]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: check for the full sync flag while holding the inode lock during fsync
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832
CM
6#include <linux/sched.h>
7#include <linux/bio.h>
5a0e3ad6 8#include <linux/slab.h>
8a4b83cc 9#include <linux/buffer_head.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
784352fe 17#include "misc.h"
0b86a832
CM
18#include "ctree.h"
19#include "extent_map.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "print-tree.h"
23#include "volumes.h"
53b381b3 24#include "raid56.h"
8b712842 25#include "async-thread.h"
21adbd5c 26#include "check-integrity.h"
606686ee 27#include "rcu-string.h"
8dabb742 28#include "dev-replace.h"
99994cde 29#include "sysfs.h"
82fc28fb 30#include "tree-checker.h"
8719aaae 31#include "space-info.h"
aac0023c 32#include "block-group.h"
0b86a832 33
af902047
ZL
34const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
8789f4fe 40 .tolerated_failures = 1,
af902047
ZL
41 .devs_increment = 2,
42 .ncopies = 2,
b50836ed 43 .nparity = 0,
ed23467b 44 .raid_name = "raid10",
41a6e891 45 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 46 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
47 },
48 [BTRFS_RAID_RAID1] = {
49 .sub_stripes = 1,
50 .dev_stripes = 1,
51 .devs_max = 2,
52 .devs_min = 2,
8789f4fe 53 .tolerated_failures = 1,
af902047
ZL
54 .devs_increment = 2,
55 .ncopies = 2,
b50836ed 56 .nparity = 0,
ed23467b 57 .raid_name = "raid1",
41a6e891 58 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 59 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047
ZL
60 },
61 [BTRFS_RAID_DUP] = {
62 .sub_stripes = 1,
63 .dev_stripes = 2,
64 .devs_max = 1,
65 .devs_min = 1,
8789f4fe 66 .tolerated_failures = 0,
af902047
ZL
67 .devs_increment = 1,
68 .ncopies = 2,
b50836ed 69 .nparity = 0,
ed23467b 70 .raid_name = "dup",
41a6e891 71 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 72 .mindev_error = 0,
af902047
ZL
73 },
74 [BTRFS_RAID_RAID0] = {
75 .sub_stripes = 1,
76 .dev_stripes = 1,
77 .devs_max = 0,
78 .devs_min = 2,
8789f4fe 79 .tolerated_failures = 0,
af902047
ZL
80 .devs_increment = 1,
81 .ncopies = 1,
b50836ed 82 .nparity = 0,
ed23467b 83 .raid_name = "raid0",
41a6e891 84 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 85 .mindev_error = 0,
af902047
ZL
86 },
87 [BTRFS_RAID_SINGLE] = {
88 .sub_stripes = 1,
89 .dev_stripes = 1,
90 .devs_max = 1,
91 .devs_min = 1,
8789f4fe 92 .tolerated_failures = 0,
af902047
ZL
93 .devs_increment = 1,
94 .ncopies = 1,
b50836ed 95 .nparity = 0,
ed23467b 96 .raid_name = "single",
41a6e891 97 .bg_flag = 0,
f9fbcaa2 98 .mindev_error = 0,
af902047
ZL
99 },
100 [BTRFS_RAID_RAID5] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 2,
8789f4fe 105 .tolerated_failures = 1,
af902047 106 .devs_increment = 1,
da612e31 107 .ncopies = 1,
b50836ed 108 .nparity = 1,
ed23467b 109 .raid_name = "raid5",
41a6e891 110 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 111 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
112 },
113 [BTRFS_RAID_RAID6] = {
114 .sub_stripes = 1,
115 .dev_stripes = 1,
116 .devs_max = 0,
117 .devs_min = 3,
8789f4fe 118 .tolerated_failures = 2,
af902047 119 .devs_increment = 1,
da612e31 120 .ncopies = 1,
b50836ed 121 .nparity = 2,
ed23467b 122 .raid_name = "raid6",
41a6e891 123 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 124 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
125 },
126};
127
158da513 128const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 129{
158da513
DS
130 const int index = btrfs_bg_flags_to_raid_index(flags);
131
132 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
133 return NULL;
134
158da513 135 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
136}
137
f89e09cf
AJ
138/*
139 * Fill @buf with textual description of @bg_flags, no more than @size_buf
140 * bytes including terminating null byte.
141 */
142void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
143{
144 int i;
145 int ret;
146 char *bp = buf;
147 u64 flags = bg_flags;
148 u32 size_bp = size_buf;
149
150 if (!flags) {
151 strcpy(bp, "NONE");
152 return;
153 }
154
155#define DESCRIBE_FLAG(flag, desc) \
156 do { \
157 if (flags & (flag)) { \
158 ret = snprintf(bp, size_bp, "%s|", (desc)); \
159 if (ret < 0 || ret >= size_bp) \
160 goto out_overflow; \
161 size_bp -= ret; \
162 bp += ret; \
163 flags &= ~(flag); \
164 } \
165 } while (0)
166
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
170
171 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
172 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
173 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
174 btrfs_raid_array[i].raid_name);
175#undef DESCRIBE_FLAG
176
177 if (flags) {
178 ret = snprintf(bp, size_bp, "0x%llx|", flags);
179 size_bp -= ret;
180 }
181
182 if (size_bp < size_buf)
183 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
184
185 /*
186 * The text is trimmed, it's up to the caller to provide sufficiently
187 * large buffer
188 */
189out_overflow:;
190}
191
6f8e0fc7 192static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 193static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 194static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 195static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
196static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 enum btrfs_map_op op,
198 u64 logical, u64 *length,
199 struct btrfs_bio **bbio_ret,
200 int mirror_num, int need_raid_map);
2b82032c 201
9c6b1c4d
DS
202/*
203 * Device locking
204 * ==============
205 *
206 * There are several mutexes that protect manipulation of devices and low-level
207 * structures like chunks but not block groups, extents or files
208 *
209 * uuid_mutex (global lock)
210 * ------------------------
211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213 * device) or requested by the device= mount option
214 *
215 * the mutex can be very coarse and can cover long-running operations
216 *
217 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 218 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
219 *
220 * global::fs_devs - add, remove, updates to the global list
221 *
222 * does not protect: manipulation of the fs_devices::devices list!
223 *
224 * btrfs_device::name - renames (write side), read is RCU
225 *
226 * fs_devices::device_list_mutex (per-fs, with RCU)
227 * ------------------------------------------------
228 * protects updates to fs_devices::devices, ie. adding and deleting
229 *
230 * simple list traversal with read-only actions can be done with RCU protection
231 *
232 * may be used to exclude some operations from running concurrently without any
233 * modifications to the list (see write_all_supers)
234 *
9c6b1c4d
DS
235 * balance_mutex
236 * -------------
237 * protects balance structures (status, state) and context accessed from
238 * several places (internally, ioctl)
239 *
240 * chunk_mutex
241 * -----------
242 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
243 * device is added/removed. Additionally it also protects post_commit_list of
244 * individual devices, since they can be added to the transaction's
245 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
246 *
247 * cleaner_mutex
248 * -------------
249 * a big lock that is held by the cleaner thread and prevents running subvolume
250 * cleaning together with relocation or delayed iputs
251 *
252 *
253 * Lock nesting
254 * ============
255 *
256 * uuid_mutex
257 * volume_mutex
258 * device_list_mutex
259 * chunk_mutex
260 * balance_mutex
89595e80
AJ
261 *
262 *
263 * Exclusive operations, BTRFS_FS_EXCL_OP
264 * ======================================
265 *
266 * Maintains the exclusivity of the following operations that apply to the
267 * whole filesystem and cannot run in parallel.
268 *
269 * - Balance (*)
270 * - Device add
271 * - Device remove
272 * - Device replace (*)
273 * - Resize
274 *
275 * The device operations (as above) can be in one of the following states:
276 *
277 * - Running state
278 * - Paused state
279 * - Completed state
280 *
281 * Only device operations marked with (*) can go into the Paused state for the
282 * following reasons:
283 *
284 * - ioctl (only Balance can be Paused through ioctl)
285 * - filesystem remounted as read-only
286 * - filesystem unmounted and mounted as read-only
287 * - system power-cycle and filesystem mounted as read-only
288 * - filesystem or device errors leading to forced read-only
289 *
290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292 * A device operation in Paused or Running state can be canceled or resumed
293 * either by ioctl (Balance only) or when remounted as read-write.
294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 * completed.
9c6b1c4d
DS
296 */
297
67a2c45e 298DEFINE_MUTEX(uuid_mutex);
8a4b83cc 299static LIST_HEAD(fs_uuids);
c73eccf7
AJ
300struct list_head *btrfs_get_fs_uuids(void)
301{
302 return &fs_uuids;
303}
8a4b83cc 304
2dfeca9b
DS
305/*
306 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
309 *
310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311 * The returned struct is not linked onto any lists and can be destroyed with
312 * kfree() right away.
313 */
7239ff4b
NB
314static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 const u8 *metadata_fsid)
2208a378
ID
316{
317 struct btrfs_fs_devices *fs_devs;
318
78f2c9e6 319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
320 if (!fs_devs)
321 return ERR_PTR(-ENOMEM);
322
323 mutex_init(&fs_devs->device_list_mutex);
324
325 INIT_LIST_HEAD(&fs_devs->devices);
326 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 327 INIT_LIST_HEAD(&fs_devs->fs_list);
2208a378
ID
328 if (fsid)
329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 330
7239ff4b
NB
331 if (metadata_fsid)
332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 else if (fsid)
334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
2208a378
ID
336 return fs_devs;
337}
338
a425f9d4 339void btrfs_free_device(struct btrfs_device *device)
48dae9cf 340{
bbbf7243 341 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 342 rcu_string_free(device->name);
1c11b63e 343 extent_io_tree_release(&device->alloc_state);
48dae9cf
DS
344 bio_put(device->flush_bio);
345 kfree(device);
346}
347
e4404d6e
YZ
348static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349{
350 struct btrfs_device *device;
351 WARN_ON(fs_devices->opened);
352 while (!list_empty(&fs_devices->devices)) {
353 device = list_entry(fs_devices->devices.next,
354 struct btrfs_device, dev_list);
355 list_del(&device->dev_list);
a425f9d4 356 btrfs_free_device(device);
e4404d6e
YZ
357 }
358 kfree(fs_devices);
359}
360
ffc5a379 361void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
362{
363 struct btrfs_fs_devices *fs_devices;
8a4b83cc 364
2b82032c
YZ
365 while (!list_empty(&fs_uuids)) {
366 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
367 struct btrfs_fs_devices, fs_list);
368 list_del(&fs_devices->fs_list);
e4404d6e 369 free_fs_devices(fs_devices);
8a4b83cc 370 }
8a4b83cc
CM
371}
372
48dae9cf
DS
373/*
374 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
375 * Returned struct is not linked onto any lists and must be destroyed using
a425f9d4 376 * btrfs_free_device.
48dae9cf 377 */
12bd2fc0
ID
378static struct btrfs_device *__alloc_device(void)
379{
380 struct btrfs_device *dev;
381
78f2c9e6 382 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
383 if (!dev)
384 return ERR_PTR(-ENOMEM);
385
e0ae9994
DS
386 /*
387 * Preallocate a bio that's always going to be used for flushing device
388 * barriers and matches the device lifespan
389 */
390 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
391 if (!dev->flush_bio) {
392 kfree(dev);
393 return ERR_PTR(-ENOMEM);
394 }
e0ae9994 395
12bd2fc0
ID
396 INIT_LIST_HEAD(&dev->dev_list);
397 INIT_LIST_HEAD(&dev->dev_alloc_list);
bbbf7243 398 INIT_LIST_HEAD(&dev->post_commit_list);
12bd2fc0
ID
399
400 spin_lock_init(&dev->io_lock);
401
12bd2fc0 402 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 403 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 404 btrfs_device_data_ordered_init(dev);
9bcaaea7 405 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 406 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
1c11b63e 407 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
12bd2fc0
ID
408
409 return dev;
410}
411
7239ff4b
NB
412static noinline struct btrfs_fs_devices *find_fsid(
413 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 414{
8a4b83cc
CM
415 struct btrfs_fs_devices *fs_devices;
416
7239ff4b
NB
417 ASSERT(fsid);
418
7a62d0f0
NB
419 if (metadata_fsid) {
420 /*
421 * Handle scanned device having completed its fsid change but
422 * belonging to a fs_devices that was created by first scanning
423 * a device which didn't have its fsid/metadata_uuid changed
424 * at all and the CHANGING_FSID_V2 flag set.
425 */
426 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
427 if (fs_devices->fsid_change &&
428 memcmp(metadata_fsid, fs_devices->fsid,
429 BTRFS_FSID_SIZE) == 0 &&
430 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
431 BTRFS_FSID_SIZE) == 0) {
432 return fs_devices;
433 }
434 }
cc5de4e7
NB
435 /*
436 * Handle scanned device having completed its fsid change but
437 * belonging to a fs_devices that was created by a device that
438 * has an outdated pair of fsid/metadata_uuid and
439 * CHANGING_FSID_V2 flag set.
440 */
441 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
442 if (fs_devices->fsid_change &&
443 memcmp(fs_devices->metadata_uuid,
444 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
445 memcmp(metadata_fsid, fs_devices->metadata_uuid,
446 BTRFS_FSID_SIZE) == 0) {
447 return fs_devices;
448 }
449 }
7a62d0f0
NB
450 }
451
452 /* Handle non-split brain cases */
c4babc5e 453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
454 if (metadata_fsid) {
455 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
456 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
457 BTRFS_FSID_SIZE) == 0)
458 return fs_devices;
459 } else {
460 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
461 return fs_devices;
462 }
8a4b83cc
CM
463 }
464 return NULL;
465}
466
beaf8ab3
SB
467static int
468btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
469 int flush, struct block_device **bdev,
470 struct buffer_head **bh)
471{
472 int ret;
473
474 *bdev = blkdev_get_by_path(device_path, flags, holder);
475
476 if (IS_ERR(*bdev)) {
477 ret = PTR_ERR(*bdev);
beaf8ab3
SB
478 goto error;
479 }
480
481 if (flush)
482 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
9f6d2510 483 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
484 if (ret) {
485 blkdev_put(*bdev, flags);
486 goto error;
487 }
488 invalidate_bdev(*bdev);
489 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
490 if (IS_ERR(*bh)) {
491 ret = PTR_ERR(*bh);
beaf8ab3
SB
492 blkdev_put(*bdev, flags);
493 goto error;
494 }
495
496 return 0;
497
498error:
499 *bdev = NULL;
500 *bh = NULL;
501 return ret;
502}
503
ffbd517d
CM
504static void requeue_list(struct btrfs_pending_bios *pending_bios,
505 struct bio *head, struct bio *tail)
506{
507
508 struct bio *old_head;
509
510 old_head = pending_bios->head;
511 pending_bios->head = head;
512 if (pending_bios->tail)
513 tail->bi_next = old_head;
514 else
515 pending_bios->tail = tail;
516}
517
8b712842
CM
518/*
519 * we try to collect pending bios for a device so we don't get a large
520 * number of procs sending bios down to the same device. This greatly
521 * improves the schedulers ability to collect and merge the bios.
522 *
523 * But, it also turns into a long list of bios to process and that is sure
524 * to eventually make the worker thread block. The solution here is to
525 * make some progress and then put this work struct back at the end of
526 * the list if the block device is congested. This way, multiple devices
527 * can make progress from a single worker thread.
528 */
143bede5 529static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 530{
0b246afa 531 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
532 struct bio *pending;
533 struct backing_dev_info *bdi;
ffbd517d 534 struct btrfs_pending_bios *pending_bios;
8b712842
CM
535 struct bio *tail;
536 struct bio *cur;
537 int again = 0;
ffbd517d 538 unsigned long num_run;
d644d8a1 539 unsigned long batch_run = 0;
b765ead5 540 unsigned long last_waited = 0;
d84275c9 541 int force_reg = 0;
0e588859 542 int sync_pending = 0;
211588ad
CM
543 struct blk_plug plug;
544
545 /*
546 * this function runs all the bios we've collected for
547 * a particular device. We don't want to wander off to
548 * another device without first sending all of these down.
549 * So, setup a plug here and finish it off before we return
550 */
551 blk_start_plug(&plug);
8b712842 552
efa7c9f9 553 bdi = device->bdev->bd_bdi;
b64a2851 554
8b712842
CM
555loop:
556 spin_lock(&device->io_lock);
557
a6837051 558loop_lock:
d84275c9 559 num_run = 0;
ffbd517d 560
8b712842
CM
561 /* take all the bios off the list at once and process them
562 * later on (without the lock held). But, remember the
563 * tail and other pointers so the bios can be properly reinserted
564 * into the list if we hit congestion
565 */
d84275c9 566 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 567 pending_bios = &device->pending_sync_bios;
d84275c9
CM
568 force_reg = 1;
569 } else {
ffbd517d 570 pending_bios = &device->pending_bios;
d84275c9
CM
571 force_reg = 0;
572 }
ffbd517d
CM
573
574 pending = pending_bios->head;
575 tail = pending_bios->tail;
8b712842 576 WARN_ON(pending && !tail);
8b712842
CM
577
578 /*
579 * if pending was null this time around, no bios need processing
580 * at all and we can stop. Otherwise it'll loop back up again
581 * and do an additional check so no bios are missed.
582 *
583 * device->running_pending is used to synchronize with the
584 * schedule_bio code.
585 */
ffbd517d
CM
586 if (device->pending_sync_bios.head == NULL &&
587 device->pending_bios.head == NULL) {
8b712842
CM
588 again = 0;
589 device->running_pending = 0;
ffbd517d
CM
590 } else {
591 again = 1;
592 device->running_pending = 1;
8b712842 593 }
ffbd517d
CM
594
595 pending_bios->head = NULL;
596 pending_bios->tail = NULL;
597
8b712842
CM
598 spin_unlock(&device->io_lock);
599
d397712b 600 while (pending) {
ffbd517d
CM
601
602 rmb();
d84275c9
CM
603 /* we want to work on both lists, but do more bios on the
604 * sync list than the regular list
605 */
606 if ((num_run > 32 &&
607 pending_bios != &device->pending_sync_bios &&
608 device->pending_sync_bios.head) ||
609 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
610 device->pending_bios.head)) {
ffbd517d
CM
611 spin_lock(&device->io_lock);
612 requeue_list(pending_bios, pending, tail);
613 goto loop_lock;
614 }
615
8b712842
CM
616 cur = pending;
617 pending = pending->bi_next;
618 cur->bi_next = NULL;
b64a2851 619
dac56212 620 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 621
2ab1ba68
CM
622 /*
623 * if we're doing the sync list, record that our
624 * plug has some sync requests on it
625 *
626 * If we're doing the regular list and there are
627 * sync requests sitting around, unplug before
628 * we add more
629 */
630 if (pending_bios == &device->pending_sync_bios) {
631 sync_pending = 1;
632 } else if (sync_pending) {
633 blk_finish_plug(&plug);
634 blk_start_plug(&plug);
635 sync_pending = 0;
636 }
637
4e49ea4a 638 btrfsic_submit_bio(cur);
5ff7ba3a
CM
639 num_run++;
640 batch_run++;
853d8ec4
DS
641
642 cond_resched();
8b712842
CM
643
644 /*
645 * we made progress, there is more work to do and the bdi
646 * is now congested. Back off and let other work structs
647 * run instead
648 */
57fd5a5f 649 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 650 fs_info->fs_devices->open_devices > 1) {
b765ead5 651 struct io_context *ioc;
8b712842 652
b765ead5
CM
653 ioc = current->io_context;
654
655 /*
656 * the main goal here is that we don't want to
657 * block if we're going to be able to submit
658 * more requests without blocking.
659 *
660 * This code does two great things, it pokes into
661 * the elevator code from a filesystem _and_
662 * it makes assumptions about how batching works.
663 */
664 if (ioc && ioc->nr_batch_requests > 0 &&
665 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
666 (last_waited == 0 ||
667 ioc->last_waited == last_waited)) {
668 /*
669 * we want to go through our batch of
670 * requests and stop. So, we copy out
671 * the ioc->last_waited time and test
672 * against it before looping
673 */
674 last_waited = ioc->last_waited;
853d8ec4 675 cond_resched();
b765ead5
CM
676 continue;
677 }
8b712842 678 spin_lock(&device->io_lock);
ffbd517d 679 requeue_list(pending_bios, pending, tail);
a6837051 680 device->running_pending = 1;
8b712842
CM
681
682 spin_unlock(&device->io_lock);
a8c93d4e
QW
683 btrfs_queue_work(fs_info->submit_workers,
684 &device->work);
8b712842
CM
685 goto done;
686 }
687 }
ffbd517d 688
51684082
CM
689 cond_resched();
690 if (again)
691 goto loop;
692
693 spin_lock(&device->io_lock);
694 if (device->pending_bios.head || device->pending_sync_bios.head)
695 goto loop_lock;
696 spin_unlock(&device->io_lock);
697
8b712842 698done:
211588ad 699 blk_finish_plug(&plug);
8b712842
CM
700}
701
b2950863 702static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
703{
704 struct btrfs_device *device;
705
706 device = container_of(work, struct btrfs_device, work);
707 run_scheduled_bios(device);
708}
709
70bc7088
AJ
710static bool device_path_matched(const char *path, struct btrfs_device *device)
711{
712 int found;
713
714 rcu_read_lock();
715 found = strcmp(rcu_str_deref(device->name), path);
716 rcu_read_unlock();
717
718 return found == 0;
719}
720
d8367db3
AJ
721/*
722 * Search and remove all stale (devices which are not mounted) devices.
723 * When both inputs are NULL, it will search and release all stale devices.
724 * path: Optional. When provided will it release all unmounted devices
725 * matching this path only.
726 * skip_dev: Optional. Will skip this device when searching for the stale
727 * devices.
70bc7088
AJ
728 * Return: 0 for success or if @path is NULL.
729 * -EBUSY if @path is a mounted device.
730 * -ENOENT if @path does not match any device in the list.
d8367db3 731 */
70bc7088 732static int btrfs_free_stale_devices(const char *path,
fa6d2ae5 733 struct btrfs_device *skip_device)
4fde46f0 734{
fa6d2ae5
AJ
735 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
736 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
737 int ret = 0;
738
739 if (path)
740 ret = -ENOENT;
4fde46f0 741
fa6d2ae5 742 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 743
70bc7088 744 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
745 list_for_each_entry_safe(device, tmp_device,
746 &fs_devices->devices, dev_list) {
fa6d2ae5 747 if (skip_device && skip_device == device)
d8367db3 748 continue;
fa6d2ae5 749 if (path && !device->name)
4fde46f0 750 continue;
70bc7088 751 if (path && !device_path_matched(path, device))
38cf665d 752 continue;
70bc7088
AJ
753 if (fs_devices->opened) {
754 /* for an already deleted device return 0 */
755 if (path && ret != 0)
756 ret = -EBUSY;
757 break;
758 }
4fde46f0 759
4fde46f0 760 /* delete the stale device */
7bcb8164
AJ
761 fs_devices->num_devices--;
762 list_del(&device->dev_list);
763 btrfs_free_device(device);
764
70bc7088 765 ret = 0;
7bcb8164 766 if (fs_devices->num_devices == 0)
fd649f10 767 break;
7bcb8164
AJ
768 }
769 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 770
7bcb8164
AJ
771 if (fs_devices->num_devices == 0) {
772 btrfs_sysfs_remove_fsid(fs_devices);
773 list_del(&fs_devices->fs_list);
774 free_fs_devices(fs_devices);
4fde46f0
AJ
775 }
776 }
70bc7088
AJ
777
778 return ret;
4fde46f0
AJ
779}
780
0fb08bcc
AJ
781static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
782 struct btrfs_device *device, fmode_t flags,
783 void *holder)
784{
785 struct request_queue *q;
786 struct block_device *bdev;
787 struct buffer_head *bh;
788 struct btrfs_super_block *disk_super;
789 u64 devid;
790 int ret;
791
792 if (device->bdev)
793 return -EINVAL;
794 if (!device->name)
795 return -EINVAL;
796
797 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
798 &bdev, &bh);
799 if (ret)
800 return ret;
801
802 disk_super = (struct btrfs_super_block *)bh->b_data;
803 devid = btrfs_stack_device_id(&disk_super->dev_item);
804 if (devid != device->devid)
805 goto error_brelse;
806
807 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
808 goto error_brelse;
809
810 device->generation = btrfs_super_generation(disk_super);
811
812 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
813 if (btrfs_super_incompat_flags(disk_super) &
814 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
815 pr_err(
816 "BTRFS: Invalid seeding and uuid-changed device detected\n");
817 goto error_brelse;
818 }
819
ebbede42 820 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
821 fs_devices->seeding = 1;
822 } else {
ebbede42
AJ
823 if (bdev_read_only(bdev))
824 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
825 else
826 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
827 }
828
829 q = bdev_get_queue(bdev);
0fb08bcc
AJ
830 if (!blk_queue_nonrot(q))
831 fs_devices->rotating = 1;
832
833 device->bdev = bdev;
e12c9621 834 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
835 device->mode = flags;
836
837 fs_devices->open_devices++;
ebbede42
AJ
838 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
839 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 840 fs_devices->rw_devices++;
b1b8e386 841 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc
AJ
842 }
843 brelse(bh);
844
845 return 0;
846
847error_brelse:
848 brelse(bh);
849 blkdev_put(bdev, flags);
850
851 return -EINVAL;
852}
853
7a62d0f0
NB
854/*
855 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
856 * being created with a disk that has already completed its fsid change.
857 */
858static struct btrfs_fs_devices *find_fsid_inprogress(
859 struct btrfs_super_block *disk_super)
860{
861 struct btrfs_fs_devices *fs_devices;
862
863 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
864 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
865 BTRFS_FSID_SIZE) != 0 &&
866 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
867 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
868 return fs_devices;
869 }
870 }
871
872 return NULL;
873}
874
cc5de4e7
NB
875
876static struct btrfs_fs_devices *find_fsid_changed(
877 struct btrfs_super_block *disk_super)
878{
879 struct btrfs_fs_devices *fs_devices;
880
881 /*
882 * Handles the case where scanned device is part of an fs that had
883 * multiple successful changes of FSID but curently device didn't
884 * observe it. Meaning our fsid will be different than theirs.
885 */
886 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
887 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
888 BTRFS_FSID_SIZE) != 0 &&
889 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
890 BTRFS_FSID_SIZE) == 0 &&
891 memcmp(fs_devices->fsid, disk_super->fsid,
892 BTRFS_FSID_SIZE) != 0) {
893 return fs_devices;
894 }
895 }
896
897 return NULL;
898}
60999ca4
DS
899/*
900 * Add new device to list of registered devices
901 *
902 * Returns:
e124ece5
AJ
903 * device pointer which was just added or updated when successful
904 * error pointer when failed
60999ca4 905 */
e124ece5 906static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
907 struct btrfs_super_block *disk_super,
908 bool *new_device_added)
8a4b83cc
CM
909{
910 struct btrfs_device *device;
7a62d0f0 911 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 912 struct rcu_string *name;
8a4b83cc 913 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 914 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
7239ff4b
NB
915 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
916 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
917 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
918 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 919
cc5de4e7
NB
920 if (fsid_change_in_progress) {
921 if (!has_metadata_uuid) {
922 /*
923 * When we have an image which has CHANGING_FSID_V2 set
924 * it might belong to either a filesystem which has
925 * disks with completed fsid change or it might belong
926 * to fs with no UUID changes in effect, handle both.
927 */
928 fs_devices = find_fsid_inprogress(disk_super);
929 if (!fs_devices)
930 fs_devices = find_fsid(disk_super->fsid, NULL);
931 } else {
932 fs_devices = find_fsid_changed(disk_super);
933 }
7a62d0f0
NB
934 } else if (has_metadata_uuid) {
935 fs_devices = find_fsid(disk_super->fsid,
936 disk_super->metadata_uuid);
937 } else {
7239ff4b 938 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
939 }
940
8a4b83cc 941
8a4b83cc 942 if (!fs_devices) {
7239ff4b
NB
943 if (has_metadata_uuid)
944 fs_devices = alloc_fs_devices(disk_super->fsid,
945 disk_super->metadata_uuid);
946 else
947 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
948
2208a378 949 if (IS_ERR(fs_devices))
e124ece5 950 return ERR_CAST(fs_devices);
2208a378 951
92900e51
AV
952 fs_devices->fsid_change = fsid_change_in_progress;
953
9c6d173e 954 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 955 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 956
8a4b83cc
CM
957 device = NULL;
958 } else {
9c6d173e 959 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
960 device = btrfs_find_device(fs_devices, devid,
961 disk_super->dev_item.uuid, NULL, false);
7a62d0f0
NB
962
963 /*
964 * If this disk has been pulled into an fs devices created by
965 * a device which had the CHANGING_FSID_V2 flag then replace the
966 * metadata_uuid/fsid values of the fs_devices.
967 */
968 if (has_metadata_uuid && fs_devices->fsid_change &&
969 found_transid > fs_devices->latest_generation) {
970 memcpy(fs_devices->fsid, disk_super->fsid,
971 BTRFS_FSID_SIZE);
972 memcpy(fs_devices->metadata_uuid,
973 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
974
975 fs_devices->fsid_change = false;
976 }
8a4b83cc 977 }
443f24fe 978
8a4b83cc 979 if (!device) {
9c6d173e
AJ
980 if (fs_devices->opened) {
981 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 982 return ERR_PTR(-EBUSY);
9c6d173e 983 }
2b82032c 984
12bd2fc0
ID
985 device = btrfs_alloc_device(NULL, &devid,
986 disk_super->dev_item.uuid);
987 if (IS_ERR(device)) {
9c6d173e 988 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 989 /* we can safely leave the fs_devices entry around */
e124ece5 990 return device;
8a4b83cc 991 }
606686ee
JB
992
993 name = rcu_string_strdup(path, GFP_NOFS);
994 if (!name) {
a425f9d4 995 btrfs_free_device(device);
9c6d173e 996 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 997 return ERR_PTR(-ENOMEM);
8a4b83cc 998 }
606686ee 999 rcu_assign_pointer(device->name, name);
90519d66 1000
1f78160c 1001 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 1002 fs_devices->num_devices++;
e5e9a520 1003
2b82032c 1004 device->fs_devices = fs_devices;
4306a974 1005 *new_device_added = true;
327f18cc
AJ
1006
1007 if (disk_super->label[0])
1008 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1009 disk_super->label, devid, found_transid, path);
1010 else
1011 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1012 disk_super->fsid, devid, found_transid, path);
1013
606686ee 1014 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
1015 /*
1016 * When FS is already mounted.
1017 * 1. If you are here and if the device->name is NULL that
1018 * means this device was missing at time of FS mount.
1019 * 2. If you are here and if the device->name is different
1020 * from 'path' that means either
1021 * a. The same device disappeared and reappeared with
1022 * different name. or
1023 * b. The missing-disk-which-was-replaced, has
1024 * reappeared now.
1025 *
1026 * We must allow 1 and 2a above. But 2b would be a spurious
1027 * and unintentional.
1028 *
1029 * Further in case of 1 and 2a above, the disk at 'path'
1030 * would have missed some transaction when it was away and
1031 * in case of 2a the stale bdev has to be updated as well.
1032 * 2b must not be allowed at all time.
1033 */
1034
1035 /*
0f23ae74
CM
1036 * For now, we do allow update to btrfs_fs_device through the
1037 * btrfs dev scan cli after FS has been mounted. We're still
1038 * tracking a problem where systems fail mount by subvolume id
1039 * when we reject replacement on a mounted FS.
b96de000 1040 */
0f23ae74 1041 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
1042 /*
1043 * That is if the FS is _not_ mounted and if you
1044 * are here, that means there is more than one
1045 * disk with same uuid and devid.We keep the one
1046 * with larger generation number or the last-in if
1047 * generation are equal.
