]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/buffer.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | |
9 | * | |
10 | * Removed a lot of unnecessary code and simplified things now that | |
11 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | |
12 | * | |
13 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | |
14 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | |
15 | * | |
16 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | |
17 | * | |
18 | * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> | |
19 | */ | |
20 | ||
1da177e4 LT |
21 | #include <linux/kernel.h> |
22 | #include <linux/syscalls.h> | |
23 | #include <linux/fs.h> | |
24 | #include <linux/mm.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/slab.h> | |
16f7e0fe | 27 | #include <linux/capability.h> |
1da177e4 LT |
28 | #include <linux/blkdev.h> |
29 | #include <linux/file.h> | |
30 | #include <linux/quotaops.h> | |
31 | #include <linux/highmem.h> | |
32 | #include <linux/module.h> | |
33 | #include <linux/writeback.h> | |
34 | #include <linux/hash.h> | |
35 | #include <linux/suspend.h> | |
36 | #include <linux/buffer_head.h> | |
55e829af | 37 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
38 | #include <linux/bio.h> |
39 | #include <linux/notifier.h> | |
40 | #include <linux/cpu.h> | |
41 | #include <linux/bitops.h> | |
42 | #include <linux/mpage.h> | |
fb1c8f93 | 43 | #include <linux/bit_spinlock.h> |
1da177e4 LT |
44 | |
45 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | |
1da177e4 LT |
46 | |
47 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | |
48 | ||
49 | inline void | |
50 | init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) | |
51 | { | |
52 | bh->b_end_io = handler; | |
53 | bh->b_private = private; | |
54 | } | |
55 | ||
56 | static int sync_buffer(void *word) | |
57 | { | |
58 | struct block_device *bd; | |
59 | struct buffer_head *bh | |
60 | = container_of(word, struct buffer_head, b_state); | |
61 | ||
62 | smp_mb(); | |
63 | bd = bh->b_bdev; | |
64 | if (bd) | |
65 | blk_run_address_space(bd->bd_inode->i_mapping); | |
66 | io_schedule(); | |
67 | return 0; | |
68 | } | |
69 | ||
fc9b52cd | 70 | void __lock_buffer(struct buffer_head *bh) |
1da177e4 LT |
71 | { |
72 | wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, | |
73 | TASK_UNINTERRUPTIBLE); | |
74 | } | |
75 | EXPORT_SYMBOL(__lock_buffer); | |
76 | ||
fc9b52cd | 77 | void unlock_buffer(struct buffer_head *bh) |
1da177e4 | 78 | { |
72ed3d03 | 79 | smp_mb__before_clear_bit(); |
1da177e4 LT |
80 | clear_buffer_locked(bh); |
81 | smp_mb__after_clear_bit(); | |
82 | wake_up_bit(&bh->b_state, BH_Lock); | |
83 | } | |
84 | ||
85 | /* | |
86 | * Block until a buffer comes unlocked. This doesn't stop it | |
87 | * from becoming locked again - you have to lock it yourself | |
88 | * if you want to preserve its state. | |
89 | */ | |
90 | void __wait_on_buffer(struct buffer_head * bh) | |
91 | { | |
92 | wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); | |
93 | } | |
94 | ||
95 | static void | |
96 | __clear_page_buffers(struct page *page) | |
97 | { | |
98 | ClearPagePrivate(page); | |
4c21e2f2 | 99 | set_page_private(page, 0); |
1da177e4 LT |
100 | page_cache_release(page); |
101 | } | |
102 | ||
103 | static void buffer_io_error(struct buffer_head *bh) | |
104 | { | |
105 | char b[BDEVNAME_SIZE]; | |
106 | ||
107 | printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", | |
108 | bdevname(bh->b_bdev, b), | |
109 | (unsigned long long)bh->b_blocknr); | |
110 | } | |
111 | ||
112 | /* | |
68671f35 DM |
113 | * End-of-IO handler helper function which does not touch the bh after |
114 | * unlocking it. | |
115 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | |
116 | * a race there is benign: unlock_buffer() only use the bh's address for | |
117 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | |
118 | * itself. | |
1da177e4 | 119 | */ |
68671f35 | 120 | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
121 | { |
122 | if (uptodate) { | |
123 | set_buffer_uptodate(bh); | |
124 | } else { | |
125 | /* This happens, due to failed READA attempts. */ | |
126 | clear_buffer_uptodate(bh); | |
127 | } | |
128 | unlock_buffer(bh); | |
68671f35 DM |
129 | } |
130 | ||
131 | /* | |
132 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | |
133 | * unlock the buffer. This is what ll_rw_block uses too. | |
134 | */ | |
135 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | |
136 | { | |
137 | __end_buffer_read_notouch(bh, uptodate); | |
1da177e4 LT |
138 | put_bh(bh); |
139 | } | |
140 | ||
141 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | |
142 | { | |
143 | char b[BDEVNAME_SIZE]; | |
144 | ||
145 | if (uptodate) { | |
146 | set_buffer_uptodate(bh); | |
147 | } else { | |
148 | if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { | |
149 | buffer_io_error(bh); | |
150 | printk(KERN_WARNING "lost page write due to " | |
151 | "I/O error on %s\n", | |
152 | bdevname(bh->b_bdev, b)); | |
153 | } | |
154 | set_buffer_write_io_error(bh); | |
155 | clear_buffer_uptodate(bh); | |
156 | } | |
157 | unlock_buffer(bh); | |
158 | put_bh(bh); | |
159 | } | |
160 | ||
161 | /* | |
162 | * Write out and wait upon all the dirty data associated with a block | |
163 | * device via its mapping. Does not take the superblock lock. | |
164 | */ | |
165 | int sync_blockdev(struct block_device *bdev) | |
