]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/buffer.c
btrfs: fix metadata extent leak after failure to create subvolume
[mirror_ubuntu-focal-kernel.git] / fs / buffer.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
1da177e4 22#include <linux/kernel.h>
f361bf4a 23#include <linux/sched/signal.h>
1da177e4
LT
24#include <linux/syscalls.h>
25#include <linux/fs.h>
ae259a9c 26#include <linux/iomap.h>
1da177e4
LT
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
16f7e0fe 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
630d9c47 35#include <linux/export.h>
bafc0dba 36#include <linux/backing-dev.h>
1da177e4
LT
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
55e829af 41#include <linux/task_io_accounting_ops.h>
1da177e4 42#include <linux/bio.h>
1da177e4
LT
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
f745c6f5 48#include <linux/sched/mm.h>
5305cb83 49#include <trace/events/block.h>
1da177e4
LT
50
51static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 52static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 53 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
54
55#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
56
f0059afd
TH
57inline void touch_buffer(struct buffer_head *bh)
58{
5305cb83 59 trace_block_touch_buffer(bh);
f0059afd
TH
60 mark_page_accessed(bh->b_page);
61}
62EXPORT_SYMBOL(touch_buffer);
63
fc9b52cd 64void __lock_buffer(struct buffer_head *bh)
1da177e4 65{
74316201 66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
67}
68EXPORT_SYMBOL(__lock_buffer);
69
fc9b52cd 70void unlock_buffer(struct buffer_head *bh)
1da177e4 71{
51b07fc3 72 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 73 smp_mb__after_atomic();
1da177e4
LT
74 wake_up_bit(&bh->b_state, BH_Lock);
75}
1fe72eaa 76EXPORT_SYMBOL(unlock_buffer);
1da177e4 77
b4597226
MG
78/*
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
82 */
83void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
85{
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
89
90 BUG_ON(!PageLocked(page));
91
92 if (!page_has_buffers(page))
93 return;
94
95 if (PageWriteback(page))
96 *writeback = true;
97
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
103
104 if (buffer_dirty(bh))
105 *dirty = true;
106
107 bh = bh->b_this_page;
108 } while (bh != head);
109}
110EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
1da177e4
LT
112/*
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
116 */
117void __wait_on_buffer(struct buffer_head * bh)
118{
74316201 119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 120}
1fe72eaa 121EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
122
123static void
124__clear_page_buffers(struct page *page)
125{
126 ClearPagePrivate(page);
4c21e2f2 127 set_page_private(page, 0);
09cbfeaf 128 put_page(page);
1da177e4
LT
129}
130
b744c2ac 131static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 132{
432f16e6
RE
133 if (!test_bit(BH_Quiet, &bh->b_state))
134 printk_ratelimited(KERN_ERR
a1c6f057
DM
135 "Buffer I/O error on dev %pg, logical block %llu%s\n",
136 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
137}
138
139/*
68671f35
DM
140 * End-of-IO handler helper function which does not touch the bh after
141 * unlocking it.
142 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
143 * a race there is benign: unlock_buffer() only use the bh's address for
144 * hashing after unlocking the buffer, so it doesn't actually touch the bh
145 * itself.
1da177e4 146 */
68671f35 147static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
148{
149 if (uptodate) {
150 set_buffer_uptodate(bh);
151 } else {
70246286 152 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
153 clear_buffer_uptodate(bh);
154 }
155 unlock_buffer(bh);
68671f35
DM
156}
157
158/*
159 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
160 * unlock the buffer. This is what ll_rw_block uses too.
161 */
162void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
163{
164 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
165 put_bh(bh);
166}
1fe72eaa 167EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
168
169void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
170{
1da177e4
LT
171 if (uptodate) {
172 set_buffer_uptodate(bh);
173 } else {
432f16e6 174 buffer_io_error(bh, ", lost sync page write");
87354e5d 175 mark_buffer_write_io_error(bh);
1da177e4
LT
176 clear_buffer_uptodate(bh);
177 }
178 unlock_buffer(bh);
179 put_bh(bh);
180}
1fe72eaa 181EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 182
1da177e4
LT
183/*
184 * Various filesystems appear to want __find_get_block to be non-blocking.
185 * But it's the page lock which protects the buffers. To get around this,
186 * we get exclusion from try_to_free_buffers with the blockdev mapping's
187 * private_lock.
188 *
b93b0163 189 * Hack idea: for the blockdev mapping, private_lock contention
1da177e4 190 * may be quite high. This code could TryLock the page, and if that
b93b0163 191 * succeeds, there is no need to take private_lock.
1da177e4
LT
192 */
193static struct buffer_head *
385fd4c5 194__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
195{
196 struct inode *bd_inode = bdev->bd_inode;
197 struct address_space *bd_mapping = bd_inode->i_mapping;
198 struct buffer_head *ret = NULL;
199 pgoff_t index;
200 struct buffer_head *bh;
201 struct buffer_head *head;
202 struct page *page;
203 int all_mapped = 1;
43636c80 204 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
1da177e4 205
09cbfeaf 206 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 207 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
208 if (!page)
209 goto out;
210
211 spin_lock(&bd_mapping->private_lock);
212 if (!page_has_buffers(page))
213 goto out_unlock;
214 head = page_buffers(page);
215 bh = head;
216 do {
97f76d3d
NK
217 if (!buffer_mapped(bh))
218 all_mapped = 0;
219 else if (bh->b_blocknr == block) {
1da177e4
LT
220 ret = bh;
221 get_bh(bh);
222 goto out_unlock;
223 }
1da177e4
LT
224 bh = bh->b_this_page;
225 } while (bh != head);
226
227 /* we might be here because some of the buffers on this page are
228 * not mapped. This is due to various races between
229 * file io on the block device and getblk. It gets dealt with
230 * elsewhere, don't buffer_error if we had some unmapped buffers
231 */
43636c80
TH
232 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
233 if (all_mapped && __ratelimit(&last_warned)) {
234 printk("__find_get_block_slow() failed. block=%llu, "
235 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
236 "device %pg blocksize: %d\n",
237 (unsigned long long)block,
238 (unsigned long long)bh->b_blocknr,
239 bh->b_state, bh->b_size, bdev,
240 1 << bd_inode->i_blkbits);
1da177e4
LT
241 }
242out_unlock:
243 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 244 put_page(page);
1da177e4
LT
245out:
246 return ret;
247}
248
1da177e4
LT
249/*
250 * I/O completion handler for block_read_full_page() - pages
251 * which come unlocked at the end of I/O.
252 */
253static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
254{
1da177e4 255 unsigned long flags;
a3972203 256 struct buffer_head *first;
1da177e4
LT
257 struct buffer_head *tmp;
258 struct page *page;
259 int page_uptodate = 1;
260
261 BUG_ON(!buffer_async_read(bh));
262
263 page = bh->b_page;
264 if (uptodate) {
265 set_buffer_uptodate(bh);
266 } else {
267 clear_buffer_uptodate(bh);
432f16e6 268 buffer_io_error(bh, ", async page read");
1da177e4
LT
269 SetPageError(page);
270 }
271
272 /*
273 * Be _very_ careful from here on. Bad things can happen if
274 * two buffer heads end IO at almost the same time and both
275 * decide that the page is now completely done.
276 */
a3972203
NP
277 first = page_buffers(page);
278 local_irq_save(flags);
279 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
280 clear_buffer_async_read(bh);
281 unlock_buffer(bh);
282 tmp = bh;
283 do {
284 if (!buffer_uptodate(tmp))
285 page_uptodate = 0;
286 if (buffer_async_read(tmp)) {
287 BUG_ON(!buffer_locked(tmp));
288 goto still_busy;
289 }
290 tmp = tmp->b_this_page;
291 } while (tmp != bh);
a3972203
NP
292 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
293 local_irq_restore(flags);
1da177e4
LT
294
295 /*
296 * If none of the buffers had errors and they are all
297 * uptodate then we can set the page uptodate.
298 */
299 if (page_uptodate && !PageError(page))
300 SetPageUptodate(page);
301 unlock_page(page);
302 return;
303
304still_busy:
a3972203
NP
305 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
306 local_irq_restore(flags);
1da177e4
LT
307 return;
308}
309
310/*
311 * Completion handler for block_write_full_page() - pages which are unlocked
312 * during I/O, and which have PageWriteback cleared upon I/O completion.
313 */
35c80d5f 314void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 315{
1da177e4 316 unsigned long flags;
a3972203 317 struct buffer_head *first;
1da177e4
LT
318 struct buffer_head *tmp;
319 struct page *page;
320
321 BUG_ON(!buffer_async_write(bh));
322
323 page = bh->b_page;
324 if (uptodate) {
325 set_buffer_uptodate(bh);
326 } else {
432f16e6 327 buffer_io_error(bh, ", lost async page write");
87354e5d 328 mark_buffer_write_io_error(bh);
1da177e4
LT
329 clear_buffer_uptodate(bh);
330 SetPageError(page);
331 }
332
a3972203
NP
333 first = page_buffers(page);
334 local_irq_save(flags);
335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336
1da177e4
LT
337 clear_buffer_async_write(bh);
338 unlock_buffer(bh);
339 tmp = bh->b_this_page;
340 while (tmp != bh) {
341 if (buffer_async_write(tmp)) {
342 BUG_ON(!buffer_locked(tmp));
343 goto still_busy;
344 }
345 tmp = tmp->b_this_page;
346 }
a3972203
NP
347 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
348 local_irq_restore(flags);
1da177e4
LT
349 end_page_writeback(page);
350 return;
351
352still_busy:
a3972203
NP
353 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
354 local_irq_restore(flags);
1da177e4
LT
355 return;
356}
1fe72eaa 357EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
358
359/*
360 * If a page's buffers are under async readin (end_buffer_async_read
361 * completion) then there is a possibility that another thread of
362 * control could lock one of the buffers after it has completed
363 * but while some of the other buffers have not completed. This
364 * locked buffer would confuse end_buffer_async_read() into not unlocking
365 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
366 * that this buffer is not under async I/O.
367 *
368 * The page comes unlocked when it has no locked buffer_async buffers
369 * left.
370 *
371 * PageLocked prevents anyone starting new async I/O reads any of
372 * the buffers.
373 *
374 * PageWriteback is used to prevent simultaneous writeout of the same
375 * page.
376 *
377 * PageLocked prevents anyone from starting writeback of a page which is
378 * under read I/O (PageWriteback is only ever set against a locked page).
379 */
380static void mark_buffer_async_read(struct buffer_head *bh)
381{
382 bh->b_end_io = end_buffer_async_read;
383 set_buffer_async_read(bh);
384}
385
1fe72eaa
HS
386static void mark_buffer_async_write_endio(struct buffer_head *bh,
387 bh_end_io_t *handler)
1da177e4 388{
35c80d5f 389 bh->b_end_io = handler;
1da177e4
LT
390 set_buffer_async_write(bh);
391}
35c80d5f
CM
392
393void mark_buffer_async_write(struct buffer_head *bh)
394{
395 mark_buffer_async_write_endio(bh, end_buffer_async_write);
396}
1da177e4
LT
397EXPORT_SYMBOL(mark_buffer_async_write);
398
399
400/*
401 * fs/buffer.c contains helper functions for buffer-backed address space's
402 * fsync functions. A common requirement for buffer-based filesystems is
403 * that certain data from the backing blockdev needs to be written out for
404 * a successful fsync(). For example, ext2 indirect blocks need to be
405 * written back and waited upon before fsync() returns.
406 *
407 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
408 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
409 * management of a list of dependent buffers at ->i_mapping->private_list.
410 *
411 * Locking is a little subtle: try_to_free_buffers() will remove buffers
412 * from their controlling inode's queue when they are being freed. But
413 * try_to_free_buffers() will be operating against the *blockdev* mapping
414 * at the time, not against the S_ISREG file which depends on those buffers.
415 * So the locking for private_list is via the private_lock in the address_space
416 * which backs the buffers. Which is different from the address_space
417 * against which the buffers are listed. So for a particular address_space,
418 * mapping->private_lock does *not* protect mapping->private_list! In fact,
419 * mapping->private_list will always be protected by the backing blockdev's
420 * ->private_lock.
421 *
422 * Which introduces a requirement: all buffers on an address_space's
423 * ->private_list must be from the same address_space: the blockdev's.
424 *
425 * address_spaces which do not place buffers at ->private_list via these
426 * utility functions are free to use private_lock and private_list for
427 * whatever they want. The only requirement is that list_empty(private_list)
428 * be true at clear_inode() time.
429 *
430 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
431 * filesystems should do that. invalidate_inode_buffers() should just go
432 * BUG_ON(!list_empty).
433 *
434 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
435 * take an address_space, not an inode. And it should be called
436 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
437 * queued up.
438 *
439 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
440 * list if it is already on a list. Because if the buffer is on a list,
441 * it *must* already be on the right one. If not, the filesystem is being
442 * silly. This will save a ton of locking. But first we have to ensure
443 * that buffers are taken *off* the old inode's list when they are freed
444 * (presumably in truncate). That requires careful auditing of all
445 * filesystems (do it inside bforget()). It could also be done by bringing
446 * b_inode back.
447 */
448
449/*
450 * The buffer's backing address_space's private_lock must be held
451 */
dbacefc9 452static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
453{
454 list_del_init(&bh->b_assoc_buffers);
58ff407b 455 WARN_ON(!bh->b_assoc_map);
58ff407b 456 bh->b_assoc_map = NULL;
1da177e4
LT
457}
458
459int inode_has_buffers(struct inode *inode)
460{
461 return !list_empty(&inode->i_data.private_list);
462}
463
464/*
465 * osync is designed to support O_SYNC io. It waits synchronously for
466 * all already-submitted IO to complete, but does not queue any new
467 * writes to the disk.
468 *
469 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
470 * you dirty the buffers, and then use osync_inode_buffers to wait for
471 * completion. Any other dirty buffers which are not yet queued for
472 * write will not be flushed to disk by the osync.
