]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/volumes.c
btrfs: add the beginning of async discard, discard workqueue
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832
CM
6#include <linux/sched.h>
7#include <linux/bio.h>
5a0e3ad6 8#include <linux/slab.h>
8a4b83cc 9#include <linux/buffer_head.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
b0643e59 33#include "discard.h"
0b86a832 34
af902047
ZL
35const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 [BTRFS_RAID_RAID10] = {
37 .sub_stripes = 2,
38 .dev_stripes = 1,
39 .devs_max = 0, /* 0 == as many as possible */
40 .devs_min = 4,
8789f4fe 41 .tolerated_failures = 1,
af902047
ZL
42 .devs_increment = 2,
43 .ncopies = 2,
b50836ed 44 .nparity = 0,
ed23467b 45 .raid_name = "raid10",
41a6e891 46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
48 },
49 [BTRFS_RAID_RAID1] = {
50 .sub_stripes = 1,
51 .dev_stripes = 1,
52 .devs_max = 2,
53 .devs_min = 2,
8789f4fe 54 .tolerated_failures = 1,
af902047
ZL
55 .devs_increment = 2,
56 .ncopies = 2,
b50836ed 57 .nparity = 0,
ed23467b 58 .raid_name = "raid1",
41a6e891 59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 61 },
47e6f742
DS
62 [BTRFS_RAID_RAID1C3] = {
63 .sub_stripes = 1,
64 .dev_stripes = 1,
cf93e15e 65 .devs_max = 3,
47e6f742
DS
66 .devs_min = 3,
67 .tolerated_failures = 2,
68 .devs_increment = 3,
69 .ncopies = 3,
db26a024 70 .nparity = 0,
47e6f742
DS
71 .raid_name = "raid1c3",
72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
74 },
8d6fac00
DS
75 [BTRFS_RAID_RAID1C4] = {
76 .sub_stripes = 1,
77 .dev_stripes = 1,
cf93e15e 78 .devs_max = 4,
8d6fac00
DS
79 .devs_min = 4,
80 .tolerated_failures = 3,
81 .devs_increment = 4,
82 .ncopies = 4,
db26a024 83 .nparity = 0,
8d6fac00
DS
84 .raid_name = "raid1c4",
85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
87 },
af902047
ZL
88 [BTRFS_RAID_DUP] = {
89 .sub_stripes = 1,
90 .dev_stripes = 2,
91 .devs_max = 1,
92 .devs_min = 1,
8789f4fe 93 .tolerated_failures = 0,
af902047
ZL
94 .devs_increment = 1,
95 .ncopies = 2,
b50836ed 96 .nparity = 0,
ed23467b 97 .raid_name = "dup",
41a6e891 98 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 99 .mindev_error = 0,
af902047
ZL
100 },
101 [BTRFS_RAID_RAID0] = {
102 .sub_stripes = 1,
103 .dev_stripes = 1,
104 .devs_max = 0,
105 .devs_min = 2,
8789f4fe 106 .tolerated_failures = 0,
af902047
ZL
107 .devs_increment = 1,
108 .ncopies = 1,
b50836ed 109 .nparity = 0,
ed23467b 110 .raid_name = "raid0",
41a6e891 111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 112 .mindev_error = 0,
af902047
ZL
113 },
114 [BTRFS_RAID_SINGLE] = {
115 .sub_stripes = 1,
116 .dev_stripes = 1,
117 .devs_max = 1,
118 .devs_min = 1,
8789f4fe 119 .tolerated_failures = 0,
af902047
ZL
120 .devs_increment = 1,
121 .ncopies = 1,
b50836ed 122 .nparity = 0,
ed23467b 123 .raid_name = "single",
41a6e891 124 .bg_flag = 0,
f9fbcaa2 125 .mindev_error = 0,
af902047
ZL
126 },
127 [BTRFS_RAID_RAID5] = {
128 .sub_stripes = 1,
129 .dev_stripes = 1,
130 .devs_max = 0,
131 .devs_min = 2,
8789f4fe 132 .tolerated_failures = 1,
af902047 133 .devs_increment = 1,
da612e31 134 .ncopies = 1,
b50836ed 135 .nparity = 1,
ed23467b 136 .raid_name = "raid5",
41a6e891 137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
139 },
140 [BTRFS_RAID_RAID6] = {
141 .sub_stripes = 1,
142 .dev_stripes = 1,
143 .devs_max = 0,
144 .devs_min = 3,
8789f4fe 145 .tolerated_failures = 2,
af902047 146 .devs_increment = 1,
da612e31 147 .ncopies = 1,
b50836ed 148 .nparity = 2,
ed23467b 149 .raid_name = "raid6",
41a6e891 150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
152 },
153};
154
158da513 155const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 156{
158da513
DS
157 const int index = btrfs_bg_flags_to_raid_index(flags);
158
159 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
160 return NULL;
161
158da513 162 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
163}
164
f89e09cf
AJ
165/*
166 * Fill @buf with textual description of @bg_flags, no more than @size_buf
167 * bytes including terminating null byte.
168 */
169void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
170{
171 int i;
172 int ret;
173 char *bp = buf;
174 u64 flags = bg_flags;
175 u32 size_bp = size_buf;
176
177 if (!flags) {
178 strcpy(bp, "NONE");
179 return;
180 }
181
182#define DESCRIBE_FLAG(flag, desc) \
183 do { \
184 if (flags & (flag)) { \
185 ret = snprintf(bp, size_bp, "%s|", (desc)); \
186 if (ret < 0 || ret >= size_bp) \
187 goto out_overflow; \
188 size_bp -= ret; \
189 bp += ret; \
190 flags &= ~(flag); \
191 } \
192 } while (0)
193
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
197
198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 btrfs_raid_array[i].raid_name);
202#undef DESCRIBE_FLAG
203
204 if (flags) {
205 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 size_bp -= ret;
207 }
208
209 if (size_bp < size_buf)
210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
211
212 /*
213 * The text is trimmed, it's up to the caller to provide sufficiently
214 * large buffer
215 */
216out_overflow:;
217}
218
6f8e0fc7 219static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 220static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 221static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 222static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
223static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 enum btrfs_map_op op,
225 u64 logical, u64 *length,
226 struct btrfs_bio **bbio_ret,
227 int mirror_num, int need_raid_map);
2b82032c 228
9c6b1c4d
DS
229/*
230 * Device locking
231 * ==============
232 *
233 * There are several mutexes that protect manipulation of devices and low-level
234 * structures like chunks but not block groups, extents or files
235 *
236 * uuid_mutex (global lock)
237 * ------------------------
238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240 * device) or requested by the device= mount option
241 *
242 * the mutex can be very coarse and can cover long-running operations
243 *
244 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 245 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
246 *
247 * global::fs_devs - add, remove, updates to the global list
248 *
249 * does not protect: manipulation of the fs_devices::devices list!
250 *
251 * btrfs_device::name - renames (write side), read is RCU
252 *
253 * fs_devices::device_list_mutex (per-fs, with RCU)
254 * ------------------------------------------------
255 * protects updates to fs_devices::devices, ie. adding and deleting
256 *
257 * simple list traversal with read-only actions can be done with RCU protection
258 *
259 * may be used to exclude some operations from running concurrently without any
260 * modifications to the list (see write_all_supers)
261 *
9c6b1c4d
DS
262 * balance_mutex
263 * -------------
264 * protects balance structures (status, state) and context accessed from
265 * several places (internally, ioctl)
266 *
267 * chunk_mutex
268 * -----------
269 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
270 * device is added/removed. Additionally it also protects post_commit_list of
271 * individual devices, since they can be added to the transaction's
272 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
273 *
274 * cleaner_mutex
275 * -------------
276 * a big lock that is held by the cleaner thread and prevents running subvolume
277 * cleaning together with relocation or delayed iputs
278 *
279 *
280 * Lock nesting
281 * ============
282 *
283 * uuid_mutex
284 * volume_mutex
285 * device_list_mutex
286 * chunk_mutex
287 * balance_mutex
89595e80
AJ
288 *
289 *
290 * Exclusive operations, BTRFS_FS_EXCL_OP
291 * ======================================
292 *
293 * Maintains the exclusivity of the following operations that apply to the
294 * whole filesystem and cannot run in parallel.
295 *
296 * - Balance (*)
297 * - Device add
298 * - Device remove
299 * - Device replace (*)
300 * - Resize
301 *
302 * The device operations (as above) can be in one of the following states:
303 *
304 * - Running state
305 * - Paused state
306 * - Completed state
307 *
308 * Only device operations marked with (*) can go into the Paused state for the
309 * following reasons:
310 *
311 * - ioctl (only Balance can be Paused through ioctl)
312 * - filesystem remounted as read-only
313 * - filesystem unmounted and mounted as read-only
314 * - system power-cycle and filesystem mounted as read-only
315 * - filesystem or device errors leading to forced read-only
316 *
317 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
318 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
319 * A device operation in Paused or Running state can be canceled or resumed
320 * either by ioctl (Balance only) or when remounted as read-write.
321 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
322 * completed.
9c6b1c4d
DS
323 */
324
67a2c45e 325DEFINE_MUTEX(uuid_mutex);
8a4b83cc 326static LIST_HEAD(fs_uuids);
4143cb8b 327struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
328{
329 return &fs_uuids;
330}
8a4b83cc 331
2dfeca9b
DS
332/*
333 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
334 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
335 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
336 *
337 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
338 * The returned struct is not linked onto any lists and can be destroyed with
339 * kfree() right away.
340 */
7239ff4b
NB
341static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
342 const u8 *metadata_fsid)
2208a378
ID
343{
344 struct btrfs_fs_devices *fs_devs;
345
78f2c9e6 346 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
347 if (!fs_devs)
348 return ERR_PTR(-ENOMEM);
349
350 mutex_init(&fs_devs->device_list_mutex);
351
352 INIT_LIST_HEAD(&fs_devs->devices);
353 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 354 INIT_LIST_HEAD(&fs_devs->fs_list);
2208a378
ID
355 if (fsid)
356 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 357
7239ff4b
NB
358 if (metadata_fsid)
359 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
360 else if (fsid)
361 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
362
2208a378
ID
363 return fs_devs;
364}
365
a425f9d4 366void btrfs_free_device(struct btrfs_device *device)
48dae9cf 367{
bbbf7243 368 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 369 rcu_string_free(device->name);
1c11b63e 370 extent_io_tree_release(&device->alloc_state);
48dae9cf
DS
371 bio_put(device->flush_bio);
372 kfree(device);
373}
374
e4404d6e
YZ
375static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
376{
377 struct btrfs_device *device;
378 WARN_ON(fs_devices->opened);
379 while (!list_empty(&fs_devices->devices)) {
380 device = list_entry(fs_devices->devices.next,
381 struct btrfs_device, dev_list);
382 list_del(&device->dev_list);
a425f9d4 383 btrfs_free_device(device);
e4404d6e
YZ
384 }
385 kfree(fs_devices);
386}
387
ffc5a379 388void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
389{
390 struct btrfs_fs_devices *fs_devices;
8a4b83cc 391
2b82032c
YZ
392 while (!list_empty(&fs_uuids)) {
393 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
394 struct btrfs_fs_devices, fs_list);
395 list_del(&fs_devices->fs_list);
e4404d6e 396 free_fs_devices(fs_devices);
8a4b83cc 397 }
8a4b83cc
CM
398}
399
48dae9cf
DS
400/*
401 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
402 * Returned struct is not linked onto any lists and must be destroyed using
a425f9d4 403 * btrfs_free_device.
48dae9cf 404 */
12bd2fc0
ID
405static struct btrfs_device *__alloc_device(void)
406{
407 struct btrfs_device *dev;
408
78f2c9e6 409 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
410 if (!dev)
411 return ERR_PTR(-ENOMEM);
412
e0ae9994
DS
413 /*
414 * Preallocate a bio that's always going to be used for flushing device
415 * barriers and matches the device lifespan
416 */
417 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
418 if (!dev->flush_bio) {
419 kfree(dev);
420 return ERR_PTR(-ENOMEM);
421 }
e0ae9994 422
12bd2fc0
ID
423 INIT_LIST_HEAD(&dev->dev_list);
424 INIT_LIST_HEAD(&dev->dev_alloc_list);
bbbf7243 425 INIT_LIST_HEAD(&dev->post_commit_list);
12bd2fc0 426
12bd2fc0 427 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 428 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 429 btrfs_device_data_ordered_init(dev);
9bcaaea7 430 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 431 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
1c11b63e 432 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
12bd2fc0
ID
433
434 return dev;
435}
436
7239ff4b
NB
437static noinline struct btrfs_fs_devices *find_fsid(
438 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 439{
8a4b83cc
CM
440 struct btrfs_fs_devices *fs_devices;
441
7239ff4b
NB
442 ASSERT(fsid);
443
7a62d0f0
NB
444 if (metadata_fsid) {
445 /*
446 * Handle scanned device having completed its fsid change but
447 * belonging to a fs_devices that was created by first scanning
448 * a device which didn't have its fsid/metadata_uuid changed
449 * at all and the CHANGING_FSID_V2 flag set.
450 */
451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 if (fs_devices->fsid_change &&
453 memcmp(metadata_fsid, fs_devices->fsid,
454 BTRFS_FSID_SIZE) == 0 &&
455 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
456 BTRFS_FSID_SIZE) == 0) {
457 return fs_devices;
458 }
459 }
cc5de4e7
NB
460 /*
461 * Handle scanned device having completed its fsid change but
462 * belonging to a fs_devices that was created by a device that
463 * has an outdated pair of fsid/metadata_uuid and
464 * CHANGING_FSID_V2 flag set.
465 */
466 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
467 if (fs_devices->fsid_change &&
468 memcmp(fs_devices->metadata_uuid,
469 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
470 memcmp(metadata_fsid, fs_devices->metadata_uuid,
471 BTRFS_FSID_SIZE) == 0) {
472 return fs_devices;
473 }
474 }
7a62d0f0
NB
475 }
476
477 /* Handle non-split brain cases */
c4babc5e 478 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
479 if (metadata_fsid) {
480 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
481 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
482 BTRFS_FSID_SIZE) == 0)
483 return fs_devices;
484 } else {
485 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
486 return fs_devices;
487 }
8a4b83cc
CM
488 }
489 return NULL;
490}
491
beaf8ab3
SB
492static int
493btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
494 int flush, struct block_device **bdev,
495 struct buffer_head **bh)
496{
497 int ret;
498
499 *bdev = blkdev_get_by_path(device_path, flags, holder);
500
501 if (IS_ERR(*bdev)) {
502 ret = PTR_ERR(*bdev);
beaf8ab3
SB
503 goto error;
504 }
505
506 if (flush)
507 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 508 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
509 if (ret) {
510 blkdev_put(*bdev, flags);
511 goto error;
512 }
513 invalidate_bdev(*bdev);
514 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
515 if (IS_ERR(*bh)) {
516 ret = PTR_ERR(*bh);
beaf8ab3
SB
517 blkdev_put(*bdev, flags);
518 goto error;
519 }
520
521 return 0;
522
523error:
524 *bdev = NULL;
525 *bh = NULL;
526 return ret;
527}
528
70bc7088
AJ
529static bool device_path_matched(const char *path, struct btrfs_device *device)
530{
531 int found;
532
533 rcu_read_lock();
534 found = strcmp(rcu_str_deref(device->name), path);
535 rcu_read_unlock();
536
537 return found == 0;
538}
539
d8367db3
AJ
540/*
541 * Search and remove all stale (devices which are not mounted) devices.
542 * When both inputs are NULL, it will search and release all stale devices.
543 * path: Optional. When provided will it release all unmounted devices
544 * matching this path only.
545 * skip_dev: Optional. Will skip this device when searching for the stale
546 * devices.
70bc7088
AJ
547 * Return: 0 for success or if @path is NULL.
548 * -EBUSY if @path is a mounted device.
549 * -ENOENT if @path does not match any device in the list.
d8367db3 550 */
70bc7088 551static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 552 struct btrfs_device *skip_device)
4fde46f0 553{
fa6d2ae5
AJ
554 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
555 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
556 int ret = 0;
557
558 if (path)
559 ret = -ENOENT;
4fde46f0 560
fa6d2ae5 561 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 562
70bc7088 563 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
564 list_for_each_entry_safe(device, tmp_device,
565 &fs_devices->devices, dev_list) {
fa6d2ae5 566 if (skip_device && skip_device == device)
d8367db3 567 continue;
fa6d2ae5 568 if (path && !device->name)
4fde46f0 569 continue;
70bc7088 570 if (path && !device_path_matched(path, device))
38cf665d 571 continue;
70bc7088
AJ
572 if (fs_devices->opened) {
573 /* for an already deleted device return 0 */
574 if (path && ret != 0)
575 ret = -EBUSY;
576 break;
577 }
4fde46f0 578
4fde46f0 579 /* delete the stale device */
7bcb8164
AJ
580 fs_devices->num_devices--;
581 list_del(&device->dev_list);
582 btrfs_free_device(device);
583
70bc7088 584 ret = 0;
7bcb8164 585 if (fs_devices->num_devices == 0)
fd649f10 586 break;
7bcb8164
AJ
587 }
588 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 589
7bcb8164
AJ
590 if (fs_devices->num_devices == 0) {
591 btrfs_sysfs_remove_fsid(fs_devices);
592 list_del(&fs_devices->fs_list);
593 free_fs_devices(fs_devices);
4fde46f0
AJ
594 }
595 }
70bc7088
AJ
596
597 return ret;
4fde46f0
AJ
598}
599
0fb08bcc
AJ
600static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
601 struct btrfs_device *device, fmode_t flags,
602 void *holder)
603{
604 struct request_queue *q;
605 struct block_device *bdev;
606 struct buffer_head *bh;
607 struct btrfs_super_block *disk_super;
608 u64 devid;
609 int ret;
610
611 if (device->bdev)
612 return -EINVAL;
613 if (!device->name)
614 return -EINVAL;
615
616 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
617 &bdev, &bh);
618 if (ret)
619 return ret;
620
621 disk_super = (struct btrfs_super_block *)bh->b_data;
622 devid = btrfs_stack_device_id(&disk_super->dev_item);
623 if (devid != device->devid)
624 goto error_brelse;
625
626 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
627 goto error_brelse;
628
629 device->generation = btrfs_super_generation(disk_super);
630
631 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
632 if (btrfs_super_incompat_flags(disk_super) &
633 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
634 pr_err(
635 "BTRFS: Invalid seeding and uuid-changed device detected\n");
636 goto error_brelse;
637 }
638
ebbede42 639 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 640 fs_devices->seeding = true;
0fb08bcc 641 } else {
ebbede42
AJ
642 if (bdev_read_only(bdev))
643 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
644 else
645 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
646 }
647
648 q = bdev_get_queue(bdev);
0fb08bcc 649 if (!blk_queue_nonrot(q))
7f0432d0 650 fs_devices->rotating = true;
0fb08bcc
AJ
651
652 device->bdev = bdev;
e12c9621 653 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
654 device->mode = flags;
655
656 fs_devices->open_devices++;
ebbede42
AJ
657 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
658 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 659 fs_devices->rw_devices++;
b1b8e386 660 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc
AJ
661 }
662 brelse(bh);
663
664 return 0;
665
666error_brelse:
667 brelse(bh);
668 blkdev_put(bdev, flags);
669
670 return -EINVAL;
671}
672
7a62d0f0
NB
673/*
674 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
675 * being created with a disk that has already completed its fsid change.
676 */
677static struct btrfs_fs_devices *find_fsid_inprogress(
678 struct btrfs_super_block *disk_super)
679{
680 struct btrfs_fs_devices *fs_devices;
681
682 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
683 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
684 BTRFS_FSID_SIZE) != 0 &&
685 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
686 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
687 return fs_devices;
688 }
689 }
690
691 return NULL;
692}
693
cc5de4e7
NB
694
695static struct btrfs_fs_devices *find_fsid_changed(
696 struct btrfs_super_block *disk_super)
697{
698 struct btrfs_fs_devices *fs_devices;
699
700 /*
701 * Handles the case where scanned device is part of an fs that had
702 * multiple successful changes of FSID but curently device didn't
703 * observe it. Meaning our fsid will be different than theirs.
704 */
705 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
706 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
707 BTRFS_FSID_SIZE) != 0 &&
708 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
709 BTRFS_FSID_SIZE) == 0 &&
710 memcmp(fs_devices->fsid, disk_super->fsid,
711 BTRFS_FSID_SIZE) != 0) {
712 return fs_devices;
713 }
714 }
715
716 return NULL;
717}
60999ca4
DS
718/*
719 * Add new device to list of registered devices
720 *
721 * Returns:
e124ece5
AJ
722 * device pointer which was just added or updated when successful
723 * error pointer when failed
60999ca4 724 */
e124ece5 725static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
726 struct btrfs_super_block *disk_super,
727 bool *new_device_added)
8a4b83cc
CM
728{
729 struct btrfs_device *device;
7a62d0f0 730 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 731 struct rcu_string *name;
8a4b83cc 732 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 733 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
734 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
735 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
736 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
737 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 738
cc5de4e7
NB
739 if (fsid_change_in_progress) {
740 if (!has_metadata_uuid) {
741 /*
742 * When we have an image which has CHANGING_FSID_V2 set
743 * it might belong to either a filesystem which has
744 * disks with completed fsid change or it might belong
745 * to fs with no UUID changes in effect, handle both.
746 */
747 fs_devices = find_fsid_inprogress(disk_super);
748 if (!fs_devices)
749 fs_devices = find_fsid(disk_super->fsid, NULL);
750 } else {
751 fs_devices = find_fsid_changed(disk_super);
752 }
7a62d0f0
NB
753 } else if (has_metadata_uuid) {
754 fs_devices = find_fsid(disk_super->fsid,
755 disk_super->metadata_uuid);
756 } else {
7239ff4b 757 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
758 }
759
8a4b83cc 760
8a4b83cc 761 if (!fs_devices) {
7239ff4b
NB
762 if (has_metadata_uuid)
763 fs_devices = alloc_fs_devices(disk_super->fsid,
764 disk_super->metadata_uuid);
765 else
766 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
767
2208a378 768 if (IS_ERR(fs_devices))
e124ece5 769 return ERR_CAST(fs_devices);
2208a378 770
92900e51
AV
771 fs_devices->fsid_change = fsid_change_in_progress;
772
9c6d173e 773 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 774 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 775
8a4b83cc
CM
776 device = NULL;
777 } else {
9c6d173e 778 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
779 device = btrfs_find_device(fs_devices, devid,
780 disk_super->dev_item.uuid, NULL, false);
7a62d0f0
NB
781
782 /*
783 * If this disk has been pulled into an fs devices created by
784 * a device which had the CHANGING_FSID_V2 flag then replace the
785 * metadata_uuid/fsid values of the fs_devices.
786 */
787 if (has_metadata_uuid && fs_devices->fsid_change &&
788 found_transid > fs_devices->latest_generation) {
789 memcpy(fs_devices->fsid, disk_super->fsid,
790 BTRFS_FSID_SIZE);
791 memcpy(fs_devices->metadata_uuid,
792 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
793
794 fs_devices->fsid_change = false;
795 }
8a4b83cc 796 }
443f24fe 797
8a4b83cc 798 if (!device) {
9c6d173e
AJ
799 if (fs_devices->opened) {
800 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 801 return ERR_PTR(-EBUSY);
9c6d173e 802 }
2b82032c 803
12bd2fc0
ID
804 device = btrfs_alloc_device(NULL, &devid,
805 disk_super->dev_item.uuid);
806 if (IS_ERR(device)) {
9c6d173e 807 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 808 /* we can safely leave the fs_devices entry around */
e124ece5 809 return device;
8a4b83cc 810 }
606686ee
JB
811
812 name = rcu_string_strdup(path, GFP_NOFS);
813 if (!name) {
a425f9d4 814 btrfs_free_device(device);
9c6d173e 815 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 816 return ERR_PTR(-ENOMEM);
8a4b83cc 817 }
606686ee 818 rcu_assign_pointer(device->name, name);
90519d66 819
1f78160c 820 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 821 fs_devices->num_devices++;
e5e9a520 822
2b82032c 823 device->fs_devices = fs_devices;
4306a974 824 *new_device_added = true;
327f18cc
AJ
825
826 if (disk_super->label[0])
aa6c0df7
AJ
827 pr_info(
828 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
829 disk_super->label, devid, found_transid, path,
830 current->comm, task_pid_nr(current));
327f18cc 831 else
aa6c0df7
AJ
832 pr_info(
833 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
834 disk_super->fsid, devid, found_transid, path,
835 current->comm, task_pid_nr(current));
327f18cc 836
606686ee 837 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
838 /*
839 * When FS is already mounted.
840 * 1. If you are here and if the device->name is NULL that
841 * means this device was missing at time of FS mount.
842 * 2. If you are here and if the device->name is different
843 * from 'path' that means either
844 * a. The same device disappeared and reappeared with
845 * different name. or
846 * b. The missing-disk-which-was-replaced, has
847 * reappeared now.
848 *
849 * We must allow 1 and 2a above. But 2b would be a spurious
850 * and unintentional.
851 *
852 * Further in case of 1 and 2a above, the disk at 'path'
853 * would have missed some transaction when it was away and
854 * in case of 2a the stale bdev has to be updated as well.
855 * 2b must not be allowed at all time.
856 */
857
858 /*
0f23ae74
CM
859 * For now, we do allow update to btrfs_fs_device through the
860 * btrfs dev scan cli after FS has been mounted. We're still
861 * tracking a problem where systems fail mount by subvolume id
862 * when we reject replacement on a mounted FS.
b96de000 863 */
0f23ae74 864 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
865 /*
866 * That is if the FS is _not_ mounted and if you
867 * are here, that means there is more than one
868 * disk with same uuid and devid.We keep the one
869 * with larger generation number or the last-in if
870 * generation are equal.
871 */
9c6d173e 872 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 873 return ERR_PTR(-EEXIST);
77bdae4d 874 }
b96de000 875
a9261d41
AJ
876 /*
877 * We are going to replace the device path for a given devid,
878 * make sure it's the same device if the device is mounted
879 */
880 if (device->bdev) {
881 struct block_device *path_bdev;
882
883 path_bdev = lookup_bdev(path);
884 if (IS_ERR(path_bdev)) {
885 mutex_unlock(&fs_devices->device_list_mutex);
886 return ERR_CAST(path_bdev);
887 }
888
889 if (device->bdev != path_bdev) {
890 bdput(path_bdev);
891 mutex_unlock(&fs_devices->device_list_mutex);
892 btrfs_warn_in_rcu(device->fs_info,
893 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
894 disk_super->fsid, devid,
895 rcu_str_deref(device->name), path);
896 return ERR_PTR(-EEXIST);
897 }
898 bdput(path_bdev);
899 btrfs_info_in_rcu(device->fs_info,
900 "device fsid %pU devid %llu moved old:%s new:%s",
901 disk_super->fsid, devid,
902 rcu_str_deref(device->name), path);
903 }
904
606686ee 905 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
906 if (!name) {
907 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 908 return ERR_PTR(-ENOMEM);
9c6d173e 909 }
606686ee
JB
910 rcu_string_free(device->name);
911 rcu_assign_pointer(device->name, name);
e6e674bd 912 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 913 fs_devices->missing_devices--;
e6e674bd 914 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 915 }
8a4b83cc
CM
916 }
917
77bdae4d
AJ
918 /*
919 * Unmount does not free the btrfs_device struct but would zero
920 * generation along with most of the other members. So just update
921 * it back. We need it to pick the disk with largest generation
922 * (as above).
923 */
d1a63002 924 if (!fs_devices->opened) {
77bdae4d 925 device->generation = found_transid;
d1a63002
NB
926 fs_devices->latest_generation = max_t(u64, found_transid,
927 fs_devices->latest_generation);
928 }
77bdae4d 929
f2788d2f
AJ
930 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
931
9c6d173e 932 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 933 return device;
8a4b83cc
CM
934}
935
e4404d6e
YZ
936static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
937{
938 struct btrfs_fs_devices *fs_devices;
939 struct btrfs_device *device;
940 struct btrfs_device *orig_dev;
d2979aa2 941 int ret = 0;
e4404d6e 942
7239ff4b 943 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
944 if (IS_ERR(fs_devices))
945 return fs_devices;
e4404d6e 946
adbbb863 947 mutex_lock(&orig->device_list_mutex);
02db0844 948 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
949
950 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
951 struct rcu_string *name;
952
12bd2fc0
ID
953 device = btrfs_alloc_device(NULL, &orig_dev->devid,
954 orig_dev->uuid);
d2979aa2
AJ
955 if (IS_ERR(device)) {
956 ret = PTR_ERR(device);
e4404d6e 957 goto error;
d2979aa2 958 }
e4404d6e 959
606686ee
JB
960 /*
961 * This is ok to do without rcu read locked because we hold the
962 * uuid mutex so nothing we touch in here is going to disappear.
963 */
e755f780 964 if (orig_dev->name) {
78f2c9e6
DS
965 name = rcu_string_strdup(orig_dev->name->str,
966 GFP_KERNEL);
e755f780 967 if (!name) {
a425f9d4 968 btrfs_free_device(device);
d2979aa2 969 ret = -ENOMEM;
e755f780
AJ
970 goto error;
971 }
972 rcu_assign_pointer(device->name, name);
fd2696f3 973 }
e4404d6e 974
e4404d6e
YZ
975 list_add(&device->dev_list, &fs_devices->devices);
976 device->fs_devices = fs_devices;
977 fs_devices->num_devices++;
978 }
adbbb863 979 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
980 return fs_devices;
981error:
adbbb863 982 mutex_unlock(&orig->device_list_mutex);
e4404d6e 983 free_fs_devices(fs_devices);
d2979aa2 984 return ERR_PTR(ret);
e4404d6e
YZ
985}
986
9b99b115
AJ
987/*
988 * After we have read the system tree and know devids belonging to
989 * this filesystem, remove the device which does not belong there.
990 */
991void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 992{
c6e30871 993 struct btrfs_device *device, *next;
443f24fe 994 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 995
dfe25020
CM
996 mutex_lock(&uuid_mutex);
997again:
46224705 998 /* This is the initialized path, it is safe to release the devices. */
c6e30871 999 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
e12c9621
AJ
1000 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1001 &device->dev_state)) {
401e29c1
AJ
1002 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1003 &device->dev_state) &&
1004 (!latest_dev ||
1005 device->generation > latest_dev->generation)) {
443f24fe 1006 latest_dev = device;
a6b0d5c8 1007 }
2b82032c 1008 continue;
a6b0d5c8 1009 }
2b82032c 1010
8dabb742
SB
1011 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1012 /*
1013 * In the first step, keep the device which has
1014 * the correct fsid and the devid that is used
1015 * for the dev_replace procedure.