166 | { | |
167 | int ret = 0; | |
168 | ||
28fd1298 OH |
169 | if (bdev) |
170 | ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); | |
1da177e4 LT |
171 | return ret; |
172 | } | |
173 | EXPORT_SYMBOL(sync_blockdev); | |
174 | ||
1da177e4 LT |
175 | /* |
176 | * Write out and wait upon all dirty data associated with this | |
177 | * device. Filesystem data as well as the underlying block | |
178 | * device. Takes the superblock lock. | |
179 | */ | |
180 | int fsync_bdev(struct block_device *bdev) | |
181 | { | |
182 | struct super_block *sb = get_super(bdev); | |
183 | if (sb) { | |
184 | int res = fsync_super(sb); | |
185 | drop_super(sb); | |
186 | return res; | |
187 | } | |
188 | return sync_blockdev(bdev); | |
189 | } | |
190 | ||
191 | /** | |
192 | * freeze_bdev -- lock a filesystem and force it into a consistent state | |
193 | * @bdev: blockdevice to lock | |
194 | * | |
f73ca1b7 | 195 | * This takes the block device bd_mount_sem to make sure no new mounts |
1da177e4 LT |
196 | * happen on bdev until thaw_bdev() is called. |
197 | * If a superblock is found on this device, we take the s_umount semaphore | |
198 | * on it to make sure nobody unmounts until the snapshot creation is done. | |
199 | */ | |
200 | struct super_block *freeze_bdev(struct block_device *bdev) | |
201 | { | |
202 | struct super_block *sb; | |
203 | ||
f73ca1b7 | 204 | down(&bdev->bd_mount_sem); |
1da177e4 LT |
205 | sb = get_super(bdev); |
206 | if (sb && !(sb->s_flags & MS_RDONLY)) { | |
207 | sb->s_frozen = SB_FREEZE_WRITE; | |
d59dd462 | 208 | smp_wmb(); |
1da177e4 | 209 | |
d25b9a1f | 210 | __fsync_super(sb); |
1da177e4 LT |
211 | |
212 | sb->s_frozen = SB_FREEZE_TRANS; | |
d59dd462 | 213 | smp_wmb(); |
1da177e4 LT |
214 | |
215 | sync_blockdev(sb->s_bdev); | |
216 | ||
217 | if (sb->s_op->write_super_lockfs) | |
218 | sb->s_op->write_super_lockfs(sb); | |
219 | } | |
220 | ||
221 | sync_blockdev(bdev); | |
222 | return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ | |
223 | } | |
224 | EXPORT_SYMBOL(freeze_bdev); | |
225 | ||
226 | /** | |
227 | * thaw_bdev -- unlock filesystem | |
228 | * @bdev: blockdevice to unlock | |
229 | * @sb: associated superblock | |
230 | * | |
231 | * Unlocks the filesystem and marks it writeable again after freeze_bdev(). | |
232 | */ | |
233 | void thaw_bdev(struct block_device *bdev, struct super_block *sb) | |
234 | { | |
235 | if (sb) { | |
236 | BUG_ON(sb->s_bdev != bdev); | |
237 | ||
238 | if (sb->s_op->unlockfs) | |
239 | sb->s_op->unlockfs(sb); | |
240 | sb->s_frozen = SB_UNFROZEN; | |
d59dd462 | 241 | smp_wmb(); |
1da177e4 LT |
242 | wake_up(&sb->s_wait_unfrozen); |
243 | drop_super(sb); | |
244 | } | |
245 | ||
f73ca1b7 | 246 | up(&bdev->bd_mount_sem); |
1da177e4 LT |
247 | } |
248 | EXPORT_SYMBOL(thaw_bdev); | |
249 | ||
1da177e4 LT |
250 | /* |
251 | * Various filesystems appear to want __find_get_block to be non-blocking. | |
252 | * But it's the page lock which protects the buffers. To get around this, | |
253 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | |
254 | * private_lock. | |
255 | * | |
256 | * Hack idea: for the blockdev mapping, i_bufferlist_lock contention | |
257 | * may be quite high. This code could TryLock the page, and if that | |
258 | * succeeds, there is no need to take private_lock. (But if | |
259 | * private_lock is contended then so is mapping->tree_lock). | |
260 | */ | |
261 | static struct buffer_head * | |
385fd4c5 | 262 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
1da177e4 LT |
263 | { |
264 | struct inode *bd_inode = bdev->bd_inode; | |
265 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
266 | struct buffer_head *ret = NULL; | |
267 | pgoff_t index; | |
268 | struct buffer_head *bh; | |
269 | struct buffer_head *head; | |
270 | struct page *page; | |
271 | int all_mapped = 1; | |
272 | ||
273 | index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); | |
274 | page = find_get_page(bd_mapping, index); | |
275 | if (!page) | |
276 | goto out; | |
277 | ||
278 | spin_lock(&bd_mapping->private_lock); | |
279 | if (!page_has_buffers(page)) | |
280 | goto out_unlock; | |
281 | head = page_buffers(page); | |
282 | bh = head; | |
283 | do { | |
284 | if (bh->b_blocknr == block) { | |
285 | ret = bh; | |
286 | get_bh(bh); | |
287 | goto out_unlock; | |
288 | } | |
289 | if (!buffer_mapped(bh)) | |
290 | all_mapped = 0; | |
291 | bh = bh->b_this_page; | |
292 | } while (bh != head); | |
293 | ||
294 | /* we might be here because some of the buffers on this page are | |
295 | * not mapped. This is due to various races between | |
296 | * file io on the block device and getblk. It gets dealt with | |
297 | * elsewhere, don't buffer_error if we had some unmapped buffers | |
298 | */ | |
299 | if (all_mapped) { | |
300 | printk("__find_get_block_slow() failed. " | |
301 | "block=%llu, b_blocknr=%llu\n", | |
205f87f6 BP |
302 | (unsigned long long)block, |
303 | (unsigned long long)bh->b_blocknr); | |
304 | printk("b_state=0x%08lx, b_size=%zu\n", | |
305 | bh->b_state, bh->b_size); | |
1da177e4 LT |
306 | printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); |
307 | } | |
308 | out_unlock: | |
309 | spin_unlock(&bd_mapping->private_lock); | |
310 | page_cache_release(page); | |
311 | out: | |
312 | return ret; | |
313 | } | |
314 | ||
315 | /* If invalidate_buffers() will trash dirty buffers, it means some kind | |