473 */
474static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
475{
476 struct buffer_head *bh;
477 struct list_head *p;
478 int err = 0;
479
480 spin_lock(lock);
481repeat:
482 list_for_each_prev(p, list) {
483 bh = BH_ENTRY(p);
484 if (buffer_locked(bh)) {
485 get_bh(bh);
486 spin_unlock(lock);
487 wait_on_buffer(bh);
488 if (!buffer_uptodate(bh))
489 err = -EIO;
490 brelse(bh);
491 spin_lock(lock);
492 goto repeat;
493 }
494 }
495 spin_unlock(lock);
496 return err;
497}
498
08fdc8a0 499void emergency_thaw_bdev(struct super_block *sb)
c2d75438 500{
01a05b33 501 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 502 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 503}
c2d75438 504
1da177e4 505/**
78a4a50a 506 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 507 * @mapping: the mapping which wants those buffers written
1da177e4
LT
508 *
509 * Starts I/O against the buffers at mapping->private_list, and waits upon
510 * that I/O.
511 *
67be2dd1
MW
512 * Basically, this is a convenience function for fsync().
513 * @mapping is a file or directory which needs those buffers to be written for
514 * a successful fsync().
1da177e4
LT
515 */
516int sync_mapping_buffers(struct address_space *mapping)
517{
252aa6f5 518 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
519
520 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
521 return 0;
522
523 return fsync_buffers_list(&buffer_mapping->private_lock,
524 &mapping->private_list);
525}
526EXPORT_SYMBOL(sync_mapping_buffers);
527
528/*
529 * Called when we've recently written block `bblock', and it is known that
530 * `bblock' was for a buffer_boundary() buffer. This means that the block at
531 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
532 * dirty, schedule it for IO. So that indirects merge nicely with their data.
533 */
534void write_boundary_block(struct block_device *bdev,
535 sector_t bblock, unsigned blocksize)
536{
537 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
538 if (bh) {
539 if (buffer_dirty(bh))
dfec8a14 540 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
541 put_bh(bh);
542 }
543}
544
545void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
546{
547 struct address_space *mapping = inode->i_mapping;
548 struct address_space *buffer_mapping = bh->b_page->mapping;
549
550 mark_buffer_dirty(bh);
252aa6f5
RA
551 if (!mapping->private_data) {
552 mapping->private_data = buffer_mapping;
1da177e4 553 } else {
252aa6f5 554 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 555 }
535ee2fb 556 if (!bh->b_assoc_map) {
1da177e4
LT
557 spin_lock(&buffer_mapping->private_lock);
558 list_move_tail(&bh->b_assoc_buffers,
559 &mapping->private_list);
58ff407b 560 bh->b_assoc_map = mapping;
1da177e4
LT
561 spin_unlock(&buffer_mapping->private_lock);
562 }
563}
564EXPORT_SYMBOL(mark_buffer_dirty_inode);
565
787d2214 566/*
ec82e1c1 567 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
787d2214
NP
568 * dirty.
569 *
570 * If warn is true, then emit a warning if the page is not uptodate and has
571 * not been truncated.
c4843a75 572 *
81f8c3a4 573 * The caller must hold lock_page_memcg().
787d2214 574 */
f82b3764 575void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 576 int warn)
787d2214 577{
227d53b3
KM
578 unsigned long flags;
579
b93b0163 580 xa_lock_irqsave(&mapping->i_pages, flags);
787d2214
NP
581 if (page->mapping) { /* Race with truncate? */
582 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 583 account_page_dirtied(page, mapping);
ec82e1c1
MW
584 __xa_set_mark(&mapping->i_pages, page_index(page),
585 PAGECACHE_TAG_DIRTY);
787d2214 586 }
b93b0163 587 xa_unlock_irqrestore(&mapping->i_pages, flags);
787d2214 588}
f82b3764 589EXPORT_SYMBOL_GPL(__set_page_dirty);
787d2214 590
1da177e4
LT
591/*
592 * Add a page to the dirty page list.
593 *
594 * It is a sad fact of life that this function is called from several places
595 * deeply under spinlocking. It may not sleep.
596 *
597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
598 * dirty-state coherency between the page and the buffers. It the page does
599 * not have buffers then when they are later attached they will all be set
600 * dirty.
601 *
602 * The buffers are dirtied before the page is dirtied. There's a small race
603 * window in which a writepage caller may see the page cleanness but not the
604 * buffer dirtiness. That's fine. If this code were to set the page dirty
605 * before the buffers, a concurrent writepage caller could clear the page dirty
606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
607 * page on the dirty page list.
608 *
609 * We use private_lock to lock against try_to_free_buffers while using the
610 * page's buffer list. Also use this to protect against clean buffers being
611 * added to the page after it was set dirty.
612 *
613 * FIXME: may need to call ->reservepage here as well. That's rather up to the
614 * address_space though.
615 */
616int __set_page_dirty_buffers(struct page *page)
617{
a8e7d49a 618 int newly_dirty;
787d2214 619 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
620
621 if (unlikely(!mapping))
622 return !TestSetPageDirty(page);
1da177e4
LT
623
624 spin_lock(&mapping->private_lock);
625 if (page_has_buffers(page)) {
626 struct buffer_head *head = page_buffers(page);
627 struct buffer_head *bh = head;
628
629 do {
630 set_buffer_dirty(bh);
631 bh = bh->b_this_page;
632 } while (bh != head);
633 }
c4843a75 634 /*
81f8c3a4
JW
635 * Lock out page->mem_cgroup migration to keep PageDirty
636 * synchronized with per-memcg dirty page counters.
c4843a75 637 */
62cccb8c 638 lock_page_memcg(page);
a8e7d49a 639 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
640 spin_unlock(&mapping->private_lock);
641
a8e7d49a 642 if (newly_dirty)
62cccb8c 643 __set_page_dirty(page, mapping, 1);
c4843a75 644
62cccb8c 645 unlock_page_memcg(page);
c4843a75
GT
646
647 if (newly_dirty)
648 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
649
a8e7d49a 650 return newly_dirty;
1da177e4
LT
651}
652EXPORT_SYMBOL(__set_page_dirty_buffers);
653
654/*
655 * Write out and wait upon a list of buffers.
656 *
657 * We have conflicting pressures: we want to make sure that all
658 * initially dirty buffers get waited on, but that any subsequently
659 * dirtied buffers don't. After all, we don't want fsync to last
660 * forever if somebody is actively writing to the file.
661 *
662 * Do this in two main stages: first we copy dirty buffers to a
663 * temporary inode list, queueing the writes as we go. Then we clean
664 * up, waiting for those writes to complete.
665 *
666 * During this second stage, any subsequent updates to the file may end
667 * up refiling the buffer on the original inode's dirty list again, so
668 * there is a chance we will end up with a buffer queued for write but
669 * not yet completed on that list. So, as a final cleanup we go through
670 * the osync code to catch these locked, dirty buffers without requeuing
671 * any newly dirty buffers for write.
672 */
673static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
674{
675 struct buffer_head *bh;
676 struct list_head tmp;
7eaceacc 677 struct address_space *mapping;
1da177e4 678 int err = 0, err2;
4ee2491e 679 struct blk_plug plug;
1da177e4
LT
680
681 INIT_LIST_HEAD(&tmp);
4ee2491e 682 blk_start_plug(&plug);
1da177e4
LT
683
684 spin_lock(lock);
685 while (!list_empty(list)) {
686 bh = BH_ENTRY(list->next);
535ee2fb 687 mapping = bh->b_assoc_map;
58ff407b 688 __remove_assoc_queue(bh);
535ee2fb
JK
689 /* Avoid race with mark_buffer_dirty_inode() which does
690 * a lockless check and we rely on seeing the dirty bit */
691 smp_mb();
1da177e4
LT
692 if (buffer_dirty(bh) || buffer_locked(bh)) {
693 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 694 bh->b_assoc_map = mapping;
1da177e4
LT
695 if (buffer_dirty(bh)) {
696 get_bh(bh);
697 spin_unlock(lock);
698 /*
699 * Ensure any pending I/O completes so that
9cb569d6
CH
700 * write_dirty_buffer() actually writes the
701 * current contents - it is a noop if I/O is
702 * still in flight on potentially older
703 * contents.
1da177e4 704 */
70fd7614 705 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
706
707 /*
708 * Kick off IO for the previous mapping. Note
709 * that we will not run the very last mapping,
710 * wait_on_buffer() will do that for us
711 * through sync_buffer().
712 */
1da177e4
LT
713 brelse(bh);
714 spin_lock(lock);
715 }
716 }
717 }
718
4ee2491e
JA
719 spin_unlock(lock);
720 blk_finish_plug(&plug);
721 spin_lock(lock);
722
1da177e4
LT
723 while (!list_empty(&tmp)) {
724 bh = BH_ENTRY(tmp.prev);
1da177e4 725 get_bh(bh);
535ee2fb
JK
726 mapping = bh->b_assoc_map;
727 __remove_assoc_queue(bh);
728 /* Avoid race with mark_buffer_dirty_inode() which does
729 * a lockless check and we rely on seeing the dirty bit */
730 smp_mb();
731 if (buffer_dirty(bh)) {
732 list_add(&bh->b_assoc_buffers,
e3892296 733 &mapping->private_list);
535ee2fb
JK
734 bh->b_assoc_map = mapping;
735 }
1da177e4
LT
736 spin_unlock(lock);
737 wait_on_buffer(bh);
738 if (!buffer_uptodate(bh))
739 err = -EIO;
740 brelse(bh);
741 spin_lock(lock);
742 }
743
744 spin_unlock(lock);
745 err2 = osync_buffers_list(lock, list);
746 if (err)
747 return err;
748 else
749 return err2;
750}
751
752/*
753 * Invalidate any and all dirty buffers on a given inode. We are
754 * probably unmounting the fs, but that doesn't mean we have already
755 * done a sync(). Just drop the buffers from the inode list.
756 *
757 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
758 * assumes that all the buffers are against the blockdev. Not true
759 * for reiserfs.
760 */
761void invalidate_inode_buffers(struct inode *inode)
762{
763 if (inode_has_buffers(inode)) {
764 struct address_space *mapping = &inode->i_data;
765 struct list_head *list = &mapping->private_list;
252aa6f5 766 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
767
768 spin_lock(&buffer_mapping->private_lock);
769 while (!list_empty(list))
770 __remove_assoc_queue(BH_ENTRY(list->next));
771 spin_unlock(&buffer_mapping->private_lock);
772 }
773}
52b19ac9 774EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
775
776/*
777 * Remove any clean buffers from the inode's buffer list. This is called
778 * when we're trying to free the inode itself. Those buffers can pin it.
779 *
780 * Returns true if all buffers were removed.
781 */
782int remove_inode_buffers(struct inode *inode)
783{
784 int ret = 1;
785
786 if (inode_has_buffers(inode)) {
787 struct address_space *mapping = &inode->i_data;
788 struct list_head *list = &mapping->private_list;
252aa6f5 789 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
790
791 spin_lock(&buffer_mapping->private_lock);
792 while (!list_empty(list)) {
793 struct buffer_head *bh = BH_ENTRY(list->next);
794 if (buffer_dirty(bh)) {
795 ret = 0;
796 break;
797 }
798 __remove_assoc_queue(bh);
799 }
800 spin_unlock(&buffer_mapping->private_lock);
801 }
802 return ret;
803}
804
805/*
806 * Create the appropriate buffers when given a page for data area and
807 * the size of each buffer.. Use the bh->b_this_page linked list to
808 * follow the buffers created. Return NULL if unable to create more
809 * buffers.
810 *
811 * The retry flag is used to differentiate async IO (paging, swapping)
812 * which may not fail from ordinary buffer allocations.
813 */
814struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
640ab98f 815 bool retry)
1da177e4
LT
816{
817 struct buffer_head *bh, *head;
f745c6f5 818 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
1da177e4 819 long offset;
f745c6f5 820 struct mem_cgroup *memcg;
1da177e4 821
640ab98f
JA
822 if (retry)
823 gfp |= __GFP_NOFAIL;
824
f745c6f5
SB
825 memcg = get_mem_cgroup_from_page(page);
826 memalloc_use_memcg(memcg);
827
1da177e4
LT
828 head = NULL;
829 offset = PAGE_SIZE;
830 while ((offset -= size) >= 0) {
640ab98f 831 bh = alloc_buffer_head(gfp);
1da177e4
LT
832 if (!bh)
833 goto no_grow;
834
1da177e4
LT
835 bh->b_this_page = head;
836 bh->b_blocknr = -1;
837 head = bh;
838
1da177e4
LT
839 bh->b_size = size;
840
841 /* Link the buffer to its page */
842 set_bh_page(bh, page, offset);
1da177e4 843 }
f745c6f5
SB
844out:
845 memalloc_unuse_memcg();
846 mem_cgroup_put(memcg);
1da177e4
LT
847 return head;
848/*
849 * In case anything failed, we just free everything we got.
850 */
851no_grow:
852 if (head) {
853 do {
854 bh = head;
855 head = head->b_this_page;
856 free_buffer_head(bh);
857 } while (head);
858 }
859
f745c6f5 860 goto out;
1da177e4
LT
861}
862EXPORT_SYMBOL_GPL(alloc_page_buffers);
863
864static inline void
865link_dev_buffers(struct page *page, struct buffer_head *head)
866{
867 struct buffer_head *bh, *tail;
868
869 bh = head;
870 do {
871 tail = bh;
872 bh = bh->b_this_page;
873 } while (bh);
874 tail->b_this_page = head;
875 attach_page_buffers(page, head);
876}
877
bbec0270
LT
878static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
879{
880 sector_t retval = ~((sector_t)0);
881 loff_t sz = i_size_read(bdev->bd_inode);
882
883 if (sz) {
884 unsigned int sizebits = blksize_bits(size);
885 retval = (sz >> sizebits);
886 }
887 return retval;
888}
889
1da177e4
LT
890/*
891 * Initialise the state of a blockdev page's buffers.
