]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - fs/btrfs/volumes.c
Btrfs: Avoid accessing unmapped kernel address
[mirror_ubuntu-kernels.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
788f20eb 23#include <linux/random.h>
b765ead5 24#include <linux/iocontext.h>
6f88a440 25#include <linux/capability.h>
593060d7 26#include <asm/div64.h>
4b4e25f2 27#include "compat.h"
0b86a832
CM
28#include "ctree.h"
29#include "extent_map.h"
30#include "disk-io.h"
31#include "transaction.h"
32#include "print-tree.h"
33#include "volumes.h"
8b712842 34#include "async-thread.h"
0b86a832 35
593060d7
CM
36struct map_lookup {
37 u64 type;
38 int io_align;
39 int io_width;
40 int stripe_len;
41 int sector_size;
42 int num_stripes;
321aecc6 43 int sub_stripes;
cea9e445 44 struct btrfs_bio_stripe stripes[];
593060d7
CM
45};
46
2b82032c
YZ
47static int init_first_rw_device(struct btrfs_trans_handle *trans,
48 struct btrfs_root *root,
49 struct btrfs_device *device);
50static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
51
593060d7 52#define map_lookup_size(n) (sizeof(struct map_lookup) + \
cea9e445 53 (sizeof(struct btrfs_bio_stripe) * (n)))
593060d7 54
8a4b83cc
CM
55static DEFINE_MUTEX(uuid_mutex);
56static LIST_HEAD(fs_uuids);
57
a061fc8d
CM
58void btrfs_lock_volumes(void)
59{
60 mutex_lock(&uuid_mutex);
61}
62
63void btrfs_unlock_volumes(void)
64{
65 mutex_unlock(&uuid_mutex);
66}
67
7d9eb12c
CM
68static void lock_chunks(struct btrfs_root *root)
69{
7d9eb12c
CM
70 mutex_lock(&root->fs_info->chunk_mutex);
71}
72
73static void unlock_chunks(struct btrfs_root *root)
74{
7d9eb12c
CM
75 mutex_unlock(&root->fs_info->chunk_mutex);
76}
77
e4404d6e
YZ
78static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
79{
80 struct btrfs_device *device;
81 WARN_ON(fs_devices->opened);
82 while (!list_empty(&fs_devices->devices)) {
83 device = list_entry(fs_devices->devices.next,
84 struct btrfs_device, dev_list);
85 list_del(&device->dev_list);
86 kfree(device->name);
87 kfree(device);
88 }
89 kfree(fs_devices);
90}
91
8a4b83cc
CM
92int btrfs_cleanup_fs_uuids(void)
93{
94 struct btrfs_fs_devices *fs_devices;
8a4b83cc 95
2b82032c
YZ
96 while (!list_empty(&fs_uuids)) {
97 fs_devices = list_entry(fs_uuids.next,
98 struct btrfs_fs_devices, list);
99 list_del(&fs_devices->list);
e4404d6e 100 free_fs_devices(fs_devices);
8a4b83cc
CM
101 }
102 return 0;
103}
104
a1b32a59
CM
105static noinline struct btrfs_device *__find_device(struct list_head *head,
106 u64 devid, u8 *uuid)
8a4b83cc
CM
107{
108 struct btrfs_device *dev;
8a4b83cc 109
c6e30871 110 list_for_each_entry(dev, head, dev_list) {
a443755f 111 if (dev->devid == devid &&
8f18cf13 112 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 113 return dev;
a443755f 114 }
8a4b83cc
CM
115 }
116 return NULL;
117}
118
a1b32a59 119static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 120{
8a4b83cc
CM
121 struct btrfs_fs_devices *fs_devices;
122
c6e30871 123 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
124 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
125 return fs_devices;
126 }
127 return NULL;
128}
129
ffbd517d
CM
130static void requeue_list(struct btrfs_pending_bios *pending_bios,
131 struct bio *head, struct bio *tail)
132{
133
134 struct bio *old_head;
135
136 old_head = pending_bios->head;
137 pending_bios->head = head;
138 if (pending_bios->tail)
139 tail->bi_next = old_head;
140 else
141 pending_bios->tail = tail;
142}
143
8b712842
CM
144/*
145 * we try to collect pending bios for a device so we don't get a large
146 * number of procs sending bios down to the same device. This greatly
147 * improves the schedulers ability to collect and merge the bios.
148 *
149 * But, it also turns into a long list of bios to process and that is sure
150 * to eventually make the worker thread block. The solution here is to
151 * make some progress and then put this work struct back at the end of
152 * the list if the block device is congested. This way, multiple devices
153 * can make progress from a single worker thread.
154 */
d397712b 155static noinline int run_scheduled_bios(struct btrfs_device *device)
8b712842
CM
156{
157 struct bio *pending;
158 struct backing_dev_info *bdi;
b64a2851 159 struct btrfs_fs_info *fs_info;
ffbd517d 160 struct btrfs_pending_bios *pending_bios;
8b712842
CM
161 struct bio *tail;
162 struct bio *cur;
163 int again = 0;
ffbd517d
CM
164 unsigned long num_run;
165 unsigned long num_sync_run;
d644d8a1 166 unsigned long batch_run = 0;
b64a2851 167 unsigned long limit;
b765ead5 168 unsigned long last_waited = 0;
d84275c9 169 int force_reg = 0;
8b712842 170
bedf762b 171 bdi = blk_get_backing_dev_info(device->bdev);
b64a2851
CM
172 fs_info = device->dev_root->fs_info;
173 limit = btrfs_async_submit_limit(fs_info);
174 limit = limit * 2 / 3;
175
ffbd517d
CM
176 /* we want to make sure that every time we switch from the sync
177 * list to the normal list, we unplug
178 */
179 num_sync_run = 0;
180
8b712842
CM
181loop:
182 spin_lock(&device->io_lock);
183
a6837051 184loop_lock:
d84275c9 185 num_run = 0;
ffbd517d 186
8b712842
CM
187 /* take all the bios off the list at once and process them
188 * later on (without the lock held). But, remember the
189 * tail and other pointers so the bios can be properly reinserted
190 * into the list if we hit congestion
191 */
d84275c9 192 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 193 pending_bios = &device->pending_sync_bios;
d84275c9
CM
194 force_reg = 1;
195 } else {
ffbd517d 196 pending_bios = &device->pending_bios;
d84275c9
CM
197 force_reg = 0;
198 }
ffbd517d
CM
199
200 pending = pending_bios->head;
201 tail = pending_bios->tail;
8b712842 202 WARN_ON(pending && !tail);
8b712842
CM
203
204 /*
205 * if pending was null this time around, no bios need processing
206 * at all and we can stop. Otherwise it'll loop back up again
207 * and do an additional check so no bios are missed.
208 *
209 * device->running_pending is used to synchronize with the
210 * schedule_bio code.
211 */
ffbd517d
CM
212 if (device->pending_sync_bios.head == NULL &&
213 device->pending_bios.head == NULL) {
8b712842
CM
214 again = 0;
215 device->running_pending = 0;
ffbd517d
CM
216 } else {
217 again = 1;
218 device->running_pending = 1;
8b712842 219 }
ffbd517d
CM
220
221 pending_bios->head = NULL;
222 pending_bios->tail = NULL;
223
8b712842
CM
224 spin_unlock(&device->io_lock);
225
ffbd517d
CM
226 /*
227 * if we're doing the regular priority list, make sure we unplug
228 * for any high prio bios we've sent down
229 */
230 if (pending_bios == &device->pending_bios && num_sync_run > 0) {
231 num_sync_run = 0;
232 blk_run_backing_dev(bdi, NULL);
233 }
234
d397712b 235 while (pending) {
ffbd517d
CM
236
237 rmb();
d84275c9
CM
238 /* we want to work on both lists, but do more bios on the
239 * sync list than the regular list
240 */
241 if ((num_run > 32 &&
242 pending_bios != &device->pending_sync_bios &&
243 device->pending_sync_bios.head) ||
244 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
245 device->pending_bios.head)) {
ffbd517d
CM
246 spin_lock(&device->io_lock);
247 requeue_list(pending_bios, pending, tail);
248 goto loop_lock;
249 }
250
8b712842
CM
251 cur = pending;
252 pending = pending->bi_next;
253 cur->bi_next = NULL;
b64a2851
CM
254 atomic_dec(&fs_info->nr_async_bios);
255
256 if (atomic_read(&fs_info->nr_async_bios) < limit &&
257 waitqueue_active(&fs_info->async_submit_wait))
258 wake_up(&fs_info->async_submit_wait);
492bb6de
CM
259
260 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
d644d8a1 261
7b6d91da 262 if (cur->bi_rw & REQ_SYNC)
ffbd517d
CM
263 num_sync_run++;
264
5ff7ba3a
CM
265 submit_bio(cur->bi_rw, cur);
266 num_run++;
267 batch_run++;
ffbd517d
CM
268 if (need_resched()) {
269 if (num_sync_run) {
270 blk_run_backing_dev(bdi, NULL);
271 num_sync_run = 0;
272 }
273 cond_resched();
274 }
8b712842
CM
275
276 /*
277 * we made progress, there is more work to do and the bdi
278 * is now congested. Back off and let other work structs
279 * run instead
280 */
57fd5a5f 281 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 282 fs_info->fs_devices->open_devices > 1) {
b765ead5 283 struct io_context *ioc;
8b712842 284
b765ead5
CM
285 ioc = current->io_context;
286
287 /*
288 * the main goal here is that we don't want to
289 * block if we're going to be able to submit
290 * more requests without blocking.
291 *
292 * This code does two great things, it pokes into
293 * the elevator code from a filesystem _and_
294 * it makes assumptions about how batching works.
295 */
296 if (ioc && ioc->nr_batch_requests > 0 &&
297 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
298 (last_waited == 0 ||
299 ioc->last_waited == last_waited)) {
300 /*
301 * we want to go through our batch of
302 * requests and stop. So, we copy out
303 * the ioc->last_waited time and test
304 * against it before looping
305 */
306 last_waited = ioc->last_waited;
ffbd517d
CM
307 if (need_resched()) {
308 if (num_sync_run) {
309 blk_run_backing_dev(bdi, NULL);
310 num_sync_run = 0;
311 }
312 cond_resched();
313 }
b765ead5
CM
314 continue;
315 }
8b712842 316 spin_lock(&device->io_lock);
ffbd517d 317 requeue_list(pending_bios, pending, tail);
a6837051 318 device->running_pending = 1;
8b712842
CM
319
320 spin_unlock(&device->io_lock);
321 btrfs_requeue_work(&device->work);
322 goto done;
323 }
324 }
ffbd517d
CM
325
326 if (num_sync_run) {
327 num_sync_run = 0;
328 blk_run_backing_dev(bdi, NULL);
329 }
bedf762b
CM
330 /*
331 * IO has already been through a long path to get here. Checksumming,
332 * async helper threads, perhaps compression. We've done a pretty
333 * good job of collecting a batch of IO and should just unplug
334 * the device right away.
335 *
336 * This will help anyone who is waiting on the IO, they might have
337 * already unplugged, but managed to do so before the bio they
338 * cared about found its way down here.
339 */
340 blk_run_backing_dev(bdi, NULL);
51684082
CM
341
342 cond_resched();
343 if (again)
344 goto loop;
345
346 spin_lock(&device->io_lock);
347 if (device->pending_bios.head || device->pending_sync_bios.head)
348 goto loop_lock;
349 spin_unlock(&device->io_lock);
350
8b712842
CM
351done:
352 return 0;
353}
354
b2950863 355static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
356{
357 struct btrfs_device *device;
358
359 device = container_of(work, struct btrfs_device, work);
360 run_scheduled_bios(device);
361}
362
a1b32a59 363static noinline int device_list_add(const char *path,
8a4b83cc
CM
364 struct btrfs_super_block *disk_super,
365 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
366{
367 struct btrfs_device *device;
368 struct btrfs_fs_devices *fs_devices;
369 u64 found_transid = btrfs_super_generation(disk_super);
3a0524dc 370 char *name;
8a4b83cc
CM
371
372 fs_devices = find_fsid(disk_super->fsid);
373 if (!fs_devices) {
515dc322 374 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
8a4b83cc
CM
375 if (!fs_devices)
376 return -ENOMEM;
377 INIT_LIST_HEAD(&fs_devices->devices);
b3075717 378 INIT_LIST_HEAD(&fs_devices->alloc_list);
8a4b83cc
CM
379 list_add(&fs_devices->list, &fs_uuids);
380 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
381 fs_devices->latest_devid = devid;
382 fs_devices->latest_trans = found_transid;
e5e9a520 383 mutex_init(&fs_devices->device_list_mutex);
8a4b83cc
CM
384 device = NULL;
385 } else {
a443755f
CM
386 device = __find_device(&fs_devices->devices, devid,
387 disk_super->dev_item.uuid);
8a4b83cc
CM
388 }
389 if (!device) {
2b82032c
YZ
390 if (fs_devices->opened)
391 return -EBUSY;
392
8a4b83cc
CM
393 device = kzalloc(sizeof(*device), GFP_NOFS);
394 if (!device) {
395 /* we can safely leave the fs_devices entry around */
396 return -ENOMEM;
397 }
398 device->devid = devid;
8b712842 399 device->work.func = pending_bios_fn;
a443755f
CM
400 memcpy(device->uuid, disk_super->dev_item.uuid,
401 BTRFS_UUID_SIZE);
f2984462 402 device->barriers = 1;
b248a415 403 spin_lock_init(&device->io_lock);
8a4b83cc
CM
404 device->name = kstrdup(path, GFP_NOFS);
405 if (!device->name) {
406 kfree(device);
407 return -ENOMEM;
408 }
2b82032c 409 INIT_LIST_HEAD(&device->dev_alloc_list);
e5e9a520
CM
410
411 mutex_lock(&fs_devices->device_list_mutex);
8a4b83cc 412 list_add(&device->dev_list, &fs_devices->devices);
e5e9a520
CM
413 mutex_unlock(&fs_devices->device_list_mutex);
414
2b82032c 415 device->fs_devices = fs_devices;
8a4b83cc 416 fs_devices->num_devices++;
cd02dca5 417 } else if (!device->name || strcmp(device->name, path)) {
3a0524dc
TH
418 name = kstrdup(path, GFP_NOFS);
419 if (!name)
420 return -ENOMEM;
421 kfree(device->name);
422 device->name = name;
cd02dca5
CM
423 if (device->missing) {
424 fs_devices->missing_devices--;
425 device->missing = 0;
426 }
8a4b83cc
CM
427 }
428
429 if (found_transid > fs_devices->latest_trans) {
430 fs_devices->latest_devid = devid;
431 fs_devices->latest_trans = found_transid;
432 }
8a4b83cc
CM
433 *fs_devices_ret = fs_devices;
434 return 0;
435}
436
e4404d6e
YZ
437static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
438{
439 struct btrfs_fs_devices *fs_devices;
440 struct btrfs_device *device;
441 struct btrfs_device *orig_dev;
442
443 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
444 if (!fs_devices)
445 return ERR_PTR(-ENOMEM);
446
447 INIT_LIST_HEAD(&fs_devices->devices);
448 INIT_LIST_HEAD(&fs_devices->alloc_list);
449 INIT_LIST_HEAD(&fs_devices->list);
e5e9a520 450 mutex_init(&fs_devices->device_list_mutex);
e4404d6e
YZ
451 fs_devices->latest_devid = orig->latest_devid;
452 fs_devices->latest_trans = orig->latest_trans;
453 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
454
e5e9a520 455 mutex_lock(&orig->device_list_mutex);
e4404d6e
YZ
456 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
457 device = kzalloc(sizeof(*device), GFP_NOFS);
458 if (!device)
459 goto error;
460
461 device->name = kstrdup(orig_dev->name, GFP_NOFS);
fd2696f3
JL
462 if (!device->name) {
463 kfree(device);
e4404d6e 464 goto error;