316 | of fs corruption is going on. Trashing dirty data always imply losing | |
317 | information that was supposed to be just stored on the physical layer | |
318 | by the user. | |
319 | ||
320 | Thus invalidate_buffers in general usage is not allwowed to trash | |
321 | dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to | |
322 | be preserved. These buffers are simply skipped. | |
323 | ||
324 | We also skip buffers which are still in use. For example this can | |
325 | happen if a userspace program is reading the block device. | |
326 | ||
327 | NOTE: In the case where the user removed a removable-media-disk even if | |
328 | there's still dirty data not synced on disk (due a bug in the device driver | |
329 | or due an error of the user), by not destroying the dirty buffers we could | |
330 | generate corruption also on the next media inserted, thus a parameter is | |
331 | necessary to handle this case in the most safe way possible (trying | |
332 | to not corrupt also the new disk inserted with the data belonging to | |
333 | the old now corrupted disk). Also for the ramdisk the natural thing | |
334 | to do in order to release the ramdisk memory is to destroy dirty buffers. | |
335 | ||
336 | These are two special cases. Normal usage imply the device driver | |
337 | to issue a sync on the device (without waiting I/O completion) and | |
338 | then an invalidate_buffers call that doesn't trash dirty buffers. | |
339 | ||
340 | For handling cache coherency with the blkdev pagecache the 'update' case | |
341 | is been introduced. It is needed to re-read from disk any pinned | |
342 | buffer. NOTE: re-reading from disk is destructive so we can do it only | |
343 | when we assume nobody is changing the buffercache under our I/O and when | |
344 | we think the disk contains more recent information than the buffercache. | |
345 | The update == 1 pass marks the buffers we need to update, the update == 2 | |
346 | pass does the actual I/O. */ | |
f98393a6 | 347 | void invalidate_bdev(struct block_device *bdev) |
1da177e4 | 348 | { |
0e1dfc66 AM |
349 | struct address_space *mapping = bdev->bd_inode->i_mapping; |
350 | ||
351 | if (mapping->nrpages == 0) | |
352 | return; | |
353 | ||
1da177e4 | 354 | invalidate_bh_lrus(); |
fc0ecff6 | 355 | invalidate_mapping_pages(mapping, 0, -1); |
1da177e4 LT |
356 | } |
357 | ||
358 | /* | |
359 | * Kick pdflush then try to free up some ZONE_NORMAL memory. | |
360 | */ | |
361 | static void free_more_memory(void) | |
362 | { | |
19770b32 | 363 | struct zone *zone; |
0e88460d | 364 | int nid; |
1da177e4 | 365 | |
687a21ce | 366 | wakeup_pdflush(1024); |
1da177e4 LT |
367 | yield(); |
368 | ||
0e88460d | 369 | for_each_online_node(nid) { |
19770b32 MG |
370 | (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), |
371 | gfp_zone(GFP_NOFS), NULL, | |
372 | &zone); | |
373 | if (zone) | |
54a6eb5c MG |
374 | try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, |
375 | GFP_NOFS); | |
1da177e4 LT |
376 | } |
377 | } | |
378 | ||
379 | /* | |
380 | * I/O completion handler for block_read_full_page() - pages | |
381 | * which come unlocked at the end of I/O. | |
382 | */ | |
383 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | |
384 | { | |
1da177e4 | 385 | unsigned long flags; |
a3972203 | 386 | struct buffer_head *first; |
1da177e4 LT |
387 | struct buffer_head *tmp; |
388 | struct page *page; | |
389 | int page_uptodate = 1; | |
390 | ||
391 | BUG_ON(!buffer_async_read(bh)); | |
392 | ||
393 | page = bh->b_page; | |
394 | if (uptodate) { | |
395 | set_buffer_uptodate(bh); | |
396 | } else { | |
397 | clear_buffer_uptodate(bh); | |
398 | if (printk_ratelimit()) | |
399 | buffer_io_error(bh); | |
400 | SetPageError(page); | |
401 | } | |
402 | ||
403 | /* | |
404 | * Be _very_ careful from here on. Bad things can happen if | |
405 | * two buffer heads end IO at almost the same time and both | |
406 | * decide that the page is now completely done. | |
407 | */ | |
a3972203 NP |
408 | first = page_buffers(page); |
409 | local_irq_save(flags); | |
410 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
1da177e4 LT |
411 | clear_buffer_async_read(bh); |
412 | unlock_buffer(bh); | |
413 | tmp = bh; | |
414 | do { | |
415 | if (!buffer_uptodate(tmp)) | |
416 | page_uptodate = 0; | |
417 | if (buffer_async_read(tmp)) { | |
418 | BUG_ON(!buffer_locked(tmp)); | |
419 | goto still_busy; | |
420 | } | |
421 | tmp = tmp->b_this_page; | |
422 | } while (tmp != bh); | |
a3972203 NP |
423 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
424 | local_irq_restore(flags); | |
1da177e4 LT |
425 | |
426 | /* | |
427 | * If none of the buffers had errors and they are all | |
428 | * uptodate then we can set the page uptodate. | |
429 | */ | |
430 | if (page_uptodate && !PageError(page)) | |
431 | SetPageUptodate(page); | |
432 | unlock_page(page); | |
433 | return; | |
434 | ||
435 | still_busy: | |
a3972203 NP |
436 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
437 | local_irq_restore(flags); | |
1da177e4 LT |
438 | return; |
439 | } | |
440 | ||
441 | /* | |
442 | * Completion handler for block_write_full_page() - pages which are unlocked | |
443 | * during I/O, and which have PageWriteback cleared upon I/O completion. | |
444 | */ | |
b6cd0b77 | 445 | static void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
446 | { |
