]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/volumes.c
btrfs: preallocate radix tree node for readahead
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
142static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
2b82032c 147
67a2c45e 148DEFINE_MUTEX(uuid_mutex);
8a4b83cc 149static LIST_HEAD(fs_uuids);
c73eccf7
AJ
150struct list_head *btrfs_get_fs_uuids(void)
151{
152 return &fs_uuids;
153}
8a4b83cc 154
2208a378
ID
155static struct btrfs_fs_devices *__alloc_fs_devices(void)
156{
157 struct btrfs_fs_devices *fs_devs;
158
78f2c9e6 159 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
160 if (!fs_devs)
161 return ERR_PTR(-ENOMEM);
162
163 mutex_init(&fs_devs->device_list_mutex);
164
165 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 166 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
167 INIT_LIST_HEAD(&fs_devs->alloc_list);
168 INIT_LIST_HEAD(&fs_devs->list);
169
170 return fs_devs;
171}
172
173/**
174 * alloc_fs_devices - allocate struct btrfs_fs_devices
175 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
176 * generated.
177 *
178 * Return: a pointer to a new &struct btrfs_fs_devices on success;
179 * ERR_PTR() on error. Returned struct is not linked onto any lists and
180 * can be destroyed with kfree() right away.
181 */
182static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
183{
184 struct btrfs_fs_devices *fs_devs;
185
186 fs_devs = __alloc_fs_devices();
187 if (IS_ERR(fs_devs))
188 return fs_devs;
189
190 if (fsid)
191 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
192 else
193 generate_random_uuid(fs_devs->fsid);
194
195 return fs_devs;
196}
197
e4404d6e
YZ
198static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
199{
200 struct btrfs_device *device;
201 WARN_ON(fs_devices->opened);
202 while (!list_empty(&fs_devices->devices)) {
203 device = list_entry(fs_devices->devices.next,
204 struct btrfs_device, dev_list);
205 list_del(&device->dev_list);
606686ee 206 rcu_string_free(device->name);
e4404d6e
YZ
207 kfree(device);
208 }
209 kfree(fs_devices);
210}
211
b8b8ff59
LC
212static void btrfs_kobject_uevent(struct block_device *bdev,
213 enum kobject_action action)
214{
215 int ret;
216
217 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
218 if (ret)
efe120a0 219 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
220 action,
221 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
222 &disk_to_dev(bdev->bd_disk)->kobj);
223}
224
143bede5 225void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
226{
227 struct btrfs_fs_devices *fs_devices;
8a4b83cc 228
2b82032c
YZ
229 while (!list_empty(&fs_uuids)) {
230 fs_devices = list_entry(fs_uuids.next,
231 struct btrfs_fs_devices, list);
232 list_del(&fs_devices->list);
e4404d6e 233 free_fs_devices(fs_devices);
8a4b83cc 234 }
8a4b83cc
CM
235}
236
12bd2fc0
ID
237static struct btrfs_device *__alloc_device(void)
238{
239 struct btrfs_device *dev;
240
78f2c9e6 241 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
242 if (!dev)
243 return ERR_PTR(-ENOMEM);
244
245 INIT_LIST_HEAD(&dev->dev_list);
246 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 247 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
248
249 spin_lock_init(&dev->io_lock);
250
251 spin_lock_init(&dev->reada_lock);
252 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 253 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 254 btrfs_device_data_ordered_init(dev);
cc8385b5 255 INIT_RADIX_TREE(&dev->reada_zones, GFP_KERNEL);
d0164adc 256 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
257
258 return dev;
259}
260
a1b32a59
CM
261static noinline struct btrfs_device *__find_device(struct list_head *head,
262 u64 devid, u8 *uuid)
8a4b83cc
CM
263{
264 struct btrfs_device *dev;
8a4b83cc 265
c6e30871 266 list_for_each_entry(dev, head, dev_list) {
a443755f 267 if (dev->devid == devid &&
8f18cf13 268 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 269 return dev;
a443755f 270 }
8a4b83cc
CM
271 }
272 return NULL;
273}
274
a1b32a59 275static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 276{
8a4b83cc
CM
277 struct btrfs_fs_devices *fs_devices;
278
c6e30871 279 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
280 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
281 return fs_devices;
282 }
283 return NULL;
284}
285
beaf8ab3
SB
286static int
287btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
288 int flush, struct block_device **bdev,
289 struct buffer_head **bh)
290{
291 int ret;
292
293 *bdev = blkdev_get_by_path(device_path, flags, holder);
294
295 if (IS_ERR(*bdev)) {
296 ret = PTR_ERR(*bdev);
beaf8ab3
SB
297 goto error;
298 }
299
300 if (flush)
301 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
302 ret = set_blocksize(*bdev, 4096);
303 if (ret) {
304 blkdev_put(*bdev, flags);
305 goto error;
306 }
307 invalidate_bdev(*bdev);
308 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
309 if (IS_ERR(*bh)) {
310 ret = PTR_ERR(*bh);
beaf8ab3
SB
311 blkdev_put(*bdev, flags);
312 goto error;
313 }
314
315 return 0;
316
317error:
318 *bdev = NULL;
319 *bh = NULL;
320 return ret;
321}
322
ffbd517d
CM
323static void requeue_list(struct btrfs_pending_bios *pending_bios,
324 struct bio *head, struct bio *tail)
325{
326
327 struct bio *old_head;
328
329 old_head = pending_bios->head;
330 pending_bios->head = head;
331 if (pending_bios->tail)
332 tail->bi_next = old_head;
333 else
334 pending_bios->tail = tail;
335}
336
8b712842
CM
337/*
338 * we try to collect pending bios for a device so we don't get a large
339 * number of procs sending bios down to the same device. This greatly
340 * improves the schedulers ability to collect and merge the bios.
341 *
342 * But, it also turns into a long list of bios to process and that is sure
343 * to eventually make the worker thread block. The solution here is to
344 * make some progress and then put this work struct back at the end of
345 * the list if the block device is congested. This way, multiple devices
346 * can make progress from a single worker thread.
347 */
143bede5 348static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 349{
0b246afa 350 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
351 struct bio *pending;
352 struct backing_dev_info *bdi;
ffbd517d 353 struct btrfs_pending_bios *pending_bios;
8b712842
CM
354 struct bio *tail;
355 struct bio *cur;
356 int again = 0;
ffbd517d 357 unsigned long num_run;
d644d8a1 358 unsigned long batch_run = 0;
b64a2851 359 unsigned long limit;
b765ead5 360 unsigned long last_waited = 0;
d84275c9 361 int force_reg = 0;
0e588859 362 int sync_pending = 0;
211588ad
CM
363 struct blk_plug plug;
364
365 /*
366 * this function runs all the bios we've collected for
367 * a particular device. We don't want to wander off to
368 * another device without first sending all of these down.
369 * So, setup a plug here and finish it off before we return
370 */
371 blk_start_plug(&plug);
8b712842 372
efa7c9f9 373 bdi = device->bdev->bd_bdi;
b64a2851
CM
374 limit = btrfs_async_submit_limit(fs_info);
375 limit = limit * 2 / 3;
376
8b712842
CM
377loop:
378 spin_lock(&device->io_lock);
379
a6837051 380loop_lock:
d84275c9 381 num_run = 0;
ffbd517d 382
8b712842
CM
383 /* take all the bios off the list at once and process them
384 * later on (without the lock held). But, remember the
385 * tail and other pointers so the bios can be properly reinserted
386 * into the list if we hit congestion
387 */
d84275c9 388 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 389 pending_bios = &device->pending_sync_bios;
d84275c9
CM
390 force_reg = 1;
391 } else {
ffbd517d 392 pending_bios = &device->pending_bios;
d84275c9
CM
393 force_reg = 0;
394 }
ffbd517d
CM
395
396 pending = pending_bios->head;
397 tail = pending_bios->tail;
8b712842 398 WARN_ON(pending && !tail);
8b712842
CM
399
400 /*
401 * if pending was null this time around, no bios need processing
402 * at all and we can stop. Otherwise it'll loop back up again
403 * and do an additional check so no bios are missed.
404 *
405 * device->running_pending is used to synchronize with the
406 * schedule_bio code.
407 */
ffbd517d
CM
408 if (device->pending_sync_bios.head == NULL &&
409 device->pending_bios.head == NULL) {
8b712842
CM
410 again = 0;
411 device->running_pending = 0;
ffbd517d
CM
412 } else {
413 again = 1;
414 device->running_pending = 1;
8b712842 415 }
ffbd517d
CM
416
417 pending_bios->head = NULL;
418 pending_bios->tail = NULL;
419
8b712842
CM
420 spin_unlock(&device->io_lock);
421
d397712b 422 while (pending) {
ffbd517d
CM
423
424 rmb();
d84275c9
CM
425 /* we want to work on both lists, but do more bios on the
426 * sync list than the regular list
427 */
428 if ((num_run > 32 &&
429 pending_bios != &device->pending_sync_bios &&
430 device->pending_sync_bios.head) ||
431 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
432 device->pending_bios.head)) {
ffbd517d
CM
433 spin_lock(&device->io_lock);
434 requeue_list(pending_bios, pending, tail);
435 goto loop_lock;
436 }
437
8b712842
CM
438 cur = pending;
439 pending = pending->bi_next;
440 cur->bi_next = NULL;
b64a2851 441
ee863954
DS
442 /*
443 * atomic_dec_return implies a barrier for waitqueue_active
444 */
66657b31 445 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
446 waitqueue_active(&fs_info->async_submit_wait))
447 wake_up(&fs_info->async_submit_wait);
492bb6de 448
dac56212 449 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 450
2ab1ba68
CM
451 /*
452 * if we're doing the sync list, record that our
453 * plug has some sync requests on it
454 *
455 * If we're doing the regular list and there are
456 * sync requests sitting around, unplug before
457 * we add more
458 */
459 if (pending_bios == &device->pending_sync_bios) {
460 sync_pending = 1;
461 } else if (sync_pending) {
462 blk_finish_plug(&plug);
463 blk_start_plug(&plug);
464 sync_pending = 0;
465 }
466
4e49ea4a 467 btrfsic_submit_bio(cur);
5ff7ba3a
CM
468 num_run++;
469 batch_run++;
853d8ec4
DS
470
471 cond_resched();
8b712842
CM
472
473 /*
474 * we made progress, there is more work to do and the bdi
475 * is now congested. Back off and let other work structs
476 * run instead
477 */
57fd5a5f 478 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 479 fs_info->fs_devices->open_devices > 1) {
b765ead5 480 struct io_context *ioc;
8b712842 481
b765ead5
CM
482 ioc = current->io_context;
483
484 /*
485 * the main goal here is that we don't want to
486 * block if we're going to be able to submit
487 * more requests without blocking.
488 *
489 * This code does two great things, it pokes into
490 * the elevator code from a filesystem _and_
491 * it makes assumptions about how batching works.
492 */
493 if (ioc && ioc->nr_batch_requests > 0 &&
494 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
495 (last_waited == 0 ||
496 ioc->last_waited == last_waited)) {
497 /*
498 * we want to go through our batch of
499 * requests and stop. So, we copy out
500 * the ioc->last_waited time and test
501 * against it before looping
502 */
503 last_waited = ioc->last_waited;
853d8ec4 504 cond_resched();
b765ead5
CM
505 continue;
506 }
8b712842 507 spin_lock(&device->io_lock);
ffbd517d 508 requeue_list(pending_bios, pending, tail);
a6837051 509 device->running_pending = 1;
8b712842
CM
510
511 spin_unlock(&device->io_lock);
a8c93d4e
QW
512 btrfs_queue_work(fs_info->submit_workers,
513 &device->work);
8b712842
CM
514 goto done;
515 }
d85c8a6f
CM
516 /* unplug every 64 requests just for good measure */
517 if (batch_run % 64 == 0) {
518 blk_finish_plug(&plug);
519 blk_start_plug(&plug);
520 sync_pending = 0;
521 }
8b712842 522 }
ffbd517d 523
51684082
CM
524 cond_resched();
525 if (again)
526 goto loop;
527
528 spin_lock(&device->io_lock);
529 if (device->pending_bios.head || device->pending_sync_bios.head)
530 goto loop_lock;
531 spin_unlock(&device->io_lock);
532
8b712842 533done:
211588ad 534 blk_finish_plug(&plug);
8b712842
CM
535}
536
b2950863 537static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
538{
539 struct btrfs_device *device;
540
541 device = container_of(work, struct btrfs_device, work);
542 run_scheduled_bios(device);
543}
544
4fde46f0
AJ
545
546void btrfs_free_stale_device(struct btrfs_device *cur_dev)
547{
548 struct btrfs_fs_devices *fs_devs;
549 struct btrfs_device *dev;
550
551 if (!cur_dev->name)
552 return;
553
554 list_for_each_entry(fs_devs, &fs_uuids, list) {
555 int del = 1;
556
557 if (fs_devs->opened)
558 continue;
559 if (fs_devs->seeding)
560 continue;
561
562 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
563
564 if (dev == cur_dev)
565 continue;
566 if (!dev->name)
567 continue;
568
569 /*
570 * Todo: This won't be enough. What if the same device
571 * comes back (with new uuid and) with its mapper path?
572 * But for now, this does help as mostly an admin will
573 * either use mapper or non mapper path throughout.
574 */
575 rcu_read_lock();
576 del = strcmp(rcu_str_deref(dev->name),
577 rcu_str_deref(cur_dev->name));
578 rcu_read_unlock();
579 if (!del)
580 break;
581 }
582
583 if (!del) {
584 /* delete the stale device */
585 if (fs_devs->num_devices == 1) {
586 btrfs_sysfs_remove_fsid(fs_devs);
587 list_del(&fs_devs->list);
588 free_fs_devices(fs_devs);
589 } else {
590 fs_devs->num_devices--;
591 list_del(&dev->dev_list);
592 rcu_string_free(dev->name);
593 kfree(dev);
594 }
595 break;
596 }
597 }
598}
599
60999ca4
DS
600/*
601 * Add new device to list of registered devices
602 *
603 * Returns:
604 * 1 - first time device is seen
605 * 0 - device already known
606 * < 0 - error
607 */
a1b32a59 608static noinline int device_list_add(const char *path,
8a4b83cc
CM
609 struct btrfs_super_block *disk_super,
610 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
611{
612 struct btrfs_device *device;
613 struct btrfs_fs_devices *fs_devices;
606686ee 614 struct rcu_string *name;
60999ca4 615 int ret = 0;
8a4b83cc
CM
616 u64 found_transid = btrfs_super_generation(disk_super);
617
618 fs_devices = find_fsid(disk_super->fsid);
619 if (!fs_devices) {
2208a378
ID
620 fs_devices = alloc_fs_devices(disk_super->fsid);
621 if (IS_ERR(fs_devices))
622 return PTR_ERR(fs_devices);
623
8a4b83cc 624 list_add(&fs_devices->list, &fs_uuids);
2208a378 625
8a4b83cc
CM
626 device = NULL;
627 } else {
a443755f
CM
628 device = __find_device(&fs_devices->devices, devid,
629 disk_super->dev_item.uuid);
8a4b83cc 630 }
443f24fe 631
8a4b83cc 632 if (!device) {
2b82032c
YZ
633 if (fs_devices->opened)
634 return -EBUSY;
635
12bd2fc0
ID
636 device = btrfs_alloc_device(NULL, &devid,
637 disk_super->dev_item.uuid);
638 if (IS_ERR(device)) {
8a4b83cc 639 /* we can safely leave the fs_devices entry around */
12bd2fc0 640 return PTR_ERR(device);
8a4b83cc 641 }
606686ee
JB
642
643 name = rcu_string_strdup(path, GFP_NOFS);
644 if (!name) {
8a4b83cc
CM
645 kfree(device);
646 return -ENOMEM;
647 }
606686ee 648 rcu_assign_pointer(device->name, name);
90519d66 649
e5e9a520 650 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 651 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 652 fs_devices->num_devices++;
e5e9a520
CM
653 mutex_unlock(&fs_devices->device_list_mutex);
654
60999ca4 655 ret = 1;
2b82032c 656 device->fs_devices = fs_devices;
606686ee 657 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
658 /*
659 * When FS is already mounted.
660 * 1. If you are here and if the device->name is NULL that
661 * means this device was missing at time of FS mount.
662 * 2. If you are here and if the device->name is different
663 * from 'path' that means either
664 * a. The same device disappeared and reappeared with
665 * different name. or
666 * b. The missing-disk-which-was-replaced, has
667 * reappeared now.
668 *
669 * We must allow 1 and 2a above. But 2b would be a spurious
670 * and unintentional.
671 *
672 * Further in case of 1 and 2a above, the disk at 'path'
673 * would have missed some transaction when it was away and
674 * in case of 2a the stale bdev has to be updated as well.
675 * 2b must not be allowed at all time.
676 */
677
678 /*
0f23ae74
CM
679 * For now, we do allow update to btrfs_fs_device through the
680 * btrfs dev scan cli after FS has been mounted. We're still
681 * tracking a problem where systems fail mount by subvolume id
682 * when we reject replacement on a mounted FS.
b96de000 683 */
0f23ae74 684 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
685 /*
686 * That is if the FS is _not_ mounted and if you
687 * are here, that means there is more than one
688 * disk with same uuid and devid.We keep the one
689 * with larger generation number or the last-in if
690 * generation are equal.
691 */
0f23ae74 692 return -EEXIST;
77bdae4d 693 }
b96de000 694
606686ee 695 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
696 if (!name)
697 return -ENOMEM;
606686ee
JB
698 rcu_string_free(device->name);
699 rcu_assign_pointer(device->name, name);
cd02dca5
CM
700 if (device->missing) {
701 fs_devices->missing_devices--;
702 device->missing = 0;
703 }
8a4b83cc
CM
704 }
705
77bdae4d
AJ
706 /*
707 * Unmount does not free the btrfs_device struct but would zero
708 * generation along with most of the other members. So just update
709 * it back. We need it to pick the disk with largest generation
710 * (as above).
711 */
712 if (!fs_devices->opened)
713 device->generation = found_transid;
714
4fde46f0
AJ
715 /*
716 * if there is new btrfs on an already registered device,
717 * then remove the stale device entry.
718 */
02feae3c
AJ
719 if (ret > 0)
720 btrfs_free_stale_device(device);
4fde46f0 721
8a4b83cc 722 *fs_devices_ret = fs_devices;
60999ca4
DS
723
724 return ret;
8a4b83cc
CM
725}
726
e4404d6e
YZ
727static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
728{
729 struct btrfs_fs_devices *fs_devices;
730 struct btrfs_device *device;
731 struct btrfs_device *orig_dev;
732
2208a378
ID
733 fs_devices = alloc_fs_devices(orig->fsid);
734 if (IS_ERR(fs_devices))
735 return fs_devices;
e4404d6e 736
adbbb863 737 mutex_lock(&orig->device_list_mutex);
02db0844 738 fs_devices->total_devices = orig->total_devices;
e4404d6e 739
46224705 740 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 741 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
742 struct rcu_string *name;
743
12bd2fc0
ID
744 device = btrfs_alloc_device(NULL, &orig_dev->devid,
745 orig_dev->uuid);
746 if (IS_ERR(device))
e4404d6e
YZ
747 goto error;
748
606686ee
JB
749 /*
750 * This is ok to do without rcu read locked because we hold the
751 * uuid mutex so nothing we touch in here is going to disappear.
752 */
e755f780 753 if (orig_dev->name) {
78f2c9e6
DS
754 name = rcu_string_strdup(orig_dev->name->str,
755 GFP_KERNEL);
e755f780
AJ
756 if (!name) {
757 kfree(device);
758 goto error;
759 }
760 rcu_assign_pointer(device->name, name);
fd2696f3 761 }
e4404d6e 762
e4404d6e
YZ
763 list_add(&device->dev_list, &fs_devices->devices);
764 device->fs_devices = fs_devices;
765 fs_devices->num_devices++;
766 }
adbbb863 767 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
768 return fs_devices;
769error:
adbbb863 770 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
771 free_fs_devices(fs_devices);
772 return ERR_PTR(-ENOMEM);
773}
774
9eaed21e 775void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 776{
c6e30871 777 struct btrfs_device *device, *next;
443f24fe 778 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 779
dfe25020
CM
780 mutex_lock(&uuid_mutex);
781again:
46224705 782 /* This is the initialized path, it is safe to release the devices. */
c6e30871 783 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 784 if (device->in_fs_metadata) {
63a212ab 785 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
786 (!latest_dev ||
787 device->generation > latest_dev->generation)) {
788 latest_dev = device;
a6b0d5c8 789 }
2b82032c 790 continue;
a6b0d5c8 791 }
2b82032c 792
8dabb742
SB
793 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
794 /*
795 * In the first step, keep the device which has
796 * the correct fsid and the devid that is used
797 * for the dev_replace procedure.
798 * In the second step, the dev_replace state is
799 * read from the device tree and it is known
800 * whether the procedure is really active or
801 * not, which means whether this device is
802 * used or whether it should be removed.
803 */
804 if (step == 0 || device->is_tgtdev_for_dev_replace) {
805 continue;
806 }
807 }
2b82032c 808 if (device->bdev) {
d4d77629 809 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
810 device->bdev = NULL;
811 fs_devices->open_devices--;
812 }
813 if (device->writeable) {
814 list_del_init(&device->dev_alloc_list);
815 device->writeable = 0;
8dabb742
SB
816 if (!device->is_tgtdev_for_dev_replace)
817 fs_devices->rw_devices--;
2b82032c 818 }
e4404d6e
YZ
819 list_del_init(&device->dev_list);
820 fs_devices->num_devices--;
606686ee 821 rcu_string_free(device->name);
e4404d6e 822 kfree(device);
dfe25020 823 }
2b82032c
YZ
824
825 if (fs_devices->seed) {
826 fs_devices = fs_devices->seed;
2b82032c
YZ
827 goto again;
828 }
829
443f24fe 830 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 831
dfe25020 832 mutex_unlock(&uuid_mutex);
dfe25020 833}
a0af469b 834
1f78160c
XG
835static void __free_device(struct work_struct *work)
836{
837 struct btrfs_device *device;
838
839 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 840 rcu_string_free(device->name);
1f78160c
XG
841 kfree(device);
842}
843
844static void free_device(struct rcu_head *head)
845{
846 struct btrfs_device *device;
847
848 device = container_of(head, struct btrfs_device, rcu);
849
850 INIT_WORK(&device->rcu_work, __free_device);
851 schedule_work(&device->rcu_work);
852}
853
14238819
AJ
854static void btrfs_close_bdev(struct btrfs_device *device)
855{
856 if (device->bdev && device->writeable) {
857 sync_blockdev(device->bdev);
858 invalidate_bdev(device->bdev);
859 }
860
861 if (device->bdev)
862 blkdev_put(device->bdev, device->mode);
863}
864
0ccd0528 865static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
866{
867 struct btrfs_fs_devices *fs_devices = device->fs_devices;
868 struct btrfs_device *new_device;
869 struct rcu_string *name;
870
871 if (device->bdev)
872 fs_devices->open_devices--;
873
874 if (device->writeable &&
875 device->devid != BTRFS_DEV_REPLACE_DEVID) {
876 list_del_init(&device->dev_alloc_list);
877 fs_devices->rw_devices--;
878 }
879
880 if (device->missing)
881 fs_devices->missing_devices--;
882
883 new_device = btrfs_alloc_device(NULL, &device->devid,
884 device->uuid);
885 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
886
887 /* Safe because we are under uuid_mutex */
888 if (device->name) {
889 name = rcu_string_strdup(device->name->str, GFP_NOFS);
890 BUG_ON(!name); /* -ENOMEM */
891 rcu_assign_pointer(new_device->name, name);
892 }
893
894 list_replace_rcu(&device->dev_list, &new_device->dev_list);
895 new_device->fs_devices = device->fs_devices;
f448341a
AJ
896}
897
2b82032c 898static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 899{
2037a093 900 struct btrfs_device *device, *tmp;
0ccd0528
AJ
901 struct list_head pending_put;
902
903 INIT_LIST_HEAD(&pending_put);
e4404d6e 904
2b82032c
YZ
905 if (--fs_devices->opened > 0)
906 return 0;
8a4b83cc 907
c9513edb 908 mutex_lock(&fs_devices->device_list_mutex);
2037a093 909 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
910 btrfs_prepare_close_one_device(device);
911 list_add(&device->dev_list, &pending_put);
8a4b83cc 912 }
c9513edb
XG
913 mutex_unlock(&fs_devices->device_list_mutex);
914
0ccd0528
AJ
915 /*
916 * btrfs_show_devname() is using the device_list_mutex,
917 * sometimes call to blkdev_put() leads vfs calling
918 * into this func. So do put outside of device_list_mutex,
919 * as of now.
920 */
921 while (!list_empty(&pending_put)) {
922 device = list_first_entry(&pending_put,
923 struct btrfs_device, dev_list);
924 list_del(&device->dev_list);
925 btrfs_close_bdev(device);
926 call_rcu(&device->rcu, free_device);
927 }
928
e4404d6e
YZ
929 WARN_ON(fs_devices->open_devices);
930 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
931 fs_devices->opened = 0;
932 fs_devices->seeding = 0;
2b82032c 933
8a4b83cc
CM
934 return 0;
935}
936
2b82032c
YZ
937int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
938{
e4404d6e 939 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
940 int ret;
941
942 mutex_lock(&uuid_mutex);
943 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
944 if (!fs_devices->opened) {
945 seed_devices = fs_devices->seed;
946 fs_devices->seed = NULL;
947 }
2b82032c 948 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
949
950 while (seed_devices) {
951 fs_devices = seed_devices;
952 seed_devices = fs_devices->seed;
953 __btrfs_close_devices(fs_devices);
954 free_fs_devices(fs_devices);
955 }
bc178622
ES
956 /*
957 * Wait for rcu kworkers under __btrfs_close_devices
958 * to finish all blkdev_puts so device is really
959 * free when umount is done.