1048 */
9c6d173e 1049 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 1050 return ERR_PTR(-EEXIST);
77bdae4d 1051 }
b96de000 1052
a9261d41
AJ
1053 /*
1054 * We are going to replace the device path for a given devid,
1055 * make sure it's the same device if the device is mounted
1056 */
1057 if (device->bdev) {
1058 struct block_device *path_bdev;
1059
1060 path_bdev = lookup_bdev(path);
1061 if (IS_ERR(path_bdev)) {
1062 mutex_unlock(&fs_devices->device_list_mutex);
1063 return ERR_CAST(path_bdev);
1064 }
1065
1066 if (device->bdev != path_bdev) {
1067 bdput(path_bdev);
1068 mutex_unlock(&fs_devices->device_list_mutex);
1069 btrfs_warn_in_rcu(device->fs_info,
1070 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1071 disk_super->fsid, devid,
1072 rcu_str_deref(device->name), path);
1073 return ERR_PTR(-EEXIST);
1074 }
1075 bdput(path_bdev);
1076 btrfs_info_in_rcu(device->fs_info,
1077 "device fsid %pU devid %llu moved old:%s new:%s",
1078 disk_super->fsid, devid,
1079 rcu_str_deref(device->name), path);
1080 }
1081
606686ee 1082 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
1083 if (!name) {
1084 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 1085 return ERR_PTR(-ENOMEM);
9c6d173e 1086 }
606686ee
JB
1087 rcu_string_free(device->name);
1088 rcu_assign_pointer(device->name, name);
e6e674bd 1089 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 1090 fs_devices->missing_devices--;
e6e674bd 1091 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 1092 }
8a4b83cc
CM
1093 }
1094
77bdae4d
AJ
1095 /*
1096 * Unmount does not free the btrfs_device struct but would zero
1097 * generation along with most of the other members. So just update
1098 * it back. We need it to pick the disk with largest generation
1099 * (as above).
1100 */
d1a63002 1101 if (!fs_devices->opened) {
77bdae4d 1102 device->generation = found_transid;
d1a63002
NB
1103 fs_devices->latest_generation = max_t(u64, found_transid,
1104 fs_devices->latest_generation);
1105 }
77bdae4d 1106
f2788d2f
AJ
1107 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1108
9c6d173e 1109 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 1110 return device;
8a4b83cc
CM
1111}
1112
e4404d6e
YZ
1113static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1114{
1115 struct btrfs_fs_devices *fs_devices;
1116 struct btrfs_device *device;
1117 struct btrfs_device *orig_dev;
d2979aa2 1118 int ret = 0;
e4404d6e 1119
7239ff4b 1120 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
1121 if (IS_ERR(fs_devices))
1122 return fs_devices;
e4404d6e 1123
adbbb863 1124 mutex_lock(&orig->device_list_mutex);
02db0844 1125 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
1126
1127 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
1128 struct rcu_string *name;
1129
12bd2fc0
ID
1130 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1131 orig_dev->uuid);
d2979aa2
AJ
1132 if (IS_ERR(device)) {
1133 ret = PTR_ERR(device);
e4404d6e 1134 goto error;
d2979aa2 1135 }
e4404d6e 1136
606686ee
JB
1137 /*
1138 * This is ok to do without rcu read locked because we hold the
1139 * uuid mutex so nothing we touch in here is going to disappear.
1140 */
e755f780 1141 if (orig_dev->name) {
78f2c9e6
DS
1142 name = rcu_string_strdup(orig_dev->name->str,
1143 GFP_KERNEL);
e755f780 1144 if (!name) {
a425f9d4 1145 btrfs_free_device(device);
d2979aa2 1146 ret = -ENOMEM;
e755f780
AJ
1147 goto error;
1148 }
1149 rcu_assign_pointer(device->name, name);
fd2696f3 1150 }
e4404d6e 1151
e4404d6e
YZ
1152 list_add(&device->dev_list, &fs_devices->devices);
1153 device->fs_devices = fs_devices;
1154 fs_devices->num_devices++;
1155 }
adbbb863 1156 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
1157 return fs_devices;
1158error:
adbbb863 1159 mutex_unlock(&orig->device_list_mutex);
e4404d6e 1160 free_fs_devices(fs_devices);
d2979aa2 1161 return ERR_PTR(ret);
e4404d6e
YZ
1162}
1163
9b99b115
AJ
1164/*
1165 * After we have read the system tree and know devids belonging to
1166 * this filesystem, remove the device which does not belong there.
1167 */
1168void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 1169{
c6e30871 1170 struct btrfs_device *device, *next;
443f24fe 1171 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 1172
dfe25020
CM
1173 mutex_lock(&uuid_mutex);
1174again:
46224705 1175 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1176 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
e12c9621
AJ
1177 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1178 &device->dev_state)) {
401e29c1
AJ
1179 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1180 &device->dev_state) &&
1181 (!latest_dev ||
1182 device->generation > latest_dev->generation)) {
443f24fe 1183 latest_dev = device;
a6b0d5c8 1184 }
2b82032c 1185 continue;
a6b0d5c8 1186 }
2b82032c 1187
8dabb742
SB
1188 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1189 /*
1190 * In the first step, keep the device which has
1191 * the correct fsid and the devid that is used
1192 * for the dev_replace procedure.
1193 * In the second step, the dev_replace state is
1194 * read from the device tree and it is known
1195 * whether the procedure is really active or
1196 * not, which means whether this device is
1197 * used or whether it should be removed.
1198 */
401e29c1
AJ
1199 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1200 &device->dev_state)) {
8dabb742
SB
1201 continue;
1202 }
1203 }
2b82032c 1204 if (device->bdev) {
d4d77629 1205 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1206 device->bdev = NULL;
1207 fs_devices->open_devices--;
1208 }
ebbede42 1209 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1210 list_del_init(&device->dev_alloc_list);
ebbede42 1211 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
401e29c1
AJ
1212 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1213 &device->dev_state))
8dabb742 1214 fs_devices->rw_devices--;
2b82032c 1215 }
e4404d6e
YZ
1216 list_del_init(&device->dev_list);
1217 fs_devices->num_devices--;
a425f9d4 1218 btrfs_free_device(device);
dfe25020 1219 }
2b82032c
YZ
1220
1221 if (fs_devices->seed) {
1222 fs_devices = fs_devices->seed;
2b82032c
YZ
1223 goto again;
1224 }
1225
443f24fe 1226 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 1227
dfe25020 1228 mutex_unlock(&uuid_mutex);
dfe25020 1229}
a0af469b 1230
14238819
AJ
1231static void btrfs_close_bdev(struct btrfs_device *device)
1232{
08ffcae8
DS
1233 if (!device->bdev)
1234 return;
1235
ebbede42 1236 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1237 sync_blockdev(device->bdev);
1238 invalidate_bdev(device->bdev);
1239 }
1240
08ffcae8 1241 blkdev_put(device->bdev, device->mode);
14238819
AJ
1242}
1243
959b1c04 1244static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1245{
1246 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1247 struct btrfs_device *new_device;
1248 struct rcu_string *name;
1249
1250 if (device->bdev)
1251 fs_devices->open_devices--;
1252
ebbede42 1253 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1254 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1255 list_del_init(&device->dev_alloc_list);
1256 fs_devices->rw_devices--;
1257 }
1258
e6e674bd 1259 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
f448341a
AJ
1260 fs_devices->missing_devices--;
1261
959b1c04
NB
1262 btrfs_close_bdev(device);
1263
f448341a
AJ
1264 new_device = btrfs_alloc_device(NULL, &device->devid,
1265 device->uuid);
1266 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1267
1268 /* Safe because we are under uuid_mutex */
1269 if (device->name) {
1270 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1271 BUG_ON(!name); /* -ENOMEM */
1272 rcu_assign_pointer(new_device->name, name);
1273 }
1274
1275 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1276 new_device->fs_devices = device->fs_devices;
959b1c04 1277
8e75fd89
NB
1278 synchronize_rcu();
1279 btrfs_free_device(device);
f448341a
AJ
1280}
1281
0226e0eb 1282static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1283{
2037a093 1284 struct btrfs_device *device, *tmp;
e4404d6e 1285
2b82032c
YZ
1286 if (--fs_devices->opened > 0)
1287 return 0;
8a4b83cc 1288
c9513edb 1289 mutex_lock(&fs_devices->device_list_mutex);
2037a093 1290 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
959b1c04 1291 btrfs_close_one_device(device);
8a4b83cc 1292 }
c9513edb
XG
1293 mutex_unlock(&fs_devices->device_list_mutex);
1294
e4404d6e
YZ
1295 WARN_ON(fs_devices->open_devices);
1296 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
1297 fs_devices->opened = 0;
1298 fs_devices->seeding = 0;
2b82032c 1299
8a4b83cc
CM
1300 return 0;
1301}
1302
2b82032c
YZ
1303int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1304{
e4404d6e 1305 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
1306 int ret;
1307
1308 mutex_lock(&uuid_mutex);
0226e0eb 1309 ret = close_fs_devices(fs_devices);
e4404d6e
YZ
1310 if (!fs_devices->opened) {
1311 seed_devices = fs_devices->seed;
1312 fs_devices->seed = NULL;
1313 }
2b82032c 1314 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
1315
1316 while (seed_devices) {
1317 fs_devices = seed_devices;
1318 seed_devices = fs_devices->seed;
0226e0eb 1319 close_fs_devices(fs_devices);
e4404d6e
YZ
1320 free_fs_devices(fs_devices);
1321 }
2b82032c
YZ
1322 return ret;
1323}
1324
897fb573 1325static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1326 fmode_t flags, void *holder)
8a4b83cc 1327{
8a4b83cc 1328 struct btrfs_device *device;
443f24fe 1329 struct btrfs_device *latest_dev = NULL;
a0af469b 1330 int ret = 0;
8a4b83cc 1331
d4d77629
TH
1332 flags |= FMODE_EXCL;
1333
f117e290 1334 list_for_each_entry(device, &fs_devices->devices, dev_list) {
f63e0cca 1335 /* Just open everything we can; ignore failures here */
0fb08bcc 1336 if (btrfs_open_one_device(fs_devices, device, flags, holder))
beaf8ab3 1337 continue;
a0af469b 1338
9f050db4
AJ
1339 if (!latest_dev ||
1340 device->generation > latest_dev->generation)
1341 latest_dev = device;
8a4b83cc 1342 }
a0af469b 1343 if (fs_devices->open_devices == 0) {
20bcd649 1344 ret = -EINVAL;
a0af469b
CM
1345 goto out;
1346 }
2b82032c 1347 fs_devices->opened = 1;
443f24fe 1348 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1349 fs_devices->total_rw_bytes = 0;
a0af469b 1350out:
2b82032c
YZ
1351 return ret;
1352}
1353
f8e10cd3
AJ
1354static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1355{
1356 struct btrfs_device *dev1, *dev2;
1357
1358 dev1 = list_entry(a, struct btrfs_device, dev_list);
1359 dev2 = list_entry(b, struct btrfs_device, dev_list);
1360
1361 if (dev1->devid < dev2->devid)
1362 return -1;
1363 else if (dev1->devid > dev2->devid)
1364 return 1;
1365 return 0;
1366}
1367
2b82032c 1368int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1369 fmode_t flags, void *holder)
2b82032c
YZ
1370{
1371 int ret;
1372
f5194e34
DS
1373 lockdep_assert_held(&uuid_mutex);
1374
542c5908 1375 mutex_lock(&fs_devices->device_list_mutex);
2b82032c 1376 if (fs_devices->opened) {
e4404d6e
YZ
1377 fs_devices->opened++;
1378 ret = 0;
2b82032c 1379 } else {
f8e10cd3 1380 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1381 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1382 }
542c5908
AJ
1383 mutex_unlock(&fs_devices->device_list_mutex);
1384
8a4b83cc
CM
1385 return ret;
1386}
1387
c9162bdf 1388static void btrfs_release_disk_super(struct page *page)
6cf86a00
AJ
1389{
1390 kunmap(page);
1391 put_page(page);
1392}
1393
c9162bdf
OS
1394static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1395 struct page **page,
1396 struct btrfs_super_block **disk_super)
6cf86a00
AJ
1397{
1398 void *p;
1399 pgoff_t index;
1400
1401 /* make sure our super fits in the device */
1402 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1403 return 1;
1404
1405 /* make sure our super fits in the page */
1406 if (sizeof(**disk_super) > PAGE_SIZE)
1407 return 1;
1408
1409 /* make sure our super doesn't straddle pages on disk */
1410 index = bytenr >> PAGE_SHIFT;
1411 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1412 return 1;
1413
1414 /* pull in the page with our super */
1415 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1416 index, GFP_KERNEL);
1417
1418 if (IS_ERR_OR_NULL(*page))
1419 return 1;
1420
1421 p = kmap(*page);
1422
1423 /* align our pointer to the offset of the super block */
7073017a 1424 *disk_super = p + offset_in_page(bytenr);
6cf86a00
AJ
1425
1426 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1427 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1428 btrfs_release_disk_super(*page);
1429 return 1;
1430 }
1431
1432 if ((*disk_super)->label[0] &&
1433 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1434 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1435
1436 return 0;
1437}
1438
228a73ab
AJ
1439int btrfs_forget_devices(const char *path)
1440{
1441 int ret;
1442
1443 mutex_lock(&uuid_mutex);
1444 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1445 mutex_unlock(&uuid_mutex);
1446
1447 return ret;
1448}
1449
6f60cbd3
DS
1450/*
1451 * Look for a btrfs signature on a device. This may be called out of the mount path
1452 * and we are not allowed to call set_blocksize during the scan. The superblock
1453 * is read via pagecache
1454 */
36350e95
GJ
1455struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1456 void *holder)
8a4b83cc
CM
1457{
1458 struct btrfs_super_block *disk_super;
4306a974 1459 bool new_device_added = false;
36350e95 1460 struct btrfs_device *device = NULL;
8a4b83cc 1461 struct block_device *bdev;
6f60cbd3 1462 struct page *page;
6f60cbd3 1463 u64 bytenr;
8a4b83cc 1464
899f9307
DS
1465 lockdep_assert_held(&uuid_mutex);
1466
6f60cbd3
DS
1467 /*
1468 * we would like to check all the supers, but that would make
1469 * a btrfs mount succeed after a mkfs from a different FS.
1470 * So, we need to add a special mount option to scan for
1471 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1472 */
1473 bytenr = btrfs_sb_offset(0);
d4d77629 1474 flags |= FMODE_EXCL;
6f60cbd3
DS
1475
1476 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1477 if (IS_ERR(bdev))
36350e95 1478 return ERR_CAST(bdev);
6f60cbd3 1479
05a5c55d 1480 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
36350e95 1481 device = ERR_PTR(-EINVAL);
6f60cbd3 1482 goto error_bdev_put;
05a5c55d 1483 }
6f60cbd3 1484
4306a974 1485 device = device_list_add(path, disk_super, &new_device_added);
36350e95 1486 if (!IS_ERR(device)) {
4306a974
AJ
1487 if (new_device_added)
1488 btrfs_free_stale_devices(path, device);
1489 }
6f60cbd3 1490
6cf86a00 1491 btrfs_release_disk_super(page);
6f60cbd3
DS
1492
1493error_bdev_put:
d4d77629 1494 blkdev_put(bdev, flags);
b6ed73bc 1495
36350e95 1496 return device;
8a4b83cc 1497}
0b86a832 1498
1c11b63e
JM
1499/*
1500 * Try to find a chunk that intersects [start, start + len] range and when one
1501 * such is found, record the end of it in *start
1502 */
1c11b63e
JM
1503static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1504 u64 len)
6df9a95e 1505{
1c11b63e 1506 u64 physical_start, physical_end;
6df9a95e 1507
1c11b63e 1508 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1509
1c11b63e
JM
1510 if (!find_first_extent_bit(&device->alloc_state, *start,
1511 &physical_start, &physical_end,
1512 CHUNK_ALLOCATED, NULL)) {
c152b63e 1513
1c11b63e
JM
1514 if (in_range(physical_start, *start, len) ||
1515 in_range(*start, physical_start,
1516 physical_end - physical_start)) {
1517 *start = physical_end + 1;
1518 return true;
6df9a95e
JB
1519 }
1520 }
1c11b63e 1521 return false;
6df9a95e
JB
1522}
1523
1524
0b86a832 1525/*
499f377f
JM
1526 * find_free_dev_extent_start - find free space in the specified device
1527 * @device: the device which we search the free space in
1528 * @num_bytes: the size of the free space that we need
1529 * @search_start: the position from which to begin the search
1530 * @start: store the start of the free space.
1531 * @len: the size of the free space. that we find, or the size
1532 * of the max free space if we don't find suitable free space
7bfc837d 1533 *
0b86a832
CM
1534 * this uses a pretty simple search, the expectation is that it is
1535 * called very infrequently and that a given device has a small number
1536 * of extents
7bfc837d
MX
1537 *
1538 * @start is used to store the start of the free space if we find. But if we
1539 * don't find suitable free space, it will be used to store the start position
1540 * of the max free space.
1541 *
1542 * @len is used to store the size of the free space that we find.
1543 * But if we don't find suitable free space, it is used to store the size of
1544 * the max free space.
135da976
QW
1545 *
1546 * NOTE: This function will search *commit* root of device tree, and does extra
1547 * check to ensure dev extents are not double allocated.
1548 * This makes the function safe to allocate dev extents but may not report
1549 * correct usable device space, as device extent freed in current transaction
1550 * is not reported as avaiable.
0b86a832 1551 */
9e3246a5
QW
1552static int find_free_dev_extent_start(struct btrfs_device *device,
1553 u64 num_bytes, u64 search_start, u64 *start,
1554 u64 *len)
0b86a832 1555{
0b246afa
JM
1556 struct btrfs_fs_info *fs_info = device->fs_info;
1557 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1558 struct btrfs_key key;
7bfc837d 1559 struct btrfs_dev_extent *dev_extent;
2b82032c 1560 struct btrfs_path *path;
7bfc837d
MX
1561 u64 hole_size;
1562 u64 max_hole_start;
1563 u64 max_hole_size;
1564 u64 extent_end;
0b86a832
CM
1565 u64 search_end = device->total_bytes;
1566 int ret;
7bfc837d 1567 int slot;
0b86a832 1568 struct extent_buffer *l;
8cdc7c5b
FM
1569
1570 /*
1571 * We don't want to overwrite the superblock on the drive nor any area
1572 * used by the boot loader (grub for example), so we make sure to start
1573 * at an offset of at least 1MB.
1574 */
0d0c71b3 1575 search_start = max_t(u64, search_start, SZ_1M);
0b86a832 1576
6df9a95e
JB
1577 path = btrfs_alloc_path();
1578 if (!path)
1579 return -ENOMEM;
f2ab7618 1580
7bfc837d
MX
1581 max_hole_start = search_start;
1582 max_hole_size = 0;
1583
f2ab7618 1584again:
401e29c1
AJ
1585 if (search_start >= search_end ||
1586 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1587 ret = -ENOSPC;
6df9a95e 1588 goto out;
7bfc837d
MX
1589 }
1590
e4058b54 1591 path->reada = READA_FORWARD;
6df9a95e
JB
1592 path->search_commit_root = 1;
1593 path->skip_locking = 1;
7bfc837d 1594
0b86a832
CM
1595 key.objectid = device->devid;
1596 key.offset = search_start;
1597 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1598
125ccb0a 1599 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1600 if (ret < 0)
7bfc837d 1601 goto out;
1fcbac58
YZ
1602 if (ret > 0) {
1603 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1604 if (ret < 0)
7bfc837d 1605 goto out;
1fcbac58 1606 }
7bfc837d 1607
0b86a832
CM
1608 while (1) {
1609 l = path->nodes[0];
1610 slot = path->slots[0];
1611 if (slot >= btrfs_header_nritems(l)) {
1612 ret = btrfs_next_leaf(root, path);
1613 if (ret == 0)
1614 continue;
1615 if (ret < 0)
7bfc837d
MX
1616 goto out;
1617
1618 break;
0b86a832
CM
1619 }
1620 btrfs_item_key_to_cpu(l, &key, slot);
1621
1622 if (key.objectid < device->devid)
1623 goto next;
1624
1625 if (key.objectid > device->devid)
7bfc837d 1626 break;
0b86a832 1627
962a298f 1628 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1629 goto next;
9779b72f 1630
7bfc837d
MX
1631 if (key.offset > search_start) {
1632 hole_size = key.offset - search_start;
9779b72f 1633
6df9a95e
JB
1634 /*
1635 * Have to check before we set max_hole_start, otherwise
1636 * we could end up sending back this offset anyway.
1637 */
1c11b63e 1638 if (contains_pending_extent(device, &search_start,
1b984508 1639 hole_size)) {
1c11b63e 1640 if (key.offset >= search_start)
1b984508 1641 hole_size = key.offset - search_start;
1c11b63e 1642 else
1b984508 1643 hole_size = 0;
1b984508 1644 }
6df9a95e 1645
7bfc837d
MX
1646 if (hole_size > max_hole_size) {
1647 max_hole_start = search_start;
1648 max_hole_size = hole_size;
1649 }
9779b72f 1650
7bfc837d
MX
1651 /*
1652 * If this free space is greater than which we need,
1653 * it must be the max free space that we have found
1654 * until now, so max_hole_start must point to the start
1655 * of this free space and the length of this free space
1656 * is stored in max_hole_size. Thus, we return
1657 * max_hole_start and max_hole_size and go back to the
1658 * caller.
1659 */
1660 if (hole_size >= num_bytes) {
1661 ret = 0;
1662 goto out;
0b86a832
CM
1663 }
1664 }
0b86a832 1665
0b86a832 1666 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1667 extent_end = key.offset + btrfs_dev_extent_length(l,
1668 dev_extent);
1669 if (extent_end > search_start)
1670 search_start = extent_end;
0b86a832
CM
1671next:
1672 path->slots[0]++;
1673 cond_resched();
1674 }
0b86a832 1675
38c01b96 1676 /*
1677 * At this point, search_start should be the end of
1678 * allocated dev extents, and when shrinking the device,
1679 * search_end may be smaller than search_start.
1680 */
f2ab7618 1681 if (search_end > search_start) {
38c01b96 1682 hole_size = search_end - search_start;
1683
1c11b63e 1684 if (contains_pending_extent(device, &search_start, hole_size)) {
f2ab7618
ZL
1685 btrfs_release_path(path);
1686 goto again;
1687 }
0b86a832 1688
f2ab7618
ZL
1689 if (hole_size > max_hole_size) {
1690 max_hole_start = search_start;
1691 max_hole_size = hole_size;
1692 }
6df9a95e
JB
1693 }
1694
7bfc837d 1695 /* See above. */
f2ab7618 1696 if (max_hole_size < num_bytes)
7bfc837d
MX
1697 ret = -ENOSPC;
1698 else
1699 ret = 0;
1700
1701out:
2b82032c 1702 btrfs_free_path(path);
7bfc837d 1703 *start = max_hole_start;
b2117a39 1704 if (len)
7bfc837d 1705 *len = max_hole_size;
0b86a832
CM
1706 return ret;
1707}
1708
60dfdf25 1709int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1710 u64 *start, u64 *len)
1711{
499f377f 1712 /* FIXME use last free of some kind */
60dfdf25 1713 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1714}
1715
b2950863 1716static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1717 struct btrfs_device *device,
2196d6e8 1718 u64 start, u64 *dev_extent_len)
8f18cf13 1719{
0b246afa
JM
1720 struct btrfs_fs_info *fs_info = device->fs_info;
1721 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1722 int ret;
1723 struct btrfs_path *path;
8f18cf13 1724 struct btrfs_key key;
a061fc8d
CM
1725 struct btrfs_key found_key;
1726 struct extent_buffer *leaf = NULL;
1727 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1728
1729 path = btrfs_alloc_path();
1730 if (!path)
1731 return -ENOMEM;
1732
1733 key.objectid = device->devid;
1734 key.offset = start;
1735 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1736again:
8f18cf13 1737 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1738 if (ret > 0) {
1739 ret = btrfs_previous_item(root, path, key.objectid,
1740 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1741 if (ret)
1742 goto out;
a061fc8d
CM
1743 leaf = path->nodes[0];
1744 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1745 extent = btrfs_item_ptr(leaf, path->slots[0],
1746 struct btrfs_dev_extent);
1747 BUG_ON(found_key.offset > start || found_key.offset +
1748 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1749 key = found_key;
1750 btrfs_release_path(path);
1751 goto again;
a061fc8d
CM
1752 } else if (ret == 0) {
1753 leaf = path->nodes[0];
1754 extent = btrfs_item_ptr(leaf, path->slots[0],
1755 struct btrfs_dev_extent);
79787eaa 1756 } else {
0b246afa 1757 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1758 goto out;
a061fc8d 1759 }
8f18cf13 1760
2196d6e8
MX
1761 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1762
8f18cf13 1763 ret = btrfs_del_item(trans, root, path);
79787eaa 1764 if (ret) {
0b246afa
JM
1765 btrfs_handle_fs_error(fs_info, ret,
1766 "Failed to remove dev extent item");
13212b54 1767 } else {
3204d33c 1768 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1769 }
b0b802d7 1770out:
8f18cf13
CM
1771 btrfs_free_path(path);
1772 return ret;
1773}
1774
48a3b636
ES
1775static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1776 struct btrfs_device *device,
48a3b636 1777 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1778{
1779 int ret;
1780 struct btrfs_path *path;
0b246afa
JM
1781 struct btrfs_fs_info *fs_info = device->fs_info;
1782 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1783 struct btrfs_dev_extent *extent;
1784 struct extent_buffer *leaf;
1785 struct btrfs_key key;
1786
e12c9621 1787 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
401e29c1 1788 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
0b86a832
CM
1789 path = btrfs_alloc_path();
1790 if (!path)
1791 return -ENOMEM;
1792
0b86a832 1793 key.objectid = device->devid;
2b82032c 1794 key.offset = start;
0b86a832
CM
1795 key.type = BTRFS_DEV_EXTENT_KEY;
1796 ret = btrfs_insert_empty_item(trans, root, path, &key,
1797 sizeof(*extent));
2cdcecbc
MF
1798 if (ret)
1799 goto out;
0b86a832
CM
1800
1801 leaf = path->nodes[0];
1802 extent = btrfs_item_ptr(leaf, path->slots[0],
1803 struct btrfs_dev_extent);
b5d9071c
NB
1804 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1805 BTRFS_CHUNK_TREE_OBJECTID);
0ca00afb
NB
1806 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1807 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
e17cade2
CM
1808 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1809
0b86a832
CM
1810 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1811 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1812out:
0b86a832
CM
1813 btrfs_free_path(path);
1814 return ret;
1815}
1816
6df9a95e 1817static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1818{
6df9a95e
JB
1819 struct extent_map_tree *em_tree;
1820 struct extent_map *em;
1821 struct rb_node *n;
1822 u64 ret = 0;
0b86a832 1823
c8bf1b67 1824 em_tree = &fs_info->mapping_tree;
6df9a95e 1825 read_lock(&em_tree->lock);
07e1ce09 1826 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1827 if (n) {
1828 em = rb_entry(n, struct extent_map, rb_node);
1829 ret = em->start + em->len;
0b86a832 1830 }
6df9a95e
JB
1831 read_unlock(&em_tree->lock);
1832
0b86a832
CM
1833 return ret;
1834}
1835
53f10659
ID
1836static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1837 u64 *devid_ret)
0b86a832
CM
1838{
1839 int ret;
1840 struct btrfs_key key;
1841 struct btrfs_key found_key;
2b82032c
YZ
1842 struct btrfs_path *path;
1843
2b82032c
YZ
1844 path = btrfs_alloc_path();
1845 if (!path)
1846 return -ENOMEM;
0b86a832
CM
1847
1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1849 key.type = BTRFS_DEV_ITEM_KEY;
1850 key.offset = (u64)-1;
1851
53f10659 1852 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1853 if (ret < 0)
1854 goto error;
1855
a06dee4d
AJ
1856 if (ret == 0) {
1857 /* Corruption */
1858 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1859 ret = -EUCLEAN;
1860 goto error;
1861 }
0b86a832 1862
53f10659
ID
1863 ret = btrfs_previous_item(fs_info->chunk_root, path,
1864 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1865 BTRFS_DEV_ITEM_KEY);
1866 if (ret) {
53f10659 1867 *devid_ret = 1;
0b86a832
CM
1868 } else {
1869 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1870 path->slots[0]);
53f10659 1871 *devid_ret = found_key.offset + 1;
0b86a832
CM
1872 }
1873 ret = 0;
1874error:
2b82032c 1875 btrfs_free_path(path);
0b86a832
CM
1876 return ret;
1877}
1878
1879/*
1880 * the device information is stored in the chunk root
1881 * the btrfs_device struct should be fully filled in
1882 */
c74a0b02 1883static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1884 struct btrfs_device *device)
0b86a832
CM
1885{
1886 int ret;
1887 struct btrfs_path *path;
1888 struct btrfs_dev_item *dev_item;
1889 struct extent_buffer *leaf;
1890 struct btrfs_key key;
1891 unsigned long ptr;
0b86a832 1892
0b86a832
CM
1893 path = btrfs_alloc_path();
1894 if (!path)
1895 return -ENOMEM;
1896
0b86a832
CM
1897 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1898 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1899 key.offset = device->devid;
0b86a832 1900
8e87e856
NB
1901 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1902 &key, sizeof(*dev_item));
0b86a832
CM
1903 if (ret)
1904 goto out;
1905
1906 leaf = path->nodes[0];
1907 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1908
1909 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1910 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1911 btrfs_set_device_type(leaf, dev_item, device->type);
1912 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1913 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1914 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1915 btrfs_set_device_total_bytes(leaf, dev_item,
1916 btrfs_device_get_disk_total_bytes(device));
1917 btrfs_set_device_bytes_used(leaf, dev_item,
1918 btrfs_device_get_bytes_used(device));
e17cade2
CM
1919 btrfs_set_device_group(leaf, dev_item, 0);
1920 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1921 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1922 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1923
410ba3a2 1924 ptr = btrfs_device_uuid(dev_item);
e17cade2 1925 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1926 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1927 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1928 ptr, BTRFS_FSID_SIZE);
0b86a832 1929 btrfs_mark_buffer_dirty(leaf);
0b86a832 1930
2b82032c 1931 ret = 0;
0b86a832
CM
1932out:
1933 btrfs_free_path(path);
1934 return ret;
1935}
8f18cf13 1936
5a1972bd
QW
1937/*
1938 * Function to update ctime/mtime for a given device path.
1939 * Mainly used for ctime/mtime based probe like libblkid.
1940 */
da353f6b 1941static void update_dev_time(const char *path_name)
5a1972bd
QW
1942{
1943 struct file *filp;
1944
1945 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1946 if (IS_ERR(filp))
5a1972bd
QW
1947 return;
1948 file_update_time(filp);
1949 filp_close(filp, NULL);
5a1972bd
QW
1950}
1951
f331a952 1952static int btrfs_rm_dev_item(struct btrfs_device *device)
a061fc8d 1953{
f331a952 1954 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1955 int ret;
1956 struct btrfs_path *path;
a061fc8d 1957 struct btrfs_key key;
a061fc8d
CM
1958 struct btrfs_trans_handle *trans;
1959
a061fc8d
CM
1960 path = btrfs_alloc_path();
1961 if (!path)
1962 return -ENOMEM;
1963
a22285a6 1964 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1965 if (IS_ERR(trans)) {
1966 btrfs_free_path(path);
1967 return PTR_ERR(trans);
1968 }
a061fc8d
CM
1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970 key.type = BTRFS_DEV_ITEM_KEY;
1971 key.offset = device->devid;
1972
1973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
5e9f2ad5
NB
1974 if (ret) {
1975 if (ret > 0)
1976 ret = -ENOENT;
1977 btrfs_abort_transaction(trans, ret);
1978 btrfs_end_transaction(trans);
a061fc8d
CM
1979 goto out;
1980 }
1981
1982 ret = btrfs_del_item(trans, root, path);
5e9f2ad5
NB
1983 if (ret) {
1984 btrfs_abort_transaction(trans, ret);
1985 btrfs_end_transaction(trans);
1986 }
1987
a061fc8d
CM
1988out:
1989 btrfs_free_path(path);
5e9f2ad5
NB
1990 if (!ret)
1991 ret = btrfs_commit_transaction(trans);
a061fc8d
CM
1992 return ret;
1993}
1994
3cc31a0d
DS
1995/*
1996 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1997 * filesystem. It's up to the caller to adjust that number regarding eg. device
1998 * replace.