447 | char b[BDEVNAME_SIZE]; | |
1da177e4 | 448 | unsigned long flags; |
a3972203 | 449 | struct buffer_head *first; |
1da177e4 LT |
450 | struct buffer_head *tmp; |
451 | struct page *page; | |
452 | ||
453 | BUG_ON(!buffer_async_write(bh)); | |
454 | ||
455 | page = bh->b_page; | |
456 | if (uptodate) { | |
457 | set_buffer_uptodate(bh); | |
458 | } else { | |
459 | if (printk_ratelimit()) { | |
460 | buffer_io_error(bh); | |
461 | printk(KERN_WARNING "lost page write due to " | |
462 | "I/O error on %s\n", | |
463 | bdevname(bh->b_bdev, b)); | |
464 | } | |
465 | set_bit(AS_EIO, &page->mapping->flags); | |
58ff407b | 466 | set_buffer_write_io_error(bh); |
1da177e4 LT |
467 | clear_buffer_uptodate(bh); |
468 | SetPageError(page); | |
469 | } | |
470 | ||
a3972203 NP |
471 | first = page_buffers(page); |
472 | local_irq_save(flags); | |
473 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
474 | ||
1da177e4 LT |
475 | clear_buffer_async_write(bh); |
476 | unlock_buffer(bh); | |
477 | tmp = bh->b_this_page; | |
478 | while (tmp != bh) { | |
479 | if (buffer_async_write(tmp)) { | |
480 | BUG_ON(!buffer_locked(tmp)); | |
481 | goto still_busy; | |
482 | } | |
483 | tmp = tmp->b_this_page; | |
484 | } | |
a3972203 NP |
485 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
486 | local_irq_restore(flags); | |
1da177e4 LT |
487 | end_page_writeback(page); |
488 | return; | |
489 | ||
490 | still_busy: | |
a3972203 NP |
491 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
492 | local_irq_restore(flags); | |
1da177e4 LT |
493 | return; |
494 | } | |
495 | ||
496 | /* | |
497 | * If a page's buffers are under async readin (end_buffer_async_read | |
498 | * completion) then there is a possibility that another thread of | |
499 | * control could lock one of the buffers after it has completed | |
500 | * but while some of the other buffers have not completed. This | |
501 | * locked buffer would confuse end_buffer_async_read() into not unlocking | |
502 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | |
503 | * that this buffer is not under async I/O. | |
504 | * | |
505 | * The page comes unlocked when it has no locked buffer_async buffers | |
506 | * left. | |
507 | * | |
508 | * PageLocked prevents anyone starting new async I/O reads any of | |
509 | * the buffers. | |
510 | * | |
511 | * PageWriteback is used to prevent simultaneous writeout of the same | |
512 | * page. | |
513 | * | |
514 | * PageLocked prevents anyone from starting writeback of a page which is | |
515 | * under read I/O (PageWriteback is only ever set against a locked page). | |
516 | */ | |
517 | static void mark_buffer_async_read(struct buffer_head *bh) | |
518 | { | |
519 | bh->b_end_io = end_buffer_async_read; | |
520 | set_buffer_async_read(bh); | |
521 | } | |
522 | ||
523 | void mark_buffer_async_write(struct buffer_head *bh) | |
524 | { | |
525 | bh->b_end_io = end_buffer_async_write; | |
526 | set_buffer_async_write(bh); | |
527 | } | |
528 | EXPORT_SYMBOL(mark_buffer_async_write); | |
529 | ||
530 | ||
531 | /* | |
532 | * fs/buffer.c contains helper functions for buffer-backed address space's | |
533 | * fsync functions. A common requirement for buffer-based filesystems is | |
534 | * that certain data from the backing blockdev needs to be written out for | |
535 | * a successful fsync(). For example, ext2 indirect blocks need to be | |
536 | * written back and waited upon before fsync() returns. | |
537 | * | |
538 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | |
539 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | |
540 | * management of a list of dependent buffers at ->i_mapping->private_list. | |
541 | * | |
542 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | |
543 | * from their controlling inode's queue when they are being freed. But | |
544 | * try_to_free_buffers() will be operating against the *blockdev* mapping | |
545 | * at the time, not against the S_ISREG file which depends on those buffers. | |
546 | * So the locking for private_list is via the private_lock in the address_space | |
547 | * which backs the buffers. Which is different from the address_space | |
548 | * against which the buffers are listed. So for a particular address_space, | |
549 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | |
550 | * mapping->private_list will always be protected by the backing blockdev's | |
551 | * ->private_lock. | |
552 | * | |
553 | * Which introduces a requirement: all buffers on an address_space's | |
554 | * ->private_list must be from the same address_space: the blockdev's. | |
555 | * | |
556 | * address_spaces which do not place buffers at ->private_list via these | |
557 | * utility functions are free to use private_lock and private_list for | |
558 | * whatever they want. The only requirement is that list_empty(private_list) | |
559 | * be true at clear_inode() time. | |
560 | * | |
561 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | |
562 | * filesystems should do that. invalidate_inode_buffers() should just go | |
563 | * BUG_ON(!list_empty). | |
564 | * | |
565 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | |
566 | * take an address_space, not an inode. And it should be called | |
567 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | |
568 | * queued up. | |
569 | * | |
570 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | |
