]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/volumes.c
Btrfs: add ioctl to get and reset the device stats
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
442a4f63 26#include <linux/ratelimit.h>
59641015 27#include <linux/kthread.h>
593060d7 28#include <asm/div64.h>
4b4e25f2 29#include "compat.h"
0b86a832
CM
30#include "ctree.h"
31#include "extent_map.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "print-tree.h"
35#include "volumes.h"
8b712842 36#include "async-thread.h"
21adbd5c 37#include "check-integrity.h"
0b86a832 38
2b82032c
YZ
39static int init_first_rw_device(struct btrfs_trans_handle *trans,
40 struct btrfs_root *root,
41 struct btrfs_device *device);
42static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
43
8a4b83cc
CM
44static DEFINE_MUTEX(uuid_mutex);
45static LIST_HEAD(fs_uuids);
46
7d9eb12c
CM
47static void lock_chunks(struct btrfs_root *root)
48{
7d9eb12c
CM
49 mutex_lock(&root->fs_info->chunk_mutex);
50}
51
52static void unlock_chunks(struct btrfs_root *root)
53{
7d9eb12c
CM
54 mutex_unlock(&root->fs_info->chunk_mutex);
55}
56
e4404d6e
YZ
57static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
58{
59 struct btrfs_device *device;
60 WARN_ON(fs_devices->opened);
61 while (!list_empty(&fs_devices->devices)) {
62 device = list_entry(fs_devices->devices.next,
63 struct btrfs_device, dev_list);
64 list_del(&device->dev_list);
65 kfree(device->name);
66 kfree(device);
67 }
68 kfree(fs_devices);
69}
70
143bede5 71void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
72{
73 struct btrfs_fs_devices *fs_devices;
8a4b83cc 74
2b82032c
YZ
75 while (!list_empty(&fs_uuids)) {
76 fs_devices = list_entry(fs_uuids.next,
77 struct btrfs_fs_devices, list);
78 list_del(&fs_devices->list);
e4404d6e 79 free_fs_devices(fs_devices);
8a4b83cc 80 }
8a4b83cc
CM
81}
82
a1b32a59
CM
83static noinline struct btrfs_device *__find_device(struct list_head *head,
84 u64 devid, u8 *uuid)
8a4b83cc
CM
85{
86 struct btrfs_device *dev;
8a4b83cc 87
c6e30871 88 list_for_each_entry(dev, head, dev_list) {
a443755f 89 if (dev->devid == devid &&
8f18cf13 90 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 91 return dev;
a443755f 92 }
8a4b83cc
CM
93 }
94 return NULL;
95}
96
a1b32a59 97static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 98{
8a4b83cc
CM
99 struct btrfs_fs_devices *fs_devices;
100
c6e30871 101 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
102 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
103 return fs_devices;
104 }
105 return NULL;
106}
107
ffbd517d
CM
108static void requeue_list(struct btrfs_pending_bios *pending_bios,
109 struct bio *head, struct bio *tail)
110{
111
112 struct bio *old_head;
113
114 old_head = pending_bios->head;
115 pending_bios->head = head;
116 if (pending_bios->tail)
117 tail->bi_next = old_head;
118 else
119 pending_bios->tail = tail;
120}
121
8b712842
CM
122/*
123 * we try to collect pending bios for a device so we don't get a large
124 * number of procs sending bios down to the same device. This greatly
125 * improves the schedulers ability to collect and merge the bios.
126 *
127 * But, it also turns into a long list of bios to process and that is sure
128 * to eventually make the worker thread block. The solution here is to
129 * make some progress and then put this work struct back at the end of
130 * the list if the block device is congested. This way, multiple devices
131 * can make progress from a single worker thread.
132 */
143bede5 133static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
134{
135 struct bio *pending;
136 struct backing_dev_info *bdi;
b64a2851 137 struct btrfs_fs_info *fs_info;
ffbd517d 138 struct btrfs_pending_bios *pending_bios;
8b712842
CM
139 struct bio *tail;
140 struct bio *cur;
141 int again = 0;
ffbd517d 142 unsigned long num_run;
d644d8a1 143 unsigned long batch_run = 0;
b64a2851 144 unsigned long limit;
b765ead5 145 unsigned long last_waited = 0;
d84275c9 146 int force_reg = 0;
0e588859 147 int sync_pending = 0;
211588ad
CM
148 struct blk_plug plug;
149
150 /*
151 * this function runs all the bios we've collected for
152 * a particular device. We don't want to wander off to
153 * another device without first sending all of these down.
154 * So, setup a plug here and finish it off before we return
155 */
156 blk_start_plug(&plug);
8b712842 157
bedf762b 158 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
159 fs_info = device->dev_root->fs_info;
160 limit = btrfs_async_submit_limit(fs_info);
161 limit = limit * 2 / 3;
162
8b712842
CM
163loop:
164 spin_lock(&device->io_lock);
165
a6837051 166loop_lock:
d84275c9 167 num_run = 0;
ffbd517d 168
8b712842
CM
169 /* take all the bios off the list at once and process them
170 * later on (without the lock held). But, remember the
171 * tail and other pointers so the bios can be properly reinserted
172 * into the list if we hit congestion
173 */
d84275c9 174 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 175 pending_bios = &device->pending_sync_bios;
d84275c9
CM
176 force_reg = 1;
177 } else {
ffbd517d 178 pending_bios = &device->pending_bios;
d84275c9
CM
179 force_reg = 0;
180 }
ffbd517d
CM
181
182 pending = pending_bios->head;
183 tail = pending_bios->tail;
8b712842 184 WARN_ON(pending && !tail);
8b712842
CM
185
186 /*
187 * if pending was null this time around, no bios need processing
188 * at all and we can stop. Otherwise it'll loop back up again
189 * and do an additional check so no bios are missed.
190 *
191 * device->running_pending is used to synchronize with the
192 * schedule_bio code.
193 */
ffbd517d
CM
194 if (device->pending_sync_bios.head == NULL &&
195 device->pending_bios.head == NULL) {
8b712842
CM
196 again = 0;
197 device->running_pending = 0;
ffbd517d
CM
198 } else {
199 again = 1;
200 device->running_pending = 1;
8b712842 201 }
ffbd517d
CM
202
203 pending_bios->head = NULL;
204 pending_bios->tail = NULL;
205
8b712842
CM
206 spin_unlock(&device->io_lock);
207
d397712b 208 while (pending) {
ffbd517d
CM
209
210 rmb();
d84275c9
CM
211 /* we want to work on both lists, but do more bios on the
212 * sync list than the regular list
213 */
214 if ((num_run > 32 &&
215 pending_bios != &device->pending_sync_bios &&
216 device->pending_sync_bios.head) ||
217 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
218 device->pending_bios.head)) {
ffbd517d
CM
219 spin_lock(&device->io_lock);
220 requeue_list(pending_bios, pending, tail);
221 goto loop_lock;
222 }
223
8b712842
CM
224 cur = pending;
225 pending = pending->bi_next;
226 cur->bi_next = NULL;
b64a2851
CM
227 atomic_dec(&fs_info->nr_async_bios);
228
229 if (atomic_read(&fs_info->nr_async_bios) < limit &&
230 waitqueue_active(&fs_info->async_submit_wait))
231 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
232
233 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 234
2ab1ba68
CM
235 /*
236 * if we're doing the sync list, record that our
237 * plug has some sync requests on it
238 *
239 * If we're doing the regular list and there are
240 * sync requests sitting around, unplug before
241 * we add more
242 */
243 if (pending_bios == &device->pending_sync_bios) {
244 sync_pending = 1;
245 } else if (sync_pending) {
246 blk_finish_plug(&plug);
247 blk_start_plug(&plug);
248 sync_pending = 0;
249 }
250
21adbd5c 251 btrfsic_submit_bio(cur->bi_rw, cur);
5ff7ba3a
CM
252 num_run++;
253 batch_run++;
7eaceacc 254 if (need_resched())
ffbd517d 255 cond_resched();
8b712842
CM
256
257 /*
258 * we made progress, there is more work to do and the bdi
259 * is now congested. Back off and let other work structs
260 * run instead
261 */
57fd5a5f 262 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 263 fs_info->fs_devices->open_devices > 1) {
b765ead5 264 struct io_context *ioc;
8b712842 265
b765ead5
CM
266 ioc = current->io_context;
267
268 /*
269 * the main goal here is that we don't want to
270 * block if we're going to be able to submit
271 * more requests without blocking.
272 *
273 * This code does two great things, it pokes into
274 * the elevator code from a filesystem _and_
275 * it makes assumptions about how batching works.
276 */
277 if (ioc && ioc->nr_batch_requests > 0 &&
278 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
279 (last_waited == 0 ||
280 ioc->last_waited == last_waited)) {
281 /*
282 * we want to go through our batch of
283 * requests and stop. So, we copy out
284 * the ioc->last_waited time and test
285 * against it before looping
286 */
287 last_waited = ioc->last_waited;
7eaceacc 288 if (need_resched())
ffbd517d 289 cond_resched();
b765ead5
CM
290 continue;
291 }
8b712842 292 spin_lock(&device->io_lock);
ffbd517d 293 requeue_list(pending_bios, pending, tail);
a6837051 294 device->running_pending = 1;
8b712842
CM
295
296 spin_unlock(&device->io_lock);
297 btrfs_requeue_work(&device->work);
298 goto done;
299 }
d85c8a6f
CM
300 /* unplug every 64 requests just for good measure */
301 if (batch_run % 64 == 0) {
302 blk_finish_plug(&plug);
303 blk_start_plug(&plug);
304 sync_pending = 0;
305 }
8b712842 306 }
ffbd517d 307
51684082
CM
308 cond_resched();
309 if (again)
310 goto loop;
311
312 spin_lock(&device->io_lock);
313 if (device->pending_bios.head || device->pending_sync_bios.head)
314 goto loop_lock;
315 spin_unlock(&device->io_lock);
316
8b712842 317done:
211588ad 318 blk_finish_plug(&plug);
8b712842
CM
319}
320
b2950863 321static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
322{
323 struct btrfs_device *device;
324
325 device = container_of(work, struct btrfs_device, work);
326 run_scheduled_bios(device);
327}
328
a1b32a59 329static noinline int device_list_add(const char *path,
8a4b83cc
CM
330 struct btrfs_super_block *disk_super,
331 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
332{
333 struct btrfs_device *device;
334 struct btrfs_fs_devices *fs_devices;
335 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 336 char *name;
8a4b83cc
CM
337
338 fs_devices = find_fsid(disk_super->fsid);
339 if (!fs_devices) {
515dc322 340 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
341 if (!fs_devices)
342 return -ENOMEM;
343 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 344 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
345 list_add(&fs_devices->list, &fs_uuids);
346 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
347 fs_devices->latest_devid = devid;
348 fs_devices->latest_trans = found_transid;
e5e9a520 349 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
350 device = NULL;
351 } else {
a443755f
CM
352 device = __find_device(&fs_devices->devices, devid,
353 disk_super->dev_item.uuid);
8a4b83cc
CM
354 }
355 if (!device) {
2b82032c
YZ
356 if (fs_devices->opened)
357 return -EBUSY;
358
8a4b83cc
CM
359 device = kzalloc(sizeof(*device), GFP_NOFS);
360 if (!device) {
361 /* we can safely leave the fs_devices entry around */
362 return -ENOMEM;
363 }
364 device->devid = devid;
8b712842 365 device->work.func = pending_bios_fn;
a443755f
CM
366 memcpy(device->uuid, disk_super->dev_item.uuid,
367 BTRFS_UUID_SIZE);
b248a415 368 spin_lock_init(&device->io_lock);
8a4b83cc
CM
369 device->name = kstrdup(path, GFP_NOFS);
370 if (!device->name) {
371 kfree(device);
372 return -ENOMEM;
373 }
2b82032c 374 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520 375
90519d66
AJ
376 /* init readahead state */
377 spin_lock_init(&device->reada_lock);
378 device->reada_curr_zone = NULL;
379 atomic_set(&device->reada_in_flight, 0);
380 device->reada_next = 0;
381 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
382 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
383
e5e9a520 384 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 385 list_add_rcu(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
386 mutex_unlock(&fs_devices->device_list_mutex);
387
2b82032c 388 device->fs_devices = fs_devices;
8a4b83cc 389 fs_devices->num_devices++;
cd02dca5 390 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
391 name = kstrdup(path, GFP_NOFS);
392 if (!name)
393 return -ENOMEM;
394 kfree(device->name);
395 device->name = name;
cd02dca5
CM
396 if (device->missing) {
397 fs_devices->missing_devices--;
398 device->missing = 0;
399 }
8a4b83cc
CM
400 }
401
402 if (found_transid > fs_devices->latest_trans) {
403 fs_devices->latest_devid = devid;
404 fs_devices->latest_trans = found_transid;
405 }
8a4b83cc
CM
406 *fs_devices_ret = fs_devices;
407 return 0;
408}
409
e4404d6e
YZ
410static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
411{
412 struct btrfs_fs_devices *fs_devices;
413 struct btrfs_device *device;
414 struct btrfs_device *orig_dev;
415
416 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
417 if (!fs_devices)
418 return ERR_PTR(-ENOMEM);
419
420 INIT_LIST_HEAD(&fs_devices->devices);
421 INIT_LIST_HEAD(&fs_devices->alloc_list);
422 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 423 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
424 fs_devices->latest_devid = orig->latest_devid;
425 fs_devices->latest_trans = orig->latest_trans;
426 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
427
46224705 428 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e
YZ
429 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
430 device = kzalloc(sizeof(*device), GFP_NOFS);
431 if (!device)
432 goto error;
433
434 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
435 if (!device->name) {
436 kfree(device);
e4404d6e 437 goto error;
fd2696f3 438 }
e4404d6e
YZ
439
440 device->devid = orig_dev->devid;
441 device->work.func = pending_bios_fn;
442 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
e4404d6e
YZ
443 spin_lock_init(&device->io_lock);
444 INIT_LIST_HEAD(&device->dev_list);
445 INIT_LIST_HEAD(&device->dev_alloc_list);
446
447 list_add(&device->dev_list, &fs_devices->devices);
448 device->fs_devices = fs_devices;
449 fs_devices->num_devices++;
450 }
451 return fs_devices;
452error:
453 free_fs_devices(fs_devices);
454 return ERR_PTR(-ENOMEM);
455}
456
143bede5 457void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
dfe25020 458{
c6e30871 459 struct btrfs_device *device, *next;
dfe25020 460
a6b0d5c8
CM
461 struct block_device *latest_bdev = NULL;
462 u64 latest_devid = 0;
463 u64 latest_transid = 0;
464
dfe25020
CM
465 mutex_lock(&uuid_mutex);
466again:
46224705 467 /* This is the initialized path, it is safe to release the devices. */
c6e30871 468 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8
CM
469 if (device->in_fs_metadata) {
470 if (!latest_transid ||
471 device->generation > latest_transid) {
472 latest_devid = device->devid;
473 latest_transid = device->generation;
474 latest_bdev = device->bdev;
475 }
2b82032c 476 continue;
a6b0d5c8 477 }
2b82032c
YZ
478
479 if (device->bdev) {
d4d77629 480 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
481 device->bdev = NULL;
482 fs_devices->open_devices--;
483 }
484 if (device->writeable) {
485 list_del_init(&device->dev_alloc_list);
486 device->writeable = 0;
487 fs_devices->rw_devices--;
488 }
e4404d6e
YZ
489 list_del_init(&device->dev_list);
490 fs_devices->num_devices--;
491 kfree(device->name);
492 kfree(device);
dfe25020 493 }
2b82032c
YZ
494
495 if (fs_devices->seed) {
496 fs_devices = fs_devices->seed;
2b82032c
YZ
497 goto again;
498 }
499
a6b0d5c8
CM
500 fs_devices->latest_bdev = latest_bdev;
501 fs_devices->latest_devid = latest_devid;
502 fs_devices->latest_trans = latest_transid;
503
dfe25020 504 mutex_unlock(&uuid_mutex);
dfe25020 505}
a0af469b 506
1f78160c
XG
507static void __free_device(struct work_struct *work)
508{
509 struct btrfs_device *device;
510
511 device = container_of(work, struct btrfs_device, rcu_work);
512
513 if (device->bdev)
514 blkdev_put(device->bdev, device->mode);
515
516 kfree(device->name);
517 kfree(device);
518}
519
520static void free_device(struct rcu_head *head)
521{
522 struct btrfs_device *device;
523
524 device = container_of(head, struct btrfs_device, rcu);
525
526 INIT_WORK(&device->rcu_work, __free_device);
527 schedule_work(&device->rcu_work);
528}
529
2b82032c 530static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 531{
8a4b83cc 532 struct btrfs_device *device;
e4404d6e 533
2b82032c
YZ
534 if (--fs_devices->opened > 0)
535 return 0;
8a4b83cc 536
c9513edb 537 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 538 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1f78160c
XG
539 struct btrfs_device *new_device;
540
541 if (device->bdev)
a0af469b 542 fs_devices->open_devices--;
1f78160c 543
2b82032c
YZ
544 if (device->writeable) {
545 list_del_init(&device->dev_alloc_list);
546 fs_devices->rw_devices--;
547 }
548
d5e2003c
JB
549 if (device->can_discard)
550 fs_devices->num_can_discard--;
551
1f78160c 552 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
79787eaa 553 BUG_ON(!new_device); /* -ENOMEM */
1f78160c
XG
554 memcpy(new_device, device, sizeof(*new_device));
555 new_device->name = kstrdup(device->name, GFP_NOFS);
79787eaa 556 BUG_ON(device->name && !new_device->name); /* -ENOMEM */
1f78160c
XG
557 new_device->bdev = NULL;
558 new_device->writeable = 0;
559 new_device->in_fs_metadata = 0;
d5e2003c 560 new_device->can_discard = 0;
1f78160c
XG
561 list_replace_rcu(&device->dev_list, &new_device->dev_list);
562
563 call_rcu(&device->rcu, free_device);
8a4b83cc 564 }
c9513edb
XG
565 mutex_unlock(&fs_devices->device_list_mutex);
566
e4404d6e
YZ
567 WARN_ON(fs_devices->open_devices);
568 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
569 fs_devices->opened = 0;
570 fs_devices->seeding = 0;
2b82032c 571
8a4b83cc
CM
572 return 0;
573}
574
2b82032c
YZ
575int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
576{
e4404d6e 577 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
578 int ret;
579
580 mutex_lock(&uuid_mutex);
581 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
582 if (!fs_devices->opened) {
583 seed_devices = fs_devices->seed;
584 fs_devices->seed = NULL;
585 }
2b82032c 586 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
587
588 while (seed_devices) {
589 fs_devices = seed_devices;
590 seed_devices = fs_devices->seed;
591 __btrfs_close_devices(fs_devices);
592 free_fs_devices(fs_devices);
593 }
2b82032c
YZ
594 return ret;
595}
596
e4404d6e
YZ
597static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
598 fmode_t flags, void *holder)
8a4b83cc 599{
d5e2003c 600 struct request_queue *q;
8a4b83cc
CM
601 struct block_device *bdev;
602 struct list_head *head = &fs_devices->devices;
8a4b83cc 603 struct btrfs_device *device;
a0af469b
CM
604 struct block_device *latest_bdev = NULL;
605 struct buffer_head *bh;
606 struct btrfs_super_block *disk_super;
607 u64 latest_devid = 0;
608 u64 latest_transid = 0;
a0af469b 609 u64 devid;
2b82032c 610 int seeding = 1;
a0af469b 611 int ret = 0;
8a4b83cc 612
d4d77629
TH
613 flags |= FMODE_EXCL;
614
c6e30871 615 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
616 if (device->bdev)
617 continue;
dfe25020
CM
618 if (!device->name)
619 continue;
620
d4d77629 621 bdev = blkdev_get_by_path(device->name, flags, holder);
8a4b83cc 622 if (IS_ERR(bdev)) {
d397712b 623 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 624 goto error;
8a4b83cc 625 }
3c4bb26b
CM
626 filemap_write_and_wait(bdev->bd_inode->i_mapping);
627 invalidate_bdev(bdev);
a061fc8d 628 set_blocksize(bdev, 4096);
a0af469b 629
a512bbf8 630 bh = btrfs_read_dev_super(bdev);
20bcd649 631 if (!bh)
a0af469b
CM
632 goto error_close;
633
634 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 635 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
636 if (devid != device->devid)
637 goto error_brelse;
638
2b82032c
YZ
639 if (memcmp(device->uuid, disk_super->dev_item.uuid,
640 BTRFS_UUID_SIZE))
641 goto error_brelse;
642
643 device->generation = btrfs_super_generation(disk_super);
644 if (!latest_transid || device->generation > latest_transid) {
a0af469b 645 latest_devid = devid;
2b82032c 646 latest_transid = device->generation;
a0af469b
CM
647 latest_bdev = bdev;
648 }
649
2b82032c
YZ
650 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
651 device->writeable = 0;
652 } else {
653 device->writeable = !bdev_read_only(bdev);
654 seeding = 0;
655 }
656
d5e2003c
JB
657 q = bdev_get_queue(bdev);
658 if (blk_queue_discard(q)) {
659 device->can_discard = 1;