960 */
961 rcu_barrier();
2b82032c
YZ
962 return ret;
963}
964
e4404d6e
YZ
965static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
966 fmode_t flags, void *holder)
8a4b83cc 967{
d5e2003c 968 struct request_queue *q;
8a4b83cc
CM
969 struct block_device *bdev;
970 struct list_head *head = &fs_devices->devices;
8a4b83cc 971 struct btrfs_device *device;
443f24fe 972 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
973 struct buffer_head *bh;
974 struct btrfs_super_block *disk_super;
a0af469b 975 u64 devid;
2b82032c 976 int seeding = 1;
a0af469b 977 int ret = 0;
8a4b83cc 978
d4d77629
TH
979 flags |= FMODE_EXCL;
980
c6e30871 981 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
982 if (device->bdev)
983 continue;
dfe25020
CM
984 if (!device->name)
985 continue;
986
f63e0cca
ES
987 /* Just open everything we can; ignore failures here */
988 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
989 &bdev, &bh))
beaf8ab3 990 continue;
a0af469b
CM
991
992 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 993 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
994 if (devid != device->devid)
995 goto error_brelse;
996
2b82032c
YZ
997 if (memcmp(device->uuid, disk_super->dev_item.uuid,
998 BTRFS_UUID_SIZE))
999 goto error_brelse;
1000
1001 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
1002 if (!latest_dev ||
1003 device->generation > latest_dev->generation)
1004 latest_dev = device;
a0af469b 1005
2b82032c
YZ
1006 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1007 device->writeable = 0;
1008 } else {
1009 device->writeable = !bdev_read_only(bdev);
1010 seeding = 0;
1011 }
1012
d5e2003c 1013 q = bdev_get_queue(bdev);
90180da4 1014 if (blk_queue_discard(q))
d5e2003c 1015 device->can_discard = 1;
d5e2003c 1016
8a4b83cc 1017 device->bdev = bdev;
dfe25020 1018 device->in_fs_metadata = 0;
15916de8
CM
1019 device->mode = flags;
1020
c289811c
CM
1021 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1022 fs_devices->rotating = 1;
1023
a0af469b 1024 fs_devices->open_devices++;
55e50e45
ID
1025 if (device->writeable &&
1026 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1027 fs_devices->rw_devices++;
1028 list_add(&device->dev_alloc_list,
1029 &fs_devices->alloc_list);
1030 }
4f6c9328 1031 brelse(bh);
a0af469b 1032 continue;
a061fc8d 1033
a0af469b
CM
1034error_brelse:
1035 brelse(bh);
d4d77629 1036 blkdev_put(bdev, flags);
a0af469b 1037 continue;
8a4b83cc 1038 }
a0af469b 1039 if (fs_devices->open_devices == 0) {
20bcd649 1040 ret = -EINVAL;
a0af469b
CM
1041 goto out;
1042 }
2b82032c
YZ
1043 fs_devices->seeding = seeding;
1044 fs_devices->opened = 1;
443f24fe 1045 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1046 fs_devices->total_rw_bytes = 0;
a0af469b 1047out:
2b82032c
YZ
1048 return ret;
1049}
1050
1051int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1052 fmode_t flags, void *holder)
2b82032c
YZ
1053{
1054 int ret;
1055
1056 mutex_lock(&uuid_mutex);
1057 if (fs_devices->opened) {
e4404d6e
YZ
1058 fs_devices->opened++;
1059 ret = 0;
2b82032c 1060 } else {
15916de8 1061 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1062 }
8a4b83cc 1063 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1064 return ret;
1065}
1066
6cf86a00
AJ
1067void btrfs_release_disk_super(struct page *page)
1068{
1069 kunmap(page);
1070 put_page(page);
1071}
1072
1073int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1074 struct page **page, struct btrfs_super_block **disk_super)
1075{
1076 void *p;
1077 pgoff_t index;
1078
1079 /* make sure our super fits in the device */
1080 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1081 return 1;
1082
1083 /* make sure our super fits in the page */
1084 if (sizeof(**disk_super) > PAGE_SIZE)
1085 return 1;
1086
1087 /* make sure our super doesn't straddle pages on disk */
1088 index = bytenr >> PAGE_SHIFT;
1089 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1090 return 1;
1091
1092 /* pull in the page with our super */
1093 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1094 index, GFP_KERNEL);
1095
1096 if (IS_ERR_OR_NULL(*page))
1097 return 1;
1098
1099 p = kmap(*page);
1100
1101 /* align our pointer to the offset of the super block */
1102 *disk_super = p + (bytenr & ~PAGE_MASK);
1103
1104 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1105 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1106 btrfs_release_disk_super(*page);
1107 return 1;
1108 }
1109
1110 if ((*disk_super)->label[0] &&
1111 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1112 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1113
1114 return 0;
1115}
1116
6f60cbd3
DS
1117/*
1118 * Look for a btrfs signature on a device. This may be called out of the mount path
1119 * and we are not allowed to call set_blocksize during the scan. The superblock
1120 * is read via pagecache
1121 */
97288f2c 1122int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1123 struct btrfs_fs_devices **fs_devices_ret)
1124{
1125 struct btrfs_super_block *disk_super;
1126 struct block_device *bdev;
6f60cbd3 1127 struct page *page;
6f60cbd3 1128 int ret = -EINVAL;
8a4b83cc 1129 u64 devid;
f2984462 1130 u64 transid;
02db0844 1131 u64 total_devices;
6f60cbd3 1132 u64 bytenr;
8a4b83cc 1133
6f60cbd3
DS
1134 /*
1135 * we would like to check all the supers, but that would make
1136 * a btrfs mount succeed after a mkfs from a different FS.
1137 * So, we need to add a special mount option to scan for
1138 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1139 */
1140 bytenr = btrfs_sb_offset(0);
d4d77629 1141 flags |= FMODE_EXCL;
10f6327b 1142 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1143
1144 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1145 if (IS_ERR(bdev)) {
1146 ret = PTR_ERR(bdev);
beaf8ab3 1147 goto error;
6f60cbd3
DS
1148 }
1149
6cf86a00 1150 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1151 goto error_bdev_put;
1152
a343832f 1153 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1154 transid = btrfs_super_generation(disk_super);
02db0844 1155 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1156
8a4b83cc 1157 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1158 if (ret > 0) {
1159 if (disk_super->label[0]) {
62e85577 1160 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1161 } else {
62e85577 1162 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1163 }
1164
62e85577 1165 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1166 ret = 0;
1167 }
02db0844
JB
1168 if (!ret && fs_devices_ret)
1169 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1170
6cf86a00 1171 btrfs_release_disk_super(page);
6f60cbd3
DS
1172
1173error_bdev_put:
d4d77629 1174 blkdev_put(bdev, flags);
8a4b83cc 1175error:
beaf8ab3 1176 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1177 return ret;
1178}
0b86a832 1179
6d07bcec
MX
1180/* helper to account the used device space in the range */
1181int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1182 u64 end, u64 *length)
1183{
1184 struct btrfs_key key;
fb456252 1185 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1186 struct btrfs_dev_extent *dev_extent;
1187 struct btrfs_path *path;
1188 u64 extent_end;
1189 int ret;
1190 int slot;
1191 struct extent_buffer *l;
1192
1193 *length = 0;
1194
63a212ab 1195 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1196 return 0;
1197
1198 path = btrfs_alloc_path();
1199 if (!path)
1200 return -ENOMEM;
e4058b54 1201 path->reada = READA_FORWARD;
6d07bcec
MX
1202
1203 key.objectid = device->devid;
1204 key.offset = start;
1205 key.type = BTRFS_DEV_EXTENT_KEY;
1206
1207 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1208 if (ret < 0)
1209 goto out;
1210 if (ret > 0) {
1211 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1212 if (ret < 0)
1213 goto out;
1214 }
1215
1216 while (1) {
1217 l = path->nodes[0];
1218 slot = path->slots[0];
1219 if (slot >= btrfs_header_nritems(l)) {
1220 ret = btrfs_next_leaf(root, path);
1221 if (ret == 0)
1222 continue;
1223 if (ret < 0)
1224 goto out;
1225
1226 break;
1227 }
1228 btrfs_item_key_to_cpu(l, &key, slot);
1229
1230 if (key.objectid < device->devid)
1231 goto next;
1232
1233 if (key.objectid > device->devid)
1234 break;
1235
962a298f 1236 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1237 goto next;
1238
1239 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1240 extent_end = key.offset + btrfs_dev_extent_length(l,
1241 dev_extent);
1242 if (key.offset <= start && extent_end > end) {
1243 *length = end - start + 1;
1244 break;
1245 } else if (key.offset <= start && extent_end > start)
1246 *length += extent_end - start;
1247 else if (key.offset > start && extent_end <= end)
1248 *length += extent_end - key.offset;
1249 else if (key.offset > start && key.offset <= end) {
1250 *length += end - key.offset + 1;
1251 break;
1252 } else if (key.offset > end)
1253 break;
1254
1255next:
1256 path->slots[0]++;
1257 }
1258 ret = 0;
1259out:
1260 btrfs_free_path(path);
1261 return ret;
1262}
1263
499f377f 1264static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1265 struct btrfs_device *device,
1266 u64 *start, u64 len)
1267{
fb456252 1268 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1269 struct extent_map *em;
499f377f 1270 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1271 int ret = 0;
1b984508 1272 u64 physical_start = *start;
6df9a95e 1273
499f377f
JM
1274 if (transaction)
1275 search_list = &transaction->pending_chunks;
04216820
FM
1276again:
1277 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1278 struct map_lookup *map;
1279 int i;
1280
95617d69 1281 map = em->map_lookup;
6df9a95e 1282 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1283 u64 end;
1284
6df9a95e
JB
1285 if (map->stripes[i].dev != device)
1286 continue;
1b984508 1287 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1288 map->stripes[i].physical + em->orig_block_len <=
1b984508 1289 physical_start)
6df9a95e 1290 continue;
c152b63e
FM
1291 /*
1292 * Make sure that while processing the pinned list we do
1293 * not override our *start with a lower value, because
1294 * we can have pinned chunks that fall within this
1295 * device hole and that have lower physical addresses
1296 * than the pending chunks we processed before. If we
1297 * do not take this special care we can end up getting
1298 * 2 pending chunks that start at the same physical
1299 * device offsets because the end offset of a pinned
1300 * chunk can be equal to the start offset of some
1301 * pending chunk.
1302 */
1303 end = map->stripes[i].physical + em->orig_block_len;
1304 if (end > *start) {
1305 *start = end;
1306 ret = 1;
1307 }
6df9a95e
JB
1308 }
1309 }
499f377f
JM
1310 if (search_list != &fs_info->pinned_chunks) {
1311 search_list = &fs_info->pinned_chunks;
04216820
FM
1312 goto again;
1313 }
6df9a95e
JB
1314
1315 return ret;
1316}
1317
1318
0b86a832 1319/*
499f377f
JM
1320 * find_free_dev_extent_start - find free space in the specified device
1321 * @device: the device which we search the free space in
1322 * @num_bytes: the size of the free space that we need
1323 * @search_start: the position from which to begin the search
1324 * @start: store the start of the free space.
1325 * @len: the size of the free space. that we find, or the size
1326 * of the max free space if we don't find suitable free space
7bfc837d 1327 *
0b86a832
CM
1328 * this uses a pretty simple search, the expectation is that it is
1329 * called very infrequently and that a given device has a small number
1330 * of extents
7bfc837d
MX
1331 *
1332 * @start is used to store the start of the free space if we find. But if we
1333 * don't find suitable free space, it will be used to store the start position
1334 * of the max free space.
1335 *
1336 * @len is used to store the size of the free space that we find.
1337 * But if we don't find suitable free space, it is used to store the size of
1338 * the max free space.
0b86a832 1339 */
499f377f
JM
1340int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1341 struct btrfs_device *device, u64 num_bytes,
1342 u64 search_start, u64 *start, u64 *len)
0b86a832 1343{
0b246afa
JM
1344 struct btrfs_fs_info *fs_info = device->fs_info;
1345 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1346 struct btrfs_key key;
7bfc837d 1347 struct btrfs_dev_extent *dev_extent;
2b82032c 1348 struct btrfs_path *path;
7bfc837d
MX
1349 u64 hole_size;
1350 u64 max_hole_start;
1351 u64 max_hole_size;
1352 u64 extent_end;
0b86a832
CM
1353 u64 search_end = device->total_bytes;
1354 int ret;
7bfc837d 1355 int slot;
0b86a832 1356 struct extent_buffer *l;
8cdc7c5b
FM
1357 u64 min_search_start;
1358
1359 /*
1360 * We don't want to overwrite the superblock on the drive nor any area
1361 * used by the boot loader (grub for example), so we make sure to start
1362 * at an offset of at least 1MB.
1363 */
0b246afa 1364 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
8cdc7c5b 1365 search_start = max(search_start, min_search_start);
0b86a832 1366
6df9a95e
JB
1367 path = btrfs_alloc_path();
1368 if (!path)
1369 return -ENOMEM;
f2ab7618 1370
7bfc837d
MX
1371 max_hole_start = search_start;
1372 max_hole_size = 0;
1373
f2ab7618 1374again:
63a212ab 1375 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1376 ret = -ENOSPC;
6df9a95e 1377 goto out;
7bfc837d
MX
1378 }
1379
e4058b54 1380 path->reada = READA_FORWARD;
6df9a95e
JB
1381 path->search_commit_root = 1;
1382 path->skip_locking = 1;
7bfc837d 1383
0b86a832
CM
1384 key.objectid = device->devid;
1385 key.offset = search_start;
1386 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1387
125ccb0a 1388 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1389 if (ret < 0)
7bfc837d 1390 goto out;
1fcbac58
YZ
1391 if (ret > 0) {
1392 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1393 if (ret < 0)
7bfc837d 1394 goto out;
1fcbac58 1395 }
7bfc837d 1396
0b86a832
CM
1397 while (1) {
1398 l = path->nodes[0];
1399 slot = path->slots[0];
1400 if (slot >= btrfs_header_nritems(l)) {
1401 ret = btrfs_next_leaf(root, path);
1402 if (ret == 0)
1403 continue;
1404 if (ret < 0)
7bfc837d
MX
1405 goto out;
1406
1407 break;
0b86a832
CM
1408 }
1409 btrfs_item_key_to_cpu(l, &key, slot);
1410
1411 if (key.objectid < device->devid)
1412 goto next;
1413
1414 if (key.objectid > device->devid)
7bfc837d 1415 break;
0b86a832 1416
962a298f 1417 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1418 goto next;
9779b72f 1419
7bfc837d
MX
1420 if (key.offset > search_start) {
1421 hole_size = key.offset - search_start;
9779b72f 1422
6df9a95e
JB
1423 /*
1424 * Have to check before we set max_hole_start, otherwise
1425 * we could end up sending back this offset anyway.
1426 */
499f377f 1427 if (contains_pending_extent(transaction, device,
6df9a95e 1428 &search_start,
1b984508
FL
1429 hole_size)) {
1430 if (key.offset >= search_start) {
1431 hole_size = key.offset - search_start;
1432 } else {
1433 WARN_ON_ONCE(1);
1434 hole_size = 0;
1435 }
1436 }
6df9a95e 1437
7bfc837d
MX
1438 if (hole_size > max_hole_size) {
1439 max_hole_start = search_start;
1440 max_hole_size = hole_size;
1441 }
9779b72f 1442
7bfc837d
MX
1443 /*
1444 * If this free space is greater than which we need,
1445 * it must be the max free space that we have found
1446 * until now, so max_hole_start must point to the start
1447 * of this free space and the length of this free space
1448 * is stored in max_hole_size. Thus, we return
1449 * max_hole_start and max_hole_size and go back to the
1450 * caller.
1451 */
1452 if (hole_size >= num_bytes) {
1453 ret = 0;
1454 goto out;
0b86a832
CM
1455 }
1456 }
0b86a832 1457
0b86a832 1458 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1459 extent_end = key.offset + btrfs_dev_extent_length(l,
1460 dev_extent);
1461 if (extent_end > search_start)
1462 search_start = extent_end;
0b86a832
CM
1463next:
1464 path->slots[0]++;
1465 cond_resched();
1466 }
0b86a832 1467
38c01b96 1468 /*
1469 * At this point, search_start should be the end of
1470 * allocated dev extents, and when shrinking the device,
1471 * search_end may be smaller than search_start.
1472 */
f2ab7618 1473 if (search_end > search_start) {
38c01b96 1474 hole_size = search_end - search_start;
1475
499f377f 1476 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1477 hole_size)) {
1478 btrfs_release_path(path);
1479 goto again;
1480 }
0b86a832 1481
f2ab7618
ZL
1482 if (hole_size > max_hole_size) {
1483 max_hole_start = search_start;
1484 max_hole_size = hole_size;
1485 }
6df9a95e
JB
1486 }
1487
7bfc837d 1488 /* See above. */
f2ab7618 1489 if (max_hole_size < num_bytes)
7bfc837d
MX
1490 ret = -ENOSPC;
1491 else
1492 ret = 0;
1493
1494out:
2b82032c 1495 btrfs_free_path(path);
7bfc837d 1496 *start = max_hole_start;
b2117a39 1497 if (len)
7bfc837d 1498 *len = max_hole_size;
0b86a832
CM
1499 return ret;
1500}
1501
499f377f
JM
1502int find_free_dev_extent(struct btrfs_trans_handle *trans,
1503 struct btrfs_device *device, u64 num_bytes,
1504 u64 *start, u64 *len)
1505{
499f377f 1506 /* FIXME use last free of some kind */
499f377f 1507 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1508 num_bytes, 0, start, len);
499f377f
JM
1509}
1510
b2950863 1511static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1512 struct btrfs_device *device,
2196d6e8 1513 u64 start, u64 *dev_extent_len)
8f18cf13 1514{
0b246afa
JM
1515 struct btrfs_fs_info *fs_info = device->fs_info;
1516 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1517 int ret;
1518 struct btrfs_path *path;
8f18cf13 1519 struct btrfs_key key;
a061fc8d
CM
1520 struct btrfs_key found_key;
1521 struct extent_buffer *leaf = NULL;
1522 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1523
1524 path = btrfs_alloc_path();
1525 if (!path)
1526 return -ENOMEM;
1527
1528 key.objectid = device->devid;
1529 key.offset = start;
1530 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1531again:
8f18cf13 1532 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1533 if (ret > 0) {
1534 ret = btrfs_previous_item(root, path, key.objectid,
1535 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1536 if (ret)
1537 goto out;
a061fc8d
CM
1538 leaf = path->nodes[0];
1539 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1540 extent = btrfs_item_ptr(leaf, path->slots[0],
1541 struct btrfs_dev_extent);
1542 BUG_ON(found_key.offset > start || found_key.offset +
1543 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1544 key = found_key;
1545 btrfs_release_path(path);
1546 goto again;
a061fc8d
CM
1547 } else if (ret == 0) {
1548 leaf = path->nodes[0];
1549 extent = btrfs_item_ptr(leaf, path->slots[0],
1550 struct btrfs_dev_extent);
79787eaa 1551 } else {
0b246afa 1552 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1553 goto out;
a061fc8d 1554 }
8f18cf13 1555
2196d6e8
MX
1556 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1557
8f18cf13 1558 ret = btrfs_del_item(trans, root, path);
79787eaa 1559 if (ret) {
0b246afa
JM
1560 btrfs_handle_fs_error(fs_info, ret,
1561 "Failed to remove dev extent item");
13212b54 1562 } else {
3204d33c 1563 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1564 }
b0b802d7 1565out:
8f18cf13
CM
1566 btrfs_free_path(path);
1567 return ret;
1568}
1569
48a3b636
ES
1570static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1571 struct btrfs_device *device,
1572 u64 chunk_tree, u64 chunk_objectid,
1573 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1574{
1575 int ret;
1576 struct btrfs_path *path;
0b246afa
JM
1577 struct btrfs_fs_info *fs_info = device->fs_info;
1578 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1579 struct btrfs_dev_extent *extent;
1580 struct extent_buffer *leaf;
1581 struct btrfs_key key;
1582
dfe25020 1583 WARN_ON(!device->in_fs_metadata);
63a212ab 1584 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1585 path = btrfs_alloc_path();
1586 if (!path)
1587 return -ENOMEM;
1588
0b86a832 1589 key.objectid = device->devid;
2b82032c 1590 key.offset = start;
0b86a832
CM
1591 key.type = BTRFS_DEV_EXTENT_KEY;
1592 ret = btrfs_insert_empty_item(trans, root, path, &key,
1593 sizeof(*extent));
2cdcecbc
MF
1594 if (ret)
1595 goto out;
0b86a832
CM
1596
1597 leaf = path->nodes[0];
1598 extent = btrfs_item_ptr(leaf, path->slots[0],
1599 struct btrfs_dev_extent);
e17cade2
CM
1600 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1601 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1602 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1603
0b246afa 1604 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
e17cade2 1605
0b86a832
CM
1606 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1607 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1608out:
0b86a832
CM
1609 btrfs_free_path(path);
1610 return ret;
1611}
1612
6df9a95e 1613static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1614{
6df9a95e
JB
1615 struct extent_map_tree *em_tree;
1616 struct extent_map *em;
1617 struct rb_node *n;
1618 u64 ret = 0;
0b86a832 1619
6df9a95e
JB
1620 em_tree = &fs_info->mapping_tree.map_tree;
1621 read_lock(&em_tree->lock);
1622 n = rb_last(&em_tree->map);
1623 if (n) {
1624 em = rb_entry(n, struct extent_map, rb_node);
1625 ret = em->start + em->len;
0b86a832 1626 }
6df9a95e
JB
1627 read_unlock(&em_tree->lock);
1628
0b86a832
CM
1629 return ret;
1630}
1631
53f10659
ID
1632static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1633 u64 *devid_ret)
0b86a832
CM
1634{
1635 int ret;
1636 struct btrfs_key key;
1637 struct btrfs_key found_key;
2b82032c
YZ
1638 struct btrfs_path *path;
1639
2b82032c
YZ
1640 path = btrfs_alloc_path();
1641 if (!path)
1642 return -ENOMEM;
0b86a832
CM
1643
1644 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1645 key.type = BTRFS_DEV_ITEM_KEY;
1646 key.offset = (u64)-1;
1647
53f10659 1648 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1649 if (ret < 0)
1650 goto error;
1651
79787eaa 1652 BUG_ON(ret == 0); /* Corruption */
0b86a832 1653
53f10659
ID
1654 ret = btrfs_previous_item(fs_info->chunk_root, path,
1655 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1656 BTRFS_DEV_ITEM_KEY);
1657 if (ret) {
53f10659 1658 *devid_ret = 1;
0b86a832
CM
1659 } else {
1660 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1661 path->slots[0]);
53f10659 1662 *devid_ret = found_key.offset + 1;
0b86a832
CM
1663 }
1664 ret = 0;
1665error:
2b82032c 1666 btrfs_free_path(path);
0b86a832
CM
1667 return ret;
1668}
1669
1670/*
1671 * the device information is stored in the chunk root
1672 * the btrfs_device struct should be fully filled in
1673 */
48a3b636 1674static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1675 struct btrfs_fs_info *fs_info,
48a3b636 1676 struct btrfs_device *device)
0b86a832 1677{
5b4aacef 1678 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1679 int ret;
1680 struct btrfs_path *path;
1681 struct btrfs_dev_item *dev_item;
1682 struct extent_buffer *leaf;
1683 struct btrfs_key key;
1684 unsigned long ptr;
0b86a832 1685
0b86a832
CM
1686 path = btrfs_alloc_path();
1687 if (!path)
1688 return -ENOMEM;
1689
0b86a832
CM
1690 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1691 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1692 key.offset = device->devid;
0b86a832
CM
1693
1694 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1695 sizeof(*dev_item));
0b86a832
CM
1696 if (ret)
1697 goto out;
1698
1699 leaf = path->nodes[0];
1700 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1701
1702 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1703 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1704 btrfs_set_device_type(leaf, dev_item, device->type);
1705 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1706 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1707 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1708 btrfs_set_device_total_bytes(leaf, dev_item,
1709 btrfs_device_get_disk_total_bytes(device));
1710 btrfs_set_device_bytes_used(leaf, dev_item,
1711 btrfs_device_get_bytes_used(device));
e17cade2
CM
1712 btrfs_set_device_group(leaf, dev_item, 0);
1713 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1714 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1715 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1716
410ba3a2 1717 ptr = btrfs_device_uuid(dev_item);
e17cade2 1718 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1719 ptr = btrfs_device_fsid(dev_item);
0b246afa 1720 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1721 btrfs_mark_buffer_dirty(leaf);
0b86a832 1722
2b82032c 1723 ret = 0;
0b86a832
CM
1724out:
1725 btrfs_free_path(path);
1726 return ret;
1727}
8f18cf13 1728
5a1972bd
QW
1729/*
1730 * Function to update ctime/mtime for a given device path.
1731 * Mainly used for ctime/mtime based probe like libblkid.
1732 */
da353f6b 1733static void update_dev_time(const char *path_name)
5a1972bd
QW
1734{
1735 struct file *filp;
1736
1737 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1738 if (IS_ERR(filp))
5a1972bd
QW
1739 return;
1740 file_update_time(filp);
1741 filp_close(filp, NULL);
5a1972bd
QW
1742}
1743
5b4aacef 1744static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1745 struct btrfs_device *device)
1746{
5b4aacef 1747 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1748 int ret;
1749 struct btrfs_path *path;
a061fc8d 1750 struct btrfs_key key;
a061fc8d
CM
1751 struct btrfs_trans_handle *trans;
1752
a061fc8d
CM
1753 path = btrfs_alloc_path();
1754 if (!path)
1755 return -ENOMEM;
1756
a22285a6 1757 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1758 if (IS_ERR(trans)) {
1759 btrfs_free_path(path);
1760 return PTR_ERR(trans);
1761 }
a061fc8d
CM
1762 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1763 key.type = BTRFS_DEV_ITEM_KEY;
1764 key.offset = device->devid;
1765
1766 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1767 if (ret < 0)
1768 goto out;
1769
1770 if (ret > 0) {
1771 ret = -ENOENT;
1772 goto out;
1773 }
1774
1775 ret = btrfs_del_item(trans, root, path);
1776 if (ret)
1777 goto out;
a061fc8d
CM
1778out:
1779 btrfs_free_path(path);
3a45bb20 1780 btrfs_commit_transaction(trans);
a061fc8d
CM
1781 return ret;
1782}
1783
3cc31a0d
DS
1784/*
1785 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1786 * filesystem. It's up to the caller to adjust that number regarding eg. device
1787 * replace.
1788 */
1789static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1790 u64 num_devices)
a061fc8d 1791{
a061fc8d 1792 u64 all_avail;
de98ced9 1793 unsigned seq;
418775a2 1794 int i;
a061fc8d 1795
de98ced9 1796 do {
bd45ffbc 1797 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1798
bd45ffbc
AJ
1799 all_avail = fs_info->avail_data_alloc_bits |
1800 fs_info->avail_system_alloc_bits |
1801 fs_info->avail_metadata_alloc_bits;
1802 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1803
418775a2
DS
1804 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1805 if (!(all_avail & btrfs_raid_group[i]))
1806 continue;
a061fc8d 1807
418775a2
DS
1808 if (num_devices < btrfs_raid_array[i].devs_min) {
1809 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1810
418775a2
DS
1811 if (ret)
1812 return ret;
1813 }
53b381b3
DW
1814 }
1815
bd45ffbc 1816 return 0;
f1fa7f26
AJ
1817}
1818
88acff64
AJ
1819struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1820 struct btrfs_device *device)
a061fc8d 1821{
2b82032c 1822 struct btrfs_device *next_device;
88acff64
AJ
1823
1824 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1825 if (next_device != device &&
1826 !next_device->missing && next_device->bdev)
1827 return next_device;
1828 }
1829
1830 return NULL;
1831}
1832
1833/*
1834 * Helper function to check if the given device is part of s_bdev / latest_bdev
1835 * and replace it with the provided or the next active device, in the context
1836 * where this function called, there should be always be another device (or
1837 * this_dev) which is active.
1838 */
1839void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1840 struct btrfs_device *device, struct btrfs_device *this_dev)
1841{
1842 struct btrfs_device *next_device;
1843
1844 if (this_dev)
1845 next_device = this_dev;
1846 else
1847 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1848 device);
1849 ASSERT(next_device);
1850
1851 if (fs_info->sb->s_bdev &&
1852 (fs_info->sb->s_bdev == device->bdev))
1853 fs_info->sb->s_bdev = next_device->bdev;
1854
1855 if (fs_info->fs_devices->latest_bdev == device->bdev)
1856 fs_info->fs_devices->latest_bdev = next_device->bdev;
1857}
1858
da353f6b
DS
1859int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1860 u64 devid)
f1fa7f26
AJ
1861{
1862 struct btrfs_device *device;
1f78160c 1863 struct btrfs_fs_devices *cur_devices;
2b82032c 1864 u64 num_devices;
a061fc8d 1865 int ret = 0;
1f78160c 1866 bool clear_super = false;
a061fc8d 1867
a061fc8d
CM
1868 mutex_lock(&uuid_mutex);
1869
0b246afa
JM
1870 num_devices = fs_info->fs_devices->num_devices;
1871 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1872 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1873 WARN_ON(num_devices < 1);
1874 num_devices--;
1875 }
0b246afa 1876 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1877
0b246afa 1878 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1879 if (ret)
a061fc8d 1880 goto out;
a061fc8d 1881
2ff7e61e
JM
1882 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1883 &device);
24fc572f 1884 if (ret)
53b381b3 1885 goto out;
dfe25020 1886
63a212ab 1887 if (device->is_tgtdev_for_dev_replace) {
183860f6 1888 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1889 goto out;
63a212ab
SB
1890 }
1891
0b246afa 1892 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1893 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1894 goto out;
2b82032c
YZ
1895 }
1896
1897 if (device->writeable) {
34441361 1898 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1899 list_del_init(&device->dev_alloc_list);
c3929c36 1900 device->fs_devices->rw_devices--;
34441361 1901 mutex_unlock(&fs_info->chunk_mutex);
1f78160c 1902 clear_super = true;
dfe25020 1903 }
a061fc8d 1904
d7901554 1905 mutex_unlock(&uuid_mutex);
a061fc8d 1906 ret = btrfs_shrink_device(device, 0);
d7901554 1907 mutex_lock(&uuid_mutex);
a061fc8d 1908 if (ret)
9b3517e9 1909 goto error_undo;
a061fc8d 1910
63a212ab
SB
1911 /*
1912 * TODO: the superblock still includes this device in its num_devices
1913 * counter although write_all_supers() is not locked out. This
1914 * could give a filesystem state which requires a degraded mount.