571 | * list if it is already on a list. Because if the buffer is on a list, | |
572 | * it *must* already be on the right one. If not, the filesystem is being | |
573 | * silly. This will save a ton of locking. But first we have to ensure | |
574 | * that buffers are taken *off* the old inode's list when they are freed | |
575 | * (presumably in truncate). That requires careful auditing of all | |
576 | * filesystems (do it inside bforget()). It could also be done by bringing | |
577 | * b_inode back. | |
578 | */ | |
579 | ||
580 | /* | |
581 | * The buffer's backing address_space's private_lock must be held | |
582 | */ | |
dbacefc9 | 583 | static void __remove_assoc_queue(struct buffer_head *bh) |
1da177e4 LT |
584 | { |
585 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b JK |
586 | WARN_ON(!bh->b_assoc_map); |
587 | if (buffer_write_io_error(bh)) | |
588 | set_bit(AS_EIO, &bh->b_assoc_map->flags); | |
589 | bh->b_assoc_map = NULL; | |
1da177e4 LT |
590 | } |
591 | ||
592 | int inode_has_buffers(struct inode *inode) | |
593 | { | |
594 | return !list_empty(&inode->i_data.private_list); | |
595 | } | |
596 | ||
597 | /* | |
598 | * osync is designed to support O_SYNC io. It waits synchronously for | |
599 | * all already-submitted IO to complete, but does not queue any new | |
600 | * writes to the disk. | |
601 | * | |
602 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | |
603 | * you dirty the buffers, and then use osync_inode_buffers to wait for | |
604 | * completion. Any other dirty buffers which are not yet queued for | |
605 | * write will not be flushed to disk by the osync. | |
606 | */ | |
607 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | |
608 | { | |
609 | struct buffer_head *bh; | |
610 | struct list_head *p; | |
611 | int err = 0; | |
612 | ||
613 | spin_lock(lock); | |
614 | repeat: | |
615 | list_for_each_prev(p, list) { | |
616 | bh = BH_ENTRY(p); | |
617 | if (buffer_locked(bh)) { | |
618 | get_bh(bh); | |
619 | spin_unlock(lock); | |
620 | wait_on_buffer(bh); | |
621 | if (!buffer_uptodate(bh)) | |
622 | err = -EIO; | |
623 | brelse(bh); | |
624 | spin_lock(lock); | |
625 | goto repeat; | |
626 | } | |
627 | } | |
628 | spin_unlock(lock); | |
629 | return err; | |
630 | } | |
631 | ||
632 | /** | |
78a4a50a | 633 | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers |
67be2dd1 | 634 | * @mapping: the mapping which wants those buffers written |
1da177e4 LT |
635 | * |
636 | * Starts I/O against the buffers at mapping->private_list, and waits upon | |
637 | * that I/O. | |
638 | * | |
67be2dd1 MW |
639 | * Basically, this is a convenience function for fsync(). |
640 | * @mapping is a file or directory which needs those buffers to be written for | |
641 | * a successful fsync(). | |
1da177e4 LT |
642 | */ |
643 | int sync_mapping_buffers(struct address_space *mapping) | |
644 | { | |
645 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
646 | ||
647 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | |
648 | return 0; | |
649 | ||
650 | return fsync_buffers_list(&buffer_mapping->private_lock, | |
651 | &mapping->private_list); | |
652 | } | |
653 | EXPORT_SYMBOL(sync_mapping_buffers); | |
654 | ||
655 | /* | |
656 | * Called when we've recently written block `bblock', and it is known that | |
657 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | |
658 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | |
659 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | |
660 | */ | |
661 | void write_boundary_block(struct block_device *bdev, | |
662 | sector_t bblock, unsigned blocksize) | |
663 | { | |
664 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | |
665 | if (bh) { | |
666 | if (buffer_dirty(bh)) | |
667 | ll_rw_block(WRITE, 1, &bh); | |
668 | put_bh(bh); | |
669 | } | |
670 | } | |
671 | ||
672 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | |
673 | { | |
674 | struct address_space *mapping = inode->i_mapping; | |
675 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
676 | ||
677 | mark_buffer_dirty(bh); | |
678 | if (!mapping->assoc_mapping) { | |
679 | mapping->assoc_mapping = buffer_mapping; | |
680 | } else { | |
e827f923 | 681 | BUG_ON(mapping->assoc_mapping != buffer_mapping); |
1da177e4 | 682 | } |
535ee2fb | 683 | if (!bh->b_assoc_map) { |
1da177e4 LT |
684 | spin_lock(&buffer_mapping->private_lock); |
685 | list_move_tail(&bh->b_assoc_buffers, | |
686 | &mapping->private_list); | |
58ff407b | 687 | bh->b_assoc_map = mapping; |
1da177e4 LT |
688 | spin_unlock(&buffer_mapping->private_lock); |
689 | } | |
690 | } | |
691 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | |
692 | ||
787d2214 NP |
693 | /* |
694 | * Mark the page dirty, and set it dirty in the radix tree, and mark the inode | |
695 | * dirty. | |
696 | * | |
697 | * If warn is true, then emit a warning if the page is not uptodate and has | |
698 | * not been truncated. | |
699 | */ | |
700 | static int __set_page_dirty(struct page *page, | |
701 | struct address_space *mapping, int warn) | |
702 | { | |
703 | if (unlikely(!mapping)) | |
704 | return !TestSetPageDirty(page); | |
705 | ||
706 | if (TestSetPageDirty(page)) | |
707 | return 0; | |
708 | ||
19fd6231 | 709 | spin_lock_irq(&mapping->tree_lock); |
787d2214 NP |
710 | if (page->mapping) { /* Race with truncate? */ |
711 | WARN_ON_ONCE(warn && !PageUptodate(page)); | |
712 | ||
