]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/volumes.c
btrfs: btrfs_io_bio_alloc never fails, skip error handling
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / volumes.c
CommitLineData
0b86a832
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
5a0e3ad6 20#include <linux/slab.h>
8a4b83cc 21#include <linux/buffer_head.h>
f2d8d74d 22#include <linux/blkdev.h>
b765ead5 23#include <linux/iocontext.h>
6f88a440 24#include <linux/capability.h>
442a4f63 25#include <linux/ratelimit.h>
59641015 26#include <linux/kthread.h>
53b381b3 27#include <linux/raid/pq.h>
803b2f54 28#include <linux/semaphore.h>
8da4b8c4 29#include <linux/uuid.h>
53b381b3 30#include <asm/div64.h>
0b86a832
CM
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
53b381b3 37#include "raid56.h"
8b712842 38#include "async-thread.h"
21adbd5c 39#include "check-integrity.h"
606686ee 40#include "rcu-string.h"
3fed40cc 41#include "math.h"
8dabb742 42#include "dev-replace.h"
99994cde 43#include "sysfs.h"
0b86a832 44
af902047
ZL
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
8789f4fe 51 .tolerated_failures = 1,
af902047
ZL
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
8789f4fe 69 .tolerated_failures = 0,
af902047
ZL
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
8789f4fe 78 .tolerated_failures = 0,
af902047
ZL
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
8789f4fe 87 .tolerated_failures = 0,
af902047
ZL
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
8789f4fe 96 .tolerated_failures = 1,
af902047
ZL
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
8789f4fe 105 .tolerated_failures = 2,
af902047
ZL
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
fb75d857 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
af902047
ZL
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
621292ba
DS
121/*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134};
135
2b82032c 136static int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 137 struct btrfs_fs_info *fs_info);
2ff7e61e 138static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 139static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
48a3b636 140static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 141static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
142static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
2b82032c 147
67a2c45e 148DEFINE_MUTEX(uuid_mutex);
8a4b83cc 149static LIST_HEAD(fs_uuids);
c73eccf7
AJ
150struct list_head *btrfs_get_fs_uuids(void)
151{
152 return &fs_uuids;
153}
8a4b83cc 154
2208a378
ID
155static struct btrfs_fs_devices *__alloc_fs_devices(void)
156{
157 struct btrfs_fs_devices *fs_devs;
158
78f2c9e6 159 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
160 if (!fs_devs)
161 return ERR_PTR(-ENOMEM);
162
163 mutex_init(&fs_devs->device_list_mutex);
164
165 INIT_LIST_HEAD(&fs_devs->devices);
935e5cc9 166 INIT_LIST_HEAD(&fs_devs->resized_devices);
2208a378
ID
167 INIT_LIST_HEAD(&fs_devs->alloc_list);
168 INIT_LIST_HEAD(&fs_devs->list);
169
170 return fs_devs;
171}
172
173/**
174 * alloc_fs_devices - allocate struct btrfs_fs_devices
175 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
176 * generated.
177 *
178 * Return: a pointer to a new &struct btrfs_fs_devices on success;
179 * ERR_PTR() on error. Returned struct is not linked onto any lists and
180 * can be destroyed with kfree() right away.
181 */
182static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
183{
184 struct btrfs_fs_devices *fs_devs;
185
186 fs_devs = __alloc_fs_devices();
187 if (IS_ERR(fs_devs))
188 return fs_devs;
189
190 if (fsid)
191 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
192 else
193 generate_random_uuid(fs_devs->fsid);
194
195 return fs_devs;
196}
197
e4404d6e
YZ
198static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
199{
200 struct btrfs_device *device;
201 WARN_ON(fs_devices->opened);
202 while (!list_empty(&fs_devices->devices)) {
203 device = list_entry(fs_devices->devices.next,
204 struct btrfs_device, dev_list);
205 list_del(&device->dev_list);
606686ee 206 rcu_string_free(device->name);
e4404d6e
YZ
207 kfree(device);
208 }
209 kfree(fs_devices);
210}
211
b8b8ff59
LC
212static void btrfs_kobject_uevent(struct block_device *bdev,
213 enum kobject_action action)
214{
215 int ret;
216
217 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
218 if (ret)
efe120a0 219 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
b8b8ff59
LC
220 action,
221 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
222 &disk_to_dev(bdev->bd_disk)->kobj);
223}
224
143bede5 225void btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
226{
227 struct btrfs_fs_devices *fs_devices;
8a4b83cc 228
2b82032c
YZ
229 while (!list_empty(&fs_uuids)) {
230 fs_devices = list_entry(fs_uuids.next,
231 struct btrfs_fs_devices, list);
232 list_del(&fs_devices->list);
e4404d6e 233 free_fs_devices(fs_devices);
8a4b83cc 234 }
8a4b83cc
CM
235}
236
12bd2fc0
ID
237static struct btrfs_device *__alloc_device(void)
238{
239 struct btrfs_device *dev;
240
78f2c9e6 241 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
12bd2fc0
ID
242 if (!dev)
243 return ERR_PTR(-ENOMEM);
244
245 INIT_LIST_HEAD(&dev->dev_list);
246 INIT_LIST_HEAD(&dev->dev_alloc_list);
935e5cc9 247 INIT_LIST_HEAD(&dev->resized_list);
12bd2fc0
ID
248
249 spin_lock_init(&dev->io_lock);
250
251 spin_lock_init(&dev->reada_lock);
252 atomic_set(&dev->reada_in_flight, 0);
addc3fa7 253 atomic_set(&dev->dev_stats_ccnt, 0);
546bed63 254 btrfs_device_data_ordered_init(dev);
9bcaaea7 255 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
d0164adc 256 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
12bd2fc0
ID
257
258 return dev;
259}
260
a1b32a59
CM
261static noinline struct btrfs_device *__find_device(struct list_head *head,
262 u64 devid, u8 *uuid)
8a4b83cc
CM
263{
264 struct btrfs_device *dev;
8a4b83cc 265
c6e30871 266 list_for_each_entry(dev, head, dev_list) {
a443755f 267 if (dev->devid == devid &&
8f18cf13 268 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
8a4b83cc 269 return dev;
a443755f 270 }
8a4b83cc
CM
271 }
272 return NULL;
273}
274
a1b32a59 275static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
8a4b83cc 276{
8a4b83cc
CM
277 struct btrfs_fs_devices *fs_devices;
278
c6e30871 279 list_for_each_entry(fs_devices, &fs_uuids, list) {
8a4b83cc
CM
280 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
281 return fs_devices;
282 }
283 return NULL;
284}
285
beaf8ab3
SB
286static int
287btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
288 int flush, struct block_device **bdev,
289 struct buffer_head **bh)
290{
291 int ret;
292
293 *bdev = blkdev_get_by_path(device_path, flags, holder);
294
295 if (IS_ERR(*bdev)) {
296 ret = PTR_ERR(*bdev);
beaf8ab3
SB
297 goto error;
298 }
299
300 if (flush)
301 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
302 ret = set_blocksize(*bdev, 4096);
303 if (ret) {
304 blkdev_put(*bdev, flags);
305 goto error;
306 }
307 invalidate_bdev(*bdev);
308 *bh = btrfs_read_dev_super(*bdev);
92fc03fb
AJ
309 if (IS_ERR(*bh)) {
310 ret = PTR_ERR(*bh);
beaf8ab3
SB
311 blkdev_put(*bdev, flags);
312 goto error;
313 }
314
315 return 0;
316
317error:
318 *bdev = NULL;
319 *bh = NULL;
320 return ret;
321}
322
ffbd517d
CM
323static void requeue_list(struct btrfs_pending_bios *pending_bios,
324 struct bio *head, struct bio *tail)
325{
326
327 struct bio *old_head;
328
329 old_head = pending_bios->head;
330 pending_bios->head = head;
331 if (pending_bios->tail)
332 tail->bi_next = old_head;
333 else
334 pending_bios->tail = tail;
335}
336
8b712842
CM
337/*
338 * we try to collect pending bios for a device so we don't get a large
339 * number of procs sending bios down to the same device. This greatly
340 * improves the schedulers ability to collect and merge the bios.
341 *
342 * But, it also turns into a long list of bios to process and that is sure
343 * to eventually make the worker thread block. The solution here is to
344 * make some progress and then put this work struct back at the end of
345 * the list if the block device is congested. This way, multiple devices
346 * can make progress from a single worker thread.
347 */
143bede5 348static noinline void run_scheduled_bios(struct btrfs_device *device)
8b712842 349{
0b246afa 350 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842
CM
351 struct bio *pending;
352 struct backing_dev_info *bdi;
ffbd517d 353 struct btrfs_pending_bios *pending_bios;
8b712842
CM
354 struct bio *tail;
355 struct bio *cur;
356 int again = 0;
ffbd517d 357 unsigned long num_run;
d644d8a1 358 unsigned long batch_run = 0;
b64a2851 359 unsigned long limit;
b765ead5 360 unsigned long last_waited = 0;
d84275c9 361 int force_reg = 0;
0e588859 362 int sync_pending = 0;
211588ad
CM
363 struct blk_plug plug;
364
365 /*
366 * this function runs all the bios we've collected for
367 * a particular device. We don't want to wander off to
368 * another device without first sending all of these down.
369 * So, setup a plug here and finish it off before we return
370 */
371 blk_start_plug(&plug);
8b712842 372
efa7c9f9 373 bdi = device->bdev->bd_bdi;
b64a2851
CM
374 limit = btrfs_async_submit_limit(fs_info);
375 limit = limit * 2 / 3;
376
8b712842
CM
377loop:
378 spin_lock(&device->io_lock);
379
a6837051 380loop_lock:
d84275c9 381 num_run = 0;
ffbd517d 382
8b712842
CM
383 /* take all the bios off the list at once and process them
384 * later on (without the lock held). But, remember the
385 * tail and other pointers so the bios can be properly reinserted
386 * into the list if we hit congestion
387 */
d84275c9 388 if (!force_reg && device->pending_sync_bios.head) {
ffbd517d 389 pending_bios = &device->pending_sync_bios;
d84275c9
CM
390 force_reg = 1;
391 } else {
ffbd517d 392 pending_bios = &device->pending_bios;
d84275c9
CM
393 force_reg = 0;
394 }
ffbd517d
CM
395
396 pending = pending_bios->head;
397 tail = pending_bios->tail;
8b712842 398 WARN_ON(pending && !tail);
8b712842
CM
399
400 /*
401 * if pending was null this time around, no bios need processing
402 * at all and we can stop. Otherwise it'll loop back up again
403 * and do an additional check so no bios are missed.
404 *
405 * device->running_pending is used to synchronize with the
406 * schedule_bio code.
407 */
ffbd517d
CM
408 if (device->pending_sync_bios.head == NULL &&
409 device->pending_bios.head == NULL) {
8b712842
CM
410 again = 0;
411 device->running_pending = 0;
ffbd517d
CM
412 } else {
413 again = 1;
414 device->running_pending = 1;
8b712842 415 }
ffbd517d
CM
416
417 pending_bios->head = NULL;
418 pending_bios->tail = NULL;
419
8b712842
CM
420 spin_unlock(&device->io_lock);
421
d397712b 422 while (pending) {
ffbd517d
CM
423
424 rmb();
d84275c9
CM
425 /* we want to work on both lists, but do more bios on the
426 * sync list than the regular list
427 */
428 if ((num_run > 32 &&
429 pending_bios != &device->pending_sync_bios &&
430 device->pending_sync_bios.head) ||
431 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
432 device->pending_bios.head)) {
ffbd517d
CM
433 spin_lock(&device->io_lock);
434 requeue_list(pending_bios, pending, tail);
435 goto loop_lock;
436 }
437
8b712842
CM
438 cur = pending;
439 pending = pending->bi_next;
440 cur->bi_next = NULL;
b64a2851 441
ee863954
DS
442 /*
443 * atomic_dec_return implies a barrier for waitqueue_active
444 */
66657b31 445 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
b64a2851
CM
446 waitqueue_active(&fs_info->async_submit_wait))
447 wake_up(&fs_info->async_submit_wait);
492bb6de 448
dac56212 449 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
d644d8a1 450
2ab1ba68
CM
451 /*
452 * if we're doing the sync list, record that our
453 * plug has some sync requests on it
454 *
455 * If we're doing the regular list and there are
456 * sync requests sitting around, unplug before
457 * we add more
458 */
459 if (pending_bios == &device->pending_sync_bios) {
460 sync_pending = 1;
461 } else if (sync_pending) {
462 blk_finish_plug(&plug);
463 blk_start_plug(&plug);
464 sync_pending = 0;
465 }
466
4e49ea4a 467 btrfsic_submit_bio(cur);
5ff7ba3a
CM
468 num_run++;
469 batch_run++;
853d8ec4
DS
470
471 cond_resched();
8b712842
CM
472
473 /*
474 * we made progress, there is more work to do and the bdi
475 * is now congested. Back off and let other work structs
476 * run instead
477 */
57fd5a5f 478 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
5f2cc086 479 fs_info->fs_devices->open_devices > 1) {
b765ead5 480 struct io_context *ioc;
8b712842 481
b765ead5
CM
482 ioc = current->io_context;
483
484 /*
485 * the main goal here is that we don't want to
486 * block if we're going to be able to submit
487 * more requests without blocking.
488 *
489 * This code does two great things, it pokes into
490 * the elevator code from a filesystem _and_
491 * it makes assumptions about how batching works.
492 */
493 if (ioc && ioc->nr_batch_requests > 0 &&
494 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
495 (last_waited == 0 ||
496 ioc->last_waited == last_waited)) {
497 /*
498 * we want to go through our batch of
499 * requests and stop. So, we copy out
500 * the ioc->last_waited time and test
501 * against it before looping
502 */
503 last_waited = ioc->last_waited;
853d8ec4 504 cond_resched();
b765ead5
CM
505 continue;
506 }
8b712842 507 spin_lock(&device->io_lock);
ffbd517d 508 requeue_list(pending_bios, pending, tail);
a6837051 509 device->running_pending = 1;
8b712842
CM
510
511 spin_unlock(&device->io_lock);
a8c93d4e
QW
512 btrfs_queue_work(fs_info->submit_workers,
513 &device->work);
8b712842
CM
514 goto done;
515 }
d85c8a6f
CM
516 /* unplug every 64 requests just for good measure */
517 if (batch_run % 64 == 0) {
518 blk_finish_plug(&plug);
519 blk_start_plug(&plug);
520 sync_pending = 0;
521 }
8b712842 522 }
ffbd517d 523
51684082
CM
524 cond_resched();
525 if (again)
526 goto loop;
527
528 spin_lock(&device->io_lock);
529 if (device->pending_bios.head || device->pending_sync_bios.head)
530 goto loop_lock;
531 spin_unlock(&device->io_lock);
532
8b712842 533done:
211588ad 534 blk_finish_plug(&plug);
8b712842
CM
535}
536
b2950863 537static void pending_bios_fn(struct btrfs_work *work)
8b712842
CM
538{
539 struct btrfs_device *device;
540
541 device = container_of(work, struct btrfs_device, work);
542 run_scheduled_bios(device);
543}
544
4fde46f0
AJ
545
546void btrfs_free_stale_device(struct btrfs_device *cur_dev)
547{
548 struct btrfs_fs_devices *fs_devs;
549 struct btrfs_device *dev;
550
551 if (!cur_dev->name)
552 return;
553
554 list_for_each_entry(fs_devs, &fs_uuids, list) {
555 int del = 1;
556
557 if (fs_devs->opened)
558 continue;
559 if (fs_devs->seeding)
560 continue;
561
562 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
563
564 if (dev == cur_dev)
565 continue;
566 if (!dev->name)
567 continue;
568
569 /*
570 * Todo: This won't be enough. What if the same device
571 * comes back (with new uuid and) with its mapper path?
572 * But for now, this does help as mostly an admin will
573 * either use mapper or non mapper path throughout.
574 */
575 rcu_read_lock();
576 del = strcmp(rcu_str_deref(dev->name),
577 rcu_str_deref(cur_dev->name));
578 rcu_read_unlock();
579 if (!del)
580 break;
581 }
582
583 if (!del) {
584 /* delete the stale device */
585 if (fs_devs->num_devices == 1) {
586 btrfs_sysfs_remove_fsid(fs_devs);
587 list_del(&fs_devs->list);
588 free_fs_devices(fs_devs);
589 } else {
590 fs_devs->num_devices--;
591 list_del(&dev->dev_list);
592 rcu_string_free(dev->name);
593 kfree(dev);
594 }
595 break;
596 }
597 }
598}
599
60999ca4
DS
600/*
601 * Add new device to list of registered devices
602 *
603 * Returns:
604 * 1 - first time device is seen
605 * 0 - device already known
606 * < 0 - error
607 */
a1b32a59 608static noinline int device_list_add(const char *path,
8a4b83cc
CM
609 struct btrfs_super_block *disk_super,
610 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
611{
612 struct btrfs_device *device;
613 struct btrfs_fs_devices *fs_devices;
606686ee 614 struct rcu_string *name;
60999ca4 615 int ret = 0;
8a4b83cc
CM
616 u64 found_transid = btrfs_super_generation(disk_super);
617
618 fs_devices = find_fsid(disk_super->fsid);
619 if (!fs_devices) {
2208a378
ID
620 fs_devices = alloc_fs_devices(disk_super->fsid);
621 if (IS_ERR(fs_devices))
622 return PTR_ERR(fs_devices);
623
8a4b83cc 624 list_add(&fs_devices->list, &fs_uuids);
2208a378 625
8a4b83cc
CM
626 device = NULL;
627 } else {
a443755f
CM
628 device = __find_device(&fs_devices->devices, devid,
629 disk_super->dev_item.uuid);
8a4b83cc 630 }
443f24fe 631
8a4b83cc 632 if (!device) {
2b82032c
YZ
633 if (fs_devices->opened)
634 return -EBUSY;
635
12bd2fc0
ID
636 device = btrfs_alloc_device(NULL, &devid,
637 disk_super->dev_item.uuid);
638 if (IS_ERR(device)) {
8a4b83cc 639 /* we can safely leave the fs_devices entry around */
12bd2fc0 640 return PTR_ERR(device);
8a4b83cc 641 }
606686ee
JB
642
643 name = rcu_string_strdup(path, GFP_NOFS);
644 if (!name) {
8a4b83cc
CM
645 kfree(device);
646 return -ENOMEM;
647 }
606686ee 648 rcu_assign_pointer(device->name, name);
90519d66 649
e5e9a520 650 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 651 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 652 fs_devices->num_devices++;
e5e9a520
CM
653 mutex_unlock(&fs_devices->device_list_mutex);
654
60999ca4 655 ret = 1;
2b82032c 656 device->fs_devices = fs_devices;
606686ee 657 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
658 /*
659 * When FS is already mounted.
660 * 1. If you are here and if the device->name is NULL that
661 * means this device was missing at time of FS mount.
662 * 2. If you are here and if the device->name is different
663 * from 'path' that means either
664 * a. The same device disappeared and reappeared with
665 * different name. or
666 * b. The missing-disk-which-was-replaced, has
667 * reappeared now.
668 *
669 * We must allow 1 and 2a above. But 2b would be a spurious
670 * and unintentional.
671 *
672 * Further in case of 1 and 2a above, the disk at 'path'
673 * would have missed some transaction when it was away and
674 * in case of 2a the stale bdev has to be updated as well.
675 * 2b must not be allowed at all time.
676 */
677
678 /*
0f23ae74
CM
679 * For now, we do allow update to btrfs_fs_device through the
680 * btrfs dev scan cli after FS has been mounted. We're still
681 * tracking a problem where systems fail mount by subvolume id
682 * when we reject replacement on a mounted FS.
b96de000 683 */
0f23ae74 684 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
685 /*
686 * That is if the FS is _not_ mounted and if you
687 * are here, that means there is more than one
688 * disk with same uuid and devid.We keep the one
689 * with larger generation number or the last-in if
690 * generation are equal.
691 */
0f23ae74 692 return -EEXIST;
77bdae4d 693 }
b96de000 694
606686ee 695 name = rcu_string_strdup(path, GFP_NOFS);
3a0524dc
TH
696 if (!name)
697 return -ENOMEM;
606686ee
JB
698 rcu_string_free(device->name);
699 rcu_assign_pointer(device->name, name);
cd02dca5
CM
700 if (device->missing) {
701 fs_devices->missing_devices--;
702 device->missing = 0;
703 }
8a4b83cc
CM
704 }
705
77bdae4d
AJ
706 /*
707 * Unmount does not free the btrfs_device struct but would zero
708 * generation along with most of the other members. So just update
709 * it back. We need it to pick the disk with largest generation
710 * (as above).
711 */
712 if (!fs_devices->opened)
713 device->generation = found_transid;
714
4fde46f0
AJ
715 /*
716 * if there is new btrfs on an already registered device,
717 * then remove the stale device entry.
718 */
02feae3c
AJ
719 if (ret > 0)
720 btrfs_free_stale_device(device);
4fde46f0 721
8a4b83cc 722 *fs_devices_ret = fs_devices;
60999ca4
DS
723
724 return ret;
8a4b83cc
CM
725}
726
e4404d6e
YZ
727static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
728{
729 struct btrfs_fs_devices *fs_devices;
730 struct btrfs_device *device;
731 struct btrfs_device *orig_dev;
732
2208a378
ID
733 fs_devices = alloc_fs_devices(orig->fsid);
734 if (IS_ERR(fs_devices))
735 return fs_devices;
e4404d6e 736
adbbb863 737 mutex_lock(&orig->device_list_mutex);
02db0844 738 fs_devices->total_devices = orig->total_devices;
e4404d6e 739
46224705 740 /* We have held the volume lock, it is safe to get the devices. */
e4404d6e 741 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
742 struct rcu_string *name;
743
12bd2fc0
ID
744 device = btrfs_alloc_device(NULL, &orig_dev->devid,
745 orig_dev->uuid);
746 if (IS_ERR(device))
e4404d6e
YZ
747 goto error;
748
606686ee
JB
749 /*
750 * This is ok to do without rcu read locked because we hold the
751 * uuid mutex so nothing we touch in here is going to disappear.
752 */
e755f780 753 if (orig_dev->name) {
78f2c9e6
DS
754 name = rcu_string_strdup(orig_dev->name->str,
755 GFP_KERNEL);
e755f780
AJ
756 if (!name) {
757 kfree(device);
758 goto error;
759 }
760 rcu_assign_pointer(device->name, name);
fd2696f3 761 }
e4404d6e 762
e4404d6e
YZ
763 list_add(&device->dev_list, &fs_devices->devices);
764 device->fs_devices = fs_devices;
765 fs_devices->num_devices++;
766 }
adbbb863 767 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
768 return fs_devices;
769error:
adbbb863 770 mutex_unlock(&orig->device_list_mutex);
e4404d6e
YZ
771 free_fs_devices(fs_devices);
772 return ERR_PTR(-ENOMEM);
773}
774
9eaed21e 775void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
dfe25020 776{
c6e30871 777 struct btrfs_device *device, *next;
443f24fe 778 struct btrfs_device *latest_dev = NULL;
a6b0d5c8 779
dfe25020
CM
780 mutex_lock(&uuid_mutex);
781again:
46224705 782 /* This is the initialized path, it is safe to release the devices. */
c6e30871 783 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
a6b0d5c8 784 if (device->in_fs_metadata) {
63a212ab 785 if (!device->is_tgtdev_for_dev_replace &&
443f24fe
MX
786 (!latest_dev ||
787 device->generation > latest_dev->generation)) {
788 latest_dev = device;
a6b0d5c8 789 }
2b82032c 790 continue;
a6b0d5c8 791 }
2b82032c 792
8dabb742
SB
793 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
794 /*
795 * In the first step, keep the device which has
796 * the correct fsid and the devid that is used
797 * for the dev_replace procedure.
798 * In the second step, the dev_replace state is
799 * read from the device tree and it is known
800 * whether the procedure is really active or
801 * not, which means whether this device is
802 * used or whether it should be removed.
803 */
804 if (step == 0 || device->is_tgtdev_for_dev_replace) {
805 continue;
806 }
807 }
2b82032c 808 if (device->bdev) {
d4d77629 809 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
810 device->bdev = NULL;
811 fs_devices->open_devices--;
812 }
813 if (device->writeable) {
814 list_del_init(&device->dev_alloc_list);
815 device->writeable = 0;
8dabb742
SB
816 if (!device->is_tgtdev_for_dev_replace)
817 fs_devices->rw_devices--;
2b82032c 818 }
e4404d6e
YZ
819 list_del_init(&device->dev_list);
820 fs_devices->num_devices--;
606686ee 821 rcu_string_free(device->name);
e4404d6e 822 kfree(device);
dfe25020 823 }
2b82032c
YZ
824
825 if (fs_devices->seed) {
826 fs_devices = fs_devices->seed;
2b82032c
YZ
827 goto again;
828 }
829
443f24fe 830 fs_devices->latest_bdev = latest_dev->bdev;
a6b0d5c8 831
dfe25020 832 mutex_unlock(&uuid_mutex);
dfe25020 833}
a0af469b 834
1f78160c
XG
835static void __free_device(struct work_struct *work)
836{
837 struct btrfs_device *device;
838
839 device = container_of(work, struct btrfs_device, rcu_work);
606686ee 840 rcu_string_free(device->name);
1f78160c
XG
841 kfree(device);
842}
843
844static void free_device(struct rcu_head *head)
845{
846 struct btrfs_device *device;
847
848 device = container_of(head, struct btrfs_device, rcu);
849
850 INIT_WORK(&device->rcu_work, __free_device);
851 schedule_work(&device->rcu_work);
852}
853
14238819
AJ
854static void btrfs_close_bdev(struct btrfs_device *device)
855{
856 if (device->bdev && device->writeable) {
857 sync_blockdev(device->bdev);
858 invalidate_bdev(device->bdev);
859 }
860
861 if (device->bdev)
862 blkdev_put(device->bdev, device->mode);
863}
864
0ccd0528 865static void btrfs_prepare_close_one_device(struct btrfs_device *device)
f448341a
AJ
866{
867 struct btrfs_fs_devices *fs_devices = device->fs_devices;
868 struct btrfs_device *new_device;
869 struct rcu_string *name;
870
871 if (device->bdev)
872 fs_devices->open_devices--;
873
874 if (device->writeable &&
875 device->devid != BTRFS_DEV_REPLACE_DEVID) {
876 list_del_init(&device->dev_alloc_list);
877 fs_devices->rw_devices--;
878 }
879
880 if (device->missing)
881 fs_devices->missing_devices--;
882
883 new_device = btrfs_alloc_device(NULL, &device->devid,
884 device->uuid);
885 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
886
887 /* Safe because we are under uuid_mutex */
888 if (device->name) {
889 name = rcu_string_strdup(device->name->str, GFP_NOFS);
890 BUG_ON(!name); /* -ENOMEM */
891 rcu_assign_pointer(new_device->name, name);
892 }
893
894 list_replace_rcu(&device->dev_list, &new_device->dev_list);
895 new_device->fs_devices = device->fs_devices;
f448341a
AJ
896}
897
2b82032c 898static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 899{
2037a093 900 struct btrfs_device *device, *tmp;
0ccd0528
AJ
901 struct list_head pending_put;
902
903 INIT_LIST_HEAD(&pending_put);
e4404d6e 904
2b82032c
YZ
905 if (--fs_devices->opened > 0)
906 return 0;
8a4b83cc 907
c9513edb 908 mutex_lock(&fs_devices->device_list_mutex);
2037a093 909 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
0ccd0528
AJ
910 btrfs_prepare_close_one_device(device);
911 list_add(&device->dev_list, &pending_put);
8a4b83cc 912 }
c9513edb
XG
913 mutex_unlock(&fs_devices->device_list_mutex);
914
0ccd0528
AJ
915 /*
916 * btrfs_show_devname() is using the device_list_mutex,
917 * sometimes call to blkdev_put() leads vfs calling
918 * into this func. So do put outside of device_list_mutex,
919 * as of now.
920 */
921 while (!list_empty(&pending_put)) {
922 device = list_first_entry(&pending_put,
923 struct btrfs_device, dev_list);
924 list_del(&device->dev_list);
925 btrfs_close_bdev(device);
926 call_rcu(&device->rcu, free_device);
927 }
928
e4404d6e
YZ
929 WARN_ON(fs_devices->open_devices);
930 WARN_ON(fs_devices->rw_devices);
2b82032c
YZ
931 fs_devices->opened = 0;
932 fs_devices->seeding = 0;
2b82032c 933
8a4b83cc
CM
934 return 0;
935}
936
2b82032c
YZ
937int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
938{
e4404d6e 939 struct btrfs_fs_devices *seed_devices = NULL;
2b82032c
YZ
940 int ret;
941
942 mutex_lock(&uuid_mutex);
943 ret = __btrfs_close_devices(fs_devices);
e4404d6e
YZ
944 if (!fs_devices->opened) {
945 seed_devices = fs_devices->seed;
946 fs_devices->seed = NULL;
947 }
2b82032c 948 mutex_unlock(&uuid_mutex);
e4404d6e
YZ
949
950 while (seed_devices) {
951 fs_devices = seed_devices;
952 seed_devices = fs_devices->seed;
953 __btrfs_close_devices(fs_devices);
954 free_fs_devices(fs_devices);
955 }
bc178622
ES
956 /*
957 * Wait for rcu kworkers under __btrfs_close_devices
958 * to finish all blkdev_puts so device is really
959 * free when umount is done.