892 */
676ce6d5 893static sector_t
1da177e4
LT
894init_page_buffers(struct page *page, struct block_device *bdev,
895 sector_t block, int size)
896{
897 struct buffer_head *head = page_buffers(page);
898 struct buffer_head *bh = head;
899 int uptodate = PageUptodate(page);
bbec0270 900 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
901
902 do {
903 if (!buffer_mapped(bh)) {
01950a34
EB
904 bh->b_end_io = NULL;
905 bh->b_private = NULL;
1da177e4
LT
906 bh->b_bdev = bdev;
907 bh->b_blocknr = block;
908 if (uptodate)
909 set_buffer_uptodate(bh);
080399aa
JM
910 if (block < end_block)
911 set_buffer_mapped(bh);
1da177e4
LT
912 }
913 block++;
914 bh = bh->b_this_page;
915 } while (bh != head);
676ce6d5
HD
916
917 /*
918 * Caller needs to validate requested block against end of device.
919 */
920 return end_block;
1da177e4
LT
921}
922
923/*
924 * Create the page-cache page that contains the requested block.
925 *
676ce6d5 926 * This is used purely for blockdev mappings.
1da177e4 927 */
676ce6d5 928static int
1da177e4 929grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 930 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
931{
932 struct inode *inode = bdev->bd_inode;
933 struct page *page;
934 struct buffer_head *bh;
676ce6d5
HD
935 sector_t end_block;
936 int ret = 0; /* Will call free_more_memory() */
84235de3 937 gfp_t gfp_mask;
1da177e4 938
c62d2555 939 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 940
84235de3
JW
941 /*
942 * XXX: __getblk_slow() can not really deal with failure and
943 * will endlessly loop on improvised global reclaim. Prefer
944 * looping in the allocator rather than here, at least that
945 * code knows what it's doing.
946 */
947 gfp_mask |= __GFP_NOFAIL;
948
949 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 950
e827f923 951 BUG_ON(!PageLocked(page));
1da177e4
LT
952
953 if (page_has_buffers(page)) {
954 bh = page_buffers(page);
955 if (bh->b_size == size) {
676ce6d5 956 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
957 (sector_t)index << sizebits,
958 size);
676ce6d5 959 goto done;
1da177e4
LT
960 }
961 if (!try_to_free_buffers(page))
962 goto failed;
963 }
964
965 /*
966 * Allocate some buffers for this page
967 */
94dc24c0 968 bh = alloc_page_buffers(page, size, true);
1da177e4
LT
969
970 /*
971 * Link the page to the buffers and initialise them. Take the
972 * lock to be atomic wrt __find_get_block(), which does not
973 * run under the page lock.
974 */
975 spin_lock(&inode->i_mapping->private_lock);
976 link_dev_buffers(page, bh);
f2d5a944
AA
977 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
978 size);
1da177e4 979 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
980done:
981 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 982failed:
1da177e4 983 unlock_page(page);
09cbfeaf 984 put_page(page);
676ce6d5 985 return ret;
1da177e4
LT
986}
987
988/*
989 * Create buffers for the specified block device block's page. If
990 * that page was dirty, the buffers are set dirty also.
1da177e4 991 */
858119e1 992static int
3b5e6454 993grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 994{
1da177e4
LT
995 pgoff_t index;
996 int sizebits;
997
998 sizebits = -1;
999 do {
1000 sizebits++;
1001 } while ((size << sizebits) < PAGE_SIZE);
1002
1003 index = block >> sizebits;
1da177e4 1004
e5657933
AM
1005 /*
1006 * Check for a block which wants to lie outside our maximum possible
1007 * pagecache index. (this comparison is done using sector_t types).
1008 */
1009 if (unlikely(index != block >> sizebits)) {
e5657933 1010 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1011 "device %pg\n",
8e24eea7 1012 __func__, (unsigned long long)block,
a1c6f057 1013 bdev);
e5657933
AM
1014 return -EIO;
1015 }
676ce6d5 1016
1da177e4 1017 /* Create a page with the proper size buffers.. */
3b5e6454 1018 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1019}
1020
0026ba40 1021static struct buffer_head *
3b5e6454
GK
1022__getblk_slow(struct block_device *bdev, sector_t block,
1023 unsigned size, gfp_t gfp)
1da177e4
LT
1024{
1025 /* Size must be multiple of hard sectorsize */
e1defc4f 1026 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1027 (size < 512 || size > PAGE_SIZE))) {
1028 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1029 size);
e1defc4f
MP
1030 printk(KERN_ERR "logical block size: %d\n",
1031 bdev_logical_block_size(bdev));
1da177e4
LT
1032
1033 dump_stack();
1034 return NULL;
1035 }
1036
676ce6d5
HD
1037 for (;;) {
1038 struct buffer_head *bh;
1039 int ret;
1da177e4
LT
1040
1041 bh = __find_get_block(bdev, block, size);
1042 if (bh)
1043 return bh;
676ce6d5 1044
3b5e6454 1045 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1046 if (ret < 0)
1047 return NULL;
1da177e4
LT
1048 }
1049}
1050
1051/*
1052 * The relationship between dirty buffers and dirty pages:
1053 *
1054 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
ec82e1c1 1055 * the page is tagged dirty in the page cache.
1da177e4
LT
1056 *
1057 * At all times, the dirtiness of the buffers represents the dirtiness of
1058 * subsections of the page. If the page has buffers, the page dirty bit is
1059 * merely a hint about the true dirty state.
1060 *
1061 * When a page is set dirty in its entirety, all its buffers are marked dirty
1062 * (if the page has buffers).
1063 *
1064 * When a buffer is marked dirty, its page is dirtied, but the page's other
1065 * buffers are not.
1066 *
1067 * Also. When blockdev buffers are explicitly read with bread(), they
1068 * individually become uptodate. But their backing page remains not
1069 * uptodate - even if all of its buffers are uptodate. A subsequent
1070 * block_read_full_page() against that page will discover all the uptodate
1071 * buffers, will set the page uptodate and will perform no I/O.
1072 */
1073
1074/**
1075 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1076 * @bh: the buffer_head to mark dirty
1da177e4 1077 *
ec82e1c1
MW
1078 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1079 * its backing page dirty, then tag the page as dirty in the page cache
1080 * and then attach the address_space's inode to its superblock's dirty
1da177e4
LT
1081 * inode list.
1082 *
1083 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
b93b0163 1084 * i_pages lock and mapping->host->i_lock.
1da177e4 1085 */
fc9b52cd 1086void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1087{
787d2214 1088 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1089
5305cb83
TH
1090 trace_block_dirty_buffer(bh);
1091
1be62dc1
LT
1092 /*
1093 * Very *carefully* optimize the it-is-already-dirty case.
1094 *
1095 * Don't let the final "is it dirty" escape to before we
1096 * perhaps modified the buffer.
1097 */
1098 if (buffer_dirty(bh)) {
1099 smp_mb();
1100 if (buffer_dirty(bh))
1101 return;
1102 }
1103
a8e7d49a
LT
1104 if (!test_set_buffer_dirty(bh)) {
1105 struct page *page = bh->b_page;
c4843a75 1106 struct address_space *mapping = NULL;
c4843a75 1107
62cccb8c 1108 lock_page_memcg(page);
8e9d78ed 1109 if (!TestSetPageDirty(page)) {
c4843a75 1110 mapping = page_mapping(page);
8e9d78ed 1111 if (mapping)
62cccb8c 1112 __set_page_dirty(page, mapping, 0);
8e9d78ed 1113 }
62cccb8c 1114 unlock_page_memcg(page);
c4843a75
GT
1115 if (mapping)
1116 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1117 }
1da177e4 1118}
1fe72eaa 1119EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1120
87354e5d
JL
1121void mark_buffer_write_io_error(struct buffer_head *bh)
1122{
1123 set_buffer_write_io_error(bh);
1124 /* FIXME: do we need to set this in both places? */
1125 if (bh->b_page && bh->b_page->mapping)
1126 mapping_set_error(bh->b_page->mapping, -EIO);
1127 if (bh->b_assoc_map)
1128 mapping_set_error(bh->b_assoc_map, -EIO);
1129}
1130EXPORT_SYMBOL(mark_buffer_write_io_error);
1131
1da177e4
LT
1132/*
1133 * Decrement a buffer_head's reference count. If all buffers against a page
1134 * have zero reference count, are clean and unlocked, and if the page is clean
1135 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1136 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1137 * a page but it ends up not being freed, and buffers may later be reattached).
1138 */
1139void __brelse(struct buffer_head * buf)
1140{
1141 if (atomic_read(&buf->b_count)) {
1142 put_bh(buf);
1143 return;
1144 }
5c752ad9 1145 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1146}
1fe72eaa 1147EXPORT_SYMBOL(__brelse);
1da177e4
LT
1148
1149/*
1150 * bforget() is like brelse(), except it discards any
1151 * potentially dirty data.
1152 */
1153void __bforget(struct buffer_head *bh)
1154{
1155 clear_buffer_dirty(bh);
535ee2fb 1156 if (bh->b_assoc_map) {
1da177e4
LT
1157 struct address_space *buffer_mapping = bh->b_page->mapping;
1158
1159 spin_lock(&buffer_mapping->private_lock);
1160 list_del_init(&bh->b_assoc_buffers);
58ff407b 1161 bh->b_assoc_map = NULL;
1da177e4
LT
1162 spin_unlock(&buffer_mapping->private_lock);
1163 }
1164 __brelse(bh);
1165}
1fe72eaa 1166EXPORT_SYMBOL(__bforget);
1da177e4
LT
1167
1168static struct buffer_head *__bread_slow(struct buffer_head *bh)
1169{
1170 lock_buffer(bh);
1171 if (buffer_uptodate(bh)) {
1172 unlock_buffer(bh);
1173 return bh;
1174 } else {
1175 get_bh(bh);
1176 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1177 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1178 wait_on_buffer(bh);
1179 if (buffer_uptodate(bh))
1180 return bh;
1181 }
1182 brelse(bh);
1183 return NULL;
1184}
1185
1186/*
1187 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1188 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1189 * refcount elevated by one when they're in an LRU. A buffer can only appear
1190 * once in a particular CPU's LRU. A single buffer can be present in multiple
1191 * CPU's LRUs at the same time.
1192 *
1193 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1194 * sb_find_get_block().
1195 *
1196 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1197 * a local interrupt disable for that.
1198 */
1199
86cf78d7 1200#define BH_LRU_SIZE 16
1da177e4
LT
1201
1202struct bh_lru {
1203 struct buffer_head *bhs[BH_LRU_SIZE];
1204};
1205
1206static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1207
1208#ifdef CONFIG_SMP
1209#define bh_lru_lock() local_irq_disable()
1210#define bh_lru_unlock() local_irq_enable()
1211#else
1212#define bh_lru_lock() preempt_disable()
1213#define bh_lru_unlock() preempt_enable()
1214#endif
1215
1216static inline void check_irqs_on(void)
1217{
1218#ifdef irqs_disabled
1219 BUG_ON(irqs_disabled());
1220#endif
1221}
1222
1223/*
241f01fb
EB
1224 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1225 * inserted at the front, and the buffer_head at the back if any is evicted.
1226 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1227 */
1228static void bh_lru_install(struct buffer_head *bh)
1229{
241f01fb
EB
1230 struct buffer_head *evictee = bh;
1231 struct bh_lru *b;
1232 int i;
1da177e4
LT
1233
1234 check_irqs_on();
1235 bh_lru_lock();
1da177e4 1236
241f01fb
EB
1237 b = this_cpu_ptr(&bh_lrus);
1238 for (i = 0; i < BH_LRU_SIZE; i++) {
1239 swap(evictee, b->bhs[i]);
1240 if (evictee == bh) {
1241 bh_lru_unlock();
1242 return;
1da177e4 1243 }
1da177e4 1244 }
1da177e4 1245
241f01fb
EB
1246 get_bh(bh);
1247 bh_lru_unlock();
1248 brelse(evictee);
1da177e4
LT
1249}
1250
1251/*
1252 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1253 */
858119e1 1254static struct buffer_head *
3991d3bd 1255lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1256{
1257 struct buffer_head *ret = NULL;
3991d3bd 1258 unsigned int i;
1da177e4
LT
1259
1260 check_irqs_on();
1261 bh_lru_lock();
1da177e4 1262 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1263 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1264
9470dd5d
ZB
1265 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1266 bh->b_size == size) {
1da177e4
LT
1267 if (i) {
1268 while (i) {
c7b92516
CL
1269 __this_cpu_write(bh_lrus.bhs[i],
1270 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1271 i--;
1272 }
c7b92516 1273 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1274 }
1275 get_bh(bh);
1276 ret = bh;
1277 break;
1278 }
1279 }
1280 bh_lru_unlock();
1281 return ret;
1282}
1283
1284/*
1285 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1286 * it in the LRU and mark it as accessed. If it is not present then return
1287 * NULL
1288 */
1289struct buffer_head *
3991d3bd 1290__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1291{
1292 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1293
1294 if (bh == NULL) {
2457aec6 1295 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1296 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1297 if (bh)
1298 bh_lru_install(bh);
2457aec6 1299 } else
1da177e4 1300 touch_buffer(bh);
2457aec6 1301
1da177e4
LT
1302 return bh;
1303}
1304EXPORT_SYMBOL(__find_get_block);
1305
1306/*
3b5e6454 1307 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1308 * which corresponds to the passed block_device, block and size. The
1309 * returned buffer has its reference count incremented.
1310 *
3b5e6454
GK
1311 * __getblk_gfp() will lock up the machine if grow_dev_page's
1312 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1313 */
1314struct buffer_head *
3b5e6454
GK
1315__getblk_gfp(struct block_device *bdev, sector_t block,
1316 unsigned size, gfp_t gfp)
1da177e4
LT
1317{
1318 struct buffer_head *bh = __find_get_block(bdev, block, size);
1319
1320 might_sleep();
1321 if (bh == NULL)
3b5e6454 1322 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1323 return bh;
1324}
3b5e6454 1325EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1326
1327/*
1328 * Do async read-ahead on a buffer..