713 | if (mapping_cap_account_dirty(mapping)) { | |
714 | __inc_zone_page_state(page, NR_FILE_DIRTY); | |
c9e51e41 PZ |
715 | __inc_bdi_stat(mapping->backing_dev_info, |
716 | BDI_RECLAIMABLE); | |
787d2214 NP |
717 | task_io_account_write(PAGE_CACHE_SIZE); |
718 | } | |
719 | radix_tree_tag_set(&mapping->page_tree, | |
720 | page_index(page), PAGECACHE_TAG_DIRTY); | |
721 | } | |
19fd6231 | 722 | spin_unlock_irq(&mapping->tree_lock); |
787d2214 NP |
723 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
724 | ||
725 | return 1; | |
726 | } | |
727 | ||
1da177e4 LT |
728 | /* |
729 | * Add a page to the dirty page list. | |
730 | * | |
731 | * It is a sad fact of life that this function is called from several places | |
732 | * deeply under spinlocking. It may not sleep. | |
733 | * | |
734 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | |
735 | * dirty-state coherency between the page and the buffers. It the page does | |
736 | * not have buffers then when they are later attached they will all be set | |
737 | * dirty. | |
738 | * | |
739 | * The buffers are dirtied before the page is dirtied. There's a small race | |
740 | * window in which a writepage caller may see the page cleanness but not the | |
741 | * buffer dirtiness. That's fine. If this code were to set the page dirty | |
742 | * before the buffers, a concurrent writepage caller could clear the page dirty | |
743 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | |
744 | * page on the dirty page list. | |
745 | * | |
746 | * We use private_lock to lock against try_to_free_buffers while using the | |
747 | * page's buffer list. Also use this to protect against clean buffers being | |
748 | * added to the page after it was set dirty. | |
749 | * | |
750 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | |
751 | * address_space though. | |
752 | */ | |
753 | int __set_page_dirty_buffers(struct page *page) | |
754 | { | |
787d2214 | 755 | struct address_space *mapping = page_mapping(page); |
ebf7a227 NP |
756 | |
757 | if (unlikely(!mapping)) | |
758 | return !TestSetPageDirty(page); | |
1da177e4 LT |
759 | |
760 | spin_lock(&mapping->private_lock); | |
761 | if (page_has_buffers(page)) { | |
762 | struct buffer_head *head = page_buffers(page); | |
763 | struct buffer_head *bh = head; | |
764 | ||
765 | do { | |
766 | set_buffer_dirty(bh); | |
767 | bh = bh->b_this_page; | |
768 | } while (bh != head); | |
769 | } | |
770 | spin_unlock(&mapping->private_lock); | |
771 | ||
787d2214 | 772 | return __set_page_dirty(page, mapping, 1); |
1da177e4 LT |
773 | } |
774 | EXPORT_SYMBOL(__set_page_dirty_buffers); | |
775 | ||
776 | /* | |
777 | * Write out and wait upon a list of buffers. | |
778 | * | |
779 | * We have conflicting pressures: we want to make sure that all | |
780 | * initially dirty buffers get waited on, but that any subsequently | |
781 | * dirtied buffers don't. After all, we don't want fsync to last | |
782 | * forever if somebody is actively writing to the file. | |
783 | * | |
784 | * Do this in two main stages: first we copy dirty buffers to a | |
785 | * temporary inode list, queueing the writes as we go. Then we clean | |
786 | * up, waiting for those writes to complete. | |
787 | * | |
788 | * During this second stage, any subsequent updates to the file may end | |
789 | * up refiling the buffer on the original inode's dirty list again, so | |
790 | * there is a chance we will end up with a buffer queued for write but | |
791 | * not yet completed on that list. So, as a final cleanup we go through | |
792 | * the osync code to catch these locked, dirty buffers without requeuing | |
793 | * any newly dirty buffers for write. | |
794 | */ | |
795 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | |
796 | { | |
797 | struct buffer_head *bh; | |
798 | struct list_head tmp; | |
535ee2fb | 799 | struct address_space *mapping; |
1da177e4 LT |
800 | int err = 0, err2; |
801 | ||
802 | INIT_LIST_HEAD(&tmp); | |
803 | ||
804 | spin_lock(lock); | |
805 | while (!list_empty(list)) { | |
806 | bh = BH_ENTRY(list->next); | |
535ee2fb | 807 | mapping = bh->b_assoc_map; |
58ff407b | 808 | __remove_assoc_queue(bh); |
535ee2fb JK |
809 | /* Avoid race with mark_buffer_dirty_inode() which does |
810 | * a lockless check and we rely on seeing the dirty bit */ | |
811 | smp_mb(); | |
1da177e4 LT |
812 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
813 | list_add(&bh->b_assoc_buffers, &tmp); | |
535ee2fb | 814 | bh->b_assoc_map = mapping; |
1da177e4 LT |
815 | if (buffer_dirty(bh)) { |
816 | get_bh(bh); | |
817 | spin_unlock(lock); | |
818 | /* | |
819 | * Ensure any pending I/O completes so that | |
820 | * ll_rw_block() actually writes the current | |
821 | * contents - it is a noop if I/O is still in | |
822 | * flight on potentially older contents. | |
823 | */ | |
18ce3751 | 824 | ll_rw_block(SWRITE_SYNC, 1, &bh); |
1da177e4 LT |
825 | brelse(bh); |
826 | spin_lock(lock); | |
827 | } | |
828 | } | |
829 | } | |
830 | ||
831 | while (!list_empty(&tmp)) { | |
832 | bh = BH_ENTRY(tmp.prev); | |
1da177e4 | 833 | get_bh(bh); |
535ee2fb JK |
834 | mapping = bh->b_assoc_map; |
835 | __remove_assoc_queue(bh); | |
836 | /* Avoid race with mark_buffer_dirty_inode() which does | |
837 | * a lockless check and we rely on seeing the dirty bit */ | |
838 | smp_mb(); | |
839 | if (buffer_dirty(bh)) { | |
840 | list_add(&bh->b_assoc_buffers, | |