1999 */
2000static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2001 u64 num_devices)
a061fc8d 2002{
a061fc8d 2003 u64 all_avail;
de98ced9 2004 unsigned seq;
418775a2 2005 int i;
a061fc8d 2006
de98ced9 2007 do {
bd45ffbc 2008 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 2009
bd45ffbc
AJ
2010 all_avail = fs_info->avail_data_alloc_bits |
2011 fs_info->avail_system_alloc_bits |
2012 fs_info->avail_metadata_alloc_bits;
2013 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 2014
418775a2 2015 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 2016 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 2017 continue;
a061fc8d 2018
418775a2 2019 if (num_devices < btrfs_raid_array[i].devs_min) {
f9fbcaa2 2020 int ret = btrfs_raid_array[i].mindev_error;
bd45ffbc 2021
418775a2
DS
2022 if (ret)
2023 return ret;
2024 }
53b381b3
DW
2025 }
2026
bd45ffbc 2027 return 0;
f1fa7f26
AJ
2028}
2029
c9162bdf
OS
2030static struct btrfs_device * btrfs_find_next_active_device(
2031 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 2032{
2b82032c 2033 struct btrfs_device *next_device;
88acff64
AJ
2034
2035 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2036 if (next_device != device &&
e6e674bd
AJ
2037 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2038 && next_device->bdev)
88acff64
AJ
2039 return next_device;
2040 }
2041
2042 return NULL;
2043}
2044
2045/*
2046 * Helper function to check if the given device is part of s_bdev / latest_bdev
2047 * and replace it with the provided or the next active device, in the context
2048 * where this function called, there should be always be another device (or
2049 * this_dev) which is active.
2050 */
d6507cf1
NB
2051void btrfs_assign_next_active_device(struct btrfs_device *device,
2052 struct btrfs_device *this_dev)
88acff64 2053{
d6507cf1 2054 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64
AJ
2055 struct btrfs_device *next_device;
2056
2057 if (this_dev)
2058 next_device = this_dev;
2059 else
2060 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2061 device);
2062 ASSERT(next_device);
2063
2064 if (fs_info->sb->s_bdev &&
2065 (fs_info->sb->s_bdev == device->bdev))
2066 fs_info->sb->s_bdev = next_device->bdev;
2067
2068 if (fs_info->fs_devices->latest_bdev == device->bdev)
2069 fs_info->fs_devices->latest_bdev = next_device->bdev;
2070}
2071
1da73967
AJ
2072/*
2073 * Return btrfs_fs_devices::num_devices excluding the device that's being
2074 * currently replaced.
2075 */
2076static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2077{
2078 u64 num_devices = fs_info->fs_devices->num_devices;
2079
cb5583dd 2080 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2081 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2082 ASSERT(num_devices > 1);
2083 num_devices--;
2084 }
cb5583dd 2085 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2086
2087 return num_devices;
2088}
2089
da353f6b
DS
2090int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2091 u64 devid)
f1fa7f26
AJ
2092{
2093 struct btrfs_device *device;
1f78160c 2094 struct btrfs_fs_devices *cur_devices;
b5185197 2095 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2096 u64 num_devices;
a061fc8d
CM
2097 int ret = 0;
2098
a061fc8d
CM
2099 mutex_lock(&uuid_mutex);
2100
1da73967 2101 num_devices = btrfs_num_devices(fs_info);
8dabb742 2102
0b246afa 2103 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2104 if (ret)
a061fc8d 2105 goto out;
a061fc8d 2106
a27a94c2
NB
2107 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2108
2109 if (IS_ERR(device)) {
2110 if (PTR_ERR(device) == -ENOENT &&
2111 strcmp(device_path, "missing") == 0)
2112 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2113 else
2114 ret = PTR_ERR(device);
53b381b3 2115 goto out;
a27a94c2 2116 }
dfe25020 2117
eede2bf3
OS
2118 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2119 btrfs_warn_in_rcu(fs_info,
2120 "cannot remove device %s (devid %llu) due to active swapfile",
2121 rcu_str_deref(device->name), device->devid);
2122 ret = -ETXTBSY;
2123 goto out;
2124 }
2125
401e29c1 2126 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
183860f6 2127 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 2128 goto out;
63a212ab
SB
2129 }
2130
ebbede42
AJ
2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2132 fs_info->fs_devices->rw_devices == 1) {
183860f6 2133 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 2134 goto out;
2b82032c
YZ
2135 }
2136
ebbede42 2137 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2138 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2139 list_del_init(&device->dev_alloc_list);
c3929c36 2140 device->fs_devices->rw_devices--;
34441361 2141 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2142 }
a061fc8d 2143
d7901554 2144 mutex_unlock(&uuid_mutex);
a061fc8d 2145 ret = btrfs_shrink_device(device, 0);
d7901554 2146 mutex_lock(&uuid_mutex);
a061fc8d 2147 if (ret)
9b3517e9 2148 goto error_undo;
a061fc8d 2149
63a212ab
SB
2150 /*
2151 * TODO: the superblock still includes this device in its num_devices
2152 * counter although write_all_supers() is not locked out. This
2153 * could give a filesystem state which requires a degraded mount.
2154 */
f331a952 2155 ret = btrfs_rm_dev_item(device);
a061fc8d 2156 if (ret)
9b3517e9 2157 goto error_undo;
a061fc8d 2158
e12c9621 2159 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2160 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2161
2162 /*
2163 * the device list mutex makes sure that we don't change
2164 * the device list while someone else is writing out all
d7306801
FDBM
2165 * the device supers. Whoever is writing all supers, should
2166 * lock the device list mutex before getting the number of
2167 * devices in the super block (super_copy). Conversely,
2168 * whoever updates the number of devices in the super block
2169 * (super_copy) should hold the device list mutex.
e5e9a520 2170 */
1f78160c 2171
41a52a0f
AJ
2172 /*
2173 * In normal cases the cur_devices == fs_devices. But in case
2174 * of deleting a seed device, the cur_devices should point to
2175 * its own fs_devices listed under the fs_devices->seed.
2176 */
1f78160c 2177 cur_devices = device->fs_devices;
b5185197 2178 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2179 list_del_rcu(&device->dev_list);
e5e9a520 2180
41a52a0f
AJ
2181 cur_devices->num_devices--;
2182 cur_devices->total_devices--;
b4993e64
AJ
2183 /* Update total_devices of the parent fs_devices if it's seed */
2184 if (cur_devices != fs_devices)
2185 fs_devices->total_devices--;
2b82032c 2186
e6e674bd 2187 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2188 cur_devices->missing_devices--;
cd02dca5 2189
d6507cf1 2190 btrfs_assign_next_active_device(device, NULL);
2b82032c 2191
0bfaa9c5 2192 if (device->bdev) {
41a52a0f 2193 cur_devices->open_devices--;
0bfaa9c5 2194 /* remove sysfs entry */
b5185197 2195 btrfs_sysfs_rm_device_link(fs_devices, device);
0bfaa9c5 2196 }
99994cde 2197
0b246afa
JM
2198 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2199 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2200 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2201
cea67ab9
JM
2202 /*
2203 * at this point, the device is zero sized and detached from
2204 * the devices list. All that's left is to zero out the old
2205 * supers and free the device.
2206 */
ebbede42 2207 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
cea67ab9
JM
2208 btrfs_scratch_superblocks(device->bdev, device->name->str);
2209
2210 btrfs_close_bdev(device);
8e75fd89
NB
2211 synchronize_rcu();
2212 btrfs_free_device(device);
cea67ab9 2213
1f78160c 2214 if (cur_devices->open_devices == 0) {
e4404d6e 2215 while (fs_devices) {
8321cf25
RS
2216 if (fs_devices->seed == cur_devices) {
2217 fs_devices->seed = cur_devices->seed;
e4404d6e 2218 break;
8321cf25 2219 }
e4404d6e 2220 fs_devices = fs_devices->seed;
2b82032c 2221 }
1f78160c 2222 cur_devices->seed = NULL;
0226e0eb 2223 close_fs_devices(cur_devices);
1f78160c 2224 free_fs_devices(cur_devices);
2b82032c
YZ
2225 }
2226
a061fc8d
CM
2227out:
2228 mutex_unlock(&uuid_mutex);
a061fc8d 2229 return ret;
24fc572f 2230
9b3517e9 2231error_undo:
ebbede42 2232 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2233 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2234 list_add(&device->dev_alloc_list,
b5185197 2235 &fs_devices->alloc_list);
c3929c36 2236 device->fs_devices->rw_devices++;
34441361 2237 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2238 }
24fc572f 2239 goto out;
a061fc8d
CM
2240}
2241
68a9db5f 2242void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2243{
d51908ce
AJ
2244 struct btrfs_fs_devices *fs_devices;
2245
68a9db5f 2246 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2247
25e8e911
AJ
2248 /*
2249 * in case of fs with no seed, srcdev->fs_devices will point
2250 * to fs_devices of fs_info. However when the dev being replaced is
2251 * a seed dev it will point to the seed's local fs_devices. In short
2252 * srcdev will have its correct fs_devices in both the cases.
2253 */
2254 fs_devices = srcdev->fs_devices;
d51908ce 2255
e93c89c1 2256 list_del_rcu(&srcdev->dev_list);
619c47f3 2257 list_del(&srcdev->dev_alloc_list);
d51908ce 2258 fs_devices->num_devices--;
e6e674bd 2259 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2260 fs_devices->missing_devices--;
e93c89c1 2261
ebbede42 2262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2263 fs_devices->rw_devices--;
1357272f 2264
82372bc8 2265 if (srcdev->bdev)
d51908ce 2266 fs_devices->open_devices--;
084b6e7c
QW
2267}
2268
65237ee3 2269void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c 2270{
65237ee3 2271 struct btrfs_fs_info *fs_info = srcdev->fs_info;
084b6e7c 2272 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2273
ebbede42 2274 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
48b3b9d4
AJ
2275 /* zero out the old super if it is writable */
2276 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2277 }
14238819
AJ
2278
2279 btrfs_close_bdev(srcdev);
8e75fd89
NB
2280 synchronize_rcu();
2281 btrfs_free_device(srcdev);
94d5f0c2 2282
94d5f0c2
AJ
2283 /* if this is no devs we rather delete the fs_devices */
2284 if (!fs_devices->num_devices) {
2285 struct btrfs_fs_devices *tmp_fs_devices;
2286
6dd38f81
AJ
2287 /*
2288 * On a mounted FS, num_devices can't be zero unless it's a
2289 * seed. In case of a seed device being replaced, the replace
2290 * target added to the sprout FS, so there will be no more
2291 * device left under the seed FS.
2292 */
2293 ASSERT(fs_devices->seeding);
2294
94d5f0c2
AJ
2295 tmp_fs_devices = fs_info->fs_devices;
2296 while (tmp_fs_devices) {
2297 if (tmp_fs_devices->seed == fs_devices) {
2298 tmp_fs_devices->seed = fs_devices->seed;
2299 break;
2300 }
2301 tmp_fs_devices = tmp_fs_devices->seed;
2302 }
2303 fs_devices->seed = NULL;
0226e0eb 2304 close_fs_devices(fs_devices);
8bef8401 2305 free_fs_devices(fs_devices);
94d5f0c2 2306 }
e93c89c1
SB
2307}
2308
4f5ad7bd 2309void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2310{
4f5ad7bd 2311 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2312
e93c89c1 2313 WARN_ON(!tgtdev);
d9a071f0 2314 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2315
d9a071f0 2316 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
d2ff1b20 2317
779bf3fe 2318 if (tgtdev->bdev)
d9a071f0 2319 fs_devices->open_devices--;
779bf3fe 2320
d9a071f0 2321 fs_devices->num_devices--;
e93c89c1 2322
d6507cf1 2323 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2324
e93c89c1 2325 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2326
d9a071f0 2327 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe
AJ
2328
2329 /*
2330 * The update_dev_time() with in btrfs_scratch_superblocks()
2331 * may lead to a call to btrfs_show_devname() which will try
2332 * to hold device_list_mutex. And here this device
2333 * is already out of device list, so we don't have to hold
2334 * the device_list_mutex lock.
2335 */
2336 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2337
2338 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2339 synchronize_rcu();
2340 btrfs_free_device(tgtdev);
e93c89c1
SB
2341}
2342
b444ad46
NB
2343static struct btrfs_device *btrfs_find_device_by_path(
2344 struct btrfs_fs_info *fs_info, const char *device_path)
7ba15b7d
SB
2345{
2346 int ret = 0;
2347 struct btrfs_super_block *disk_super;
2348 u64 devid;
2349 u8 *dev_uuid;
2350 struct block_device *bdev;
2351 struct buffer_head *bh;
b444ad46 2352 struct btrfs_device *device;
7ba15b7d 2353
7ba15b7d 2354 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2355 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d 2356 if (ret)
b444ad46 2357 return ERR_PTR(ret);
7ba15b7d
SB
2358 disk_super = (struct btrfs_super_block *)bh->b_data;
2359 devid = btrfs_stack_device_id(&disk_super->dev_item);
2360 dev_uuid = disk_super->dev_item.uuid;
7239ff4b 2361 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
e4319cd9 2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2363 disk_super->metadata_uuid, true);
7239ff4b 2364 else
e4319cd9 2365 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2366 disk_super->fsid, true);
7239ff4b 2367
7ba15b7d 2368 brelse(bh);
b444ad46
NB
2369 if (!device)
2370 device = ERR_PTR(-ENOENT);
7ba15b7d 2371 blkdev_put(bdev, FMODE_READ);
b444ad46 2372 return device;
7ba15b7d
SB
2373}
2374
5c5c0df0
DS
2375/*
2376 * Lookup a device given by device id, or the path if the id is 0.
2377 */
a27a94c2 2378struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2379 struct btrfs_fs_info *fs_info, u64 devid,
2380 const char *device_path)
24e0474b 2381{
a27a94c2 2382 struct btrfs_device *device;
24e0474b 2383
5c5c0df0 2384 if (devid) {
e4319cd9 2385 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
09ba3bc9 2386 NULL, true);
a27a94c2
NB
2387 if (!device)
2388 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2389 return device;
2390 }
2391
2392 if (!device_path || !device_path[0])
2393 return ERR_PTR(-EINVAL);
2394
2395 if (strcmp(device_path, "missing") == 0) {
2396 /* Find first missing device */
2397 list_for_each_entry(device, &fs_info->fs_devices->devices,
2398 dev_list) {
2399 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2400 &device->dev_state) && !device->bdev)
2401 return device;
d95a830c 2402 }
6e927ceb 2403 return ERR_PTR(-ENOENT);
24e0474b 2404 }
6e927ceb
AJ
2405
2406 return btrfs_find_device_by_path(fs_info, device_path);
24e0474b
AJ
2407}
2408
2b82032c
YZ
2409/*
2410 * does all the dirty work required for changing file system's UUID.
2411 */
2ff7e61e 2412static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2413{
0b246afa 2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2415 struct btrfs_fs_devices *old_devices;
e4404d6e 2416 struct btrfs_fs_devices *seed_devices;
0b246afa 2417 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2418 struct btrfs_device *device;
2419 u64 super_flags;
2420
a32bf9a3 2421 lockdep_assert_held(&uuid_mutex);
e4404d6e 2422 if (!fs_devices->seeding)
2b82032c
YZ
2423 return -EINVAL;
2424
7239ff4b 2425 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378
ID
2426 if (IS_ERR(seed_devices))
2427 return PTR_ERR(seed_devices);
2b82032c 2428
e4404d6e
YZ
2429 old_devices = clone_fs_devices(fs_devices);
2430 if (IS_ERR(old_devices)) {
2431 kfree(seed_devices);
2432 return PTR_ERR(old_devices);
2b82032c 2433 }
e4404d6e 2434
c4babc5e 2435 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2436
e4404d6e
YZ
2437 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2438 seed_devices->opened = 1;
2439 INIT_LIST_HEAD(&seed_devices->devices);
2440 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2441 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2442
321a4bf7 2443 mutex_lock(&fs_devices->device_list_mutex);
1f78160c
XG
2444 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2445 synchronize_rcu);
2196d6e8
MX
2446 list_for_each_entry(device, &seed_devices->devices, dev_list)
2447 device->fs_devices = seed_devices;
c9513edb 2448
34441361 2449 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2450 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2451 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2452
2b82032c
YZ
2453 fs_devices->seeding = 0;
2454 fs_devices->num_devices = 0;
2455 fs_devices->open_devices = 0;
69611ac8 2456 fs_devices->missing_devices = 0;
69611ac8 2457 fs_devices->rotating = 0;
e4404d6e 2458 fs_devices->seed = seed_devices;
2b82032c
YZ
2459
2460 generate_random_uuid(fs_devices->fsid);
7239ff4b 2461 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2462 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
321a4bf7 2463 mutex_unlock(&fs_devices->device_list_mutex);
f7171750 2464
2b82032c
YZ
2465 super_flags = btrfs_super_flags(disk_super) &
2466 ~BTRFS_SUPER_FLAG_SEEDING;
2467 btrfs_set_super_flags(disk_super, super_flags);
2468
2469 return 0;
2470}
2471
2472/*
01327610 2473 * Store the expected generation for seed devices in device items.
2b82032c 2474 */
5c466629 2475static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2476{
5c466629 2477 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2478 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2479 struct btrfs_path *path;
2480 struct extent_buffer *leaf;
2481 struct btrfs_dev_item *dev_item;
2482 struct btrfs_device *device;
2483 struct btrfs_key key;
44880fdc 2484 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c
YZ
2485 u8 dev_uuid[BTRFS_UUID_SIZE];
2486 u64 devid;
2487 int ret;
2488
2489 path = btrfs_alloc_path();
2490 if (!path)
2491 return -ENOMEM;
2492
2b82032c
YZ
2493 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2494 key.offset = 0;
2495 key.type = BTRFS_DEV_ITEM_KEY;
2496
2497 while (1) {
2498 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2499 if (ret < 0)
2500 goto error;
2501
2502 leaf = path->nodes[0];
2503next_slot:
2504 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2505 ret = btrfs_next_leaf(root, path);
2506 if (ret > 0)
2507 break;
2508 if (ret < 0)
2509 goto error;
2510 leaf = path->nodes[0];
2511 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2512 btrfs_release_path(path);
2b82032c
YZ
2513 continue;
2514 }
2515
2516 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2517 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2518 key.type != BTRFS_DEV_ITEM_KEY)
2519 break;
2520
2521 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2522 struct btrfs_dev_item);
2523 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2524 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2525 BTRFS_UUID_SIZE);
1473b24e 2526 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2527 BTRFS_FSID_SIZE);
e4319cd9 2528 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 2529 fs_uuid, true);
79787eaa 2530 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2531
2532 if (device->fs_devices->seeding) {
2533 btrfs_set_device_generation(leaf, dev_item,
2534 device->generation);
2535 btrfs_mark_buffer_dirty(leaf);
2536 }
2537
2538 path->slots[0]++;
2539 goto next_slot;
2540 }
2541 ret = 0;
2542error:
2543 btrfs_free_path(path);
2544 return ret;
2545}
2546
da353f6b 2547int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2548{
5112febb 2549 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2550 struct request_queue *q;
788f20eb
CM
2551 struct btrfs_trans_handle *trans;
2552 struct btrfs_device *device;
2553 struct block_device *bdev;
0b246afa 2554 struct super_block *sb = fs_info->sb;
606686ee 2555 struct rcu_string *name;
5da54bc1 2556 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
39379faa
NA
2557 u64 orig_super_total_bytes;
2558 u64 orig_super_num_devices;
2b82032c 2559 int seeding_dev = 0;
788f20eb 2560 int ret = 0;
7132a262 2561 bool unlocked = false;
788f20eb 2562
5da54bc1 2563 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2564 return -EROFS;
788f20eb 2565
a5d16333 2566 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2567 fs_info->bdev_holder);
7f59203a
JB
2568 if (IS_ERR(bdev))
2569 return PTR_ERR(bdev);
a2135011 2570
5da54bc1 2571 if (fs_devices->seeding) {
2b82032c
YZ
2572 seeding_dev = 1;
2573 down_write(&sb->s_umount);
2574 mutex_lock(&uuid_mutex);
2575 }
2576
8c8bee1d 2577 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2578
5da54bc1 2579 mutex_lock(&fs_devices->device_list_mutex);
694c51fb 2580 list_for_each_entry(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2581 if (device->bdev == bdev) {
2582 ret = -EEXIST;
d25628bd 2583 mutex_unlock(
5da54bc1 2584 &fs_devices->device_list_mutex);
2b82032c 2585 goto error;
788f20eb
CM
2586 }
2587 }
5da54bc1 2588 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2589
0b246afa 2590 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2591 if (IS_ERR(device)) {
788f20eb 2592 /* we can safely leave the fs_devices entry around */
12bd2fc0 2593 ret = PTR_ERR(device);
2b82032c 2594 goto error;
788f20eb
CM
2595 }
2596
78f2c9e6 2597 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2598 if (!name) {
2b82032c 2599 ret = -ENOMEM;
5c4cf6c9 2600 goto error_free_device;
788f20eb 2601 }
606686ee 2602 rcu_assign_pointer(device->name, name);
2b82032c 2603
a22285a6 2604 trans = btrfs_start_transaction(root, 0);
98d5dc13 2605 if (IS_ERR(trans)) {
98d5dc13 2606 ret = PTR_ERR(trans);
5c4cf6c9 2607 goto error_free_device;
98d5dc13
TI
2608 }
2609
d5e2003c 2610 q = bdev_get_queue(bdev);
ebbede42 2611 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2612 device->generation = trans->transid;
0b246afa
JM
2613 device->io_width = fs_info->sectorsize;
2614 device->io_align = fs_info->sectorsize;
2615 device->sector_size = fs_info->sectorsize;
7dfb8be1
NB
2616 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2617 fs_info->sectorsize);
2cc3c559 2618 device->disk_total_bytes = device->total_bytes;
935e5cc9 2619 device->commit_total_bytes = device->total_bytes;
fb456252 2620 device->fs_info = fs_info;
788f20eb 2621 device->bdev = bdev;
e12c9621 2622 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2623 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2624 device->mode = FMODE_EXCL;
27087f37 2625 device->dev_stats_valid = 1;
9f6d2510 2626 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2627
2b82032c 2628 if (seeding_dev) {
1751e8a6 2629 sb->s_flags &= ~SB_RDONLY;
2ff7e61e 2630 ret = btrfs_prepare_sprout(fs_info);
d31c32f6
AJ
2631 if (ret) {
2632 btrfs_abort_transaction(trans, ret);
2633 goto error_trans;
2634 }
2b82032c 2635 }
788f20eb 2636
5da54bc1 2637 device->fs_devices = fs_devices;
e5e9a520 2638
5da54bc1 2639 mutex_lock(&fs_devices->device_list_mutex);
34441361 2640 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2641 list_add_rcu(&device->dev_list, &fs_devices->devices);
2642 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2643 fs_devices->num_devices++;
2644 fs_devices->open_devices++;
2645 fs_devices->rw_devices++;
2646 fs_devices->total_devices++;
2647 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2648
a5ed45f8 2649 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2650
e884f4f0 2651 if (!blk_queue_nonrot(q))
5da54bc1 2652 fs_devices->rotating = 1;
c289811c 2653
39379faa 2654 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2655 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2656 round_down(orig_super_total_bytes + device->total_bytes,
2657 fs_info->sectorsize));
788f20eb 2658
39379faa
NA
2659 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2660 btrfs_set_super_num_devices(fs_info->super_copy,
2661 orig_super_num_devices + 1);
0d39376a
AJ
2662
2663 /* add sysfs device entry */
5da54bc1 2664 btrfs_sysfs_add_device_link(fs_devices, device);
0d39376a 2665
2196d6e8
MX
2666 /*
2667 * we've got more storage, clear any full flags on the space
2668 * infos
2669 */
0b246afa 2670 btrfs_clear_space_info_full(fs_info);
2196d6e8 2671
34441361 2672 mutex_unlock(&fs_info->chunk_mutex);
5da54bc1 2673 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2674
2b82032c 2675 if (seeding_dev) {
34441361 2676 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2677 ret = init_first_rw_device(trans);
34441361 2678 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2679 if (ret) {
66642832 2680 btrfs_abort_transaction(trans, ret);
d31c32f6 2681 goto error_sysfs;
005d6427 2682 }
2196d6e8
MX
2683 }
2684
8e87e856 2685 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2686 if (ret) {
66642832 2687 btrfs_abort_transaction(trans, ret);
d31c32f6 2688 goto error_sysfs;
2196d6e8
MX
2689 }
2690
2691 if (seeding_dev) {
5c466629 2692 ret = btrfs_finish_sprout(trans);
005d6427 2693 if (ret) {
66642832 2694 btrfs_abort_transaction(trans, ret);
d31c32f6 2695 goto error_sysfs;
005d6427 2696 }
b2373f25 2697
f93c3997
DS
2698 btrfs_sysfs_update_sprout_fsid(fs_devices,
2699 fs_info->fs_devices->fsid);
2b82032c
YZ
2700 }
2701
3a45bb20 2702 ret = btrfs_commit_transaction(trans);
a2135011 2703
2b82032c
YZ
2704 if (seeding_dev) {
2705 mutex_unlock(&uuid_mutex);
2706 up_write(&sb->s_umount);
7132a262 2707 unlocked = true;
788f20eb 2708
79787eaa
JM
2709 if (ret) /* transaction commit */
2710 return ret;
2711
2ff7e61e 2712 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2713 if (ret < 0)
0b246afa 2714 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2715 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2716 trans = btrfs_attach_transaction(root);
2717 if (IS_ERR(trans)) {
2718 if (PTR_ERR(trans) == -ENOENT)
2719 return 0;
7132a262
AJ
2720 ret = PTR_ERR(trans);
2721 trans = NULL;
2722 goto error_sysfs;
671415b7 2723 }
3a45bb20 2724 ret = btrfs_commit_transaction(trans);
2b82032c 2725 }
c9e9f97b 2726
5a1972bd
QW
2727 /* Update ctime/mtime for libblkid */
2728 update_dev_time(device_path);
2b82032c 2729 return ret;
79787eaa 2730
d31c32f6 2731error_sysfs:
5da54bc1 2732 btrfs_sysfs_rm_device_link(fs_devices, device);
39379faa
NA
2733 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2734 mutex_lock(&fs_info->chunk_mutex);
2735 list_del_rcu(&device->dev_list);
2736 list_del(&device->dev_alloc_list);
2737 fs_info->fs_devices->num_devices--;
2738 fs_info->fs_devices->open_devices--;
2739 fs_info->fs_devices->rw_devices--;
2740 fs_info->fs_devices->total_devices--;
2741 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2742 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2743 btrfs_set_super_total_bytes(fs_info->super_copy,
2744 orig_super_total_bytes);
2745 btrfs_set_super_num_devices(fs_info->super_copy,
2746 orig_super_num_devices);
2747 mutex_unlock(&fs_info->chunk_mutex);
2748 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2749error_trans:
0af2c4bf 2750 if (seeding_dev)
1751e8a6 2751 sb->s_flags |= SB_RDONLY;
7132a262
AJ
2752 if (trans)
2753 btrfs_end_transaction(trans);
5c4cf6c9 2754error_free_device:
a425f9d4 2755 btrfs_free_device(device);
2b82032c 2756error:
e525fd89 2757 blkdev_put(bdev, FMODE_EXCL);
7132a262 2758 if (seeding_dev && !unlocked) {
2b82032c
YZ
2759 mutex_unlock(&uuid_mutex);
2760 up_write(&sb->s_umount);
2761 }
c9e9f97b 2762 return ret;
788f20eb
CM
2763}
2764
d397712b
CM
2765static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2766 struct btrfs_device *device)
0b86a832
CM
2767{
2768 int ret;
2769 struct btrfs_path *path;
0b246afa 2770 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2771 struct btrfs_dev_item *dev_item;
2772 struct extent_buffer *leaf;
2773 struct btrfs_key key;
2774
0b86a832
CM
2775 path = btrfs_alloc_path();
2776 if (!path)
2777 return -ENOMEM;
2778
2779 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2780 key.type = BTRFS_DEV_ITEM_KEY;
2781 key.offset = device->devid;
2782
2783 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2784 if (ret < 0)
2785 goto out;
2786
2787 if (ret > 0) {
2788 ret = -ENOENT;
2789 goto out;
2790 }
2791
2792 leaf = path->nodes[0];
2793 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2794
2795 btrfs_set_device_id(leaf, dev_item, device->devid);
2796 btrfs_set_device_type(leaf, dev_item, device->type);
2797 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2798 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2799 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2800 btrfs_set_device_total_bytes(leaf, dev_item,
2801 btrfs_device_get_disk_total_bytes(device));
2802 btrfs_set_device_bytes_used(leaf, dev_item,
2803 btrfs_device_get_bytes_used(device));
0b86a832
CM
2804 btrfs_mark_buffer_dirty(leaf);
2805
2806out:
2807 btrfs_free_path(path);
2808 return ret;
2809}
2810
2196d6e8 2811int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2812 struct btrfs_device *device, u64 new_size)
2813{
0b246afa
JM
2814 struct btrfs_fs_info *fs_info = device->fs_info;
2815 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2816 u64 old_total;
2817 u64 diff;
8f18cf13 2818
ebbede42 2819 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2820 return -EACCES;
2196d6e8 2821
7dfb8be1
NB
2822 new_size = round_down(new_size, fs_info->sectorsize);
2823
34441361 2824 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2825 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2826 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2827
63a212ab 2828 if (new_size <= device->total_bytes ||
401e29c1 2829 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2830 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2831 return -EINVAL;
2196d6e8 2832 }
2b82032c 2833
7dfb8be1
NB
2834 btrfs_set_super_total_bytes(super_copy,
2835 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2836 device->fs_devices->total_rw_bytes += diff;
2837
7cc8e58d
MX
2838 btrfs_device_set_total_bytes(device, new_size);
2839 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2840 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2841 if (list_empty(&device->post_commit_list))
2842 list_add_tail(&device->post_commit_list,
2843 &trans->transaction->dev_update_list);
34441361 2844 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2845
8f18cf13
CM
2846 return btrfs_update_device(trans, device);
2847}
2848
f4208794 2849static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2850{
f4208794 2851 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2852 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2853 int ret;
2854 struct btrfs_path *path;
2855 struct btrfs_key key;
2856
8f18cf13
CM
2857 path = btrfs_alloc_path();
2858 if (!path)
2859 return -ENOMEM;
2860
408fbf19 2861 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2862 key.offset = chunk_offset;
2863 key.type = BTRFS_CHUNK_ITEM_KEY;
2864
2865 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2866 if (ret < 0)
2867 goto out;
2868 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2869 btrfs_handle_fs_error(fs_info, -ENOENT,
2870 "Failed lookup while freeing chunk.");
79787eaa
JM
2871 ret = -ENOENT;
2872 goto out;
2873 }
8f18cf13
CM
2874
2875 ret = btrfs_del_item(trans, root, path);
79787eaa 2876 if (ret < 0)
0b246afa
JM
2877 btrfs_handle_fs_error(fs_info, ret,
2878 "Failed to delete chunk item.");
79787eaa 2879out:
8f18cf13 2880 btrfs_free_path(path);
65a246c5 2881 return ret;
8f18cf13
CM
2882}
2883
408fbf19 2884static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2885{
0b246afa 2886 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2887 struct btrfs_disk_key *disk_key;
2888 struct btrfs_chunk *chunk;
2889 u8 *ptr;
2890 int ret = 0;
2891 u32 num_stripes;
2892 u32 array_size;
2893 u32 len = 0;
2894 u32 cur;
2895 struct btrfs_key key;
2896
34441361 2897 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2898 array_size = btrfs_super_sys_array_size(super_copy);
2899
2900 ptr = super_copy->sys_chunk_array;
2901 cur = 0;
2902
2903 while (cur < array_size) {
2904 disk_key = (struct btrfs_disk_key *)ptr;
2905 btrfs_disk_key_to_cpu(&key, disk_key);
2906
2907 len = sizeof(*disk_key);
2908
2909 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2910 chunk = (struct btrfs_chunk *)(ptr + len);
2911 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2912 len += btrfs_chunk_item_size(num_stripes);
2913 } else {
2914 ret = -EIO;
2915 break;
2916 }
408fbf19 2917 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2918 key.offset == chunk_offset) {
2919 memmove(ptr, ptr + len, array_size - (cur + len));
2920 array_size -= len;
2921 btrfs_set_super_sys_array_size(super_copy, array_size);
2922 } else {
2923 ptr += len;
2924 cur += len;
2925 }
2926 }
34441361 2927 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2928 return ret;
2929}
2930
60ca842e
OS
2931/*
2932 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2933 * @logical: Logical block offset in bytes.
