & ~mask;
4768
4769 /* but don't go higher than the limits we found
4770 * while searching for free extents
4771 */
4772 if (stripe_size > devices_info[ndevs-1].max_avail)
4773 stripe_size = devices_info[ndevs-1].max_avail;
4774 }
4775
b8b93add 4776 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4777
4778 /* align to BTRFS_STRIPE_LEN */
b8b93add 4779 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4780 stripe_size *= raid_stripe_len;
b2117a39
MX
4781
4782 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4783 if (!map) {
4784 ret = -ENOMEM;
4785 goto error;
4786 }
4787 map->num_stripes = num_stripes;
9b3f68b9 4788
73c5de00
AJ
4789 for (i = 0; i < ndevs; ++i) {
4790 for (j = 0; j < dev_stripes; ++j) {
4791 int s = i * dev_stripes + j;
4792 map->stripes[s].dev = devices_info[i].dev;
4793 map->stripes[s].physical = devices_info[i].dev_offset +
4794 j * stripe_size;
6324fbf3 4795 }
6324fbf3 4796 }
2b82032c 4797 map->sector_size = extent_root->sectorsize;
53b381b3
DW
4798 map->stripe_len = raid_stripe_len;
4799 map->io_align = raid_stripe_len;
4800 map->io_width = raid_stripe_len;
2b82032c 4801 map->type = type;
2b82032c 4802 map->sub_stripes = sub_stripes;
0b86a832 4803
53b381b3 4804 num_bytes = stripe_size * data_stripes;
0b86a832 4805
73c5de00 4806 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 4807
172ddd60 4808 em = alloc_extent_map();
2b82032c 4809 if (!em) {
298a8f9c 4810 kfree(map);
b2117a39
MX
4811 ret = -ENOMEM;
4812 goto error;
593060d7 4813 }
298a8f9c 4814 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4815 em->map_lookup = map;
2b82032c 4816 em->start = start;
73c5de00 4817 em->len = num_bytes;
2b82032c
YZ
4818 em->block_start = 0;
4819 em->block_len = em->len;
6df9a95e 4820 em->orig_block_len = stripe_size;
593060d7 4821
2b82032c 4822 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 4823 write_lock(&em_tree->lock);
09a2a8f9 4824 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4825 if (!ret) {
4826 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4827 atomic_inc(&em->refs);
4828 }
890871be 4829 write_unlock(&em_tree->lock);
0f5d42b2
JB
4830 if (ret) {
4831 free_extent_map(em);
1dd4602f 4832 goto error;
0f5d42b2 4833 }
0b86a832 4834
04487488
JB
4835 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4836 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4837 start, num_bytes);
6df9a95e
JB
4838 if (ret)
4839 goto error_del_extent;
2b82032c 4840
7cc8e58d
MX
4841 for (i = 0; i < map->num_stripes; i++) {
4842 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4843 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4844 }
43530c46 4845
1c116187
MX
4846 spin_lock(&extent_root->fs_info->free_chunk_lock);
4847 extent_root->fs_info->free_chunk_space -= (stripe_size *
4848 map->num_stripes);
4849 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4850
0f5d42b2 4851 free_extent_map(em);
53b381b3
DW
4852 check_raid56_incompat_flag(extent_root->fs_info, type);
4853
b2117a39 4854 kfree(devices_info);
2b82032c 4855 return 0;
b2117a39 4856
6df9a95e 4857error_del_extent:
0f5d42b2
JB
4858 write_lock(&em_tree->lock);
4859 remove_extent_mapping(em_tree, em);
4860 write_unlock(&em_tree->lock);
4861
4862 /* One for our allocation */
4863 free_extent_map(em);
4864 /* One for the tree reference */
4865 free_extent_map(em);
495e64f4
FM
4866 /* One for the pending_chunks list reference */
4867 free_extent_map(em);
b2117a39 4868error:
b2117a39
MX
4869 kfree(devices_info);
4870 return ret;
2b82032c
YZ
4871}
4872
6df9a95e 4873int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
2b82032c 4874 struct btrfs_root *extent_root,
6df9a95e 4875 u64 chunk_offset, u64 chunk_size)
2b82032c 4876{
2b82032c
YZ
4877 struct btrfs_key key;
4878 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4879 struct btrfs_device *device;
4880 struct btrfs_chunk *chunk;
4881 struct btrfs_stripe *stripe;
6df9a95e
JB
4882 struct extent_map_tree *em_tree;
4883 struct extent_map *em;
4884 struct map_lookup *map;
4885 size_t item_size;
4886 u64 dev_offset;
4887 u64 stripe_size;
4888 int i = 0;
140e639f 4889 int ret = 0;
2b82032c 4890
6df9a95e
JB
4891 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4892 read_lock(&em_tree->lock);
4893 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4894 read_unlock(&em_tree->lock);
4895
4896 if (!em) {
5d163e0e
JM
4897 btrfs_crit(extent_root->fs_info,
4898 "unable to find logical %Lu len %Lu",
4899 chunk_offset, chunk_size);
6df9a95e
JB
4900 return -EINVAL;
4901 }
4902
4903 if (em->start != chunk_offset || em->len != chunk_size) {
5d163e0e
JM
4904 btrfs_crit(extent_root->fs_info,
4905 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4906 chunk_offset, chunk_size, em->start, em->len);
6df9a95e
JB
4907 free_extent_map(em);
4908 return -EINVAL;
4909 }
4910
95617d69 4911 map = em->map_lookup;
6df9a95e
JB
4912 item_size = btrfs_chunk_item_size(map->num_stripes);
4913 stripe_size = em->orig_block_len;
4914
2b82032c 4915 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4916 if (!chunk) {
4917 ret = -ENOMEM;
4918 goto out;
4919 }
4920
50460e37
FM
4921 /*
4922 * Take the device list mutex to prevent races with the final phase of
4923 * a device replace operation that replaces the device object associated
4924 * with the map's stripes, because the device object's id can change
4925 * at any time during that final phase of the device replace operation
4926 * (dev-replace.c:btrfs_dev_replace_finishing()).
4927 */
4928 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4929 for (i = 0; i < map->num_stripes; i++) {
4930 device = map->stripes[i].dev;
4931 dev_offset = map->stripes[i].physical;
2b82032c 4932
0b86a832 4933 ret = btrfs_update_device(trans, device);
3acd3953 4934 if (ret)
50460e37 4935 break;
6df9a95e
JB
4936 ret = btrfs_alloc_dev_extent(trans, device,
4937 chunk_root->root_key.objectid,
4938 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4939 chunk_offset, dev_offset,
4940 stripe_size);
4941 if (ret)
50460e37
FM
4942 break;
4943 }
4944 if (ret) {
4945 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4946 goto out;
2b82032c
YZ
4947 }
4948
2b82032c 4949 stripe = &chunk->stripe;
6df9a95e
JB
4950 for (i = 0; i < map->num_stripes; i++) {
4951 device = map->stripes[i].dev;
4952 dev_offset = map->stripes[i].physical;
0b86a832 4953
e17cade2
CM
4954 btrfs_set_stack_stripe_devid(stripe, device->devid);
4955 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4956 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4957 stripe++;
0b86a832 4958 }
50460e37 4959 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
0b86a832 4960
2b82032c 4961 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4962 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4963 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4964 btrfs_set_stack_chunk_type(chunk, map->type);
4965 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4966 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4967 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 4968 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 4969 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4970
2b82032c
YZ
4971 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4972 key.type = BTRFS_CHUNK_ITEM_KEY;
4973 key.offset = chunk_offset;
0b86a832 4974
2b82032c 4975 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4976 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4977 /*
4978 * TODO: Cleanup of inserted chunk root in case of
4979 * failure.
4980 */
125ccb0a 4981 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 4982 item_size);
8f18cf13 4983 }
1abe9b8a 4984
6df9a95e 4985out:
0b86a832 4986 kfree(chunk);
6df9a95e 4987 free_extent_map(em);
4ed1d16e 4988 return ret;
2b82032c 4989}
0b86a832 4990
2b82032c
YZ
4991/*
4992 * Chunk allocation falls into two parts. The first part does works
4993 * that make the new allocated chunk useable, but not do any operation
4994 * that modifies the chunk tree. The second part does the works that
4995 * require modifying the chunk tree. This division is important for the
4996 * bootstrap process of adding storage to a seed btrfs.
4997 */
4998int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4999 struct btrfs_root *extent_root, u64 type)
5000{
5001 u64 chunk_offset;
2b82032c 5002
a9629596 5003 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
6df9a95e
JB
5004 chunk_offset = find_next_chunk(extent_root->fs_info);
5005 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
2b82032c
YZ
5006}
5007
d397712b 5008static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
5009 struct btrfs_root *root,
5010 struct btrfs_device *device)
5011{
5012 u64 chunk_offset;
5013 u64 sys_chunk_offset;
2b82032c 5014 u64 alloc_profile;
2b82032c
YZ
5015 struct btrfs_fs_info *fs_info = root->fs_info;
5016 struct btrfs_root *extent_root = fs_info->extent_root;
5017 int ret;
5018
6df9a95e 5019 chunk_offset = find_next_chunk(fs_info);
de98ced9 5020 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
6df9a95e
JB
5021 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5022 alloc_profile);
79787eaa
JM
5023 if (ret)
5024 return ret;
2b82032c 5025
6df9a95e 5026 sys_chunk_offset = find_next_chunk(root->fs_info);
de98ced9 5027 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
6df9a95e
JB
5028 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5029 alloc_profile);
79787eaa 5030 return ret;
2b82032c
YZ
5031}
5032
d20983b4
MX
5033static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5034{
5035 int max_errors;
5036
5037 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5038 BTRFS_BLOCK_GROUP_RAID10 |
5039 BTRFS_BLOCK_GROUP_RAID5 |
5040 BTRFS_BLOCK_GROUP_DUP)) {
5041 max_errors = 1;
5042 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5043 max_errors = 2;
5044 } else {
5045 max_errors = 0;
005d6427 5046 }
2b82032c 5047
d20983b4 5048 return max_errors;
2b82032c
YZ
5049}
5050
5051int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5052{
5053 struct extent_map *em;
5054 struct map_lookup *map;
5055 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5056 int readonly = 0;
d20983b4 5057 int miss_ndevs = 0;
2b82032c
YZ
5058 int i;
5059
890871be 5060 read_lock(&map_tree->map_tree.lock);
2b82032c 5061 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 5062 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
5063 if (!em)
5064 return 1;
5065
95617d69 5066 map = em->map_lookup;
2b82032c 5067 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5068 if (map->stripes[i].dev->missing) {
5069 miss_ndevs++;
5070 continue;
5071 }
5072
2b82032c
YZ
5073 if (!map->stripes[i].dev->writeable) {
5074 readonly = 1;
d20983b4 5075 goto end;
2b82032c
YZ
5076 }
5077 }
d20983b4
MX
5078
5079 /*
5080 * If the number of missing devices is larger than max errors,
5081 * we can not write the data into that chunk successfully, so
5082 * set it readonly.