fd2696f3 465 }
e4404d6e
YZ
466
467 device->devid = orig_dev->devid;
468 device->work.func = pending_bios_fn;
469 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
470 device->barriers = 1;
471 spin_lock_init(&device->io_lock);
472 INIT_LIST_HEAD(&device->dev_list);
473 INIT_LIST_HEAD(&device->dev_alloc_list);
474
475 list_add(&device->dev_list, &fs_devices->devices);
476 device->fs_devices = fs_devices;
477 fs_devices->num_devices++;
478 }
e5e9a520 479 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
480 return fs_devices;
481error:
e5e9a520 482 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
483 free_fs_devices(fs_devices);
484 return ERR_PTR(-ENOMEM);
485}
486
dfe25020
CM
487int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
488{
c6e30871 489 struct btrfs_device *device, *next;
dfe25020
CM
490
491 mutex_lock(&uuid_mutex);
492again:
e5e9a520 493 mutex_lock(&fs_devices->device_list_mutex);
c6e30871 494 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2b82032c
YZ
495 if (device->in_fs_metadata)
496 continue;
497
498 if (device->bdev) {
15916de8 499 close_bdev_exclusive(device->bdev, device->mode);
2b82032c
YZ
500 device->bdev = NULL;
501 fs_devices->open_devices--;
502 }
503 if (device->writeable) {
504 list_del_init(&device->dev_alloc_list);
505 device->writeable = 0;
506 fs_devices->rw_devices--;
507 }
e4404d6e
YZ
508 list_del_init(&device->dev_list);
509 fs_devices->num_devices--;
510 kfree(device->name);
511 kfree(device);
dfe25020 512 }
e5e9a520 513 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c
YZ
514
515 if (fs_devices->seed) {
516 fs_devices = fs_devices->seed;
2b82032c
YZ
517 goto again;
518 }
519
dfe25020
CM
520 mutex_unlock(&uuid_mutex);
521 return 0;
522}
a0af469b 523
2b82032c 524static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 525{
8a4b83cc 526 struct btrfs_device *device;
e4404d6e 527
2b82032c
YZ
528 if (--fs_devices->opened > 0)
529 return 0;
8a4b83cc 530
c6e30871 531 list_for_each_entry(device, &fs_devices->devices, dev_list) {
8a4b83cc 532 if (device->bdev) {
15916de8 533 close_bdev_exclusive(device->bdev, device->mode);
a0af469b 534 fs_devices->open_devices--;
8a4b83cc 535 }
2b82032c
YZ
536 if (device->writeable) {
537 list_del_init(&device->dev_alloc_list);
538 fs_devices->rw_devices--;
539 }
540
8a4b83cc 541 device->bdev = NULL;
2b82032c 542 device->writeable = 0;
dfe25020 543 device->in_fs_metadata = 0;
8a4b83cc 544 }
e4404d6e
YZ
545 WARN_ON(fs_devices->open_devices);
546 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
547 fs_devices->opened = 0;
548 fs_devices->seeding = 0;
2b82032c 549
8a4b83cc
CM
550 return 0;
551}
552
2b82032c
YZ
553int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
554{
e4404d6e 555 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
556 int ret;
557
558 mutex_lock(&uuid_mutex);
559 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
560 if (!fs_devices->opened) {
561 seed_devices = fs_devices->seed;
562 fs_devices->seed = NULL;
563 }
2b82032c 564 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
565
566 while (seed_devices) {
567 fs_devices = seed_devices;
568 seed_devices = fs_devices->seed;
569 __btrfs_close_devices(fs_devices);
570 free_fs_devices(fs_devices);
571 }
2b82032c
YZ
572 return ret;
573}
574
e4404d6e
YZ
575static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
576 fmode_t flags, void *holder)
8a4b83cc
CM
577{
578 struct block_device *bdev;
579 struct list_head *head = &fs_devices->devices;
8a4b83cc 580 struct btrfs_device *device;
a0af469b
CM
581 struct block_device *latest_bdev = NULL;
582 struct buffer_head *bh;
583 struct btrfs_super_block *disk_super;
584 u64 latest_devid = 0;
585 u64 latest_transid = 0;
a0af469b 586 u64 devid;
2b82032c 587 int seeding = 1;
a0af469b 588 int ret = 0;
8a4b83cc 589
c6e30871 590 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
591 if (device->bdev)
592 continue;
dfe25020
CM
593 if (!device->name)
594 continue;
595
15916de8 596 bdev = open_bdev_exclusive(device->name, flags, holder);
8a4b83cc 597 if (IS_ERR(bdev)) {
d397712b 598 printk(KERN_INFO "open %s failed\n", device->name);
a0af469b 599 goto error;
8a4b83cc 600 }
a061fc8d 601 set_blocksize(bdev, 4096);
a0af469b 602
a512bbf8 603 bh = btrfs_read_dev_super(bdev);
20b45077
DY
604 if (!bh) {
605 ret = -EINVAL;
a0af469b 606 goto error_close;
20b45077 607 }
a0af469b
CM
608
609 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 610 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
611 if (devid != device->devid)
612 goto error_brelse;
613
2b82032c
YZ
614 if (memcmp(device->uuid, disk_super->dev_item.uuid,
615 BTRFS_UUID_SIZE))
616 goto error_brelse;
617
618 device->generation = btrfs_super_generation(disk_super);
619 if (!latest_transid || device->generation > latest_transid) {
a0af469b 620 latest_devid = devid;
2b82032c 621 latest_transid = device->generation;
a0af469b
CM
622 latest_bdev = bdev;
623 }
624
2b82032c
YZ
625 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
626 device->writeable = 0;
627 } else {
628 device->writeable = !bdev_read_only(bdev);
629 seeding = 0;
630 }
631
8a4b83cc 632 device->bdev = bdev;
dfe25020 633 device->in_fs_metadata = 0;
15916de8
CM
634 device->mode = flags;
635
c289811c
CM
636 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
637 fs_devices->rotating = 1;
638
a0af469b 639 fs_devices->open_devices++;
2b82032c
YZ
640 if (device->writeable) {
641 fs_devices->rw_devices++;
642 list_add(&device->dev_alloc_list,
643 &fs_devices->alloc_list);
644 }
a0af469b 645 continue;
a061fc8d 646
a0af469b
CM
647error_brelse:
648 brelse(bh);
649error_close:
97288f2c 650 close_bdev_exclusive(bdev, FMODE_READ);
a0af469b
CM
651error:
652 continue;
8a4b83cc 653 }
a0af469b
CM
654 if (fs_devices->open_devices == 0) {
655 ret = -EIO;
656 goto out;
657 }
2b82032c
YZ
658 fs_devices->seeding = seeding;
659 fs_devices->opened = 1;
a0af469b
CM
660 fs_devices->latest_bdev = latest_bdev;
661 fs_devices->latest_devid = latest_devid;
662 fs_devices->latest_trans = latest_transid;
2b82032c 663 fs_devices->total_rw_bytes = 0;
a0af469b 664out:
2b82032c
YZ
665 return ret;
666}
667
668int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 669 fmode_t flags, void *holder)
2b82032c
YZ
670{
671 int ret;
672
673 mutex_lock(&uuid_mutex);
674 if (fs_devices->opened) {
e4404d6e
YZ
675 fs_devices->opened++;
676 ret = 0;
2b82032c 677 } else {
15916de8 678 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 679 }
8a4b83cc 680 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
681 return ret;
682}
683
97288f2c 684int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
685 struct btrfs_fs_devices **fs_devices_ret)
686{
687 struct btrfs_super_block *disk_super;
688 struct block_device *bdev;
689 struct buffer_head *bh;
690 int ret;
691 u64 devid;
f2984462 692 u64 transid;
8a4b83cc
CM
693
694 mutex_lock(&uuid_mutex);
695
15916de8 696 bdev = open_bdev_exclusive(path, flags, holder);
8a4b83cc
CM
697
698 if (IS_ERR(bdev)) {
8a4b83cc
CM
699 ret = PTR_ERR(bdev);
700 goto error;
701 }
702
703 ret = set_blocksize(bdev, 4096);
704 if (ret)
705 goto error_close;
a512bbf8 706 bh = btrfs_read_dev_super(bdev);
8a4b83cc 707 if (!bh) {
20b45077 708 ret = -EINVAL;
8a4b83cc
CM
709 goto error_close;
710 }
711 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 712 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 713 transid = btrfs_super_generation(disk_super);
7ae9c09d 714 if (disk_super->label[0])
d397712b 715 printk(KERN_INFO "device label %s ", disk_super->label);
7ae9c09d
CM
716 else {
717 /* FIXME, make a readl uuid parser */
d397712b 718 printk(KERN_INFO "device fsid %llx-%llx ",
7ae9c09d
CM
719 *(unsigned long long *)disk_super->fsid,
720 *(unsigned long long *)(disk_super->fsid + 8));
721 }
119e10cf 722 printk(KERN_CONT "devid %llu transid %llu %s\n",
d397712b 723 (unsigned long long)devid, (unsigned long long)transid, path);
8a4b83cc
CM
724 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
725
8a4b83cc
CM
726 brelse(bh);
727error_close:
15916de8 728 close_bdev_exclusive(bdev, flags);
8a4b83cc
CM
729error:
730 mutex_unlock(&uuid_mutex);
731 return ret;
732}
0b86a832 733
6d07bcec
MX
734/* helper to account the used device space in the range */
735int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
736 u64 end, u64 *length)
737{
738 struct btrfs_key key;
739 struct btrfs_root *root = device->dev_root;
740 struct btrfs_dev_extent *dev_extent;
741 struct btrfs_path *path;
742 u64 extent_end;
743 int ret;
744 int slot;
745 struct extent_buffer *l;
746
747 *length = 0;
748
749 if (start >= device->total_bytes)
750 return 0;
751
752 path = btrfs_alloc_path();
753 if (!path)
754 return -ENOMEM;
755 path->reada = 2;
756
757 key.objectid = device->devid;
758 key.offset = start;
759 key.type = BTRFS_DEV_EXTENT_KEY;
760
761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762 if (ret < 0)
763 goto out;
764 if (ret > 0) {
765 ret = btrfs_previous_item(root, path, key.objectid, key.type);
766 if (ret < 0)
767 goto out;
768 }
769
770 while (1) {
771 l = path->nodes[0];
772 slot = path->slots[0];
773 if (slot >= btrfs_header_nritems(l)) {
774 ret = btrfs_next_leaf(root, path);
775 if (ret == 0)
776 continue;
777 if (ret < 0)
778 goto out;
779
780 break;
781 }
782 btrfs_item_key_to_cpu(l, &key, slot);
783
784 if (key.objectid < device->devid)
785 goto next;
786
787 if (key.objectid > device->devid)
788 break;
789
790 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
791 goto next;
792
793 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
794 extent_end = key.offset + btrfs_dev_extent_length(l,
795 dev_extent);
796 if (key.offset <= start && extent_end > end) {
797 *length = end - start + 1;
798 break;
799 } else if (key.offset <= start && extent_end > start)
800 *length += extent_end - start;
801 else if (key.offset > start && extent_end <= end)
802 *length += extent_end - key.offset;
803 else if (key.offset > start && key.offset <= end) {
804 *length += end - key.offset + 1;
805 break;
806 } else if (key.offset > end)
807 break;
808
809next:
810 path->slots[0]++;
811 }
812 ret = 0;
813out:
814 btrfs_free_path(path);
815 return ret;
816}
817
0b86a832 818/*
7bfc837d
MX
819 * find_free_dev_extent - find free space in the specified device
820 * @trans: transaction handler
821 * @device: the device which we search the free space in
822 * @num_bytes: the size of the free space that we need
823 * @start: store the start of the free space.
824 * @len: the size of the free space. that we find, or the size of the max
825 * free space if we don't find suitable free space
826 *
0b86a832
CM
827 * this uses a pretty simple search, the expectation is that it is
828 * called very infrequently and that a given device has a small number
829 * of extents
7bfc837d
MX
830 *
831 * @start is used to store the start of the free space if we find. But if we
832 * don't find suitable free space, it will be used to store the start position
833 * of the max free space.
834 *
835 * @len is used to store the size of the free space that we find.
836 * But if we don't find suitable free space, it is used to store the size of
837 * the max free space.
0b86a832 838 */
ba1bf481
JB
839int find_free_dev_extent(struct btrfs_trans_handle *trans,
840 struct btrfs_device *device, u64 num_bytes,
7bfc837d 841 u64 *start, u64 *len)
0b86a832
CM
842{
843 struct btrfs_key key;
844 struct btrfs_root *root = device->dev_root;
7bfc837d 845 struct btrfs_dev_extent *dev_extent;
2b82032c 846 struct btrfs_path *path;
7bfc837d
MX
847 u64 hole_size;
848 u64 max_hole_start;
849 u64 max_hole_size;
850 u64 extent_end;
851 u64 search_start;
0b86a832
CM
852 u64 search_end = device->total_bytes;
853 int ret;
7bfc837d 854 int slot;
0b86a832
CM
855 struct extent_buffer *l;
856
0b86a832
CM
857 /* FIXME use last free of some kind */
858
8a4b83cc
CM
859 /* we don't want to overwrite the superblock on the drive,
860 * so we make sure to start at an offset of at least 1MB
861 */
7bfc837d 862 search_start = 1024 * 1024;
8f18cf13 863
7bfc837d 864 if (root->fs_info->alloc_start + num_bytes <= search_end)
8f18cf13
CM
865 search_start = max(root->fs_info->alloc_start, search_start);
866
7bfc837d
MX
867 max_hole_start = search_start;
868 max_hole_size = 0;
869
870 if (search_start >= search_end) {
871 ret = -ENOSPC;
872 goto error;
873 }
874
875 path = btrfs_alloc_path();
876 if (!path) {
877 ret = -ENOMEM;
878 goto error;
879 }
880 path->reada = 2;
881
0b86a832
CM
882 key.objectid = device->devid;
883 key.offset = search_start;
884 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 885
0b86a832
CM
886 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
887 if (ret < 0)
7bfc837d 888 goto out;
1fcbac58
YZ
889 if (ret > 0) {
890 ret = btrfs_previous_item(root, path, key.objectid, key.type);
891 if (ret < 0)
7bfc837d 892 goto out;
1fcbac58 893 }
7bfc837d 894
0b86a832
CM
895 while (1) {
896 l = path->nodes[0];
897 slot = path->slots[0];
898 if (slot >= btrfs_header_nritems(l)) {
899 ret = btrfs_next_leaf(root, path);
900 if (ret == 0)
901 continue;
902 if (ret < 0)
7bfc837d
MX
903 goto out;
904
905 break;
0b86a832
CM
906 }
907 btrfs_item_key_to_cpu(l, &key, slot);
908
909 if (key.objectid < device->devid)
910 goto next;
911
912 if (key.objectid > device->devid)
7bfc837d 913 break;
0b86a832 914
7bfc837d
MX
915 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
916 goto next;
9779b72f 917
7bfc837d
MX
918 if (key.offset > search_start) {
919 hole_size = key.offset - search_start;
9779b72f 920
7bfc837d
MX
921 if (hole_size > max_hole_size) {
922 max_hole_start = search_start;
923 max_hole_size = hole_size;
924 }
925
926 /*
927 * If this free space is greater than which we need,
928 * it must be the max free space that we have found
929 * until now, so max_hole_start must point to the start
930 * of this free space and the length of this free space
931 * is stored in max_hole_size. Thus, we return
932 * max_hole_start and max_hole_size and go back to the
933 * caller.