2934 * @length: Length of extent in bytes.
2935 *
2936 * Return: Chunk mapping or ERR_PTR.
2937 */
2938struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2939 u64 logical, u64 length)
592d92ee
LB
2940{
2941 struct extent_map_tree *em_tree;
2942 struct extent_map *em;
2943
c8bf1b67 2944 em_tree = &fs_info->mapping_tree;
592d92ee
LB
2945 read_lock(&em_tree->lock);
2946 em = lookup_extent_mapping(em_tree, logical, length);
2947 read_unlock(&em_tree->lock);
2948
2949 if (!em) {
2950 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2951 logical, length);
2952 return ERR_PTR(-EINVAL);
2953 }
2954
2955 if (em->start > logical || em->start + em->len < logical) {
2956 btrfs_crit(fs_info,
2957 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2958 logical, length, em->start, em->start + em->len);
2959 free_extent_map(em);
2960 return ERR_PTR(-EINVAL);
2961 }
2962
2963 /* callers are responsible for dropping em's ref. */
2964 return em;
2965}
2966
97aff912 2967int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2968{
97aff912 2969 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
2970 struct extent_map *em;
2971 struct map_lookup *map;
2196d6e8 2972 u64 dev_extent_len = 0;
47ab2a6c 2973 int i, ret = 0;
0b246afa 2974 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2975
60ca842e 2976 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 2977 if (IS_ERR(em)) {
47ab2a6c
JB
2978 /*
2979 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2980 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2981 * do anything we still error out.
2982 */
2983 ASSERT(0);
592d92ee 2984 return PTR_ERR(em);
47ab2a6c 2985 }
95617d69 2986 map = em->map_lookup;
34441361 2987 mutex_lock(&fs_info->chunk_mutex);
451a2c13 2988 check_system_chunk(trans, map->type);
34441361 2989 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2990
57ba4cb8
FM
2991 /*
2992 * Take the device list mutex to prevent races with the final phase of
2993 * a device replace operation that replaces the device object associated
2994 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2995 */
2996 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2997 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2998 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2999 ret = btrfs_free_dev_extent(trans, device,
3000 map->stripes[i].physical,
3001 &dev_extent_len);
47ab2a6c 3002 if (ret) {
57ba4cb8 3003 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3004 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3005 goto out;
3006 }
a061fc8d 3007
2196d6e8 3008 if (device->bytes_used > 0) {
34441361 3009 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3010 btrfs_device_set_bytes_used(device,
3011 device->bytes_used - dev_extent_len);
a5ed45f8 3012 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3013 btrfs_clear_space_info_full(fs_info);
34441361 3014 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3015 }
a061fc8d 3016
64bc6c2a
NB
3017 ret = btrfs_update_device(trans, device);
3018 if (ret) {
3019 mutex_unlock(&fs_devices->device_list_mutex);
3020 btrfs_abort_transaction(trans, ret);
3021 goto out;
dfe25020 3022 }
8f18cf13 3023 }
57ba4cb8
FM
3024 mutex_unlock(&fs_devices->device_list_mutex);
3025
f4208794 3026 ret = btrfs_free_chunk(trans, chunk_offset);
47ab2a6c 3027 if (ret) {
66642832 3028 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3029 goto out;
3030 }
8f18cf13 3031
6bccf3ab 3032 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3033
8f18cf13 3034 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3035 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3036 if (ret) {
66642832 3037 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3038 goto out;
3039 }
8f18cf13
CM
3040 }
3041
5a98ec01 3042 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3043 if (ret) {
66642832 3044 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3045 goto out;
3046 }
2b82032c 3047
47ab2a6c 3048out:
2b82032c
YZ
3049 /* once for us */
3050 free_extent_map(em);
47ab2a6c
JB
3051 return ret;
3052}
2b82032c 3053
5b4aacef 3054static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3055{
5b4aacef 3056 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3057 struct btrfs_trans_handle *trans;
47ab2a6c 3058 int ret;
2b82032c 3059
67c5e7d4
FM
3060 /*
3061 * Prevent races with automatic removal of unused block groups.
3062 * After we relocate and before we remove the chunk with offset
3063 * chunk_offset, automatic removal of the block group can kick in,
3064 * resulting in a failure when calling btrfs_remove_chunk() below.
3065 *
3066 * Make sure to acquire this mutex before doing a tree search (dev
3067 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3068 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3069 * we release the path used to search the chunk/dev tree and before
3070 * the current task acquires this mutex and calls us.
3071 */
a32bf9a3 3072 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 3073
47ab2a6c 3074 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3075 btrfs_scrub_pause(fs_info);
0b246afa 3076 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3077 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3078 if (ret)
3079 return ret;
3080
19c4d2f9
CM
3081 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3082 chunk_offset);
3083 if (IS_ERR(trans)) {
3084 ret = PTR_ERR(trans);
3085 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3086 return ret;
3087 }
3088
47ab2a6c 3089 /*
19c4d2f9
CM
3090 * step two, delete the device extents and the
3091 * chunk tree entries
47ab2a6c 3092 */
97aff912 3093 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3094 btrfs_end_transaction(trans);
19c4d2f9 3095 return ret;
2b82032c
YZ
3096}
3097
2ff7e61e 3098static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3099{
0b246afa 3100 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3101 struct btrfs_path *path;
3102 struct extent_buffer *leaf;
3103 struct btrfs_chunk *chunk;
3104 struct btrfs_key key;
3105 struct btrfs_key found_key;
2b82032c 3106 u64 chunk_type;
ba1bf481
JB
3107 bool retried = false;
3108 int failed = 0;
2b82032c
YZ
3109 int ret;
3110
3111 path = btrfs_alloc_path();
3112 if (!path)
3113 return -ENOMEM;
3114
ba1bf481 3115again:
2b82032c
YZ
3116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3117 key.offset = (u64)-1;
3118 key.type = BTRFS_CHUNK_ITEM_KEY;
3119
3120 while (1) {
0b246afa 3121 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3122 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3123 if (ret < 0) {
0b246afa 3124 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3125 goto error;
67c5e7d4 3126 }
79787eaa 3127 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3128
3129 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3130 key.type);
67c5e7d4 3131 if (ret)
0b246afa 3132 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
3133 if (ret < 0)
3134 goto error;
3135 if (ret > 0)
3136 break;
1a40e23b 3137
2b82032c
YZ
3138 leaf = path->nodes[0];
3139 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3140
2b82032c
YZ
3141 chunk = btrfs_item_ptr(leaf, path->slots[0],
3142 struct btrfs_chunk);
3143 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3144 btrfs_release_path(path);
8f18cf13 3145
2b82032c 3146 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3147 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3148 if (ret == -ENOSPC)
3149 failed++;
14586651
HS
3150 else
3151 BUG_ON(ret);
2b82032c 3152 }
0b246afa 3153 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3154
2b82032c
YZ
3155 if (found_key.offset == 0)
3156 break;
3157 key.offset = found_key.offset - 1;
3158 }
3159 ret = 0;
ba1bf481
JB
3160 if (failed && !retried) {
3161 failed = 0;
3162 retried = true;
3163 goto again;
fae7f21c 3164 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3165 ret = -ENOSPC;
3166 }
2b82032c
YZ
3167error:
3168 btrfs_free_path(path);
3169 return ret;
8f18cf13
CM
3170}
3171
a6f93c71
LB
3172/*
3173 * return 1 : allocate a data chunk successfully,
3174 * return <0: errors during allocating a data chunk,
3175 * return 0 : no need to allocate a data chunk.
3176 */
3177static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3178 u64 chunk_offset)
3179{
3180 struct btrfs_block_group_cache *cache;
3181 u64 bytes_used;
3182 u64 chunk_type;
3183
3184 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3185 ASSERT(cache);
3186 chunk_type = cache->flags;
3187 btrfs_put_block_group(cache);
3188
3189 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3190 spin_lock(&fs_info->data_sinfo->lock);
3191 bytes_used = fs_info->data_sinfo->bytes_used;
3192 spin_unlock(&fs_info->data_sinfo->lock);
3193
3194 if (!bytes_used) {
3195 struct btrfs_trans_handle *trans;
3196 int ret;
3197
3198 trans = btrfs_join_transaction(fs_info->tree_root);
3199 if (IS_ERR(trans))
3200 return PTR_ERR(trans);
3201
43a7e99d 3202 ret = btrfs_force_chunk_alloc(trans,
a6f93c71
LB
3203 BTRFS_BLOCK_GROUP_DATA);
3204 btrfs_end_transaction(trans);
3205 if (ret < 0)
3206 return ret;
a6f93c71
LB
3207 return 1;
3208 }
3209 }
3210 return 0;
3211}
3212
6bccf3ab 3213static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3214 struct btrfs_balance_control *bctl)
3215{
6bccf3ab 3216 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3217 struct btrfs_trans_handle *trans;
3218 struct btrfs_balance_item *item;
3219 struct btrfs_disk_balance_args disk_bargs;
3220 struct btrfs_path *path;
3221 struct extent_buffer *leaf;
3222 struct btrfs_key key;
3223 int ret, err;
3224
3225 path = btrfs_alloc_path();
3226 if (!path)
3227 return -ENOMEM;
3228
3229 trans = btrfs_start_transaction(root, 0);
3230 if (IS_ERR(trans)) {
3231 btrfs_free_path(path);
3232 return PTR_ERR(trans);
3233 }
3234
3235 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3236 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3237 key.offset = 0;
3238
3239 ret = btrfs_insert_empty_item(trans, root, path, &key,
3240 sizeof(*item));
3241 if (ret)
3242 goto out;
3243
3244 leaf = path->nodes[0];
3245 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3246
b159fa28 3247 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3248
3249 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3250 btrfs_set_balance_data(leaf, item, &disk_bargs);
3251 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3252 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3253 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3254 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3255
3256 btrfs_set_balance_flags(leaf, item, bctl->flags);
3257
3258 btrfs_mark_buffer_dirty(leaf);
3259out:
3260 btrfs_free_path(path);
3a45bb20 3261 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3262 if (err && !ret)
3263 ret = err;
3264 return ret;
3265}
3266
6bccf3ab 3267static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3268{
6bccf3ab 3269 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3270 struct btrfs_trans_handle *trans;
3271 struct btrfs_path *path;
3272 struct btrfs_key key;
3273 int ret, err;
3274
3275 path = btrfs_alloc_path();
3276 if (!path)
3277 return -ENOMEM;
3278
3279 trans = btrfs_start_transaction(root, 0);
3280 if (IS_ERR(trans)) {
3281 btrfs_free_path(path);
3282 return PTR_ERR(trans);
3283 }
3284
3285 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3286 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3287 key.offset = 0;
3288
3289 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3290 if (ret < 0)
3291 goto out;
3292 if (ret > 0) {
3293 ret = -ENOENT;
3294 goto out;
3295 }
3296
3297 ret = btrfs_del_item(trans, root, path);
3298out:
3299 btrfs_free_path(path);
3a45bb20 3300 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3301 if (err && !ret)
3302 ret = err;
3303 return ret;
3304}
3305
59641015
ID
3306/*
3307 * This is a heuristic used to reduce the number of chunks balanced on
3308 * resume after balance was interrupted.
3309 */
3310static void update_balance_args(struct btrfs_balance_control *bctl)
3311{
3312 /*
3313 * Turn on soft mode for chunk types that were being converted.
3314 */
3315 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3316 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3317 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3318 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3319 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3320 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3321
3322 /*
3323 * Turn on usage filter if is not already used. The idea is
3324 * that chunks that we have already balanced should be
3325 * reasonably full. Don't do it for chunks that are being
3326 * converted - that will keep us from relocating unconverted
3327 * (albeit full) chunks.
3328 */
3329 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3330 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3331 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3332 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3333 bctl->data.usage = 90;
3334 }
3335 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3336 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3337 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3338 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3339 bctl->sys.usage = 90;
3340 }
3341 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3342 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3343 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3344 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3345 bctl->meta.usage = 90;
3346 }
3347}
3348
149196a2
DS
3349/*
3350 * Clear the balance status in fs_info and delete the balance item from disk.
3351 */
3352static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3353{
3354 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3355 int ret;
c9e9f97b
ID
3356
3357 BUG_ON(!fs_info->balance_ctl);
3358
3359 spin_lock(&fs_info->balance_lock);
3360 fs_info->balance_ctl = NULL;
3361 spin_unlock(&fs_info->balance_lock);
3362
3363 kfree(bctl);
149196a2
DS
3364 ret = del_balance_item(fs_info);
3365 if (ret)
3366 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3367}
3368
ed25e9b2
ID
3369/*
3370 * Balance filters. Return 1 if chunk should be filtered out
3371 * (should not be balanced).
3372 */
899c81ea 3373static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3374 struct btrfs_balance_args *bargs)
3375{
899c81ea
ID
3376 chunk_type = chunk_to_extended(chunk_type) &
3377 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3378
899c81ea 3379 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3380 return 0;
3381
3382 return 1;
3383}
3384
dba72cb3 3385static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3386 struct btrfs_balance_args *bargs)
bc309467
DS
3387{
3388 struct btrfs_block_group_cache *cache;
3389 u64 chunk_used;
3390 u64 user_thresh_min;
3391 u64 user_thresh_max;
3392 int ret = 1;
3393
3394 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3395 chunk_used = btrfs_block_group_used(&cache->item);
3396
3397 if (bargs->usage_min == 0)
3398 user_thresh_min = 0;
3399 else
3400 user_thresh_min = div_factor_fine(cache->key.offset,
3401 bargs->usage_min);
3402
3403 if (bargs->usage_max == 0)
3404 user_thresh_max = 1;
3405 else if (bargs->usage_max > 100)
3406 user_thresh_max = cache->key.offset;
3407 else
3408 user_thresh_max = div_factor_fine(cache->key.offset,
3409 bargs->usage_max);
3410
3411 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3412 ret = 0;
3413
3414 btrfs_put_block_group(cache);
3415 return ret;
3416}
3417
dba72cb3 3418static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3419 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3420{
3421 struct btrfs_block_group_cache *cache;
3422 u64 chunk_used, user_thresh;
3423 int ret = 1;
3424
3425 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3426 chunk_used = btrfs_block_group_used(&cache->item);
3427
bc309467 3428 if (bargs->usage_min == 0)
3e39cea6 3429 user_thresh = 1;
a105bb88
ID
3430 else if (bargs->usage > 100)
3431 user_thresh = cache->key.offset;
3432 else
3433 user_thresh = div_factor_fine(cache->key.offset,
3434 bargs->usage);
3435
5ce5b3c0
ID
3436 if (chunk_used < user_thresh)
3437 ret = 0;
3438
3439 btrfs_put_block_group(cache);
3440 return ret;
3441}
3442
409d404b
ID
3443static int chunk_devid_filter(struct extent_buffer *leaf,
3444 struct btrfs_chunk *chunk,
3445 struct btrfs_balance_args *bargs)
3446{
3447 struct btrfs_stripe *stripe;
3448 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3449 int i;
3450
3451 for (i = 0; i < num_stripes; i++) {
3452 stripe = btrfs_stripe_nr(chunk, i);
3453 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3454 return 0;
3455 }
3456
3457 return 1;
3458}
3459
946c9256
DS
3460static u64 calc_data_stripes(u64 type, int num_stripes)
3461{
3462 const int index = btrfs_bg_flags_to_raid_index(type);
3463 const int ncopies = btrfs_raid_array[index].ncopies;
3464 const int nparity = btrfs_raid_array[index].nparity;
3465
3466 if (nparity)
3467 return num_stripes - nparity;
3468 else
3469 return num_stripes / ncopies;
3470}
3471
94e60d5a
ID
3472/* [pstart, pend) */
3473static int chunk_drange_filter(struct extent_buffer *leaf,
3474 struct btrfs_chunk *chunk,
94e60d5a
ID
3475 struct btrfs_balance_args *bargs)
3476{
3477 struct btrfs_stripe *stripe;
3478 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3479 u64 stripe_offset;
3480 u64 stripe_length;
946c9256 3481 u64 type;
94e60d5a
ID
3482 int factor;
3483 int i;
3484
3485 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3486 return 0;
3487
946c9256
DS
3488 type = btrfs_chunk_type(leaf, chunk);
3489 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3490
3491 for (i = 0; i < num_stripes; i++) {
3492 stripe = btrfs_stripe_nr(chunk, i);
3493 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3494 continue;
3495
3496 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3497 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3498 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3499
3500 if (stripe_offset < bargs->pend &&
3501 stripe_offset + stripe_length > bargs->pstart)
3502 return 0;
3503 }
3504
3505 return 1;
3506}
3507
ea67176a
ID
3508/* [vstart, vend) */
3509static int chunk_vrange_filter(struct extent_buffer *leaf,
3510 struct btrfs_chunk *chunk,
3511 u64 chunk_offset,
3512 struct btrfs_balance_args *bargs)
3513{
3514 if (chunk_offset < bargs->vend &&
3515 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3516 /* at least part of the chunk is inside this vrange */
3517 return 0;
3518
3519 return 1;
3520}
3521
dee32d0a
GAP
3522static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3523 struct btrfs_chunk *chunk,
3524 struct btrfs_balance_args *bargs)
3525{
3526 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3527
3528 if (bargs->stripes_min <= num_stripes
3529 && num_stripes <= bargs->stripes_max)
3530 return 0;
3531
3532 return 1;
3533}
3534
899c81ea 3535static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3536 struct btrfs_balance_args *bargs)
3537{
3538 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3539 return 0;
3540
899c81ea
ID
3541 chunk_type = chunk_to_extended(chunk_type) &
3542 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3543
899c81ea 3544 if (bargs->target == chunk_type)
cfa4c961
ID
3545 return 1;
3546
3547 return 0;
3548}
3549
6ec0896c 3550static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3551 struct btrfs_chunk *chunk, u64 chunk_offset)
3552{
6ec0896c 3553 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3554 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3555 struct btrfs_balance_args *bargs = NULL;
3556 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3557
3558 /* type filter */
3559 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3560 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3561 return 0;
3562 }
3563
3564 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3565 bargs = &bctl->data;
3566 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3567 bargs = &bctl->sys;
3568 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3569 bargs = &bctl->meta;
3570
ed25e9b2
ID
3571 /* profiles filter */
3572 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3573 chunk_profiles_filter(chunk_type, bargs)) {
3574 return 0;
5ce5b3c0
ID
3575 }
3576
3577 /* usage filter */
3578 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3579 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3580 return 0;
bc309467 3581 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3582 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3583 return 0;
409d404b
ID
3584 }
3585
3586 /* devid filter */
3587 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3588 chunk_devid_filter(leaf, chunk, bargs)) {
3589 return 0;
94e60d5a
ID
3590 }
3591
3592 /* drange filter, makes sense only with devid filter */
3593 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3594 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3595 return 0;
ea67176a
ID
3596 }
3597
3598 /* vrange filter */
3599 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3600 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3601 return 0;
ed25e9b2
ID
3602 }
3603
dee32d0a
GAP
3604 /* stripes filter */
3605 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3606 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3607 return 0;
3608 }
3609
cfa4c961
ID
3610 /* soft profile changing mode */
3611 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3612 chunk_soft_convert_filter(chunk_type, bargs)) {
3613 return 0;
3614 }
3615
7d824b6f
DS
3616 /*
3617 * limited by count, must be the last filter
3618 */
3619 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3620 if (bargs->limit == 0)
3621 return 0;
3622 else
3623 bargs->limit--;
12907fc7
DS
3624 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3625 /*
3626 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3627 * determined here because we do not have the global information
12907fc7
DS
3628 * about the count of all chunks that satisfy the filters.
3629 */
3630 if (bargs->limit_max == 0)
3631 return 0;
3632 else
3633 bargs->limit_max--;
7d824b6f
DS
3634 }
3635
f43ffb60
ID
3636 return 1;
3637}
3638
c9e9f97b 3639static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3640{
19a39dce 3641 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3642 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3643 u64 chunk_type;
f43ffb60 3644 struct btrfs_chunk *chunk;
5a488b9d 3645 struct btrfs_path *path = NULL;
ec44a35c 3646 struct btrfs_key key;
ec44a35c 3647 struct btrfs_key found_key;
f43ffb60
ID
3648 struct extent_buffer *leaf;
3649 int slot;
c9e9f97b
ID
3650 int ret;
3651 int enospc_errors = 0;
19a39dce 3652 bool counting = true;
12907fc7 3653 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3654 u64 limit_data = bctl->data.limit;
3655 u64 limit_meta = bctl->meta.limit;
3656 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3657 u32 count_data = 0;
3658 u32 count_meta = 0;
3659 u32 count_sys = 0;
2c9fe835 3660 int chunk_reserved = 0;
ec44a35c 3661
ec44a35c 3662 path = btrfs_alloc_path();
17e9f796
MF
3663 if (!path) {
3664 ret = -ENOMEM;
3665 goto error;
3666 }
19a39dce
ID
3667
3668 /* zero out stat counters */
3669 spin_lock(&fs_info->balance_lock);
3670 memset(&bctl->stat, 0, sizeof(bctl->stat));
3671 spin_unlock(&fs_info->balance_lock);
3672again:
7d824b6f 3673 if (!counting) {
12907fc7
DS
3674 /*
3675 * The single value limit and min/max limits use the same bytes
3676 * in the
3677 */
7d824b6f
DS
3678 bctl->data.limit = limit_data;
3679 bctl->meta.limit = limit_meta;
3680 bctl->sys.limit = limit_sys;
3681 }
ec44a35c
CM
3682 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3683 key.offset = (u64)-1;
3684 key.type = BTRFS_CHUNK_ITEM_KEY;
3685
d397712b 3686 while (1) {
19a39dce 3687 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3688 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3689 ret = -ECANCELED;
3690 goto error;
3691 }
3692
67c5e7d4 3693 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3694 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3695 if (ret < 0) {
3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3697 goto error;
67c5e7d4 3698 }
ec44a35c
CM
3699
3700 /*
3701 * this shouldn't happen, it means the last relocate
3702 * failed
3703 */
3704 if (ret == 0)
c9e9f97b 3705 BUG(); /* FIXME break ? */
ec44a35c
CM
3706
3707 ret = btrfs_previous_item(chunk_root, path, 0,
3708 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3709 if (ret) {
67c5e7d4 3710 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3711 ret = 0;
ec44a35c 3712 break;
c9e9f97b 3713 }
7d9eb12c 3714
f43ffb60
ID
3715 leaf = path->nodes[0];
3716 slot = path->slots[0];
3717 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3718
67c5e7d4
FM
3719 if (found_key.objectid != key.objectid) {
3720 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3721 break;
67c5e7d4 3722 }
7d9eb12c 3723
f43ffb60 3724 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3725 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3726
19a39dce
ID
3727 if (!counting) {
3728 spin_lock(&fs_info->balance_lock);
3729 bctl->stat.considered++;
3730 spin_unlock(&fs_info->balance_lock);
3731 }
3732
6ec0896c 3733 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3734
b3b4aa74 3735 btrfs_release_path(path);
67c5e7d4
FM
3736 if (!ret) {
3737 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3738 goto loop;
67c5e7d4 3739 }
f43ffb60 3740
19a39dce 3741 if (counting) {
67c5e7d4 3742 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3743 spin_lock(&fs_info->balance_lock);
3744 bctl->stat.expected++;
3745 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3746
3747 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748 count_data++;
3749 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750 count_sys++;
3751 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752 count_meta++;
3753
3754 goto loop;
3755 }
3756
3757 /*
3758 * Apply limit_min filter, no need to check if the LIMITS
3759 * filter is used, limit_min is 0 by default
3760 */
3761 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3762 count_data < bctl->data.limit_min)
3763 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3764 count_meta < bctl->meta.limit_min)
3765 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3766 count_sys < bctl->sys.limit_min)) {
3767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3768 goto loop;
3769 }
3770
a6f93c71
LB
3771 if (!chunk_reserved) {
3772 /*
3773 * We may be relocating the only data chunk we have,
3774 * which could potentially end up with losing data's
3775 * raid profile, so lets allocate an empty one in
3776 * advance.
3777 */
3778 ret = btrfs_may_alloc_data_chunk(fs_info,
3779 found_key.offset);
2c9fe835
ZL
3780 if (ret < 0) {
3781 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3782 goto error;
a6f93c71
LB
3783 } else if (ret == 1) {
3784 chunk_reserved = 1;
2c9fe835 3785 }
2c9fe835
ZL
3786 }
3787
5b4aacef 3788 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3789 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce 3790 if (ret == -ENOSPC) {
c9e9f97b 3791 enospc_errors++;
eede2bf3
OS
3792 } else if (ret == -ETXTBSY) {
3793 btrfs_info(fs_info,
3794 "skipping relocation of block group %llu due to active swapfile",
3795 found_key.offset);
3796 ret = 0;
3797 } else if (ret) {
3798 goto error;
19a39dce
ID
3799 } else {
3800 spin_lock(&fs_info->balance_lock);
3801 bctl->stat.completed++;
3802 spin_unlock(&fs_info->balance_lock);
3803 }
f43ffb60 3804loop:
795a3321
ID
3805 if (found_key.offset == 0)
3806 break;
ba1bf481 3807 key.offset = found_key.offset - 1;
ec44a35c 3808 }
c9e9f97b 3809
19a39dce
ID
3810 if (counting) {
3811 btrfs_release_path(path);
3812 counting = false;
3813 goto again;
3814 }
ec44a35c
CM
3815error:
3816 btrfs_free_path(path);
c9e9f97b 3817 if (enospc_errors) {
efe120a0 3818 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3819 enospc_errors);
c9e9f97b
ID
3820 if (!ret)
3821 ret = -ENOSPC;
3822 }
3823
ec44a35c
CM
3824 return ret;
3825}
3826
0c460c0d
ID
3827/**
3828 * alloc_profile_is_valid - see if a given profile is valid and reduced
3829 * @flags: profile to validate
3830 * @extended: if true @flags is treated as an extended profile
3831 */
3832static int alloc_profile_is_valid(u64 flags, int extended)
3833{
3834 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3835 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3836
3837 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3838
3839 /* 1) check that all other bits are zeroed */
3840 if (flags & ~mask)
3841 return 0;
3842
3843 /* 2) see if profile is reduced */
3844 if (flags == 0)
3845 return !extended; /* "0" is valid for usual profiles */
3846
3847 /* true if exactly one bit set */
7a547890
ZB
3848 /*
3849 * Don't use is_power_of_2(unsigned long) because it won't work
3850 * for the single profile (1ULL << 48) on 32-bit CPUs.
3851 */
3852 return flags != 0 && (flags & (flags - 1)) == 0;
0c460c0d
ID
3853}
3854
837d5b6e
ID
3855static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3856{
a7e99c69
ID
3857 /* cancel requested || normal exit path */
3858 return atomic_read(&fs_info->balance_cancel_req) ||
3859 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3860 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3861}
3862
bdcd3c97
AM
3863/* Non-zero return value signifies invalidity */
3864static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3865 u64 allowed)
3866{
3867 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3868 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3869 (bctl_arg->target & ~allowed)));
3870}
3871
56fc37d9
AJ
3872/*
3873 * Fill @buf with textual description of balance filter flags @bargs, up to
3874 * @size_buf including the terminating null. The output may be trimmed if it
3875 * does not fit into the provided buffer.
3876 */
3877static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3878 u32 size_buf)
3879{
3880 int ret;
3881 u32 size_bp = size_buf;
3882 char *bp = buf;
3883 u64 flags = bargs->flags;
3884 char tmp_buf[128] = {'\0'};
3885
3886 if (!flags)
3887 return;
3888
3889#define CHECK_APPEND_NOARG(a) \
3890 do { \
3891 ret = snprintf(bp, size_bp, (a)); \
3892 if (ret < 0 || ret >= size_bp) \
3893 goto out_overflow; \
3894 size_bp -= ret; \
3895 bp += ret; \
3896 } while (0)
3897
3898#define CHECK_APPEND_1ARG(a, v1) \
3899 do { \
3900 ret = snprintf(bp, size_bp, (a), (v1)); \
3901 if (ret < 0 || ret >= size_bp) \
3902 goto out_overflow; \
3903 size_bp -= ret; \
3904 bp += ret; \
3905 } while (0)
3906
3907#define CHECK_APPEND_2ARG(a, v1, v2) \
3908 do { \
3909 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3910 if (ret < 0 || ret >= size_bp) \
3911 goto out_overflow; \
3912 size_bp -= ret; \
3913 bp += ret; \
3914 } while (0)
3915
158da513
DS
3916 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3917 CHECK_APPEND_1ARG("convert=%s,",
3918 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
3919
3920 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3921 CHECK_APPEND_NOARG("soft,");
3922
3923 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3924 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3925 sizeof(tmp_buf));
3926 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3927 }
3928
3929 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3930 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3931
3932 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3933 CHECK_APPEND_2ARG("usage=%u..%u,",
3934 bargs->usage_min, bargs->usage_max);
3935
3936 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3937 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3938
3939 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3940 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3941 bargs->pstart, bargs->pend);
3942
3943 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3944 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3945 bargs->vstart, bargs->vend);
3946
3947 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3948 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3949
3950 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3951 CHECK_APPEND_2ARG("limit=%u..%u,",
3952 bargs->limit_min, bargs->limit_max);
3953
3954 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3955 CHECK_APPEND_2ARG("stripes=%u..%u,",
3956 bargs->stripes_min, bargs->stripes_max);
3957
3958#undef CHECK_APPEND_2ARG
3959#undef CHECK_APPEND_1ARG
3960#undef CHECK_APPEND_NOARG
3961
3962out_overflow:
3963
3964 if (size_bp < size_buf)
3965 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3966 else
3967 buf[0] = '\0';
3968}
3969
3970static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3971{
3972 u32 size_buf = 1024;
3973 char tmp_buf[192] = {'\0'};
3974 char *buf;
3975 char *bp;
3976 u32 size_bp = size_buf;
3977 int ret;
3978 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3979
3980 buf = kzalloc(size_buf, GFP_KERNEL);
3981 if (!buf)
3982 return;
3983
3984 bp = buf;
3985
3986#define CHECK_APPEND_1ARG(a, v1) \
3987 do { \
3988 ret = snprintf(bp, size_bp, (a), (v1)); \
3989 if (ret < 0 || ret >= size_bp) \
3990 goto out_overflow; \
3991 size_bp -= ret; \
3992 bp += ret; \
3993 } while (0)
3994
3995 if (bctl->flags & BTRFS_BALANCE_FORCE)
3996 CHECK_APPEND_1ARG("%s", "-f ");
3997
3998 if (bctl->flags & BTRFS_BALANCE_DATA) {
3999 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4000 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4001 }
4002
4003 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4004 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4005 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4006 }
4007
4008 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4009 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4010 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4011 }
4012
4013#undef CHECK_APPEND_1ARG
4014
4015out_overflow:
4016
4017 if (size_bp < size_buf)
4018 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4019 btrfs_info(fs_info, "balance: %s %s",
4020 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4021 "resume" : "start", buf);
4022
4023 kfree(buf);
4024}
4025
c9e9f97b 4026/*
dccdb07b 4027 * Should be called with balance mutexe held
c9e9f97b 4028 */
6fcf6e2b
DS
4029int btrfs_balance(struct btrfs_fs_info *fs_info,
4030 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4031 struct btrfs_ioctl_balance_args *bargs)
4032{
14506127 4033 u64 meta_target, data_target;
f43ffb60 4034 u64 allowed;
e4837f8f 4035 int mixed = 0;
c9e9f97b 4036 int ret;
8dabb742 4037 u64 num_devices;
de98ced9 4038 unsigned seq;
5a8067c0 4039 bool reducing_integrity;
081db89b 4040 int i;
c9e9f97b 4041
837d5b6e 4042 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
4043 atomic_read(&fs_info->balance_pause_req) ||
4044 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
4045 ret = -EINVAL;
4046 goto out;
4047 }
4048
e4837f8f
ID
4049 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4050 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4051 mixed = 1;
4052
f43ffb60
ID
4053 /*
4054 * In case of mixed groups both data and meta should be picked,
4055 * and identical options should be given for both of them.