660 fs_devices->num_can_discard++;
661 }
662
8a4b83cc 663 device->bdev = bdev;
dfe25020 664 device->in_fs_metadata = 0;
15916de8
CM
665 device->mode = flags;
666
c289811c
CM
667 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
668 fs_devices->rotating = 1;
669
a0af469b 670 fs_devices->open_devices++;
2b82032c
YZ
671 if (device->writeable) {
672 fs_devices->rw_devices++;
673 list_add(&device->dev_alloc_list,
674 &fs_devices->alloc_list);
675 }
4f6c9328 676 brelse(bh);
a0af469b 677 continue;
a061fc8d 678
a0af469b
CM
679error_brelse:
680 brelse(bh);
681error_close:
d4d77629 682 blkdev_put(bdev, flags);
a0af469b
CM
683error:
684 continue;
8a4b83cc 685 }
a0af469b 686 if (fs_devices->open_devices == 0) {
20bcd649 687 ret = -EINVAL;
a0af469b
CM
688 goto out;
689 }
2b82032c
YZ
690 fs_devices->seeding = seeding;
691 fs_devices->opened = 1;
a0af469b
CM
692 fs_devices->latest_bdev = latest_bdev;
693 fs_devices->latest_devid = latest_devid;
694 fs_devices->latest_trans = latest_transid;
2b82032c 695 fs_devices->total_rw_bytes = 0;
a0af469b 696out:
2b82032c
YZ
697 return ret;
698}
699
700int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 701 fmode_t flags, void *holder)
2b82032c
YZ
702{
703 int ret;
704
705 mutex_lock(&uuid_mutex);
706 if (fs_devices->opened) {
e4404d6e
YZ
707 fs_devices->opened++;
708 ret = 0;
2b82032c 709 } else {
15916de8 710 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 711 }
8a4b83cc 712 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
713 return ret;
714}
715
97288f2c 716int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
717 struct btrfs_fs_devices **fs_devices_ret)
718{
719 struct btrfs_super_block *disk_super;
720 struct block_device *bdev;
721 struct buffer_head *bh;
722 int ret;
723 u64 devid;
f2984462 724 u64 transid;
8a4b83cc 725
d4d77629
TH
726 flags |= FMODE_EXCL;
727 bdev = blkdev_get_by_path(path, flags, holder);
8a4b83cc
CM
728
729 if (IS_ERR(bdev)) {
8a4b83cc
CM
730 ret = PTR_ERR(bdev);
731 goto error;
732 }
733
10f6327b 734 mutex_lock(&uuid_mutex);
8a4b83cc
CM
735 ret = set_blocksize(bdev, 4096);
736 if (ret)
737 goto error_close;
a512bbf8 738 bh = btrfs_read_dev_super(bdev);
8a4b83cc 739 if (!bh) {
20b45077 740 ret = -EINVAL;
8a4b83cc
CM
741 goto error_close;
742 }
743 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 744 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 745 transid = btrfs_super_generation(disk_super);
7ae9c09d 746 if (disk_super->label[0])
d397712b 747 printk(KERN_INFO "device label %s ", disk_super->label);
22b63a29
ID
748 else
749 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
119e10cf 750 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 751 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
752 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
753
8a4b83cc
CM
754 brelse(bh);
755error_close:
10f6327b 756 mutex_unlock(&uuid_mutex);
d4d77629 757 blkdev_put(bdev, flags);
8a4b83cc 758error:
8a4b83cc
CM
759 return ret;
760}
0b86a832 761
6d07bcec
MX
762/* helper to account the used device space in the range */
763int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
764 u64 end, u64 *length)
765{
766 struct btrfs_key key;
767 struct btrfs_root *root = device->dev_root;
768 struct btrfs_dev_extent *dev_extent;
769 struct btrfs_path *path;
770 u64 extent_end;
771 int ret;
772 int slot;
773 struct extent_buffer *l;
774
775 *length = 0;
776
777 if (start >= device->total_bytes)
778 return 0;
779
780 path = btrfs_alloc_path();
781 if (!path)
782 return -ENOMEM;
783 path->reada = 2;
784
785 key.objectid = device->devid;
786 key.offset = start;
787 key.type = BTRFS_DEV_EXTENT_KEY;
788
789 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
790 if (ret < 0)
791 goto out;
792 if (ret > 0) {
793 ret = btrfs_previous_item(root, path, key.objectid, key.type);
794 if (ret < 0)
795 goto out;
796 }
797
798 while (1) {
799 l = path->nodes[0];
800 slot = path->slots[0];
801 if (slot >= btrfs_header_nritems(l)) {
802 ret = btrfs_next_leaf(root, path);
803 if (ret == 0)
804 continue;
805 if (ret < 0)
806 goto out;
807
808 break;
809 }
810 btrfs_item_key_to_cpu(l, &key, slot);
811
812 if (key.objectid < device->devid)
813 goto next;
814
815 if (key.objectid > device->devid)
816 break;
817
818 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
819 goto next;
820
821 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
822 extent_end = key.offset + btrfs_dev_extent_length(l,
823 dev_extent);
824 if (key.offset <= start && extent_end > end) {
825 *length = end - start + 1;
826 break;
827 } else if (key.offset <= start && extent_end > start)
828 *length += extent_end - start;
829 else if (key.offset > start && extent_end <= end)
830 *length += extent_end - key.offset;
831 else if (key.offset > start && key.offset <= end) {
832 *length += end - key.offset + 1;
833 break;
834 } else if (key.offset > end)
835 break;
836
837next:
838 path->slots[0]++;
839 }
840 ret = 0;
841out:
842 btrfs_free_path(path);
843 return ret;
844}
845
0b86a832 846/*
7bfc837d 847 * find_free_dev_extent - find free space in the specified device
7bfc837d
MX
848 * @device: the device which we search the free space in
849 * @num_bytes: the size of the free space that we need
850 * @start: store the start of the free space.
851 * @len: the size of the free space. that we find, or the size of the max
852 * free space if we don't find suitable free space
853 *
0b86a832
CM
854 * this uses a pretty simple search, the expectation is that it is
855 * called very infrequently and that a given device has a small number
856 * of extents
7bfc837d
MX
857 *
858 * @start is used to store the start of the free space if we find. But if we
859 * don't find suitable free space, it will be used to store the start position
860 * of the max free space.
861 *
862 * @len is used to store the size of the free space that we find.
863 * But if we don't find suitable free space, it is used to store the size of
864 * the max free space.
0b86a832 865 */
125ccb0a 866int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
7bfc837d 867 u64 *start, u64 *len)
0b86a832
CM
868{
869 struct btrfs_key key;
870 struct btrfs_root *root = device->dev_root;
7bfc837d 871 struct btrfs_dev_extent *dev_extent;
2b82032c 872 struct btrfs_path *path;
7bfc837d
MX
873 u64 hole_size;
874 u64 max_hole_start;
875 u64 max_hole_size;
876 u64 extent_end;
877 u64 search_start;
0b86a832
CM
878 u64 search_end = device->total_bytes;
879 int ret;
7bfc837d 880 int slot;
0b86a832
CM
881 struct extent_buffer *l;
882
0b86a832
CM
883 /* FIXME use last free of some kind */
884
8a4b83cc
CM
885 /* we don't want to overwrite the superblock on the drive,
886 * so we make sure to start at an offset of at least 1MB
887 */
a9c9bf68 888 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
8f18cf13 889
7bfc837d
MX
890 max_hole_start = search_start;
891 max_hole_size = 0;
38c01b96 892 hole_size = 0;
7bfc837d
MX
893
894 if (search_start >= search_end) {
895 ret = -ENOSPC;
896 goto error;
897 }
898
899 path = btrfs_alloc_path();
900 if (!path) {
901 ret = -ENOMEM;
902 goto error;
903 }
904 path->reada = 2;
905
0b86a832
CM
906 key.objectid = device->devid;
907 key.offset = search_start;
908 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 909
125ccb0a 910 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 911 if (ret < 0)
7bfc837d 912 goto out;
1fcbac58
YZ
913 if (ret > 0) {
914 ret = btrfs_previous_item(root, path, key.objectid, key.type);
915 if (ret < 0)
7bfc837d 916 goto out;
1fcbac58 917 }
7bfc837d 918
0b86a832
CM
919 while (1) {
920 l = path->nodes[0];
921 slot = path->slots[0];
922 if (slot >= btrfs_header_nritems(l)) {
923 ret = btrfs_next_leaf(root, path);
924 if (ret == 0)
925 continue;
926 if (ret < 0)
7bfc837d
MX
927 goto out;
928
929 break;
0b86a832
CM
930 }
931 btrfs_item_key_to_cpu(l, &key, slot);
932
933 if (key.objectid < device->devid)
934 goto next;
935
936 if (key.objectid > device->devid)
7bfc837d 937 break;
0b86a832 938
7bfc837d
MX
939 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
940 goto next;
9779b72f 941
7bfc837d
MX
942 if (key.offset > search_start) {
943 hole_size = key.offset - search_start;
9779b72f 944
7bfc837d
MX
945 if (hole_size > max_hole_size) {
946 max_hole_start = search_start;
947 max_hole_size = hole_size;
948 }
9779b72f 949
7bfc837d
MX
950 /*
951 * If this free space is greater than which we need,
952 * it must be the max free space that we have found
953 * until now, so max_hole_start must point to the start
954 * of this free space and the length of this free space
955 * is stored in max_hole_size. Thus, we return
956 * max_hole_start and max_hole_size and go back to the
957 * caller.
958 */
959 if (hole_size >= num_bytes) {
960 ret = 0;
961 goto out;
0b86a832
CM
962 }
963 }
0b86a832 964
0b86a832 965 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
966 extent_end = key.offset + btrfs_dev_extent_length(l,
967 dev_extent);
968 if (extent_end > search_start)
969 search_start = extent_end;
0b86a832
CM
970next:
971 path->slots[0]++;
972 cond_resched();
973 }
0b86a832 974
38c01b96 975 /*
976 * At this point, search_start should be the end of
977 * allocated dev extents, and when shrinking the device,
978 * search_end may be smaller than search_start.
979 */
980 if (search_end > search_start)
981 hole_size = search_end - search_start;
982
7bfc837d
MX
983 if (hole_size > max_hole_size) {
984 max_hole_start = search_start;
985 max_hole_size = hole_size;
0b86a832 986 }
0b86a832 987
7bfc837d
MX
988 /* See above. */
989 if (hole_size < num_bytes)
990 ret = -ENOSPC;
991 else
992 ret = 0;
993
994out:
2b82032c 995 btrfs_free_path(path);
7bfc837d
MX
996error:
997 *start = max_hole_start;
b2117a39 998 if (len)
7bfc837d 999 *len = max_hole_size;
0b86a832
CM
1000 return ret;
1001}
1002
b2950863 1003static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
1004 struct btrfs_device *device,
1005 u64 start)
1006{
1007 int ret;
1008 struct btrfs_path *path;
1009 struct btrfs_root *root = device->dev_root;
1010 struct btrfs_key key;
a061fc8d
CM
1011 struct btrfs_key found_key;
1012 struct extent_buffer *leaf = NULL;
1013 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1014
1015 path = btrfs_alloc_path();
1016 if (!path)
1017 return -ENOMEM;
1018
1019 key.objectid = device->devid;
1020 key.offset = start;
1021 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1022again:
8f18cf13 1023 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1024 if (ret > 0) {
1025 ret = btrfs_previous_item(root, path, key.objectid,
1026 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1027 if (ret)
1028 goto out;
a061fc8d
CM
1029 leaf = path->nodes[0];
1030 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1031 extent = btrfs_item_ptr(leaf, path->slots[0],
1032 struct btrfs_dev_extent);
1033 BUG_ON(found_key.offset > start || found_key.offset +
1034 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1035 key = found_key;
1036 btrfs_release_path(path);
1037 goto again;
a061fc8d
CM
1038 } else if (ret == 0) {
1039 leaf = path->nodes[0];
1040 extent = btrfs_item_ptr(leaf, path->slots[0],
1041 struct btrfs_dev_extent);
79787eaa
JM
1042 } else {
1043 btrfs_error(root->fs_info, ret, "Slot search failed");
1044 goto out;
a061fc8d 1045 }
8f18cf13 1046
2bf64758
JB
1047 if (device->bytes_used > 0) {
1048 u64 len = btrfs_dev_extent_length(leaf, extent);
1049 device->bytes_used -= len;
1050 spin_lock(&root->fs_info->free_chunk_lock);
1051 root->fs_info->free_chunk_space += len;
1052 spin_unlock(&root->fs_info->free_chunk_lock);
1053 }
8f18cf13 1054 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1055 if (ret) {
1056 btrfs_error(root->fs_info, ret,
1057 "Failed to remove dev extent item");
1058 }
b0b802d7 1059out:
8f18cf13
CM
1060 btrfs_free_path(path);
1061 return ret;
1062}
1063
2b82032c 1064int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1065 struct btrfs_device *device,
e17cade2 1066 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1067 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1068{
1069 int ret;
1070 struct btrfs_path *path;
1071 struct btrfs_root *root = device->dev_root;
1072 struct btrfs_dev_extent *extent;
1073 struct extent_buffer *leaf;
1074 struct btrfs_key key;
1075
dfe25020 1076 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1077 path = btrfs_alloc_path();
1078 if (!path)
1079 return -ENOMEM;
1080
0b86a832 1081 key.objectid = device->devid;
2b82032c 1082 key.offset = start;
0b86a832
CM
1083 key.type = BTRFS_DEV_EXTENT_KEY;
1084 ret = btrfs_insert_empty_item(trans, root, path, &key,
1085 sizeof(*extent));
2cdcecbc
MF
1086 if (ret)
1087 goto out;
0b86a832
CM
1088
1089 leaf = path->nodes[0];
1090 extent = btrfs_item_ptr(leaf, path->slots[0],
1091 struct btrfs_dev_extent);
e17cade2
CM
1092 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1093 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1094 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1095
1096 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1097 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1098 BTRFS_UUID_SIZE);
1099
0b86a832
CM
1100 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1101 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1102out:
0b86a832
CM
1103 btrfs_free_path(path);
1104 return ret;
1105}
1106
a1b32a59
CM
1107static noinline int find_next_chunk(struct btrfs_root *root,
1108 u64 objectid, u64 *offset)
0b86a832
CM
1109{
1110 struct btrfs_path *path;
1111 int ret;
1112 struct btrfs_key key;
e17cade2 1113 struct btrfs_chunk *chunk;
0b86a832
CM
1114 struct btrfs_key found_key;
1115
1116 path = btrfs_alloc_path();
92b8e897
MF
1117 if (!path)
1118 return -ENOMEM;
0b86a832 1119
e17cade2 1120 key.objectid = objectid;
0b86a832
CM
1121 key.offset = (u64)-1;
1122 key.type = BTRFS_CHUNK_ITEM_KEY;
1123
1124 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1125 if (ret < 0)
1126 goto error;
1127
79787eaa 1128 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1129
1130 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1131 if (ret) {
e17cade2 1132 *offset = 0;
0b86a832
CM
1133 } else {
1134 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1135 path->slots[0]);
e17cade2
CM
1136 if (found_key.objectid != objectid)
1137 *offset = 0;
1138 else {
1139 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1140 struct btrfs_chunk);
1141 *offset = found_key.offset +
1142 btrfs_chunk_length(path->nodes[0], chunk);
1143 }
0b86a832
CM
1144 }
1145 ret = 0;
1146error:
1147 btrfs_free_path(path);
1148 return ret;
1149}
1150
2b82032c 1151static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1152{
1153 int ret;
1154 struct btrfs_key key;
1155 struct btrfs_key found_key;
2b82032c
YZ
1156 struct btrfs_path *path;
1157
1158 root = root->fs_info->chunk_root;
1159
1160 path = btrfs_alloc_path();
1161 if (!path)
1162 return -ENOMEM;
0b86a832
CM
1163
1164 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1165 key.type = BTRFS_DEV_ITEM_KEY;
1166 key.offset = (u64)-1;
1167
1168 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1169 if (ret < 0)
1170 goto error;
1171
79787eaa 1172 BUG_ON(ret == 0); /* Corruption */
0b86a832
CM
1173
1174 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1175 BTRFS_DEV_ITEM_KEY);
1176 if (ret) {
1177 *objectid = 1;
1178 } else {
1179 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1180 path->slots[0]);
1181 *objectid = found_key.offset + 1;
1182 }
1183 ret = 0;
1184error:
2b82032c 1185 btrfs_free_path(path);
0b86a832
CM
1186 return ret;
1187}
1188
1189/*
1190 * the device information is stored in the chunk root
1191 * the btrfs_device struct should be fully filled in
1192 */
1193int btrfs_add_device(struct btrfs_trans_handle *trans,
1194 struct btrfs_root *root,
1195 struct btrfs_device *device)
1196{
1197 int ret;
1198 struct btrfs_path *path;
1199 struct btrfs_dev_item *dev_item;
1200 struct extent_buffer *leaf;
1201 struct btrfs_key key;
1202 unsigned long ptr;
0b86a832
CM
1203
1204 root = root->fs_info->chunk_root;
1205
1206 path = btrfs_alloc_path();
1207 if (!path)
1208 return -ENOMEM;
1209
0b86a832
CM
1210 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1211 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1212 key.offset = device->devid;
0b86a832
CM
1213
1214 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1215 sizeof(*dev_item));
0b86a832
CM
1216 if (ret)
1217 goto out;
1218
1219 leaf = path->nodes[0];
1220 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1221
1222 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1223 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1224 btrfs_set_device_type(leaf, dev_item, device->type);
1225 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1226 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1227 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1228 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1229 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1230 btrfs_set_device_group(leaf, dev_item, 0);
1231 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1232 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1233 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1234
0b86a832 1235 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1236 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1237 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1238 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1239 btrfs_mark_buffer_dirty(leaf);
0b86a832 1240
2b82032c 1241 ret = 0;
0b86a832
CM
1242out:
1243 btrfs_free_path(path);
1244 return ret;
1245}
8f18cf13 1246
a061fc8d
CM
1247static int btrfs_rm_dev_item(struct btrfs_root *root,
1248 struct btrfs_device *device)
1249{
1250 int ret;
1251 struct btrfs_path *path;
a061fc8d 1252 struct btrfs_key key;
a061fc8d
CM
1253 struct btrfs_trans_handle *trans;
1254
1255 root = root->fs_info->chunk_root;
1256
1257 path = btrfs_alloc_path();
1258 if (!path)
1259 return -ENOMEM;
1260
a22285a6 1261 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1262 if (IS_ERR(trans)) {
1263 btrfs_free_path(path);
1264 return PTR_ERR(trans);
1265 }
a061fc8d
CM
1266 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1267 key.type = BTRFS_DEV_ITEM_KEY;
1268 key.offset = device->devid;
7d9eb12c 1269 lock_chunks(root);
a061fc8d
CM
1270
1271 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1272 if (ret < 0)
1273 goto out;
1274
1275 if (ret > 0) {
1276 ret = -ENOENT;
1277 goto out;
1278 }
1279
1280 ret = btrfs_del_item(trans, root, path);
1281 if (ret)
1282 goto out;
a061fc8d
CM
1283out:
1284 btrfs_free_path(path);
7d9eb12c 1285 unlock_chunks(root);
a061fc8d
CM
1286 btrfs_commit_transaction(trans, root);
1287 return ret;
1288}
1289
1290int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1291{
1292 struct btrfs_device *device;
2b82032c 1293 struct btrfs_device *next_device;
a061fc8d 1294 struct block_device *bdev;
dfe25020 1295 struct buffer_head *bh = NULL;
a061fc8d 1296 struct btrfs_super_block *disk_super;
1f78160c 1297 struct btrfs_fs_devices *cur_devices;
a061fc8d
CM
1298 u64 all_avail;
1299 u64 devid;
2b82032c
YZ
1300 u64 num_devices;
1301 u8 *dev_uuid;
a061fc8d 1302 int ret = 0;
1f78160c 1303 bool clear_super = false;
a061fc8d 1304
a061fc8d
CM
1305 mutex_lock(&uuid_mutex);
1306
1307 all_avail = root->fs_info->avail_data_alloc_bits |
1308 root->fs_info->avail_system_alloc_bits |
1309 root->fs_info->avail_metadata_alloc_bits;
1310
1311 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1312 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1313 printk(KERN_ERR "btrfs: unable to go below four devices "
1314 "on raid10\n");
a061fc8d
CM
1315 ret = -EINVAL;
1316 goto out;
1317 }
1318
1319 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1320 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1321 printk(KERN_ERR "btrfs: unable to go below two "
1322 "devices on raid1\n");
a061fc8d
CM
1323 ret = -EINVAL;
1324 goto out;
1325 }
1326
dfe25020 1327 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1328 struct list_head *devices;
1329 struct btrfs_device *tmp;
a061fc8d 1330
dfe25020
CM
1331 device = NULL;
1332 devices = &root->fs_info->fs_devices->devices;
46224705
XG
1333 /*
1334 * It is safe to read the devices since the volume_mutex
1335 * is held.