960 */
961 rcu_barrier();
2b82032c
YZ
962 return ret;
963}
964
e4404d6e
YZ
965static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
966 fmode_t flags, void *holder)
8a4b83cc 967{
d5e2003c 968 struct request_queue *q;
8a4b83cc
CM
969 struct block_device *bdev;
970 struct list_head *head = &fs_devices->devices;
8a4b83cc 971 struct btrfs_device *device;
443f24fe 972 struct btrfs_device *latest_dev = NULL;
a0af469b
CM
973 struct buffer_head *bh;
974 struct btrfs_super_block *disk_super;
a0af469b 975 u64 devid;
2b82032c 976 int seeding = 1;
a0af469b 977 int ret = 0;
8a4b83cc 978
d4d77629
TH
979 flags |= FMODE_EXCL;
980
c6e30871 981 list_for_each_entry(device, head, dev_list) {
c1c4d91c
CM
982 if (device->bdev)
983 continue;
dfe25020
CM
984 if (!device->name)
985 continue;
986
f63e0cca
ES
987 /* Just open everything we can; ignore failures here */
988 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
989 &bdev, &bh))
beaf8ab3 990 continue;
a0af469b
CM
991
992 disk_super = (struct btrfs_super_block *)bh->b_data;
a343832f 993 devid = btrfs_stack_device_id(&disk_super->dev_item);
a0af469b
CM
994 if (devid != device->devid)
995 goto error_brelse;
996
2b82032c
YZ
997 if (memcmp(device->uuid, disk_super->dev_item.uuid,
998 BTRFS_UUID_SIZE))
999 goto error_brelse;
1000
1001 device->generation = btrfs_super_generation(disk_super);
443f24fe
MX
1002 if (!latest_dev ||
1003 device->generation > latest_dev->generation)
1004 latest_dev = device;
a0af469b 1005
2b82032c
YZ
1006 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1007 device->writeable = 0;
1008 } else {
1009 device->writeable = !bdev_read_only(bdev);
1010 seeding = 0;
1011 }
1012
d5e2003c 1013 q = bdev_get_queue(bdev);
90180da4 1014 if (blk_queue_discard(q))
d5e2003c 1015 device->can_discard = 1;
e884f4f0
AJ
1016 if (!blk_queue_nonrot(q))
1017 fs_devices->rotating = 1;
d5e2003c 1018
8a4b83cc 1019 device->bdev = bdev;
dfe25020 1020 device->in_fs_metadata = 0;
15916de8
CM
1021 device->mode = flags;
1022
a0af469b 1023 fs_devices->open_devices++;
55e50e45
ID
1024 if (device->writeable &&
1025 device->devid != BTRFS_DEV_REPLACE_DEVID) {
2b82032c
YZ
1026 fs_devices->rw_devices++;
1027 list_add(&device->dev_alloc_list,
1028 &fs_devices->alloc_list);
1029 }
4f6c9328 1030 brelse(bh);
a0af469b 1031 continue;
a061fc8d 1032
a0af469b
CM
1033error_brelse:
1034 brelse(bh);
d4d77629 1035 blkdev_put(bdev, flags);
a0af469b 1036 continue;
8a4b83cc 1037 }
a0af469b 1038 if (fs_devices->open_devices == 0) {
20bcd649 1039 ret = -EINVAL;
a0af469b
CM
1040 goto out;
1041 }
2b82032c
YZ
1042 fs_devices->seeding = seeding;
1043 fs_devices->opened = 1;
443f24fe 1044 fs_devices->latest_bdev = latest_dev->bdev;
2b82032c 1045 fs_devices->total_rw_bytes = 0;
a0af469b 1046out:
2b82032c
YZ
1047 return ret;
1048}
1049
1050int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1051 fmode_t flags, void *holder)
2b82032c
YZ
1052{
1053 int ret;
1054
1055 mutex_lock(&uuid_mutex);
1056 if (fs_devices->opened) {
e4404d6e
YZ
1057 fs_devices->opened++;
1058 ret = 0;
2b82032c 1059 } else {
15916de8 1060 ret = __btrfs_open_devices(fs_devices, flags, holder);
2b82032c 1061 }
8a4b83cc 1062 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1063 return ret;
1064}
1065
6cf86a00
AJ
1066void btrfs_release_disk_super(struct page *page)
1067{
1068 kunmap(page);
1069 put_page(page);
1070}
1071
1072int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1073 struct page **page, struct btrfs_super_block **disk_super)
1074{
1075 void *p;
1076 pgoff_t index;
1077
1078 /* make sure our super fits in the device */
1079 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1080 return 1;
1081
1082 /* make sure our super fits in the page */
1083 if (sizeof(**disk_super) > PAGE_SIZE)
1084 return 1;
1085
1086 /* make sure our super doesn't straddle pages on disk */
1087 index = bytenr >> PAGE_SHIFT;
1088 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1089 return 1;
1090
1091 /* pull in the page with our super */
1092 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1093 index, GFP_KERNEL);
1094
1095 if (IS_ERR_OR_NULL(*page))
1096 return 1;
1097
1098 p = kmap(*page);
1099
1100 /* align our pointer to the offset of the super block */
1101 *disk_super = p + (bytenr & ~PAGE_MASK);
1102
1103 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1104 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1105 btrfs_release_disk_super(*page);
1106 return 1;
1107 }
1108
1109 if ((*disk_super)->label[0] &&
1110 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1111 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1112
1113 return 0;
1114}
1115
6f60cbd3
DS
1116/*
1117 * Look for a btrfs signature on a device. This may be called out of the mount path
1118 * and we are not allowed to call set_blocksize during the scan. The superblock
1119 * is read via pagecache
1120 */
97288f2c 1121int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
8a4b83cc
CM
1122 struct btrfs_fs_devices **fs_devices_ret)
1123{
1124 struct btrfs_super_block *disk_super;
1125 struct block_device *bdev;
6f60cbd3 1126 struct page *page;
6f60cbd3 1127 int ret = -EINVAL;
8a4b83cc 1128 u64 devid;
f2984462 1129 u64 transid;
02db0844 1130 u64 total_devices;
6f60cbd3 1131 u64 bytenr;
8a4b83cc 1132
6f60cbd3
DS
1133 /*
1134 * we would like to check all the supers, but that would make
1135 * a btrfs mount succeed after a mkfs from a different FS.
1136 * So, we need to add a special mount option to scan for
1137 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1138 */
1139 bytenr = btrfs_sb_offset(0);
d4d77629 1140 flags |= FMODE_EXCL;
10f6327b 1141 mutex_lock(&uuid_mutex);
6f60cbd3
DS
1142
1143 bdev = blkdev_get_by_path(path, flags, holder);
6f60cbd3
DS
1144 if (IS_ERR(bdev)) {
1145 ret = PTR_ERR(bdev);
beaf8ab3 1146 goto error;
6f60cbd3
DS
1147 }
1148
6cf86a00 1149 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
6f60cbd3
DS
1150 goto error_bdev_put;
1151
a343832f 1152 devid = btrfs_stack_device_id(&disk_super->dev_item);
f2984462 1153 transid = btrfs_super_generation(disk_super);
02db0844 1154 total_devices = btrfs_super_num_devices(disk_super);
6f60cbd3 1155
8a4b83cc 1156 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
60999ca4
DS
1157 if (ret > 0) {
1158 if (disk_super->label[0]) {
62e85577 1159 pr_info("BTRFS: device label %s ", disk_super->label);
60999ca4 1160 } else {
62e85577 1161 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
60999ca4
DS
1162 }
1163
62e85577 1164 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
60999ca4
DS
1165 ret = 0;
1166 }
02db0844
JB
1167 if (!ret && fs_devices_ret)
1168 (*fs_devices_ret)->total_devices = total_devices;
6f60cbd3 1169
6cf86a00 1170 btrfs_release_disk_super(page);
6f60cbd3
DS
1171
1172error_bdev_put:
d4d77629 1173 blkdev_put(bdev, flags);
8a4b83cc 1174error:
beaf8ab3 1175 mutex_unlock(&uuid_mutex);
8a4b83cc
CM
1176 return ret;
1177}
0b86a832 1178
6d07bcec
MX
1179/* helper to account the used device space in the range */
1180int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1181 u64 end, u64 *length)
1182{
1183 struct btrfs_key key;
fb456252 1184 struct btrfs_root *root = device->fs_info->dev_root;
6d07bcec
MX
1185 struct btrfs_dev_extent *dev_extent;
1186 struct btrfs_path *path;
1187 u64 extent_end;
1188 int ret;
1189 int slot;
1190 struct extent_buffer *l;
1191
1192 *length = 0;
1193
63a212ab 1194 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
6d07bcec
MX
1195 return 0;
1196
1197 path = btrfs_alloc_path();
1198 if (!path)
1199 return -ENOMEM;
e4058b54 1200 path->reada = READA_FORWARD;
6d07bcec
MX
1201
1202 key.objectid = device->devid;
1203 key.offset = start;
1204 key.type = BTRFS_DEV_EXTENT_KEY;
1205
1206 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1207 if (ret < 0)
1208 goto out;
1209 if (ret > 0) {
1210 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1211 if (ret < 0)
1212 goto out;
1213 }
1214
1215 while (1) {
1216 l = path->nodes[0];
1217 slot = path->slots[0];
1218 if (slot >= btrfs_header_nritems(l)) {
1219 ret = btrfs_next_leaf(root, path);
1220 if (ret == 0)
1221 continue;
1222 if (ret < 0)
1223 goto out;
1224
1225 break;
1226 }
1227 btrfs_item_key_to_cpu(l, &key, slot);
1228
1229 if (key.objectid < device->devid)
1230 goto next;
1231
1232 if (key.objectid > device->devid)
1233 break;
1234
962a298f 1235 if (key.type != BTRFS_DEV_EXTENT_KEY)
6d07bcec
MX
1236 goto next;
1237
1238 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1239 extent_end = key.offset + btrfs_dev_extent_length(l,
1240 dev_extent);
1241 if (key.offset <= start && extent_end > end) {
1242 *length = end - start + 1;
1243 break;
1244 } else if (key.offset <= start && extent_end > start)
1245 *length += extent_end - start;
1246 else if (key.offset > start && extent_end <= end)
1247 *length += extent_end - key.offset;
1248 else if (key.offset > start && key.offset <= end) {
1249 *length += end - key.offset + 1;
1250 break;
1251 } else if (key.offset > end)
1252 break;
1253
1254next:
1255 path->slots[0]++;
1256 }
1257 ret = 0;
1258out:
1259 btrfs_free_path(path);
1260 return ret;
1261}
1262
499f377f 1263static int contains_pending_extent(struct btrfs_transaction *transaction,
6df9a95e
JB
1264 struct btrfs_device *device,
1265 u64 *start, u64 len)
1266{
fb456252 1267 struct btrfs_fs_info *fs_info = device->fs_info;
6df9a95e 1268 struct extent_map *em;
499f377f 1269 struct list_head *search_list = &fs_info->pinned_chunks;
6df9a95e 1270 int ret = 0;
1b984508 1271 u64 physical_start = *start;
6df9a95e 1272
499f377f
JM
1273 if (transaction)
1274 search_list = &transaction->pending_chunks;
04216820
FM
1275again:
1276 list_for_each_entry(em, search_list, list) {
6df9a95e
JB
1277 struct map_lookup *map;
1278 int i;
1279
95617d69 1280 map = em->map_lookup;
6df9a95e 1281 for (i = 0; i < map->num_stripes; i++) {
c152b63e
FM
1282 u64 end;
1283
6df9a95e
JB
1284 if (map->stripes[i].dev != device)
1285 continue;
1b984508 1286 if (map->stripes[i].physical >= physical_start + len ||
6df9a95e 1287 map->stripes[i].physical + em->orig_block_len <=
1b984508 1288 physical_start)
6df9a95e 1289 continue;
c152b63e
FM
1290 /*
1291 * Make sure that while processing the pinned list we do
1292 * not override our *start with a lower value, because
1293 * we can have pinned chunks that fall within this
1294 * device hole and that have lower physical addresses
1295 * than the pending chunks we processed before. If we
1296 * do not take this special care we can end up getting
1297 * 2 pending chunks that start at the same physical
1298 * device offsets because the end offset of a pinned
1299 * chunk can be equal to the start offset of some
1300 * pending chunk.
1301 */
1302 end = map->stripes[i].physical + em->orig_block_len;
1303 if (end > *start) {
1304 *start = end;
1305 ret = 1;
1306 }
6df9a95e
JB
1307 }
1308 }
499f377f
JM
1309 if (search_list != &fs_info->pinned_chunks) {
1310 search_list = &fs_info->pinned_chunks;
04216820
FM
1311 goto again;
1312 }
6df9a95e
JB
1313
1314 return ret;
1315}
1316
1317
0b86a832 1318/*
499f377f
JM
1319 * find_free_dev_extent_start - find free space in the specified device
1320 * @device: the device which we search the free space in
1321 * @num_bytes: the size of the free space that we need
1322 * @search_start: the position from which to begin the search
1323 * @start: store the start of the free space.
1324 * @len: the size of the free space. that we find, or the size
1325 * of the max free space if we don't find suitable free space
7bfc837d 1326 *
0b86a832
CM
1327 * this uses a pretty simple search, the expectation is that it is
1328 * called very infrequently and that a given device has a small number
1329 * of extents
7bfc837d
MX
1330 *
1331 * @start is used to store the start of the free space if we find. But if we
1332 * don't find suitable free space, it will be used to store the start position
1333 * of the max free space.
1334 *
1335 * @len is used to store the size of the free space that we find.
1336 * But if we don't find suitable free space, it is used to store the size of
1337 * the max free space.
0b86a832 1338 */
499f377f
JM
1339int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1340 struct btrfs_device *device, u64 num_bytes,
1341 u64 search_start, u64 *start, u64 *len)
0b86a832 1342{
0b246afa
JM
1343 struct btrfs_fs_info *fs_info = device->fs_info;
1344 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1345 struct btrfs_key key;
7bfc837d 1346 struct btrfs_dev_extent *dev_extent;
2b82032c 1347 struct btrfs_path *path;
7bfc837d
MX
1348 u64 hole_size;
1349 u64 max_hole_start;
1350 u64 max_hole_size;
1351 u64 extent_end;
0b86a832
CM
1352 u64 search_end = device->total_bytes;
1353 int ret;
7bfc837d 1354 int slot;
0b86a832 1355 struct extent_buffer *l;
8cdc7c5b
FM
1356 u64 min_search_start;
1357
1358 /*
1359 * We don't want to overwrite the superblock on the drive nor any area
1360 * used by the boot loader (grub for example), so we make sure to start
1361 * at an offset of at least 1MB.
1362 */
0b246afa 1363 min_search_start = max(fs_info->alloc_start, 1024ull * 1024);
8cdc7c5b 1364 search_start = max(search_start, min_search_start);
0b86a832 1365
6df9a95e
JB
1366 path = btrfs_alloc_path();
1367 if (!path)
1368 return -ENOMEM;
f2ab7618 1369
7bfc837d
MX
1370 max_hole_start = search_start;
1371 max_hole_size = 0;
1372
f2ab7618 1373again:
63a212ab 1374 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
7bfc837d 1375 ret = -ENOSPC;
6df9a95e 1376 goto out;
7bfc837d
MX
1377 }
1378
e4058b54 1379 path->reada = READA_FORWARD;
6df9a95e
JB
1380 path->search_commit_root = 1;
1381 path->skip_locking = 1;
7bfc837d 1382
0b86a832
CM
1383 key.objectid = device->devid;
1384 key.offset = search_start;
1385 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1386
125ccb0a 1387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0b86a832 1388 if (ret < 0)
7bfc837d 1389 goto out;
1fcbac58
YZ
1390 if (ret > 0) {
1391 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1392 if (ret < 0)
7bfc837d 1393 goto out;
1fcbac58 1394 }
7bfc837d 1395
0b86a832
CM
1396 while (1) {
1397 l = path->nodes[0];
1398 slot = path->slots[0];
1399 if (slot >= btrfs_header_nritems(l)) {
1400 ret = btrfs_next_leaf(root, path);
1401 if (ret == 0)
1402 continue;
1403 if (ret < 0)
7bfc837d
MX
1404 goto out;
1405
1406 break;
0b86a832
CM
1407 }
1408 btrfs_item_key_to_cpu(l, &key, slot);
1409
1410 if (key.objectid < device->devid)
1411 goto next;
1412
1413 if (key.objectid > device->devid)
7bfc837d 1414 break;
0b86a832 1415
962a298f 1416 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1417 goto next;
9779b72f 1418
7bfc837d
MX
1419 if (key.offset > search_start) {
1420 hole_size = key.offset - search_start;
9779b72f 1421
6df9a95e
JB
1422 /*
1423 * Have to check before we set max_hole_start, otherwise
1424 * we could end up sending back this offset anyway.
1425 */
499f377f 1426 if (contains_pending_extent(transaction, device,
6df9a95e 1427 &search_start,
1b984508
FL
1428 hole_size)) {
1429 if (key.offset >= search_start) {
1430 hole_size = key.offset - search_start;
1431 } else {
1432 WARN_ON_ONCE(1);
1433 hole_size = 0;
1434 }
1435 }
6df9a95e 1436
7bfc837d
MX
1437 if (hole_size > max_hole_size) {
1438 max_hole_start = search_start;
1439 max_hole_size = hole_size;
1440 }
9779b72f 1441
7bfc837d
MX
1442 /*
1443 * If this free space is greater than which we need,
1444 * it must be the max free space that we have found
1445 * until now, so max_hole_start must point to the start
1446 * of this free space and the length of this free space
1447 * is stored in max_hole_size. Thus, we return
1448 * max_hole_start and max_hole_size and go back to the
1449 * caller.
1450 */
1451 if (hole_size >= num_bytes) {
1452 ret = 0;
1453 goto out;
0b86a832
CM
1454 }
1455 }
0b86a832 1456
0b86a832 1457 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1458 extent_end = key.offset + btrfs_dev_extent_length(l,
1459 dev_extent);
1460 if (extent_end > search_start)
1461 search_start = extent_end;
0b86a832
CM
1462next:
1463 path->slots[0]++;
1464 cond_resched();
1465 }
0b86a832 1466
38c01b96 1467 /*
1468 * At this point, search_start should be the end of
1469 * allocated dev extents, and when shrinking the device,
1470 * search_end may be smaller than search_start.
1471 */
f2ab7618 1472 if (search_end > search_start) {
38c01b96 1473 hole_size = search_end - search_start;
1474
499f377f 1475 if (contains_pending_extent(transaction, device, &search_start,
f2ab7618
ZL
1476 hole_size)) {
1477 btrfs_release_path(path);
1478 goto again;
1479 }
0b86a832 1480
f2ab7618
ZL
1481 if (hole_size > max_hole_size) {
1482 max_hole_start = search_start;
1483 max_hole_size = hole_size;
1484 }
6df9a95e
JB
1485 }
1486
7bfc837d 1487 /* See above. */
f2ab7618 1488 if (max_hole_size < num_bytes)
7bfc837d
MX
1489 ret = -ENOSPC;
1490 else
1491 ret = 0;
1492
1493out:
2b82032c 1494 btrfs_free_path(path);
7bfc837d 1495 *start = max_hole_start;
b2117a39 1496 if (len)
7bfc837d 1497 *len = max_hole_size;
0b86a832
CM
1498 return ret;
1499}
1500
499f377f
JM
1501int find_free_dev_extent(struct btrfs_trans_handle *trans,
1502 struct btrfs_device *device, u64 num_bytes,
1503 u64 *start, u64 *len)
1504{
499f377f 1505 /* FIXME use last free of some kind */
499f377f 1506 return find_free_dev_extent_start(trans->transaction, device,
8cdc7c5b 1507 num_bytes, 0, start, len);
499f377f
JM
1508}
1509
b2950863 1510static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1511 struct btrfs_device *device,
2196d6e8 1512 u64 start, u64 *dev_extent_len)
8f18cf13 1513{
0b246afa
JM
1514 struct btrfs_fs_info *fs_info = device->fs_info;
1515 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1516 int ret;
1517 struct btrfs_path *path;
8f18cf13 1518 struct btrfs_key key;
a061fc8d
CM
1519 struct btrfs_key found_key;
1520 struct extent_buffer *leaf = NULL;
1521 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1522
1523 path = btrfs_alloc_path();
1524 if (!path)
1525 return -ENOMEM;
1526
1527 key.objectid = device->devid;
1528 key.offset = start;
1529 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1530again:
8f18cf13 1531 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1532 if (ret > 0) {
1533 ret = btrfs_previous_item(root, path, key.objectid,
1534 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1535 if (ret)
1536 goto out;
a061fc8d
CM
1537 leaf = path->nodes[0];
1538 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1539 extent = btrfs_item_ptr(leaf, path->slots[0],
1540 struct btrfs_dev_extent);
1541 BUG_ON(found_key.offset > start || found_key.offset +
1542 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1543 key = found_key;
1544 btrfs_release_path(path);
1545 goto again;
a061fc8d
CM
1546 } else if (ret == 0) {
1547 leaf = path->nodes[0];
1548 extent = btrfs_item_ptr(leaf, path->slots[0],
1549 struct btrfs_dev_extent);
79787eaa 1550 } else {
0b246afa 1551 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
79787eaa 1552 goto out;
a061fc8d 1553 }
8f18cf13 1554
2196d6e8
MX
1555 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1556
8f18cf13 1557 ret = btrfs_del_item(trans, root, path);
79787eaa 1558 if (ret) {
0b246afa
JM
1559 btrfs_handle_fs_error(fs_info, ret,
1560 "Failed to remove dev extent item");
13212b54 1561 } else {
3204d33c 1562 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
79787eaa 1563 }
b0b802d7 1564out:
8f18cf13
CM
1565 btrfs_free_path(path);
1566 return ret;
1567}
1568
48a3b636
ES
1569static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1570 struct btrfs_device *device,
1571 u64 chunk_tree, u64 chunk_objectid,
1572 u64 chunk_offset, u64 start, u64 num_bytes)
0b86a832
CM
1573{
1574 int ret;
1575 struct btrfs_path *path;
0b246afa
JM
1576 struct btrfs_fs_info *fs_info = device->fs_info;
1577 struct btrfs_root *root = fs_info->dev_root;
0b86a832
CM
1578 struct btrfs_dev_extent *extent;
1579 struct extent_buffer *leaf;
1580 struct btrfs_key key;
1581
dfe25020 1582 WARN_ON(!device->in_fs_metadata);
63a212ab 1583 WARN_ON(device->is_tgtdev_for_dev_replace);
0b86a832
CM
1584 path = btrfs_alloc_path();
1585 if (!path)
1586 return -ENOMEM;
1587
0b86a832 1588 key.objectid = device->devid;
2b82032c 1589 key.offset = start;
0b86a832
CM
1590 key.type = BTRFS_DEV_EXTENT_KEY;
1591 ret = btrfs_insert_empty_item(trans, root, path, &key,
1592 sizeof(*extent));
2cdcecbc
MF
1593 if (ret)
1594 goto out;
0b86a832
CM
1595
1596 leaf = path->nodes[0];
1597 extent = btrfs_item_ptr(leaf, path->slots[0],
1598 struct btrfs_dev_extent);
e17cade2
CM
1599 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1600 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1601 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1602
0b246afa 1603 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
e17cade2 1604
0b86a832
CM
1605 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1606 btrfs_mark_buffer_dirty(leaf);
2cdcecbc 1607out:
0b86a832
CM
1608 btrfs_free_path(path);
1609 return ret;
1610}
1611
6df9a95e 1612static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1613{
6df9a95e
JB
1614 struct extent_map_tree *em_tree;
1615 struct extent_map *em;
1616 struct rb_node *n;
1617 u64 ret = 0;
0b86a832 1618
6df9a95e
JB
1619 em_tree = &fs_info->mapping_tree.map_tree;
1620 read_lock(&em_tree->lock);
1621 n = rb_last(&em_tree->map);
1622 if (n) {
1623 em = rb_entry(n, struct extent_map, rb_node);
1624 ret = em->start + em->len;
0b86a832 1625 }
6df9a95e
JB
1626 read_unlock(&em_tree->lock);
1627
0b86a832
CM
1628 return ret;
1629}
1630
53f10659
ID
1631static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1632 u64 *devid_ret)
0b86a832
CM
1633{
1634 int ret;
1635 struct btrfs_key key;
1636 struct btrfs_key found_key;
2b82032c
YZ
1637 struct btrfs_path *path;
1638
2b82032c
YZ
1639 path = btrfs_alloc_path();
1640 if (!path)
1641 return -ENOMEM;
0b86a832
CM
1642
1643 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1644 key.type = BTRFS_DEV_ITEM_KEY;
1645 key.offset = (u64)-1;
1646
53f10659 1647 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1648 if (ret < 0)
1649 goto error;
1650
79787eaa 1651 BUG_ON(ret == 0); /* Corruption */
0b86a832 1652
53f10659
ID
1653 ret = btrfs_previous_item(fs_info->chunk_root, path,
1654 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1655 BTRFS_DEV_ITEM_KEY);
1656 if (ret) {
53f10659 1657 *devid_ret = 1;
0b86a832
CM
1658 } else {
1659 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1660 path->slots[0]);
53f10659 1661 *devid_ret = found_key.offset + 1;
0b86a832
CM
1662 }
1663 ret = 0;
1664error:
2b82032c 1665 btrfs_free_path(path);
0b86a832
CM
1666 return ret;
1667}
1668
1669/*
1670 * the device information is stored in the chunk root
1671 * the btrfs_device struct should be fully filled in
1672 */
48a3b636 1673static int btrfs_add_device(struct btrfs_trans_handle *trans,
5b4aacef 1674 struct btrfs_fs_info *fs_info,
48a3b636 1675 struct btrfs_device *device)
0b86a832 1676{
5b4aacef 1677 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
1678 int ret;
1679 struct btrfs_path *path;
1680 struct btrfs_dev_item *dev_item;
1681 struct extent_buffer *leaf;
1682 struct btrfs_key key;
1683 unsigned long ptr;
0b86a832 1684
0b86a832
CM
1685 path = btrfs_alloc_path();
1686 if (!path)
1687 return -ENOMEM;
1688
0b86a832
CM
1689 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1690 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1691 key.offset = device->devid;
0b86a832
CM
1692
1693 ret = btrfs_insert_empty_item(trans, root, path, &key,
0d81ba5d 1694 sizeof(*dev_item));
0b86a832
CM
1695 if (ret)
1696 goto out;
1697
1698 leaf = path->nodes[0];
1699 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1700
1701 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1702 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1703 btrfs_set_device_type(leaf, dev_item, device->type);
1704 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1705 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1706 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1707 btrfs_set_device_total_bytes(leaf, dev_item,
1708 btrfs_device_get_disk_total_bytes(device));
1709 btrfs_set_device_bytes_used(leaf, dev_item,
1710 btrfs_device_get_bytes_used(device));
e17cade2
CM
1711 btrfs_set_device_group(leaf, dev_item, 0);
1712 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1713 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1714 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1715
410ba3a2 1716 ptr = btrfs_device_uuid(dev_item);
e17cade2 1717 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1718 ptr = btrfs_device_fsid(dev_item);
0b246afa 1719 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_UUID_SIZE);
0b86a832 1720 btrfs_mark_buffer_dirty(leaf);
0b86a832 1721
2b82032c 1722 ret = 0;
0b86a832
CM
1723out:
1724 btrfs_free_path(path);
1725 return ret;
1726}
8f18cf13 1727
5a1972bd
QW
1728/*
1729 * Function to update ctime/mtime for a given device path.
1730 * Mainly used for ctime/mtime based probe like libblkid.
1731 */
da353f6b 1732static void update_dev_time(const char *path_name)
5a1972bd
QW
1733{
1734 struct file *filp;
1735
1736 filp = filp_open(path_name, O_RDWR, 0);
98af592f 1737 if (IS_ERR(filp))
5a1972bd
QW
1738 return;
1739 file_update_time(filp);
1740 filp_close(filp, NULL);
5a1972bd
QW
1741}
1742
5b4aacef 1743static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
a061fc8d
CM
1744 struct btrfs_device *device)
1745{
5b4aacef 1746 struct btrfs_root *root = fs_info->chunk_root;
a061fc8d
CM
1747 int ret;
1748 struct btrfs_path *path;
a061fc8d 1749 struct btrfs_key key;
a061fc8d
CM
1750 struct btrfs_trans_handle *trans;
1751
a061fc8d
CM
1752 path = btrfs_alloc_path();
1753 if (!path)
1754 return -ENOMEM;
1755
a22285a6 1756 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
1757 if (IS_ERR(trans)) {
1758 btrfs_free_path(path);
1759 return PTR_ERR(trans);
1760 }
a061fc8d
CM
1761 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1762 key.type = BTRFS_DEV_ITEM_KEY;
1763 key.offset = device->devid;
1764
1765 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1766 if (ret < 0)
1767 goto out;
1768
1769 if (ret > 0) {
1770 ret = -ENOENT;
1771 goto out;
1772 }
1773
1774 ret = btrfs_del_item(trans, root, path);
1775 if (ret)
1776 goto out;
a061fc8d
CM
1777out:
1778 btrfs_free_path(path);
3a45bb20 1779 btrfs_commit_transaction(trans);
a061fc8d
CM
1780 return ret;
1781}
1782
3cc31a0d
DS
1783/*
1784 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1785 * filesystem. It's up to the caller to adjust that number regarding eg. device
1786 * replace.
1787 */
1788static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1789 u64 num_devices)
a061fc8d 1790{
a061fc8d 1791 u64 all_avail;
de98ced9 1792 unsigned seq;
418775a2 1793 int i;
a061fc8d 1794
de98ced9 1795 do {
bd45ffbc 1796 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1797
bd45ffbc
AJ
1798 all_avail = fs_info->avail_data_alloc_bits |
1799 fs_info->avail_system_alloc_bits |
1800 fs_info->avail_metadata_alloc_bits;
1801 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1802
418775a2
DS
1803 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1804 if (!(all_avail & btrfs_raid_group[i]))
1805 continue;
a061fc8d 1806
418775a2
DS
1807 if (num_devices < btrfs_raid_array[i].devs_min) {
1808 int ret = btrfs_raid_mindev_error[i];
bd45ffbc 1809
418775a2
DS
1810 if (ret)
1811 return ret;
1812 }
53b381b3
DW
1813 }
1814
bd45ffbc 1815 return 0;
f1fa7f26
AJ
1816}
1817
88acff64
AJ
1818struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1819 struct btrfs_device *device)
a061fc8d 1820{
2b82032c 1821 struct btrfs_device *next_device;
88acff64
AJ
1822
1823 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1824 if (next_device != device &&
1825 !next_device->missing && next_device->bdev)
1826 return next_device;
1827 }
1828
1829 return NULL;
1830}
1831
1832/*
1833 * Helper function to check if the given device is part of s_bdev / latest_bdev
1834 * and replace it with the provided or the next active device, in the context
1835 * where this function called, there should be always be another device (or
1836 * this_dev) which is active.
1837 */
1838void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1839 struct btrfs_device *device, struct btrfs_device *this_dev)
1840{
1841 struct btrfs_device *next_device;
1842
1843 if (this_dev)
1844 next_device = this_dev;
1845 else
1846 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1847 device);
1848 ASSERT(next_device);
1849
1850 if (fs_info->sb->s_bdev &&
1851 (fs_info->sb->s_bdev == device->bdev))
1852 fs_info->sb->s_bdev = next_device->bdev;
1853
1854 if (fs_info->fs_devices->latest_bdev == device->bdev)
1855 fs_info->fs_devices->latest_bdev = next_device->bdev;
1856}
1857
da353f6b
DS
1858int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1859 u64 devid)
f1fa7f26
AJ
1860{
1861 struct btrfs_device *device;
1f78160c 1862 struct btrfs_fs_devices *cur_devices;
2b82032c 1863 u64 num_devices;
a061fc8d 1864 int ret = 0;
1f78160c 1865 bool clear_super = false;
a061fc8d 1866
a061fc8d
CM
1867 mutex_lock(&uuid_mutex);
1868
0b246afa
JM
1869 num_devices = fs_info->fs_devices->num_devices;
1870 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1871 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
8dabb742
SB
1872 WARN_ON(num_devices < 1);
1873 num_devices--;
1874 }
0b246afa 1875 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
8dabb742 1876
0b246afa 1877 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 1878 if (ret)
a061fc8d 1879 goto out;
a061fc8d 1880
2ff7e61e
JM
1881 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1882 &device);
24fc572f 1883 if (ret)
53b381b3 1884 goto out;
dfe25020 1885
63a212ab 1886 if (device->is_tgtdev_for_dev_replace) {
183860f6 1887 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
24fc572f 1888 goto out;
63a212ab
SB
1889 }
1890
0b246afa 1891 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
183860f6 1892 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
24fc572f 1893 goto out;
2b82032c
YZ
1894 }
1895
1896 if (device->writeable) {
34441361 1897 mutex_lock(&fs_info->chunk_mutex);
2b82032c 1898 list_del_init(&device->dev_alloc_list);
c3929c36 1899 device->fs_devices->rw_devices--;
34441361 1900 mutex_unlock(&fs_info->chunk_mutex);
1f78160c 1901 clear_super = true;
dfe25020 1902 }
a061fc8d 1903
d7901554 1904 mutex_unlock(&uuid_mutex);
a061fc8d 1905 ret = btrfs_shrink_device(device, 0);
d7901554 1906 mutex_lock(&uuid_mutex);
a061fc8d 1907 if (ret)
9b3517e9 1908 goto error_undo;
a061fc8d 1909
63a212ab
SB
1910 /*
1911 * TODO: the superblock still includes this device in its num_devices
1912 * counter although write_all_supers() is not locked out. This
1913 * could give a filesystem state which requires a degraded mount.