e3892296 | 841 | &mapping->private_list); |
535ee2fb JK |
842 | bh->b_assoc_map = mapping; |
843 | } | |
1da177e4 LT |
844 | spin_unlock(lock); |
845 | wait_on_buffer(bh); | |
846 | if (!buffer_uptodate(bh)) | |
847 | err = -EIO; | |
848 | brelse(bh); | |
849 | spin_lock(lock); | |
850 | } | |
851 | ||
852 | spin_unlock(lock); | |
853 | err2 = osync_buffers_list(lock, list); | |
854 | if (err) | |
855 | return err; | |
856 | else | |
857 | return err2; | |
858 | } | |
859 | ||
860 | /* | |
861 | * Invalidate any and all dirty buffers on a given inode. We are | |
862 | * probably unmounting the fs, but that doesn't mean we have already | |
863 | * done a sync(). Just drop the buffers from the inode list. | |
864 | * | |
865 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | |
866 | * assumes that all the buffers are against the blockdev. Not true | |
867 | * for reiserfs. | |
868 | */ | |
869 | void invalidate_inode_buffers(struct inode *inode) | |
870 | { | |
871 | if (inode_has_buffers(inode)) { | |
872 | struct address_space *mapping = &inode->i_data; | |
873 | struct list_head *list = &mapping->private_list; | |
874 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
875 | ||
876 | spin_lock(&buffer_mapping->private_lock); | |
877 | while (!list_empty(list)) | |
878 | __remove_assoc_queue(BH_ENTRY(list->next)); | |
879 | spin_unlock(&buffer_mapping->private_lock); | |
880 | } | |
881 | } | |
882 | ||
883 | /* | |
884 | * Remove any clean buffers from the inode's buffer list. This is called | |
885 | * when we're trying to free the inode itself. Those buffers can pin it. | |
886 | * | |
887 | * Returns true if all buffers were removed. | |
888 | */ | |
889 | int remove_inode_buffers(struct inode *inode) | |
890 | { | |
891 | int ret = 1; | |
892 | ||
893 | if (inode_has_buffers(inode)) { | |
894 | struct address_space *mapping = &inode->i_data; | |
895 | struct list_head *list = &mapping->private_list; | |
896 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
897 | ||
898 | spin_lock(&buffer_mapping->private_lock); | |
899 | while (!list_empty(list)) { | |
900 | struct buffer_head *bh = BH_ENTRY(list->next); | |
901 | if (buffer_dirty(bh)) { | |
902 | ret = 0; | |
903 | break; | |
904 | } | |
905 | __remove_assoc_queue(bh); | |
906 | } | |
907 | spin_unlock(&buffer_mapping->private_lock); | |
908 | } | |
909 | return ret; | |
910 | } | |
911 | ||
912 | /* | |
913 | * Create the appropriate buffers when given a page for data area and | |
914 | * the size of each buffer.. Use the bh->b_this_page linked list to | |
915 | * follow the buffers created. Return NULL if unable to create more | |
916 | * buffers. | |
917 | * | |
918 | * The retry flag is used to differentiate async IO (paging, swapping) | |
919 | * which may not fail from ordinary buffer allocations. | |
920 | */ | |
921 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | |
922 | int retry) | |
923 | { | |
924 | struct buffer_head *bh, *head; | |
925 | long offset; | |
926 | ||
927 | try_again: | |
928 | head = NULL; | |
929 | offset = PAGE_SIZE; | |
930 | while ((offset -= size) >= 0) { | |
931 | bh = alloc_buffer_head(GFP_NOFS); | |
932 | if (!bh) | |
933 | goto no_grow; | |
934 | ||
935 | bh->b_bdev = NULL; | |
936 | bh->b_this_page = head; | |
937 | bh->b_blocknr = -1; | |
938 | head = bh; | |
939 | ||
940 | bh->b_state = 0; | |
941 | atomic_set(&bh->b_count, 0); | |
fc5cd582 | 942 | bh->b_private = NULL; |
1da177e4 LT |
943 | bh->b_size = size; |
944 | ||
945 | /* Link the buffer to its page */ | |
946 | set_bh_page(bh, page, offset); | |
947 | ||
01ffe339 | 948 | init_buffer(bh, NULL, NULL); |
1da177e4 LT |
949 | } |
950 | return head; | |
951 | /* | |
952 | * In case anything failed, we just free everything we got. | |
953 | */ | |
954 | no_grow: | |
955 | if (head) { | |
956 | do { | |
957 | bh = head; | |
958 | head = head->b_this_page; | |
959 | free_buffer_head(bh); | |
960 | } while (head); | |
961 | } | |
962 | ||
963 | /* | |
964 | * Return failure for non-async IO requests. Async IO requests | |
965 | * are not allowed to fail, so we have to wait until buffer heads | |
966 | * become available. But we don't want tasks sleeping with | |
967 | * partially complete buffers, so all were released above. | |
968 | */ | |
969 | if (!retry) | |
970 | return NULL; | |
971 | ||
972 | /* We're _really_ low on memory. Now we just | |
973 | * wait for old buffer heads to become free due to | |
974 | * finishing IO. Since this is an async request and | |
975 | * the reserve list is empty, we're sure there are | |
976 | * async buffer heads in use. | |
977 | */ | |
978 | free_more_memory(); | |
979 | goto try_again; | |
980 | } | |
981 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | |
982 | ||
983 | static inline void | |
984 | link_dev_buffers(struct page *page, struct buffer_head *head) | |
985 | { | |
986 | struct buffer_head *bh, *tail; | |
987 | ||
988 | bh = head; | |
989 | do { | |
990 | tail = bh; | |
991 | bh = bh->b_this_page; | |
992 | } while (bh); | |
993 | tail->b_this_page = head; | |
994 | attach_page_buffers(page, head); | |
995 | } | |
996 | ||
997 | /* | |
998 | * Initialise the state of a blockdev page's buffers. | |
999 | */ | |
1000 | static void | |
1001 | init_page_buffers(struct page *page, struct block_device *bdev, | |
1002 | sector_t block, int size) | |
1003 | { | |