1329 */
3991d3bd 1330void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1331{
1332 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1333 if (likely(bh)) {
70246286 1334 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1335 brelse(bh);
1336 }
1da177e4
LT
1337}
1338EXPORT_SYMBOL(__breadahead);
1339
dcb22991
RG
1340void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1341 gfp_t gfp)
1342{
1343 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1344 if (likely(bh)) {
1345 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1346 brelse(bh);
1347 }
1348}
1349EXPORT_SYMBOL(__breadahead_gfp);
1350
1da177e4 1351/**
3b5e6454 1352 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1353 * @bdev: the block_device to read from
1da177e4
LT
1354 * @block: number of block
1355 * @size: size (in bytes) to read
3b5e6454
GK
1356 * @gfp: page allocation flag
1357 *
1da177e4 1358 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1359 * The page cache can be allocated from non-movable area
1360 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1361 * It returns NULL if the block was unreadable.
1362 */
1363struct buffer_head *
3b5e6454
GK
1364__bread_gfp(struct block_device *bdev, sector_t block,
1365 unsigned size, gfp_t gfp)
1da177e4 1366{
3b5e6454 1367 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1368
a3e713b5 1369 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1370 bh = __bread_slow(bh);
1371 return bh;
1372}
3b5e6454 1373EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1374
1375/*
1376 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1377 * This doesn't race because it runs in each cpu either in irq
1378 * or with preempt disabled.
1379 */
1380static void invalidate_bh_lru(void *arg)
1381{
1382 struct bh_lru *b = &get_cpu_var(bh_lrus);
1383 int i;
1384
1385 for (i = 0; i < BH_LRU_SIZE; i++) {
1386 brelse(b->bhs[i]);
1387 b->bhs[i] = NULL;
1388 }
1389 put_cpu_var(bh_lrus);
1390}
42be35d0
GBY
1391
1392static bool has_bh_in_lru(int cpu, void *dummy)
1393{
1394 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1395 int i;
1da177e4 1396
42be35d0
GBY
1397 for (i = 0; i < BH_LRU_SIZE; i++) {
1398 if (b->bhs[i])
1399 return 1;
1400 }
1401
1402 return 0;
1403}
1404
f9a14399 1405void invalidate_bh_lrus(void)
1da177e4 1406{
42be35d0 1407 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1408}
9db5579b 1409EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1410
1411void set_bh_page(struct buffer_head *bh,
1412 struct page *page, unsigned long offset)
1413{
1414 bh->b_page = page;
e827f923 1415 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1416 if (PageHighMem(page))
1417 /*
1418 * This catches illegal uses and preserves the offset:
1419 */
1420 bh->b_data = (char *)(0 + offset);
1421 else
1422 bh->b_data = page_address(page) + offset;
1423}
1424EXPORT_SYMBOL(set_bh_page);
1425
1426/*
1427 * Called when truncating a buffer on a page completely.
1428 */
e7470ee8
MG
1429
1430/* Bits that are cleared during an invalidate */
1431#define BUFFER_FLAGS_DISCARD \
1432 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1433 1 << BH_Delay | 1 << BH_Unwritten)
1434
858119e1 1435static void discard_buffer(struct buffer_head * bh)
1da177e4 1436{
e7470ee8
MG
1437 unsigned long b_state, b_state_old;
1438
1da177e4
LT
1439 lock_buffer(bh);
1440 clear_buffer_dirty(bh);
1441 bh->b_bdev = NULL;
e7470ee8
MG
1442 b_state = bh->b_state;
1443 for (;;) {
1444 b_state_old = cmpxchg(&bh->b_state, b_state,
1445 (b_state & ~BUFFER_FLAGS_DISCARD));
1446 if (b_state_old == b_state)
1447 break;
1448 b_state = b_state_old;
1449 }
1da177e4
LT
1450 unlock_buffer(bh);
1451}
1452
1da177e4 1453/**
814e1d25 1454 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1455 *
1456 * @page: the page which is affected
d47992f8
LC
1457 * @offset: start of the range to invalidate
1458 * @length: length of the range to invalidate
1da177e4
LT
1459 *
1460 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1461 * invalidated by a truncate operation.
1da177e4
LT
1462 *
1463 * block_invalidatepage() does not have to release all buffers, but it must
1464 * ensure that no dirty buffer is left outside @offset and that no I/O
1465 * is underway against any of the blocks which are outside the truncation
1466 * point. Because the caller is about to free (and possibly reuse) those
1467 * blocks on-disk.
1468 */
d47992f8
LC
1469void block_invalidatepage(struct page *page, unsigned int offset,
1470 unsigned int length)
1da177e4
LT
1471{
1472 struct buffer_head *head, *bh, *next;
1473 unsigned int curr_off = 0;
d47992f8 1474 unsigned int stop = length + offset;
1da177e4
LT
1475
1476 BUG_ON(!PageLocked(page));
1477 if (!page_has_buffers(page))
1478 goto out;
1479
d47992f8
LC
1480 /*
1481 * Check for overflow
1482 */
09cbfeaf 1483 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1484
1da177e4
LT
1485 head = page_buffers(page);
1486 bh = head;
1487 do {
1488 unsigned int next_off = curr_off + bh->b_size;
1489 next = bh->b_this_page;
1490
d47992f8
LC
1491 /*
1492 * Are we still fully in range ?
1493 */
1494 if (next_off > stop)
1495 goto out;
1496
1da177e4
LT
1497 /*
1498 * is this block fully invalidated?
1499 */
1500 if (offset <= curr_off)
1501 discard_buffer(bh);
1502 curr_off = next_off;
1503 bh = next;
1504 } while (bh != head);
1505
1506 /*
1507 * We release buffers only if the entire page is being invalidated.
1508 * The get_block cached value has been unconditionally invalidated,
1509 * so real IO is not possible anymore.
1510 */
3172485f 1511 if (length == PAGE_SIZE)
2ff28e22 1512 try_to_release_page(page, 0);
1da177e4 1513out:
2ff28e22 1514 return;
1da177e4
LT
1515}
1516EXPORT_SYMBOL(block_invalidatepage);
1517
d47992f8 1518
1da177e4
LT
1519/*
1520 * We attach and possibly dirty the buffers atomically wrt
1521 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1522 * is already excluded via the page lock.
1523 */
1524void create_empty_buffers(struct page *page,
1525 unsigned long blocksize, unsigned long b_state)
1526{
1527 struct buffer_head *bh, *head, *tail;
1528
640ab98f 1529 head = alloc_page_buffers(page, blocksize, true);
1da177e4
LT
1530 bh = head;
1531 do {
1532 bh->b_state |= b_state;
1533 tail = bh;
1534 bh = bh->b_this_page;
1535 } while (bh);
1536 tail->b_this_page = head;
1537
1538 spin_lock(&page->mapping->private_lock);
1539 if (PageUptodate(page) || PageDirty(page)) {
1540 bh = head;
1541 do {
1542 if (PageDirty(page))
1543 set_buffer_dirty(bh);
1544 if (PageUptodate(page))
1545 set_buffer_uptodate(bh);
1546 bh = bh->b_this_page;
1547 } while (bh != head);
1548 }
1549 attach_page_buffers(page, head);
1550 spin_unlock(&page->mapping->private_lock);
1551}
1552EXPORT_SYMBOL(create_empty_buffers);
1553
29f3ad7d
JK
1554/**
1555 * clean_bdev_aliases: clean a range of buffers in block device
1556 * @bdev: Block device to clean buffers in
1557 * @block: Start of a range of blocks to clean
1558 * @len: Number of blocks to clean
1da177e4 1559 *
29f3ad7d
JK
1560 * We are taking a range of blocks for data and we don't want writeback of any
1561 * buffer-cache aliases starting from return from this function and until the
1562 * moment when something will explicitly mark the buffer dirty (hopefully that
1563 * will not happen until we will free that block ;-) We don't even need to mark
1564 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1565 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1566 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1567 * would confuse anyone who might pick it with bread() afterwards...
1568 *
1569 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1570 * writeout I/O going on against recently-freed buffers. We don't wait on that
1571 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1572 * need to. That happens here.
1da177e4 1573 */
29f3ad7d 1574void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1575{
29f3ad7d
JK
1576 struct inode *bd_inode = bdev->bd_inode;
1577 struct address_space *bd_mapping = bd_inode->i_mapping;
1578 struct pagevec pvec;
1579 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1580 pgoff_t end;
c10f778d 1581 int i, count;
29f3ad7d
JK
1582 struct buffer_head *bh;
1583 struct buffer_head *head;
1da177e4 1584
29f3ad7d 1585 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
86679820 1586 pagevec_init(&pvec);
397162ff 1587 while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
c10f778d
JK
1588 count = pagevec_count(&pvec);
1589 for (i = 0; i < count; i++) {
29f3ad7d 1590 struct page *page = pvec.pages[i];
1da177e4 1591
29f3ad7d
JK
1592 if (!page_has_buffers(page))
1593 continue;
1594 /*
1595 * We use page lock instead of bd_mapping->private_lock
1596 * to pin buffers here since we can afford to sleep and
1597 * it scales better than a global spinlock lock.
1598 */
1599 lock_page(page);
1600 /* Recheck when the page is locked which pins bhs */
1601 if (!page_has_buffers(page))
1602 goto unlock_page;
1603 head = page_buffers(page);
1604 bh = head;
1605 do {
6c006a9d 1606 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1607 goto next;
1608 if (bh->b_blocknr >= block + len)
1609 break;
1610 clear_buffer_dirty(bh);
1611 wait_on_buffer(bh);
1612 clear_buffer_req(bh);
1613next:
1614 bh = bh->b_this_page;
1615 } while (bh != head);
1616unlock_page:
1617 unlock_page(page);
1618 }
1619 pagevec_release(&pvec);
1620 cond_resched();
c10f778d
JK
1621 /* End of range already reached? */
1622 if (index > end || !index)
1623 break;
1da177e4
LT
1624 }
1625}
29f3ad7d 1626EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1627
45bce8f3
LT
1628/*
1629 * Size is a power-of-two in the range 512..PAGE_SIZE,
1630 * and the case we care about most is PAGE_SIZE.
1631 *
1632 * So this *could* possibly be written with those
1633 * constraints in mind (relevant mostly if some
1634 * architecture has a slow bit-scan instruction)
1635 */
1636static inline int block_size_bits(unsigned int blocksize)
1637{
1638 return ilog2(blocksize);
1639}
1640
1641static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1642{
1643 BUG_ON(!PageLocked(page));
1644
1645 if (!page_has_buffers(page))
6aa7de05
MR
1646 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1647 b_state);
45bce8f3
LT
1648 return page_buffers(page);
1649}
1650
1da177e4
LT
1651/*
1652 * NOTE! All mapped/uptodate combinations are valid:
1653 *
1654 * Mapped Uptodate Meaning
1655 *
1656 * No No "unknown" - must do get_block()
1657 * No Yes "hole" - zero-filled
1658 * Yes No "allocated" - allocated on disk, not read in
1659 * Yes Yes "valid" - allocated and up-to-date in memory.
1660 *
1661 * "Dirty" is valid only with the last case (mapped+uptodate).
1662 */
1663
1664/*
1665 * While block_write_full_page is writing back the dirty buffers under
1666 * the page lock, whoever dirtied the buffers may decide to clean them
1667 * again at any time. We handle that by only looking at the buffer
1668 * state inside lock_buffer().
1669 *
1670 * If block_write_full_page() is called for regular writeback
1671 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1672 * locked buffer. This only can happen if someone has written the buffer
1673 * directly, with submit_bh(). At the address_space level PageWriteback
1674 * prevents this contention from occurring.
6e34eedd
TT
1675 *
1676 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1677 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1678 * causes the writes to be flagged as synchronous writes.
1da177e4 1679 */
b4bba389 1680int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1681 get_block_t *get_block, struct writeback_control *wbc,
1682 bh_end_io_t *handler)
1da177e4
LT
1683{
1684 int err;
1685 sector_t block;
1686 sector_t last_block;
f0fbd5fc 1687 struct buffer_head *bh, *head;
45bce8f3 1688 unsigned int blocksize, bbits;
1da177e4 1689 int nr_underway = 0;
7637241e 1690 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1691
45bce8f3 1692 head = create_page_buffers(page, inode,
1da177e4 1693 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1694
1695 /*
1696 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1697 * here, and the (potentially unmapped) buffers may become dirty at
1698 * any time. If a buffer becomes dirty here after we've inspected it
1699 * then we just miss that fact, and the page stays dirty.
1700 *
1701 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1702 * handle that here by just cleaning them.
1703 */
1704
1da177e4 1705 bh = head;
45bce8f3
LT
1706 blocksize = bh->b_size;
1707 bbits = block_size_bits(blocksize);
1708
09cbfeaf 1709 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1710 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1711
1712 /*
1713 * Get all the dirty buffers mapped to disk addresses and
1714 * handle any aliases from the underlying blockdev's mapping.
1715 */
1716 do {
1717 if (block > last_block) {
1718 /*
1719 * mapped buffers outside i_size will occur, because
1720 * this page can be outside i_size when there is a
1721 * truncate in progress.
1722 */
1723 /*
1724 * The buffer was zeroed by block_write_full_page()
1725 */
1726 clear_buffer_dirty(bh);
1727 set_buffer_uptodate(bh);
29a814d2
AT
1728 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1729 buffer_dirty(bh)) {
b0cf2321 1730 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1731 err = get_block(inode, block, bh, 1);
1732 if (err)
1733 goto recover;
29a814d2 1734 clear_buffer_delay(bh);
1da177e4
LT
1735 if (buffer_new(bh)) {
1736 /* blockdev mappings never come here */
1737 clear_buffer_new(bh);
e64855c6 1738 clean_bdev_bh_alias(bh);
1da177e4
LT
1739 }
1740 }
1741 bh = bh->b_this_page;
1742 block++;
1743 } while (bh != head);
1744
1745 do {
1da177e4
LT
1746 if (!buffer_mapped(bh))
1747 continue;
1748 /*
1749 * If it's a fully non-blocking write attempt and we cannot
1750 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1751 * potentially cause a busy-wait loop from writeback threads
1752 * and kswapd activity, but those code paths have their own
1753 * higher-level throttling.
1da177e4 1754 */
1b430bee 1755 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1756 lock_buffer(bh);
ca5de404 1757 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1758 redirty_page_for_writepage(wbc, page);
1759 continue;
1760 }
1761 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1762 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1763 } else {
1764 unlock_buffer(bh);
1765 }
1766 } while ((bh = bh->b_this_page) != head);
1767
1768 /*
1769 * The page and its buffers are protected by PageWriteback(), so we can
1770 * drop the bh refcounts early.