1336 */
c6e30871 1337 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1338 if (tmp->in_fs_metadata && !tmp->bdev) {
1339 device = tmp;
1340 break;
1341 }
1342 }
1343 bdev = NULL;
1344 bh = NULL;
1345 disk_super = NULL;
1346 if (!device) {
d397712b
CM
1347 printk(KERN_ERR "btrfs: no missing devices found to "
1348 "remove\n");
dfe25020
CM
1349 goto out;
1350 }
dfe25020 1351 } else {
d4d77629
TH
1352 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1353 root->fs_info->bdev_holder);
dfe25020
CM
1354 if (IS_ERR(bdev)) {
1355 ret = PTR_ERR(bdev);
1356 goto out;
1357 }
a061fc8d 1358
2b82032c 1359 set_blocksize(bdev, 4096);
3c4bb26b 1360 invalidate_bdev(bdev);
a512bbf8 1361 bh = btrfs_read_dev_super(bdev);
dfe25020 1362 if (!bh) {
20b45077 1363 ret = -EINVAL;
dfe25020
CM
1364 goto error_close;
1365 }
1366 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1367 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1368 dev_uuid = disk_super->dev_item.uuid;
1369 device = btrfs_find_device(root, devid, dev_uuid,
1370 disk_super->fsid);
dfe25020
CM
1371 if (!device) {
1372 ret = -ENOENT;
1373 goto error_brelse;
1374 }
2b82032c 1375 }
dfe25020 1376
2b82032c 1377 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1378 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1379 "device\n");
2b82032c
YZ
1380 ret = -EINVAL;
1381 goto error_brelse;
1382 }
1383
1384 if (device->writeable) {
0c1daee0 1385 lock_chunks(root);
2b82032c 1386 list_del_init(&device->dev_alloc_list);
0c1daee0 1387 unlock_chunks(root);
2b82032c 1388 root->fs_info->fs_devices->rw_devices--;
1f78160c 1389 clear_super = true;
dfe25020 1390 }
a061fc8d
CM
1391
1392 ret = btrfs_shrink_device(device, 0);
1393 if (ret)
9b3517e9 1394 goto error_undo;
a061fc8d 1395
a061fc8d
CM
1396 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1397 if (ret)
9b3517e9 1398 goto error_undo;
a061fc8d 1399
2bf64758
JB
1400 spin_lock(&root->fs_info->free_chunk_lock);
1401 root->fs_info->free_chunk_space = device->total_bytes -
1402 device->bytes_used;
1403 spin_unlock(&root->fs_info->free_chunk_lock);
1404
2b82032c 1405 device->in_fs_metadata = 0;
a2de733c 1406 btrfs_scrub_cancel_dev(root, device);
e5e9a520
CM
1407
1408 /*
1409 * the device list mutex makes sure that we don't change
1410 * the device list while someone else is writing out all
1411 * the device supers.
1412 */
1f78160c
XG
1413
1414 cur_devices = device->fs_devices;
e5e9a520 1415 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1416 list_del_rcu(&device->dev_list);
e5e9a520 1417
e4404d6e 1418 device->fs_devices->num_devices--;
2b82032c 1419
cd02dca5
CM
1420 if (device->missing)
1421 root->fs_info->fs_devices->missing_devices--;
1422
2b82032c
YZ
1423 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1424 struct btrfs_device, dev_list);
1425 if (device->bdev == root->fs_info->sb->s_bdev)
1426 root->fs_info->sb->s_bdev = next_device->bdev;
1427 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1428 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1429
1f78160c 1430 if (device->bdev)
e4404d6e 1431 device->fs_devices->open_devices--;
1f78160c
XG
1432
1433 call_rcu(&device->rcu, free_device);
1434 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1435
6c41761f
DS
1436 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1437 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
2b82032c 1438
1f78160c 1439 if (cur_devices->open_devices == 0) {
e4404d6e
YZ
1440 struct btrfs_fs_devices *fs_devices;
1441 fs_devices = root->fs_info->fs_devices;
1442 while (fs_devices) {
1f78160c 1443 if (fs_devices->seed == cur_devices)
e4404d6e
YZ
1444 break;
1445 fs_devices = fs_devices->seed;
2b82032c 1446 }
1f78160c
XG
1447 fs_devices->seed = cur_devices->seed;
1448 cur_devices->seed = NULL;
0c1daee0 1449 lock_chunks(root);
1f78160c 1450 __btrfs_close_devices(cur_devices);
0c1daee0 1451 unlock_chunks(root);
1f78160c 1452 free_fs_devices(cur_devices);
2b82032c
YZ
1453 }
1454
1455 /*
1456 * at this point, the device is zero sized. We want to
1457 * remove it from the devices list and zero out the old super
1458 */
1f78160c 1459 if (clear_super) {
dfe25020
CM
1460 /* make sure this device isn't detected as part of
1461 * the FS anymore
1462 */
1463 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1464 set_buffer_dirty(bh);
1465 sync_dirty_buffer(bh);
dfe25020 1466 }
a061fc8d 1467
a061fc8d 1468 ret = 0;
a061fc8d
CM
1469
1470error_brelse:
1471 brelse(bh);
1472error_close:
dfe25020 1473 if (bdev)
e525fd89 1474 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
a061fc8d
CM
1475out:
1476 mutex_unlock(&uuid_mutex);
a061fc8d 1477 return ret;
9b3517e9
ID
1478error_undo:
1479 if (device->writeable) {
0c1daee0 1480 lock_chunks(root);
9b3517e9
ID
1481 list_add(&device->dev_alloc_list,
1482 &root->fs_info->fs_devices->alloc_list);
0c1daee0 1483 unlock_chunks(root);
9b3517e9
ID
1484 root->fs_info->fs_devices->rw_devices++;
1485 }
1486 goto error_brelse;
a061fc8d
CM
1487}
1488
2b82032c
YZ
1489/*
1490 * does all the dirty work required for changing file system's UUID.
1491 */
125ccb0a 1492static int btrfs_prepare_sprout(struct btrfs_root *root)
2b82032c
YZ
1493{
1494 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1495 struct btrfs_fs_devices *old_devices;
e4404d6e 1496 struct btrfs_fs_devices *seed_devices;
6c41761f 1497 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2b82032c
YZ
1498 struct btrfs_device *device;
1499 u64 super_flags;
1500
1501 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1502 if (!fs_devices->seeding)
2b82032c
YZ
1503 return -EINVAL;
1504
e4404d6e
YZ
1505 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1506 if (!seed_devices)
2b82032c
YZ
1507 return -ENOMEM;
1508
e4404d6e
YZ
1509 old_devices = clone_fs_devices(fs_devices);
1510 if (IS_ERR(old_devices)) {
1511 kfree(seed_devices);
1512 return PTR_ERR(old_devices);
2b82032c 1513 }
e4404d6e 1514
2b82032c
YZ
1515 list_add(&old_devices->list, &fs_uuids);
1516
e4404d6e
YZ
1517 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1518 seed_devices->opened = 1;
1519 INIT_LIST_HEAD(&seed_devices->devices);
1520 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1521 mutex_init(&seed_devices->device_list_mutex);
c9513edb
XG
1522
1523 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c
XG
1524 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1525 synchronize_rcu);
c9513edb
XG
1526 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1527
e4404d6e
YZ
1528 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1529 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1530 device->fs_devices = seed_devices;
1531 }
1532
2b82032c
YZ
1533 fs_devices->seeding = 0;
1534 fs_devices->num_devices = 0;
1535 fs_devices->open_devices = 0;
e4404d6e 1536 fs_devices->seed = seed_devices;
2b82032c
YZ
1537
1538 generate_random_uuid(fs_devices->fsid);
1539 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1540 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1541 super_flags = btrfs_super_flags(disk_super) &
1542 ~BTRFS_SUPER_FLAG_SEEDING;
1543 btrfs_set_super_flags(disk_super, super_flags);
1544
1545 return 0;
1546}
1547
1548/*
1549 * strore the expected generation for seed devices in device items.
1550 */
1551static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1552 struct btrfs_root *root)
1553{
1554 struct btrfs_path *path;
1555 struct extent_buffer *leaf;
1556 struct btrfs_dev_item *dev_item;
1557 struct btrfs_device *device;
1558 struct btrfs_key key;
1559 u8 fs_uuid[BTRFS_UUID_SIZE];
1560 u8 dev_uuid[BTRFS_UUID_SIZE];
1561 u64 devid;
1562 int ret;
1563
1564 path = btrfs_alloc_path();
1565 if (!path)
1566 return -ENOMEM;
1567
1568 root = root->fs_info->chunk_root;
1569 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1570 key.offset = 0;
1571 key.type = BTRFS_DEV_ITEM_KEY;
1572
1573 while (1) {
1574 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1575 if (ret < 0)
1576 goto error;
1577
1578 leaf = path->nodes[0];
1579next_slot:
1580 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1581 ret = btrfs_next_leaf(root, path);
1582 if (ret > 0)
1583 break;
1584 if (ret < 0)
1585 goto error;
1586 leaf = path->nodes[0];
1587 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 1588 btrfs_release_path(path);
2b82032c
YZ
1589 continue;
1590 }
1591
1592 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1593 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1594 key.type != BTRFS_DEV_ITEM_KEY)
1595 break;
1596
1597 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1598 struct btrfs_dev_item);
1599 devid = btrfs_device_id(leaf, dev_item);
1600 read_extent_buffer(leaf, dev_uuid,
1601 (unsigned long)btrfs_device_uuid(dev_item),
1602 BTRFS_UUID_SIZE);
1603 read_extent_buffer(leaf, fs_uuid,
1604 (unsigned long)btrfs_device_fsid(dev_item),
1605 BTRFS_UUID_SIZE);
1606 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
79787eaa 1607 BUG_ON(!device); /* Logic error */
2b82032c
YZ
1608
1609 if (device->fs_devices->seeding) {
1610 btrfs_set_device_generation(leaf, dev_item,
1611 device->generation);
1612 btrfs_mark_buffer_dirty(leaf);
1613 }
1614
1615 path->slots[0]++;
1616 goto next_slot;
1617 }
1618 ret = 0;
1619error:
1620 btrfs_free_path(path);
1621 return ret;
1622}
1623
788f20eb
CM
1624int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1625{
d5e2003c 1626 struct request_queue *q;
788f20eb
CM
1627 struct btrfs_trans_handle *trans;
1628 struct btrfs_device *device;
1629 struct block_device *bdev;
788f20eb 1630 struct list_head *devices;
2b82032c 1631 struct super_block *sb = root->fs_info->sb;
788f20eb 1632 u64 total_bytes;
2b82032c 1633 int seeding_dev = 0;
788f20eb
CM
1634 int ret = 0;
1635
2b82032c 1636 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
f8c5d0b4 1637 return -EROFS;
788f20eb 1638
a5d16333 1639 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
d4d77629 1640 root->fs_info->bdev_holder);
7f59203a
JB
1641 if (IS_ERR(bdev))
1642 return PTR_ERR(bdev);
a2135011 1643
2b82032c
YZ
1644 if (root->fs_info->fs_devices->seeding) {
1645 seeding_dev = 1;
1646 down_write(&sb->s_umount);
1647 mutex_lock(&uuid_mutex);
1648 }
1649
8c8bee1d 1650 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 1651
788f20eb 1652 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1653 /*
1654 * we have the volume lock, so we don't need the extra
1655 * device list mutex while reading the list here.