1016 * In the second step, the dev_replace state is
1017 * read from the device tree and it is known
1018 * whether the procedure is really active or
1019 * not, which means whether this device is
1020 * used or whether it should be removed.
1021 */
401e29c1
AJ
1022 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1023 &device->dev_state)) {
8dabb742
SB
1024 continue;
1025 }
1026 }
2b82032c 1027 if (device->bdev) {
d4d77629 1028 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1029 device->bdev = NULL;
1030 fs_devices->open_devices--;
1031 }
ebbede42 1032 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1033 list_del_init(&device->dev_alloc_list);
ebbede42 1034 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
401e29c1
AJ
1035 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1036 &device->dev_state))
8dabb742 1037 fs_devices->rw_devices--;
2b82032c 1038 }
e4404d6e
YZ
1039 list_del_init(&device->dev_list);
1040 fs_devices->num_devices--;
a425f9d4 1041 btrfs_free_device(device);
dfe25020 1042 }
2b82032c
YZ
1043
1044 if (fs_devices->seed) {
1045 fs_devices = fs_devices->seed;
2b82032c
YZ
1046 goto again;
1047 }
1048
443f24fe 1049 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1050
dfe25020 1051 mutex_unlock(&uuid_mutex);
dfe25020 1052}
a0af469b 1053
14238819
AJ
1054static void btrfs_close_bdev(struct btrfs_device *device)
1055{
08ffcae8
DS
1056 if (!device->bdev)
1057 return;
1058
ebbede42 1059 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1060 sync_blockdev(device->bdev);
1061 invalidate_bdev(device->bdev);
1062 }
1063
08ffcae8 1064 blkdev_put(device->bdev, device->mode);
14238819
AJ
1065}
1066
959b1c04 1067static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1068{
1069 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1070
ebbede42 1071 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1072 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1073 list_del_init(&device->dev_alloc_list);
1074 fs_devices->rw_devices--;
1075 }
1076
e6e674bd 1077 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1078 fs_devices->missing_devices--;
1079
959b1c04 1080 btrfs_close_bdev(device);
321f69f8 1081 if (device->bdev) {
3fff3975 1082 fs_devices->open_devices--;
321f69f8 1083 device->bdev = NULL;
f448341a 1084 }
321f69f8 1085 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
f448341a 1086
321f69f8
JT
1087 device->fs_info = NULL;
1088 atomic_set(&device->dev_stats_ccnt, 0);
1089 extent_io_tree_release(&device->alloc_state);
959b1c04 1090
321f69f8
JT
1091 /* Verify the device is back in a pristine state */
1092 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1093 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1094 ASSERT(list_empty(&device->dev_alloc_list));
1095 ASSERT(list_empty(&device->post_commit_list));
1096 ASSERT(atomic_read(&device->reada_in_flight) == 0);
f448341a
AJ
1097}
1098
0226e0eb 1099static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1100{
2037a093 1101 struct btrfs_device *device, *tmp;
e4404d6e 1102
2b82032c
YZ
1103 if (--fs_devices->opened > 0)
1104 return 0;
8a4b83cc 1105
c9513edb 1106 mutex_lock(&fs_devices->device_list_mutex);
2037a093 1107 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
959b1c04 1108 btrfs_close_one_device(device);
8a4b83cc 1109 }
c9513edb
XG
1110 mutex_unlock(&fs_devices->device_list_mutex);
1111
e4404d6e
YZ
1112 WARN_ON(fs_devices->open_devices);
1113 WARN_ON(fs_devices->rw_devices);
2b82032c 1114 fs_devices->opened = 0;
0395d84f 1115 fs_devices->seeding = false;
2b82032c 1116
8a4b83cc
CM
1117 return 0;
1118}
1119
2b82032c
YZ
1120int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1121{
e4404d6e 1122 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
1123 int ret;
1124
1125 mutex_lock(&uuid_mutex);
0226e0eb 1126 ret = close_fs_devices(fs_devices);
e4404d6e
YZ
1127 if (!fs_devices->opened) {
1128 seed_devices = fs_devices->seed;
1129 fs_devices->seed = NULL;
1130 }
2b82032c 1131 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
1132
1133 while (seed_devices) {
1134 fs_devices = seed_devices;
1135 seed_devices = fs_devices->seed;
0226e0eb 1136 close_fs_devices(fs_devices);
e4404d6e
YZ
1137 free_fs_devices(fs_devices);
1138 }
2b82032c
YZ
1139 return ret;
1140}
1141
897fb573 1142static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1143 fmode_t flags, void *holder)
8a4b83cc 1144{
8a4b83cc 1145 struct btrfs_device *device;
443f24fe 1146 struct btrfs_device *latest_dev = NULL;
a0af469b 1147 int ret = 0;
8a4b83cc 1148
d4d77629
TH
1149 flags |= FMODE_EXCL;
1150
f117e290 1151 list_for_each_entry(device, &fs_devices->devices, dev_list) {
f63e0cca 1152 /* Just open everything we can; ignore failures here */
0fb08bcc 1153 if (btrfs_open_one_device(fs_devices, device, flags, holder))
beaf8ab3 1154 continue;
a0af469b 1155
9f050db4
AJ
1156 if (!latest_dev ||
1157 device->generation > latest_dev->generation)
1158 latest_dev = device;
8a4b83cc 1159 }
a0af469b 1160 if (fs_devices->open_devices == 0) {
20bcd649 1161 ret = -EINVAL;
a0af469b
CM
1162 goto out;
1163 }
2b82032c 1164 fs_devices->opened = 1;
443f24fe 1165 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1166 fs_devices->total_rw_bytes = 0;
a0af469b 1167out:
2b82032c
YZ
1168 return ret;
1169}
1170
f8e10cd3
AJ
1171static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1172{
1173 struct btrfs_device *dev1, *dev2;
1174
1175 dev1 = list_entry(a, struct btrfs_device, dev_list);
1176 dev2 = list_entry(b, struct btrfs_device, dev_list);
1177
1178 if (dev1->devid < dev2->devid)
1179 return -1;
1180 else if (dev1->devid > dev2->devid)
1181 return 1;
1182 return 0;
1183}
1184
2b82032c 1185int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1186 fmode_t flags, void *holder)
2b82032c
YZ
1187{
1188 int ret;
1189
f5194e34
DS
1190 lockdep_assert_held(&uuid_mutex);
1191
542c5908 1192 mutex_lock(&fs_devices->device_list_mutex);
2b82032c 1193 if (fs_devices->opened) {
e4404d6e
YZ
1194 fs_devices->opened++;
1195 ret = 0;
2b82032c 1196 } else {
f8e10cd3 1197 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1198 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1199 }
542c5908
AJ
1200 mutex_unlock(&fs_devices->device_list_mutex);
1201
8a4b83cc
CM
1202 return ret;
1203}
1204
c9162bdf 1205static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1206{
1207 kunmap(page);
1208 put_page(page);
1209}
1210
c9162bdf
OS
1211static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1212 struct page **page,
1213 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1214{
1215 void *p;
1216 pgoff_t index;
1217
1218 /* make sure our super fits in the device */
1219 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1220 return 1;
1221
1222 /* make sure our super fits in the page */
1223 if (sizeof(**disk_super) > PAGE_SIZE)
1224 return 1;
1225
1226 /* make sure our super doesn't straddle pages on disk */
1227 index = bytenr >> PAGE_SHIFT;
1228 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1229 return 1;
1230
1231 /* pull in the page with our super */
1232 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1233 index, GFP_KERNEL);
1234
1235 if (IS_ERR_OR_NULL(*page))
1236 return 1;
1237
1238 p = kmap(*page);
1239
1240 /* align our pointer to the offset of the super block */
7073017a 1241 *disk_super = p + offset_in_page(bytenr);
6cf86a00
AJ
1242
1243 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1244 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1245 btrfs_release_disk_super(*page);
1246 return 1;
1247 }
1248
1249 if ((*disk_super)->label[0] &&
1250 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1251 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1252
1253 return 0;
1254}
1255
228a73ab
AJ
1256int btrfs_forget_devices(const char *path)
1257{
1258 int ret;
1259
1260 mutex_lock(&uuid_mutex);
1261 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1262 mutex_unlock(&uuid_mutex);
1263
1264 return ret;
1265}
1266
6f60cbd3
DS
1267/*
1268 * Look for a btrfs signature on a device. This may be called out of the mount path
1269 * and we are not allowed to call set_blocksize during the scan. The superblock
1270 * is read via pagecache
1271 */
36350e95
GJ
1272struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1273 void *holder)
8a4b83cc
CM
1274{
1275 struct btrfs_super_block *disk_super;
4306a974 1276 bool new_device_added = false;
36350e95 1277 struct btrfs_device *device = NULL;
8a4b83cc 1278 struct block_device *bdev;
6f60cbd3 1279 struct page *page;
6f60cbd3 1280 u64 bytenr;
8a4b83cc 1281
899f9307
DS
1282 lockdep_assert_held(&uuid_mutex);
1283
6f60cbd3
DS
1284 /*
1285 * we would like to check all the supers, but that would make
1286 * a btrfs mount succeed after a mkfs from a different FS.
1287 * So, we need to add a special mount option to scan for
1288 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1289 */
1290 bytenr = btrfs_sb_offset(0);
d4d77629 1291 flags |= FMODE_EXCL;
6f60cbd3
DS
1292
1293 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1294 if (IS_ERR(bdev))
36350e95 1295 return ERR_CAST(bdev);
6f60cbd3 1296
05a5c55d 1297 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
36350e95 1298 device = ERR_PTR(-EINVAL);
6f60cbd3 1299 goto error_bdev_put;
05a5c55d 1300 }
6f60cbd3 1301
4306a974 1302 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1303 if (!IS_ERR(device)) {
4306a974
AJ
1304 if (new_device_added)
1305 btrfs_free_stale_devices(path, device);
1306 }
6f60cbd3 1307
6cf86a00 1308 btrfs_release_disk_super(page);
6f60cbd3
DS
1309
1310error_bdev_put:
d4d77629 1311 blkdev_put(bdev, flags);
b6ed73bc 1312
36350e95 1313 return device;
8a4b83cc 1314}
0b86a832 1315
1c11b63e
JM
1316/*
1317 * Try to find a chunk that intersects [start, start + len] range and when one
1318 * such is found, record the end of it in *start
1319 */
1c11b63e
JM
1320static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1321 u64 len)
6df9a95e 1322{
1c11b63e 1323 u64 physical_start, physical_end;
6df9a95e 1324
1c11b63e 1325 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1326
1c11b63e
JM
1327 if (!find_first_extent_bit(&device->alloc_state, *start,
1328 &physical_start, &physical_end,
1329 CHUNK_ALLOCATED, NULL)) {
c152b63e 1330
1c11b63e
JM
1331 if (in_range(physical_start, *start, len) ||
1332 in_range(*start, physical_start,
1333 physical_end - physical_start)) {
1334 *start = physical_end + 1;
1335 return true;
6df9a95e
JB
1336 }
1337 }
1c11b63e 1338 return false;
6df9a95e
JB
1339}
1340
1341
0b86a832 1342/*
499f377f
JM
1343 * find_free_dev_extent_start - find free space in the specified device
1344 * @device: the device which we search the free space in
1345 * @num_bytes: the size of the free space that we need
1346 * @search_start: the position from which to begin the search
1347 * @start: store the start of the free space.
1348 * @len: the size of the free space. that we find, or the size
1349 * of the max free space if we don't find suitable free space
7bfc837d 1350 *
0b86a832
CM
1351 * this uses a pretty simple search, the expectation is that it is
1352 * called very infrequently and that a given device has a small number
1353 * of extents
7bfc837d
MX
1354 *
1355 * @start is used to store the start of the free space if we find. But if we
1356 * don't find suitable free space, it will be used to store the start position
1357 * of the max free space.
1358 *
1359 * @len is used to store the size of the free space that we find.
1360 * But if we don't find suitable free space, it is used to store the size of
1361 * the max free space.
135da976
QW
1362 *
1363 * NOTE: This function will search *commit* root of device tree, and does extra
1364 * check to ensure dev extents are not double allocated.
1365 * This makes the function safe to allocate dev extents but may not report
1366 * correct usable device space, as device extent freed in current transaction
1367 * is not reported as avaiable.
0b86a832 1368 */
9e3246a5
QW
1369static int find_free_dev_extent_start(struct btrfs_device *device,
1370 u64 num_bytes, u64 search_start, u64 *start,
1371 u64 *len)
0b86a832 1372{
0b246afa
JM
1373 struct btrfs_fs_info *fs_info = device->fs_info;
1374 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1375 struct btrfs_key key;
7bfc837d 1376 struct btrfs_dev_extent *dev_extent;
2b82032c 1377 struct btrfs_path *path;
7bfc837d
MX
1378 u64 hole_size;
1379 u64 max_hole_start;
1380 u64 max_hole_size;
1381 u64 extent_end;
0b86a832
CM
1382 u64 search_end = device->total_bytes;
1383 int ret;
7bfc837d 1384 int slot;
0b86a832 1385 struct extent_buffer *l;
8cdc7c5b
FM
1386
1387 /*
1388 * We don't want to overwrite the superblock on the drive nor any area
1389 * used by the boot loader (grub for example), so we make sure to start
1390 * at an offset of at least 1MB.
1391 */
0d0c71b3 1392 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1393
6df9a95e
JB
1394 path = btrfs_alloc_path();
1395 if (!path)
1396 return -ENOMEM;
f2ab7618 1397
7bfc837d
MX
1398 max_hole_start = search_start;
1399 max_hole_size = 0;
1400
f2ab7618 1401again:
401e29c1
AJ
1402 if (search_start >= search_end ||
1403 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1404 ret = -ENOSPC;
6df9a95e 1405 goto out;
7bfc837d
MX
1406 }
1407
e4058b54 1408 path->reada = READA_FORWARD;
6df9a95e
JB
1409 path->search_commit_root = 1;
1410 path->skip_locking = 1;
7bfc837d 1411
0b86a832
CM
1412 key.objectid = device->devid;
1413 key.offset = search_start;
1414 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1415
125ccb0a 1416 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1417 if (ret < 0)
7bfc837d 1418 goto out;
1fcbac58
YZ
1419 if (ret > 0) {
1420 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1421 if (ret < 0)
7bfc837d 1422 goto out;
1fcbac58 1423 }
7bfc837d 1424
0b86a832
CM
1425 while (1) {
1426 l = path->nodes[0];
1427 slot = path->slots[0];
1428 if (slot >= btrfs_header_nritems(l)) {
1429 ret = btrfs_next_leaf(root, path);
1430 if (ret == 0)
1431 continue;
1432 if (ret < 0)
7bfc837d
MX
1433 goto out;
1434
1435 break;
0b86a832
CM
1436 }
1437 btrfs_item_key_to_cpu(l, &key, slot);
1438
1439 if (key.objectid < device->devid)
1440 goto next;
1441
1442 if (key.objectid > device->devid)
7bfc837d 1443 break;
0b86a832 1444
962a298f 1445 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1446 goto next;
9779b72f 1447
7bfc837d
MX
1448 if (key.offset > search_start) {
1449 hole_size = key.offset - search_start;
9779b72f 1450
6df9a95e
JB
1451 /*
1452 * Have to check before we set max_hole_start, otherwise
1453 * we could end up sending back this offset anyway.
1454 */
1c11b63e 1455 if (contains_pending_extent(device, &search_start,
1b984508 1456 hole_size)) {
1c11b63e 1457 if (key.offset >= search_start)
1b984508 1458 hole_size = key.offset - search_start;
1c11b63e 1459 else
1b984508 1460 hole_size = 0;
1b984508 1461 }
6df9a95e 1462
7bfc837d
MX
1463 if (hole_size > max_hole_size) {
1464 max_hole_start = search_start;
1465 max_hole_size = hole_size;
1466 }
9779b72f 1467
7bfc837d
MX
1468 /*
1469 * If this free space is greater than which we need,
1470 * it must be the max free space that we have found
1471 * until now, so max_hole_start must point to the start
1472 * of this free space and the length of this free space
1473 * is stored in max_hole_size. Thus, we return
1474 * max_hole_start and max_hole_size and go back to the
1475 * caller.
1476 */
1477 if (hole_size >= num_bytes) {
1478 ret = 0;
1479 goto out;
0b86a832
CM
1480 }
1481 }
0b86a832 1482
0b86a832 1483 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1484 extent_end = key.offset + btrfs_dev_extent_length(l,
1485 dev_extent);
1486 if (extent_end > search_start)
1487 search_start = extent_end;
0b86a832
CM
1488next:
1489 path->slots[0]++;
1490 cond_resched();
1491 }
0b86a832 1492
38c01b96 1493 /*
1494 * At this point, search_start should be the end of
1495 * allocated dev extents, and when shrinking the device,
1496 * search_end may be smaller than search_start.
1497 */
f2ab7618 1498 if (search_end > search_start) {
38c01b96 1499 hole_size = search_end - search_start;
1500
1c11b63e 1501 if (contains_pending_extent(device, &search_start, hole_size)) {
f2ab7618
ZL
1502 btrfs_release_path(path);
1503 goto again;
1504 }
0b86a832 1505
f2ab7618
ZL
1506 if (hole_size > max_hole_size) {
1507 max_hole_start = search_start;
1508 max_hole_size = hole_size;
1509 }
6df9a95e
JB
1510 }
1511
7bfc837d 1512 /* See above. */
f2ab7618 1513 if (max_hole_size < num_bytes)
7bfc837d
MX
1514 ret = -ENOSPC;
1515 else
1516 ret = 0;
1517
1518out:
2b82032c 1519 btrfs_free_path(path);
7bfc837d 1520 *start = max_hole_start;
b2117a39 1521 if (len)
7bfc837d 1522 *len = max_hole_size;
0b86a832
CM
1523 return ret;
1524}
1525
60dfdf25 1526int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1527 u64 *start, u64 *len)
1528{
499f377f 1529 /* FIXME use last free of some kind */
60dfdf25 1530 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1531}
1532
b2950863 1533static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1534 struct btrfs_device *device,
2196d6e8 1535 u64 start, u64 *dev_extent_len)
8f18cf13 1536{
0b246afa
JM
1537 struct btrfs_fs_info *fs_info = device->fs_info;
1538 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1539 int ret;
1540 struct btrfs_path *path;
8f18cf13 1541 struct btrfs_key key;
a061fc8d
CM
1542 struct btrfs_key found_key;
1543 struct extent_buffer *leaf = NULL;
1544 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1545
1546 path = btrfs_alloc_path();
1547 if (!path)
1548 return -ENOMEM;
1549
1550 key.objectid = device->devid;
1551 key.offset = start;
1552 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1553again:
8f18cf13 1554 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1555 if (ret > 0) {
1556 ret = btrfs_previous_item(root, path, key.objectid,
1557 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1558 if (ret)
1559 goto out;
a061fc8d
CM
1560 leaf = path->nodes[0];
1561 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1562 extent = btrfs_item_ptr(leaf, path->slots[0],
1563 struct btrfs_dev_extent);
1564 BUG_ON(found_key.offset > start || found_key.offset +
1565 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1566 key = found_key;
1567 btrfs_release_path(path);
1568 goto again;
a061fc8d
CM
1569 } else if (ret == 0) {
1570 leaf = path->nodes[0];
1571 extent = btrfs_item_ptr(leaf, path->slots[0],
1572 struct btrfs_dev_extent);
79787eaa 1573 } else {
0b246afa 1574 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1575 goto out;
a061fc8d 1576 }
8f18cf13 1577
2196d6e8
MX
1578 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1579
8f18cf13 1580 ret = btrfs_del_item(trans, root, path);
79787eaa 1581 if (ret) {
0b246afa
JM
1582 btrfs_handle_fs_error(fs_info, ret,
1583 "Failed to remove dev extent item");
13212b54 1584 } else {
3204d33c 1585 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1586 }
b0b802d7 1587out:
8f18cf13
CM
1588 btrfs_free_path(path);
1589 return ret;
1590}
1591
48a3b636
ES
1592static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1593 struct btrfs_device *device,
48a3b636 1594 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1595{
1596 int ret;
1597 struct btrfs_path *path;
0b246afa
JM
1598 struct btrfs_fs_info *fs_info = device->fs_info;
1599 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1600 struct btrfs_dev_extent *extent;
1601 struct extent_buffer *leaf;
1602 struct btrfs_key key;
1603
e12c9621 1604 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
401e29c1 1605 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
0b86a832
CM
1606 path = btrfs_alloc_path();
1607 if (!path)
1608 return -ENOMEM;
1609
0b86a832 1610 key.objectid = device->devid;
2b82032c 1611 key.offset = start;
0b86a832
CM
1612 key.type = BTRFS_DEV_EXTENT_KEY;
1613 ret = btrfs_insert_empty_item(trans, root, path, &key,
1614 sizeof(*extent));
2cdcecbc
MF
1615 if (ret)
1616 goto out;
0b86a832
CM
1617
1618 leaf = path->nodes[0];
1619 extent = btrfs_item_ptr(leaf, path->slots[0],
1620 struct btrfs_dev_extent);
b5d9071c
NB
1621 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1622 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1623 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1624 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1625 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1626
0b86a832
CM
1627 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1628 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1629out:
0b86a832
CM
1630 btrfs_free_path(path);
1631 return ret;
1632}
1633
6df9a95e 1634static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1635{
6df9a95e
JB
1636 struct extent_map_tree *em_tree;
1637 struct extent_map *em;
1638 struct rb_node *n;
1639 u64 ret = 0;
0b86a832 1640
c8bf1b67 1641 em_tree = &fs_info->mapping_tree;
6df9a95e 1642 read_lock(&em_tree->lock);
07e1ce09 1643 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1644 if (n) {
1645 em = rb_entry(n, struct extent_map, rb_node);
1646 ret = em->start + em->len;
0b86a832 1647 }
6df9a95e
JB
1648 read_unlock(&em_tree->lock);
1649
0b86a832
CM
1650 return ret;
1651}
1652
53f10659
ID
1653static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1654 u64 *devid_ret)
0b86a832
CM
1655{
1656 int ret;
1657 struct btrfs_key key;
1658 struct btrfs_key found_key;
2b82032c
YZ
1659 struct btrfs_path *path;
1660
2b82032c
YZ
1661 path = btrfs_alloc_path();
1662 if (!path)
1663 return -ENOMEM;
0b86a832
CM
1664
1665 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1666 key.type = BTRFS_DEV_ITEM_KEY;
1667 key.offset = (u64)-1;
1668
53f10659 1669 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1670 if (ret < 0)
1671 goto error;
1672
a06dee4d
AJ
1673 if (ret == 0) {
1674 /* Corruption */
1675 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1676 ret = -EUCLEAN;
1677 goto error;
1678 }
0b86a832 1679
53f10659
ID
1680 ret = btrfs_previous_item(fs_info->chunk_root, path,
1681 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1682 BTRFS_DEV_ITEM_KEY);
1683 if (ret) {
53f10659 1684 *devid_ret = 1;
0b86a832
CM
1685 } else {
1686 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1687 path->slots[0]);
53f10659 1688 *devid_ret = found_key.offset + 1;
0b86a832
CM
1689 }
1690 ret = 0;
1691error:
2b82032c 1692 btrfs_free_path(path);
0b86a832
CM
1693 return ret;
1694}
1695
1696/*
1697 * the device information is stored in the chunk root
1698 * the btrfs_device struct should be fully filled in
1699 */
c74a0b02 1700static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1701 struct btrfs_device *device)
0b86a832
CM
1702{
1703 int ret;
1704 struct btrfs_path *path;
1705 struct btrfs_dev_item *dev_item;
1706 struct extent_buffer *leaf;
1707 struct btrfs_key key;
1708 unsigned long ptr;
0b86a832 1709
0b86a832
CM
1710 path = btrfs_alloc_path();
1711 if (!path)
1712 return -ENOMEM;
1713
0b86a832
CM
1714 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1715 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1716 key.offset = device->devid;
0b86a832 1717
8e87e856
NB
1718 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1719 &key, sizeof(*dev_item));
0b86a832
CM
1720 if (ret)
1721 goto out;
1722
1723 leaf = path->nodes[0];
1724 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1725
1726 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1727 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1728 btrfs_set_device_type(leaf, dev_item, device->type);
1729 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1730 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1731 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1732 btrfs_set_device_total_bytes(leaf, dev_item,
1733 btrfs_device_get_disk_total_bytes(device));
1734 btrfs_set_device_bytes_used(leaf, dev_item,
1735 btrfs_device_get_bytes_used(device));
e17cade2
CM
1736 btrfs_set_device_group(leaf, dev_item, 0);
1737 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1738 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1739 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1740
410ba3a2 1741 ptr = btrfs_device_uuid(dev_item);
e17cade2 1742 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1743 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1744 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1745 ptr, BTRFS_FSID_SIZE);
0b86a832 1746 btrfs_mark_buffer_dirty(leaf);
0b86a832 1747
2b82032c 1748 ret = 0;
0b86a832
CM
1749out:
1750 btrfs_free_path(path);
1751 return ret;
1752}
8f18cf13 1753
5a1972bd
QW
1754/*
1755 * Function to update ctime/mtime for a given device path.
1756 * Mainly used for ctime/mtime based probe like libblkid.
1757 */
da353f6b 1758static void update_dev_time(const char *path_name)
5a1972bd
QW
1759{
1760 struct file *filp;
1761
1762 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1763 if (IS_ERR(filp))
5a1972bd
QW
1764 return;
1765 file_update_time(filp);
1766 filp_close(filp, NULL);
5a1972bd
QW
1767}
1768
f331a952 1769static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1770{
f331a952 1771 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1772 int ret;
1773 struct btrfs_path *path;
a061fc8d 1774 struct btrfs_key key;
a061fc8d
CM
1775 struct btrfs_trans_handle *trans;
1776
a061fc8d
CM
1777 path = btrfs_alloc_path();
1778 if (!path)
1779 return -ENOMEM;
1780
a22285a6 1781 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1782 if (IS_ERR(trans)) {
1783 btrfs_free_path(path);
1784 return PTR_ERR(trans);
1785 }
a061fc8d
CM
1786 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1787 key.type = BTRFS_DEV_ITEM_KEY;
1788 key.offset = device->devid;
1789
1790 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1791 if (ret) {
1792 if (ret > 0)
1793 ret = -ENOENT;
1794 btrfs_abort_transaction(trans, ret);
1795 btrfs_end_transaction(trans);
a061fc8d
CM
1796 goto out;
1797 }
1798
1799 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1800 if (ret) {
1801 btrfs_abort_transaction(trans, ret);
1802 btrfs_end_transaction(trans);
1803 }
1804
a061fc8d
CM
1805out:
1806 btrfs_free_path(path);
5e9f2ad5
NB
1807 if (!ret)
1808 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1809 return ret;
1810}
1811
3cc31a0d
DS
1812/*
1813 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1814 * filesystem. It's up to the caller to adjust that number regarding eg. device
1815 * replace.
1816 */
1817static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1818 u64 num_devices)
a061fc8d 1819{
a061fc8d 1820 u64 all_avail;
de98ced9 1821 unsigned seq;
418775a2 1822 int i;
a061fc8d 1823
de98ced9 1824 do {
bd45ffbc 1825 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1826
bd45ffbc
AJ
1827 all_avail = fs_info->avail_data_alloc_bits |
1828 fs_info->avail_system_alloc_bits |
1829 fs_info->avail_metadata_alloc_bits;
1830 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1831
418775a2 1832 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1833 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1834 continue;
a061fc8d 1835
418775a2 1836 if (num_devices < btrfs_raid_array[i].devs_min) {
f9fbcaa2 1837 int ret = btrfs_raid_array[i].mindev_error;
bd45ffbc 1838
418775a2
DS
1839 if (ret)
1840 return ret;
1841 }
53b381b3
DW
1842 }
1843
bd45ffbc 1844 return 0;
f1fa7f26
AJ
1845}
1846
c9162bdf
OS
1847static struct btrfs_device * btrfs_find_next_active_device(
1848 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1849{
2b82032c 1850 struct btrfs_device *next_device;
88acff64
AJ
1851
1852 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1853 if (next_device != device &&
e6e674bd
AJ
1854 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1855 && next_device->bdev)
88acff64
AJ
1856 return next_device;
1857 }
1858
1859 return NULL;
1860}
1861
1862/*
1863 * Helper function to check if the given device is part of s_bdev / latest_bdev
1864 * and replace it with the provided or the next active device, in the context
1865 * where this function called, there should be always be another device (or
1866 * this_dev) which is active.
1867 */
b105e927 1868void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
d6507cf1 1869 struct btrfs_device *this_dev)
88acff64 1870{
d6507cf1 1871 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64
AJ
1872 struct btrfs_device *next_device;
1873
1874 if (this_dev)
1875 next_device = this_dev;
1876 else
1877 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1878 device);
1879 ASSERT(next_device);
1880
1881 if (fs_info->sb->s_bdev &&
1882 (fs_info->sb->s_bdev == device->bdev))
1883 fs_info->sb->s_bdev = next_device->bdev;
1884
1885 if (fs_info->fs_devices->latest_bdev == device->bdev)
1886 fs_info->fs_devices->latest_bdev = next_device->bdev;
1887}
1888
1da73967
AJ
1889/*
1890 * Return btrfs_fs_devices::num_devices excluding the device that's being
1891 * currently replaced.