1771 */
1772 BUG_ON(PageWriteback(page));
1773 set_page_writeback(page);
1da177e4
LT
1774
1775 do {
1776 struct buffer_head *next = bh->b_this_page;
1777 if (buffer_async_write(bh)) {
8e8f9298
JA
1778 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1779 inode->i_write_hint, wbc);
1da177e4
LT
1780 nr_underway++;
1781 }
1da177e4
LT
1782 bh = next;
1783 } while (bh != head);
05937baa 1784 unlock_page(page);
1da177e4
LT
1785
1786 err = 0;
1787done:
1788 if (nr_underway == 0) {
1789 /*
1790 * The page was marked dirty, but the buffers were
1791 * clean. Someone wrote them back by hand with
1792 * ll_rw_block/submit_bh. A rare case.
1793 */
1da177e4 1794 end_page_writeback(page);
3d67f2d7 1795
1da177e4
LT
1796 /*
1797 * The page and buffer_heads can be released at any time from
1798 * here on.
1799 */
1da177e4
LT
1800 }
1801 return err;
1802
1803recover:
1804 /*
1805 * ENOSPC, or some other error. We may already have added some
1806 * blocks to the file, so we need to write these out to avoid
1807 * exposing stale data.
1808 * The page is currently locked and not marked for writeback
1809 */
1810 bh = head;
1811 /* Recovery: lock and submit the mapped buffers */
1812 do {
29a814d2
AT
1813 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1814 !buffer_delay(bh)) {
1da177e4 1815 lock_buffer(bh);
35c80d5f 1816 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1817 } else {
1818 /*
1819 * The buffer may have been set dirty during
1820 * attachment to a dirty page.
1821 */
1822 clear_buffer_dirty(bh);
1823 }
1824 } while ((bh = bh->b_this_page) != head);
1825 SetPageError(page);
1826 BUG_ON(PageWriteback(page));
7e4c3690 1827 mapping_set_error(page->mapping, err);
1da177e4 1828 set_page_writeback(page);
1da177e4
LT
1829 do {
1830 struct buffer_head *next = bh->b_this_page;
1831 if (buffer_async_write(bh)) {
1832 clear_buffer_dirty(bh);
8e8f9298
JA
1833 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1834 inode->i_write_hint, wbc);
1da177e4
LT
1835 nr_underway++;
1836 }
1da177e4
LT
1837 bh = next;
1838 } while (bh != head);
ffda9d30 1839 unlock_page(page);
1da177e4
LT
1840 goto done;
1841}
b4bba389 1842EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1843
afddba49
NP
1844/*
1845 * If a page has any new buffers, zero them out here, and mark them uptodate
1846 * and dirty so they'll be written out (in order to prevent uninitialised
1847 * block data from leaking). And clear the new bit.
1848 */
1849void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1850{
1851 unsigned int block_start, block_end;
1852 struct buffer_head *head, *bh;
1853
1854 BUG_ON(!PageLocked(page));
1855 if (!page_has_buffers(page))
1856 return;
1857
1858 bh = head = page_buffers(page);
1859 block_start = 0;
1860 do {
1861 block_end = block_start + bh->b_size;
1862
1863 if (buffer_new(bh)) {
1864 if (block_end > from && block_start < to) {
1865 if (!PageUptodate(page)) {
1866 unsigned start, size;
1867
1868 start = max(from, block_start);
1869 size = min(to, block_end) - start;
1870
eebd2aa3 1871 zero_user(page, start, size);
afddba49
NP
1872 set_buffer_uptodate(bh);
1873 }
1874
1875 clear_buffer_new(bh);
1876 mark_buffer_dirty(bh);
1877 }
1878 }
1879
1880 block_start = block_end;
1881 bh = bh->b_this_page;
1882 } while (bh != head);
1883}
1884EXPORT_SYMBOL(page_zero_new_buffers);
1885
ae259a9c
CH
1886static void
1887iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1888 struct iomap *iomap)
1889{
1890 loff_t offset = block << inode->i_blkbits;
1891
1892 bh->b_bdev = iomap->bdev;
1893
1894 /*
1895 * Block points to offset in file we need to map, iomap contains
1896 * the offset at which the map starts. If the map ends before the
1897 * current block, then do not map the buffer and let the caller
1898 * handle it.
1899 */
1900 BUG_ON(offset >= iomap->offset + iomap->length);
1901
1902 switch (iomap->type) {
1903 case IOMAP_HOLE:
1904 /*
1905 * If the buffer is not up to date or beyond the current EOF,
1906 * we need to mark it as new to ensure sub-block zeroing is
1907 * executed if necessary.
1908 */
1909 if (!buffer_uptodate(bh) ||
1910 (offset >= i_size_read(inode)))
1911 set_buffer_new(bh);
1912 break;
1913 case IOMAP_DELALLOC:
1914 if (!buffer_uptodate(bh) ||
1915 (offset >= i_size_read(inode)))
1916 set_buffer_new(bh);
1917 set_buffer_uptodate(bh);
1918 set_buffer_mapped(bh);
1919 set_buffer_delay(bh);
1920 break;
1921 case IOMAP_UNWRITTEN:
1922 /*
3d7b6b21
AG
1923 * For unwritten regions, we always need to ensure that regions
1924 * in the block we are not writing to are zeroed. Mark the
1925 * buffer as new to ensure this.
ae259a9c
CH
1926 */
1927 set_buffer_new(bh);
1928 set_buffer_unwritten(bh);
1929 /* FALLTHRU */
1930 case IOMAP_MAPPED:
3d7b6b21
AG
1931 if ((iomap->flags & IOMAP_F_NEW) ||
1932 offset >= i_size_read(inode))
ae259a9c 1933 set_buffer_new(bh);
19fe5f64
AG
1934 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1935 inode->i_blkbits;
ae259a9c
CH
1936 set_buffer_mapped(bh);
1937 break;
1938 }
1939}
1940
1941int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1942 get_block_t *get_block, struct iomap *iomap)
1da177e4 1943{
09cbfeaf 1944 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1945 unsigned to = from + len;
6e1db88d 1946 struct inode *inode = page->mapping->host;
1da177e4
LT
1947 unsigned block_start, block_end;
1948 sector_t block;
1949 int err = 0;
1950 unsigned blocksize, bbits;
1951 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1952
1953 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1954 BUG_ON(from > PAGE_SIZE);
1955 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
1956 BUG_ON(from > to);
1957
45bce8f3
LT
1958 head = create_page_buffers(page, inode, 0);
1959 blocksize = head->b_size;
1960 bbits = block_size_bits(blocksize);
1da177e4 1961
09cbfeaf 1962 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
1963
1964 for(bh = head, block_start = 0; bh != head || !block_start;
1965 block++, block_start=block_end, bh = bh->b_this_page) {
1966 block_end = block_start + blocksize;
1967 if (block_end <= from || block_start >= to) {
1968 if (PageUptodate(page)) {
1969 if (!buffer_uptodate(bh))
1970 set_buffer_uptodate(bh);
1971 }
1972 continue;
1973 }
1974 if (buffer_new(bh))
1975 clear_buffer_new(bh);
1976 if (!buffer_mapped(bh)) {
b0cf2321 1977 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
1978 if (get_block) {
1979 err = get_block(inode, block, bh, 1);
1980 if (err)
1981 break;
1982 } else {
1983 iomap_to_bh(inode, block, bh, iomap);
1984 }
1985
1da177e4 1986 if (buffer_new(bh)) {
e64855c6 1987 clean_bdev_bh_alias(bh);
1da177e4 1988 if (PageUptodate(page)) {
637aff46 1989 clear_buffer_new(bh);
1da177e4 1990 set_buffer_uptodate(bh);
637aff46 1991 mark_buffer_dirty(bh);
1da177e4
LT
1992 continue;
1993 }
eebd2aa3
CL
1994 if (block_end > to || block_start < from)
1995 zero_user_segments(page,
1996 to, block_end,
1997 block_start, from);
1da177e4
LT
1998 continue;
1999 }
2000 }
2001 if (PageUptodate(page)) {
2002 if (!buffer_uptodate(bh))
2003 set_buffer_uptodate(bh);
2004 continue;
2005 }
2006 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2007 !buffer_unwritten(bh) &&
1da177e4 2008 (block_start < from || block_end > to)) {
dfec8a14 2009 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2010 *wait_bh++=bh;
2011 }
2012 }
2013 /*
2014 * If we issued read requests - let them complete.
2015 */
2016 while(wait_bh > wait) {
2017 wait_on_buffer(*--wait_bh);
2018 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2019 err = -EIO;
1da177e4 2020 }
f9f07b6c 2021 if (unlikely(err))
afddba49 2022 page_zero_new_buffers(page, from, to);
1da177e4
LT
2023 return err;
2024}
ae259a9c
CH
2025
2026int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2027 get_block_t *get_block)
2028{
2029 return __block_write_begin_int(page, pos, len, get_block, NULL);
2030}
ebdec241 2031EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2032
2033static int __block_commit_write(struct inode *inode, struct page *page,
2034 unsigned from, unsigned to)
2035{
2036 unsigned block_start, block_end;
2037 int partial = 0;
2038 unsigned blocksize;
2039 struct buffer_head *bh, *head;
2040
45bce8f3
LT
2041 bh = head = page_buffers(page);
2042 blocksize = bh->b_size;
1da177e4 2043
45bce8f3
LT
2044 block_start = 0;
2045 do {
1da177e4
LT
2046 block_end = block_start + blocksize;
2047 if (block_end <= from || block_start >= to) {
2048 if (!buffer_uptodate(bh))
2049 partial = 1;
2050 } else {
2051 set_buffer_uptodate(bh);
2052 mark_buffer_dirty(bh);
2053 }
afddba49 2054 clear_buffer_new(bh);
45bce8f3
LT
2055
2056 block_start = block_end;
2057 bh = bh->b_this_page;
2058 } while (bh != head);
1da177e4
LT
2059
2060 /*
2061 * If this is a partial write which happened to make all buffers
2062 * uptodate then we can optimize away a bogus readpage() for
2063 * the next read(). Here we 'discover' whether the page went
2064 * uptodate as a result of this (potentially partial) write.
2065 */
2066 if (!partial)
2067 SetPageUptodate(page);
2068 return 0;
2069}
2070
afddba49 2071/*
155130a4
CH
2072 * block_write_begin takes care of the basic task of block allocation and
2073 * bringing partial write blocks uptodate first.
2074 *
7bb46a67 2075 * The filesystem needs to handle block truncation upon failure.
afddba49 2076 */
155130a4
CH
2077int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2078 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2079{
09cbfeaf 2080 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2081 struct page *page;
6e1db88d 2082 int status;
afddba49 2083
6e1db88d
CH
2084 page = grab_cache_page_write_begin(mapping, index, flags);
2085 if (!page)
2086 return -ENOMEM;
afddba49 2087
6e1db88d 2088 status = __block_write_begin(page, pos, len, get_block);
afddba49 2089 if (unlikely(status)) {
6e1db88d 2090 unlock_page(page);
09cbfeaf 2091 put_page(page);
6e1db88d 2092 page = NULL;
afddba49
NP
2093 }
2094
6e1db88d 2095 *pagep = page;
afddba49
NP
2096 return status;
2097}
2098EXPORT_SYMBOL(block_write_begin);
2099
2100int block_write_end(struct file *file, struct address_space *mapping,
2101 loff_t pos, unsigned len, unsigned copied,
2102 struct page *page, void *fsdata)
2103{
2104 struct inode *inode = mapping->host;
2105 unsigned start;
2106
09cbfeaf 2107 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2108
2109 if (unlikely(copied < len)) {
2110 /*
2111 * The buffers that were written will now be uptodate, so we
2112 * don't have to worry about a readpage reading them and
2113 * overwriting a partial write. However if we have encountered
2114 * a short write and only partially written into a buffer, it
2115 * will not be marked uptodate, so a readpage might come in and
2116 * destroy our partial write.
2117 *
2118 * Do the simplest thing, and just treat any short write to a
2119 * non uptodate page as a zero-length write, and force the
2120 * caller to redo the whole thing.
2121 */
2122 if (!PageUptodate(page))
2123 copied = 0;
2124
2125 page_zero_new_buffers(page, start+copied, start+len);
2126 }
2127 flush_dcache_page(page);
2128
2129 /* This could be a short (even 0-length) commit */
2130 __block_commit_write(inode, page, start, start+copied);
2131
2132 return copied;
2133}
2134EXPORT_SYMBOL(block_write_end);
2135
2136int generic_write_end(struct file *file, struct address_space *mapping,
2137 loff_t pos, unsigned len, unsigned copied,
2138 struct page *page, void *fsdata)
2139{
8af54f29
CH
2140 struct inode *inode = mapping->host;
2141 loff_t old_size = inode->i_size;
2142 bool i_size_changed = false;
2143
afddba49 2144 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
8af54f29
CH
2145
2146 /*
2147 * No need to use i_size_read() here, the i_size cannot change under us
2148 * because we hold i_rwsem.
2149 *
2150 * But it's important to update i_size while still holding page lock:
2151 * page writeout could otherwise come in and zero beyond i_size.
2152 */
2153 if (pos + copied > inode->i_size) {
2154 i_size_write(inode, pos + copied);
2155 i_size_changed = true;
2156 }
2157
2158 unlock_page(page);
7a77dad7 2159 put_page(page);
8af54f29
CH
2160
2161 if (old_size < pos)
2162 pagecache_isize_extended(inode, old_size, pos);
2163 /*
2164 * Don't mark the inode dirty under page lock. First, it unnecessarily
2165 * makes the holding time of page lock longer. Second, it forces lock
2166 * ordering of page lock and transaction start for journaling
2167 * filesystems.
2168 */
2169 if (i_size_changed)
2170 mark_inode_dirty(inode);
26ddb1f4 2171 return copied;
afddba49
NP
2172}
2173EXPORT_SYMBOL(generic_write_end);
2174
8ab22b9a
HH
2175/*
2176 * block_is_partially_uptodate checks whether buffers within a page are
2177 * uptodate or not.