5083 */
5084 if (miss_ndevs > btrfs_chunk_max_errors(map))
5085 readonly = 1;
5086end:
0b86a832 5087 free_extent_map(em);
2b82032c 5088 return readonly;
0b86a832
CM
5089}
5090
5091void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5092{
a8067e02 5093 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5094}
5095
5096void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5097{
5098 struct extent_map *em;
5099
d397712b 5100 while (1) {
890871be 5101 write_lock(&tree->map_tree.lock);
0b86a832
CM
5102 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5103 if (em)
5104 remove_extent_mapping(&tree->map_tree, em);
890871be 5105 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5106 if (!em)
5107 break;
0b86a832
CM
5108 /* once for us */
5109 free_extent_map(em);
5110 /* once for the tree */
5111 free_extent_map(em);
5112 }
5113}
5114
5d964051 5115int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e 5116{
5d964051 5117 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
f188591e
CM
5118 struct extent_map *em;
5119 struct map_lookup *map;
5120 struct extent_map_tree *em_tree = &map_tree->map_tree;
5121 int ret;
5122
890871be 5123 read_lock(&em_tree->lock);
f188591e 5124 em = lookup_extent_mapping(em_tree, logical, len);
890871be 5125 read_unlock(&em_tree->lock);
f188591e 5126
fb7669b5
JB
5127 /*
5128 * We could return errors for these cases, but that could get ugly and
5129 * we'd probably do the same thing which is just not do anything else
5130 * and exit, so return 1 so the callers don't try to use other copies.
5131 */
5132 if (!em) {
351fd353 5133 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
fb7669b5
JB
5134 logical+len);
5135 return 1;
5136 }
5137
5138 if (em->start > logical || em->start + em->len < logical) {
5d163e0e
JM
5139 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5140 logical, logical+len, em->start,
5141 em->start + em->len);
7d3d1744 5142 free_extent_map(em);
fb7669b5
JB
5143 return 1;
5144 }
5145
95617d69 5146 map = em->map_lookup;
f188591e
CM
5147 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5148 ret = map->num_stripes;
321aecc6
CM
5149 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5150 ret = map->sub_stripes;
53b381b3
DW
5151 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5152 ret = 2;
5153 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5154 ret = 3;
f188591e
CM
5155 else
5156 ret = 1;
5157 free_extent_map(em);
ad6d620e 5158
73beece9 5159 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
ad6d620e
SB
5160 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5161 ret++;
73beece9 5162 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5163
f188591e
CM
5164 return ret;
5165}
5166
53b381b3
DW
5167unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5168 struct btrfs_mapping_tree *map_tree,
5169 u64 logical)
5170{
5171 struct extent_map *em;
5172 struct map_lookup *map;
5173 struct extent_map_tree *em_tree = &map_tree->map_tree;
5174 unsigned long len = root->sectorsize;
5175
5176 read_lock(&em_tree->lock);
5177 em = lookup_extent_mapping(em_tree, logical, len);
5178 read_unlock(&em_tree->lock);
5179 BUG_ON(!em);
5180
5181 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5182 map = em->map_lookup;
ffe2d203 5183 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5184 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5185 free_extent_map(em);
5186 return len;
5187}
5188
5189int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5190 u64 logical, u64 len, int mirror_num)
5191{
5192 struct extent_map *em;
5193 struct map_lookup *map;
5194 struct extent_map_tree *em_tree = &map_tree->map_tree;
5195 int ret = 0;
5196
5197 read_lock(&em_tree->lock);
5198 em = lookup_extent_mapping(em_tree, logical, len);
5199 read_unlock(&em_tree->lock);
5200 BUG_ON(!em);
5201
5202 BUG_ON(em->start > logical || em->start + em->len < logical);
95617d69 5203 map = em->map_lookup;
ffe2d203 5204 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5205 ret = 1;
5206 free_extent_map(em);
5207 return ret;
5208}
5209
30d9861f
SB
5210static int find_live_mirror(struct btrfs_fs_info *fs_info,
5211 struct map_lookup *map, int first, int num,
5212 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5213{
5214 int i;
30d9861f
SB
5215 int tolerance;
5216 struct btrfs_device *srcdev;
5217
5218 if (dev_replace_is_ongoing &&
5219 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5220 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5221 srcdev = fs_info->dev_replace.srcdev;
5222 else
5223 srcdev = NULL;
5224
5225 /*
5226 * try to avoid the drive that is the source drive for a
5227 * dev-replace procedure, only choose it if no other non-missing
5228 * mirror is available
5229 */
5230 for (tolerance = 0; tolerance < 2; tolerance++) {
5231 if (map->stripes[optimal].dev->bdev &&
5232 (tolerance || map->stripes[optimal].dev != srcdev))
5233 return optimal;
5234 for (i = first; i < first + num; i++) {
5235 if (map->stripes[i].dev->bdev &&
5236 (tolerance || map->stripes[i].dev != srcdev))
5237 return i;
5238 }
dfe25020 5239 }
30d9861f 5240
dfe25020
CM
5241 /* we couldn't find one that doesn't fail. Just return something
5242 * and the io error handling code will clean up eventually
5243 */
5244 return optimal;
5245}
5246
53b381b3
DW
5247static inline int parity_smaller(u64 a, u64 b)
5248{
5249 return a > b;
5250}
5251
5252/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5253static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5254{
5255 struct btrfs_bio_stripe s;
5256 int i;
5257 u64 l;
5258 int again = 1;
5259
5260 while (again) {
5261 again = 0;
cc7539ed 5262 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5263 if (parity_smaller(bbio->raid_map[i],
5264 bbio->raid_map[i+1])) {
53b381b3 5265 s = bbio->stripes[i];
8e5cfb55 5266 l = bbio->raid_map[i];
53b381b3 5267 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5268 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5269 bbio->stripes[i+1] = s;
8e5cfb55 5270 bbio->raid_map[i+1] = l;
2c8cdd6e 5271
53b381b3
DW
5272 again = 1;
5273 }
5274 }
5275 }
5276}
5277
6e9606d2
ZL
5278static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5279{
5280 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5281 /* the size of the btrfs_bio */
6e9606d2 5282 sizeof(struct btrfs_bio) +
e57cf21e 5283 /* plus the variable array for the stripes */
6e9606d2 5284 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5285 /* plus the variable array for the tgt dev */
6e9606d2 5286 sizeof(int) * (real_stripes) +
e57cf21e
CM
5287 /*
5288 * plus the raid_map, which includes both the tgt dev
5289 * and the stripes
5290 */
5291 sizeof(u64) * (total_stripes),
277fb5fc 5292 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5293
5294 atomic_set(&bbio->error, 0);
5295 atomic_set(&bbio->refs, 1);
5296
5297 return bbio;
5298}
5299
5300void btrfs_get_bbio(struct btrfs_bio *bbio)
5301{
5302 WARN_ON(!atomic_read(&bbio->refs));
5303 atomic_inc(&bbio->refs);
5304}
5305
5306void btrfs_put_bbio(struct btrfs_bio *bbio)
5307{
5308 if (!bbio)
5309 return;
5310 if (atomic_dec_and_test(&bbio->refs))
5311 kfree(bbio);
5312}
5313
b3d3fa51 5314static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
f2d8d74d 5315 u64 logical, u64 *length,
a1d3c478 5316 struct btrfs_bio **bbio_ret,
8e5cfb55 5317 int mirror_num, int need_raid_map)
0b86a832
CM
5318{
5319 struct extent_map *em;
5320 struct map_lookup *map;
3ec706c8 5321 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
0b86a832
CM
5322 struct extent_map_tree *em_tree = &map_tree->map_tree;
5323 u64 offset;
593060d7 5324 u64 stripe_offset;
fce3bb9a 5325 u64 stripe_end_offset;
593060d7 5326 u64 stripe_nr;
fce3bb9a
LD
5327 u64 stripe_nr_orig;
5328 u64 stripe_nr_end;
53b381b3 5329 u64 stripe_len;
9d644a62 5330 u32 stripe_index;
cea9e445 5331 int i;
de11cc12 5332 int ret = 0;
f2d8d74d 5333 int num_stripes;
a236aed1 5334 int max_errors = 0;
2c8cdd6e 5335 int tgtdev_indexes = 0;
a1d3c478 5336 struct btrfs_bio *bbio = NULL;
472262f3
SB
5337 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5338 int dev_replace_is_ongoing = 0;
5339 int num_alloc_stripes;
ad6d620e
SB
5340 int patch_the_first_stripe_for_dev_replace = 0;
5341 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5342 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5343
890871be 5344 read_lock(&em_tree->lock);
0b86a832 5345 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 5346 read_unlock(&em_tree->lock);
f2d8d74d 5347
3b951516 5348 if (!em) {
c2cf52eb 5349 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
c1c9ff7c 5350 logical, *length);
9bb91873
JB
5351 return -EINVAL;
5352 }
5353
5354 if (em->start > logical || em->start + em->len < logical) {
5d163e0e
JM
5355 btrfs_crit(fs_info,
5356 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5357 logical, em->start, em->start + em->len);
7d3d1744 5358 free_extent_map(em);
9bb91873 5359 return -EINVAL;
3b951516 5360 }
0b86a832 5361
95617d69 5362 map = em->map_lookup;
0b86a832 5363 offset = logical - em->start;
593060d7 5364
53b381b3 5365 stripe_len = map->stripe_len;
593060d7
CM
5366 stripe_nr = offset;
5367 /*
5368 * stripe_nr counts the total number of stripes we have to stride
5369 * to get to this block
5370 */
47c5713f 5371 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5372
53b381b3 5373 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5374 if (offset < stripe_offset) {
5d163e0e
JM
5375 btrfs_crit(fs_info,
5376 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5377 stripe_offset, offset, em->start, logical,
5378 stripe_len);
5379 free_extent_map(em);
5380 return -EINVAL;
5381 }
593060d7
CM
5382
5383 /* stripe_offset is the offset of this block in its stripe*/
5384 stripe_offset = offset - stripe_offset;
5385
53b381b3 5386 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5387 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5388 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5389 raid56_full_stripe_start = offset;
5390
5391 /* allow a write of a full stripe, but make sure we don't
5392 * allow straddling of stripes
5393 */
47c5713f
DS
5394 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5395 full_stripe_len);
53b381b3
DW
5396 raid56_full_stripe_start *= full_stripe_len;
5397 }
5398
b3d3fa51 5399 if (op == REQ_OP_DISCARD) {
53b381b3 5400 /* we don't discard raid56 yet */
ffe2d203 5401 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5402 ret = -EOPNOTSUPP;
5403 goto out;
5404 }
fce3bb9a 5405 *length = min_t(u64, em->len - offset, *length);
53b381b3
DW
5406 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5407 u64 max_len;
5408 /* For writes to RAID[56], allow a full stripeset across all disks.