1656 */
c6e30871 1657 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1658 if (device->bdev == bdev) {
1659 ret = -EEXIST;
2b82032c 1660 goto error;
788f20eb
CM
1661 }
1662 }
1663
1664 device = kzalloc(sizeof(*device), GFP_NOFS);
1665 if (!device) {
1666 /* we can safely leave the fs_devices entry around */
1667 ret = -ENOMEM;
2b82032c 1668 goto error;
788f20eb
CM
1669 }
1670
788f20eb
CM
1671 device->name = kstrdup(device_path, GFP_NOFS);
1672 if (!device->name) {
1673 kfree(device);
2b82032c
YZ
1674 ret = -ENOMEM;
1675 goto error;
788f20eb 1676 }
2b82032c
YZ
1677
1678 ret = find_next_devid(root, &device->devid);
1679 if (ret) {
67100f25 1680 kfree(device->name);
2b82032c
YZ
1681 kfree(device);
1682 goto error;
1683 }
1684
a22285a6 1685 trans = btrfs_start_transaction(root, 0);
98d5dc13 1686 if (IS_ERR(trans)) {
67100f25 1687 kfree(device->name);
98d5dc13
TI
1688 kfree(device);
1689 ret = PTR_ERR(trans);
1690 goto error;
1691 }
1692
2b82032c
YZ
1693 lock_chunks(root);
1694
d5e2003c
JB
1695 q = bdev_get_queue(bdev);
1696 if (blk_queue_discard(q))
1697 device->can_discard = 1;
2b82032c
YZ
1698 device->writeable = 1;
1699 device->work.func = pending_bios_fn;
1700 generate_random_uuid(device->uuid);
1701 spin_lock_init(&device->io_lock);
1702 device->generation = trans->transid;
788f20eb
CM
1703 device->io_width = root->sectorsize;
1704 device->io_align = root->sectorsize;
1705 device->sector_size = root->sectorsize;
1706 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1707 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1708 device->dev_root = root->fs_info->dev_root;
1709 device->bdev = bdev;
dfe25020 1710 device->in_fs_metadata = 1;
fb01aa85 1711 device->mode = FMODE_EXCL;
2b82032c 1712 set_blocksize(device->bdev, 4096);
788f20eb 1713
2b82032c
YZ
1714 if (seeding_dev) {
1715 sb->s_flags &= ~MS_RDONLY;
125ccb0a 1716 ret = btrfs_prepare_sprout(root);
79787eaa 1717 BUG_ON(ret); /* -ENOMEM */
2b82032c 1718 }
788f20eb 1719
2b82032c 1720 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1721
1722 /*
1723 * we don't want write_supers to jump in here with our device
1724 * half setup
1725 */
1726 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1f78160c 1727 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2b82032c
YZ
1728 list_add(&device->dev_alloc_list,
1729 &root->fs_info->fs_devices->alloc_list);
1730 root->fs_info->fs_devices->num_devices++;
1731 root->fs_info->fs_devices->open_devices++;
1732 root->fs_info->fs_devices->rw_devices++;
d5e2003c
JB
1733 if (device->can_discard)
1734 root->fs_info->fs_devices->num_can_discard++;
2b82032c 1735 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1736
2bf64758
JB
1737 spin_lock(&root->fs_info->free_chunk_lock);
1738 root->fs_info->free_chunk_space += device->total_bytes;
1739 spin_unlock(&root->fs_info->free_chunk_lock);
1740
c289811c
CM
1741 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1742 root->fs_info->fs_devices->rotating = 1;
1743
6c41761f
DS
1744 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1745 btrfs_set_super_total_bytes(root->fs_info->super_copy,
788f20eb
CM
1746 total_bytes + device->total_bytes);
1747
6c41761f
DS
1748 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1749 btrfs_set_super_num_devices(root->fs_info->super_copy,
788f20eb 1750 total_bytes + 1);
e5e9a520 1751 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1752
2b82032c
YZ
1753 if (seeding_dev) {
1754 ret = init_first_rw_device(trans, root, device);
79787eaa
JM
1755 if (ret)
1756 goto error_trans;
2b82032c 1757 ret = btrfs_finish_sprout(trans, root);
79787eaa
JM
1758 if (ret)
1759 goto error_trans;
2b82032c
YZ
1760 } else {
1761 ret = btrfs_add_device(trans, root, device);
79787eaa
JM
1762 if (ret)
1763 goto error_trans;
2b82032c
YZ
1764 }
1765
913d952e
CM
1766 /*
1767 * we've got more storage, clear any full flags on the space
1768 * infos
1769 */
1770 btrfs_clear_space_info_full(root->fs_info);
1771
7d9eb12c 1772 unlock_chunks(root);
79787eaa 1773 ret = btrfs_commit_transaction(trans, root);
a2135011 1774
2b82032c
YZ
1775 if (seeding_dev) {
1776 mutex_unlock(&uuid_mutex);
1777 up_write(&sb->s_umount);
788f20eb 1778
79787eaa
JM
1779 if (ret) /* transaction commit */
1780 return ret;
1781
2b82032c 1782 ret = btrfs_relocate_sys_chunks(root);
79787eaa
JM
1783 if (ret < 0)
1784 btrfs_error(root->fs_info, ret,
1785 "Failed to relocate sys chunks after "
1786 "device initialization. This can be fixed "
1787 "using the \"btrfs balance\" command.");
2b82032c 1788 }
c9e9f97b 1789
2b82032c 1790 return ret;
79787eaa
JM
1791
1792error_trans:
1793 unlock_chunks(root);
1794 btrfs_abort_transaction(trans, root, ret);
1795 btrfs_end_transaction(trans, root);
1796 kfree(device->name);
1797 kfree(device);
2b82032c 1798error:
e525fd89 1799 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
1800 if (seeding_dev) {
1801 mutex_unlock(&uuid_mutex);
1802 up_write(&sb->s_umount);
1803 }
c9e9f97b 1804 return ret;
788f20eb
CM
1805}
1806
d397712b
CM
1807static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1808 struct btrfs_device *device)
0b86a832
CM
1809{
1810 int ret;
1811 struct btrfs_path *path;
1812 struct btrfs_root *root;
1813 struct btrfs_dev_item *dev_item;
1814 struct extent_buffer *leaf;
1815 struct btrfs_key key;
1816
1817 root = device->dev_root->fs_info->chunk_root;
1818
1819 path = btrfs_alloc_path();
1820 if (!path)
1821 return -ENOMEM;
1822
1823 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1824 key.type = BTRFS_DEV_ITEM_KEY;
1825 key.offset = device->devid;
1826
1827 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1828 if (ret < 0)
1829 goto out;
1830
1831 if (ret > 0) {
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835
1836 leaf = path->nodes[0];
1837 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1838
1839 btrfs_set_device_id(leaf, dev_item, device->devid);
1840 btrfs_set_device_type(leaf, dev_item, device->type);
1841 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1842 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1843 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1844 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1845 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1846 btrfs_mark_buffer_dirty(leaf);
1847
1848out:
1849 btrfs_free_path(path);
1850 return ret;
1851}
1852
7d9eb12c 1853static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1854 struct btrfs_device *device, u64 new_size)
1855{
1856 struct btrfs_super_block *super_copy =
6c41761f 1857 device->dev_root->fs_info->super_copy;
8f18cf13
CM
1858 u64 old_total = btrfs_super_total_bytes(super_copy);
1859 u64 diff = new_size - device->total_bytes;
1860
2b82032c
YZ
1861 if (!device->writeable)
1862 return -EACCES;
1863 if (new_size <= device->total_bytes)
1864 return -EINVAL;
1865
8f18cf13 1866 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1867 device->fs_devices->total_rw_bytes += diff;
1868
1869 device->total_bytes = new_size;
9779b72f 1870 device->disk_total_bytes = new_size;
4184ea7f
CM
1871 btrfs_clear_space_info_full(device->dev_root->fs_info);
1872
8f18cf13
CM
1873 return btrfs_update_device(trans, device);
1874}
1875
7d9eb12c
CM
1876int btrfs_grow_device(struct btrfs_trans_handle *trans,
1877 struct btrfs_device *device, u64 new_size)
1878{
1879 int ret;
1880 lock_chunks(device->dev_root);
1881 ret = __btrfs_grow_device(trans, device, new_size);
1882 unlock_chunks(device->dev_root);
1883 return ret;
1884}
1885
8f18cf13
CM
1886static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1887 struct btrfs_root *root,
1888 u64 chunk_tree, u64 chunk_objectid,
1889 u64 chunk_offset)
1890{
1891 int ret;
1892 struct btrfs_path *path;
1893 struct btrfs_key key;
1894
1895 root = root->fs_info->chunk_root;
1896 path = btrfs_alloc_path();
1897 if (!path)
1898 return -ENOMEM;
1899
1900 key.objectid = chunk_objectid;
1901 key.offset = chunk_offset;
1902 key.type = BTRFS_CHUNK_ITEM_KEY;
1903
1904 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
1905 if (ret < 0)
1906 goto out;
1907 else if (ret > 0) { /* Logic error or corruption */
1908 btrfs_error(root->fs_info, -ENOENT,
1909 "Failed lookup while freeing chunk.");
1910 ret = -ENOENT;
1911 goto out;
1912 }
8f18cf13
CM
1913
1914 ret = btrfs_del_item(trans, root, path);
79787eaa
JM
1915 if (ret < 0)
1916 btrfs_error(root->fs_info, ret,
1917 "Failed to delete chunk item.");
1918out:
8f18cf13 1919 btrfs_free_path(path);
65a246c5 1920 return ret;
8f18cf13
CM
1921}
1922
b2950863 1923static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1924 chunk_offset)
1925{
6c41761f 1926 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13
CM
1927 struct btrfs_disk_key *disk_key;
1928 struct btrfs_chunk *chunk;
1929 u8 *ptr;
1930 int ret = 0;
1931 u32 num_stripes;
1932 u32 array_size;
1933 u32 len = 0;
1934 u32 cur;
1935 struct btrfs_key key;
1936
1937 array_size = btrfs_super_sys_array_size(super_copy);
1938
1939 ptr = super_copy->sys_chunk_array;
1940 cur = 0;
1941
1942 while (cur < array_size) {
1943 disk_key = (struct btrfs_disk_key *)ptr;
1944 btrfs_disk_key_to_cpu(&key, disk_key);
1945
1946 len = sizeof(*disk_key);
1947
1948 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1949 chunk = (struct btrfs_chunk *)(ptr + len);
1950 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1951 len += btrfs_chunk_item_size(num_stripes);
1952 } else {
1953 ret = -EIO;
1954 break;
1955 }
1956 if (key.objectid == chunk_objectid &&
1957 key.offset == chunk_offset) {
1958 memmove(ptr, ptr + len, array_size - (cur + len));
1959 array_size -= len;
1960 btrfs_set_super_sys_array_size(super_copy, array_size);
1961 } else {
1962 ptr += len;
1963 cur += len;
1964 }
1965 }
1966 return ret;
1967}
1968
b2950863 1969static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1970 u64 chunk_tree, u64 chunk_objectid,
1971 u64 chunk_offset)
1972{
1973 struct extent_map_tree *em_tree;
1974 struct btrfs_root *extent_root;
1975 struct btrfs_trans_handle *trans;
1976 struct extent_map *em;
1977 struct map_lookup *map;
1978 int ret;
1979 int i;
1980
1981 root = root->fs_info->chunk_root;
1982 extent_root = root->fs_info->extent_root;
1983 em_tree = &root->fs_info->mapping_tree.map_tree;
1984
ba1bf481
JB
1985 ret = btrfs_can_relocate(extent_root, chunk_offset);
1986 if (ret)
1987 return -ENOSPC;
1988
8f18cf13 1989 /* step one, relocate all the extents inside this chunk */
1a40e23b 1990 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1991 if (ret)
1992 return ret;
8f18cf13 1993
a22285a6 1994 trans = btrfs_start_transaction(root, 0);
98d5dc13 1995 BUG_ON(IS_ERR(trans));
8f18cf13 1996
7d9eb12c
CM
1997 lock_chunks(root);
1998
8f18cf13
CM
1999 /*
2000 * step two, delete the device extents and the
2001 * chunk tree entries
2002 */
890871be 2003 read_lock(&em_tree->lock);
8f18cf13 2004 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 2005 read_unlock(&em_tree->lock);
8f18cf13 2006
285190d9 2007 BUG_ON(!em || em->start > chunk_offset ||
a061fc8d 2008 em->start + em->len < chunk_offset);
8f18cf13
CM
2009 map = (struct map_lookup *)em->bdev;
2010
2011 for (i = 0; i < map->num_stripes; i++) {
2012 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2013 map->stripes[i].physical);
2014 BUG_ON(ret);
a061fc8d 2015
dfe25020
CM
2016 if (map->stripes[i].dev) {
2017 ret = btrfs_update_device(trans, map->stripes[i].dev);
2018 BUG_ON(ret);
2019 }
8f18cf13
CM
2020 }
2021 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2022 chunk_offset);
2023
2024 BUG_ON(ret);
2025
1abe9b8a 2026 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2027
8f18cf13
CM
2028 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2029 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2030 BUG_ON(ret);
8f18cf13
CM
2031 }
2032
2b82032c
YZ
2033 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2034 BUG_ON(ret);
2035
890871be 2036 write_lock(&em_tree->lock);
2b82032c 2037 remove_extent_mapping(em_tree, em);
890871be 2038 write_unlock(&em_tree->lock);
2b82032c
YZ
2039
2040 kfree(map);
2041 em->bdev = NULL;
2042
2043 /* once for the tree */
2044 free_extent_map(em);
2045 /* once for us */
2046 free_extent_map(em);
2047
2048 unlock_chunks(root);
2049 btrfs_end_transaction(trans, root);
2050 return 0;
2051}
2052
2053static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2054{
2055 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2056 struct btrfs_path *path;
2057 struct extent_buffer *leaf;
2058 struct btrfs_chunk *chunk;
2059 struct btrfs_key key;
2060 struct btrfs_key found_key;
2061 u64 chunk_tree = chunk_root->root_key.objectid;
2062 u64 chunk_type;
ba1bf481
JB
2063 bool retried = false;
2064 int failed = 0;
2b82032c
YZ
2065 int ret;
2066
2067 path = btrfs_alloc_path();
2068 if (!path)
2069 return -ENOMEM;
2070
ba1bf481 2071again:
2b82032c
YZ
2072 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2073 key.offset = (u64)-1;
2074 key.type = BTRFS_CHUNK_ITEM_KEY;
2075
2076 while (1) {
2077 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2078 if (ret < 0)
2079 goto error;
79787eaa 2080 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2081
2082 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2083 key.type);
2084 if (ret < 0)
2085 goto error;
2086 if (ret > 0)
2087 break;
1a40e23b 2088
2b82032c
YZ
2089 leaf = path->nodes[0];
2090 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 2091
2b82032c
YZ
2092 chunk = btrfs_item_ptr(leaf, path->slots[0],
2093 struct btrfs_chunk);
2094 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 2095 btrfs_release_path(path);
8f18cf13 2096
2b82032c
YZ
2097 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2098 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2099 found_key.objectid,
2100 found_key.offset);
ba1bf481
JB
2101 if (ret == -ENOSPC)
2102 failed++;
2103 else if (ret)
2104 BUG();
2b82032c 2105 }
8f18cf13 2106
2b82032c
YZ
2107 if (found_key.offset == 0)
2108 break;
2109 key.offset = found_key.offset - 1;
2110 }
2111 ret = 0;
ba1bf481
JB
2112 if (failed && !retried) {
2113 failed = 0;
2114 retried = true;
2115 goto again;
2116 } else if (failed && retried) {
2117 WARN_ON(1);
2118 ret = -ENOSPC;
2119 }
2b82032c
YZ
2120error:
2121 btrfs_free_path(path);
2122 return ret;
8f18cf13
CM
2123}
2124
0940ebf6
ID
2125static int insert_balance_item(struct btrfs_root *root,
2126 struct btrfs_balance_control *bctl)
2127{
2128 struct btrfs_trans_handle *trans;
2129 struct btrfs_balance_item *item;
2130 struct btrfs_disk_balance_args disk_bargs;
2131 struct btrfs_path *path;
2132 struct extent_buffer *leaf;
2133 struct btrfs_key key;
2134 int ret, err;
2135
2136 path = btrfs_alloc_path();
2137 if (!path)
2138 return -ENOMEM;
2139
2140 trans = btrfs_start_transaction(root, 0);
2141 if (IS_ERR(trans)) {
2142 btrfs_free_path(path);
2143 return PTR_ERR(trans);
2144 }
2145
2146 key.objectid = BTRFS_BALANCE_OBJECTID;
2147 key.type = BTRFS_BALANCE_ITEM_KEY;
2148 key.offset = 0;
2149
2150 ret = btrfs_insert_empty_item(trans, root, path, &key,
2151 sizeof(*item));
2152 if (ret)
2153 goto out;
2154
2155 leaf = path->nodes[0];
2156 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2157
2158 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2159
2160 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2161 btrfs_set_balance_data(leaf, item, &disk_bargs);
2162 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2163 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2164 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2165 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2166
2167 btrfs_set_balance_flags(leaf, item, bctl->flags);
2168
2169 btrfs_mark_buffer_dirty(leaf);
2170out:
2171 btrfs_free_path(path);
2172 err = btrfs_commit_transaction(trans, root);
2173 if (err && !ret)
2174 ret = err;
2175 return ret;
2176}
2177
2178static int del_balance_item(struct btrfs_root *root)
2179{
2180 struct btrfs_trans_handle *trans;
2181 struct btrfs_path *path;
2182 struct btrfs_key key;
2183 int ret, err;
2184
2185 path = btrfs_alloc_path();
2186 if (!path)
2187 return -ENOMEM;
2188
2189 trans = btrfs_start_transaction(root, 0);
2190 if (IS_ERR(trans)) {
2191 btrfs_free_path(path);
2192 return PTR_ERR(trans);
2193 }
2194
2195 key.objectid = BTRFS_BALANCE_OBJECTID;
2196 key.type = BTRFS_BALANCE_ITEM_KEY;
2197 key.offset = 0;
2198
2199 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2200 if (ret < 0)
2201 goto out;
2202 if (ret > 0) {
2203 ret = -ENOENT;
2204 goto out;
2205 }
2206
2207 ret = btrfs_del_item(trans, root, path);
2208out:
2209 btrfs_free_path(path);
2210 err = btrfs_commit_transaction(trans, root);
2211 if (err && !ret)
2212 ret = err;
2213 return ret;
2214}
2215
59641015
ID
2216/*
2217 * This is a heuristic used to reduce the number of chunks balanced on
2218 * resume after balance was interrupted.
2219 */
2220static void update_balance_args(struct btrfs_balance_control *bctl)
2221{
2222 /*
2223 * Turn on soft mode for chunk types that were being converted.
2224 */
2225 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2226 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2227 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2228 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2229 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2230 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2231
2232 /*
2233 * Turn on usage filter if is not already used. The idea is
2234 * that chunks that we have already balanced should be
2235 * reasonably full. Don't do it for chunks that are being
2236 * converted - that will keep us from relocating unconverted
2237 * (albeit full) chunks.
2238 */
2239 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2240 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2241 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2242 bctl->data.usage = 90;
2243 }
2244 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2245 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2246 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2247 bctl->sys.usage = 90;
2248 }
2249 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2250 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2251 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2252 bctl->meta.usage = 90;
2253 }
2254}
2255
c9e9f97b
ID
2256/*
2257 * Should be called with both balance and volume mutexes held to
2258 * serialize other volume operations (add_dev/rm_dev/resize) with
2259 * restriper. Same goes for unset_balance_control.
2260 */
2261static void set_balance_control(struct btrfs_balance_control *bctl)
2262{
2263 struct btrfs_fs_info *fs_info = bctl->fs_info;
2264
2265 BUG_ON(fs_info->balance_ctl);
2266
2267 spin_lock(&fs_info->balance_lock);
2268 fs_info->balance_ctl = bctl;
2269 spin_unlock(&fs_info->balance_lock);
2270}
2271
2272static void unset_balance_control(struct btrfs_fs_info *fs_info)
2273{
2274 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2275
2276 BUG_ON(!fs_info->balance_ctl);
2277
2278 spin_lock(&fs_info->balance_lock);
2279 fs_info->balance_ctl = NULL;
2280 spin_unlock(&fs_info->balance_lock);
2281
2282 kfree(bctl);
2283}
2284
ed25e9b2
ID
2285/*
2286 * Balance filters. Return 1 if chunk should be filtered out
2287 * (should not be balanced).