2178 *
2179 * Returns true if all buffers which correspond to a file portion
2180 * we want to read are uptodate.
2181 */
c186afb4
AV
2182int block_is_partially_uptodate(struct page *page, unsigned long from,
2183 unsigned long count)
8ab22b9a 2184{
8ab22b9a
HH
2185 unsigned block_start, block_end, blocksize;
2186 unsigned to;
2187 struct buffer_head *bh, *head;
2188 int ret = 1;
2189
2190 if (!page_has_buffers(page))
2191 return 0;
2192
45bce8f3
LT
2193 head = page_buffers(page);
2194 blocksize = head->b_size;
09cbfeaf 2195 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2196 to = from + to;
09cbfeaf 2197 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2198 return 0;
2199
8ab22b9a
HH
2200 bh = head;
2201 block_start = 0;
2202 do {
2203 block_end = block_start + blocksize;
2204 if (block_end > from && block_start < to) {
2205 if (!buffer_uptodate(bh)) {
2206 ret = 0;
2207 break;
2208 }
2209 if (block_end >= to)
2210 break;
2211 }
2212 block_start = block_end;
2213 bh = bh->b_this_page;
2214 } while (bh != head);
2215
2216 return ret;
2217}
2218EXPORT_SYMBOL(block_is_partially_uptodate);
2219
1da177e4
LT
2220/*
2221 * Generic "read page" function for block devices that have the normal
2222 * get_block functionality. This is most of the block device filesystems.
2223 * Reads the page asynchronously --- the unlock_buffer() and
2224 * set/clear_buffer_uptodate() functions propagate buffer state into the
2225 * page struct once IO has completed.
2226 */
2227int block_read_full_page(struct page *page, get_block_t *get_block)
2228{
2229 struct inode *inode = page->mapping->host;
2230 sector_t iblock, lblock;
2231 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2232 unsigned int blocksize, bbits;
1da177e4
LT
2233 int nr, i;
2234 int fully_mapped = 1;
2235
45bce8f3
LT
2236 head = create_page_buffers(page, inode, 0);
2237 blocksize = head->b_size;
2238 bbits = block_size_bits(blocksize);
1da177e4 2239
09cbfeaf 2240 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2241 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2242 bh = head;
2243 nr = 0;
2244 i = 0;
2245
2246 do {
2247 if (buffer_uptodate(bh))
2248 continue;
2249
2250 if (!buffer_mapped(bh)) {
c64610ba
AM
2251 int err = 0;
2252
1da177e4
LT
2253 fully_mapped = 0;
2254 if (iblock < lblock) {
b0cf2321 2255 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2256 err = get_block(inode, iblock, bh, 0);
2257 if (err)
1da177e4
LT
2258 SetPageError(page);
2259 }
2260 if (!buffer_mapped(bh)) {
eebd2aa3 2261 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2262 if (!err)
2263 set_buffer_uptodate(bh);
1da177e4
LT
2264 continue;
2265 }
2266 /*
2267 * get_block() might have updated the buffer
2268 * synchronously
2269 */
2270 if (buffer_uptodate(bh))
2271 continue;
2272 }
2273 arr[nr++] = bh;
2274 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2275
2276 if (fully_mapped)
2277 SetPageMappedToDisk(page);
2278
2279 if (!nr) {
2280 /*
2281 * All buffers are uptodate - we can set the page uptodate
2282 * as well. But not if get_block() returned an error.
2283 */
2284 if (!PageError(page))
2285 SetPageUptodate(page);
2286 unlock_page(page);
2287 return 0;
2288 }
2289
2290 /* Stage two: lock the buffers */
2291 for (i = 0; i < nr; i++) {
2292 bh = arr[i];
2293 lock_buffer(bh);
2294 mark_buffer_async_read(bh);
2295 }
2296
2297 /*
2298 * Stage 3: start the IO. Check for uptodateness
2299 * inside the buffer lock in case another process reading
2300 * the underlying blockdev brought it uptodate (the sct fix).
2301 */
2302 for (i = 0; i < nr; i++) {
2303 bh = arr[i];
2304 if (buffer_uptodate(bh))
2305 end_buffer_async_read(bh, 1);
2306 else
2a222ca9 2307 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2308 }
2309 return 0;
2310}
1fe72eaa 2311EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2312
2313/* utility function for filesystems that need to do work on expanding
89e10787 2314 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2315 * deal with the hole.
2316 */
89e10787 2317int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2318{
2319 struct address_space *mapping = inode->i_mapping;
2320 struct page *page;
89e10787 2321 void *fsdata;
1da177e4
LT
2322 int err;
2323
c08d3b0e 2324 err = inode_newsize_ok(inode, size);
2325 if (err)
1da177e4
LT
2326 goto out;
2327
89e10787 2328 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2329 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2330 if (err)
05eb0b51 2331 goto out;
05eb0b51 2332
89e10787
NP
2333 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2334 BUG_ON(err > 0);
05eb0b51 2335
1da177e4
LT
2336out:
2337 return err;
2338}
1fe72eaa 2339EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2340
f1e3af72
AB
2341static int cont_expand_zero(struct file *file, struct address_space *mapping,
2342 loff_t pos, loff_t *bytes)
1da177e4 2343{
1da177e4 2344 struct inode *inode = mapping->host;
93407472 2345 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2346 struct page *page;
2347 void *fsdata;
2348 pgoff_t index, curidx;
2349 loff_t curpos;
2350 unsigned zerofrom, offset, len;
2351 int err = 0;
1da177e4 2352
09cbfeaf
KS
2353 index = pos >> PAGE_SHIFT;
2354 offset = pos & ~PAGE_MASK;
89e10787 2355
09cbfeaf
KS
2356 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2357 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2358 if (zerofrom & (blocksize-1)) {
2359 *bytes |= (blocksize-1);
2360 (*bytes)++;
2361 }
09cbfeaf 2362 len = PAGE_SIZE - zerofrom;
1da177e4 2363
c718a975
TH
2364 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2365 &page, &fsdata);
89e10787
NP
2366 if (err)
2367 goto out;
eebd2aa3 2368 zero_user(page, zerofrom, len);
89e10787
NP
2369 err = pagecache_write_end(file, mapping, curpos, len, len,
2370 page, fsdata);
2371 if (err < 0)
2372 goto out;
2373 BUG_ON(err != len);
2374 err = 0;
061e9746
OH
2375
2376 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd 2377
08d405c8 2378 if (fatal_signal_pending(current)) {
c2ca0fcd
MP
2379 err = -EINTR;
2380 goto out;
2381 }
89e10787 2382 }
1da177e4 2383
89e10787
NP
2384 /* page covers the boundary, find the boundary offset */
2385 if (index == curidx) {
09cbfeaf 2386 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2387 /* if we will expand the thing last block will be filled */
89e10787
NP
2388 if (offset <= zerofrom) {
2389 goto out;
2390 }
2391 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2392 *bytes |= (blocksize-1);
2393 (*bytes)++;
2394 }
89e10787 2395 len = offset - zerofrom;
1da177e4 2396
c718a975
TH
2397 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2398 &page, &fsdata);
89e10787
NP
2399 if (err)
2400 goto out;
eebd2aa3 2401 zero_user(page, zerofrom, len);
89e10787
NP
2402 err = pagecache_write_end(file, mapping, curpos, len, len,
2403 page, fsdata);
2404 if (err < 0)
2405 goto out;
2406 BUG_ON(err != len);
2407 err = 0;
1da177e4 2408 }
89e10787
NP
2409out:
2410 return err;
2411}
2412
2413/*
2414 * For moronic filesystems that do not allow holes in file.
2415 * We may have to extend the file.
2416 */
282dc178 2417int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2418 loff_t pos, unsigned len, unsigned flags,
2419 struct page **pagep, void **fsdata,
2420 get_block_t *get_block, loff_t *bytes)
2421{
2422 struct inode *inode = mapping->host;
93407472
FF
2423 unsigned int blocksize = i_blocksize(inode);
2424 unsigned int zerofrom;
89e10787
NP
2425 int err;
2426
2427 err = cont_expand_zero(file, mapping, pos, bytes);
2428 if (err)
155130a4 2429 return err;
89e10787 2430
09cbfeaf 2431 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2432 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2433 *bytes |= (blocksize-1);
2434 (*bytes)++;
1da177e4 2435 }
1da177e4 2436
155130a4 2437 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2438}
1fe72eaa 2439EXPORT_SYMBOL(cont_write_begin);
1da177e4 2440
1da177e4
LT
2441int block_commit_write(struct page *page, unsigned from, unsigned to)
2442{
2443 struct inode *inode = page->mapping->host;
2444 __block_commit_write(inode,page,from,to);
2445 return 0;
2446}
1fe72eaa 2447EXPORT_SYMBOL(block_commit_write);
1da177e4 2448
54171690
DC
2449/*
2450 * block_page_mkwrite() is not allowed to change the file size as it gets
2451 * called from a page fault handler when a page is first dirtied. Hence we must
2452 * be careful to check for EOF conditions here. We set the page up correctly
2453 * for a written page which means we get ENOSPC checking when writing into
2454 * holes and correct delalloc and unwritten extent mapping on filesystems that
2455 * support these features.
2456 *
2457 * We are not allowed to take the i_mutex here so we have to play games to
2458 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2459 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2460 * page lock we can determine safely if the page is beyond EOF. If it is not
2461 * beyond EOF, then the page is guaranteed safe against truncation until we
2462 * unlock the page.
ea13a864 2463 *
14da9200 2464 * Direct callers of this function should protect against filesystem freezing
5c500029 2465 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2466 */
5c500029 2467int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2468 get_block_t get_block)
54171690 2469{
c2ec175c 2470 struct page *page = vmf->page;
496ad9aa 2471 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2472 unsigned long end;
2473 loff_t size;
24da4fab 2474 int ret;
54171690
DC
2475
2476 lock_page(page);
2477 size = i_size_read(inode);
2478 if ((page->mapping != inode->i_mapping) ||
18336338 2479 (page_offset(page) > size)) {
24da4fab
JK
2480 /* We overload EFAULT to mean page got truncated */
2481 ret = -EFAULT;
2482 goto out_unlock;
54171690
DC
2483 }
2484
2485 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2486 if (((page->index + 1) << PAGE_SHIFT) > size)
2487 end = size & ~PAGE_MASK;
54171690 2488 else
09cbfeaf 2489 end = PAGE_SIZE;
54171690 2490
ebdec241 2491 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2492 if (!ret)
2493 ret = block_commit_write(page, 0, end);
2494
24da4fab
JK
2495 if (unlikely(ret < 0))
2496 goto out_unlock;
ea13a864 2497 set_page_dirty(page);
1d1d1a76 2498 wait_for_stable_page(page);
24da4fab
JK
2499 return 0;
2500out_unlock:
2501 unlock_page(page);
54171690 2502 return ret;
24da4fab 2503}
1fe72eaa 2504EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2505
2506/*
03158cd7 2507 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2508 * immediately, while under the page lock. So it needs a special end_io
2509 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2510 */
2511static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2512{
68671f35 2513 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2514}
2515
03158cd7
NP
2516/*
2517 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2518 * the page (converting it to circular linked list and taking care of page
2519 * dirty races).
2520 */
2521static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2522{
2523 struct buffer_head *bh;
2524
2525 BUG_ON(!PageLocked(page));
2526
2527 spin_lock(&page->mapping->private_lock);
2528 bh = head;
2529 do {
2530 if (PageDirty(page))
2531 set_buffer_dirty(bh);
2532 if (!bh->b_this_page)
2533 bh->b_this_page = head;
2534 bh = bh->b_this_page;
2535 } while (bh != head);
2536 attach_page_buffers(page, head);
2537 spin_unlock(&page->mapping->private_lock);
2538}
2539
1da177e4 2540/*
ea0f04e5
CH
2541 * On entry, the page is fully not uptodate.
2542 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2543 * The filesystem needs to handle block truncation upon failure.
1da177e4 2544 */
ea0f04e5 2545int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2546 loff_t pos, unsigned len, unsigned flags,
2547 struct page **pagep, void **fsdata,
1da177e4
LT
2548 get_block_t *get_block)
2549{
03158cd7 2550 struct inode *inode = mapping->host;
1da177e4
LT
2551 const unsigned blkbits = inode->i_blkbits;
2552 const unsigned blocksize = 1 << blkbits;
a4b0672d 2553 struct buffer_head *head, *bh;
03158cd7
NP
2554 struct page *page;
2555 pgoff_t index;
2556 unsigned from, to;
1da177e4 2557 unsigned block_in_page;
a4b0672d 2558 unsigned block_start, block_end;
1da177e4 2559 sector_t block_in_file;
1da177e4 2560 int nr_reads = 0;
1da177e4
LT
2561 int ret = 0;
2562 int is_mapped_to_disk = 1;
1da177e4 2563
09cbfeaf
KS
2564 index = pos >> PAGE_SHIFT;
2565 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2566 to = from + len;
2567
54566b2c 2568 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2569 if (!page)
2570 return -ENOMEM;
2571 *pagep = page;
2572 *fsdata = NULL;
2573
2574 if (page_has_buffers(page)) {
309f77ad
NK
2575 ret = __block_write_begin(page, pos, len, get_block);
2576 if (unlikely(ret))
2577 goto out_release;
2578 return ret;
03158cd7 2579 }
a4b0672d 2580
1da177e4
LT
2581 if (PageMappedToDisk(page))
2582 return 0;
2583
a4b0672d
NP
2584 /*
2585 * Allocate buffers so that we can keep track of state, and potentially
2586 * attach them to the page if an error occurs. In the common case of
2587 * no error, they will just be freed again without ever being attached
2588 * to the page (which is all OK, because we're under the page lock).
2589 *
2590 * Be careful: the buffer linked list is a NULL terminated one, rather
2591 * than the circular one we're used to.
2592 */
640ab98f 2593 head = alloc_page_buffers(page, blocksize, false);
03158cd7
NP
2594 if (!head) {
2595 ret = -ENOMEM;
2596 goto out_release;
2597 }
a4b0672d 2598
09cbfeaf 2599 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2600
2601 /*
2602 * We loop across all blocks in the page, whether or not they are
2603 * part of the affected region. This is so we can discover if the
2604 * page is fully mapped-to-disk.