4056 */
e4837f8f
ID
4057 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4058 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4059 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4060 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4061 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4062 btrfs_err(fs_info,
6dac13f8 4063 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4064 ret = -EINVAL;
4065 goto out;
4066 }
4067 }
4068
1da73967 4069 num_devices = btrfs_num_devices(fs_info);
fab27359
QW
4070
4071 /*
4072 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4073 * special bit for it, to make it easier to distinguish. Thus we need
4074 * to set it manually, or balance would refuse the profile.
4075 */
4076 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4077 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4078 if (num_devices >= btrfs_raid_array[i].devs_min)
4079 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4080
bdcd3c97 4081 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e 4082 btrfs_err(fs_info,
6dac13f8 4083 "balance: invalid convert data profile %s",
158da513 4084 btrfs_bg_type_to_raid_name(bctl->data.target));
e4d8ec0f
ID
4085 ret = -EINVAL;
4086 goto out;
4087 }
bdcd3c97 4088 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 4089 btrfs_err(fs_info,
6dac13f8 4090 "balance: invalid convert metadata profile %s",
158da513 4091 btrfs_bg_type_to_raid_name(bctl->meta.target));
e4d8ec0f
ID
4092 ret = -EINVAL;
4093 goto out;
4094 }
bdcd3c97 4095 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 4096 btrfs_err(fs_info,
6dac13f8 4097 "balance: invalid convert system profile %s",
158da513 4098 btrfs_bg_type_to_raid_name(bctl->sys.target));
e4d8ec0f
ID
4099 ret = -EINVAL;
4100 goto out;
4101 }
4102
6079e12c
DS
4103 /*
4104 * Allow to reduce metadata or system integrity only if force set for
4105 * profiles with redundancy (copies, parity)
4106 */
4107 allowed = 0;
4108 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4109 if (btrfs_raid_array[i].ncopies >= 2 ||
4110 btrfs_raid_array[i].tolerated_failures >= 1)
4111 allowed |= btrfs_raid_array[i].bg_flag;
4112 }
de98ced9
MX
4113 do {
4114 seq = read_seqbegin(&fs_info->profiles_lock);
4115
4116 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4117 (fs_info->avail_system_alloc_bits & allowed) &&
4118 !(bctl->sys.target & allowed)) ||
4119 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4120 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0
FM
4121 !(bctl->meta.target & allowed)))
4122 reducing_integrity = true;
4123 else
4124 reducing_integrity = false;
4125
4126 /* if we're not converting, the target field is uninitialized */
4127 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4128 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4129 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4130 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4131 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4132
5a8067c0
FM
4133 if (reducing_integrity) {
4134 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4135 btrfs_info(fs_info,
4136 "balance: force reducing metadata integrity");
4137 } else {
4138 btrfs_err(fs_info,
4139 "balance: reduces metadata integrity, use --force if you want this");
4140 ret = -EINVAL;
4141 goto out;
4142 }
4143 }
4144
14506127
AB
4145 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4146 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4147 btrfs_warn(fs_info,
6dac13f8 4148 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4149 btrfs_bg_type_to_raid_name(meta_target),
4150 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4151 }
4152
9e967495
FM
4153 if (fs_info->send_in_progress) {
4154 btrfs_warn_rl(fs_info,
4155"cannot run balance while send operations are in progress (%d in progress)",
4156 fs_info->send_in_progress);
4157 ret = -EAGAIN;
4158 goto out;
4159 }
4160
6bccf3ab 4161 ret = insert_balance_item(fs_info, bctl);
59641015 4162 if (ret && ret != -EEXIST)
0940ebf6
ID
4163 goto out;
4164
59641015
ID
4165 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4166 BUG_ON(ret == -EEXIST);
833aae18
DS
4167 BUG_ON(fs_info->balance_ctl);
4168 spin_lock(&fs_info->balance_lock);
4169 fs_info->balance_ctl = bctl;
4170 spin_unlock(&fs_info->balance_lock);
59641015
ID
4171 } else {
4172 BUG_ON(ret != -EEXIST);
4173 spin_lock(&fs_info->balance_lock);
4174 update_balance_args(bctl);
4175 spin_unlock(&fs_info->balance_lock);
4176 }
c9e9f97b 4177
3009a62f
DS
4178 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4179 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4180 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4181 mutex_unlock(&fs_info->balance_mutex);
4182
4183 ret = __btrfs_balance(fs_info);
4184
4185 mutex_lock(&fs_info->balance_mutex);
7333bd02
AJ
4186 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4187 btrfs_info(fs_info, "balance: paused");
4188 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4189 btrfs_info(fs_info, "balance: canceled");
4190 else
4191 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4192
3009a62f 4193 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4194
4195 if (bargs) {
4196 memset(bargs, 0, sizeof(*bargs));
008ef096 4197 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4198 }
4199
3a01aa7a
ID
4200 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4201 balance_need_close(fs_info)) {
149196a2 4202 reset_balance_state(fs_info);
a17c95df 4203 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3a01aa7a
ID
4204 }
4205
837d5b6e 4206 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4207
4208 return ret;
4209out:
59641015 4210 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4211 reset_balance_state(fs_info);
a17c95df 4212 else
59641015 4213 kfree(bctl);
a17c95df
DS
4214 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4215
59641015
ID
4216 return ret;
4217}
4218
4219static int balance_kthread(void *data)
4220{
2b6ba629 4221 struct btrfs_fs_info *fs_info = data;
9555c6c1 4222 int ret = 0;
59641015 4223
59641015 4224 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4225 if (fs_info->balance_ctl)
6fcf6e2b 4226 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4227 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4228
59641015
ID
4229 return ret;
4230}
4231
2b6ba629
ID
4232int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4233{
4234 struct task_struct *tsk;
4235
1354e1a1 4236 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4237 if (!fs_info->balance_ctl) {
1354e1a1 4238 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4239 return 0;
4240 }
1354e1a1 4241 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4242
3cdde224 4243 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4244 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4245 return 0;
4246 }
4247
02ee654d
AJ
4248 /*
4249 * A ro->rw remount sequence should continue with the paused balance
4250 * regardless of who pauses it, system or the user as of now, so set
4251 * the resume flag.
4252 */
4253 spin_lock(&fs_info->balance_lock);
4254 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4255 spin_unlock(&fs_info->balance_lock);
4256
2b6ba629 4257 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4258 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4259}
4260
68310a5e 4261int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4262{
59641015
ID
4263 struct btrfs_balance_control *bctl;
4264 struct btrfs_balance_item *item;
4265 struct btrfs_disk_balance_args disk_bargs;
4266 struct btrfs_path *path;
4267 struct extent_buffer *leaf;
4268 struct btrfs_key key;
4269 int ret;
4270
4271 path = btrfs_alloc_path();
4272 if (!path)
4273 return -ENOMEM;
4274
59641015 4275 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4276 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4277 key.offset = 0;
4278
68310a5e 4279 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4280 if (ret < 0)
68310a5e 4281 goto out;
59641015
ID
4282 if (ret > 0) { /* ret = -ENOENT; */
4283 ret = 0;
68310a5e
ID
4284 goto out;
4285 }
4286
4287 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4288 if (!bctl) {
4289 ret = -ENOMEM;
4290 goto out;
59641015
ID
4291 }
4292
4293 leaf = path->nodes[0];
4294 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4295
68310a5e
ID
4296 bctl->flags = btrfs_balance_flags(leaf, item);
4297 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4298
4299 btrfs_balance_data(leaf, item, &disk_bargs);
4300 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4301 btrfs_balance_meta(leaf, item, &disk_bargs);
4302 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4303 btrfs_balance_sys(leaf, item, &disk_bargs);
4304 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4305
eee95e3f
DS
4306 /*
4307 * This should never happen, as the paused balance state is recovered
4308 * during mount without any chance of other exclusive ops to collide.
4309 *
4310 * This gives the exclusive op status to balance and keeps in paused
4311 * state until user intervention (cancel or umount). If the ownership
4312 * cannot be assigned, show a message but do not fail. The balance
4313 * is in a paused state and must have fs_info::balance_ctl properly
4314 * set up.
4315 */
4316 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4317 btrfs_warn(fs_info,
6dac13f8 4318 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4319
68310a5e 4320 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4321 BUG_ON(fs_info->balance_ctl);
4322 spin_lock(&fs_info->balance_lock);
4323 fs_info->balance_ctl = bctl;
4324 spin_unlock(&fs_info->balance_lock);
68310a5e 4325 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4326out:
4327 btrfs_free_path(path);
ec44a35c
CM
4328 return ret;
4329}
4330
837d5b6e
ID
4331int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4332{
4333 int ret = 0;
4334
4335 mutex_lock(&fs_info->balance_mutex);
4336 if (!fs_info->balance_ctl) {
4337 mutex_unlock(&fs_info->balance_mutex);
4338 return -ENOTCONN;
4339 }
4340
3009a62f 4341 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4342 atomic_inc(&fs_info->balance_pause_req);
4343 mutex_unlock(&fs_info->balance_mutex);
4344
4345 wait_event(fs_info->balance_wait_q,
3009a62f 4346 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4347
4348 mutex_lock(&fs_info->balance_mutex);
4349 /* we are good with balance_ctl ripped off from under us */
3009a62f 4350 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4351 atomic_dec(&fs_info->balance_pause_req);
4352 } else {
4353 ret = -ENOTCONN;
4354 }
4355
4356 mutex_unlock(&fs_info->balance_mutex);
4357 return ret;
4358}
4359
a7e99c69
ID
4360int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4361{
4362 mutex_lock(&fs_info->balance_mutex);
4363 if (!fs_info->balance_ctl) {
4364 mutex_unlock(&fs_info->balance_mutex);
4365 return -ENOTCONN;
4366 }
4367
cf7d20f4
DS
4368 /*
4369 * A paused balance with the item stored on disk can be resumed at
4370 * mount time if the mount is read-write. Otherwise it's still paused
4371 * and we must not allow cancelling as it deletes the item.
4372 */
4373 if (sb_rdonly(fs_info->sb)) {
4374 mutex_unlock(&fs_info->balance_mutex);
4375 return -EROFS;
4376 }
4377
a7e99c69
ID
4378 atomic_inc(&fs_info->balance_cancel_req);
4379 /*
4380 * if we are running just wait and return, balance item is
4381 * deleted in btrfs_balance in this case
4382 */
3009a62f 4383 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4384 mutex_unlock(&fs_info->balance_mutex);
4385 wait_event(fs_info->balance_wait_q,
3009a62f 4386 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4387 mutex_lock(&fs_info->balance_mutex);
4388 } else {
a7e99c69 4389 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4390 /*
4391 * Lock released to allow other waiters to continue, we'll
4392 * reexamine the status again.
4393 */
a7e99c69
ID
4394 mutex_lock(&fs_info->balance_mutex);
4395
a17c95df 4396 if (fs_info->balance_ctl) {
149196a2 4397 reset_balance_state(fs_info);
a17c95df 4398 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
6dac13f8 4399 btrfs_info(fs_info, "balance: canceled");
a17c95df 4400 }
a7e99c69
ID
4401 }
4402
3009a62f
DS
4403 BUG_ON(fs_info->balance_ctl ||
4404 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4405 atomic_dec(&fs_info->balance_cancel_req);
4406 mutex_unlock(&fs_info->balance_mutex);
4407 return 0;
4408}
4409
803b2f54
SB
4410static int btrfs_uuid_scan_kthread(void *data)
4411{
4412 struct btrfs_fs_info *fs_info = data;
4413 struct btrfs_root *root = fs_info->tree_root;
4414 struct btrfs_key key;
803b2f54
SB
4415 struct btrfs_path *path = NULL;
4416 int ret = 0;
4417 struct extent_buffer *eb;
4418 int slot;
4419 struct btrfs_root_item root_item;
4420 u32 item_size;
f45388f3 4421 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4422
4423 path = btrfs_alloc_path();
4424 if (!path) {
4425 ret = -ENOMEM;
4426 goto out;
4427 }
4428
4429 key.objectid = 0;
4430 key.type = BTRFS_ROOT_ITEM_KEY;
4431 key.offset = 0;
4432
803b2f54 4433 while (1) {
7c829b72
AJ
4434 ret = btrfs_search_forward(root, &key, path,
4435 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4436 if (ret) {
4437 if (ret > 0)
4438 ret = 0;
4439 break;
4440 }
4441
4442 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4443 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4444 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4445 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4446 goto skip;
4447
4448 eb = path->nodes[0];
4449 slot = path->slots[0];
4450 item_size = btrfs_item_size_nr(eb, slot);
4451 if (item_size < sizeof(root_item))
4452 goto skip;
4453
803b2f54
SB
4454 read_extent_buffer(eb, &root_item,
4455 btrfs_item_ptr_offset(eb, slot),
4456 (int)sizeof(root_item));
4457 if (btrfs_root_refs(&root_item) == 0)
4458 goto skip;
f45388f3
FDBM
4459
4460 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4461 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4462 if (trans)
4463 goto update_tree;
4464
4465 btrfs_release_path(path);
803b2f54
SB
4466 /*
4467 * 1 - subvol uuid item
4468 * 1 - received_subvol uuid item
4469 */
4470 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4471 if (IS_ERR(trans)) {
4472 ret = PTR_ERR(trans);
4473 break;
4474 }
f45388f3
FDBM
4475 continue;
4476 } else {
4477 goto skip;
4478 }
4479update_tree:
4480 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4481 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4482 BTRFS_UUID_KEY_SUBVOL,
4483 key.objectid);
4484 if (ret < 0) {
efe120a0 4485 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4486 ret);
803b2f54
SB
4487 break;
4488 }
4489 }
4490
4491 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4492 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4493 root_item.received_uuid,
4494 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4495 key.objectid);
4496 if (ret < 0) {
efe120a0 4497 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4498 ret);
803b2f54
SB
4499 break;
4500 }
4501 }
4502
f45388f3 4503skip:
803b2f54 4504 if (trans) {
3a45bb20 4505 ret = btrfs_end_transaction(trans);
f45388f3 4506 trans = NULL;
803b2f54
SB
4507 if (ret)
4508 break;
4509 }
4510
803b2f54
SB
4511 btrfs_release_path(path);
4512 if (key.offset < (u64)-1) {
4513 key.offset++;
4514 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4515 key.offset = 0;
4516 key.type = BTRFS_ROOT_ITEM_KEY;
4517 } else if (key.objectid < (u64)-1) {
4518 key.offset = 0;
4519 key.type = BTRFS_ROOT_ITEM_KEY;
4520 key.objectid++;
4521 } else {
4522 break;
4523 }
4524 cond_resched();
4525 }
4526
4527out:
4528 btrfs_free_path(path);
f45388f3 4529 if (trans && !IS_ERR(trans))
3a45bb20 4530 btrfs_end_transaction(trans);
803b2f54 4531 if (ret)
efe120a0 4532 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4533 else
afcdd129 4534 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4535 up(&fs_info->uuid_tree_rescan_sem);
4536 return 0;
4537}
4538
70f80175
SB
4539/*
4540 * Callback for btrfs_uuid_tree_iterate().
4541 * returns:
4542 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4543 * < 0 if an error occurred.
70f80175
SB
4544 * > 0 if the check failed, which means the caller shall remove the entry.
4545 */
4546static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4547 u8 *uuid, u8 type, u64 subid)
4548{
4549 struct btrfs_key key;
4550 int ret = 0;
4551 struct btrfs_root *subvol_root;
4552
4553 if (type != BTRFS_UUID_KEY_SUBVOL &&
4554 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4555 goto out;
4556
4557 key.objectid = subid;
4558 key.type = BTRFS_ROOT_ITEM_KEY;
4559 key.offset = (u64)-1;
4560 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4561 if (IS_ERR(subvol_root)) {
4562 ret = PTR_ERR(subvol_root);
4563 if (ret == -ENOENT)
4564 ret = 1;
4565 goto out;
4566 }
4567
4568 switch (type) {
4569 case BTRFS_UUID_KEY_SUBVOL:
4570 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4571 ret = 1;
4572 break;
4573 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4574 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4575 BTRFS_UUID_SIZE))
4576 ret = 1;
4577 break;
4578 }
4579
4580out:
4581 return ret;
4582}
4583
4584static int btrfs_uuid_rescan_kthread(void *data)
4585{
4586 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4587 int ret;
4588
4589 /*
4590 * 1st step is to iterate through the existing UUID tree and
4591 * to delete all entries that contain outdated data.
4592 * 2nd step is to add all missing entries to the UUID tree.
4593 */
4594 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4595 if (ret < 0) {
efe120a0 4596 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4597 up(&fs_info->uuid_tree_rescan_sem);
4598 return ret;
4599 }
4600 return btrfs_uuid_scan_kthread(data);
4601}
4602
f7a81ea4
SB
4603int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4604{
4605 struct btrfs_trans_handle *trans;
4606 struct btrfs_root *tree_root = fs_info->tree_root;
4607 struct btrfs_root *uuid_root;
803b2f54
SB
4608 struct task_struct *task;
4609 int ret;
f7a81ea4
SB
4610
4611 /*
4612 * 1 - root node
4613 * 1 - root item
4614 */
4615 trans = btrfs_start_transaction(tree_root, 2);
4616 if (IS_ERR(trans))
4617 return PTR_ERR(trans);
4618
9b7a2440 4619 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4620 if (IS_ERR(uuid_root)) {
6d13f549 4621 ret = PTR_ERR(uuid_root);
66642832 4622 btrfs_abort_transaction(trans, ret);
3a45bb20 4623 btrfs_end_transaction(trans);
6d13f549 4624 return ret;
f7a81ea4
SB
4625 }
4626
4627 fs_info->uuid_root = uuid_root;
4628
3a45bb20 4629 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4630 if (ret)
4631 return ret;
4632
4633 down(&fs_info->uuid_tree_rescan_sem);
4634 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4635 if (IS_ERR(task)) {
70f80175 4636 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4637 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4638 up(&fs_info->uuid_tree_rescan_sem);
4639 return PTR_ERR(task);
4640 }
4641
4642 return 0;
f7a81ea4 4643}
803b2f54 4644
70f80175
SB
4645int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4646{
4647 struct task_struct *task;
4648
4649 down(&fs_info->uuid_tree_rescan_sem);
4650 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4651 if (IS_ERR(task)) {
4652 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4653 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4654 up(&fs_info->uuid_tree_rescan_sem);
4655 return PTR_ERR(task);
4656 }
4657
4658 return 0;
4659}
4660
8f18cf13
CM
4661/*
4662 * shrinking a device means finding all of the device extents past
4663 * the new size, and then following the back refs to the chunks.
4664 * The chunk relocation code actually frees the device extent
4665 */
4666int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4667{
0b246afa
JM
4668 struct btrfs_fs_info *fs_info = device->fs_info;
4669 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4670 struct btrfs_trans_handle *trans;
8f18cf13
CM
4671 struct btrfs_dev_extent *dev_extent = NULL;
4672 struct btrfs_path *path;
4673 u64 length;
8f18cf13
CM
4674 u64 chunk_offset;
4675 int ret;
4676 int slot;
ba1bf481
JB
4677 int failed = 0;
4678 bool retried = false;
8f18cf13
CM
4679 struct extent_buffer *l;
4680 struct btrfs_key key;
0b246afa 4681 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4682 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4683 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4684 u64 diff;
61d0d0d2 4685 u64 start;
7dfb8be1
NB
4686
4687 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4688 start = new_size;
0e4324a4 4689 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4690
401e29c1 4691 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4692 return -EINVAL;
4693
8f18cf13
CM
4694 path = btrfs_alloc_path();
4695 if (!path)
4696 return -ENOMEM;
4697
0338dff6 4698 path->reada = READA_BACK;
8f18cf13 4699
61d0d0d2
NB
4700 trans = btrfs_start_transaction(root, 0);
4701 if (IS_ERR(trans)) {
4702 btrfs_free_path(path);
4703 return PTR_ERR(trans);
4704 }
4705
34441361 4706 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4707
7cc8e58d 4708 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4709 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4710 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4711 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4712 }
61d0d0d2
NB
4713
4714 /*
4715 * Once the device's size has been set to the new size, ensure all
4716 * in-memory chunks are synced to disk so that the loop below sees them
4717 * and relocates them accordingly.
4718 */
1c11b63e 4719 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4720 mutex_unlock(&fs_info->chunk_mutex);
4721 ret = btrfs_commit_transaction(trans);
4722 if (ret)
4723 goto done;
4724 } else {
4725 mutex_unlock(&fs_info->chunk_mutex);
4726 btrfs_end_transaction(trans);
4727 }
8f18cf13 4728
ba1bf481 4729again:
8f18cf13
CM
4730 key.objectid = device->devid;
4731 key.offset = (u64)-1;
4732 key.type = BTRFS_DEV_EXTENT_KEY;
4733
213e64da 4734 do {
0b246afa 4735 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4737 if (ret < 0) {
0b246afa 4738 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4739 goto done;
67c5e7d4 4740 }
8f18cf13
CM
4741
4742 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4743 if (ret)
0b246afa 4744 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4745 if (ret < 0)
4746 goto done;
4747 if (ret) {
4748 ret = 0;
b3b4aa74 4749 btrfs_release_path(path);
bf1fb512 4750 break;
8f18cf13
CM
4751 }
4752
4753 l = path->nodes[0];
4754 slot = path->slots[0];
4755 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4756
ba1bf481 4757 if (key.objectid != device->devid) {
0b246afa 4758 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4759 btrfs_release_path(path);
bf1fb512 4760 break;
ba1bf481 4761 }
8f18cf13
CM
4762
4763 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4764 length = btrfs_dev_extent_length(l, dev_extent);
4765
ba1bf481 4766 if (key.offset + length <= new_size) {
0b246afa 4767 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4768 btrfs_release_path(path);
d6397bae 4769 break;
ba1bf481 4770 }
8f18cf13 4771
8f18cf13 4772 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4773 btrfs_release_path(path);
8f18cf13 4774
a6f93c71
LB
4775 /*
4776 * We may be relocating the only data chunk we have,
4777 * which could potentially end up with losing data's
4778 * raid profile, so lets allocate an empty one in
4779 * advance.
4780 */
4781 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4782 if (ret < 0) {
4783 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4784 goto done;
4785 }
4786
0b246afa
JM
4787 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4788 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
eede2bf3 4789 if (ret == -ENOSPC) {
ba1bf481 4790 failed++;
eede2bf3
OS
4791 } else if (ret) {
4792 if (ret == -ETXTBSY) {
4793 btrfs_warn(fs_info,
4794 "could not shrink block group %llu due to active swapfile",
4795 chunk_offset);
4796 }
4797 goto done;
4798 }
213e64da 4799 } while (key.offset-- > 0);
ba1bf481
JB
4800
4801 if (failed && !retried) {
4802 failed = 0;
4803 retried = true;
4804 goto again;
4805 } else if (failed && retried) {
4806 ret = -ENOSPC;
ba1bf481 4807 goto done;
8f18cf13
CM
4808 }
4809
d6397bae 4810 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4811 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4812 if (IS_ERR(trans)) {
4813 ret = PTR_ERR(trans);
4814 goto done;
4815 }
4816
34441361 4817 mutex_lock(&fs_info->chunk_mutex);
7cc8e58d 4818 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4819 if (list_empty(&device->post_commit_list))
4820 list_add_tail(&device->post_commit_list,
4821 &trans->transaction->dev_update_list);
d6397bae 4822
d6397bae 4823 WARN_ON(diff > old_total);
7dfb8be1
NB
4824 btrfs_set_super_total_bytes(super_copy,
4825 round_down(old_total - diff, fs_info->sectorsize));
34441361 4826 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4827
4828 /* Now btrfs_update_device() will change the on-disk size. */
4829 ret = btrfs_update_device(trans, device);
801660b0
AJ
4830 if (ret < 0) {
4831 btrfs_abort_transaction(trans, ret);
4832 btrfs_end_transaction(trans);
4833 } else {
4834 ret = btrfs_commit_transaction(trans);
4835 }
8f18cf13
CM
4836done:
4837 btrfs_free_path(path);
53e489bc 4838 if (ret) {
34441361 4839 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4840 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4841 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4842 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4843 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4844 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4845 }
8f18cf13
CM
4846 return ret;
4847}
4848
2ff7e61e 4849static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4850 struct btrfs_key *key,
4851 struct btrfs_chunk *chunk, int item_size)
4852{
0b246afa 4853 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4854 struct btrfs_disk_key disk_key;
4855 u32 array_size;
4856 u8 *ptr;
4857
34441361 4858 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4859 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4860 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4861 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4862 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4863 return -EFBIG;
fe48a5c0 4864 }
0b86a832
CM
4865
4866 ptr = super_copy->sys_chunk_array + array_size;
4867 btrfs_cpu_key_to_disk(&disk_key, key);
4868 memcpy(ptr, &disk_key, sizeof(disk_key));
4869 ptr += sizeof(disk_key);
4870 memcpy(ptr, chunk, item_size);
4871 item_size += sizeof(disk_key);
4872 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4873 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4874
0b86a832
CM
4875 return 0;
4876}
4877
73c5de00
AJ
4878/*
4879 * sort the devices in descending order by max_avail, total_avail
4880 */
4881static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4882{
73c5de00
AJ
4883 const struct btrfs_device_info *di_a = a;
4884 const struct btrfs_device_info *di_b = b;
9b3f68b9 4885
73c5de00 4886 if (di_a->max_avail > di_b->max_avail)
b2117a39 4887 return -1;
73c5de00 4888 if (di_a->max_avail < di_b->max_avail)
b2117a39 4889 return 1;
73c5de00
AJ
4890 if (di_a->total_avail > di_b->total_avail)
4891 return -1;
4892 if (di_a->total_avail < di_b->total_avail)
4893 return 1;
4894 return 0;
b2117a39 4895}
0b86a832 4896
53b381b3
DW
4897static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4898{
ffe2d203 4899 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4900 return;
4901
ceda0864 4902 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4903}
4904
73c5de00 4905static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4906 u64 start, u64 type)
b2117a39 4907{
2ff7e61e 4908 struct btrfs_fs_info *info = trans->fs_info;
73c5de00 4909 struct btrfs_fs_devices *fs_devices = info->fs_devices;
ebcc9301 4910 struct btrfs_device *device;
73c5de00
AJ
4911 struct map_lookup *map = NULL;
4912 struct extent_map_tree *em_tree;
4913 struct extent_map *em;
4914 struct btrfs_device_info *devices_info = NULL;
4915 u64 total_avail;
4916 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4917 int data_stripes; /* number of stripes that count for
4918 block group size */
73c5de00
AJ
4919 int sub_stripes; /* sub_stripes info for map */
4920 int dev_stripes; /* stripes per dev */
4921 int devs_max; /* max devs to use */
4922 int devs_min; /* min devs needed */
4923 int devs_increment; /* ndevs has to be a multiple of this */
4924 int ncopies; /* how many copies to data has */
b50836ed
HK
4925 int nparity; /* number of stripes worth of bytes to
4926 store parity information */
73c5de00
AJ
4927 int ret;
4928 u64 max_stripe_size;
4929 u64 max_chunk_size;
4930 u64 stripe_size;
23f0ff1e 4931 u64 chunk_size;
73c5de00
AJ
4932 int ndevs;
4933 int i;
4934 int j;
31e50229 4935 int index;
593060d7 4936
0c460c0d 4937 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4938
4117f207
QW
4939 if (list_empty(&fs_devices->alloc_list)) {
4940 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4941 btrfs_debug(info, "%s: no writable device", __func__);
73c5de00 4942 return -ENOSPC;
4117f207 4943 }
b2117a39 4944
3e72ee88 4945 index = btrfs_bg_flags_to_raid_index(type);
73c5de00 4946
31e50229
LB
4947 sub_stripes = btrfs_raid_array[index].sub_stripes;
4948 dev_stripes = btrfs_raid_array[index].dev_stripes;
4949 devs_max = btrfs_raid_array[index].devs_max;
e3ecdb3f
DS
4950 if (!devs_max)
4951 devs_max = BTRFS_MAX_DEVS(info);
31e50229
LB
4952 devs_min = btrfs_raid_array[index].devs_min;
4953 devs_increment = btrfs_raid_array[index].devs_increment;
4954 ncopies = btrfs_raid_array[index].ncopies;
b50836ed 4955 nparity = btrfs_raid_array[index].nparity;
b2117a39 4956
9b3f68b9 4957 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4958 max_stripe_size = SZ_1G;
fce466ea 4959 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
9b3f68b9 4960 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4961 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4962 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4963 max_stripe_size = SZ_1G;
1100373f 4964 else
ee22184b 4965 max_stripe_size = SZ_256M;
73c5de00 4966 max_chunk_size = max_stripe_size;
a40a90a0 4967 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4968 max_stripe_size = SZ_32M;
73c5de00
AJ
4969 max_chunk_size = 2 * max_stripe_size;
4970 } else {
351fd353 4971 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00 4972 type);
290342f6 4973 BUG();
9b3f68b9
CM
4974 }
4975
52042d8e 4976 /* We don't want a chunk larger than 10% of writable space */
2b82032c
YZ
4977 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4978 max_chunk_size);
9b3f68b9 4979
31e818fe 4980 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4981 GFP_NOFS);
4982 if (!devices_info)
4983 return -ENOMEM;
0cad8a11 4984
9f680ce0 4985 /*
73c5de00
AJ
4986 * in the first pass through the devices list, we gather information
4987 * about the available holes on each device.