1914 */
0b246afa 1915 ret = btrfs_rm_dev_item(fs_info, device);
a061fc8d 1916 if (ret)
9b3517e9 1917 goto error_undo;
a061fc8d 1918
2b82032c 1919 device->in_fs_metadata = 0;
0b246afa 1920 btrfs_scrub_cancel_dev(fs_info, device);
e5e9a520
CM
1921
1922 /*
1923 * the device list mutex makes sure that we don't change
1924 * the device list while someone else is writing out all
d7306801
FDBM
1925 * the device supers. Whoever is writing all supers, should
1926 * lock the device list mutex before getting the number of
1927 * devices in the super block (super_copy). Conversely,
1928 * whoever updates the number of devices in the super block
1929 * (super_copy) should hold the device list mutex.
e5e9a520 1930 */
1f78160c
XG
1931
1932 cur_devices = device->fs_devices;
0b246afa 1933 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c 1934 list_del_rcu(&device->dev_list);
e5e9a520 1935
e4404d6e 1936 device->fs_devices->num_devices--;
02db0844 1937 device->fs_devices->total_devices--;
2b82032c 1938
cd02dca5 1939 if (device->missing)
3a7d55c8 1940 device->fs_devices->missing_devices--;
cd02dca5 1941
0b246afa 1942 btrfs_assign_next_active_device(fs_info, device, NULL);
2b82032c 1943
0bfaa9c5 1944 if (device->bdev) {
e4404d6e 1945 device->fs_devices->open_devices--;
0bfaa9c5 1946 /* remove sysfs entry */
0b246afa 1947 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
0bfaa9c5 1948 }
99994cde 1949
0b246afa
JM
1950 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1951 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1952 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2b82032c 1953
cea67ab9
JM
1954 /*
1955 * at this point, the device is zero sized and detached from
1956 * the devices list. All that's left is to zero out the old
1957 * supers and free the device.
1958 */
1959 if (device->writeable)
1960 btrfs_scratch_superblocks(device->bdev, device->name->str);
1961
1962 btrfs_close_bdev(device);
1963 call_rcu(&device->rcu, free_device);
1964
1f78160c 1965 if (cur_devices->open_devices == 0) {
e4404d6e 1966 struct btrfs_fs_devices *fs_devices;
0b246afa 1967 fs_devices = fs_info->fs_devices;
e4404d6e 1968 while (fs_devices) {
8321cf25
RS
1969 if (fs_devices->seed == cur_devices) {
1970 fs_devices->seed = cur_devices->seed;
e4404d6e 1971 break;
8321cf25 1972 }
e4404d6e 1973 fs_devices = fs_devices->seed;
2b82032c 1974 }
1f78160c 1975 cur_devices->seed = NULL;
1f78160c 1976 __btrfs_close_devices(cur_devices);
1f78160c 1977 free_fs_devices(cur_devices);
2b82032c
YZ
1978 }
1979
0b246afa
JM
1980 fs_info->num_tolerated_disk_barrier_failures =
1981 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
5af3e8cc 1982
a061fc8d
CM
1983out:
1984 mutex_unlock(&uuid_mutex);
a061fc8d 1985 return ret;
24fc572f 1986
9b3517e9
ID
1987error_undo:
1988 if (device->writeable) {
34441361 1989 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 1990 list_add(&device->dev_alloc_list,
0b246afa 1991 &fs_info->fs_devices->alloc_list);
c3929c36 1992 device->fs_devices->rw_devices++;
34441361 1993 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 1994 }
24fc572f 1995 goto out;
a061fc8d
CM
1996}
1997
084b6e7c
QW
1998void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1999 struct btrfs_device *srcdev)
e93c89c1 2000{
d51908ce
AJ
2001 struct btrfs_fs_devices *fs_devices;
2002
e93c89c1 2003 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1357272f 2004
25e8e911
AJ
2005 /*
2006 * in case of fs with no seed, srcdev->fs_devices will point
2007 * to fs_devices of fs_info. However when the dev being replaced is
2008 * a seed dev it will point to the seed's local fs_devices. In short
2009 * srcdev will have its correct fs_devices in both the cases.
2010 */
2011 fs_devices = srcdev->fs_devices;
d51908ce 2012
e93c89c1
SB
2013 list_del_rcu(&srcdev->dev_list);
2014 list_del_rcu(&srcdev->dev_alloc_list);
d51908ce 2015 fs_devices->num_devices--;
82372bc8 2016 if (srcdev->missing)
d51908ce 2017 fs_devices->missing_devices--;
e93c89c1 2018
48b3b9d4 2019 if (srcdev->writeable)
82372bc8 2020 fs_devices->rw_devices--;
1357272f 2021
82372bc8 2022 if (srcdev->bdev)
d51908ce 2023 fs_devices->open_devices--;
084b6e7c
QW
2024}
2025
2026void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2027 struct btrfs_device *srcdev)
2028{
2029 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2030
48b3b9d4
AJ
2031 if (srcdev->writeable) {
2032 /* zero out the old super if it is writable */
2033 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2034 }
14238819
AJ
2035
2036 btrfs_close_bdev(srcdev);
2037
e93c89c1 2038 call_rcu(&srcdev->rcu, free_device);
94d5f0c2
AJ
2039
2040 /*
2041 * unless fs_devices is seed fs, num_devices shouldn't go
2042 * zero
2043 */
2044 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2045
2046 /* if this is no devs we rather delete the fs_devices */
2047 if (!fs_devices->num_devices) {
2048 struct btrfs_fs_devices *tmp_fs_devices;
2049
2050 tmp_fs_devices = fs_info->fs_devices;
2051 while (tmp_fs_devices) {
2052 if (tmp_fs_devices->seed == fs_devices) {
2053 tmp_fs_devices->seed = fs_devices->seed;
2054 break;
2055 }
2056 tmp_fs_devices = tmp_fs_devices->seed;
2057 }
2058 fs_devices->seed = NULL;
8bef8401
AJ
2059 __btrfs_close_devices(fs_devices);
2060 free_fs_devices(fs_devices);
94d5f0c2 2061 }
e93c89c1
SB
2062}
2063
2064void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2065 struct btrfs_device *tgtdev)
2066{
67a2c45e 2067 mutex_lock(&uuid_mutex);
e93c89c1
SB
2068 WARN_ON(!tgtdev);
2069 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d2ff1b20 2070
32576040 2071 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
d2ff1b20 2072
779bf3fe 2073 if (tgtdev->bdev)
e93c89c1 2074 fs_info->fs_devices->open_devices--;
779bf3fe 2075
e93c89c1 2076 fs_info->fs_devices->num_devices--;
e93c89c1 2077
88acff64 2078 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
e93c89c1 2079
e93c89c1 2080 list_del_rcu(&tgtdev->dev_list);
e93c89c1
SB
2081
2082 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
67a2c45e 2083 mutex_unlock(&uuid_mutex);
779bf3fe
AJ
2084
2085 /*
2086 * The update_dev_time() with in btrfs_scratch_superblocks()
2087 * may lead to a call to btrfs_show_devname() which will try
2088 * to hold device_list_mutex. And here this device
2089 * is already out of device list, so we don't have to hold
2090 * the device_list_mutex lock.
2091 */
2092 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
14238819
AJ
2093
2094 btrfs_close_bdev(tgtdev);
779bf3fe 2095 call_rcu(&tgtdev->rcu, free_device);
e93c89c1
SB
2096}
2097
2ff7e61e 2098static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2099 const char *device_path,
48a3b636 2100 struct btrfs_device **device)
7ba15b7d
SB
2101{
2102 int ret = 0;
2103 struct btrfs_super_block *disk_super;
2104 u64 devid;
2105 u8 *dev_uuid;
2106 struct block_device *bdev;
2107 struct buffer_head *bh;
2108
2109 *device = NULL;
2110 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
0b246afa 2111 fs_info->bdev_holder, 0, &bdev, &bh);
7ba15b7d
SB
2112 if (ret)
2113 return ret;
2114 disk_super = (struct btrfs_super_block *)bh->b_data;
2115 devid = btrfs_stack_device_id(&disk_super->dev_item);
2116 dev_uuid = disk_super->dev_item.uuid;
0b246afa 2117 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
7ba15b7d
SB
2118 brelse(bh);
2119 if (!*device)
2120 ret = -ENOENT;
2121 blkdev_put(bdev, FMODE_READ);
2122 return ret;
2123}
2124
2ff7e61e 2125int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
da353f6b 2126 const char *device_path,
7ba15b7d
SB
2127 struct btrfs_device **device)
2128{
2129 *device = NULL;
2130 if (strcmp(device_path, "missing") == 0) {
2131 struct list_head *devices;
2132 struct btrfs_device *tmp;
2133
0b246afa 2134 devices = &fs_info->fs_devices->devices;
7ba15b7d
SB
2135 /*
2136 * It is safe to read the devices since the volume_mutex
2137 * is held by the caller.
2138 */
2139 list_for_each_entry(tmp, devices, dev_list) {
2140 if (tmp->in_fs_metadata && !tmp->bdev) {
2141 *device = tmp;
2142 break;
2143 }
2144 }
2145
d74a6259
AJ
2146 if (!*device)
2147 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
7ba15b7d
SB
2148
2149 return 0;
2150 } else {
2ff7e61e 2151 return btrfs_find_device_by_path(fs_info, device_path, device);
7ba15b7d
SB
2152 }
2153}
2154
5c5c0df0
DS
2155/*
2156 * Lookup a device given by device id, or the path if the id is 0.
2157 */
2ff7e61e 2158int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
da353f6b
DS
2159 const char *devpath,
2160 struct btrfs_device **device)
24e0474b
AJ
2161{
2162 int ret;
2163
5c5c0df0 2164 if (devid) {
24e0474b 2165 ret = 0;
0b246afa 2166 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
24e0474b
AJ
2167 if (!*device)
2168 ret = -ENOENT;
2169 } else {
5c5c0df0 2170 if (!devpath || !devpath[0])
b3d1b153
AJ
2171 return -EINVAL;
2172
2ff7e61e 2173 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
24e0474b
AJ
2174 device);
2175 }
2176 return ret;
2177}
2178
2b82032c
YZ
2179/*
2180 * does all the dirty work required for changing file system's UUID.
2181 */
2ff7e61e 2182static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2183{
0b246afa 2184 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2185 struct btrfs_fs_devices *old_devices;
e4404d6e 2186 struct btrfs_fs_devices *seed_devices;
0b246afa 2187 struct btrfs_super_block *disk_super = fs_info->super_copy;
2b82032c
YZ
2188 struct btrfs_device *device;
2189 u64 super_flags;
2190
2191 BUG_ON(!mutex_is_locked(&uuid_mutex));
e4404d6e 2192 if (!fs_devices->seeding)
2b82032c
YZ
2193 return -EINVAL;
2194
2208a378
ID
2195 seed_devices = __alloc_fs_devices();
2196 if (IS_ERR(seed_devices))
2197 return PTR_ERR(seed_devices);
2b82032c 2198
e4404d6e
YZ
2199 old_devices = clone_fs_devices(fs_devices);
2200 if (IS_ERR(old_devices)) {
2201 kfree(seed_devices);
2202 return PTR_ERR(old_devices);
2b82032c 2203 }
e4404d6e 2204
2b82032c
YZ
2205 list_add(&old_devices->list, &fs_uuids);
2206
e4404d6e
YZ
2207 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2208 seed_devices->opened = 1;
2209 INIT_LIST_HEAD(&seed_devices->devices);
2210 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2211 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2212
0b246afa 2213 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1f78160c
XG
2214 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2215 synchronize_rcu);
2196d6e8
MX
2216 list_for_each_entry(device, &seed_devices->devices, dev_list)
2217 device->fs_devices = seed_devices;
c9513edb 2218
34441361 2219 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2220 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
34441361 2221 mutex_unlock(&fs_info->chunk_mutex);
e4404d6e 2222
2b82032c
YZ
2223 fs_devices->seeding = 0;
2224 fs_devices->num_devices = 0;
2225 fs_devices->open_devices = 0;
69611ac8 2226 fs_devices->missing_devices = 0;
69611ac8 2227 fs_devices->rotating = 0;
e4404d6e 2228 fs_devices->seed = seed_devices;
2b82032c
YZ
2229
2230 generate_random_uuid(fs_devices->fsid);
0b246afa 2231 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2232 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
0b246afa 2233 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
f7171750 2234
2b82032c
YZ
2235 super_flags = btrfs_super_flags(disk_super) &
2236 ~BTRFS_SUPER_FLAG_SEEDING;
2237 btrfs_set_super_flags(disk_super, super_flags);
2238
2239 return 0;
2240}
2241
2242/*
01327610 2243 * Store the expected generation for seed devices in device items.
2b82032c
YZ
2244 */
2245static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
5b4aacef 2246 struct btrfs_fs_info *fs_info)
2b82032c 2247{
5b4aacef 2248 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2249 struct btrfs_path *path;
2250 struct extent_buffer *leaf;
2251 struct btrfs_dev_item *dev_item;
2252 struct btrfs_device *device;
2253 struct btrfs_key key;
2254 u8 fs_uuid[BTRFS_UUID_SIZE];
2255 u8 dev_uuid[BTRFS_UUID_SIZE];
2256 u64 devid;
2257 int ret;
2258
2259 path = btrfs_alloc_path();
2260 if (!path)
2261 return -ENOMEM;
2262
2b82032c
YZ
2263 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2264 key.offset = 0;
2265 key.type = BTRFS_DEV_ITEM_KEY;
2266
2267 while (1) {
2268 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2269 if (ret < 0)
2270 goto error;
2271
2272 leaf = path->nodes[0];
2273next_slot:
2274 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2275 ret = btrfs_next_leaf(root, path);
2276 if (ret > 0)
2277 break;
2278 if (ret < 0)
2279 goto error;
2280 leaf = path->nodes[0];
2281 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2282 btrfs_release_path(path);
2b82032c
YZ
2283 continue;
2284 }
2285
2286 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2287 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2288 key.type != BTRFS_DEV_ITEM_KEY)
2289 break;
2290
2291 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2292 struct btrfs_dev_item);
2293 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2294 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2295 BTRFS_UUID_SIZE);
1473b24e 2296 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c 2297 BTRFS_UUID_SIZE);
0b246afa 2298 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
79787eaa 2299 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2300
2301 if (device->fs_devices->seeding) {
2302 btrfs_set_device_generation(leaf, dev_item,
2303 device->generation);
2304 btrfs_mark_buffer_dirty(leaf);
2305 }
2306
2307 path->slots[0]++;
2308 goto next_slot;
2309 }
2310 ret = 0;
2311error:
2312 btrfs_free_path(path);
2313 return ret;
2314}
2315
da353f6b 2316int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2317{
5112febb 2318 struct btrfs_root *root = fs_info->dev_root;
d5e2003c 2319 struct request_queue *q;
788f20eb
CM
2320 struct btrfs_trans_handle *trans;
2321 struct btrfs_device *device;
2322 struct block_device *bdev;
788f20eb 2323 struct list_head *devices;
0b246afa 2324 struct super_block *sb = fs_info->sb;
606686ee 2325 struct rcu_string *name;
3c1dbdf5 2326 u64 tmp;
2b82032c 2327 int seeding_dev = 0;
788f20eb
CM
2328 int ret = 0;
2329
0b246afa 2330 if ((sb->s_flags & MS_RDONLY) && !fs_info->fs_devices->seeding)
f8c5d0b4 2331 return -EROFS;
788f20eb 2332
a5d16333 2333 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2334 fs_info->bdev_holder);
7f59203a
JB
2335 if (IS_ERR(bdev))
2336 return PTR_ERR(bdev);
a2135011 2337
0b246afa 2338 if (fs_info->fs_devices->seeding) {
2b82032c
YZ
2339 seeding_dev = 1;
2340 down_write(&sb->s_umount);
2341 mutex_lock(&uuid_mutex);
2342 }
2343
8c8bee1d 2344 filemap_write_and_wait(bdev->bd_inode->i_mapping);
a2135011 2345
0b246afa 2346 devices = &fs_info->fs_devices->devices;
d25628bd 2347
0b246afa 2348 mutex_lock(&fs_info->fs_devices->device_list_mutex);
c6e30871 2349 list_for_each_entry(device, devices, dev_list) {
788f20eb
CM
2350 if (device->bdev == bdev) {
2351 ret = -EEXIST;
d25628bd 2352 mutex_unlock(
0b246afa 2353 &fs_info->fs_devices->device_list_mutex);
2b82032c 2354 goto error;
788f20eb
CM
2355 }
2356 }
0b246afa 2357 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2358
0b246afa 2359 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2360 if (IS_ERR(device)) {
788f20eb 2361 /* we can safely leave the fs_devices entry around */
12bd2fc0 2362 ret = PTR_ERR(device);
2b82032c 2363 goto error;
788f20eb
CM
2364 }
2365
78f2c9e6 2366 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2367 if (!name) {
788f20eb 2368 kfree(device);
2b82032c
YZ
2369 ret = -ENOMEM;
2370 goto error;
788f20eb 2371 }
606686ee 2372 rcu_assign_pointer(device->name, name);
2b82032c 2373
a22285a6 2374 trans = btrfs_start_transaction(root, 0);
98d5dc13 2375 if (IS_ERR(trans)) {
606686ee 2376 rcu_string_free(device->name);
98d5dc13
TI
2377 kfree(device);
2378 ret = PTR_ERR(trans);
2379 goto error;
2380 }
2381
d5e2003c
JB
2382 q = bdev_get_queue(bdev);
2383 if (blk_queue_discard(q))
2384 device->can_discard = 1;
2b82032c 2385 device->writeable = 1;
2b82032c 2386 device->generation = trans->transid;
0b246afa
JM
2387 device->io_width = fs_info->sectorsize;
2388 device->io_align = fs_info->sectorsize;
2389 device->sector_size = fs_info->sectorsize;
788f20eb 2390 device->total_bytes = i_size_read(bdev->bd_inode);
2cc3c559 2391 device->disk_total_bytes = device->total_bytes;
935e5cc9 2392 device->commit_total_bytes = device->total_bytes;
fb456252 2393 device->fs_info = fs_info;
788f20eb 2394 device->bdev = bdev;
dfe25020 2395 device->in_fs_metadata = 1;
63a212ab 2396 device->is_tgtdev_for_dev_replace = 0;
fb01aa85 2397 device->mode = FMODE_EXCL;
27087f37 2398 device->dev_stats_valid = 1;
2b82032c 2399 set_blocksize(device->bdev, 4096);
788f20eb 2400
2b82032c
YZ
2401 if (seeding_dev) {
2402 sb->s_flags &= ~MS_RDONLY;
2ff7e61e 2403 ret = btrfs_prepare_sprout(fs_info);
79787eaa 2404 BUG_ON(ret); /* -ENOMEM */
2b82032c 2405 }
788f20eb 2406
0b246afa 2407 device->fs_devices = fs_info->fs_devices;
e5e9a520 2408
0b246afa 2409 mutex_lock(&fs_info->fs_devices->device_list_mutex);
34441361 2410 mutex_lock(&fs_info->chunk_mutex);
0b246afa 2411 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2b82032c 2412 list_add(&device->dev_alloc_list,
0b246afa
JM
2413 &fs_info->fs_devices->alloc_list);
2414 fs_info->fs_devices->num_devices++;
2415 fs_info->fs_devices->open_devices++;
2416 fs_info->fs_devices->rw_devices++;
2417 fs_info->fs_devices->total_devices++;
2418 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2419
a5ed45f8 2420 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2421
e884f4f0 2422 if (!blk_queue_nonrot(q))
0b246afa 2423 fs_info->fs_devices->rotating = 1;
c289811c 2424
0b246afa
JM
2425 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2426 btrfs_set_super_total_bytes(fs_info->super_copy,
3c1dbdf5 2427 tmp + device->total_bytes);
788f20eb 2428
0b246afa
JM
2429 tmp = btrfs_super_num_devices(fs_info->super_copy);
2430 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
0d39376a
AJ
2431
2432 /* add sysfs device entry */
0b246afa 2433 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
0d39376a 2434
2196d6e8
MX
2435 /*
2436 * we've got more storage, clear any full flags on the space
2437 * infos
2438 */
0b246afa 2439 btrfs_clear_space_info_full(fs_info);
2196d6e8 2440
34441361 2441 mutex_unlock(&fs_info->chunk_mutex);
0b246afa 2442 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
788f20eb 2443
2b82032c 2444 if (seeding_dev) {
34441361 2445 mutex_lock(&fs_info->chunk_mutex);
e4a4dce7 2446 ret = init_first_rw_device(trans, fs_info);
34441361 2447 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2448 if (ret) {
66642832 2449 btrfs_abort_transaction(trans, ret);
79787eaa 2450 goto error_trans;
005d6427 2451 }
2196d6e8
MX
2452 }
2453
0b246afa 2454 ret = btrfs_add_device(trans, fs_info, device);
2196d6e8 2455 if (ret) {
66642832 2456 btrfs_abort_transaction(trans, ret);
2196d6e8
MX
2457 goto error_trans;
2458 }
2459
2460 if (seeding_dev) {
2461 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2462
0b246afa 2463 ret = btrfs_finish_sprout(trans, fs_info);
005d6427 2464 if (ret) {
66642832 2465 btrfs_abort_transaction(trans, ret);
79787eaa 2466 goto error_trans;
005d6427 2467 }
b2373f25
AJ
2468
2469 /* Sprouting would change fsid of the mounted root,
2470 * so rename the fsid on the sysfs
2471 */
2472 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
0b246afa
JM
2473 fs_info->fsid);
2474 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2475 btrfs_warn(fs_info,
2476 "sysfs: failed to create fsid for sprout");
2b82032c
YZ
2477 }
2478
0b246afa
JM
2479 fs_info->num_tolerated_disk_barrier_failures =
2480 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3a45bb20 2481 ret = btrfs_commit_transaction(trans);
a2135011 2482
2b82032c
YZ
2483 if (seeding_dev) {
2484 mutex_unlock(&uuid_mutex);
2485 up_write(&sb->s_umount);
788f20eb 2486
79787eaa
JM
2487 if (ret) /* transaction commit */
2488 return ret;
2489
2ff7e61e 2490 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2491 if (ret < 0)
0b246afa 2492 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2493 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2494 trans = btrfs_attach_transaction(root);
2495 if (IS_ERR(trans)) {
2496 if (PTR_ERR(trans) == -ENOENT)
2497 return 0;
2498 return PTR_ERR(trans);
2499 }
3a45bb20 2500 ret = btrfs_commit_transaction(trans);
2b82032c 2501 }
c9e9f97b 2502
5a1972bd
QW
2503 /* Update ctime/mtime for libblkid */
2504 update_dev_time(device_path);
2b82032c 2505 return ret;
79787eaa
JM
2506
2507error_trans:
3a45bb20 2508 btrfs_end_transaction(trans);
606686ee 2509 rcu_string_free(device->name);
0b246afa 2510 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
79787eaa 2511 kfree(device);
2b82032c 2512error:
e525fd89 2513 blkdev_put(bdev, FMODE_EXCL);
2b82032c
YZ
2514 if (seeding_dev) {
2515 mutex_unlock(&uuid_mutex);
2516 up_write(&sb->s_umount);
2517 }
c9e9f97b 2518 return ret;
788f20eb
CM
2519}
2520
2ff7e61e 2521int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
da353f6b 2522 const char *device_path,
1c43366d 2523 struct btrfs_device *srcdev,
e93c89c1
SB
2524 struct btrfs_device **device_out)
2525{
2526 struct request_queue *q;
2527 struct btrfs_device *device;
2528 struct block_device *bdev;
e93c89c1
SB
2529 struct list_head *devices;
2530 struct rcu_string *name;
12bd2fc0 2531 u64 devid = BTRFS_DEV_REPLACE_DEVID;
e93c89c1
SB
2532 int ret = 0;
2533
2534 *device_out = NULL;
1c43366d
MX
2535 if (fs_info->fs_devices->seeding) {
2536 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
e93c89c1 2537 return -EINVAL;
1c43366d 2538 }
e93c89c1
SB
2539
2540 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2541 fs_info->bdev_holder);
1c43366d
MX
2542 if (IS_ERR(bdev)) {
2543 btrfs_err(fs_info, "target device %s is invalid!", device_path);
e93c89c1 2544 return PTR_ERR(bdev);
1c43366d 2545 }
e93c89c1
SB
2546
2547 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2548
2549 devices = &fs_info->fs_devices->devices;
2550 list_for_each_entry(device, devices, dev_list) {
2551 if (device->bdev == bdev) {
5d163e0e
JM
2552 btrfs_err(fs_info,
2553 "target device is in the filesystem!");
e93c89c1
SB
2554 ret = -EEXIST;
2555 goto error;
2556 }
2557 }
2558
1c43366d 2559
7cc8e58d
MX
2560 if (i_size_read(bdev->bd_inode) <
2561 btrfs_device_get_total_bytes(srcdev)) {
5d163e0e
JM
2562 btrfs_err(fs_info,
2563 "target device is smaller than source device!");
1c43366d
MX
2564 ret = -EINVAL;
2565 goto error;
2566 }
2567
2568
12bd2fc0
ID
2569 device = btrfs_alloc_device(NULL, &devid, NULL);
2570 if (IS_ERR(device)) {
2571 ret = PTR_ERR(device);
e93c89c1
SB
2572 goto error;
2573 }
2574
2575 name = rcu_string_strdup(device_path, GFP_NOFS);
2576 if (!name) {
2577 kfree(device);
2578 ret = -ENOMEM;
2579 goto error;
2580 }
2581 rcu_assign_pointer(device->name, name);
2582
2583 q = bdev_get_queue(bdev);
2584 if (blk_queue_discard(q))
2585 device->can_discard = 1;
0b246afa 2586 mutex_lock(&fs_info->fs_devices->device_list_mutex);
e93c89c1 2587 device->writeable = 1;
e93c89c1 2588 device->generation = 0;
0b246afa
JM
2589 device->io_width = fs_info->sectorsize;
2590 device->io_align = fs_info->sectorsize;
2591 device->sector_size = fs_info->sectorsize;
7cc8e58d
MX
2592 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2593 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2594 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
935e5cc9
MX
2595 ASSERT(list_empty(&srcdev->resized_list));
2596 device->commit_total_bytes = srcdev->commit_total_bytes;
ce7213c7 2597 device->commit_bytes_used = device->bytes_used;
fb456252 2598 device->fs_info = fs_info;
e93c89c1
SB
2599 device->bdev = bdev;
2600 device->in_fs_metadata = 1;
2601 device->is_tgtdev_for_dev_replace = 1;
2602 device->mode = FMODE_EXCL;
27087f37 2603 device->dev_stats_valid = 1;
e93c89c1
SB
2604 set_blocksize(device->bdev, 4096);
2605 device->fs_devices = fs_info->fs_devices;
2606 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2607 fs_info->fs_devices->num_devices++;
2608 fs_info->fs_devices->open_devices++;
0b246afa 2609 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
e93c89c1
SB
2610
2611 *device_out = device;
2612 return ret;
2613
2614error:
2615 blkdev_put(bdev, FMODE_EXCL);
2616 return ret;
2617}
2618
2619void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2620 struct btrfs_device *tgtdev)
2621{
da17066c
JM
2622 u32 sectorsize = fs_info->sectorsize;
2623
e93c89c1 2624 WARN_ON(fs_info->fs_devices->rw_devices == 0);
da17066c
JM
2625 tgtdev->io_width = sectorsize;
2626 tgtdev->io_align = sectorsize;
2627 tgtdev->sector_size = sectorsize;
fb456252 2628 tgtdev->fs_info = fs_info;
e93c89c1
SB
2629 tgtdev->in_fs_metadata = 1;
2630}
2631
d397712b
CM
2632static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2633 struct btrfs_device *device)
0b86a832
CM
2634{
2635 int ret;
2636 struct btrfs_path *path;
0b246afa 2637 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2638 struct btrfs_dev_item *dev_item;
2639 struct extent_buffer *leaf;
2640 struct btrfs_key key;
2641
0b86a832
CM
2642 path = btrfs_alloc_path();
2643 if (!path)
2644 return -ENOMEM;
2645
2646 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2647 key.type = BTRFS_DEV_ITEM_KEY;
2648 key.offset = device->devid;
2649
2650 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2651 if (ret < 0)
2652 goto out;
2653
2654 if (ret > 0) {
2655 ret = -ENOENT;
2656 goto out;
2657 }
2658
2659 leaf = path->nodes[0];
2660 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2661
2662 btrfs_set_device_id(leaf, dev_item, device->devid);
2663 btrfs_set_device_type(leaf, dev_item, device->type);
2664 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2665 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2666 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2667 btrfs_set_device_total_bytes(leaf, dev_item,
2668 btrfs_device_get_disk_total_bytes(device));
2669 btrfs_set_device_bytes_used(leaf, dev_item,
2670 btrfs_device_get_bytes_used(device));
0b86a832
CM
2671 btrfs_mark_buffer_dirty(leaf);
2672
2673out:
2674 btrfs_free_path(path);
2675 return ret;
2676}
2677
2196d6e8 2678int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2679 struct btrfs_device *device, u64 new_size)
2680{
0b246afa
JM
2681 struct btrfs_fs_info *fs_info = device->fs_info;
2682 struct btrfs_super_block *super_copy = fs_info->super_copy;
935e5cc9 2683 struct btrfs_fs_devices *fs_devices;
2196d6e8
MX
2684 u64 old_total;
2685 u64 diff;
8f18cf13 2686
2b82032c
YZ
2687 if (!device->writeable)
2688 return -EACCES;
2196d6e8 2689
34441361 2690 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2691 old_total = btrfs_super_total_bytes(super_copy);
2692 diff = new_size - device->total_bytes;
2693
63a212ab 2694 if (new_size <= device->total_bytes ||
2196d6e8 2695 device->is_tgtdev_for_dev_replace) {
34441361 2696 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2697 return -EINVAL;
2196d6e8 2698 }
2b82032c 2699
0b246afa 2700 fs_devices = fs_info->fs_devices;
2b82032c 2701
8f18cf13 2702 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2b82032c
YZ
2703 device->fs_devices->total_rw_bytes += diff;
2704
7cc8e58d
MX
2705 btrfs_device_set_total_bytes(device, new_size);
2706 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2707 btrfs_clear_space_info_full(device->fs_info);
935e5cc9
MX
2708 if (list_empty(&device->resized_list))
2709 list_add_tail(&device->resized_list,
2710 &fs_devices->resized_devices);
34441361 2711 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2712
8f18cf13
CM
2713 return btrfs_update_device(trans, device);
2714}
2715
2716static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2717 struct btrfs_fs_info *fs_info, u64 chunk_objectid,
8f18cf13
CM
2718 u64 chunk_offset)
2719{
5b4aacef 2720 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2721 int ret;
2722 struct btrfs_path *path;
2723 struct btrfs_key key;
2724
8f18cf13
CM
2725 path = btrfs_alloc_path();
2726 if (!path)
2727 return -ENOMEM;
2728
2729 key.objectid = chunk_objectid;
2730 key.offset = chunk_offset;
2731 key.type = BTRFS_CHUNK_ITEM_KEY;
2732
2733 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2734 if (ret < 0)
2735 goto out;
2736 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2737 btrfs_handle_fs_error(fs_info, -ENOENT,
2738 "Failed lookup while freeing chunk.");
79787eaa
JM
2739 ret = -ENOENT;
2740 goto out;
2741 }
8f18cf13
CM
2742
2743 ret = btrfs_del_item(trans, root, path);
79787eaa 2744 if (ret < 0)
0b246afa
JM
2745 btrfs_handle_fs_error(fs_info, ret,
2746 "Failed to delete chunk item.");
79787eaa 2747out:
8f18cf13 2748 btrfs_free_path(path);
65a246c5 2749 return ret;
8f18cf13
CM
2750}
2751
6bccf3ab
JM
2752static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info,
2753 u64 chunk_objectid, u64 chunk_offset)
8f18cf13 2754{
0b246afa 2755 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2756 struct btrfs_disk_key *disk_key;
2757 struct btrfs_chunk *chunk;
2758 u8 *ptr;
2759 int ret = 0;
2760 u32 num_stripes;
2761 u32 array_size;
2762 u32 len = 0;
2763 u32 cur;
2764 struct btrfs_key key;
2765
34441361 2766 mutex_lock(&fs_info->chunk_mutex);
8f18cf13
CM
2767 array_size = btrfs_super_sys_array_size(super_copy);
2768
2769 ptr = super_copy->sys_chunk_array;
2770 cur = 0;
2771
2772 while (cur < array_size) {
2773 disk_key = (struct btrfs_disk_key *)ptr;
2774 btrfs_disk_key_to_cpu(&key, disk_key);
2775
2776 len = sizeof(*disk_key);
2777
2778 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2779 chunk = (struct btrfs_chunk *)(ptr + len);
2780 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2781 len += btrfs_chunk_item_size(num_stripes);
2782 } else {
2783 ret = -EIO;
2784 break;
2785 }
2786 if (key.objectid == chunk_objectid &&
2787 key.offset == chunk_offset) {
2788 memmove(ptr, ptr + len, array_size - (cur + len));
2789 array_size -= len;
2790 btrfs_set_super_sys_array_size(super_copy, array_size);
2791 } else {
2792 ptr += len;
2793 cur += len;
2794 }
2795 }
34441361 2796 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13
CM
2797 return ret;
2798}
2799
592d92ee
LB
2800static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2801 u64 logical, u64 length)
2802{
2803 struct extent_map_tree *em_tree;
2804 struct extent_map *em;
2805
2806 em_tree = &fs_info->mapping_tree.map_tree;
2807 read_lock(&em_tree->lock);
2808 em = lookup_extent_mapping(em_tree, logical, length);
2809 read_unlock(&em_tree->lock);
2810
2811 if (!em) {
2812 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2813 logical, length);
2814 return ERR_PTR(-EINVAL);
2815 }
2816
2817 if (em->start > logical || em->start + em->len < logical) {
2818 btrfs_crit(fs_info,
2819 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2820 logical, length, em->start, em->start + em->len);
2821 free_extent_map(em);
2822 return ERR_PTR(-EINVAL);
2823 }
2824
2825 /* callers are responsible for dropping em's ref. */
2826 return em;
2827}
2828
47ab2a6c 2829int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
5b4aacef 2830 struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2831{
8f18cf13
CM
2832 struct extent_map *em;
2833 struct map_lookup *map;
2196d6e8 2834 u64 dev_extent_len = 0;
47ab2a6c 2835 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
47ab2a6c 2836 int i, ret = 0;
0b246afa 2837 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 2838
592d92ee
LB
2839 em = get_chunk_map(fs_info, chunk_offset, 1);
2840 if (IS_ERR(em)) {
47ab2a6c
JB
2841 /*
2842 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 2843 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
2844 * do anything we still error out.