2288 */
899c81ea 2289static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
2290 struct btrfs_balance_args *bargs)
2291{
899c81ea
ID
2292 chunk_type = chunk_to_extended(chunk_type) &
2293 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 2294
899c81ea 2295 if (bargs->profiles & chunk_type)
ed25e9b2
ID
2296 return 0;
2297
2298 return 1;
2299}
2300
5ce5b3c0
ID
2301static u64 div_factor_fine(u64 num, int factor)
2302{
2303 if (factor <= 0)
2304 return 0;
2305 if (factor >= 100)
2306 return num;
2307
2308 num *= factor;
2309 do_div(num, 100);
2310 return num;
2311}
2312
2313static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2314 struct btrfs_balance_args *bargs)
2315{
2316 struct btrfs_block_group_cache *cache;
2317 u64 chunk_used, user_thresh;
2318 int ret = 1;
2319
2320 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2321 chunk_used = btrfs_block_group_used(&cache->item);
2322
2323 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2324 if (chunk_used < user_thresh)
2325 ret = 0;
2326
2327 btrfs_put_block_group(cache);
2328 return ret;
2329}
2330
409d404b
ID
2331static int chunk_devid_filter(struct extent_buffer *leaf,
2332 struct btrfs_chunk *chunk,
2333 struct btrfs_balance_args *bargs)
2334{
2335 struct btrfs_stripe *stripe;
2336 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2337 int i;
2338
2339 for (i = 0; i < num_stripes; i++) {
2340 stripe = btrfs_stripe_nr(chunk, i);
2341 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2342 return 0;
2343 }
2344
2345 return 1;
2346}
2347
94e60d5a
ID
2348/* [pstart, pend) */
2349static int chunk_drange_filter(struct extent_buffer *leaf,
2350 struct btrfs_chunk *chunk,
2351 u64 chunk_offset,
2352 struct btrfs_balance_args *bargs)
2353{
2354 struct btrfs_stripe *stripe;
2355 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2356 u64 stripe_offset;
2357 u64 stripe_length;
2358 int factor;
2359 int i;
2360
2361 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2362 return 0;
2363
2364 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2365 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2366 factor = 2;
2367 else
2368 factor = 1;
2369 factor = num_stripes / factor;
2370
2371 for (i = 0; i < num_stripes; i++) {
2372 stripe = btrfs_stripe_nr(chunk, i);
2373 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2374 continue;
2375
2376 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2377 stripe_length = btrfs_chunk_length(leaf, chunk);
2378 do_div(stripe_length, factor);
2379
2380 if (stripe_offset < bargs->pend &&
2381 stripe_offset + stripe_length > bargs->pstart)
2382 return 0;
2383 }
2384
2385 return 1;
2386}
2387
ea67176a
ID
2388/* [vstart, vend) */
2389static int chunk_vrange_filter(struct extent_buffer *leaf,
2390 struct btrfs_chunk *chunk,
2391 u64 chunk_offset,
2392 struct btrfs_balance_args *bargs)
2393{
2394 if (chunk_offset < bargs->vend &&
2395 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2396 /* at least part of the chunk is inside this vrange */
2397 return 0;
2398
2399 return 1;
2400}
2401
899c81ea 2402static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
2403 struct btrfs_balance_args *bargs)
2404{
2405 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2406 return 0;
2407
899c81ea
ID
2408 chunk_type = chunk_to_extended(chunk_type) &
2409 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 2410
899c81ea 2411 if (bargs->target == chunk_type)
cfa4c961
ID
2412 return 1;
2413
2414 return 0;
2415}
2416
f43ffb60
ID
2417static int should_balance_chunk(struct btrfs_root *root,
2418 struct extent_buffer *leaf,
2419 struct btrfs_chunk *chunk, u64 chunk_offset)
2420{
2421 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2422 struct btrfs_balance_args *bargs = NULL;
2423 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2424
2425 /* type filter */
2426 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2427 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2428 return 0;
2429 }
2430
2431 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2432 bargs = &bctl->data;
2433 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2434 bargs = &bctl->sys;
2435 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2436 bargs = &bctl->meta;
2437
ed25e9b2
ID
2438 /* profiles filter */
2439 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2440 chunk_profiles_filter(chunk_type, bargs)) {
2441 return 0;
5ce5b3c0
ID
2442 }
2443
2444 /* usage filter */
2445 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2446 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2447 return 0;
409d404b
ID
2448 }
2449
2450 /* devid filter */
2451 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2452 chunk_devid_filter(leaf, chunk, bargs)) {
2453 return 0;
94e60d5a
ID
2454 }
2455
2456 /* drange filter, makes sense only with devid filter */
2457 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2458 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2459 return 0;
ea67176a
ID
2460 }
2461
2462 /* vrange filter */
2463 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2464 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2465 return 0;
ed25e9b2
ID
2466 }
2467
cfa4c961
ID
2468 /* soft profile changing mode */
2469 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2470 chunk_soft_convert_filter(chunk_type, bargs)) {
2471 return 0;
2472 }
2473
f43ffb60
ID
2474 return 1;
2475}
2476
ec44a35c
CM
2477static u64 div_factor(u64 num, int factor)
2478{
2479 if (factor == 10)
2480 return num;
2481 num *= factor;
2482 do_div(num, 10);
2483 return num;
2484}
2485
c9e9f97b 2486static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 2487{
19a39dce 2488 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
2489 struct btrfs_root *chunk_root = fs_info->chunk_root;
2490 struct btrfs_root *dev_root = fs_info->dev_root;
2491 struct list_head *devices;
ec44a35c
CM
2492 struct btrfs_device *device;
2493 u64 old_size;
2494 u64 size_to_free;
f43ffb60 2495 struct btrfs_chunk *chunk;
ec44a35c
CM
2496 struct btrfs_path *path;
2497 struct btrfs_key key;
ec44a35c 2498 struct btrfs_key found_key;
c9e9f97b 2499 struct btrfs_trans_handle *trans;
f43ffb60
ID
2500 struct extent_buffer *leaf;
2501 int slot;
c9e9f97b
ID
2502 int ret;
2503 int enospc_errors = 0;
19a39dce 2504 bool counting = true;
ec44a35c 2505
ec44a35c 2506 /* step one make some room on all the devices */
c9e9f97b 2507 devices = &fs_info->fs_devices->devices;
c6e30871 2508 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2509 old_size = device->total_bytes;
2510 size_to_free = div_factor(old_size, 1);
2511 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2512 if (!device->writeable ||
2513 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2514 continue;
2515
2516 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2517 if (ret == -ENOSPC)
2518 break;
ec44a35c
CM
2519 BUG_ON(ret);
2520
a22285a6 2521 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2522 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2523
2524 ret = btrfs_grow_device(trans, device, old_size);
2525 BUG_ON(ret);
2526
2527 btrfs_end_transaction(trans, dev_root);
2528 }
2529
2530 /* step two, relocate all the chunks */
2531 path = btrfs_alloc_path();
17e9f796
MF
2532 if (!path) {
2533 ret = -ENOMEM;
2534 goto error;
2535 }
19a39dce
ID
2536
2537 /* zero out stat counters */
2538 spin_lock(&fs_info->balance_lock);
2539 memset(&bctl->stat, 0, sizeof(bctl->stat));
2540 spin_unlock(&fs_info->balance_lock);
2541again:
ec44a35c
CM
2542 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2543 key.offset = (u64)-1;
2544 key.type = BTRFS_CHUNK_ITEM_KEY;
2545
d397712b 2546 while (1) {
19a39dce 2547 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 2548 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
2549 ret = -ECANCELED;
2550 goto error;
2551 }
2552
ec44a35c
CM
2553 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2554 if (ret < 0)
2555 goto error;
2556
2557 /*
2558 * this shouldn't happen, it means the last relocate
2559 * failed
2560 */
2561 if (ret == 0)
c9e9f97b 2562 BUG(); /* FIXME break ? */
ec44a35c
CM
2563
2564 ret = btrfs_previous_item(chunk_root, path, 0,
2565 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b
ID
2566 if (ret) {
2567 ret = 0;
ec44a35c 2568 break;
c9e9f97b 2569 }
7d9eb12c 2570
f43ffb60
ID
2571 leaf = path->nodes[0];
2572 slot = path->slots[0];
2573 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 2574
ec44a35c
CM
2575 if (found_key.objectid != key.objectid)
2576 break;
7d9eb12c 2577
ec44a35c 2578 /* chunk zero is special */
ba1bf481 2579 if (found_key.offset == 0)
ec44a35c
CM
2580 break;
2581
f43ffb60
ID
2582 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2583
19a39dce
ID
2584 if (!counting) {
2585 spin_lock(&fs_info->balance_lock);
2586 bctl->stat.considered++;
2587 spin_unlock(&fs_info->balance_lock);
2588 }
2589
f43ffb60
ID
2590 ret = should_balance_chunk(chunk_root, leaf, chunk,
2591 found_key.offset);
b3b4aa74 2592 btrfs_release_path(path);
f43ffb60
ID
2593 if (!ret)
2594 goto loop;
2595
19a39dce
ID
2596 if (counting) {
2597 spin_lock(&fs_info->balance_lock);
2598 bctl->stat.expected++;
2599 spin_unlock(&fs_info->balance_lock);
2600 goto loop;
2601 }
2602
ec44a35c
CM
2603 ret = btrfs_relocate_chunk(chunk_root,
2604 chunk_root->root_key.objectid,
2605 found_key.objectid,
2606 found_key.offset);
508794eb
JB
2607 if (ret && ret != -ENOSPC)
2608 goto error;
19a39dce 2609 if (ret == -ENOSPC) {
c9e9f97b 2610 enospc_errors++;
19a39dce
ID
2611 } else {
2612 spin_lock(&fs_info->balance_lock);
2613 bctl->stat.completed++;
2614 spin_unlock(&fs_info->balance_lock);
2615 }
f43ffb60 2616loop:
ba1bf481 2617 key.offset = found_key.offset - 1;
ec44a35c 2618 }
c9e9f97b 2619
19a39dce
ID
2620 if (counting) {
2621 btrfs_release_path(path);
2622 counting = false;
2623 goto again;
2624 }
ec44a35c
CM
2625error:
2626 btrfs_free_path(path);
c9e9f97b
ID
2627 if (enospc_errors) {
2628 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2629 enospc_errors);
2630 if (!ret)
2631 ret = -ENOSPC;
2632 }
2633
ec44a35c
CM
2634 return ret;
2635}
2636
0c460c0d
ID
2637/**
2638 * alloc_profile_is_valid - see if a given profile is valid and reduced
2639 * @flags: profile to validate
2640 * @extended: if true @flags is treated as an extended profile
2641 */
2642static int alloc_profile_is_valid(u64 flags, int extended)
2643{
2644 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2645 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2646
2647 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2648
2649 /* 1) check that all other bits are zeroed */
2650 if (flags & ~mask)
2651 return 0;
2652
2653 /* 2) see if profile is reduced */
2654 if (flags == 0)
2655 return !extended; /* "0" is valid for usual profiles */
2656
2657 /* true if exactly one bit set */
2658 return (flags & (flags - 1)) == 0;
2659}
2660
837d5b6e
ID
2661static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2662{
a7e99c69
ID
2663 /* cancel requested || normal exit path */
2664 return atomic_read(&fs_info->balance_cancel_req) ||
2665 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2666 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
2667}
2668
c9e9f97b
ID
2669static void __cancel_balance(struct btrfs_fs_info *fs_info)
2670{
0940ebf6
ID
2671 int ret;
2672
c9e9f97b 2673 unset_balance_control(fs_info);
0940ebf6
ID
2674 ret = del_balance_item(fs_info->tree_root);
2675 BUG_ON(ret);
c9e9f97b
ID
2676}
2677
19a39dce 2678void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
c9e9f97b
ID
2679 struct btrfs_ioctl_balance_args *bargs);
2680
2681/*
2682 * Should be called with both balance and volume mutexes held
2683 */
2684int btrfs_balance(struct btrfs_balance_control *bctl,
2685 struct btrfs_ioctl_balance_args *bargs)
2686{
2687 struct btrfs_fs_info *fs_info = bctl->fs_info;
f43ffb60 2688 u64 allowed;
e4837f8f 2689 int mixed = 0;
c9e9f97b
ID
2690 int ret;
2691
837d5b6e 2692 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
2693 atomic_read(&fs_info->balance_pause_req) ||
2694 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
2695 ret = -EINVAL;
2696 goto out;
2697 }
2698
e4837f8f
ID
2699 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2700 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2701 mixed = 1;
2702
f43ffb60
ID
2703 /*
2704 * In case of mixed groups both data and meta should be picked,
2705 * and identical options should be given for both of them.
2706 */
e4837f8f
ID
2707 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2708 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
2709 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2710 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2711 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2712 printk(KERN_ERR "btrfs: with mixed groups data and "
2713 "metadata balance options must be the same\n");
2714 ret = -EINVAL;
2715 goto out;
2716 }
2717 }
2718
e4d8ec0f
ID
2719 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2720 if (fs_info->fs_devices->num_devices == 1)
2721 allowed |= BTRFS_BLOCK_GROUP_DUP;
2722 else if (fs_info->fs_devices->num_devices < 4)
2723 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2724 else
2725 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2726 BTRFS_BLOCK_GROUP_RAID10);
2727
6728b198
ID
2728 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2729 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2730 (bctl->data.target & ~allowed))) {
e4d8ec0f
ID
2731 printk(KERN_ERR "btrfs: unable to start balance with target "
2732 "data profile %llu\n",
2733 (unsigned long long)bctl->data.target);
2734 ret = -EINVAL;
2735 goto out;
2736 }
6728b198
ID
2737 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2738 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2739 (bctl->meta.target & ~allowed))) {
e4d8ec0f
ID
2740 printk(KERN_ERR "btrfs: unable to start balance with target "
2741 "metadata profile %llu\n",
2742 (unsigned long long)bctl->meta.target);
2743 ret = -EINVAL;
2744 goto out;
2745 }
6728b198
ID
2746 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2747 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2748 (bctl->sys.target & ~allowed))) {
e4d8ec0f
ID
2749 printk(KERN_ERR "btrfs: unable to start balance with target "
2750 "system profile %llu\n",
2751 (unsigned long long)bctl->sys.target);
2752 ret = -EINVAL;
2753 goto out;
2754 }
2755
e4837f8f
ID
2756 /* allow dup'ed data chunks only in mixed mode */
2757 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
6728b198 2758 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
e4d8ec0f
ID
2759 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2760 ret = -EINVAL;
2761 goto out;
2762 }
2763
2764 /* allow to reduce meta or sys integrity only if force set */
2765 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2766 BTRFS_BLOCK_GROUP_RAID10;
2767 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2768 (fs_info->avail_system_alloc_bits & allowed) &&
2769 !(bctl->sys.target & allowed)) ||
2770 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2771 (fs_info->avail_metadata_alloc_bits & allowed) &&
2772 !(bctl->meta.target & allowed))) {
2773 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2774 printk(KERN_INFO "btrfs: force reducing metadata "
2775 "integrity\n");
2776 } else {
2777 printk(KERN_ERR "btrfs: balance will reduce metadata "
2778 "integrity, use force if you want this\n");
2779 ret = -EINVAL;
2780 goto out;
2781 }
2782 }
2783
0940ebf6 2784 ret = insert_balance_item(fs_info->tree_root, bctl);
59641015 2785 if (ret && ret != -EEXIST)
0940ebf6
ID
2786 goto out;
2787
59641015
ID
2788 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2789 BUG_ON(ret == -EEXIST);
2790 set_balance_control(bctl);
2791 } else {
2792 BUG_ON(ret != -EEXIST);
2793 spin_lock(&fs_info->balance_lock);
2794 update_balance_args(bctl);
2795 spin_unlock(&fs_info->balance_lock);
2796 }
c9e9f97b 2797
837d5b6e 2798 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
2799 mutex_unlock(&fs_info->balance_mutex);
2800
2801 ret = __btrfs_balance(fs_info);
2802
2803 mutex_lock(&fs_info->balance_mutex);
837d5b6e 2804 atomic_dec(&fs_info->balance_running);
c9e9f97b
ID
2805
2806 if (bargs) {
2807 memset(bargs, 0, sizeof(*bargs));
19a39dce 2808 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
2809 }
2810
837d5b6e
ID
2811 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2812 balance_need_close(fs_info)) {
2813 __cancel_balance(fs_info);
2814 }
2815
2816 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
2817
2818 return ret;
2819out:
59641015
ID
2820 if (bctl->flags & BTRFS_BALANCE_RESUME)
2821 __cancel_balance(fs_info);
2822 else
2823 kfree(bctl);
2824 return ret;
2825}
2826
2827static int balance_kthread(void *data)
2828{
2829 struct btrfs_balance_control *bctl =
2830 (struct btrfs_balance_control *)data;
2831 struct btrfs_fs_info *fs_info = bctl->fs_info;
9555c6c1 2832 int ret = 0;
59641015
ID
2833
2834 mutex_lock(&fs_info->volume_mutex);
2835 mutex_lock(&fs_info->balance_mutex);
2836
2837 set_balance_control(bctl);
2838
9555c6c1
ID
2839 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2840 printk(KERN_INFO "btrfs: force skipping balance\n");
2841 } else {
2842 printk(KERN_INFO "btrfs: continuing balance\n");
2843 ret = btrfs_balance(bctl, NULL);
2844 }
59641015
ID
2845
2846 mutex_unlock(&fs_info->balance_mutex);
2847 mutex_unlock(&fs_info->volume_mutex);
2848 return ret;
2849}
2850
2851int btrfs_recover_balance(struct btrfs_root *tree_root)
2852{
2853 struct task_struct *tsk;
2854 struct btrfs_balance_control *bctl;
2855 struct btrfs_balance_item *item;
2856 struct btrfs_disk_balance_args disk_bargs;
2857 struct btrfs_path *path;
2858 struct extent_buffer *leaf;
2859 struct btrfs_key key;
2860 int ret;
2861
2862 path = btrfs_alloc_path();
2863 if (!path)
2864 return -ENOMEM;
2865
2866 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2867 if (!bctl) {
2868 ret = -ENOMEM;
2869 goto out;
2870 }
2871
2872 key.objectid = BTRFS_BALANCE_OBJECTID;
2873 key.type = BTRFS_BALANCE_ITEM_KEY;
2874 key.offset = 0;
2875
2876 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2877 if (ret < 0)
2878 goto out_bctl;
2879 if (ret > 0) { /* ret = -ENOENT; */
2880 ret = 0;
2881 goto out_bctl;
2882 }
2883
2884 leaf = path->nodes[0];
2885 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2886
2887 bctl->fs_info = tree_root->fs_info;
2888 bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
2889
2890 btrfs_balance_data(leaf, item, &disk_bargs);
2891 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2892 btrfs_balance_meta(leaf, item, &disk_bargs);
2893 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2894 btrfs_balance_sys(leaf, item, &disk_bargs);
2895 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2896
2897 tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
2898 if (IS_ERR(tsk))
2899 ret = PTR_ERR(tsk);
2900 else
2901 goto out;
2902
2903out_bctl:
c9e9f97b 2904 kfree(bctl);
59641015
ID
2905out:
2906 btrfs_free_path(path);
ec44a35c
CM
2907 return ret;
2908}
2909
837d5b6e
ID
2910int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2911{
2912 int ret = 0;
2913
2914 mutex_lock(&fs_info->balance_mutex);
2915 if (!fs_info->balance_ctl) {
2916 mutex_unlock(&fs_info->balance_mutex);
2917 return -ENOTCONN;
2918 }
2919
2920 if (atomic_read(&fs_info->balance_running)) {
2921 atomic_inc(&fs_info->balance_pause_req);
2922 mutex_unlock(&fs_info->balance_mutex);
2923
2924 wait_event(fs_info->balance_wait_q,
2925 atomic_read(&fs_info->balance_running) == 0);
2926
2927 mutex_lock(&fs_info->balance_mutex);
2928 /* we are good with balance_ctl ripped off from under us */
2929 BUG_ON(atomic_read(&fs_info->balance_running));
2930 atomic_dec(&fs_info->balance_pause_req);
2931 } else {
2932 ret = -ENOTCONN;
2933 }
2934
2935 mutex_unlock(&fs_info->balance_mutex);
2936 return ret;
2937}
2938
a7e99c69
ID
2939int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2940{
2941 mutex_lock(&fs_info->balance_mutex);
2942 if (!fs_info->balance_ctl) {
2943 mutex_unlock(&fs_info->balance_mutex);
2944 return -ENOTCONN;
2945 }
2946
2947 atomic_inc(&fs_info->balance_cancel_req);
2948 /*
2949 * if we are running just wait and return, balance item is
2950 * deleted in btrfs_balance in this case
2951 */
2952 if (atomic_read(&fs_info->balance_running)) {
2953 mutex_unlock(&fs_info->balance_mutex);
2954 wait_event(fs_info->balance_wait_q,
2955 atomic_read(&fs_info->balance_running) == 0);
2956 mutex_lock(&fs_info->balance_mutex);
2957 } else {
2958 /* __cancel_balance needs volume_mutex */
2959 mutex_unlock(&fs_info->balance_mutex);
2960 mutex_lock(&fs_info->volume_mutex);
2961 mutex_lock(&fs_info->balance_mutex);
2962
2963 if (fs_info->balance_ctl)
2964 __cancel_balance(fs_info);
2965
2966 mutex_unlock(&fs_info->volume_mutex);
2967 }
2968
2969 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
2970 atomic_dec(&fs_info->balance_cancel_req);
2971 mutex_unlock(&fs_info->balance_mutex);
2972 return 0;
2973}
2974
8f18cf13
CM
2975/*
2976 * shrinking a device means finding all of the device extents past
2977 * the new size, and then following the back refs to the chunks.