934 */
935 if (hole_size >= num_bytes) {
936 ret = 0;
937 goto out;
0b86a832
CM
938 }
939 }
0b86a832 940
0b86a832 941 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
942 extent_end = key.offset + btrfs_dev_extent_length(l,
943 dev_extent);
944 if (extent_end > search_start)
945 search_start = extent_end;
0b86a832
CM
946next:
947 path->slots[0]++;
948 cond_resched();
949 }
0b86a832 950
7bfc837d
MX
951 hole_size = search_end- search_start;
952 if (hole_size > max_hole_size) {
953 max_hole_start = search_start;
954 max_hole_size = hole_size;
0b86a832 955 }
0b86a832 956
7bfc837d
MX
957 /* See above. */
958 if (hole_size < num_bytes)
959 ret = -ENOSPC;
960 else
961 ret = 0;
962
963out:
2b82032c 964 btrfs_free_path(path);
7bfc837d
MX
965error:
966 *start = max_hole_start;
b2117a39 967 if (len)
7bfc837d 968 *len = max_hole_size;
0b86a832
CM
969 return ret;
970}
971
b2950863 972static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13
CM
973 struct btrfs_device *device,
974 u64 start)
975{
976 int ret;
977 struct btrfs_path *path;
978 struct btrfs_root *root = device->dev_root;
979 struct btrfs_key key;
a061fc8d
CM
980 struct btrfs_key found_key;
981 struct extent_buffer *leaf = NULL;
982 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
983
984 path = btrfs_alloc_path();
985 if (!path)
986 return -ENOMEM;
987
988 key.objectid = device->devid;
989 key.offset = start;
990 key.type = BTRFS_DEV_EXTENT_KEY;
991
992 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
993 if (ret > 0) {
994 ret = btrfs_previous_item(root, path, key.objectid,
995 BTRFS_DEV_EXTENT_KEY);
996 BUG_ON(ret);
997 leaf = path->nodes[0];
998 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
999 extent = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_dev_extent);
1001 BUG_ON(found_key.offset > start || found_key.offset +
1002 btrfs_dev_extent_length(leaf, extent) < start);
1003 ret = 0;
1004 } else if (ret == 0) {
1005 leaf = path->nodes[0];
1006 extent = btrfs_item_ptr(leaf, path->slots[0],
1007 struct btrfs_dev_extent);
1008 }
8f18cf13
CM
1009 BUG_ON(ret);
1010
dfe25020
CM
1011 if (device->bytes_used > 0)
1012 device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
8f18cf13
CM
1013 ret = btrfs_del_item(trans, root, path);
1014 BUG_ON(ret);
1015
1016 btrfs_free_path(path);
1017 return ret;
1018}
1019
2b82032c 1020int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
0b86a832 1021 struct btrfs_device *device,
e17cade2 1022 u64 chunk_tree, u64 chunk_objectid,
2b82032c 1023 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1024{
1025 int ret;
1026 struct btrfs_path *path;
1027 struct btrfs_root *root = device->dev_root;
1028 struct btrfs_dev_extent *extent;
1029 struct extent_buffer *leaf;
1030 struct btrfs_key key;
1031
dfe25020 1032 WARN_ON(!device->in_fs_metadata);
0b86a832
CM
1033 path = btrfs_alloc_path();
1034 if (!path)
1035 return -ENOMEM;
1036
0b86a832 1037 key.objectid = device->devid;
2b82032c 1038 key.offset = start;
0b86a832
CM
1039 key.type = BTRFS_DEV_EXTENT_KEY;
1040 ret = btrfs_insert_empty_item(trans, root, path, &key,
1041 sizeof(*extent));
1042 BUG_ON(ret);
1043
1044 leaf = path->nodes[0];
1045 extent = btrfs_item_ptr(leaf, path->slots[0],
1046 struct btrfs_dev_extent);
e17cade2
CM
1047 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1048 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1049 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1050
1051 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1052 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1053 BTRFS_UUID_SIZE);
1054
0b86a832
CM
1055 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1056 btrfs_mark_buffer_dirty(leaf);
0b86a832
CM
1057 btrfs_free_path(path);
1058 return ret;
1059}
1060
a1b32a59
CM
1061static noinline int find_next_chunk(struct btrfs_root *root,
1062 u64 objectid, u64 *offset)
0b86a832
CM
1063{
1064 struct btrfs_path *path;
1065 int ret;
1066 struct btrfs_key key;
e17cade2 1067 struct btrfs_chunk *chunk;
0b86a832
CM
1068 struct btrfs_key found_key;
1069
1070 path = btrfs_alloc_path();
1071 BUG_ON(!path);
1072
e17cade2 1073 key.objectid = objectid;
0b86a832
CM
1074 key.offset = (u64)-1;
1075 key.type = BTRFS_CHUNK_ITEM_KEY;
1076
1077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1078 if (ret < 0)
1079 goto error;
1080
1081 BUG_ON(ret == 0);
1082
1083 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1084 if (ret) {
e17cade2 1085 *offset = 0;
0b86a832
CM
1086 } else {
1087 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1088 path->slots[0]);
e17cade2
CM
1089 if (found_key.objectid != objectid)
1090 *offset = 0;
1091 else {
1092 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1093 struct btrfs_chunk);
1094 *offset = found_key.offset +
1095 btrfs_chunk_length(path->nodes[0], chunk);
1096 }
0b86a832
CM
1097 }
1098 ret = 0;
1099error:
1100 btrfs_free_path(path);
1101 return ret;
1102}
1103
2b82032c 1104static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
0b86a832
CM
1105{
1106 int ret;
1107 struct btrfs_key key;
1108 struct btrfs_key found_key;
2b82032c
YZ
1109 struct btrfs_path *path;
1110
1111 root = root->fs_info->chunk_root;
1112
1113 path = btrfs_alloc_path();
1114 if (!path)
1115 return -ENOMEM;
0b86a832
CM
1116
1117 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1118 key.type = BTRFS_DEV_ITEM_KEY;
1119 key.offset = (u64)-1;
1120
1121 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1122 if (ret < 0)
1123 goto error;
1124
1125 BUG_ON(ret == 0);
1126
1127 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1128 BTRFS_DEV_ITEM_KEY);
1129 if (ret) {
1130 *objectid = 1;
1131 } else {
1132 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1133 path->slots[0]);
1134 *objectid = found_key.offset + 1;
1135 }
1136 ret = 0;
1137error:
2b82032c 1138 btrfs_free_path(path);
0b86a832
CM
1139 return ret;
1140}
1141
1142/*
1143 * the device information is stored in the chunk root
1144 * the btrfs_device struct should be fully filled in
1145 */
1146int btrfs_add_device(struct btrfs_trans_handle *trans,
1147 struct btrfs_root *root,
1148 struct btrfs_device *device)
1149{
1150 int ret;
1151 struct btrfs_path *path;
1152 struct btrfs_dev_item *dev_item;
1153 struct extent_buffer *leaf;
1154 struct btrfs_key key;
1155 unsigned long ptr;
0b86a832
CM
1156
1157 root = root->fs_info->chunk_root;
1158
1159 path = btrfs_alloc_path();
1160 if (!path)
1161 return -ENOMEM;
1162
0b86a832
CM
1163 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1164 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1165 key.offset = device->devid;
0b86a832
CM
1166
1167 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1168 sizeof(*dev_item));
0b86a832
CM
1169 if (ret)
1170 goto out;
1171
1172 leaf = path->nodes[0];
1173 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1174
1175 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1176 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1177 btrfs_set_device_type(leaf, dev_item, device->type);
1178 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1179 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1180 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
0b86a832
CM
1181 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1182 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
e17cade2
CM
1183 btrfs_set_device_group(leaf, dev_item, 0);
1184 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1185 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1186 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1187
0b86a832 1188 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 1189 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2b82032c
YZ
1190 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1191 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1192 btrfs_mark_buffer_dirty(leaf);
0b86a832 1193
2b82032c 1194 ret = 0;
0b86a832
CM
1195out:
1196 btrfs_free_path(path);
1197 return ret;
1198}
8f18cf13 1199
a061fc8d
CM
1200static int btrfs_rm_dev_item(struct btrfs_root *root,
1201 struct btrfs_device *device)
1202{
1203 int ret;
1204 struct btrfs_path *path;
a061fc8d 1205 struct btrfs_key key;
a061fc8d
CM
1206 struct btrfs_trans_handle *trans;
1207
1208 root = root->fs_info->chunk_root;
1209
1210 path = btrfs_alloc_path();
1211 if (!path)
1212 return -ENOMEM;
1213
a22285a6 1214 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1215 if (IS_ERR(trans)) {
1216 btrfs_free_path(path);
1217 return PTR_ERR(trans);
1218 }
a061fc8d
CM
1219 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1220 key.type = BTRFS_DEV_ITEM_KEY;
1221 key.offset = device->devid;
7d9eb12c 1222 lock_chunks(root);
a061fc8d
CM
1223
1224 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1225 if (ret < 0)
1226 goto out;
1227
1228 if (ret > 0) {
1229 ret = -ENOENT;
1230 goto out;
1231 }
1232
1233 ret = btrfs_del_item(trans, root, path);
1234 if (ret)
1235 goto out;
a061fc8d
CM
1236out:
1237 btrfs_free_path(path);
7d9eb12c 1238 unlock_chunks(root);
a061fc8d
CM
1239 btrfs_commit_transaction(trans, root);
1240 return ret;
1241}
1242
1243int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1244{
1245 struct btrfs_device *device;
2b82032c 1246 struct btrfs_device *next_device;
a061fc8d 1247 struct block_device *bdev;
dfe25020 1248 struct buffer_head *bh = NULL;
a061fc8d
CM
1249 struct btrfs_super_block *disk_super;
1250 u64 all_avail;
1251 u64 devid;
2b82032c
YZ
1252 u64 num_devices;
1253 u8 *dev_uuid;
a061fc8d
CM
1254 int ret = 0;
1255
a061fc8d 1256 mutex_lock(&uuid_mutex);
7d9eb12c 1257 mutex_lock(&root->fs_info->volume_mutex);
a061fc8d
CM
1258
1259 all_avail = root->fs_info->avail_data_alloc_bits |
1260 root->fs_info->avail_system_alloc_bits |
1261 root->fs_info->avail_metadata_alloc_bits;
1262
1263 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
035fe03a 1264 root->fs_info->fs_devices->num_devices <= 4) {
d397712b
CM
1265 printk(KERN_ERR "btrfs: unable to go below four devices "
1266 "on raid10\n");
a061fc8d
CM
1267 ret = -EINVAL;
1268 goto out;
1269 }
1270
1271 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
035fe03a 1272 root->fs_info->fs_devices->num_devices <= 2) {
d397712b
CM
1273 printk(KERN_ERR "btrfs: unable to go below two "
1274 "devices on raid1\n");
a061fc8d
CM
1275 ret = -EINVAL;
1276 goto out;
1277 }
1278
dfe25020 1279 if (strcmp(device_path, "missing") == 0) {
dfe25020
CM
1280 struct list_head *devices;
1281 struct btrfs_device *tmp;
a061fc8d 1282
dfe25020
CM
1283 device = NULL;
1284 devices = &root->fs_info->fs_devices->devices;
e5e9a520 1285 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
c6e30871 1286 list_for_each_entry(tmp, devices, dev_list) {
dfe25020
CM
1287 if (tmp->in_fs_metadata && !tmp->bdev) {
1288 device = tmp;
1289 break;
1290 }
1291 }
e5e9a520 1292 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
dfe25020
CM
1293 bdev = NULL;
1294 bh = NULL;
1295 disk_super = NULL;
1296 if (!device) {
d397712b
CM
1297 printk(KERN_ERR "btrfs: no missing devices found to "
1298 "remove\n");
dfe25020
CM
1299 goto out;
1300 }
dfe25020 1301 } else {
97288f2c 1302 bdev = open_bdev_exclusive(device_path, FMODE_READ,
dfe25020
CM
1303 root->fs_info->bdev_holder);
1304 if (IS_ERR(bdev)) {
1305 ret = PTR_ERR(bdev);
1306 goto out;
1307 }
a061fc8d 1308
2b82032c 1309 set_blocksize(bdev, 4096);
a512bbf8 1310 bh = btrfs_read_dev_super(bdev);
dfe25020 1311 if (!bh) {
20b45077 1312 ret = -EINVAL;
dfe25020
CM
1313 goto error_close;
1314 }
1315 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 1316 devid = btrfs_stack_device_id(&disk_super->dev_item);
2b82032c
YZ
1317 dev_uuid = disk_super->dev_item.uuid;
1318 device = btrfs_find_device(root, devid, dev_uuid,
1319 disk_super->fsid);
dfe25020
CM
1320 if (!device) {
1321 ret = -ENOENT;
1322 goto error_brelse;
1323 }
2b82032c 1324 }
dfe25020 1325
2b82032c 1326 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
d397712b
CM
1327 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1328 "device\n");
2b82032c
YZ
1329 ret = -EINVAL;
1330 goto error_brelse;
1331 }
1332
1333 if (device->writeable) {
1334 list_del_init(&device->dev_alloc_list);
1335 root->fs_info->fs_devices->rw_devices--;
dfe25020 1336 }
a061fc8d
CM
1337
1338 ret = btrfs_shrink_device(device, 0);
1339 if (ret)
1340 goto error_brelse;
1341
a061fc8d
CM
1342 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1343 if (ret)
1344 goto error_brelse;
1345
2b82032c 1346 device->in_fs_metadata = 0;
e5e9a520
CM
1347
1348 /*
1349 * the device list mutex makes sure that we don't change
1350 * the device list while someone else is writing out all
1351 * the device supers.
1352 */
1353 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e4404d6e 1354 list_del_init(&device->dev_list);
e5e9a520
CM
1355 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1356
e4404d6e 1357 device->fs_devices->num_devices--;
2b82032c 1358
cd02dca5
CM
1359 if (device->missing)
1360 root->fs_info->fs_devices->missing_devices--;
1361
2b82032c
YZ
1362 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1363 struct btrfs_device, dev_list);
1364 if (device->bdev == root->fs_info->sb->s_bdev)
1365 root->fs_info->sb->s_bdev = next_device->bdev;
1366 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1367 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1368
e4404d6e
YZ
1369 if (device->bdev) {
1370 close_bdev_exclusive(device->bdev, device->mode);
1371 device->bdev = NULL;
1372 device->fs_devices->open_devices--;
1373 }
1374
2b82032c
YZ
1375 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1376 btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1377
e4404d6e
YZ
1378 if (device->fs_devices->open_devices == 0) {
1379 struct btrfs_fs_devices *fs_devices;
1380 fs_devices = root->fs_info->fs_devices;
1381 while (fs_devices) {
1382 if (fs_devices->seed == device->fs_devices)
1383 break;
1384 fs_devices = fs_devices->seed;
2b82032c 1385 }
e4404d6e
YZ
1386 fs_devices->seed = device->fs_devices->seed;
1387 device->fs_devices->seed = NULL;
1388 __btrfs_close_devices(device->fs_devices);
1389 free_fs_devices(device->fs_devices);
2b82032c
YZ
1390 }
1391
1392 /*
1393 * at this point, the device is zero sized. We want to
1394 * remove it from the devices list and zero out the old super
1395 */
1396 if (device->writeable) {
dfe25020
CM
1397 /* make sure this device isn't detected as part of
1398 * the FS anymore
1399 */
1400 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1401 set_buffer_dirty(bh);
1402 sync_dirty_buffer(bh);
dfe25020 1403 }
a061fc8d
CM
1404
1405 kfree(device->name);
1406 kfree(device);
1407 ret = 0;
a061fc8d
CM
1408
1409error_brelse:
1410 brelse(bh);
1411error_close:
dfe25020 1412 if (bdev)
97288f2c 1413 close_bdev_exclusive(bdev, FMODE_READ);
a061fc8d 1414out:
7d9eb12c 1415 mutex_unlock(&root->fs_info->volume_mutex);
a061fc8d 1416 mutex_unlock(&uuid_mutex);
a061fc8d
CM
1417 return ret;
1418}
1419
2b82032c
YZ
1420/*
1421 * does all the dirty work required for changing file system's UUID.
1422 */
1423static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1424 struct btrfs_root *root)
1425{
1426 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1427 struct btrfs_fs_devices *old_devices;
e4404d6e 1428 struct btrfs_fs_devices *seed_devices;
2b82032c
YZ
1429 struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1430 struct btrfs_device *device;
1431 u64 super_flags;
1432
1433 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 1434 if (!fs_devices->seeding)
2b82032c
YZ
1435 return -EINVAL;
1436
e4404d6e
YZ
1437 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1438 if (!seed_devices)
2b82032c
YZ
1439 return -ENOMEM;
1440
e4404d6e
YZ
1441 old_devices = clone_fs_devices(fs_devices);
1442 if (IS_ERR(old_devices)) {
1443 kfree(seed_devices);
1444 return PTR_ERR(old_devices);
2b82032c 1445 }
e4404d6e 1446
2b82032c
YZ
1447 list_add(&old_devices->list, &fs_uuids);
1448
e4404d6e
YZ
1449 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1450 seed_devices->opened = 1;
1451 INIT_LIST_HEAD(&seed_devices->devices);
1452 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 1453 mutex_init(&seed_devices->device_list_mutex);
e4404d6e
YZ
1454 list_splice_init(&fs_devices->devices, &seed_devices->devices);
1455 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1456 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1457 device->fs_devices = seed_devices;
1458 }
1459
2b82032c
YZ
1460 fs_devices->seeding = 0;
1461 fs_devices->num_devices = 0;
1462 fs_devices->open_devices = 0;
e4404d6e 1463 fs_devices->seed = seed_devices;
2b82032c
YZ
1464
1465 generate_random_uuid(fs_devices->fsid);
1466 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1467 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1468 super_flags = btrfs_super_flags(disk_super) &
1469 ~BTRFS_SUPER_FLAG_SEEDING;
1470 btrfs_set_super_flags(disk_super, super_flags);
1471
1472 return 0;
1473}
1474
1475/*
1476 * strore the expected generation for seed devices in device items.