1915 */
0b246afa 1916 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1917 if (ret)
9b3517e9 1918 goto error_undo;
a061fc8d 1919
2b82032c 1920 device->in_fs_metadata = 0;
0b246afa 1921 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1922
1923 /*
1924 * the device list mutex makes sure that we don't change
1925 * the device list while someone else is writing out all
d7306801
FDBM
1926 * the device supers. Whoever is writing all supers, should
1927 * lock the device list mutex before getting the number of
1928 * devices in the super block (super_copy). Conversely,
1929 * whoever updates the number of devices in the super block
1930 * (super_copy) should hold the device list mutex.
e5e9a520 1931 */
1f78160c
XG
1932
1933 cur_devices = device->fs_devices;
0b246afa 1934 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1935 list_del_rcu(&device->dev_list);
e5e9a520 1936
e4404d6e 1937 device->fs_devices->num_devices--;
02db0844 1938 device->fs_devices->total_devices--;
2b82032c 1939
cd02dca5 1940 if (device->missing)
3a7d55c8 1941 device->fs_devices->missing_devices--;
cd02dca5 1942
0b246afa 1943 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1944
0bfaa9c5 1945 if (device->bdev) {
e4404d6e 1946 device->fs_devices->open_devices--;
0bfaa9c5 1947 /* remove sysfs entry */
0b246afa 1948 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1949 }
99994cde 1950
0b246afa
JM
1951 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1952 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1953 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1954
cea67ab9
JM
1955 /*
1956 * at this point, the device is zero sized and detached from
1957 * the devices list. All that's left is to zero out the old
1958 * supers and free the device.
1959 */
1960 if (device->writeable)
1961 btrfs_scratch_superblocks(device->bdev, device->name->str);
1962
1963 btrfs_close_bdev(device);
1964 call_rcu(&device->rcu, free_device);
1965
1f78160c 1966 if (cur_devices->open_devices == 0) {
e4404d6e 1967 struct btrfs_fs_devices *fs_devices;
0b246afa 1968 fs_devices = fs_info->fs_devices;
e4404d6e 1969 while (fs_devices) {
8321cf25
RS
1970 if (fs_devices->seed == cur_devices) {
1971 fs_devices->seed = cur_devices->seed;
e4404d6e 1972 break;
8321cf25 1973 }
e4404d6e 1974 fs_devices = fs_devices->seed;
2b82032c 1975 }
1f78160c 1976 cur_devices->seed = NULL;
1f78160c 1977 __btrfs_close_devices(cur_devices);
1f78160c 1978 free_fs_devices(cur_devices);
2b82032c
YZ
1979 }
1980
0b246afa
JM
1981 fs_info->num_tolerated_disk_barrier_failures =
1982 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
5af3e8cc 1983
a061fc8d
CM
1984out:
1985 mutex_unlock(&uuid_mutex);
a061fc8d 1986 return ret;
24fc572f 1987
9b3517e9
ID
1988error_undo:
1989 if (device->writeable) {
34441361 1990 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 1991 list_add(&device->dev_alloc_list,
0b246afa 1992 &fs_info->fs_devices->alloc_list);
c3929c36 1993 device->fs_devices->rw_devices++;
34441361 1994 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 1995 }
24fc572f 1996 goto out;
a061fc8d
CM
1997}
1998
084b6e7c
QW
1999void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2000 struct btrfs_device *srcdev)
e93c89c1 2001{
d51908ce
AJ
2002 struct btrfs_fs_devices *fs_devices;
2003
e93c89c1 2004 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 2005
25e8e911
AJ
2006 /*
2007 * in case of fs with no seed, srcdev->fs_devices will point
2008 * to fs_devices of fs_info. However when the dev being replaced is
2009 * a seed dev it will point to the seed's local fs_devices. In short
2010 * srcdev will have its correct fs_devices in both the cases.
2011 */
2012 fs_devices = srcdev->fs_devices;
d51908ce 2013
e93c89c1
SB
2014 list_del_rcu(&srcdev->dev_list);
2015 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 2016 fs_devices->num_devices--;
82372bc8 2017 if (srcdev->missing)
d51908ce 2018 fs_devices->missing_devices--;
e93c89c1 2019
48b3b9d4 2020 if (srcdev->writeable)
82372bc8 2021 fs_devices->rw_devices--;
1357272f 2022
82372bc8 2023 if (srcdev->bdev)
d51908ce 2024 fs_devices->open_devices--;
084b6e7c
QW
2025}
2026
2027void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2028 struct btrfs_device *srcdev)
2029{
2030 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2031
48b3b9d4
AJ
2032 if (srcdev->writeable) {
2033 /* zero out the old super if it is writable */
2034 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2035 }
14238819
AJ
2036
2037 btrfs_close_bdev(srcdev);
2038
e93c89c1 2039 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2040
2041 /*
2042 * unless fs_devices is seed fs, num_devices shouldn't go
2043 * zero
2044 */
2045 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2046
2047 /* if this is no devs we rather delete the fs_devices */
2048 if (!fs_devices->num_devices) {
2049 struct btrfs_fs_devices *tmp_fs_devices;
2050
2051 tmp_fs_devices = fs_info->fs_devices;
2052 while (tmp_fs_devices) {
2053 if (tmp_fs_devices->seed == fs_devices) {
2054 tmp_fs_devices->seed = fs_devices->seed;
2055 break;
2056 }
2057 tmp_fs_devices = tmp_fs_devices->seed;
2058 }
2059 fs_devices->seed = NULL;
8bef8401
AJ
2060 __btrfs_close_devices(fs_devices);
2061 free_fs_devices(fs_devices);
94d5f0c2 2062 }
e93c89c1
SB
2063}
2064
2065void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2066 struct btrfs_device *tgtdev)
2067{
67a2c45e 2068 mutex_lock(&uuid_mutex);
e93c89c1
SB
2069 WARN_ON(!tgtdev);
2070 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2071
32576040 2072 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2073
779bf3fe 2074 if (tgtdev->bdev)
e93c89c1 2075 fs_info->fs_devices->open_devices--;
779bf3fe 2076
e93c89c1 2077 fs_info->fs_devices->num_devices--;
e93c89c1 2078
88acff64 2079 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2080
e93c89c1 2081 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2082
2083 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2084 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2085
2086 /*
2087 * The update_dev_time() with in btrfs_scratch_superblocks()
2088 * may lead to a call to btrfs_show_devname() which will try
2089 * to hold device_list_mutex. And here this device
2090 * is already out of device list, so we don't have to hold
2091 * the device_list_mutex lock.
2092 */
2093 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2094
2095 btrfs_close_bdev(tgtdev);
779bf3fe 2096 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2097}
2098
2ff7e61e 2099static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2100 const char *device_path,
48a3b636 2101 struct btrfs_device **device)
7ba15b7d
SB
2102{
2103 int ret = 0;
2104 struct btrfs_super_block *disk_super;
2105 u64 devid;
2106 u8 *dev_uuid;
2107 struct block_device *bdev;
2108 struct buffer_head *bh;
2109
2110 *device = NULL;
2111 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2112 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2113 if (ret)
2114 return ret;
2115 disk_super = (struct btrfs_super_block *)bh->b_data;
2116 devid = btrfs_stack_device_id(&disk_super->dev_item);
2117 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2118 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2119 brelse(bh);
2120 if (!*device)
2121 ret = -ENOENT;
2122 blkdev_put(bdev, FMODE_READ);
2123 return ret;
2124}
2125
2ff7e61e 2126int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2127 const char *device_path,
7ba15b7d
SB
2128 struct btrfs_device **device)
2129{
2130 *device = NULL;
2131 if (strcmp(device_path, "missing") == 0) {
2132 struct list_head *devices;
2133 struct btrfs_device *tmp;
2134
0b246afa 2135 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2136 /*
2137 * It is safe to read the devices since the volume_mutex
2138 * is held by the caller.
2139 */
2140 list_for_each_entry(tmp, devices, dev_list) {
2141 if (tmp->in_fs_metadata && !tmp->bdev) {
2142 *device = tmp;
2143 break;
2144 }
2145 }
2146
d74a6259
AJ
2147 if (!*device)
2148 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2149
2150 return 0;
2151 } else {
2ff7e61e 2152 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2153 }
2154}
2155
5c5c0df0
DS
2156/*
2157 * Lookup a device given by device id, or the path if the id is 0.
2158 */
2ff7e61e 2159int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2160 const char *devpath,
2161 struct btrfs_device **device)
24e0474b
AJ
2162{
2163 int ret;
2164
5c5c0df0 2165 if (devid) {
24e0474b 2166 ret = 0;
0b246afa 2167 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2168 if (!*device)
2169 ret = -ENOENT;
2170 } else {
5c5c0df0 2171 if (!devpath || !devpath[0])
b3d1b153
AJ
2172 return -EINVAL;
2173
2ff7e61e 2174 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2175 device);
2176 }
2177 return ret;
2178}
2179
2b82032c
YZ
2180/*
2181 * does all the dirty work required for changing file system's UUID.
2182 */
2ff7e61e 2183static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2184{
0b246afa 2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2186 struct btrfs_fs_devices *old_devices;
e4404d6e 2187 struct btrfs_fs_devices *seed_devices;
0b246afa 2188 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2189 struct btrfs_device *device;
2190 u64 super_flags;
2191
2192 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2193 if (!fs_devices->seeding)
2b82032c
YZ
2194 return -EINVAL;
2195
2208a378
ID
2196 seed_devices = __alloc_fs_devices();
2197 if (IS_ERR(seed_devices))
2198 return PTR_ERR(seed_devices);
2b82032c 2199
e4404d6e
YZ
2200 old_devices = clone_fs_devices(fs_devices);
2201 if (IS_ERR(old_devices)) {
2202 kfree(seed_devices);
2203 return PTR_ERR(old_devices);
2b82032c 2204 }
e4404d6e 2205
2b82032c
YZ
2206 list_add(&old_devices->list, &fs_uuids);
2207
e4404d6e
YZ
2208 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2209 seed_devices->opened = 1;
2210 INIT_LIST_HEAD(&seed_devices->devices);
2211 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2212 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2213
0b246afa 2214 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2215 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2216 synchronize_rcu);
2196d6e8
MX
2217 list_for_each_entry(device, &seed_devices->devices, dev_list)
2218 device->fs_devices = seed_devices;
c9513edb 2219
34441361 2220 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2221 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2222 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2223
2b82032c
YZ
2224 fs_devices->seeding = 0;
2225 fs_devices->num_devices = 0;
2226 fs_devices->open_devices = 0;
69611ac8 2227 fs_devices->missing_devices = 0;
69611ac8 2228 fs_devices->rotating = 0;
e4404d6e 2229 fs_devices->seed = seed_devices;
2b82032c
YZ
2230
2231 generate_random_uuid(fs_devices->fsid);
0b246afa 2232 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2233 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2234 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2235
2b82032c
YZ
2236 super_flags = btrfs_super_flags(disk_super) &
2237 ~BTRFS_SUPER_FLAG_SEEDING;
2238 btrfs_set_super_flags(disk_super, super_flags);
2239
2240 return 0;
2241}
2242
2243/*
01327610 2244 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2245 */
2246static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2247 struct btrfs_fs_info *fs_info)
2b82032c 2248{
5b4aacef 2249 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2250 struct btrfs_path *path;
2251 struct extent_buffer *leaf;
2252 struct btrfs_dev_item *dev_item;
2253 struct btrfs_device *device;
2254 struct btrfs_key key;
2255 u8 fs_uuid[BTRFS_UUID_SIZE];
2256 u8 dev_uuid[BTRFS_UUID_SIZE];
2257 u64 devid;
2258 int ret;
2259
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2b82032c
YZ
2264 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2265 key.offset = 0;
2266 key.type = BTRFS_DEV_ITEM_KEY;
2267
2268 while (1) {
2269 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2270 if (ret < 0)
2271 goto error;
2272
2273 leaf = path->nodes[0];
2274next_slot:
2275 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2276 ret = btrfs_next_leaf(root, path);
2277 if (ret > 0)
2278 break;
2279 if (ret < 0)
2280 goto error;
2281 leaf = path->nodes[0];
2282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2283 btrfs_release_path(path);
2b82032c
YZ
2284 continue;
2285 }
2286
2287 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2288 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2289 key.type != BTRFS_DEV_ITEM_KEY)
2290 break;
2291
2292 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2293 struct btrfs_dev_item);
2294 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2295 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2296 BTRFS_UUID_SIZE);
1473b24e 2297 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2298 BTRFS_UUID_SIZE);
0b246afa 2299 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2300 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2301
2302 if (device->fs_devices->seeding) {
2303 btrfs_set_device_generation(leaf, dev_item,
2304 device->generation);
2305 btrfs_mark_buffer_dirty(leaf);
2306 }
2307
2308 path->slots[0]++;
2309 goto next_slot;
2310 }
2311 ret = 0;
2312error:
2313 btrfs_free_path(path);
2314 return ret;
2315}
2316
da353f6b 2317int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2318{
5112febb 2319 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2320 struct request_queue *q;
788f20eb
CM
2321 struct btrfs_trans_handle *trans;
2322 struct btrfs_device *device;
2323 struct block_device *bdev;
788f20eb 2324 struct list_head *devices;
0b246afa 2325 struct super_block *sb = fs_info->sb;
606686ee 2326 struct rcu_string *name;
3c1dbdf5 2327 u64 tmp;
2b82032c 2328 int seeding_dev = 0;
788f20eb
CM
2329 int ret = 0;
2330
0b246afa 2331 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
f8c5d0b4 2332 return -EROFS;
788f20eb 2333
a5d16333 2334 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2335 fs_info->bdev_holder);
7f59203a
JB
2336 if (IS_ERR(bdev))
2337 return PTR_ERR(bdev);
a2135011 2338
0b246afa 2339 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2340 seeding_dev = 1;
2341 down_write(&sb->s_umount);
2342 mutex_lock(&uuid_mutex);
2343 }
2344
8c8bee1d 2345 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2346
0b246afa 2347 devices = &fs_info->fs_devices->devices;
d25628bd 2348
0b246afa 2349 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2350 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2351 if (device->bdev == bdev) {
2352 ret = -EEXIST;
d25628bd 2353 mutex_unlock(
0b246afa 2354 &fs_info->fs_devices->device_list_mutex);
2b82032c 2355 goto error;
788f20eb
CM
2356 }
2357 }
0b246afa 2358 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2359
0b246afa 2360 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2361 if (IS_ERR(device)) {
788f20eb 2362 /* we can safely leave the fs_devices entry around */
12bd2fc0 2363 ret = PTR_ERR(device);
2b82032c 2364 goto error;
788f20eb
CM
2365 }
2366
78f2c9e6 2367 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2368 if (!name) {
788f20eb 2369 kfree(device);
2b82032c
YZ
2370 ret = -ENOMEM;
2371 goto error;
788f20eb 2372 }
606686ee 2373 rcu_assign_pointer(device->name, name);
2b82032c 2374
a22285a6 2375 trans = btrfs_start_transaction(root, 0);
98d5dc13 2376 if (IS_ERR(trans)) {
606686ee 2377 rcu_string_free(device->name);
98d5dc13
TI
2378 kfree(device);
2379 ret = PTR_ERR(trans);
2380 goto error;
2381 }
2382
d5e2003c
JB
2383 q = bdev_get_queue(bdev);
2384 if (blk_queue_discard(q))
2385 device->can_discard = 1;
2b82032c 2386 device->writeable = 1;
2b82032c 2387 device->generation = trans->transid;
0b246afa
JM
2388 device->io_width = fs_info->sectorsize;
2389 device->io_align = fs_info->sectorsize;
2390 device->sector_size = fs_info->sectorsize;
788f20eb 2391 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2392 device->disk_total_bytes = device->total_bytes;
935e5cc9 2393 device->commit_total_bytes = device->total_bytes;
fb456252 2394 device->fs_info = fs_info;
788f20eb 2395 device->bdev = bdev;
dfe25020 2396 device->in_fs_metadata = 1;
63a212ab 2397 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2398 device->mode = FMODE_EXCL;
27087f37 2399 device->dev_stats_valid = 1;
2b82032c 2400 set_blocksize(device->bdev, 4096);
788f20eb 2401
2b82032c
YZ
2402 if (seeding_dev) {
2403 sb->s_flags &= ~MS_RDONLY;
2ff7e61e 2404 ret = btrfs_prepare_sprout(fs_info);
79787eaa 2405 BUG_ON(ret); /* -ENOMEM */
2b82032c 2406 }
788f20eb 2407
0b246afa 2408 device->fs_devices = fs_info->fs_devices;
e5e9a520 2409
0b246afa 2410 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2411 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2412 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2413 list_add(&device->dev_alloc_list,
0b246afa
JM
2414 &fs_info->fs_devices->alloc_list);
2415 fs_info->fs_devices->num_devices++;
2416 fs_info->fs_devices->open_devices++;
2417 fs_info->fs_devices->rw_devices++;
2418 fs_info->fs_devices->total_devices++;
2419 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2420
0b246afa
JM
2421 spin_lock(&fs_info->free_chunk_lock);
2422 fs_info->free_chunk_space += device->total_bytes;
2423 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 2424
c289811c 2425 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
0b246afa 2426 fs_info->fs_devices->rotating = 1;
c289811c 2427
0b246afa
JM
2428 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2429 btrfs_set_super_total_bytes(fs_info->super_copy,
3c1dbdf5 2430 tmp + device->total_bytes);
788f20eb 2431
0b246afa
JM
2432 tmp = btrfs_super_num_devices(fs_info->super_copy);
2433 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2434
2435 /* add sysfs device entry */
0b246afa 2436 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2437
2196d6e8
MX
2438 /*
2439 * we've got more storage, clear any full flags on the space
2440 * infos
2441 */
0b246afa 2442 btrfs_clear_space_info_full(fs_info);
2196d6e8 2443
34441361 2444 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2445 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2446
2b82032c 2447 if (seeding_dev) {
34441361 2448 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2449 ret = init_first_rw_device(trans, fs_info);
34441361 2450 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2451 if (ret) {
66642832 2452 btrfs_abort_transaction(trans, ret);
79787eaa 2453 goto error_trans;
005d6427 2454 }
2196d6e8
MX
2455 }
2456
0b246afa 2457 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2458 if (ret) {
66642832 2459 btrfs_abort_transaction(trans, ret);
2196d6e8
MX
2460 goto error_trans;
2461 }
2462
2463 if (seeding_dev) {
2464 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2465
0b246afa 2466 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2467 if (ret) {
66642832 2468 btrfs_abort_transaction(trans, ret);
79787eaa 2469 goto error_trans;
005d6427 2470 }
b2373f25
AJ
2471
2472 /* Sprouting would change fsid of the mounted root,
2473 * so rename the fsid on the sysfs
2474 */
2475 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2476 fs_info->fsid);
2477 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2478 btrfs_warn(fs_info,
2479 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2480 }
2481
0b246afa
JM
2482 fs_info->num_tolerated_disk_barrier_failures =
2483 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3a45bb20 2484 ret = btrfs_commit_transaction(trans);
a2135011 2485
2b82032c
YZ
2486 if (seeding_dev) {
2487 mutex_unlock(&uuid_mutex);
2488 up_write(&sb->s_umount);
788f20eb 2489
79787eaa
JM
2490 if (ret) /* transaction commit */
2491 return ret;
2492
2ff7e61e 2493 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2494 if (ret < 0)
0b246afa 2495 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2496 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2497 trans = btrfs_attach_transaction(root);
2498 if (IS_ERR(trans)) {
2499 if (PTR_ERR(trans) == -ENOENT)
2500 return 0;
2501 return PTR_ERR(trans);
2502 }
3a45bb20 2503 ret = btrfs_commit_transaction(trans);
2b82032c 2504 }
c9e9f97b 2505
5a1972bd
QW
2506 /* Update ctime/mtime for libblkid */
2507 update_dev_time(device_path);
2b82032c 2508 return ret;
79787eaa
JM
2509
2510error_trans:
3a45bb20 2511 btrfs_end_transaction(trans);
606686ee 2512 rcu_string_free(device->name);
0b246afa 2513 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2514 kfree(device);
2b82032c 2515error:
e525fd89 2516 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2517 if (seeding_dev) {
2518 mutex_unlock(&uuid_mutex);
2519 up_write(&sb->s_umount);
2520 }
c9e9f97b 2521 return ret;
788f20eb
CM
2522}
2523
2ff7e61e 2524int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2525 const char *device_path,
1c43366d 2526 struct btrfs_device *srcdev,
e93c89c1
SB
2527 struct btrfs_device **device_out)
2528{
2529 struct request_queue *q;
2530 struct btrfs_device *device;
2531 struct block_device *bdev;
e93c89c1
SB
2532 struct list_head *devices;
2533 struct rcu_string *name;
12bd2fc0 2534 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2535 int ret = 0;
2536
2537 *device_out = NULL;
1c43366d
MX
2538 if (fs_info->fs_devices->seeding) {
2539 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2540 return -EINVAL;
1c43366d 2541 }
e93c89c1
SB
2542
2543 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2544 fs_info->bdev_holder);
1c43366d
MX
2545 if (IS_ERR(bdev)) {
2546 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2547 return PTR_ERR(bdev);
1c43366d 2548 }
e93c89c1
SB
2549
2550 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2551
2552 devices = &fs_info->fs_devices->devices;
2553 list_for_each_entry(device, devices, dev_list) {
2554 if (device->bdev == bdev) {
5d163e0e
JM
2555 btrfs_err(fs_info,
2556 "target device is in the filesystem!");
e93c89c1
SB
2557 ret = -EEXIST;
2558 goto error;
2559 }
2560 }
2561
1c43366d 2562
7cc8e58d
MX
2563 if (i_size_read(bdev->bd_inode) <
2564 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2565 btrfs_err(fs_info,
2566 "target device is smaller than source device!");
1c43366d
MX
2567 ret = -EINVAL;
2568 goto error;
2569 }
2570
2571
12bd2fc0
ID
2572 device = btrfs_alloc_device(NULL, &devid, NULL);
2573 if (IS_ERR(device)) {
2574 ret = PTR_ERR(device);
e93c89c1
SB
2575 goto error;
2576 }
2577
2578 name = rcu_string_strdup(device_path, GFP_NOFS);
2579 if (!name) {
2580 kfree(device);
2581 ret = -ENOMEM;
2582 goto error;
2583 }
2584 rcu_assign_pointer(device->name, name);
2585
2586 q = bdev_get_queue(bdev);
2587 if (blk_queue_discard(q))
2588 device->can_discard = 1;
0b246afa 2589 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2590 device->writeable = 1;
e93c89c1 2591 device->generation = 0;
0b246afa
JM
2592 device->io_width = fs_info->sectorsize;
2593 device->io_align = fs_info->sectorsize;
2594 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2595 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2596 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2597 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2598 ASSERT(list_empty(&srcdev->resized_list));
2599 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2600 device->commit_bytes_used = device->bytes_used;
fb456252 2601 device->fs_info = fs_info;
e93c89c1
SB
2602 device->bdev = bdev;
2603 device->in_fs_metadata = 1;
2604 device->is_tgtdev_for_dev_replace = 1;
2605 device->mode = FMODE_EXCL;
27087f37 2606 device->dev_stats_valid = 1;
e93c89c1
SB
2607 set_blocksize(device->bdev, 4096);
2608 device->fs_devices = fs_info->fs_devices;
2609 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2610 fs_info->fs_devices->num_devices++;
2611 fs_info->fs_devices->open_devices++;
0b246afa 2612 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2613
2614 *device_out = device;
2615 return ret;
2616
2617error:
2618 blkdev_put(bdev, FMODE_EXCL);
2619 return ret;
2620}
2621
2622void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2623 struct btrfs_device *tgtdev)
2624{
da17066c
JM
2625 u32 sectorsize = fs_info->sectorsize;
2626
e93c89c1 2627 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2628 tgtdev->io_width = sectorsize;
2629 tgtdev->io_align = sectorsize;
2630 tgtdev->sector_size = sectorsize;
fb456252 2631 tgtdev->fs_info = fs_info;
e93c89c1
SB
2632 tgtdev->in_fs_metadata = 1;
2633}
2634
d397712b
CM
2635static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2636 struct btrfs_device *device)
0b86a832
CM
2637{
2638 int ret;
2639 struct btrfs_path *path;
0b246afa 2640 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2641 struct btrfs_dev_item *dev_item;
2642 struct extent_buffer *leaf;
2643 struct btrfs_key key;
2644
0b86a832
CM
2645 path = btrfs_alloc_path();
2646 if (!path)
2647 return -ENOMEM;
2648
2649 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2650 key.type = BTRFS_DEV_ITEM_KEY;
2651 key.offset = device->devid;
2652
2653 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2654 if (ret < 0)
2655 goto out;
2656
2657 if (ret > 0) {
2658 ret = -ENOENT;
2659 goto out;
2660 }
2661
2662 leaf = path->nodes[0];
2663 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2664
2665 btrfs_set_device_id(leaf, dev_item, device->devid);
2666 btrfs_set_device_type(leaf, dev_item, device->type);
2667 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2668 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2669 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2670 btrfs_set_device_total_bytes(leaf, dev_item,
2671 btrfs_device_get_disk_total_bytes(device));
2672 btrfs_set_device_bytes_used(leaf, dev_item,
2673 btrfs_device_get_bytes_used(device));
0b86a832
CM
2674 btrfs_mark_buffer_dirty(leaf);
2675
2676out:
2677 btrfs_free_path(path);
2678 return ret;
2679}
2680
2196d6e8 2681int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2682 struct btrfs_device *device, u64 new_size)
2683{
0b246afa
JM
2684 struct btrfs_fs_info *fs_info = device->fs_info;
2685 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2686 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2687 u64 old_total;
2688 u64 diff;
8f18cf13 2689
2b82032c
YZ
2690 if (!device->writeable)
2691 return -EACCES;
2196d6e8 2692
34441361 2693 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2694 old_total = btrfs_super_total_bytes(super_copy);
2695 diff = new_size - device->total_bytes;
2696
63a212ab 2697 if (new_size <= device->total_bytes ||
2196d6e8 2698 device->is_tgtdev_for_dev_replace) {
34441361 2699 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2700 return -EINVAL;
2196d6e8 2701 }
2b82032c 2702
0b246afa 2703 fs_devices = fs_info->fs_devices;
2b82032c 2704
8f18cf13 2705 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2706 device->fs_devices->total_rw_bytes += diff;
2707
7cc8e58d
MX
2708 btrfs_device_set_total_bytes(device, new_size);
2709 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2710 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2711 if (list_empty(&device->resized_list))
2712 list_add_tail(&device->resized_list,
2713 &fs_devices->resized_devices);
34441361 2714 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2715
8f18cf13
CM
2716 return btrfs_update_device(trans, device);
2717}
2718
2719static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2720 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
8f18cf13
CM
2721 u64 chunk_offset)
2722{
5b4aacef 2723 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2724 int ret;
2725 struct btrfs_path *path;
2726 struct btrfs_key key;
2727
8f18cf13
CM
2728 path = btrfs_alloc_path();
2729 if (!path)
2730 return -ENOMEM;
2731
2732 key.objectid = chunk_objectid;
2733 key.offset = chunk_offset;
2734 key.type = BTRFS_CHUNK_ITEM_KEY;
2735
2736 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2737 if (ret < 0)
2738 goto out;
2739 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2740 btrfs_handle_fs_error(fs_info, -ENOENT,
2741 "Failed lookup while freeing chunk.");
79787eaa
JM
2742 ret = -ENOENT;
2743 goto out;
2744 }
8f18cf13
CM
2745
2746 ret = btrfs_del_item(trans, root, path);
79787eaa 2747 if (ret < 0)
0b246afa
JM
2748 btrfs_handle_fs_error(fs_info, ret,
2749 "Failed to delete chunk item.");
79787eaa 2750out:
8f18cf13 2751 btrfs_free_path(path);
65a246c5 2752 return ret;
8f18cf13
CM
2753}
2754
6bccf3ab
JM
2755static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2756 u64 chunk_objectid, u64 chunk_offset)
8f18cf13 2757{
0b246afa 2758 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2759 struct btrfs_disk_key *disk_key;
2760 struct btrfs_chunk *chunk;
2761 u8 *ptr;
2762 int ret = 0;
2763 u32 num_stripes;
2764 u32 array_size;
2765 u32 len = 0;
2766 u32 cur;
2767 struct btrfs_key key;
2768
34441361 2769 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2770 array_size = btrfs_super_sys_array_size(super_copy);
2771
2772 ptr = super_copy->sys_chunk_array;
2773 cur = 0;
2774
2775 while (cur < array_size) {
2776 disk_key = (struct btrfs_disk_key *)ptr;
2777 btrfs_disk_key_to_cpu(&key, disk_key);
2778
2779 len = sizeof(*disk_key);
2780
2781 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782 chunk = (struct btrfs_chunk *)(ptr + len);
2783 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784 len += btrfs_chunk_item_size(num_stripes);
2785 } else {
2786 ret = -EIO;
2787 break;
2788 }
2789 if (key.objectid == chunk_objectid &&
2790 key.offset == chunk_offset) {
2791 memmove(ptr, ptr + len, array_size - (cur + len));
2792 array_size -= len;
2793 btrfs_set_super_sys_array_size(super_copy, array_size);
2794 } else {
2795 ptr += len;
2796 cur += len;
2797 }
2798 }
34441361 2799 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2800 return ret;
2801}
2802
592d92ee
LB
2803static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2804 u64 logical, u64 length)
2805{
2806 struct extent_map_tree *em_tree;
2807 struct extent_map *em;
2808
2809 em_tree = &fs_info->mapping_tree.map_tree;
2810 read_lock(&em_tree->lock);
2811 em = lookup_extent_mapping(em_tree, logical, length);
2812 read_unlock(&em_tree->lock);
2813
2814 if (!em) {
2815 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2816 logical, length);
2817 return ERR_PTR(-EINVAL);
2818 }
2819
2820 if (em->start > logical || em->start + em->len < logical) {
2821 btrfs_crit(fs_info,
2822 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2823 logical, length, em->start, em->start + em->len);
2824 free_extent_map(em);
2825 return ERR_PTR(-EINVAL);
2826 }
2827
2828 /* callers are responsible for dropping em's ref. */
2829 return em;
2830}
2831
47ab2a6c 2832int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2833 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2834{
8f18cf13
CM
2835 struct extent_map *em;
2836 struct map_lookup *map;
2196d6e8 2837 u64 dev_extent_len = 0;
47ab2a6c 2838 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2839 int i, ret = 0;
0b246afa 2840 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2841
592d92ee
LB
2842 em = get_chunk_map(fs_info, chunk_offset, 1);
2843 if (IS_ERR(em)) {
47ab2a6c
JB
2844 /*
2845 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2846 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2847 * do anything we still error out.