5409 For other RAID types and for RAID[56] reads, just allow a single
5410 stripe (on a single disk). */
ffe2d203 5411 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
b3d3fa51 5412 (op == REQ_OP_WRITE)) {
53b381b3
DW
5413 max_len = stripe_len * nr_data_stripes(map) -
5414 (offset - raid56_full_stripe_start);
5415 } else {
5416 /* we limit the length of each bio to what fits in a stripe */
5417 max_len = stripe_len - stripe_offset;
5418 }
5419 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5420 } else {
5421 *length = em->len - offset;
5422 }
f2d8d74d 5423
53b381b3
DW
5424 /* This is for when we're called from btrfs_merge_bio_hook() and all
5425 it cares about is the length */
a1d3c478 5426 if (!bbio_ret)
cea9e445
CM
5427 goto out;
5428
73beece9 5429 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5430 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5431 if (!dev_replace_is_ongoing)
73beece9
LB
5432 btrfs_dev_replace_unlock(dev_replace, 0);
5433 else
5434 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5435
ad6d620e 5436 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
b3d3fa51
MC
5437 op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5438 op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
ad6d620e
SB
5439 /*
5440 * in dev-replace case, for repair case (that's the only
5441 * case where the mirror is selected explicitly when
5442 * calling btrfs_map_block), blocks left of the left cursor
5443 * can also be read from the target drive.
5444 * For REQ_GET_READ_MIRRORS, the target drive is added as
5445 * the last one to the array of stripes. For READ, it also
5446 * needs to be supported using the same mirror number.
5447 * If the requested block is not left of the left cursor,
5448 * EIO is returned. This can happen because btrfs_num_copies()
5449 * returns one more in the dev-replace case.
5450 */
5451 u64 tmp_length = *length;
5452 struct btrfs_bio *tmp_bbio = NULL;
5453 int tmp_num_stripes;
5454 u64 srcdev_devid = dev_replace->srcdev->devid;
5455 int index_srcdev = 0;
5456 int found = 0;
5457 u64 physical_of_found = 0;
5458
5459 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
8e5cfb55 5460 logical, &tmp_length, &tmp_bbio, 0, 0);
ad6d620e
SB
5461 if (ret) {
5462 WARN_ON(tmp_bbio != NULL);
5463 goto out;
5464 }
5465
5466 tmp_num_stripes = tmp_bbio->num_stripes;
5467 if (mirror_num > tmp_num_stripes) {
5468 /*
5469 * REQ_GET_READ_MIRRORS does not contain this
5470 * mirror, that means that the requested area
5471 * is not left of the left cursor
5472 */
5473 ret = -EIO;
6e9606d2 5474 btrfs_put_bbio(tmp_bbio);
ad6d620e
SB
5475 goto out;
5476 }
5477
5478 /*
5479 * process the rest of the function using the mirror_num
5480 * of the source drive. Therefore look it up first.
5481 * At the end, patch the device pointer to the one of the
5482 * target drive.
5483 */
5484 for (i = 0; i < tmp_num_stripes; i++) {
94a97dfe
ZL
5485 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5486 continue;
5487
5488 /*
5489 * In case of DUP, in order to keep it simple, only add
5490 * the mirror with the lowest physical address
5491 */
5492 if (found &&
5493 physical_of_found <= tmp_bbio->stripes[i].physical)
5494 continue;
5495
5496 index_srcdev = i;
5497 found = 1;
5498 physical_of_found = tmp_bbio->stripes[i].physical;
ad6d620e
SB
5499 }
5500
94a97dfe
ZL
5501 btrfs_put_bbio(tmp_bbio);
5502
5503 if (!found) {
ad6d620e
SB
5504 WARN_ON(1);
5505 ret = -EIO;
ad6d620e
SB
5506 goto out;
5507 }
5508
94a97dfe
ZL
5509 mirror_num = index_srcdev + 1;
5510 patch_the_first_stripe_for_dev_replace = 1;
5511 physical_to_patch_in_first_stripe = physical_of_found;
ad6d620e
SB
5512 } else if (mirror_num > map->num_stripes) {
5513 mirror_num = 0;
5514 }
5515
f2d8d74d 5516 num_stripes = 1;
cea9e445 5517 stripe_index = 0;
fce3bb9a 5518 stripe_nr_orig = stripe_nr;
fda2832f 5519 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
b8b93add 5520 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
fce3bb9a
LD
5521 stripe_end_offset = stripe_nr_end * map->stripe_len -
5522 (offset + *length);
53b381b3 5523
fce3bb9a 5524 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
b3d3fa51 5525 if (op == REQ_OP_DISCARD)
fce3bb9a
LD
5526 num_stripes = min_t(u64, map->num_stripes,
5527 stripe_nr_end - stripe_nr_orig);
47c5713f
DS
5528 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5529 &stripe_index);
b3d3fa51
MC
5530 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5531 op != REQ_GET_READ_MIRRORS)
28e1cc7d 5532 mirror_num = 1;
fce3bb9a 5533 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
b3d3fa51
MC
5534 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5535 op == REQ_GET_READ_MIRRORS)
f2d8d74d 5536 num_stripes = map->num_stripes;
2fff734f 5537 else if (mirror_num)
f188591e 5538 stripe_index = mirror_num - 1;
dfe25020 5539 else {
30d9861f 5540 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5541 map->num_stripes,
30d9861f
SB
5542 current->pid % map->num_stripes,
5543 dev_replace_is_ongoing);
a1d3c478 5544 mirror_num = stripe_index + 1;
dfe25020 5545 }
2fff734f 5546
611f0e00 5547 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
df5c82a8 5548 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
b3d3fa51 5549 op == REQ_GET_READ_MIRRORS) {
f2d8d74d 5550 num_stripes = map->num_stripes;
a1d3c478 5551 } else if (mirror_num) {
f188591e 5552 stripe_index = mirror_num - 1;
a1d3c478
JS
5553 } else {
5554 mirror_num = 1;
5555 }
2fff734f 5556
321aecc6 5557 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5558 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5559
47c5713f 5560 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5561 stripe_index *= map->sub_stripes;
5562
b3d3fa51 5563 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
f2d8d74d 5564 num_stripes = map->sub_stripes;
b3d3fa51 5565 else if (op == REQ_OP_DISCARD)
fce3bb9a
LD
5566 num_stripes = min_t(u64, map->sub_stripes *
5567 (stripe_nr_end - stripe_nr_orig),
5568 map->num_stripes);
321aecc6
CM
5569 else if (mirror_num)
5570 stripe_index += mirror_num - 1;
dfe25020 5571 else {
3e74317a 5572 int old_stripe_index = stripe_index;
30d9861f
SB
5573 stripe_index = find_live_mirror(fs_info, map,
5574 stripe_index,
dfe25020 5575 map->sub_stripes, stripe_index +
30d9861f
SB
5576 current->pid % map->sub_stripes,
5577 dev_replace_is_ongoing);
3e74317a 5578 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5579 }
53b381b3 5580
ffe2d203 5581 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5582 if (need_raid_map &&
b3d3fa51 5583 (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
af8e2d1d 5584 mirror_num > 1)) {
53b381b3 5585 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5586 stripe_nr = div_u64(raid56_full_stripe_start,
5587 stripe_len * nr_data_stripes(map));
53b381b3
DW
5588
5589 /* RAID[56] write or recovery. Return all stripes */
5590 num_stripes = map->num_stripes;
5591 max_errors = nr_parity_stripes(map);
5592
53b381b3
DW
5593 *length = map->stripe_len;
5594 stripe_index = 0;
5595 stripe_offset = 0;
5596 } else {
5597 /*
5598 * Mirror #0 or #1 means the original data block.
5599 * Mirror #2 is RAID5 parity block.
5600 * Mirror #3 is RAID6 Q block.