2978 * The chunk relocation code actually frees the device extent
2979 */
2980int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2981{
2982 struct btrfs_trans_handle *trans;
2983 struct btrfs_root *root = device->dev_root;
2984 struct btrfs_dev_extent *dev_extent = NULL;
2985 struct btrfs_path *path;
2986 u64 length;
2987 u64 chunk_tree;
2988 u64 chunk_objectid;
2989 u64 chunk_offset;
2990 int ret;
2991 int slot;
ba1bf481
JB
2992 int failed = 0;
2993 bool retried = false;
8f18cf13
CM
2994 struct extent_buffer *l;
2995 struct btrfs_key key;
6c41761f 2996 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
8f18cf13 2997 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2998 u64 old_size = device->total_bytes;
8f18cf13
CM
2999 u64 diff = device->total_bytes - new_size;
3000
2b82032c
YZ
3001 if (new_size >= device->total_bytes)
3002 return -EINVAL;
8f18cf13
CM
3003
3004 path = btrfs_alloc_path();
3005 if (!path)
3006 return -ENOMEM;
3007
8f18cf13
CM
3008 path->reada = 2;
3009
7d9eb12c
CM
3010 lock_chunks(root);
3011
8f18cf13 3012 device->total_bytes = new_size;
2bf64758 3013 if (device->writeable) {
2b82032c 3014 device->fs_devices->total_rw_bytes -= diff;
2bf64758
JB
3015 spin_lock(&root->fs_info->free_chunk_lock);
3016 root->fs_info->free_chunk_space -= diff;
3017 spin_unlock(&root->fs_info->free_chunk_lock);
3018 }
7d9eb12c 3019 unlock_chunks(root);
8f18cf13 3020
ba1bf481 3021again:
8f18cf13
CM
3022 key.objectid = device->devid;
3023 key.offset = (u64)-1;
3024 key.type = BTRFS_DEV_EXTENT_KEY;
3025
213e64da 3026 do {
8f18cf13
CM
3027 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3028 if (ret < 0)
3029 goto done;
3030
3031 ret = btrfs_previous_item(root, path, 0, key.type);
3032 if (ret < 0)
3033 goto done;
3034 if (ret) {
3035 ret = 0;
b3b4aa74 3036 btrfs_release_path(path);
bf1fb512 3037 break;
8f18cf13
CM
3038 }
3039
3040 l = path->nodes[0];
3041 slot = path->slots[0];
3042 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3043
ba1bf481 3044 if (key.objectid != device->devid) {
b3b4aa74 3045 btrfs_release_path(path);
bf1fb512 3046 break;
ba1bf481 3047 }
8f18cf13
CM
3048
3049 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3050 length = btrfs_dev_extent_length(l, dev_extent);
3051
ba1bf481 3052 if (key.offset + length <= new_size) {
b3b4aa74 3053 btrfs_release_path(path);
d6397bae 3054 break;
ba1bf481 3055 }
8f18cf13
CM
3056
3057 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3058 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3059 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 3060 btrfs_release_path(path);
8f18cf13
CM
3061
3062 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3063 chunk_offset);
ba1bf481 3064 if (ret && ret != -ENOSPC)
8f18cf13 3065 goto done;
ba1bf481
JB
3066 if (ret == -ENOSPC)
3067 failed++;
213e64da 3068 } while (key.offset-- > 0);
ba1bf481
JB
3069
3070 if (failed && !retried) {
3071 failed = 0;
3072 retried = true;
3073 goto again;
3074 } else if (failed && retried) {
3075 ret = -ENOSPC;
3076 lock_chunks(root);
3077
3078 device->total_bytes = old_size;
3079 if (device->writeable)
3080 device->fs_devices->total_rw_bytes += diff;
2bf64758
JB
3081 spin_lock(&root->fs_info->free_chunk_lock);
3082 root->fs_info->free_chunk_space += diff;
3083 spin_unlock(&root->fs_info->free_chunk_lock);
ba1bf481
JB
3084 unlock_chunks(root);
3085 goto done;
8f18cf13
CM
3086 }
3087
d6397bae 3088 /* Shrinking succeeded, else we would be at "done". */
a22285a6 3089 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
3090 if (IS_ERR(trans)) {
3091 ret = PTR_ERR(trans);
3092 goto done;
3093 }
3094
d6397bae
CB
3095 lock_chunks(root);
3096
3097 device->disk_total_bytes = new_size;
3098 /* Now btrfs_update_device() will change the on-disk size. */
3099 ret = btrfs_update_device(trans, device);
3100 if (ret) {
3101 unlock_chunks(root);
3102 btrfs_end_transaction(trans, root);
3103 goto done;
3104 }
3105 WARN_ON(diff > old_total);
3106 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3107 unlock_chunks(root);
3108 btrfs_end_transaction(trans, root);
8f18cf13
CM
3109done:
3110 btrfs_free_path(path);
3111 return ret;
3112}
3113
125ccb0a 3114static int btrfs_add_system_chunk(struct btrfs_root *root,
0b86a832
CM
3115 struct btrfs_key *key,
3116 struct btrfs_chunk *chunk, int item_size)
3117{
6c41761f 3118 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
0b86a832
CM
3119 struct btrfs_disk_key disk_key;
3120 u32 array_size;
3121 u8 *ptr;
3122
3123 array_size = btrfs_super_sys_array_size(super_copy);
3124 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3125 return -EFBIG;
3126
3127 ptr = super_copy->sys_chunk_array + array_size;
3128 btrfs_cpu_key_to_disk(&disk_key, key);
3129 memcpy(ptr, &disk_key, sizeof(disk_key));
3130 ptr += sizeof(disk_key);
3131 memcpy(ptr, chunk, item_size);
3132 item_size += sizeof(disk_key);
3133 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3134 return 0;
3135}
3136
73c5de00
AJ
3137/*
3138 * sort the devices in descending order by max_avail, total_avail
3139 */
3140static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 3141{
73c5de00
AJ
3142 const struct btrfs_device_info *di_a = a;
3143 const struct btrfs_device_info *di_b = b;
9b3f68b9 3144
73c5de00 3145 if (di_a->max_avail > di_b->max_avail)
b2117a39 3146 return -1;
73c5de00 3147 if (di_a->max_avail < di_b->max_avail)
b2117a39 3148 return 1;
73c5de00
AJ
3149 if (di_a->total_avail > di_b->total_avail)
3150 return -1;
3151 if (di_a->total_avail < di_b->total_avail)
3152 return 1;
3153 return 0;
b2117a39 3154}
0b86a832 3155
73c5de00
AJ
3156static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3157 struct btrfs_root *extent_root,
3158 struct map_lookup **map_ret,
3159 u64 *num_bytes_out, u64 *stripe_size_out,
3160 u64 start, u64 type)
b2117a39 3161{
73c5de00
AJ
3162 struct btrfs_fs_info *info = extent_root->fs_info;
3163 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3164 struct list_head *cur;
3165 struct map_lookup *map = NULL;
3166 struct extent_map_tree *em_tree;
3167 struct extent_map *em;
3168 struct btrfs_device_info *devices_info = NULL;
3169 u64 total_avail;
3170 int num_stripes; /* total number of stripes to allocate */
3171 int sub_stripes; /* sub_stripes info for map */
3172 int dev_stripes; /* stripes per dev */
3173 int devs_max; /* max devs to use */
3174 int devs_min; /* min devs needed */
3175 int devs_increment; /* ndevs has to be a multiple of this */
3176 int ncopies; /* how many copies to data has */
3177 int ret;
3178 u64 max_stripe_size;
3179 u64 max_chunk_size;
3180 u64 stripe_size;
3181 u64 num_bytes;
3182 int ndevs;
3183 int i;
3184 int j;
593060d7 3185
0c460c0d 3186 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 3187
73c5de00
AJ
3188 if (list_empty(&fs_devices->alloc_list))
3189 return -ENOSPC;
b2117a39 3190
73c5de00
AJ
3191 sub_stripes = 1;
3192 dev_stripes = 1;
3193 devs_increment = 1;
3194 ncopies = 1;
3195 devs_max = 0; /* 0 == as many as possible */
3196 devs_min = 1;
3197
3198 /*
3199 * define the properties of each RAID type.
3200 * FIXME: move this to a global table and use it in all RAID
3201 * calculation code
3202 */
3203 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3204 dev_stripes = 2;
b2117a39 3205 ncopies = 2;
73c5de00
AJ
3206 devs_max = 1;
3207 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3208 devs_min = 2;
3209 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3210 devs_increment = 2;
b2117a39 3211 ncopies = 2;
73c5de00
AJ
3212 devs_max = 2;
3213 devs_min = 2;
3214 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3215 sub_stripes = 2;
3216 devs_increment = 2;
3217 ncopies = 2;
3218 devs_min = 4;
3219 } else {
3220 devs_max = 1;
3221 }
b2117a39 3222
9b3f68b9 3223 if (type & BTRFS_BLOCK_GROUP_DATA) {
73c5de00
AJ
3224 max_stripe_size = 1024 * 1024 * 1024;
3225 max_chunk_size = 10 * max_stripe_size;
9b3f68b9 3226 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f
CM
3227 /* for larger filesystems, use larger metadata chunks */
3228 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3229 max_stripe_size = 1024 * 1024 * 1024;
3230 else
3231 max_stripe_size = 256 * 1024 * 1024;
73c5de00 3232 max_chunk_size = max_stripe_size;
a40a90a0 3233 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
96bdc7dc 3234 max_stripe_size = 32 * 1024 * 1024;
73c5de00
AJ
3235 max_chunk_size = 2 * max_stripe_size;
3236 } else {
3237 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3238 type);
3239 BUG_ON(1);
9b3f68b9
CM
3240 }
3241
2b82032c
YZ
3242 /* we don't want a chunk larger than 10% of writeable space */
3243 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3244 max_chunk_size);
9b3f68b9 3245
73c5de00
AJ
3246 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3247 GFP_NOFS);
3248 if (!devices_info)
3249 return -ENOMEM;
0cad8a11 3250
73c5de00 3251 cur = fs_devices->alloc_list.next;
9b3f68b9 3252
9f680ce0 3253 /*
73c5de00
AJ
3254 * in the first pass through the devices list, we gather information
3255 * about the available holes on each device.
9f680ce0 3256 */
73c5de00
AJ
3257 ndevs = 0;
3258 while (cur != &fs_devices->alloc_list) {
3259 struct btrfs_device *device;
3260 u64 max_avail;
3261 u64 dev_offset;
b2117a39 3262
73c5de00 3263 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 3264
73c5de00 3265 cur = cur->next;
b2117a39 3266
73c5de00
AJ
3267 if (!device->writeable) {
3268 printk(KERN_ERR
3269 "btrfs: read-only device in alloc_list\n");
3270 WARN_ON(1);
3271 continue;
3272 }
b2117a39 3273
73c5de00
AJ
3274 if (!device->in_fs_metadata)
3275 continue;
b2117a39 3276
73c5de00
AJ
3277 if (device->total_bytes > device->bytes_used)
3278 total_avail = device->total_bytes - device->bytes_used;
3279 else
3280 total_avail = 0;
38c01b96 3281
3282 /* If there is no space on this device, skip it. */
3283 if (total_avail == 0)
3284 continue;
b2117a39 3285
125ccb0a 3286 ret = find_free_dev_extent(device,
73c5de00
AJ
3287 max_stripe_size * dev_stripes,
3288 &dev_offset, &max_avail);
3289 if (ret && ret != -ENOSPC)
3290 goto error;
b2117a39 3291
73c5de00
AJ
3292 if (ret == 0)
3293 max_avail = max_stripe_size * dev_stripes;
b2117a39 3294
73c5de00
AJ
3295 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3296 continue;
b2117a39 3297
73c5de00
AJ
3298 devices_info[ndevs].dev_offset = dev_offset;
3299 devices_info[ndevs].max_avail = max_avail;
3300 devices_info[ndevs].total_avail = total_avail;
3301 devices_info[ndevs].dev = device;
3302 ++ndevs;
3303 }
b2117a39 3304
73c5de00
AJ
3305 /*
3306 * now sort the devices by hole size / available space
3307 */
3308 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3309 btrfs_cmp_device_info, NULL);
b2117a39 3310
73c5de00
AJ
3311 /* round down to number of usable stripes */
3312 ndevs -= ndevs % devs_increment;
b2117a39 3313
73c5de00
AJ
3314 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3315 ret = -ENOSPC;
3316 goto error;
b2117a39 3317 }
9f680ce0 3318
73c5de00
AJ
3319 if (devs_max && ndevs > devs_max)
3320 ndevs = devs_max;
3321 /*
3322 * the primary goal is to maximize the number of stripes, so use as many
3323 * devices as possible, even if the stripes are not maximum sized.
3324 */
3325 stripe_size = devices_info[ndevs-1].max_avail;
3326 num_stripes = ndevs * dev_stripes;
b2117a39 3327
37db63a4 3328 if (stripe_size * ndevs > max_chunk_size * ncopies) {
73c5de00 3329 stripe_size = max_chunk_size * ncopies;
37db63a4 3330 do_div(stripe_size, ndevs);
b2117a39 3331 }
b2117a39 3332
73c5de00 3333 do_div(stripe_size, dev_stripes);
37db63a4
ID
3334
3335 /* align to BTRFS_STRIPE_LEN */
73c5de00
AJ
3336 do_div(stripe_size, BTRFS_STRIPE_LEN);
3337 stripe_size *= BTRFS_STRIPE_LEN;
b2117a39
MX
3338
3339 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3340 if (!map) {
3341 ret = -ENOMEM;
3342 goto error;
3343 }
3344 map->num_stripes = num_stripes;
9b3f68b9 3345
73c5de00
AJ
3346 for (i = 0; i < ndevs; ++i) {
3347 for (j = 0; j < dev_stripes; ++j) {
3348 int s = i * dev_stripes + j;
3349 map->stripes[s].dev = devices_info[i].dev;
3350 map->stripes[s].physical = devices_info[i].dev_offset +
3351 j * stripe_size;
6324fbf3 3352 }
6324fbf3 3353 }
2b82032c 3354 map->sector_size = extent_root->sectorsize;
b2117a39
MX
3355 map->stripe_len = BTRFS_STRIPE_LEN;
3356 map->io_align = BTRFS_STRIPE_LEN;
3357 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 3358 map->type = type;
2b82032c 3359 map->sub_stripes = sub_stripes;
0b86a832 3360
2b82032c 3361 *map_ret = map;
73c5de00 3362 num_bytes = stripe_size * (num_stripes / ncopies);
0b86a832 3363
73c5de00
AJ
3364 *stripe_size_out = stripe_size;
3365 *num_bytes_out = num_bytes;
0b86a832 3366
73c5de00 3367 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
1abe9b8a 3368
172ddd60 3369 em = alloc_extent_map();
2b82032c 3370 if (!em) {
b2117a39
MX
3371 ret = -ENOMEM;
3372 goto error;
593060d7 3373 }
2b82032c
YZ
3374 em->bdev = (struct block_device *)map;
3375 em->start = start;
73c5de00 3376 em->len = num_bytes;
2b82032c
YZ
3377 em->block_start = 0;
3378 em->block_len = em->len;
593060d7 3379
2b82032c 3380 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 3381 write_lock(&em_tree->lock);
2b82032c 3382 ret = add_extent_mapping(em_tree, em);
890871be 3383 write_unlock(&em_tree->lock);
2b82032c 3384 free_extent_map(em);
1dd4602f
MF
3385 if (ret)
3386 goto error;
0b86a832 3387
2b82032c
YZ
3388 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3389 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3390 start, num_bytes);
79787eaa
JM
3391 if (ret)
3392 goto error;
611f0e00 3393
73c5de00
AJ
3394 for (i = 0; i < map->num_stripes; ++i) {
3395 struct btrfs_device *device;
3396 u64 dev_offset;
3397
3398 device = map->stripes[i].dev;
3399 dev_offset = map->stripes[i].physical;
0b86a832
CM
3400
3401 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
3402 info->chunk_root->root_key.objectid,
3403 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
73c5de00 3404 start, dev_offset, stripe_size);
79787eaa
JM
3405 if (ret) {
3406 btrfs_abort_transaction(trans, extent_root, ret);
3407 goto error;
3408 }
2b82032c
YZ
3409 }
3410
b2117a39 3411 kfree(devices_info);
2b82032c 3412 return 0;
b2117a39
MX
3413
3414error:
3415 kfree(map);
3416 kfree(devices_info);
3417 return ret;
2b82032c
YZ
3418}
3419
3420static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3421 struct btrfs_root *extent_root,
3422 struct map_lookup *map, u64 chunk_offset,
3423 u64 chunk_size, u64 stripe_size)
3424{
3425 u64 dev_offset;
3426 struct btrfs_key key;
3427 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3428 struct btrfs_device *device;
3429 struct btrfs_chunk *chunk;
3430 struct btrfs_stripe *stripe;
3431 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3432 int index = 0;
3433 int ret;
3434
3435 chunk = kzalloc(item_size, GFP_NOFS);
3436 if (!chunk)
3437 return -ENOMEM;
3438
3439 index = 0;
3440 while (index < map->num_stripes) {
3441 device = map->stripes[index].dev;
3442 device->bytes_used += stripe_size;
0b86a832 3443 ret = btrfs_update_device(trans, device);
3acd3953
MF
3444 if (ret)
3445 goto out_free;
2b82032c
YZ
3446 index++;
3447 }
3448
2bf64758
JB
3449 spin_lock(&extent_root->fs_info->free_chunk_lock);
3450 extent_root->fs_info->free_chunk_space -= (stripe_size *
3451 map->num_stripes);
3452 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3453
2b82032c
YZ
3454 index = 0;
3455 stripe = &chunk->stripe;
3456 while (index < map->num_stripes) {
3457 device = map->stripes[index].dev;
3458 dev_offset = map->stripes[index].physical;
0b86a832 3459
e17cade2
CM
3460 btrfs_set_stack_stripe_devid(stripe, device->devid);
3461 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3462 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 3463 stripe++;
0b86a832
CM
3464 index++;
3465 }
3466
2b82032c 3467 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 3468 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
3469 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3470 btrfs_set_stack_chunk_type(chunk, map->type);
3471 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3472 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3473 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 3474 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 3475 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 3476
2b82032c
YZ
3477 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3478 key.type = BTRFS_CHUNK_ITEM_KEY;
3479 key.offset = chunk_offset;
0b86a832 3480
2b82032c 3481 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
0b86a832 3482
4ed1d16e
MF
3483 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3484 /*
3485 * TODO: Cleanup of inserted chunk root in case of
3486 * failure.
3487 */
125ccb0a 3488 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
2b82032c 3489 item_size);
8f18cf13 3490 }
1abe9b8a 3491
3acd3953 3492out_free:
0b86a832 3493 kfree(chunk);
4ed1d16e 3494 return ret;
2b82032c 3495}
0b86a832 3496
2b82032c
YZ
3497/*
3498 * Chunk allocation falls into two parts. The first part does works
3499 * that make the new allocated chunk useable, but not do any operation
3500 * that modifies the chunk tree. The second part does the works that
3501 * require modifying the chunk tree. This division is important for the
3502 * bootstrap process of adding storage to a seed btrfs.
3503 */
3504int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3505 struct btrfs_root *extent_root, u64 type)
3506{
3507 u64 chunk_offset;
3508 u64 chunk_size;
3509 u64 stripe_size;
3510 struct map_lookup *map;
3511 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3512 int ret;
3513
3514 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3515 &chunk_offset);
3516 if (ret)
3517 return ret;
3518
3519 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3520 &stripe_size, chunk_offset, type);
3521 if (ret)
3522 return ret;
3523
3524 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3525 chunk_size, stripe_size);
79787eaa
JM
3526 if (ret)
3527 return ret;
2b82032c
YZ
3528 return 0;
3529}
3530
d397712b 3531static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
3532 struct btrfs_root *root,
3533 struct btrfs_device *device)
3534{
3535 u64 chunk_offset;
3536 u64 sys_chunk_offset;
3537 u64 chunk_size;
3538 u64 sys_chunk_size;
3539 u64 stripe_size;
3540 u64 sys_stripe_size;
3541 u64 alloc_profile;
3542 struct map_lookup *map;
3543 struct map_lookup *sys_map;
3544 struct btrfs_fs_info *fs_info = root->fs_info;
3545 struct btrfs_root *extent_root = fs_info->extent_root;
3546 int ret;
3547
3548 ret = find_next_chunk(fs_info->chunk_root,
3549 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
92b8e897
MF
3550 if (ret)
3551 return ret;
2b82032c
YZ
3552
3553 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
6fef8df1 3554 fs_info->avail_metadata_alloc_bits;
2b82032c
YZ
3555 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3556
3557 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3558 &stripe_size, chunk_offset, alloc_profile);
79787eaa
JM
3559 if (ret)
3560 return ret;
2b82032c
YZ
3561
3562 sys_chunk_offset = chunk_offset + chunk_size;
3563
3564 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
6fef8df1 3565 fs_info->avail_system_alloc_bits;
2b82032c
YZ
3566 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3567
3568 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3569 &sys_chunk_size, &sys_stripe_size,
3570 sys_chunk_offset, alloc_profile);
79787eaa
JM
3571 if (ret)
3572 goto abort;
2b82032c
YZ
3573
3574 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
79787eaa
JM
3575 if (ret)
3576 goto abort;
2b82032c
YZ
3577
3578 /*
3579 * Modifying chunk tree needs allocating new blocks from both
3580 * system block group and metadata block group. So we only can
3581 * do operations require modifying the chunk tree after both
3582 * block groups were created.