1892 */
1893static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1894{
1895 u64 num_devices = fs_info->fs_devices->num_devices;
1896
cb5583dd 1897 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
1898 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1899 ASSERT(num_devices > 1);
1900 num_devices--;
1901 }
cb5583dd 1902 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
1903
1904 return num_devices;
1905}
1906
da353f6b
DS
1907int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1908 u64 devid)
f1fa7f26
AJ
1909{
1910 struct btrfs_device *device;
1f78160c 1911 struct btrfs_fs_devices *cur_devices;
b5185197 1912 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 1913 u64 num_devices;
a061fc8d
CM
1914 int ret = 0;
1915
a061fc8d
CM
1916 mutex_lock(&uuid_mutex);
1917
1da73967 1918 num_devices = btrfs_num_devices(fs_info);
8dabb742 1919
0b246afa 1920 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1921 if (ret)
a061fc8d 1922 goto out;
a061fc8d 1923
a27a94c2
NB
1924 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1925
1926 if (IS_ERR(device)) {
1927 if (PTR_ERR(device) == -ENOENT &&
1928 strcmp(device_path, "missing") == 0)
1929 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1930 else
1931 ret = PTR_ERR(device);
53b381b3 1932 goto out;
a27a94c2 1933 }
dfe25020 1934
eede2bf3
OS
1935 if (btrfs_pinned_by_swapfile(fs_info, device)) {
1936 btrfs_warn_in_rcu(fs_info,
1937 "cannot remove device %s (devid %llu) due to active swapfile",
1938 rcu_str_deref(device->name), device->devid);
1939 ret = -ETXTBSY;
1940 goto out;
1941 }
1942
401e29c1 1943 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 1944 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1945 goto out;
63a212ab
SB
1946 }
1947
ebbede42
AJ
1948 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1949 fs_info->fs_devices->rw_devices == 1) {
183860f6 1950 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1951 goto out;
2b82032c
YZ
1952 }
1953
ebbede42 1954 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 1955 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1956 list_del_init(&device->dev_alloc_list);
c3929c36 1957 device->fs_devices->rw_devices--;
34441361 1958 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 1959 }
a061fc8d 1960
d7901554 1961 mutex_unlock(&uuid_mutex);
a061fc8d 1962 ret = btrfs_shrink_device(device, 0);
d7901554 1963 mutex_lock(&uuid_mutex);
a061fc8d 1964 if (ret)
9b3517e9 1965 goto error_undo;
a061fc8d 1966
63a212ab
SB
1967 /*
1968 * TODO: the superblock still includes this device in its num_devices
1969 * counter although write_all_supers() is not locked out. This
1970 * could give a filesystem state which requires a degraded mount.
1971 */
f331a952 1972 ret = btrfs_rm_dev_item(device);
a061fc8d 1973 if (ret)
9b3517e9 1974 goto error_undo;
a061fc8d 1975
e12c9621 1976 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 1977 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
1978
1979 /*
1980 * the device list mutex makes sure that we don't change
1981 * the device list while someone else is writing out all
d7306801
FDBM
1982 * the device supers. Whoever is writing all supers, should
1983 * lock the device list mutex before getting the number of
1984 * devices in the super block (super_copy). Conversely,
1985 * whoever updates the number of devices in the super block
1986 * (super_copy) should hold the device list mutex.
e5e9a520 1987 */
1f78160c 1988
41a52a0f
AJ
1989 /*
1990 * In normal cases the cur_devices == fs_devices. But in case
1991 * of deleting a seed device, the cur_devices should point to
1992 * its own fs_devices listed under the fs_devices->seed.
1993 */
1f78160c 1994 cur_devices = device->fs_devices;
b5185197 1995 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 1996 list_del_rcu(&device->dev_list);
e5e9a520 1997
41a52a0f
AJ
1998 cur_devices->num_devices--;
1999 cur_devices->total_devices--;
b4993e64
AJ
2000 /* Update total_devices of the parent fs_devices if it's seed */
2001 if (cur_devices != fs_devices)
2002 fs_devices->total_devices--;
2b82032c 2003
e6e674bd 2004 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2005 cur_devices->missing_devices--;
cd02dca5 2006
d6507cf1 2007 btrfs_assign_next_active_device(device, NULL);
2b82032c 2008
0bfaa9c5 2009 if (device->bdev) {
41a52a0f 2010 cur_devices->open_devices--;
0bfaa9c5 2011 /* remove sysfs entry */
b5185197 2012 btrfs_sysfs_rm_device_link(fs_devices, device);
0bfaa9c5 2013 }
99994cde 2014
0b246afa
JM
2015 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2016 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2017 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2018
cea67ab9
JM
2019 /*
2020 * at this point, the device is zero sized and detached from
2021 * the devices list. All that's left is to zero out the old
2022 * supers and free the device.
2023 */
ebbede42 2024 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
cea67ab9
JM
2025 btrfs_scratch_superblocks(device->bdev, device->name->str);
2026
2027 btrfs_close_bdev(device);
8e75fd89
NB
2028 synchronize_rcu();
2029 btrfs_free_device(device);
cea67ab9 2030
1f78160c 2031 if (cur_devices->open_devices == 0) {
e4404d6e 2032 while (fs_devices) {
8321cf25
RS
2033 if (fs_devices->seed == cur_devices) {
2034 fs_devices->seed = cur_devices->seed;
e4404d6e 2035 break;
8321cf25 2036 }
e4404d6e 2037 fs_devices = fs_devices->seed;
2b82032c 2038 }
1f78160c 2039 cur_devices->seed = NULL;
0226e0eb 2040 close_fs_devices(cur_devices);
1f78160c 2041 free_fs_devices(cur_devices);
2b82032c
YZ
2042 }
2043
a061fc8d
CM
2044out:
2045 mutex_unlock(&uuid_mutex);
a061fc8d 2046 return ret;
24fc572f 2047
9b3517e9 2048error_undo:
ebbede42 2049 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2050 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2051 list_add(&device->dev_alloc_list,
b5185197 2052 &fs_devices->alloc_list);
c3929c36 2053 device->fs_devices->rw_devices++;
34441361 2054 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2055 }
24fc572f 2056 goto out;
a061fc8d
CM
2057}
2058
68a9db5f 2059void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2060{
d51908ce
AJ
2061 struct btrfs_fs_devices *fs_devices;
2062
68a9db5f 2063 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2064
25e8e911
AJ
2065 /*
2066 * in case of fs with no seed, srcdev->fs_devices will point
2067 * to fs_devices of fs_info. However when the dev being replaced is
2068 * a seed dev it will point to the seed's local fs_devices. In short
2069 * srcdev will have its correct fs_devices in both the cases.
2070 */
2071 fs_devices = srcdev->fs_devices;
d51908ce 2072
e93c89c1 2073 list_del_rcu(&srcdev->dev_list);
619c47f3 2074 list_del(&srcdev->dev_alloc_list);
d51908ce 2075 fs_devices->num_devices--;
e6e674bd 2076 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2077 fs_devices->missing_devices--;
e93c89c1 2078
ebbede42 2079 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2080 fs_devices->rw_devices--;
1357272f 2081
82372bc8 2082 if (srcdev->bdev)
d51908ce 2083 fs_devices->open_devices--;
084b6e7c
QW
2084}
2085
65237ee3 2086void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c 2087{
65237ee3 2088 struct btrfs_fs_info *fs_info = srcdev->fs_info;
084b6e7c 2089 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2090
ebbede42 2091 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
48b3b9d4
AJ
2092 /* zero out the old super if it is writable */
2093 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2094 }
14238819
AJ
2095
2096 btrfs_close_bdev(srcdev);
8e75fd89
NB
2097 synchronize_rcu();
2098 btrfs_free_device(srcdev);
94d5f0c2 2099
94d5f0c2
AJ
2100 /* if this is no devs we rather delete the fs_devices */
2101 if (!fs_devices->num_devices) {
2102 struct btrfs_fs_devices *tmp_fs_devices;
2103
6dd38f81
AJ
2104 /*
2105 * On a mounted FS, num_devices can't be zero unless it's a
2106 * seed. In case of a seed device being replaced, the replace
2107 * target added to the sprout FS, so there will be no more
2108 * device left under the seed FS.
2109 */
2110 ASSERT(fs_devices->seeding);
2111
94d5f0c2
AJ
2112 tmp_fs_devices = fs_info->fs_devices;
2113 while (tmp_fs_devices) {
2114 if (tmp_fs_devices->seed == fs_devices) {
2115 tmp_fs_devices->seed = fs_devices->seed;
2116 break;
2117 }
2118 tmp_fs_devices = tmp_fs_devices->seed;
2119 }
2120 fs_devices->seed = NULL;
0226e0eb 2121 close_fs_devices(fs_devices);
8bef8401 2122 free_fs_devices(fs_devices);
94d5f0c2 2123 }
e93c89c1
SB
2124}
2125
4f5ad7bd 2126void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2127{
4f5ad7bd 2128 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2129
d9a071f0 2130 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2131
d9a071f0 2132 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
d2ff1b20 2133
779bf3fe 2134 if (tgtdev->bdev)
d9a071f0 2135 fs_devices->open_devices--;
779bf3fe 2136
d9a071f0 2137 fs_devices->num_devices--;
e93c89c1 2138
d6507cf1 2139 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2140
e93c89c1 2141 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2142
d9a071f0 2143 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2144
2145 /*
2146 * The update_dev_time() with in btrfs_scratch_superblocks()
2147 * may lead to a call to btrfs_show_devname() which will try
2148 * to hold device_list_mutex. And here this device
2149 * is already out of device list, so we don't have to hold
2150 * the device_list_mutex lock.
2151 */
2152 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2153
2154 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2155 synchronize_rcu();
2156 btrfs_free_device(tgtdev);
e93c89c1
SB
2157}
2158
b444ad46
NB
2159static struct btrfs_device *btrfs_find_device_by_path(
2160 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2161{
2162 int ret = 0;
2163 struct btrfs_super_block *disk_super;
2164 u64 devid;
2165 u8 *dev_uuid;
2166 struct block_device *bdev;
2167 struct buffer_head *bh;
b444ad46 2168 struct btrfs_device *device;
7ba15b7d 2169
7ba15b7d 2170 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2171 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d 2172 if (ret)
b444ad46 2173 return ERR_PTR(ret);
7ba15b7d
SB
2174 disk_super = (struct btrfs_super_block *)bh->b_data;
2175 devid = btrfs_stack_device_id(&disk_super->dev_item);
2176 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2177 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2178 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2179 disk_super->metadata_uuid, true);
7239ff4b 2180 else
e4319cd9 2181 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2182 disk_super->fsid, true);
7239ff4b 2183
7ba15b7d 2184 brelse(bh);
b444ad46
NB
2185 if (!device)
2186 device = ERR_PTR(-ENOENT);
7ba15b7d 2187 blkdev_put(bdev, FMODE_READ);
b444ad46 2188 return device;
7ba15b7d
SB
2189}
2190
5c5c0df0
DS
2191/*
2192 * Lookup a device given by device id, or the path if the id is 0.
2193 */
a27a94c2 2194struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2195 struct btrfs_fs_info *fs_info, u64 devid,
2196 const char *device_path)
24e0474b 2197{
a27a94c2 2198 struct btrfs_device *device;
24e0474b 2199
5c5c0df0 2200 if (devid) {
e4319cd9 2201 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
09ba3bc9 2202 NULL, true);
a27a94c2
NB
2203 if (!device)
2204 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2205 return device;
2206 }
2207
2208 if (!device_path || !device_path[0])
2209 return ERR_PTR(-EINVAL);
2210
2211 if (strcmp(device_path, "missing") == 0) {
2212 /* Find first missing device */
2213 list_for_each_entry(device, &fs_info->fs_devices->devices,
2214 dev_list) {
2215 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2216 &device->dev_state) && !device->bdev)
2217 return device;
d95a830c 2218 }
6e927ceb 2219 return ERR_PTR(-ENOENT);
24e0474b 2220 }
6e927ceb
AJ
2221
2222 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2223}
2224
2b82032c
YZ
2225/*
2226 * does all the dirty work required for changing file system's UUID.
2227 */
2ff7e61e 2228static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2229{
0b246afa 2230 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2231 struct btrfs_fs_devices *old_devices;
e4404d6e 2232 struct btrfs_fs_devices *seed_devices;
0b246afa 2233 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2234 struct btrfs_device *device;
2235 u64 super_flags;
2236
a32bf9a3 2237 lockdep_assert_held(&uuid_mutex);
e4404d6e 2238 if (!fs_devices->seeding)
2b82032c
YZ
2239 return -EINVAL;
2240
7239ff4b 2241 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2242 if (IS_ERR(seed_devices))
2243 return PTR_ERR(seed_devices);
2b82032c 2244
e4404d6e
YZ
2245 old_devices = clone_fs_devices(fs_devices);
2246 if (IS_ERR(old_devices)) {
2247 kfree(seed_devices);
2248 return PTR_ERR(old_devices);
2b82032c 2249 }
e4404d6e 2250
c4babc5e 2251 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2252
e4404d6e
YZ
2253 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2254 seed_devices->opened = 1;
2255 INIT_LIST_HEAD(&seed_devices->devices);
2256 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2257 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2258
321a4bf7 2259 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2260 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2261 synchronize_rcu);
2196d6e8
MX
2262 list_for_each_entry(device, &seed_devices->devices, dev_list)
2263 device->fs_devices = seed_devices;
c9513edb 2264
34441361 2265 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2266 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2267 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2268
0395d84f 2269 fs_devices->seeding = false;
2b82032c
YZ
2270 fs_devices->num_devices = 0;
2271 fs_devices->open_devices = 0;
69611ac8 2272 fs_devices->missing_devices = 0;
7f0432d0 2273 fs_devices->rotating = false;
e4404d6e 2274 fs_devices->seed = seed_devices;
2b82032c
YZ
2275
2276 generate_random_uuid(fs_devices->fsid);
7239ff4b 2277 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2278 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2279 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2280
2b82032c
YZ
2281 super_flags = btrfs_super_flags(disk_super) &
2282 ~BTRFS_SUPER_FLAG_SEEDING;
2283 btrfs_set_super_flags(disk_super, super_flags);
2284
2285 return 0;
2286}
2287
2288/*
01327610 2289 * Store the expected generation for seed devices in device items.
2b82032c 2290 */
5c466629 2291static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2292{
5c466629 2293 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2294 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2295 struct btrfs_path *path;
2296 struct extent_buffer *leaf;
2297 struct btrfs_dev_item *dev_item;
2298 struct btrfs_device *device;
2299 struct btrfs_key key;
44880fdc 2300 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2301 u8 dev_uuid[BTRFS_UUID_SIZE];
2302 u64 devid;
2303 int ret;
2304
2305 path = btrfs_alloc_path();
2306 if (!path)
2307 return -ENOMEM;
2308
2b82032c
YZ
2309 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2310 key.offset = 0;
2311 key.type = BTRFS_DEV_ITEM_KEY;
2312
2313 while (1) {
2314 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2315 if (ret < 0)
2316 goto error;
2317
2318 leaf = path->nodes[0];
2319next_slot:
2320 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2321 ret = btrfs_next_leaf(root, path);
2322 if (ret > 0)
2323 break;
2324 if (ret < 0)
2325 goto error;
2326 leaf = path->nodes[0];
2327 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2328 btrfs_release_path(path);
2b82032c
YZ
2329 continue;
2330 }
2331
2332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2333 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2334 key.type != BTRFS_DEV_ITEM_KEY)
2335 break;
2336
2337 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2338 struct btrfs_dev_item);
2339 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2340 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2341 BTRFS_UUID_SIZE);
1473b24e 2342 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2343 BTRFS_FSID_SIZE);
e4319cd9 2344 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2345 fs_uuid, true);
79787eaa 2346 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2347
2348 if (device->fs_devices->seeding) {
2349 btrfs_set_device_generation(leaf, dev_item,
2350 device->generation);
2351 btrfs_mark_buffer_dirty(leaf);
2352 }
2353
2354 path->slots[0]++;
2355 goto next_slot;
2356 }
2357 ret = 0;
2358error:
2359 btrfs_free_path(path);
2360 return ret;
2361}
2362
da353f6b 2363int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2364{
5112febb 2365 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2366 struct request_queue *q;
788f20eb
CM
2367 struct btrfs_trans_handle *trans;
2368 struct btrfs_device *device;
2369 struct block_device *bdev;
0b246afa 2370 struct super_block *sb = fs_info->sb;
606686ee 2371 struct rcu_string *name;
5da54bc1 2372 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2373 u64 orig_super_total_bytes;
2374 u64 orig_super_num_devices;
2b82032c 2375 int seeding_dev = 0;
788f20eb 2376 int ret = 0;
7132a262 2377 bool unlocked = false;
788f20eb 2378
5da54bc1 2379 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2380 return -EROFS;
788f20eb 2381
a5d16333 2382 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2383 fs_info->bdev_holder);
7f59203a
JB
2384 if (IS_ERR(bdev))
2385 return PTR_ERR(bdev);
a2135011 2386
5da54bc1 2387 if (fs_devices->seeding) {
2b82032c
YZ
2388 seeding_dev = 1;
2389 down_write(&sb->s_umount);
2390 mutex_lock(&uuid_mutex);
2391 }
2392
8c8bee1d 2393 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2394
5da54bc1 2395 mutex_lock(&fs_devices->device_list_mutex);
694c51fb 2396 list_for_each_entry(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2397 if (device->bdev == bdev) {
2398 ret = -EEXIST;
d25628bd 2399 mutex_unlock(
5da54bc1 2400 &fs_devices->device_list_mutex);
2b82032c 2401 goto error;
788f20eb
CM
2402 }
2403 }
5da54bc1 2404 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2405
0b246afa 2406 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2407 if (IS_ERR(device)) {
788f20eb 2408 /* we can safely leave the fs_devices entry around */
12bd2fc0 2409 ret = PTR_ERR(device);
2b82032c 2410 goto error;
788f20eb
CM
2411 }
2412
78f2c9e6 2413 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2414 if (!name) {
2b82032c 2415 ret = -ENOMEM;
5c4cf6c9 2416 goto error_free_device;
788f20eb 2417 }
606686ee 2418 rcu_assign_pointer(device->name, name);
2b82032c 2419
a22285a6 2420 trans = btrfs_start_transaction(root, 0);
98d5dc13 2421 if (IS_ERR(trans)) {
98d5dc13 2422 ret = PTR_ERR(trans);
5c4cf6c9 2423 goto error_free_device;
98d5dc13
TI
2424 }
2425
d5e2003c 2426 q = bdev_get_queue(bdev);
ebbede42 2427 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2428 device->generation = trans->transid;
0b246afa
JM
2429 device->io_width = fs_info->sectorsize;
2430 device->io_align = fs_info->sectorsize;
2431 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2432 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2433 fs_info->sectorsize);
2cc3c559 2434 device->disk_total_bytes = device->total_bytes;
935e5cc9 2435 device->commit_total_bytes = device->total_bytes;
fb456252 2436 device->fs_info = fs_info;
788f20eb 2437 device->bdev = bdev;
e12c9621 2438 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2439 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2440 device->mode = FMODE_EXCL;
27087f37 2441 device->dev_stats_valid = 1;
9f6d2510 2442 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2443
2b82032c 2444 if (seeding_dev) {
1751e8a6 2445 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2446 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2447 if (ret) {
2448 btrfs_abort_transaction(trans, ret);
2449 goto error_trans;
2450 }
2b82032c 2451 }
788f20eb 2452
5da54bc1 2453 device->fs_devices = fs_devices;
e5e9a520 2454
5da54bc1 2455 mutex_lock(&fs_devices->device_list_mutex);
34441361 2456 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2457 list_add_rcu(&device->dev_list, &fs_devices->devices);
2458 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2459 fs_devices->num_devices++;
2460 fs_devices->open_devices++;
2461 fs_devices->rw_devices++;
2462 fs_devices->total_devices++;
2463 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2464
a5ed45f8 2465 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2466
e884f4f0 2467 if (!blk_queue_nonrot(q))
7f0432d0 2468 fs_devices->rotating = true;
c289811c 2469
39379faa 2470 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2471 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2472 round_down(orig_super_total_bytes + device->total_bytes,
2473 fs_info->sectorsize));
788f20eb 2474
39379faa
NA
2475 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2476 btrfs_set_super_num_devices(fs_info->super_copy,
2477 orig_super_num_devices + 1);
0d39376a
AJ
2478
2479 /* add sysfs device entry */
5da54bc1 2480 btrfs_sysfs_add_device_link(fs_devices, device);
0d39376a 2481
2196d6e8
MX
2482 /*
2483 * we've got more storage, clear any full flags on the space
2484 * infos
2485 */
0b246afa 2486 btrfs_clear_space_info_full(fs_info);
2196d6e8 2487
34441361 2488 mutex_unlock(&fs_info->chunk_mutex);
5da54bc1 2489 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2490
2b82032c 2491 if (seeding_dev) {
34441361 2492 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2493 ret = init_first_rw_device(trans);
34441361 2494 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2495 if (ret) {
66642832 2496 btrfs_abort_transaction(trans, ret);
d31c32f6 2497 goto error_sysfs;
005d6427 2498 }
2196d6e8
MX
2499 }
2500
8e87e856 2501 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2502 if (ret) {
66642832 2503 btrfs_abort_transaction(trans, ret);
d31c32f6 2504 goto error_sysfs;
2196d6e8
MX
2505 }
2506
2507 if (seeding_dev) {
5c466629 2508 ret = btrfs_finish_sprout(trans);
005d6427 2509 if (ret) {
66642832 2510 btrfs_abort_transaction(trans, ret);
d31c32f6 2511 goto error_sysfs;
005d6427 2512 }
b2373f25 2513
f93c3997
DS
2514 btrfs_sysfs_update_sprout_fsid(fs_devices,
2515 fs_info->fs_devices->fsid);
2b82032c
YZ
2516 }
2517
3a45bb20 2518 ret = btrfs_commit_transaction(trans);
a2135011 2519
2b82032c
YZ
2520 if (seeding_dev) {
2521 mutex_unlock(&uuid_mutex);
2522 up_write(&sb->s_umount);
7132a262 2523 unlocked = true;
788f20eb 2524
79787eaa
JM
2525 if (ret) /* transaction commit */
2526 return ret;
2527
2ff7e61e 2528 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2529 if (ret < 0)
0b246afa 2530 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2531 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2532 trans = btrfs_attach_transaction(root);
2533 if (IS_ERR(trans)) {
2534 if (PTR_ERR(trans) == -ENOENT)
2535 return 0;
7132a262
AJ
2536 ret = PTR_ERR(trans);
2537 trans = NULL;
2538 goto error_sysfs;
671415b7 2539 }
3a45bb20 2540 ret = btrfs_commit_transaction(trans);
2b82032c 2541 }
c9e9f97b 2542
5a1972bd
QW
2543 /* Update ctime/mtime for libblkid */
2544 update_dev_time(device_path);
2b82032c 2545 return ret;
79787eaa 2546
d31c32f6 2547error_sysfs:
5da54bc1 2548 btrfs_sysfs_rm_device_link(fs_devices, device);
39379faa
NA
2549 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2550 mutex_lock(&fs_info->chunk_mutex);
2551 list_del_rcu(&device->dev_list);
2552 list_del(&device->dev_alloc_list);
2553 fs_info->fs_devices->num_devices--;
2554 fs_info->fs_devices->open_devices--;
2555 fs_info->fs_devices->rw_devices--;
2556 fs_info->fs_devices->total_devices--;
2557 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2558 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2559 btrfs_set_super_total_bytes(fs_info->super_copy,
2560 orig_super_total_bytes);
2561 btrfs_set_super_num_devices(fs_info->super_copy,
2562 orig_super_num_devices);
2563 mutex_unlock(&fs_info->chunk_mutex);
2564 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2565error_trans:
0af2c4bf 2566 if (seeding_dev)
1751e8a6 2567 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2568 if (trans)
2569 btrfs_end_transaction(trans);
5c4cf6c9 2570error_free_device:
a425f9d4 2571 btrfs_free_device(device);
2b82032c 2572error:
e525fd89 2573 blkdev_put(bdev, FMODE_EXCL);
7132a262 2574 if (seeding_dev && !unlocked) {
2b82032c
YZ
2575 mutex_unlock(&uuid_mutex);
2576 up_write(&sb->s_umount);
2577 }
c9e9f97b 2578 return ret;
788f20eb
CM
2579}
2580
d397712b
CM
2581static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2582 struct btrfs_device *device)
0b86a832
CM
2583{
2584 int ret;
2585 struct btrfs_path *path;
0b246afa 2586 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2587 struct btrfs_dev_item *dev_item;
2588 struct extent_buffer *leaf;
2589 struct btrfs_key key;
2590
0b86a832
CM
2591 path = btrfs_alloc_path();
2592 if (!path)
2593 return -ENOMEM;
2594
2595 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2596 key.type = BTRFS_DEV_ITEM_KEY;
2597 key.offset = device->devid;
2598
2599 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2600 if (ret < 0)
2601 goto out;
2602
2603 if (ret > 0) {
2604 ret = -ENOENT;
2605 goto out;
2606 }
2607
2608 leaf = path->nodes[0];
2609 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2610
2611 btrfs_set_device_id(leaf, dev_item, device->devid);
2612 btrfs_set_device_type(leaf, dev_item, device->type);
2613 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2614 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2615 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2616 btrfs_set_device_total_bytes(leaf, dev_item,
2617 btrfs_device_get_disk_total_bytes(device));
2618 btrfs_set_device_bytes_used(leaf, dev_item,
2619 btrfs_device_get_bytes_used(device));
0b86a832
CM
2620 btrfs_mark_buffer_dirty(leaf);
2621
2622out:
2623 btrfs_free_path(path);
2624 return ret;
2625}
2626
2196d6e8 2627int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2628 struct btrfs_device *device, u64 new_size)
2629{
0b246afa
JM
2630 struct btrfs_fs_info *fs_info = device->fs_info;
2631 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2632 u64 old_total;
2633 u64 diff;
8f18cf13 2634
ebbede42 2635 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2636 return -EACCES;
2196d6e8 2637
7dfb8be1
NB
2638 new_size = round_down(new_size, fs_info->sectorsize);
2639
34441361 2640 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2641 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2642 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2643
63a212ab 2644 if (new_size <= device->total_bytes ||
401e29c1 2645 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2646 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2647 return -EINVAL;
2196d6e8 2648 }
2b82032c 2649
7dfb8be1
NB
2650 btrfs_set_super_total_bytes(super_copy,
2651 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2652 device->fs_devices->total_rw_bytes += diff;
2653
7cc8e58d
MX
2654 btrfs_device_set_total_bytes(device, new_size);
2655 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2656 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2657 if (list_empty(&device->post_commit_list))
2658 list_add_tail(&device->post_commit_list,
2659 &trans->transaction->dev_update_list);
34441361 2660 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2661
8f18cf13
CM
2662 return btrfs_update_device(trans, device);
2663}
2664
f4208794 2665static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2666{
f4208794 2667 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2668 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2669 int ret;
2670 struct btrfs_path *path;
2671 struct btrfs_key key;
2672
8f18cf13
CM
2673 path = btrfs_alloc_path();
2674 if (!path)
2675 return -ENOMEM;
2676
408fbf19 2677 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2678 key.offset = chunk_offset;
2679 key.type = BTRFS_CHUNK_ITEM_KEY;
2680
2681 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2682 if (ret < 0)
2683 goto out;
2684 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2685 btrfs_handle_fs_error(fs_info, -ENOENT,
2686 "Failed lookup while freeing chunk.");
79787eaa
JM
2687 ret = -ENOENT;
2688 goto out;
2689 }
8f18cf13
CM
2690
2691 ret = btrfs_del_item(trans, root, path);
79787eaa 2692 if (ret < 0)
0b246afa
JM
2693 btrfs_handle_fs_error(fs_info, ret,
2694 "Failed to delete chunk item.");
79787eaa 2695out:
8f18cf13 2696 btrfs_free_path(path);
65a246c5 2697 return ret;
8f18cf13
CM
2698}
2699
408fbf19 2700static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2701{
0b246afa 2702 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2703 struct btrfs_disk_key *disk_key;
2704 struct btrfs_chunk *chunk;
2705 u8 *ptr;
2706 int ret = 0;
2707 u32 num_stripes;
2708 u32 array_size;
2709 u32 len = 0;
2710 u32 cur;
2711 struct btrfs_key key;
2712
34441361 2713 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2714 array_size = btrfs_super_sys_array_size(super_copy);
2715
2716 ptr = super_copy->sys_chunk_array;
2717 cur = 0;
2718
2719 while (cur < array_size) {
2720 disk_key = (struct btrfs_disk_key *)ptr;
2721 btrfs_disk_key_to_cpu(&key, disk_key);
2722
2723 len = sizeof(*disk_key);
2724
2725 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2726 chunk = (struct btrfs_chunk *)(ptr + len);
2727 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2728 len += btrfs_chunk_item_size(num_stripes);
2729 } else {
2730 ret = -EIO;
2731 break;
2732 }
408fbf19 2733 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2734 key.offset == chunk_offset) {
2735 memmove(ptr, ptr + len, array_size - (cur + len));
2736 array_size -= len;
2737 btrfs_set_super_sys_array_size(super_copy, array_size);
2738 } else {
2739 ptr += len;
2740 cur += len;
2741 }
2742 }
34441361 2743 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2744 return ret;
2745}
2746
60ca842e
OS
2747/*
2748 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2749 * @logical: Logical block offset in bytes.
2750 * @length: Length of extent in bytes.
2751 *
2752 * Return: Chunk mapping or ERR_PTR.
2753 */
2754struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2755 u64 logical, u64 length)
592d92ee
LB
2756{
2757 struct extent_map_tree *em_tree;
2758 struct extent_map *em;
2759
c8bf1b67 2760 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2761 read_lock(&em_tree->lock);
2762 em = lookup_extent_mapping(em_tree, logical, length);
2763 read_unlock(&em_tree->lock);
2764
2765 if (!em) {
2766 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2767 logical, length);
2768 return ERR_PTR(-EINVAL);
2769 }
2770
2771 if (em->start > logical || em->start + em->len < logical) {
2772 btrfs_crit(fs_info,
2773 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2774 logical, length, em->start, em->start + em->len);
2775 free_extent_map(em);
2776 return ERR_PTR(-EINVAL);
2777 }
2778
2779 /* callers are responsible for dropping em's ref. */
2780 return em;
2781}
2782
97aff912 2783int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2784{
97aff912 2785 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
2786 struct extent_map *em;
2787 struct map_lookup *map;
2196d6e8 2788 u64 dev_extent_len = 0;
47ab2a6c 2789 int i, ret = 0;
0b246afa 2790 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2791
60ca842e 2792 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 2793 if (IS_ERR(em)) {
47ab2a6c
JB
2794 /*
2795 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2796 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2797 * do anything we still error out.