9f680ce0 4988 */
73c5de00 4989 ndevs = 0;
ebcc9301 4990 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
73c5de00
AJ
4991 u64 max_avail;
4992 u64 dev_offset;
b2117a39 4993
ebbede42 4994 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 4995 WARN(1, KERN_ERR
efe120a0 4996 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4997 continue;
4998 }
b2117a39 4999
e12c9621
AJ
5000 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5001 &device->dev_state) ||
401e29c1 5002 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5003 continue;
b2117a39 5004
73c5de00
AJ
5005 if (device->total_bytes > device->bytes_used)
5006 total_avail = device->total_bytes - device->bytes_used;
5007 else
5008 total_avail = 0;
38c01b96 5009
5010 /* If there is no space on this device, skip it. */
5011 if (total_avail == 0)
5012 continue;
b2117a39 5013
60dfdf25 5014 ret = find_free_dev_extent(device,
73c5de00
AJ
5015 max_stripe_size * dev_stripes,
5016 &dev_offset, &max_avail);
5017 if (ret && ret != -ENOSPC)
5018 goto error;
b2117a39 5019
73c5de00
AJ
5020 if (ret == 0)
5021 max_avail = max_stripe_size * dev_stripes;
b2117a39 5022
4117f207
QW
5023 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5024 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5025 btrfs_debug(info,
5026 "%s: devid %llu has no free space, have=%llu want=%u",
5027 __func__, device->devid, max_avail,
5028 BTRFS_STRIPE_LEN * dev_stripes);
73c5de00 5029 continue;
4117f207 5030 }
b2117a39 5031
063d006f
ES
5032 if (ndevs == fs_devices->rw_devices) {
5033 WARN(1, "%s: found more than %llu devices\n",
5034 __func__, fs_devices->rw_devices);
5035 break;
5036 }
73c5de00
AJ
5037 devices_info[ndevs].dev_offset = dev_offset;
5038 devices_info[ndevs].max_avail = max_avail;
5039 devices_info[ndevs].total_avail = total_avail;
5040 devices_info[ndevs].dev = device;
5041 ++ndevs;
5042 }
b2117a39 5043
73c5de00
AJ
5044 /*
5045 * now sort the devices by hole size / available space
5046 */
5047 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5048 btrfs_cmp_device_info, NULL);
b2117a39 5049
73c5de00 5050 /* round down to number of usable stripes */
e5600fd6 5051 ndevs = round_down(ndevs, devs_increment);
b2117a39 5052
ba89b802 5053 if (ndevs < devs_min) {
73c5de00 5054 ret = -ENOSPC;
4117f207
QW
5055 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5056 btrfs_debug(info,
5057 "%s: not enough devices with free space: have=%d minimum required=%d",
ba89b802 5058 __func__, ndevs, devs_min);
4117f207 5059 }
73c5de00 5060 goto error;
b2117a39 5061 }
9f680ce0 5062
f148ef4d
NB
5063 ndevs = min(ndevs, devs_max);
5064
73c5de00 5065 /*
92e222df
HK
5066 * The primary goal is to maximize the number of stripes, so use as
5067 * many devices as possible, even if the stripes are not maximum sized.
5068 *
5069 * The DUP profile stores more than one stripe per device, the
5070 * max_avail is the total size so we have to adjust.
73c5de00 5071 */
92e222df 5072 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
73c5de00 5073 num_stripes = ndevs * dev_stripes;
b2117a39 5074
53b381b3
DW
5075 /*
5076 * this will have to be fixed for RAID1 and RAID10 over
5077 * more drives
5078 */
b50836ed 5079 data_stripes = (num_stripes - nparity) / ncopies;
86db2578
CM
5080
5081 /*
5082 * Use the number of data stripes to figure out how big this chunk
5083 * is really going to be in terms of logical address space,
baf92114
HK
5084 * and compare that answer with the max chunk size. If it's higher,
5085 * we try to reduce stripe_size.
86db2578
CM
5086 */
5087 if (stripe_size * data_stripes > max_chunk_size) {
793ff2c8 5088 /*
baf92114
HK
5089 * Reduce stripe_size, round it up to a 16MB boundary again and
5090 * then use it, unless it ends up being even bigger than the
5091 * previous value we had already.
86db2578 5092 */
baf92114
HK
5093 stripe_size = min(round_up(div_u64(max_chunk_size,
5094 data_stripes), SZ_16M),
793ff2c8 5095 stripe_size);
86db2578
CM
5096 }
5097
37db63a4 5098 /* align to BTRFS_STRIPE_LEN */
500ceed8 5099 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
b2117a39
MX
5100
5101 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5102 if (!map) {
5103 ret = -ENOMEM;
5104 goto error;
5105 }
5106 map->num_stripes = num_stripes;
9b3f68b9 5107
73c5de00
AJ
5108 for (i = 0; i < ndevs; ++i) {
5109 for (j = 0; j < dev_stripes; ++j) {
5110 int s = i * dev_stripes + j;
5111 map->stripes[s].dev = devices_info[i].dev;
5112 map->stripes[s].physical = devices_info[i].dev_offset +
5113 j * stripe_size;
6324fbf3 5114 }
6324fbf3 5115 }
500ceed8
NB
5116 map->stripe_len = BTRFS_STRIPE_LEN;
5117 map->io_align = BTRFS_STRIPE_LEN;
5118 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5119 map->type = type;
2b82032c 5120 map->sub_stripes = sub_stripes;
0b86a832 5121
23f0ff1e 5122 chunk_size = stripe_size * data_stripes;
0b86a832 5123
23f0ff1e 5124 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
1abe9b8a 5125
172ddd60 5126 em = alloc_extent_map();
2b82032c 5127 if (!em) {
298a8f9c 5128 kfree(map);
b2117a39
MX
5129 ret = -ENOMEM;
5130 goto error;
593060d7 5131 }
298a8f9c 5132 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5133 em->map_lookup = map;
2b82032c 5134 em->start = start;
23f0ff1e 5135 em->len = chunk_size;
2b82032c
YZ
5136 em->block_start = 0;
5137 em->block_len = em->len;
6df9a95e 5138 em->orig_block_len = stripe_size;
593060d7 5139
c8bf1b67 5140 em_tree = &info->mapping_tree;
890871be 5141 write_lock(&em_tree->lock);
09a2a8f9 5142 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5143 if (ret) {
1efb72a3 5144 write_unlock(&em_tree->lock);
0f5d42b2 5145 free_extent_map(em);
1dd4602f 5146 goto error;
0f5d42b2 5147 }
1efb72a3
NB
5148 write_unlock(&em_tree->lock);
5149
23f0ff1e 5150 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
6df9a95e
JB
5151 if (ret)
5152 goto error_del_extent;
2b82032c 5153
bbbf7243
NB
5154 for (i = 0; i < map->num_stripes; i++) {
5155 struct btrfs_device *dev = map->stripes[i].dev;
5156
5157 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5158 if (list_empty(&dev->post_commit_list))
5159 list_add_tail(&dev->post_commit_list,
5160 &trans->transaction->dev_update_list);
5161 }
43530c46 5162
a5ed45f8 5163 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 5164
0f5d42b2 5165 free_extent_map(em);
0b246afa 5166 check_raid56_incompat_flag(info, type);
53b381b3 5167
b2117a39 5168 kfree(devices_info);
2b82032c 5169 return 0;
b2117a39 5170
6df9a95e 5171error_del_extent:
0f5d42b2
JB
5172 write_lock(&em_tree->lock);
5173 remove_extent_mapping(em_tree, em);
5174 write_unlock(&em_tree->lock);
5175
5176 /* One for our allocation */
5177 free_extent_map(em);
5178 /* One for the tree reference */
5179 free_extent_map(em);
b2117a39 5180error:
b2117a39
MX
5181 kfree(devices_info);
5182 return ret;
2b82032c
YZ
5183}
5184
6df9a95e 5185int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
97aff912 5186 u64 chunk_offset, u64 chunk_size)
2b82032c 5187{
97aff912 5188 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab
JM
5189 struct btrfs_root *extent_root = fs_info->extent_root;
5190 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 5191 struct btrfs_key key;
2b82032c
YZ
5192 struct btrfs_device *device;
5193 struct btrfs_chunk *chunk;
5194 struct btrfs_stripe *stripe;
6df9a95e
JB
5195 struct extent_map *em;
5196 struct map_lookup *map;
5197 size_t item_size;
5198 u64 dev_offset;
5199 u64 stripe_size;
5200 int i = 0;
140e639f 5201 int ret = 0;
2b82032c 5202
60ca842e 5203 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
592d92ee
LB
5204 if (IS_ERR(em))
5205 return PTR_ERR(em);
6df9a95e 5206
95617d69 5207 map = em->map_lookup;
6df9a95e
JB
5208 item_size = btrfs_chunk_item_size(map->num_stripes);
5209 stripe_size = em->orig_block_len;
5210
2b82032c 5211 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
5212 if (!chunk) {
5213 ret = -ENOMEM;
5214 goto out;
5215 }
5216
50460e37
FM
5217 /*
5218 * Take the device list mutex to prevent races with the final phase of
5219 * a device replace operation that replaces the device object associated
5220 * with the map's stripes, because the device object's id can change
5221 * at any time during that final phase of the device replace operation
5222 * (dev-replace.c:btrfs_dev_replace_finishing()).
5223 */
0b246afa 5224 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
5225 for (i = 0; i < map->num_stripes; i++) {
5226 device = map->stripes[i].dev;
5227 dev_offset = map->stripes[i].physical;
2b82032c 5228
0b86a832 5229 ret = btrfs_update_device(trans, device);
3acd3953 5230 if (ret)
50460e37 5231 break;
b5d9071c
NB
5232 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5233 dev_offset, stripe_size);
6df9a95e 5234 if (ret)
50460e37
FM
5235 break;
5236 }
5237 if (ret) {
0b246afa 5238 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 5239 goto out;
2b82032c
YZ
5240 }
5241
2b82032c 5242 stripe = &chunk->stripe;
6df9a95e
JB
5243 for (i = 0; i < map->num_stripes; i++) {
5244 device = map->stripes[i].dev;
5245 dev_offset = map->stripes[i].physical;
0b86a832 5246
e17cade2
CM
5247 btrfs_set_stack_stripe_devid(stripe, device->devid);
5248 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5249 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5250 stripe++;
0b86a832 5251 }
0b246afa 5252 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 5253
2b82032c 5254 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 5255 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
5256 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5257 btrfs_set_stack_chunk_type(chunk, map->type);
5258 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5259 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5260 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5261 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5262 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5263
2b82032c
YZ
5264 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5265 key.type = BTRFS_CHUNK_ITEM_KEY;
5266 key.offset = chunk_offset;
0b86a832 5267
2b82032c 5268 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
5269 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5270 /*
5271 * TODO: Cleanup of inserted chunk root in case of
5272 * failure.
5273 */
2ff7e61e 5274 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5275 }
1abe9b8a 5276
6df9a95e 5277out:
0b86a832 5278 kfree(chunk);
6df9a95e 5279 free_extent_map(em);
4ed1d16e 5280 return ret;
2b82032c 5281}
0b86a832 5282
2b82032c 5283/*
52042d8e
AG
5284 * Chunk allocation falls into two parts. The first part does work
5285 * that makes the new allocated chunk usable, but does not do any operation
5286 * that modifies the chunk tree. The second part does the work that
5287 * requires modifying the chunk tree. This division is important for the
2b82032c
YZ
5288 * bootstrap process of adding storage to a seed btrfs.
5289 */
c216b203 5290int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
2b82032c
YZ
5291{
5292 u64 chunk_offset;
2b82032c 5293
c216b203
NB
5294 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5295 chunk_offset = find_next_chunk(trans->fs_info);
72b468c8 5296 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5297}
5298
6f8e0fc7 5299static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5300{
6f8e0fc7 5301 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c
YZ
5302 u64 chunk_offset;
5303 u64 sys_chunk_offset;
2b82032c 5304 u64 alloc_profile;
2b82032c
YZ
5305 int ret;
5306
6df9a95e 5307 chunk_offset = find_next_chunk(fs_info);
1b86826d 5308 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5309 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5310 if (ret)
5311 return ret;
2b82032c 5312
0b246afa 5313 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5314 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5315 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5316 return ret;
2b82032c
YZ
5317}
5318
d20983b4
MX
5319static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5320{
fc9a2ac7 5321 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5322
fc9a2ac7 5323 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5324}
5325
2ff7e61e 5326int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5327{
5328 struct extent_map *em;
5329 struct map_lookup *map;
2b82032c 5330 int readonly = 0;
d20983b4 5331 int miss_ndevs = 0;
2b82032c
YZ
5332 int i;
5333
60ca842e 5334 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5335 if (IS_ERR(em))
2b82032c
YZ
5336 return 1;
5337
95617d69 5338 map = em->map_lookup;
2b82032c 5339 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5340 if (test_bit(BTRFS_DEV_STATE_MISSING,
5341 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5342 miss_ndevs++;
5343 continue;
5344 }
ebbede42
AJ
5345 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5346 &map->stripes[i].dev->dev_state)) {
2b82032c 5347 readonly = 1;
d20983b4 5348 goto end;
2b82032c
YZ
5349 }
5350 }
d20983b4
MX
5351
5352 /*
5353 * If the number of missing devices is larger than max errors,
5354 * we can not write the data into that chunk successfully, so
5355 * set it readonly.
5356 */
5357 if (miss_ndevs > btrfs_chunk_max_errors(map))
5358 readonly = 1;
5359end:
0b86a832 5360 free_extent_map(em);
2b82032c 5361 return readonly;
0b86a832
CM
5362}
5363
c8bf1b67 5364void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5365{
5366 struct extent_map *em;
5367
d397712b 5368 while (1) {
c8bf1b67
DS
5369 write_lock(&tree->lock);
5370 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5371 if (em)
c8bf1b67
DS
5372 remove_extent_mapping(tree, em);
5373 write_unlock(&tree->lock);
0b86a832
CM
5374 if (!em)
5375 break;
0b86a832
CM
5376 /* once for us */
5377 free_extent_map(em);
5378 /* once for the tree */
5379 free_extent_map(em);
5380 }
5381}
5382
5d964051 5383int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5384{
5385 struct extent_map *em;
5386 struct map_lookup *map;
f188591e
CM
5387 int ret;
5388
60ca842e 5389 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5390 if (IS_ERR(em))
5391 /*
5392 * We could return errors for these cases, but that could get
5393 * ugly and we'd probably do the same thing which is just not do
5394 * anything else and exit, so return 1 so the callers don't try
5395 * to use other copies.
5396 */
fb7669b5 5397 return 1;
fb7669b5 5398
95617d69 5399 map = em->map_lookup;
c7369b3f 5400 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5401 ret = map->num_stripes;
321aecc6
CM
5402 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5403 ret = map->sub_stripes;
53b381b3
DW
5404 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5405 ret = 2;
5406 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5407 /*
5408 * There could be two corrupted data stripes, we need
5409 * to loop retry in order to rebuild the correct data.
e7e02096 5410 *
8810f751
LB
5411 * Fail a stripe at a time on every retry except the
5412 * stripe under reconstruction.
5413 */
5414 ret = map->num_stripes;
f188591e
CM
5415 else
5416 ret = 1;
5417 free_extent_map(em);
ad6d620e 5418
cb5583dd 5419 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5420 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5421 fs_info->dev_replace.tgtdev)
ad6d620e 5422 ret++;
cb5583dd 5423 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5424
f188591e
CM
5425 return ret;
5426}
5427
2ff7e61e 5428unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5429 u64 logical)
5430{
5431 struct extent_map *em;
5432 struct map_lookup *map;
0b246afa 5433 unsigned long len = fs_info->sectorsize;
53b381b3 5434
60ca842e 5435 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5436
69f03f13
NB
5437 if (!WARN_ON(IS_ERR(em))) {
5438 map = em->map_lookup;
5439 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5440 len = map->stripe_len * nr_data_stripes(map);
5441 free_extent_map(em);
5442 }
53b381b3
DW
5443 return len;
5444}
5445
e4ff5fb5 5446int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5447{
5448 struct extent_map *em;
5449 struct map_lookup *map;
53b381b3
DW
5450 int ret = 0;
5451
60ca842e 5452 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5453
69f03f13
NB
5454 if(!WARN_ON(IS_ERR(em))) {
5455 map = em->map_lookup;
5456 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5457 ret = 1;
5458 free_extent_map(em);
5459 }
53b381b3
DW
5460 return ret;
5461}
5462
30d9861f 5463static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5464 struct map_lookup *map, int first,
8ba0ae78 5465 int dev_replace_is_ongoing)
dfe25020
CM
5466{
5467 int i;
99f92a7c 5468 int num_stripes;
8ba0ae78 5469 int preferred_mirror;
30d9861f
SB
5470 int tolerance;
5471 struct btrfs_device *srcdev;
5472
99f92a7c 5473 ASSERT((map->type &
c7369b3f 5474 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5475
5476 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5477 num_stripes = map->sub_stripes;
5478 else
5479 num_stripes = map->num_stripes;
5480
8ba0ae78
AJ
5481 preferred_mirror = first + current->pid % num_stripes;
5482
30d9861f
SB
5483 if (dev_replace_is_ongoing &&
5484 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5485 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5486 srcdev = fs_info->dev_replace.srcdev;
5487 else
5488 srcdev = NULL;
5489
5490 /*
5491 * try to avoid the drive that is the source drive for a
5492 * dev-replace procedure, only choose it if no other non-missing
5493 * mirror is available
5494 */
5495 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5496 if (map->stripes[preferred_mirror].dev->bdev &&
5497 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5498 return preferred_mirror;
99f92a7c 5499 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5500 if (map->stripes[i].dev->bdev &&
5501 (tolerance || map->stripes[i].dev != srcdev))
5502 return i;
5503 }
dfe25020 5504 }
30d9861f 5505
dfe25020
CM
5506 /* we couldn't find one that doesn't fail. Just return something
5507 * and the io error handling code will clean up eventually
5508 */
8ba0ae78 5509 return preferred_mirror;
dfe25020
CM
5510}
5511
53b381b3
DW
5512static inline int parity_smaller(u64 a, u64 b)
5513{
5514 return a > b;
5515}
5516
5517/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5518static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5519{
5520 struct btrfs_bio_stripe s;
5521 int i;
5522 u64 l;
5523 int again = 1;
5524
5525 while (again) {
5526 again = 0;
cc7539ed 5527 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5528 if (parity_smaller(bbio->raid_map[i],
5529 bbio->raid_map[i+1])) {
53b381b3 5530 s = bbio->stripes[i];
8e5cfb55 5531 l = bbio->raid_map[i];
53b381b3 5532 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5533 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5534 bbio->stripes[i+1] = s;
8e5cfb55 5535 bbio->raid_map[i+1] = l;
2c8cdd6e 5536
53b381b3
DW
5537 again = 1;
5538 }
5539 }
5540 }
5541}
5542
6e9606d2
ZL
5543static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5544{
5545 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5546 /* the size of the btrfs_bio */
6e9606d2 5547 sizeof(struct btrfs_bio) +
e57cf21e 5548 /* plus the variable array for the stripes */
6e9606d2 5549 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5550 /* plus the variable array for the tgt dev */
6e9606d2 5551 sizeof(int) * (real_stripes) +
e57cf21e
CM
5552 /*
5553 * plus the raid_map, which includes both the tgt dev
5554 * and the stripes
5555 */
5556 sizeof(u64) * (total_stripes),
277fb5fc 5557 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5558
5559 atomic_set(&bbio->error, 0);
140475ae 5560 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5561
5562 return bbio;
5563}
5564
5565void btrfs_get_bbio(struct btrfs_bio *bbio)
5566{
140475ae
ER
5567 WARN_ON(!refcount_read(&bbio->refs));
5568 refcount_inc(&bbio->refs);
6e9606d2
ZL
5569}
5570
5571void btrfs_put_bbio(struct btrfs_bio *bbio)
5572{
5573 if (!bbio)
5574 return;
140475ae 5575 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5576 kfree(bbio);
5577}
5578
0b3d4cd3
LB
5579/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5580/*
5581 * Please note that, discard won't be sent to target device of device
5582 * replace.
5583 */
5584static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5585 u64 logical, u64 length,
5586 struct btrfs_bio **bbio_ret)
5587{
5588 struct extent_map *em;
5589 struct map_lookup *map;
5590 struct btrfs_bio *bbio;
5591 u64 offset;
5592 u64 stripe_nr;
5593 u64 stripe_nr_end;
5594 u64 stripe_end_offset;
5595 u64 stripe_cnt;
5596 u64 stripe_len;
5597 u64 stripe_offset;
5598 u64 num_stripes;
5599 u32 stripe_index;
5600 u32 factor = 0;
5601 u32 sub_stripes = 0;
5602 u64 stripes_per_dev = 0;
5603 u32 remaining_stripes = 0;
5604 u32 last_stripe = 0;
5605 int ret = 0;
5606 int i;
5607
5608 /* discard always return a bbio */
5609 ASSERT(bbio_ret);
5610
60ca842e 5611 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5612 if (IS_ERR(em))
5613 return PTR_ERR(em);
5614
5615 map = em->map_lookup;
5616 /* we don't discard raid56 yet */
5617 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5618 ret = -EOPNOTSUPP;
5619 goto out;
5620 }
5621
5622 offset = logical - em->start;
5623 length = min_t(u64, em->len - offset, length);
5624
5625 stripe_len = map->stripe_len;
5626 /*
5627 * stripe_nr counts the total number of stripes we have to stride
5628 * to get to this block
5629 */
5630 stripe_nr = div64_u64(offset, stripe_len);
5631
5632 /* stripe_offset is the offset of this block in its stripe */
5633 stripe_offset = offset - stripe_nr * stripe_len;
5634
5635 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5636 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5637 stripe_cnt = stripe_nr_end - stripe_nr;
5638 stripe_end_offset = stripe_nr_end * map->stripe_len -
5639 (offset + length);
5640 /*
5641 * after this, stripe_nr is the number of stripes on this
5642 * device we have to walk to find the data, and stripe_index is
5643 * the number of our device in the stripe array
5644 */
5645 num_stripes = 1;
5646 stripe_index = 0;
5647 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5648 BTRFS_BLOCK_GROUP_RAID10)) {
5649 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5650 sub_stripes = 1;
5651 else
5652 sub_stripes = map->sub_stripes;
5653
5654 factor = map->num_stripes / sub_stripes;
5655 num_stripes = min_t(u64, map->num_stripes,
5656 sub_stripes * stripe_cnt);
5657 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5658 stripe_index *= sub_stripes;
5659 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5660 &remaining_stripes);
5661 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5662 last_stripe *= sub_stripes;
c7369b3f 5663 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
5664 BTRFS_BLOCK_GROUP_DUP)) {
5665 num_stripes = map->num_stripes;
5666 } else {
5667 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5668 &stripe_index);
5669 }
5670
5671 bbio = alloc_btrfs_bio(num_stripes, 0);
5672 if (!bbio) {
5673 ret = -ENOMEM;
5674 goto out;
5675 }
5676
5677 for (i = 0; i < num_stripes; i++) {
5678 bbio->stripes[i].physical =
5679 map->stripes[stripe_index].physical +
5680 stripe_offset + stripe_nr * map->stripe_len;
5681 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5682
5683 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5684 BTRFS_BLOCK_GROUP_RAID10)) {
5685 bbio->stripes[i].length = stripes_per_dev *
5686 map->stripe_len;
5687
5688 if (i / sub_stripes < remaining_stripes)
5689 bbio->stripes[i].length +=
5690 map->stripe_len;
5691
5692 /*
5693 * Special for the first stripe and
5694 * the last stripe:
5695 *
5696 * |-------|...|-------|
5697 * |----------|
5698 * off end_off
5699 */
5700 if (i < sub_stripes)
5701 bbio->stripes[i].length -=
5702 stripe_offset;
5703
5704 if (stripe_index >= last_stripe &&
5705 stripe_index <= (last_stripe +
5706 sub_stripes - 1))
5707 bbio->stripes[i].length -=
5708 stripe_end_offset;
5709
5710 if (i == sub_stripes - 1)
5711 stripe_offset = 0;
5712 } else {
5713 bbio->stripes[i].length = length;
5714 }
5715
5716 stripe_index++;
5717 if (stripe_index == map->num_stripes) {
5718 stripe_index = 0;
5719 stripe_nr++;
5720 }
5721 }
5722
5723 *bbio_ret = bbio;
5724 bbio->map_type = map->type;
5725 bbio->num_stripes = num_stripes;
5726out:
5727 free_extent_map(em);
5728 return ret;
5729}
5730
5ab56090
LB
5731/*
5732 * In dev-replace case, for repair case (that's the only case where the mirror
5733 * is selected explicitly when calling btrfs_map_block), blocks left of the
5734 * left cursor can also be read from the target drive.
5735 *
5736 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5737 * array of stripes.
5738 * For READ, it also needs to be supported using the same mirror number.
5739 *
5740 * If the requested block is not left of the left cursor, EIO is returned. This
5741 * can happen because btrfs_num_copies() returns one more in the dev-replace
5742 * case.
5743 */
5744static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5745 u64 logical, u64 length,
5746 u64 srcdev_devid, int *mirror_num,
5747 u64 *physical)
5748{
5749 struct btrfs_bio *bbio = NULL;
5750 int num_stripes;
5751 int index_srcdev = 0;
5752 int found = 0;
5753 u64 physical_of_found = 0;
5754 int i;
5755 int ret = 0;
5756
5757 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5758 logical, &length, &bbio, 0, 0);
5759 if (ret) {
5760 ASSERT(bbio == NULL);
5761 return ret;
5762 }
5763
5764 num_stripes = bbio->num_stripes;
5765 if (*mirror_num > num_stripes) {
5766 /*
5767 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5768 * that means that the requested area is not left of the left
5769 * cursor
5770 */
5771 btrfs_put_bbio(bbio);
5772 return -EIO;
5773 }
5774
5775 /*
5776 * process the rest of the function using the mirror_num of the source
5777 * drive. Therefore look it up first. At the end, patch the device
5778 * pointer to the one of the target drive.
5779 */
5780 for (i = 0; i < num_stripes; i++) {
5781 if (bbio->stripes[i].dev->devid != srcdev_devid)
5782 continue;
5783
5784 /*
5785 * In case of DUP, in order to keep it simple, only add the
5786 * mirror with the lowest physical address
5787 */
5788 if (found &&
5789 physical_of_found <= bbio->stripes[i].physical)
5790 continue;
5791
5792 index_srcdev = i;
5793 found = 1;
5794 physical_of_found = bbio->stripes[i].physical;
5795 }
5796
5797 btrfs_put_bbio(bbio);
5798
5799 ASSERT(found);
5800 if (!found)
5801 return -EIO;
5802
5803 *mirror_num = index_srcdev + 1;
5804 *physical = physical_of_found;
5805 return ret;
5806}
5807
73c0f228
LB
5808static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5809 struct btrfs_bio **bbio_ret,
5810 struct btrfs_dev_replace *dev_replace,
5811 int *num_stripes_ret, int *max_errors_ret)
5812{
5813 struct btrfs_bio *bbio = *bbio_ret;
5814 u64 srcdev_devid = dev_replace->srcdev->devid;
5815 int tgtdev_indexes = 0;
5816 int num_stripes = *num_stripes_ret;
5817 int max_errors = *max_errors_ret;
5818 int i;
5819
5820 if (op == BTRFS_MAP_WRITE) {
5821 int index_where_to_add;
5822
5823 /*
5824 * duplicate the write operations while the dev replace
5825 * procedure is running. Since the copying of the old disk to
5826 * the new disk takes place at run time while the filesystem is
5827 * mounted writable, the regular write operations to the old
5828 * disk have to be duplicated to go to the new disk as well.
5829 *
5830 * Note that device->missing is handled by the caller, and that
5831 * the write to the old disk is already set up in the stripes
5832 * array.
5833 */
5834 index_where_to_add = num_stripes;
5835 for (i = 0; i < num_stripes; i++) {
5836 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5837 /* write to new disk, too */
5838 struct btrfs_bio_stripe *new =
5839 bbio->stripes + index_where_to_add;
5840 struct btrfs_bio_stripe *old =
5841 bbio->stripes + i;
5842
5843 new->physical = old->physical;
5844 new->length = old->length;
5845 new->dev = dev_replace->tgtdev;
5846 bbio->tgtdev_map[i] = index_where_to_add;
5847 index_where_to_add++;
5848 max_errors++;
5849 tgtdev_indexes++;
5850 }
5851 }
5852 num_stripes = index_where_to_add;
5853 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5854 int index_srcdev = 0;
5855 int found = 0;
5856 u64 physical_of_found = 0;
5857
5858 /*
5859 * During the dev-replace procedure, the target drive can also
5860 * be used to read data in case it is needed to repair a corrupt
5861 * block elsewhere. This is possible if the requested area is
5862 * left of the left cursor. In this area, the target drive is a
5863 * full copy of the source drive.
5864 */
5865 for (i = 0; i < num_stripes; i++) {
5866 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5867 /*
5868 * In case of DUP, in order to keep it simple,
5869 * only add the mirror with the lowest physical
5870 * address
5871 */
5872 if (found &&
5873 physical_of_found <=
5874 bbio->stripes[i].physical)
5875 continue;
5876 index_srcdev = i;
5877 found = 1;
5878 physical_of_found = bbio->stripes[i].physical;
5879 }
5880 }
5881 if (found) {
5882 struct btrfs_bio_stripe *tgtdev_stripe =
5883 bbio->stripes + num_stripes;
5884
5885 tgtdev_stripe->physical = physical_of_found;
5886 tgtdev_stripe->length =
5887 bbio->stripes[index_srcdev].length;
5888 tgtdev_stripe->dev = dev_replace->tgtdev;
5889 bbio->tgtdev_map[index_srcdev] = num_stripes;
5890
5891 tgtdev_indexes++;
5892 num_stripes++;
5893 }
5894 }
5895
5896 *num_stripes_ret = num_stripes;
5897 *max_errors_ret = max_errors;
5898 bbio->num_tgtdevs = tgtdev_indexes;
5899 *bbio_ret = bbio;
5900}
5901
2b19a1fe
LB
5902static bool need_full_stripe(enum btrfs_map_op op)
5903{
5904 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5905}
5906
5f141126
NB
5907/*
5908 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5909 * tuple. This information is used to calculate how big a
5910 * particular bio can get before it straddles a stripe.
5911 *
5912 * @fs_info - the filesystem
5913 * @logical - address that we want to figure out the geometry of
5914 * @len - the length of IO we are going to perform, starting at @logical
5915 * @op - type of operation - write or read
5916 * @io_geom - pointer used to return values
5917 *
5918 * Returns < 0 in case a chunk for the given logical address cannot be found,
5919 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5920 */
5921int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
89b798ad 5922 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5f141126
NB
5923{
5924 struct extent_map *em;
5925 struct map_lookup *map;
5926 u64 offset;
5927 u64 stripe_offset;
5928 u64 stripe_nr;
5929 u64 stripe_len;
5930 u64 raid56_full_stripe_start = (u64)-1;
5931 int data_stripes;
373c3b80 5932 int ret = 0;
5f141126
NB
5933
5934 ASSERT(op != BTRFS_MAP_DISCARD);
5935
5936 em = btrfs_get_chunk_map(fs_info, logical, len);
5937 if (IS_ERR(em))
5938 return PTR_ERR(em);
5939
5940 map = em->map_lookup;
5941 /* Offset of this logical address in the chunk */
5942 offset = logical - em->start;
5943 /* Len of a stripe in a chunk */
5944 stripe_len = map->stripe_len;
5945 /* Stripe wher this block falls in */
5946 stripe_nr = div64_u64(offset, stripe_len);
5947 /* Offset of stripe in the chunk */
5948 stripe_offset = stripe_nr * stripe_len;
5949 if (offset < stripe_offset) {
5950 btrfs_crit(fs_info,
5951"stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5952 stripe_offset, offset, em->start, logical, stripe_len);
373c3b80
JT
5953 ret = -EINVAL;
5954 goto out;
5f141126
NB
5955 }
5956
5957 /* stripe_offset is the offset of this block in its stripe */
5958 stripe_offset = offset - stripe_offset;
5959 data_stripes = nr_data_stripes(map);
5960
5961 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5962 u64 max_len = stripe_len - stripe_offset;
5963
5964 /*
5965 * In case of raid56, we need to know the stripe aligned start
5966 */
5967 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5968 unsigned long full_stripe_len = stripe_len * data_stripes;
5969 raid56_full_stripe_start = offset;
5970
5971 /*
5972 * Allow a write of a full stripe, but make sure we
5973 * don't allow straddling of stripes
5974 */
5975 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5976 full_stripe_len);
5977 raid56_full_stripe_start *= full_stripe_len;
5978
5979 /*
5980 * For writes to RAID[56], allow a full stripeset across
5981 * all disks. For other RAID types and for RAID[56]
5982 * reads, just allow a single stripe (on a single disk).