2848 */
2849 ASSERT(0);
592d92ee 2850 return PTR_ERR(em);
47ab2a6c 2851 }
95617d69 2852 map = em->map_lookup;
34441361 2853 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2854 check_system_chunk(trans, fs_info, map->type);
34441361 2855 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2856
57ba4cb8
FM
2857 /*
2858 * Take the device list mutex to prevent races with the final phase of
2859 * a device replace operation that replaces the device object associated
2860 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2861 */
2862 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2863 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2864 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2865 ret = btrfs_free_dev_extent(trans, device,
2866 map->stripes[i].physical,
2867 &dev_extent_len);
47ab2a6c 2868 if (ret) {
57ba4cb8 2869 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2870 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2871 goto out;
2872 }
a061fc8d 2873
2196d6e8 2874 if (device->bytes_used > 0) {
34441361 2875 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2876 btrfs_device_set_bytes_used(device,
2877 device->bytes_used - dev_extent_len);
0b246afa
JM
2878 spin_lock(&fs_info->free_chunk_lock);
2879 fs_info->free_chunk_space += dev_extent_len;
2880 spin_unlock(&fs_info->free_chunk_lock);
2881 btrfs_clear_space_info_full(fs_info);
34441361 2882 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2883 }
a061fc8d 2884
dfe25020
CM
2885 if (map->stripes[i].dev) {
2886 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2887 if (ret) {
57ba4cb8 2888 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2889 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2890 goto out;
2891 }
dfe25020 2892 }
8f18cf13 2893 }
57ba4cb8
FM
2894 mutex_unlock(&fs_devices->device_list_mutex);
2895
0b246afa 2896 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
47ab2a6c 2897 if (ret) {
66642832 2898 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2899 goto out;
2900 }
8f18cf13 2901
6bccf3ab 2902 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2903
8f18cf13 2904 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
6bccf3ab
JM
2905 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2906 chunk_offset);
47ab2a6c 2907 if (ret) {
66642832 2908 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2909 goto out;
2910 }
8f18cf13
CM
2911 }
2912
6bccf3ab 2913 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2914 if (ret) {
66642832 2915 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2916 goto out;
2917 }
2b82032c 2918
47ab2a6c 2919out:
2b82032c
YZ
2920 /* once for us */
2921 free_extent_map(em);
47ab2a6c
JB
2922 return ret;
2923}
2b82032c 2924
5b4aacef 2925static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2926{
5b4aacef 2927 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2928 struct btrfs_trans_handle *trans;
47ab2a6c 2929 int ret;
2b82032c 2930
67c5e7d4
FM
2931 /*
2932 * Prevent races with automatic removal of unused block groups.
2933 * After we relocate and before we remove the chunk with offset
2934 * chunk_offset, automatic removal of the block group can kick in,
2935 * resulting in a failure when calling btrfs_remove_chunk() below.
2936 *
2937 * Make sure to acquire this mutex before doing a tree search (dev
2938 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2939 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2940 * we release the path used to search the chunk/dev tree and before
2941 * the current task acquires this mutex and calls us.
2942 */
0b246afa 2943 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2944
0b246afa 2945 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2946 if (ret)
2947 return -ENOSPC;
2948
2949 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2950 btrfs_scrub_pause(fs_info);
0b246afa 2951 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2952 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2953 if (ret)
2954 return ret;
2955
19c4d2f9
CM
2956 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2957 chunk_offset);
2958 if (IS_ERR(trans)) {
2959 ret = PTR_ERR(trans);
2960 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2961 return ret;
2962 }
2963
47ab2a6c 2964 /*
19c4d2f9
CM
2965 * step two, delete the device extents and the
2966 * chunk tree entries
47ab2a6c 2967 */
5b4aacef 2968 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2969 btrfs_end_transaction(trans);
19c4d2f9 2970 return ret;
2b82032c
YZ
2971}
2972
2ff7e61e 2973static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2974{
0b246afa 2975 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2976 struct btrfs_path *path;
2977 struct extent_buffer *leaf;
2978 struct btrfs_chunk *chunk;
2979 struct btrfs_key key;
2980 struct btrfs_key found_key;
2b82032c 2981 u64 chunk_type;
ba1bf481
JB
2982 bool retried = false;
2983 int failed = 0;
2b82032c
YZ
2984 int ret;
2985
2986 path = btrfs_alloc_path();
2987 if (!path)
2988 return -ENOMEM;
2989
ba1bf481 2990again:
2b82032c
YZ
2991 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2992 key.offset = (u64)-1;
2993 key.type = BTRFS_CHUNK_ITEM_KEY;
2994
2995 while (1) {
0b246afa 2996 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2997 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2998 if (ret < 0) {
0b246afa 2999 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 3000 goto error;
67c5e7d4 3001 }
79787eaa 3002 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3003
3004 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3005 key.type);
67c5e7d4 3006 if (ret)
0b246afa 3007 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
3008 if (ret < 0)
3009 goto error;
3010 if (ret > 0)
3011 break;
1a40e23b 3012
2b82032c
YZ
3013 leaf = path->nodes[0];
3014 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3015
2b82032c
YZ
3016 chunk = btrfs_item_ptr(leaf, path->slots[0],
3017 struct btrfs_chunk);
3018 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3019 btrfs_release_path(path);
8f18cf13 3020
2b82032c 3021 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3022 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3023 if (ret == -ENOSPC)
3024 failed++;
14586651
HS
3025 else
3026 BUG_ON(ret);
2b82032c 3027 }
0b246afa 3028 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3029
2b82032c
YZ
3030 if (found_key.offset == 0)
3031 break;
3032 key.offset = found_key.offset - 1;
3033 }
3034 ret = 0;
ba1bf481
JB
3035 if (failed && !retried) {
3036 failed = 0;
3037 retried = true;
3038 goto again;
fae7f21c 3039 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3040 ret = -ENOSPC;
3041 }
2b82032c
YZ
3042error:
3043 btrfs_free_path(path);
3044 return ret;
8f18cf13
CM
3045}
3046
6bccf3ab 3047static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3048 struct btrfs_balance_control *bctl)
3049{
6bccf3ab 3050 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3051 struct btrfs_trans_handle *trans;
3052 struct btrfs_balance_item *item;
3053 struct btrfs_disk_balance_args disk_bargs;
3054 struct btrfs_path *path;
3055 struct extent_buffer *leaf;
3056 struct btrfs_key key;
3057 int ret, err;
3058
3059 path = btrfs_alloc_path();
3060 if (!path)
3061 return -ENOMEM;
3062
3063 trans = btrfs_start_transaction(root, 0);
3064 if (IS_ERR(trans)) {
3065 btrfs_free_path(path);
3066 return PTR_ERR(trans);
3067 }
3068
3069 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3070 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3071 key.offset = 0;
3072
3073 ret = btrfs_insert_empty_item(trans, root, path, &key,
3074 sizeof(*item));
3075 if (ret)
3076 goto out;
3077
3078 leaf = path->nodes[0];
3079 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3080
b159fa28 3081 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3082
3083 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3084 btrfs_set_balance_data(leaf, item, &disk_bargs);
3085 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3086 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3087 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3088 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3089
3090 btrfs_set_balance_flags(leaf, item, bctl->flags);
3091
3092 btrfs_mark_buffer_dirty(leaf);
3093out:
3094 btrfs_free_path(path);
3a45bb20 3095 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3096 if (err && !ret)
3097 ret = err;
3098 return ret;
3099}
3100
6bccf3ab 3101static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3102{
6bccf3ab 3103 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3104 struct btrfs_trans_handle *trans;
3105 struct btrfs_path *path;
3106 struct btrfs_key key;
3107 int ret, err;
3108
3109 path = btrfs_alloc_path();
3110 if (!path)
3111 return -ENOMEM;
3112
3113 trans = btrfs_start_transaction(root, 0);
3114 if (IS_ERR(trans)) {
3115 btrfs_free_path(path);
3116 return PTR_ERR(trans);
3117 }
3118
3119 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3120 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3121 key.offset = 0;
3122
3123 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3124 if (ret < 0)
3125 goto out;
3126 if (ret > 0) {
3127 ret = -ENOENT;
3128 goto out;
3129 }
3130
3131 ret = btrfs_del_item(trans, root, path);
3132out:
3133 btrfs_free_path(path);
3a45bb20 3134 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3135 if (err && !ret)
3136 ret = err;
3137 return ret;
3138}
3139
59641015
ID
3140/*
3141 * This is a heuristic used to reduce the number of chunks balanced on
3142 * resume after balance was interrupted.
3143 */
3144static void update_balance_args(struct btrfs_balance_control *bctl)
3145{
3146 /*
3147 * Turn on soft mode for chunk types that were being converted.
3148 */
3149 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3150 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3151 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3152 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3153 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3154 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3155
3156 /*
3157 * Turn on usage filter if is not already used. The idea is
3158 * that chunks that we have already balanced should be
3159 * reasonably full. Don't do it for chunks that are being
3160 * converted - that will keep us from relocating unconverted
3161 * (albeit full) chunks.
3162 */
3163 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3164 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3165 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3166 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3167 bctl->data.usage = 90;
3168 }
3169 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3170 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3171 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3172 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3173 bctl->sys.usage = 90;
3174 }
3175 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3176 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3177 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3178 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3179 bctl->meta.usage = 90;
3180 }
3181}
3182
c9e9f97b
ID
3183/*
3184 * Should be called with both balance and volume mutexes held to
3185 * serialize other volume operations (add_dev/rm_dev/resize) with
3186 * restriper. Same goes for unset_balance_control.
3187 */
3188static void set_balance_control(struct btrfs_balance_control *bctl)
3189{
3190 struct btrfs_fs_info *fs_info = bctl->fs_info;
3191
3192 BUG_ON(fs_info->balance_ctl);
3193
3194 spin_lock(&fs_info->balance_lock);
3195 fs_info->balance_ctl = bctl;
3196 spin_unlock(&fs_info->balance_lock);
3197}
3198
3199static void unset_balance_control(struct btrfs_fs_info *fs_info)
3200{
3201 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3202
3203 BUG_ON(!fs_info->balance_ctl);
3204
3205 spin_lock(&fs_info->balance_lock);
3206 fs_info->balance_ctl = NULL;
3207 spin_unlock(&fs_info->balance_lock);
3208
3209 kfree(bctl);
3210}
3211
ed25e9b2
ID
3212/*
3213 * Balance filters. Return 1 if chunk should be filtered out
3214 * (should not be balanced).
3215 */
899c81ea 3216static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3217 struct btrfs_balance_args *bargs)
3218{
899c81ea
ID
3219 chunk_type = chunk_to_extended(chunk_type) &
3220 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3221
899c81ea 3222 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3223 return 0;
3224
3225 return 1;
3226}
3227
dba72cb3 3228static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3229 struct btrfs_balance_args *bargs)
bc309467
DS
3230{
3231 struct btrfs_block_group_cache *cache;
3232 u64 chunk_used;
3233 u64 user_thresh_min;
3234 u64 user_thresh_max;
3235 int ret = 1;
3236
3237 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3238 chunk_used = btrfs_block_group_used(&cache->item);
3239
3240 if (bargs->usage_min == 0)
3241 user_thresh_min = 0;
3242 else
3243 user_thresh_min = div_factor_fine(cache->key.offset,
3244 bargs->usage_min);
3245
3246 if (bargs->usage_max == 0)
3247 user_thresh_max = 1;
3248 else if (bargs->usage_max > 100)
3249 user_thresh_max = cache->key.offset;
3250 else
3251 user_thresh_max = div_factor_fine(cache->key.offset,
3252 bargs->usage_max);
3253
3254 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3255 ret = 0;
3256
3257 btrfs_put_block_group(cache);
3258 return ret;
3259}
3260
dba72cb3 3261static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3262 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3263{
3264 struct btrfs_block_group_cache *cache;
3265 u64 chunk_used, user_thresh;
3266 int ret = 1;
3267
3268 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3269 chunk_used = btrfs_block_group_used(&cache->item);
3270
bc309467 3271 if (bargs->usage_min == 0)
3e39cea6 3272 user_thresh = 1;
a105bb88
ID
3273 else if (bargs->usage > 100)
3274 user_thresh = cache->key.offset;
3275 else
3276 user_thresh = div_factor_fine(cache->key.offset,
3277 bargs->usage);
3278
5ce5b3c0
ID
3279 if (chunk_used < user_thresh)
3280 ret = 0;
3281
3282 btrfs_put_block_group(cache);
3283 return ret;
3284}
3285
409d404b
ID
3286static int chunk_devid_filter(struct extent_buffer *leaf,
3287 struct btrfs_chunk *chunk,
3288 struct btrfs_balance_args *bargs)
3289{
3290 struct btrfs_stripe *stripe;
3291 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3292 int i;
3293
3294 for (i = 0; i < num_stripes; i++) {
3295 stripe = btrfs_stripe_nr(chunk, i);
3296 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3297 return 0;
3298 }
3299
3300 return 1;
3301}
3302
94e60d5a
ID
3303/* [pstart, pend) */
3304static int chunk_drange_filter(struct extent_buffer *leaf,
3305 struct btrfs_chunk *chunk,
3306 u64 chunk_offset,
3307 struct btrfs_balance_args *bargs)
3308{
3309 struct btrfs_stripe *stripe;
3310 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3311 u64 stripe_offset;
3312 u64 stripe_length;
3313 int factor;
3314 int i;
3315
3316 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3317 return 0;
3318
3319 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3320 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3321 factor = num_stripes / 2;
3322 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3323 factor = num_stripes - 1;
3324 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3325 factor = num_stripes - 2;
3326 } else {
3327 factor = num_stripes;
3328 }
94e60d5a
ID
3329
3330 for (i = 0; i < num_stripes; i++) {
3331 stripe = btrfs_stripe_nr(chunk, i);
3332 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3333 continue;
3334
3335 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3336 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3337 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3338
3339 if (stripe_offset < bargs->pend &&
3340 stripe_offset + stripe_length > bargs->pstart)
3341 return 0;
3342 }
3343
3344 return 1;
3345}
3346
ea67176a
ID
3347/* [vstart, vend) */
3348static int chunk_vrange_filter(struct extent_buffer *leaf,
3349 struct btrfs_chunk *chunk,
3350 u64 chunk_offset,
3351 struct btrfs_balance_args *bargs)
3352{
3353 if (chunk_offset < bargs->vend &&
3354 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3355 /* at least part of the chunk is inside this vrange */
3356 return 0;
3357
3358 return 1;
3359}
3360
dee32d0a
GAP
3361static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3362 struct btrfs_chunk *chunk,
3363 struct btrfs_balance_args *bargs)
3364{
3365 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3366
3367 if (bargs->stripes_min <= num_stripes
3368 && num_stripes <= bargs->stripes_max)
3369 return 0;
3370
3371 return 1;
3372}
3373
899c81ea 3374static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3375 struct btrfs_balance_args *bargs)
3376{
3377 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3378 return 0;
3379
899c81ea
ID
3380 chunk_type = chunk_to_extended(chunk_type) &
3381 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3382
899c81ea 3383 if (bargs->target == chunk_type)
cfa4c961
ID
3384 return 1;
3385
3386 return 0;
3387}
3388
2ff7e61e 3389static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3390 struct extent_buffer *leaf,
3391 struct btrfs_chunk *chunk, u64 chunk_offset)
3392{
0b246afa 3393 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3394 struct btrfs_balance_args *bargs = NULL;
3395 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3396
3397 /* type filter */
3398 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3399 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3400 return 0;
3401 }
3402
3403 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3404 bargs = &bctl->data;
3405 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3406 bargs = &bctl->sys;
3407 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3408 bargs = &bctl->meta;
3409
ed25e9b2
ID
3410 /* profiles filter */
3411 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3412 chunk_profiles_filter(chunk_type, bargs)) {
3413 return 0;
5ce5b3c0
ID
3414 }
3415
3416 /* usage filter */
3417 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3418 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3419 return 0;
bc309467 3420 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3421 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3422 return 0;
409d404b
ID
3423 }
3424
3425 /* devid filter */
3426 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3427 chunk_devid_filter(leaf, chunk, bargs)) {
3428 return 0;
94e60d5a
ID
3429 }
3430
3431 /* drange filter, makes sense only with devid filter */
3432 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3433 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3434 return 0;
ea67176a
ID
3435 }
3436
3437 /* vrange filter */
3438 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3439 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3440 return 0;
ed25e9b2
ID
3441 }
3442
dee32d0a
GAP
3443 /* stripes filter */
3444 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3445 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3446 return 0;
3447 }
3448
cfa4c961
ID
3449 /* soft profile changing mode */
3450 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3451 chunk_soft_convert_filter(chunk_type, bargs)) {
3452 return 0;
3453 }
3454
7d824b6f
DS
3455 /*
3456 * limited by count, must be the last filter
3457 */
3458 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3459 if (bargs->limit == 0)
3460 return 0;
3461 else
3462 bargs->limit--;
12907fc7
DS
3463 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3464 /*
3465 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3466 * determined here because we do not have the global information
12907fc7
DS
3467 * about the count of all chunks that satisfy the filters.
3468 */
3469 if (bargs->limit_max == 0)
3470 return 0;
3471 else
3472 bargs->limit_max--;
7d824b6f
DS
3473 }
3474
f43ffb60
ID
3475 return 1;
3476}
3477
c9e9f97b 3478static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3479{
19a39dce 3480 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3481 struct btrfs_root *chunk_root = fs_info->chunk_root;
3482 struct btrfs_root *dev_root = fs_info->dev_root;
3483 struct list_head *devices;
ec44a35c
CM
3484 struct btrfs_device *device;
3485 u64 old_size;
3486 u64 size_to_free;
12907fc7 3487 u64 chunk_type;
f43ffb60 3488 struct btrfs_chunk *chunk;
5a488b9d 3489 struct btrfs_path *path = NULL;
ec44a35c 3490 struct btrfs_key key;
ec44a35c 3491 struct btrfs_key found_key;
c9e9f97b 3492 struct btrfs_trans_handle *trans;
f43ffb60
ID
3493 struct extent_buffer *leaf;
3494 int slot;
c9e9f97b
ID
3495 int ret;
3496 int enospc_errors = 0;
19a39dce 3497 bool counting = true;
12907fc7 3498 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3499 u64 limit_data = bctl->data.limit;
3500 u64 limit_meta = bctl->meta.limit;
3501 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3502 u32 count_data = 0;
3503 u32 count_meta = 0;
3504 u32 count_sys = 0;
2c9fe835 3505 int chunk_reserved = 0;
cf25ce51 3506 u64 bytes_used = 0;
ec44a35c 3507
ec44a35c 3508 /* step one make some room on all the devices */
c9e9f97b 3509 devices = &fs_info->fs_devices->devices;
c6e30871 3510 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3511 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3512 size_to_free = div_factor(old_size, 1);
ee22184b 3513 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3514 if (!device->writeable ||
7cc8e58d
MX
3515 btrfs_device_get_total_bytes(device) -
3516 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3517 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3518 continue;
3519
3520 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3521 if (ret == -ENOSPC)
3522 break;
5a488b9d
LB
3523 if (ret) {
3524 /* btrfs_shrink_device never returns ret > 0 */
3525 WARN_ON(ret > 0);
3526 goto error;
3527 }
ec44a35c 3528
a22285a6 3529 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3530 if (IS_ERR(trans)) {
3531 ret = PTR_ERR(trans);
3532 btrfs_info_in_rcu(fs_info,
3533 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3534 rcu_str_deref(device->name), ret,
3535 old_size, old_size - size_to_free);
3536 goto error;
3537 }
ec44a35c
CM
3538
3539 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3540 if (ret) {
3a45bb20 3541 btrfs_end_transaction(trans);
5a488b9d
LB
3542 /* btrfs_grow_device never returns ret > 0 */
3543 WARN_ON(ret > 0);
3544 btrfs_info_in_rcu(fs_info,
3545 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3546 rcu_str_deref(device->name), ret,
3547 old_size, old_size - size_to_free);
3548 goto error;
3549 }
ec44a35c 3550
3a45bb20 3551 btrfs_end_transaction(trans);
ec44a35c
CM
3552 }
3553
3554 /* step two, relocate all the chunks */
3555 path = btrfs_alloc_path();
17e9f796
MF
3556 if (!path) {
3557 ret = -ENOMEM;
3558 goto error;
3559 }
19a39dce
ID
3560
3561 /* zero out stat counters */
3562 spin_lock(&fs_info->balance_lock);
3563 memset(&bctl->stat, 0, sizeof(bctl->stat));
3564 spin_unlock(&fs_info->balance_lock);
3565again:
7d824b6f 3566 if (!counting) {
12907fc7
DS
3567 /*
3568 * The single value limit and min/max limits use the same bytes
3569 * in the
3570 */
7d824b6f
DS
3571 bctl->data.limit = limit_data;
3572 bctl->meta.limit = limit_meta;
3573 bctl->sys.limit = limit_sys;
3574 }
ec44a35c
CM
3575 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3576 key.offset = (u64)-1;
3577 key.type = BTRFS_CHUNK_ITEM_KEY;
3578
d397712b 3579 while (1) {
19a39dce 3580 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3581 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3582 ret = -ECANCELED;
3583 goto error;
3584 }
3585
67c5e7d4 3586 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3587 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3588 if (ret < 0) {
3589 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3590 goto error;
67c5e7d4 3591 }
ec44a35c
CM
3592
3593 /*
3594 * this shouldn't happen, it means the last relocate
3595 * failed
3596 */
3597 if (ret == 0)
c9e9f97b 3598 BUG(); /* FIXME break ? */
ec44a35c
CM
3599
3600 ret = btrfs_previous_item(chunk_root, path, 0,
3601 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3602 if (ret) {
67c5e7d4 3603 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3604 ret = 0;
ec44a35c 3605 break;
c9e9f97b 3606 }
7d9eb12c 3607
f43ffb60
ID
3608 leaf = path->nodes[0];
3609 slot = path->slots[0];
3610 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3611
67c5e7d4
FM
3612 if (found_key.objectid != key.objectid) {
3613 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3614 break;
67c5e7d4 3615 }
7d9eb12c 3616
f43ffb60 3617 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3618 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3619
19a39dce
ID
3620 if (!counting) {
3621 spin_lock(&fs_info->balance_lock);
3622 bctl->stat.considered++;
3623 spin_unlock(&fs_info->balance_lock);
3624 }
3625
2ff7e61e 3626 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3627 found_key.offset);
2c9fe835 3628
b3b4aa74 3629 btrfs_release_path(path);
67c5e7d4
FM
3630 if (!ret) {
3631 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3632 goto loop;
67c5e7d4 3633 }
f43ffb60 3634
19a39dce 3635 if (counting) {
67c5e7d4 3636 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3637 spin_lock(&fs_info->balance_lock);
3638 bctl->stat.expected++;
3639 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3640
3641 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3642 count_data++;
3643 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3644 count_sys++;
3645 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3646 count_meta++;
3647
3648 goto loop;
3649 }
3650
3651 /*
3652 * Apply limit_min filter, no need to check if the LIMITS
3653 * filter is used, limit_min is 0 by default
3654 */
3655 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3656 count_data < bctl->data.limit_min)
3657 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3658 count_meta < bctl->meta.limit_min)
3659 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3660 count_sys < bctl->sys.limit_min)) {
3661 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3662 goto loop;
3663 }
3664
cf25ce51
LB
3665 ASSERT(fs_info->data_sinfo);
3666 spin_lock(&fs_info->data_sinfo->lock);
3667 bytes_used = fs_info->data_sinfo->bytes_used;
3668 spin_unlock(&fs_info->data_sinfo->lock);
3669
3670 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3671 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3672 trans = btrfs_start_transaction(chunk_root, 0);
3673 if (IS_ERR(trans)) {
3674 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3675 ret = PTR_ERR(trans);
3676 goto error;
3677 }
3678
2ff7e61e 3679 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3680 BTRFS_BLOCK_GROUP_DATA);
3a45bb20 3681 btrfs_end_transaction(trans);
2c9fe835
ZL
3682 if (ret < 0) {
3683 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3684 goto error;
3685 }
2c9fe835
ZL
3686 chunk_reserved = 1;
3687 }
3688
5b4aacef 3689 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3690 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3691 if (ret && ret != -ENOSPC)
3692 goto error;
19a39dce 3693 if (ret == -ENOSPC) {
c9e9f97b 3694 enospc_errors++;
19a39dce
ID
3695 } else {
3696 spin_lock(&fs_info->balance_lock);
3697 bctl->stat.completed++;
3698 spin_unlock(&fs_info->balance_lock);
3699 }
f43ffb60 3700loop:
795a3321
ID
3701 if (found_key.offset == 0)
3702 break;
ba1bf481 3703 key.offset = found_key.offset - 1;
ec44a35c 3704 }
c9e9f97b 3705
19a39dce
ID
3706 if (counting) {
3707 btrfs_release_path(path);
3708 counting = false;
3709 goto again;
3710 }
ec44a35c
CM
3711error:
3712 btrfs_free_path(path);
c9e9f97b 3713 if (enospc_errors) {
efe120a0 3714 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3715 enospc_errors);
c9e9f97b
ID
3716 if (!ret)
3717 ret = -ENOSPC;
3718 }
3719
ec44a35c
CM
3720 return ret;
3721}
3722
0c460c0d
ID
3723/**
3724 * alloc_profile_is_valid - see if a given profile is valid and reduced
3725 * @flags: profile to validate
3726 * @extended: if true @flags is treated as an extended profile
3727 */
3728static int alloc_profile_is_valid(u64 flags, int extended)
3729{
3730 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3731 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3732
3733 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3734
3735 /* 1) check that all other bits are zeroed */
3736 if (flags & ~mask)
3737 return 0;
3738
3739 /* 2) see if profile is reduced */
3740 if (flags == 0)
3741 return !extended; /* "0" is valid for usual profiles */
3742
3743 /* true if exactly one bit set */
3744 return (flags & (flags - 1)) == 0;
3745}
3746
837d5b6e
ID
3747static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3748{
a7e99c69
ID
3749 /* cancel requested || normal exit path */
3750 return atomic_read(&fs_info->balance_cancel_req) ||
3751 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3752 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3753}
3754
c9e9f97b
ID
3755static void __cancel_balance(struct btrfs_fs_info *fs_info)
3756{
0940ebf6
ID
3757 int ret;
3758
c9e9f97b 3759 unset_balance_control(fs_info);
6bccf3ab 3760 ret = del_balance_item(fs_info);
0f788c58 3761 if (ret)
34d97007 3762 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f
ID
3763
3764 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
c9e9f97b
ID
3765}
3766
bdcd3c97
AM
3767/* Non-zero return value signifies invalidity */
3768static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3769 u64 allowed)
3770{
3771 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3772 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3773 (bctl_arg->target & ~allowed)));
3774}
3775
c9e9f97b
ID
3776/*
3777 * Should be called with both balance and volume mutexes held
3778 */
3779int btrfs_balance(struct btrfs_balance_control *bctl,
3780 struct btrfs_ioctl_balance_args *bargs)
3781{
3782 struct btrfs_fs_info *fs_info = bctl->fs_info;
14506127 3783 u64 meta_target, data_target;
f43ffb60 3784 u64 allowed;
e4837f8f 3785 int mixed = 0;
c9e9f97b 3786 int ret;
8dabb742 3787 u64 num_devices;
de98ced9 3788 unsigned seq;
c9e9f97b 3789
837d5b6e 3790 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3791 atomic_read(&fs_info->balance_pause_req) ||
3792 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3793 ret = -EINVAL;
3794 goto out;
3795 }
3796
e4837f8f
ID
3797 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3798 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3799 mixed = 1;
3800
f43ffb60
ID
3801 /*
3802 * In case of mixed groups both data and meta should be picked,
3803 * and identical options should be given for both of them.