2798 */
2799 ASSERT(0);
592d92ee 2800 return PTR_ERR(em);
47ab2a6c 2801 }
95617d69 2802 map = em->map_lookup;
34441361 2803 mutex_lock(&fs_info->chunk_mutex);
451a2c13 2804 check_system_chunk(trans, map->type);
34441361 2805 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2806
57ba4cb8
FM
2807 /*
2808 * Take the device list mutex to prevent races with the final phase of
2809 * a device replace operation that replaces the device object associated
2810 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2811 */
2812 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2813 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2814 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2815 ret = btrfs_free_dev_extent(trans, device,
2816 map->stripes[i].physical,
2817 &dev_extent_len);
47ab2a6c 2818 if (ret) {
57ba4cb8 2819 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2820 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2821 goto out;
2822 }
a061fc8d 2823
2196d6e8 2824 if (device->bytes_used > 0) {
34441361 2825 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2826 btrfs_device_set_bytes_used(device,
2827 device->bytes_used - dev_extent_len);
a5ed45f8 2828 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2829 btrfs_clear_space_info_full(fs_info);
34441361 2830 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2831 }
a061fc8d 2832
64bc6c2a
NB
2833 ret = btrfs_update_device(trans, device);
2834 if (ret) {
2835 mutex_unlock(&fs_devices->device_list_mutex);
2836 btrfs_abort_transaction(trans, ret);
2837 goto out;
dfe25020 2838 }
8f18cf13 2839 }
57ba4cb8
FM
2840 mutex_unlock(&fs_devices->device_list_mutex);
2841
f4208794 2842 ret = btrfs_free_chunk(trans, chunk_offset);
47ab2a6c 2843 if (ret) {
66642832 2844 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2845 goto out;
2846 }
8f18cf13 2847
6bccf3ab 2848 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2849
8f18cf13 2850 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 2851 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 2852 if (ret) {
66642832 2853 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2854 goto out;
2855 }
8f18cf13
CM
2856 }
2857
5a98ec01 2858 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 2859 if (ret) {
66642832 2860 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2861 goto out;
2862 }
2b82032c 2863
47ab2a6c 2864out:
2b82032c
YZ
2865 /* once for us */
2866 free_extent_map(em);
47ab2a6c
JB
2867 return ret;
2868}
2b82032c 2869
5b4aacef 2870static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2871{
5b4aacef 2872 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2873 struct btrfs_trans_handle *trans;
b0643e59 2874 struct btrfs_block_group *block_group;
47ab2a6c 2875 int ret;
2b82032c 2876
67c5e7d4
FM
2877 /*
2878 * Prevent races with automatic removal of unused block groups.
2879 * After we relocate and before we remove the chunk with offset
2880 * chunk_offset, automatic removal of the block group can kick in,
2881 * resulting in a failure when calling btrfs_remove_chunk() below.
2882 *
2883 * Make sure to acquire this mutex before doing a tree search (dev
2884 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2885 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2886 * we release the path used to search the chunk/dev tree and before
2887 * the current task acquires this mutex and calls us.
2888 */
a32bf9a3 2889 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 2890
47ab2a6c 2891 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2892 btrfs_scrub_pause(fs_info);
0b246afa 2893 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2894 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2895 if (ret)
2896 return ret;
2897
b0643e59
DZ
2898 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
2899 if (!block_group)
2900 return -ENOENT;
2901 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
2902 btrfs_put_block_group(block_group);
2903
19c4d2f9
CM
2904 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2905 chunk_offset);
2906 if (IS_ERR(trans)) {
2907 ret = PTR_ERR(trans);
2908 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2909 return ret;
2910 }
2911
47ab2a6c 2912 /*
19c4d2f9
CM
2913 * step two, delete the device extents and the
2914 * chunk tree entries
47ab2a6c 2915 */
97aff912 2916 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 2917 btrfs_end_transaction(trans);
19c4d2f9 2918 return ret;
2b82032c
YZ
2919}
2920
2ff7e61e 2921static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2922{
0b246afa 2923 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2924 struct btrfs_path *path;
2925 struct extent_buffer *leaf;
2926 struct btrfs_chunk *chunk;
2927 struct btrfs_key key;
2928 struct btrfs_key found_key;
2b82032c 2929 u64 chunk_type;
ba1bf481
JB
2930 bool retried = false;
2931 int failed = 0;
2b82032c
YZ
2932 int ret;
2933
2934 path = btrfs_alloc_path();
2935 if (!path)
2936 return -ENOMEM;
2937
ba1bf481 2938again:
2b82032c
YZ
2939 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2940 key.offset = (u64)-1;
2941 key.type = BTRFS_CHUNK_ITEM_KEY;
2942
2943 while (1) {
0b246afa 2944 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2945 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2946 if (ret < 0) {
0b246afa 2947 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2948 goto error;
67c5e7d4 2949 }
79787eaa 2950 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2951
2952 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2953 key.type);
67c5e7d4 2954 if (ret)
0b246afa 2955 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
2956 if (ret < 0)
2957 goto error;
2958 if (ret > 0)
2959 break;
1a40e23b 2960
2b82032c
YZ
2961 leaf = path->nodes[0];
2962 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2963
2b82032c
YZ
2964 chunk = btrfs_item_ptr(leaf, path->slots[0],
2965 struct btrfs_chunk);
2966 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2967 btrfs_release_path(path);
8f18cf13 2968
2b82032c 2969 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 2970 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
2971 if (ret == -ENOSPC)
2972 failed++;
14586651
HS
2973 else
2974 BUG_ON(ret);
2b82032c 2975 }
0b246afa 2976 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 2977
2b82032c
YZ
2978 if (found_key.offset == 0)
2979 break;
2980 key.offset = found_key.offset - 1;
2981 }
2982 ret = 0;
ba1bf481
JB
2983 if (failed && !retried) {
2984 failed = 0;
2985 retried = true;
2986 goto again;
fae7f21c 2987 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
2988 ret = -ENOSPC;
2989 }
2b82032c
YZ
2990error:
2991 btrfs_free_path(path);
2992 return ret;
8f18cf13
CM
2993}
2994
a6f93c71
LB
2995/*
2996 * return 1 : allocate a data chunk successfully,
2997 * return <0: errors during allocating a data chunk,
2998 * return 0 : no need to allocate a data chunk.
2999 */
3000static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3001 u64 chunk_offset)
3002{
32da5386 3003 struct btrfs_block_group *cache;
a6f93c71
LB
3004 u64 bytes_used;
3005 u64 chunk_type;
3006
3007 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3008 ASSERT(cache);
3009 chunk_type = cache->flags;
3010 btrfs_put_block_group(cache);
3011
5ae21692
JT
3012 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3013 return 0;
3014
3015 spin_lock(&fs_info->data_sinfo->lock);
3016 bytes_used = fs_info->data_sinfo->bytes_used;
3017 spin_unlock(&fs_info->data_sinfo->lock);
3018
3019 if (!bytes_used) {
3020 struct btrfs_trans_handle *trans;
3021 int ret;
3022
3023 trans = btrfs_join_transaction(fs_info->tree_root);
3024 if (IS_ERR(trans))
3025 return PTR_ERR(trans);
3026
3027 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3028 btrfs_end_transaction(trans);
3029 if (ret < 0)
3030 return ret;
3031 return 1;
a6f93c71 3032 }
5ae21692 3033
a6f93c71
LB
3034 return 0;
3035}
3036
6bccf3ab 3037static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3038 struct btrfs_balance_control *bctl)
3039{
6bccf3ab 3040 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3041 struct btrfs_trans_handle *trans;
3042 struct btrfs_balance_item *item;
3043 struct btrfs_disk_balance_args disk_bargs;
3044 struct btrfs_path *path;
3045 struct extent_buffer *leaf;
3046 struct btrfs_key key;
3047 int ret, err;
3048
3049 path = btrfs_alloc_path();
3050 if (!path)
3051 return -ENOMEM;
3052
3053 trans = btrfs_start_transaction(root, 0);
3054 if (IS_ERR(trans)) {
3055 btrfs_free_path(path);
3056 return PTR_ERR(trans);
3057 }
3058
3059 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3060 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3061 key.offset = 0;
3062
3063 ret = btrfs_insert_empty_item(trans, root, path, &key,
3064 sizeof(*item));
3065 if (ret)
3066 goto out;
3067
3068 leaf = path->nodes[0];
3069 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3070
b159fa28 3071 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3072
3073 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3074 btrfs_set_balance_data(leaf, item, &disk_bargs);
3075 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3076 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3077 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3078 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3079
3080 btrfs_set_balance_flags(leaf, item, bctl->flags);
3081
3082 btrfs_mark_buffer_dirty(leaf);
3083out:
3084 btrfs_free_path(path);
3a45bb20 3085 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3086 if (err && !ret)
3087 ret = err;
3088 return ret;
3089}
3090
6bccf3ab 3091static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3092{
6bccf3ab 3093 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3094 struct btrfs_trans_handle *trans;
3095 struct btrfs_path *path;
3096 struct btrfs_key key;
3097 int ret, err;
3098
3099 path = btrfs_alloc_path();
3100 if (!path)
3101 return -ENOMEM;
3102
3103 trans = btrfs_start_transaction(root, 0);
3104 if (IS_ERR(trans)) {
3105 btrfs_free_path(path);
3106 return PTR_ERR(trans);
3107 }
3108
3109 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3110 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3111 key.offset = 0;
3112
3113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3114 if (ret < 0)
3115 goto out;
3116 if (ret > 0) {
3117 ret = -ENOENT;
3118 goto out;
3119 }
3120
3121 ret = btrfs_del_item(trans, root, path);
3122out:
3123 btrfs_free_path(path);
3a45bb20 3124 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3125 if (err && !ret)
3126 ret = err;
3127 return ret;
3128}
3129
59641015
ID
3130/*
3131 * This is a heuristic used to reduce the number of chunks balanced on
3132 * resume after balance was interrupted.
3133 */
3134static void update_balance_args(struct btrfs_balance_control *bctl)
3135{
3136 /*
3137 * Turn on soft mode for chunk types that were being converted.
3138 */
3139 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3141 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3142 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3143 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3144 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3145
3146 /*
3147 * Turn on usage filter if is not already used. The idea is
3148 * that chunks that we have already balanced should be
3149 * reasonably full. Don't do it for chunks that are being
3150 * converted - that will keep us from relocating unconverted
3151 * (albeit full) chunks.
3152 */
3153 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3154 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3155 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3156 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3157 bctl->data.usage = 90;
3158 }
3159 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3160 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3161 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163 bctl->sys.usage = 90;
3164 }
3165 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3166 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3167 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3168 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3169 bctl->meta.usage = 90;
3170 }
3171}
3172
149196a2
DS
3173/*
3174 * Clear the balance status in fs_info and delete the balance item from disk.
3175 */
3176static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3177{
3178 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3179 int ret;
c9e9f97b
ID
3180
3181 BUG_ON(!fs_info->balance_ctl);
3182
3183 spin_lock(&fs_info->balance_lock);
3184 fs_info->balance_ctl = NULL;
3185 spin_unlock(&fs_info->balance_lock);
3186
3187 kfree(bctl);
149196a2
DS
3188 ret = del_balance_item(fs_info);
3189 if (ret)
3190 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3191}
3192
ed25e9b2
ID
3193/*
3194 * Balance filters. Return 1 if chunk should be filtered out
3195 * (should not be balanced).
3196 */
899c81ea 3197static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3198 struct btrfs_balance_args *bargs)
3199{
899c81ea
ID
3200 chunk_type = chunk_to_extended(chunk_type) &
3201 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3202
899c81ea 3203 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3204 return 0;
3205
3206 return 1;
3207}
3208
dba72cb3 3209static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3210 struct btrfs_balance_args *bargs)
bc309467 3211{
32da5386 3212 struct btrfs_block_group *cache;
bc309467
DS
3213 u64 chunk_used;
3214 u64 user_thresh_min;
3215 u64 user_thresh_max;
3216 int ret = 1;
3217
3218 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3219 chunk_used = cache->used;
bc309467
DS
3220
3221 if (bargs->usage_min == 0)
3222 user_thresh_min = 0;
3223 else
b3470b5d
DS
3224 user_thresh_min = div_factor_fine(cache->length,
3225 bargs->usage_min);
bc309467
DS
3226
3227 if (bargs->usage_max == 0)
3228 user_thresh_max = 1;
3229 else if (bargs->usage_max > 100)
b3470b5d 3230 user_thresh_max = cache->length;
bc309467 3231 else
b3470b5d
DS
3232 user_thresh_max = div_factor_fine(cache->length,
3233 bargs->usage_max);
bc309467
DS
3234
3235 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3236 ret = 0;
3237
3238 btrfs_put_block_group(cache);
3239 return ret;
3240}
3241
dba72cb3 3242static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3243 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3244{
32da5386 3245 struct btrfs_block_group *cache;
5ce5b3c0
ID
3246 u64 chunk_used, user_thresh;
3247 int ret = 1;
3248
3249 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3250 chunk_used = cache->used;
5ce5b3c0 3251
bc309467 3252 if (bargs->usage_min == 0)
3e39cea6 3253 user_thresh = 1;
a105bb88 3254 else if (bargs->usage > 100)
b3470b5d 3255 user_thresh = cache->length;
a105bb88 3256 else
b3470b5d 3257 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3258
5ce5b3c0
ID
3259 if (chunk_used < user_thresh)
3260 ret = 0;
3261
3262 btrfs_put_block_group(cache);
3263 return ret;
3264}
3265
409d404b
ID
3266static int chunk_devid_filter(struct extent_buffer *leaf,
3267 struct btrfs_chunk *chunk,
3268 struct btrfs_balance_args *bargs)
3269{
3270 struct btrfs_stripe *stripe;
3271 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3272 int i;
3273
3274 for (i = 0; i < num_stripes; i++) {
3275 stripe = btrfs_stripe_nr(chunk, i);
3276 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3277 return 0;
3278 }
3279
3280 return 1;
3281}
3282
946c9256
DS
3283static u64 calc_data_stripes(u64 type, int num_stripes)
3284{
3285 const int index = btrfs_bg_flags_to_raid_index(type);
3286 const int ncopies = btrfs_raid_array[index].ncopies;
3287 const int nparity = btrfs_raid_array[index].nparity;
3288
3289 if (nparity)
3290 return num_stripes - nparity;
3291 else
3292 return num_stripes / ncopies;
3293}
3294
94e60d5a
ID
3295/* [pstart, pend) */
3296static int chunk_drange_filter(struct extent_buffer *leaf,
3297 struct btrfs_chunk *chunk,
94e60d5a
ID
3298 struct btrfs_balance_args *bargs)
3299{
3300 struct btrfs_stripe *stripe;
3301 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3302 u64 stripe_offset;
3303 u64 stripe_length;
946c9256 3304 u64 type;
94e60d5a
ID
3305 int factor;
3306 int i;
3307
3308 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3309 return 0;
3310
946c9256
DS
3311 type = btrfs_chunk_type(leaf, chunk);
3312 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3313
3314 for (i = 0; i < num_stripes; i++) {
3315 stripe = btrfs_stripe_nr(chunk, i);
3316 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3317 continue;
3318
3319 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3320 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3321 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3322
3323 if (stripe_offset < bargs->pend &&
3324 stripe_offset + stripe_length > bargs->pstart)
3325 return 0;
3326 }
3327
3328 return 1;
3329}
3330
ea67176a
ID
3331/* [vstart, vend) */
3332static int chunk_vrange_filter(struct extent_buffer *leaf,
3333 struct btrfs_chunk *chunk,
3334 u64 chunk_offset,
3335 struct btrfs_balance_args *bargs)
3336{
3337 if (chunk_offset < bargs->vend &&
3338 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3339 /* at least part of the chunk is inside this vrange */
3340 return 0;
3341
3342 return 1;
3343}
3344
dee32d0a
GAP
3345static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3346 struct btrfs_chunk *chunk,
3347 struct btrfs_balance_args *bargs)
3348{
3349 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3350
3351 if (bargs->stripes_min <= num_stripes
3352 && num_stripes <= bargs->stripes_max)
3353 return 0;
3354
3355 return 1;
3356}
3357
899c81ea 3358static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3359 struct btrfs_balance_args *bargs)
3360{
3361 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3362 return 0;
3363
899c81ea
ID
3364 chunk_type = chunk_to_extended(chunk_type) &
3365 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3366
899c81ea 3367 if (bargs->target == chunk_type)
cfa4c961
ID
3368 return 1;
3369
3370 return 0;
3371}
3372
6ec0896c 3373static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3374 struct btrfs_chunk *chunk, u64 chunk_offset)
3375{
6ec0896c 3376 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3377 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3378 struct btrfs_balance_args *bargs = NULL;
3379 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3380
3381 /* type filter */
3382 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3383 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3384 return 0;
3385 }
3386
3387 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3388 bargs = &bctl->data;
3389 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3390 bargs = &bctl->sys;
3391 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3392 bargs = &bctl->meta;
3393
ed25e9b2
ID
3394 /* profiles filter */
3395 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3396 chunk_profiles_filter(chunk_type, bargs)) {
3397 return 0;
5ce5b3c0
ID
3398 }
3399
3400 /* usage filter */
3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3402 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3403 return 0;
bc309467 3404 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3405 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3406 return 0;
409d404b
ID
3407 }
3408
3409 /* devid filter */
3410 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3411 chunk_devid_filter(leaf, chunk, bargs)) {
3412 return 0;
94e60d5a
ID
3413 }
3414
3415 /* drange filter, makes sense only with devid filter */
3416 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3417 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3418 return 0;
ea67176a
ID
3419 }
3420
3421 /* vrange filter */
3422 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3423 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3424 return 0;
ed25e9b2
ID
3425 }
3426
dee32d0a
GAP
3427 /* stripes filter */
3428 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3429 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3430 return 0;
3431 }
3432
cfa4c961
ID
3433 /* soft profile changing mode */
3434 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3435 chunk_soft_convert_filter(chunk_type, bargs)) {
3436 return 0;
3437 }
3438
7d824b6f
DS
3439 /*
3440 * limited by count, must be the last filter
3441 */
3442 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3443 if (bargs->limit == 0)
3444 return 0;
3445 else
3446 bargs->limit--;
12907fc7
DS
3447 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3448 /*
3449 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3450 * determined here because we do not have the global information
12907fc7
DS
3451 * about the count of all chunks that satisfy the filters.
3452 */
3453 if (bargs->limit_max == 0)
3454 return 0;
3455 else
3456 bargs->limit_max--;
7d824b6f
DS
3457 }
3458
f43ffb60
ID
3459 return 1;
3460}
3461
c9e9f97b 3462static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3463{
19a39dce 3464 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3465 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3466 u64 chunk_type;
f43ffb60 3467 struct btrfs_chunk *chunk;
5a488b9d 3468 struct btrfs_path *path = NULL;
ec44a35c 3469 struct btrfs_key key;
ec44a35c 3470 struct btrfs_key found_key;
f43ffb60
ID
3471 struct extent_buffer *leaf;
3472 int slot;
c9e9f97b
ID
3473 int ret;
3474 int enospc_errors = 0;
19a39dce 3475 bool counting = true;
12907fc7 3476 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3477 u64 limit_data = bctl->data.limit;
3478 u64 limit_meta = bctl->meta.limit;
3479 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3480 u32 count_data = 0;
3481 u32 count_meta = 0;
3482 u32 count_sys = 0;
2c9fe835 3483 int chunk_reserved = 0;
ec44a35c 3484
ec44a35c 3485 path = btrfs_alloc_path();
17e9f796
MF
3486 if (!path) {
3487 ret = -ENOMEM;
3488 goto error;
3489 }
19a39dce
ID
3490
3491 /* zero out stat counters */
3492 spin_lock(&fs_info->balance_lock);
3493 memset(&bctl->stat, 0, sizeof(bctl->stat));
3494 spin_unlock(&fs_info->balance_lock);
3495again:
7d824b6f 3496 if (!counting) {
12907fc7
DS
3497 /*
3498 * The single value limit and min/max limits use the same bytes
3499 * in the
3500 */
7d824b6f
DS
3501 bctl->data.limit = limit_data;
3502 bctl->meta.limit = limit_meta;
3503 bctl->sys.limit = limit_sys;
3504 }
ec44a35c
CM
3505 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3506 key.offset = (u64)-1;
3507 key.type = BTRFS_CHUNK_ITEM_KEY;
3508
d397712b 3509 while (1) {
19a39dce 3510 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3511 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3512 ret = -ECANCELED;
3513 goto error;
3514 }
3515
67c5e7d4 3516 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3517 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3518 if (ret < 0) {
3519 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3520 goto error;
67c5e7d4 3521 }
ec44a35c
CM
3522
3523 /*
3524 * this shouldn't happen, it means the last relocate
3525 * failed
3526 */
3527 if (ret == 0)
c9e9f97b 3528 BUG(); /* FIXME break ? */
ec44a35c
CM
3529
3530 ret = btrfs_previous_item(chunk_root, path, 0,
3531 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3532 if (ret) {
67c5e7d4 3533 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3534 ret = 0;
ec44a35c 3535 break;
c9e9f97b 3536 }
7d9eb12c 3537
f43ffb60
ID
3538 leaf = path->nodes[0];
3539 slot = path->slots[0];
3540 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3541
67c5e7d4
FM
3542 if (found_key.objectid != key.objectid) {
3543 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3544 break;
67c5e7d4 3545 }
7d9eb12c 3546
f43ffb60 3547 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3548 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3549
19a39dce
ID
3550 if (!counting) {
3551 spin_lock(&fs_info->balance_lock);
3552 bctl->stat.considered++;
3553 spin_unlock(&fs_info->balance_lock);
3554 }
3555
6ec0896c 3556 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3557
b3b4aa74 3558 btrfs_release_path(path);
67c5e7d4
FM
3559 if (!ret) {
3560 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3561 goto loop;
67c5e7d4 3562 }
f43ffb60 3563
19a39dce 3564 if (counting) {
67c5e7d4 3565 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3566 spin_lock(&fs_info->balance_lock);
3567 bctl->stat.expected++;
3568 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3569
3570 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3571 count_data++;
3572 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3573 count_sys++;
3574 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3575 count_meta++;
3576
3577 goto loop;
3578 }
3579
3580 /*
3581 * Apply limit_min filter, no need to check if the LIMITS
3582 * filter is used, limit_min is 0 by default
3583 */
3584 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3585 count_data < bctl->data.limit_min)
3586 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3587 count_meta < bctl->meta.limit_min)
3588 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3589 count_sys < bctl->sys.limit_min)) {
3590 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3591 goto loop;
3592 }
3593
a6f93c71
LB
3594 if (!chunk_reserved) {
3595 /*
3596 * We may be relocating the only data chunk we have,
3597 * which could potentially end up with losing data's
3598 * raid profile, so lets allocate an empty one in
3599 * advance.
3600 */
3601 ret = btrfs_may_alloc_data_chunk(fs_info,
3602 found_key.offset);
2c9fe835
ZL
3603 if (ret < 0) {
3604 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3605 goto error;
a6f93c71
LB
3606 } else if (ret == 1) {
3607 chunk_reserved = 1;
2c9fe835 3608 }
2c9fe835
ZL
3609 }
3610
5b4aacef 3611 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3612 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce 3613 if (ret == -ENOSPC) {
c9e9f97b 3614 enospc_errors++;
eede2bf3
OS
3615 } else if (ret == -ETXTBSY) {
3616 btrfs_info(fs_info,
3617 "skipping relocation of block group %llu due to active swapfile",
3618 found_key.offset);
3619 ret = 0;
3620 } else if (ret) {
3621 goto error;
19a39dce
ID
3622 } else {
3623 spin_lock(&fs_info->balance_lock);
3624 bctl->stat.completed++;
3625 spin_unlock(&fs_info->balance_lock);
3626 }
f43ffb60 3627loop:
795a3321
ID
3628 if (found_key.offset == 0)
3629 break;
ba1bf481 3630 key.offset = found_key.offset - 1;
ec44a35c 3631 }
c9e9f97b 3632
19a39dce
ID
3633 if (counting) {
3634 btrfs_release_path(path);
3635 counting = false;
3636 goto again;
3637 }
ec44a35c
CM
3638error:
3639 btrfs_free_path(path);
c9e9f97b 3640 if (enospc_errors) {
efe120a0 3641 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3642 enospc_errors);
c9e9f97b
ID
3643 if (!ret)
3644 ret = -ENOSPC;
3645 }
3646
ec44a35c
CM
3647 return ret;
3648}
3649
0c460c0d
ID
3650/**
3651 * alloc_profile_is_valid - see if a given profile is valid and reduced
3652 * @flags: profile to validate
3653 * @extended: if true @flags is treated as an extended profile
3654 */
3655static int alloc_profile_is_valid(u64 flags, int extended)
3656{
3657 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3658 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3659
3660 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3661
3662 /* 1) check that all other bits are zeroed */
3663 if (flags & ~mask)
3664 return 0;
3665
3666 /* 2) see if profile is reduced */
3667 if (flags == 0)
3668 return !extended; /* "0" is valid for usual profiles */
3669
c1499166 3670 return has_single_bit_set(flags);
0c460c0d
ID
3671}
3672
837d5b6e
ID
3673static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3674{
a7e99c69
ID
3675 /* cancel requested || normal exit path */
3676 return atomic_read(&fs_info->balance_cancel_req) ||
3677 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3678 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3679}
3680
bdcd3c97
AM
3681/* Non-zero return value signifies invalidity */
3682static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3683 u64 allowed)
3684{
3685 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3686 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3687 (bctl_arg->target & ~allowed)));
3688}
3689
56fc37d9
AJ
3690/*
3691 * Fill @buf with textual description of balance filter flags @bargs, up to
3692 * @size_buf including the terminating null. The output may be trimmed if it
3693 * does not fit into the provided buffer.
3694 */
3695static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3696 u32 size_buf)
3697{
3698 int ret;
3699 u32 size_bp = size_buf;
3700 char *bp = buf;
3701 u64 flags = bargs->flags;
3702 char tmp_buf[128] = {'\0'};
3703
3704 if (!flags)
3705 return;
3706
3707#define CHECK_APPEND_NOARG(a) \
3708 do { \
3709 ret = snprintf(bp, size_bp, (a)); \
3710 if (ret < 0 || ret >= size_bp) \
3711 goto out_overflow; \
3712 size_bp -= ret; \
3713 bp += ret; \
3714 } while (0)
3715
3716#define CHECK_APPEND_1ARG(a, v1) \
3717 do { \
3718 ret = snprintf(bp, size_bp, (a), (v1)); \
3719 if (ret < 0 || ret >= size_bp) \
3720 goto out_overflow; \
3721 size_bp -= ret; \
3722 bp += ret; \
3723 } while (0)
3724
3725#define CHECK_APPEND_2ARG(a, v1, v2) \
3726 do { \
3727 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3728 if (ret < 0 || ret >= size_bp) \
3729 goto out_overflow; \
3730 size_bp -= ret; \
3731 bp += ret; \
3732 } while (0)
3733
158da513
DS
3734 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3735 CHECK_APPEND_1ARG("convert=%s,",
3736 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
3737
3738 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3739 CHECK_APPEND_NOARG("soft,");
3740
3741 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3742 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3743 sizeof(tmp_buf));
3744 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3745 }
3746
3747 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3748 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3749
3750 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3751 CHECK_APPEND_2ARG("usage=%u..%u,",
3752 bargs->usage_min, bargs->usage_max);
3753
3754 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3755 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3756
3757 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3758 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3759 bargs->pstart, bargs->pend);
3760
3761 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3762 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3763 bargs->vstart, bargs->vend);
3764
3765 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3766 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3767
3768 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3769 CHECK_APPEND_2ARG("limit=%u..%u,",
3770 bargs->limit_min, bargs->limit_max);
3771
3772 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3773 CHECK_APPEND_2ARG("stripes=%u..%u,",
3774 bargs->stripes_min, bargs->stripes_max);
3775
3776#undef CHECK_APPEND_2ARG
3777#undef CHECK_APPEND_1ARG
3778#undef CHECK_APPEND_NOARG
3779
3780out_overflow:
3781
3782 if (size_bp < size_buf)
3783 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3784 else
3785 buf[0] = '\0';
3786}
3787
3788static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3789{
3790 u32 size_buf = 1024;
3791 char tmp_buf[192] = {'\0'};
3792 char *buf;
3793 char *bp;
3794 u32 size_bp = size_buf;
3795 int ret;
3796 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3797
3798 buf = kzalloc(size_buf, GFP_KERNEL);
3799 if (!buf)
3800 return;
3801
3802 bp = buf;
3803
3804#define CHECK_APPEND_1ARG(a, v1) \
3805 do { \
3806 ret = snprintf(bp, size_bp, (a), (v1)); \
3807 if (ret < 0 || ret >= size_bp) \
3808 goto out_overflow; \
3809 size_bp -= ret; \
3810 bp += ret; \
3811 } while (0)
3812
3813 if (bctl->flags & BTRFS_BALANCE_FORCE)
3814 CHECK_APPEND_1ARG("%s", "-f ");
3815
3816 if (bctl->flags & BTRFS_BALANCE_DATA) {
3817 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3818 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3819 }
3820
3821 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3822 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3823 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3824 }
3825
3826 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3827 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3828 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3829 }
3830
3831#undef CHECK_APPEND_1ARG
3832
3833out_overflow:
3834
3835 if (size_bp < size_buf)
3836 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3837 btrfs_info(fs_info, "balance: %s %s",
3838 (bctl->flags & BTRFS_BALANCE_RESUME) ?
3839 "resume" : "start", buf);
3840
3841 kfree(buf);
3842}
3843
c9e9f97b 3844/*
dccdb07b 3845 * Should be called with balance mutexe held
c9e9f97b 3846 */
6fcf6e2b
DS
3847int btrfs_balance(struct btrfs_fs_info *fs_info,
3848 struct btrfs_balance_control *bctl,
c9e9f97b
ID
3849 struct btrfs_ioctl_balance_args *bargs)
3850{
14506127 3851 u64 meta_target, data_target;
f43ffb60 3852 u64 allowed;
e4837f8f 3853 int mixed = 0;
c9e9f97b 3854 int ret;
8dabb742 3855 u64 num_devices;
de98ced9 3856 unsigned seq;
e62869be 3857 bool reducing_redundancy;
081db89b 3858 int i;
c9e9f97b 3859
837d5b6e 3860 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3861 atomic_read(&fs_info->balance_pause_req) ||
3862 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3863 ret = -EINVAL;
3864 goto out;
3865 }
3866
e4837f8f
ID
3867 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3868 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3869 mixed = 1;
3870
f43ffb60
ID
3871 /*
3872 * In case of mixed groups both data and meta should be picked,
3873 * and identical options should be given for both of them.
3874 */
e4837f8f
ID
3875 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3876 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3877 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3878 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3879 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 3880 btrfs_err(fs_info,
6dac13f8 3881 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
3882 ret = -EINVAL;
3883 goto out;
3884 }
3885 }
3886
b35cf1f0
JB
3887 /*
3888 * rw_devices will not change at the moment, device add/delete/replace
3889 * are excluded by EXCL_OP
3890 */
3891 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
3892
3893 /*
3894 * SINGLE profile on-disk has no profile bit, but in-memory we have a
3895 * special bit for it, to make it easier to distinguish. Thus we need
3896 * to set it manually, or balance would refuse the profile.