1477 */
1478static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root)
1480{
1481 struct btrfs_path *path;
1482 struct extent_buffer *leaf;
1483 struct btrfs_dev_item *dev_item;
1484 struct btrfs_device *device;
1485 struct btrfs_key key;
1486 u8 fs_uuid[BTRFS_UUID_SIZE];
1487 u8 dev_uuid[BTRFS_UUID_SIZE];
1488 u64 devid;
1489 int ret;
1490
1491 path = btrfs_alloc_path();
1492 if (!path)
1493 return -ENOMEM;
1494
1495 root = root->fs_info->chunk_root;
1496 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1497 key.offset = 0;
1498 key.type = BTRFS_DEV_ITEM_KEY;
1499
1500 while (1) {
1501 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1502 if (ret < 0)
1503 goto error;
1504
1505 leaf = path->nodes[0];
1506next_slot:
1507 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1508 ret = btrfs_next_leaf(root, path);
1509 if (ret > 0)
1510 break;
1511 if (ret < 0)
1512 goto error;
1513 leaf = path->nodes[0];
1514 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1515 btrfs_release_path(root, path);
1516 continue;
1517 }
1518
1519 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1520 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1521 key.type != BTRFS_DEV_ITEM_KEY)
1522 break;
1523
1524 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1525 struct btrfs_dev_item);
1526 devid = btrfs_device_id(leaf, dev_item);
1527 read_extent_buffer(leaf, dev_uuid,
1528 (unsigned long)btrfs_device_uuid(dev_item),
1529 BTRFS_UUID_SIZE);
1530 read_extent_buffer(leaf, fs_uuid,
1531 (unsigned long)btrfs_device_fsid(dev_item),
1532 BTRFS_UUID_SIZE);
1533 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1534 BUG_ON(!device);
1535
1536 if (device->fs_devices->seeding) {
1537 btrfs_set_device_generation(leaf, dev_item,
1538 device->generation);
1539 btrfs_mark_buffer_dirty(leaf);
1540 }
1541
1542 path->slots[0]++;
1543 goto next_slot;
1544 }
1545 ret = 0;
1546error:
1547 btrfs_free_path(path);
1548 return ret;
1549}
1550
788f20eb
CM
1551int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1552{
1553 struct btrfs_trans_handle *trans;
1554 struct btrfs_device *device;
1555 struct block_device *bdev;
788f20eb 1556 struct list_head *devices;
2b82032c 1557 struct super_block *sb = root->fs_info->sb;
788f20eb 1558 u64 total_bytes;
2b82032c 1559 int seeding_dev = 0;
788f20eb
CM
1560 int ret = 0;
1561
2b82032c
YZ
1562 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1563 return -EINVAL;
788f20eb 1564
15916de8 1565 bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
7f59203a
JB
1566 if (IS_ERR(bdev))
1567 return PTR_ERR(bdev);
a2135011 1568
2b82032c
YZ
1569 if (root->fs_info->fs_devices->seeding) {
1570 seeding_dev = 1;
1571 down_write(&sb->s_umount);
1572 mutex_lock(&uuid_mutex);
1573 }
1574
8c8bee1d 1575 filemap_write_and_wait(bdev->bd_inode->i_mapping);
7d9eb12c 1576 mutex_lock(&root->fs_info->volume_mutex);
a2135011 1577
788f20eb 1578 devices = &root->fs_info->fs_devices->devices;
e5e9a520
CM
1579 /*
1580 * we have the volume lock, so we don't need the extra
1581 * device list mutex while reading the list here.
1582 */
c6e30871 1583 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
1584 if (device->bdev == bdev) {
1585 ret = -EEXIST;
2b82032c 1586 goto error;
788f20eb
CM
1587 }
1588 }
1589
1590 device = kzalloc(sizeof(*device), GFP_NOFS);
1591 if (!device) {
1592 /* we can safely leave the fs_devices entry around */
1593 ret = -ENOMEM;
2b82032c 1594 goto error;
788f20eb
CM
1595 }
1596
788f20eb
CM
1597 device->name = kstrdup(device_path, GFP_NOFS);
1598 if (!device->name) {
1599 kfree(device);
2b82032c
YZ
1600 ret = -ENOMEM;
1601 goto error;
788f20eb 1602 }
2b82032c
YZ
1603
1604 ret = find_next_devid(root, &device->devid);
1605 if (ret) {
67100f25 1606 kfree(device->name);
2b82032c
YZ
1607 kfree(device);
1608 goto error;
1609 }
1610
a22285a6 1611 trans = btrfs_start_transaction(root, 0);
98d5dc13 1612 if (IS_ERR(trans)) {
67100f25 1613 kfree(device->name);
98d5dc13
TI
1614 kfree(device);
1615 ret = PTR_ERR(trans);
1616 goto error;
1617 }
1618
2b82032c
YZ
1619 lock_chunks(root);
1620
1621 device->barriers = 1;
1622 device->writeable = 1;
1623 device->work.func = pending_bios_fn;
1624 generate_random_uuid(device->uuid);
1625 spin_lock_init(&device->io_lock);
1626 device->generation = trans->transid;
788f20eb
CM
1627 device->io_width = root->sectorsize;
1628 device->io_align = root->sectorsize;
1629 device->sector_size = root->sectorsize;
1630 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 1631 device->disk_total_bytes = device->total_bytes;
788f20eb
CM
1632 device->dev_root = root->fs_info->dev_root;
1633 device->bdev = bdev;
dfe25020 1634 device->in_fs_metadata = 1;
15916de8 1635 device->mode = 0;
2b82032c 1636 set_blocksize(device->bdev, 4096);
788f20eb 1637
2b82032c
YZ
1638 if (seeding_dev) {
1639 sb->s_flags &= ~MS_RDONLY;
1640 ret = btrfs_prepare_sprout(trans, root);
1641 BUG_ON(ret);
1642 }
788f20eb 1643
2b82032c 1644 device->fs_devices = root->fs_info->fs_devices;
e5e9a520
CM
1645
1646 /*
1647 * we don't want write_supers to jump in here with our device
1648 * half setup
1649 */
1650 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2b82032c
YZ
1651 list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1652 list_add(&device->dev_alloc_list,
1653 &root->fs_info->fs_devices->alloc_list);
1654 root->fs_info->fs_devices->num_devices++;
1655 root->fs_info->fs_devices->open_devices++;
1656 root->fs_info->fs_devices->rw_devices++;
1657 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 1658
c289811c
CM
1659 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1660 root->fs_info->fs_devices->rotating = 1;
1661
788f20eb
CM
1662 total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1663 btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1664 total_bytes + device->total_bytes);
1665
1666 total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1667 btrfs_set_super_num_devices(&root->fs_info->super_copy,
1668 total_bytes + 1);
e5e9a520 1669 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
788f20eb 1670
2b82032c
YZ
1671 if (seeding_dev) {
1672 ret = init_first_rw_device(trans, root, device);
1673 BUG_ON(ret);
1674 ret = btrfs_finish_sprout(trans, root);
1675 BUG_ON(ret);
1676 } else {
1677 ret = btrfs_add_device(trans, root, device);
1678 }
1679
913d952e
CM
1680 /*
1681 * we've got more storage, clear any full flags on the space
1682 * infos
1683 */
1684 btrfs_clear_space_info_full(root->fs_info);
1685
7d9eb12c 1686 unlock_chunks(root);
2b82032c 1687 btrfs_commit_transaction(trans, root);
a2135011 1688
2b82032c
YZ
1689 if (seeding_dev) {
1690 mutex_unlock(&uuid_mutex);
1691 up_write(&sb->s_umount);
788f20eb 1692
2b82032c
YZ
1693 ret = btrfs_relocate_sys_chunks(root);
1694 BUG_ON(ret);
1695 }
1696out:
1697 mutex_unlock(&root->fs_info->volume_mutex);
1698 return ret;
1699error:
15916de8 1700 close_bdev_exclusive(bdev, 0);
2b82032c
YZ
1701 if (seeding_dev) {
1702 mutex_unlock(&uuid_mutex);
1703 up_write(&sb->s_umount);
1704 }
788f20eb
CM
1705 goto out;
1706}
1707
d397712b
CM
1708static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1709 struct btrfs_device *device)
0b86a832
CM
1710{
1711 int ret;
1712 struct btrfs_path *path;
1713 struct btrfs_root *root;
1714 struct btrfs_dev_item *dev_item;
1715 struct extent_buffer *leaf;
1716 struct btrfs_key key;
1717
1718 root = device->dev_root->fs_info->chunk_root;
1719
1720 path = btrfs_alloc_path();
1721 if (!path)
1722 return -ENOMEM;
1723
1724 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1725 key.type = BTRFS_DEV_ITEM_KEY;
1726 key.offset = device->devid;
1727
1728 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1729 if (ret < 0)
1730 goto out;
1731
1732 if (ret > 0) {
1733 ret = -ENOENT;
1734 goto out;
1735 }
1736
1737 leaf = path->nodes[0];
1738 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1739
1740 btrfs_set_device_id(leaf, dev_item, device->devid);
1741 btrfs_set_device_type(leaf, dev_item, device->type);
1742 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1743 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1744 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
d6397bae 1745 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
0b86a832
CM
1746 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1747 btrfs_mark_buffer_dirty(leaf);
1748
1749out:
1750 btrfs_free_path(path);
1751 return ret;
1752}
1753
7d9eb12c 1754static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
1755 struct btrfs_device *device, u64 new_size)
1756{
1757 struct btrfs_super_block *super_copy =
1758 &device->dev_root->fs_info->super_copy;
1759 u64 old_total = btrfs_super_total_bytes(super_copy);
1760 u64 diff = new_size - device->total_bytes;
1761
2b82032c
YZ
1762 if (!device->writeable)
1763 return -EACCES;
1764 if (new_size <= device->total_bytes)
1765 return -EINVAL;
1766
8f18cf13 1767 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
1768 device->fs_devices->total_rw_bytes += diff;
1769
1770 device->total_bytes = new_size;
9779b72f 1771 device->disk_total_bytes = new_size;
4184ea7f
CM
1772 btrfs_clear_space_info_full(device->dev_root->fs_info);
1773
8f18cf13
CM
1774 return btrfs_update_device(trans, device);
1775}
1776
7d9eb12c
CM
1777int btrfs_grow_device(struct btrfs_trans_handle *trans,
1778 struct btrfs_device *device, u64 new_size)
1779{
1780 int ret;
1781 lock_chunks(device->dev_root);
1782 ret = __btrfs_grow_device(trans, device, new_size);
1783 unlock_chunks(device->dev_root);
1784 return ret;
1785}
1786
8f18cf13
CM
1787static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1788 struct btrfs_root *root,
1789 u64 chunk_tree, u64 chunk_objectid,
1790 u64 chunk_offset)
1791{
1792 int ret;
1793 struct btrfs_path *path;
1794 struct btrfs_key key;
1795
1796 root = root->fs_info->chunk_root;
1797 path = btrfs_alloc_path();
1798 if (!path)
1799 return -ENOMEM;
1800
1801 key.objectid = chunk_objectid;
1802 key.offset = chunk_offset;
1803 key.type = BTRFS_CHUNK_ITEM_KEY;
1804
1805 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1806 BUG_ON(ret);
1807
1808 ret = btrfs_del_item(trans, root, path);
1809 BUG_ON(ret);
1810
1811 btrfs_free_path(path);
1812 return 0;
1813}
1814
b2950863 1815static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
8f18cf13
CM
1816 chunk_offset)
1817{
1818 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1819 struct btrfs_disk_key *disk_key;
1820 struct btrfs_chunk *chunk;
1821 u8 *ptr;
1822 int ret = 0;
1823 u32 num_stripes;
1824 u32 array_size;
1825 u32 len = 0;
1826 u32 cur;
1827 struct btrfs_key key;
1828
1829 array_size = btrfs_super_sys_array_size(super_copy);
1830
1831 ptr = super_copy->sys_chunk_array;
1832 cur = 0;
1833
1834 while (cur < array_size) {
1835 disk_key = (struct btrfs_disk_key *)ptr;
1836 btrfs_disk_key_to_cpu(&key, disk_key);
1837
1838 len = sizeof(*disk_key);
1839
1840 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1841 chunk = (struct btrfs_chunk *)(ptr + len);
1842 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1843 len += btrfs_chunk_item_size(num_stripes);
1844 } else {
1845 ret = -EIO;
1846 break;
1847 }
1848 if (key.objectid == chunk_objectid &&
1849 key.offset == chunk_offset) {
1850 memmove(ptr, ptr + len, array_size - (cur + len));
1851 array_size -= len;
1852 btrfs_set_super_sys_array_size(super_copy, array_size);
1853 } else {
1854 ptr += len;
1855 cur += len;
1856 }
1857 }
1858 return ret;
1859}
1860
b2950863 1861static int btrfs_relocate_chunk(struct btrfs_root *root,
8f18cf13
CM
1862 u64 chunk_tree, u64 chunk_objectid,
1863 u64 chunk_offset)
1864{
1865 struct extent_map_tree *em_tree;
1866 struct btrfs_root *extent_root;
1867 struct btrfs_trans_handle *trans;
1868 struct extent_map *em;
1869 struct map_lookup *map;
1870 int ret;
1871 int i;
1872
1873 root = root->fs_info->chunk_root;
1874 extent_root = root->fs_info->extent_root;
1875 em_tree = &root->fs_info->mapping_tree.map_tree;
1876
ba1bf481
JB
1877 ret = btrfs_can_relocate(extent_root, chunk_offset);
1878 if (ret)
1879 return -ENOSPC;
1880
8f18cf13 1881 /* step one, relocate all the extents inside this chunk */
1a40e23b 1882 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
a22285a6
YZ
1883 if (ret)
1884 return ret;
8f18cf13 1885
a22285a6 1886 trans = btrfs_start_transaction(root, 0);
98d5dc13 1887 BUG_ON(IS_ERR(trans));
8f18cf13 1888
7d9eb12c
CM
1889 lock_chunks(root);
1890
8f18cf13
CM
1891 /*
1892 * step two, delete the device extents and the
1893 * chunk tree entries
1894 */
890871be 1895 read_lock(&em_tree->lock);
8f18cf13 1896 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
890871be 1897 read_unlock(&em_tree->lock);
8f18cf13 1898
a061fc8d
CM
1899 BUG_ON(em->start > chunk_offset ||
1900 em->start + em->len < chunk_offset);
8f18cf13
CM
1901 map = (struct map_lookup *)em->bdev;
1902
1903 for (i = 0; i < map->num_stripes; i++) {
1904 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1905 map->stripes[i].physical);
1906 BUG_ON(ret);
a061fc8d 1907
dfe25020
CM
1908 if (map->stripes[i].dev) {
1909 ret = btrfs_update_device(trans, map->stripes[i].dev);
1910 BUG_ON(ret);
1911 }
8f18cf13
CM
1912 }
1913 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1914 chunk_offset);
1915
1916 BUG_ON(ret);
1917
1918 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1919 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1920 BUG_ON(ret);
8f18cf13
CM
1921 }
1922
2b82032c
YZ
1923 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1924 BUG_ON(ret);
1925
890871be 1926 write_lock(&em_tree->lock);
2b82032c 1927 remove_extent_mapping(em_tree, em);
890871be 1928 write_unlock(&em_tree->lock);
2b82032c
YZ
1929
1930 kfree(map);
1931 em->bdev = NULL;
1932
1933 /* once for the tree */
1934 free_extent_map(em);
1935 /* once for us */
1936 free_extent_map(em);
1937
1938 unlock_chunks(root);
1939 btrfs_end_transaction(trans, root);
1940 return 0;
1941}
1942
1943static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1944{
1945 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1946 struct btrfs_path *path;
1947 struct extent_buffer *leaf;
1948 struct btrfs_chunk *chunk;
1949 struct btrfs_key key;
1950 struct btrfs_key found_key;