3804 */
e4837f8f
ID
3805 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3806 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3807 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3808 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3809 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3810 btrfs_err(fs_info,
3811 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3812 ret = -EINVAL;
3813 goto out;
3814 }
3815 }
3816
8dabb742 3817 num_devices = fs_info->fs_devices->num_devices;
73beece9 3818 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3819 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3820 BUG_ON(num_devices < 1);
3821 num_devices--;
3822 }
73beece9 3823 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3824 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3825 if (num_devices > 1)
e4d8ec0f 3826 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3827 if (num_devices > 2)
3828 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3829 if (num_devices > 3)
3830 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3831 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3832 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3833 btrfs_err(fs_info,
3834 "unable to start balance with target data profile %llu",
3835 bctl->data.target);
e4d8ec0f
ID
3836 ret = -EINVAL;
3837 goto out;
3838 }
bdcd3c97 3839 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3840 btrfs_err(fs_info,
5d163e0e
JM
3841 "unable to start balance with target metadata profile %llu",
3842 bctl->meta.target);
e4d8ec0f
ID
3843 ret = -EINVAL;
3844 goto out;
3845 }
bdcd3c97 3846 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3847 btrfs_err(fs_info,
5d163e0e
JM
3848 "unable to start balance with target system profile %llu",
3849 bctl->sys.target);
e4d8ec0f
ID
3850 ret = -EINVAL;
3851 goto out;
3852 }
3853
e4d8ec0f
ID
3854 /* allow to reduce meta or sys integrity only if force set */
3855 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3856 BTRFS_BLOCK_GROUP_RAID10 |
3857 BTRFS_BLOCK_GROUP_RAID5 |
3858 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3859 do {
3860 seq = read_seqbegin(&fs_info->profiles_lock);
3861
3862 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3863 (fs_info->avail_system_alloc_bits & allowed) &&
3864 !(bctl->sys.target & allowed)) ||
3865 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3866 (fs_info->avail_metadata_alloc_bits & allowed) &&
3867 !(bctl->meta.target & allowed))) {
3868 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3869 btrfs_info(fs_info,
3870 "force reducing metadata integrity");
de98ced9 3871 } else {
5d163e0e
JM
3872 btrfs_err(fs_info,
3873 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3874 ret = -EINVAL;
3875 goto out;
3876 }
e4d8ec0f 3877 }
de98ced9 3878 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3879
14506127
AB
3880 /* if we're not converting, the target field is uninitialized */
3881 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3882 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3883 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3884 bctl->data.target : fs_info->avail_data_alloc_bits;
3885 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3886 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3887 btrfs_warn(fs_info,
5d163e0e 3888 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
14506127 3889 meta_target, data_target);
ee592d07
ST
3890 }
3891
5af3e8cc 3892 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3893 fs_info->num_tolerated_disk_barrier_failures = min(
3894 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3895 btrfs_get_num_tolerated_disk_barrier_failures(
3896 bctl->sys.target));
5af3e8cc
SB
3897 }
3898
6bccf3ab 3899 ret = insert_balance_item(fs_info, bctl);
59641015 3900 if (ret && ret != -EEXIST)
0940ebf6
ID
3901 goto out;
3902
59641015
ID
3903 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3904 BUG_ON(ret == -EEXIST);
3905 set_balance_control(bctl);
3906 } else {
3907 BUG_ON(ret != -EEXIST);
3908 spin_lock(&fs_info->balance_lock);
3909 update_balance_args(bctl);
3910 spin_unlock(&fs_info->balance_lock);
3911 }
c9e9f97b 3912
837d5b6e 3913 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3914 mutex_unlock(&fs_info->balance_mutex);
3915
3916 ret = __btrfs_balance(fs_info);
3917
3918 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3919 atomic_dec(&fs_info->balance_running);
c9e9f97b 3920
bf023ecf
ID
3921 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3922 fs_info->num_tolerated_disk_barrier_failures =
3923 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3924 }
3925
c9e9f97b
ID
3926 if (bargs) {
3927 memset(bargs, 0, sizeof(*bargs));
19a39dce 3928 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3929 }
3930
3a01aa7a
ID
3931 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3932 balance_need_close(fs_info)) {
3933 __cancel_balance(fs_info);
3934 }
3935
837d5b6e 3936 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3937
3938 return ret;
3939out:
59641015
ID
3940 if (bctl->flags & BTRFS_BALANCE_RESUME)
3941 __cancel_balance(fs_info);
ed0fb78f 3942 else {
59641015 3943 kfree(bctl);
ed0fb78f
ID
3944 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3945 }
59641015
ID
3946 return ret;
3947}
3948
3949static int balance_kthread(void *data)
3950{
2b6ba629 3951 struct btrfs_fs_info *fs_info = data;
9555c6c1 3952 int ret = 0;
59641015
ID
3953
3954 mutex_lock(&fs_info->volume_mutex);
3955 mutex_lock(&fs_info->balance_mutex);
3956
2b6ba629 3957 if (fs_info->balance_ctl) {
efe120a0 3958 btrfs_info(fs_info, "continuing balance");
2b6ba629 3959 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3960 }
59641015
ID
3961
3962 mutex_unlock(&fs_info->balance_mutex);
3963 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3964
59641015
ID
3965 return ret;
3966}
3967
2b6ba629
ID
3968int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3969{
3970 struct task_struct *tsk;
3971
3972 spin_lock(&fs_info->balance_lock);
3973 if (!fs_info->balance_ctl) {
3974 spin_unlock(&fs_info->balance_lock);
3975 return 0;
3976 }
3977 spin_unlock(&fs_info->balance_lock);
3978
3cdde224 3979 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3980 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3981 return 0;
3982 }
3983
3984 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3985 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3986}
3987
68310a5e 3988int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3989{
59641015
ID
3990 struct btrfs_balance_control *bctl;
3991 struct btrfs_balance_item *item;
3992 struct btrfs_disk_balance_args disk_bargs;
3993 struct btrfs_path *path;
3994 struct extent_buffer *leaf;
3995 struct btrfs_key key;
3996 int ret;
3997
3998 path = btrfs_alloc_path();
3999 if (!path)
4000 return -ENOMEM;
4001
59641015 4002 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4003 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4004 key.offset = 0;
4005
68310a5e 4006 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4007 if (ret < 0)
68310a5e 4008 goto out;
59641015
ID
4009 if (ret > 0) { /* ret = -ENOENT; */
4010 ret = 0;
68310a5e
ID
4011 goto out;
4012 }
4013
4014 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4015 if (!bctl) {
4016 ret = -ENOMEM;
4017 goto out;
59641015
ID
4018 }
4019
4020 leaf = path->nodes[0];
4021 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4022
68310a5e
ID
4023 bctl->fs_info = fs_info;
4024 bctl->flags = btrfs_balance_flags(leaf, item);
4025 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4026
4027 btrfs_balance_data(leaf, item, &disk_bargs);
4028 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4029 btrfs_balance_meta(leaf, item, &disk_bargs);
4030 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4031 btrfs_balance_sys(leaf, item, &disk_bargs);
4032 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4033
ed0fb78f
ID
4034 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4035
68310a5e
ID
4036 mutex_lock(&fs_info->volume_mutex);
4037 mutex_lock(&fs_info->balance_mutex);
59641015 4038
68310a5e
ID
4039 set_balance_control(bctl);
4040
4041 mutex_unlock(&fs_info->balance_mutex);
4042 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4043out:
4044 btrfs_free_path(path);
ec44a35c
CM
4045 return ret;
4046}
4047
837d5b6e
ID
4048int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4049{
4050 int ret = 0;
4051
4052 mutex_lock(&fs_info->balance_mutex);
4053 if (!fs_info->balance_ctl) {
4054 mutex_unlock(&fs_info->balance_mutex);
4055 return -ENOTCONN;
4056 }
4057
4058 if (atomic_read(&fs_info->balance_running)) {
4059 atomic_inc(&fs_info->balance_pause_req);
4060 mutex_unlock(&fs_info->balance_mutex);
4061
4062 wait_event(fs_info->balance_wait_q,
4063 atomic_read(&fs_info->balance_running) == 0);
4064
4065 mutex_lock(&fs_info->balance_mutex);
4066 /* we are good with balance_ctl ripped off from under us */
4067 BUG_ON(atomic_read(&fs_info->balance_running));
4068 atomic_dec(&fs_info->balance_pause_req);
4069 } else {
4070 ret = -ENOTCONN;
4071 }
4072
4073 mutex_unlock(&fs_info->balance_mutex);
4074 return ret;
4075}
4076
a7e99c69
ID
4077int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4078{
e649e587
ID
4079 if (fs_info->sb->s_flags & MS_RDONLY)
4080 return -EROFS;
4081
a7e99c69
ID
4082 mutex_lock(&fs_info->balance_mutex);
4083 if (!fs_info->balance_ctl) {
4084 mutex_unlock(&fs_info->balance_mutex);
4085 return -ENOTCONN;
4086 }
4087
4088 atomic_inc(&fs_info->balance_cancel_req);
4089 /*
4090 * if we are running just wait and return, balance item is
4091 * deleted in btrfs_balance in this case
4092 */
4093 if (atomic_read(&fs_info->balance_running)) {
4094 mutex_unlock(&fs_info->balance_mutex);
4095 wait_event(fs_info->balance_wait_q,
4096 atomic_read(&fs_info->balance_running) == 0);
4097 mutex_lock(&fs_info->balance_mutex);
4098 } else {
4099 /* __cancel_balance needs volume_mutex */
4100 mutex_unlock(&fs_info->balance_mutex);
4101 mutex_lock(&fs_info->volume_mutex);
4102 mutex_lock(&fs_info->balance_mutex);
4103
4104 if (fs_info->balance_ctl)
4105 __cancel_balance(fs_info);
4106
4107 mutex_unlock(&fs_info->volume_mutex);
4108 }
4109
4110 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4111 atomic_dec(&fs_info->balance_cancel_req);
4112 mutex_unlock(&fs_info->balance_mutex);
4113 return 0;
4114}
4115
803b2f54
SB
4116static int btrfs_uuid_scan_kthread(void *data)
4117{
4118 struct btrfs_fs_info *fs_info = data;
4119 struct btrfs_root *root = fs_info->tree_root;
4120 struct btrfs_key key;
4121 struct btrfs_key max_key;
4122 struct btrfs_path *path = NULL;
4123 int ret = 0;
4124 struct extent_buffer *eb;
4125 int slot;
4126 struct btrfs_root_item root_item;
4127 u32 item_size;
f45388f3 4128 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4129
4130 path = btrfs_alloc_path();
4131 if (!path) {
4132 ret = -ENOMEM;
4133 goto out;
4134 }
4135
4136 key.objectid = 0;
4137 key.type = BTRFS_ROOT_ITEM_KEY;
4138 key.offset = 0;
4139
4140 max_key.objectid = (u64)-1;
4141 max_key.type = BTRFS_ROOT_ITEM_KEY;
4142 max_key.offset = (u64)-1;
4143
803b2f54 4144 while (1) {
6174d3cb 4145 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4146 if (ret) {
4147 if (ret > 0)
4148 ret = 0;
4149 break;
4150 }
4151
4152 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4153 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4154 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4155 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4156 goto skip;
4157
4158 eb = path->nodes[0];
4159 slot = path->slots[0];
4160 item_size = btrfs_item_size_nr(eb, slot);
4161 if (item_size < sizeof(root_item))
4162 goto skip;
4163
803b2f54
SB
4164 read_extent_buffer(eb, &root_item,
4165 btrfs_item_ptr_offset(eb, slot),
4166 (int)sizeof(root_item));
4167 if (btrfs_root_refs(&root_item) == 0)
4168 goto skip;
f45388f3
FDBM
4169
4170 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4171 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4172 if (trans)
4173 goto update_tree;
4174
4175 btrfs_release_path(path);
803b2f54
SB
4176 /*
4177 * 1 - subvol uuid item
4178 * 1 - received_subvol uuid item
4179 */
4180 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4181 if (IS_ERR(trans)) {
4182 ret = PTR_ERR(trans);
4183 break;
4184 }
f45388f3
FDBM
4185 continue;
4186 } else {
4187 goto skip;
4188 }
4189update_tree:
4190 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4191 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4192 root_item.uuid,
4193 BTRFS_UUID_KEY_SUBVOL,
4194 key.objectid);
4195 if (ret < 0) {
efe120a0 4196 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4197 ret);
803b2f54
SB
4198 break;
4199 }
4200 }
4201
4202 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4203 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4204 root_item.received_uuid,
4205 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4206 key.objectid);
4207 if (ret < 0) {
efe120a0 4208 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4209 ret);
803b2f54
SB
4210 break;
4211 }
4212 }
4213
f45388f3 4214skip:
803b2f54 4215 if (trans) {
3a45bb20 4216 ret = btrfs_end_transaction(trans);
f45388f3 4217 trans = NULL;
803b2f54
SB
4218 if (ret)
4219 break;
4220 }
4221
803b2f54
SB
4222 btrfs_release_path(path);
4223 if (key.offset < (u64)-1) {
4224 key.offset++;
4225 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4226 key.offset = 0;
4227 key.type = BTRFS_ROOT_ITEM_KEY;
4228 } else if (key.objectid < (u64)-1) {
4229 key.offset = 0;
4230 key.type = BTRFS_ROOT_ITEM_KEY;
4231 key.objectid++;
4232 } else {
4233 break;
4234 }
4235 cond_resched();
4236 }
4237
4238out:
4239 btrfs_free_path(path);
f45388f3 4240 if (trans && !IS_ERR(trans))
3a45bb20 4241 btrfs_end_transaction(trans);
803b2f54 4242 if (ret)
efe120a0 4243 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4244 else
afcdd129 4245 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4246 up(&fs_info->uuid_tree_rescan_sem);
4247 return 0;
4248}
4249
70f80175
SB
4250/*
4251 * Callback for btrfs_uuid_tree_iterate().
4252 * returns:
4253 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4254 * < 0 if an error occurred.
70f80175
SB
4255 * > 0 if the check failed, which means the caller shall remove the entry.
4256 */
4257static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4258 u8 *uuid, u8 type, u64 subid)
4259{
4260 struct btrfs_key key;
4261 int ret = 0;
4262 struct btrfs_root *subvol_root;
4263
4264 if (type != BTRFS_UUID_KEY_SUBVOL &&
4265 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4266 goto out;
4267
4268 key.objectid = subid;
4269 key.type = BTRFS_ROOT_ITEM_KEY;
4270 key.offset = (u64)-1;
4271 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4272 if (IS_ERR(subvol_root)) {
4273 ret = PTR_ERR(subvol_root);
4274 if (ret == -ENOENT)
4275 ret = 1;
4276 goto out;
4277 }
4278
4279 switch (type) {
4280 case BTRFS_UUID_KEY_SUBVOL:
4281 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4282 ret = 1;
4283 break;
4284 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4285 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4286 BTRFS_UUID_SIZE))
4287 ret = 1;
4288 break;
4289 }
4290
4291out:
4292 return ret;
4293}
4294
4295static int btrfs_uuid_rescan_kthread(void *data)
4296{
4297 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4298 int ret;
4299
4300 /*
4301 * 1st step is to iterate through the existing UUID tree and
4302 * to delete all entries that contain outdated data.
4303 * 2nd step is to add all missing entries to the UUID tree.
4304 */
4305 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4306 if (ret < 0) {
efe120a0 4307 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4308 up(&fs_info->uuid_tree_rescan_sem);
4309 return ret;
4310 }
4311 return btrfs_uuid_scan_kthread(data);
4312}
4313
f7a81ea4
SB
4314int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4315{
4316 struct btrfs_trans_handle *trans;
4317 struct btrfs_root *tree_root = fs_info->tree_root;
4318 struct btrfs_root *uuid_root;
803b2f54
SB
4319 struct task_struct *task;
4320 int ret;
f7a81ea4
SB
4321
4322 /*
4323 * 1 - root node
4324 * 1 - root item
4325 */
4326 trans = btrfs_start_transaction(tree_root, 2);
4327 if (IS_ERR(trans))
4328 return PTR_ERR(trans);
4329
4330 uuid_root = btrfs_create_tree(trans, fs_info,
4331 BTRFS_UUID_TREE_OBJECTID);
4332 if (IS_ERR(uuid_root)) {
6d13f549 4333 ret = PTR_ERR(uuid_root);
66642832 4334 btrfs_abort_transaction(trans, ret);
3a45bb20 4335 btrfs_end_transaction(trans);
6d13f549 4336 return ret;
f7a81ea4
SB
4337 }
4338
4339 fs_info->uuid_root = uuid_root;
4340
3a45bb20 4341 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4342 if (ret)
4343 return ret;
4344
4345 down(&fs_info->uuid_tree_rescan_sem);
4346 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4347 if (IS_ERR(task)) {
70f80175 4348 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4349 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4350 up(&fs_info->uuid_tree_rescan_sem);
4351 return PTR_ERR(task);
4352 }
4353
4354 return 0;
f7a81ea4 4355}
803b2f54 4356
70f80175
SB
4357int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4358{
4359 struct task_struct *task;
4360
4361 down(&fs_info->uuid_tree_rescan_sem);
4362 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4363 if (IS_ERR(task)) {
4364 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4365 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4366 up(&fs_info->uuid_tree_rescan_sem);
4367 return PTR_ERR(task);
4368 }
4369
4370 return 0;
4371}
4372
8f18cf13
CM
4373/*
4374 * shrinking a device means finding all of the device extents past
4375 * the new size, and then following the back refs to the chunks.
4376 * The chunk relocation code actually frees the device extent
4377 */
4378int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4379{
0b246afa
JM
4380 struct btrfs_fs_info *fs_info = device->fs_info;
4381 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4382 struct btrfs_trans_handle *trans;
8f18cf13
CM
4383 struct btrfs_dev_extent *dev_extent = NULL;
4384 struct btrfs_path *path;
4385 u64 length;
8f18cf13
CM
4386 u64 chunk_offset;
4387 int ret;
4388 int slot;
ba1bf481
JB
4389 int failed = 0;
4390 bool retried = false;
53e489bc 4391 bool checked_pending_chunks = false;
8f18cf13
CM
4392 struct extent_buffer *l;
4393 struct btrfs_key key;
0b246afa 4394 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4395 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4396 u64 old_size = btrfs_device_get_total_bytes(device);
4397 u64 diff = old_size - new_size;
8f18cf13 4398
63a212ab
SB
4399 if (device->is_tgtdev_for_dev_replace)
4400 return -EINVAL;
4401
8f18cf13
CM
4402 path = btrfs_alloc_path();
4403 if (!path)
4404 return -ENOMEM;
4405
e4058b54 4406 path->reada = READA_FORWARD;
8f18cf13 4407
34441361 4408 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4409
7cc8e58d 4410 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4411 if (device->writeable) {
2b82032c 4412 device->fs_devices->total_rw_bytes -= diff;
0b246afa
JM
4413 spin_lock(&fs_info->free_chunk_lock);
4414 fs_info->free_chunk_space -= diff;
4415 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 4416 }
34441361 4417 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4418
ba1bf481 4419again:
8f18cf13
CM
4420 key.objectid = device->devid;
4421 key.offset = (u64)-1;
4422 key.type = BTRFS_DEV_EXTENT_KEY;
4423
213e64da 4424 do {
0b246afa 4425 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4427 if (ret < 0) {
0b246afa 4428 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4429 goto done;
67c5e7d4 4430 }
8f18cf13
CM
4431
4432 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4433 if (ret)
0b246afa 4434 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4435 if (ret < 0)
4436 goto done;
4437 if (ret) {
4438 ret = 0;
b3b4aa74 4439 btrfs_release_path(path);
bf1fb512 4440 break;
8f18cf13
CM
4441 }
4442
4443 l = path->nodes[0];
4444 slot = path->slots[0];
4445 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4446
ba1bf481 4447 if (key.objectid != device->devid) {
0b246afa 4448 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4449 btrfs_release_path(path);
bf1fb512 4450 break;
ba1bf481 4451 }
8f18cf13
CM
4452
4453 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4454 length = btrfs_dev_extent_length(l, dev_extent);
4455
ba1bf481 4456 if (key.offset + length <= new_size) {
0b246afa 4457 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4458 btrfs_release_path(path);
d6397bae 4459 break;
ba1bf481 4460 }
8f18cf13 4461
8f18cf13 4462 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4463 btrfs_release_path(path);
8f18cf13 4464
0b246afa
JM
4465 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4466 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4467 if (ret && ret != -ENOSPC)
8f18cf13 4468 goto done;
ba1bf481
JB
4469 if (ret == -ENOSPC)
4470 failed++;
213e64da 4471 } while (key.offset-- > 0);
ba1bf481
JB
4472
4473 if (failed && !retried) {
4474 failed = 0;
4475 retried = true;
4476 goto again;
4477 } else if (failed && retried) {
4478 ret = -ENOSPC;
ba1bf481 4479 goto done;
8f18cf13
CM
4480 }
4481
d6397bae 4482 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4483 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4484 if (IS_ERR(trans)) {
4485 ret = PTR_ERR(trans);
4486 goto done;
4487 }
4488
34441361 4489 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4490
4491 /*
4492 * We checked in the above loop all device extents that were already in
4493 * the device tree. However before we have updated the device's
4494 * total_bytes to the new size, we might have had chunk allocations that
4495 * have not complete yet (new block groups attached to transaction
4496 * handles), and therefore their device extents were not yet in the
4497 * device tree and we missed them in the loop above. So if we have any
4498 * pending chunk using a device extent that overlaps the device range
4499 * that we can not use anymore, commit the current transaction and
4500 * repeat the search on the device tree - this way we guarantee we will
4501 * not have chunks using device extents that end beyond 'new_size'.
4502 */
4503 if (!checked_pending_chunks) {
4504 u64 start = new_size;
4505 u64 len = old_size - new_size;
4506
499f377f
JM
4507 if (contains_pending_extent(trans->transaction, device,
4508 &start, len)) {
34441361 4509 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4510 checked_pending_chunks = true;
4511 failed = 0;
4512 retried = false;
3a45bb20 4513 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4514 if (ret)
4515 goto done;
4516 goto again;
4517 }
4518 }
4519
7cc8e58d 4520 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4521 if (list_empty(&device->resized_list))
4522 list_add_tail(&device->resized_list,
0b246afa 4523 &fs_info->fs_devices->resized_devices);
d6397bae 4524
d6397bae
CB
4525 WARN_ON(diff > old_total);
4526 btrfs_set_super_total_bytes(super_copy, old_total - diff);
34441361 4527 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4528
4529 /* Now btrfs_update_device() will change the on-disk size. */
4530 ret = btrfs_update_device(trans, device);
3a45bb20 4531 btrfs_end_transaction(trans);
8f18cf13
CM
4532done:
4533 btrfs_free_path(path);
53e489bc 4534 if (ret) {
34441361 4535 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4536 btrfs_device_set_total_bytes(device, old_size);
4537 if (device->writeable)
4538 device->fs_devices->total_rw_bytes += diff;
0b246afa
JM
4539 spin_lock(&fs_info->free_chunk_lock);
4540 fs_info->free_chunk_space += diff;
4541 spin_unlock(&fs_info->free_chunk_lock);
34441361 4542 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4543 }
8f18cf13
CM
4544 return ret;
4545}
4546
2ff7e61e 4547static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4548 struct btrfs_key *key,
4549 struct btrfs_chunk *chunk, int item_size)
4550{
0b246afa 4551 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4552 struct btrfs_disk_key disk_key;
4553 u32 array_size;
4554 u8 *ptr;
4555
34441361 4556 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4557 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4558 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4559 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4560 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4561 return -EFBIG;
fe48a5c0 4562 }
0b86a832
CM
4563
4564 ptr = super_copy->sys_chunk_array + array_size;
4565 btrfs_cpu_key_to_disk(&disk_key, key);
4566 memcpy(ptr, &disk_key, sizeof(disk_key));
4567 ptr += sizeof(disk_key);
4568 memcpy(ptr, chunk, item_size);
4569 item_size += sizeof(disk_key);
4570 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4571 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4572
0b86a832
CM
4573 return 0;
4574}
4575
73c5de00
AJ
4576/*
4577 * sort the devices in descending order by max_avail, total_avail
4578 */
4579static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4580{
73c5de00
AJ
4581 const struct btrfs_device_info *di_a = a;
4582 const struct btrfs_device_info *di_b = b;
9b3f68b9 4583
73c5de00 4584 if (di_a->max_avail > di_b->max_avail)
b2117a39 4585 return -1;
73c5de00 4586 if (di_a->max_avail < di_b->max_avail)
b2117a39 4587 return 1;
73c5de00
AJ
4588 if (di_a->total_avail > di_b->total_avail)
4589 return -1;
4590 if (di_a->total_avail < di_b->total_avail)
4591 return 1;
4592 return 0;
b2117a39 4593}
0b86a832 4594
53b381b3
DW
4595static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4596{
4597 /* TODO allow them to set a preferred stripe size */
ee22184b 4598 return SZ_64K;
53b381b3
DW
4599}
4600
4601static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4602{
ffe2d203 4603 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4604 return;
4605
ceda0864 4606 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4607}
4608
da17066c 4609#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4610 - sizeof(struct btrfs_chunk)) \
4611 / sizeof(struct btrfs_stripe) + 1)
4612
4613#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4614 - 2 * sizeof(struct btrfs_disk_key) \
4615 - 2 * sizeof(struct btrfs_chunk)) \
4616 / sizeof(struct btrfs_stripe) + 1)
4617
73c5de00 4618static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4619 u64 start, u64 type)
b2117a39 4620{
2ff7e61e 4621 struct btrfs_fs_info *info = trans->fs_info;
73c5de00
AJ
4622 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4623 struct list_head *cur;
4624 struct map_lookup *map = NULL;
4625 struct extent_map_tree *em_tree;
4626 struct extent_map *em;
4627 struct btrfs_device_info *devices_info = NULL;
4628 u64 total_avail;
4629 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4630 int data_stripes; /* number of stripes that count for
4631 block group size */
73c5de00
AJ
4632 int sub_stripes; /* sub_stripes info for map */
4633 int dev_stripes; /* stripes per dev */
4634 int devs_max; /* max devs to use */
4635 int devs_min; /* min devs needed */
4636 int devs_increment; /* ndevs has to be a multiple of this */
4637 int ncopies; /* how many copies to data has */
4638 int ret;
4639 u64 max_stripe_size;
4640 u64 max_chunk_size;
4641 u64 stripe_size;
4642 u64 num_bytes;
53b381b3 4643 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4644 int ndevs;
4645 int i;
4646 int j;
31e50229 4647 int index;
593060d7 4648
0c460c0d 4649 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4650
73c5de00
AJ
4651 if (list_empty(&fs_devices->alloc_list))
4652 return -ENOSPC;
b2117a39 4653
31e50229 4654 index = __get_raid_index(type);
73c5de00 4655
31e50229
LB
4656 sub_stripes = btrfs_raid_array[index].sub_stripes;
4657 dev_stripes = btrfs_raid_array[index].dev_stripes;
4658 devs_max = btrfs_raid_array[index].devs_max;
4659 devs_min = btrfs_raid_array[index].devs_min;
4660 devs_increment = btrfs_raid_array[index].devs_increment;
4661 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4662
9b3f68b9 4663 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4664 max_stripe_size = SZ_1G;
73c5de00 4665 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4666 if (!devs_max)
4667 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4668 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4669 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4670 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4671 max_stripe_size = SZ_1G;
1100373f 4672 else
ee22184b 4673 max_stripe_size = SZ_256M;
73c5de00 4674 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4675 if (!devs_max)
4676 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4677 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4678 max_stripe_size = SZ_32M;
73c5de00 4679 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4680 if (!devs_max)
4681 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4682 } else {
351fd353 4683 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4684 type);
4685 BUG_ON(1);
9b3f68b9
CM
4686 }
4687
2b82032c
YZ
4688 /* we don't want a chunk larger than 10% of writeable space */
4689 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4690 max_chunk_size);
9b3f68b9 4691
31e818fe 4692 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4693 GFP_NOFS);
4694 if (!devices_info)
4695 return -ENOMEM;
0cad8a11 4696
73c5de00 4697 cur = fs_devices->alloc_list.next;
9b3f68b9 4698
9f680ce0 4699 /*
73c5de00
AJ
4700 * in the first pass through the devices list, we gather information
4701 * about the available holes on each device.