3897 */
3898 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
3899 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
3900 if (num_devices >= btrfs_raid_array[i].devs_min)
3901 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 3902
bdcd3c97 3903 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e 3904 btrfs_err(fs_info,
6dac13f8 3905 "balance: invalid convert data profile %s",
158da513 3906 btrfs_bg_type_to_raid_name(bctl->data.target));
e4d8ec0f
ID
3907 ret = -EINVAL;
3908 goto out;
3909 }
bdcd3c97 3910 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3911 btrfs_err(fs_info,
6dac13f8 3912 "balance: invalid convert metadata profile %s",
158da513 3913 btrfs_bg_type_to_raid_name(bctl->meta.target));
e4d8ec0f
ID
3914 ret = -EINVAL;
3915 goto out;
3916 }
bdcd3c97 3917 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3918 btrfs_err(fs_info,
6dac13f8 3919 "balance: invalid convert system profile %s",
158da513 3920 btrfs_bg_type_to_raid_name(bctl->sys.target));
e4d8ec0f
ID
3921 ret = -EINVAL;
3922 goto out;
3923 }
3924
6079e12c
DS
3925 /*
3926 * Allow to reduce metadata or system integrity only if force set for
3927 * profiles with redundancy (copies, parity)
3928 */
3929 allowed = 0;
3930 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
3931 if (btrfs_raid_array[i].ncopies >= 2 ||
3932 btrfs_raid_array[i].tolerated_failures >= 1)
3933 allowed |= btrfs_raid_array[i].bg_flag;
3934 }
de98ced9
MX
3935 do {
3936 seq = read_seqbegin(&fs_info->profiles_lock);
3937
3938 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3939 (fs_info->avail_system_alloc_bits & allowed) &&
3940 !(bctl->sys.target & allowed)) ||
3941 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3942 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 3943 !(bctl->meta.target & allowed)))
e62869be 3944 reducing_redundancy = true;
5a8067c0 3945 else
e62869be 3946 reducing_redundancy = false;
5a8067c0
FM
3947
3948 /* if we're not converting, the target field is uninitialized */
3949 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3950 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3951 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3952 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 3953 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3954
e62869be 3955 if (reducing_redundancy) {
5a8067c0
FM
3956 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3957 btrfs_info(fs_info,
e62869be 3958 "balance: force reducing metadata redundancy");
5a8067c0
FM
3959 } else {
3960 btrfs_err(fs_info,
e62869be 3961 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
3962 ret = -EINVAL;
3963 goto out;
3964 }
3965 }
3966
14506127
AB
3967 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3968 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3969 btrfs_warn(fs_info,
6dac13f8 3970 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
3971 btrfs_bg_type_to_raid_name(meta_target),
3972 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
3973 }
3974
9e967495
FM
3975 if (fs_info->send_in_progress) {
3976 btrfs_warn_rl(fs_info,
3977"cannot run balance while send operations are in progress (%d in progress)",
3978 fs_info->send_in_progress);
3979 ret = -EAGAIN;
3980 goto out;
3981 }
3982
6bccf3ab 3983 ret = insert_balance_item(fs_info, bctl);
59641015 3984 if (ret && ret != -EEXIST)
0940ebf6
ID
3985 goto out;
3986
59641015
ID
3987 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3988 BUG_ON(ret == -EEXIST);
833aae18
DS
3989 BUG_ON(fs_info->balance_ctl);
3990 spin_lock(&fs_info->balance_lock);
3991 fs_info->balance_ctl = bctl;
3992 spin_unlock(&fs_info->balance_lock);
59641015
ID
3993 } else {
3994 BUG_ON(ret != -EEXIST);
3995 spin_lock(&fs_info->balance_lock);
3996 update_balance_args(bctl);
3997 spin_unlock(&fs_info->balance_lock);
3998 }
c9e9f97b 3999
3009a62f
DS
4000 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4001 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4002 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4003 mutex_unlock(&fs_info->balance_mutex);
4004
4005 ret = __btrfs_balance(fs_info);
4006
4007 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4008 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4009 btrfs_info(fs_info, "balance: paused");
4010 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4011 btrfs_info(fs_info, "balance: canceled");
4012 else
4013 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4014
3009a62f 4015 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4016
4017 if (bargs) {
4018 memset(bargs, 0, sizeof(*bargs));
008ef096 4019 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4020 }
4021
3a01aa7a
ID
4022 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4023 balance_need_close(fs_info)) {
149196a2 4024 reset_balance_state(fs_info);
a17c95df 4025 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3a01aa7a
ID
4026 }
4027
837d5b6e 4028 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4029
4030 return ret;
4031out:
59641015 4032 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4033 reset_balance_state(fs_info);
a17c95df 4034 else
59641015 4035 kfree(bctl);
a17c95df
DS
4036 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4037
59641015
ID
4038 return ret;
4039}
4040
4041static int balance_kthread(void *data)
4042{
2b6ba629 4043 struct btrfs_fs_info *fs_info = data;
9555c6c1 4044 int ret = 0;
59641015 4045
59641015 4046 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4047 if (fs_info->balance_ctl)
6fcf6e2b 4048 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4049 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4050
59641015
ID
4051 return ret;
4052}
4053
2b6ba629
ID
4054int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4055{
4056 struct task_struct *tsk;
4057
1354e1a1 4058 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4059 if (!fs_info->balance_ctl) {
1354e1a1 4060 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4061 return 0;
4062 }
1354e1a1 4063 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4064
3cdde224 4065 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4066 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4067 return 0;
4068 }
4069
02ee654d
AJ
4070 /*
4071 * A ro->rw remount sequence should continue with the paused balance
4072 * regardless of who pauses it, system or the user as of now, so set
4073 * the resume flag.
4074 */
4075 spin_lock(&fs_info->balance_lock);
4076 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4077 spin_unlock(&fs_info->balance_lock);
4078
2b6ba629 4079 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4080 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4081}
4082
68310a5e 4083int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4084{
59641015
ID
4085 struct btrfs_balance_control *bctl;
4086 struct btrfs_balance_item *item;
4087 struct btrfs_disk_balance_args disk_bargs;
4088 struct btrfs_path *path;
4089 struct extent_buffer *leaf;
4090 struct btrfs_key key;
4091 int ret;
4092
4093 path = btrfs_alloc_path();
4094 if (!path)
4095 return -ENOMEM;
4096
59641015 4097 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4098 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4099 key.offset = 0;
4100
68310a5e 4101 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4102 if (ret < 0)
68310a5e 4103 goto out;
59641015
ID
4104 if (ret > 0) { /* ret = -ENOENT; */
4105 ret = 0;
68310a5e
ID
4106 goto out;
4107 }
4108
4109 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4110 if (!bctl) {
4111 ret = -ENOMEM;
4112 goto out;
59641015
ID
4113 }
4114
4115 leaf = path->nodes[0];
4116 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4117
68310a5e
ID
4118 bctl->flags = btrfs_balance_flags(leaf, item);
4119 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4120
4121 btrfs_balance_data(leaf, item, &disk_bargs);
4122 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4123 btrfs_balance_meta(leaf, item, &disk_bargs);
4124 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4125 btrfs_balance_sys(leaf, item, &disk_bargs);
4126 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4127
eee95e3f
DS
4128 /*
4129 * This should never happen, as the paused balance state is recovered
4130 * during mount without any chance of other exclusive ops to collide.
4131 *
4132 * This gives the exclusive op status to balance and keeps in paused
4133 * state until user intervention (cancel or umount). If the ownership
4134 * cannot be assigned, show a message but do not fail. The balance
4135 * is in a paused state and must have fs_info::balance_ctl properly
4136 * set up.
4137 */
4138 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4139 btrfs_warn(fs_info,
6dac13f8 4140 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4141
68310a5e 4142 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4143 BUG_ON(fs_info->balance_ctl);
4144 spin_lock(&fs_info->balance_lock);
4145 fs_info->balance_ctl = bctl;
4146 spin_unlock(&fs_info->balance_lock);
68310a5e 4147 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4148out:
4149 btrfs_free_path(path);
ec44a35c
CM
4150 return ret;
4151}
4152
837d5b6e
ID
4153int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4154{
4155 int ret = 0;
4156
4157 mutex_lock(&fs_info->balance_mutex);
4158 if (!fs_info->balance_ctl) {
4159 mutex_unlock(&fs_info->balance_mutex);
4160 return -ENOTCONN;
4161 }
4162
3009a62f 4163 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4164 atomic_inc(&fs_info->balance_pause_req);
4165 mutex_unlock(&fs_info->balance_mutex);
4166
4167 wait_event(fs_info->balance_wait_q,
3009a62f 4168 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4169
4170 mutex_lock(&fs_info->balance_mutex);
4171 /* we are good with balance_ctl ripped off from under us */
3009a62f 4172 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4173 atomic_dec(&fs_info->balance_pause_req);
4174 } else {
4175 ret = -ENOTCONN;
4176 }
4177
4178 mutex_unlock(&fs_info->balance_mutex);
4179 return ret;
4180}
4181
a7e99c69
ID
4182int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4183{
4184 mutex_lock(&fs_info->balance_mutex);
4185 if (!fs_info->balance_ctl) {
4186 mutex_unlock(&fs_info->balance_mutex);
4187 return -ENOTCONN;
4188 }
4189
cf7d20f4
DS
4190 /*
4191 * A paused balance with the item stored on disk can be resumed at
4192 * mount time if the mount is read-write. Otherwise it's still paused
4193 * and we must not allow cancelling as it deletes the item.
4194 */
4195 if (sb_rdonly(fs_info->sb)) {
4196 mutex_unlock(&fs_info->balance_mutex);
4197 return -EROFS;
4198 }
4199
a7e99c69
ID
4200 atomic_inc(&fs_info->balance_cancel_req);
4201 /*
4202 * if we are running just wait and return, balance item is
4203 * deleted in btrfs_balance in this case
4204 */
3009a62f 4205 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4206 mutex_unlock(&fs_info->balance_mutex);
4207 wait_event(fs_info->balance_wait_q,
3009a62f 4208 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4209 mutex_lock(&fs_info->balance_mutex);
4210 } else {
a7e99c69 4211 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4212 /*
4213 * Lock released to allow other waiters to continue, we'll
4214 * reexamine the status again.
4215 */
a7e99c69
ID
4216 mutex_lock(&fs_info->balance_mutex);
4217
a17c95df 4218 if (fs_info->balance_ctl) {
149196a2 4219 reset_balance_state(fs_info);
a17c95df 4220 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
6dac13f8 4221 btrfs_info(fs_info, "balance: canceled");
a17c95df 4222 }
a7e99c69
ID
4223 }
4224
3009a62f
DS
4225 BUG_ON(fs_info->balance_ctl ||
4226 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4227 atomic_dec(&fs_info->balance_cancel_req);
4228 mutex_unlock(&fs_info->balance_mutex);
4229 return 0;
4230}
4231
803b2f54
SB
4232static int btrfs_uuid_scan_kthread(void *data)
4233{
4234 struct btrfs_fs_info *fs_info = data;
4235 struct btrfs_root *root = fs_info->tree_root;
4236 struct btrfs_key key;
803b2f54
SB
4237 struct btrfs_path *path = NULL;
4238 int ret = 0;
4239 struct extent_buffer *eb;
4240 int slot;
4241 struct btrfs_root_item root_item;
4242 u32 item_size;
f45388f3 4243 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4244
4245 path = btrfs_alloc_path();
4246 if (!path) {
4247 ret = -ENOMEM;
4248 goto out;
4249 }
4250
4251 key.objectid = 0;
4252 key.type = BTRFS_ROOT_ITEM_KEY;
4253 key.offset = 0;
4254
803b2f54 4255 while (1) {
7c829b72
AJ
4256 ret = btrfs_search_forward(root, &key, path,
4257 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4258 if (ret) {
4259 if (ret > 0)
4260 ret = 0;
4261 break;
4262 }
4263
4264 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4265 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4266 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4267 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4268 goto skip;
4269
4270 eb = path->nodes[0];
4271 slot = path->slots[0];
4272 item_size = btrfs_item_size_nr(eb, slot);
4273 if (item_size < sizeof(root_item))
4274 goto skip;
4275
803b2f54
SB
4276 read_extent_buffer(eb, &root_item,
4277 btrfs_item_ptr_offset(eb, slot),
4278 (int)sizeof(root_item));
4279 if (btrfs_root_refs(&root_item) == 0)
4280 goto skip;
f45388f3
FDBM
4281
4282 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4283 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4284 if (trans)
4285 goto update_tree;
4286
4287 btrfs_release_path(path);
803b2f54
SB
4288 /*
4289 * 1 - subvol uuid item
4290 * 1 - received_subvol uuid item
4291 */
4292 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4293 if (IS_ERR(trans)) {
4294 ret = PTR_ERR(trans);
4295 break;
4296 }
f45388f3
FDBM
4297 continue;
4298 } else {
4299 goto skip;
4300 }
4301update_tree:
4302 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4303 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4304 BTRFS_UUID_KEY_SUBVOL,
4305 key.objectid);
4306 if (ret < 0) {
efe120a0 4307 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4308 ret);
803b2f54
SB
4309 break;
4310 }
4311 }
4312
4313 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4314 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4315 root_item.received_uuid,
4316 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4317 key.objectid);
4318 if (ret < 0) {
efe120a0 4319 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4320 ret);
803b2f54
SB
4321 break;
4322 }
4323 }
4324
f45388f3 4325skip:
803b2f54 4326 if (trans) {
3a45bb20 4327 ret = btrfs_end_transaction(trans);
f45388f3 4328 trans = NULL;
803b2f54
SB
4329 if (ret)
4330 break;
4331 }
4332
803b2f54
SB
4333 btrfs_release_path(path);
4334 if (key.offset < (u64)-1) {
4335 key.offset++;
4336 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4337 key.offset = 0;
4338 key.type = BTRFS_ROOT_ITEM_KEY;
4339 } else if (key.objectid < (u64)-1) {
4340 key.offset = 0;
4341 key.type = BTRFS_ROOT_ITEM_KEY;
4342 key.objectid++;
4343 } else {
4344 break;
4345 }
4346 cond_resched();
4347 }
4348
4349out:
4350 btrfs_free_path(path);
f45388f3 4351 if (trans && !IS_ERR(trans))
3a45bb20 4352 btrfs_end_transaction(trans);
803b2f54 4353 if (ret)
efe120a0 4354 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4355 else
afcdd129 4356 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4357 up(&fs_info->uuid_tree_rescan_sem);
4358 return 0;
4359}
4360
70f80175
SB
4361/*
4362 * Callback for btrfs_uuid_tree_iterate().
4363 * returns:
4364 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4365 * < 0 if an error occurred.
70f80175
SB
4366 * > 0 if the check failed, which means the caller shall remove the entry.
4367 */
4368static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4369 u8 *uuid, u8 type, u64 subid)
4370{
4371 struct btrfs_key key;
4372 int ret = 0;
4373 struct btrfs_root *subvol_root;
4374
4375 if (type != BTRFS_UUID_KEY_SUBVOL &&
4376 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4377 goto out;
4378
4379 key.objectid = subid;
4380 key.type = BTRFS_ROOT_ITEM_KEY;
4381 key.offset = (u64)-1;
4382 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4383 if (IS_ERR(subvol_root)) {
4384 ret = PTR_ERR(subvol_root);
4385 if (ret == -ENOENT)
4386 ret = 1;
4387 goto out;
4388 }
4389
4390 switch (type) {
4391 case BTRFS_UUID_KEY_SUBVOL:
4392 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4393 ret = 1;
4394 break;
4395 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4396 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4397 BTRFS_UUID_SIZE))
4398 ret = 1;
4399 break;
4400 }
4401
4402out:
4403 return ret;
4404}
4405
4406static int btrfs_uuid_rescan_kthread(void *data)
4407{
4408 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4409 int ret;
4410
4411 /*
4412 * 1st step is to iterate through the existing UUID tree and
4413 * to delete all entries that contain outdated data.
4414 * 2nd step is to add all missing entries to the UUID tree.
4415 */
4416 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4417 if (ret < 0) {
efe120a0 4418 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4419 up(&fs_info->uuid_tree_rescan_sem);
4420 return ret;
4421 }
4422 return btrfs_uuid_scan_kthread(data);
4423}
4424
f7a81ea4
SB
4425int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4426{
4427 struct btrfs_trans_handle *trans;
4428 struct btrfs_root *tree_root = fs_info->tree_root;
4429 struct btrfs_root *uuid_root;
803b2f54
SB
4430 struct task_struct *task;
4431 int ret;
f7a81ea4
SB
4432
4433 /*
4434 * 1 - root node
4435 * 1 - root item
4436 */
4437 trans = btrfs_start_transaction(tree_root, 2);
4438 if (IS_ERR(trans))
4439 return PTR_ERR(trans);
4440
9b7a2440 4441 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4442 if (IS_ERR(uuid_root)) {
6d13f549 4443 ret = PTR_ERR(uuid_root);
66642832 4444 btrfs_abort_transaction(trans, ret);
3a45bb20 4445 btrfs_end_transaction(trans);
6d13f549 4446 return ret;
f7a81ea4
SB
4447 }
4448
4449 fs_info->uuid_root = uuid_root;
4450
3a45bb20 4451 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4452 if (ret)
4453 return ret;
4454
4455 down(&fs_info->uuid_tree_rescan_sem);
4456 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4457 if (IS_ERR(task)) {
70f80175 4458 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4459 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4460 up(&fs_info->uuid_tree_rescan_sem);
4461 return PTR_ERR(task);
4462 }
4463
4464 return 0;
f7a81ea4 4465}
803b2f54 4466
70f80175
SB
4467int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4468{
4469 struct task_struct *task;
4470
4471 down(&fs_info->uuid_tree_rescan_sem);
4472 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4473 if (IS_ERR(task)) {
4474 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4475 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4476 up(&fs_info->uuid_tree_rescan_sem);
4477 return PTR_ERR(task);
4478 }
4479
4480 return 0;
4481}
4482
8f18cf13
CM
4483/*
4484 * shrinking a device means finding all of the device extents past
4485 * the new size, and then following the back refs to the chunks.
4486 * The chunk relocation code actually frees the device extent
4487 */
4488int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4489{
0b246afa
JM
4490 struct btrfs_fs_info *fs_info = device->fs_info;
4491 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4492 struct btrfs_trans_handle *trans;
8f18cf13
CM
4493 struct btrfs_dev_extent *dev_extent = NULL;
4494 struct btrfs_path *path;
4495 u64 length;
8f18cf13
CM
4496 u64 chunk_offset;
4497 int ret;
4498 int slot;
ba1bf481
JB
4499 int failed = 0;
4500 bool retried = false;
8f18cf13
CM
4501 struct extent_buffer *l;
4502 struct btrfs_key key;
0b246afa 4503 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4504 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4505 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4506 u64 diff;
61d0d0d2 4507 u64 start;
7dfb8be1
NB
4508
4509 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4510 start = new_size;
0e4324a4 4511 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4512
401e29c1 4513 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4514 return -EINVAL;
4515
8f18cf13
CM
4516 path = btrfs_alloc_path();
4517 if (!path)
4518 return -ENOMEM;
4519
0338dff6 4520 path->reada = READA_BACK;
8f18cf13 4521
61d0d0d2
NB
4522 trans = btrfs_start_transaction(root, 0);
4523 if (IS_ERR(trans)) {
4524 btrfs_free_path(path);
4525 return PTR_ERR(trans);
4526 }
4527
34441361 4528 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4529
7cc8e58d 4530 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4531 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4532 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4533 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4534 }
61d0d0d2
NB
4535
4536 /*
4537 * Once the device's size has been set to the new size, ensure all
4538 * in-memory chunks are synced to disk so that the loop below sees them
4539 * and relocates them accordingly.
4540 */
1c11b63e 4541 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4542 mutex_unlock(&fs_info->chunk_mutex);
4543 ret = btrfs_commit_transaction(trans);
4544 if (ret)
4545 goto done;
4546 } else {
4547 mutex_unlock(&fs_info->chunk_mutex);
4548 btrfs_end_transaction(trans);
4549 }
8f18cf13 4550
ba1bf481 4551again:
8f18cf13
CM
4552 key.objectid = device->devid;
4553 key.offset = (u64)-1;
4554 key.type = BTRFS_DEV_EXTENT_KEY;
4555
213e64da 4556 do {
0b246afa 4557 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4558 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4559 if (ret < 0) {
0b246afa 4560 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4561 goto done;
67c5e7d4 4562 }
8f18cf13
CM
4563
4564 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4565 if (ret)
0b246afa 4566 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4567 if (ret < 0)
4568 goto done;
4569 if (ret) {
4570 ret = 0;
b3b4aa74 4571 btrfs_release_path(path);
bf1fb512 4572 break;
8f18cf13
CM
4573 }
4574
4575 l = path->nodes[0];
4576 slot = path->slots[0];
4577 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4578
ba1bf481 4579 if (key.objectid != device->devid) {
0b246afa 4580 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4581 btrfs_release_path(path);
bf1fb512 4582 break;
ba1bf481 4583 }
8f18cf13
CM
4584
4585 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4586 length = btrfs_dev_extent_length(l, dev_extent);
4587
ba1bf481 4588 if (key.offset + length <= new_size) {
0b246afa 4589 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4590 btrfs_release_path(path);
d6397bae 4591 break;
ba1bf481 4592 }
8f18cf13 4593
8f18cf13 4594 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4595 btrfs_release_path(path);
8f18cf13 4596
a6f93c71
LB
4597 /*
4598 * We may be relocating the only data chunk we have,
4599 * which could potentially end up with losing data's
4600 * raid profile, so lets allocate an empty one in
4601 * advance.
4602 */
4603 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4604 if (ret < 0) {
4605 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4606 goto done;
4607 }
4608
0b246afa
JM
4609 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4610 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
eede2bf3 4611 if (ret == -ENOSPC) {
ba1bf481 4612 failed++;
eede2bf3
OS
4613 } else if (ret) {
4614 if (ret == -ETXTBSY) {
4615 btrfs_warn(fs_info,
4616 "could not shrink block group %llu due to active swapfile",
4617 chunk_offset);
4618 }
4619 goto done;
4620 }
213e64da 4621 } while (key.offset-- > 0);
ba1bf481
JB
4622
4623 if (failed && !retried) {
4624 failed = 0;
4625 retried = true;
4626 goto again;
4627 } else if (failed && retried) {
4628 ret = -ENOSPC;
ba1bf481 4629 goto done;
8f18cf13
CM
4630 }
4631
d6397bae 4632 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4633 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4634 if (IS_ERR(trans)) {
4635 ret = PTR_ERR(trans);
4636 goto done;
4637 }
4638
34441361 4639 mutex_lock(&fs_info->chunk_mutex);
7cc8e58d 4640 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4641 if (list_empty(&device->post_commit_list))
4642 list_add_tail(&device->post_commit_list,
4643 &trans->transaction->dev_update_list);
d6397bae 4644
d6397bae 4645 WARN_ON(diff > old_total);
7dfb8be1
NB
4646 btrfs_set_super_total_bytes(super_copy,
4647 round_down(old_total - diff, fs_info->sectorsize));
34441361 4648 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4649
4650 /* Now btrfs_update_device() will change the on-disk size. */
4651 ret = btrfs_update_device(trans, device);
801660b0
AJ
4652 if (ret < 0) {
4653 btrfs_abort_transaction(trans, ret);
4654 btrfs_end_transaction(trans);
4655 } else {
4656 ret = btrfs_commit_transaction(trans);
4657 }
8f18cf13
CM
4658done:
4659 btrfs_free_path(path);
53e489bc 4660 if (ret) {
34441361 4661 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4662 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4663 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4664 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4665 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4666 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4667 }
8f18cf13
CM
4668 return ret;
4669}
4670
2ff7e61e 4671static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4672 struct btrfs_key *key,
4673 struct btrfs_chunk *chunk, int item_size)
4674{
0b246afa 4675 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4676 struct btrfs_disk_key disk_key;
4677 u32 array_size;
4678 u8 *ptr;
4679
34441361 4680 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4681 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4682 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4683 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4684 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4685 return -EFBIG;
fe48a5c0 4686 }
0b86a832
CM
4687
4688 ptr = super_copy->sys_chunk_array + array_size;
4689 btrfs_cpu_key_to_disk(&disk_key, key);
4690 memcpy(ptr, &disk_key, sizeof(disk_key));
4691 ptr += sizeof(disk_key);
4692 memcpy(ptr, chunk, item_size);
4693 item_size += sizeof(disk_key);
4694 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4695 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4696
0b86a832
CM
4697 return 0;
4698}
4699
73c5de00
AJ
4700/*
4701 * sort the devices in descending order by max_avail, total_avail
4702 */
4703static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4704{
73c5de00
AJ
4705 const struct btrfs_device_info *di_a = a;
4706 const struct btrfs_device_info *di_b = b;
9b3f68b9 4707
73c5de00 4708 if (di_a->max_avail > di_b->max_avail)
b2117a39 4709 return -1;
73c5de00 4710 if (di_a->max_avail < di_b->max_avail)
b2117a39 4711 return 1;
73c5de00
AJ
4712 if (di_a->total_avail > di_b->total_avail)
4713 return -1;
4714 if (di_a->total_avail < di_b->total_avail)
4715 return 1;
4716 return 0;
b2117a39 4717}
0b86a832 4718
53b381b3
DW
4719static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4720{
ffe2d203 4721 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4722 return;
4723
ceda0864 4724 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4725}
4726
cfbb825c
DS
4727static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4728{
4729 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4730 return;
4731
4732 btrfs_set_fs_incompat(info, RAID1C34);
4733}
4734
73c5de00 4735static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4736 u64 start, u64 type)
b2117a39 4737{
2ff7e61e 4738 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4739 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4740 struct btrfs_device *device;
73c5de00
AJ
4741 struct map_lookup *map = NULL;
4742 struct extent_map_tree *em_tree;
4743 struct extent_map *em;
4744 struct btrfs_device_info *devices_info = NULL;
4745 u64 total_avail;
4746 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4747 int data_stripes; /* number of stripes that count for
4748 block group size */
73c5de00
AJ
4749 int sub_stripes; /* sub_stripes info for map */
4750 int dev_stripes; /* stripes per dev */
4751 int devs_max; /* max devs to use */
4752 int devs_min; /* min devs needed */
4753 int devs_increment; /* ndevs has to be a multiple of this */
4754 int ncopies; /* how many copies to data has */
b50836ed
HK
4755 int nparity; /* number of stripes worth of bytes to
4756 store parity information */
73c5de00
AJ
4757 int ret;
4758 u64 max_stripe_size;
4759 u64 max_chunk_size;
4760 u64 stripe_size;
23f0ff1e 4761 u64 chunk_size;
73c5de00
AJ
4762 int ndevs;
4763 int i;
4764 int j;
31e50229 4765 int index;
593060d7 4766
0c460c0d 4767 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4768
4117f207
QW
4769 if (list_empty(&fs_devices->alloc_list)) {
4770 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4771 btrfs_debug(info, "%s: no writable device", __func__);
73c5de00 4772 return -ENOSPC;
4117f207 4773 }
b2117a39 4774
3e72ee88 4775 index = btrfs_bg_flags_to_raid_index(type);
73c5de00 4776
31e50229
LB
4777 sub_stripes = btrfs_raid_array[index].sub_stripes;
4778 dev_stripes = btrfs_raid_array[index].dev_stripes;
4779 devs_max = btrfs_raid_array[index].devs_max;
e3ecdb3f
DS
4780 if (!devs_max)
4781 devs_max = BTRFS_MAX_DEVS(info);
31e50229
LB
4782 devs_min = btrfs_raid_array[index].devs_min;
4783 devs_increment = btrfs_raid_array[index].devs_increment;
4784 ncopies = btrfs_raid_array[index].ncopies;
b50836ed 4785 nparity = btrfs_raid_array[index].nparity;
b2117a39 4786
9b3f68b9 4787 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4788 max_stripe_size = SZ_1G;
fce466ea 4789 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
9b3f68b9 4790 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4791 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4792 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4793 max_stripe_size = SZ_1G;
1100373f 4794 else
ee22184b 4795 max_stripe_size = SZ_256M;
73c5de00 4796 max_chunk_size = max_stripe_size;
a40a90a0 4797 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4798 max_stripe_size = SZ_32M;
73c5de00 4799 max_chunk_size = 2 * max_stripe_size;
c17add7a 4800 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
73c5de00 4801 } else {
351fd353 4802 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00 4803 type);
290342f6 4804 BUG();
9b3f68b9
CM
4805 }
4806
52042d8e 4807 /* We don't want a chunk larger than 10% of writable space */
2b82032c
YZ
4808 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4809 max_chunk_size);
9b3f68b9 4810
31e818fe 4811 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4812 GFP_NOFS);
4813 if (!devices_info)
4814 return -ENOMEM;
0cad8a11 4815
9f680ce0 4816 /*
73c5de00
AJ
4817 * in the first pass through the devices list, we gather information
4818 * about the available holes on each device.
9f680ce0 4819 */
73c5de00 4820 ndevs = 0;
ebcc9301 4821 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4822 u64 max_avail;
4823 u64 dev_offset;
b2117a39 4824
ebbede42 4825 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 4826 WARN(1, KERN_ERR
efe120a0 4827 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4828 continue;
4829 }
b2117a39 4830
e12c9621
AJ
4831 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4832 &device->dev_state) ||
401e29c1 4833 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 4834 continue;
b2117a39 4835
73c5de00
AJ
4836 if (device->total_bytes > device->bytes_used)
4837 total_avail = device->total_bytes - device->bytes_used;
4838 else
4839 total_avail = 0;
38c01b96 4840
4841 /* If there is no space on this device, skip it. */
4842 if (total_avail == 0)
4843 continue;
b2117a39 4844
60dfdf25 4845 ret = find_free_dev_extent(device,
73c5de00
AJ
4846 max_stripe_size * dev_stripes,
4847 &dev_offset, &max_avail);
4848 if (ret && ret != -ENOSPC)
4849 goto error;
b2117a39 4850
73c5de00
AJ
4851 if (ret == 0)
4852 max_avail = max_stripe_size * dev_stripes;
b2117a39 4853
4117f207
QW
4854 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4855 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4856 btrfs_debug(info,
4857 "%s: devid %llu has no free space, have=%llu want=%u",
4858 __func__, device->devid, max_avail,
4859 BTRFS_STRIPE_LEN * dev_stripes);
73c5de00 4860 continue;
4117f207 4861 }
b2117a39 4862
063d006f
ES
4863 if (ndevs == fs_devices->rw_devices) {
4864 WARN(1, "%s: found more than %llu devices\n",
4865 __func__, fs_devices->rw_devices);
4866 break;
4867 }
73c5de00
AJ
4868 devices_info[ndevs].dev_offset = dev_offset;
4869 devices_info[ndevs].max_avail = max_avail;
4870 devices_info[ndevs].total_avail = total_avail;
4871 devices_info[ndevs].dev = device;
4872 ++ndevs;
4873 }
b2117a39 4874
73c5de00
AJ
4875 /*
4876 * now sort the devices by hole size / available space
4877 */
4878 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4879 btrfs_cmp_device_info, NULL);
b2117a39 4880
47e6f742
DS
4881 /*
4882 * Round down to number of usable stripes, devs_increment can be any
4883 * number so we can't use round_down()
4884 */
4885 ndevs -= ndevs % devs_increment;
b2117a39 4886
ba89b802 4887 if (ndevs < devs_min) {
73c5de00 4888 ret = -ENOSPC;
4117f207
QW
4889 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4890 btrfs_debug(info,
4891 "%s: not enough devices with free space: have=%d minimum required=%d",
ba89b802 4892 __func__, ndevs, devs_min);
4117f207 4893 }
73c5de00 4894 goto error;
b2117a39 4895 }
9f680ce0 4896
f148ef4d
NB
4897 ndevs = min(ndevs, devs_max);
4898
73c5de00 4899 /*
92e222df
HK
4900 * The primary goal is to maximize the number of stripes, so use as
4901 * many devices as possible, even if the stripes are not maximum sized.