1951 u64 chunk_tree = chunk_root->root_key.objectid;
1952 u64 chunk_type;
ba1bf481
JB
1953 bool retried = false;
1954 int failed = 0;
2b82032c
YZ
1955 int ret;
1956
1957 path = btrfs_alloc_path();
1958 if (!path)
1959 return -ENOMEM;
1960
ba1bf481 1961again:
2b82032c
YZ
1962 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1963 key.offset = (u64)-1;
1964 key.type = BTRFS_CHUNK_ITEM_KEY;
1965
1966 while (1) {
1967 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1968 if (ret < 0)
1969 goto error;
1970 BUG_ON(ret == 0);
1971
1972 ret = btrfs_previous_item(chunk_root, path, key.objectid,
1973 key.type);
1974 if (ret < 0)
1975 goto error;
1976 if (ret > 0)
1977 break;
1a40e23b 1978
2b82032c
YZ
1979 leaf = path->nodes[0];
1980 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 1981
2b82032c
YZ
1982 chunk = btrfs_item_ptr(leaf, path->slots[0],
1983 struct btrfs_chunk);
1984 chunk_type = btrfs_chunk_type(leaf, chunk);
1985 btrfs_release_path(chunk_root, path);
8f18cf13 1986
2b82032c
YZ
1987 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1988 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1989 found_key.objectid,
1990 found_key.offset);
ba1bf481
JB
1991 if (ret == -ENOSPC)
1992 failed++;
1993 else if (ret)
1994 BUG();
2b82032c 1995 }
8f18cf13 1996
2b82032c
YZ
1997 if (found_key.offset == 0)
1998 break;
1999 key.offset = found_key.offset - 1;
2000 }
2001 ret = 0;
ba1bf481
JB
2002 if (failed && !retried) {
2003 failed = 0;
2004 retried = true;
2005 goto again;
2006 } else if (failed && retried) {
2007 WARN_ON(1);
2008 ret = -ENOSPC;
2009 }
2b82032c
YZ
2010error:
2011 btrfs_free_path(path);
2012 return ret;
8f18cf13
CM
2013}
2014
ec44a35c
CM
2015static u64 div_factor(u64 num, int factor)
2016{
2017 if (factor == 10)
2018 return num;
2019 num *= factor;
2020 do_div(num, 10);
2021 return num;
2022}
2023
ec44a35c
CM
2024int btrfs_balance(struct btrfs_root *dev_root)
2025{
2026 int ret;
ec44a35c
CM
2027 struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
2028 struct btrfs_device *device;
2029 u64 old_size;
2030 u64 size_to_free;
2031 struct btrfs_path *path;
2032 struct btrfs_key key;
ec44a35c
CM
2033 struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
2034 struct btrfs_trans_handle *trans;
2035 struct btrfs_key found_key;
2036
2b82032c
YZ
2037 if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
2038 return -EROFS;
ec44a35c 2039
6f88a440
BH
2040 if (!capable(CAP_SYS_ADMIN))
2041 return -EPERM;
2042
7d9eb12c 2043 mutex_lock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2044 dev_root = dev_root->fs_info->dev_root;
2045
ec44a35c 2046 /* step one make some room on all the devices */
c6e30871 2047 list_for_each_entry(device, devices, dev_list) {
ec44a35c
CM
2048 old_size = device->total_bytes;
2049 size_to_free = div_factor(old_size, 1);
2050 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2b82032c
YZ
2051 if (!device->writeable ||
2052 device->total_bytes - device->bytes_used > size_to_free)
ec44a35c
CM
2053 continue;
2054
2055 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
2056 if (ret == -ENOSPC)
2057 break;
ec44a35c
CM
2058 BUG_ON(ret);
2059
a22285a6 2060 trans = btrfs_start_transaction(dev_root, 0);
98d5dc13 2061 BUG_ON(IS_ERR(trans));
ec44a35c
CM
2062
2063 ret = btrfs_grow_device(trans, device, old_size);
2064 BUG_ON(ret);
2065
2066 btrfs_end_transaction(trans, dev_root);
2067 }
2068
2069 /* step two, relocate all the chunks */
2070 path = btrfs_alloc_path();
2071 BUG_ON(!path);
2072
2073 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2074 key.offset = (u64)-1;
2075 key.type = BTRFS_CHUNK_ITEM_KEY;
2076
d397712b 2077 while (1) {
ec44a35c
CM
2078 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2079 if (ret < 0)
2080 goto error;
2081
2082 /*
2083 * this shouldn't happen, it means the last relocate
2084 * failed
2085 */
2086 if (ret == 0)
2087 break;
2088
2089 ret = btrfs_previous_item(chunk_root, path, 0,
2090 BTRFS_CHUNK_ITEM_KEY);
7d9eb12c 2091 if (ret)
ec44a35c 2092 break;
7d9eb12c 2093
ec44a35c
CM
2094 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2095 path->slots[0]);
2096 if (found_key.objectid != key.objectid)
2097 break;
7d9eb12c 2098
ec44a35c 2099 /* chunk zero is special */
ba1bf481 2100 if (found_key.offset == 0)
ec44a35c
CM
2101 break;
2102
7d9eb12c 2103 btrfs_release_path(chunk_root, path);
ec44a35c
CM
2104 ret = btrfs_relocate_chunk(chunk_root,
2105 chunk_root->root_key.objectid,
2106 found_key.objectid,
2107 found_key.offset);
ba1bf481
JB
2108 BUG_ON(ret && ret != -ENOSPC);
2109 key.offset = found_key.offset - 1;
ec44a35c
CM
2110 }
2111 ret = 0;
2112error:
2113 btrfs_free_path(path);
7d9eb12c 2114 mutex_unlock(&dev_root->fs_info->volume_mutex);
ec44a35c
CM
2115 return ret;
2116}
2117
8f18cf13
CM
2118/*
2119 * shrinking a device means finding all of the device extents past
2120 * the new size, and then following the back refs to the chunks.
2121 * The chunk relocation code actually frees the device extent
2122 */
2123int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2124{
2125 struct btrfs_trans_handle *trans;
2126 struct btrfs_root *root = device->dev_root;
2127 struct btrfs_dev_extent *dev_extent = NULL;
2128 struct btrfs_path *path;
2129 u64 length;
2130 u64 chunk_tree;
2131 u64 chunk_objectid;
2132 u64 chunk_offset;
2133 int ret;
2134 int slot;
ba1bf481
JB
2135 int failed = 0;
2136 bool retried = false;
8f18cf13
CM
2137 struct extent_buffer *l;
2138 struct btrfs_key key;
2139 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2140 u64 old_total = btrfs_super_total_bytes(super_copy);
ba1bf481 2141 u64 old_size = device->total_bytes;
8f18cf13
CM
2142 u64 diff = device->total_bytes - new_size;
2143
2b82032c
YZ
2144 if (new_size >= device->total_bytes)
2145 return -EINVAL;
8f18cf13
CM
2146
2147 path = btrfs_alloc_path();
2148 if (!path)
2149 return -ENOMEM;
2150
8f18cf13
CM
2151 path->reada = 2;
2152
7d9eb12c
CM
2153 lock_chunks(root);
2154
8f18cf13 2155 device->total_bytes = new_size;
2b82032c
YZ
2156 if (device->writeable)
2157 device->fs_devices->total_rw_bytes -= diff;
7d9eb12c 2158 unlock_chunks(root);
8f18cf13 2159
ba1bf481 2160again:
8f18cf13
CM
2161 key.objectid = device->devid;
2162 key.offset = (u64)-1;
2163 key.type = BTRFS_DEV_EXTENT_KEY;
2164
2165 while (1) {
2166 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2167 if (ret < 0)
2168 goto done;
2169
2170 ret = btrfs_previous_item(root, path, 0, key.type);
2171 if (ret < 0)
2172 goto done;
2173 if (ret) {
2174 ret = 0;
ba1bf481 2175 btrfs_release_path(root, path);
bf1fb512 2176 break;
8f18cf13
CM
2177 }
2178
2179 l = path->nodes[0];
2180 slot = path->slots[0];
2181 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2182
ba1bf481
JB
2183 if (key.objectid != device->devid) {
2184 btrfs_release_path(root, path);
bf1fb512 2185 break;
ba1bf481 2186 }
8f18cf13
CM
2187
2188 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2189 length = btrfs_dev_extent_length(l, dev_extent);
2190
ba1bf481
JB
2191 if (key.offset + length <= new_size) {
2192 btrfs_release_path(root, path);
d6397bae 2193 break;
ba1bf481 2194 }
8f18cf13
CM
2195
2196 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2197 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2198 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2199 btrfs_release_path(root, path);
2200
2201 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2202 chunk_offset);
ba1bf481 2203 if (ret && ret != -ENOSPC)
8f18cf13 2204 goto done;
ba1bf481
JB
2205 if (ret == -ENOSPC)
2206 failed++;
2207 key.offset -= 1;
2208 }
2209
2210 if (failed && !retried) {
2211 failed = 0;
2212 retried = true;
2213 goto again;
2214 } else if (failed && retried) {
2215 ret = -ENOSPC;
2216 lock_chunks(root);
2217
2218 device->total_bytes = old_size;
2219 if (device->writeable)
2220 device->fs_devices->total_rw_bytes += diff;
2221 unlock_chunks(root);
2222 goto done;
8f18cf13
CM
2223 }
2224
d6397bae 2225 /* Shrinking succeeded, else we would be at "done". */
a22285a6 2226 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
2227 if (IS_ERR(trans)) {
2228 ret = PTR_ERR(trans);
2229 goto done;
2230 }
2231
d6397bae
CB
2232 lock_chunks(root);
2233
2234 device->disk_total_bytes = new_size;
2235 /* Now btrfs_update_device() will change the on-disk size. */
2236 ret = btrfs_update_device(trans, device);
2237 if (ret) {
2238 unlock_chunks(root);
2239 btrfs_end_transaction(trans, root);
2240 goto done;
2241 }
2242 WARN_ON(diff > old_total);
2243 btrfs_set_super_total_bytes(super_copy, old_total - diff);
2244 unlock_chunks(root);
2245 btrfs_end_transaction(trans, root);
8f18cf13
CM
2246done:
2247 btrfs_free_path(path);
2248 return ret;
2249}
2250
b2950863 2251static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
0b86a832
CM
2252 struct btrfs_root *root,
2253 struct btrfs_key *key,
2254 struct btrfs_chunk *chunk, int item_size)
2255{
2256 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2257 struct btrfs_disk_key disk_key;
2258 u32 array_size;
2259 u8 *ptr;
2260
2261 array_size = btrfs_super_sys_array_size(super_copy);
2262 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2263 return -EFBIG;
2264
2265 ptr = super_copy->sys_chunk_array + array_size;
2266 btrfs_cpu_key_to_disk(&disk_key, key);
2267 memcpy(ptr, &disk_key, sizeof(disk_key));
2268 ptr += sizeof(disk_key);
2269 memcpy(ptr, chunk, item_size);
2270 item_size += sizeof(disk_key);
2271 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2272 return 0;
2273}
2274
d397712b 2275static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
a1b32a59 2276 int num_stripes, int sub_stripes)
9b3f68b9
CM
2277{
2278 if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2279 return calc_size;
2280 else if (type & BTRFS_BLOCK_GROUP_RAID10)
2281 return calc_size * (num_stripes / sub_stripes);
2282 else
2283 return calc_size * num_stripes;
2284}
2285
b2117a39
MX
2286/* Used to sort the devices by max_avail(descending sort) */
2287int btrfs_cmp_device_free_bytes(const void *dev_info1, const void *dev_info2)
0b86a832 2288{
b2117a39
MX
2289 if (((struct btrfs_device_info *)dev_info1)->max_avail >
2290 ((struct btrfs_device_info *)dev_info2)->max_avail)
2291 return -1;
2292 else if (((struct btrfs_device_info *)dev_info1)->max_avail <
2293 ((struct btrfs_device_info *)dev_info2)->max_avail)
2294 return 1;
2295 else
2296 return 0;
2297}
0b86a832 2298
b2117a39
MX
2299static int __btrfs_calc_nstripes(struct btrfs_fs_devices *fs_devices, u64 type,
2300 int *num_stripes, int *min_stripes,
2301 int *sub_stripes)
2302{
2303 *num_stripes = 1;
2304 *min_stripes = 1;
2305 *sub_stripes = 0;
593060d7 2306
a40a90a0 2307 if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
b2117a39
MX
2308 *num_stripes = fs_devices->rw_devices;
2309 *min_stripes = 2;
a40a90a0
CM
2310 }
2311 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
b2117a39
MX
2312 *num_stripes = 2;
2313 *min_stripes = 2;
a40a90a0 2314 }
8790d502 2315 if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
f3eae7e8 2316 if (fs_devices->rw_devices < 2)
9b3f68b9 2317 return -ENOSPC;
b2117a39
MX
2318 *num_stripes = 2;
2319 *min_stripes = 2;
8790d502 2320 }
321aecc6 2321 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
b2117a39
MX
2322 *num_stripes = fs_devices->rw_devices;
2323 if (*num_stripes < 4)
321aecc6 2324 return -ENOSPC;
b2117a39
MX
2325 *num_stripes &= ~(u32)1;
2326 *sub_stripes = 2;
2327 *min_stripes = 4;
321aecc6 2328 }
9b3f68b9 2329
b2117a39
MX
2330 return 0;
2331}
2332
2333static u64 __btrfs_calc_stripe_size(struct btrfs_fs_devices *fs_devices,
2334 u64 proposed_size, u64 type,
2335 int num_stripes, int small_stripe)
2336{
2337 int min_stripe_size = 1 * 1024 * 1024;
2338 u64 calc_size = proposed_size;
2339 u64 max_chunk_size = calc_size;
2340 int ncopies = 1;
2341
2342 if (type & (BTRFS_BLOCK_GROUP_RAID1 |
2343 BTRFS_BLOCK_GROUP_DUP |
2344 BTRFS_BLOCK_GROUP_RAID10))
2345 ncopies = 2;
2346
9b3f68b9
CM
2347 if (type & BTRFS_BLOCK_GROUP_DATA) {
2348 max_chunk_size = 10 * calc_size;
a40a90a0 2349 min_stripe_size = 64 * 1024 * 1024;
9b3f68b9 2350 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
83d3c969 2351 max_chunk_size = 256 * 1024 * 1024;
a40a90a0
CM
2352 min_stripe_size = 32 * 1024 * 1024;
2353 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2354 calc_size = 8 * 1024 * 1024;
2355 max_chunk_size = calc_size * 2;
2356 min_stripe_size = 1 * 1024 * 1024;
9b3f68b9
CM
2357 }
2358
2b82032c
YZ
2359 /* we don't want a chunk larger than 10% of writeable space */
2360 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2361 max_chunk_size);
9b3f68b9 2362
1974a3b4
MX
2363 if (calc_size * num_stripes > max_chunk_size * ncopies) {
2364 calc_size = max_chunk_size * ncopies;
9b3f68b9 2365 do_div(calc_size, num_stripes);
b2117a39
MX
2366 do_div(calc_size, BTRFS_STRIPE_LEN);
2367 calc_size *= BTRFS_STRIPE_LEN;
9b3f68b9 2368 }
0cad8a11 2369
9b3f68b9 2370 /* we don't want tiny stripes */
b2117a39 2371 if (!small_stripe)
0cad8a11 2372 calc_size = max_t(u64, min_stripe_size, calc_size);
9b3f68b9 2373
9f680ce0 2374 /*
b2117a39 2375 * we're about to do_div by the BTRFS_STRIPE_LEN so lets make sure
9f680ce0
CM
2376 * we end up with something bigger than a stripe
2377 */
b2117a39
MX
2378 calc_size = max_t(u64, calc_size, BTRFS_STRIPE_LEN);
2379
2380 do_div(calc_size, BTRFS_STRIPE_LEN);
2381 calc_size *= BTRFS_STRIPE_LEN;
2382
2383 return calc_size;
2384}
2385
2386static struct map_lookup *__shrink_map_lookup_stripes(struct map_lookup *map,
2387 int num_stripes)
2388{
2389 struct map_lookup *new;
2390 size_t len = map_lookup_size(num_stripes);
2391
2392 BUG_ON(map->num_stripes < num_stripes);
2393
2394 if (map->num_stripes == num_stripes)
2395 return map;
2396
2397 new = kmalloc(len, GFP_NOFS);
2398 if (!new) {
2399 /* just change map->num_stripes */
2400 map->num_stripes = num_stripes;
2401 return map;
2402 }
2403
2404 memcpy(new, map, len);
2405 new->num_stripes = num_stripes;
2406 kfree(map);
2407 return new;
2408}
2409
2410/*
2411 * helper to allocate device space from btrfs_device_info, in which we stored
2412 * max free space information of every device. It is used when we can not
2413 * allocate chunks by default size.