2845 */
2846 ASSERT(0);
592d92ee 2847 return PTR_ERR(em);
47ab2a6c 2848 }
95617d69 2849 map = em->map_lookup;
34441361 2850 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 2851 check_system_chunk(trans, fs_info, map->type);
34441361 2852 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 2853
57ba4cb8
FM
2854 /*
2855 * Take the device list mutex to prevent races with the final phase of
2856 * a device replace operation that replaces the device object associated
2857 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2858 */
2859 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 2860 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 2861 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
2862 ret = btrfs_free_dev_extent(trans, device,
2863 map->stripes[i].physical,
2864 &dev_extent_len);
47ab2a6c 2865 if (ret) {
57ba4cb8 2866 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2867 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2868 goto out;
2869 }
a061fc8d 2870
2196d6e8 2871 if (device->bytes_used > 0) {
34441361 2872 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
2873 btrfs_device_set_bytes_used(device,
2874 device->bytes_used - dev_extent_len);
a5ed45f8 2875 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 2876 btrfs_clear_space_info_full(fs_info);
34441361 2877 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 2878 }
a061fc8d 2879
dfe25020
CM
2880 if (map->stripes[i].dev) {
2881 ret = btrfs_update_device(trans, map->stripes[i].dev);
47ab2a6c 2882 if (ret) {
57ba4cb8 2883 mutex_unlock(&fs_devices->device_list_mutex);
66642832 2884 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2885 goto out;
2886 }
dfe25020 2887 }
8f18cf13 2888 }
57ba4cb8
FM
2889 mutex_unlock(&fs_devices->device_list_mutex);
2890
0b246afa 2891 ret = btrfs_free_chunk(trans, fs_info, chunk_objectid, chunk_offset);
47ab2a6c 2892 if (ret) {
66642832 2893 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2894 goto out;
2895 }
8f18cf13 2896
6bccf3ab 2897 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 2898
8f18cf13 2899 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
6bccf3ab
JM
2900 ret = btrfs_del_sys_chunk(fs_info, chunk_objectid,
2901 chunk_offset);
47ab2a6c 2902 if (ret) {
66642832 2903 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2904 goto out;
2905 }
8f18cf13
CM
2906 }
2907
6bccf3ab 2908 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
47ab2a6c 2909 if (ret) {
66642832 2910 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
2911 goto out;
2912 }
2b82032c 2913
47ab2a6c 2914out:
2b82032c
YZ
2915 /* once for us */
2916 free_extent_map(em);
47ab2a6c
JB
2917 return ret;
2918}
2b82032c 2919
5b4aacef 2920static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 2921{
5b4aacef 2922 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 2923 struct btrfs_trans_handle *trans;
47ab2a6c 2924 int ret;
2b82032c 2925
67c5e7d4
FM
2926 /*
2927 * Prevent races with automatic removal of unused block groups.
2928 * After we relocate and before we remove the chunk with offset
2929 * chunk_offset, automatic removal of the block group can kick in,
2930 * resulting in a failure when calling btrfs_remove_chunk() below.
2931 *
2932 * Make sure to acquire this mutex before doing a tree search (dev
2933 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2934 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2935 * we release the path used to search the chunk/dev tree and before
2936 * the current task acquires this mutex and calls us.
2937 */
0b246afa 2938 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
67c5e7d4 2939
0b246afa 2940 ret = btrfs_can_relocate(fs_info, chunk_offset);
47ab2a6c
JB
2941 if (ret)
2942 return -ENOSPC;
2943
2944 /* step one, relocate all the extents inside this chunk */
2ff7e61e 2945 btrfs_scrub_pause(fs_info);
0b246afa 2946 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 2947 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
2948 if (ret)
2949 return ret;
2950
19c4d2f9
CM
2951 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2952 chunk_offset);
2953 if (IS_ERR(trans)) {
2954 ret = PTR_ERR(trans);
2955 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2956 return ret;
2957 }
2958
47ab2a6c 2959 /*
19c4d2f9
CM
2960 * step two, delete the device extents and the
2961 * chunk tree entries
47ab2a6c 2962 */
5b4aacef 2963 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
3a45bb20 2964 btrfs_end_transaction(trans);
19c4d2f9 2965 return ret;
2b82032c
YZ
2966}
2967
2ff7e61e 2968static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 2969{
0b246afa 2970 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
2971 struct btrfs_path *path;
2972 struct extent_buffer *leaf;
2973 struct btrfs_chunk *chunk;
2974 struct btrfs_key key;
2975 struct btrfs_key found_key;
2b82032c 2976 u64 chunk_type;
ba1bf481
JB
2977 bool retried = false;
2978 int failed = 0;
2b82032c
YZ
2979 int ret;
2980
2981 path = btrfs_alloc_path();
2982 if (!path)
2983 return -ENOMEM;
2984
ba1bf481 2985again:
2b82032c
YZ
2986 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2987 key.offset = (u64)-1;
2988 key.type = BTRFS_CHUNK_ITEM_KEY;
2989
2990 while (1) {
0b246afa 2991 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2992 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 2993 if (ret < 0) {
0b246afa 2994 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c 2995 goto error;
67c5e7d4 2996 }
79787eaa 2997 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
2998
2999 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3000 key.type);
67c5e7d4 3001 if (ret)
0b246afa 3002 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2b82032c
YZ
3003 if (ret < 0)
3004 goto error;
3005 if (ret > 0)
3006 break;
1a40e23b 3007
2b82032c
YZ
3008 leaf = path->nodes[0];
3009 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3010
2b82032c
YZ
3011 chunk = btrfs_item_ptr(leaf, path->slots[0],
3012 struct btrfs_chunk);
3013 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3014 btrfs_release_path(path);
8f18cf13 3015
2b82032c 3016 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3017 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3018 if (ret == -ENOSPC)
3019 failed++;
14586651
HS
3020 else
3021 BUG_ON(ret);
2b82032c 3022 }
0b246afa 3023 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 3024
2b82032c
YZ
3025 if (found_key.offset == 0)
3026 break;
3027 key.offset = found_key.offset - 1;
3028 }
3029 ret = 0;
ba1bf481
JB
3030 if (failed && !retried) {
3031 failed = 0;
3032 retried = true;
3033 goto again;
fae7f21c 3034 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3035 ret = -ENOSPC;
3036 }
2b82032c
YZ
3037error:
3038 btrfs_free_path(path);
3039 return ret;
8f18cf13
CM
3040}
3041
6bccf3ab 3042static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3043 struct btrfs_balance_control *bctl)
3044{
6bccf3ab 3045 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3046 struct btrfs_trans_handle *trans;
3047 struct btrfs_balance_item *item;
3048 struct btrfs_disk_balance_args disk_bargs;
3049 struct btrfs_path *path;
3050 struct extent_buffer *leaf;
3051 struct btrfs_key key;
3052 int ret, err;
3053
3054 path = btrfs_alloc_path();
3055 if (!path)
3056 return -ENOMEM;
3057
3058 trans = btrfs_start_transaction(root, 0);
3059 if (IS_ERR(trans)) {
3060 btrfs_free_path(path);
3061 return PTR_ERR(trans);
3062 }
3063
3064 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3065 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3066 key.offset = 0;
3067
3068 ret = btrfs_insert_empty_item(trans, root, path, &key,
3069 sizeof(*item));
3070 if (ret)
3071 goto out;
3072
3073 leaf = path->nodes[0];
3074 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3075
b159fa28 3076 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3077
3078 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3079 btrfs_set_balance_data(leaf, item, &disk_bargs);
3080 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3081 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3082 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3083 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3084
3085 btrfs_set_balance_flags(leaf, item, bctl->flags);
3086
3087 btrfs_mark_buffer_dirty(leaf);
3088out:
3089 btrfs_free_path(path);
3a45bb20 3090 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3091 if (err && !ret)
3092 ret = err;
3093 return ret;
3094}
3095
6bccf3ab 3096static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3097{
6bccf3ab 3098 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3099 struct btrfs_trans_handle *trans;
3100 struct btrfs_path *path;
3101 struct btrfs_key key;
3102 int ret, err;
3103
3104 path = btrfs_alloc_path();
3105 if (!path)
3106 return -ENOMEM;
3107
3108 trans = btrfs_start_transaction(root, 0);
3109 if (IS_ERR(trans)) {
3110 btrfs_free_path(path);
3111 return PTR_ERR(trans);
3112 }
3113
3114 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3115 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3116 key.offset = 0;
3117
3118 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3119 if (ret < 0)
3120 goto out;
3121 if (ret > 0) {
3122 ret = -ENOENT;
3123 goto out;
3124 }
3125
3126 ret = btrfs_del_item(trans, root, path);
3127out:
3128 btrfs_free_path(path);
3a45bb20 3129 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3130 if (err && !ret)
3131 ret = err;
3132 return ret;
3133}
3134
59641015
ID
3135/*
3136 * This is a heuristic used to reduce the number of chunks balanced on
3137 * resume after balance was interrupted.
3138 */
3139static void update_balance_args(struct btrfs_balance_control *bctl)
3140{
3141 /*
3142 * Turn on soft mode for chunk types that were being converted.
3143 */
3144 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3145 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3146 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3147 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3148 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3149 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3150
3151 /*
3152 * Turn on usage filter if is not already used. The idea is
3153 * that chunks that we have already balanced should be
3154 * reasonably full. Don't do it for chunks that are being
3155 * converted - that will keep us from relocating unconverted
3156 * (albeit full) chunks.
3157 */
3158 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3159 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3160 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3161 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3162 bctl->data.usage = 90;
3163 }
3164 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3165 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3166 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3167 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3168 bctl->sys.usage = 90;
3169 }
3170 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3171 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3172 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3173 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3174 bctl->meta.usage = 90;
3175 }
3176}
3177
c9e9f97b
ID
3178/*
3179 * Should be called with both balance and volume mutexes held to
3180 * serialize other volume operations (add_dev/rm_dev/resize) with
3181 * restriper. Same goes for unset_balance_control.
3182 */
3183static void set_balance_control(struct btrfs_balance_control *bctl)
3184{
3185 struct btrfs_fs_info *fs_info = bctl->fs_info;
3186
3187 BUG_ON(fs_info->balance_ctl);
3188
3189 spin_lock(&fs_info->balance_lock);
3190 fs_info->balance_ctl = bctl;
3191 spin_unlock(&fs_info->balance_lock);
3192}
3193
3194static void unset_balance_control(struct btrfs_fs_info *fs_info)
3195{
3196 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3197
3198 BUG_ON(!fs_info->balance_ctl);
3199
3200 spin_lock(&fs_info->balance_lock);
3201 fs_info->balance_ctl = NULL;
3202 spin_unlock(&fs_info->balance_lock);
3203
3204 kfree(bctl);
3205}
3206
ed25e9b2
ID
3207/*
3208 * Balance filters. Return 1 if chunk should be filtered out
3209 * (should not be balanced).
3210 */
899c81ea 3211static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3212 struct btrfs_balance_args *bargs)
3213{
899c81ea
ID
3214 chunk_type = chunk_to_extended(chunk_type) &
3215 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3216
899c81ea 3217 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3218 return 0;
3219
3220 return 1;
3221}
3222
dba72cb3 3223static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3224 struct btrfs_balance_args *bargs)
bc309467
DS
3225{
3226 struct btrfs_block_group_cache *cache;
3227 u64 chunk_used;
3228 u64 user_thresh_min;
3229 u64 user_thresh_max;
3230 int ret = 1;
3231
3232 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3233 chunk_used = btrfs_block_group_used(&cache->item);
3234
3235 if (bargs->usage_min == 0)
3236 user_thresh_min = 0;
3237 else
3238 user_thresh_min = div_factor_fine(cache->key.offset,
3239 bargs->usage_min);
3240
3241 if (bargs->usage_max == 0)
3242 user_thresh_max = 1;
3243 else if (bargs->usage_max > 100)
3244 user_thresh_max = cache->key.offset;
3245 else
3246 user_thresh_max = div_factor_fine(cache->key.offset,
3247 bargs->usage_max);
3248
3249 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3250 ret = 0;
3251
3252 btrfs_put_block_group(cache);
3253 return ret;
3254}
3255
dba72cb3 3256static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3257 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0
ID
3258{
3259 struct btrfs_block_group_cache *cache;
3260 u64 chunk_used, user_thresh;
3261 int ret = 1;
3262
3263 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3264 chunk_used = btrfs_block_group_used(&cache->item);
3265
bc309467 3266 if (bargs->usage_min == 0)
3e39cea6 3267 user_thresh = 1;
a105bb88
ID
3268 else if (bargs->usage > 100)
3269 user_thresh = cache->key.offset;
3270 else
3271 user_thresh = div_factor_fine(cache->key.offset,
3272 bargs->usage);
3273
5ce5b3c0
ID
3274 if (chunk_used < user_thresh)
3275 ret = 0;
3276
3277 btrfs_put_block_group(cache);
3278 return ret;
3279}
3280
409d404b
ID
3281static int chunk_devid_filter(struct extent_buffer *leaf,
3282 struct btrfs_chunk *chunk,
3283 struct btrfs_balance_args *bargs)
3284{
3285 struct btrfs_stripe *stripe;
3286 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3287 int i;
3288
3289 for (i = 0; i < num_stripes; i++) {
3290 stripe = btrfs_stripe_nr(chunk, i);
3291 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3292 return 0;
3293 }
3294
3295 return 1;
3296}
3297
94e60d5a
ID
3298/* [pstart, pend) */
3299static int chunk_drange_filter(struct extent_buffer *leaf,
3300 struct btrfs_chunk *chunk,
3301 u64 chunk_offset,
3302 struct btrfs_balance_args *bargs)
3303{
3304 struct btrfs_stripe *stripe;
3305 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3306 u64 stripe_offset;
3307 u64 stripe_length;
3308 int factor;
3309 int i;
3310
3311 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3312 return 0;
3313
3314 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
53b381b3
DW
3315 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3316 factor = num_stripes / 2;
3317 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3318 factor = num_stripes - 1;
3319 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3320 factor = num_stripes - 2;
3321 } else {
3322 factor = num_stripes;
3323 }
94e60d5a
ID
3324
3325 for (i = 0; i < num_stripes; i++) {
3326 stripe = btrfs_stripe_nr(chunk, i);
3327 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3328 continue;
3329
3330 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3331 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3332 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3333
3334 if (stripe_offset < bargs->pend &&
3335 stripe_offset + stripe_length > bargs->pstart)
3336 return 0;
3337 }
3338
3339 return 1;
3340}
3341
ea67176a
ID
3342/* [vstart, vend) */
3343static int chunk_vrange_filter(struct extent_buffer *leaf,
3344 struct btrfs_chunk *chunk,
3345 u64 chunk_offset,
3346 struct btrfs_balance_args *bargs)
3347{
3348 if (chunk_offset < bargs->vend &&
3349 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3350 /* at least part of the chunk is inside this vrange */
3351 return 0;
3352
3353 return 1;
3354}
3355
dee32d0a
GAP
3356static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3357 struct btrfs_chunk *chunk,
3358 struct btrfs_balance_args *bargs)
3359{
3360 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3361
3362 if (bargs->stripes_min <= num_stripes
3363 && num_stripes <= bargs->stripes_max)
3364 return 0;
3365
3366 return 1;
3367}
3368
899c81ea 3369static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3370 struct btrfs_balance_args *bargs)
3371{
3372 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3373 return 0;
3374
899c81ea
ID
3375 chunk_type = chunk_to_extended(chunk_type) &
3376 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3377
899c81ea 3378 if (bargs->target == chunk_type)
cfa4c961
ID
3379 return 1;
3380
3381 return 0;
3382}
3383
2ff7e61e 3384static int should_balance_chunk(struct btrfs_fs_info *fs_info,
f43ffb60
ID
3385 struct extent_buffer *leaf,
3386 struct btrfs_chunk *chunk, u64 chunk_offset)
3387{
0b246afa 3388 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3389 struct btrfs_balance_args *bargs = NULL;
3390 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3391
3392 /* type filter */
3393 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3394 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3395 return 0;
3396 }
3397
3398 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3399 bargs = &bctl->data;
3400 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3401 bargs = &bctl->sys;
3402 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3403 bargs = &bctl->meta;
3404
ed25e9b2
ID
3405 /* profiles filter */
3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3407 chunk_profiles_filter(chunk_type, bargs)) {
3408 return 0;
5ce5b3c0
ID
3409 }
3410
3411 /* usage filter */
3412 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3413 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3414 return 0;
bc309467 3415 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3416 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3417 return 0;
409d404b
ID
3418 }
3419
3420 /* devid filter */
3421 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3422 chunk_devid_filter(leaf, chunk, bargs)) {
3423 return 0;
94e60d5a
ID
3424 }
3425
3426 /* drange filter, makes sense only with devid filter */
3427 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3428 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3429 return 0;
ea67176a
ID
3430 }
3431
3432 /* vrange filter */
3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3434 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3435 return 0;
ed25e9b2
ID
3436 }
3437
dee32d0a
GAP
3438 /* stripes filter */
3439 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3440 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3441 return 0;
3442 }
3443
cfa4c961
ID
3444 /* soft profile changing mode */
3445 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3446 chunk_soft_convert_filter(chunk_type, bargs)) {
3447 return 0;
3448 }
3449
7d824b6f
DS
3450 /*
3451 * limited by count, must be the last filter
3452 */
3453 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3454 if (bargs->limit == 0)
3455 return 0;
3456 else
3457 bargs->limit--;
12907fc7
DS
3458 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3459 /*
3460 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3461 * determined here because we do not have the global information
12907fc7
DS
3462 * about the count of all chunks that satisfy the filters.
3463 */
3464 if (bargs->limit_max == 0)
3465 return 0;
3466 else
3467 bargs->limit_max--;
7d824b6f
DS
3468 }
3469
f43ffb60
ID
3470 return 1;
3471}
3472
c9e9f97b 3473static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3474{
19a39dce 3475 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b
ID
3476 struct btrfs_root *chunk_root = fs_info->chunk_root;
3477 struct btrfs_root *dev_root = fs_info->dev_root;
3478 struct list_head *devices;
ec44a35c
CM
3479 struct btrfs_device *device;
3480 u64 old_size;
3481 u64 size_to_free;
12907fc7 3482 u64 chunk_type;
f43ffb60 3483 struct btrfs_chunk *chunk;
5a488b9d 3484 struct btrfs_path *path = NULL;
ec44a35c 3485 struct btrfs_key key;
ec44a35c 3486 struct btrfs_key found_key;
c9e9f97b 3487 struct btrfs_trans_handle *trans;
f43ffb60
ID
3488 struct extent_buffer *leaf;
3489 int slot;
c9e9f97b
ID
3490 int ret;
3491 int enospc_errors = 0;
19a39dce 3492 bool counting = true;
12907fc7 3493 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3494 u64 limit_data = bctl->data.limit;
3495 u64 limit_meta = bctl->meta.limit;
3496 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3497 u32 count_data = 0;
3498 u32 count_meta = 0;
3499 u32 count_sys = 0;
2c9fe835 3500 int chunk_reserved = 0;
cf25ce51 3501 u64 bytes_used = 0;
ec44a35c 3502
ec44a35c 3503 /* step one make some room on all the devices */
c9e9f97b 3504 devices = &fs_info->fs_devices->devices;
c6e30871 3505 list_for_each_entry(device, devices, dev_list) {
7cc8e58d 3506 old_size = btrfs_device_get_total_bytes(device);
ec44a35c 3507 size_to_free = div_factor(old_size, 1);
ee22184b 3508 size_to_free = min_t(u64, size_to_free, SZ_1M);
2b82032c 3509 if (!device->writeable ||
7cc8e58d
MX
3510 btrfs_device_get_total_bytes(device) -
3511 btrfs_device_get_bytes_used(device) > size_to_free ||
63a212ab 3512 device->is_tgtdev_for_dev_replace)
ec44a35c
CM
3513 continue;
3514
3515 ret = btrfs_shrink_device(device, old_size - size_to_free);
ba1bf481
JB
3516 if (ret == -ENOSPC)
3517 break;
5a488b9d
LB
3518 if (ret) {
3519 /* btrfs_shrink_device never returns ret > 0 */
3520 WARN_ON(ret > 0);
3521 goto error;
3522 }
ec44a35c 3523
a22285a6 3524 trans = btrfs_start_transaction(dev_root, 0);
5a488b9d
LB
3525 if (IS_ERR(trans)) {
3526 ret = PTR_ERR(trans);
3527 btrfs_info_in_rcu(fs_info,
3528 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3529 rcu_str_deref(device->name), ret,
3530 old_size, old_size - size_to_free);
3531 goto error;
3532 }
ec44a35c
CM
3533
3534 ret = btrfs_grow_device(trans, device, old_size);
5a488b9d 3535 if (ret) {
3a45bb20 3536 btrfs_end_transaction(trans);
5a488b9d
LB
3537 /* btrfs_grow_device never returns ret > 0 */
3538 WARN_ON(ret > 0);
3539 btrfs_info_in_rcu(fs_info,
3540 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3541 rcu_str_deref(device->name), ret,
3542 old_size, old_size - size_to_free);
3543 goto error;
3544 }
ec44a35c 3545
3a45bb20 3546 btrfs_end_transaction(trans);
ec44a35c
CM
3547 }
3548
3549 /* step two, relocate all the chunks */
3550 path = btrfs_alloc_path();
17e9f796
MF
3551 if (!path) {
3552 ret = -ENOMEM;
3553 goto error;
3554 }
19a39dce
ID
3555
3556 /* zero out stat counters */
3557 spin_lock(&fs_info->balance_lock);
3558 memset(&bctl->stat, 0, sizeof(bctl->stat));
3559 spin_unlock(&fs_info->balance_lock);
3560again:
7d824b6f 3561 if (!counting) {
12907fc7
DS
3562 /*
3563 * The single value limit and min/max limits use the same bytes
3564 * in the
3565 */
7d824b6f
DS
3566 bctl->data.limit = limit_data;
3567 bctl->meta.limit = limit_meta;
3568 bctl->sys.limit = limit_sys;
3569 }
ec44a35c
CM
3570 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3571 key.offset = (u64)-1;
3572 key.type = BTRFS_CHUNK_ITEM_KEY;
3573
d397712b 3574 while (1) {
19a39dce 3575 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3576 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3577 ret = -ECANCELED;
3578 goto error;
3579 }
3580
67c5e7d4 3581 mutex_lock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3582 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4
FM
3583 if (ret < 0) {
3584 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3585 goto error;
67c5e7d4 3586 }
ec44a35c
CM
3587
3588 /*
3589 * this shouldn't happen, it means the last relocate
3590 * failed
3591 */
3592 if (ret == 0)
c9e9f97b 3593 BUG(); /* FIXME break ? */
ec44a35c
CM
3594
3595 ret = btrfs_previous_item(chunk_root, path, 0,
3596 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3597 if (ret) {
67c5e7d4 3598 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
c9e9f97b 3599 ret = 0;
ec44a35c 3600 break;
c9e9f97b 3601 }
7d9eb12c 3602
f43ffb60
ID
3603 leaf = path->nodes[0];
3604 slot = path->slots[0];
3605 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3606
67c5e7d4
FM
3607 if (found_key.objectid != key.objectid) {
3608 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ec44a35c 3609 break;
67c5e7d4 3610 }
7d9eb12c 3611
f43ffb60 3612 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3613 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3614
19a39dce
ID
3615 if (!counting) {
3616 spin_lock(&fs_info->balance_lock);
3617 bctl->stat.considered++;
3618 spin_unlock(&fs_info->balance_lock);
3619 }
3620
2ff7e61e 3621 ret = should_balance_chunk(fs_info, leaf, chunk,
f43ffb60 3622 found_key.offset);
2c9fe835 3623
b3b4aa74 3624 btrfs_release_path(path);
67c5e7d4
FM
3625 if (!ret) {
3626 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
f43ffb60 3627 goto loop;
67c5e7d4 3628 }
f43ffb60 3629
19a39dce 3630 if (counting) {
67c5e7d4 3631 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3632 spin_lock(&fs_info->balance_lock);
3633 bctl->stat.expected++;
3634 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3635
3636 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3637 count_data++;
3638 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3639 count_sys++;
3640 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3641 count_meta++;
3642
3643 goto loop;
3644 }
3645
3646 /*
3647 * Apply limit_min filter, no need to check if the LIMITS
3648 * filter is used, limit_min is 0 by default
3649 */
3650 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3651 count_data < bctl->data.limit_min)
3652 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3653 count_meta < bctl->meta.limit_min)
3654 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3655 count_sys < bctl->sys.limit_min)) {
3656 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
19a39dce
ID
3657 goto loop;
3658 }
3659
cf25ce51
LB
3660 ASSERT(fs_info->data_sinfo);
3661 spin_lock(&fs_info->data_sinfo->lock);
3662 bytes_used = fs_info->data_sinfo->bytes_used;
3663 spin_unlock(&fs_info->data_sinfo->lock);
3664
3665 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3666 !chunk_reserved && !bytes_used) {
2c9fe835
ZL
3667 trans = btrfs_start_transaction(chunk_root, 0);
3668 if (IS_ERR(trans)) {
3669 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3670 ret = PTR_ERR(trans);
3671 goto error;
3672 }
3673
2ff7e61e 3674 ret = btrfs_force_chunk_alloc(trans, fs_info,
2c9fe835 3675 BTRFS_BLOCK_GROUP_DATA);
3a45bb20 3676 btrfs_end_transaction(trans);
2c9fe835
ZL
3677 if (ret < 0) {
3678 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3679 goto error;
3680 }
2c9fe835
ZL
3681 chunk_reserved = 1;
3682 }
3683
5b4aacef 3684 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
67c5e7d4 3685 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
508794eb
JB
3686 if (ret && ret != -ENOSPC)
3687 goto error;
19a39dce 3688 if (ret == -ENOSPC) {
c9e9f97b 3689 enospc_errors++;
19a39dce
ID
3690 } else {
3691 spin_lock(&fs_info->balance_lock);
3692 bctl->stat.completed++;
3693 spin_unlock(&fs_info->balance_lock);
3694 }
f43ffb60 3695loop:
795a3321
ID
3696 if (found_key.offset == 0)
3697 break;
ba1bf481 3698 key.offset = found_key.offset - 1;
ec44a35c 3699 }
c9e9f97b 3700
19a39dce
ID
3701 if (counting) {
3702 btrfs_release_path(path);
3703 counting = false;
3704 goto again;
3705 }
ec44a35c
CM
3706error:
3707 btrfs_free_path(path);
c9e9f97b 3708 if (enospc_errors) {
efe120a0 3709 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 3710 enospc_errors);
c9e9f97b
ID
3711 if (!ret)
3712 ret = -ENOSPC;
3713 }
3714
ec44a35c
CM
3715 return ret;
3716}
3717
0c460c0d
ID
3718/**
3719 * alloc_profile_is_valid - see if a given profile is valid and reduced
3720 * @flags: profile to validate
3721 * @extended: if true @flags is treated as an extended profile
3722 */
3723static int alloc_profile_is_valid(u64 flags, int extended)
3724{
3725 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3726 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3727
3728 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3729
3730 /* 1) check that all other bits are zeroed */
3731 if (flags & ~mask)
3732 return 0;
3733
3734 /* 2) see if profile is reduced */
3735 if (flags == 0)
3736 return !extended; /* "0" is valid for usual profiles */
3737
3738 /* true if exactly one bit set */
3739 return (flags & (flags - 1)) == 0;
3740}
3741
837d5b6e
ID
3742static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3743{
a7e99c69
ID
3744 /* cancel requested || normal exit path */
3745 return atomic_read(&fs_info->balance_cancel_req) ||
3746 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3747 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
3748}
3749
c9e9f97b
ID
3750static void __cancel_balance(struct btrfs_fs_info *fs_info)
3751{
0940ebf6
ID
3752 int ret;
3753
c9e9f97b 3754 unset_balance_control(fs_info);
6bccf3ab 3755 ret = del_balance_item(fs_info);
0f788c58 3756 if (ret)
34d97007 3757 btrfs_handle_fs_error(fs_info, ret, NULL);
ed0fb78f 3758
171938e5 3759 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
c9e9f97b
ID
3760}
3761
bdcd3c97
AM
3762/* Non-zero return value signifies invalidity */
3763static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3764 u64 allowed)
3765{
3766 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3767 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3768 (bctl_arg->target & ~allowed)));
3769}
3770
c9e9f97b
ID
3771/*
3772 * Should be called with both balance and volume mutexes held
3773 */
3774int btrfs_balance(struct btrfs_balance_control *bctl,
3775 struct btrfs_ioctl_balance_args *bargs)
3776{
3777 struct btrfs_fs_info *fs_info = bctl->fs_info;
14506127 3778 u64 meta_target, data_target;
f43ffb60 3779 u64 allowed;
e4837f8f 3780 int mixed = 0;
c9e9f97b 3781 int ret;
8dabb742 3782 u64 num_devices;
de98ced9 3783 unsigned seq;
c9e9f97b 3784
837d5b6e 3785 if (btrfs_fs_closing(fs_info) ||
a7e99c69
ID
3786 atomic_read(&fs_info->balance_pause_req) ||
3787 atomic_read(&fs_info->balance_cancel_req)) {
c9e9f97b
ID
3788 ret = -EINVAL;
3789 goto out;
3790 }
3791
e4837f8f
ID
3792 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3793 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3794 mixed = 1;
3795
f43ffb60
ID
3796 /*
3797 * In case of mixed groups both data and meta should be picked,
3798 * and identical options should be given for both of them.