4902 *
4903 * The DUP profile stores more than one stripe per device, the
4904 * max_avail is the total size so we have to adjust.
73c5de00 4905 */
92e222df 4906 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
73c5de00 4907 num_stripes = ndevs * dev_stripes;
b2117a39 4908
53b381b3
DW
4909 /*
4910 * this will have to be fixed for RAID1 and RAID10 over
4911 * more drives
4912 */
b50836ed 4913 data_stripes = (num_stripes - nparity) / ncopies;
86db2578
CM
4914
4915 /*
4916 * Use the number of data stripes to figure out how big this chunk
4917 * is really going to be in terms of logical address space,
baf92114
HK
4918 * and compare that answer with the max chunk size. If it's higher,
4919 * we try to reduce stripe_size.
86db2578
CM
4920 */
4921 if (stripe_size * data_stripes > max_chunk_size) {
793ff2c8 4922 /*
baf92114
HK
4923 * Reduce stripe_size, round it up to a 16MB boundary again and
4924 * then use it, unless it ends up being even bigger than the
4925 * previous value we had already.
86db2578 4926 */
baf92114
HK
4927 stripe_size = min(round_up(div_u64(max_chunk_size,
4928 data_stripes), SZ_16M),
793ff2c8 4929 stripe_size);
86db2578
CM
4930 }
4931
37db63a4 4932 /* align to BTRFS_STRIPE_LEN */
500ceed8 4933 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
4934
4935 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4936 if (!map) {
4937 ret = -ENOMEM;
4938 goto error;
4939 }
4940 map->num_stripes = num_stripes;
9b3f68b9 4941
73c5de00
AJ
4942 for (i = 0; i < ndevs; ++i) {
4943 for (j = 0; j < dev_stripes; ++j) {
4944 int s = i * dev_stripes + j;
4945 map->stripes[s].dev = devices_info[i].dev;
4946 map->stripes[s].physical = devices_info[i].dev_offset +
4947 j * stripe_size;
6324fbf3 4948 }
6324fbf3 4949 }
500ceed8
NB
4950 map->stripe_len = BTRFS_STRIPE_LEN;
4951 map->io_align = BTRFS_STRIPE_LEN;
4952 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 4953 map->type = type;
2b82032c 4954 map->sub_stripes = sub_stripes;
0b86a832 4955
23f0ff1e 4956 chunk_size = stripe_size * data_stripes;
0b86a832 4957
23f0ff1e 4958 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
1abe9b8a 4959
172ddd60 4960 em = alloc_extent_map();
2b82032c 4961 if (!em) {
298a8f9c 4962 kfree(map);
b2117a39
MX
4963 ret = -ENOMEM;
4964 goto error;
593060d7 4965 }
298a8f9c 4966 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4967 em->map_lookup = map;
2b82032c 4968 em->start = start;
23f0ff1e 4969 em->len = chunk_size;
2b82032c
YZ
4970 em->block_start = 0;
4971 em->block_len = em->len;
6df9a95e 4972 em->orig_block_len = stripe_size;
593060d7 4973
c8bf1b67 4974 em_tree = &info->mapping_tree;
890871be 4975 write_lock(&em_tree->lock);
09a2a8f9 4976 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 4977 if (ret) {
1efb72a3 4978 write_unlock(&em_tree->lock);
0f5d42b2 4979 free_extent_map(em);
1dd4602f 4980 goto error;
0f5d42b2 4981 }
1efb72a3
NB
4982 write_unlock(&em_tree->lock);
4983
23f0ff1e 4984 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
6df9a95e
JB
4985 if (ret)
4986 goto error_del_extent;
2b82032c 4987
bbbf7243
NB
4988 for (i = 0; i < map->num_stripes; i++) {
4989 struct btrfs_device *dev = map->stripes[i].dev;
4990
4991 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
4992 if (list_empty(&dev->post_commit_list))
4993 list_add_tail(&dev->post_commit_list,
4994 &trans->transaction->dev_update_list);
4995 }
43530c46 4996
a5ed45f8 4997 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4998
0f5d42b2 4999 free_extent_map(em);
0b246afa 5000 check_raid56_incompat_flag(info, type);
cfbb825c 5001 check_raid1c34_incompat_flag(info, type);
53b381b3 5002
b2117a39 5003 kfree(devices_info);
2b82032c 5004 return 0;
b2117a39 5005
6df9a95e 5006error_del_extent:
0f5d42b2
JB
5007 write_lock(&em_tree->lock);
5008 remove_extent_mapping(em_tree, em);
5009 write_unlock(&em_tree->lock);
5010
5011 /* One for our allocation */
5012 free_extent_map(em);
5013 /* One for the tree reference */
5014 free_extent_map(em);
b2117a39 5015error:
b2117a39
MX
5016 kfree(devices_info);
5017 return ret;
2b82032c
YZ
5018}
5019
6df9a95e 5020int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
97aff912 5021 u64 chunk_offset, u64 chunk_size)
2b82032c 5022{
97aff912 5023 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab
JM
5024 struct btrfs_root *extent_root = fs_info->extent_root;
5025 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 5026 struct btrfs_key key;
2b82032c
YZ
5027 struct btrfs_device *device;
5028 struct btrfs_chunk *chunk;
5029 struct btrfs_stripe *stripe;
6df9a95e
JB
5030 struct extent_map *em;
5031 struct map_lookup *map;
5032 size_t item_size;
5033 u64 dev_offset;
5034 u64 stripe_size;
5035 int i = 0;
140e639f 5036 int ret = 0;
2b82032c 5037
60ca842e 5038 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
592d92ee
LB
5039 if (IS_ERR(em))
5040 return PTR_ERR(em);
6df9a95e 5041
95617d69 5042 map = em->map_lookup;
6df9a95e
JB
5043 item_size = btrfs_chunk_item_size(map->num_stripes);
5044 stripe_size = em->orig_block_len;
5045
2b82032c 5046 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
5047 if (!chunk) {
5048 ret = -ENOMEM;
5049 goto out;
5050 }
5051
50460e37
FM
5052 /*
5053 * Take the device list mutex to prevent races with the final phase of
5054 * a device replace operation that replaces the device object associated
5055 * with the map's stripes, because the device object's id can change
5056 * at any time during that final phase of the device replace operation
5057 * (dev-replace.c:btrfs_dev_replace_finishing()).
5058 */
0b246afa 5059 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
5060 for (i = 0; i < map->num_stripes; i++) {
5061 device = map->stripes[i].dev;
5062 dev_offset = map->stripes[i].physical;
2b82032c 5063
0b86a832 5064 ret = btrfs_update_device(trans, device);
3acd3953 5065 if (ret)
50460e37 5066 break;
b5d9071c
NB
5067 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5068 dev_offset, stripe_size);
6df9a95e 5069 if (ret)
50460e37
FM
5070 break;
5071 }
5072 if (ret) {
0b246afa 5073 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 5074 goto out;
2b82032c
YZ
5075 }
5076
2b82032c 5077 stripe = &chunk->stripe;
6df9a95e
JB
5078 for (i = 0; i < map->num_stripes; i++) {
5079 device = map->stripes[i].dev;
5080 dev_offset = map->stripes[i].physical;
0b86a832 5081
e17cade2
CM
5082 btrfs_set_stack_stripe_devid(stripe, device->devid);
5083 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5084 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5085 stripe++;
0b86a832 5086 }
0b246afa 5087 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 5088
2b82032c 5089 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 5090 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5091 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5092 btrfs_set_stack_chunk_type(chunk, map->type);
5093 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5094 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5095 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5096 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5097 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5098
2b82032c
YZ
5099 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5100 key.type = BTRFS_CHUNK_ITEM_KEY;
5101 key.offset = chunk_offset;
0b86a832 5102
2b82032c 5103 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
5104 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5105 /*
5106 * TODO: Cleanup of inserted chunk root in case of
5107 * failure.
5108 */
2ff7e61e 5109 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5110 }
1abe9b8a 5111
6df9a95e 5112out:
0b86a832 5113 kfree(chunk);
6df9a95e 5114 free_extent_map(em);
4ed1d16e 5115 return ret;
2b82032c 5116}
0b86a832 5117
2b82032c 5118/*
52042d8e
AG
5119 * Chunk allocation falls into two parts. The first part does work
5120 * that makes the new allocated chunk usable, but does not do any operation
5121 * that modifies the chunk tree. The second part does the work that
5122 * requires modifying the chunk tree. This division is important for the
2b82032c
YZ
5123 * bootstrap process of adding storage to a seed btrfs.
5124 */
c216b203 5125int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
2b82032c
YZ
5126{
5127 u64 chunk_offset;
2b82032c 5128
c216b203
NB
5129 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5130 chunk_offset = find_next_chunk(trans->fs_info);
72b468c8 5131 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5132}
5133
6f8e0fc7 5134static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5135{
6f8e0fc7 5136 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c
YZ
5137 u64 chunk_offset;
5138 u64 sys_chunk_offset;
2b82032c 5139 u64 alloc_profile;
2b82032c
YZ
5140 int ret;
5141
6df9a95e 5142 chunk_offset = find_next_chunk(fs_info);
1b86826d 5143 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5144 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5145 if (ret)
5146 return ret;
2b82032c 5147
0b246afa 5148 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5149 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5150 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5151 return ret;
2b82032c
YZ
5152}
5153
d20983b4
MX
5154static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5155{
fc9a2ac7 5156 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5157
fc9a2ac7 5158 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5159}
5160
2ff7e61e 5161int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5162{
5163 struct extent_map *em;
5164 struct map_lookup *map;
2b82032c 5165 int readonly = 0;
d20983b4 5166 int miss_ndevs = 0;
2b82032c
YZ
5167 int i;
5168
60ca842e 5169 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5170 if (IS_ERR(em))
2b82032c
YZ
5171 return 1;
5172
95617d69 5173 map = em->map_lookup;
2b82032c 5174 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5175 if (test_bit(BTRFS_DEV_STATE_MISSING,
5176 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5177 miss_ndevs++;
5178 continue;
5179 }
ebbede42
AJ
5180 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5181 &map->stripes[i].dev->dev_state)) {
2b82032c 5182 readonly = 1;
d20983b4 5183 goto end;
2b82032c
YZ
5184 }
5185 }
d20983b4
MX
5186
5187 /*
5188 * If the number of missing devices is larger than max errors,
5189 * we can not write the data into that chunk successfully, so
5190 * set it readonly.
5191 */
5192 if (miss_ndevs > btrfs_chunk_max_errors(map))
5193 readonly = 1;
5194end:
0b86a832 5195 free_extent_map(em);
2b82032c 5196 return readonly;
0b86a832
CM
5197}
5198
c8bf1b67 5199void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5200{
5201 struct extent_map *em;
5202
d397712b 5203 while (1) {
c8bf1b67
DS
5204 write_lock(&tree->lock);
5205 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5206 if (em)
c8bf1b67
DS
5207 remove_extent_mapping(tree, em);
5208 write_unlock(&tree->lock);
0b86a832
CM
5209 if (!em)
5210 break;
0b86a832
CM
5211 /* once for us */
5212 free_extent_map(em);
5213 /* once for the tree */
5214 free_extent_map(em);
5215 }
5216}
5217
5d964051 5218int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5219{
5220 struct extent_map *em;
5221 struct map_lookup *map;
f188591e
CM
5222 int ret;
5223
60ca842e 5224 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5225 if (IS_ERR(em))
5226 /*
5227 * We could return errors for these cases, but that could get
5228 * ugly and we'd probably do the same thing which is just not do
5229 * anything else and exit, so return 1 so the callers don't try
5230 * to use other copies.
5231 */
fb7669b5 5232 return 1;
fb7669b5 5233
95617d69 5234 map = em->map_lookup;
c7369b3f 5235 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5236 ret = map->num_stripes;
321aecc6
CM
5237 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5238 ret = map->sub_stripes;
53b381b3
DW
5239 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5240 ret = 2;
5241 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5242 /*
5243 * There could be two corrupted data stripes, we need
5244 * to loop retry in order to rebuild the correct data.
e7e02096 5245 *
8810f751
LB
5246 * Fail a stripe at a time on every retry except the
5247 * stripe under reconstruction.
5248 */
5249 ret = map->num_stripes;
f188591e
CM
5250 else
5251 ret = 1;
5252 free_extent_map(em);
ad6d620e 5253
cb5583dd 5254 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5255 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5256 fs_info->dev_replace.tgtdev)
ad6d620e 5257 ret++;
cb5583dd 5258 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5259
f188591e
CM
5260 return ret;
5261}
5262
2ff7e61e 5263unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5264 u64 logical)
5265{
5266 struct extent_map *em;
5267 struct map_lookup *map;
0b246afa 5268 unsigned long len = fs_info->sectorsize;
53b381b3 5269
60ca842e 5270 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5271
69f03f13
NB
5272 if (!WARN_ON(IS_ERR(em))) {
5273 map = em->map_lookup;
5274 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5275 len = map->stripe_len * nr_data_stripes(map);
5276 free_extent_map(em);
5277 }
53b381b3
DW
5278 return len;
5279}
5280
e4ff5fb5 5281int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5282{
5283 struct extent_map *em;
5284 struct map_lookup *map;
53b381b3
DW
5285 int ret = 0;
5286
60ca842e 5287 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5288
69f03f13
NB
5289 if(!WARN_ON(IS_ERR(em))) {
5290 map = em->map_lookup;
5291 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5292 ret = 1;
5293 free_extent_map(em);
5294 }
53b381b3
DW
5295 return ret;
5296}
5297
30d9861f 5298static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5299 struct map_lookup *map, int first,
8ba0ae78 5300 int dev_replace_is_ongoing)
dfe25020
CM
5301{
5302 int i;
99f92a7c 5303 int num_stripes;
8ba0ae78 5304 int preferred_mirror;
30d9861f
SB
5305 int tolerance;
5306 struct btrfs_device *srcdev;
5307
99f92a7c 5308 ASSERT((map->type &
c7369b3f 5309 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5310
5311 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5312 num_stripes = map->sub_stripes;
5313 else
5314 num_stripes = map->num_stripes;
5315
8ba0ae78
AJ
5316 preferred_mirror = first + current->pid % num_stripes;
5317
30d9861f
SB
5318 if (dev_replace_is_ongoing &&
5319 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5320 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5321 srcdev = fs_info->dev_replace.srcdev;
5322 else
5323 srcdev = NULL;
5324
5325 /*
5326 * try to avoid the drive that is the source drive for a
5327 * dev-replace procedure, only choose it if no other non-missing
5328 * mirror is available
5329 */
5330 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5331 if (map->stripes[preferred_mirror].dev->bdev &&
5332 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5333 return preferred_mirror;
99f92a7c 5334 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5335 if (map->stripes[i].dev->bdev &&
5336 (tolerance || map->stripes[i].dev != srcdev))
5337 return i;
5338 }
dfe25020 5339 }
30d9861f 5340
dfe25020
CM
5341 /* we couldn't find one that doesn't fail. Just return something
5342 * and the io error handling code will clean up eventually
5343 */
8ba0ae78 5344 return preferred_mirror;
dfe25020
CM
5345}
5346
53b381b3
DW
5347static inline int parity_smaller(u64 a, u64 b)
5348{
5349 return a > b;
5350}
5351
5352/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5353static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5354{
5355 struct btrfs_bio_stripe s;
5356 int i;
5357 u64 l;
5358 int again = 1;
5359
5360 while (again) {
5361 again = 0;
cc7539ed 5362 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5363 if (parity_smaller(bbio->raid_map[i],
5364 bbio->raid_map[i+1])) {
53b381b3 5365 s = bbio->stripes[i];
8e5cfb55 5366 l = bbio->raid_map[i];
53b381b3 5367 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5368 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5369 bbio->stripes[i+1] = s;
8e5cfb55 5370 bbio->raid_map[i+1] = l;
2c8cdd6e 5371
53b381b3
DW
5372 again = 1;
5373 }
5374 }
5375 }
5376}
5377
6e9606d2
ZL
5378static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5379{
5380 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5381 /* the size of the btrfs_bio */
6e9606d2 5382 sizeof(struct btrfs_bio) +
e57cf21e 5383 /* plus the variable array for the stripes */
6e9606d2 5384 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5385 /* plus the variable array for the tgt dev */
6e9606d2 5386 sizeof(int) * (real_stripes) +
e57cf21e
CM
5387 /*
5388 * plus the raid_map, which includes both the tgt dev
5389 * and the stripes
5390 */
5391 sizeof(u64) * (total_stripes),
277fb5fc 5392 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5393
5394 atomic_set(&bbio->error, 0);
140475ae 5395 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5396
5397 return bbio;
5398}
5399
5400void btrfs_get_bbio(struct btrfs_bio *bbio)
5401{
140475ae
ER
5402 WARN_ON(!refcount_read(&bbio->refs));
5403 refcount_inc(&bbio->refs);
6e9606d2
ZL
5404}
5405
5406void btrfs_put_bbio(struct btrfs_bio *bbio)
5407{
5408 if (!bbio)
5409 return;
140475ae 5410 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5411 kfree(bbio);
5412}
5413
0b3d4cd3
LB
5414/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5415/*
5416 * Please note that, discard won't be sent to target device of device
5417 * replace.
5418 */
5419static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
6b7faadd 5420 u64 logical, u64 *length_ret,
0b3d4cd3
LB
5421 struct btrfs_bio **bbio_ret)
5422{
5423 struct extent_map *em;
5424 struct map_lookup *map;
5425 struct btrfs_bio *bbio;
6b7faadd 5426 u64 length = *length_ret;
0b3d4cd3
LB
5427 u64 offset;
5428 u64 stripe_nr;
5429 u64 stripe_nr_end;
5430 u64 stripe_end_offset;
5431 u64 stripe_cnt;
5432 u64 stripe_len;
5433 u64 stripe_offset;
5434 u64 num_stripes;
5435 u32 stripe_index;
5436 u32 factor = 0;
5437 u32 sub_stripes = 0;
5438 u64 stripes_per_dev = 0;
5439 u32 remaining_stripes = 0;
5440 u32 last_stripe = 0;
5441 int ret = 0;
5442 int i;
5443
5444 /* discard always return a bbio */
5445 ASSERT(bbio_ret);
5446
60ca842e 5447 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5448 if (IS_ERR(em))
5449 return PTR_ERR(em);
5450
5451 map = em->map_lookup;
5452 /* we don't discard raid56 yet */
5453 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5454 ret = -EOPNOTSUPP;
5455 goto out;
5456 }
5457
5458 offset = logical - em->start;
2d974619 5459 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5460 *length_ret = length;
0b3d4cd3
LB
5461
5462 stripe_len = map->stripe_len;
5463 /*
5464 * stripe_nr counts the total number of stripes we have to stride
5465 * to get to this block
5466 */
5467 stripe_nr = div64_u64(offset, stripe_len);
5468
5469 /* stripe_offset is the offset of this block in its stripe */
5470 stripe_offset = offset - stripe_nr * stripe_len;
5471
5472 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5473 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5474 stripe_cnt = stripe_nr_end - stripe_nr;
5475 stripe_end_offset = stripe_nr_end * map->stripe_len -
5476 (offset + length);
5477 /*
5478 * after this, stripe_nr is the number of stripes on this
5479 * device we have to walk to find the data, and stripe_index is
5480 * the number of our device in the stripe array
5481 */
5482 num_stripes = 1;
5483 stripe_index = 0;
5484 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5485 BTRFS_BLOCK_GROUP_RAID10)) {
5486 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5487 sub_stripes = 1;
5488 else
5489 sub_stripes = map->sub_stripes;
5490
5491 factor = map->num_stripes / sub_stripes;
5492 num_stripes = min_t(u64, map->num_stripes,
5493 sub_stripes * stripe_cnt);
5494 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5495 stripe_index *= sub_stripes;
5496 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5497 &remaining_stripes);
5498 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5499 last_stripe *= sub_stripes;
c7369b3f 5500 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5501 BTRFS_BLOCK_GROUP_DUP)) {
5502 num_stripes = map->num_stripes;
5503 } else {
5504 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5505 &stripe_index);
5506 }
5507
5508 bbio = alloc_btrfs_bio(num_stripes, 0);
5509 if (!bbio) {
5510 ret = -ENOMEM;
5511 goto out;
5512 }
5513
5514 for (i = 0; i < num_stripes; i++) {
5515 bbio->stripes[i].physical =
5516 map->stripes[stripe_index].physical +
5517 stripe_offset + stripe_nr * map->stripe_len;
5518 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5519
5520 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5521 BTRFS_BLOCK_GROUP_RAID10)) {
5522 bbio->stripes[i].length = stripes_per_dev *
5523 map->stripe_len;
5524
5525 if (i / sub_stripes < remaining_stripes)
5526 bbio->stripes[i].length +=
5527 map->stripe_len;
5528
5529 /*
5530 * Special for the first stripe and
5531 * the last stripe:
5532 *
5533 * |-------|...|-------|
5534 * |----------|
5535 * off end_off
5536 */
5537 if (i < sub_stripes)
5538 bbio->stripes[i].length -=
5539 stripe_offset;
5540
5541 if (stripe_index >= last_stripe &&
5542 stripe_index <= (last_stripe +
5543 sub_stripes - 1))
5544 bbio->stripes[i].length -=
5545 stripe_end_offset;
5546
5547 if (i == sub_stripes - 1)
5548 stripe_offset = 0;
5549 } else {
5550 bbio->stripes[i].length = length;
5551 }
5552
5553 stripe_index++;
5554 if (stripe_index == map->num_stripes) {
5555 stripe_index = 0;
5556 stripe_nr++;
5557 }
5558 }
5559
5560 *bbio_ret = bbio;
5561 bbio->map_type = map->type;
5562 bbio->num_stripes = num_stripes;
5563out:
5564 free_extent_map(em);
5565 return ret;
5566}
5567
5ab56090
LB
5568/*
5569 * In dev-replace case, for repair case (that's the only case where the mirror
5570 * is selected explicitly when calling btrfs_map_block), blocks left of the
5571 * left cursor can also be read from the target drive.
5572 *
5573 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5574 * array of stripes.
5575 * For READ, it also needs to be supported using the same mirror number.
5576 *
5577 * If the requested block is not left of the left cursor, EIO is returned. This
5578 * can happen because btrfs_num_copies() returns one more in the dev-replace
5579 * case.
5580 */
5581static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5582 u64 logical, u64 length,
5583 u64 srcdev_devid, int *mirror_num,
5584 u64 *physical)
5585{
5586 struct btrfs_bio *bbio = NULL;
5587 int num_stripes;
5588 int index_srcdev = 0;
5589 int found = 0;
5590 u64 physical_of_found = 0;
5591 int i;
5592 int ret = 0;
5593
5594 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5595 logical, &length, &bbio, 0, 0);
5596 if (ret) {
5597 ASSERT(bbio == NULL);
5598 return ret;
5599 }
5600
5601 num_stripes = bbio->num_stripes;
5602 if (*mirror_num > num_stripes) {
5603 /*
5604 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5605 * that means that the requested area is not left of the left
5606 * cursor
5607 */
5608 btrfs_put_bbio(bbio);
5609 return -EIO;
5610 }
5611
5612 /*
5613 * process the rest of the function using the mirror_num of the source
5614 * drive. Therefore look it up first. At the end, patch the device
5615 * pointer to the one of the target drive.
5616 */
5617 for (i = 0; i < num_stripes; i++) {
5618 if (bbio->stripes[i].dev->devid != srcdev_devid)
5619 continue;
5620
5621 /*
5622 * In case of DUP, in order to keep it simple, only add the
5623 * mirror with the lowest physical address
5624 */
5625 if (found &&
5626 physical_of_found <= bbio->stripes[i].physical)
5627 continue;
5628
5629 index_srcdev = i;
5630 found = 1;
5631 physical_of_found = bbio->stripes[i].physical;
5632 }
5633
5634 btrfs_put_bbio(bbio);
5635
5636 ASSERT(found);
5637 if (!found)
5638 return -EIO;
5639
5640 *mirror_num = index_srcdev + 1;
5641 *physical = physical_of_found;
5642 return ret;
5643}
5644
73c0f228
LB
5645static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5646 struct btrfs_bio **bbio_ret,
5647 struct btrfs_dev_replace *dev_replace,
5648 int *num_stripes_ret, int *max_errors_ret)
5649{
5650 struct btrfs_bio *bbio = *bbio_ret;
5651 u64 srcdev_devid = dev_replace->srcdev->devid;
5652 int tgtdev_indexes = 0;
5653 int num_stripes = *num_stripes_ret;
5654 int max_errors = *max_errors_ret;
5655 int i;
5656
5657 if (op == BTRFS_MAP_WRITE) {
5658 int index_where_to_add;
5659
5660 /*
5661 * duplicate the write operations while the dev replace
5662 * procedure is running. Since the copying of the old disk to
5663 * the new disk takes place at run time while the filesystem is
5664 * mounted writable, the regular write operations to the old
5665 * disk have to be duplicated to go to the new disk as well.
5666 *
5667 * Note that device->missing is handled by the caller, and that
5668 * the write to the old disk is already set up in the stripes
5669 * array.
5670 */
5671 index_where_to_add = num_stripes;
5672 for (i = 0; i < num_stripes; i++) {
5673 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5674 /* write to new disk, too */
5675 struct btrfs_bio_stripe *new =
5676 bbio->stripes + index_where_to_add;
5677 struct btrfs_bio_stripe *old =
5678 bbio->stripes + i;
5679
5680 new->physical = old->physical;
5681 new->length = old->length;
5682 new->dev = dev_replace->tgtdev;
5683 bbio->tgtdev_map[i] = index_where_to_add;
5684 index_where_to_add++;
5685 max_errors++;
5686 tgtdev_indexes++;
5687 }
5688 }
5689 num_stripes = index_where_to_add;
5690 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5691 int index_srcdev = 0;
5692 int found = 0;
5693 u64 physical_of_found = 0;
5694
5695 /*
5696 * During the dev-replace procedure, the target drive can also
5697 * be used to read data in case it is needed to repair a corrupt
5698 * block elsewhere. This is possible if the requested area is
5699 * left of the left cursor. In this area, the target drive is a
5700 * full copy of the source drive.
5701 */
5702 for (i = 0; i < num_stripes; i++) {
5703 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5704 /*
5705 * In case of DUP, in order to keep it simple,
5706 * only add the mirror with the lowest physical
5707 * address
5708 */
5709 if (found &&
5710 physical_of_found <=
5711 bbio->stripes[i].physical)
5712 continue;
5713 index_srcdev = i;
5714 found = 1;
5715 physical_of_found = bbio->stripes[i].physical;
5716 }
5717 }
5718 if (found) {
5719 struct btrfs_bio_stripe *tgtdev_stripe =
5720 bbio->stripes + num_stripes;
5721
5722 tgtdev_stripe->physical = physical_of_found;
5723 tgtdev_stripe->length =
5724 bbio->stripes[index_srcdev].length;
5725 tgtdev_stripe->dev = dev_replace->tgtdev;
5726 bbio->tgtdev_map[index_srcdev] = num_stripes;
5727
5728 tgtdev_indexes++;
5729 num_stripes++;
5730 }
5731 }
5732
5733 *num_stripes_ret = num_stripes;
5734 *max_errors_ret = max_errors;
5735 bbio->num_tgtdevs = tgtdev_indexes;
5736 *bbio_ret = bbio;
5737}
5738
2b19a1fe
LB
5739static bool need_full_stripe(enum btrfs_map_op op)
5740{
5741 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5742}
5743
5f141126
NB
5744/*
5745 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5746 * tuple. This information is used to calculate how big a
5747 * particular bio can get before it straddles a stripe.
5748 *
5749 * @fs_info - the filesystem
5750 * @logical - address that we want to figure out the geometry of
5751 * @len - the length of IO we are going to perform, starting at @logical
5752 * @op - type of operation - write or read
5753 * @io_geom - pointer used to return values
5754 *
5755 * Returns < 0 in case a chunk for the given logical address cannot be found,
5756 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5757 */
5758int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
89b798ad 5759 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5f141126
NB
5760{
5761 struct extent_map *em;
5762 struct map_lookup *map;
5763 u64 offset;
5764 u64 stripe_offset;
5765 u64 stripe_nr;
5766 u64 stripe_len;
5767 u64 raid56_full_stripe_start = (u64)-1;
5768 int data_stripes;
373c3b80 5769 int ret = 0;
5f141126
NB
5770
5771 ASSERT(op != BTRFS_MAP_DISCARD);
5772
5773 em = btrfs_get_chunk_map(fs_info, logical, len);
5774 if (IS_ERR(em))
5775 return PTR_ERR(em);
5776
5777 map = em->map_lookup;
5778 /* Offset of this logical address in the chunk */
5779 offset = logical - em->start;
5780 /* Len of a stripe in a chunk */
5781 stripe_len = map->stripe_len;
5782 /* Stripe wher this block falls in */
5783 stripe_nr = div64_u64(offset, stripe_len);
5784 /* Offset of stripe in the chunk */
5785 stripe_offset = stripe_nr * stripe_len;
5786 if (offset < stripe_offset) {
5787 btrfs_crit(fs_info,
5788"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5789 stripe_offset, offset, em->start, logical, stripe_len);
373c3b80
JT
5790 ret = -EINVAL;
5791 goto out;
5f141126
NB
5792 }
5793
5794 /* stripe_offset is the offset of this block in its stripe */
5795 stripe_offset = offset - stripe_offset;
5796 data_stripes = nr_data_stripes(map);
5797
5798 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5799 u64 max_len = stripe_len - stripe_offset;
5800
5801 /*
5802 * In case of raid56, we need to know the stripe aligned start
5803 */
5804 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5805 unsigned long full_stripe_len = stripe_len * data_stripes;
5806 raid56_full_stripe_start = offset;
5807
5808 /*
5809 * Allow a write of a full stripe, but make sure we
5810 * don't allow straddling of stripes
5811 */
5812 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5813 full_stripe_len);
5814 raid56_full_stripe_start *= full_stripe_len;
5815
5816 /*
5817 * For writes to RAID[56], allow a full stripeset across
5818 * all disks. For other RAID types and for RAID[56]
5819 * reads, just allow a single stripe (on a single disk).