3583 */
3584 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3585 chunk_size, stripe_size);
79787eaa
JM
3586 if (ret)
3587 goto abort;
2b82032c
YZ
3588
3589 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3590 sys_chunk_offset, sys_chunk_size,
3591 sys_stripe_size);
79787eaa
JM
3592 if (ret)
3593 goto abort;
3594
2b82032c 3595 return 0;
79787eaa
JM
3596
3597abort:
3598 btrfs_abort_transaction(trans, root, ret);
3599 return ret;
2b82032c
YZ
3600}
3601
3602int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3603{
3604 struct extent_map *em;
3605 struct map_lookup *map;
3606 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3607 int readonly = 0;
3608 int i;
3609
890871be 3610 read_lock(&map_tree->map_tree.lock);
2b82032c 3611 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 3612 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
3613 if (!em)
3614 return 1;
3615
f48b9075
JB
3616 if (btrfs_test_opt(root, DEGRADED)) {
3617 free_extent_map(em);
3618 return 0;
3619 }
3620
2b82032c
YZ
3621 map = (struct map_lookup *)em->bdev;
3622 for (i = 0; i < map->num_stripes; i++) {
3623 if (!map->stripes[i].dev->writeable) {
3624 readonly = 1;
3625 break;
3626 }
3627 }
0b86a832 3628 free_extent_map(em);
2b82032c 3629 return readonly;
0b86a832
CM
3630}
3631
3632void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3633{
a8067e02 3634 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
3635}
3636
3637void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3638{
3639 struct extent_map *em;
3640
d397712b 3641 while (1) {
890871be 3642 write_lock(&tree->map_tree.lock);
0b86a832
CM
3643 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3644 if (em)
3645 remove_extent_mapping(&tree->map_tree, em);
890871be 3646 write_unlock(&tree->map_tree.lock);
0b86a832
CM
3647 if (!em)
3648 break;
3649 kfree(em->bdev);
3650 /* once for us */
3651 free_extent_map(em);
3652 /* once for the tree */
3653 free_extent_map(em);
3654 }
3655}
3656
f188591e
CM
3657int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3658{
3659 struct extent_map *em;
3660 struct map_lookup *map;
3661 struct extent_map_tree *em_tree = &map_tree->map_tree;
3662 int ret;
3663
890871be 3664 read_lock(&em_tree->lock);
f188591e 3665 em = lookup_extent_mapping(em_tree, logical, len);
890871be 3666 read_unlock(&em_tree->lock);
f188591e
CM
3667 BUG_ON(!em);
3668
3669 BUG_ON(em->start > logical || em->start + em->len < logical);
3670 map = (struct map_lookup *)em->bdev;
3671 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3672 ret = map->num_stripes;
321aecc6
CM
3673 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3674 ret = map->sub_stripes;
f188591e
CM
3675 else
3676 ret = 1;
3677 free_extent_map(em);
f188591e
CM
3678 return ret;
3679}
3680
dfe25020
CM
3681static int find_live_mirror(struct map_lookup *map, int first, int num,
3682 int optimal)
3683{
3684 int i;
3685 if (map->stripes[optimal].dev->bdev)
3686 return optimal;
3687 for (i = first; i < first + num; i++) {
3688 if (map->stripes[i].dev->bdev)
3689 return i;
3690 }
3691 /* we couldn't find one that doesn't fail. Just return something
3692 * and the io error handling code will clean up eventually
3693 */
3694 return optimal;
3695}
3696
f2d8d74d
CM
3697static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3698 u64 logical, u64 *length,
a1d3c478 3699 struct btrfs_bio **bbio_ret,
7eaceacc 3700 int mirror_num)
0b86a832
CM
3701{
3702 struct extent_map *em;
3703 struct map_lookup *map;
3704 struct extent_map_tree *em_tree = &map_tree->map_tree;
3705 u64 offset;
593060d7 3706 u64 stripe_offset;
fce3bb9a 3707 u64 stripe_end_offset;
593060d7 3708 u64 stripe_nr;
fce3bb9a
LD
3709 u64 stripe_nr_orig;
3710 u64 stripe_nr_end;
593060d7 3711 int stripe_index;
cea9e445 3712 int i;
de11cc12 3713 int ret = 0;
f2d8d74d 3714 int num_stripes;
a236aed1 3715 int max_errors = 0;
a1d3c478 3716 struct btrfs_bio *bbio = NULL;
0b86a832 3717
890871be 3718 read_lock(&em_tree->lock);
0b86a832 3719 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 3720 read_unlock(&em_tree->lock);
f2d8d74d 3721
3b951516 3722 if (!em) {
d397712b
CM
3723 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3724 (unsigned long long)logical,
3725 (unsigned long long)*length);
f2d8d74d 3726 BUG();
3b951516 3727 }
0b86a832
CM
3728
3729 BUG_ON(em->start > logical || em->start + em->len < logical);
3730 map = (struct map_lookup *)em->bdev;
3731 offset = logical - em->start;
593060d7 3732
f188591e
CM
3733 if (mirror_num > map->num_stripes)
3734 mirror_num = 0;
3735
593060d7
CM
3736 stripe_nr = offset;
3737 /*
3738 * stripe_nr counts the total number of stripes we have to stride
3739 * to get to this block
3740 */
3741 do_div(stripe_nr, map->stripe_len);
3742
3743 stripe_offset = stripe_nr * map->stripe_len;
3744 BUG_ON(offset < stripe_offset);
3745
3746 /* stripe_offset is the offset of this block in its stripe*/
3747 stripe_offset = offset - stripe_offset;
3748
fce3bb9a
LD
3749 if (rw & REQ_DISCARD)
3750 *length = min_t(u64, em->len - offset, *length);
52ba6929 3751 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
cea9e445
CM
3752 /* we limit the length of each bio to what fits in a stripe */
3753 *length = min_t(u64, em->len - offset,
fce3bb9a 3754 map->stripe_len - stripe_offset);
cea9e445
CM
3755 } else {
3756 *length = em->len - offset;
3757 }
f2d8d74d 3758
a1d3c478 3759 if (!bbio_ret)
cea9e445
CM
3760 goto out;
3761
f2d8d74d 3762 num_stripes = 1;
cea9e445 3763 stripe_index = 0;
fce3bb9a
LD
3764 stripe_nr_orig = stripe_nr;
3765 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3766 (~(map->stripe_len - 1));
3767 do_div(stripe_nr_end, map->stripe_len);
3768 stripe_end_offset = stripe_nr_end * map->stripe_len -
3769 (offset + *length);
3770 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3771 if (rw & REQ_DISCARD)
3772 num_stripes = min_t(u64, map->num_stripes,
3773 stripe_nr_end - stripe_nr_orig);
3774 stripe_index = do_div(stripe_nr, map->num_stripes);
3775 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
212a17ab 3776 if (rw & (REQ_WRITE | REQ_DISCARD))
f2d8d74d 3777 num_stripes = map->num_stripes;
2fff734f 3778 else if (mirror_num)
f188591e 3779 stripe_index = mirror_num - 1;
dfe25020
CM
3780 else {
3781 stripe_index = find_live_mirror(map, 0,
3782 map->num_stripes,
3783 current->pid % map->num_stripes);
a1d3c478 3784 mirror_num = stripe_index + 1;
dfe25020 3785 }
2fff734f 3786
611f0e00 3787 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
a1d3c478 3788 if (rw & (REQ_WRITE | REQ_DISCARD)) {
f2d8d74d 3789 num_stripes = map->num_stripes;
a1d3c478 3790 } else if (mirror_num) {
f188591e 3791 stripe_index = mirror_num - 1;
a1d3c478
JS
3792 } else {
3793 mirror_num = 1;
3794 }
2fff734f 3795
321aecc6
CM
3796 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3797 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3798
3799 stripe_index = do_div(stripe_nr, factor);
3800 stripe_index *= map->sub_stripes;
3801
7eaceacc 3802 if (rw & REQ_WRITE)
f2d8d74d 3803 num_stripes = map->sub_stripes;
fce3bb9a
LD
3804 else if (rw & REQ_DISCARD)
3805 num_stripes = min_t(u64, map->sub_stripes *
3806 (stripe_nr_end - stripe_nr_orig),
3807 map->num_stripes);
321aecc6
CM
3808 else if (mirror_num)
3809 stripe_index += mirror_num - 1;
dfe25020 3810 else {
3e74317a 3811 int old_stripe_index = stripe_index;
dfe25020
CM
3812 stripe_index = find_live_mirror(map, stripe_index,
3813 map->sub_stripes, stripe_index +
3814 current->pid % map->sub_stripes);
3e74317a 3815 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 3816 }
8790d502
CM
3817 } else {
3818 /*
3819 * after this do_div call, stripe_nr is the number of stripes
3820 * on this device we have to walk to find the data, and
3821 * stripe_index is the number of our device in the stripe array
3822 */
3823 stripe_index = do_div(stripe_nr, map->num_stripes);
a1d3c478 3824 mirror_num = stripe_index + 1;
8790d502 3825 }
593060d7 3826 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3827
de11cc12
LZ
3828 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3829 if (!bbio) {
3830 ret = -ENOMEM;
3831 goto out;
3832 }
3833 atomic_set(&bbio->error, 0);
3834
fce3bb9a 3835 if (rw & REQ_DISCARD) {
ec9ef7a1
LZ
3836 int factor = 0;
3837 int sub_stripes = 0;
3838 u64 stripes_per_dev = 0;
3839 u32 remaining_stripes = 0;
b89203f7 3840 u32 last_stripe = 0;
ec9ef7a1
LZ
3841
3842 if (map->type &
3843 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3844 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3845 sub_stripes = 1;
3846 else
3847 sub_stripes = map->sub_stripes;
3848
3849 factor = map->num_stripes / sub_stripes;
3850 stripes_per_dev = div_u64_rem(stripe_nr_end -
3851 stripe_nr_orig,
3852 factor,
3853 &remaining_stripes);
b89203f7
LB
3854 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3855 last_stripe *= sub_stripes;
ec9ef7a1
LZ
3856 }
3857
fce3bb9a 3858 for (i = 0; i < num_stripes; i++) {
a1d3c478 3859 bbio->stripes[i].physical =
f2d8d74d
CM
3860 map->stripes[stripe_index].physical +
3861 stripe_offset + stripe_nr * map->stripe_len;
a1d3c478 3862 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
fce3bb9a 3863
ec9ef7a1
LZ
3864 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3865 BTRFS_BLOCK_GROUP_RAID10)) {
3866 bbio->stripes[i].length = stripes_per_dev *
3867 map->stripe_len;
b89203f7 3868
ec9ef7a1
LZ
3869 if (i / sub_stripes < remaining_stripes)
3870 bbio->stripes[i].length +=
3871 map->stripe_len;
b89203f7
LB
3872
3873 /*
3874 * Special for the first stripe and
3875 * the last stripe:
3876 *
3877 * |-------|...|-------|
3878 * |----------|
3879 * off end_off
3880 */
ec9ef7a1 3881 if (i < sub_stripes)
a1d3c478 3882 bbio->stripes[i].length -=
fce3bb9a 3883 stripe_offset;
b89203f7
LB
3884
3885 if (stripe_index >= last_stripe &&
3886 stripe_index <= (last_stripe +
3887 sub_stripes - 1))
a1d3c478 3888 bbio->stripes[i].length -=
fce3bb9a 3889 stripe_end_offset;
b89203f7 3890
ec9ef7a1
LZ
3891 if (i == sub_stripes - 1)
3892 stripe_offset = 0;
fce3bb9a 3893 } else
a1d3c478 3894 bbio->stripes[i].length = *length;
fce3bb9a
LD
3895
3896 stripe_index++;
3897 if (stripe_index == map->num_stripes) {
3898 /* This could only happen for RAID0/10 */
3899 stripe_index = 0;
3900 stripe_nr++;
3901 }
3902 }
3903 } else {
3904 for (i = 0; i < num_stripes; i++) {
a1d3c478 3905 bbio->stripes[i].physical =
212a17ab
LT
3906 map->stripes[stripe_index].physical +
3907 stripe_offset +
3908 stripe_nr * map->stripe_len;
a1d3c478 3909 bbio->stripes[i].dev =
212a17ab 3910 map->stripes[stripe_index].dev;
fce3bb9a 3911 stripe_index++;
f2d8d74d 3912 }
593060d7 3913 }
de11cc12
LZ
3914
3915 if (rw & REQ_WRITE) {
3916 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3917 BTRFS_BLOCK_GROUP_RAID10 |
3918 BTRFS_BLOCK_GROUP_DUP)) {
3919 max_errors = 1;
3920 }
f2d8d74d 3921 }
de11cc12
LZ
3922
3923 *bbio_ret = bbio;
3924 bbio->num_stripes = num_stripes;
3925 bbio->max_errors = max_errors;
3926 bbio->mirror_num = mirror_num;
cea9e445 3927out:
0b86a832 3928 free_extent_map(em);
de11cc12 3929 return ret;
0b86a832
CM
3930}
3931
f2d8d74d
CM
3932int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3933 u64 logical, u64 *length,
a1d3c478 3934 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 3935{
a1d3c478 3936 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
7eaceacc 3937 mirror_num);
f2d8d74d
CM
3938}
3939
a512bbf8
YZ
3940int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3941 u64 chunk_start, u64 physical, u64 devid,
3942 u64 **logical, int *naddrs, int *stripe_len)
3943{
3944 struct extent_map_tree *em_tree = &map_tree->map_tree;
3945 struct extent_map *em;
3946 struct map_lookup *map;
3947 u64 *buf;
3948 u64 bytenr;
3949 u64 length;
3950 u64 stripe_nr;
3951 int i, j, nr = 0;
3952
890871be 3953 read_lock(&em_tree->lock);
a512bbf8 3954 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3955 read_unlock(&em_tree->lock);
a512bbf8
YZ
3956
3957 BUG_ON(!em || em->start != chunk_start);
3958 map = (struct map_lookup *)em->bdev;
3959
3960 length = em->len;
3961 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3962 do_div(length, map->num_stripes / map->sub_stripes);
3963 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3964 do_div(length, map->num_stripes);
3965
3966 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
79787eaa 3967 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
3968
3969 for (i = 0; i < map->num_stripes; i++) {
3970 if (devid && map->stripes[i].dev->devid != devid)
3971 continue;
3972 if (map->stripes[i].physical > physical ||
3973 map->stripes[i].physical + length <= physical)
3974 continue;
3975
3976 stripe_nr = physical - map->stripes[i].physical;
3977 do_div(stripe_nr, map->stripe_len);
3978
3979 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3980 stripe_nr = stripe_nr * map->num_stripes + i;
3981 do_div(stripe_nr, map->sub_stripes);
3982 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3983 stripe_nr = stripe_nr * map->num_stripes + i;
3984 }
3985 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3986 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3987 for (j = 0; j < nr; j++) {
3988 if (buf[j] == bytenr)
3989 break;
3990 }
934d375b
CM
3991 if (j == nr) {
3992 WARN_ON(nr >= map->num_stripes);
a512bbf8 3993 buf[nr++] = bytenr;
934d375b 3994 }
a512bbf8
YZ
3995 }
3996
a512bbf8
YZ
3997 *logical = buf;
3998 *naddrs = nr;
3999 *stripe_len = map->stripe_len;
4000
4001 free_extent_map(em);
4002 return 0;
f2d8d74d
CM
4003}
4004
442a4f63
SB
4005static void *merge_stripe_index_into_bio_private(void *bi_private,
4006 unsigned int stripe_index)
4007{
4008 /*
4009 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4010 * at most 1.
4011 * The alternative solution (instead of stealing bits from the
4012 * pointer) would be to allocate an intermediate structure
4013 * that contains the old private pointer plus the stripe_index.
4014 */
4015 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4016 BUG_ON(stripe_index > 3);
4017 return (void *)(((uintptr_t)bi_private) | stripe_index);
4018}
4019
4020static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4021{
4022 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4023}
4024
4025static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4026{
4027 return (unsigned int)((uintptr_t)bi_private) & 3;
4028}
4029
a1d3c478 4030static void btrfs_end_bio(struct bio *bio, int err)
8790d502 4031{
442a4f63 4032 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
7d2b4daa 4033 int is_orig_bio = 0;
8790d502 4034
442a4f63 4035 if (err) {
a1d3c478 4036 atomic_inc(&bbio->error);
442a4f63
SB
4037 if (err == -EIO || err == -EREMOTEIO) {
4038 unsigned int stripe_index =
4039 extract_stripe_index_from_bio_private(
4040 bio->bi_private);
4041 struct btrfs_device *dev;
4042
4043 BUG_ON(stripe_index >= bbio->num_stripes);
4044 dev = bbio->stripes[stripe_index].dev;
4045 if (bio->bi_rw & WRITE)
4046 btrfs_dev_stat_inc(dev,
4047 BTRFS_DEV_STAT_WRITE_ERRS);
4048 else
4049 btrfs_dev_stat_inc(dev,
4050 BTRFS_DEV_STAT_READ_ERRS);
4051 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4052 btrfs_dev_stat_inc(dev,
4053 BTRFS_DEV_STAT_FLUSH_ERRS);
4054 btrfs_dev_stat_print_on_error(dev);
4055 }
4056 }
8790d502 4057
a1d3c478 4058 if (bio == bbio->orig_bio)
7d2b4daa
CM
4059 is_orig_bio = 1;
4060
a1d3c478 4061 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
4062 if (!is_orig_bio) {
4063 bio_put(bio);
a1d3c478 4064 bio = bbio->orig_bio;
7d2b4daa 4065 }
a1d3c478
JS
4066 bio->bi_private = bbio->private;
4067 bio->bi_end_io = bbio->end_io;
2774b2ca
JS
4068 bio->bi_bdev = (struct block_device *)
4069 (unsigned long)bbio->mirror_num;
a236aed1
CM
4070 /* only send an error to the higher layers if it is
4071 * beyond the tolerance of the multi-bio
4072 */
a1d3c478 4073 if (atomic_read(&bbio->error) > bbio->max_errors) {
a236aed1 4074 err = -EIO;
5dbc8fca 4075 } else {
1259ab75
CM
4076 /*
4077 * this bio is actually up to date, we didn't
4078 * go over the max number of errors
4079 */
4080 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 4081 err = 0;
1259ab75 4082 }
a1d3c478 4083 kfree(bbio);
8790d502
CM
4084
4085 bio_endio(bio, err);
7d2b4daa 4086 } else if (!is_orig_bio) {
8790d502
CM
4087 bio_put(bio);
4088 }
8790d502
CM
4089}
4090
8b712842
CM
4091struct async_sched {
4092 struct bio *bio;
4093 int rw;
4094 struct btrfs_fs_info *info;
4095 struct btrfs_work work;
4096};
4097
4098/*
4099 * see run_scheduled_bios for a description of why bios are collected for
4100 * async submit.
4101 *
4102 * This will add one bio to the pending list for a device and make sure
4103 * the work struct is scheduled.