9f680ce0 4702 */
73c5de00
AJ
4703 ndevs = 0;
4704 while (cur != &fs_devices->alloc_list) {
4705 struct btrfs_device *device;
4706 u64 max_avail;
4707 u64 dev_offset;
b2117a39 4708
73c5de00 4709 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4710
73c5de00 4711 cur = cur->next;
b2117a39 4712
73c5de00 4713 if (!device->writeable) {
31b1a2bd 4714 WARN(1, KERN_ERR
efe120a0 4715 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4716 continue;
4717 }
b2117a39 4718
63a212ab
SB
4719 if (!device->in_fs_metadata ||
4720 device->is_tgtdev_for_dev_replace)
73c5de00 4721 continue;
b2117a39 4722
73c5de00
AJ
4723 if (device->total_bytes > device->bytes_used)
4724 total_avail = device->total_bytes - device->bytes_used;
4725 else
4726 total_avail = 0;
38c01b96 4727
4728 /* If there is no space on this device, skip it. */
4729 if (total_avail == 0)
4730 continue;
b2117a39 4731
6df9a95e 4732 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4733 max_stripe_size * dev_stripes,
4734 &dev_offset, &max_avail);
4735 if (ret && ret != -ENOSPC)
4736 goto error;
b2117a39 4737
73c5de00
AJ
4738 if (ret == 0)
4739 max_avail = max_stripe_size * dev_stripes;
b2117a39 4740
73c5de00
AJ
4741 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4742 continue;
b2117a39 4743
063d006f
ES
4744 if (ndevs == fs_devices->rw_devices) {
4745 WARN(1, "%s: found more than %llu devices\n",
4746 __func__, fs_devices->rw_devices);
4747 break;
4748 }
73c5de00
AJ
4749 devices_info[ndevs].dev_offset = dev_offset;
4750 devices_info[ndevs].max_avail = max_avail;
4751 devices_info[ndevs].total_avail = total_avail;
4752 devices_info[ndevs].dev = device;
4753 ++ndevs;
4754 }
b2117a39 4755
73c5de00
AJ
4756 /*
4757 * now sort the devices by hole size / available space
4758 */
4759 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4760 btrfs_cmp_device_info, NULL);
b2117a39 4761
73c5de00
AJ
4762 /* round down to number of usable stripes */
4763 ndevs -= ndevs % devs_increment;
b2117a39 4764
73c5de00
AJ
4765 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4766 ret = -ENOSPC;
4767 goto error;
b2117a39 4768 }
9f680ce0 4769
73c5de00
AJ
4770 if (devs_max && ndevs > devs_max)
4771 ndevs = devs_max;
4772 /*
4773 * the primary goal is to maximize the number of stripes, so use as many
4774 * devices as possible, even if the stripes are not maximum sized.
4775 */
4776 stripe_size = devices_info[ndevs-1].max_avail;
4777 num_stripes = ndevs * dev_stripes;
b2117a39 4778
53b381b3
DW
4779 /*
4780 * this will have to be fixed for RAID1 and RAID10 over
4781 * more drives
4782 */
4783 data_stripes = num_stripes / ncopies;
4784
53b381b3
DW
4785 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4786 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
da17066c 4787 info->stripesize);
53b381b3
DW
4788 data_stripes = num_stripes - 1;
4789 }
4790 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4791 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
da17066c 4792 info->stripesize);
53b381b3
DW
4793 data_stripes = num_stripes - 2;
4794 }
86db2578
CM
4795
4796 /*
4797 * Use the number of data stripes to figure out how big this chunk
4798 * is really going to be in terms of logical address space,
4799 * and compare that answer with the max chunk size
4800 */
4801 if (stripe_size * data_stripes > max_chunk_size) {
4802 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4803
4804 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4805
4806 /* bump the answer up to a 16MB boundary */
4807 stripe_size = (stripe_size + mask) & ~mask;
4808
4809 /* but don't go higher than the limits we found
4810 * while searching for free extents
4811 */
4812 if (stripe_size > devices_info[ndevs-1].max_avail)
4813 stripe_size = devices_info[ndevs-1].max_avail;
4814 }
4815
b8b93add 4816 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4817
4818 /* align to BTRFS_STRIPE_LEN */
b8b93add 4819 stripe_size = div_u64(stripe_size, raid_stripe_len);
53b381b3 4820 stripe_size *= raid_stripe_len;
b2117a39
MX
4821
4822 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4823 if (!map) {
4824 ret = -ENOMEM;
4825 goto error;
4826 }
4827 map->num_stripes = num_stripes;
9b3f68b9 4828
73c5de00
AJ
4829 for (i = 0; i < ndevs; ++i) {
4830 for (j = 0; j < dev_stripes; ++j) {
4831 int s = i * dev_stripes + j;
4832 map->stripes[s].dev = devices_info[i].dev;
4833 map->stripes[s].physical = devices_info[i].dev_offset +
4834 j * stripe_size;
6324fbf3 4835 }
6324fbf3 4836 }
da17066c 4837 map->sector_size = info->sectorsize;
53b381b3
DW
4838 map->stripe_len = raid_stripe_len;
4839 map->io_align = raid_stripe_len;
4840 map->io_width = raid_stripe_len;
2b82032c 4841 map->type = type;
2b82032c 4842 map->sub_stripes = sub_stripes;
0b86a832 4843
53b381b3 4844 num_bytes = stripe_size * data_stripes;
0b86a832 4845
6bccf3ab 4846 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4847
172ddd60 4848 em = alloc_extent_map();
2b82032c 4849 if (!em) {
298a8f9c 4850 kfree(map);
b2117a39
MX
4851 ret = -ENOMEM;
4852 goto error;
593060d7 4853 }
298a8f9c 4854 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4855 em->map_lookup = map;
2b82032c 4856 em->start = start;
73c5de00 4857 em->len = num_bytes;
2b82032c
YZ
4858 em->block_start = 0;
4859 em->block_len = em->len;
6df9a95e 4860 em->orig_block_len = stripe_size;
593060d7 4861
0b246afa 4862 em_tree = &info->mapping_tree.map_tree;
890871be 4863 write_lock(&em_tree->lock);
09a2a8f9 4864 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4865 if (!ret) {
4866 list_add_tail(&em->list, &trans->transaction->pending_chunks);
490b54d6 4867 refcount_inc(&em->refs);
6df9a95e 4868 }
890871be 4869 write_unlock(&em_tree->lock);
0f5d42b2
JB
4870 if (ret) {
4871 free_extent_map(em);
1dd4602f 4872 goto error;
0f5d42b2 4873 }
0b86a832 4874
2ff7e61e 4875 ret = btrfs_make_block_group(trans, info, 0, type,
04487488
JB
4876 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4877 start, num_bytes);
6df9a95e
JB
4878 if (ret)
4879 goto error_del_extent;
2b82032c 4880
7cc8e58d
MX
4881 for (i = 0; i < map->num_stripes; i++) {
4882 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4883 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4884 }
43530c46 4885
0b246afa
JM
4886 spin_lock(&info->free_chunk_lock);
4887 info->free_chunk_space -= (stripe_size * map->num_stripes);
4888 spin_unlock(&info->free_chunk_lock);
1c116187 4889
0f5d42b2 4890 free_extent_map(em);
0b246afa 4891 check_raid56_incompat_flag(info, type);
53b381b3 4892
b2117a39 4893 kfree(devices_info);
2b82032c 4894 return 0;
b2117a39 4895
6df9a95e 4896error_del_extent:
0f5d42b2
JB
4897 write_lock(&em_tree->lock);
4898 remove_extent_mapping(em_tree, em);
4899 write_unlock(&em_tree->lock);
4900
4901 /* One for our allocation */
4902 free_extent_map(em);
4903 /* One for the tree reference */
4904 free_extent_map(em);
495e64f4
FM
4905 /* One for the pending_chunks list reference */
4906 free_extent_map(em);
b2117a39 4907error:
b2117a39
MX
4908 kfree(devices_info);
4909 return ret;
2b82032c
YZ
4910}
4911
6df9a95e 4912int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4913 struct btrfs_fs_info *fs_info,
6df9a95e 4914 u64 chunk_offset, u64 chunk_size)
2b82032c 4915{
6bccf3ab
JM
4916 struct btrfs_root *extent_root = fs_info->extent_root;
4917 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4918 struct btrfs_key key;
2b82032c
YZ
4919 struct btrfs_device *device;
4920 struct btrfs_chunk *chunk;
4921 struct btrfs_stripe *stripe;
6df9a95e
JB
4922 struct extent_map *em;
4923 struct map_lookup *map;
4924 size_t item_size;
4925 u64 dev_offset;
4926 u64 stripe_size;
4927 int i = 0;
140e639f 4928 int ret = 0;
2b82032c 4929
592d92ee
LB
4930 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4931 if (IS_ERR(em))
4932 return PTR_ERR(em);
6df9a95e 4933
95617d69 4934 map = em->map_lookup;
6df9a95e
JB
4935 item_size = btrfs_chunk_item_size(map->num_stripes);
4936 stripe_size = em->orig_block_len;
4937
2b82032c 4938 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4939 if (!chunk) {
4940 ret = -ENOMEM;
4941 goto out;
4942 }
4943
50460e37
FM
4944 /*
4945 * Take the device list mutex to prevent races with the final phase of
4946 * a device replace operation that replaces the device object associated
4947 * with the map's stripes, because the device object's id can change
4948 * at any time during that final phase of the device replace operation
4949 * (dev-replace.c:btrfs_dev_replace_finishing()).
4950 */
0b246afa 4951 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4952 for (i = 0; i < map->num_stripes; i++) {
4953 device = map->stripes[i].dev;
4954 dev_offset = map->stripes[i].physical;
2b82032c 4955
0b86a832 4956 ret = btrfs_update_device(trans, device);
3acd3953 4957 if (ret)
50460e37 4958 break;
6df9a95e
JB
4959 ret = btrfs_alloc_dev_extent(trans, device,
4960 chunk_root->root_key.objectid,
4961 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4962 chunk_offset, dev_offset,
4963 stripe_size);
4964 if (ret)
50460e37
FM
4965 break;
4966 }
4967 if (ret) {
0b246afa 4968 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4969 goto out;
2b82032c
YZ
4970 }
4971
2b82032c 4972 stripe = &chunk->stripe;
6df9a95e
JB
4973 for (i = 0; i < map->num_stripes; i++) {
4974 device = map->stripes[i].dev;
4975 dev_offset = map->stripes[i].physical;
0b86a832 4976
e17cade2
CM
4977 btrfs_set_stack_stripe_devid(stripe, device->devid);
4978 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4979 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4980 stripe++;
0b86a832 4981 }
0b246afa 4982 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4983
2b82032c 4984 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4985 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4986 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4987 btrfs_set_stack_chunk_type(chunk, map->type);
4988 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4989 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4990 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4991 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4992 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4993
2b82032c
YZ
4994 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4995 key.type = BTRFS_CHUNK_ITEM_KEY;
4996 key.offset = chunk_offset;
0b86a832 4997
2b82032c 4998 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4999 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5000 /*
5001 * TODO: Cleanup of inserted chunk root in case of
5002 * failure.
5003 */
2ff7e61e 5004 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 5005 }
1abe9b8a 5006
6df9a95e 5007out:
0b86a832 5008 kfree(chunk);
6df9a95e 5009 free_extent_map(em);
4ed1d16e 5010 return ret;
2b82032c 5011}
0b86a832 5012
2b82032c
YZ
5013/*
5014 * Chunk allocation falls into two parts. The first part does works
5015 * that make the new allocated chunk useable, but not do any operation
5016 * that modifies the chunk tree. The second part does the works that
5017 * require modifying the chunk tree. This division is important for the
5018 * bootstrap process of adding storage to a seed btrfs.
5019 */
5020int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 5021 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
5022{
5023 u64 chunk_offset;
2b82032c 5024
0b246afa
JM
5025 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5026 chunk_offset = find_next_chunk(fs_info);
72b468c8 5027 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5028}
5029
d397712b 5030static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 5031 struct btrfs_fs_info *fs_info)
2b82032c 5032{
2ff7e61e 5033 struct btrfs_root *extent_root = fs_info->extent_root;
2b82032c
YZ
5034 u64 chunk_offset;
5035 u64 sys_chunk_offset;
2b82032c 5036 u64 alloc_profile;
2b82032c
YZ
5037 int ret;
5038
6df9a95e 5039 chunk_offset = find_next_chunk(fs_info);
de98ced9 5040 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
72b468c8 5041 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5042 if (ret)
5043 return ret;
2b82032c 5044
0b246afa 5045 sys_chunk_offset = find_next_chunk(fs_info);
de98ced9 5046 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
72b468c8 5047 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5048 return ret;
2b82032c
YZ
5049}
5050
d20983b4
MX
5051static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5052{
5053 int max_errors;
5054
5055 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5056 BTRFS_BLOCK_GROUP_RAID10 |
5057 BTRFS_BLOCK_GROUP_RAID5 |
5058 BTRFS_BLOCK_GROUP_DUP)) {
5059 max_errors = 1;
5060 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5061 max_errors = 2;
5062 } else {
5063 max_errors = 0;
005d6427 5064 }
2b82032c 5065
d20983b4 5066 return max_errors;
2b82032c
YZ
5067}
5068
2ff7e61e 5069int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5070{
5071 struct extent_map *em;
5072 struct map_lookup *map;
2b82032c 5073 int readonly = 0;
d20983b4 5074 int miss_ndevs = 0;
2b82032c
YZ
5075 int i;
5076
592d92ee
LB
5077 em = get_chunk_map(fs_info, chunk_offset, 1);
5078 if (IS_ERR(em))
2b82032c
YZ
5079 return 1;
5080
95617d69 5081 map = em->map_lookup;
2b82032c 5082 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5083 if (map->stripes[i].dev->missing) {
5084 miss_ndevs++;
5085 continue;
5086 }
5087
2b82032c
YZ
5088 if (!map->stripes[i].dev->writeable) {
5089 readonly = 1;
d20983b4 5090 goto end;
2b82032c
YZ
5091 }
5092 }
d20983b4
MX
5093
5094 /*
5095 * If the number of missing devices is larger than max errors,
5096 * we can not write the data into that chunk successfully, so
5097 * set it readonly.
5098 */
5099 if (miss_ndevs > btrfs_chunk_max_errors(map))
5100 readonly = 1;
5101end:
0b86a832 5102 free_extent_map(em);
2b82032c 5103 return readonly;
0b86a832
CM
5104}
5105
5106void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5107{
a8067e02 5108 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5109}
5110
5111void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5112{
5113 struct extent_map *em;
5114
d397712b 5115 while (1) {
890871be 5116 write_lock(&tree->map_tree.lock);
0b86a832
CM
5117 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5118 if (em)
5119 remove_extent_mapping(&tree->map_tree, em);
890871be 5120 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5121 if (!em)
5122 break;
0b86a832
CM
5123 /* once for us */
5124 free_extent_map(em);
5125 /* once for the tree */
5126 free_extent_map(em);
5127 }
5128}
5129
5d964051 5130int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5131{
5132 struct extent_map *em;
5133 struct map_lookup *map;
f188591e
CM
5134 int ret;
5135
592d92ee
LB
5136 em = get_chunk_map(fs_info, logical, len);
5137 if (IS_ERR(em))
5138 /*
5139 * We could return errors for these cases, but that could get
5140 * ugly and we'd probably do the same thing which is just not do
5141 * anything else and exit, so return 1 so the callers don't try
5142 * to use other copies.
5143 */
fb7669b5 5144 return 1;
fb7669b5 5145
95617d69 5146 map = em->map_lookup;
f188591e
CM
5147 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5148 ret = map->num_stripes;
321aecc6
CM
5149 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5150 ret = map->sub_stripes;
53b381b3
DW
5151 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5152 ret = 2;
5153 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5154 ret = 3;
f188591e
CM
5155 else
5156 ret = 1;
5157 free_extent_map(em);
ad6d620e 5158
73beece9 5159 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
6fad823f
LB
5160 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5161 fs_info->dev_replace.tgtdev)
ad6d620e 5162 ret++;
73beece9 5163 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5164
f188591e
CM
5165 return ret;
5166}
5167
2ff7e61e 5168unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5169 struct btrfs_mapping_tree *map_tree,
5170 u64 logical)
5171{
5172 struct extent_map *em;
5173 struct map_lookup *map;
0b246afa 5174 unsigned long len = fs_info->sectorsize;
53b381b3 5175
592d92ee 5176 em = get_chunk_map(fs_info, logical, len);
539b50d2 5177 WARN_ON(IS_ERR(em));
53b381b3 5178
95617d69 5179 map = em->map_lookup;
ffe2d203 5180 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5181 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5182 free_extent_map(em);
5183 return len;
5184}
5185
592d92ee 5186int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
53b381b3
DW
5187 u64 logical, u64 len, int mirror_num)
5188{
5189 struct extent_map *em;
5190 struct map_lookup *map;
53b381b3
DW
5191 int ret = 0;
5192
592d92ee 5193 em = get_chunk_map(fs_info, logical, len);
539b50d2 5194 WARN_ON(IS_ERR(em));
53b381b3 5195
95617d69 5196 map = em->map_lookup;
ffe2d203 5197 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5198 ret = 1;
5199 free_extent_map(em);
5200 return ret;
5201}
5202
30d9861f
SB
5203static int find_live_mirror(struct btrfs_fs_info *fs_info,
5204 struct map_lookup *map, int first, int num,
5205 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5206{
5207 int i;
30d9861f
SB
5208 int tolerance;
5209 struct btrfs_device *srcdev;
5210
5211 if (dev_replace_is_ongoing &&
5212 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5213 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5214 srcdev = fs_info->dev_replace.srcdev;
5215 else
5216 srcdev = NULL;
5217
5218 /*
5219 * try to avoid the drive that is the source drive for a
5220 * dev-replace procedure, only choose it if no other non-missing
5221 * mirror is available
5222 */
5223 for (tolerance = 0; tolerance < 2; tolerance++) {
5224 if (map->stripes[optimal].dev->bdev &&
5225 (tolerance || map->stripes[optimal].dev != srcdev))
5226 return optimal;
5227 for (i = first; i < first + num; i++) {
5228 if (map->stripes[i].dev->bdev &&
5229 (tolerance || map->stripes[i].dev != srcdev))
5230 return i;
5231 }
dfe25020 5232 }
30d9861f 5233
dfe25020
CM
5234 /* we couldn't find one that doesn't fail. Just return something
5235 * and the io error handling code will clean up eventually
5236 */
5237 return optimal;
5238}
5239
53b381b3
DW
5240static inline int parity_smaller(u64 a, u64 b)
5241{
5242 return a > b;
5243}
5244
5245/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5246static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5247{
5248 struct btrfs_bio_stripe s;
5249 int i;
5250 u64 l;
5251 int again = 1;
5252
5253 while (again) {
5254 again = 0;
cc7539ed 5255 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5256 if (parity_smaller(bbio->raid_map[i],
5257 bbio->raid_map[i+1])) {
53b381b3 5258 s = bbio->stripes[i];
8e5cfb55 5259 l = bbio->raid_map[i];
53b381b3 5260 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5261 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5262 bbio->stripes[i+1] = s;
8e5cfb55 5263 bbio->raid_map[i+1] = l;
2c8cdd6e 5264
53b381b3
DW
5265 again = 1;
5266 }
5267 }
5268 }
5269}
5270
6e9606d2
ZL
5271static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5272{
5273 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5274 /* the size of the btrfs_bio */
6e9606d2 5275 sizeof(struct btrfs_bio) +
e57cf21e 5276 /* plus the variable array for the stripes */
6e9606d2 5277 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5278 /* plus the variable array for the tgt dev */
6e9606d2 5279 sizeof(int) * (real_stripes) +
e57cf21e
CM
5280 /*
5281 * plus the raid_map, which includes both the tgt dev
5282 * and the stripes
5283 */
5284 sizeof(u64) * (total_stripes),
277fb5fc 5285 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5286
5287 atomic_set(&bbio->error, 0);
140475ae 5288 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5289
5290 return bbio;
5291}
5292
5293void btrfs_get_bbio(struct btrfs_bio *bbio)
5294{
140475ae
ER
5295 WARN_ON(!refcount_read(&bbio->refs));
5296 refcount_inc(&bbio->refs);
6e9606d2
ZL
5297}
5298
5299void btrfs_put_bbio(struct btrfs_bio *bbio)
5300{
5301 if (!bbio)
5302 return;
140475ae 5303 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5304 kfree(bbio);
5305}
5306
0b3d4cd3
LB
5307/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5308/*
5309 * Please note that, discard won't be sent to target device of device
5310 * replace.
5311 */
5312static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5313 u64 logical, u64 length,
5314 struct btrfs_bio **bbio_ret)
5315{
5316 struct extent_map *em;
5317 struct map_lookup *map;
5318 struct btrfs_bio *bbio;
5319 u64 offset;
5320 u64 stripe_nr;
5321 u64 stripe_nr_end;
5322 u64 stripe_end_offset;
5323 u64 stripe_cnt;
5324 u64 stripe_len;
5325 u64 stripe_offset;
5326 u64 num_stripes;
5327 u32 stripe_index;
5328 u32 factor = 0;
5329 u32 sub_stripes = 0;
5330 u64 stripes_per_dev = 0;
5331 u32 remaining_stripes = 0;
5332 u32 last_stripe = 0;
5333 int ret = 0;
5334 int i;
5335
5336 /* discard always return a bbio */
5337 ASSERT(bbio_ret);
5338
5339 em = get_chunk_map(fs_info, logical, length);
5340 if (IS_ERR(em))
5341 return PTR_ERR(em);
5342
5343 map = em->map_lookup;
5344 /* we don't discard raid56 yet */
5345 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5346 ret = -EOPNOTSUPP;
5347 goto out;
5348 }
5349
5350 offset = logical - em->start;
5351 length = min_t(u64, em->len - offset, length);
5352
5353 stripe_len = map->stripe_len;
5354 /*
5355 * stripe_nr counts the total number of stripes we have to stride
5356 * to get to this block
5357 */
5358 stripe_nr = div64_u64(offset, stripe_len);
5359
5360 /* stripe_offset is the offset of this block in its stripe */
5361 stripe_offset = offset - stripe_nr * stripe_len;
5362
5363 stripe_nr_end = round_up(offset + length, map->stripe_len);
5364 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5365 stripe_cnt = stripe_nr_end - stripe_nr;
5366 stripe_end_offset = stripe_nr_end * map->stripe_len -
5367 (offset + length);
5368 /*
5369 * after this, stripe_nr is the number of stripes on this
5370 * device we have to walk to find the data, and stripe_index is
5371 * the number of our device in the stripe array
5372 */
5373 num_stripes = 1;
5374 stripe_index = 0;
5375 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5376 BTRFS_BLOCK_GROUP_RAID10)) {
5377 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5378 sub_stripes = 1;
5379 else
5380 sub_stripes = map->sub_stripes;
5381
5382 factor = map->num_stripes / sub_stripes;
5383 num_stripes = min_t(u64, map->num_stripes,
5384 sub_stripes * stripe_cnt);
5385 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5386 stripe_index *= sub_stripes;
5387 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5388 &remaining_stripes);
5389 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5390 last_stripe *= sub_stripes;
5391 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5392 BTRFS_BLOCK_GROUP_DUP)) {
5393 num_stripes = map->num_stripes;
5394 } else {
5395 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5396 &stripe_index);
5397 }
5398
5399 bbio = alloc_btrfs_bio(num_stripes, 0);
5400 if (!bbio) {
5401 ret = -ENOMEM;
5402 goto out;
5403 }
5404
5405 for (i = 0; i < num_stripes; i++) {
5406 bbio->stripes[i].physical =
5407 map->stripes[stripe_index].physical +
5408 stripe_offset + stripe_nr * map->stripe_len;
5409 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5410
5411 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5412 BTRFS_BLOCK_GROUP_RAID10)) {
5413 bbio->stripes[i].length = stripes_per_dev *
5414 map->stripe_len;
5415
5416 if (i / sub_stripes < remaining_stripes)
5417 bbio->stripes[i].length +=
5418 map->stripe_len;
5419
5420 /*
5421 * Special for the first stripe and
5422 * the last stripe:
5423 *
5424 * |-------|...|-------|
5425 * |----------|
5426 * off end_off
5427 */
5428 if (i < sub_stripes)
5429 bbio->stripes[i].length -=
5430 stripe_offset;
5431
5432 if (stripe_index >= last_stripe &&
5433 stripe_index <= (last_stripe +
5434 sub_stripes - 1))
5435 bbio->stripes[i].length -=
5436 stripe_end_offset;
5437
5438 if (i == sub_stripes - 1)
5439 stripe_offset = 0;
5440 } else {
5441 bbio->stripes[i].length = length;
5442 }
5443
5444 stripe_index++;
5445 if (stripe_index == map->num_stripes) {
5446 stripe_index = 0;
5447 stripe_nr++;
5448 }
5449 }
5450
5451 *bbio_ret = bbio;
5452 bbio->map_type = map->type;
5453 bbio->num_stripes = num_stripes;
5454out:
5455 free_extent_map(em);
5456 return ret;
5457}
5458
5ab56090
LB
5459/*
5460 * In dev-replace case, for repair case (that's the only case where the mirror
5461 * is selected explicitly when calling btrfs_map_block), blocks left of the
5462 * left cursor can also be read from the target drive.
5463 *
5464 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5465 * array of stripes.
5466 * For READ, it also needs to be supported using the same mirror number.
5467 *
5468 * If the requested block is not left of the left cursor, EIO is returned. This
5469 * can happen because btrfs_num_copies() returns one more in the dev-replace
5470 * case.
5471 */
5472static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5473 u64 logical, u64 length,
5474 u64 srcdev_devid, int *mirror_num,
5475 u64 *physical)
5476{
5477 struct btrfs_bio *bbio = NULL;
5478 int num_stripes;
5479 int index_srcdev = 0;
5480 int found = 0;
5481 u64 physical_of_found = 0;
5482 int i;
5483 int ret = 0;
5484
5485 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5486 logical, &length, &bbio, 0, 0);
5487 if (ret) {
5488 ASSERT(bbio == NULL);
5489 return ret;
5490 }
5491
5492 num_stripes = bbio->num_stripes;
5493 if (*mirror_num > num_stripes) {
5494 /*
5495 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5496 * that means that the requested area is not left of the left
5497 * cursor
5498 */
5499 btrfs_put_bbio(bbio);
5500 return -EIO;
5501 }
5502
5503 /*
5504 * process the rest of the function using the mirror_num of the source
5505 * drive. Therefore look it up first. At the end, patch the device
5506 * pointer to the one of the target drive.