5820 */
5821 if (op == BTRFS_MAP_WRITE) {
5822 max_len = stripe_len * data_stripes -
5823 (offset - raid56_full_stripe_start);
5824 }
5825 }
5826 len = min_t(u64, em->len - offset, max_len);
5827 } else {
5828 len = em->len - offset;
5829 }
5830
5831 io_geom->len = len;
5832 io_geom->offset = offset;
5833 io_geom->stripe_len = stripe_len;
5834 io_geom->stripe_nr = stripe_nr;
5835 io_geom->stripe_offset = stripe_offset;
5836 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5837
373c3b80
JT
5838out:
5839 /* once for us */
5840 free_extent_map(em);
5841 return ret;
5f141126
NB
5842}
5843
cf8cddd3
CH
5844static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5845 enum btrfs_map_op op,
f2d8d74d 5846 u64 logical, u64 *length,
a1d3c478 5847 struct btrfs_bio **bbio_ret,
8e5cfb55 5848 int mirror_num, int need_raid_map)
0b86a832
CM
5849{
5850 struct extent_map *em;
5851 struct map_lookup *map;
593060d7
CM
5852 u64 stripe_offset;
5853 u64 stripe_nr;
53b381b3 5854 u64 stripe_len;
9d644a62 5855 u32 stripe_index;
cff82672 5856 int data_stripes;
cea9e445 5857 int i;
de11cc12 5858 int ret = 0;
f2d8d74d 5859 int num_stripes;
a236aed1 5860 int max_errors = 0;
2c8cdd6e 5861 int tgtdev_indexes = 0;
a1d3c478 5862 struct btrfs_bio *bbio = NULL;
472262f3
SB
5863 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5864 int dev_replace_is_ongoing = 0;
5865 int num_alloc_stripes;
ad6d620e
SB
5866 int patch_the_first_stripe_for_dev_replace = 0;
5867 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5868 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
5869 struct btrfs_io_geometry geom;
5870
5871 ASSERT(bbio_ret);
0b86a832 5872
0b3d4cd3
LB
5873 if (op == BTRFS_MAP_DISCARD)
5874 return __btrfs_map_block_for_discard(fs_info, logical,
6b7faadd 5875 length, bbio_ret);
0b3d4cd3 5876
89b798ad
NB
5877 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5878 if (ret < 0)
5879 return ret;
0b86a832 5880
89b798ad 5881 em = btrfs_get_chunk_map(fs_info, logical, *length);
f1136989 5882 ASSERT(!IS_ERR(em));
95617d69 5883 map = em->map_lookup;
593060d7 5884
89b798ad 5885 *length = geom.len;
89b798ad
NB
5886 stripe_len = geom.stripe_len;
5887 stripe_nr = geom.stripe_nr;
5888 stripe_offset = geom.stripe_offset;
5889 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 5890 data_stripes = nr_data_stripes(map);
593060d7 5891
cb5583dd 5892 down_read(&dev_replace->rwsem);
472262f3 5893 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
5894 /*
5895 * Hold the semaphore for read during the whole operation, write is
5896 * requested at commit time but must wait.
5897 */
472262f3 5898 if (!dev_replace_is_ongoing)
cb5583dd 5899 up_read(&dev_replace->rwsem);
472262f3 5900
ad6d620e 5901 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5902 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5903 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5904 dev_replace->srcdev->devid,
5905 &mirror_num,
5906 &physical_to_patch_in_first_stripe);
5907 if (ret)
ad6d620e 5908 goto out;
5ab56090
LB
5909 else
5910 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5911 } else if (mirror_num > map->num_stripes) {
5912 mirror_num = 0;
5913 }
5914
f2d8d74d 5915 num_stripes = 1;
cea9e445 5916 stripe_index = 0;
fce3bb9a 5917 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5918 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5919 &stripe_index);
de483734 5920 if (!need_full_stripe(op))
28e1cc7d 5921 mirror_num = 1;
c7369b3f 5922 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 5923 if (need_full_stripe(op))
f2d8d74d 5924 num_stripes = map->num_stripes;
2fff734f 5925 else if (mirror_num)
f188591e 5926 stripe_index = mirror_num - 1;
dfe25020 5927 else {
30d9861f 5928 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 5929 dev_replace_is_ongoing);
a1d3c478 5930 mirror_num = stripe_index + 1;
dfe25020 5931 }
2fff734f 5932
611f0e00 5933 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 5934 if (need_full_stripe(op)) {
f2d8d74d 5935 num_stripes = map->num_stripes;
a1d3c478 5936 } else if (mirror_num) {
f188591e 5937 stripe_index = mirror_num - 1;
a1d3c478
JS
5938 } else {
5939 mirror_num = 1;
5940 }
2fff734f 5941
321aecc6 5942 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5943 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5944
47c5713f 5945 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5946 stripe_index *= map->sub_stripes;
5947
de483734 5948 if (need_full_stripe(op))
f2d8d74d 5949 num_stripes = map->sub_stripes;
321aecc6
CM
5950 else if (mirror_num)
5951 stripe_index += mirror_num - 1;
dfe25020 5952 else {
3e74317a 5953 int old_stripe_index = stripe_index;
30d9861f
SB
5954 stripe_index = find_live_mirror(fs_info, map,
5955 stripe_index,
30d9861f 5956 dev_replace_is_ongoing);
3e74317a 5957 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5958 }
53b381b3 5959
ffe2d203 5960 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 5961 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 5962 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5963 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 5964 stripe_len * data_stripes);
53b381b3
DW
5965
5966 /* RAID[56] write or recovery. Return all stripes */
5967 num_stripes = map->num_stripes;
5968 max_errors = nr_parity_stripes(map);
5969
53b381b3
DW
5970 *length = map->stripe_len;
5971 stripe_index = 0;
5972 stripe_offset = 0;
5973 } else {
5974 /*
5975 * Mirror #0 or #1 means the original data block.
5976 * Mirror #2 is RAID5 parity block.
5977 * Mirror #3 is RAID6 Q block.
5978 */
47c5713f 5979 stripe_nr = div_u64_rem(stripe_nr,
cff82672 5980 data_stripes, &stripe_index);
53b381b3 5981 if (mirror_num > 1)
cff82672 5982 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
5983
5984 /* We distribute the parity blocks across stripes */
47c5713f
DS
5985 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5986 &stripe_index);
de483734 5987 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 5988 mirror_num = 1;
53b381b3 5989 }
8790d502
CM
5990 } else {
5991 /*
47c5713f
DS
5992 * after this, stripe_nr is the number of stripes on this
5993 * device we have to walk to find the data, and stripe_index is
5994 * the number of our device in the stripe array
8790d502 5995 */
47c5713f
DS
5996 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5997 &stripe_index);
a1d3c478 5998 mirror_num = stripe_index + 1;
8790d502 5999 }
e042d1ec 6000 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6001 btrfs_crit(fs_info,
6002 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6003 stripe_index, map->num_stripes);
6004 ret = -EINVAL;
6005 goto out;
6006 }
cea9e445 6007
472262f3 6008 num_alloc_stripes = num_stripes;
6fad823f 6009 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6010 if (op == BTRFS_MAP_WRITE)
ad6d620e 6011 num_alloc_stripes <<= 1;
cf8cddd3 6012 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6013 num_alloc_stripes++;
2c8cdd6e 6014 tgtdev_indexes = num_stripes;
ad6d620e 6015 }
2c8cdd6e 6016
6e9606d2 6017 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
6018 if (!bbio) {
6019 ret = -ENOMEM;
6020 goto out;
6021 }
6fad823f 6022 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 6023 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 6024
8e5cfb55 6025 /* build raid_map */
2b19a1fe
LB
6026 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6027 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6028 u64 tmp;
9d644a62 6029 unsigned rot;
8e5cfb55
ZL
6030
6031 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6032 sizeof(struct btrfs_bio_stripe) *
6033 num_alloc_stripes +
6034 sizeof(int) * tgtdev_indexes);
6035
6036 /* Work out the disk rotation on this stripe-set */
47c5713f 6037 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6038
6039 /* Fill in the logical address of each stripe */
cff82672
DS
6040 tmp = stripe_nr * data_stripes;
6041 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
6042 bbio->raid_map[(i+rot) % num_stripes] =
6043 em->start + (tmp + i) * map->stripe_len;
6044
6045 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6046 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6047 bbio->raid_map[(i+rot+1) % num_stripes] =
6048 RAID6_Q_STRIPE;
6049 }
6050
b89203f7 6051
0b3d4cd3
LB
6052 for (i = 0; i < num_stripes; i++) {
6053 bbio->stripes[i].physical =
6054 map->stripes[stripe_index].physical +
6055 stripe_offset +
6056 stripe_nr * map->stripe_len;
6057 bbio->stripes[i].dev =
6058 map->stripes[stripe_index].dev;
6059 stripe_index++;
593060d7 6060 }
de11cc12 6061
2b19a1fe 6062 if (need_full_stripe(op))
d20983b4 6063 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6064
8e5cfb55
ZL
6065 if (bbio->raid_map)
6066 sort_parity_stripes(bbio, num_stripes);
cc7539ed 6067
73c0f228 6068 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6069 need_full_stripe(op)) {
73c0f228
LB
6070 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6071 &max_errors);
472262f3
SB
6072 }
6073
de11cc12 6074 *bbio_ret = bbio;
10f11900 6075 bbio->map_type = map->type;
de11cc12
LZ
6076 bbio->num_stripes = num_stripes;
6077 bbio->max_errors = max_errors;
6078 bbio->mirror_num = mirror_num;
ad6d620e
SB
6079
6080 /*
6081 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6082 * mirror_num == num_stripes + 1 && dev_replace target drive is
6083 * available as a mirror
6084 */
6085 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6086 WARN_ON(num_stripes > 1);
6087 bbio->stripes[0].dev = dev_replace->tgtdev;
6088 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6089 bbio->mirror_num = map->num_stripes + 1;
6090 }
cea9e445 6091out:
73beece9 6092 if (dev_replace_is_ongoing) {
53176dde
DS
6093 lockdep_assert_held(&dev_replace->rwsem);
6094 /* Unlock and let waiting writers proceed */
cb5583dd 6095 up_read(&dev_replace->rwsem);
73beece9 6096 }
0b86a832 6097 free_extent_map(em);
de11cc12 6098 return ret;
0b86a832
CM
6099}
6100
cf8cddd3 6101int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6102 u64 logical, u64 *length,
a1d3c478 6103 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6104{
b3d3fa51 6105 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6106 mirror_num, 0);
f2d8d74d
CM
6107}
6108
af8e2d1d 6109/* For Scrub/replace */
cf8cddd3 6110int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6111 u64 logical, u64 *length,
825ad4c9 6112 struct btrfs_bio **bbio_ret)
af8e2d1d 6113{
825ad4c9 6114 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6115}
6116
63a9c7b9
NB
6117int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6118 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
a512bbf8 6119{
a512bbf8
YZ
6120 struct extent_map *em;
6121 struct map_lookup *map;
6122 u64 *buf;
6123 u64 bytenr;
6124 u64 length;
6125 u64 stripe_nr;
53b381b3 6126 u64 rmap_len;
a512bbf8
YZ
6127 int i, j, nr = 0;
6128
60ca842e 6129 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
592d92ee 6130 if (IS_ERR(em))
835d974f 6131 return -EIO;
835d974f 6132
95617d69 6133 map = em->map_lookup;
a512bbf8 6134 length = em->len;
53b381b3
DW
6135 rmap_len = map->stripe_len;
6136
a512bbf8 6137 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 6138 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 6139 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 6140 length = div_u64(length, map->num_stripes);
ffe2d203 6141 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 6142 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
6143 rmap_len = map->stripe_len * nr_data_stripes(map);
6144 }
a512bbf8 6145
31e818fe 6146 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 6147 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
6148
6149 for (i = 0; i < map->num_stripes; i++) {
a512bbf8
YZ
6150 if (map->stripes[i].physical > physical ||
6151 map->stripes[i].physical + length <= physical)
6152 continue;
6153
6154 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 6155 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6156
6157 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6158 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6159 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6160 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6161 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6162 } /* else if RAID[56], multiply by nr_data_stripes().
6163 * Alternatively, just use rmap_len below instead of
6164 * map->stripe_len */
6165
6166 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6167 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6168 for (j = 0; j < nr; j++) {
6169 if (buf[j] == bytenr)
6170 break;
6171 }
934d375b
CM
6172 if (j == nr) {
6173 WARN_ON(nr >= map->num_stripes);
a512bbf8 6174 buf[nr++] = bytenr;
934d375b 6175 }
a512bbf8
YZ
6176 }
6177
a512bbf8
YZ
6178 *logical = buf;
6179 *naddrs = nr;
53b381b3 6180 *stripe_len = rmap_len;
a512bbf8
YZ
6181
6182 free_extent_map(em);
6183 return 0;
f2d8d74d
CM
6184}
6185
4246a0b6 6186static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6187{
326e1dbb
MS
6188 bio->bi_private = bbio->private;
6189 bio->bi_end_io = bbio->end_io;
4246a0b6 6190 bio_endio(bio);
326e1dbb 6191
6e9606d2 6192 btrfs_put_bbio(bbio);
8408c716
MX
6193}
6194
4246a0b6 6195static void btrfs_end_bio(struct bio *bio)
8790d502 6196{
9be3395b 6197 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6198 int is_orig_bio = 0;
8790d502 6199
4e4cbee9 6200 if (bio->bi_status) {
a1d3c478 6201 atomic_inc(&bbio->error);
4e4cbee9
CH
6202 if (bio->bi_status == BLK_STS_IOERR ||
6203 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6204 unsigned int stripe_index =
9be3395b 6205 btrfs_io_bio(bio)->stripe_index;
65f53338 6206 struct btrfs_device *dev;
442a4f63
SB
6207
6208 BUG_ON(stripe_index >= bbio->num_stripes);
6209 dev = bbio->stripes[stripe_index].dev;
597a60fa 6210 if (dev->bdev) {
37226b21 6211 if (bio_op(bio) == REQ_OP_WRITE)
1cb34c8e 6212 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6213 BTRFS_DEV_STAT_WRITE_ERRS);
0cc068e6 6214 else if (!(bio->bi_opf & REQ_RAHEAD))
1cb34c8e 6215 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6216 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6217 if (bio->bi_opf & REQ_PREFLUSH)
1cb34c8e 6218 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6219 BTRFS_DEV_STAT_FLUSH_ERRS);
597a60fa 6220 }
442a4f63
SB
6221 }
6222 }
8790d502 6223
a1d3c478 6224 if (bio == bbio->orig_bio)
7d2b4daa
CM
6225 is_orig_bio = 1;
6226
c404e0dc
MX
6227 btrfs_bio_counter_dec(bbio->fs_info);
6228
a1d3c478 6229 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6230 if (!is_orig_bio) {
6231 bio_put(bio);
a1d3c478 6232 bio = bbio->orig_bio;
7d2b4daa 6233 }
c7b22bb1 6234
9be3395b 6235 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6236 /* only send an error to the higher layers if it is
53b381b3 6237 * beyond the tolerance of the btrfs bio
a236aed1 6238 */
a1d3c478 6239 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6240 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6241 } else {
1259ab75
CM
6242 /*
6243 * this bio is actually up to date, we didn't
6244 * go over the max number of errors
6245 */
2dbe0c77 6246 bio->bi_status = BLK_STS_OK;
1259ab75 6247 }
c55f1396 6248
4246a0b6 6249 btrfs_end_bbio(bbio, bio);
7d2b4daa 6250 } else if (!is_orig_bio) {
8790d502
CM
6251 bio_put(bio);
6252 }
8790d502
CM
6253}
6254
2ff7e61e 6255static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
08635bae 6256 u64 physical, int dev_nr)
de1ee92a
JB
6257{
6258 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6259 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6260
6261 bio->bi_private = bbio;
9be3395b 6262 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6263 bio->bi_end_io = btrfs_end_bio;
4f024f37 6264 bio->bi_iter.bi_sector = physical >> 9;
672d5990
MT
6265 btrfs_debug_in_rcu(fs_info,
6266 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6267 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6268 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6269 bio->bi_iter.bi_size);
74d46992 6270 bio_set_dev(bio, dev->bdev);
c404e0dc 6271
2ff7e61e 6272 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6273
08635bae 6274 btrfsic_submit_bio(bio);
de1ee92a
JB
6275}
6276
de1ee92a
JB
6277static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6278{
6279 atomic_inc(&bbio->error);
6280 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6281 /* Should be the original bio. */
8408c716
MX
6282 WARN_ON(bio != bbio->orig_bio);
6283
9be3395b 6284 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6285 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6286 if (atomic_read(&bbio->error) > bbio->max_errors)
6287 bio->bi_status = BLK_STS_IOERR;
6288 else
6289 bio->bi_status = BLK_STS_OK;
4246a0b6 6290 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6291 }
6292}
6293
58efbc9f 6294blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6295 int mirror_num)
0b86a832 6296{
0b86a832 6297 struct btrfs_device *dev;
8790d502 6298 struct bio *first_bio = bio;
4f024f37 6299 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6300 u64 length = 0;
6301 u64 map_length;
0b86a832 6302 int ret;
08da757d
ZL
6303 int dev_nr;
6304 int total_devs;
a1d3c478 6305 struct btrfs_bio *bbio = NULL;
0b86a832 6306
4f024f37 6307 length = bio->bi_iter.bi_size;
0b86a832 6308 map_length = length;
cea9e445 6309
0b246afa 6310 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6311 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6312 &map_length, &bbio, mirror_num, 1);
c404e0dc 6313 if (ret) {
0b246afa 6314 btrfs_bio_counter_dec(fs_info);
58efbc9f 6315 return errno_to_blk_status(ret);
c404e0dc 6316 }
cea9e445 6317
a1d3c478 6318 total_devs = bbio->num_stripes;
53b381b3
DW
6319 bbio->orig_bio = first_bio;
6320 bbio->private = first_bio->bi_private;
6321 bbio->end_io = first_bio->bi_end_io;
0b246afa 6322 bbio->fs_info = fs_info;
53b381b3
DW
6323 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6324
ad1ba2a0 6325 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6326 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6327 /* In this case, map_length has been set to the length of
6328 a single stripe; not the whole write */
37226b21 6329 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6330 ret = raid56_parity_write(fs_info, bio, bbio,
6331 map_length);
53b381b3 6332 } else {
2ff7e61e
JM
6333 ret = raid56_parity_recover(fs_info, bio, bbio,
6334 map_length, mirror_num, 1);
53b381b3 6335 }
4245215d 6336
0b246afa 6337 btrfs_bio_counter_dec(fs_info);
58efbc9f 6338 return errno_to_blk_status(ret);
53b381b3
DW
6339 }
6340
cea9e445 6341 if (map_length < length) {
0b246afa 6342 btrfs_crit(fs_info,
5d163e0e
JM
6343 "mapping failed logical %llu bio len %llu len %llu",
6344 logical, length, map_length);
cea9e445
CM
6345 BUG();
6346 }
a1d3c478 6347
08da757d 6348 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6349 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6350 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6351 &dev->dev_state) ||
ebbede42
AJ
6352 (bio_op(first_bio) == REQ_OP_WRITE &&
6353 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6354 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6355 continue;
6356 }
6357
3aa8e074 6358 if (dev_nr < total_devs - 1)
8b6c1d56 6359 bio = btrfs_bio_clone(first_bio);
3aa8e074 6360 else
a1d3c478 6361 bio = first_bio;
de1ee92a 6362
2ff7e61e 6363 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
08635bae 6364 dev_nr);
8790d502 6365 }
0b246afa 6366 btrfs_bio_counter_dec(fs_info);
58efbc9f 6367 return BLK_STS_OK;
0b86a832
CM
6368}
6369
09ba3bc9
AJ
6370/*
6371 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6372 * return NULL.
6373 *
6374 * If devid and uuid are both specified, the match must be exact, otherwise
6375 * only devid is used.
6376 *
6377 * If @seed is true, traverse through the seed devices.
6378 */
e4319cd9 6379struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
09ba3bc9
AJ
6380 u64 devid, u8 *uuid, u8 *fsid,
6381 bool seed)
0b86a832 6382{
2b82032c 6383 struct btrfs_device *device;
2b82032c 6384
e4319cd9 6385 while (fs_devices) {
2b82032c 6386 if (!fsid ||
e4319cd9 6387 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
09ba3bc9
AJ
6388 list_for_each_entry(device, &fs_devices->devices,
6389 dev_list) {
6390 if (device->devid == devid &&
6391 (!uuid || memcmp(device->uuid, uuid,
6392 BTRFS_UUID_SIZE) == 0))
6393 return device;
6394 }
2b82032c 6395 }
09ba3bc9
AJ
6396 if (seed)
6397 fs_devices = fs_devices->seed;
6398 else
6399 return NULL;
2b82032c
YZ
6400 }
6401 return NULL;
0b86a832
CM
6402}
6403
2ff7e61e 6404static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6405 u64 devid, u8 *dev_uuid)
6406{
6407 struct btrfs_device *device;
dfe25020 6408
12bd2fc0
ID
6409 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6410 if (IS_ERR(device))
adfb69af 6411 return device;
12bd2fc0
ID
6412
6413 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6414 device->fs_devices = fs_devices;
dfe25020 6415 fs_devices->num_devices++;
12bd2fc0 6416
e6e674bd 6417 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6418 fs_devices->missing_devices++;
12bd2fc0 6419
dfe25020
CM
6420 return device;
6421}
6422
12bd2fc0
ID
6423/**
6424 * btrfs_alloc_device - allocate struct btrfs_device
6425 * @fs_info: used only for generating a new devid, can be NULL if
6426 * devid is provided (i.e. @devid != NULL).
6427 * @devid: a pointer to devid for this device. If NULL a new devid
6428 * is generated.
6429 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6430 * is generated.
6431 *
6432 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6433 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6434 * destroyed with btrfs_free_device.
12bd2fc0
ID
6435 */
6436struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6437 const u64 *devid,
6438 const u8 *uuid)
6439{
6440 struct btrfs_device *dev;
6441 u64 tmp;
6442
fae7f21c 6443 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6444 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6445
6446 dev = __alloc_device();
6447 if (IS_ERR(dev))
6448 return dev;
6449
6450 if (devid)
6451 tmp = *devid;
6452 else {
6453 int ret;
6454
6455 ret = find_next_devid(fs_info, &tmp);
6456 if (ret) {
a425f9d4 6457 btrfs_free_device(dev);
12bd2fc0
ID
6458 return ERR_PTR(ret);
6459 }
6460 }
6461 dev->devid = tmp;
6462
6463 if (uuid)
6464 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6465 else
6466 generate_random_uuid(dev->uuid);
6467
12bd2fc0
ID
6468 return dev;
6469}
6470
5a2b8e60 6471static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6472 u64 devid, u8 *uuid, bool error)
5a2b8e60 6473{
2b902dfc
AJ
6474 if (error)
6475 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6476 devid, uuid);
6477 else
6478 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6479 devid, uuid);
5a2b8e60
AJ
6480}
6481
39e264a4
NB
6482static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6483{
6484 int index = btrfs_bg_flags_to_raid_index(type);
6485 int ncopies = btrfs_raid_array[index].ncopies;
e4f6c6be 6486 const int nparity = btrfs_raid_array[index].nparity;
39e264a4
NB
6487 int data_stripes;
6488
e4f6c6be
DS
6489 if (nparity)
6490 data_stripes = num_stripes - nparity;
6491 else
39e264a4 6492 data_stripes = num_stripes / ncopies;
e4f6c6be 6493
39e264a4
NB
6494 return div_u64(chunk_len, data_stripes);
6495}
6496
9690ac09 6497static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6498 struct btrfs_chunk *chunk)
6499{
9690ac09 6500 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6501 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6502 struct map_lookup *map;
6503 struct extent_map *em;
6504 u64 logical;
6505 u64 length;
e06cd3dd
LB
6506 u64 devid;
6507 u8 uuid[BTRFS_UUID_SIZE];
6508 int num_stripes;
6509 int ret;
6510 int i;
6511
6512 logical = key->offset;
6513 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6514 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6515
075cb3c7
QW
6516 /*
6517 * Only need to verify chunk item if we're reading from sys chunk array,
6518 * as chunk item in tree block is already verified by tree-checker.
6519 */
6520 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6521 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6522 if (ret)
6523 return ret;
6524 }
a061fc8d 6525
c8bf1b67
DS
6526 read_lock(&map_tree->lock);
6527 em = lookup_extent_mapping(map_tree, logical, 1);
6528 read_unlock(&map_tree->lock);
0b86a832
CM
6529
6530 /* already mapped? */
6531 if (em && em->start <= logical && em->start + em->len > logical) {
6532 free_extent_map(em);
0b86a832
CM
6533 return 0;
6534 } else if (em) {
6535 free_extent_map(em);
6536 }
0b86a832 6537
172ddd60 6538 em = alloc_extent_map();
0b86a832
CM
6539 if (!em)
6540 return -ENOMEM;
593060d7 6541 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6542 if (!map) {
6543 free_extent_map(em);
6544 return -ENOMEM;
6545 }
6546
298a8f9c 6547 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6548 em->map_lookup = map;
0b86a832
CM
6549 em->start = logical;
6550 em->len = length;
70c8a91c 6551 em->orig_start = 0;
0b86a832 6552 em->block_start = 0;
c8b97818 6553 em->block_len = em->len;
0b86a832 6554
593060d7
CM
6555 map->num_stripes = num_stripes;
6556 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6557 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6558 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6559 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6560 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 6561 map->verified_stripes = 0;
39e264a4
NB
6562 em->orig_block_len = calc_stripe_length(map->type, em->len,
6563 map->num_stripes);
593060d7
CM
6564 for (i = 0; i < num_stripes; i++) {
6565 map->stripes[i].physical =
6566 btrfs_stripe_offset_nr(leaf, chunk, i);
6567 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6568 read_extent_buffer(leaf, uuid, (unsigned long)
6569 btrfs_stripe_dev_uuid_nr(chunk, i),
6570 BTRFS_UUID_SIZE);
e4319cd9 6571 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
09ba3bc9 6572 devid, uuid, NULL, true);
3cdde224 6573 if (!map->stripes[i].dev &&
0b246afa 6574 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6575 free_extent_map(em);
2b902dfc 6576 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6577 return -ENOENT;
593060d7 6578 }
dfe25020
CM
6579 if (!map->stripes[i].dev) {
6580 map->stripes[i].dev =
2ff7e61e
JM
6581 add_missing_dev(fs_info->fs_devices, devid,
6582 uuid);
adfb69af 6583 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6584 free_extent_map(em);
adfb69af
AJ
6585 btrfs_err(fs_info,
6586 "failed to init missing dev %llu: %ld",
6587 devid, PTR_ERR(map->stripes[i].dev));
6588 return PTR_ERR(map->stripes[i].dev);
dfe25020 6589 }
2b902dfc 6590 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 6591 }
e12c9621
AJ
6592 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6593 &(map->stripes[i].dev->dev_state));
6594
0b86a832
CM
6595 }
6596
c8bf1b67
DS
6597 write_lock(&map_tree->lock);
6598 ret = add_extent_mapping(map_tree, em, 0);
6599 write_unlock(&map_tree->lock);
64f64f43
QW
6600 if (ret < 0) {
6601 btrfs_err(fs_info,
6602 "failed to add chunk map, start=%llu len=%llu: %d",
6603 em->start, em->len, ret);
6604 }
0b86a832
CM
6605 free_extent_map(em);
6606
64f64f43 6607 return ret;
0b86a832
CM
6608}
6609
143bede5 6610static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6611 struct btrfs_dev_item *dev_item,
6612 struct btrfs_device *device)
6613{
6614 unsigned long ptr;
0b86a832
CM
6615
6616 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6617 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6618 device->total_bytes = device->disk_total_bytes;
935e5cc9 6619 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6620 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6621 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6622 device->type = btrfs_device_type(leaf, dev_item);
6623 device->io_align = btrfs_device_io_align(leaf, dev_item);
6624 device->io_width = btrfs_device_io_width(leaf, dev_item);
6625 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6626 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6627 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6628
410ba3a2 6629 ptr = btrfs_device_uuid(dev_item);
e17cade2 6630 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6631}
6632
2ff7e61e 6633static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6634 u8 *fsid)
2b82032c
YZ
6635{
6636 struct btrfs_fs_devices *fs_devices;
6637 int ret;
6638
a32bf9a3 6639 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6640 ASSERT(fsid);
2b82032c 6641
0b246afa 6642 fs_devices = fs_info->fs_devices->seed;
2b82032c 6643 while (fs_devices) {
44880fdc 6644 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6645 return fs_devices;
6646
2b82032c
YZ
6647 fs_devices = fs_devices->seed;
6648 }
6649
7239ff4b 6650 fs_devices = find_fsid(fsid, NULL);
2b82032c 6651 if (!fs_devices) {
0b246afa 6652 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6653 return ERR_PTR(-ENOENT);
6654
7239ff4b 6655 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
6656 if (IS_ERR(fs_devices))
6657 return fs_devices;
6658
0395d84f 6659 fs_devices->seeding = true;
5f375835
MX
6660 fs_devices->opened = 1;
6661 return fs_devices;
2b82032c 6662 }
e4404d6e
YZ
6663
6664 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6665 if (IS_ERR(fs_devices))
6666 return fs_devices;
2b82032c 6667
897fb573 6668 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
6669 if (ret) {
6670 free_fs_devices(fs_devices);
5f375835 6671 fs_devices = ERR_PTR(ret);
2b82032c 6672 goto out;
48d28232 6673 }
2b82032c
YZ
6674
6675 if (!fs_devices->seeding) {
0226e0eb 6676 close_fs_devices(fs_devices);
e4404d6e 6677 free_fs_devices(fs_devices);
5f375835 6678 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6679 goto out;
6680 }
6681
0b246afa
JM
6682 fs_devices->seed = fs_info->fs_devices->seed;
6683 fs_info->fs_devices->seed = fs_devices;
2b82032c 6684out:
5f375835 6685 return fs_devices;
2b82032c
YZ
6686}
6687
17850759 6688static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
6689 struct btrfs_dev_item *dev_item)
6690{
17850759 6691 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 6692 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6693 struct btrfs_device *device;
6694 u64 devid;
6695 int ret;
44880fdc 6696 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6697 u8 dev_uuid[BTRFS_UUID_SIZE];
6698
0b86a832 6699 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6700 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6701 BTRFS_UUID_SIZE);
1473b24e 6702 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6703 BTRFS_FSID_SIZE);
2b82032c 6704
de37aa51 6705 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 6706 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6707 if (IS_ERR(fs_devices))
6708 return PTR_ERR(fs_devices);
2b82032c
YZ
6709 }
6710
e4319cd9 6711 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 6712 fs_uuid, true);
5f375835 6713 if (!device) {
c5502451 6714 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6715 btrfs_report_missing_device(fs_info, devid,
6716 dev_uuid, true);
45dbdbc9 6717 return -ENOENT;
c5502451 6718 }
2b82032c 6719
2ff7e61e 6720 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6721 if (IS_ERR(device)) {
6722 btrfs_err(fs_info,
6723 "failed to add missing dev %llu: %ld",
6724 devid, PTR_ERR(device));
6725 return PTR_ERR(device);
6726 }
2b902dfc 6727 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6728 } else {
c5502451 6729 if (!device->bdev) {
2b902dfc
AJ
6730 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6731 btrfs_report_missing_device(fs_info,
6732 devid, dev_uuid, true);
45dbdbc9 6733 return -ENOENT;
2b902dfc
AJ
6734 }
6735 btrfs_report_missing_device(fs_info, devid,
6736 dev_uuid, false);
c5502451 6737 }
5f375835 6738
e6e674bd
AJ
6739 if (!device->bdev &&
6740 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6741 /*
6742 * this happens when a device that was properly setup
6743 * in the device info lists suddenly goes bad.