5983 */
5984 if (op == BTRFS_MAP_WRITE) {
5985 max_len = stripe_len * data_stripes -
5986 (offset - raid56_full_stripe_start);
5987 }
5988 }
5989 len = min_t(u64, em->len - offset, max_len);
5990 } else {
5991 len = em->len - offset;
5992 }
5993
5994 io_geom->len = len;
5995 io_geom->offset = offset;
5996 io_geom->stripe_len = stripe_len;
5997 io_geom->stripe_nr = stripe_nr;
5998 io_geom->stripe_offset = stripe_offset;
5999 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6000
373c3b80
JT
6001out:
6002 /* once for us */
6003 free_extent_map(em);
6004 return ret;
5f141126
NB
6005}
6006
cf8cddd3
CH
6007static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6008 enum btrfs_map_op op,
f2d8d74d 6009 u64 logical, u64 *length,
a1d3c478 6010 struct btrfs_bio **bbio_ret,
8e5cfb55 6011 int mirror_num, int need_raid_map)
0b86a832
CM
6012{
6013 struct extent_map *em;
6014 struct map_lookup *map;
593060d7
CM
6015 u64 stripe_offset;
6016 u64 stripe_nr;
53b381b3 6017 u64 stripe_len;
9d644a62 6018 u32 stripe_index;
cff82672 6019 int data_stripes;
cea9e445 6020 int i;
de11cc12 6021 int ret = 0;
f2d8d74d 6022 int num_stripes;
a236aed1 6023 int max_errors = 0;
2c8cdd6e 6024 int tgtdev_indexes = 0;
a1d3c478 6025 struct btrfs_bio *bbio = NULL;
472262f3
SB
6026 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6027 int dev_replace_is_ongoing = 0;
6028 int num_alloc_stripes;
ad6d620e
SB
6029 int patch_the_first_stripe_for_dev_replace = 0;
6030 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6031 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6032 struct btrfs_io_geometry geom;
6033
6034 ASSERT(bbio_ret);
0b86a832 6035
0b3d4cd3
LB
6036 if (op == BTRFS_MAP_DISCARD)
6037 return __btrfs_map_block_for_discard(fs_info, logical,
6038 *length, bbio_ret);
6039
89b798ad
NB
6040 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6041 if (ret < 0)
6042 return ret;
0b86a832 6043
89b798ad 6044 em = btrfs_get_chunk_map(fs_info, logical, *length);
f1136989 6045 ASSERT(!IS_ERR(em));
95617d69 6046 map = em->map_lookup;
593060d7 6047
89b798ad 6048 *length = geom.len;
89b798ad
NB
6049 stripe_len = geom.stripe_len;
6050 stripe_nr = geom.stripe_nr;
6051 stripe_offset = geom.stripe_offset;
6052 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6053 data_stripes = nr_data_stripes(map);
593060d7 6054
cb5583dd 6055 down_read(&dev_replace->rwsem);
472262f3 6056 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6057 /*
6058 * Hold the semaphore for read during the whole operation, write is
6059 * requested at commit time but must wait.
6060 */
472262f3 6061 if (!dev_replace_is_ongoing)
cb5583dd 6062 up_read(&dev_replace->rwsem);
472262f3 6063
ad6d620e 6064 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6065 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6066 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6067 dev_replace->srcdev->devid,
6068 &mirror_num,
6069 &physical_to_patch_in_first_stripe);
6070 if (ret)
ad6d620e 6071 goto out;
5ab56090
LB
6072 else
6073 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6074 } else if (mirror_num > map->num_stripes) {
6075 mirror_num = 0;
6076 }
6077
f2d8d74d 6078 num_stripes = 1;
cea9e445 6079 stripe_index = 0;
fce3bb9a 6080 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6081 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6082 &stripe_index);
de483734 6083 if (!need_full_stripe(op))
28e1cc7d 6084 mirror_num = 1;
c7369b3f 6085 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6086 if (need_full_stripe(op))
f2d8d74d 6087 num_stripes = map->num_stripes;
2fff734f 6088 else if (mirror_num)
f188591e 6089 stripe_index = mirror_num - 1;
dfe25020 6090 else {
30d9861f 6091 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6092 dev_replace_is_ongoing);
a1d3c478 6093 mirror_num = stripe_index + 1;
dfe25020 6094 }
2fff734f 6095
611f0e00 6096 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6097 if (need_full_stripe(op)) {
f2d8d74d 6098 num_stripes = map->num_stripes;
a1d3c478 6099 } else if (mirror_num) {
f188591e 6100 stripe_index = mirror_num - 1;
a1d3c478
JS
6101 } else {
6102 mirror_num = 1;
6103 }
2fff734f 6104
321aecc6 6105 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6106 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6107
47c5713f 6108 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6109 stripe_index *= map->sub_stripes;
6110
de483734 6111 if (need_full_stripe(op))
f2d8d74d 6112 num_stripes = map->sub_stripes;
321aecc6
CM
6113 else if (mirror_num)
6114 stripe_index += mirror_num - 1;
dfe25020 6115 else {
3e74317a 6116 int old_stripe_index = stripe_index;
30d9861f
SB
6117 stripe_index = find_live_mirror(fs_info, map,
6118 stripe_index,
30d9861f 6119 dev_replace_is_ongoing);
3e74317a 6120 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6121 }
53b381b3 6122
ffe2d203 6123 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6124 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6125 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6126 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6127 stripe_len * data_stripes);
53b381b3
DW
6128
6129 /* RAID[56] write or recovery. Return all stripes */
6130 num_stripes = map->num_stripes;
6131 max_errors = nr_parity_stripes(map);
6132
53b381b3
DW
6133 *length = map->stripe_len;
6134 stripe_index = 0;
6135 stripe_offset = 0;
6136 } else {
6137 /*
6138 * Mirror #0 or #1 means the original data block.
6139 * Mirror #2 is RAID5 parity block.
6140 * Mirror #3 is RAID6 Q block.
6141 */
47c5713f 6142 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6143 data_stripes, &stripe_index);
53b381b3 6144 if (mirror_num > 1)
cff82672 6145 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6146
6147 /* We distribute the parity blocks across stripes */
47c5713f
DS
6148 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6149 &stripe_index);
de483734 6150 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6151 mirror_num = 1;
53b381b3 6152 }
8790d502
CM
6153 } else {
6154 /*
47c5713f
DS
6155 * after this, stripe_nr is the number of stripes on this
6156 * device we have to walk to find the data, and stripe_index is
6157 * the number of our device in the stripe array
8790d502 6158 */
47c5713f
DS
6159 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6160 &stripe_index);
a1d3c478 6161 mirror_num = stripe_index + 1;
8790d502 6162 }
e042d1ec 6163 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6164 btrfs_crit(fs_info,
6165 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6166 stripe_index, map->num_stripes);
6167 ret = -EINVAL;
6168 goto out;
6169 }
cea9e445 6170
472262f3 6171 num_alloc_stripes = num_stripes;
6fad823f 6172 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6173 if (op == BTRFS_MAP_WRITE)
ad6d620e 6174 num_alloc_stripes <<= 1;
cf8cddd3 6175 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6176 num_alloc_stripes++;
2c8cdd6e 6177 tgtdev_indexes = num_stripes;
ad6d620e 6178 }
2c8cdd6e 6179
6e9606d2 6180 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
6181 if (!bbio) {
6182 ret = -ENOMEM;
6183 goto out;
6184 }
6fad823f 6185 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 6186 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 6187
8e5cfb55 6188 /* build raid_map */
2b19a1fe
LB
6189 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6190 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6191 u64 tmp;
9d644a62 6192 unsigned rot;
8e5cfb55
ZL
6193
6194 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6195 sizeof(struct btrfs_bio_stripe) *
6196 num_alloc_stripes +
6197 sizeof(int) * tgtdev_indexes);
6198
6199 /* Work out the disk rotation on this stripe-set */
47c5713f 6200 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6201
6202 /* Fill in the logical address of each stripe */
cff82672
DS
6203 tmp = stripe_nr * data_stripes;
6204 for (i = 0; i < data_stripes; i++)
8e5cfb55
ZL
6205 bbio->raid_map[(i+rot) % num_stripes] =
6206 em->start + (tmp + i) * map->stripe_len;
6207
6208 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6209 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6210 bbio->raid_map[(i+rot+1) % num_stripes] =
6211 RAID6_Q_STRIPE;
6212 }
6213
b89203f7 6214
0b3d4cd3
LB
6215 for (i = 0; i < num_stripes; i++) {
6216 bbio->stripes[i].physical =
6217 map->stripes[stripe_index].physical +
6218 stripe_offset +
6219 stripe_nr * map->stripe_len;
6220 bbio->stripes[i].dev =
6221 map->stripes[stripe_index].dev;
6222 stripe_index++;
593060d7 6223 }
de11cc12 6224
2b19a1fe 6225 if (need_full_stripe(op))
d20983b4 6226 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6227
8e5cfb55
ZL
6228 if (bbio->raid_map)
6229 sort_parity_stripes(bbio, num_stripes);
cc7539ed 6230
73c0f228 6231 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6232 need_full_stripe(op)) {
73c0f228
LB
6233 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6234 &max_errors);
472262f3
SB
6235 }
6236
de11cc12 6237 *bbio_ret = bbio;
10f11900 6238 bbio->map_type = map->type;
de11cc12
LZ
6239 bbio->num_stripes = num_stripes;
6240 bbio->max_errors = max_errors;
6241 bbio->mirror_num = mirror_num;
ad6d620e
SB
6242
6243 /*
6244 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6245 * mirror_num == num_stripes + 1 && dev_replace target drive is
6246 * available as a mirror
6247 */
6248 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6249 WARN_ON(num_stripes > 1);
6250 bbio->stripes[0].dev = dev_replace->tgtdev;
6251 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6252 bbio->mirror_num = map->num_stripes + 1;
6253 }
cea9e445 6254out:
73beece9 6255 if (dev_replace_is_ongoing) {
53176dde
DS
6256 lockdep_assert_held(&dev_replace->rwsem);
6257 /* Unlock and let waiting writers proceed */
cb5583dd 6258 up_read(&dev_replace->rwsem);
73beece9 6259 }
0b86a832 6260 free_extent_map(em);
de11cc12 6261 return ret;
0b86a832
CM
6262}
6263
cf8cddd3 6264int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6265 u64 logical, u64 *length,
a1d3c478 6266 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 6267{
b3d3fa51 6268 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 6269 mirror_num, 0);
f2d8d74d
CM
6270}
6271
af8e2d1d 6272/* For Scrub/replace */
cf8cddd3 6273int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6274 u64 logical, u64 *length,
825ad4c9 6275 struct btrfs_bio **bbio_ret)
af8e2d1d 6276{
825ad4c9 6277 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
6278}
6279
63a9c7b9
NB
6280int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6281 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
a512bbf8 6282{
a512bbf8
YZ
6283 struct extent_map *em;
6284 struct map_lookup *map;
6285 u64 *buf;
6286 u64 bytenr;
6287 u64 length;
6288 u64 stripe_nr;
53b381b3 6289 u64 rmap_len;
a512bbf8
YZ
6290 int i, j, nr = 0;
6291
60ca842e 6292 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
592d92ee 6293 if (IS_ERR(em))
835d974f 6294 return -EIO;
835d974f 6295
95617d69 6296 map = em->map_lookup;
a512bbf8 6297 length = em->len;
53b381b3
DW
6298 rmap_len = map->stripe_len;
6299
a512bbf8 6300 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 6301 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 6302 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 6303 length = div_u64(length, map->num_stripes);
ffe2d203 6304 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 6305 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
6306 rmap_len = map->stripe_len * nr_data_stripes(map);
6307 }
a512bbf8 6308
31e818fe 6309 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 6310 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
6311
6312 for (i = 0; i < map->num_stripes; i++) {
a512bbf8
YZ
6313 if (map->stripes[i].physical > physical ||
6314 map->stripes[i].physical + length <= physical)
6315 continue;
6316
6317 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 6318 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6319
6320 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6321 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6322 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6323 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6324 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6325 } /* else if RAID[56], multiply by nr_data_stripes().
6326 * Alternatively, just use rmap_len below instead of
6327 * map->stripe_len */
6328
6329 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6330 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6331 for (j = 0; j < nr; j++) {
6332 if (buf[j] == bytenr)
6333 break;
6334 }
934d375b
CM
6335 if (j == nr) {
6336 WARN_ON(nr >= map->num_stripes);
a512bbf8 6337 buf[nr++] = bytenr;
934d375b 6338 }
a512bbf8
YZ
6339 }
6340
a512bbf8
YZ
6341 *logical = buf;
6342 *naddrs = nr;
53b381b3 6343 *stripe_len = rmap_len;
a512bbf8
YZ
6344
6345 free_extent_map(em);
6346 return 0;
f2d8d74d
CM
6347}
6348
4246a0b6 6349static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6350{
326e1dbb
MS
6351 bio->bi_private = bbio->private;
6352 bio->bi_end_io = bbio->end_io;
4246a0b6 6353 bio_endio(bio);
326e1dbb 6354
6e9606d2 6355 btrfs_put_bbio(bbio);
8408c716
MX
6356}
6357
4246a0b6 6358static void btrfs_end_bio(struct bio *bio)
8790d502 6359{
9be3395b 6360 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6361 int is_orig_bio = 0;
8790d502 6362
4e4cbee9 6363 if (bio->bi_status) {
a1d3c478 6364 atomic_inc(&bbio->error);
4e4cbee9
CH
6365 if (bio->bi_status == BLK_STS_IOERR ||
6366 bio->bi_status == BLK_STS_TARGET) {
442a4f63 6367 unsigned int stripe_index =
9be3395b 6368 btrfs_io_bio(bio)->stripe_index;
65f53338 6369 struct btrfs_device *dev;
442a4f63
SB
6370
6371 BUG_ON(stripe_index >= bbio->num_stripes);
6372 dev = bbio->stripes[stripe_index].dev;
597a60fa 6373 if (dev->bdev) {
37226b21 6374 if (bio_op(bio) == REQ_OP_WRITE)
1cb34c8e 6375 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6376 BTRFS_DEV_STAT_WRITE_ERRS);
0cc068e6 6377 else if (!(bio->bi_opf & REQ_RAHEAD))
1cb34c8e 6378 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6379 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6380 if (bio->bi_opf & REQ_PREFLUSH)
1cb34c8e 6381 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6382 BTRFS_DEV_STAT_FLUSH_ERRS);
597a60fa 6383 }
442a4f63
SB
6384 }
6385 }
8790d502 6386
a1d3c478 6387 if (bio == bbio->orig_bio)
7d2b4daa
CM
6388 is_orig_bio = 1;
6389
c404e0dc
MX
6390 btrfs_bio_counter_dec(bbio->fs_info);
6391
a1d3c478 6392 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6393 if (!is_orig_bio) {
6394 bio_put(bio);
a1d3c478 6395 bio = bbio->orig_bio;
7d2b4daa 6396 }
c7b22bb1 6397
9be3395b 6398 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6399 /* only send an error to the higher layers if it is
53b381b3 6400 * beyond the tolerance of the btrfs bio
a236aed1 6401 */
a1d3c478 6402 if (atomic_read(&bbio->error) > bbio->max_errors) {
4e4cbee9 6403 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6404 } else {
1259ab75
CM
6405 /*
6406 * this bio is actually up to date, we didn't
6407 * go over the max number of errors
6408 */
2dbe0c77 6409 bio->bi_status = BLK_STS_OK;
1259ab75 6410 }
c55f1396 6411
4246a0b6 6412 btrfs_end_bbio(bbio, bio);
7d2b4daa 6413 } else if (!is_orig_bio) {
8790d502
CM
6414 bio_put(bio);
6415 }
8790d502
CM
6416}
6417
8b712842
CM
6418/*
6419 * see run_scheduled_bios for a description of why bios are collected for
6420 * async submit.
6421 *
6422 * This will add one bio to the pending list for a device and make sure
6423 * the work struct is scheduled.
6424 */
2ff7e61e 6425static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6426 struct bio *bio)
8b712842 6427{
0b246afa 6428 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6429 int should_queue = 1;
ffbd517d 6430 struct btrfs_pending_bios *pending_bios;
8b712842
CM
6431
6432 /* don't bother with additional async steps for reads, right now */
37226b21 6433 if (bio_op(bio) == REQ_OP_READ) {
4e49ea4a 6434 btrfsic_submit_bio(bio);
143bede5 6435 return;
8b712842
CM
6436 }
6437
492bb6de 6438 WARN_ON(bio->bi_next);
8b712842 6439 bio->bi_next = NULL;
8b712842
CM
6440
6441 spin_lock(&device->io_lock);
67f055c7 6442 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6443 pending_bios = &device->pending_sync_bios;
6444 else
6445 pending_bios = &device->pending_bios;
8b712842 6446
ffbd517d
CM
6447 if (pending_bios->tail)
6448 pending_bios->tail->bi_next = bio;
8b712842 6449
ffbd517d
CM
6450 pending_bios->tail = bio;
6451 if (!pending_bios->head)
6452 pending_bios->head = bio;
8b712842
CM
6453 if (device->running_pending)
6454 should_queue = 0;
6455
6456 spin_unlock(&device->io_lock);
6457
6458 if (should_queue)
0b246afa 6459 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6460}
6461
2ff7e61e
JM
6462static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6463 u64 physical, int dev_nr, int async)
de1ee92a
JB
6464{
6465 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6466 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6467
6468 bio->bi_private = bbio;
9be3395b 6469 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6470 bio->bi_end_io = btrfs_end_bio;
4f024f37 6471 bio->bi_iter.bi_sector = physical >> 9;
672d5990
MT
6472 btrfs_debug_in_rcu(fs_info,
6473 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6474 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6475 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6476 bio->bi_iter.bi_size);
74d46992 6477 bio_set_dev(bio, dev->bdev);
c404e0dc 6478
2ff7e61e 6479 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6480
de1ee92a 6481 if (async)
2ff7e61e 6482 btrfs_schedule_bio(dev, bio);
de1ee92a 6483 else
4e49ea4a 6484 btrfsic_submit_bio(bio);
de1ee92a
JB
6485}
6486
de1ee92a
JB
6487static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6488{
6489 atomic_inc(&bbio->error);
6490 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6491 /* Should be the original bio. */
8408c716
MX
6492 WARN_ON(bio != bbio->orig_bio);
6493
9be3395b 6494 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6495 bio->bi_iter.bi_sector = logical >> 9;
102ed2c5
AJ
6496 if (atomic_read(&bbio->error) > bbio->max_errors)
6497 bio->bi_status = BLK_STS_IOERR;
6498 else
6499 bio->bi_status = BLK_STS_OK;
4246a0b6 6500 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6501 }
6502}
6503
58efbc9f
OS
6504blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6505 int mirror_num, int async_submit)
0b86a832 6506{
0b86a832 6507 struct btrfs_device *dev;
8790d502 6508 struct bio *first_bio = bio;
4f024f37 6509 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6510 u64 length = 0;
6511 u64 map_length;
0b86a832 6512 int ret;
08da757d
ZL
6513 int dev_nr;
6514 int total_devs;
a1d3c478 6515 struct btrfs_bio *bbio = NULL;
0b86a832 6516
4f024f37 6517 length = bio->bi_iter.bi_size;
0b86a832 6518 map_length = length;
cea9e445 6519
0b246afa 6520 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6521 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
37226b21 6522 &map_length, &bbio, mirror_num, 1);
c404e0dc 6523 if (ret) {
0b246afa 6524 btrfs_bio_counter_dec(fs_info);
58efbc9f 6525 return errno_to_blk_status(ret);
c404e0dc 6526 }
cea9e445 6527
a1d3c478 6528 total_devs = bbio->num_stripes;
53b381b3
DW
6529 bbio->orig_bio = first_bio;
6530 bbio->private = first_bio->bi_private;
6531 bbio->end_io = first_bio->bi_end_io;
0b246afa 6532 bbio->fs_info = fs_info;
53b381b3
DW
6533 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6534
ad1ba2a0 6535 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6536 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6537 /* In this case, map_length has been set to the length of
6538 a single stripe; not the whole write */
37226b21 6539 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6540 ret = raid56_parity_write(fs_info, bio, bbio,
6541 map_length);
53b381b3 6542 } else {
2ff7e61e
JM
6543 ret = raid56_parity_recover(fs_info, bio, bbio,
6544 map_length, mirror_num, 1);
53b381b3 6545 }
4245215d 6546
0b246afa 6547 btrfs_bio_counter_dec(fs_info);
58efbc9f 6548 return errno_to_blk_status(ret);
53b381b3
DW
6549 }
6550
cea9e445 6551 if (map_length < length) {
0b246afa 6552 btrfs_crit(fs_info,
5d163e0e
JM
6553 "mapping failed logical %llu bio len %llu len %llu",
6554 logical, length, map_length);
cea9e445
CM
6555 BUG();
6556 }
a1d3c478 6557
08da757d 6558 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6559 dev = bbio->stripes[dev_nr].dev;
fc8a168a
NB
6560 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6561 &dev->dev_state) ||
ebbede42
AJ
6562 (bio_op(first_bio) == REQ_OP_WRITE &&
6563 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
de1ee92a 6564 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6565 continue;
6566 }
6567
3aa8e074 6568 if (dev_nr < total_devs - 1)
8b6c1d56 6569 bio = btrfs_bio_clone(first_bio);
3aa8e074 6570 else
a1d3c478 6571 bio = first_bio;
de1ee92a 6572
2ff7e61e
JM
6573 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6574 dev_nr, async_submit);
8790d502 6575 }
0b246afa 6576 btrfs_bio_counter_dec(fs_info);
58efbc9f 6577 return BLK_STS_OK;
0b86a832
CM
6578}
6579
09ba3bc9
AJ
6580/*
6581 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6582 * return NULL.
6583 *
6584 * If devid and uuid are both specified, the match must be exact, otherwise
6585 * only devid is used.
6586 *
6587 * If @seed is true, traverse through the seed devices.
6588 */
e4319cd9 6589struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
09ba3bc9
AJ
6590 u64 devid, u8 *uuid, u8 *fsid,
6591 bool seed)
0b86a832 6592{
2b82032c 6593 struct btrfs_device *device;
2b82032c 6594
e4319cd9 6595 while (fs_devices) {
2b82032c 6596 if (!fsid ||
e4319cd9 6597 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
09ba3bc9
AJ
6598 list_for_each_entry(device, &fs_devices->devices,
6599 dev_list) {
6600 if (device->devid == devid &&
6601 (!uuid || memcmp(device->uuid, uuid,
6602 BTRFS_UUID_SIZE) == 0))
6603 return device;
6604 }
2b82032c 6605 }
09ba3bc9
AJ
6606 if (seed)
6607 fs_devices = fs_devices->seed;
6608 else
6609 return NULL;
2b82032c
YZ
6610 }
6611 return NULL;
0b86a832
CM
6612}
6613
2ff7e61e 6614static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6615 u64 devid, u8 *dev_uuid)
6616{
6617 struct btrfs_device *device;
dfe25020 6618
12bd2fc0
ID
6619 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6620 if (IS_ERR(device))
adfb69af 6621 return device;
12bd2fc0
ID
6622
6623 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6624 device->fs_devices = fs_devices;
dfe25020 6625 fs_devices->num_devices++;
12bd2fc0 6626
e6e674bd 6627 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6628 fs_devices->missing_devices++;
12bd2fc0 6629
dfe25020
CM
6630 return device;
6631}
6632
12bd2fc0
ID
6633/**
6634 * btrfs_alloc_device - allocate struct btrfs_device
6635 * @fs_info: used only for generating a new devid, can be NULL if
6636 * devid is provided (i.e. @devid != NULL).
6637 * @devid: a pointer to devid for this device. If NULL a new devid
6638 * is generated.
6639 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6640 * is generated.
6641 *
6642 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6643 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6644 * destroyed with btrfs_free_device.
12bd2fc0
ID
6645 */
6646struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6647 const u64 *devid,
6648 const u8 *uuid)
6649{
6650 struct btrfs_device *dev;
6651 u64 tmp;
6652
fae7f21c 6653 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6654 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6655
6656 dev = __alloc_device();
6657 if (IS_ERR(dev))
6658 return dev;
6659
6660 if (devid)
6661 tmp = *devid;
6662 else {
6663 int ret;
6664
6665 ret = find_next_devid(fs_info, &tmp);
6666 if (ret) {
a425f9d4 6667 btrfs_free_device(dev);
12bd2fc0
ID
6668 return ERR_PTR(ret);
6669 }
6670 }
6671 dev->devid = tmp;
6672
6673 if (uuid)
6674 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6675 else
6676 generate_random_uuid(dev->uuid);
6677
9e0af237
LB
6678 btrfs_init_work(&dev->work, btrfs_submit_helper,
6679 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6680
6681 return dev;
6682}
6683
5a2b8e60 6684static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6685 u64 devid, u8 *uuid, bool error)
5a2b8e60 6686{
2b902dfc
AJ
6687 if (error)
6688 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6689 devid, uuid);
6690 else
6691 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6692 devid, uuid);
5a2b8e60
AJ
6693}
6694
39e264a4
NB
6695static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6696{
6697 int index = btrfs_bg_flags_to_raid_index(type);
6698 int ncopies = btrfs_raid_array[index].ncopies;
6699 int data_stripes;
6700
6701 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6702 case BTRFS_BLOCK_GROUP_RAID5:
6703 data_stripes = num_stripes - 1;
6704 break;
6705 case BTRFS_BLOCK_GROUP_RAID6:
6706 data_stripes = num_stripes - 2;
6707 break;
6708 default:
6709 data_stripes = num_stripes / ncopies;
6710 break;
6711 }
6712 return div_u64(chunk_len, data_stripes);
6713}
6714
9690ac09 6715static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6716 struct btrfs_chunk *chunk)
6717{
9690ac09 6718 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6719 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6720 struct map_lookup *map;
6721 struct extent_map *em;
6722 u64 logical;
6723 u64 length;
e06cd3dd
LB
6724 u64 devid;
6725 u8 uuid[BTRFS_UUID_SIZE];
6726 int num_stripes;
6727 int ret;
6728 int i;
6729
6730 logical = key->offset;
6731 length = btrfs_chunk_length(leaf, chunk);
e06cd3dd
LB
6732 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6733
075cb3c7
QW
6734 /*
6735 * Only need to verify chunk item if we're reading from sys chunk array,
6736 * as chunk item in tree block is already verified by tree-checker.
6737 */
6738 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6739 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6740 if (ret)
6741 return ret;
6742 }
a061fc8d 6743
c8bf1b67
DS
6744 read_lock(&map_tree->lock);
6745 em = lookup_extent_mapping(map_tree, logical, 1);
6746 read_unlock(&map_tree->lock);
0b86a832
CM
6747
6748 /* already mapped? */
6749 if (em && em->start <= logical && em->start + em->len > logical) {
6750 free_extent_map(em);
0b86a832
CM
6751 return 0;
6752 } else if (em) {
6753 free_extent_map(em);
6754 }
0b86a832 6755
172ddd60 6756 em = alloc_extent_map();
0b86a832
CM
6757 if (!em)
6758 return -ENOMEM;
593060d7 6759 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6760 if (!map) {
6761 free_extent_map(em);
6762 return -ENOMEM;
6763 }
6764
298a8f9c 6765 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6766 em->map_lookup = map;
0b86a832
CM
6767 em->start = logical;
6768 em->len = length;
70c8a91c 6769 em->orig_start = 0;
0b86a832 6770 em->block_start = 0;
c8b97818 6771 em->block_len = em->len;
0b86a832 6772
593060d7
CM
6773 map->num_stripes = num_stripes;
6774 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6775 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7
CM
6776 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6777 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6778 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 6779 map->verified_stripes = 0;
39e264a4
NB
6780 em->orig_block_len = calc_stripe_length(map->type, em->len,
6781 map->num_stripes);
593060d7
CM
6782 for (i = 0; i < num_stripes; i++) {
6783 map->stripes[i].physical =
6784 btrfs_stripe_offset_nr(leaf, chunk, i);
6785 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6786 read_extent_buffer(leaf, uuid, (unsigned long)
6787 btrfs_stripe_dev_uuid_nr(chunk, i),
6788 BTRFS_UUID_SIZE);
e4319cd9 6789 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
09ba3bc9 6790 devid, uuid, NULL, true);
3cdde224 6791 if (!map->stripes[i].dev &&
0b246afa 6792 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7 6793 free_extent_map(em);
2b902dfc 6794 btrfs_report_missing_device(fs_info, devid, uuid, true);
45dbdbc9 6795 return -ENOENT;
593060d7 6796 }
dfe25020
CM
6797 if (!map->stripes[i].dev) {
6798 map->stripes[i].dev =
2ff7e61e
JM
6799 add_missing_dev(fs_info->fs_devices, devid,
6800 uuid);
adfb69af 6801 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 6802 free_extent_map(em);
adfb69af
AJ
6803 btrfs_err(fs_info,
6804 "failed to init missing dev %llu: %ld",
6805 devid, PTR_ERR(map->stripes[i].dev));
6806 return PTR_ERR(map->stripes[i].dev);
dfe25020 6807 }
2b902dfc 6808 btrfs_report_missing_device(fs_info, devid, uuid, false);
dfe25020 6809 }
e12c9621
AJ
6810 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6811 &(map->stripes[i].dev->dev_state));
6812
0b86a832
CM
6813 }
6814
c8bf1b67
DS
6815 write_lock(&map_tree->lock);
6816 ret = add_extent_mapping(map_tree, em, 0);
6817 write_unlock(&map_tree->lock);
64f64f43
QW
6818 if (ret < 0) {
6819 btrfs_err(fs_info,
6820 "failed to add chunk map, start=%llu len=%llu: %d",
6821 em->start, em->len, ret);
6822 }
0b86a832
CM
6823 free_extent_map(em);
6824
64f64f43 6825 return ret;
0b86a832
CM
6826}
6827
143bede5 6828static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6829 struct btrfs_dev_item *dev_item,
6830 struct btrfs_device *device)
6831{
6832 unsigned long ptr;
0b86a832
CM
6833
6834 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6835 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6836 device->total_bytes = device->disk_total_bytes;
935e5cc9 6837 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6838 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6839 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6840 device->type = btrfs_device_type(leaf, dev_item);
6841 device->io_align = btrfs_device_io_align(leaf, dev_item);
6842 device->io_width = btrfs_device_io_width(leaf, dev_item);
6843 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6844 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6845 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6846
410ba3a2 6847 ptr = btrfs_device_uuid(dev_item);
e17cade2 6848 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6849}
6850
2ff7e61e 6851static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6852 u8 *fsid)
2b82032c
YZ
6853{
6854 struct btrfs_fs_devices *fs_devices;
6855 int ret;
6856
a32bf9a3 6857 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6858 ASSERT(fsid);
2b82032c 6859
0b246afa 6860 fs_devices = fs_info->fs_devices->seed;
2b82032c 6861 while (fs_devices) {
44880fdc 6862 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6863 return fs_devices;
6864
2b82032c
YZ
6865 fs_devices = fs_devices->seed;
6866 }
6867
7239ff4b 6868 fs_devices = find_fsid(fsid, NULL);
2b82032c 6869 if (!fs_devices) {
0b246afa 6870 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6871 return ERR_PTR(-ENOENT);
6872
7239ff4b 6873 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
6874 if (IS_ERR(fs_devices))
6875 return fs_devices;
6876
6877 fs_devices->seeding = 1;
6878 fs_devices->opened = 1;
6879 return fs_devices;
2b82032c 6880 }
e4404d6e
YZ
6881
6882 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6883 if (IS_ERR(fs_devices))
6884 return fs_devices;
2b82032c 6885
897fb573 6886 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
6887 if (ret) {
6888 free_fs_devices(fs_devices);
5f375835 6889 fs_devices = ERR_PTR(ret);
2b82032c 6890 goto out;
48d28232 6891 }
2b82032c
YZ
6892
6893 if (!fs_devices->seeding) {
0226e0eb 6894 close_fs_devices(fs_devices);
e4404d6e 6895 free_fs_devices(fs_devices);
5f375835 6896 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6897 goto out;
6898 }
6899
0b246afa
JM
6900 fs_devices->seed = fs_info->fs_devices->seed;
6901 fs_info->fs_devices->seed = fs_devices;
2b82032c 6902out:
5f375835 6903 return fs_devices;
2b82032c
YZ
6904}
6905
17850759 6906static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
6907 struct btrfs_dev_item *dev_item)
6908{
17850759 6909 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 6910 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6911 struct btrfs_device *device;
6912 u64 devid;
6913 int ret;
44880fdc 6914 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6915 u8 dev_uuid[BTRFS_UUID_SIZE];
6916
0b86a832 6917 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6918 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6919 BTRFS_UUID_SIZE);
1473b24e 6920 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6921 BTRFS_FSID_SIZE);
2b82032c 6922
de37aa51 6923 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 6924 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6925 if (IS_ERR(fs_devices))
6926 return PTR_ERR(fs_devices);
2b82032c
YZ
6927 }
6928
e4319cd9 6929 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
09ba3bc9 6930 fs_uuid, true);
5f375835 6931 if (!device) {
c5502451 6932 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6933 btrfs_report_missing_device(fs_info, devid,
6934 dev_uuid, true);
45dbdbc9 6935 return -ENOENT;
c5502451 6936 }
2b82032c 6937
2ff7e61e 6938 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6939 if (IS_ERR(device)) {
6940 btrfs_err(fs_info,
6941 "failed to add missing dev %llu: %ld",
6942 devid, PTR_ERR(device));
6943 return PTR_ERR(device);
6944 }
2b902dfc 6945 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6946 } else {
c5502451 6947 if (!device->bdev) {
2b902dfc
AJ
6948 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6949 btrfs_report_missing_device(fs_info,
6950 devid, dev_uuid, true);
45dbdbc9 6951 return -ENOENT;
2b902dfc
AJ
6952 }
6953 btrfs_report_missing_device(fs_info, devid,
6954 dev_uuid, false);
c5502451 6955 }
5f375835 6956
e6e674bd
AJ
6957 if (!device->bdev &&
6958 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
6959 /*
6960 * this happens when a device that was properly setup
6961 * in the device info lists suddenly goes bad.