2414 *
2415 * By this helper, we can allocate a new chunk as larger as possible.
2416 */
2417static int __btrfs_alloc_tiny_space(struct btrfs_trans_handle *trans,
2418 struct btrfs_fs_devices *fs_devices,
2419 struct btrfs_device_info *devices,
2420 int nr_device, u64 type,
2421 struct map_lookup **map_lookup,
2422 int min_stripes, u64 *stripe_size)
2423{
2424 int i, index, sort_again = 0;
2425 int min_devices = min_stripes;
2426 u64 max_avail, min_free;
2427 struct map_lookup *map = *map_lookup;
2428 int ret;
9f680ce0 2429
b2117a39
MX
2430 if (nr_device < min_stripes)
2431 return -ENOSPC;
2432
2433 btrfs_descending_sort_devices(devices, nr_device);
2434
2435 max_avail = devices[0].max_avail;
2436 if (!max_avail)
2437 return -ENOSPC;
2438
2439 for (i = 0; i < nr_device; i++) {
2440 /*
2441 * if dev_offset = 0, it means the free space of this device
2442 * is less than what we need, and we didn't search max avail
2443 * extent on this device, so do it now.
2444 */
2445 if (!devices[i].dev_offset) {
2446 ret = find_free_dev_extent(trans, devices[i].dev,
2447 max_avail,
2448 &devices[i].dev_offset,
2449 &devices[i].max_avail);
2450 if (ret != 0 && ret != -ENOSPC)
2451 return ret;
2452 sort_again = 1;
2453 }
2454 }
2455
2456 /* we update the max avail free extent of each devices, sort again */
2457 if (sort_again)
2458 btrfs_descending_sort_devices(devices, nr_device);
2459
2460 if (type & BTRFS_BLOCK_GROUP_DUP)
2461 min_devices = 1;
2462
2463 if (!devices[min_devices - 1].max_avail)
2464 return -ENOSPC;
2465
2466 max_avail = devices[min_devices - 1].max_avail;
2467 if (type & BTRFS_BLOCK_GROUP_DUP)
2468 do_div(max_avail, 2);
2469
2470 max_avail = __btrfs_calc_stripe_size(fs_devices, max_avail, type,
2471 min_stripes, 1);
2472 if (type & BTRFS_BLOCK_GROUP_DUP)
2473 min_free = max_avail * 2;
2474 else
2475 min_free = max_avail;
2476
2477 if (min_free > devices[min_devices - 1].max_avail)
2478 return -ENOSPC;
2479
2480 map = __shrink_map_lookup_stripes(map, min_stripes);
2481 *stripe_size = max_avail;
2482
2483 index = 0;
2484 for (i = 0; i < min_stripes; i++) {
2485 map->stripes[i].dev = devices[index].dev;
2486 map->stripes[i].physical = devices[index].dev_offset;
2487 if (type & BTRFS_BLOCK_GROUP_DUP) {
2488 i++;
2489 map->stripes[i].dev = devices[index].dev;
2490 map->stripes[i].physical = devices[index].dev_offset +
2491 max_avail;
2492 }
2493 index++;
2494 }
2495 *map_lookup = map;
2496
2497 return 0;
2498}
2499
2500static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2501 struct btrfs_root *extent_root,
2502 struct map_lookup **map_ret,
2503 u64 *num_bytes, u64 *stripe_size,
2504 u64 start, u64 type)
2505{
2506 struct btrfs_fs_info *info = extent_root->fs_info;
2507 struct btrfs_device *device = NULL;
2508 struct btrfs_fs_devices *fs_devices = info->fs_devices;
2509 struct list_head *cur;
2510 struct map_lookup *map;
2511 struct extent_map_tree *em_tree;
2512 struct extent_map *em;
2513 struct btrfs_device_info *devices_info;
2514 struct list_head private_devs;
2515 u64 calc_size = 1024 * 1024 * 1024;
2516 u64 min_free;
2517 u64 avail;
2518 u64 dev_offset;
2519 int num_stripes;
2520 int min_stripes;
2521 int sub_stripes;
2522 int min_devices; /* the min number of devices we need */
2523 int i;
2524 int ret;
2525 int index;
2526
2527 if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2528 (type & BTRFS_BLOCK_GROUP_DUP)) {
2529 WARN_ON(1);
2530 type &= ~BTRFS_BLOCK_GROUP_DUP;
2531 }
2532 if (list_empty(&fs_devices->alloc_list))
2533 return -ENOSPC;
2534
2535 ret = __btrfs_calc_nstripes(fs_devices, type, &num_stripes,
2536 &min_stripes, &sub_stripes);
2537 if (ret)
2538 return ret;
2539
2540 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
2541 GFP_NOFS);
2542 if (!devices_info)
2543 return -ENOMEM;
2544
2545 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2546 if (!map) {
2547 ret = -ENOMEM;
2548 goto error;
2549 }
2550 map->num_stripes = num_stripes;
9b3f68b9 2551
2b82032c 2552 cur = fs_devices->alloc_list.next;
6324fbf3 2553 index = 0;
b2117a39 2554 i = 0;
611f0e00 2555
b2117a39
MX
2556 calc_size = __btrfs_calc_stripe_size(fs_devices, calc_size, type,
2557 num_stripes, 0);
2558
2559 if (type & BTRFS_BLOCK_GROUP_DUP) {
611f0e00 2560 min_free = calc_size * 2;
b2117a39
MX
2561 min_devices = 1;
2562 } else {
9b3f68b9 2563 min_free = calc_size;
b2117a39
MX
2564 min_devices = min_stripes;
2565 }
ad5bd91e 2566
2b82032c 2567 INIT_LIST_HEAD(&private_devs);
d397712b 2568 while (index < num_stripes) {
b3075717 2569 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2b82032c 2570 BUG_ON(!device->writeable);
dfe25020
CM
2571 if (device->total_bytes > device->bytes_used)
2572 avail = device->total_bytes - device->bytes_used;
2573 else
2574 avail = 0;
6324fbf3 2575 cur = cur->next;
8f18cf13 2576
dfe25020 2577 if (device->in_fs_metadata && avail >= min_free) {
b2117a39
MX
2578 ret = find_free_dev_extent(trans, device, min_free,
2579 &devices_info[i].dev_offset,
2580 &devices_info[i].max_avail);
8f18cf13
CM
2581 if (ret == 0) {
2582 list_move_tail(&device->dev_alloc_list,
2583 &private_devs);
2b82032c 2584 map->stripes[index].dev = device;
b2117a39
MX
2585 map->stripes[index].physical =
2586 devices_info[i].dev_offset;
611f0e00 2587 index++;
2b82032c
YZ
2588 if (type & BTRFS_BLOCK_GROUP_DUP) {
2589 map->stripes[index].dev = device;
2590 map->stripes[index].physical =
b2117a39
MX
2591 devices_info[i].dev_offset +
2592 calc_size;
8f18cf13 2593 index++;
2b82032c 2594 }
b2117a39
MX
2595 } else if (ret != -ENOSPC)
2596 goto error;
2597
2598 devices_info[i].dev = device;
2599 i++;
2600 } else if (device->in_fs_metadata &&
2601 avail >= BTRFS_STRIPE_LEN) {
2602 devices_info[i].dev = device;
2603 devices_info[i].max_avail = avail;
2604 i++;
2605 }
2606
2b82032c 2607 if (cur == &fs_devices->alloc_list)
6324fbf3
CM
2608 break;
2609 }
b2117a39 2610
2b82032c 2611 list_splice(&private_devs, &fs_devices->alloc_list);
6324fbf3 2612 if (index < num_stripes) {
a40a90a0
CM
2613 if (index >= min_stripes) {
2614 num_stripes = index;
2615 if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2616 num_stripes /= sub_stripes;
2617 num_stripes *= sub_stripes;
2618 }
b2117a39
MX
2619
2620 map = __shrink_map_lookup_stripes(map, num_stripes);
2621 } else if (i >= min_devices) {
2622 ret = __btrfs_alloc_tiny_space(trans, fs_devices,
2623 devices_info, i, type,
2624 &map, min_stripes,
2625 &calc_size);
2626 if (ret)
2627 goto error;
2628 } else {
2629 ret = -ENOSPC;
2630 goto error;
6324fbf3 2631 }
6324fbf3 2632 }
2b82032c 2633 map->sector_size = extent_root->sectorsize;
b2117a39
MX
2634 map->stripe_len = BTRFS_STRIPE_LEN;
2635 map->io_align = BTRFS_STRIPE_LEN;
2636 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 2637 map->type = type;
2b82032c 2638 map->sub_stripes = sub_stripes;
0b86a832 2639
2b82032c
YZ
2640 *map_ret = map;
2641 *stripe_size = calc_size;
2642 *num_bytes = chunk_bytes_by_type(type, calc_size,
b2117a39 2643 map->num_stripes, sub_stripes);
0b86a832 2644
2b82032c
YZ
2645 em = alloc_extent_map(GFP_NOFS);
2646 if (!em) {
b2117a39
MX
2647 ret = -ENOMEM;
2648 goto error;
593060d7 2649 }
2b82032c
YZ
2650 em->bdev = (struct block_device *)map;
2651 em->start = start;
2652 em->len = *num_bytes;
2653 em->block_start = 0;
2654 em->block_len = em->len;
593060d7 2655
2b82032c 2656 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
890871be 2657 write_lock(&em_tree->lock);
2b82032c 2658 ret = add_extent_mapping(em_tree, em);
890871be 2659 write_unlock(&em_tree->lock);
2b82032c
YZ
2660 BUG_ON(ret);
2661 free_extent_map(em);
0b86a832 2662
2b82032c
YZ
2663 ret = btrfs_make_block_group(trans, extent_root, 0, type,
2664 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2665 start, *num_bytes);
2666 BUG_ON(ret);
611f0e00 2667
2b82032c
YZ
2668 index = 0;
2669 while (index < map->num_stripes) {
2670 device = map->stripes[index].dev;
2671 dev_offset = map->stripes[index].physical;
0b86a832
CM
2672
2673 ret = btrfs_alloc_dev_extent(trans, device,
2b82032c
YZ
2674 info->chunk_root->root_key.objectid,
2675 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2676 start, dev_offset, calc_size);
0b86a832 2677 BUG_ON(ret);
2b82032c
YZ
2678 index++;
2679 }
2680
b2117a39 2681 kfree(devices_info);
2b82032c 2682 return 0;
b2117a39
MX
2683
2684error:
2685 kfree(map);
2686 kfree(devices_info);
2687 return ret;
2b82032c
YZ
2688}
2689
2690static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *extent_root,
2692 struct map_lookup *map, u64 chunk_offset,
2693 u64 chunk_size, u64 stripe_size)
2694{
2695 u64 dev_offset;
2696 struct btrfs_key key;
2697 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2698 struct btrfs_device *device;
2699 struct btrfs_chunk *chunk;
2700 struct btrfs_stripe *stripe;
2701 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2702 int index = 0;
2703 int ret;
2704
2705 chunk = kzalloc(item_size, GFP_NOFS);
2706 if (!chunk)
2707 return -ENOMEM;
2708
2709 index = 0;
2710 while (index < map->num_stripes) {
2711 device = map->stripes[index].dev;
2712 device->bytes_used += stripe_size;
0b86a832
CM
2713 ret = btrfs_update_device(trans, device);
2714 BUG_ON(ret);
2b82032c
YZ
2715 index++;
2716 }
2717
2718 index = 0;
2719 stripe = &chunk->stripe;
2720 while (index < map->num_stripes) {
2721 device = map->stripes[index].dev;
2722 dev_offset = map->stripes[index].physical;
0b86a832 2723
e17cade2
CM
2724 btrfs_set_stack_stripe_devid(stripe, device->devid);
2725 btrfs_set_stack_stripe_offset(stripe, dev_offset);
2726 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 2727 stripe++;
0b86a832
CM
2728 index++;
2729 }
2730
2b82032c 2731 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 2732 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
2733 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2734 btrfs_set_stack_chunk_type(chunk, map->type);
2735 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2736 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2737 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b86a832 2738 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2b82032c 2739 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 2740
2b82032c
YZ
2741 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2742 key.type = BTRFS_CHUNK_ITEM_KEY;
2743 key.offset = chunk_offset;
0b86a832 2744
2b82032c
YZ
2745 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2746 BUG_ON(ret);
0b86a832 2747
2b82032c
YZ
2748 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2749 ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2750 item_size);
8f18cf13
CM
2751 BUG_ON(ret);
2752 }
0b86a832 2753 kfree(chunk);
2b82032c
YZ
2754 return 0;
2755}
0b86a832 2756
2b82032c
YZ
2757/*
2758 * Chunk allocation falls into two parts. The first part does works
2759 * that make the new allocated chunk useable, but not do any operation
2760 * that modifies the chunk tree. The second part does the works that
2761 * require modifying the chunk tree. This division is important for the
2762 * bootstrap process of adding storage to a seed btrfs.
2763 */
2764int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *extent_root, u64 type)
2766{
2767 u64 chunk_offset;
2768 u64 chunk_size;
2769 u64 stripe_size;
2770 struct map_lookup *map;
2771 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2772 int ret;
2773
2774 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2775 &chunk_offset);
2776 if (ret)
2777 return ret;
2778
2779 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2780 &stripe_size, chunk_offset, type);
2781 if (ret)
2782 return ret;
2783
2784 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2785 chunk_size, stripe_size);
2786 BUG_ON(ret);
2787 return 0;
2788}
2789
d397712b 2790static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2b82032c
YZ
2791 struct btrfs_root *root,
2792 struct btrfs_device *device)
2793{
2794 u64 chunk_offset;
2795 u64 sys_chunk_offset;
2796 u64 chunk_size;
2797 u64 sys_chunk_size;
2798 u64 stripe_size;
2799 u64 sys_stripe_size;
2800 u64 alloc_profile;
2801 struct map_lookup *map;
2802 struct map_lookup *sys_map;
2803 struct btrfs_fs_info *fs_info = root->fs_info;
2804 struct btrfs_root *extent_root = fs_info->extent_root;
2805 int ret;
2806
2807 ret = find_next_chunk(fs_info->chunk_root,
2808 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2809 BUG_ON(ret);
2810
2811 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2812 (fs_info->metadata_alloc_profile &
2813 fs_info->avail_metadata_alloc_bits);
2814 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2815
2816 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2817 &stripe_size, chunk_offset, alloc_profile);
2818 BUG_ON(ret);
2819
2820 sys_chunk_offset = chunk_offset + chunk_size;
2821
2822 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2823 (fs_info->system_alloc_profile &
2824 fs_info->avail_system_alloc_bits);
2825 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2826
2827 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2828 &sys_chunk_size, &sys_stripe_size,
2829 sys_chunk_offset, alloc_profile);
2830 BUG_ON(ret);
2831
2832 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2833 BUG_ON(ret);
2834
2835 /*
2836 * Modifying chunk tree needs allocating new blocks from both
2837 * system block group and metadata block group. So we only can
2838 * do operations require modifying the chunk tree after both
2839 * block groups were created.