5507 */
5508 for (i = 0; i < num_stripes; i++) {
5509 if (bbio->stripes[i].dev->devid != srcdev_devid)
5510 continue;
5511
5512 /*
5513 * In case of DUP, in order to keep it simple, only add the
5514 * mirror with the lowest physical address
5515 */
5516 if (found &&
5517 physical_of_found <= bbio->stripes[i].physical)
5518 continue;
5519
5520 index_srcdev = i;
5521 found = 1;
5522 physical_of_found = bbio->stripes[i].physical;
5523 }
5524
5525 btrfs_put_bbio(bbio);
5526
5527 ASSERT(found);
5528 if (!found)
5529 return -EIO;
5530
5531 *mirror_num = index_srcdev + 1;
5532 *physical = physical_of_found;
5533 return ret;
5534}
5535
73c0f228
LB
5536static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5537 struct btrfs_bio **bbio_ret,
5538 struct btrfs_dev_replace *dev_replace,
5539 int *num_stripes_ret, int *max_errors_ret)
5540{
5541 struct btrfs_bio *bbio = *bbio_ret;
5542 u64 srcdev_devid = dev_replace->srcdev->devid;
5543 int tgtdev_indexes = 0;
5544 int num_stripes = *num_stripes_ret;
5545 int max_errors = *max_errors_ret;
5546 int i;
5547
5548 if (op == BTRFS_MAP_WRITE) {
5549 int index_where_to_add;
5550
5551 /*
5552 * duplicate the write operations while the dev replace
5553 * procedure is running. Since the copying of the old disk to
5554 * the new disk takes place at run time while the filesystem is
5555 * mounted writable, the regular write operations to the old
5556 * disk have to be duplicated to go to the new disk as well.
5557 *
5558 * Note that device->missing is handled by the caller, and that
5559 * the write to the old disk is already set up in the stripes
5560 * array.
5561 */
5562 index_where_to_add = num_stripes;
5563 for (i = 0; i < num_stripes; i++) {
5564 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5565 /* write to new disk, too */
5566 struct btrfs_bio_stripe *new =
5567 bbio->stripes + index_where_to_add;
5568 struct btrfs_bio_stripe *old =
5569 bbio->stripes + i;
5570
5571 new->physical = old->physical;
5572 new->length = old->length;
5573 new->dev = dev_replace->tgtdev;
5574 bbio->tgtdev_map[i] = index_where_to_add;
5575 index_where_to_add++;
5576 max_errors++;
5577 tgtdev_indexes++;
5578 }
5579 }
5580 num_stripes = index_where_to_add;
5581 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5582 int index_srcdev = 0;
5583 int found = 0;
5584 u64 physical_of_found = 0;
5585
5586 /*
5587 * During the dev-replace procedure, the target drive can also
5588 * be used to read data in case it is needed to repair a corrupt
5589 * block elsewhere. This is possible if the requested area is
5590 * left of the left cursor. In this area, the target drive is a
5591 * full copy of the source drive.
5592 */
5593 for (i = 0; i < num_stripes; i++) {
5594 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5595 /*
5596 * In case of DUP, in order to keep it simple,
5597 * only add the mirror with the lowest physical
5598 * address
5599 */
5600 if (found &&
5601 physical_of_found <=
5602 bbio->stripes[i].physical)
5603 continue;
5604 index_srcdev = i;
5605 found = 1;
5606 physical_of_found = bbio->stripes[i].physical;
5607 }
5608 }
5609 if (found) {
5610 struct btrfs_bio_stripe *tgtdev_stripe =
5611 bbio->stripes + num_stripes;
5612
5613 tgtdev_stripe->physical = physical_of_found;
5614 tgtdev_stripe->length =
5615 bbio->stripes[index_srcdev].length;
5616 tgtdev_stripe->dev = dev_replace->tgtdev;
5617 bbio->tgtdev_map[index_srcdev] = num_stripes;
5618
5619 tgtdev_indexes++;
5620 num_stripes++;
5621 }
5622 }
5623
5624 *num_stripes_ret = num_stripes;
5625 *max_errors_ret = max_errors;
5626 bbio->num_tgtdevs = tgtdev_indexes;
5627 *bbio_ret = bbio;
5628}
5629
2b19a1fe
LB
5630static bool need_full_stripe(enum btrfs_map_op op)
5631{
5632 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5633}
5634
cf8cddd3
CH
5635static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5636 enum btrfs_map_op op,
f2d8d74d 5637 u64 logical, u64 *length,
a1d3c478 5638 struct btrfs_bio **bbio_ret,
8e5cfb55 5639 int mirror_num, int need_raid_map)
0b86a832
CM
5640{
5641 struct extent_map *em;
5642 struct map_lookup *map;
0b86a832 5643 u64 offset;
593060d7
CM
5644 u64 stripe_offset;
5645 u64 stripe_nr;
53b381b3 5646 u64 stripe_len;
9d644a62 5647 u32 stripe_index;
cea9e445 5648 int i;
de11cc12 5649 int ret = 0;
f2d8d74d 5650 int num_stripes;
a236aed1 5651 int max_errors = 0;
2c8cdd6e 5652 int tgtdev_indexes = 0;
a1d3c478 5653 struct btrfs_bio *bbio = NULL;
472262f3
SB
5654 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5655 int dev_replace_is_ongoing = 0;
5656 int num_alloc_stripes;
ad6d620e
SB
5657 int patch_the_first_stripe_for_dev_replace = 0;
5658 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5659 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5660
0b3d4cd3
LB
5661 if (op == BTRFS_MAP_DISCARD)
5662 return __btrfs_map_block_for_discard(fs_info, logical,
5663 *length, bbio_ret);
5664
592d92ee
LB
5665 em = get_chunk_map(fs_info, logical, *length);
5666 if (IS_ERR(em))
5667 return PTR_ERR(em);
0b86a832 5668
95617d69 5669 map = em->map_lookup;
0b86a832 5670 offset = logical - em->start;
593060d7 5671
53b381b3 5672 stripe_len = map->stripe_len;
593060d7
CM
5673 stripe_nr = offset;
5674 /*
5675 * stripe_nr counts the total number of stripes we have to stride
5676 * to get to this block
5677 */
47c5713f 5678 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5679
53b381b3 5680 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5681 if (offset < stripe_offset) {
5d163e0e
JM
5682 btrfs_crit(fs_info,
5683 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5684 stripe_offset, offset, em->start, logical,
5685 stripe_len);
5686 free_extent_map(em);
5687 return -EINVAL;
5688 }
593060d7
CM
5689
5690 /* stripe_offset is the offset of this block in its stripe*/
5691 stripe_offset = offset - stripe_offset;
5692
53b381b3 5693 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5694 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5695 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5696 raid56_full_stripe_start = offset;
5697
5698 /* allow a write of a full stripe, but make sure we don't
5699 * allow straddling of stripes
5700 */
47c5713f
DS
5701 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5702 full_stripe_len);
53b381b3
DW
5703 raid56_full_stripe_start *= full_stripe_len;
5704 }
5705
0b3d4cd3 5706 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5707 u64 max_len;
5708 /* For writes to RAID[56], allow a full stripeset across all disks.
5709 For other RAID types and for RAID[56] reads, just allow a single
5710 stripe (on a single disk). */
ffe2d203 5711 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5712 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5713 max_len = stripe_len * nr_data_stripes(map) -
5714 (offset - raid56_full_stripe_start);
5715 } else {
5716 /* we limit the length of each bio to what fits in a stripe */
5717 max_len = stripe_len - stripe_offset;
5718 }
5719 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5720 } else {
5721 *length = em->len - offset;
5722 }
f2d8d74d 5723
53b381b3
DW
5724 /* This is for when we're called from btrfs_merge_bio_hook() and all
5725 it cares about is the length */
a1d3c478 5726 if (!bbio_ret)
cea9e445
CM
5727 goto out;
5728
73beece9 5729 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5730 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5731 if (!dev_replace_is_ongoing)
73beece9
LB
5732 btrfs_dev_replace_unlock(dev_replace, 0);
5733 else
5734 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5735
ad6d620e 5736 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5737 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5738 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5739 dev_replace->srcdev->devid,
5740 &mirror_num,
5741 &physical_to_patch_in_first_stripe);
5742 if (ret)
ad6d620e 5743 goto out;
5ab56090
LB
5744 else
5745 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5746 } else if (mirror_num > map->num_stripes) {
5747 mirror_num = 0;
5748 }
5749
f2d8d74d 5750 num_stripes = 1;
cea9e445 5751 stripe_index = 0;
fce3bb9a 5752 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5753 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5754 &stripe_index);
0b3d4cd3 5755 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
28e1cc7d 5756 mirror_num = 1;
fce3bb9a 5757 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
0b3d4cd3 5758 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5759 num_stripes = map->num_stripes;
2fff734f 5760 else if (mirror_num)
f188591e 5761 stripe_index = mirror_num - 1;
dfe25020 5762 else {
30d9861f 5763 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5764 map->num_stripes,
30d9861f
SB
5765 current->pid % map->num_stripes,
5766 dev_replace_is_ongoing);
a1d3c478 5767 mirror_num = stripe_index + 1;
dfe25020 5768 }
2fff734f 5769
611f0e00 5770 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
0b3d4cd3 5771 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
f2d8d74d 5772 num_stripes = map->num_stripes;
a1d3c478 5773 } else if (mirror_num) {
f188591e 5774 stripe_index = mirror_num - 1;
a1d3c478
JS
5775 } else {
5776 mirror_num = 1;
5777 }
2fff734f 5778
321aecc6 5779 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5780 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5781
47c5713f 5782 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5783 stripe_index *= map->sub_stripes;
5784
cf8cddd3 5785 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5786 num_stripes = map->sub_stripes;
321aecc6
CM
5787 else if (mirror_num)
5788 stripe_index += mirror_num - 1;
dfe25020 5789 else {
3e74317a 5790 int old_stripe_index = stripe_index;
30d9861f
SB
5791 stripe_index = find_live_mirror(fs_info, map,
5792 stripe_index,
dfe25020 5793 map->sub_stripes, stripe_index +
30d9861f
SB
5794 current->pid % map->sub_stripes,
5795 dev_replace_is_ongoing);
3e74317a 5796 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5797 }
53b381b3 5798
ffe2d203 5799 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5800 if (need_raid_map &&
cf8cddd3 5801 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
af8e2d1d 5802 mirror_num > 1)) {
53b381b3 5803 /* push stripe_nr back to the start of the full stripe */
b8b93add
DS
5804 stripe_nr = div_u64(raid56_full_stripe_start,
5805 stripe_len * nr_data_stripes(map));
53b381b3
DW
5806
5807 /* RAID[56] write or recovery. Return all stripes */
5808 num_stripes = map->num_stripes;
5809 max_errors = nr_parity_stripes(map);
5810
53b381b3
DW
5811 *length = map->stripe_len;
5812 stripe_index = 0;
5813 stripe_offset = 0;
5814 } else {
5815 /*
5816 * Mirror #0 or #1 means the original data block.
5817 * Mirror #2 is RAID5 parity block.
5818 * Mirror #3 is RAID6 Q block.
5819 */
47c5713f
DS
5820 stripe_nr = div_u64_rem(stripe_nr,
5821 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5822 if (mirror_num > 1)
5823 stripe_index = nr_data_stripes(map) +
5824 mirror_num - 2;
5825
5826 /* We distribute the parity blocks across stripes */
47c5713f
DS
5827 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5828 &stripe_index);
0b3d4cd3
LB
5829 if ((op != BTRFS_MAP_WRITE &&
5830 op != BTRFS_MAP_GET_READ_MIRRORS) &&
5831 mirror_num <= 1)
28e1cc7d 5832 mirror_num = 1;
53b381b3 5833 }
8790d502
CM
5834 } else {
5835 /*
47c5713f
DS
5836 * after this, stripe_nr is the number of stripes on this
5837 * device we have to walk to find the data, and stripe_index is
5838 * the number of our device in the stripe array
8790d502 5839 */
47c5713f
DS
5840 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5841 &stripe_index);
a1d3c478 5842 mirror_num = stripe_index + 1;
8790d502 5843 }
e042d1ec 5844 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5845 btrfs_crit(fs_info,
5846 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5847 stripe_index, map->num_stripes);
5848 ret = -EINVAL;
5849 goto out;
5850 }
cea9e445 5851
472262f3 5852 num_alloc_stripes = num_stripes;
6fad823f 5853 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5854 if (op == BTRFS_MAP_WRITE)
ad6d620e 5855 num_alloc_stripes <<= 1;
cf8cddd3 5856 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5857 num_alloc_stripes++;
2c8cdd6e 5858 tgtdev_indexes = num_stripes;
ad6d620e 5859 }
2c8cdd6e 5860
6e9606d2 5861 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5862 if (!bbio) {
5863 ret = -ENOMEM;
5864 goto out;
5865 }
6fad823f 5866 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5867 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5868
8e5cfb55 5869 /* build raid_map */
2b19a1fe
LB
5870 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5871 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5872 u64 tmp;
9d644a62 5873 unsigned rot;
8e5cfb55
ZL
5874
5875 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5876 sizeof(struct btrfs_bio_stripe) *
5877 num_alloc_stripes +
5878 sizeof(int) * tgtdev_indexes);
5879
5880 /* Work out the disk rotation on this stripe-set */
47c5713f 5881 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5882
5883 /* Fill in the logical address of each stripe */
5884 tmp = stripe_nr * nr_data_stripes(map);
5885 for (i = 0; i < nr_data_stripes(map); i++)
5886 bbio->raid_map[(i+rot) % num_stripes] =
5887 em->start + (tmp + i) * map->stripe_len;
5888
5889 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5890 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5891 bbio->raid_map[(i+rot+1) % num_stripes] =
5892 RAID6_Q_STRIPE;
5893 }
5894
b89203f7 5895
0b3d4cd3
LB
5896 for (i = 0; i < num_stripes; i++) {
5897 bbio->stripes[i].physical =
5898 map->stripes[stripe_index].physical +
5899 stripe_offset +
5900 stripe_nr * map->stripe_len;
5901 bbio->stripes[i].dev =
5902 map->stripes[stripe_index].dev;
5903 stripe_index++;
593060d7 5904 }
de11cc12 5905
2b19a1fe 5906 if (need_full_stripe(op))
d20983b4 5907 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5908
8e5cfb55
ZL
5909 if (bbio->raid_map)
5910 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5911
73c0f228 5912 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5913 need_full_stripe(op)) {
73c0f228
LB
5914 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5915 &max_errors);
472262f3
SB
5916 }
5917
de11cc12 5918 *bbio_ret = bbio;
10f11900 5919 bbio->map_type = map->type;
de11cc12
LZ
5920 bbio->num_stripes = num_stripes;
5921 bbio->max_errors = max_errors;
5922 bbio->mirror_num = mirror_num;
ad6d620e
SB
5923
5924 /*
5925 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5926 * mirror_num == num_stripes + 1 && dev_replace target drive is
5927 * available as a mirror
5928 */
5929 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5930 WARN_ON(num_stripes > 1);
5931 bbio->stripes[0].dev = dev_replace->tgtdev;
5932 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5933 bbio->mirror_num = map->num_stripes + 1;
5934 }
cea9e445 5935out:
73beece9
LB
5936 if (dev_replace_is_ongoing) {
5937 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5938 btrfs_dev_replace_unlock(dev_replace, 0);
5939 }
0b86a832 5940 free_extent_map(em);
de11cc12 5941 return ret;
0b86a832
CM
5942}
5943
cf8cddd3 5944int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5945 u64 logical, u64 *length,
a1d3c478 5946 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5947{
b3d3fa51 5948 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5949 mirror_num, 0);
f2d8d74d
CM
5950}
5951
af8e2d1d 5952/* For Scrub/replace */
cf8cddd3 5953int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d
MX
5954 u64 logical, u64 *length,
5955 struct btrfs_bio **bbio_ret, int mirror_num,
8e5cfb55 5956 int need_raid_map)
af8e2d1d 5957{
b3d3fa51 5958 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5959 mirror_num, need_raid_map);
af8e2d1d
MX
5960}
5961
ab8d0fc4 5962int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5963 u64 chunk_start, u64 physical, u64 devid,
5964 u64 **logical, int *naddrs, int *stripe_len)
5965{
a512bbf8
YZ
5966 struct extent_map *em;
5967 struct map_lookup *map;
5968 u64 *buf;
5969 u64 bytenr;
5970 u64 length;
5971 u64 stripe_nr;
53b381b3 5972 u64 rmap_len;
a512bbf8
YZ
5973 int i, j, nr = 0;
5974
592d92ee
LB
5975 em = get_chunk_map(fs_info, chunk_start, 1);
5976 if (IS_ERR(em))
835d974f 5977 return -EIO;
835d974f 5978
95617d69 5979 map = em->map_lookup;
a512bbf8 5980 length = em->len;
53b381b3
DW
5981 rmap_len = map->stripe_len;
5982
a512bbf8 5983 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5984 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5985 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5986 length = div_u64(length, map->num_stripes);
ffe2d203 5987 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5988 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5989 rmap_len = map->stripe_len * nr_data_stripes(map);
5990 }
a512bbf8 5991
31e818fe 5992 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5993 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5994
5995 for (i = 0; i < map->num_stripes; i++) {
5996 if (devid && map->stripes[i].dev->devid != devid)
5997 continue;
5998 if (map->stripes[i].physical > physical ||
5999 map->stripes[i].physical + length <= physical)
6000 continue;
6001
6002 stripe_nr = physical - map->stripes[i].physical;
b8b93add 6003 stripe_nr = div_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
6004
6005 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6006 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 6007 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
6008 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6009 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
6010 } /* else if RAID[56], multiply by nr_data_stripes().
6011 * Alternatively, just use rmap_len below instead of
6012 * map->stripe_len */
6013
6014 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6015 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6016 for (j = 0; j < nr; j++) {
6017 if (buf[j] == bytenr)
6018 break;
6019 }
934d375b
CM
6020 if (j == nr) {
6021 WARN_ON(nr >= map->num_stripes);
a512bbf8 6022 buf[nr++] = bytenr;
934d375b 6023 }
a512bbf8
YZ
6024 }
6025
a512bbf8
YZ
6026 *logical = buf;
6027 *naddrs = nr;
53b381b3 6028 *stripe_len = rmap_len;
a512bbf8
YZ
6029
6030 free_extent_map(em);
6031 return 0;
f2d8d74d
CM
6032}
6033
4246a0b6 6034static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6035{
326e1dbb
MS
6036 bio->bi_private = bbio->private;
6037 bio->bi_end_io = bbio->end_io;
4246a0b6 6038 bio_endio(bio);
326e1dbb 6039
6e9606d2 6040 btrfs_put_bbio(bbio);
8408c716
MX
6041}
6042
4246a0b6 6043static void btrfs_end_bio(struct bio *bio)
8790d502 6044{
9be3395b 6045 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6046 int is_orig_bio = 0;
8790d502 6047
4246a0b6 6048 if (bio->bi_error) {
a1d3c478 6049 atomic_inc(&bbio->error);
4246a0b6 6050 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 6051 unsigned int stripe_index =
9be3395b 6052 btrfs_io_bio(bio)->stripe_index;
65f53338 6053 struct btrfs_device *dev;
442a4f63
SB
6054
6055 BUG_ON(stripe_index >= bbio->num_stripes);
6056 dev = bbio->stripes[stripe_index].dev;
597a60fa 6057 if (dev->bdev) {
37226b21 6058 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6059 btrfs_dev_stat_inc(dev,
6060 BTRFS_DEV_STAT_WRITE_ERRS);
6061 else
6062 btrfs_dev_stat_inc(dev,
6063 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6064 if (bio->bi_opf & REQ_PREFLUSH)
597a60fa
SB
6065 btrfs_dev_stat_inc(dev,
6066 BTRFS_DEV_STAT_FLUSH_ERRS);
6067 btrfs_dev_stat_print_on_error(dev);
6068 }
442a4f63
SB
6069 }
6070 }
8790d502 6071
a1d3c478 6072 if (bio == bbio->orig_bio)
7d2b4daa
CM
6073 is_orig_bio = 1;
6074
c404e0dc
MX
6075 btrfs_bio_counter_dec(bbio->fs_info);
6076
a1d3c478 6077 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6078 if (!is_orig_bio) {
6079 bio_put(bio);
a1d3c478 6080 bio = bbio->orig_bio;
7d2b4daa 6081 }
c7b22bb1 6082
9be3395b 6083 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6084 /* only send an error to the higher layers if it is
53b381b3 6085 * beyond the tolerance of the btrfs bio
a236aed1 6086 */
a1d3c478 6087 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 6088 bio->bi_error = -EIO;
5dbc8fca 6089 } else {
1259ab75
CM
6090 /*
6091 * this bio is actually up to date, we didn't
6092 * go over the max number of errors
6093 */
4246a0b6 6094 bio->bi_error = 0;
1259ab75 6095 }
c55f1396 6096
4246a0b6 6097 btrfs_end_bbio(bbio, bio);
7d2b4daa 6098 } else if (!is_orig_bio) {
8790d502
CM
6099 bio_put(bio);
6100 }
8790d502
CM
6101}
6102
8b712842
CM
6103/*
6104 * see run_scheduled_bios for a description of why bios are collected for
6105 * async submit.
6106 *
6107 * This will add one bio to the pending list for a device and make sure
6108 * the work struct is scheduled.
6109 */
2ff7e61e 6110static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6111 struct bio *bio)
8b712842 6112{
0b246afa 6113 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6114 int should_queue = 1;
ffbd517d 6115 struct btrfs_pending_bios *pending_bios;
8b712842 6116
53b381b3 6117 if (device->missing || !device->bdev) {
4246a0b6 6118 bio_io_error(bio);
53b381b3
DW
6119 return;
6120 }
6121
8b712842 6122 /* don't bother with additional async steps for reads, right now */
37226b21 6123 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6124 bio_get(bio);
4e49ea4a 6125 btrfsic_submit_bio(bio);
492bb6de 6126 bio_put(bio);
143bede5 6127 return;
8b712842
CM
6128 }
6129
6130 /*
0986fe9e 6131 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6132 * higher layers. Otherwise, the async bio makes it appear we have
6133 * made progress against dirty pages when we've really just put it
6134 * on a queue for later
6135 */
0b246afa 6136 atomic_inc(&fs_info->nr_async_bios);
492bb6de 6137 WARN_ON(bio->bi_next);
8b712842 6138 bio->bi_next = NULL;
8b712842
CM
6139
6140 spin_lock(&device->io_lock);
67f055c7 6141 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6142 pending_bios = &device->pending_sync_bios;
6143 else
6144 pending_bios = &device->pending_bios;
8b712842 6145
ffbd517d
CM
6146 if (pending_bios->tail)
6147 pending_bios->tail->bi_next = bio;
8b712842 6148
ffbd517d
CM
6149 pending_bios->tail = bio;
6150 if (!pending_bios->head)
6151 pending_bios->head = bio;
8b712842
CM
6152 if (device->running_pending)
6153 should_queue = 0;
6154
6155 spin_unlock(&device->io_lock);
6156
6157 if (should_queue)
0b246afa 6158 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6159}
6160
2ff7e61e
JM
6161static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6162 u64 physical, int dev_nr, int async)
de1ee92a
JB
6163{
6164 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6165 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6166
6167 bio->bi_private = bbio;
9be3395b 6168 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6169 bio->bi_end_io = btrfs_end_bio;
4f024f37 6170 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6171#ifdef DEBUG
6172 {
6173 struct rcu_string *name;
6174
6175 rcu_read_lock();
6176 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6177 btrfs_debug(fs_info,
6178 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6179 bio_op(bio), bio->bi_opf,
6180 (u64)bio->bi_iter.bi_sector,
6181 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6182 bio->bi_iter.bi_size);
de1ee92a
JB
6183 rcu_read_unlock();
6184 }
6185#endif
6186 bio->bi_bdev = dev->bdev;
c404e0dc 6187
2ff7e61e 6188 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6189
de1ee92a 6190 if (async)
2ff7e61e 6191 btrfs_schedule_bio(dev, bio);
de1ee92a 6192 else
4e49ea4a 6193 btrfsic_submit_bio(bio);
de1ee92a
JB
6194}
6195
de1ee92a
JB
6196static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6197{
6198 atomic_inc(&bbio->error);
6199 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6200 /* Should be the original bio. */
8408c716
MX
6201 WARN_ON(bio != bbio->orig_bio);
6202
9be3395b 6203 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6204 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6205 bio->bi_error = -EIO;
6206 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6207 }
6208}
6209
2ff7e61e 6210int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
8b712842 6211 int mirror_num, int async_submit)
0b86a832 6212{
0b86a832 6213 struct btrfs_device *dev;
8790d502 6214 struct bio *first_bio = bio;
4f024f37 6215 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6216 u64 length = 0;
6217 u64 map_length;
0b86a832 6218 int ret;
08da757d
ZL
6219 int dev_nr;
6220 int total_devs;
a1d3c478 6221 struct btrfs_bio *bbio = NULL;
0b86a832 6222
4f024f37 6223 length = bio->bi_iter.bi_size;
0b86a832 6224 map_length = length;
cea9e445 6225
0b246afa
JM
6226 btrfs_bio_counter_inc_blocked(fs_info);
6227 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
37226b21 6228 &map_length, &bbio, mirror_num, 1);
c404e0dc 6229 if (ret) {
0b246afa 6230 btrfs_bio_counter_dec(fs_info);
79787eaa 6231 return ret;
c404e0dc 6232 }
cea9e445 6233
a1d3c478 6234 total_devs = bbio->num_stripes;
53b381b3
DW
6235 bbio->orig_bio = first_bio;
6236 bbio->private = first_bio->bi_private;
6237 bbio->end_io = first_bio->bi_end_io;
0b246afa 6238 bbio->fs_info = fs_info;
53b381b3
DW
6239 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6240
ad1ba2a0 6241 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6242 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6243 /* In this case, map_length has been set to the length of
6244 a single stripe; not the whole write */
37226b21 6245 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6246 ret = raid56_parity_write(fs_info, bio, bbio,
6247 map_length);
53b381b3 6248 } else {
2ff7e61e
JM
6249 ret = raid56_parity_recover(fs_info, bio, bbio,
6250 map_length, mirror_num, 1);
53b381b3 6251 }
4245215d 6252
0b246afa 6253 btrfs_bio_counter_dec(fs_info);
c404e0dc 6254 return ret;
53b381b3
DW
6255 }
6256
cea9e445 6257 if (map_length < length) {
0b246afa 6258 btrfs_crit(fs_info,
5d163e0e
JM
6259 "mapping failed logical %llu bio len %llu len %llu",
6260 logical, length, map_length);
cea9e445
CM
6261 BUG();
6262 }
a1d3c478 6263
08da757d 6264 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6265 dev = bbio->stripes[dev_nr].dev;
37226b21 6266 if (!dev || !dev->bdev ||
a967efb3 6267 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6268 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6269 continue;
6270 }
6271
a1d3c478 6272 if (dev_nr < total_devs - 1) {
9be3395b 6273 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
79787eaa 6274 BUG_ON(!bio); /* -ENOMEM */
326e1dbb 6275 } else
a1d3c478 6276 bio = first_bio;
de1ee92a 6277
2ff7e61e
JM
6278 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6279 dev_nr, async_submit);
8790d502 6280 }
0b246afa 6281 btrfs_bio_counter_dec(fs_info);
0b86a832
CM
6282 return 0;
6283}
6284
aa1b8cd4 6285struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6286 u8 *uuid, u8 *fsid)
0b86a832 6287{
2b82032c
YZ
6288 struct btrfs_device *device;
6289 struct btrfs_fs_devices *cur_devices;
6290
aa1b8cd4 6291 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6292 while (cur_devices) {
6293 if (!fsid ||
6294 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6295 device = __find_device(&cur_devices->devices,
6296 devid, uuid);
6297 if (device)
6298 return device;
6299 }
6300 cur_devices = cur_devices->seed;
6301 }
6302 return NULL;
0b86a832
CM
6303}
6304
2ff7e61e 6305static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6306 u64 devid, u8 *dev_uuid)
6307{
6308 struct btrfs_device *device;
dfe25020 6309
12bd2fc0
ID
6310 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6311 if (IS_ERR(device))
7cbd8a83 6312 return NULL;
12bd2fc0
ID
6313
6314 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6315 device->fs_devices = fs_devices;
dfe25020 6316 fs_devices->num_devices++;
12bd2fc0
ID
6317
6318 device->missing = 1;
cd02dca5 6319 fs_devices->missing_devices++;
12bd2fc0 6320
dfe25020
CM
6321 return device;
6322}
6323
12bd2fc0
ID
6324/**
6325 * btrfs_alloc_device - allocate struct btrfs_device
6326 * @fs_info: used only for generating a new devid, can be NULL if
6327 * devid is provided (i.e. @devid != NULL).