5601 */
47c5713f
DS
5602 stripe_nr = div_u64_rem(stripe_nr,
5603 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5604 if (mirror_num > 1)
5605 stripe_index = nr_data_stripes(map) +
5606 mirror_num - 2;
5607
5608 /* We distribute the parity blocks across stripes */
47c5713f
DS
5609 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5610 &stripe_index);
b3d3fa51
MC
5611 if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5612 op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
28e1cc7d 5613 mirror_num = 1;
53b381b3 5614 }
8790d502
CM
5615 } else {
5616 /*
47c5713f
DS
5617 * after this, stripe_nr is the number of stripes on this
5618 * device we have to walk to find the data, and stripe_index is
5619 * the number of our device in the stripe array
8790d502 5620 */
47c5713f
DS
5621 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5622 &stripe_index);
a1d3c478 5623 mirror_num = stripe_index + 1;
8790d502 5624 }
e042d1ec 5625 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5626 btrfs_crit(fs_info,
5627 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5628 stripe_index, map->num_stripes);
5629 ret = -EINVAL;
5630 goto out;
5631 }
cea9e445 5632
472262f3 5633 num_alloc_stripes = num_stripes;
ad6d620e 5634 if (dev_replace_is_ongoing) {
b3d3fa51 5635 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
ad6d620e 5636 num_alloc_stripes <<= 1;
b3d3fa51 5637 if (op == REQ_GET_READ_MIRRORS)
ad6d620e 5638 num_alloc_stripes++;
2c8cdd6e 5639 tgtdev_indexes = num_stripes;
ad6d620e 5640 }
2c8cdd6e 5641
6e9606d2 5642 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5643 if (!bbio) {
5644 ret = -ENOMEM;
5645 goto out;
5646 }
2c8cdd6e
MX
5647 if (dev_replace_is_ongoing)
5648 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5649
8e5cfb55 5650 /* build raid_map */
ffe2d203 5651 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
b3d3fa51
MC
5652 need_raid_map &&
5653 ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
8e5cfb55
ZL
5654 mirror_num > 1)) {
5655 u64 tmp;
9d644a62 5656 unsigned rot;
8e5cfb55
ZL
5657
5658 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5659 sizeof(struct btrfs_bio_stripe) *
5660 num_alloc_stripes +
5661 sizeof(int) * tgtdev_indexes);
5662
5663 /* Work out the disk rotation on this stripe-set */
47c5713f 5664 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5665
5666 /* Fill in the logical address of each stripe */
5667 tmp = stripe_nr * nr_data_stripes(map);
5668 for (i = 0; i < nr_data_stripes(map); i++)
5669 bbio->raid_map[(i+rot) % num_stripes] =
5670 em->start + (tmp + i) * map->stripe_len;
5671
5672 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5673 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5674 bbio->raid_map[(i+rot+1) % num_stripes] =
5675 RAID6_Q_STRIPE;
5676 }
5677
b3d3fa51 5678 if (op == REQ_OP_DISCARD) {
9d644a62
DS
5679 u32 factor = 0;
5680 u32 sub_stripes = 0;
ec9ef7a1
LZ
5681 u64 stripes_per_dev = 0;
5682 u32 remaining_stripes = 0;
b89203f7 5683 u32 last_stripe = 0;
ec9ef7a1
LZ
5684
5685 if (map->type &
5686 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5687 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5688 sub_stripes = 1;
5689 else
5690 sub_stripes = map->sub_stripes;
5691
5692 factor = map->num_stripes / sub_stripes;
5693 stripes_per_dev = div_u64_rem(stripe_nr_end -
5694 stripe_nr_orig,
5695 factor,
5696 &remaining_stripes);
b89203f7
LB
5697 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5698 last_stripe *= sub_stripes;
ec9ef7a1
LZ
5699 }
5700
fce3bb9a 5701 for (i = 0; i < num_stripes; i++) {
a1d3c478 5702 bbio->stripes[i].physical =
f2d8d74d
CM
5703 map->stripes[stripe_index].physical +
5704 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 5705 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 5706
ec9ef7a1
LZ
5707 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5708 BTRFS_BLOCK_GROUP_RAID10)) {
5709 bbio->stripes[i].length = stripes_per_dev *
5710 map->stripe_len;
b89203f7 5711
ec9ef7a1
LZ
5712 if (i / sub_stripes < remaining_stripes)
5713 bbio->stripes[i].length +=
5714 map->stripe_len;
b89203f7
LB
5715
5716 /*
5717 * Special for the first stripe and
5718 * the last stripe:
5719 *
5720 * |-------|...|-------|
5721 * |----------|
5722 * off end_off
5723 */
ec9ef7a1 5724 if (i < sub_stripes)
a1d3c478 5725 bbio->stripes[i].length -=
fce3bb9a 5726 stripe_offset;
b89203f7
LB
5727
5728 if (stripe_index >= last_stripe &&
5729 stripe_index <= (last_stripe +
5730 sub_stripes - 1))
a1d3c478 5731 bbio->stripes[i].length -=
fce3bb9a 5732 stripe_end_offset;
b89203f7 5733
ec9ef7a1
LZ
5734 if (i == sub_stripes - 1)
5735 stripe_offset = 0;
fce3bb9a 5736 } else
a1d3c478 5737 bbio->stripes[i].length = *length;
fce3bb9a
LD
5738
5739 stripe_index++;
5740 if (stripe_index == map->num_stripes) {
5741 /* This could only happen for RAID0/10 */
5742 stripe_index = 0;
5743 stripe_nr++;
5744 }
5745 }
5746 } else {
5747 for (i = 0; i < num_stripes; i++) {
a1d3c478 5748 bbio->stripes[i].physical =
212a17ab
LT
5749 map->stripes[stripe_index].physical +
5750 stripe_offset +
5751 stripe_nr * map->stripe_len;
a1d3c478 5752 bbio->stripes[i].dev =
212a17ab 5753 map->stripes[stripe_index].dev;
fce3bb9a 5754 stripe_index++;
f2d8d74d 5755 }
593060d7 5756 }
de11cc12 5757
b3d3fa51 5758 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
d20983b4 5759 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5760
8e5cfb55
ZL
5761 if (bbio->raid_map)
5762 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5763
2c8cdd6e 5764 tgtdev_indexes = 0;
b3d3fa51
MC
5765 if (dev_replace_is_ongoing &&
5766 (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
472262f3
SB
5767 dev_replace->tgtdev != NULL) {
5768 int index_where_to_add;
5769 u64 srcdev_devid = dev_replace->srcdev->devid;
5770
5771 /*
5772 * duplicate the write operations while the dev replace
5773 * procedure is running. Since the copying of the old disk
5774 * to the new disk takes place at run time while the
5775 * filesystem is mounted writable, the regular write
5776 * operations to the old disk have to be duplicated to go
5777 * to the new disk as well.
5778 * Note that device->missing is handled by the caller, and
5779 * that the write to the old disk is already set up in the
5780 * stripes array.
5781 */
5782 index_where_to_add = num_stripes;
5783 for (i = 0; i < num_stripes; i++) {
5784 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5785 /* write to new disk, too */
5786 struct btrfs_bio_stripe *new =
5787 bbio->stripes + index_where_to_add;
5788 struct btrfs_bio_stripe *old =
5789 bbio->stripes + i;
5790
5791 new->physical = old->physical;
5792 new->length = old->length;
5793 new->dev = dev_replace->tgtdev;
2c8cdd6e 5794 bbio->tgtdev_map[i] = index_where_to_add;
472262f3
SB
5795 index_where_to_add++;
5796 max_errors++;
2c8cdd6e 5797 tgtdev_indexes++;
472262f3
SB
5798 }
5799 }
5800 num_stripes = index_where_to_add;
b3d3fa51 5801 } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
ad6d620e
SB
5802 dev_replace->tgtdev != NULL) {
5803 u64 srcdev_devid = dev_replace->srcdev->devid;
5804 int index_srcdev = 0;
5805 int found = 0;
5806 u64 physical_of_found = 0;
5807
5808 /*
5809 * During the dev-replace procedure, the target drive can
5810 * also be used to read data in case it is needed to repair
5811 * a corrupt block elsewhere. This is possible if the
5812 * requested area is left of the left cursor. In this area,
5813 * the target drive is a full copy of the source drive.
5814 */
5815 for (i = 0; i < num_stripes; i++) {
5816 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5817 /*
5818 * In case of DUP, in order to keep it
5819 * simple, only add the mirror with the
5820 * lowest physical address
5821 */
5822 if (found &&
5823 physical_of_found <=
5824 bbio->stripes[i].physical)
5825 continue;
5826 index_srcdev = i;
5827 found = 1;
5828 physical_of_found = bbio->stripes[i].physical;
5829 }
5830 }
5831 if (found) {
22ab04e8
FM
5832 struct btrfs_bio_stripe *tgtdev_stripe =
5833 bbio->stripes + num_stripes;
ad6d620e 5834
22ab04e8
FM
5835 tgtdev_stripe->physical = physical_of_found;
5836 tgtdev_stripe->length =
5837 bbio->stripes[index_srcdev].length;
5838 tgtdev_stripe->dev = dev_replace->tgtdev;
5839 bbio->tgtdev_map[index_srcdev] = num_stripes;
ad6d620e 5840
22ab04e8
FM
5841 tgtdev_indexes++;
5842 num_stripes++;
ad6d620e 5843 }
472262f3
SB
5844 }
5845
de11cc12 5846 *bbio_ret = bbio;
10f11900 5847 bbio->map_type = map->type;
de11cc12
LZ
5848 bbio->num_stripes = num_stripes;
5849 bbio->max_errors = max_errors;
5850 bbio->mirror_num = mirror_num;
2c8cdd6e 5851 bbio->num_tgtdevs = tgtdev_indexes;
ad6d620e
SB
5852
5853 /*
5854 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5855 * mirror_num == num_stripes + 1 && dev_replace target drive is
5856 * available as a mirror
5857 */
5858 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5859 WARN_ON(num_stripes > 1);
5860 bbio->stripes[0].dev = dev_replace->tgtdev;
5861 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5862 bbio->mirror_num = map->num_stripes + 1;
5863 }
cea9e445 5864out:
73beece9
LB
5865 if (dev_replace_is_ongoing) {
5866 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5867 btrfs_dev_replace_unlock(dev_replace, 0);
5868 }
0b86a832 5869 free_extent_map(em);
de11cc12 5870 return ret;
0b86a832
CM
5871}
5872
b3d3fa51 5873int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
f2d8d74d 5874 u64 logical, u64 *length,
a1d3c478 5875 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5876{
b3d3fa51 5877 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5878 mirror_num, 0);
f2d8d74d
CM
5879}
5880
af8e2d1d 5881/* For Scrub/replace */
b3d3fa51 5882int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
af8e2d1d
MX
5883 u64 logical, u64 *length,
5884 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5885 int need_raid_map)
af8e2d1d 5886{
b3d3fa51 5887 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5888 mirror_num, need_raid_map);
af8e2d1d
MX
5889}
5890
ab8d0fc4 5891int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5892 u64 chunk_start, u64 physical, u64 devid,
5893 u64 **logical, int *naddrs, int *stripe_len)
5894{
ab8d0fc4 5895 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
a512bbf8
YZ
5896 struct extent_map_tree *em_tree = &map_tree->map_tree;
5897 struct extent_map *em;
5898 struct map_lookup *map;
5899 u64 *buf;
5900 u64 bytenr;
5901 u64 length;
5902 u64 stripe_nr;
53b381b3 5903 u64 rmap_len;
a512bbf8
YZ
5904 int i, j, nr = 0;
5905
890871be 5906 read_lock(&em_tree->lock);
a512bbf8 5907 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 5908 read_unlock(&em_tree->lock);
a512bbf8 5909
835d974f 5910 if (!em) {
ab8d0fc4
JM
5911 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5912 chunk_start);
835d974f
JB
5913 return -EIO;
5914 }
5915
5916 if (em->start != chunk_start) {
ab8d0fc4 5917 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
835d974f
JB
5918 em->start, chunk_start);
5919 free_extent_map(em);
5920 return -EIO;
5921 }
95617d69 5922 map = em->map_lookup;
a512bbf8
YZ
5923
5924 length = em->len;
53b381b3
DW
5925 rmap_len = map->stripe_len;
5926
a512bbf8 5927 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5928 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5929 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5930 length = div_u64(length, map->num_stripes);
ffe2d203 5931 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5932 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5933 rmap_len = map->stripe_len * nr_data_stripes(map);
5934 }
a512bbf8 5935
31e818fe 5936 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5937 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5938
5939 for (i = 0; i < map->num_stripes; i++) {
5940 if (devid && map->stripes[i].dev->devid != devid)
5941 continue;
5942 if (map->stripes[i].physical > physical ||
5943 map->stripes[i].physical + length <= physical)
5944 continue;
5945
5946 stripe_nr = physical - map->stripes[i].physical;
b8b93add 5947 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5948
5949 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5950 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5951 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5952 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5953 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5954 } /* else if RAID[56], multiply by nr_data_stripes().