2605 */
a4b0672d 2606 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2607 block_start < PAGE_SIZE;
a4b0672d 2608 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2609 int create;
2610
a4b0672d
NP
2611 block_end = block_start + blocksize;
2612 bh->b_state = 0;
1da177e4
LT
2613 create = 1;
2614 if (block_start >= to)
2615 create = 0;
2616 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2617 bh, create);
1da177e4
LT
2618 if (ret)
2619 goto failed;
a4b0672d 2620 if (!buffer_mapped(bh))
1da177e4 2621 is_mapped_to_disk = 0;
a4b0672d 2622 if (buffer_new(bh))
e64855c6 2623 clean_bdev_bh_alias(bh);
a4b0672d
NP
2624 if (PageUptodate(page)) {
2625 set_buffer_uptodate(bh);
1da177e4 2626 continue;
a4b0672d
NP
2627 }
2628 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2629 zero_user_segments(page, block_start, from,
2630 to, block_end);
1da177e4
LT
2631 continue;
2632 }
a4b0672d 2633 if (buffer_uptodate(bh))
1da177e4
LT
2634 continue; /* reiserfs does this */
2635 if (block_start < from || block_end > to) {
a4b0672d
NP
2636 lock_buffer(bh);
2637 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2638 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2639 nr_reads++;
1da177e4
LT
2640 }
2641 }
2642
2643 if (nr_reads) {
1da177e4
LT
2644 /*
2645 * The page is locked, so these buffers are protected from
2646 * any VM or truncate activity. Hence we don't need to care
2647 * for the buffer_head refcounts.
2648 */
a4b0672d 2649 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2650 wait_on_buffer(bh);
2651 if (!buffer_uptodate(bh))
2652 ret = -EIO;
1da177e4
LT
2653 }
2654 if (ret)
2655 goto failed;
2656 }
2657
2658 if (is_mapped_to_disk)
2659 SetPageMappedToDisk(page);
1da177e4 2660
03158cd7 2661 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2662
1da177e4
LT
2663 return 0;
2664
2665failed:
03158cd7 2666 BUG_ON(!ret);
1da177e4 2667 /*
a4b0672d
NP
2668 * Error recovery is a bit difficult. We need to zero out blocks that
2669 * were newly allocated, and dirty them to ensure they get written out.
2670 * Buffers need to be attached to the page at this point, otherwise
2671 * the handling of potential IO errors during writeout would be hard
2672 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2673 */
03158cd7
NP
2674 attach_nobh_buffers(page, head);
2675 page_zero_new_buffers(page, from, to);
a4b0672d 2676
03158cd7
NP
2677out_release:
2678 unlock_page(page);
09cbfeaf 2679 put_page(page);
03158cd7 2680 *pagep = NULL;
a4b0672d 2681
7bb46a67 2682 return ret;
2683}
03158cd7 2684EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2685
03158cd7
NP
2686int nobh_write_end(struct file *file, struct address_space *mapping,
2687 loff_t pos, unsigned len, unsigned copied,
2688 struct page *page, void *fsdata)
1da177e4
LT
2689{
2690 struct inode *inode = page->mapping->host;
efdc3131 2691 struct buffer_head *head = fsdata;
03158cd7 2692 struct buffer_head *bh;
5b41e74a 2693 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2694
d4cf109f 2695 if (unlikely(copied < len) && head)
5b41e74a
DM
2696 attach_nobh_buffers(page, head);
2697 if (page_has_buffers(page))
2698 return generic_write_end(file, mapping, pos, len,
2699 copied, page, fsdata);
a4b0672d 2700
22c8ca78 2701 SetPageUptodate(page);
1da177e4 2702 set_page_dirty(page);
03158cd7
NP
2703 if (pos+copied > inode->i_size) {
2704 i_size_write(inode, pos+copied);
1da177e4
LT
2705 mark_inode_dirty(inode);
2706 }
03158cd7
NP
2707
2708 unlock_page(page);
09cbfeaf 2709 put_page(page);
03158cd7 2710
03158cd7
NP
2711 while (head) {
2712 bh = head;
2713 head = head->b_this_page;
2714 free_buffer_head(bh);
2715 }
2716
2717 return copied;
1da177e4 2718}
03158cd7 2719EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2720
2721/*
2722 * nobh_writepage() - based on block_full_write_page() except
2723 * that it tries to operate without attaching bufferheads to
2724 * the page.
2725 */
2726int nobh_writepage(struct page *page, get_block_t *get_block,
2727 struct writeback_control *wbc)
2728{
2729 struct inode * const inode = page->mapping->host;
2730 loff_t i_size = i_size_read(inode);
09cbfeaf 2731 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2732 unsigned offset;
1da177e4
LT
2733 int ret;
2734
2735 /* Is the page fully inside i_size? */
2736 if (page->index < end_index)
2737 goto out;
2738
2739 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2740 offset = i_size & (PAGE_SIZE-1);
1da177e4 2741 if (page->index >= end_index+1 || !offset) {
1da177e4
LT
2742 unlock_page(page);
2743 return 0; /* don't care */
2744 }
2745
2746 /*
2747 * The page straddles i_size. It must be zeroed out on each and every
2748 * writepage invocation because it may be mmapped. "A file is mapped
2749 * in multiples of the page size. For a file that is not a multiple of
2750 * the page size, the remaining memory is zeroed when mapped, and
2751 * writes to that region are not written out to the file."
2752 */
09cbfeaf 2753 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2754out:
2755 ret = mpage_writepage(page, get_block, wbc);
2756 if (ret == -EAGAIN)
35c80d5f
CM
2757 ret = __block_write_full_page(inode, page, get_block, wbc,
2758 end_buffer_async_write);
1da177e4
LT
2759 return ret;
2760}
2761EXPORT_SYMBOL(nobh_writepage);
2762
03158cd7
NP
2763int nobh_truncate_page(struct address_space *mapping,
2764 loff_t from, get_block_t *get_block)
1da177e4 2765{
09cbfeaf
KS
2766 pgoff_t index = from >> PAGE_SHIFT;
2767 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2768 unsigned blocksize;
2769 sector_t iblock;
2770 unsigned length, pos;
2771 struct inode *inode = mapping->host;
1da177e4 2772 struct page *page;
03158cd7
NP
2773 struct buffer_head map_bh;
2774 int err;
1da177e4 2775
93407472 2776 blocksize = i_blocksize(inode);
03158cd7
NP
2777 length = offset & (blocksize - 1);
2778
2779 /* Block boundary? Nothing to do */
2780 if (!length)
2781 return 0;
2782
2783 length = blocksize - length;
09cbfeaf 2784 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2785
1da177e4 2786 page = grab_cache_page(mapping, index);
03158cd7 2787 err = -ENOMEM;
1da177e4
LT
2788 if (!page)
2789 goto out;
2790
03158cd7
NP
2791 if (page_has_buffers(page)) {
2792has_buffers:
2793 unlock_page(page);
09cbfeaf 2794 put_page(page);
03158cd7
NP
2795 return block_truncate_page(mapping, from, get_block);
2796 }
2797
2798 /* Find the buffer that contains "offset" */
2799 pos = blocksize;
2800 while (offset >= pos) {
2801 iblock++;
2802 pos += blocksize;
2803 }
2804
460bcf57
TT
2805 map_bh.b_size = blocksize;
2806 map_bh.b_state = 0;
03158cd7
NP
2807 err = get_block(inode, iblock, &map_bh, 0);
2808 if (err)
2809 goto unlock;
2810 /* unmapped? It's a hole - nothing to do */
2811 if (!buffer_mapped(&map_bh))
2812 goto unlock;
2813
2814 /* Ok, it's mapped. Make sure it's up-to-date */
2815 if (!PageUptodate(page)) {
2816 err = mapping->a_ops->readpage(NULL, page);
2817 if (err) {
09cbfeaf 2818 put_page(page);
03158cd7
NP
2819 goto out;
2820 }
2821 lock_page(page);
2822 if (!PageUptodate(page)) {
2823 err = -EIO;
2824 goto unlock;
2825 }
2826 if (page_has_buffers(page))
2827 goto has_buffers;
1da177e4 2828 }
eebd2aa3 2829 zero_user(page, offset, length);
03158cd7
NP
2830 set_page_dirty(page);
2831 err = 0;
2832
2833unlock:
1da177e4 2834 unlock_page(page);
09cbfeaf 2835 put_page(page);
1da177e4 2836out:
03158cd7 2837 return err;
1da177e4
LT
2838}
2839EXPORT_SYMBOL(nobh_truncate_page);
2840
2841int block_truncate_page(struct address_space *mapping,
2842 loff_t from, get_block_t *get_block)
2843{
09cbfeaf
KS
2844 pgoff_t index = from >> PAGE_SHIFT;
2845 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2846 unsigned blocksize;
54b21a79 2847 sector_t iblock;
1da177e4
LT
2848 unsigned length, pos;
2849 struct inode *inode = mapping->host;
2850 struct page *page;
2851 struct buffer_head *bh;
1da177e4
LT
2852 int err;
2853
93407472 2854 blocksize = i_blocksize(inode);
1da177e4
LT
2855 length = offset & (blocksize - 1);
2856
2857 /* Block boundary? Nothing to do */
2858 if (!length)
2859 return 0;
2860
2861 length = blocksize - length;
09cbfeaf 2862 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2863
2864 page = grab_cache_page(mapping, index);
2865 err = -ENOMEM;
2866 if (!page)
2867 goto out;
2868
2869 if (!page_has_buffers(page))
2870 create_empty_buffers(page, blocksize, 0);
2871
2872 /* Find the buffer that contains "offset" */
2873 bh = page_buffers(page);
2874 pos = blocksize;
2875 while (offset >= pos) {
2876 bh = bh->b_this_page;
2877 iblock++;
2878 pos += blocksize;
2879 }
2880
2881 err = 0;
2882 if (!buffer_mapped(bh)) {
b0cf2321 2883 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2884 err = get_block(inode, iblock, bh, 0);
2885 if (err)
2886 goto unlock;
2887 /* unmapped? It's a hole - nothing to do */
2888 if (!buffer_mapped(bh))
2889 goto unlock;
2890 }
2891
2892 /* Ok, it's mapped. Make sure it's up-to-date */
2893 if (PageUptodate(page))
2894 set_buffer_uptodate(bh);
2895
33a266dd 2896 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2897 err = -EIO;
dfec8a14 2898 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2899 wait_on_buffer(bh);
2900 /* Uhhuh. Read error. Complain and punt. */
2901 if (!buffer_uptodate(bh))
2902 goto unlock;
2903 }
2904
eebd2aa3 2905 zero_user(page, offset, length);
1da177e4
LT
2906 mark_buffer_dirty(bh);
2907 err = 0;
2908
2909unlock:
2910 unlock_page(page);
09cbfeaf 2911 put_page(page);
1da177e4
LT
2912out:
2913 return err;
2914}
1fe72eaa 2915EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2916
2917/*
2918 * The generic ->writepage function for buffer-backed address_spaces
2919 */
1b938c08
MW
2920int block_write_full_page(struct page *page, get_block_t *get_block,
2921 struct writeback_control *wbc)
1da177e4
LT
2922{
2923 struct inode * const inode = page->mapping->host;
2924 loff_t i_size = i_size_read(inode);
09cbfeaf 2925 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2926 unsigned offset;
1da177e4
LT
2927
2928 /* Is the page fully inside i_size? */
2929 if (page->index < end_index)
35c80d5f 2930 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2931 end_buffer_async_write);
1da177e4
LT
2932
2933 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2934 offset = i_size & (PAGE_SIZE-1);
1da177e4 2935 if (page->index >= end_index+1 || !offset) {
1da177e4
LT
2936 unlock_page(page);
2937 return 0; /* don't care */
2938 }
2939
2940 /*
2941 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2942 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2943 * in multiples of the page size. For a file that is not a multiple of
2944 * the page size, the remaining memory is zeroed when mapped, and
2945 * writes to that region are not written out to the file."
2946 */
09cbfeaf 2947 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
2948 return __block_write_full_page(inode, page, get_block, wbc,
2949 end_buffer_async_write);
35c80d5f 2950}
1fe72eaa 2951EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2952
1da177e4
LT
2953sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2954 get_block_t *get_block)
2955{
1da177e4 2956 struct inode *inode = mapping->host;
2a527d68
AP
2957 struct buffer_head tmp = {
2958 .b_size = i_blocksize(inode),
2959 };
2960
1da177e4
LT
2961 get_block(inode, block, &tmp, 0);
2962 return tmp.b_blocknr;
2963}
1fe72eaa 2964EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2965
4246a0b6 2966static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
2967{
2968 struct buffer_head *bh = bio->bi_private;
2969
b7c44ed9 2970 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
2971 set_bit(BH_Quiet, &bh->b_state);
2972
4e4cbee9 2973 bh->b_end_io(bh, !bio->bi_status);
1da177e4 2974 bio_put(bio);
1da177e4
LT
2975}
2976
57302e0d
LT
2977/*
2978 * This allows us to do IO even on the odd last sectors
59d43914 2979 * of a device, even if the block size is some multiple
57302e0d
LT
2980 * of the physical sector size.
2981 *
2982 * We'll just truncate the bio to the size of the device,
2983 * and clear the end of the buffer head manually.
2984 *
2985 * Truly out-of-range accesses will turn into actual IO
2986 * errors, this only handles the "we need to be able to
2987 * do IO at the final sector" case.
2988 */
d43dbe13 2989void guard_bio_eod(struct bio *bio)
57302e0d
LT
2990{
2991 sector_t maxsector;
67f2519f
GE
2992 struct hd_struct *part;
2993
2994 rcu_read_lock();
2995 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
2996 if (part)
2997 maxsector = part_nr_sects_read(part);
2998 else
2999 maxsector = get_capacity(bio->bi_disk);
3000 rcu_read_unlock();
57302e0d 3001
57302e0d
LT
3002 if (!maxsector)
3003 return;
3004
3005 /*
3006 * If the *whole* IO is past the end of the device,
3007 * let it through, and the IO layer will turn it into
3008 * an EIO.