4104 */
143bede5 4105static noinline void schedule_bio(struct btrfs_root *root,
a1b32a59
CM
4106 struct btrfs_device *device,
4107 int rw, struct bio *bio)
8b712842
CM
4108{
4109 int should_queue = 1;
ffbd517d 4110 struct btrfs_pending_bios *pending_bios;
8b712842
CM
4111
4112 /* don't bother with additional async steps for reads, right now */
7b6d91da 4113 if (!(rw & REQ_WRITE)) {
492bb6de 4114 bio_get(bio);
21adbd5c 4115 btrfsic_submit_bio(rw, bio);
492bb6de 4116 bio_put(bio);
143bede5 4117 return;
8b712842
CM
4118 }
4119
4120 /*
0986fe9e 4121 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
4122 * higher layers. Otherwise, the async bio makes it appear we have
4123 * made progress against dirty pages when we've really just put it
4124 * on a queue for later
4125 */
0986fe9e 4126 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 4127 WARN_ON(bio->bi_next);
8b712842
CM
4128 bio->bi_next = NULL;
4129 bio->bi_rw |= rw;
4130
4131 spin_lock(&device->io_lock);
7b6d91da 4132 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
4133 pending_bios = &device->pending_sync_bios;
4134 else
4135 pending_bios = &device->pending_bios;
8b712842 4136
ffbd517d
CM
4137 if (pending_bios->tail)
4138 pending_bios->tail->bi_next = bio;
8b712842 4139
ffbd517d
CM
4140 pending_bios->tail = bio;
4141 if (!pending_bios->head)
4142 pending_bios->head = bio;
8b712842
CM
4143 if (device->running_pending)
4144 should_queue = 0;
4145
4146 spin_unlock(&device->io_lock);
4147
4148 if (should_queue)
1cc127b5
CM
4149 btrfs_queue_worker(&root->fs_info->submit_workers,
4150 &device->work);
8b712842
CM
4151}
4152
f188591e 4153int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 4154 int mirror_num, int async_submit)
0b86a832
CM
4155{
4156 struct btrfs_mapping_tree *map_tree;
4157 struct btrfs_device *dev;
8790d502 4158 struct bio *first_bio = bio;
a62b9401 4159 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
4160 u64 length = 0;
4161 u64 map_length;
0b86a832 4162 int ret;
8790d502
CM
4163 int dev_nr = 0;
4164 int total_devs = 1;
a1d3c478 4165 struct btrfs_bio *bbio = NULL;
0b86a832 4166
f2d8d74d 4167 length = bio->bi_size;
0b86a832
CM
4168 map_tree = &root->fs_info->mapping_tree;
4169 map_length = length;
cea9e445 4170
a1d3c478 4171 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
f188591e 4172 mirror_num);
79787eaa
JM
4173 if (ret) /* -ENOMEM */
4174 return ret;
cea9e445 4175
a1d3c478 4176 total_devs = bbio->num_stripes;
cea9e445 4177 if (map_length < length) {
d397712b
CM
4178 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4179 "len %llu\n", (unsigned long long)logical,
4180 (unsigned long long)length,
4181 (unsigned long long)map_length);
cea9e445
CM
4182 BUG();
4183 }
a1d3c478
JS
4184
4185 bbio->orig_bio = first_bio;
4186 bbio->private = first_bio->bi_private;
4187 bbio->end_io = first_bio->bi_end_io;
4188 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
cea9e445 4189
d397712b 4190 while (dev_nr < total_devs) {
a1d3c478
JS
4191 if (dev_nr < total_devs - 1) {
4192 bio = bio_clone(first_bio, GFP_NOFS);
79787eaa 4193 BUG_ON(!bio); /* -ENOMEM */
a1d3c478
JS
4194 } else {
4195 bio = first_bio;
8790d502 4196 }
a1d3c478 4197 bio->bi_private = bbio;
442a4f63
SB
4198 bio->bi_private = merge_stripe_index_into_bio_private(
4199 bio->bi_private, (unsigned int)dev_nr);
a1d3c478
JS
4200 bio->bi_end_io = btrfs_end_bio;
4201 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4202 dev = bbio->stripes[dev_nr].dev;
18e503d6 4203 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
a1d3c478
JS
4204 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4205 "(%s id %llu), size=%u\n", rw,
4206 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4207 dev->name, dev->devid, bio->bi_size);
dfe25020 4208 bio->bi_bdev = dev->bdev;
8b712842
CM
4209 if (async_submit)
4210 schedule_bio(root, dev, rw, bio);
4211 else
21adbd5c 4212 btrfsic_submit_bio(rw, bio);
dfe25020
CM
4213 } else {
4214 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4215 bio->bi_sector = logical >> 9;
dfe25020 4216 bio_endio(bio, -EIO);
dfe25020 4217 }
8790d502
CM
4218 dev_nr++;
4219 }
0b86a832
CM
4220 return 0;
4221}
4222
a443755f 4223struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 4224 u8 *uuid, u8 *fsid)
0b86a832 4225{
2b82032c
YZ
4226 struct btrfs_device *device;
4227 struct btrfs_fs_devices *cur_devices;
4228
4229 cur_devices = root->fs_info->fs_devices;
4230 while (cur_devices) {
4231 if (!fsid ||
4232 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4233 device = __find_device(&cur_devices->devices,
4234 devid, uuid);
4235 if (device)
4236 return device;
4237 }
4238 cur_devices = cur_devices->seed;
4239 }
4240 return NULL;
0b86a832
CM
4241}
4242
dfe25020
CM
4243static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4244 u64 devid, u8 *dev_uuid)
4245{
4246 struct btrfs_device *device;
4247 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4248
4249 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 4250 if (!device)
4251 return NULL;
dfe25020
CM
4252 list_add(&device->dev_list,
4253 &fs_devices->devices);
dfe25020
CM
4254 device->dev_root = root->fs_info->dev_root;
4255 device->devid = devid;
8b712842 4256 device->work.func = pending_bios_fn;
e4404d6e 4257 device->fs_devices = fs_devices;
cd02dca5 4258 device->missing = 1;
dfe25020 4259 fs_devices->num_devices++;
cd02dca5 4260 fs_devices->missing_devices++;
dfe25020 4261 spin_lock_init(&device->io_lock);
d20f7043 4262 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
4263 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4264 return device;
4265}
4266
0b86a832
CM
4267static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4268 struct extent_buffer *leaf,
4269 struct btrfs_chunk *chunk)
4270{
4271 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4272 struct map_lookup *map;
4273 struct extent_map *em;
4274 u64 logical;
4275 u64 length;
4276 u64 devid;
a443755f 4277 u8 uuid[BTRFS_UUID_SIZE];
593060d7 4278 int num_stripes;
0b86a832 4279 int ret;
593060d7 4280 int i;
0b86a832 4281
e17cade2
CM
4282 logical = key->offset;
4283 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 4284
890871be 4285 read_lock(&map_tree->map_tree.lock);
0b86a832 4286 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 4287 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
4288
4289 /* already mapped? */
4290 if (em && em->start <= logical && em->start + em->len > logical) {
4291 free_extent_map(em);
0b86a832
CM
4292 return 0;
4293 } else if (em) {
4294 free_extent_map(em);
4295 }
0b86a832 4296
172ddd60 4297 em = alloc_extent_map();
0b86a832
CM
4298 if (!em)
4299 return -ENOMEM;
593060d7
CM
4300 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4301 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
4302 if (!map) {
4303 free_extent_map(em);
4304 return -ENOMEM;
4305 }
4306
4307 em->bdev = (struct block_device *)map;
4308 em->start = logical;
4309 em->len = length;
4310 em->block_start = 0;
c8b97818 4311 em->block_len = em->len;
0b86a832 4312
593060d7
CM
4313 map->num_stripes = num_stripes;
4314 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4315 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4316 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4317 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4318 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 4319 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
4320 for (i = 0; i < num_stripes; i++) {
4321 map->stripes[i].physical =
4322 btrfs_stripe_offset_nr(leaf, chunk, i);
4323 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
4324 read_extent_buffer(leaf, uuid, (unsigned long)
4325 btrfs_stripe_dev_uuid_nr(chunk, i),
4326 BTRFS_UUID_SIZE);
2b82032c
YZ
4327 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4328 NULL);
dfe25020 4329 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
4330 kfree(map);
4331 free_extent_map(em);
4332 return -EIO;
4333 }
dfe25020
CM
4334 if (!map->stripes[i].dev) {
4335 map->stripes[i].dev =
4336 add_missing_dev(root, devid, uuid);
4337 if (!map->stripes[i].dev) {
4338 kfree(map);
4339 free_extent_map(em);
4340 return -EIO;
4341 }
4342 }
4343 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
4344 }
4345
890871be 4346 write_lock(&map_tree->map_tree.lock);
0b86a832 4347 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 4348 write_unlock(&map_tree->map_tree.lock);
79787eaa 4349 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
4350 free_extent_map(em);
4351
4352 return 0;
4353}
4354
143bede5 4355static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
4356 struct btrfs_dev_item *dev_item,
4357 struct btrfs_device *device)
4358{
4359 unsigned long ptr;
0b86a832
CM
4360
4361 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
4362 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4363 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
4364 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4365 device->type = btrfs_device_type(leaf, dev_item);
4366 device->io_align = btrfs_device_io_align(leaf, dev_item);
4367 device->io_width = btrfs_device_io_width(leaf, dev_item);
4368 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
4369
4370 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 4371 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
4372}
4373
2b82032c
YZ
4374static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4375{
4376 struct btrfs_fs_devices *fs_devices;
4377 int ret;
4378
b367e47f 4379 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c
YZ
4380
4381 fs_devices = root->fs_info->fs_devices->seed;
4382 while (fs_devices) {
4383 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4384 ret = 0;
4385 goto out;
4386 }
4387 fs_devices = fs_devices->seed;
4388 }
4389
4390 fs_devices = find_fsid(fsid);
4391 if (!fs_devices) {
4392 ret = -ENOENT;
4393 goto out;
4394 }
e4404d6e
YZ
4395
4396 fs_devices = clone_fs_devices(fs_devices);
4397 if (IS_ERR(fs_devices)) {
4398 ret = PTR_ERR(fs_devices);
2b82032c
YZ
4399 goto out;
4400 }
4401
97288f2c 4402 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 4403 root->fs_info->bdev_holder);
48d28232
JL
4404 if (ret) {
4405 free_fs_devices(fs_devices);
2b82032c 4406 goto out;
48d28232 4407 }
2b82032c
YZ
4408
4409 if (!fs_devices->seeding) {
4410 __btrfs_close_devices(fs_devices);
e4404d6e 4411 free_fs_devices(fs_devices);
2b82032c
YZ
4412 ret = -EINVAL;
4413 goto out;
4414 }
4415
4416 fs_devices->seed = root->fs_info->fs_devices->seed;
4417 root->fs_info->fs_devices->seed = fs_devices;
2b82032c 4418out:
2b82032c
YZ
4419 return ret;
4420}
4421
0d81ba5d 4422static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
4423 struct extent_buffer *leaf,
4424 struct btrfs_dev_item *dev_item)
4425{
4426 struct btrfs_device *device;
4427 u64 devid;
4428 int ret;
2b82032c 4429 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
4430 u8 dev_uuid[BTRFS_UUID_SIZE];
4431
0b86a832 4432 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
4433 read_extent_buffer(leaf, dev_uuid,
4434 (unsigned long)btrfs_device_uuid(dev_item),
4435 BTRFS_UUID_SIZE);
2b82032c
YZ
4436 read_extent_buffer(leaf, fs_uuid,
4437 (unsigned long)btrfs_device_fsid(dev_item),
4438 BTRFS_UUID_SIZE);
4439
4440 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4441 ret = open_seed_devices(root, fs_uuid);
e4404d6e 4442 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 4443 return ret;
2b82032c
YZ
4444 }
4445
4446 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4447 if (!device || !device->bdev) {
e4404d6e 4448 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
4449 return -EIO;
4450
4451 if (!device) {
d397712b
CM
4452 printk(KERN_WARNING "warning devid %llu missing\n",
4453 (unsigned long long)devid);
2b82032c
YZ
4454 device = add_missing_dev(root, devid, dev_uuid);
4455 if (!device)
4456 return -ENOMEM;
cd02dca5
CM
4457 } else if (!device->missing) {
4458 /*
4459 * this happens when a device that was properly setup
4460 * in the device info lists suddenly goes bad.
4461 * device->bdev is NULL, and so we have to set
4462 * device->missing to one here
4463 */
4464 root->fs_info->fs_devices->missing_devices++;
4465 device->missing = 1;
2b82032c
YZ
4466 }
4467 }
4468
4469 if (device->fs_devices != root->fs_info->fs_devices) {
4470 BUG_ON(device->writeable);
4471 if (device->generation !=
4472 btrfs_device_generation(leaf, dev_item))
4473 return -EINVAL;
6324fbf3 4474 }
0b86a832
CM
4475
4476 fill_device_from_item(leaf, dev_item, device);
4477 device->dev_root = root->fs_info->dev_root;
dfe25020 4478 device->in_fs_metadata = 1;
2bf64758 4479 if (device->writeable) {
2b82032c 4480 device->fs_devices->total_rw_bytes += device->total_bytes;
2bf64758
JB
4481 spin_lock(&root->fs_info->free_chunk_lock);
4482 root->fs_info->free_chunk_space += device->total_bytes -
4483 device->bytes_used;
4484 spin_unlock(&root->fs_info->free_chunk_lock);
4485 }
0b86a832 4486 ret = 0;
0b86a832
CM
4487 return ret;
4488}
4489
e4404d6e 4490int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832 4491{
6c41761f 4492 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
a061fc8d 4493 struct extent_buffer *sb;
0b86a832 4494 struct btrfs_disk_key *disk_key;
0b86a832 4495 struct btrfs_chunk *chunk;
84eed90f
CM
4496 u8 *ptr;
4497 unsigned long sb_ptr;
4498 int ret = 0;
0b86a832
CM
4499 u32 num_stripes;
4500 u32 array_size;
4501 u32 len = 0;
0b86a832 4502 u32 cur;
84eed90f 4503 struct btrfs_key key;
0b86a832 4504
e4404d6e 4505 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
4506 BTRFS_SUPER_INFO_SIZE);
4507 if (!sb)
4508 return -ENOMEM;
4509 btrfs_set_buffer_uptodate(sb);
85d4e461 4510 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426
DS
4511 /*
4512 * The sb extent buffer is artifical and just used to read the system array.
4513 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4514 * pages up-to-date when the page is larger: extent does not cover the
4515 * whole page and consequently check_page_uptodate does not find all
4516 * the page's extents up-to-date (the hole beyond sb),
4517 * write_extent_buffer then triggers a WARN_ON.
4518 *
4519 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4520 * but sb spans only this function. Add an explicit SetPageUptodate call
4521 * to silence the warning eg. on PowerPC 64.
4522 */
4523 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 4524 SetPageUptodate(sb->pages[0]);
4008c04a 4525
a061fc8d 4526 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
4527 array_size = btrfs_super_sys_array_size(super_copy);
4528
0b86a832
CM
4529 ptr = super_copy->sys_chunk_array;
4530 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4531 cur = 0;
4532
4533 while (cur < array_size) {
4534 disk_key = (struct btrfs_disk_key *)ptr;
4535 btrfs_disk_key_to_cpu(&key, disk_key);
4536
a061fc8d 4537 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
4538 sb_ptr += len;
4539 cur += len;
4540
0d81ba5d 4541 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 4542 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 4543 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
4544 if (ret)
4545 break;
0b86a832
CM
4546 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4547 len = btrfs_chunk_item_size(num_stripes);
4548 } else {
84eed90f
CM
4549 ret = -EIO;
4550 break;
0b86a832
CM
4551 }
4552 ptr += len;
4553 sb_ptr += len;
4554 cur += len;
4555 }
a061fc8d 4556 free_extent_buffer(sb);
84eed90f 4557 return ret;
0b86a832
CM
4558}
4559
442a4f63
SB
4560struct btrfs_device *btrfs_find_device_for_logical(struct btrfs_root *root,
4561 u64 logical, int mirror_num)
4562{
4563 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4564 int ret;
4565 u64 map_length = 0;
4566 struct btrfs_bio *bbio = NULL;
4567 struct btrfs_device *device;
4568
4569 BUG_ON(mirror_num == 0);
4570 ret = btrfs_map_block(map_tree, WRITE, logical, &map_length, &bbio,
4571 mirror_num);
4572 if (ret) {
4573 BUG_ON(bbio != NULL);
4574 return NULL;
4575 }
4576 BUG_ON(mirror_num != bbio->mirror_num);
4577 device = bbio->stripes[mirror_num - 1].dev;
4578 kfree(bbio);
4579 return device;
4580}
4581
0b86a832
CM
4582int btrfs_read_chunk_tree(struct btrfs_root *root)
4583{
4584 struct btrfs_path *path;
4585 struct extent_buffer *leaf;
4586 struct btrfs_key key;
4587 struct btrfs_key found_key;
4588 int ret;
4589 int slot;
4590
4591 root = root->fs_info->chunk_root;
4592
4593 path = btrfs_alloc_path();
4594 if (!path)
4595 return -ENOMEM;
4596
b367e47f
LZ
4597 mutex_lock(&uuid_mutex);
4598 lock_chunks(root);
4599
0b86a832
CM
4600 /* first we search for all of the device items, and then we
4601 * read in all of the chunk items. This way we can create chunk
4602 * mappings that reference all of the devices that are afound
4603 */
4604 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4605 key.offset = 0;
4606 key.type = 0;
4607again:
4608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
4609 if (ret < 0)
4610 goto error;
d397712b 4611 while (1) {
0b86a832
CM
4612 leaf = path->nodes[0];
4613 slot = path->slots[0];
4614 if (slot >= btrfs_header_nritems(leaf)) {
4615 ret = btrfs_next_leaf(root, path);
4616 if (ret == 0)
4617 continue;
4618 if (ret < 0)
4619 goto error;
4620 break;
4621 }
4622 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4623 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4624 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4625 break;
4626 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4627 struct btrfs_dev_item *dev_item;
4628 dev_item = btrfs_item_ptr(leaf, slot,
4629 struct btrfs_dev_item);
0d81ba5d 4630 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
4631 if (ret)
4632 goto error;
0b86a832
CM
4633 }
4634 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4635 struct btrfs_chunk *chunk;
4636 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4637 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
4638 if (ret)
4639 goto error;
0b86a832
CM
4640 }
4641 path->slots[0]++;
4642 }
4643 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4644 key.objectid = 0;
b3b4aa74 4645 btrfs_release_path(path);
0b86a832
CM
4646 goto again;
4647 }
0b86a832
CM
4648 ret = 0;
4649error:
b367e47f
LZ
4650 unlock_chunks(root);
4651 mutex_unlock(&uuid_mutex);
4652
2b82032c 4653 btrfs_free_path(path);
0b86a832
CM
4654 return ret;
4655}
442a4f63
SB
4656
4657void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4658{
4659 btrfs_dev_stat_inc(dev, index);
4660 btrfs_dev_stat_print_on_error(dev);
4661}
4662
4663void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4664{
4665 printk_ratelimited(KERN_ERR
4666 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4667 dev->name,
4668 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4669 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4670 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4671 btrfs_dev_stat_read(dev,
4672 BTRFS_DEV_STAT_CORRUPTION_ERRS),
4673 btrfs_dev_stat_read(dev,
4674 BTRFS_DEV_STAT_GENERATION_ERRS));
4675}
c11d2c23
SB
4676
4677int btrfs_get_dev_stats(struct btrfs_root *root,
4678 struct btrfs_ioctl_get_dev_stats *stats,
4679 int reset_after_read)
4680{
4681 struct btrfs_device *dev;
4682 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4683 int i;
4684
4685 mutex_lock(&fs_devices->device_list_mutex);
4686 dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4687 mutex_unlock(&fs_devices->device_list_mutex);
4688
4689 if (!dev) {
4690 printk(KERN_WARNING
4691 "btrfs: get dev_stats failed, device not found\n");
4692 return -ENODEV;
4693 } else if (reset_after_read) {
4694 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4695 if (stats->nr_items > i)
4696 stats->values[i] =
4697 btrfs_dev_stat_read_and_reset(dev, i);
4698 else
4699 btrfs_dev_stat_reset(dev, i);
4700 }
4701 } else {
4702 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4703 if (stats->nr_items > i)
4704 stats->values[i] = btrfs_dev_stat_read(dev, i);
4705 }
4706 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4707 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4708 return 0;
4709}