5955 * Alternatively, just use rmap_len below instead of
5956 * map->stripe_len */
5957
5958 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 5959 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
5960 for (j = 0; j < nr; j++) {
5961 if (buf[j] == bytenr)
5962 break;
5963 }
934d375b
CM
5964 if (j == nr) {
5965 WARN_ON(nr >= map->num_stripes);
a512bbf8 5966 buf[nr++] = bytenr;
934d375b 5967 }
a512bbf8
YZ
5968 }
5969
a512bbf8
YZ
5970 *logical = buf;
5971 *naddrs = nr;
53b381b3 5972 *stripe_len = rmap_len;
a512bbf8
YZ
5973
5974 free_extent_map(em);
5975 return 0;
f2d8d74d
CM
5976}
5977
4246a0b6 5978static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 5979{
326e1dbb
MS
5980 bio->bi_private = bbio->private;
5981 bio->bi_end_io = bbio->end_io;
4246a0b6 5982 bio_endio(bio);
326e1dbb 5983
6e9606d2 5984 btrfs_put_bbio(bbio);
8408c716
MX
5985}
5986
4246a0b6 5987static void btrfs_end_bio(struct bio *bio)
8790d502 5988{
9be3395b 5989 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 5990 int is_orig_bio = 0;
8790d502 5991
4246a0b6 5992 if (bio->bi_error) {
a1d3c478 5993 atomic_inc(&bbio->error);
4246a0b6 5994 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 5995 unsigned int stripe_index =
9be3395b 5996 btrfs_io_bio(bio)->stripe_index;
65f53338 5997 struct btrfs_device *dev;
442a4f63
SB
5998
5999 BUG_ON(stripe_index >= bbio->num_stripes);
6000 dev = bbio->stripes[stripe_index].dev;
597a60fa 6001 if (dev->bdev) {
37226b21 6002 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6003 btrfs_dev_stat_inc(dev,
6004 BTRFS_DEV_STAT_WRITE_ERRS);
6005 else
6006 btrfs_dev_stat_inc(dev,
6007 BTRFS_DEV_STAT_READ_ERRS);
1eff9d32 6008 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
597a60fa
SB
6009 btrfs_dev_stat_inc(dev,
6010 BTRFS_DEV_STAT_FLUSH_ERRS);
6011 btrfs_dev_stat_print_on_error(dev);
6012 }
442a4f63
SB
6013 }
6014 }
8790d502 6015
a1d3c478 6016 if (bio == bbio->orig_bio)
7d2b4daa
CM
6017 is_orig_bio = 1;
6018
c404e0dc
MX
6019 btrfs_bio_counter_dec(bbio->fs_info);
6020
a1d3c478 6021 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6022 if (!is_orig_bio) {
6023 bio_put(bio);
a1d3c478 6024 bio = bbio->orig_bio;
7d2b4daa 6025 }
c7b22bb1 6026
9be3395b 6027 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6028 /* only send an error to the higher layers if it is
53b381b3 6029 * beyond the tolerance of the btrfs bio
a236aed1 6030 */
a1d3c478 6031 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 6032 bio->bi_error = -EIO;
5dbc8fca 6033 } else {
1259ab75
CM
6034 /*
6035 * this bio is actually up to date, we didn't
6036 * go over the max number of errors
6037 */
4246a0b6 6038 bio->bi_error = 0;
1259ab75 6039 }
c55f1396 6040
4246a0b6 6041 btrfs_end_bbio(bbio, bio);
7d2b4daa 6042 } else if (!is_orig_bio) {
8790d502
CM
6043 bio_put(bio);
6044 }
8790d502
CM
6045}
6046
8b712842
CM
6047/*
6048 * see run_scheduled_bios for a description of why bios are collected for
6049 * async submit.
6050 *
6051 * This will add one bio to the pending list for a device and make sure
6052 * the work struct is scheduled.
6053 */
48a3b636
ES
6054static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6055 struct btrfs_device *device,
4e49ea4a 6056 struct bio *bio)
8b712842
CM
6057{
6058 int should_queue = 1;
ffbd517d 6059 struct btrfs_pending_bios *pending_bios;
8b712842 6060
53b381b3 6061 if (device->missing || !device->bdev) {
4246a0b6 6062 bio_io_error(bio);
53b381b3
DW
6063 return;
6064 }
6065
8b712842 6066 /* don't bother with additional async steps for reads, right now */
37226b21 6067 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6068 bio_get(bio);
4e49ea4a 6069 btrfsic_submit_bio(bio);
492bb6de 6070 bio_put(bio);
143bede5 6071 return;
8b712842
CM
6072 }
6073
6074 /*
0986fe9e 6075 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6076 * higher layers. Otherwise, the async bio makes it appear we have
6077 * made progress against dirty pages when we've really just put it
6078 * on a queue for later
6079 */
0986fe9e 6080 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 6081 WARN_ON(bio->bi_next);
8b712842 6082 bio->bi_next = NULL;
8b712842
CM
6083
6084 spin_lock(&device->io_lock);
1eff9d32 6085 if (bio->bi_opf & REQ_SYNC)
ffbd517d
CM
6086 pending_bios = &device->pending_sync_bios;
6087 else
6088 pending_bios = &device->pending_bios;
8b712842 6089
ffbd517d
CM
6090 if (pending_bios->tail)
6091 pending_bios->tail->bi_next = bio;
8b712842 6092
ffbd517d
CM
6093 pending_bios->tail = bio;
6094 if (!pending_bios->head)
6095 pending_bios->head = bio;
8b712842
CM
6096 if (device->running_pending)
6097 should_queue = 0;
6098
6099 spin_unlock(&device->io_lock);
6100
6101 if (should_queue)
a8c93d4e
QW
6102 btrfs_queue_work(root->fs_info->submit_workers,
6103 &device->work);
8b712842
CM
6104}
6105
de1ee92a
JB
6106static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6107 struct bio *bio, u64 physical, int dev_nr,
81a75f67 6108 int async)
de1ee92a
JB
6109{
6110 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6111
6112 bio->bi_private = bbio;
9be3395b 6113 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6114 bio->bi_end_io = btrfs_end_bio;
4f024f37 6115 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6116#ifdef DEBUG
6117 {
6118 struct rcu_string *name;
6119
6120 rcu_read_lock();
6121 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6122 btrfs_debug(fs_info,
6123 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6124 bio_op(bio), bio->bi_opf,
6125 (u64)bio->bi_iter.bi_sector,
6126 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6127 bio->bi_iter.bi_size);
de1ee92a
JB
6128 rcu_read_unlock();
6129 }
6130#endif
6131 bio->bi_bdev = dev->bdev;
c404e0dc
MX
6132
6133 btrfs_bio_counter_inc_noblocked(root->fs_info);
6134
de1ee92a 6135 if (async)
4e49ea4a 6136 btrfs_schedule_bio(root, dev, bio);
de1ee92a 6137 else
4e49ea4a 6138 btrfsic_submit_bio(bio);
de1ee92a
JB
6139}
6140
de1ee92a
JB
6141static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6142{
6143 atomic_inc(&bbio->error);
6144 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6145 /* Should be the original bio. */
8408c716
MX
6146 WARN_ON(bio != bbio->orig_bio);
6147
9be3395b 6148 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6149 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6150 bio->bi_error = -EIO;
6151 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6152 }
6153}
6154
81a75f67 6155int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
8b712842 6156 int mirror_num, int async_submit)
0b86a832 6157{
0b86a832 6158 struct btrfs_device *dev;
8790d502 6159 struct bio *first_bio = bio;
4f024f37 6160 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6161 u64 length = 0;
6162 u64 map_length;
0b86a832 6163 int ret;
08da757d
ZL
6164 int dev_nr;
6165 int total_devs;
a1d3c478 6166 struct btrfs_bio *bbio = NULL;
0b86a832 6167
4f024f37 6168 length = bio->bi_iter.bi_size;
0b86a832 6169 map_length = length;
cea9e445 6170
c404e0dc 6171 btrfs_bio_counter_inc_blocked(root->fs_info);
37226b21
MC
6172 ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6173 &map_length, &bbio, mirror_num, 1);
c404e0dc
MX
6174 if (ret) {
6175 btrfs_bio_counter_dec(root->fs_info);
79787eaa 6176 return ret;
c404e0dc 6177 }
cea9e445 6178
a1d3c478 6179 total_devs = bbio->num_stripes;
53b381b3
DW
6180 bbio->orig_bio = first_bio;
6181 bbio->private = first_bio->bi_private;
6182 bbio->end_io = first_bio->bi_end_io;
c404e0dc 6183 bbio->fs_info = root->fs_info;
53b381b3
DW
6184 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6185
ad1ba2a0 6186 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6187 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6188 /* In this case, map_length has been set to the length of
6189 a single stripe; not the whole write */
37226b21 6190 if (bio_op(bio) == REQ_OP_WRITE) {
8e5cfb55 6191 ret = raid56_parity_write(root, bio, bbio, map_length);
53b381b3 6192 } else {
8e5cfb55 6193 ret = raid56_parity_recover(root, bio, bbio, map_length,
4245215d 6194 mirror_num, 1);
53b381b3 6195 }
4245215d 6196
c404e0dc
MX
6197 btrfs_bio_counter_dec(root->fs_info);
6198 return ret;
53b381b3
DW
6199 }
6200
cea9e445 6201 if (map_length < length) {
5d163e0e
JM
6202 btrfs_crit(root->fs_info,
6203 "mapping failed logical %llu bio len %llu len %llu",
6204 logical, length, map_length);
cea9e445
CM
6205 BUG();
6206 }
a1d3c478 6207
08da757d 6208 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6209 dev = bbio->stripes[dev_nr].dev;
37226b21
MC
6210 if (!dev || !dev->bdev ||
6211 (bio_op(bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6212 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6213 continue;
6214 }
6215
a1d3c478 6216 if (dev_nr < total_devs - 1) {
9be3395b 6217 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6218 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6219 } else
a1d3c478 6220 bio = first_bio;
de1ee92a
JB
6221
6222 submit_stripe_bio(root, bbio, bio,
81a75f67 6223 bbio->stripes[dev_nr].physical, dev_nr,
de1ee92a 6224 async_submit);
8790d502 6225 }
c404e0dc 6226 btrfs_bio_counter_dec(root->fs_info);
0b86a832
CM
6227 return 0;
6228}
6229
aa1b8cd4 6230struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6231 u8 *uuid, u8 *fsid)
0b86a832 6232{
2b82032c
YZ
6233 struct btrfs_device *device;
6234 struct btrfs_fs_devices *cur_devices;
6235
aa1b8cd4 6236 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6237 while (cur_devices) {
6238 if (!fsid ||
6239 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6240 device = __find_device(&cur_devices->devices,
6241 devid, uuid);
6242 if (device)
6243 return device;
6244 }
6245 cur_devices = cur_devices->seed;
6246 }
6247 return NULL;
0b86a832
CM
6248}
6249
dfe25020 6250static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5f375835 6251 struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6252 u64 devid, u8 *dev_uuid)
6253{
6254 struct btrfs_device *device;
dfe25020 6255
12bd2fc0
ID
6256 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6257 if (IS_ERR(device))
7cbd8a83 6258 return NULL;
12bd2fc0
ID
6259
6260 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6261 device->fs_devices = fs_devices;
dfe25020 6262 fs_devices->num_devices++;
12bd2fc0
ID
6263
6264 device->missing = 1;
cd02dca5 6265 fs_devices->missing_devices++;
12bd2fc0 6266
dfe25020
CM
6267 return device;
6268}
6269
12bd2fc0
ID
6270/**
6271 * btrfs_alloc_device - allocate struct btrfs_device
6272 * @fs_info: used only for generating a new devid, can be NULL if
6273 * devid is provided (i.e. @devid != NULL).