2840 */
2841 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2842 chunk_size, stripe_size);
2843 BUG_ON(ret);
2844
2845 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2846 sys_chunk_offset, sys_chunk_size,
2847 sys_stripe_size);
b248a415 2848 BUG_ON(ret);
2b82032c
YZ
2849 return 0;
2850}
2851
2852int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2853{
2854 struct extent_map *em;
2855 struct map_lookup *map;
2856 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2857 int readonly = 0;
2858 int i;
2859
890871be 2860 read_lock(&map_tree->map_tree.lock);
2b82032c 2861 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
890871be 2862 read_unlock(&map_tree->map_tree.lock);
2b82032c
YZ
2863 if (!em)
2864 return 1;
2865
f48b9075
JB
2866 if (btrfs_test_opt(root, DEGRADED)) {
2867 free_extent_map(em);
2868 return 0;
2869 }
2870
2b82032c
YZ
2871 map = (struct map_lookup *)em->bdev;
2872 for (i = 0; i < map->num_stripes; i++) {
2873 if (!map->stripes[i].dev->writeable) {
2874 readonly = 1;
2875 break;
2876 }
2877 }
0b86a832 2878 free_extent_map(em);
2b82032c 2879 return readonly;
0b86a832
CM
2880}
2881
2882void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2883{
2884 extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2885}
2886
2887void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2888{
2889 struct extent_map *em;
2890
d397712b 2891 while (1) {
890871be 2892 write_lock(&tree->map_tree.lock);
0b86a832
CM
2893 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2894 if (em)
2895 remove_extent_mapping(&tree->map_tree, em);
890871be 2896 write_unlock(&tree->map_tree.lock);
0b86a832
CM
2897 if (!em)
2898 break;
2899 kfree(em->bdev);
2900 /* once for us */
2901 free_extent_map(em);
2902 /* once for the tree */
2903 free_extent_map(em);
2904 }
2905}
2906
f188591e
CM
2907int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2908{
2909 struct extent_map *em;
2910 struct map_lookup *map;
2911 struct extent_map_tree *em_tree = &map_tree->map_tree;
2912 int ret;
2913
890871be 2914 read_lock(&em_tree->lock);
f188591e 2915 em = lookup_extent_mapping(em_tree, logical, len);
890871be 2916 read_unlock(&em_tree->lock);
f188591e
CM
2917 BUG_ON(!em);
2918
2919 BUG_ON(em->start > logical || em->start + em->len < logical);
2920 map = (struct map_lookup *)em->bdev;
2921 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2922 ret = map->num_stripes;
321aecc6
CM
2923 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2924 ret = map->sub_stripes;
f188591e
CM
2925 else
2926 ret = 1;
2927 free_extent_map(em);
f188591e
CM
2928 return ret;
2929}
2930
dfe25020
CM
2931static int find_live_mirror(struct map_lookup *map, int first, int num,
2932 int optimal)
2933{
2934 int i;
2935 if (map->stripes[optimal].dev->bdev)
2936 return optimal;
2937 for (i = first; i < first + num; i++) {
2938 if (map->stripes[i].dev->bdev)
2939 return i;
2940 }
2941 /* we couldn't find one that doesn't fail. Just return something
2942 * and the io error handling code will clean up eventually
2943 */
2944 return optimal;
2945}
2946
f2d8d74d
CM
2947static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2948 u64 logical, u64 *length,
2949 struct btrfs_multi_bio **multi_ret,
2950 int mirror_num, struct page *unplug_page)
0b86a832
CM
2951{
2952 struct extent_map *em;
2953 struct map_lookup *map;
2954 struct extent_map_tree *em_tree = &map_tree->map_tree;
2955 u64 offset;
593060d7
CM
2956 u64 stripe_offset;
2957 u64 stripe_nr;
cea9e445 2958 int stripes_allocated = 8;
321aecc6 2959 int stripes_required = 1;
593060d7 2960 int stripe_index;
cea9e445 2961 int i;
f2d8d74d 2962 int num_stripes;
a236aed1 2963 int max_errors = 0;
cea9e445 2964 struct btrfs_multi_bio *multi = NULL;
0b86a832 2965
7b6d91da 2966 if (multi_ret && !(rw & REQ_WRITE))
cea9e445 2967 stripes_allocated = 1;
cea9e445
CM
2968again:
2969 if (multi_ret) {
2970 multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2971 GFP_NOFS);
2972 if (!multi)
2973 return -ENOMEM;
a236aed1
CM
2974
2975 atomic_set(&multi->error, 0);
cea9e445 2976 }
0b86a832 2977
890871be 2978 read_lock(&em_tree->lock);
0b86a832 2979 em = lookup_extent_mapping(em_tree, logical, *length);
890871be 2980 read_unlock(&em_tree->lock);
f2d8d74d 2981
2423fdfb
JS
2982 if (!em && unplug_page) {
2983 kfree(multi);
f2d8d74d 2984 return 0;
2423fdfb 2985 }
f2d8d74d 2986
3b951516 2987 if (!em) {
d397712b
CM
2988 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2989 (unsigned long long)logical,
2990 (unsigned long long)*length);
f2d8d74d 2991 BUG();
3b951516 2992 }
0b86a832
CM
2993
2994 BUG_ON(em->start > logical || em->start + em->len < logical);
2995 map = (struct map_lookup *)em->bdev;
2996 offset = logical - em->start;
593060d7 2997
f188591e
CM
2998 if (mirror_num > map->num_stripes)
2999 mirror_num = 0;
3000
cea9e445 3001 /* if our multi bio struct is too small, back off and try again */
7b6d91da 3002 if (rw & REQ_WRITE) {
321aecc6
CM
3003 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3004 BTRFS_BLOCK_GROUP_DUP)) {
3005 stripes_required = map->num_stripes;
a236aed1 3006 max_errors = 1;
321aecc6
CM
3007 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3008 stripes_required = map->sub_stripes;
a236aed1 3009 max_errors = 1;
321aecc6
CM
3010 }
3011 }
7b6d91da 3012 if (multi_ret && (rw & REQ_WRITE) &&
321aecc6 3013 stripes_allocated < stripes_required) {
cea9e445 3014 stripes_allocated = map->num_stripes;
cea9e445
CM
3015 free_extent_map(em);
3016 kfree(multi);
3017 goto again;
3018 }
593060d7
CM
3019 stripe_nr = offset;
3020 /*
3021 * stripe_nr counts the total number of stripes we have to stride
3022 * to get to this block
3023 */
3024 do_div(stripe_nr, map->stripe_len);
3025
3026 stripe_offset = stripe_nr * map->stripe_len;
3027 BUG_ON(offset < stripe_offset);
3028
3029 /* stripe_offset is the offset of this block in its stripe*/
3030 stripe_offset = offset - stripe_offset;
3031
cea9e445 3032 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
321aecc6 3033 BTRFS_BLOCK_GROUP_RAID10 |
cea9e445
CM
3034 BTRFS_BLOCK_GROUP_DUP)) {
3035 /* we limit the length of each bio to what fits in a stripe */
3036 *length = min_t(u64, em->len - offset,
3037 map->stripe_len - stripe_offset);
3038 } else {
3039 *length = em->len - offset;
3040 }
f2d8d74d
CM
3041
3042 if (!multi_ret && !unplug_page)
cea9e445
CM
3043 goto out;
3044
f2d8d74d 3045 num_stripes = 1;
cea9e445 3046 stripe_index = 0;
8790d502 3047 if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
7b6d91da 3048 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 3049 num_stripes = map->num_stripes;
2fff734f 3050 else if (mirror_num)
f188591e 3051 stripe_index = mirror_num - 1;
dfe25020
CM
3052 else {
3053 stripe_index = find_live_mirror(map, 0,
3054 map->num_stripes,
3055 current->pid % map->num_stripes);
3056 }
2fff734f 3057
611f0e00 3058 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
7b6d91da 3059 if (rw & REQ_WRITE)
f2d8d74d 3060 num_stripes = map->num_stripes;
f188591e
CM
3061 else if (mirror_num)
3062 stripe_index = mirror_num - 1;
2fff734f 3063
321aecc6
CM
3064 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3065 int factor = map->num_stripes / map->sub_stripes;
321aecc6
CM
3066
3067 stripe_index = do_div(stripe_nr, factor);
3068 stripe_index *= map->sub_stripes;
3069
7b6d91da 3070 if (unplug_page || (rw & REQ_WRITE))
f2d8d74d 3071 num_stripes = map->sub_stripes;
321aecc6
CM
3072 else if (mirror_num)
3073 stripe_index += mirror_num - 1;
dfe25020
CM
3074 else {
3075 stripe_index = find_live_mirror(map, stripe_index,
3076 map->sub_stripes, stripe_index +
3077 current->pid % map->sub_stripes);
3078 }
8790d502
CM
3079 } else {
3080 /*
3081 * after this do_div call, stripe_nr is the number of stripes
3082 * on this device we have to walk to find the data, and
3083 * stripe_index is the number of our device in the stripe array
3084 */
3085 stripe_index = do_div(stripe_nr, map->num_stripes);
3086 }
593060d7 3087 BUG_ON(stripe_index >= map->num_stripes);
cea9e445 3088
f2d8d74d
CM
3089 for (i = 0; i < num_stripes; i++) {
3090 if (unplug_page) {
3091 struct btrfs_device *device;
3092 struct backing_dev_info *bdi;
3093
3094 device = map->stripes[stripe_index].dev;
dfe25020
CM
3095 if (device->bdev) {
3096 bdi = blk_get_backing_dev_info(device->bdev);
d397712b 3097 if (bdi->unplug_io_fn)
dfe25020 3098 bdi->unplug_io_fn(bdi, unplug_page);
f2d8d74d
CM
3099 }
3100 } else {
3101 multi->stripes[i].physical =
3102 map->stripes[stripe_index].physical +
3103 stripe_offset + stripe_nr * map->stripe_len;
3104 multi->stripes[i].dev = map->stripes[stripe_index].dev;
3105 }
cea9e445 3106 stripe_index++;
593060d7 3107 }
f2d8d74d
CM
3108 if (multi_ret) {
3109 *multi_ret = multi;
3110 multi->num_stripes = num_stripes;
a236aed1 3111 multi->max_errors = max_errors;
f2d8d74d 3112 }
cea9e445 3113out:
0b86a832 3114 free_extent_map(em);
0b86a832
CM
3115 return 0;
3116}
3117
f2d8d74d
CM
3118int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3119 u64 logical, u64 *length,
3120 struct btrfs_multi_bio **multi_ret, int mirror_num)
3121{
3122 return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
3123 mirror_num, NULL);
3124}
3125
a512bbf8
YZ
3126int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3127 u64 chunk_start, u64 physical, u64 devid,
3128 u64 **logical, int *naddrs, int *stripe_len)
3129{
3130 struct extent_map_tree *em_tree = &map_tree->map_tree;
3131 struct extent_map *em;
3132 struct map_lookup *map;
3133 u64 *buf;
3134 u64 bytenr;
3135 u64 length;
3136 u64 stripe_nr;
3137 int i, j, nr = 0;
3138
890871be 3139 read_lock(&em_tree->lock);
a512bbf8 3140 em = lookup_extent_mapping(em_tree, chunk_start, 1);
890871be 3141 read_unlock(&em_tree->lock);
a512bbf8
YZ
3142
3143 BUG_ON(!em || em->start != chunk_start);
3144 map = (struct map_lookup *)em->bdev;
3145
3146 length = em->len;
3147 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3148 do_div(length, map->num_stripes / map->sub_stripes);
3149 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3150 do_div(length, map->num_stripes);
3151
3152 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3153 BUG_ON(!buf);
3154
3155 for (i = 0; i < map->num_stripes; i++) {
3156 if (devid && map->stripes[i].dev->devid != devid)
3157 continue;
3158 if (map->stripes[i].physical > physical ||
3159 map->stripes[i].physical + length <= physical)
3160 continue;
3161
3162 stripe_nr = physical - map->stripes[i].physical;
3163 do_div(stripe_nr, map->stripe_len);
3164
3165 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3166 stripe_nr = stripe_nr * map->num_stripes + i;
3167 do_div(stripe_nr, map->sub_stripes);
3168 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3169 stripe_nr = stripe_nr * map->num_stripes + i;
3170 }
3171 bytenr = chunk_start + stripe_nr * map->stripe_len;
934d375b 3172 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
3173 for (j = 0; j < nr; j++) {
3174 if (buf[j] == bytenr)
3175 break;
3176 }
934d375b
CM
3177 if (j == nr) {
3178 WARN_ON(nr >= map->num_stripes);
a512bbf8 3179 buf[nr++] = bytenr;
934d375b 3180 }
a512bbf8
YZ
3181 }
3182
a512bbf8
YZ
3183 *logical = buf;
3184 *naddrs = nr;
3185 *stripe_len = map->stripe_len;
3186
3187 free_extent_map(em);
3188 return 0;
3189}
3190
f2d8d74d
CM
3191int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
3192 u64 logical, struct page *page)
3193{
3194 u64 length = PAGE_CACHE_SIZE;
3195 return __btrfs_map_block(map_tree, READ, logical, &length,
3196 NULL, 0, page);
3197}
3198
8790d502 3199static void end_bio_multi_stripe(struct bio *bio, int err)
8790d502 3200{
cea9e445 3201 struct btrfs_multi_bio *multi = bio->bi_private;
7d2b4daa 3202 int is_orig_bio = 0;
8790d502 3203
8790d502 3204 if (err)
a236aed1 3205 atomic_inc(&multi->error);
8790d502 3206
7d2b4daa
CM
3207 if (bio == multi->orig_bio)
3208 is_orig_bio = 1;
3209
cea9e445 3210 if (atomic_dec_and_test(&multi->stripes_pending)) {
7d2b4daa
CM
3211 if (!is_orig_bio) {
3212 bio_put(bio);
3213 bio = multi->orig_bio;
3214 }
8790d502
CM
3215 bio->bi_private = multi->private;
3216 bio->bi_end_io = multi->end_io;
a236aed1
CM
3217 /* only send an error to the higher layers if it is
3218 * beyond the tolerance of the multi-bio
3219 */
1259ab75 3220 if (atomic_read(&multi->error) > multi->max_errors) {
a236aed1 3221 err = -EIO;
1259ab75
CM
3222 } else if (err) {
3223 /*
3224 * this bio is actually up to date, we didn't
3225 * go over the max number of errors
3226 */
3227 set_bit(BIO_UPTODATE, &bio->bi_flags);
a236aed1 3228 err = 0;
1259ab75 3229 }
8790d502
CM
3230 kfree(multi);
3231
3232 bio_endio(bio, err);
7d2b4daa 3233 } else if (!is_orig_bio) {
8790d502
CM
3234 bio_put(bio);
3235 }
8790d502
CM
3236}
3237
8b712842
CM
3238struct async_sched {
3239 struct bio *bio;
3240 int rw;
3241 struct btrfs_fs_info *info;
3242 struct btrfs_work work;
3243};
3244
3245/*
3246 * see run_scheduled_bios for a description of why bios are collected for
3247 * async submit.
3248 *
3249 * This will add one bio to the pending list for a device and make sure
3250 * the work struct is scheduled.