3799 */
e4837f8f
ID
3800 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3801 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
3802 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3803 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3804 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e
JM
3805 btrfs_err(fs_info,
3806 "with mixed groups data and metadata balance options must be the same");
f43ffb60
ID
3807 ret = -EINVAL;
3808 goto out;
3809 }
3810 }
3811
8dabb742 3812 num_devices = fs_info->fs_devices->num_devices;
73beece9 3813 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
3814 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3815 BUG_ON(num_devices < 1);
3816 num_devices--;
3817 }
73beece9 3818 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
88be159c
AH
3819 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3820 if (num_devices > 1)
e4d8ec0f 3821 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
8250dabe
AP
3822 if (num_devices > 2)
3823 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3824 if (num_devices > 3)
3825 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3826 BTRFS_BLOCK_GROUP_RAID6);
bdcd3c97 3827 if (validate_convert_profile(&bctl->data, allowed)) {
5d163e0e
JM
3828 btrfs_err(fs_info,
3829 "unable to start balance with target data profile %llu",
3830 bctl->data.target);
e4d8ec0f
ID
3831 ret = -EINVAL;
3832 goto out;
3833 }
bdcd3c97 3834 if (validate_convert_profile(&bctl->meta, allowed)) {
efe120a0 3835 btrfs_err(fs_info,
5d163e0e
JM
3836 "unable to start balance with target metadata profile %llu",
3837 bctl->meta.target);
e4d8ec0f
ID
3838 ret = -EINVAL;
3839 goto out;
3840 }
bdcd3c97 3841 if (validate_convert_profile(&bctl->sys, allowed)) {
efe120a0 3842 btrfs_err(fs_info,
5d163e0e
JM
3843 "unable to start balance with target system profile %llu",
3844 bctl->sys.target);
e4d8ec0f
ID
3845 ret = -EINVAL;
3846 goto out;
3847 }
3848
e4d8ec0f
ID
3849 /* allow to reduce meta or sys integrity only if force set */
3850 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
3851 BTRFS_BLOCK_GROUP_RAID10 |
3852 BTRFS_BLOCK_GROUP_RAID5 |
3853 BTRFS_BLOCK_GROUP_RAID6;
de98ced9
MX
3854 do {
3855 seq = read_seqbegin(&fs_info->profiles_lock);
3856
3857 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3858 (fs_info->avail_system_alloc_bits & allowed) &&
3859 !(bctl->sys.target & allowed)) ||
3860 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3861 (fs_info->avail_metadata_alloc_bits & allowed) &&
3862 !(bctl->meta.target & allowed))) {
3863 if (bctl->flags & BTRFS_BALANCE_FORCE) {
5d163e0e
JM
3864 btrfs_info(fs_info,
3865 "force reducing metadata integrity");
de98ced9 3866 } else {
5d163e0e
JM
3867 btrfs_err(fs_info,
3868 "balance will reduce metadata integrity, use force if you want this");
de98ced9
MX
3869 ret = -EINVAL;
3870 goto out;
3871 }
e4d8ec0f 3872 }
de98ced9 3873 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 3874
14506127
AB
3875 /* if we're not converting, the target field is uninitialized */
3876 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3877 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3878 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3879 bctl->data.target : fs_info->avail_data_alloc_bits;
3880 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3881 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 3882 btrfs_warn(fs_info,
5d163e0e 3883 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
14506127 3884 meta_target, data_target);
ee592d07
ST
3885 }
3886
5af3e8cc 3887 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
943c6e99
ZL
3888 fs_info->num_tolerated_disk_barrier_failures = min(
3889 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3890 btrfs_get_num_tolerated_disk_barrier_failures(
3891 bctl->sys.target));
5af3e8cc
SB
3892 }
3893
6bccf3ab 3894 ret = insert_balance_item(fs_info, bctl);
59641015 3895 if (ret && ret != -EEXIST)
0940ebf6
ID
3896 goto out;
3897
59641015
ID
3898 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3899 BUG_ON(ret == -EEXIST);
3900 set_balance_control(bctl);
3901 } else {
3902 BUG_ON(ret != -EEXIST);
3903 spin_lock(&fs_info->balance_lock);
3904 update_balance_args(bctl);
3905 spin_unlock(&fs_info->balance_lock);
3906 }
c9e9f97b 3907
837d5b6e 3908 atomic_inc(&fs_info->balance_running);
c9e9f97b
ID
3909 mutex_unlock(&fs_info->balance_mutex);
3910
3911 ret = __btrfs_balance(fs_info);
3912
3913 mutex_lock(&fs_info->balance_mutex);
837d5b6e 3914 atomic_dec(&fs_info->balance_running);
c9e9f97b 3915
bf023ecf
ID
3916 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3917 fs_info->num_tolerated_disk_barrier_failures =
3918 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3919 }
3920
c9e9f97b
ID
3921 if (bargs) {
3922 memset(bargs, 0, sizeof(*bargs));
19a39dce 3923 update_ioctl_balance_args(fs_info, 0, bargs);
c9e9f97b
ID
3924 }
3925
3a01aa7a
ID
3926 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3927 balance_need_close(fs_info)) {
3928 __cancel_balance(fs_info);
3929 }
3930
837d5b6e 3931 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
3932
3933 return ret;
3934out:
59641015
ID
3935 if (bctl->flags & BTRFS_BALANCE_RESUME)
3936 __cancel_balance(fs_info);
ed0fb78f 3937 else {
59641015 3938 kfree(bctl);
171938e5 3939 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
ed0fb78f 3940 }
59641015
ID
3941 return ret;
3942}
3943
3944static int balance_kthread(void *data)
3945{
2b6ba629 3946 struct btrfs_fs_info *fs_info = data;
9555c6c1 3947 int ret = 0;
59641015
ID
3948
3949 mutex_lock(&fs_info->volume_mutex);
3950 mutex_lock(&fs_info->balance_mutex);
3951
2b6ba629 3952 if (fs_info->balance_ctl) {
efe120a0 3953 btrfs_info(fs_info, "continuing balance");
2b6ba629 3954 ret = btrfs_balance(fs_info->balance_ctl, NULL);
9555c6c1 3955 }
59641015
ID
3956
3957 mutex_unlock(&fs_info->balance_mutex);
3958 mutex_unlock(&fs_info->volume_mutex);
2b6ba629 3959
59641015
ID
3960 return ret;
3961}
3962
2b6ba629
ID
3963int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3964{
3965 struct task_struct *tsk;
3966
3967 spin_lock(&fs_info->balance_lock);
3968 if (!fs_info->balance_ctl) {
3969 spin_unlock(&fs_info->balance_lock);
3970 return 0;
3971 }
3972 spin_unlock(&fs_info->balance_lock);
3973
3cdde224 3974 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
efe120a0 3975 btrfs_info(fs_info, "force skipping balance");
2b6ba629
ID
3976 return 0;
3977 }
3978
3979 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 3980 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
3981}
3982
68310a5e 3983int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 3984{
59641015
ID
3985 struct btrfs_balance_control *bctl;
3986 struct btrfs_balance_item *item;
3987 struct btrfs_disk_balance_args disk_bargs;
3988 struct btrfs_path *path;
3989 struct extent_buffer *leaf;
3990 struct btrfs_key key;
3991 int ret;
3992
3993 path = btrfs_alloc_path();
3994 if (!path)
3995 return -ENOMEM;
3996
59641015 3997 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3998 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
3999 key.offset = 0;
4000
68310a5e 4001 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4002 if (ret < 0)
68310a5e 4003 goto out;
59641015
ID
4004 if (ret > 0) { /* ret = -ENOENT; */
4005 ret = 0;
68310a5e
ID
4006 goto out;
4007 }
4008
4009 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4010 if (!bctl) {
4011 ret = -ENOMEM;
4012 goto out;
59641015
ID
4013 }
4014
4015 leaf = path->nodes[0];
4016 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4017
68310a5e
ID
4018 bctl->fs_info = fs_info;
4019 bctl->flags = btrfs_balance_flags(leaf, item);
4020 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4021
4022 btrfs_balance_data(leaf, item, &disk_bargs);
4023 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4024 btrfs_balance_meta(leaf, item, &disk_bargs);
4025 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4026 btrfs_balance_sys(leaf, item, &disk_bargs);
4027 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4028
171938e5 4029 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
ed0fb78f 4030
68310a5e
ID
4031 mutex_lock(&fs_info->volume_mutex);
4032 mutex_lock(&fs_info->balance_mutex);
59641015 4033
68310a5e
ID
4034 set_balance_control(bctl);
4035
4036 mutex_unlock(&fs_info->balance_mutex);
4037 mutex_unlock(&fs_info->volume_mutex);
59641015
ID
4038out:
4039 btrfs_free_path(path);
ec44a35c
CM
4040 return ret;
4041}
4042
837d5b6e
ID
4043int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4044{
4045 int ret = 0;
4046
4047 mutex_lock(&fs_info->balance_mutex);
4048 if (!fs_info->balance_ctl) {
4049 mutex_unlock(&fs_info->balance_mutex);
4050 return -ENOTCONN;
4051 }
4052
4053 if (atomic_read(&fs_info->balance_running)) {
4054 atomic_inc(&fs_info->balance_pause_req);
4055 mutex_unlock(&fs_info->balance_mutex);
4056
4057 wait_event(fs_info->balance_wait_q,
4058 atomic_read(&fs_info->balance_running) == 0);
4059
4060 mutex_lock(&fs_info->balance_mutex);
4061 /* we are good with balance_ctl ripped off from under us */
4062 BUG_ON(atomic_read(&fs_info->balance_running));
4063 atomic_dec(&fs_info->balance_pause_req);
4064 } else {
4065 ret = -ENOTCONN;
4066 }
4067
4068 mutex_unlock(&fs_info->balance_mutex);
4069 return ret;
4070}
4071
a7e99c69
ID
4072int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4073{
e649e587
ID
4074 if (fs_info->sb->s_flags & MS_RDONLY)
4075 return -EROFS;
4076
a7e99c69
ID
4077 mutex_lock(&fs_info->balance_mutex);
4078 if (!fs_info->balance_ctl) {
4079 mutex_unlock(&fs_info->balance_mutex);
4080 return -ENOTCONN;
4081 }
4082
4083 atomic_inc(&fs_info->balance_cancel_req);
4084 /*
4085 * if we are running just wait and return, balance item is
4086 * deleted in btrfs_balance in this case
4087 */
4088 if (atomic_read(&fs_info->balance_running)) {
4089 mutex_unlock(&fs_info->balance_mutex);
4090 wait_event(fs_info->balance_wait_q,
4091 atomic_read(&fs_info->balance_running) == 0);
4092 mutex_lock(&fs_info->balance_mutex);
4093 } else {
4094 /* __cancel_balance needs volume_mutex */
4095 mutex_unlock(&fs_info->balance_mutex);
4096 mutex_lock(&fs_info->volume_mutex);
4097 mutex_lock(&fs_info->balance_mutex);
4098
4099 if (fs_info->balance_ctl)
4100 __cancel_balance(fs_info);
4101
4102 mutex_unlock(&fs_info->volume_mutex);
4103 }
4104
4105 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4106 atomic_dec(&fs_info->balance_cancel_req);
4107 mutex_unlock(&fs_info->balance_mutex);
4108 return 0;
4109}
4110
803b2f54
SB
4111static int btrfs_uuid_scan_kthread(void *data)
4112{
4113 struct btrfs_fs_info *fs_info = data;
4114 struct btrfs_root *root = fs_info->tree_root;
4115 struct btrfs_key key;
4116 struct btrfs_key max_key;
4117 struct btrfs_path *path = NULL;
4118 int ret = 0;
4119 struct extent_buffer *eb;
4120 int slot;
4121 struct btrfs_root_item root_item;
4122 u32 item_size;
f45388f3 4123 struct btrfs_trans_handle *trans = NULL;
803b2f54
SB
4124
4125 path = btrfs_alloc_path();
4126 if (!path) {
4127 ret = -ENOMEM;
4128 goto out;
4129 }
4130
4131 key.objectid = 0;
4132 key.type = BTRFS_ROOT_ITEM_KEY;
4133 key.offset = 0;
4134
4135 max_key.objectid = (u64)-1;
4136 max_key.type = BTRFS_ROOT_ITEM_KEY;
4137 max_key.offset = (u64)-1;
4138
803b2f54 4139 while (1) {
6174d3cb 4140 ret = btrfs_search_forward(root, &key, path, 0);
803b2f54
SB
4141 if (ret) {
4142 if (ret > 0)
4143 ret = 0;
4144 break;
4145 }
4146
4147 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4148 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4149 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4150 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4151 goto skip;
4152
4153 eb = path->nodes[0];
4154 slot = path->slots[0];
4155 item_size = btrfs_item_size_nr(eb, slot);
4156 if (item_size < sizeof(root_item))
4157 goto skip;
4158
803b2f54
SB
4159 read_extent_buffer(eb, &root_item,
4160 btrfs_item_ptr_offset(eb, slot),
4161 (int)sizeof(root_item));
4162 if (btrfs_root_refs(&root_item) == 0)
4163 goto skip;
f45388f3
FDBM
4164
4165 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4166 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4167 if (trans)
4168 goto update_tree;
4169
4170 btrfs_release_path(path);
803b2f54
SB
4171 /*
4172 * 1 - subvol uuid item
4173 * 1 - received_subvol uuid item
4174 */
4175 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4176 if (IS_ERR(trans)) {
4177 ret = PTR_ERR(trans);
4178 break;
4179 }
f45388f3
FDBM
4180 continue;
4181 } else {
4182 goto skip;
4183 }
4184update_tree:
4185 if (!btrfs_is_empty_uuid(root_item.uuid)) {
6bccf3ab 4186 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4187 root_item.uuid,
4188 BTRFS_UUID_KEY_SUBVOL,
4189 key.objectid);
4190 if (ret < 0) {
efe120a0 4191 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4192 ret);
803b2f54
SB
4193 break;
4194 }
4195 }
4196
4197 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
6bccf3ab 4198 ret = btrfs_uuid_tree_add(trans, fs_info,
803b2f54
SB
4199 root_item.received_uuid,
4200 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4201 key.objectid);
4202 if (ret < 0) {
efe120a0 4203 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4204 ret);
803b2f54
SB
4205 break;
4206 }
4207 }
4208
f45388f3 4209skip:
803b2f54 4210 if (trans) {
3a45bb20 4211 ret = btrfs_end_transaction(trans);
f45388f3 4212 trans = NULL;
803b2f54
SB
4213 if (ret)
4214 break;
4215 }
4216
803b2f54
SB
4217 btrfs_release_path(path);
4218 if (key.offset < (u64)-1) {
4219 key.offset++;
4220 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4221 key.offset = 0;
4222 key.type = BTRFS_ROOT_ITEM_KEY;
4223 } else if (key.objectid < (u64)-1) {
4224 key.offset = 0;
4225 key.type = BTRFS_ROOT_ITEM_KEY;
4226 key.objectid++;
4227 } else {
4228 break;
4229 }
4230 cond_resched();
4231 }
4232
4233out:
4234 btrfs_free_path(path);
f45388f3 4235 if (trans && !IS_ERR(trans))
3a45bb20 4236 btrfs_end_transaction(trans);
803b2f54 4237 if (ret)
efe120a0 4238 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
70f80175 4239 else
afcdd129 4240 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4241 up(&fs_info->uuid_tree_rescan_sem);
4242 return 0;
4243}
4244
70f80175
SB
4245/*
4246 * Callback for btrfs_uuid_tree_iterate().
4247 * returns:
4248 * 0 check succeeded, the entry is not outdated.
bb7ab3b9 4249 * < 0 if an error occurred.
70f80175
SB
4250 * > 0 if the check failed, which means the caller shall remove the entry.
4251 */
4252static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4253 u8 *uuid, u8 type, u64 subid)
4254{
4255 struct btrfs_key key;
4256 int ret = 0;
4257 struct btrfs_root *subvol_root;
4258
4259 if (type != BTRFS_UUID_KEY_SUBVOL &&
4260 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4261 goto out;
4262
4263 key.objectid = subid;
4264 key.type = BTRFS_ROOT_ITEM_KEY;
4265 key.offset = (u64)-1;
4266 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4267 if (IS_ERR(subvol_root)) {
4268 ret = PTR_ERR(subvol_root);
4269 if (ret == -ENOENT)
4270 ret = 1;
4271 goto out;
4272 }
4273
4274 switch (type) {
4275 case BTRFS_UUID_KEY_SUBVOL:
4276 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4277 ret = 1;
4278 break;
4279 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4280 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4281 BTRFS_UUID_SIZE))
4282 ret = 1;
4283 break;
4284 }
4285
4286out:
4287 return ret;
4288}
4289
4290static int btrfs_uuid_rescan_kthread(void *data)
4291{
4292 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4293 int ret;
4294
4295 /*
4296 * 1st step is to iterate through the existing UUID tree and
4297 * to delete all entries that contain outdated data.
4298 * 2nd step is to add all missing entries to the UUID tree.
4299 */
4300 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4301 if (ret < 0) {
efe120a0 4302 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
70f80175
SB
4303 up(&fs_info->uuid_tree_rescan_sem);
4304 return ret;
4305 }
4306 return btrfs_uuid_scan_kthread(data);
4307}
4308
f7a81ea4
SB
4309int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4310{
4311 struct btrfs_trans_handle *trans;
4312 struct btrfs_root *tree_root = fs_info->tree_root;
4313 struct btrfs_root *uuid_root;
803b2f54
SB
4314 struct task_struct *task;
4315 int ret;
f7a81ea4
SB
4316
4317 /*
4318 * 1 - root node
4319 * 1 - root item
4320 */
4321 trans = btrfs_start_transaction(tree_root, 2);
4322 if (IS_ERR(trans))
4323 return PTR_ERR(trans);
4324
4325 uuid_root = btrfs_create_tree(trans, fs_info,
4326 BTRFS_UUID_TREE_OBJECTID);
4327 if (IS_ERR(uuid_root)) {
6d13f549 4328 ret = PTR_ERR(uuid_root);
66642832 4329 btrfs_abort_transaction(trans, ret);
3a45bb20 4330 btrfs_end_transaction(trans);
6d13f549 4331 return ret;
f7a81ea4
SB
4332 }
4333
4334 fs_info->uuid_root = uuid_root;
4335
3a45bb20 4336 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4337 if (ret)
4338 return ret;
4339
4340 down(&fs_info->uuid_tree_rescan_sem);
4341 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4342 if (IS_ERR(task)) {
70f80175 4343 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4344 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4345 up(&fs_info->uuid_tree_rescan_sem);
4346 return PTR_ERR(task);
4347 }
4348
4349 return 0;
f7a81ea4 4350}
803b2f54 4351
70f80175
SB
4352int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4353{
4354 struct task_struct *task;
4355
4356 down(&fs_info->uuid_tree_rescan_sem);
4357 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4358 if (IS_ERR(task)) {
4359 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4360 btrfs_warn(fs_info, "failed to start uuid_rescan task");
70f80175
SB
4361 up(&fs_info->uuid_tree_rescan_sem);
4362 return PTR_ERR(task);
4363 }
4364
4365 return 0;
4366}
4367
8f18cf13
CM
4368/*
4369 * shrinking a device means finding all of the device extents past
4370 * the new size, and then following the back refs to the chunks.
4371 * The chunk relocation code actually frees the device extent
4372 */
4373int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4374{
0b246afa
JM
4375 struct btrfs_fs_info *fs_info = device->fs_info;
4376 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4377 struct btrfs_trans_handle *trans;
8f18cf13
CM
4378 struct btrfs_dev_extent *dev_extent = NULL;
4379 struct btrfs_path *path;
4380 u64 length;
8f18cf13
CM
4381 u64 chunk_offset;
4382 int ret;
4383 int slot;
ba1bf481
JB
4384 int failed = 0;
4385 bool retried = false;
53e489bc 4386 bool checked_pending_chunks = false;
8f18cf13
CM
4387 struct extent_buffer *l;
4388 struct btrfs_key key;
0b246afa 4389 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4390 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d
MX
4391 u64 old_size = btrfs_device_get_total_bytes(device);
4392 u64 diff = old_size - new_size;
8f18cf13 4393
63a212ab
SB
4394 if (device->is_tgtdev_for_dev_replace)
4395 return -EINVAL;
4396
8f18cf13
CM
4397 path = btrfs_alloc_path();
4398 if (!path)
4399 return -ENOMEM;
4400
e4058b54 4401 path->reada = READA_FORWARD;
8f18cf13 4402
34441361 4403 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4404
7cc8e58d 4405 btrfs_device_set_total_bytes(device, new_size);
2bf64758 4406 if (device->writeable) {
2b82032c 4407 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4408 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4409 }
34441361 4410 mutex_unlock(&fs_info->chunk_mutex);
8f18cf13 4411
ba1bf481 4412again:
8f18cf13
CM
4413 key.objectid = device->devid;
4414 key.offset = (u64)-1;
4415 key.type = BTRFS_DEV_EXTENT_KEY;
4416
213e64da 4417 do {
0b246afa 4418 mutex_lock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4420 if (ret < 0) {
0b246afa 4421 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13 4422 goto done;
67c5e7d4 4423 }
8f18cf13
CM
4424
4425 ret = btrfs_previous_item(root, path, 0, key.type);
67c5e7d4 4426 if (ret)
0b246afa 4427 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
8f18cf13
CM
4428 if (ret < 0)
4429 goto done;
4430 if (ret) {
4431 ret = 0;
b3b4aa74 4432 btrfs_release_path(path);
bf1fb512 4433 break;
8f18cf13
CM
4434 }
4435
4436 l = path->nodes[0];
4437 slot = path->slots[0];
4438 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4439
ba1bf481 4440 if (key.objectid != device->devid) {
0b246afa 4441 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4442 btrfs_release_path(path);
bf1fb512 4443 break;
ba1bf481 4444 }
8f18cf13
CM
4445
4446 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4447 length = btrfs_dev_extent_length(l, dev_extent);
4448
ba1bf481 4449 if (key.offset + length <= new_size) {
0b246afa 4450 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
b3b4aa74 4451 btrfs_release_path(path);
d6397bae 4452 break;
ba1bf481 4453 }
8f18cf13 4454
8f18cf13 4455 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4456 btrfs_release_path(path);
8f18cf13 4457
0b246afa
JM
4458 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4459 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
ba1bf481 4460 if (ret && ret != -ENOSPC)
8f18cf13 4461 goto done;
ba1bf481
JB
4462 if (ret == -ENOSPC)
4463 failed++;
213e64da 4464 } while (key.offset-- > 0);
ba1bf481
JB
4465
4466 if (failed && !retried) {
4467 failed = 0;
4468 retried = true;
4469 goto again;
4470 } else if (failed && retried) {
4471 ret = -ENOSPC;
ba1bf481 4472 goto done;
8f18cf13
CM
4473 }
4474
d6397bae 4475 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4476 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4477 if (IS_ERR(trans)) {
4478 ret = PTR_ERR(trans);
4479 goto done;
4480 }
4481
34441361 4482 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4483
4484 /*
4485 * We checked in the above loop all device extents that were already in
4486 * the device tree. However before we have updated the device's
4487 * total_bytes to the new size, we might have had chunk allocations that
4488 * have not complete yet (new block groups attached to transaction
4489 * handles), and therefore their device extents were not yet in the
4490 * device tree and we missed them in the loop above. So if we have any
4491 * pending chunk using a device extent that overlaps the device range
4492 * that we can not use anymore, commit the current transaction and
4493 * repeat the search on the device tree - this way we guarantee we will
4494 * not have chunks using device extents that end beyond 'new_size'.
4495 */
4496 if (!checked_pending_chunks) {
4497 u64 start = new_size;
4498 u64 len = old_size - new_size;
4499
499f377f
JM
4500 if (contains_pending_extent(trans->transaction, device,
4501 &start, len)) {
34441361 4502 mutex_unlock(&fs_info->chunk_mutex);
53e489bc
FM
4503 checked_pending_chunks = true;
4504 failed = 0;
4505 retried = false;
3a45bb20 4506 ret = btrfs_commit_transaction(trans);
53e489bc
FM
4507 if (ret)
4508 goto done;
4509 goto again;
4510 }
4511 }
4512
7cc8e58d 4513 btrfs_device_set_disk_total_bytes(device, new_size);
935e5cc9
MX
4514 if (list_empty(&device->resized_list))
4515 list_add_tail(&device->resized_list,
0b246afa 4516 &fs_info->fs_devices->resized_devices);
d6397bae 4517
d6397bae
CB
4518 WARN_ON(diff > old_total);
4519 btrfs_set_super_total_bytes(super_copy, old_total - diff);
34441361 4520 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8
MX
4521
4522 /* Now btrfs_update_device() will change the on-disk size. */
4523 ret = btrfs_update_device(trans, device);
3a45bb20 4524 btrfs_end_transaction(trans);
8f18cf13
CM
4525done:
4526 btrfs_free_path(path);
53e489bc 4527 if (ret) {
34441361 4528 mutex_lock(&fs_info->chunk_mutex);
53e489bc
FM
4529 btrfs_device_set_total_bytes(device, old_size);
4530 if (device->writeable)
4531 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4532 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4533 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4534 }
8f18cf13
CM
4535 return ret;
4536}
4537
2ff7e61e 4538static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4539 struct btrfs_key *key,
4540 struct btrfs_chunk *chunk, int item_size)
4541{
0b246afa 4542 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4543 struct btrfs_disk_key disk_key;
4544 u32 array_size;
4545 u8 *ptr;
4546
34441361 4547 mutex_lock(&fs_info->chunk_mutex);
0b86a832 4548 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 4549 if (array_size + item_size + sizeof(disk_key)
fe48a5c0 4550 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
34441361 4551 mutex_unlock(&fs_info->chunk_mutex);
0b86a832 4552 return -EFBIG;
fe48a5c0 4553 }
0b86a832
CM
4554
4555 ptr = super_copy->sys_chunk_array + array_size;
4556 btrfs_cpu_key_to_disk(&disk_key, key);
4557 memcpy(ptr, &disk_key, sizeof(disk_key));
4558 ptr += sizeof(disk_key);
4559 memcpy(ptr, chunk, item_size);
4560 item_size += sizeof(disk_key);
4561 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
34441361 4562 mutex_unlock(&fs_info->chunk_mutex);
fe48a5c0 4563
0b86a832
CM
4564 return 0;
4565}
4566
73c5de00
AJ
4567/*
4568 * sort the devices in descending order by max_avail, total_avail
4569 */
4570static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 4571{
73c5de00
AJ
4572 const struct btrfs_device_info *di_a = a;
4573 const struct btrfs_device_info *di_b = b;
9b3f68b9 4574
73c5de00 4575 if (di_a->max_avail > di_b->max_avail)
b2117a39 4576 return -1;
73c5de00 4577 if (di_a->max_avail < di_b->max_avail)
b2117a39 4578 return 1;
73c5de00
AJ
4579 if (di_a->total_avail > di_b->total_avail)
4580 return -1;
4581 if (di_a->total_avail < di_b->total_avail)
4582 return 1;
4583 return 0;
b2117a39 4584}
0b86a832 4585
53b381b3
DW
4586static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4587{
4588 /* TODO allow them to set a preferred stripe size */
ee22184b 4589 return SZ_64K;
53b381b3
DW
4590}
4591
4592static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4593{
ffe2d203 4594 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
4595 return;
4596
ceda0864 4597 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
4598}
4599
da17066c 4600#define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
23f8f9b7
GH
4601 - sizeof(struct btrfs_chunk)) \
4602 / sizeof(struct btrfs_stripe) + 1)
4603
4604#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4605 - 2 * sizeof(struct btrfs_disk_key) \
4606 - 2 * sizeof(struct btrfs_chunk)) \
4607 / sizeof(struct btrfs_stripe) + 1)
4608
73c5de00 4609static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
72b468c8 4610 u64 start, u64 type)
b2117a39 4611{
2ff7e61e 4612 struct btrfs_fs_info *info = trans->fs_info;
73c5de00
AJ
4613 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4614 struct list_head *cur;
4615 struct map_lookup *map = NULL;
4616 struct extent_map_tree *em_tree;
4617 struct extent_map *em;
4618 struct btrfs_device_info *devices_info = NULL;
4619 u64 total_avail;
4620 int num_stripes; /* total number of stripes to allocate */
53b381b3
DW
4621 int data_stripes; /* number of stripes that count for
4622 block group size */
73c5de00
AJ
4623 int sub_stripes; /* sub_stripes info for map */
4624 int dev_stripes; /* stripes per dev */
4625 int devs_max; /* max devs to use */
4626 int devs_min; /* min devs needed */
4627 int devs_increment; /* ndevs has to be a multiple of this */
4628 int ncopies; /* how many copies to data has */
4629 int ret;
4630 u64 max_stripe_size;
4631 u64 max_chunk_size;
4632 u64 stripe_size;
4633 u64 num_bytes;
53b381b3 4634 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
73c5de00
AJ
4635 int ndevs;
4636 int i;
4637 int j;
31e50229 4638 int index;
593060d7 4639
0c460c0d 4640 BUG_ON(!alloc_profile_is_valid(type, 0));
9b3f68b9 4641
73c5de00
AJ
4642 if (list_empty(&fs_devices->alloc_list))
4643 return -ENOSPC;
b2117a39 4644
31e50229 4645 index = __get_raid_index(type);
73c5de00 4646
31e50229
LB
4647 sub_stripes = btrfs_raid_array[index].sub_stripes;
4648 dev_stripes = btrfs_raid_array[index].dev_stripes;
4649 devs_max = btrfs_raid_array[index].devs_max;
4650 devs_min = btrfs_raid_array[index].devs_min;
4651 devs_increment = btrfs_raid_array[index].devs_increment;
4652 ncopies = btrfs_raid_array[index].ncopies;
b2117a39 4653
9b3f68b9 4654 if (type & BTRFS_BLOCK_GROUP_DATA) {
ee22184b 4655 max_stripe_size = SZ_1G;
73c5de00 4656 max_chunk_size = 10 * max_stripe_size;
23f8f9b7
GH
4657 if (!devs_max)
4658 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
9b3f68b9 4659 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
1100373f 4660 /* for larger filesystems, use larger metadata chunks */
ee22184b
BL
4661 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4662 max_stripe_size = SZ_1G;
1100373f 4663 else
ee22184b 4664 max_stripe_size = SZ_256M;
73c5de00 4665 max_chunk_size = max_stripe_size;
23f8f9b7
GH
4666 if (!devs_max)
4667 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
a40a90a0 4668 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ee22184b 4669 max_stripe_size = SZ_32M;
73c5de00 4670 max_chunk_size = 2 * max_stripe_size;
23f8f9b7
GH
4671 if (!devs_max)
4672 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
73c5de00 4673 } else {
351fd353 4674 btrfs_err(info, "invalid chunk type 0x%llx requested",
73c5de00
AJ
4675 type);
4676 BUG_ON(1);
9b3f68b9
CM
4677 }
4678
2b82032c
YZ
4679 /* we don't want a chunk larger than 10% of writeable space */
4680 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4681 max_chunk_size);
9b3f68b9 4682
31e818fe 4683 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
73c5de00
AJ
4684 GFP_NOFS);
4685 if (!devices_info)
4686 return -ENOMEM;
0cad8a11 4687
73c5de00 4688 cur = fs_devices->alloc_list.next;
9b3f68b9 4689
9f680ce0 4690 /*
73c5de00
AJ
4691 * in the first pass through the devices list, we gather information
4692 * about the available holes on each device.