6274 * @devid: a pointer to devid for this device. If NULL a new devid
6275 * is generated.
6276 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6277 * is generated.
6278 *
6279 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6280 * on error. Returned struct is not linked onto any lists and can be
6281 * destroyed with kfree() right away.
6282 */
6283struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6284 const u64 *devid,
6285 const u8 *uuid)
6286{
6287 struct btrfs_device *dev;
6288 u64 tmp;
6289
fae7f21c 6290 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6291 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6292
6293 dev = __alloc_device();
6294 if (IS_ERR(dev))
6295 return dev;
6296
6297 if (devid)
6298 tmp = *devid;
6299 else {
6300 int ret;
6301
6302 ret = find_next_devid(fs_info, &tmp);
6303 if (ret) {
6304 kfree(dev);
6305 return ERR_PTR(ret);
6306 }
6307 }
6308 dev->devid = tmp;
6309
6310 if (uuid)
6311 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6312 else
6313 generate_random_uuid(dev->uuid);
6314
9e0af237
LB
6315 btrfs_init_work(&dev->work, btrfs_submit_helper,
6316 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6317
6318 return dev;
6319}
6320
e06cd3dd
LB
6321/* Return -EIO if any error, otherwise return 0. */
6322static int btrfs_check_chunk_valid(struct btrfs_root *root,
6323 struct extent_buffer *leaf,
6324 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6325{
0b86a832 6326 u64 length;
f04b772b 6327 u64 stripe_len;
e06cd3dd
LB
6328 u16 num_stripes;
6329 u16 sub_stripes;
6330 u64 type;
0b86a832 6331
e17cade2 6332 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6333 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6334 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6335 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6336 type = btrfs_chunk_type(leaf, chunk);
6337
f04b772b
QW
6338 if (!num_stripes) {
6339 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6340 num_stripes);
6341 return -EIO;
6342 }
6343 if (!IS_ALIGNED(logical, root->sectorsize)) {
6344 btrfs_err(root->fs_info,
6345 "invalid chunk logical %llu", logical);
6346 return -EIO;
6347 }
e06cd3dd
LB
6348 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6349 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6350 btrfs_chunk_sector_size(leaf, chunk));
6351 return -EIO;
6352 }
f04b772b
QW
6353 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6354 btrfs_err(root->fs_info,
6355 "invalid chunk length %llu", length);
6356 return -EIO;
6357 }
3d8da678 6358 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
f04b772b
QW
6359 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6360 stripe_len);
6361 return -EIO;
6362 }
6363 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6364 type) {
f04b772b
QW
6365 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6366 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6367 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6368 btrfs_chunk_type(leaf, chunk));
6369 return -EIO;
6370 }
e06cd3dd
LB
6371 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6372 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6373 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6374 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6375 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6376 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6377 num_stripes != 1)) {
6378 btrfs_err(root->fs_info,
6379 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6380 num_stripes, sub_stripes,
6381 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6382 return -EIO;
6383 }
6384
6385 return 0;
6386}
6387
6388static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6389 struct extent_buffer *leaf,
6390 struct btrfs_chunk *chunk)
6391{
6392 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6393 struct map_lookup *map;
6394 struct extent_map *em;
6395 u64 logical;
6396 u64 length;
6397 u64 stripe_len;
6398 u64 devid;
6399 u8 uuid[BTRFS_UUID_SIZE];
6400 int num_stripes;
6401 int ret;
6402 int i;
6403
6404 logical = key->offset;
6405 length = btrfs_chunk_length(leaf, chunk);
6406 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6407 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6408
6409 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6410 if (ret)
6411 return ret;
a061fc8d 6412
890871be 6413 read_lock(&map_tree->map_tree.lock);
0b86a832 6414 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6415 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6416
6417 /* already mapped? */
6418 if (em && em->start <= logical && em->start + em->len > logical) {
6419 free_extent_map(em);
0b86a832
CM
6420 return 0;
6421 } else if (em) {
6422 free_extent_map(em);
6423 }
0b86a832 6424
172ddd60 6425 em = alloc_extent_map();
0b86a832
CM
6426 if (!em)
6427 return -ENOMEM;
593060d7 6428 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6429 if (!map) {
6430 free_extent_map(em);
6431 return -ENOMEM;
6432 }
6433
298a8f9c 6434 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6435 em->map_lookup = map;
0b86a832
CM
6436 em->start = logical;
6437 em->len = length;
70c8a91c 6438 em->orig_start = 0;
0b86a832 6439 em->block_start = 0;
c8b97818 6440 em->block_len = em->len;
0b86a832 6441
593060d7
CM
6442 map->num_stripes = num_stripes;
6443 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6444 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6445 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6446 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6447 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6448 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6449 for (i = 0; i < num_stripes; i++) {
6450 map->stripes[i].physical =
6451 btrfs_stripe_offset_nr(leaf, chunk, i);
6452 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6453 read_extent_buffer(leaf, uuid, (unsigned long)
6454 btrfs_stripe_dev_uuid_nr(chunk, i),
6455 BTRFS_UUID_SIZE);
aa1b8cd4
SB
6456 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6457 uuid, NULL);
3cdde224
JM
6458 if (!map->stripes[i].dev &&
6459 !btrfs_test_opt(root->fs_info, DEGRADED)) {
593060d7
CM
6460 free_extent_map(em);
6461 return -EIO;
6462 }
dfe25020
CM
6463 if (!map->stripes[i].dev) {
6464 map->stripes[i].dev =
5f375835
MX
6465 add_missing_dev(root, root->fs_info->fs_devices,
6466 devid, uuid);
dfe25020 6467 if (!map->stripes[i].dev) {
dfe25020
CM
6468 free_extent_map(em);
6469 return -EIO;
6470 }
5d163e0e
JM
6471 btrfs_warn(root->fs_info,
6472 "devid %llu uuid %pU is missing",
6473 devid, uuid);
dfe25020
CM
6474 }
6475 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6476 }
6477
890871be 6478 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6479 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6480 write_unlock(&map_tree->map_tree.lock);
79787eaa 6481 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6482 free_extent_map(em);
6483
6484 return 0;
6485}
6486
143bede5 6487static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6488 struct btrfs_dev_item *dev_item,
6489 struct btrfs_device *device)
6490{
6491 unsigned long ptr;
0b86a832
CM
6492
6493 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6494 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6495 device->total_bytes = device->disk_total_bytes;
935e5cc9 6496 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6497 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6498 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6499 device->type = btrfs_device_type(leaf, dev_item);
6500 device->io_align = btrfs_device_io_align(leaf, dev_item);
6501 device->io_width = btrfs_device_io_width(leaf, dev_item);
6502 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6503 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6504 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6505
410ba3a2 6506 ptr = btrfs_device_uuid(dev_item);
e17cade2 6507 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6508}
6509
5f375835
MX
6510static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6511 u8 *fsid)
2b82032c
YZ
6512{
6513 struct btrfs_fs_devices *fs_devices;
6514 int ret;
6515
b367e47f 6516 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
6517
6518 fs_devices = root->fs_info->fs_devices->seed;
6519 while (fs_devices) {
5f375835
MX
6520 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6521 return fs_devices;
6522
2b82032c
YZ
6523 fs_devices = fs_devices->seed;
6524 }
6525
6526 fs_devices = find_fsid(fsid);
6527 if (!fs_devices) {
3cdde224 6528 if (!btrfs_test_opt(root->fs_info, DEGRADED))
5f375835
MX
6529 return ERR_PTR(-ENOENT);
6530
6531 fs_devices = alloc_fs_devices(fsid);
6532 if (IS_ERR(fs_devices))
6533 return fs_devices;
6534
6535 fs_devices->seeding = 1;
6536 fs_devices->opened = 1;
6537 return fs_devices;
2b82032c 6538 }
e4404d6e
YZ
6539
6540 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6541 if (IS_ERR(fs_devices))
6542 return fs_devices;
2b82032c 6543
97288f2c 6544 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 6545 root->fs_info->bdev_holder);
48d28232
JL
6546 if (ret) {
6547 free_fs_devices(fs_devices);
5f375835 6548 fs_devices = ERR_PTR(ret);
2b82032c 6549 goto out;
48d28232 6550 }
2b82032c
YZ
6551
6552 if (!fs_devices->seeding) {
6553 __btrfs_close_devices(fs_devices);
e4404d6e 6554 free_fs_devices(fs_devices);
5f375835 6555 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6556 goto out;
6557 }
6558
6559 fs_devices->seed = root->fs_info->fs_devices->seed;
6560 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 6561out:
5f375835 6562 return fs_devices;
2b82032c
YZ
6563}
6564
0d81ba5d 6565static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
6566 struct extent_buffer *leaf,
6567 struct btrfs_dev_item *dev_item)
6568{
5f375835 6569 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
0b86a832
CM
6570 struct btrfs_device *device;
6571 u64 devid;
6572 int ret;
2b82032c 6573 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6574 u8 dev_uuid[BTRFS_UUID_SIZE];
6575
0b86a832 6576 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6577 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6578 BTRFS_UUID_SIZE);
1473b24e 6579 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6580 BTRFS_UUID_SIZE);
6581
6582 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5f375835
MX
6583 fs_devices = open_seed_devices(root, fs_uuid);
6584 if (IS_ERR(fs_devices))
6585 return PTR_ERR(fs_devices);
2b82032c
YZ
6586 }
6587
aa1b8cd4 6588 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5f375835 6589 if (!device) {
3cdde224 6590 if (!btrfs_test_opt(root->fs_info, DEGRADED))
2b82032c
YZ
6591 return -EIO;
6592
5f375835
MX
6593 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6594 if (!device)
6595 return -ENOMEM;
33b97e43
AJ
6596 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6597 devid, dev_uuid);
5f375835 6598 } else {
3cdde224 6599 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
5f375835
MX
6600 return -EIO;
6601
6602 if(!device->bdev && !device->missing) {
cd02dca5
CM
6603 /*
6604 * this happens when a device that was properly setup
6605 * in the device info lists suddenly goes bad.