3009 */
4f024f37 3010 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3011 return;
3012
4f024f37 3013 maxsector -= bio->bi_iter.bi_sector;
59d43914 3014 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3015 return;
3016
d8a54693 3017 bio_truncate(bio, maxsector << 9);
57302e0d
LT
3018}
3019
2a222ca9 3020static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 3021 enum rw_hint write_hint, struct writeback_control *wbc)
1da177e4
LT
3022{
3023 struct bio *bio;
1da177e4
LT
3024
3025 BUG_ON(!buffer_locked(bh));
3026 BUG_ON(!buffer_mapped(bh));
3027 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3028 BUG_ON(buffer_delay(bh));
3029 BUG_ON(buffer_unwritten(bh));
1da177e4 3030
1da177e4 3031 /*
48fd4f93 3032 * Only clear out a write error when rewriting
1da177e4 3033 */
2a222ca9 3034 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3035 clear_buffer_write_io_error(bh);
3036
3037 /*
3038 * from here on down, it's all bio -- do the initial mapping,
3039 * submit_bio -> generic_make_request may further map this bio around
3040 */
3041 bio = bio_alloc(GFP_NOIO, 1);
3042
4f024f37 3043 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
74d46992 3044 bio_set_dev(bio, bh->b_bdev);
8e8f9298 3045 bio->bi_write_hint = write_hint;
1da177e4 3046
6cf66b4c
KO
3047 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3048 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3049
3050 bio->bi_end_io = end_bio_bh_io_sync;
3051 bio->bi_private = bh;
3052
877f962c 3053 if (buffer_meta(bh))
2a222ca9 3054 op_flags |= REQ_META;
877f962c 3055 if (buffer_prio(bh))
2a222ca9
MC
3056 op_flags |= REQ_PRIO;
3057 bio_set_op_attrs(bio, op, op_flags);
877f962c 3058
d43dbe13
ML
3059 /* Take care of bh's that straddle the end of the device */
3060 guard_bio_eod(bio);
3061
fd42df30
DZ
3062 if (wbc) {
3063 wbc_init_bio(wbc, bio);
34e51a5e 3064 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
fd42df30
DZ
3065 }
3066
4e49ea4a 3067 submit_bio(bio);
f6454b04 3068 return 0;
1da177e4 3069}
bafc0dba 3070
020c2833 3071int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3072{
8e8f9298 3073 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3074}
1fe72eaa 3075EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3076
3077/**
3078 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3079 * @op: whether to %READ or %WRITE
ef295ecf 3080 * @op_flags: req_flag_bits
1da177e4
LT
3081 * @nr: number of &struct buffer_heads in the array
3082 * @bhs: array of pointers to &struct buffer_head
3083 *
a7662236 3084 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3085 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3086 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3087 * %REQ_RAHEAD.
1da177e4
LT
3088 *
3089 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3090 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3091 * request, and any buffer that appears to be up-to-date when doing read
3092 * request. Further it marks as clean buffers that are processed for
3093 * writing (the buffer cache won't assume that they are actually clean
3094 * until the buffer gets unlocked).
1da177e4
LT
3095 *
3096 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3097 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3098 * any waiters.
3099 *
3100 * All of the buffers must be for the same device, and must also be a
3101 * multiple of the current approved size for the device.
3102 */
dfec8a14 3103void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3104{
3105 int i;
3106
3107 for (i = 0; i < nr; i++) {
3108 struct buffer_head *bh = bhs[i];
3109
9cb569d6 3110 if (!trylock_buffer(bh))
1da177e4 3111 continue;
dfec8a14 3112 if (op == WRITE) {
1da177e4 3113 if (test_clear_buffer_dirty(bh)) {
76c3073a 3114 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3115 get_bh(bh);
dfec8a14 3116 submit_bh(op, op_flags, bh);
1da177e4
LT
3117 continue;
3118 }
3119 } else {
1da177e4 3120 if (!buffer_uptodate(bh)) {
76c3073a 3121 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3122 get_bh(bh);
dfec8a14 3123 submit_bh(op, op_flags, bh);
1da177e4
LT
3124 continue;
3125 }
3126 }
3127 unlock_buffer(bh);
1da177e4
LT
3128 }
3129}
1fe72eaa 3130EXPORT_SYMBOL(ll_rw_block);
1da177e4 3131
2a222ca9 3132void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3133{
3134 lock_buffer(bh);
3135 if (!test_clear_buffer_dirty(bh)) {
3136 unlock_buffer(bh);
3137 return;
3138 }
3139 bh->b_end_io = end_buffer_write_sync;
3140 get_bh(bh);
2a222ca9 3141 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3142}
3143EXPORT_SYMBOL(write_dirty_buffer);
3144
1da177e4
LT
3145/*
3146 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3147 * and then start new I/O and then wait upon it. The caller must have a ref on
3148 * the buffer_head.
3149 */
2a222ca9 3150int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3151{
3152 int ret = 0;
3153
3154 WARN_ON(atomic_read(&bh->b_count) < 1);
3155 lock_buffer(bh);
3156 if (test_clear_buffer_dirty(bh)) {
a099c645
XT
3157 /*
3158 * The bh should be mapped, but it might not be if the
3159 * device was hot-removed. Not much we can do but fail the I/O.
3160 */
3161 if (!buffer_mapped(bh)) {
3162 unlock_buffer(bh);
3163 return -EIO;
3164 }
3165
1da177e4
LT
3166 get_bh(bh);
3167 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3168 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3169 wait_on_buffer(bh);
1da177e4
LT
3170 if (!ret && !buffer_uptodate(bh))
3171 ret = -EIO;
3172 } else {
3173 unlock_buffer(bh);
3174 }
3175 return ret;
3176}
87e99511
CH
3177EXPORT_SYMBOL(__sync_dirty_buffer);
3178
3179int sync_dirty_buffer(struct buffer_head *bh)
3180{
70fd7614 3181 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3182}
1fe72eaa 3183EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3184
3185/*
3186 * try_to_free_buffers() checks if all the buffers on this particular page
3187 * are unused, and releases them if so.
3188 *
3189 * Exclusion against try_to_free_buffers may be obtained by either
3190 * locking the page or by holding its mapping's private_lock.
3191 *
3192 * If the page is dirty but all the buffers are clean then we need to
3193 * be sure to mark the page clean as well. This is because the page
3194 * may be against a block device, and a later reattachment of buffers
3195 * to a dirty page will set *all* buffers dirty. Which would corrupt
3196 * filesystem data on the same device.
3197 *
3198 * The same applies to regular filesystem pages: if all the buffers are
3199 * clean then we set the page clean and proceed. To do that, we require
3200 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3201 * private_lock.
3202 *
3203 * try_to_free_buffers() is non-blocking.
3204 */
3205static inline int buffer_busy(struct buffer_head *bh)
3206{
3207 return atomic_read(&bh->b_count) |
3208 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3209}
3210
3211static int
3212drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3213{
3214 struct buffer_head *head = page_buffers(page);
3215 struct buffer_head *bh;
3216
3217 bh = head;
3218 do {
1da177e4
LT
3219 if (buffer_busy(bh))
3220 goto failed;
3221 bh = bh->b_this_page;
3222 } while (bh != head);
3223
3224 do {
3225 struct buffer_head *next = bh->b_this_page;
3226
535ee2fb 3227 if (bh->b_assoc_map)
1da177e4
LT
3228 __remove_assoc_queue(bh);
3229 bh = next;
3230 } while (bh != head);
3231 *buffers_to_free = head;
3232 __clear_page_buffers(page);
3233 return 1;
3234failed:
3235 return 0;
3236}
3237
3238int try_to_free_buffers(struct page *page)
3239{
3240 struct address_space * const mapping = page->mapping;
3241 struct buffer_head *buffers_to_free = NULL;
3242 int ret = 0;
3243
3244 BUG_ON(!PageLocked(page));
ecdfc978 3245 if (PageWriteback(page))
1da177e4
LT
3246 return 0;
3247
3248 if (mapping == NULL) { /* can this still happen? */
3249 ret = drop_buffers(page, &buffers_to_free);
3250 goto out;
3251 }
3252
3253 spin_lock(&mapping->private_lock);
3254 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3255
3256 /*
3257 * If the filesystem writes its buffers by hand (eg ext3)
3258 * then we can have clean buffers against a dirty page. We
3259 * clean the page here; otherwise the VM will never notice
3260 * that the filesystem did any IO at all.
3261 *
3262 * Also, during truncate, discard_buffer will have marked all
3263 * the page's buffers clean. We discover that here and clean
3264 * the page also.
87df7241
NP
3265 *
3266 * private_lock must be held over this entire operation in order
3267 * to synchronise against __set_page_dirty_buffers and prevent the
3268 * dirty bit from being lost.
ecdfc978 3269 */
11f81bec
TH
3270 if (ret)
3271 cancel_dirty_page(page);
87df7241 3272 spin_unlock(&mapping->private_lock);
1da177e4
LT
3273out:
3274 if (buffers_to_free) {
3275 struct buffer_head *bh = buffers_to_free;
3276
3277 do {
3278 struct buffer_head *next = bh->b_this_page;
3279 free_buffer_head(bh);
3280 bh = next;
3281 } while (bh != buffers_to_free);
3282 }
3283 return ret;
3284}
3285EXPORT_SYMBOL(try_to_free_buffers);
3286
1da177e4
LT
3287/*
3288 * There are no bdflush tunables left. But distributions are
3289 * still running obsolete flush daemons, so we terminate them here.
3290 *
3291 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3292 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3293 */
bdc480e3 3294SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3295{
3296 static int msg_count;
3297
3298 if (!capable(CAP_SYS_ADMIN))
3299 return -EPERM;
3300
3301 if (msg_count < 5) {
3302 msg_count++;
3303 printk(KERN_INFO
3304 "warning: process `%s' used the obsolete bdflush"
3305 " system call\n", current->comm);
3306 printk(KERN_INFO "Fix your initscripts?\n");
3307 }
3308
3309 if (func == 1)
3310 do_exit(0);
3311 return 0;
3312}
3313
3314/*
3315 * Buffer-head allocation
3316 */
a0a9b043 3317static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3318
3319/*
3320 * Once the number of bh's in the machine exceeds this level, we start
3321 * stripping them in writeback.
3322 */
43be594a 3323static unsigned long max_buffer_heads;
1da177e4
LT
3324
3325int buffer_heads_over_limit;
3326
3327struct bh_accounting {
3328 int nr; /* Number of live bh's */
3329 int ratelimit; /* Limit cacheline bouncing */
3330};
3331
3332static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3333
3334static void recalc_bh_state(void)
3335{
3336 int i;
3337 int tot = 0;
3338
ee1be862 3339 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3340 return;
c7b92516 3341 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3342 for_each_online_cpu(i)
1da177e4
LT
3343 tot += per_cpu(bh_accounting, i).nr;
3344 buffer_heads_over_limit = (tot > max_buffer_heads);
3345}
c7b92516 3346
dd0fc66f 3347struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3348{
019b4d12 3349 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3350 if (ret) {
a35afb83 3351 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3352 preempt_disable();
3353 __this_cpu_inc(bh_accounting.nr);
1da177e4 3354 recalc_bh_state();
c7b92516 3355 preempt_enable();
1da177e4
LT
3356 }
3357 return ret;
3358}
3359EXPORT_SYMBOL(alloc_buffer_head);
3360
3361void free_buffer_head(struct buffer_head *bh)
3362{
3363 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3364 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3365 preempt_disable();
3366 __this_cpu_dec(bh_accounting.nr);
1da177e4 3367 recalc_bh_state();
c7b92516 3368 preempt_enable();
1da177e4
LT
3369}
3370EXPORT_SYMBOL(free_buffer_head);
3371
fc4d24c9 3372static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3373{
3374 int i;
3375 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3376
3377 for (i = 0; i < BH_LRU_SIZE; i++) {
3378 brelse(b->bhs[i]);
3379 b->bhs[i] = NULL;
3380 }
c7b92516 3381 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3382 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3383 return 0;
1da177e4 3384}
1da177e4 3385
389d1b08 3386/**
a6b91919 3387 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3388 * @bh: struct buffer_head
3389 *
3390 * Return true if the buffer is up-to-date and false,
3391 * with the buffer locked, if not.
3392 */
3393int bh_uptodate_or_lock(struct buffer_head *bh)
3394{
3395 if (!buffer_uptodate(bh)) {
3396 lock_buffer(bh);
3397 if (!buffer_uptodate(bh))
3398 return 0;
3399 unlock_buffer(bh);
3400 }
3401 return 1;
3402}
3403EXPORT_SYMBOL(bh_uptodate_or_lock);
3404
3405/**
a6b91919 3406 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3407 * @bh: struct buffer_head
3408 *
3409 * Returns zero on success and -EIO on error.
3410 */
3411int bh_submit_read(struct buffer_head *bh)
3412{
3413 BUG_ON(!buffer_locked(bh));
3414
3415 if (buffer_uptodate(bh)) {
3416 unlock_buffer(bh);
3417 return 0;
3418 }
3419
3420 get_bh(bh);
3421 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3422 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3423 wait_on_buffer(bh);
3424 if (buffer_uptodate(bh))
3425 return 0;
3426 return -EIO;
3427}
3428EXPORT_SYMBOL(bh_submit_read);
3429
1da177e4
LT
3430void __init buffer_init(void)
3431{
43be594a 3432 unsigned long nrpages;
fc4d24c9 3433 int ret;
1da177e4 3434
b98938c3
CL
3435 bh_cachep = kmem_cache_create("buffer_head",
3436 sizeof(struct buffer_head), 0,
3437 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3438 SLAB_MEM_SPREAD),
019b4d12 3439 NULL);
1da177e4
LT
3440
3441 /*
3442 * Limit the bh occupancy to 10% of ZONE_NORMAL
3443 */
3444 nrpages = (nr_free_buffer_pages() * 10) / 100;
3445 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3446 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3447 NULL, buffer_exit_cpu_dead);
3448 WARN_ON(ret < 0);
1da177e4 3449}