6328 * @devid: a pointer to devid for this device. If NULL a new devid
6329 * is generated.
6330 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6331 * is generated.
6332 *
6333 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6334 * on error. Returned struct is not linked onto any lists and can be
6335 * destroyed with kfree() right away.
6336 */
6337struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6338 const u64 *devid,
6339 const u8 *uuid)
6340{
6341 struct btrfs_device *dev;
6342 u64 tmp;
6343
fae7f21c 6344 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6345 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6346
6347 dev = __alloc_device();
6348 if (IS_ERR(dev))
6349 return dev;
6350
6351 if (devid)
6352 tmp = *devid;
6353 else {
6354 int ret;
6355
6356 ret = find_next_devid(fs_info, &tmp);
6357 if (ret) {
6358 kfree(dev);
6359 return ERR_PTR(ret);
6360 }
6361 }
6362 dev->devid = tmp;
6363
6364 if (uuid)
6365 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6366 else
6367 generate_random_uuid(dev->uuid);
6368
9e0af237
LB
6369 btrfs_init_work(&dev->work, btrfs_submit_helper,
6370 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6371
6372 return dev;
6373}
6374
e06cd3dd 6375/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6376static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6377 struct extent_buffer *leaf,
6378 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6379{
0b86a832 6380 u64 length;
f04b772b 6381 u64 stripe_len;
e06cd3dd
LB
6382 u16 num_stripes;
6383 u16 sub_stripes;
6384 u64 type;
0b86a832 6385
e17cade2 6386 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6387 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6388 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6389 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6390 type = btrfs_chunk_type(leaf, chunk);
6391
f04b772b 6392 if (!num_stripes) {
0b246afa 6393 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6394 num_stripes);
6395 return -EIO;
6396 }
0b246afa
JM
6397 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6398 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6399 return -EIO;
6400 }
0b246afa
JM
6401 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6402 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6403 btrfs_chunk_sector_size(leaf, chunk));
6404 return -EIO;
6405 }
0b246afa
JM
6406 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6407 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6408 return -EIO;
6409 }
3d8da678 6410 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6411 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6412 stripe_len);
6413 return -EIO;
6414 }
6415 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6416 type) {
0b246afa 6417 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6418 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6419 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6420 btrfs_chunk_type(leaf, chunk));
6421 return -EIO;
6422 }
e06cd3dd
LB
6423 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6424 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6425 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6426 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6427 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6428 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6429 num_stripes != 1)) {
0b246afa 6430 btrfs_err(fs_info,
e06cd3dd
LB
6431 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6432 num_stripes, sub_stripes,
6433 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6434 return -EIO;
6435 }
6436
6437 return 0;
6438}
6439
2ff7e61e 6440static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6441 struct extent_buffer *leaf,
6442 struct btrfs_chunk *chunk)
6443{
0b246afa 6444 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6445 struct map_lookup *map;
6446 struct extent_map *em;
6447 u64 logical;
6448 u64 length;
6449 u64 stripe_len;
6450 u64 devid;
6451 u8 uuid[BTRFS_UUID_SIZE];
6452 int num_stripes;
6453 int ret;
6454 int i;
6455
6456 logical = key->offset;
6457 length = btrfs_chunk_length(leaf, chunk);
6458 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6459 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6460
2ff7e61e 6461 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6462 if (ret)
6463 return ret;
a061fc8d 6464
890871be 6465 read_lock(&map_tree->map_tree.lock);
0b86a832 6466 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6467 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6468
6469 /* already mapped? */
6470 if (em && em->start <= logical && em->start + em->len > logical) {
6471 free_extent_map(em);
0b86a832
CM
6472 return 0;
6473 } else if (em) {
6474 free_extent_map(em);
6475 }
0b86a832 6476
172ddd60 6477 em = alloc_extent_map();
0b86a832
CM
6478 if (!em)
6479 return -ENOMEM;
593060d7 6480 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6481 if (!map) {
6482 free_extent_map(em);
6483 return -ENOMEM;
6484 }
6485
298a8f9c 6486 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6487 em->map_lookup = map;
0b86a832
CM
6488 em->start = logical;
6489 em->len = length;
70c8a91c 6490 em->orig_start = 0;
0b86a832 6491 em->block_start = 0;
c8b97818 6492 em->block_len = em->len;
0b86a832 6493
593060d7
CM
6494 map->num_stripes = num_stripes;
6495 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6496 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6497 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6498 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6499 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6500 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6501 for (i = 0; i < num_stripes; i++) {
6502 map->stripes[i].physical =
6503 btrfs_stripe_offset_nr(leaf, chunk, i);
6504 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6505 read_extent_buffer(leaf, uuid, (unsigned long)
6506 btrfs_stripe_dev_uuid_nr(chunk, i),
6507 BTRFS_UUID_SIZE);
0b246afa 6508 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6509 uuid, NULL);
3cdde224 6510 if (!map->stripes[i].dev &&
0b246afa 6511 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7
CM
6512 free_extent_map(em);
6513 return -EIO;
6514 }
dfe25020
CM
6515 if (!map->stripes[i].dev) {
6516 map->stripes[i].dev =
2ff7e61e
JM
6517 add_missing_dev(fs_info->fs_devices, devid,
6518 uuid);
dfe25020 6519 if (!map->stripes[i].dev) {
dfe25020
CM
6520 free_extent_map(em);
6521 return -EIO;
6522 }
0b246afa 6523 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
5d163e0e 6524 devid, uuid);
dfe25020
CM
6525 }
6526 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6527 }
6528
890871be 6529 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6530 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6531 write_unlock(&map_tree->map_tree.lock);
79787eaa 6532 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6533 free_extent_map(em);
6534
6535 return 0;
6536}
6537
143bede5 6538static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6539 struct btrfs_dev_item *dev_item,
6540 struct btrfs_device *device)
6541{
6542 unsigned long ptr;
0b86a832
CM
6543
6544 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6545 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6546 device->total_bytes = device->disk_total_bytes;
935e5cc9 6547 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6548 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6549 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6550 device->type = btrfs_device_type(leaf, dev_item);
6551 device->io_align = btrfs_device_io_align(leaf, dev_item);
6552 device->io_width = btrfs_device_io_width(leaf, dev_item);
6553 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6554 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6555 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6556
410ba3a2 6557 ptr = btrfs_device_uuid(dev_item);
e17cade2 6558 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6559}
6560
2ff7e61e 6561static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6562 u8 *fsid)
2b82032c
YZ
6563{
6564 struct btrfs_fs_devices *fs_devices;
6565 int ret;
6566
b367e47f 6567 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c 6568
0b246afa 6569 fs_devices = fs_info->fs_devices->seed;
2b82032c 6570 while (fs_devices) {
5f375835
MX
6571 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6572 return fs_devices;
6573
2b82032c
YZ
6574 fs_devices = fs_devices->seed;
6575 }
6576
6577 fs_devices = find_fsid(fsid);
6578 if (!fs_devices) {
0b246afa 6579 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6580 return ERR_PTR(-ENOENT);
6581
6582 fs_devices = alloc_fs_devices(fsid);
6583 if (IS_ERR(fs_devices))
6584 return fs_devices;
6585
6586 fs_devices->seeding = 1;
6587 fs_devices->opened = 1;
6588 return fs_devices;
2b82032c 6589 }
e4404d6e
YZ
6590
6591 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6592 if (IS_ERR(fs_devices))
6593 return fs_devices;
2b82032c 6594
97288f2c 6595 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6596 fs_info->bdev_holder);
48d28232
JL
6597 if (ret) {
6598 free_fs_devices(fs_devices);
5f375835 6599 fs_devices = ERR_PTR(ret);
2b82032c 6600 goto out;
48d28232 6601 }
2b82032c
YZ
6602
6603 if (!fs_devices->seeding) {
6604 __btrfs_close_devices(fs_devices);
e4404d6e 6605 free_fs_devices(fs_devices);
5f375835 6606 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6607 goto out;
6608 }
6609
0b246afa
JM
6610 fs_devices->seed = fs_info->fs_devices->seed;
6611 fs_info->fs_devices->seed = fs_devices;
2b82032c 6612out:
5f375835 6613 return fs_devices;
2b82032c
YZ
6614}
6615
2ff7e61e 6616static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6617 struct extent_buffer *leaf,
6618 struct btrfs_dev_item *dev_item)
6619{
0b246afa 6620 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6621 struct btrfs_device *device;
6622 u64 devid;
6623 int ret;
2b82032c 6624 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6625 u8 dev_uuid[BTRFS_UUID_SIZE];
6626
0b86a832 6627 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6628 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6629 BTRFS_UUID_SIZE);
1473b24e 6630 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6631 BTRFS_UUID_SIZE);
6632
0b246afa 6633 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
2ff7e61e 6634 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6635 if (IS_ERR(fs_devices))
6636 return PTR_ERR(fs_devices);
2b82032c
YZ
6637 }
6638
0b246afa 6639 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6640 if (!device) {
0b246afa 6641 if (!btrfs_test_opt(fs_info, DEGRADED))
2b82032c
YZ
6642 return -EIO;
6643
2ff7e61e 6644 device = add_missing_dev(fs_devices, devid, dev_uuid);
5f375835
MX
6645 if (!device)
6646 return -ENOMEM;
0b246afa 6647 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
33b97e43 6648 devid, dev_uuid);
5f375835 6649 } else {
0b246afa 6650 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6651 return -EIO;
6652
6653 if(!device->bdev && !device->missing) {
cd02dca5
CM
6654 /*
6655 * this happens when a device that was properly setup
6656 * in the device info lists suddenly goes bad.
6657 * device->bdev is NULL, and so we have to set
6658 * device->missing to one here
6659 */
5f375835 6660 device->fs_devices->missing_devices++;
cd02dca5 6661 device->missing = 1;
2b82032c 6662 }
5f375835
MX
6663
6664 /* Move the device to its own fs_devices */
6665 if (device->fs_devices != fs_devices) {
6666 ASSERT(device->missing);
6667
6668 list_move(&device->dev_list, &fs_devices->devices);
6669 device->fs_devices->num_devices--;
6670 fs_devices->num_devices++;
6671
6672 device->fs_devices->missing_devices--;
6673 fs_devices->missing_devices++;
6674
6675 device->fs_devices = fs_devices;
6676 }
2b82032c
YZ
6677 }
6678
0b246afa 6679 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6680 BUG_ON(device->writeable);
6681 if (device->generation !=
6682 btrfs_device_generation(leaf, dev_item))
6683 return -EINVAL;
6324fbf3 6684 }
0b86a832
CM
6685
6686 fill_device_from_item(leaf, dev_item, device);
dfe25020 6687 device->in_fs_metadata = 1;
63a212ab 6688 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6689 device->fs_devices->total_rw_bytes += device->total_bytes;
0b246afa
JM
6690 spin_lock(&fs_info->free_chunk_lock);
6691 fs_info->free_chunk_space += device->total_bytes -
2bf64758 6692 device->bytes_used;
0b246afa 6693 spin_unlock(&fs_info->free_chunk_lock);
2bf64758 6694 }
0b86a832 6695 ret = 0;
0b86a832
CM
6696 return ret;
6697}
6698
6bccf3ab 6699int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6700{
6bccf3ab 6701 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6702 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6703 struct extent_buffer *sb;
0b86a832 6704 struct btrfs_disk_key *disk_key;
0b86a832 6705 struct btrfs_chunk *chunk;
1ffb22cf
DS
6706 u8 *array_ptr;
6707 unsigned long sb_array_offset;
84eed90f 6708 int ret = 0;
0b86a832
CM
6709 u32 num_stripes;
6710 u32 array_size;
6711 u32 len = 0;
1ffb22cf 6712 u32 cur_offset;
e06cd3dd 6713 u64 type;
84eed90f 6714 struct btrfs_key key;
0b86a832 6715
0b246afa 6716 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6717 /*
6718 * This will create extent buffer of nodesize, superblock size is
6719 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6720 * overallocate but we can keep it as-is, only the first page is used.
6721 */
2ff7e61e 6722 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6723 if (IS_ERR(sb))
6724 return PTR_ERR(sb);
4db8c528 6725 set_extent_buffer_uptodate(sb);
85d4e461 6726 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6727 /*
01327610 6728 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6729 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6730 * pages up-to-date when the page is larger: extent does not cover the
6731 * whole page and consequently check_page_uptodate does not find all
6732 * the page's extents up-to-date (the hole beyond sb),
6733 * write_extent_buffer then triggers a WARN_ON.
6734 *
6735 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6736 * but sb spans only this function. Add an explicit SetPageUptodate call
6737 * to silence the warning eg. on PowerPC 64.
6738 */
09cbfeaf 6739 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6740 SetPageUptodate(sb->pages[0]);
4008c04a 6741
a061fc8d 6742 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6743 array_size = btrfs_super_sys_array_size(super_copy);
6744
1ffb22cf
DS
6745 array_ptr = super_copy->sys_chunk_array;
6746 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6747 cur_offset = 0;
0b86a832 6748
1ffb22cf
DS
6749 while (cur_offset < array_size) {
6750 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6751 len = sizeof(*disk_key);
6752 if (cur_offset + len > array_size)
6753 goto out_short_read;
6754
0b86a832
CM
6755 btrfs_disk_key_to_cpu(&key, disk_key);
6756
1ffb22cf
DS
6757 array_ptr += len;
6758 sb_array_offset += len;
6759 cur_offset += len;
0b86a832 6760
0d81ba5d 6761 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6762 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6763 /*
6764 * At least one btrfs_chunk with one stripe must be
6765 * present, exact stripe count check comes afterwards
6766 */
6767 len = btrfs_chunk_item_size(1);
6768 if (cur_offset + len > array_size)
6769 goto out_short_read;
6770
6771 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6772 if (!num_stripes) {
ab8d0fc4
JM
6773 btrfs_err(fs_info,
6774 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6775 num_stripes, cur_offset);
6776 ret = -EIO;
6777 break;
6778 }
6779
e06cd3dd
LB
6780 type = btrfs_chunk_type(sb, chunk);
6781 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6782 btrfs_err(fs_info,
e06cd3dd
LB
6783 "invalid chunk type %llu in sys_array at offset %u",
6784 type, cur_offset);
6785 ret = -EIO;
6786 break;
6787 }
6788
e3540eab
DS
6789 len = btrfs_chunk_item_size(num_stripes);
6790 if (cur_offset + len > array_size)
6791 goto out_short_read;
6792
2ff7e61e 6793 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6794 if (ret)
6795 break;
0b86a832 6796 } else {
ab8d0fc4
JM
6797 btrfs_err(fs_info,
6798 "unexpected item type %u in sys_array at offset %u",
6799 (u32)key.type, cur_offset);
84eed90f
CM
6800 ret = -EIO;
6801 break;
0b86a832 6802 }
1ffb22cf
DS
6803 array_ptr += len;
6804 sb_array_offset += len;
6805 cur_offset += len;
0b86a832 6806 }
d865177a 6807 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6808 free_extent_buffer_stale(sb);
84eed90f 6809 return ret;
e3540eab
DS
6810
6811out_short_read:
ab8d0fc4 6812 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6813 len, cur_offset);
d865177a 6814 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6815 free_extent_buffer_stale(sb);
e3540eab 6816 return -EIO;
0b86a832
CM
6817}
6818
5b4aacef 6819int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6820{
5b4aacef 6821 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6822 struct btrfs_path *path;
6823 struct extent_buffer *leaf;
6824 struct btrfs_key key;
6825 struct btrfs_key found_key;
6826 int ret;
6827 int slot;
99e3ecfc 6828 u64 total_dev = 0;
0b86a832 6829
0b86a832
CM
6830 path = btrfs_alloc_path();
6831 if (!path)
6832 return -ENOMEM;
6833
b367e47f 6834 mutex_lock(&uuid_mutex);
34441361 6835 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6836
395927a9
FDBM
6837 /*
6838 * Read all device items, and then all the chunk items. All
6839 * device items are found before any chunk item (their object id
6840 * is smaller than the lowest possible object id for a chunk
6841 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6842 */
6843 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6844 key.offset = 0;
6845 key.type = 0;
0b86a832 6846 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6847 if (ret < 0)
6848 goto error;
d397712b 6849 while (1) {
0b86a832
CM
6850 leaf = path->nodes[0];
6851 slot = path->slots[0];
6852 if (slot >= btrfs_header_nritems(leaf)) {
6853 ret = btrfs_next_leaf(root, path);
6854 if (ret == 0)
6855 continue;
6856 if (ret < 0)
6857 goto error;
6858 break;
6859 }
6860 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6861 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6862 struct btrfs_dev_item *dev_item;
6863 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6864 struct btrfs_dev_item);
2ff7e61e 6865 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6866 if (ret)
6867 goto error;
99e3ecfc 6868 total_dev++;
0b86a832
CM
6869 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6870 struct btrfs_chunk *chunk;
6871 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6872 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6873 if (ret)
6874 goto error;
0b86a832
CM
6875 }
6876 path->slots[0]++;
6877 }
99e3ecfc
LB
6878
6879 /*
6880 * After loading chunk tree, we've got all device information,
6881 * do another round of validation checks.
6882 */
0b246afa
JM
6883 if (total_dev != fs_info->fs_devices->total_devices) {
6884 btrfs_err(fs_info,
99e3ecfc 6885 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6886 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6887 total_dev);
6888 ret = -EINVAL;
6889 goto error;
6890 }
0b246afa
JM
6891 if (btrfs_super_total_bytes(fs_info->super_copy) <
6892 fs_info->fs_devices->total_rw_bytes) {
6893 btrfs_err(fs_info,
99e3ecfc 6894 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6895 btrfs_super_total_bytes(fs_info->super_copy),
6896 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6897 ret = -EINVAL;
6898 goto error;
6899 }
0b86a832
CM
6900 ret = 0;
6901error:
34441361 6902 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
6903 mutex_unlock(&uuid_mutex);
6904
2b82032c 6905 btrfs_free_path(path);
0b86a832
CM
6906 return ret;
6907}
442a4f63 6908
cb517eab
MX
6909void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6910{
6911 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6912 struct btrfs_device *device;
6913
29cc83f6
LB
6914 while (fs_devices) {
6915 mutex_lock(&fs_devices->device_list_mutex);
6916 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6917 device->fs_info = fs_info;
29cc83f6
LB
6918 mutex_unlock(&fs_devices->device_list_mutex);
6919
6920 fs_devices = fs_devices->seed;
6921 }
cb517eab
MX
6922}
6923
733f4fbb
SB
6924static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6925{
6926 int i;
6927
6928 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6929 btrfs_dev_stat_reset(dev, i);
6930}
6931
6932int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6933{
6934 struct btrfs_key key;
6935 struct btrfs_key found_key;
6936 struct btrfs_root *dev_root = fs_info->dev_root;
6937 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6938 struct extent_buffer *eb;
6939 int slot;
6940 int ret = 0;
6941 struct btrfs_device *device;
6942 struct btrfs_path *path = NULL;
6943 int i;
6944
6945 path = btrfs_alloc_path();
6946 if (!path) {
6947 ret = -ENOMEM;
6948 goto out;
6949 }
6950
6951 mutex_lock(&fs_devices->device_list_mutex);
6952 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6953 int item_size;
6954 struct btrfs_dev_stats_item *ptr;
6955
242e2956
DS
6956 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6957 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6958 key.offset = device->devid;
6959 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6960 if (ret) {
733f4fbb
SB
6961 __btrfs_reset_dev_stats(device);
6962 device->dev_stats_valid = 1;
6963 btrfs_release_path(path);
6964 continue;
6965 }
6966 slot = path->slots[0];
6967 eb = path->nodes[0];
6968 btrfs_item_key_to_cpu(eb, &found_key, slot);
6969 item_size = btrfs_item_size_nr(eb, slot);
6970
6971 ptr = btrfs_item_ptr(eb, slot,
6972 struct btrfs_dev_stats_item);
6973
6974 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6975 if (item_size >= (1 + i) * sizeof(__le64))
6976 btrfs_dev_stat_set(device, i,
6977 btrfs_dev_stats_value(eb, ptr, i));
6978 else
6979 btrfs_dev_stat_reset(device, i);
6980 }
6981
6982 device->dev_stats_valid = 1;
6983 btrfs_dev_stat_print_on_load(device);
6984 btrfs_release_path(path);
6985 }
6986 mutex_unlock(&fs_devices->device_list_mutex);
6987
6988out:
6989 btrfs_free_path(path);
6990 return ret < 0 ? ret : 0;
6991}
6992
6993static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 6994 struct btrfs_fs_info *fs_info,
733f4fbb
SB
6995 struct btrfs_device *device)
6996{
6bccf3ab 6997 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
6998 struct btrfs_path *path;
6999 struct btrfs_key key;
7000 struct extent_buffer *eb;
7001 struct btrfs_dev_stats_item *ptr;
7002 int ret;
7003 int i;
7004
242e2956
DS
7005 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7006 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7007 key.offset = device->devid;
7008
7009 path = btrfs_alloc_path();
fa252992
DS
7010 if (!path)
7011 return -ENOMEM;
733f4fbb
SB
7012 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7013 if (ret < 0) {
0b246afa 7014 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7015 "error %d while searching for dev_stats item for device %s",
606686ee 7016 ret, rcu_str_deref(device->name));
733f4fbb
SB
7017 goto out;
7018 }
7019
7020 if (ret == 0 &&
7021 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7022 /* need to delete old one and insert a new one */
7023 ret = btrfs_del_item(trans, dev_root, path);
7024 if (ret != 0) {
0b246afa 7025 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7026 "delete too small dev_stats item for device %s failed %d",
606686ee 7027 rcu_str_deref(device->name), ret);
733f4fbb
SB
7028 goto out;
7029 }
7030 ret = 1;
7031 }
7032
7033 if (ret == 1) {
7034 /* need to insert a new item */
7035 btrfs_release_path(path);
7036 ret = btrfs_insert_empty_item(trans, dev_root, path,
7037 &key, sizeof(*ptr));
7038 if (ret < 0) {
0b246afa 7039 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7040 "insert dev_stats item for device %s failed %d",
7041 rcu_str_deref(device->name), ret);
733f4fbb
SB
7042 goto out;
7043 }
7044 }
7045
7046 eb = path->nodes[0];
7047 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7048 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7049 btrfs_set_dev_stats_value(eb, ptr, i,
7050 btrfs_dev_stat_read(device, i));
7051 btrfs_mark_buffer_dirty(eb);
7052
7053out:
7054 btrfs_free_path(path);
7055 return ret;
7056}
7057
7058/*
7059 * called from commit_transaction. Writes all changed device stats to disk.
7060 */
7061int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7062 struct btrfs_fs_info *fs_info)
7063{
733f4fbb
SB
7064 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7065 struct btrfs_device *device;
addc3fa7 7066 int stats_cnt;
733f4fbb
SB
7067 int ret = 0;
7068
7069 mutex_lock(&fs_devices->device_list_mutex);
7070 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7071 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7072 continue;
7073
addc3fa7 7074 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7075 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7076 if (!ret)
addc3fa7 7077 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7078 }
7079 mutex_unlock(&fs_devices->device_list_mutex);
7080
7081 return ret;
7082}
7083
442a4f63
SB
7084void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7085{
7086 btrfs_dev_stat_inc(dev, index);
7087 btrfs_dev_stat_print_on_error(dev);
7088}
7089
48a3b636 7090static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7091{
733f4fbb
SB
7092 if (!dev->dev_stats_valid)
7093 return;
fb456252 7094 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7095 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7096 rcu_str_deref(dev->name),
442a4f63
SB
7097 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7098 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7099 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7100 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7101 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7102}
c11d2c23 7103
733f4fbb
SB
7104static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7105{
a98cdb85
SB
7106 int i;
7107
7108 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7109 if (btrfs_dev_stat_read(dev, i) != 0)
7110 break;
7111 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7112 return; /* all values == 0, suppress message */
7113
fb456252 7114 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7115 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7116 rcu_str_deref(dev->name),
733f4fbb
SB
7117 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7118 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7119 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7120 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7121 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7122}
7123
2ff7e61e 7124int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7125 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7126{
7127 struct btrfs_device *dev;
0b246afa 7128 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7129 int i;
7130
7131 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7132 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7133 mutex_unlock(&fs_devices->device_list_mutex);
7134
7135 if (!dev) {
0b246afa 7136 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7137 return -ENODEV;
733f4fbb 7138 } else if (!dev->dev_stats_valid) {
0b246afa 7139 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7140 return -ENODEV;
b27f7c0c 7141 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7142 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7143 if (stats->nr_items > i)
7144 stats->values[i] =
7145 btrfs_dev_stat_read_and_reset(dev, i);
7146 else
7147 btrfs_dev_stat_reset(dev, i);
7148 }
7149 } else {
7150 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7151 if (stats->nr_items > i)
7152 stats->values[i] = btrfs_dev_stat_read(dev, i);
7153 }
7154 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7155 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7156 return 0;
7157}
a8a6dab7 7158
da353f6b 7159void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7160{
7161 struct buffer_head *bh;
7162 struct btrfs_super_block *disk_super;
12b1c263 7163 int copy_num;
a8a6dab7 7164
12b1c263
AJ
7165 if (!bdev)
7166 return;
a8a6dab7 7167
12b1c263
AJ
7168 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7169 copy_num++) {
a8a6dab7 7170
12b1c263
AJ
7171 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7172 continue;
7173
7174 disk_super = (struct btrfs_super_block *)bh->b_data;
7175
7176 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7177 set_buffer_dirty(bh);
7178 sync_dirty_buffer(bh);
7179 brelse(bh);
7180 }
7181
7182 /* Notify udev that device has changed */
7183 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7184
7185 /* Update ctime/mtime for device path for libblkid */
7186 update_dev_time(device_path);
a8a6dab7 7187}
935e5cc9
MX
7188
7189/*
7190 * Update the size of all devices, which is used for writing out the
7191 * super blocks.
7192 */
7193void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7194{
7195 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7196 struct btrfs_device *curr, *next;
7197
7198 if (list_empty(&fs_devices->resized_devices))
7199 return;
7200
7201 mutex_lock(&fs_devices->device_list_mutex);
34441361 7202 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7203 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7204 resized_list) {
7205 list_del_init(&curr->resized_list);
7206 curr->commit_total_bytes = curr->disk_total_bytes;
7207 }
34441361 7208 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7209 mutex_unlock(&fs_devices->device_list_mutex);
7210}
ce7213c7
MX
7211
7212/* Must be invoked during the transaction commit */
2ff7e61e 7213void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7214 struct btrfs_transaction *transaction)
7215{
7216 struct extent_map *em;
7217 struct map_lookup *map;
7218 struct btrfs_device *dev;
7219 int i;
7220
7221 if (list_empty(&transaction->pending_chunks))
7222 return;
7223
7224 /* In order to kick the device replace finish process */
34441361 7225 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7226 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7227 map = em->map_lookup;
ce7213c7
MX
7228
7229 for (i = 0; i < map->num_stripes; i++) {
7230 dev = map->stripes[i].dev;
7231 dev->commit_bytes_used = dev->bytes_used;
7232 }
7233 }
34441361 7234 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7235}
5a13f430
AJ
7236
7237void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7238{
7239 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7240 while (fs_devices) {
7241 fs_devices->fs_info = fs_info;
7242 fs_devices = fs_devices->seed;
7243 }
7244}
7245
7246void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7247{
7248 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7249 while (fs_devices) {
7250 fs_devices->fs_info = NULL;
7251 fs_devices = fs_devices->seed;
7252 }
7253}