9f680ce0 4693 */
73c5de00
AJ
4694 ndevs = 0;
4695 while (cur != &fs_devices->alloc_list) {
4696 struct btrfs_device *device;
4697 u64 max_avail;
4698 u64 dev_offset;
b2117a39 4699
73c5de00 4700 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
9f680ce0 4701
73c5de00 4702 cur = cur->next;
b2117a39 4703
73c5de00 4704 if (!device->writeable) {
31b1a2bd 4705 WARN(1, KERN_ERR
efe120a0 4706 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
4707 continue;
4708 }
b2117a39 4709
63a212ab
SB
4710 if (!device->in_fs_metadata ||
4711 device->is_tgtdev_for_dev_replace)
73c5de00 4712 continue;
b2117a39 4713
73c5de00
AJ
4714 if (device->total_bytes > device->bytes_used)
4715 total_avail = device->total_bytes - device->bytes_used;
4716 else
4717 total_avail = 0;
38c01b96 4718
4719 /* If there is no space on this device, skip it. */
4720 if (total_avail == 0)
4721 continue;
b2117a39 4722
6df9a95e 4723 ret = find_free_dev_extent(trans, device,
73c5de00
AJ
4724 max_stripe_size * dev_stripes,
4725 &dev_offset, &max_avail);
4726 if (ret && ret != -ENOSPC)
4727 goto error;
b2117a39 4728
73c5de00
AJ
4729 if (ret == 0)
4730 max_avail = max_stripe_size * dev_stripes;
b2117a39 4731
73c5de00
AJ
4732 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4733 continue;
b2117a39 4734
063d006f
ES
4735 if (ndevs == fs_devices->rw_devices) {
4736 WARN(1, "%s: found more than %llu devices\n",
4737 __func__, fs_devices->rw_devices);
4738 break;
4739 }
73c5de00
AJ
4740 devices_info[ndevs].dev_offset = dev_offset;
4741 devices_info[ndevs].max_avail = max_avail;
4742 devices_info[ndevs].total_avail = total_avail;
4743 devices_info[ndevs].dev = device;
4744 ++ndevs;
4745 }
b2117a39 4746
73c5de00
AJ
4747 /*
4748 * now sort the devices by hole size / available space
4749 */
4750 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4751 btrfs_cmp_device_info, NULL);
b2117a39 4752
73c5de00
AJ
4753 /* round down to number of usable stripes */
4754 ndevs -= ndevs % devs_increment;
b2117a39 4755
73c5de00
AJ
4756 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4757 ret = -ENOSPC;
4758 goto error;
b2117a39 4759 }
9f680ce0 4760
73c5de00
AJ
4761 if (devs_max && ndevs > devs_max)
4762 ndevs = devs_max;
4763 /*
4764 * the primary goal is to maximize the number of stripes, so use as many
4765 * devices as possible, even if the stripes are not maximum sized.
4766 */
4767 stripe_size = devices_info[ndevs-1].max_avail;
4768 num_stripes = ndevs * dev_stripes;
b2117a39 4769
53b381b3
DW
4770 /*
4771 * this will have to be fixed for RAID1 and RAID10 over
4772 * more drives
4773 */
4774 data_stripes = num_stripes / ncopies;
4775
53b381b3
DW
4776 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4777 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
da17066c 4778 info->stripesize);
53b381b3
DW
4779 data_stripes = num_stripes - 1;
4780 }
4781 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4782 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
da17066c 4783 info->stripesize);
53b381b3
DW
4784 data_stripes = num_stripes - 2;
4785 }
86db2578
CM
4786
4787 /*
4788 * Use the number of data stripes to figure out how big this chunk
4789 * is really going to be in terms of logical address space,
4790 * and compare that answer with the max chunk size
4791 */
4792 if (stripe_size * data_stripes > max_chunk_size) {
4793 u64 mask = (1ULL << 24) - 1;
b8b93add
DS
4794
4795 stripe_size = div_u64(max_chunk_size, data_stripes);
86db2578
CM
4796
4797 /* bump the answer up to a 16MB boundary */
4798 stripe_size = (stripe_size + mask) & ~mask;
4799
4800 /* but don't go higher than the limits we found
4801 * while searching for free extents
4802 */
4803 if (stripe_size > devices_info[ndevs-1].max_avail)
4804 stripe_size = devices_info[ndevs-1].max_avail;
4805 }
4806
b8b93add 4807 stripe_size = div_u64(stripe_size, dev_stripes);
37db63a4
ID
4808
4809 /* align to BTRFS_STRIPE_LEN */
42c61ab6 4810 stripe_size = div64_u64(stripe_size, raid_stripe_len);
53b381b3 4811 stripe_size *= raid_stripe_len;
b2117a39
MX
4812
4813 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4814 if (!map) {
4815 ret = -ENOMEM;
4816 goto error;
4817 }
4818 map->num_stripes = num_stripes;
9b3f68b9 4819
73c5de00
AJ
4820 for (i = 0; i < ndevs; ++i) {
4821 for (j = 0; j < dev_stripes; ++j) {
4822 int s = i * dev_stripes + j;
4823 map->stripes[s].dev = devices_info[i].dev;
4824 map->stripes[s].physical = devices_info[i].dev_offset +
4825 j * stripe_size;
6324fbf3 4826 }
6324fbf3 4827 }
da17066c 4828 map->sector_size = info->sectorsize;
53b381b3
DW
4829 map->stripe_len = raid_stripe_len;
4830 map->io_align = raid_stripe_len;
4831 map->io_width = raid_stripe_len;
2b82032c 4832 map->type = type;
2b82032c 4833 map->sub_stripes = sub_stripes;
0b86a832 4834
53b381b3 4835 num_bytes = stripe_size * data_stripes;
0b86a832 4836
6bccf3ab 4837 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
1abe9b8a 4838
172ddd60 4839 em = alloc_extent_map();
2b82032c 4840 if (!em) {
298a8f9c 4841 kfree(map);
b2117a39
MX
4842 ret = -ENOMEM;
4843 goto error;
593060d7 4844 }
298a8f9c 4845 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 4846 em->map_lookup = map;
2b82032c 4847 em->start = start;
73c5de00 4848 em->len = num_bytes;
2b82032c
YZ
4849 em->block_start = 0;
4850 em->block_len = em->len;
6df9a95e 4851 em->orig_block_len = stripe_size;
593060d7 4852
0b246afa 4853 em_tree = &info->mapping_tree.map_tree;
890871be 4854 write_lock(&em_tree->lock);
09a2a8f9 4855 ret = add_extent_mapping(em_tree, em, 0);
6df9a95e
JB
4856 if (!ret) {
4857 list_add_tail(&em->list, &trans->transaction->pending_chunks);
490b54d6 4858 refcount_inc(&em->refs);
6df9a95e 4859 }
890871be 4860 write_unlock(&em_tree->lock);
0f5d42b2
JB
4861 if (ret) {
4862 free_extent_map(em);
1dd4602f 4863 goto error;
0f5d42b2 4864 }
0b86a832 4865
2ff7e61e 4866 ret = btrfs_make_block_group(trans, info, 0, type,
04487488
JB
4867 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4868 start, num_bytes);
6df9a95e
JB
4869 if (ret)
4870 goto error_del_extent;
2b82032c 4871
7cc8e58d
MX
4872 for (i = 0; i < map->num_stripes; i++) {
4873 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4874 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4875 }
43530c46 4876
a5ed45f8 4877 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
1c116187 4878
0f5d42b2 4879 free_extent_map(em);
0b246afa 4880 check_raid56_incompat_flag(info, type);
53b381b3 4881
b2117a39 4882 kfree(devices_info);
2b82032c 4883 return 0;
b2117a39 4884
6df9a95e 4885error_del_extent:
0f5d42b2
JB
4886 write_lock(&em_tree->lock);
4887 remove_extent_mapping(em_tree, em);
4888 write_unlock(&em_tree->lock);
4889
4890 /* One for our allocation */
4891 free_extent_map(em);
4892 /* One for the tree reference */
4893 free_extent_map(em);
495e64f4
FM
4894 /* One for the pending_chunks list reference */
4895 free_extent_map(em);
b2117a39 4896error:
b2117a39
MX
4897 kfree(devices_info);
4898 return ret;
2b82032c
YZ
4899}
4900
6df9a95e 4901int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
6bccf3ab 4902 struct btrfs_fs_info *fs_info,
6df9a95e 4903 u64 chunk_offset, u64 chunk_size)
2b82032c 4904{
6bccf3ab
JM
4905 struct btrfs_root *extent_root = fs_info->extent_root;
4906 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c 4907 struct btrfs_key key;
2b82032c
YZ
4908 struct btrfs_device *device;
4909 struct btrfs_chunk *chunk;
4910 struct btrfs_stripe *stripe;
6df9a95e
JB
4911 struct extent_map *em;
4912 struct map_lookup *map;
4913 size_t item_size;
4914 u64 dev_offset;
4915 u64 stripe_size;
4916 int i = 0;
140e639f 4917 int ret = 0;
2b82032c 4918
592d92ee
LB
4919 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4920 if (IS_ERR(em))
4921 return PTR_ERR(em);
6df9a95e 4922
95617d69 4923 map = em->map_lookup;
6df9a95e
JB
4924 item_size = btrfs_chunk_item_size(map->num_stripes);
4925 stripe_size = em->orig_block_len;
4926
2b82032c 4927 chunk = kzalloc(item_size, GFP_NOFS);
6df9a95e
JB
4928 if (!chunk) {
4929 ret = -ENOMEM;
4930 goto out;
4931 }
4932
50460e37
FM
4933 /*
4934 * Take the device list mutex to prevent races with the final phase of
4935 * a device replace operation that replaces the device object associated
4936 * with the map's stripes, because the device object's id can change
4937 * at any time during that final phase of the device replace operation
4938 * (dev-replace.c:btrfs_dev_replace_finishing()).
4939 */
0b246afa 4940 mutex_lock(&fs_info->fs_devices->device_list_mutex);
6df9a95e
JB
4941 for (i = 0; i < map->num_stripes; i++) {
4942 device = map->stripes[i].dev;
4943 dev_offset = map->stripes[i].physical;
2b82032c 4944
0b86a832 4945 ret = btrfs_update_device(trans, device);
3acd3953 4946 if (ret)
50460e37 4947 break;
6df9a95e
JB
4948 ret = btrfs_alloc_dev_extent(trans, device,
4949 chunk_root->root_key.objectid,
4950 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4951 chunk_offset, dev_offset,
4952 stripe_size);
4953 if (ret)
50460e37
FM
4954 break;
4955 }
4956 if (ret) {
0b246afa 4957 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
50460e37 4958 goto out;
2b82032c
YZ
4959 }
4960
2b82032c 4961 stripe = &chunk->stripe;
6df9a95e
JB
4962 for (i = 0; i < map->num_stripes; i++) {
4963 device = map->stripes[i].dev;
4964 dev_offset = map->stripes[i].physical;
0b86a832 4965
e17cade2
CM
4966 btrfs_set_stack_stripe_devid(stripe, device->devid);
4967 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4968 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 4969 stripe++;
0b86a832 4970 }
0b246afa 4971 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0b86a832 4972
2b82032c 4973 btrfs_set_stack_chunk_length(chunk, chunk_size);
0b86a832 4974 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2b82032c
YZ
4975 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4976 btrfs_set_stack_chunk_type(chunk, map->type);
4977 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4978 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4979 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 4980 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 4981 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 4982
2b82032c
YZ
4983 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4984 key.type = BTRFS_CHUNK_ITEM_KEY;
4985 key.offset = chunk_offset;
0b86a832 4986
2b82032c 4987 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4ed1d16e
MF
4988 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4989 /*
4990 * TODO: Cleanup of inserted chunk root in case of
4991 * failure.
4992 */
2ff7e61e 4993 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
8f18cf13 4994 }
1abe9b8a 4995
6df9a95e 4996out:
0b86a832 4997 kfree(chunk);
6df9a95e 4998 free_extent_map(em);
4ed1d16e 4999 return ret;
2b82032c 5000}
0b86a832 5001
2b82032c
YZ
5002/*
5003 * Chunk allocation falls into two parts. The first part does works
5004 * that make the new allocated chunk useable, but not do any operation
5005 * that modifies the chunk tree. The second part does the works that
5006 * require modifying the chunk tree. This division is important for the
5007 * bootstrap process of adding storage to a seed btrfs.
5008 */
5009int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 5010 struct btrfs_fs_info *fs_info, u64 type)
2b82032c
YZ
5011{
5012 u64 chunk_offset;
2b82032c 5013
0b246afa
JM
5014 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
5015 chunk_offset = find_next_chunk(fs_info);
72b468c8 5016 return __btrfs_alloc_chunk(trans, chunk_offset, type);
2b82032c
YZ
5017}
5018
d397712b 5019static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
e4a4dce7 5020 struct btrfs_fs_info *fs_info)
2b82032c
YZ
5021{
5022 u64 chunk_offset;
5023 u64 sys_chunk_offset;
2b82032c 5024 u64 alloc_profile;
2b82032c
YZ
5025 int ret;
5026
6df9a95e 5027 chunk_offset = find_next_chunk(fs_info);
1b86826d 5028 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
72b468c8 5029 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
79787eaa
JM
5030 if (ret)
5031 return ret;
2b82032c 5032
0b246afa 5033 sys_chunk_offset = find_next_chunk(fs_info);
1b86826d 5034 alloc_profile = btrfs_system_alloc_profile(fs_info);
72b468c8 5035 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
79787eaa 5036 return ret;
2b82032c
YZ
5037}
5038
d20983b4
MX
5039static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5040{
5041 int max_errors;
5042
5043 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5044 BTRFS_BLOCK_GROUP_RAID10 |
5045 BTRFS_BLOCK_GROUP_RAID5 |
5046 BTRFS_BLOCK_GROUP_DUP)) {
5047 max_errors = 1;
5048 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5049 max_errors = 2;
5050 } else {
5051 max_errors = 0;
005d6427 5052 }
2b82032c 5053
d20983b4 5054 return max_errors;
2b82032c
YZ
5055}
5056
2ff7e61e 5057int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5058{
5059 struct extent_map *em;
5060 struct map_lookup *map;
2b82032c 5061 int readonly = 0;
d20983b4 5062 int miss_ndevs = 0;
2b82032c
YZ
5063 int i;
5064
592d92ee
LB
5065 em = get_chunk_map(fs_info, chunk_offset, 1);
5066 if (IS_ERR(em))
2b82032c
YZ
5067 return 1;
5068
95617d69 5069 map = em->map_lookup;
2b82032c 5070 for (i = 0; i < map->num_stripes; i++) {
d20983b4
MX
5071 if (map->stripes[i].dev->missing) {
5072 miss_ndevs++;
5073 continue;
5074 }
5075
2b82032c
YZ
5076 if (!map->stripes[i].dev->writeable) {
5077 readonly = 1;
d20983b4 5078 goto end;
2b82032c
YZ
5079 }
5080 }
d20983b4
MX
5081
5082 /*
5083 * If the number of missing devices is larger than max errors,
5084 * we can not write the data into that chunk successfully, so
5085 * set it readonly.
5086 */
5087 if (miss_ndevs > btrfs_chunk_max_errors(map))
5088 readonly = 1;
5089end:
0b86a832 5090 free_extent_map(em);
2b82032c 5091 return readonly;
0b86a832
CM
5092}
5093
5094void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5095{
a8067e02 5096 extent_map_tree_init(&tree->map_tree);
0b86a832
CM
5097}
5098
5099void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5100{
5101 struct extent_map *em;
5102
d397712b 5103 while (1) {
890871be 5104 write_lock(&tree->map_tree.lock);
0b86a832
CM
5105 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5106 if (em)
5107 remove_extent_mapping(&tree->map_tree, em);
890871be 5108 write_unlock(&tree->map_tree.lock);
0b86a832
CM
5109 if (!em)
5110 break;
0b86a832
CM
5111 /* once for us */
5112 free_extent_map(em);
5113 /* once for the tree */
5114 free_extent_map(em);
5115 }
5116}
5117
5d964051 5118int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5119{
5120 struct extent_map *em;
5121 struct map_lookup *map;
f188591e
CM
5122 int ret;
5123
592d92ee
LB
5124 em = get_chunk_map(fs_info, logical, len);
5125 if (IS_ERR(em))
5126 /*
5127 * We could return errors for these cases, but that could get
5128 * ugly and we'd probably do the same thing which is just not do
5129 * anything else and exit, so return 1 so the callers don't try
5130 * to use other copies.
5131 */
fb7669b5 5132 return 1;
fb7669b5 5133
95617d69 5134 map = em->map_lookup;
f188591e
CM
5135 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5136 ret = map->num_stripes;
321aecc6
CM
5137 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5138 ret = map->sub_stripes;
53b381b3
DW
5139 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5140 ret = 2;
5141 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5142 ret = 3;
f188591e
CM
5143 else
5144 ret = 1;
5145 free_extent_map(em);
ad6d620e 5146
73beece9 5147 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
6fad823f
LB
5148 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5149 fs_info->dev_replace.tgtdev)
ad6d620e 5150 ret++;
73beece9 5151 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
ad6d620e 5152
f188591e
CM
5153 return ret;
5154}
5155
2ff7e61e 5156unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5157 struct btrfs_mapping_tree *map_tree,
5158 u64 logical)
5159{
5160 struct extent_map *em;
5161 struct map_lookup *map;
0b246afa 5162 unsigned long len = fs_info->sectorsize;
53b381b3 5163
592d92ee 5164 em = get_chunk_map(fs_info, logical, len);
539b50d2 5165 WARN_ON(IS_ERR(em));
53b381b3 5166
95617d69 5167 map = em->map_lookup;
ffe2d203 5168 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3 5169 len = map->stripe_len * nr_data_stripes(map);
53b381b3
DW
5170 free_extent_map(em);
5171 return len;
5172}
5173
592d92ee 5174int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info,
53b381b3
DW
5175 u64 logical, u64 len, int mirror_num)
5176{
5177 struct extent_map *em;
5178 struct map_lookup *map;
53b381b3
DW
5179 int ret = 0;
5180
592d92ee 5181 em = get_chunk_map(fs_info, logical, len);
539b50d2 5182 WARN_ON(IS_ERR(em));
53b381b3 5183
95617d69 5184 map = em->map_lookup;
ffe2d203 5185 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
5186 ret = 1;
5187 free_extent_map(em);
5188 return ret;
5189}
5190
30d9861f
SB
5191static int find_live_mirror(struct btrfs_fs_info *fs_info,
5192 struct map_lookup *map, int first, int num,
5193 int optimal, int dev_replace_is_ongoing)
dfe25020
CM
5194{
5195 int i;
30d9861f
SB
5196 int tolerance;
5197 struct btrfs_device *srcdev;
5198
5199 if (dev_replace_is_ongoing &&
5200 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5201 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5202 srcdev = fs_info->dev_replace.srcdev;
5203 else
5204 srcdev = NULL;
5205
5206 /*
5207 * try to avoid the drive that is the source drive for a
5208 * dev-replace procedure, only choose it if no other non-missing
5209 * mirror is available
5210 */
5211 for (tolerance = 0; tolerance < 2; tolerance++) {
5212 if (map->stripes[optimal].dev->bdev &&
5213 (tolerance || map->stripes[optimal].dev != srcdev))
5214 return optimal;
5215 for (i = first; i < first + num; i++) {
5216 if (map->stripes[i].dev->bdev &&
5217 (tolerance || map->stripes[i].dev != srcdev))
5218 return i;
5219 }
dfe25020 5220 }
30d9861f 5221
dfe25020
CM
5222 /* we couldn't find one that doesn't fail. Just return something
5223 * and the io error handling code will clean up eventually
5224 */
5225 return optimal;
5226}
5227
53b381b3
DW
5228static inline int parity_smaller(u64 a, u64 b)
5229{
5230 return a > b;
5231}
5232
5233/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
8e5cfb55 5234static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
53b381b3
DW
5235{
5236 struct btrfs_bio_stripe s;
5237 int i;
5238 u64 l;
5239 int again = 1;
5240
5241 while (again) {
5242 again = 0;
cc7539ed 5243 for (i = 0; i < num_stripes - 1; i++) {
8e5cfb55
ZL
5244 if (parity_smaller(bbio->raid_map[i],
5245 bbio->raid_map[i+1])) {
53b381b3 5246 s = bbio->stripes[i];
8e5cfb55 5247 l = bbio->raid_map[i];
53b381b3 5248 bbio->stripes[i] = bbio->stripes[i+1];
8e5cfb55 5249 bbio->raid_map[i] = bbio->raid_map[i+1];
53b381b3 5250 bbio->stripes[i+1] = s;
8e5cfb55 5251 bbio->raid_map[i+1] = l;
2c8cdd6e 5252
53b381b3
DW
5253 again = 1;
5254 }
5255 }
5256 }
5257}
5258
6e9606d2
ZL
5259static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5260{
5261 struct btrfs_bio *bbio = kzalloc(
e57cf21e 5262 /* the size of the btrfs_bio */
6e9606d2 5263 sizeof(struct btrfs_bio) +
e57cf21e 5264 /* plus the variable array for the stripes */
6e9606d2 5265 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
e57cf21e 5266 /* plus the variable array for the tgt dev */
6e9606d2 5267 sizeof(int) * (real_stripes) +
e57cf21e
CM
5268 /*
5269 * plus the raid_map, which includes both the tgt dev
5270 * and the stripes
5271 */
5272 sizeof(u64) * (total_stripes),
277fb5fc 5273 GFP_NOFS|__GFP_NOFAIL);
6e9606d2
ZL
5274
5275 atomic_set(&bbio->error, 0);
140475ae 5276 refcount_set(&bbio->refs, 1);
6e9606d2
ZL
5277
5278 return bbio;
5279}
5280
5281void btrfs_get_bbio(struct btrfs_bio *bbio)
5282{
140475ae
ER
5283 WARN_ON(!refcount_read(&bbio->refs));
5284 refcount_inc(&bbio->refs);
6e9606d2
ZL
5285}
5286
5287void btrfs_put_bbio(struct btrfs_bio *bbio)
5288{
5289 if (!bbio)
5290 return;
140475ae 5291 if (refcount_dec_and_test(&bbio->refs))
6e9606d2
ZL
5292 kfree(bbio);
5293}
5294
0b3d4cd3
LB
5295/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5296/*
5297 * Please note that, discard won't be sent to target device of device
5298 * replace.
5299 */
5300static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5301 u64 logical, u64 length,
5302 struct btrfs_bio **bbio_ret)
5303{
5304 struct extent_map *em;
5305 struct map_lookup *map;
5306 struct btrfs_bio *bbio;
5307 u64 offset;
5308 u64 stripe_nr;
5309 u64 stripe_nr_end;
5310 u64 stripe_end_offset;
5311 u64 stripe_cnt;
5312 u64 stripe_len;
5313 u64 stripe_offset;
5314 u64 num_stripes;
5315 u32 stripe_index;
5316 u32 factor = 0;
5317 u32 sub_stripes = 0;
5318 u64 stripes_per_dev = 0;
5319 u32 remaining_stripes = 0;
5320 u32 last_stripe = 0;
5321 int ret = 0;
5322 int i;
5323
5324 /* discard always return a bbio */
5325 ASSERT(bbio_ret);
5326
5327 em = get_chunk_map(fs_info, logical, length);
5328 if (IS_ERR(em))
5329 return PTR_ERR(em);
5330
5331 map = em->map_lookup;
5332 /* we don't discard raid56 yet */
5333 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5334 ret = -EOPNOTSUPP;
5335 goto out;
5336 }
5337
5338 offset = logical - em->start;
5339 length = min_t(u64, em->len - offset, length);
5340
5341 stripe_len = map->stripe_len;
5342 /*
5343 * stripe_nr counts the total number of stripes we have to stride
5344 * to get to this block
5345 */
5346 stripe_nr = div64_u64(offset, stripe_len);
5347
5348 /* stripe_offset is the offset of this block in its stripe */
5349 stripe_offset = offset - stripe_nr * stripe_len;
5350
5351 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5352 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5353 stripe_cnt = stripe_nr_end - stripe_nr;
5354 stripe_end_offset = stripe_nr_end * map->stripe_len -
5355 (offset + length);
5356 /*
5357 * after this, stripe_nr is the number of stripes on this
5358 * device we have to walk to find the data, and stripe_index is
5359 * the number of our device in the stripe array
5360 */
5361 num_stripes = 1;
5362 stripe_index = 0;
5363 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5364 BTRFS_BLOCK_GROUP_RAID10)) {
5365 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5366 sub_stripes = 1;
5367 else
5368 sub_stripes = map->sub_stripes;
5369
5370 factor = map->num_stripes / sub_stripes;
5371 num_stripes = min_t(u64, map->num_stripes,
5372 sub_stripes * stripe_cnt);
5373 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5374 stripe_index *= sub_stripes;
5375 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5376 &remaining_stripes);
5377 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5378 last_stripe *= sub_stripes;
5379 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5380 BTRFS_BLOCK_GROUP_DUP)) {
5381 num_stripes = map->num_stripes;
5382 } else {
5383 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5384 &stripe_index);
5385 }
5386
5387 bbio = alloc_btrfs_bio(num_stripes, 0);
5388 if (!bbio) {
5389 ret = -ENOMEM;
5390 goto out;
5391 }
5392
5393 for (i = 0; i < num_stripes; i++) {
5394 bbio->stripes[i].physical =
5395 map->stripes[stripe_index].physical +
5396 stripe_offset + stripe_nr * map->stripe_len;
5397 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5398
5399 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5400 BTRFS_BLOCK_GROUP_RAID10)) {
5401 bbio->stripes[i].length = stripes_per_dev *
5402 map->stripe_len;
5403
5404 if (i / sub_stripes < remaining_stripes)
5405 bbio->stripes[i].length +=
5406 map->stripe_len;
5407
5408 /*
5409 * Special for the first stripe and
5410 * the last stripe:
5411 *
5412 * |-------|...|-------|
5413 * |----------|
5414 * off end_off
5415 */
5416 if (i < sub_stripes)
5417 bbio->stripes[i].length -=
5418 stripe_offset;
5419
5420 if (stripe_index >= last_stripe &&
5421 stripe_index <= (last_stripe +
5422 sub_stripes - 1))
5423 bbio->stripes[i].length -=
5424 stripe_end_offset;
5425
5426 if (i == sub_stripes - 1)
5427 stripe_offset = 0;
5428 } else {
5429 bbio->stripes[i].length = length;
5430 }
5431
5432 stripe_index++;
5433 if (stripe_index == map->num_stripes) {
5434 stripe_index = 0;
5435 stripe_nr++;
5436 }
5437 }
5438
5439 *bbio_ret = bbio;
5440 bbio->map_type = map->type;
5441 bbio->num_stripes = num_stripes;
5442out:
5443 free_extent_map(em);
5444 return ret;
5445}
5446
5ab56090
LB
5447/*
5448 * In dev-replace case, for repair case (that's the only case where the mirror
5449 * is selected explicitly when calling btrfs_map_block), blocks left of the
5450 * left cursor can also be read from the target drive.
5451 *
5452 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5453 * array of stripes.
5454 * For READ, it also needs to be supported using the same mirror number.
5455 *
5456 * If the requested block is not left of the left cursor, EIO is returned. This
5457 * can happen because btrfs_num_copies() returns one more in the dev-replace
5458 * case.
5459 */
5460static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5461 u64 logical, u64 length,
5462 u64 srcdev_devid, int *mirror_num,
5463 u64 *physical)
5464{
5465 struct btrfs_bio *bbio = NULL;
5466 int num_stripes;
5467 int index_srcdev = 0;
5468 int found = 0;
5469 u64 physical_of_found = 0;
5470 int i;
5471 int ret = 0;
5472
5473 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5474 logical, &length, &bbio, 0, 0);
5475 if (ret) {
5476 ASSERT(bbio == NULL);
5477 return ret;
5478 }
5479
5480 num_stripes = bbio->num_stripes;
5481 if (*mirror_num > num_stripes) {
5482 /*
5483 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5484 * that means that the requested area is not left of the left
5485 * cursor
5486 */
5487 btrfs_put_bbio(bbio);
5488 return -EIO;
5489 }
5490
5491 /*
5492 * process the rest of the function using the mirror_num of the source
5493 * drive. Therefore look it up first. At the end, patch the device
5494 * pointer to the one of the target drive.
5495 */
5496 for (i = 0; i < num_stripes; i++) {
5497 if (bbio->stripes[i].dev->devid != srcdev_devid)
5498 continue;
5499
5500 /*
5501 * In case of DUP, in order to keep it simple, only add the
5502 * mirror with the lowest physical address
5503 */
5504 if (found &&
5505 physical_of_found <= bbio->stripes[i].physical)
5506 continue;
5507
5508 index_srcdev = i;
5509 found = 1;
5510 physical_of_found = bbio->stripes[i].physical;
5511 }
5512
5513 btrfs_put_bbio(bbio);
5514
5515 ASSERT(found);
5516 if (!found)
5517 return -EIO;
5518
5519 *mirror_num = index_srcdev + 1;
5520 *physical = physical_of_found;
5521 return ret;
5522}
5523
73c0f228
LB
5524static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5525 struct btrfs_bio **bbio_ret,
5526 struct btrfs_dev_replace *dev_replace,
5527 int *num_stripes_ret, int *max_errors_ret)
5528{
5529 struct btrfs_bio *bbio = *bbio_ret;
5530 u64 srcdev_devid = dev_replace->srcdev->devid;
5531 int tgtdev_indexes = 0;
5532 int num_stripes = *num_stripes_ret;
5533 int max_errors = *max_errors_ret;
5534 int i;
5535
5536 if (op == BTRFS_MAP_WRITE) {
5537 int index_where_to_add;
5538
5539 /*
5540 * duplicate the write operations while the dev replace
5541 * procedure is running. Since the copying of the old disk to
5542 * the new disk takes place at run time while the filesystem is
5543 * mounted writable, the regular write operations to the old
5544 * disk have to be duplicated to go to the new disk as well.