6606 * device->bdev is NULL, and so we have to set
6607 * device->missing to one here
6608 */
5f375835 6609 device->fs_devices->missing_devices++;
cd02dca5 6610 device->missing = 1;
2b82032c 6611 }
5f375835
MX
6612
6613 /* Move the device to its own fs_devices */
6614 if (device->fs_devices != fs_devices) {
6615 ASSERT(device->missing);
6616
6617 list_move(&device->dev_list, &fs_devices->devices);
6618 device->fs_devices->num_devices--;
6619 fs_devices->num_devices++;
6620
6621 device->fs_devices->missing_devices--;
6622 fs_devices->missing_devices++;
6623
6624 device->fs_devices = fs_devices;
6625 }
2b82032c
YZ
6626 }
6627
6628 if (device->fs_devices != root->fs_info->fs_devices) {
6629 BUG_ON(device->writeable);
6630 if (device->generation !=
6631 btrfs_device_generation(leaf, dev_item))
6632 return -EINVAL;
6324fbf3 6633 }
0b86a832
CM
6634
6635 fill_device_from_item(leaf, dev_item, device);
dfe25020 6636 device->in_fs_metadata = 1;
63a212ab 6637 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6638 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
6639 spin_lock(&root->fs_info->free_chunk_lock);
6640 root->fs_info->free_chunk_space += device->total_bytes -
6641 device->bytes_used;
6642 spin_unlock(&root->fs_info->free_chunk_lock);
6643 }
0b86a832 6644 ret = 0;
0b86a832
CM
6645 return ret;
6646}
6647
e4404d6e 6648int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 6649{
ab8d0fc4
JM
6650 struct btrfs_fs_info *fs_info = root->fs_info;
6651 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6652 struct extent_buffer *sb;
0b86a832 6653 struct btrfs_disk_key *disk_key;
0b86a832 6654 struct btrfs_chunk *chunk;
1ffb22cf
DS
6655 u8 *array_ptr;
6656 unsigned long sb_array_offset;
84eed90f 6657 int ret = 0;
0b86a832
CM
6658 u32 num_stripes;
6659 u32 array_size;
6660 u32 len = 0;
1ffb22cf 6661 u32 cur_offset;
e06cd3dd 6662 u64 type;
84eed90f 6663 struct btrfs_key key;
0b86a832 6664
a83fffb7
DS
6665 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6666 /*
6667 * This will create extent buffer of nodesize, superblock size is
6668 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6669 * overallocate but we can keep it as-is, only the first page is used.
6670 */
6671 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6672 if (IS_ERR(sb))
6673 return PTR_ERR(sb);
4db8c528 6674 set_extent_buffer_uptodate(sb);
85d4e461 6675 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6676 /*
01327610 6677 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6678 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6679 * pages up-to-date when the page is larger: extent does not cover the
6680 * whole page and consequently check_page_uptodate does not find all
6681 * the page's extents up-to-date (the hole beyond sb),
6682 * write_extent_buffer then triggers a WARN_ON.
6683 *
6684 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6685 * but sb spans only this function. Add an explicit SetPageUptodate call
6686 * to silence the warning eg. on PowerPC 64.
6687 */
09cbfeaf 6688 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6689 SetPageUptodate(sb->pages[0]);
4008c04a 6690
a061fc8d 6691 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6692 array_size = btrfs_super_sys_array_size(super_copy);
6693
1ffb22cf
DS
6694 array_ptr = super_copy->sys_chunk_array;
6695 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6696 cur_offset = 0;
0b86a832 6697
1ffb22cf
DS
6698 while (cur_offset < array_size) {
6699 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6700 len = sizeof(*disk_key);
6701 if (cur_offset + len > array_size)
6702 goto out_short_read;
6703
0b86a832
CM
6704 btrfs_disk_key_to_cpu(&key, disk_key);
6705
1ffb22cf
DS
6706 array_ptr += len;
6707 sb_array_offset += len;
6708 cur_offset += len;
0b86a832 6709
0d81ba5d 6710 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6711 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6712 /*
6713 * At least one btrfs_chunk with one stripe must be
6714 * present, exact stripe count check comes afterwards
6715 */
6716 len = btrfs_chunk_item_size(1);
6717 if (cur_offset + len > array_size)
6718 goto out_short_read;
6719
6720 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6721 if (!num_stripes) {
ab8d0fc4
JM
6722 btrfs_err(fs_info,
6723 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6724 num_stripes, cur_offset);
6725 ret = -EIO;
6726 break;
6727 }
6728
e06cd3dd
LB
6729 type = btrfs_chunk_type(sb, chunk);
6730 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6731 btrfs_err(fs_info,
e06cd3dd
LB
6732 "invalid chunk type %llu in sys_array at offset %u",
6733 type, cur_offset);
6734 ret = -EIO;
6735 break;
6736 }
6737
e3540eab
DS
6738 len = btrfs_chunk_item_size(num_stripes);
6739 if (cur_offset + len > array_size)
6740 goto out_short_read;
6741
0d81ba5d 6742 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
6743 if (ret)
6744 break;
0b86a832 6745 } else {
ab8d0fc4
JM
6746 btrfs_err(fs_info,
6747 "unexpected item type %u in sys_array at offset %u",
6748 (u32)key.type, cur_offset);
84eed90f
CM
6749 ret = -EIO;
6750 break;
0b86a832 6751 }
1ffb22cf
DS
6752 array_ptr += len;
6753 sb_array_offset += len;
6754 cur_offset += len;
0b86a832 6755 }
d865177a 6756 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6757 free_extent_buffer_stale(sb);
84eed90f 6758 return ret;
e3540eab
DS
6759
6760out_short_read:
ab8d0fc4 6761 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6762 len, cur_offset);
d865177a 6763 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6764 free_extent_buffer_stale(sb);
e3540eab 6765 return -EIO;
0b86a832
CM
6766}
6767
6768int btrfs_read_chunk_tree(struct btrfs_root *root)
6769{
6770 struct btrfs_path *path;
6771 struct extent_buffer *leaf;
6772 struct btrfs_key key;
6773 struct btrfs_key found_key;
6774 int ret;
6775 int slot;
99e3ecfc 6776 u64 total_dev = 0;
0b86a832
CM
6777
6778 root = root->fs_info->chunk_root;
6779
6780 path = btrfs_alloc_path();
6781 if (!path)
6782 return -ENOMEM;
6783
b367e47f
LZ
6784 mutex_lock(&uuid_mutex);
6785 lock_chunks(root);
6786
395927a9
FDBM
6787 /*
6788 * Read all device items, and then all the chunk items. All
6789 * device items are found before any chunk item (their object id
6790 * is smaller than the lowest possible object id for a chunk
6791 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6792 */
6793 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6794 key.offset = 0;
6795 key.type = 0;
0b86a832 6796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6797 if (ret < 0)
6798 goto error;
d397712b 6799 while (1) {
0b86a832
CM
6800 leaf = path->nodes[0];
6801 slot = path->slots[0];
6802 if (slot >= btrfs_header_nritems(leaf)) {
6803 ret = btrfs_next_leaf(root, path);
6804 if (ret == 0)
6805 continue;
6806 if (ret < 0)
6807 goto error;
6808 break;
6809 }
6810 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6811 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6812 struct btrfs_dev_item *dev_item;
6813 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6814 struct btrfs_dev_item);
395927a9
FDBM
6815 ret = read_one_dev(root, leaf, dev_item);
6816 if (ret)
6817 goto error;
99e3ecfc 6818 total_dev++;
0b86a832
CM
6819 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6820 struct btrfs_chunk *chunk;
6821 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6822 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
6823 if (ret)
6824 goto error;
0b86a832
CM
6825 }
6826 path->slots[0]++;
6827 }
99e3ecfc
LB
6828
6829 /*
6830 * After loading chunk tree, we've got all device information,
6831 * do another round of validation checks.