6962 * device->bdev is NULL, and so we have to set
6963 * device->missing to one here
6964 */
5f375835 6965 device->fs_devices->missing_devices++;
e6e674bd 6966 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 6967 }
5f375835
MX
6968
6969 /* Move the device to its own fs_devices */
6970 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
6971 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6972 &device->dev_state));
5f375835
MX
6973
6974 list_move(&device->dev_list, &fs_devices->devices);
6975 device->fs_devices->num_devices--;
6976 fs_devices->num_devices++;
6977
6978 device->fs_devices->missing_devices--;
6979 fs_devices->missing_devices++;
6980
6981 device->fs_devices = fs_devices;
6982 }
2b82032c
YZ
6983 }
6984
0b246afa 6985 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 6986 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
6987 if (device->generation !=
6988 btrfs_device_generation(leaf, dev_item))
6989 return -EINVAL;
6324fbf3 6990 }
0b86a832
CM
6991
6992 fill_device_from_item(leaf, dev_item, device);
e12c9621 6993 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 6994 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 6995 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 6996 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6997 atomic64_add(device->total_bytes - device->bytes_used,
6998 &fs_info->free_chunk_space);
2bf64758 6999 }
0b86a832 7000 ret = 0;
0b86a832
CM
7001 return ret;
7002}
7003
6bccf3ab 7004int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7005{
6bccf3ab 7006 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 7007 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7008 struct extent_buffer *sb;
0b86a832 7009 struct btrfs_disk_key *disk_key;
0b86a832 7010 struct btrfs_chunk *chunk;
1ffb22cf
DS
7011 u8 *array_ptr;
7012 unsigned long sb_array_offset;
84eed90f 7013 int ret = 0;
0b86a832
CM
7014 u32 num_stripes;
7015 u32 array_size;
7016 u32 len = 0;
1ffb22cf 7017 u32 cur_offset;
e06cd3dd 7018 u64 type;
84eed90f 7019 struct btrfs_key key;
0b86a832 7020
0b246afa 7021 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
7022 /*
7023 * This will create extent buffer of nodesize, superblock size is
7024 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7025 * overallocate but we can keep it as-is, only the first page is used.
7026 */
2ff7e61e 7027 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
7028 if (IS_ERR(sb))
7029 return PTR_ERR(sb);
4db8c528 7030 set_extent_buffer_uptodate(sb);
85d4e461 7031 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 7032 /*
01327610 7033 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 7034 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
7035 * pages up-to-date when the page is larger: extent does not cover the
7036 * whole page and consequently check_page_uptodate does not find all
7037 * the page's extents up-to-date (the hole beyond sb),
7038 * write_extent_buffer then triggers a WARN_ON.
7039 *
7040 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7041 * but sb spans only this function. Add an explicit SetPageUptodate call
7042 * to silence the warning eg. on PowerPC 64.
7043 */
09cbfeaf 7044 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 7045 SetPageUptodate(sb->pages[0]);
4008c04a 7046
a061fc8d 7047 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7048 array_size = btrfs_super_sys_array_size(super_copy);
7049
1ffb22cf
DS
7050 array_ptr = super_copy->sys_chunk_array;
7051 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7052 cur_offset = 0;
0b86a832 7053
1ffb22cf
DS
7054 while (cur_offset < array_size) {
7055 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7056 len = sizeof(*disk_key);
7057 if (cur_offset + len > array_size)
7058 goto out_short_read;
7059
0b86a832
CM
7060 btrfs_disk_key_to_cpu(&key, disk_key);
7061
1ffb22cf
DS
7062 array_ptr += len;
7063 sb_array_offset += len;
7064 cur_offset += len;
0b86a832 7065
0d81ba5d 7066 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 7067 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
7068 /*
7069 * At least one btrfs_chunk with one stripe must be
7070 * present, exact stripe count check comes afterwards
7071 */
7072 len = btrfs_chunk_item_size(1);
7073 if (cur_offset + len > array_size)
7074 goto out_short_read;
7075
7076 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 7077 if (!num_stripes) {
ab8d0fc4
JM
7078 btrfs_err(fs_info,
7079 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
7080 num_stripes, cur_offset);
7081 ret = -EIO;
7082 break;
7083 }
7084
e06cd3dd
LB
7085 type = btrfs_chunk_type(sb, chunk);
7086 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7087 btrfs_err(fs_info,
e06cd3dd
LB
7088 "invalid chunk type %llu in sys_array at offset %u",
7089 type, cur_offset);
7090 ret = -EIO;
7091 break;
7092 }
7093
e3540eab
DS
7094 len = btrfs_chunk_item_size(num_stripes);
7095 if (cur_offset + len > array_size)
7096 goto out_short_read;
7097
9690ac09 7098 ret = read_one_chunk(&key, sb, chunk);
84eed90f
CM
7099 if (ret)
7100 break;
0b86a832 7101 } else {
ab8d0fc4
JM
7102 btrfs_err(fs_info,
7103 "unexpected item type %u in sys_array at offset %u",
7104 (u32)key.type, cur_offset);
84eed90f
CM
7105 ret = -EIO;
7106 break;
0b86a832 7107 }
1ffb22cf
DS
7108 array_ptr += len;
7109 sb_array_offset += len;
7110 cur_offset += len;
0b86a832 7111 }
d865177a 7112 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7113 free_extent_buffer_stale(sb);
84eed90f 7114 return ret;
e3540eab
DS
7115
7116out_short_read:
ab8d0fc4 7117 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7118 len, cur_offset);
d865177a 7119 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7120 free_extent_buffer_stale(sb);
e3540eab 7121 return -EIO;
0b86a832
CM
7122}
7123
21634a19
QW
7124/*
7125 * Check if all chunks in the fs are OK for read-write degraded mount
7126 *
6528b99d
AJ
7127 * If the @failing_dev is specified, it's accounted as missing.
7128 *
21634a19
QW
7129 * Return true if all chunks meet the minimal RW mount requirements.
7130 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7131 */
6528b99d
AJ
7132bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7133 struct btrfs_device *failing_dev)
21634a19 7134{
c8bf1b67 7135 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7136 struct extent_map *em;
7137 u64 next_start = 0;
7138 bool ret = true;
7139
c8bf1b67
DS
7140 read_lock(&map_tree->lock);
7141 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7142 read_unlock(&map_tree->lock);
21634a19
QW
7143 /* No chunk at all? Return false anyway */
7144 if (!em) {
7145 ret = false;
7146 goto out;
7147 }
7148 while (em) {
7149 struct map_lookup *map;
7150 int missing = 0;
7151 int max_tolerated;
7152 int i;
7153
7154 map = em->map_lookup;
7155 max_tolerated =
7156 btrfs_get_num_tolerated_disk_barrier_failures(
7157 map->type);
7158 for (i = 0; i < map->num_stripes; i++) {
7159 struct btrfs_device *dev = map->stripes[i].dev;
7160
e6e674bd
AJ
7161 if (!dev || !dev->bdev ||
7162 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7163 dev->last_flush_error)
7164 missing++;
6528b99d
AJ
7165 else if (failing_dev && failing_dev == dev)
7166 missing++;
21634a19
QW
7167 }
7168 if (missing > max_tolerated) {
6528b99d
AJ
7169 if (!failing_dev)
7170 btrfs_warn(fs_info,
52042d8e 7171 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7172 em->start, missing, max_tolerated);
7173 free_extent_map(em);
7174 ret = false;
7175 goto out;
7176 }
7177 next_start = extent_map_end(em);
7178 free_extent_map(em);
7179
c8bf1b67
DS
7180 read_lock(&map_tree->lock);
7181 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7182 (u64)(-1) - next_start);
c8bf1b67 7183 read_unlock(&map_tree->lock);
21634a19
QW
7184 }
7185out:
7186 return ret;
7187}
7188
5b4aacef 7189int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7190{
5b4aacef 7191 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7192 struct btrfs_path *path;
7193 struct extent_buffer *leaf;
7194 struct btrfs_key key;
7195 struct btrfs_key found_key;
7196 int ret;
7197 int slot;
99e3ecfc 7198 u64 total_dev = 0;
0b86a832 7199
0b86a832
CM
7200 path = btrfs_alloc_path();
7201 if (!path)
7202 return -ENOMEM;
7203
3dd0f7a3
AJ
7204 /*
7205 * uuid_mutex is needed only if we are mounting a sprout FS
7206 * otherwise we don't need it.
7207 */
b367e47f 7208 mutex_lock(&uuid_mutex);
34441361 7209 mutex_lock(&fs_info->chunk_mutex);
b367e47f 7210
395927a9
FDBM
7211 /*
7212 * Read all device items, and then all the chunk items. All
7213 * device items are found before any chunk item (their object id
7214 * is smaller than the lowest possible object id for a chunk
7215 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7216 */
7217 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7218 key.offset = 0;
7219 key.type = 0;
0b86a832 7220 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
7221 if (ret < 0)
7222 goto error;
d397712b 7223 while (1) {
0b86a832
CM
7224 leaf = path->nodes[0];
7225 slot = path->slots[0];
7226 if (slot >= btrfs_header_nritems(leaf)) {
7227 ret = btrfs_next_leaf(root, path);
7228 if (ret == 0)
7229 continue;
7230 if (ret < 0)
7231 goto error;
7232 break;
7233 }
7234 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
7235 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7236 struct btrfs_dev_item *dev_item;
7237 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7238 struct btrfs_dev_item);
17850759 7239 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7240 if (ret)
7241 goto error;
99e3ecfc 7242 total_dev++;
0b86a832
CM
7243 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7244 struct btrfs_chunk *chunk;
7245 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7246 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7247 if (ret)
7248 goto error;
0b86a832
CM
7249 }
7250 path->slots[0]++;
7251 }
99e3ecfc
LB
7252
7253 /*
7254 * After loading chunk tree, we've got all device information,
7255 * do another round of validation checks.
7256 */
0b246afa
JM
7257 if (total_dev != fs_info->fs_devices->total_devices) {
7258 btrfs_err(fs_info,
99e3ecfc 7259 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 7260 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
7261 total_dev);
7262 ret = -EINVAL;
7263 goto error;
7264 }
0b246afa
JM
7265 if (btrfs_super_total_bytes(fs_info->super_copy) <
7266 fs_info->fs_devices->total_rw_bytes) {
7267 btrfs_err(fs_info,
99e3ecfc 7268 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7269 btrfs_super_total_bytes(fs_info->super_copy),
7270 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7271 ret = -EINVAL;
7272 goto error;
7273 }
0b86a832
CM
7274 ret = 0;
7275error:
34441361 7276 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
7277 mutex_unlock(&uuid_mutex);
7278
2b82032c 7279 btrfs_free_path(path);
0b86a832
CM
7280 return ret;
7281}
442a4f63 7282
cb517eab
MX
7283void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7284{
7285 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7286 struct btrfs_device *device;
7287
29cc83f6
LB
7288 while (fs_devices) {
7289 mutex_lock(&fs_devices->device_list_mutex);
7290 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 7291 device->fs_info = fs_info;
29cc83f6
LB
7292 mutex_unlock(&fs_devices->device_list_mutex);
7293
7294 fs_devices = fs_devices->seed;
7295 }
cb517eab
MX
7296}
7297
1dc990df
DS
7298static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7299 const struct btrfs_dev_stats_item *ptr,
7300 int index)
7301{
7302 u64 val;
7303
7304 read_extent_buffer(eb, &val,
7305 offsetof(struct btrfs_dev_stats_item, values) +
7306 ((unsigned long)ptr) + (index * sizeof(u64)),
7307 sizeof(val));
7308 return val;
7309}
7310
7311static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7312 struct btrfs_dev_stats_item *ptr,
7313 int index, u64 val)
7314{
7315 write_extent_buffer(eb, &val,
7316 offsetof(struct btrfs_dev_stats_item, values) +
7317 ((unsigned long)ptr) + (index * sizeof(u64)),
7318 sizeof(val));
7319}
7320
733f4fbb
SB
7321int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7322{
7323 struct btrfs_key key;
733f4fbb
SB
7324 struct btrfs_root *dev_root = fs_info->dev_root;
7325 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7326 struct extent_buffer *eb;
7327 int slot;
7328 int ret = 0;
7329 struct btrfs_device *device;
7330 struct btrfs_path *path = NULL;
7331 int i;
7332
7333 path = btrfs_alloc_path();
3b80a984
AJ
7334 if (!path)
7335 return -ENOMEM;
733f4fbb
SB
7336
7337 mutex_lock(&fs_devices->device_list_mutex);
7338 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7339 int item_size;
7340 struct btrfs_dev_stats_item *ptr;
7341
242e2956
DS
7342 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7343 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7344 key.offset = device->devid;
7345 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7346 if (ret) {
ae4b9b4c
AJ
7347 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7348 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7349 device->dev_stats_valid = 1;
7350 btrfs_release_path(path);
7351 continue;
7352 }
7353 slot = path->slots[0];
7354 eb = path->nodes[0];
733f4fbb
SB
7355 item_size = btrfs_item_size_nr(eb, slot);
7356
7357 ptr = btrfs_item_ptr(eb, slot,
7358 struct btrfs_dev_stats_item);
7359
7360 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7361 if (item_size >= (1 + i) * sizeof(__le64))
7362 btrfs_dev_stat_set(device, i,
7363 btrfs_dev_stats_value(eb, ptr, i));
7364 else
4e411a7d 7365 btrfs_dev_stat_set(device, i, 0);
733f4fbb
SB
7366 }
7367
7368 device->dev_stats_valid = 1;
7369 btrfs_dev_stat_print_on_load(device);
7370 btrfs_release_path(path);
7371 }
7372 mutex_unlock(&fs_devices->device_list_mutex);
7373
733f4fbb
SB
7374 btrfs_free_path(path);
7375 return ret < 0 ? ret : 0;
7376}
7377
7378static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7379 struct btrfs_device *device)
7380{
5495f195 7381 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7382 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7383 struct btrfs_path *path;
7384 struct btrfs_key key;
7385 struct extent_buffer *eb;
7386 struct btrfs_dev_stats_item *ptr;
7387 int ret;
7388 int i;
7389
242e2956
DS
7390 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7391 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7392 key.offset = device->devid;
7393
7394 path = btrfs_alloc_path();
fa252992
DS
7395 if (!path)
7396 return -ENOMEM;
733f4fbb
SB
7397 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7398 if (ret < 0) {
0b246afa 7399 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7400 "error %d while searching for dev_stats item for device %s",
606686ee 7401 ret, rcu_str_deref(device->name));
733f4fbb
SB
7402 goto out;
7403 }
7404
7405 if (ret == 0 &&
7406 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7407 /* need to delete old one and insert a new one */
7408 ret = btrfs_del_item(trans, dev_root, path);
7409 if (ret != 0) {
0b246afa 7410 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7411 "delete too small dev_stats item for device %s failed %d",
606686ee 7412 rcu_str_deref(device->name), ret);
733f4fbb
SB
7413 goto out;
7414 }
7415 ret = 1;
7416 }
7417
7418 if (ret == 1) {
7419 /* need to insert a new item */
7420 btrfs_release_path(path);
7421 ret = btrfs_insert_empty_item(trans, dev_root, path,
7422 &key, sizeof(*ptr));
7423 if (ret < 0) {
0b246afa 7424 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7425 "insert dev_stats item for device %s failed %d",
7426 rcu_str_deref(device->name), ret);
733f4fbb
SB
7427 goto out;
7428 }
7429 }
7430
7431 eb = path->nodes[0];
7432 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7433 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7434 btrfs_set_dev_stats_value(eb, ptr, i,
7435 btrfs_dev_stat_read(device, i));
7436 btrfs_mark_buffer_dirty(eb);
7437
7438out:
7439 btrfs_free_path(path);
7440 return ret;
7441}
7442
7443/*
7444 * called from commit_transaction. Writes all changed device stats to disk.
7445 */
196c9d8d 7446int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7447{
196c9d8d 7448 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7449 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7450 struct btrfs_device *device;
addc3fa7 7451 int stats_cnt;
733f4fbb
SB
7452 int ret = 0;
7453
7454 mutex_lock(&fs_devices->device_list_mutex);
7455 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7456 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7457 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7458 continue;
7459
9deae968
NB
7460
7461 /*
7462 * There is a LOAD-LOAD control dependency between the value of
7463 * dev_stats_ccnt and updating the on-disk values which requires
7464 * reading the in-memory counters. Such control dependencies
7465 * require explicit read memory barriers.
7466 *
7467 * This memory barriers pairs with smp_mb__before_atomic in
7468 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7469 * barrier implied by atomic_xchg in
7470 * btrfs_dev_stats_read_and_reset
7471 */
7472 smp_rmb();
7473
5495f195 7474 ret = update_dev_stat_item(trans, device);
733f4fbb 7475 if (!ret)
addc3fa7 7476 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7477 }
7478 mutex_unlock(&fs_devices->device_list_mutex);
7479
7480 return ret;
7481}
7482
442a4f63
SB
7483void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7484{
7485 btrfs_dev_stat_inc(dev, index);
7486 btrfs_dev_stat_print_on_error(dev);
7487}
7488
48a3b636 7489static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7490{
733f4fbb
SB
7491 if (!dev->dev_stats_valid)
7492 return;
fb456252 7493 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7494 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7495 rcu_str_deref(dev->name),
442a4f63
SB
7496 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7497 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7498 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7499 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7500 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7501}
c11d2c23 7502
733f4fbb
SB
7503static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7504{
a98cdb85
SB
7505 int i;
7506
7507 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7508 if (btrfs_dev_stat_read(dev, i) != 0)
7509 break;
7510 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7511 return; /* all values == 0, suppress message */
7512
fb456252 7513 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7514 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7515 rcu_str_deref(dev->name),
733f4fbb
SB
7516 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7517 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7518 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7519 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7520 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7521}
7522
2ff7e61e 7523int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7524 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7525{
7526 struct btrfs_device *dev;
0b246afa 7527 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7528 int i;
7529
7530 mutex_lock(&fs_devices->device_list_mutex);
09ba3bc9
AJ
7531 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7532 true);
c11d2c23
SB
7533 mutex_unlock(&fs_devices->device_list_mutex);
7534
7535 if (!dev) {
0b246afa 7536 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7537 return -ENODEV;
733f4fbb 7538 } else if (!dev->dev_stats_valid) {
0b246afa 7539 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7540 return -ENODEV;
b27f7c0c 7541 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7542 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7543 if (stats->nr_items > i)
7544 stats->values[i] =
7545 btrfs_dev_stat_read_and_reset(dev, i);
7546 else
4e411a7d 7547 btrfs_dev_stat_set(dev, i, 0);
c11d2c23
SB
7548 }
7549 } else {
7550 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7551 if (stats->nr_items > i)
7552 stats->values[i] = btrfs_dev_stat_read(dev, i);
7553 }
7554 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7555 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7556 return 0;
7557}
a8a6dab7 7558
da353f6b 7559void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7560{
7561 struct buffer_head *bh;
7562 struct btrfs_super_block *disk_super;
12b1c263 7563 int copy_num;
a8a6dab7 7564
12b1c263
AJ
7565 if (!bdev)
7566 return;
a8a6dab7 7567
12b1c263
AJ
7568 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7569 copy_num++) {
a8a6dab7 7570
12b1c263
AJ
7571 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7572 continue;
7573
7574 disk_super = (struct btrfs_super_block *)bh->b_data;
7575
7576 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7577 set_buffer_dirty(bh);
7578 sync_dirty_buffer(bh);
7579 brelse(bh);
7580 }
7581
7582 /* Notify udev that device has changed */
7583 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7584
7585 /* Update ctime/mtime for device path for libblkid */
7586 update_dev_time(device_path);
a8a6dab7 7587}
935e5cc9
MX
7588
7589/*
bbbf7243
NB
7590 * Update the size and bytes used for each device where it changed. This is
7591 * delayed since we would otherwise get errors while writing out the
7592 * superblocks.
7593 *
7594 * Must be invoked during transaction commit.
935e5cc9 7595 */
bbbf7243 7596void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7597{
935e5cc9
MX
7598 struct btrfs_device *curr, *next;
7599
bbbf7243 7600 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7601
bbbf7243 7602 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7603 return;
7604
bbbf7243
NB
7605 /*
7606 * We don't need the device_list_mutex here. This list is owned by the
7607 * transaction and the transaction must complete before the device is
7608 * released.
7609 */
7610 mutex_lock(&trans->fs_info->chunk_mutex);
7611 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7612 post_commit_list) {
7613 list_del_init(&curr->post_commit_list);
7614 curr->commit_total_bytes = curr->disk_total_bytes;
7615 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7616 }
bbbf7243 7617 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7618}
5a13f430
AJ
7619
7620void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7621{
7622 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7623 while (fs_devices) {
7624 fs_devices->fs_info = fs_info;
7625 fs_devices = fs_devices->seed;
7626 }
7627}
7628
7629void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7630{
7631 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7632 while (fs_devices) {
7633 fs_devices->fs_info = NULL;
7634 fs_devices = fs_devices->seed;
7635 }
7636}
46df06b8
DS
7637
7638/*
7639 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7640 */
7641int btrfs_bg_type_to_factor(u64 flags)
7642{
44b28ada
DS
7643 const int index = btrfs_bg_flags_to_raid_index(flags);
7644
7645 return btrfs_raid_array[index].ncopies;
46df06b8 7646}
cf90d884
QW
7647
7648
cf90d884
QW
7649
7650static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7651 u64 chunk_offset, u64 devid,
7652 u64 physical_offset, u64 physical_len)
7653{
c8bf1b67 7654 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7655 struct extent_map *em;
7656 struct map_lookup *map;
05a37c48 7657 struct btrfs_device *dev;
cf90d884
QW
7658 u64 stripe_len;
7659 bool found = false;
7660 int ret = 0;
7661 int i;
7662
7663 read_lock(&em_tree->lock);
7664 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7665 read_unlock(&em_tree->lock);
7666
7667 if (!em) {
7668 btrfs_err(fs_info,
7669"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7670 physical_offset, devid);
7671 ret = -EUCLEAN;
7672 goto out;
7673 }
7674
7675 map = em->map_lookup;
7676 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7677 if (physical_len != stripe_len) {
7678 btrfs_err(fs_info,
7679"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7680 physical_offset, devid, em->start, physical_len,
7681 stripe_len);
7682 ret = -EUCLEAN;
7683 goto out;
7684 }
7685
7686 for (i = 0; i < map->num_stripes; i++) {
7687 if (map->stripes[i].dev->devid == devid &&
7688 map->stripes[i].physical == physical_offset) {
7689 found = true;
7690 if (map->verified_stripes >= map->num_stripes) {
7691 btrfs_err(fs_info,
7692 "too many dev extents for chunk %llu found",
7693 em->start);
7694 ret = -EUCLEAN;
7695 goto out;
7696 }
7697 map->verified_stripes++;
7698 break;
7699 }
7700 }
7701 if (!found) {
7702 btrfs_err(fs_info,
7703 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7704 physical_offset, devid);
7705 ret = -EUCLEAN;
7706 }
05a37c48
QW
7707
7708 /* Make sure no dev extent is beyond device bondary */
09ba3bc9 7709 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
05a37c48
QW
7710 if (!dev) {
7711 btrfs_err(fs_info, "failed to find devid %llu", devid);
7712 ret = -EUCLEAN;
7713 goto out;
7714 }
1b3922a8
QW
7715
7716 /* It's possible this device is a dummy for seed device */
7717 if (dev->disk_total_bytes == 0) {
09ba3bc9
AJ
7718 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7719 NULL, false);
1b3922a8
QW
7720 if (!dev) {
7721 btrfs_err(fs_info, "failed to find seed devid %llu",
7722 devid);
7723 ret = -EUCLEAN;
7724 goto out;
7725 }
7726 }
7727
05a37c48
QW
7728 if (physical_offset + physical_len > dev->disk_total_bytes) {
7729 btrfs_err(fs_info,
7730"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7731 devid, physical_offset, physical_len,
7732 dev->disk_total_bytes);
7733 ret = -EUCLEAN;
7734 goto out;
7735 }
cf90d884
QW
7736out:
7737 free_extent_map(em);
7738 return ret;
7739}
7740
7741static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7742{
c8bf1b67 7743 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7744 struct extent_map *em;
7745 struct rb_node *node;
7746 int ret = 0;
7747
7748 read_lock(&em_tree->lock);
07e1ce09 7749 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7750 em = rb_entry(node, struct extent_map, rb_node);
7751 if (em->map_lookup->num_stripes !=
7752 em->map_lookup->verified_stripes) {
7753 btrfs_err(fs_info,
7754 "chunk %llu has missing dev extent, have %d expect %d",
7755 em->start, em->map_lookup->verified_stripes,
7756 em->map_lookup->num_stripes);
7757 ret = -EUCLEAN;
7758 goto out;
7759 }
7760 }
7761out:
7762 read_unlock(&em_tree->lock);
7763 return ret;
7764}
7765
7766/*
7767 * Ensure that all dev extents are mapped to correct chunk, otherwise
7768 * later chunk allocation/free would cause unexpected behavior.
7769 *
7770 * NOTE: This will iterate through the whole device tree, which should be of
7771 * the same size level as the chunk tree. This slightly increases mount time.
7772 */
7773int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7774{
7775 struct btrfs_path *path;
7776 struct btrfs_root *root = fs_info->dev_root;
7777 struct btrfs_key key;
5eb19381
QW
7778 u64 prev_devid = 0;
7779 u64 prev_dev_ext_end = 0;
cf90d884
QW
7780 int ret = 0;
7781
7782 key.objectid = 1;
7783 key.type = BTRFS_DEV_EXTENT_KEY;
7784 key.offset = 0;
7785
7786 path = btrfs_alloc_path();
7787 if (!path)
7788 return -ENOMEM;
7789
7790 path->reada = READA_FORWARD;
7791 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7792 if (ret < 0)
7793 goto out;
7794
7795 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7796 ret = btrfs_next_item(root, path);
7797 if (ret < 0)
7798 goto out;
7799 /* No dev extents at all? Not good */
7800 if (ret > 0) {
7801 ret = -EUCLEAN;
7802 goto out;
7803 }
7804 }
7805 while (1) {
7806 struct extent_buffer *leaf = path->nodes[0];
7807 struct btrfs_dev_extent *dext;
7808 int slot = path->slots[0];
7809 u64 chunk_offset;
7810 u64 physical_offset;
7811 u64 physical_len;
7812 u64 devid;
7813
7814 btrfs_item_key_to_cpu(leaf, &key, slot);
7815 if (key.type != BTRFS_DEV_EXTENT_KEY)
7816 break;
7817 devid = key.objectid;
7818 physical_offset = key.offset;
7819
7820 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7821 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7822 physical_len = btrfs_dev_extent_length(leaf, dext);
7823
5eb19381
QW
7824 /* Check if this dev extent overlaps with the previous one */
7825 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7826 btrfs_err(fs_info,
7827"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7828 devid, physical_offset, prev_dev_ext_end);
7829 ret = -EUCLEAN;
7830 goto out;
7831 }
7832
cf90d884
QW
7833 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7834 physical_offset, physical_len);
7835 if (ret < 0)
7836 goto out;
5eb19381
QW
7837 prev_devid = devid;
7838 prev_dev_ext_end = physical_offset + physical_len;
7839
cf90d884
QW
7840 ret = btrfs_next_item(root, path);
7841 if (ret < 0)
7842 goto out;
7843 if (ret > 0) {
7844 ret = 0;
7845 break;
7846 }
7847 }
7848
7849 /* Ensure all chunks have corresponding dev extents */
7850 ret = verify_chunk_dev_extent_mapping(fs_info);
7851out:
7852 btrfs_free_path(path);
7853 return ret;
7854}
eede2bf3
OS
7855
7856/*
7857 * Check whether the given block group or device is pinned by any inode being
7858 * used as a swapfile.
7859 */
7860bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7861{
7862 struct btrfs_swapfile_pin *sp;
7863 struct rb_node *node;
7864
7865 spin_lock(&fs_info->swapfile_pins_lock);
7866 node = fs_info->swapfile_pins.rb_node;
7867 while (node) {
7868 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7869 if (ptr < sp->ptr)
7870 node = node->rb_left;
7871 else if (ptr > sp->ptr)
7872 node = node->rb_right;
7873 else
7874 break;
7875 }
7876 spin_unlock(&fs_info->swapfile_pins_lock);
7877 return node != NULL;
7878}