5545 *
5546 * Note that device->missing is handled by the caller, and that
5547 * the write to the old disk is already set up in the stripes
5548 * array.
5549 */
5550 index_where_to_add = num_stripes;
5551 for (i = 0; i < num_stripes; i++) {
5552 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5553 /* write to new disk, too */
5554 struct btrfs_bio_stripe *new =
5555 bbio->stripes + index_where_to_add;
5556 struct btrfs_bio_stripe *old =
5557 bbio->stripes + i;
5558
5559 new->physical = old->physical;
5560 new->length = old->length;
5561 new->dev = dev_replace->tgtdev;
5562 bbio->tgtdev_map[i] = index_where_to_add;
5563 index_where_to_add++;
5564 max_errors++;
5565 tgtdev_indexes++;
5566 }
5567 }
5568 num_stripes = index_where_to_add;
5569 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5570 int index_srcdev = 0;
5571 int found = 0;
5572 u64 physical_of_found = 0;
5573
5574 /*
5575 * During the dev-replace procedure, the target drive can also
5576 * be used to read data in case it is needed to repair a corrupt
5577 * block elsewhere. This is possible if the requested area is
5578 * left of the left cursor. In this area, the target drive is a
5579 * full copy of the source drive.
5580 */
5581 for (i = 0; i < num_stripes; i++) {
5582 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5583 /*
5584 * In case of DUP, in order to keep it simple,
5585 * only add the mirror with the lowest physical
5586 * address
5587 */
5588 if (found &&
5589 physical_of_found <=
5590 bbio->stripes[i].physical)
5591 continue;
5592 index_srcdev = i;
5593 found = 1;
5594 physical_of_found = bbio->stripes[i].physical;
5595 }
5596 }
5597 if (found) {
5598 struct btrfs_bio_stripe *tgtdev_stripe =
5599 bbio->stripes + num_stripes;
5600
5601 tgtdev_stripe->physical = physical_of_found;
5602 tgtdev_stripe->length =
5603 bbio->stripes[index_srcdev].length;
5604 tgtdev_stripe->dev = dev_replace->tgtdev;
5605 bbio->tgtdev_map[index_srcdev] = num_stripes;
5606
5607 tgtdev_indexes++;
5608 num_stripes++;
5609 }
5610 }
5611
5612 *num_stripes_ret = num_stripes;
5613 *max_errors_ret = max_errors;
5614 bbio->num_tgtdevs = tgtdev_indexes;
5615 *bbio_ret = bbio;
5616}
5617
2b19a1fe
LB
5618static bool need_full_stripe(enum btrfs_map_op op)
5619{
5620 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5621}
5622
cf8cddd3
CH
5623static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5624 enum btrfs_map_op op,
f2d8d74d 5625 u64 logical, u64 *length,
a1d3c478 5626 struct btrfs_bio **bbio_ret,
8e5cfb55 5627 int mirror_num, int need_raid_map)
0b86a832
CM
5628{
5629 struct extent_map *em;
5630 struct map_lookup *map;
0b86a832 5631 u64 offset;
593060d7
CM
5632 u64 stripe_offset;
5633 u64 stripe_nr;
53b381b3 5634 u64 stripe_len;
9d644a62 5635 u32 stripe_index;
cea9e445 5636 int i;
de11cc12 5637 int ret = 0;
f2d8d74d 5638 int num_stripes;
a236aed1 5639 int max_errors = 0;
2c8cdd6e 5640 int tgtdev_indexes = 0;
a1d3c478 5641 struct btrfs_bio *bbio = NULL;
472262f3
SB
5642 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5643 int dev_replace_is_ongoing = 0;
5644 int num_alloc_stripes;
ad6d620e
SB
5645 int patch_the_first_stripe_for_dev_replace = 0;
5646 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 5647 u64 raid56_full_stripe_start = (u64)-1;
0b86a832 5648
0b3d4cd3
LB
5649 if (op == BTRFS_MAP_DISCARD)
5650 return __btrfs_map_block_for_discard(fs_info, logical,
5651 *length, bbio_ret);
5652
592d92ee
LB
5653 em = get_chunk_map(fs_info, logical, *length);
5654 if (IS_ERR(em))
5655 return PTR_ERR(em);
0b86a832 5656
95617d69 5657 map = em->map_lookup;
0b86a832 5658 offset = logical - em->start;
593060d7 5659
53b381b3 5660 stripe_len = map->stripe_len;
593060d7
CM
5661 stripe_nr = offset;
5662 /*
5663 * stripe_nr counts the total number of stripes we have to stride
5664 * to get to this block
5665 */
47c5713f 5666 stripe_nr = div64_u64(stripe_nr, stripe_len);
593060d7 5667
53b381b3 5668 stripe_offset = stripe_nr * stripe_len;
e042d1ec 5669 if (offset < stripe_offset) {
5d163e0e
JM
5670 btrfs_crit(fs_info,
5671 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
e042d1ec
JB
5672 stripe_offset, offset, em->start, logical,
5673 stripe_len);
5674 free_extent_map(em);
5675 return -EINVAL;
5676 }
593060d7
CM
5677
5678 /* stripe_offset is the offset of this block in its stripe*/
5679 stripe_offset = offset - stripe_offset;
5680
53b381b3 5681 /* if we're here for raid56, we need to know the stripe aligned start */
ffe2d203 5682 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
53b381b3
DW
5683 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5684 raid56_full_stripe_start = offset;
5685
5686 /* allow a write of a full stripe, but make sure we don't
5687 * allow straddling of stripes
5688 */
47c5713f
DS
5689 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5690 full_stripe_len);
53b381b3
DW
5691 raid56_full_stripe_start *= full_stripe_len;
5692 }
5693
0b3d4cd3 5694 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
53b381b3
DW
5695 u64 max_len;
5696 /* For writes to RAID[56], allow a full stripeset across all disks.
5697 For other RAID types and for RAID[56] reads, just allow a single
5698 stripe (on a single disk). */
ffe2d203 5699 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cf8cddd3 5700 (op == BTRFS_MAP_WRITE)) {
53b381b3
DW
5701 max_len = stripe_len * nr_data_stripes(map) -
5702 (offset - raid56_full_stripe_start);
5703 } else {
5704 /* we limit the length of each bio to what fits in a stripe */
5705 max_len = stripe_len - stripe_offset;
5706 }
5707 *length = min_t(u64, em->len - offset, max_len);
cea9e445
CM
5708 } else {
5709 *length = em->len - offset;
5710 }
f2d8d74d 5711
53b381b3
DW
5712 /* This is for when we're called from btrfs_merge_bio_hook() and all
5713 it cares about is the length */
a1d3c478 5714 if (!bbio_ret)
cea9e445
CM
5715 goto out;
5716
73beece9 5717 btrfs_dev_replace_lock(dev_replace, 0);
472262f3
SB
5718 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5719 if (!dev_replace_is_ongoing)
73beece9
LB
5720 btrfs_dev_replace_unlock(dev_replace, 0);
5721 else
5722 btrfs_dev_replace_set_lock_blocking(dev_replace);
472262f3 5723
ad6d620e 5724 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 5725 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
5726 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5727 dev_replace->srcdev->devid,
5728 &mirror_num,
5729 &physical_to_patch_in_first_stripe);
5730 if (ret)
ad6d620e 5731 goto out;
5ab56090
LB
5732 else
5733 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
5734 } else if (mirror_num > map->num_stripes) {
5735 mirror_num = 0;
5736 }
5737
f2d8d74d 5738 num_stripes = 1;
cea9e445 5739 stripe_index = 0;
fce3bb9a 5740 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
5741 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5742 &stripe_index);
0b3d4cd3 5743 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
28e1cc7d 5744 mirror_num = 1;
fce3bb9a 5745 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
0b3d4cd3 5746 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5747 num_stripes = map->num_stripes;
2fff734f 5748 else if (mirror_num)
f188591e 5749 stripe_index = mirror_num - 1;
dfe25020 5750 else {
30d9861f 5751 stripe_index = find_live_mirror(fs_info, map, 0,
dfe25020 5752 map->num_stripes,
30d9861f
SB
5753 current->pid % map->num_stripes,
5754 dev_replace_is_ongoing);
a1d3c478 5755 mirror_num = stripe_index + 1;
dfe25020 5756 }
2fff734f 5757
611f0e00 5758 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
0b3d4cd3 5759 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
f2d8d74d 5760 num_stripes = map->num_stripes;
a1d3c478 5761 } else if (mirror_num) {
f188591e 5762 stripe_index = mirror_num - 1;
a1d3c478
JS
5763 } else {
5764 mirror_num = 1;
5765 }
2fff734f 5766
321aecc6 5767 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 5768 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 5769
47c5713f 5770 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
5771 stripe_index *= map->sub_stripes;
5772
cf8cddd3 5773 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
f2d8d74d 5774 num_stripes = map->sub_stripes;
321aecc6
CM
5775 else if (mirror_num)
5776 stripe_index += mirror_num - 1;
dfe25020 5777 else {
3e74317a 5778 int old_stripe_index = stripe_index;
30d9861f
SB
5779 stripe_index = find_live_mirror(fs_info, map,
5780 stripe_index,
dfe25020 5781 map->sub_stripes, stripe_index +
30d9861f
SB
5782 current->pid % map->sub_stripes,
5783 dev_replace_is_ongoing);
3e74317a 5784 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 5785 }
53b381b3 5786
ffe2d203 5787 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8e5cfb55 5788 if (need_raid_map &&
cf8cddd3 5789 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
af8e2d1d 5790 mirror_num > 1)) {
53b381b3 5791 /* push stripe_nr back to the start of the full stripe */
42c61ab6 5792 stripe_nr = div64_u64(raid56_full_stripe_start,
b8b93add 5793 stripe_len * nr_data_stripes(map));
53b381b3
DW
5794
5795 /* RAID[56] write or recovery. Return all stripes */
5796 num_stripes = map->num_stripes;
5797 max_errors = nr_parity_stripes(map);
5798
53b381b3
DW
5799 *length = map->stripe_len;
5800 stripe_index = 0;
5801 stripe_offset = 0;
5802 } else {
5803 /*
5804 * Mirror #0 or #1 means the original data block.
5805 * Mirror #2 is RAID5 parity block.
5806 * Mirror #3 is RAID6 Q block.
5807 */
47c5713f
DS
5808 stripe_nr = div_u64_rem(stripe_nr,
5809 nr_data_stripes(map), &stripe_index);
53b381b3
DW
5810 if (mirror_num > 1)
5811 stripe_index = nr_data_stripes(map) +
5812 mirror_num - 2;
5813
5814 /* We distribute the parity blocks across stripes */
47c5713f
DS
5815 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5816 &stripe_index);
0b3d4cd3
LB
5817 if ((op != BTRFS_MAP_WRITE &&
5818 op != BTRFS_MAP_GET_READ_MIRRORS) &&
5819 mirror_num <= 1)
28e1cc7d 5820 mirror_num = 1;
53b381b3 5821 }
8790d502
CM
5822 } else {
5823 /*
47c5713f
DS
5824 * after this, stripe_nr is the number of stripes on this
5825 * device we have to walk to find the data, and stripe_index is
5826 * the number of our device in the stripe array
8790d502 5827 */
47c5713f
DS
5828 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5829 &stripe_index);
a1d3c478 5830 mirror_num = stripe_index + 1;
8790d502 5831 }
e042d1ec 5832 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
5833 btrfs_crit(fs_info,
5834 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
5835 stripe_index, map->num_stripes);
5836 ret = -EINVAL;
5837 goto out;
5838 }
cea9e445 5839
472262f3 5840 num_alloc_stripes = num_stripes;
6fad823f 5841 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 5842 if (op == BTRFS_MAP_WRITE)
ad6d620e 5843 num_alloc_stripes <<= 1;
cf8cddd3 5844 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 5845 num_alloc_stripes++;
2c8cdd6e 5846 tgtdev_indexes = num_stripes;
ad6d620e 5847 }
2c8cdd6e 5848
6e9606d2 5849 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
de11cc12
LZ
5850 if (!bbio) {
5851 ret = -ENOMEM;
5852 goto out;
5853 }
6fad823f 5854 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
2c8cdd6e 5855 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
de11cc12 5856
8e5cfb55 5857 /* build raid_map */
2b19a1fe
LB
5858 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5859 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 5860 u64 tmp;
9d644a62 5861 unsigned rot;
8e5cfb55
ZL
5862
5863 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5864 sizeof(struct btrfs_bio_stripe) *
5865 num_alloc_stripes +
5866 sizeof(int) * tgtdev_indexes);
5867
5868 /* Work out the disk rotation on this stripe-set */
47c5713f 5869 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
5870
5871 /* Fill in the logical address of each stripe */
5872 tmp = stripe_nr * nr_data_stripes(map);
5873 for (i = 0; i < nr_data_stripes(map); i++)
5874 bbio->raid_map[(i+rot) % num_stripes] =
5875 em->start + (tmp + i) * map->stripe_len;
5876
5877 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5878 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5879 bbio->raid_map[(i+rot+1) % num_stripes] =
5880 RAID6_Q_STRIPE;
5881 }
5882
b89203f7 5883
0b3d4cd3
LB
5884 for (i = 0; i < num_stripes; i++) {
5885 bbio->stripes[i].physical =
5886 map->stripes[stripe_index].physical +
5887 stripe_offset +
5888 stripe_nr * map->stripe_len;
5889 bbio->stripes[i].dev =
5890 map->stripes[stripe_index].dev;
5891 stripe_index++;
593060d7 5892 }
de11cc12 5893
2b19a1fe 5894 if (need_full_stripe(op))
d20983b4 5895 max_errors = btrfs_chunk_max_errors(map);
de11cc12 5896
8e5cfb55
ZL
5897 if (bbio->raid_map)
5898 sort_parity_stripes(bbio, num_stripes);
cc7539ed 5899
73c0f228 5900 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 5901 need_full_stripe(op)) {
73c0f228
LB
5902 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5903 &max_errors);
472262f3
SB
5904 }
5905
de11cc12 5906 *bbio_ret = bbio;
10f11900 5907 bbio->map_type = map->type;
de11cc12
LZ
5908 bbio->num_stripes = num_stripes;
5909 bbio->max_errors = max_errors;
5910 bbio->mirror_num = mirror_num;
ad6d620e
SB
5911
5912 /*
5913 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5914 * mirror_num == num_stripes + 1 && dev_replace target drive is
5915 * available as a mirror
5916 */
5917 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5918 WARN_ON(num_stripes > 1);
5919 bbio->stripes[0].dev = dev_replace->tgtdev;
5920 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5921 bbio->mirror_num = map->num_stripes + 1;
5922 }
cea9e445 5923out:
73beece9
LB
5924 if (dev_replace_is_ongoing) {
5925 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5926 btrfs_dev_replace_unlock(dev_replace, 0);
5927 }
0b86a832 5928 free_extent_map(em);
de11cc12 5929 return ret;
0b86a832
CM
5930}
5931
cf8cddd3 5932int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 5933 u64 logical, u64 *length,
a1d3c478 5934 struct btrfs_bio **bbio_ret, int mirror_num)
f2d8d74d 5935{
b3d3fa51 5936 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
8e5cfb55 5937 mirror_num, 0);
f2d8d74d
CM
5938}
5939
af8e2d1d 5940/* For Scrub/replace */
cf8cddd3 5941int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 5942 u64 logical, u64 *length,
825ad4c9 5943 struct btrfs_bio **bbio_ret)
af8e2d1d 5944{
825ad4c9 5945 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
af8e2d1d
MX
5946}
5947
ab8d0fc4 5948int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
a512bbf8
YZ
5949 u64 chunk_start, u64 physical, u64 devid,
5950 u64 **logical, int *naddrs, int *stripe_len)
5951{
a512bbf8
YZ
5952 struct extent_map *em;
5953 struct map_lookup *map;
5954 u64 *buf;
5955 u64 bytenr;
5956 u64 length;
5957 u64 stripe_nr;
53b381b3 5958 u64 rmap_len;
a512bbf8
YZ
5959 int i, j, nr = 0;
5960
592d92ee
LB
5961 em = get_chunk_map(fs_info, chunk_start, 1);
5962 if (IS_ERR(em))
835d974f 5963 return -EIO;
835d974f 5964
95617d69 5965 map = em->map_lookup;
a512bbf8 5966 length = em->len;
53b381b3
DW
5967 rmap_len = map->stripe_len;
5968
a512bbf8 5969 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
b8b93add 5970 length = div_u64(length, map->num_stripes / map->sub_stripes);
a512bbf8 5971 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
b8b93add 5972 length = div_u64(length, map->num_stripes);
ffe2d203 5973 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
b8b93add 5974 length = div_u64(length, nr_data_stripes(map));
53b381b3
DW
5975 rmap_len = map->stripe_len * nr_data_stripes(map);
5976 }
a512bbf8 5977
31e818fe 5978 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
79787eaa 5979 BUG_ON(!buf); /* -ENOMEM */
a512bbf8
YZ
5980
5981 for (i = 0; i < map->num_stripes; i++) {
5982 if (devid && map->stripes[i].dev->devid != devid)
5983 continue;
5984 if (map->stripes[i].physical > physical ||
5985 map->stripes[i].physical + length <= physical)
5986 continue;
5987
5988 stripe_nr = physical - map->stripes[i].physical;
42c61ab6 5989 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
a512bbf8
YZ
5990
5991 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5992 stripe_nr = stripe_nr * map->num_stripes + i;
b8b93add 5993 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
a512bbf8
YZ
5994 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5995 stripe_nr = stripe_nr * map->num_stripes + i;
53b381b3
DW
5996 } /* else if RAID[56], multiply by nr_data_stripes().
5997 * Alternatively, just use rmap_len below instead of
5998 * map->stripe_len */
5999
6000 bytenr = chunk_start + stripe_nr * rmap_len;
934d375b 6001 WARN_ON(nr >= map->num_stripes);
a512bbf8
YZ
6002 for (j = 0; j < nr; j++) {
6003 if (buf[j] == bytenr)
6004 break;
6005 }
934d375b
CM
6006 if (j == nr) {
6007 WARN_ON(nr >= map->num_stripes);
a512bbf8 6008 buf[nr++] = bytenr;
934d375b 6009 }
a512bbf8
YZ
6010 }
6011
a512bbf8
YZ
6012 *logical = buf;
6013 *naddrs = nr;
53b381b3 6014 *stripe_len = rmap_len;
a512bbf8
YZ
6015
6016 free_extent_map(em);
6017 return 0;
f2d8d74d
CM
6018}
6019
4246a0b6 6020static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
8408c716 6021{
326e1dbb
MS
6022 bio->bi_private = bbio->private;
6023 bio->bi_end_io = bbio->end_io;
4246a0b6 6024 bio_endio(bio);
326e1dbb 6025
6e9606d2 6026 btrfs_put_bbio(bbio);
8408c716
MX
6027}
6028
4246a0b6 6029static void btrfs_end_bio(struct bio *bio)
8790d502 6030{
9be3395b 6031 struct btrfs_bio *bbio = bio->bi_private;
7d2b4daa 6032 int is_orig_bio = 0;
8790d502 6033
4246a0b6 6034 if (bio->bi_error) {
a1d3c478 6035 atomic_inc(&bbio->error);
4246a0b6 6036 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
442a4f63 6037 unsigned int stripe_index =
9be3395b 6038 btrfs_io_bio(bio)->stripe_index;
65f53338 6039 struct btrfs_device *dev;
442a4f63
SB
6040
6041 BUG_ON(stripe_index >= bbio->num_stripes);
6042 dev = bbio->stripes[stripe_index].dev;
597a60fa 6043 if (dev->bdev) {
37226b21 6044 if (bio_op(bio) == REQ_OP_WRITE)
597a60fa
SB
6045 btrfs_dev_stat_inc(dev,
6046 BTRFS_DEV_STAT_WRITE_ERRS);
6047 else
6048 btrfs_dev_stat_inc(dev,
6049 BTRFS_DEV_STAT_READ_ERRS);
70fd7614 6050 if (bio->bi_opf & REQ_PREFLUSH)
597a60fa
SB
6051 btrfs_dev_stat_inc(dev,
6052 BTRFS_DEV_STAT_FLUSH_ERRS);
6053 btrfs_dev_stat_print_on_error(dev);
6054 }
442a4f63
SB
6055 }
6056 }
8790d502 6057
a1d3c478 6058 if (bio == bbio->orig_bio)
7d2b4daa
CM
6059 is_orig_bio = 1;
6060
c404e0dc
MX
6061 btrfs_bio_counter_dec(bbio->fs_info);
6062
a1d3c478 6063 if (atomic_dec_and_test(&bbio->stripes_pending)) {
7d2b4daa
CM
6064 if (!is_orig_bio) {
6065 bio_put(bio);
a1d3c478 6066 bio = bbio->orig_bio;
7d2b4daa 6067 }
c7b22bb1 6068
9be3395b 6069 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
a236aed1 6070 /* only send an error to the higher layers if it is
53b381b3 6071 * beyond the tolerance of the btrfs bio
a236aed1 6072 */
a1d3c478 6073 if (atomic_read(&bbio->error) > bbio->max_errors) {
4246a0b6 6074 bio->bi_error = -EIO;
5dbc8fca 6075 } else {
1259ab75
CM
6076 /*
6077 * this bio is actually up to date, we didn't
6078 * go over the max number of errors
6079 */
4246a0b6 6080 bio->bi_error = 0;
1259ab75 6081 }
c55f1396 6082
4246a0b6 6083 btrfs_end_bbio(bbio, bio);
7d2b4daa 6084 } else if (!is_orig_bio) {
8790d502
CM
6085 bio_put(bio);
6086 }
8790d502
CM
6087}
6088
8b712842
CM
6089/*
6090 * see run_scheduled_bios for a description of why bios are collected for
6091 * async submit.
6092 *
6093 * This will add one bio to the pending list for a device and make sure
6094 * the work struct is scheduled.
6095 */
2ff7e61e 6096static noinline void btrfs_schedule_bio(struct btrfs_device *device,
4e49ea4a 6097 struct bio *bio)
8b712842 6098{
0b246afa 6099 struct btrfs_fs_info *fs_info = device->fs_info;
8b712842 6100 int should_queue = 1;
ffbd517d 6101 struct btrfs_pending_bios *pending_bios;
8b712842 6102
53b381b3 6103 if (device->missing || !device->bdev) {
4246a0b6 6104 bio_io_error(bio);
53b381b3
DW
6105 return;
6106 }
6107
8b712842 6108 /* don't bother with additional async steps for reads, right now */
37226b21 6109 if (bio_op(bio) == REQ_OP_READ) {
492bb6de 6110 bio_get(bio);
4e49ea4a 6111 btrfsic_submit_bio(bio);
492bb6de 6112 bio_put(bio);
143bede5 6113 return;
8b712842
CM
6114 }
6115
6116 /*
0986fe9e 6117 * nr_async_bios allows us to reliably return congestion to the
8b712842
CM
6118 * higher layers. Otherwise, the async bio makes it appear we have
6119 * made progress against dirty pages when we've really just put it
6120 * on a queue for later
6121 */
0b246afa 6122 atomic_inc(&fs_info->nr_async_bios);
492bb6de 6123 WARN_ON(bio->bi_next);
8b712842 6124 bio->bi_next = NULL;
8b712842
CM
6125
6126 spin_lock(&device->io_lock);
67f055c7 6127 if (op_is_sync(bio->bi_opf))
ffbd517d
CM
6128 pending_bios = &device->pending_sync_bios;
6129 else
6130 pending_bios = &device->pending_bios;
8b712842 6131
ffbd517d
CM
6132 if (pending_bios->tail)
6133 pending_bios->tail->bi_next = bio;
8b712842 6134
ffbd517d
CM
6135 pending_bios->tail = bio;
6136 if (!pending_bios->head)
6137 pending_bios->head = bio;
8b712842
CM
6138 if (device->running_pending)
6139 should_queue = 0;
6140
6141 spin_unlock(&device->io_lock);
6142
6143 if (should_queue)
0b246afa 6144 btrfs_queue_work(fs_info->submit_workers, &device->work);
8b712842
CM
6145}
6146
2ff7e61e
JM
6147static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6148 u64 physical, int dev_nr, int async)
de1ee92a
JB
6149{
6150 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
2ff7e61e 6151 struct btrfs_fs_info *fs_info = bbio->fs_info;
de1ee92a
JB
6152
6153 bio->bi_private = bbio;
9be3395b 6154 btrfs_io_bio(bio)->stripe_index = dev_nr;
de1ee92a 6155 bio->bi_end_io = btrfs_end_bio;
4f024f37 6156 bio->bi_iter.bi_sector = physical >> 9;
de1ee92a
JB
6157#ifdef DEBUG
6158 {
6159 struct rcu_string *name;
6160
6161 rcu_read_lock();
6162 name = rcu_dereference(dev->name);
ab8d0fc4
JM
6163 btrfs_debug(fs_info,
6164 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6165 bio_op(bio), bio->bi_opf,
6166 (u64)bio->bi_iter.bi_sector,
6167 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6168 bio->bi_iter.bi_size);
de1ee92a
JB
6169 rcu_read_unlock();
6170 }
6171#endif
6172 bio->bi_bdev = dev->bdev;
c404e0dc 6173
2ff7e61e 6174 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6175
de1ee92a 6176 if (async)
2ff7e61e 6177 btrfs_schedule_bio(dev, bio);
de1ee92a 6178 else
4e49ea4a 6179 btrfsic_submit_bio(bio);
de1ee92a
JB
6180}
6181
de1ee92a
JB
6182static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6183{
6184 atomic_inc(&bbio->error);
6185 if (atomic_dec_and_test(&bbio->stripes_pending)) {
01327610 6186 /* Should be the original bio. */
8408c716
MX
6187 WARN_ON(bio != bbio->orig_bio);
6188
9be3395b 6189 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
4f024f37 6190 bio->bi_iter.bi_sector = logical >> 9;
4246a0b6
CH
6191 bio->bi_error = -EIO;
6192 btrfs_end_bbio(bbio, bio);
de1ee92a
JB
6193 }
6194}
6195
2ff7e61e 6196int btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
8b712842 6197 int mirror_num, int async_submit)
0b86a832 6198{
0b86a832 6199 struct btrfs_device *dev;
8790d502 6200 struct bio *first_bio = bio;
4f024f37 6201 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
0b86a832
CM
6202 u64 length = 0;
6203 u64 map_length;
0b86a832 6204 int ret;
08da757d
ZL
6205 int dev_nr;
6206 int total_devs;
a1d3c478 6207 struct btrfs_bio *bbio = NULL;
0b86a832 6208
4f024f37 6209 length = bio->bi_iter.bi_size;
0b86a832 6210 map_length = length;
cea9e445 6211
0b246afa
JM
6212 btrfs_bio_counter_inc_blocked(fs_info);
6213 ret = __btrfs_map_block(fs_info, bio_op(bio), logical,
37226b21 6214 &map_length, &bbio, mirror_num, 1);
c404e0dc 6215 if (ret) {
0b246afa 6216 btrfs_bio_counter_dec(fs_info);
79787eaa 6217 return ret;
c404e0dc 6218 }
cea9e445 6219
a1d3c478 6220 total_devs = bbio->num_stripes;
53b381b3
DW
6221 bbio->orig_bio = first_bio;
6222 bbio->private = first_bio->bi_private;
6223 bbio->end_io = first_bio->bi_end_io;
0b246afa 6224 bbio->fs_info = fs_info;
53b381b3
DW
6225 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6226
ad1ba2a0 6227 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
37226b21 6228 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6229 /* In this case, map_length has been set to the length of
6230 a single stripe; not the whole write */
37226b21 6231 if (bio_op(bio) == REQ_OP_WRITE) {
2ff7e61e
JM
6232 ret = raid56_parity_write(fs_info, bio, bbio,
6233 map_length);
53b381b3 6234 } else {
2ff7e61e
JM
6235 ret = raid56_parity_recover(fs_info, bio, bbio,
6236 map_length, mirror_num, 1);
53b381b3 6237 }
4245215d 6238
0b246afa 6239 btrfs_bio_counter_dec(fs_info);
c404e0dc 6240 return ret;
53b381b3
DW
6241 }
6242
cea9e445 6243 if (map_length < length) {
0b246afa 6244 btrfs_crit(fs_info,
5d163e0e
JM
6245 "mapping failed logical %llu bio len %llu len %llu",
6246 logical, length, map_length);
cea9e445
CM
6247 BUG();
6248 }
a1d3c478 6249
08da757d 6250 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
de1ee92a 6251 dev = bbio->stripes[dev_nr].dev;
37226b21 6252 if (!dev || !dev->bdev ||
a967efb3 6253 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
de1ee92a 6254 bbio_error(bbio, first_bio, logical);
de1ee92a
JB
6255 continue;
6256 }
6257
3aa8e074 6258 if (dev_nr < total_devs - 1)
9be3395b 6259 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
3aa8e074 6260 else
a1d3c478 6261 bio = first_bio;
de1ee92a 6262
2ff7e61e
JM
6263 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6264 dev_nr, async_submit);
8790d502 6265 }
0b246afa 6266 btrfs_bio_counter_dec(fs_info);
0b86a832
CM
6267 return 0;
6268}
6269
aa1b8cd4 6270struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
2b82032c 6271 u8 *uuid, u8 *fsid)
0b86a832 6272{
2b82032c
YZ
6273 struct btrfs_device *device;
6274 struct btrfs_fs_devices *cur_devices;
6275
aa1b8cd4 6276 cur_devices = fs_info->fs_devices;
2b82032c
YZ
6277 while (cur_devices) {
6278 if (!fsid ||
6279 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6280 device = __find_device(&cur_devices->devices,
6281 devid, uuid);
6282 if (device)
6283 return device;
6284 }
6285 cur_devices = cur_devices->seed;
6286 }
6287 return NULL;
0b86a832
CM
6288}
6289
2ff7e61e 6290static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6291 u64 devid, u8 *dev_uuid)
6292{
6293 struct btrfs_device *device;
dfe25020 6294
12bd2fc0
ID
6295 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6296 if (IS_ERR(device))
7cbd8a83 6297 return NULL;
12bd2fc0
ID
6298
6299 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6300 device->fs_devices = fs_devices;
dfe25020 6301 fs_devices->num_devices++;
12bd2fc0
ID
6302
6303 device->missing = 1;
cd02dca5 6304 fs_devices->missing_devices++;
12bd2fc0 6305
dfe25020
CM
6306 return device;
6307}
6308
12bd2fc0
ID
6309/**
6310 * btrfs_alloc_device - allocate struct btrfs_device
6311 * @fs_info: used only for generating a new devid, can be NULL if
6312 * devid is provided (i.e. @devid != NULL).