6832 */
6833 if (total_dev != root->fs_info->fs_devices->total_devices) {
6834 btrfs_err(root->fs_info,
6835 "super_num_devices %llu mismatch with num_devices %llu found here",
6836 btrfs_super_num_devices(root->fs_info->super_copy),
6837 total_dev);
6838 ret = -EINVAL;
6839 goto error;
6840 }
6841 if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6842 root->fs_info->fs_devices->total_rw_bytes) {
6843 btrfs_err(root->fs_info,
6844 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6845 btrfs_super_total_bytes(root->fs_info->super_copy),
6846 root->fs_info->fs_devices->total_rw_bytes);
6847 ret = -EINVAL;
6848 goto error;
6849 }
0b86a832
CM
6850 ret = 0;
6851error:
b367e47f
LZ
6852 unlock_chunks(root);
6853 mutex_unlock(&uuid_mutex);
6854
2b82032c 6855 btrfs_free_path(path);
0b86a832
CM
6856 return ret;
6857}
442a4f63 6858
cb517eab
MX
6859void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6860{
6861 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6862 struct btrfs_device *device;
6863
29cc83f6
LB
6864 while (fs_devices) {
6865 mutex_lock(&fs_devices->device_list_mutex);
6866 list_for_each_entry(device, &fs_devices->devices, dev_list)
6867 device->dev_root = fs_info->dev_root;
6868 mutex_unlock(&fs_devices->device_list_mutex);
6869
6870 fs_devices = fs_devices->seed;
6871 }
cb517eab
MX
6872}
6873
733f4fbb
SB
6874static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6875{
6876 int i;
6877
6878 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6879 btrfs_dev_stat_reset(dev, i);
6880}
6881
6882int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6883{
6884 struct btrfs_key key;
6885 struct btrfs_key found_key;
6886 struct btrfs_root *dev_root = fs_info->dev_root;
6887 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6888 struct extent_buffer *eb;
6889 int slot;
6890 int ret = 0;
6891 struct btrfs_device *device;
6892 struct btrfs_path *path = NULL;
6893 int i;
6894
6895 path = btrfs_alloc_path();
6896 if (!path) {
6897 ret = -ENOMEM;
6898 goto out;
6899 }
6900
6901 mutex_lock(&fs_devices->device_list_mutex);
6902 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6903 int item_size;
6904 struct btrfs_dev_stats_item *ptr;
6905
242e2956
DS
6906 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6907 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6908 key.offset = device->devid;
6909 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6910 if (ret) {
733f4fbb
SB
6911 __btrfs_reset_dev_stats(device);
6912 device->dev_stats_valid = 1;
6913 btrfs_release_path(path);
6914 continue;
6915 }
6916 slot = path->slots[0];
6917 eb = path->nodes[0];
6918 btrfs_item_key_to_cpu(eb, &found_key, slot);
6919 item_size = btrfs_item_size_nr(eb, slot);
6920
6921 ptr = btrfs_item_ptr(eb, slot,
6922 struct btrfs_dev_stats_item);
6923
6924 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6925 if (item_size >= (1 + i) * sizeof(__le64))
6926 btrfs_dev_stat_set(device, i,
6927 btrfs_dev_stats_value(eb, ptr, i));
6928 else
6929 btrfs_dev_stat_reset(device, i);
6930 }
6931
6932 device->dev_stats_valid = 1;
6933 btrfs_dev_stat_print_on_load(device);
6934 btrfs_release_path(path);
6935 }
6936 mutex_unlock(&fs_devices->device_list_mutex);
6937
6938out:
6939 btrfs_free_path(path);
6940 return ret < 0 ? ret : 0;
6941}
6942
6943static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6944 struct btrfs_root *dev_root,
6945 struct btrfs_device *device)
6946{
6947 struct btrfs_path *path;
6948 struct btrfs_key key;
6949 struct extent_buffer *eb;
6950 struct btrfs_dev_stats_item *ptr;
6951 int ret;
6952 int i;
6953
242e2956
DS
6954 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6955 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6956 key.offset = device->devid;
6957
6958 path = btrfs_alloc_path();
6959 BUG_ON(!path);
6960 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6961 if (ret < 0) {
ecaeb14b
DS
6962 btrfs_warn_in_rcu(dev_root->fs_info,
6963 "error %d while searching for dev_stats item for device %s",
606686ee 6964 ret, rcu_str_deref(device->name));
733f4fbb
SB
6965 goto out;
6966 }
6967
6968 if (ret == 0 &&
6969 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6970 /* need to delete old one and insert a new one */
6971 ret = btrfs_del_item(trans, dev_root, path);
6972 if (ret != 0) {
ecaeb14b
DS
6973 btrfs_warn_in_rcu(dev_root->fs_info,
6974 "delete too small dev_stats item for device %s failed %d",
606686ee 6975 rcu_str_deref(device->name), ret);
733f4fbb
SB
6976 goto out;
6977 }
6978 ret = 1;
6979 }
6980
6981 if (ret == 1) {
6982 /* need to insert a new item */
6983 btrfs_release_path(path);
6984 ret = btrfs_insert_empty_item(trans, dev_root, path,
6985 &key, sizeof(*ptr));
6986 if (ret < 0) {
ecaeb14b
DS
6987 btrfs_warn_in_rcu(dev_root->fs_info,
6988 "insert dev_stats item for device %s failed %d",
6989 rcu_str_deref(device->name), ret);
733f4fbb
SB
6990 goto out;
6991 }
6992 }
6993
6994 eb = path->nodes[0];
6995 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6996 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6997 btrfs_set_dev_stats_value(eb, ptr, i,
6998 btrfs_dev_stat_read(device, i));
6999 btrfs_mark_buffer_dirty(eb);
7000
7001out:
7002 btrfs_free_path(path);
7003 return ret;
7004}
7005
7006/*
7007 * called from commit_transaction. Writes all changed device stats to disk.
7008 */
7009int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7010 struct btrfs_fs_info *fs_info)
7011{
7012 struct btrfs_root *dev_root = fs_info->dev_root;
7013 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7014 struct btrfs_device *device;
addc3fa7 7015 int stats_cnt;
733f4fbb
SB
7016 int ret = 0;
7017
7018 mutex_lock(&fs_devices->device_list_mutex);
7019 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7020 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7021 continue;
7022
addc3fa7 7023 stats_cnt = atomic_read(&device->dev_stats_ccnt);
733f4fbb
SB
7024 ret = update_dev_stat_item(trans, dev_root, device);
7025 if (!ret)
addc3fa7 7026 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7027 }
7028 mutex_unlock(&fs_devices->device_list_mutex);
7029
7030 return ret;
7031}
7032
442a4f63
SB
7033void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7034{
7035 btrfs_dev_stat_inc(dev, index);
7036 btrfs_dev_stat_print_on_error(dev);
7037}
7038
48a3b636 7039static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7040{
733f4fbb
SB
7041 if (!dev->dev_stats_valid)
7042 return;
b14af3b4
DS
7043 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7044 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7045 rcu_str_deref(dev->name),
442a4f63
SB
7046 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7047 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7048 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7049 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7050 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7051}
c11d2c23 7052
733f4fbb
SB
7053static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7054{
a98cdb85
SB
7055 int i;
7056
7057 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7058 if (btrfs_dev_stat_read(dev, i) != 0)
7059 break;
7060 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7061 return; /* all values == 0, suppress message */
7062
ecaeb14b
DS
7063 btrfs_info_in_rcu(dev->dev_root->fs_info,
7064 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7065 rcu_str_deref(dev->name),
733f4fbb
SB
7066 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7067 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7068 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7069 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7070 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7071}
7072
c11d2c23 7073int btrfs_get_dev_stats(struct btrfs_root *root,
b27f7c0c 7074 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7075{
7076 struct btrfs_device *dev;
7077 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7078 int i;
7079
7080 mutex_lock(&fs_devices->device_list_mutex);
aa1b8cd4 7081 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7082 mutex_unlock(&fs_devices->device_list_mutex);
7083
7084 if (!dev) {
5d163e0e
JM
7085 btrfs_warn(root->fs_info,
7086 "get dev_stats failed, device not found");
c11d2c23 7087 return -ENODEV;
733f4fbb 7088 } else if (!dev->dev_stats_valid) {
5d163e0e
JM
7089 btrfs_warn(root->fs_info,
7090 "get dev_stats failed, not yet valid");
733f4fbb 7091 return -ENODEV;
b27f7c0c 7092 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7093 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7094 if (stats->nr_items > i)
7095 stats->values[i] =
7096 btrfs_dev_stat_read_and_reset(dev, i);
7097 else
7098 btrfs_dev_stat_reset(dev, i);
7099 }
7100 } else {
7101 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7102 if (stats->nr_items > i)
7103 stats->values[i] = btrfs_dev_stat_read(dev, i);
7104 }
7105 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7106 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7107 return 0;
7108}
a8a6dab7 7109
12b1c263 7110void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
a8a6dab7
SB
7111{
7112 struct buffer_head *bh;
7113 struct btrfs_super_block *disk_super;
12b1c263 7114 int copy_num;
a8a6dab7 7115
12b1c263
AJ
7116 if (!bdev)
7117 return;
a8a6dab7 7118
12b1c263
AJ
7119 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7120 copy_num++) {
a8a6dab7 7121
12b1c263
AJ
7122 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7123 continue;
7124
7125 disk_super = (struct btrfs_super_block *)bh->b_data;
7126
7127 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7128 set_buffer_dirty(bh);
7129 sync_dirty_buffer(bh);
7130 brelse(bh);
7131 }
7132
7133 /* Notify udev that device has changed */
7134 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7135
7136 /* Update ctime/mtime for device path for libblkid */
7137 update_dev_time(device_path);
a8a6dab7 7138}
935e5cc9
MX
7139
7140/*
7141 * Update the size of all devices, which is used for writing out the
7142 * super blocks.
7143 */
7144void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7145{
7146 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7147 struct btrfs_device *curr, *next;
7148
7149 if (list_empty(&fs_devices->resized_devices))
7150 return;
7151
7152 mutex_lock(&fs_devices->device_list_mutex);
7153 lock_chunks(fs_info->dev_root);
7154 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7155 resized_list) {
7156 list_del_init(&curr->resized_list);
7157 curr->commit_total_bytes = curr->disk_total_bytes;
7158 }
7159 unlock_chunks(fs_info->dev_root);
7160 mutex_unlock(&fs_devices->device_list_mutex);
7161}
ce7213c7
MX
7162
7163/* Must be invoked during the transaction commit */
7164void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7165 struct btrfs_transaction *transaction)
7166{
7167 struct extent_map *em;
7168 struct map_lookup *map;
7169 struct btrfs_device *dev;
7170 int i;
7171
7172 if (list_empty(&transaction->pending_chunks))
7173 return;
7174
7175 /* In order to kick the device replace finish process */
7176 lock_chunks(root);
7177 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7178 map = em->map_lookup;
ce7213c7
MX
7179
7180 for (i = 0; i < map->num_stripes; i++) {
7181 dev = map->stripes[i].dev;
7182 dev->commit_bytes_used = dev->bytes_used;
7183 }
7184 }
7185 unlock_chunks(root);
7186}
5a13f430
AJ
7187
7188void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7189{
7190 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7191 while (fs_devices) {
7192 fs_devices->fs_info = fs_info;
7193 fs_devices = fs_devices->seed;
7194 }
7195}
7196
7197void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7198{
7199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7200 while (fs_devices) {
7201 fs_devices->fs_info = NULL;
7202 fs_devices = fs_devices->seed;
7203 }
7204}