3251 */
d397712b 3252static noinline int schedule_bio(struct btrfs_root *root,
a1b32a59
CM
3253 struct btrfs_device *device,
3254 int rw, struct bio *bio)
8b712842
CM
3255{
3256 int should_queue = 1;
ffbd517d 3257 struct btrfs_pending_bios *pending_bios;
8b712842
CM
3258
3259 /* don't bother with additional async steps for reads, right now */
7b6d91da 3260 if (!(rw & REQ_WRITE)) {
492bb6de 3261 bio_get(bio);
8b712842 3262 submit_bio(rw, bio);
492bb6de 3263 bio_put(bio);
8b712842
CM
3264 return 0;
3265 }
3266
3267 /*
0986fe9e 3268 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
3269 * higher layers. Otherwise, the async bio makes it appear we have
3270 * made progress against dirty pages when we've really just put it
3271 * on a queue for later
3272 */
0986fe9e 3273 atomic_inc(&root->fs_info->nr_async_bios);
492bb6de 3274 WARN_ON(bio->bi_next);
8b712842
CM
3275 bio->bi_next = NULL;
3276 bio->bi_rw |= rw;
3277
3278 spin_lock(&device->io_lock);
7b6d91da 3279 if (bio->bi_rw & REQ_SYNC)
ffbd517d
CM
3280 pending_bios = &device->pending_sync_bios;
3281 else
3282 pending_bios = &device->pending_bios;
8b712842 3283
ffbd517d
CM
3284 if (pending_bios->tail)
3285 pending_bios->tail->bi_next = bio;
8b712842 3286
ffbd517d
CM
3287 pending_bios->tail = bio;
3288 if (!pending_bios->head)
3289 pending_bios->head = bio;
8b712842
CM
3290 if (device->running_pending)
3291 should_queue = 0;
3292
3293 spin_unlock(&device->io_lock);
3294
3295 if (should_queue)
1cc127b5
CM
3296 btrfs_queue_worker(&root->fs_info->submit_workers,
3297 &device->work);
8b712842
CM
3298 return 0;
3299}
3300
f188591e 3301int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
8b712842 3302 int mirror_num, int async_submit)
0b86a832
CM
3303{
3304 struct btrfs_mapping_tree *map_tree;
3305 struct btrfs_device *dev;
8790d502 3306 struct bio *first_bio = bio;
a62b9401 3307 u64 logical = (u64)bio->bi_sector << 9;
0b86a832
CM
3308 u64 length = 0;
3309 u64 map_length;
cea9e445 3310 struct btrfs_multi_bio *multi = NULL;
0b86a832 3311 int ret;
8790d502
CM
3312 int dev_nr = 0;
3313 int total_devs = 1;
0b86a832 3314
f2d8d74d 3315 length = bio->bi_size;
0b86a832
CM
3316 map_tree = &root->fs_info->mapping_tree;
3317 map_length = length;
cea9e445 3318
f188591e
CM
3319 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
3320 mirror_num);
cea9e445
CM
3321 BUG_ON(ret);
3322
3323 total_devs = multi->num_stripes;
3324 if (map_length < length) {
d397712b
CM
3325 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
3326 "len %llu\n", (unsigned long long)logical,
3327 (unsigned long long)length,
3328 (unsigned long long)map_length);
cea9e445
CM
3329 BUG();
3330 }
3331 multi->end_io = first_bio->bi_end_io;
3332 multi->private = first_bio->bi_private;
7d2b4daa 3333 multi->orig_bio = first_bio;
cea9e445
CM
3334 atomic_set(&multi->stripes_pending, multi->num_stripes);
3335
d397712b 3336 while (dev_nr < total_devs) {
8790d502 3337 if (total_devs > 1) {
8790d502
CM
3338 if (dev_nr < total_devs - 1) {
3339 bio = bio_clone(first_bio, GFP_NOFS);
3340 BUG_ON(!bio);
3341 } else {
3342 bio = first_bio;
3343 }
3344 bio->bi_private = multi;
3345 bio->bi_end_io = end_bio_multi_stripe;
3346 }
cea9e445
CM
3347 bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
3348 dev = multi->stripes[dev_nr].dev;
18e503d6 3349 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
dfe25020 3350 bio->bi_bdev = dev->bdev;
8b712842
CM
3351 if (async_submit)
3352 schedule_bio(root, dev, rw, bio);
3353 else
3354 submit_bio(rw, bio);
dfe25020
CM
3355 } else {
3356 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
3357 bio->bi_sector = logical >> 9;
dfe25020 3358 bio_endio(bio, -EIO);
dfe25020 3359 }
8790d502
CM
3360 dev_nr++;
3361 }
cea9e445
CM
3362 if (total_devs == 1)
3363 kfree(multi);
0b86a832
CM
3364 return 0;
3365}
3366
a443755f 3367struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2b82032c 3368 u8 *uuid, u8 *fsid)
0b86a832 3369{
2b82032c
YZ
3370 struct btrfs_device *device;
3371 struct btrfs_fs_devices *cur_devices;
3372
3373 cur_devices = root->fs_info->fs_devices;
3374 while (cur_devices) {
3375 if (!fsid ||
3376 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3377 device = __find_device(&cur_devices->devices,
3378 devid, uuid);
3379 if (device)
3380 return device;
3381 }
3382 cur_devices = cur_devices->seed;
3383 }
3384 return NULL;
0b86a832
CM
3385}
3386
dfe25020
CM
3387static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3388 u64 devid, u8 *dev_uuid)
3389{
3390 struct btrfs_device *device;
3391 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3392
3393 device = kzalloc(sizeof(*device), GFP_NOFS);
7cbd8a83 3394 if (!device)
3395 return NULL;
dfe25020
CM
3396 list_add(&device->dev_list,
3397 &fs_devices->devices);
dfe25020
CM
3398 device->barriers = 1;
3399 device->dev_root = root->fs_info->dev_root;
3400 device->devid = devid;
8b712842 3401 device->work.func = pending_bios_fn;
e4404d6e 3402 device->fs_devices = fs_devices;
cd02dca5 3403 device->missing = 1;
dfe25020 3404 fs_devices->num_devices++;
cd02dca5 3405 fs_devices->missing_devices++;
dfe25020 3406 spin_lock_init(&device->io_lock);
d20f7043 3407 INIT_LIST_HEAD(&device->dev_alloc_list);
dfe25020
CM
3408 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3409 return device;
3410}
3411
0b86a832
CM
3412static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3413 struct extent_buffer *leaf,
3414 struct btrfs_chunk *chunk)
3415{
3416 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3417 struct map_lookup *map;
3418 struct extent_map *em;
3419 u64 logical;
3420 u64 length;
3421 u64 devid;
a443755f 3422 u8 uuid[BTRFS_UUID_SIZE];
593060d7 3423 int num_stripes;
0b86a832 3424 int ret;
593060d7 3425 int i;
0b86a832 3426
e17cade2
CM
3427 logical = key->offset;
3428 length = btrfs_chunk_length(leaf, chunk);
a061fc8d 3429
890871be 3430 read_lock(&map_tree->map_tree.lock);
0b86a832 3431 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 3432 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
3433
3434 /* already mapped? */
3435 if (em && em->start <= logical && em->start + em->len > logical) {
3436 free_extent_map(em);
0b86a832
CM
3437 return 0;
3438 } else if (em) {
3439 free_extent_map(em);
3440 }
0b86a832 3441
0b86a832
CM
3442 em = alloc_extent_map(GFP_NOFS);
3443 if (!em)
3444 return -ENOMEM;
593060d7
CM
3445 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3446 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
3447 if (!map) {
3448 free_extent_map(em);
3449 return -ENOMEM;
3450 }
3451
3452 em->bdev = (struct block_device *)map;
3453 em->start = logical;
3454 em->len = length;
3455 em->block_start = 0;
c8b97818 3456 em->block_len = em->len;
0b86a832 3457
593060d7
CM
3458 map->num_stripes = num_stripes;
3459 map->io_width = btrfs_chunk_io_width(leaf, chunk);
3460 map->io_align = btrfs_chunk_io_align(leaf, chunk);
3461 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3462 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3463 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 3464 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
3465 for (i = 0; i < num_stripes; i++) {
3466 map->stripes[i].physical =
3467 btrfs_stripe_offset_nr(leaf, chunk, i);
3468 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
3469 read_extent_buffer(leaf, uuid, (unsigned long)
3470 btrfs_stripe_dev_uuid_nr(chunk, i),
3471 BTRFS_UUID_SIZE);
2b82032c
YZ
3472 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3473 NULL);
dfe25020 3474 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
593060d7
CM
3475 kfree(map);
3476 free_extent_map(em);
3477 return -EIO;
3478 }
dfe25020
CM
3479 if (!map->stripes[i].dev) {
3480 map->stripes[i].dev =
3481 add_missing_dev(root, devid, uuid);
3482 if (!map->stripes[i].dev) {
3483 kfree(map);
3484 free_extent_map(em);
3485 return -EIO;
3486 }
3487 }
3488 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
3489 }
3490
890871be 3491 write_lock(&map_tree->map_tree.lock);
0b86a832 3492 ret = add_extent_mapping(&map_tree->map_tree, em);
890871be 3493 write_unlock(&map_tree->map_tree.lock);
b248a415 3494 BUG_ON(ret);
0b86a832
CM
3495 free_extent_map(em);
3496
3497 return 0;
3498}
3499
3500static int fill_device_from_item(struct extent_buffer *leaf,
3501 struct btrfs_dev_item *dev_item,
3502 struct btrfs_device *device)
3503{
3504 unsigned long ptr;
0b86a832
CM
3505
3506 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
3507 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3508 device->total_bytes = device->disk_total_bytes;
0b86a832
CM
3509 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3510 device->type = btrfs_device_type(leaf, dev_item);
3511 device->io_align = btrfs_device_io_align(leaf, dev_item);
3512 device->io_width = btrfs_device_io_width(leaf, dev_item);
3513 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
0b86a832
CM
3514
3515 ptr = (unsigned long)btrfs_device_uuid(dev_item);
e17cade2 3516 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832 3517
0b86a832
CM
3518 return 0;
3519}
3520
2b82032c
YZ
3521static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3522{
3523 struct btrfs_fs_devices *fs_devices;
3524 int ret;
3525
3526 mutex_lock(&uuid_mutex);
3527
3528 fs_devices = root->fs_info->fs_devices->seed;
3529 while (fs_devices) {
3530 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3531 ret = 0;
3532 goto out;
3533 }
3534 fs_devices = fs_devices->seed;
3535 }
3536
3537 fs_devices = find_fsid(fsid);
3538 if (!fs_devices) {
3539 ret = -ENOENT;
3540 goto out;
3541 }
e4404d6e
YZ
3542
3543 fs_devices = clone_fs_devices(fs_devices);
3544 if (IS_ERR(fs_devices)) {
3545 ret = PTR_ERR(fs_devices);
2b82032c
YZ
3546 goto out;
3547 }
3548
97288f2c 3549 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
15916de8 3550 root->fs_info->bdev_holder);
2b82032c
YZ
3551 if (ret)
3552 goto out;
3553
3554 if (!fs_devices->seeding) {
3555 __btrfs_close_devices(fs_devices);
e4404d6e 3556 free_fs_devices(fs_devices);
2b82032c
YZ
3557 ret = -EINVAL;
3558 goto out;
3559 }
3560
3561 fs_devices->seed = root->fs_info->fs_devices->seed;
3562 root->fs_info->fs_devices->seed = fs_devices;
2b82032c
YZ
3563out:
3564 mutex_unlock(&uuid_mutex);
3565 return ret;
3566}
3567
0d81ba5d 3568static int read_one_dev(struct btrfs_root *root,
0b86a832
CM
3569 struct extent_buffer *leaf,
3570 struct btrfs_dev_item *dev_item)
3571{
3572 struct btrfs_device *device;
3573 u64 devid;
3574 int ret;
2b82032c 3575 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
3576 u8 dev_uuid[BTRFS_UUID_SIZE];
3577
0b86a832 3578 devid = btrfs_device_id(leaf, dev_item);
a443755f
CM
3579 read_extent_buffer(leaf, dev_uuid,
3580 (unsigned long)btrfs_device_uuid(dev_item),
3581 BTRFS_UUID_SIZE);
2b82032c
YZ
3582 read_extent_buffer(leaf, fs_uuid,
3583 (unsigned long)btrfs_device_fsid(dev_item),
3584 BTRFS_UUID_SIZE);
3585
3586 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3587 ret = open_seed_devices(root, fs_uuid);
e4404d6e 3588 if (ret && !btrfs_test_opt(root, DEGRADED))
2b82032c 3589 return ret;
2b82032c
YZ
3590 }
3591
3592 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3593 if (!device || !device->bdev) {
e4404d6e 3594 if (!btrfs_test_opt(root, DEGRADED))
2b82032c
YZ
3595 return -EIO;
3596
3597 if (!device) {
d397712b
CM
3598 printk(KERN_WARNING "warning devid %llu missing\n",
3599 (unsigned long long)devid);
2b82032c
YZ
3600 device = add_missing_dev(root, devid, dev_uuid);
3601 if (!device)
3602 return -ENOMEM;
cd02dca5
CM
3603 } else if (!device->missing) {
3604 /*
3605 * this happens when a device that was properly setup
3606 * in the device info lists suddenly goes bad.
3607 * device->bdev is NULL, and so we have to set
3608 * device->missing to one here
3609 */
3610 root->fs_info->fs_devices->missing_devices++;
3611 device->missing = 1;
2b82032c
YZ
3612 }
3613 }
3614
3615 if (device->fs_devices != root->fs_info->fs_devices) {
3616 BUG_ON(device->writeable);
3617 if (device->generation !=
3618 btrfs_device_generation(leaf, dev_item))
3619 return -EINVAL;
6324fbf3 3620 }
0b86a832
CM
3621
3622 fill_device_from_item(leaf, dev_item, device);
3623 device->dev_root = root->fs_info->dev_root;
dfe25020 3624 device->in_fs_metadata = 1;
2b82032c
YZ
3625 if (device->writeable)
3626 device->fs_devices->total_rw_bytes += device->total_bytes;
0b86a832 3627 ret = 0;
0b86a832
CM
3628 return ret;
3629}
3630
0d81ba5d
CM
3631int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3632{
3633 struct btrfs_dev_item *dev_item;
3634
3635 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3636 dev_item);
3637 return read_one_dev(root, buf, dev_item);
3638}
3639
e4404d6e 3640int btrfs_read_sys_array(struct btrfs_root *root)
0b86a832
CM
3641{
3642 struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
a061fc8d 3643 struct extent_buffer *sb;
0b86a832 3644 struct btrfs_disk_key *disk_key;
0b86a832 3645 struct btrfs_chunk *chunk;
84eed90f
CM
3646 u8 *ptr;
3647 unsigned long sb_ptr;
3648 int ret = 0;
0b86a832
CM
3649 u32 num_stripes;
3650 u32 array_size;
3651 u32 len = 0;
0b86a832 3652 u32 cur;
84eed90f 3653 struct btrfs_key key;
0b86a832 3654
e4404d6e 3655 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
a061fc8d
CM
3656 BTRFS_SUPER_INFO_SIZE);
3657 if (!sb)
3658 return -ENOMEM;
3659 btrfs_set_buffer_uptodate(sb);
4008c04a
CM
3660 btrfs_set_buffer_lockdep_class(sb, 0);
3661
a061fc8d 3662 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
3663 array_size = btrfs_super_sys_array_size(super_copy);
3664
0b86a832
CM
3665 ptr = super_copy->sys_chunk_array;
3666 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3667 cur = 0;
3668
3669 while (cur < array_size) {
3670 disk_key = (struct btrfs_disk_key *)ptr;
3671 btrfs_disk_key_to_cpu(&key, disk_key);
3672
a061fc8d 3673 len = sizeof(*disk_key); ptr += len;
0b86a832
CM
3674 sb_ptr += len;
3675 cur += len;
3676
0d81ba5d 3677 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
0b86a832 3678 chunk = (struct btrfs_chunk *)sb_ptr;
0d81ba5d 3679 ret = read_one_chunk(root, &key, sb, chunk);
84eed90f
CM
3680 if (ret)
3681 break;
0b86a832
CM
3682 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3683 len = btrfs_chunk_item_size(num_stripes);
3684 } else {
84eed90f
CM
3685 ret = -EIO;
3686 break;
0b86a832
CM
3687 }
3688 ptr += len;
3689 sb_ptr += len;
3690 cur += len;
3691 }
a061fc8d 3692 free_extent_buffer(sb);
84eed90f 3693 return ret;
0b86a832
CM
3694}
3695
3696int btrfs_read_chunk_tree(struct btrfs_root *root)
3697{
3698 struct btrfs_path *path;
3699 struct extent_buffer *leaf;
3700 struct btrfs_key key;
3701 struct btrfs_key found_key;
3702 int ret;
3703 int slot;
3704
3705 root = root->fs_info->chunk_root;
3706
3707 path = btrfs_alloc_path();
3708 if (!path)
3709 return -ENOMEM;
3710
3711 /* first we search for all of the device items, and then we
3712 * read in all of the chunk items. This way we can create chunk
3713 * mappings that reference all of the devices that are afound
3714 */
3715 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3716 key.offset = 0;
3717 key.type = 0;
3718again:
3719 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
3720 if (ret < 0)
3721 goto error;
d397712b 3722 while (1) {
0b86a832
CM
3723 leaf = path->nodes[0];
3724 slot = path->slots[0];
3725 if (slot >= btrfs_header_nritems(leaf)) {
3726 ret = btrfs_next_leaf(root, path);
3727 if (ret == 0)
3728 continue;
3729 if (ret < 0)
3730 goto error;
3731 break;
3732 }
3733 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3734 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3735 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3736 break;
3737 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3738 struct btrfs_dev_item *dev_item;
3739 dev_item = btrfs_item_ptr(leaf, slot,
3740 struct btrfs_dev_item);
0d81ba5d 3741 ret = read_one_dev(root, leaf, dev_item);
2b82032c
YZ
3742 if (ret)
3743 goto error;
0b86a832
CM
3744 }
3745 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3746 struct btrfs_chunk *chunk;
3747 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3748 ret = read_one_chunk(root, &found_key, leaf, chunk);
2b82032c
YZ
3749 if (ret)
3750 goto error;
0b86a832
CM
3751 }
3752 path->slots[0]++;
3753 }
3754 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3755 key.objectid = 0;
3756 btrfs_release_path(root, path);
3757 goto again;
3758 }
0b86a832
CM
3759 ret = 0;
3760error:
2b82032c 3761 btrfs_free_path(path);
0b86a832
CM
3762 return ret;
3763}