6313 * @devid: a pointer to devid for this device. If NULL a new devid
6314 * is generated.
6315 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6316 * is generated.
6317 *
6318 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6319 * on error. Returned struct is not linked onto any lists and can be
6320 * destroyed with kfree() right away.
6321 */
6322struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6323 const u64 *devid,
6324 const u8 *uuid)
6325{
6326 struct btrfs_device *dev;
6327 u64 tmp;
6328
fae7f21c 6329 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6330 return ERR_PTR(-EINVAL);
12bd2fc0
ID
6331
6332 dev = __alloc_device();
6333 if (IS_ERR(dev))
6334 return dev;
6335
6336 if (devid)
6337 tmp = *devid;
6338 else {
6339 int ret;
6340
6341 ret = find_next_devid(fs_info, &tmp);
6342 if (ret) {
6343 kfree(dev);
6344 return ERR_PTR(ret);
6345 }
6346 }
6347 dev->devid = tmp;
6348
6349 if (uuid)
6350 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6351 else
6352 generate_random_uuid(dev->uuid);
6353
9e0af237
LB
6354 btrfs_init_work(&dev->work, btrfs_submit_helper,
6355 pending_bios_fn, NULL, NULL);
12bd2fc0
ID
6356
6357 return dev;
6358}
6359
e06cd3dd 6360/* Return -EIO if any error, otherwise return 0. */
2ff7e61e 6361static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
e06cd3dd
LB
6362 struct extent_buffer *leaf,
6363 struct btrfs_chunk *chunk, u64 logical)
0b86a832 6364{
0b86a832 6365 u64 length;
f04b772b 6366 u64 stripe_len;
e06cd3dd
LB
6367 u16 num_stripes;
6368 u16 sub_stripes;
6369 u64 type;
0b86a832 6370
e17cade2 6371 length = btrfs_chunk_length(leaf, chunk);
f04b772b
QW
6372 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6373 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
e06cd3dd
LB
6374 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6375 type = btrfs_chunk_type(leaf, chunk);
6376
f04b772b 6377 if (!num_stripes) {
0b246afa 6378 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
f04b772b
QW
6379 num_stripes);
6380 return -EIO;
6381 }
0b246afa
JM
6382 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6383 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
f04b772b
QW
6384 return -EIO;
6385 }
0b246afa
JM
6386 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6387 btrfs_err(fs_info, "invalid chunk sectorsize %u",
e06cd3dd
LB
6388 btrfs_chunk_sector_size(leaf, chunk));
6389 return -EIO;
6390 }
0b246afa
JM
6391 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6392 btrfs_err(fs_info, "invalid chunk length %llu", length);
f04b772b
QW
6393 return -EIO;
6394 }
3d8da678 6395 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
0b246afa 6396 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
f04b772b
QW
6397 stripe_len);
6398 return -EIO;
6399 }
6400 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
e06cd3dd 6401 type) {
0b246afa 6402 btrfs_err(fs_info, "unrecognized chunk type: %llu",
f04b772b
QW
6403 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6404 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6405 btrfs_chunk_type(leaf, chunk));
6406 return -EIO;
6407 }
e06cd3dd
LB
6408 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6409 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6410 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6411 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6412 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6413 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6414 num_stripes != 1)) {
0b246afa 6415 btrfs_err(fs_info,
e06cd3dd
LB
6416 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6417 num_stripes, sub_stripes,
6418 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6419 return -EIO;
6420 }
6421
6422 return 0;
6423}
6424
2ff7e61e 6425static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
e06cd3dd
LB
6426 struct extent_buffer *leaf,
6427 struct btrfs_chunk *chunk)
6428{
0b246afa 6429 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6430 struct map_lookup *map;
6431 struct extent_map *em;
6432 u64 logical;
6433 u64 length;
6434 u64 stripe_len;
6435 u64 devid;
6436 u8 uuid[BTRFS_UUID_SIZE];
6437 int num_stripes;
6438 int ret;
6439 int i;
6440
6441 logical = key->offset;
6442 length = btrfs_chunk_length(leaf, chunk);
6443 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6444 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6445
2ff7e61e 6446 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
e06cd3dd
LB
6447 if (ret)
6448 return ret;
a061fc8d 6449
890871be 6450 read_lock(&map_tree->map_tree.lock);
0b86a832 6451 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
890871be 6452 read_unlock(&map_tree->map_tree.lock);
0b86a832
CM
6453
6454 /* already mapped? */
6455 if (em && em->start <= logical && em->start + em->len > logical) {
6456 free_extent_map(em);
0b86a832
CM
6457 return 0;
6458 } else if (em) {
6459 free_extent_map(em);
6460 }
0b86a832 6461
172ddd60 6462 em = alloc_extent_map();
0b86a832
CM
6463 if (!em)
6464 return -ENOMEM;
593060d7 6465 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6466 if (!map) {
6467 free_extent_map(em);
6468 return -ENOMEM;
6469 }
6470
298a8f9c 6471 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6472 em->map_lookup = map;
0b86a832
CM
6473 em->start = logical;
6474 em->len = length;
70c8a91c 6475 em->orig_start = 0;
0b86a832 6476 em->block_start = 0;
c8b97818 6477 em->block_len = em->len;
0b86a832 6478
593060d7
CM
6479 map->num_stripes = num_stripes;
6480 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6481 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6482 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6483 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6484 map->type = btrfs_chunk_type(leaf, chunk);
321aecc6 6485 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
593060d7
CM
6486 for (i = 0; i < num_stripes; i++) {
6487 map->stripes[i].physical =
6488 btrfs_stripe_offset_nr(leaf, chunk, i);
6489 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
a443755f
CM
6490 read_extent_buffer(leaf, uuid, (unsigned long)
6491 btrfs_stripe_dev_uuid_nr(chunk, i),
6492 BTRFS_UUID_SIZE);
0b246afa 6493 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
aa1b8cd4 6494 uuid, NULL);
3cdde224 6495 if (!map->stripes[i].dev &&
0b246afa 6496 !btrfs_test_opt(fs_info, DEGRADED)) {
593060d7
CM
6497 free_extent_map(em);
6498 return -EIO;
6499 }
dfe25020
CM
6500 if (!map->stripes[i].dev) {
6501 map->stripes[i].dev =
2ff7e61e
JM
6502 add_missing_dev(fs_info->fs_devices, devid,
6503 uuid);
dfe25020 6504 if (!map->stripes[i].dev) {
dfe25020
CM
6505 free_extent_map(em);
6506 return -EIO;
6507 }
0b246afa 6508 btrfs_warn(fs_info, "devid %llu uuid %pU is missing",
5d163e0e 6509 devid, uuid);
dfe25020
CM
6510 }
6511 map->stripes[i].dev->in_fs_metadata = 1;
0b86a832
CM
6512 }
6513
890871be 6514 write_lock(&map_tree->map_tree.lock);
09a2a8f9 6515 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
890871be 6516 write_unlock(&map_tree->map_tree.lock);
79787eaa 6517 BUG_ON(ret); /* Tree corruption */
0b86a832
CM
6518 free_extent_map(em);
6519
6520 return 0;
6521}
6522
143bede5 6523static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6524 struct btrfs_dev_item *dev_item,
6525 struct btrfs_device *device)
6526{
6527 unsigned long ptr;
0b86a832
CM
6528
6529 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6530 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6531 device->total_bytes = device->disk_total_bytes;
935e5cc9 6532 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6533 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6534 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6535 device->type = btrfs_device_type(leaf, dev_item);
6536 device->io_align = btrfs_device_io_align(leaf, dev_item);
6537 device->io_width = btrfs_device_io_width(leaf, dev_item);
6538 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6539 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
63a212ab 6540 device->is_tgtdev_for_dev_replace = 0;
0b86a832 6541
410ba3a2 6542 ptr = btrfs_device_uuid(dev_item);
e17cade2 6543 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6544}
6545
2ff7e61e 6546static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6547 u8 *fsid)
2b82032c
YZ
6548{
6549 struct btrfs_fs_devices *fs_devices;
6550 int ret;
6551
b367e47f 6552 BUG_ON(!mutex_is_locked(&uuid_mutex));
2b82032c 6553
0b246afa 6554 fs_devices = fs_info->fs_devices->seed;
2b82032c 6555 while (fs_devices) {
5f375835
MX
6556 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6557 return fs_devices;
6558
2b82032c
YZ
6559 fs_devices = fs_devices->seed;
6560 }
6561
6562 fs_devices = find_fsid(fsid);
6563 if (!fs_devices) {
0b246afa 6564 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6565 return ERR_PTR(-ENOENT);
6566
6567 fs_devices = alloc_fs_devices(fsid);
6568 if (IS_ERR(fs_devices))
6569 return fs_devices;
6570
6571 fs_devices->seeding = 1;
6572 fs_devices->opened = 1;
6573 return fs_devices;
2b82032c 6574 }
e4404d6e
YZ
6575
6576 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6577 if (IS_ERR(fs_devices))
6578 return fs_devices;
2b82032c 6579
97288f2c 6580 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
0b246afa 6581 fs_info->bdev_holder);
48d28232
JL
6582 if (ret) {
6583 free_fs_devices(fs_devices);
5f375835 6584 fs_devices = ERR_PTR(ret);
2b82032c 6585 goto out;
48d28232 6586 }
2b82032c
YZ
6587
6588 if (!fs_devices->seeding) {
6589 __btrfs_close_devices(fs_devices);
e4404d6e 6590 free_fs_devices(fs_devices);
5f375835 6591 fs_devices = ERR_PTR(-EINVAL);
2b82032c
YZ
6592 goto out;
6593 }
6594
0b246afa
JM
6595 fs_devices->seed = fs_info->fs_devices->seed;
6596 fs_info->fs_devices->seed = fs_devices;
2b82032c 6597out:
5f375835 6598 return fs_devices;
2b82032c
YZ
6599}
6600
2ff7e61e 6601static int read_one_dev(struct btrfs_fs_info *fs_info,
0b86a832
CM
6602 struct extent_buffer *leaf,
6603 struct btrfs_dev_item *dev_item)
6604{
0b246afa 6605 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6606 struct btrfs_device *device;
6607 u64 devid;
6608 int ret;
2b82032c 6609 u8 fs_uuid[BTRFS_UUID_SIZE];
a443755f
CM
6610 u8 dev_uuid[BTRFS_UUID_SIZE];
6611
0b86a832 6612 devid = btrfs_device_id(leaf, dev_item);
410ba3a2 6613 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6614 BTRFS_UUID_SIZE);
1473b24e 6615 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2b82032c
YZ
6616 BTRFS_UUID_SIZE);
6617
0b246afa 6618 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_UUID_SIZE)) {
2ff7e61e 6619 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6620 if (IS_ERR(fs_devices))
6621 return PTR_ERR(fs_devices);
2b82032c
YZ
6622 }
6623
0b246afa 6624 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
5f375835 6625 if (!device) {
0b246afa 6626 if (!btrfs_test_opt(fs_info, DEGRADED))
2b82032c
YZ
6627 return -EIO;
6628
2ff7e61e 6629 device = add_missing_dev(fs_devices, devid, dev_uuid);
5f375835
MX
6630 if (!device)
6631 return -ENOMEM;
0b246afa 6632 btrfs_warn(fs_info, "devid %llu uuid %pU missing",
33b97e43 6633 devid, dev_uuid);
5f375835 6634 } else {
0b246afa 6635 if (!device->bdev && !btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6636 return -EIO;
6637
6638 if(!device->bdev && !device->missing) {
cd02dca5
CM
6639 /*
6640 * this happens when a device that was properly setup
6641 * in the device info lists suddenly goes bad.
6642 * device->bdev is NULL, and so we have to set
6643 * device->missing to one here
6644 */
5f375835 6645 device->fs_devices->missing_devices++;
cd02dca5 6646 device->missing = 1;
2b82032c 6647 }
5f375835
MX
6648
6649 /* Move the device to its own fs_devices */
6650 if (device->fs_devices != fs_devices) {
6651 ASSERT(device->missing);
6652
6653 list_move(&device->dev_list, &fs_devices->devices);
6654 device->fs_devices->num_devices--;
6655 fs_devices->num_devices++;
6656
6657 device->fs_devices->missing_devices--;
6658 fs_devices->missing_devices++;
6659
6660 device->fs_devices = fs_devices;
6661 }
2b82032c
YZ
6662 }
6663
0b246afa 6664 if (device->fs_devices != fs_info->fs_devices) {
2b82032c
YZ
6665 BUG_ON(device->writeable);
6666 if (device->generation !=
6667 btrfs_device_generation(leaf, dev_item))
6668 return -EINVAL;
6324fbf3 6669 }
0b86a832
CM
6670
6671 fill_device_from_item(leaf, dev_item, device);
dfe25020 6672 device->in_fs_metadata = 1;
63a212ab 6673 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
2b82032c 6674 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
6675 atomic64_add(device->total_bytes - device->bytes_used,
6676 &fs_info->free_chunk_space);
2bf64758 6677 }
0b86a832 6678 ret = 0;
0b86a832
CM
6679 return ret;
6680}
6681
6bccf3ab 6682int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 6683{
6bccf3ab 6684 struct btrfs_root *root = fs_info->tree_root;
ab8d0fc4 6685 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 6686 struct extent_buffer *sb;
0b86a832 6687 struct btrfs_disk_key *disk_key;
0b86a832 6688 struct btrfs_chunk *chunk;
1ffb22cf
DS
6689 u8 *array_ptr;
6690 unsigned long sb_array_offset;
84eed90f 6691 int ret = 0;
0b86a832
CM
6692 u32 num_stripes;
6693 u32 array_size;
6694 u32 len = 0;
1ffb22cf 6695 u32 cur_offset;
e06cd3dd 6696 u64 type;
84eed90f 6697 struct btrfs_key key;
0b86a832 6698
0b246afa 6699 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
a83fffb7
DS
6700 /*
6701 * This will create extent buffer of nodesize, superblock size is
6702 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6703 * overallocate but we can keep it as-is, only the first page is used.
6704 */
2ff7e61e 6705 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
c871b0f2
LB
6706 if (IS_ERR(sb))
6707 return PTR_ERR(sb);
4db8c528 6708 set_extent_buffer_uptodate(sb);
85d4e461 6709 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
8a334426 6710 /*
01327610 6711 * The sb extent buffer is artificial and just used to read the system array.
4db8c528 6712 * set_extent_buffer_uptodate() call does not properly mark all it's
8a334426
DS
6713 * pages up-to-date when the page is larger: extent does not cover the
6714 * whole page and consequently check_page_uptodate does not find all
6715 * the page's extents up-to-date (the hole beyond sb),
6716 * write_extent_buffer then triggers a WARN_ON.
6717 *
6718 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6719 * but sb spans only this function. Add an explicit SetPageUptodate call
6720 * to silence the warning eg. on PowerPC 64.
6721 */
09cbfeaf 6722 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
727011e0 6723 SetPageUptodate(sb->pages[0]);
4008c04a 6724
a061fc8d 6725 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
6726 array_size = btrfs_super_sys_array_size(super_copy);
6727
1ffb22cf
DS
6728 array_ptr = super_copy->sys_chunk_array;
6729 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6730 cur_offset = 0;
0b86a832 6731
1ffb22cf
DS
6732 while (cur_offset < array_size) {
6733 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
6734 len = sizeof(*disk_key);
6735 if (cur_offset + len > array_size)
6736 goto out_short_read;
6737
0b86a832
CM
6738 btrfs_disk_key_to_cpu(&key, disk_key);
6739
1ffb22cf
DS
6740 array_ptr += len;
6741 sb_array_offset += len;
6742 cur_offset += len;
0b86a832 6743
0d81ba5d 6744 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1ffb22cf 6745 chunk = (struct btrfs_chunk *)sb_array_offset;
e3540eab
DS
6746 /*
6747 * At least one btrfs_chunk with one stripe must be
6748 * present, exact stripe count check comes afterwards
6749 */
6750 len = btrfs_chunk_item_size(1);
6751 if (cur_offset + len > array_size)
6752 goto out_short_read;
6753
6754 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
f5cdedd7 6755 if (!num_stripes) {
ab8d0fc4
JM
6756 btrfs_err(fs_info,
6757 "invalid number of stripes %u in sys_array at offset %u",
f5cdedd7
DS
6758 num_stripes, cur_offset);
6759 ret = -EIO;
6760 break;
6761 }
6762
e06cd3dd
LB
6763 type = btrfs_chunk_type(sb, chunk);
6764 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 6765 btrfs_err(fs_info,
e06cd3dd
LB
6766 "invalid chunk type %llu in sys_array at offset %u",
6767 type, cur_offset);
6768 ret = -EIO;
6769 break;
6770 }
6771
e3540eab
DS
6772 len = btrfs_chunk_item_size(num_stripes);
6773 if (cur_offset + len > array_size)
6774 goto out_short_read;
6775
2ff7e61e 6776 ret = read_one_chunk(fs_info, &key, sb, chunk);
84eed90f
CM
6777 if (ret)
6778 break;
0b86a832 6779 } else {
ab8d0fc4
JM
6780 btrfs_err(fs_info,
6781 "unexpected item type %u in sys_array at offset %u",
6782 (u32)key.type, cur_offset);
84eed90f
CM
6783 ret = -EIO;
6784 break;
0b86a832 6785 }
1ffb22cf
DS
6786 array_ptr += len;
6787 sb_array_offset += len;
6788 cur_offset += len;
0b86a832 6789 }
d865177a 6790 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6791 free_extent_buffer_stale(sb);
84eed90f 6792 return ret;
e3540eab
DS
6793
6794out_short_read:
ab8d0fc4 6795 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 6796 len, cur_offset);
d865177a 6797 clear_extent_buffer_uptodate(sb);
1c8b5b6e 6798 free_extent_buffer_stale(sb);
e3540eab 6799 return -EIO;
0b86a832
CM
6800}
6801
5b4aacef 6802int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 6803{
5b4aacef 6804 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
6805 struct btrfs_path *path;
6806 struct extent_buffer *leaf;
6807 struct btrfs_key key;
6808 struct btrfs_key found_key;
6809 int ret;
6810 int slot;
99e3ecfc 6811 u64 total_dev = 0;
0b86a832 6812
0b86a832
CM
6813 path = btrfs_alloc_path();
6814 if (!path)
6815 return -ENOMEM;
6816
b367e47f 6817 mutex_lock(&uuid_mutex);
34441361 6818 mutex_lock(&fs_info->chunk_mutex);
b367e47f 6819
395927a9
FDBM
6820 /*
6821 * Read all device items, and then all the chunk items. All
6822 * device items are found before any chunk item (their object id
6823 * is smaller than the lowest possible object id for a chunk
6824 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
6825 */
6826 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6827 key.offset = 0;
6828 key.type = 0;
0b86a832 6829 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ab59381e
ZL
6830 if (ret < 0)
6831 goto error;
d397712b 6832 while (1) {
0b86a832
CM
6833 leaf = path->nodes[0];
6834 slot = path->slots[0];
6835 if (slot >= btrfs_header_nritems(leaf)) {
6836 ret = btrfs_next_leaf(root, path);
6837 if (ret == 0)
6838 continue;
6839 if (ret < 0)
6840 goto error;
6841 break;
6842 }
6843 btrfs_item_key_to_cpu(leaf, &found_key, slot);
395927a9
FDBM
6844 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6845 struct btrfs_dev_item *dev_item;
6846 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 6847 struct btrfs_dev_item);
2ff7e61e 6848 ret = read_one_dev(fs_info, leaf, dev_item);
395927a9
FDBM
6849 if (ret)
6850 goto error;
99e3ecfc 6851 total_dev++;
0b86a832
CM
6852 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6853 struct btrfs_chunk *chunk;
6854 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2ff7e61e 6855 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
2b82032c
YZ
6856 if (ret)
6857 goto error;
0b86a832
CM
6858 }
6859 path->slots[0]++;
6860 }
99e3ecfc
LB
6861
6862 /*
6863 * After loading chunk tree, we've got all device information,
6864 * do another round of validation checks.
6865 */
0b246afa
JM
6866 if (total_dev != fs_info->fs_devices->total_devices) {
6867 btrfs_err(fs_info,
99e3ecfc 6868 "super_num_devices %llu mismatch with num_devices %llu found here",
0b246afa 6869 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc
LB
6870 total_dev);
6871 ret = -EINVAL;
6872 goto error;
6873 }
0b246afa
JM
6874 if (btrfs_super_total_bytes(fs_info->super_copy) <
6875 fs_info->fs_devices->total_rw_bytes) {
6876 btrfs_err(fs_info,
99e3ecfc 6877 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
6878 btrfs_super_total_bytes(fs_info->super_copy),
6879 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
6880 ret = -EINVAL;
6881 goto error;
6882 }
0b86a832
CM
6883 ret = 0;
6884error:
34441361 6885 mutex_unlock(&fs_info->chunk_mutex);
b367e47f
LZ
6886 mutex_unlock(&uuid_mutex);
6887
2b82032c 6888 btrfs_free_path(path);
0b86a832
CM
6889 return ret;
6890}
442a4f63 6891
cb517eab
MX
6892void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6893{
6894 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6895 struct btrfs_device *device;
6896
29cc83f6
LB
6897 while (fs_devices) {
6898 mutex_lock(&fs_devices->device_list_mutex);
6899 list_for_each_entry(device, &fs_devices->devices, dev_list)
fb456252 6900 device->fs_info = fs_info;
29cc83f6
LB
6901 mutex_unlock(&fs_devices->device_list_mutex);
6902
6903 fs_devices = fs_devices->seed;
6904 }
cb517eab
MX
6905}
6906
733f4fbb
SB
6907static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6908{
6909 int i;
6910
6911 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6912 btrfs_dev_stat_reset(dev, i);
6913}
6914
6915int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6916{
6917 struct btrfs_key key;
6918 struct btrfs_key found_key;
6919 struct btrfs_root *dev_root = fs_info->dev_root;
6920 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6921 struct extent_buffer *eb;
6922 int slot;
6923 int ret = 0;
6924 struct btrfs_device *device;
6925 struct btrfs_path *path = NULL;
6926 int i;
6927
6928 path = btrfs_alloc_path();
6929 if (!path) {
6930 ret = -ENOMEM;
6931 goto out;
6932 }
6933
6934 mutex_lock(&fs_devices->device_list_mutex);
6935 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6936 int item_size;
6937 struct btrfs_dev_stats_item *ptr;
6938
242e2956
DS
6939 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6940 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6941 key.offset = device->devid;
6942 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6943 if (ret) {
733f4fbb
SB
6944 __btrfs_reset_dev_stats(device);
6945 device->dev_stats_valid = 1;
6946 btrfs_release_path(path);
6947 continue;
6948 }
6949 slot = path->slots[0];
6950 eb = path->nodes[0];
6951 btrfs_item_key_to_cpu(eb, &found_key, slot);
6952 item_size = btrfs_item_size_nr(eb, slot);
6953
6954 ptr = btrfs_item_ptr(eb, slot,
6955 struct btrfs_dev_stats_item);
6956
6957 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6958 if (item_size >= (1 + i) * sizeof(__le64))
6959 btrfs_dev_stat_set(device, i,
6960 btrfs_dev_stats_value(eb, ptr, i));
6961 else
6962 btrfs_dev_stat_reset(device, i);
6963 }
6964
6965 device->dev_stats_valid = 1;
6966 btrfs_dev_stat_print_on_load(device);
6967 btrfs_release_path(path);
6968 }
6969 mutex_unlock(&fs_devices->device_list_mutex);
6970
6971out:
6972 btrfs_free_path(path);
6973 return ret < 0 ? ret : 0;
6974}
6975
6976static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6bccf3ab 6977 struct btrfs_fs_info *fs_info,
733f4fbb
SB
6978 struct btrfs_device *device)
6979{
6bccf3ab 6980 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
6981 struct btrfs_path *path;
6982 struct btrfs_key key;
6983 struct extent_buffer *eb;
6984 struct btrfs_dev_stats_item *ptr;
6985 int ret;
6986 int i;
6987
242e2956
DS
6988 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6989 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
6990 key.offset = device->devid;
6991
6992 path = btrfs_alloc_path();
fa252992
DS
6993 if (!path)
6994 return -ENOMEM;
733f4fbb
SB
6995 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6996 if (ret < 0) {
0b246afa 6997 btrfs_warn_in_rcu(fs_info,
ecaeb14b 6998 "error %d while searching for dev_stats item for device %s",
606686ee 6999 ret, rcu_str_deref(device->name));
733f4fbb
SB
7000 goto out;
7001 }
7002
7003 if (ret == 0 &&
7004 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7005 /* need to delete old one and insert a new one */
7006 ret = btrfs_del_item(trans, dev_root, path);
7007 if (ret != 0) {
0b246afa 7008 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7009 "delete too small dev_stats item for device %s failed %d",
606686ee 7010 rcu_str_deref(device->name), ret);
733f4fbb
SB
7011 goto out;
7012 }
7013 ret = 1;
7014 }
7015
7016 if (ret == 1) {
7017 /* need to insert a new item */
7018 btrfs_release_path(path);
7019 ret = btrfs_insert_empty_item(trans, dev_root, path,
7020 &key, sizeof(*ptr));
7021 if (ret < 0) {
0b246afa 7022 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7023 "insert dev_stats item for device %s failed %d",
7024 rcu_str_deref(device->name), ret);
733f4fbb
SB
7025 goto out;
7026 }
7027 }
7028
7029 eb = path->nodes[0];
7030 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7031 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7032 btrfs_set_dev_stats_value(eb, ptr, i,
7033 btrfs_dev_stat_read(device, i));
7034 btrfs_mark_buffer_dirty(eb);
7035
7036out:
7037 btrfs_free_path(path);
7038 return ret;
7039}
7040
7041/*
7042 * called from commit_transaction. Writes all changed device stats to disk.
7043 */
7044int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7045 struct btrfs_fs_info *fs_info)
7046{
733f4fbb
SB
7047 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7048 struct btrfs_device *device;
addc3fa7 7049 int stats_cnt;
733f4fbb
SB
7050 int ret = 0;
7051
7052 mutex_lock(&fs_devices->device_list_mutex);
7053 list_for_each_entry(device, &fs_devices->devices, dev_list) {
addc3fa7 7054 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
733f4fbb
SB
7055 continue;
7056
addc3fa7 7057 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6bccf3ab 7058 ret = update_dev_stat_item(trans, fs_info, device);
733f4fbb 7059 if (!ret)
addc3fa7 7060 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7061 }
7062 mutex_unlock(&fs_devices->device_list_mutex);
7063
7064 return ret;
7065}
7066
442a4f63
SB
7067void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7068{
7069 btrfs_dev_stat_inc(dev, index);
7070 btrfs_dev_stat_print_on_error(dev);
7071}
7072
48a3b636 7073static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7074{
733f4fbb
SB
7075 if (!dev->dev_stats_valid)
7076 return;
fb456252 7077 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7078 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7079 rcu_str_deref(dev->name),
442a4f63
SB
7080 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7081 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7082 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7083 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7084 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7085}
c11d2c23 7086
733f4fbb
SB
7087static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7088{
a98cdb85
SB
7089 int i;
7090
7091 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7092 if (btrfs_dev_stat_read(dev, i) != 0)
7093 break;
7094 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7095 return; /* all values == 0, suppress message */
7096
fb456252 7097 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7098 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7099 rcu_str_deref(dev->name),
733f4fbb
SB
7100 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7101 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7102 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7103 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7104 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7105}
7106
2ff7e61e 7107int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7108 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23
SB
7109{
7110 struct btrfs_device *dev;
0b246afa 7111 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7112 int i;
7113
7114 mutex_lock(&fs_devices->device_list_mutex);
0b246afa 7115 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
c11d2c23
SB
7116 mutex_unlock(&fs_devices->device_list_mutex);
7117
7118 if (!dev) {
0b246afa 7119 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7120 return -ENODEV;
733f4fbb 7121 } else if (!dev->dev_stats_valid) {
0b246afa 7122 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7123 return -ENODEV;
b27f7c0c 7124 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7125 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7126 if (stats->nr_items > i)
7127 stats->values[i] =
7128 btrfs_dev_stat_read_and_reset(dev, i);
7129 else
7130 btrfs_dev_stat_reset(dev, i);
7131 }
7132 } else {
7133 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7134 if (stats->nr_items > i)
7135 stats->values[i] = btrfs_dev_stat_read(dev, i);
7136 }
7137 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7138 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7139 return 0;
7140}
a8a6dab7 7141
da353f6b 7142void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
a8a6dab7
SB
7143{
7144 struct buffer_head *bh;
7145 struct btrfs_super_block *disk_super;
12b1c263 7146 int copy_num;
a8a6dab7 7147
12b1c263
AJ
7148 if (!bdev)
7149 return;
a8a6dab7 7150
12b1c263
AJ
7151 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7152 copy_num++) {
a8a6dab7 7153
12b1c263
AJ
7154 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7155 continue;
7156
7157 disk_super = (struct btrfs_super_block *)bh->b_data;
7158
7159 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7160 set_buffer_dirty(bh);
7161 sync_dirty_buffer(bh);
7162 brelse(bh);
7163 }
7164
7165 /* Notify udev that device has changed */
7166 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7167
7168 /* Update ctime/mtime for device path for libblkid */
7169 update_dev_time(device_path);
a8a6dab7 7170}
935e5cc9
MX
7171
7172/*
7173 * Update the size of all devices, which is used for writing out the
7174 * super blocks.
7175 */
7176void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7177{
7178 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7179 struct btrfs_device *curr, *next;
7180
7181 if (list_empty(&fs_devices->resized_devices))
7182 return;
7183
7184 mutex_lock(&fs_devices->device_list_mutex);
34441361 7185 mutex_lock(&fs_info->chunk_mutex);
935e5cc9
MX
7186 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7187 resized_list) {
7188 list_del_init(&curr->resized_list);
7189 curr->commit_total_bytes = curr->disk_total_bytes;
7190 }
34441361 7191 mutex_unlock(&fs_info->chunk_mutex);
935e5cc9
MX
7192 mutex_unlock(&fs_devices->device_list_mutex);
7193}
ce7213c7
MX
7194
7195/* Must be invoked during the transaction commit */
2ff7e61e 7196void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
ce7213c7
MX
7197 struct btrfs_transaction *transaction)
7198{
7199 struct extent_map *em;
7200 struct map_lookup *map;
7201 struct btrfs_device *dev;
7202 int i;
7203
7204 if (list_empty(&transaction->pending_chunks))
7205 return;
7206
7207 /* In order to kick the device replace finish process */
34441361 7208 mutex_lock(&fs_info->chunk_mutex);
ce7213c7 7209 list_for_each_entry(em, &transaction->pending_chunks, list) {
95617d69 7210 map = em->map_lookup;
ce7213c7
MX
7211
7212 for (i = 0; i < map->num_stripes; i++) {
7213 dev = map->stripes[i].dev;
7214 dev->commit_bytes_used = dev->bytes_used;
7215 }
7216 }
34441361 7217 mutex_unlock(&fs_info->chunk_mutex);
ce7213c7 7218}
5a13f430
AJ
7219
7220void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7221{
7222 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7223 while (fs_devices) {
7224 fs_devices->fs_info = fs_info;
7225 fs_devices = fs_devices->seed;
7226 }
7227}
7228
7229void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7230{
7231 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7232 while (fs_devices) {
7233 fs_devices->fs_info = NULL;
7234 fs_devices = fs_devices->seed;
7235 }
7236}