6744 * device->bdev is NULL, and so we have to set
6745 * device->missing to one here
6746 */
5f375835 6747 device->fs_devices->missing_devices++;
e6e674bd 6748 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6749 }
5f375835
MX
6750
6751 /* Move the device to its own fs_devices */
6752 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6753 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6754 &device->dev_state));
5f375835
MX
6755
6756 list_move(&device->dev_list, &fs_devices->devices);
6757 device->fs_devices->num_devices--;
6758 fs_devices->num_devices++;
6759
6760 device->fs_devices->missing_devices--;
6761 fs_devices->missing_devices++;
6762
6763 device->fs_devices = fs_devices;
6764 }
2b82032c
YZ
6765 }
6766
0b246afa 6767 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 6768 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
6769 if (device->generation !=
6770 btrfs_device_generation(leaf, dev_item))
6771 return -EINVAL;
6324fbf3 6772 }
0b86a832
CM
6773
6774 fill_device_from_item(leaf, dev_item, device);
e12c9621 6775 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 6776 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 6777 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 6778 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6779 atomic64_add(device->total_bytes - device->bytes_used,
6780 &fs_info->free_chunk_space);
2bf64758 6781 }
0b86a832 6782 ret = 0;
0b86a832
CM
6783 return ret;
6784}
6785
6bccf3ab 6786int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6787{
6bccf3ab 6788 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6789 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6790 struct extent_buffer *sb;
0b86a832 6791 struct btrfs_disk_key *disk_key;
0b86a832 6792 struct btrfs_chunk *chunk;
1ffb22cf
DS
6793 u8 *array_ptr;
6794 unsigned long sb_array_offset;
84eed90f 6795 int ret = 0;
0b86a832
CM
6796 u32 num_stripes;
6797 u32 array_size;
6798 u32 len = 0;
1ffb22cf 6799 u32 cur_offset;
e06cd3dd 6800 u64 type;
84eed90f 6801 struct btrfs_key key;
0b86a832 6802
0b246afa 6803 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6804 /*
6805 * This will create extent buffer of nodesize, superblock size is
6806 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6807 * overallocate but we can keep it as-is, only the first page is used.
6808 */
2ff7e61e 6809 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6810 if (IS_ERR(sb))
6811 return PTR_ERR(sb);
4db8c528 6812 set_extent_buffer_uptodate(sb);
85d4e461 6813 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6814 /*
01327610 6815 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6816 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6817 * pages up-to-date when the page is larger: extent does not cover the
6818 * whole page and consequently check_page_uptodate does not find all
6819 * the page's extents up-to-date (the hole beyond sb),
6820 * write_extent_buffer then triggers a WARN_ON.
6821 *
6822 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6823 * but sb spans only this function. Add an explicit SetPageUptodate call
6824 * to silence the warning eg. on PowerPC 64.
6825 */
09cbfeaf 6826 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6827 SetPageUptodate(sb->pages[0]);
4008c04a 6828
a061fc8d 6829 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6830 array_size = btrfs_super_sys_array_size(super_copy);
6831
1ffb22cf
DS
6832 array_ptr = super_copy->sys_chunk_array;
6833 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6834 cur_offset = 0;
0b86a832 6835
1ffb22cf
DS
6836 while (cur_offset < array_size) {
6837 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6838 len = sizeof(*disk_key);
6839 if (cur_offset + len > array_size)
6840 goto out_short_read;
6841
0b86a832
CM
6842 btrfs_disk_key_to_cpu(&key, disk_key);
6843
1ffb22cf
DS
6844 array_ptr += len;
6845 sb_array_offset += len;
6846 cur_offset += len;
0b86a832 6847
32ab3d1b
JT
6848 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6849 btrfs_err(fs_info,
6850 "unexpected item type %u in sys_array at offset %u",
6851 (u32)key.type, cur_offset);
6852 ret = -EIO;
6853 break;
6854 }
f5cdedd7 6855
32ab3d1b
JT
6856 chunk = (struct btrfs_chunk *)sb_array_offset;
6857 /*
6858 * At least one btrfs_chunk with one stripe must be present,
6859 * exact stripe count check comes afterwards
6860 */
6861 len = btrfs_chunk_item_size(1);
6862 if (cur_offset + len > array_size)
6863 goto out_short_read;
e06cd3dd 6864
32ab3d1b
JT
6865 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6866 if (!num_stripes) {
6867 btrfs_err(fs_info,
6868 "invalid number of stripes %u in sys_array at offset %u",
6869 num_stripes, cur_offset);
6870 ret = -EIO;
6871 break;
6872 }
e3540eab 6873
32ab3d1b
JT
6874 type = btrfs_chunk_type(sb, chunk);
6875 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6876 btrfs_err(fs_info,
32ab3d1b
JT
6877 "invalid chunk type %llu in sys_array at offset %u",
6878 type, cur_offset);
84eed90f
CM
6879 ret = -EIO;
6880 break;
0b86a832 6881 }
32ab3d1b
JT
6882
6883 len = btrfs_chunk_item_size(num_stripes);
6884 if (cur_offset + len > array_size)
6885 goto out_short_read;
6886
6887 ret = read_one_chunk(&key, sb, chunk);
6888 if (ret)
6889 break;
6890
1ffb22cf
DS
6891 array_ptr += len;
6892 sb_array_offset += len;
6893 cur_offset += len;
0b86a832 6894 }
d865177a 6895 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6896 free_extent_buffer_stale(sb);
84eed90f 6897 return ret;
e3540eab
DS
6898
6899out_short_read:
ab8d0fc4 6900 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6901 len, cur_offset);
d865177a 6902 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6903 free_extent_buffer_stale(sb);
e3540eab 6904 return -EIO;
0b86a832
CM
6905}
6906
21634a19
QW
6907/*
6908 * Check if all chunks in the fs are OK for read-write degraded mount
6909 *
6528b99d
AJ
6910 * If the @failing_dev is specified, it's accounted as missing.
6911 *
21634a19
QW
6912 * Return true if all chunks meet the minimal RW mount requirements.
6913 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6914 */
6528b99d
AJ
6915bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6916 struct btrfs_device *failing_dev)
21634a19 6917{
c8bf1b67 6918 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
6919 struct extent_map *em;
6920 u64 next_start = 0;
6921 bool ret = true;
6922
c8bf1b67
DS
6923 read_lock(&map_tree->lock);
6924 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6925 read_unlock(&map_tree->lock);
21634a19
QW
6926 /* No chunk at all? Return false anyway */
6927 if (!em) {
6928 ret = false;
6929 goto out;
6930 }
6931 while (em) {
6932 struct map_lookup *map;
6933 int missing = 0;
6934 int max_tolerated;
6935 int i;
6936
6937 map = em->map_lookup;
6938 max_tolerated =
6939 btrfs_get_num_tolerated_disk_barrier_failures(
6940 map->type);
6941 for (i = 0; i < map->num_stripes; i++) {
6942 struct btrfs_device *dev = map->stripes[i].dev;
6943
e6e674bd
AJ
6944 if (!dev || !dev->bdev ||
6945 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
6946 dev->last_flush_error)
6947 missing++;
6528b99d
AJ
6948 else if (failing_dev && failing_dev == dev)
6949 missing++;
21634a19
QW
6950 }
6951 if (missing > max_tolerated) {
6528b99d
AJ
6952 if (!failing_dev)
6953 btrfs_warn(fs_info,
52042d8e 6954 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
6955 em->start, missing, max_tolerated);
6956 free_extent_map(em);
6957 ret = false;
6958 goto out;
6959 }
6960 next_start = extent_map_end(em);
6961 free_extent_map(em);
6962
c8bf1b67
DS
6963 read_lock(&map_tree->lock);
6964 em = lookup_extent_mapping(map_tree, next_start,
21634a19 6965 (u64)(-1) - next_start);
c8bf1b67 6966 read_unlock(&map_tree->lock);
21634a19
QW
6967 }
6968out:
6969 return ret;
6970}
6971
5b4aacef 6972int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6973{
5b4aacef 6974 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6975 struct btrfs_path *path;
6976 struct extent_buffer *leaf;
6977 struct btrfs_key key;
6978 struct btrfs_key found_key;
6979 int ret;
6980 int slot;
99e3ecfc 6981 u64 total_dev = 0;
0b86a832 6982
0b86a832
CM
6983 path = btrfs_alloc_path();
6984 if (!path)
6985 return -ENOMEM;
6986
3dd0f7a3
AJ
6987 /*
6988 * uuid_mutex is needed only if we are mounting a sprout FS
6989 * otherwise we don't need it.
6990 */
b367e47f 6991 mutex_lock(&uuid_mutex);
34441361 6992 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6993
395927a9
FDBM
6994 /*
6995 * Read all device items, and then all the chunk items. All
6996 * device items are found before any chunk item (their object id
6997 * is smaller than the lowest possible object id for a chunk
6998 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6999 */
7000 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7001 key.offset = 0;
7002 key.type = 0;
0b86a832 7003 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7004 if (ret < 0)
7005 goto error;
d397712b 7006 while (1) {
0b86a832
CM
7007 leaf = path->nodes[0];
7008 slot = path->slots[0];
7009 if (slot >= btrfs_header_nritems(leaf)) {
7010 ret = btrfs_next_leaf(root, path);
7011 if (ret == 0)
7012 continue;
7013 if (ret < 0)
7014 goto error;
7015 break;
7016 }
7017 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7018 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7019 struct btrfs_dev_item *dev_item;
7020 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7021 struct btrfs_dev_item);
17850759 7022 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7023 if (ret)
7024 goto error;
99e3ecfc 7025 total_dev++;
0b86a832
CM
7026 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7027 struct btrfs_chunk *chunk;
7028 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7029 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7030 if (ret)
7031 goto error;
0b86a832
CM
7032 }
7033 path->slots[0]++;
7034 }
99e3ecfc
LB
7035
7036 /*
7037 * After loading chunk tree, we've got all device information,
7038 * do another round of validation checks.
7039 */
0b246afa
JM
7040 if (total_dev != fs_info->fs_devices->total_devices) {
7041 btrfs_err(fs_info,
99e3ecfc 7042 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7043 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7044 total_dev);
7045 ret = -EINVAL;
7046 goto error;
7047 }
0b246afa
JM
7048 if (btrfs_super_total_bytes(fs_info->super_copy) <
7049 fs_info->fs_devices->total_rw_bytes) {
7050 btrfs_err(fs_info,
99e3ecfc 7051 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7052 btrfs_super_total_bytes(fs_info->super_copy),
7053 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7054 ret = -EINVAL;
7055 goto error;
7056 }
0b86a832
CM
7057 ret = 0;
7058error:
34441361 7059 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
7060 mutex_unlock(&uuid_mutex);
7061
2b82032c 7062 btrfs_free_path(path);
0b86a832
CM
7063 return ret;
7064}
442a4f63 7065
cb517eab
MX
7066void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7067{
7068 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7069 struct btrfs_device *device;
7070
29cc83f6
LB
7071 while (fs_devices) {
7072 mutex_lock(&fs_devices->device_list_mutex);
7073 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 7074 device->fs_info = fs_info;
29cc83f6
LB
7075 mutex_unlock(&fs_devices->device_list_mutex);
7076
7077 fs_devices = fs_devices->seed;
7078 }
cb517eab
MX
7079}
7080
1dc990df
DS
7081static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7082 const struct btrfs_dev_stats_item *ptr,
7083 int index)
7084{
7085 u64 val;
7086
7087 read_extent_buffer(eb, &val,
7088 offsetof(struct btrfs_dev_stats_item, values) +
7089 ((unsigned long)ptr) + (index * sizeof(u64)),
7090 sizeof(val));
7091 return val;
7092}
7093
7094static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7095 struct btrfs_dev_stats_item *ptr,
7096 int index, u64 val)
7097{
7098 write_extent_buffer(eb, &val,
7099 offsetof(struct btrfs_dev_stats_item, values) +
7100 ((unsigned long)ptr) + (index * sizeof(u64)),
7101 sizeof(val));
7102}
7103
733f4fbb
SB
7104int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7105{
7106 struct btrfs_key key;
733f4fbb
SB
7107 struct btrfs_root *dev_root = fs_info->dev_root;
7108 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7109 struct extent_buffer *eb;
7110 int slot;
7111 int ret = 0;
7112 struct btrfs_device *device;
7113 struct btrfs_path *path = NULL;
7114 int i;
7115
7116 path = btrfs_alloc_path();
3b80a984
AJ
7117 if (!path)
7118 return -ENOMEM;
733f4fbb
SB
7119
7120 mutex_lock(&fs_devices->device_list_mutex);
7121 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7122 int item_size;
7123 struct btrfs_dev_stats_item *ptr;
7124
242e2956
DS
7125 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7126 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7127 key.offset = device->devid;
7128 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7129 if (ret) {
ae4b9b4c
AJ
7130 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7131 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7132 device->dev_stats_valid = 1;
7133 btrfs_release_path(path);
7134 continue;
7135 }
7136 slot = path->slots[0];
7137 eb = path->nodes[0];
733f4fbb
SB
7138 item_size = btrfs_item_size_nr(eb, slot);
7139
7140 ptr = btrfs_item_ptr(eb, slot,
7141 struct btrfs_dev_stats_item);
7142
7143 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7144 if (item_size >= (1 + i) * sizeof(__le64))
7145 btrfs_dev_stat_set(device, i,
7146 btrfs_dev_stats_value(eb, ptr, i));
7147 else
4e411a7d 7148 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7149 }
7150
7151 device->dev_stats_valid = 1;
7152 btrfs_dev_stat_print_on_load(device);
7153 btrfs_release_path(path);
7154 }
7155 mutex_unlock(&fs_devices->device_list_mutex);
7156
733f4fbb
SB
7157 btrfs_free_path(path);
7158 return ret < 0 ? ret : 0;
7159}
7160
7161static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7162 struct btrfs_device *device)
7163{
5495f195 7164 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7165 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7166 struct btrfs_path *path;
7167 struct btrfs_key key;
7168 struct extent_buffer *eb;
7169 struct btrfs_dev_stats_item *ptr;
7170 int ret;
7171 int i;
7172
242e2956
DS
7173 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7174 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7175 key.offset = device->devid;
7176
7177 path = btrfs_alloc_path();
fa252992
DS
7178 if (!path)
7179 return -ENOMEM;
733f4fbb
SB
7180 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7181 if (ret < 0) {
0b246afa 7182 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7183 "error %d while searching for dev_stats item for device %s",
606686ee 7184 ret, rcu_str_deref(device->name));
733f4fbb
SB
7185 goto out;
7186 }
7187
7188 if (ret == 0 &&
7189 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7190 /* need to delete old one and insert a new one */
7191 ret = btrfs_del_item(trans, dev_root, path);
7192 if (ret != 0) {
0b246afa 7193 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7194 "delete too small dev_stats item for device %s failed %d",
606686ee 7195 rcu_str_deref(device->name), ret);
733f4fbb
SB
7196 goto out;
7197 }
7198 ret = 1;
7199 }
7200
7201 if (ret == 1) {
7202 /* need to insert a new item */
7203 btrfs_release_path(path);
7204 ret = btrfs_insert_empty_item(trans, dev_root, path,
7205 &key, sizeof(*ptr));
7206 if (ret < 0) {
0b246afa 7207 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7208 "insert dev_stats item for device %s failed %d",
7209 rcu_str_deref(device->name), ret);
733f4fbb
SB
7210 goto out;
7211 }
7212 }
7213
7214 eb = path->nodes[0];
7215 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7216 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7217 btrfs_set_dev_stats_value(eb, ptr, i,
7218 btrfs_dev_stat_read(device, i));
7219 btrfs_mark_buffer_dirty(eb);
7220
7221out:
7222 btrfs_free_path(path);
7223 return ret;
7224}
7225
7226/*
7227 * called from commit_transaction. Writes all changed device stats to disk.
7228 */
196c9d8d 7229int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7230{
196c9d8d 7231 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7232 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7233 struct btrfs_device *device;
addc3fa7 7234 int stats_cnt;
733f4fbb
SB
7235 int ret = 0;
7236
7237 mutex_lock(&fs_devices->device_list_mutex);
7238 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7239 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7240 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7241 continue;
7242
9deae968
NB
7243
7244 /*
7245 * There is a LOAD-LOAD control dependency between the value of
7246 * dev_stats_ccnt and updating the on-disk values which requires
7247 * reading the in-memory counters. Such control dependencies
7248 * require explicit read memory barriers.
7249 *
7250 * This memory barriers pairs with smp_mb__before_atomic in
7251 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7252 * barrier implied by atomic_xchg in
7253 * btrfs_dev_stats_read_and_reset
7254 */
7255 smp_rmb();
7256
5495f195 7257 ret = update_dev_stat_item(trans, device);
733f4fbb 7258 if (!ret)
addc3fa7 7259 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7260 }
7261 mutex_unlock(&fs_devices->device_list_mutex);
7262
7263 return ret;
7264}
7265
442a4f63
SB
7266void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7267{
7268 btrfs_dev_stat_inc(dev, index);
7269 btrfs_dev_stat_print_on_error(dev);
7270}
7271
48a3b636 7272static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7273{
733f4fbb
SB
7274 if (!dev->dev_stats_valid)
7275 return;
fb456252 7276 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7277 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7278 rcu_str_deref(dev->name),
442a4f63
SB
7279 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7280 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7281 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7282 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7283 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7284}
c11d2c23 7285
733f4fbb
SB
7286static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7287{
a98cdb85
SB
7288 int i;
7289
7290 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7291 if (btrfs_dev_stat_read(dev, i) != 0)
7292 break;
7293 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7294 return; /* all values == 0, suppress message */
7295
fb456252 7296 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7297 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7298 rcu_str_deref(dev->name),
733f4fbb
SB
7299 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7300 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7301 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7302 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7303 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7304}
7305
2ff7e61e 7306int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7307 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7308{
7309 struct btrfs_device *dev;
0b246afa 7310 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7311 int i;
7312
7313 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
7314 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7315 true);
c11d2c23
SB
7316 mutex_unlock(&fs_devices->device_list_mutex);
7317
7318 if (!dev) {
0b246afa 7319 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7320 return -ENODEV;
733f4fbb 7321 } else if (!dev->dev_stats_valid) {
0b246afa 7322 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7323 return -ENODEV;
b27f7c0c 7324 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7325 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7326 if (stats->nr_items > i)
7327 stats->values[i] =
7328 btrfs_dev_stat_read_and_reset(dev, i);
7329 else
4e411a7d 7330 btrfs_dev_stat_set(dev, i, 0);
c11d2c23
SB
7331 }
7332 } else {
7333 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7334 if (stats->nr_items > i)
7335 stats->values[i] = btrfs_dev_stat_read(dev, i);
7336 }
7337 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7338 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7339 return 0;
7340}
a8a6dab7 7341
da353f6b 7342void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7343{
7344 struct buffer_head *bh;
7345 struct btrfs_super_block *disk_super;
12b1c263 7346 int copy_num;
a8a6dab7 7347
12b1c263
AJ
7348 if (!bdev)
7349 return;
a8a6dab7 7350
12b1c263
AJ
7351 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7352 copy_num++) {
a8a6dab7 7353
12b1c263
AJ
7354 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7355 continue;
7356
7357 disk_super = (struct btrfs_super_block *)bh->b_data;
7358
7359 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7360 set_buffer_dirty(bh);
7361 sync_dirty_buffer(bh);
7362 brelse(bh);
7363 }
7364
7365 /* Notify udev that device has changed */
7366 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7367
7368 /* Update ctime/mtime for device path for libblkid */
7369 update_dev_time(device_path);
a8a6dab7 7370}
935e5cc9
MX
7371
7372/*
bbbf7243
NB
7373 * Update the size and bytes used for each device where it changed. This is
7374 * delayed since we would otherwise get errors while writing out the
7375 * superblocks.
7376 *
7377 * Must be invoked during transaction commit.
935e5cc9 7378 */
bbbf7243 7379void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7380{
935e5cc9
MX
7381 struct btrfs_device *curr, *next;
7382
bbbf7243 7383 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7384
bbbf7243 7385 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7386 return;
7387
bbbf7243
NB
7388 /*
7389 * We don't need the device_list_mutex here. This list is owned by the
7390 * transaction and the transaction must complete before the device is
7391 * released.
7392 */
7393 mutex_lock(&trans->fs_info->chunk_mutex);
7394 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7395 post_commit_list) {
7396 list_del_init(&curr->post_commit_list);
7397 curr->commit_total_bytes = curr->disk_total_bytes;
7398 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7399 }
bbbf7243 7400 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7401}
5a13f430
AJ
7402
7403void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7404{
7405 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7406 while (fs_devices) {
7407 fs_devices->fs_info = fs_info;
7408 fs_devices = fs_devices->seed;
7409 }
7410}
7411
7412void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7413{
7414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7415 while (fs_devices) {
7416 fs_devices->fs_info = NULL;
7417 fs_devices = fs_devices->seed;
7418 }
7419}
46df06b8
DS
7420
7421/*
7422 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7423 */
7424int btrfs_bg_type_to_factor(u64 flags)
7425{
44b28ada
DS
7426 const int index = btrfs_bg_flags_to_raid_index(flags);
7427
7428 return btrfs_raid_array[index].ncopies;
46df06b8 7429}
cf90d884
QW
7430
7431
cf90d884
QW
7432
7433static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7434 u64 chunk_offset, u64 devid,
7435 u64 physical_offset, u64 physical_len)
7436{
c8bf1b67 7437 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7438 struct extent_map *em;
7439 struct map_lookup *map;
05a37c48 7440 struct btrfs_device *dev;
cf90d884
QW
7441 u64 stripe_len;
7442 bool found = false;
7443 int ret = 0;
7444 int i;
7445
7446 read_lock(&em_tree->lock);
7447 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7448 read_unlock(&em_tree->lock);
7449
7450 if (!em) {
7451 btrfs_err(fs_info,
7452"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7453 physical_offset, devid);
7454 ret = -EUCLEAN;
7455 goto out;
7456 }
7457
7458 map = em->map_lookup;
7459 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7460 if (physical_len != stripe_len) {
7461 btrfs_err(fs_info,
7462"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7463 physical_offset, devid, em->start, physical_len,
7464 stripe_len);
7465 ret = -EUCLEAN;
7466 goto out;
7467 }
7468
7469 for (i = 0; i < map->num_stripes; i++) {
7470 if (map->stripes[i].dev->devid == devid &&
7471 map->stripes[i].physical == physical_offset) {
7472 found = true;
7473 if (map->verified_stripes >= map->num_stripes) {
7474 btrfs_err(fs_info,
7475 "too many dev extents for chunk %llu found",
7476 em->start);
7477 ret = -EUCLEAN;
7478 goto out;
7479 }
7480 map->verified_stripes++;
7481 break;
7482 }
7483 }
7484 if (!found) {
7485 btrfs_err(fs_info,
7486 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7487 physical_offset, devid);
7488 ret = -EUCLEAN;
7489 }
05a37c48
QW
7490
7491 /* Make sure no dev extent is beyond device bondary */
09ba3bc9 7492 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
05a37c48
QW
7493 if (!dev) {
7494 btrfs_err(fs_info, "failed to find devid %llu", devid);
7495 ret = -EUCLEAN;
7496 goto out;
7497 }
1b3922a8
QW
7498
7499 /* It's possible this device is a dummy for seed device */
7500 if (dev->disk_total_bytes == 0) {
09ba3bc9
AJ
7501 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7502 NULL, false);
1b3922a8
QW
7503 if (!dev) {
7504 btrfs_err(fs_info, "failed to find seed devid %llu",
7505 devid);
7506 ret = -EUCLEAN;
7507 goto out;
7508 }
7509 }
7510
05a37c48
QW
7511 if (physical_offset + physical_len > dev->disk_total_bytes) {
7512 btrfs_err(fs_info,
7513"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7514 devid, physical_offset, physical_len,
7515 dev->disk_total_bytes);
7516 ret = -EUCLEAN;
7517 goto out;
7518 }
cf90d884
QW
7519out:
7520 free_extent_map(em);
7521 return ret;
7522}
7523
7524static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7525{
c8bf1b67 7526 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7527 struct extent_map *em;
7528 struct rb_node *node;
7529 int ret = 0;
7530
7531 read_lock(&em_tree->lock);
07e1ce09 7532 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7533 em = rb_entry(node, struct extent_map, rb_node);
7534 if (em->map_lookup->num_stripes !=
7535 em->map_lookup->verified_stripes) {
7536 btrfs_err(fs_info,
7537 "chunk %llu has missing dev extent, have %d expect %d",
7538 em->start, em->map_lookup->verified_stripes,
7539 em->map_lookup->num_stripes);
7540 ret = -EUCLEAN;
7541 goto out;
7542 }
7543 }
7544out:
7545 read_unlock(&em_tree->lock);
7546 return ret;
7547}
7548
7549/*
7550 * Ensure that all dev extents are mapped to correct chunk, otherwise
7551 * later chunk allocation/free would cause unexpected behavior.
7552 *
7553 * NOTE: This will iterate through the whole device tree, which should be of
7554 * the same size level as the chunk tree. This slightly increases mount time.
7555 */
7556int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7557{
7558 struct btrfs_path *path;
7559 struct btrfs_root *root = fs_info->dev_root;
7560 struct btrfs_key key;
5eb19381
QW
7561 u64 prev_devid = 0;
7562 u64 prev_dev_ext_end = 0;
cf90d884
QW
7563 int ret = 0;
7564
7565 key.objectid = 1;
7566 key.type = BTRFS_DEV_EXTENT_KEY;
7567 key.offset = 0;
7568
7569 path = btrfs_alloc_path();
7570 if (!path)
7571 return -ENOMEM;
7572
7573 path->reada = READA_FORWARD;
7574 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7575 if (ret < 0)
7576 goto out;
7577
7578 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7579 ret = btrfs_next_item(root, path);
7580 if (ret < 0)
7581 goto out;
7582 /* No dev extents at all? Not good */
7583 if (ret > 0) {
7584 ret = -EUCLEAN;
7585 goto out;
7586 }
7587 }
7588 while (1) {
7589 struct extent_buffer *leaf = path->nodes[0];
7590 struct btrfs_dev_extent *dext;
7591 int slot = path->slots[0];
7592 u64 chunk_offset;
7593 u64 physical_offset;
7594 u64 physical_len;
7595 u64 devid;
7596
7597 btrfs_item_key_to_cpu(leaf, &key, slot);
7598 if (key.type != BTRFS_DEV_EXTENT_KEY)
7599 break;
7600 devid = key.objectid;
7601 physical_offset = key.offset;
7602
7603 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7604 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7605 physical_len = btrfs_dev_extent_length(leaf, dext);
7606
5eb19381
QW
7607 /* Check if this dev extent overlaps with the previous one */
7608 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7609 btrfs_err(fs_info,
7610"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7611 devid, physical_offset, prev_dev_ext_end);
7612 ret = -EUCLEAN;
7613 goto out;
7614 }
7615
cf90d884
QW
7616 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7617 physical_offset, physical_len);
7618 if (ret < 0)
7619 goto out;
5eb19381
QW
7620 prev_devid = devid;
7621 prev_dev_ext_end = physical_offset + physical_len;
7622
cf90d884
QW
7623 ret = btrfs_next_item(root, path);
7624 if (ret < 0)
7625 goto out;
7626 if (ret > 0) {
7627 ret = 0;
7628 break;
7629 }
7630 }
7631
7632 /* Ensure all chunks have corresponding dev extents */
7633 ret = verify_chunk_dev_extent_mapping(fs_info);
7634out:
7635 btrfs_free_path(path);
7636 return ret;
7637}
eede2bf3
OS
7638
7639/*
7640 * Check whether the given block group or device is pinned by any inode being
7641 * used as a swapfile.
7642 */
7643bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7644{
7645 struct btrfs_swapfile_pin *sp;
7646 struct rb_node *node;
7647
7648 spin_lock(&fs_info->swapfile_pins_lock);
7649 node = fs_info->swapfile_pins.rb_node;
7650 while (node) {
7651 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7652 if (ptr < sp->ptr)
7653 node = node->rb_left;
7654 else if (ptr > sp->ptr)
7655 node = node->rb_right;
7656 else
7657 break;
7658 }
7659 spin_unlock(&fs_info->swapfile_pins_lock);
7660 return node != NULL;
7661}