1004 | struct buffer_head *head = page_buffers(page); | |
1005 | struct buffer_head *bh = head; | |
1006 | int uptodate = PageUptodate(page); | |
1007 | ||
1008 | do { | |
1009 | if (!buffer_mapped(bh)) { | |
1010 | init_buffer(bh, NULL, NULL); | |
1011 | bh->b_bdev = bdev; | |
1012 | bh->b_blocknr = block; | |
1013 | if (uptodate) | |
1014 | set_buffer_uptodate(bh); | |
1015 | set_buffer_mapped(bh); | |
1016 | } | |
1017 | block++; | |
1018 | bh = bh->b_this_page; | |
1019 | } while (bh != head); | |
1020 | } | |
1021 | ||
1022 | /* | |
1023 | * Create the page-cache page that contains the requested block. | |
1024 | * | |
1025 | * This is user purely for blockdev mappings. | |
1026 | */ | |
1027 | static struct page * | |
1028 | grow_dev_page(struct block_device *bdev, sector_t block, | |
1029 | pgoff_t index, int size) | |
1030 | { | |
1031 | struct inode *inode = bdev->bd_inode; | |
1032 | struct page *page; | |
1033 | struct buffer_head *bh; | |
1034 | ||
ea125892 | 1035 | page = find_or_create_page(inode->i_mapping, index, |
769848c0 | 1036 | (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); |
1da177e4 LT |
1037 | if (!page) |
1038 | return NULL; | |
1039 | ||
e827f923 | 1040 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
1041 | |
1042 | if (page_has_buffers(page)) { | |
1043 | bh = page_buffers(page); | |
1044 | if (bh->b_size == size) { | |
1045 | init_page_buffers(page, bdev, block, size); | |
1046 | return page; | |
1047 | } | |
1048 | if (!try_to_free_buffers(page)) | |
1049 | goto failed; | |
1050 | } | |
1051 | ||
1052 | /* | |
1053 | * Allocate some buffers for this page | |
1054 | */ | |
1055 | bh = alloc_page_buffers(page, size, 0); | |
1056 | if (!bh) | |
1057 | goto failed; | |
1058 | ||
1059 | /* | |
1060 | * Link the page to the buffers and initialise them. Take the | |
1061 | * lock to be atomic wrt __find_get_block(), which does not | |
1062 | * run under the page lock. | |
1063 | */ | |
1064 | spin_lock(&inode->i_mapping->private_lock); | |
1065 | link_dev_buffers(page, bh); | |
1066 | init_page_buffers(page, bdev, block, size); | |
1067 | spin_unlock(&inode->i_mapping->private_lock); | |
1068 | return page; | |
1069 | ||
1070 | failed: | |
1071 | BUG(); | |
1072 | unlock_page(page); | |
1073 | page_cache_release(page); | |
1074 | return NULL; | |
1075 | } | |
1076 | ||
1077 | /* | |
1078 | * Create buffers for the specified block device block's page. If | |
1079 | * that page was dirty, the buffers are set dirty also. | |
1da177e4 | 1080 | */ |
858119e1 | 1081 | static int |
1da177e4 LT |
1082 | grow_buffers(struct block_device *bdev, sector_t block, int size) |
1083 | { | |
1084 | struct page *page; | |
1085 | pgoff_t index; | |
1086 | int sizebits; | |
1087 | ||
1088 | sizebits = -1; | |
1089 | do { | |
1090 | sizebits++; | |
1091 | } while ((size << sizebits) < PAGE_SIZE); | |
1092 | ||
1093 | index = block >> sizebits; | |
1da177e4 | 1094 | |
e5657933 AM |
1095 | /* |
1096 | * Check for a block which wants to lie outside our maximum possible | |
1097 | * pagecache index. (this comparison is done using sector_t types). | |
1098 | */ | |
1099 | if (unlikely(index != block >> sizebits)) { | |
1100 | char b[BDEVNAME_SIZE]; | |
1101 | ||
1102 | printk(KERN_ERR "%s: requested out-of-range block %llu for " | |
1103 | "device %s\n", | |
8e24eea7 | 1104 | __func__, (unsigned long long)block, |
e5657933 AM |
1105 | bdevname(bdev, b)); |
1106 | return -EIO; | |
1107 | } | |
1108 | block = index << sizebits; | |
1da177e4 LT |
1109 | /* Create a page with the proper size buffers.. */ |
1110 | page = grow_dev_page(bdev, block, index, size); | |
1111 | if (!page) | |
1112 | return 0; | |
1113 | unlock_page(page); | |
1114 | page_cache_release(page); | |
1115 | return 1; | |
1116 | } | |
1117 | ||
75c96f85 | 1118 | static struct buffer_head * |
1da177e4 LT |
1119 | __getblk_slow(struct block_device *bdev, sector_t block, int size) |
1120 | { | |
1121 | /* Size must be multiple of hard sectorsize */ | |
1122 | if (unlikely(size & (bdev_hardsect_size(bdev)-1) || | |
1123 | (size < 512 || size > PAGE_SIZE))) { | |
1124 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | |
1125 | size); | |
1126 | printk(KERN_ERR "hardsect size: %d\n", | |
1127 | bdev_hardsect_size(bdev)); | |
1128 | ||
1129 | dump_stack(); | |
1130 | return NULL; | |
1131 | } | |
1132 | ||
1133 | for (;;) { | |
1134 | struct buffer_head * bh; | |
e5657933 | 1135 | int ret; |
1da177e4 LT |
1136 | |
1137 | bh = __find_get_block(bdev, block, size); | |
1138 | if (bh) | |
1139 | return bh; | |
1140 | ||
e5657933 AM |
1141 | ret = grow_buffers(bdev, block, size); |
1142 | if (ret < 0) | |
1143 | return NULL; | |
1144 | if (ret == 0) | |
1da177e4 LT |
1145 | free_more_memory(); |
1146 | } | |
1147 | } | |
1148 | ||
1149 | /* | |
1150 | * The relationship between dirty buffers and dirty pages: | |
1151 | * | |
1152 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | |
1153 | * the page is tagged dirty in its radix tree. | |
1154 | * | |
1155 | * At all times, the dirtiness of the buffers represents the dirtiness of | |
1156 | * subsections of the page. If the page has buffers, the page dirty bit is | |
1157 | * merely a hint about the true dirty state. | |
1158 | * | |
1159 | * When a page is set dirty in its entirety, all its buffers are marked dirty | |
1160 | * (if the page has buffers). | |
1161 | * | |
1162 | * When a buffer is marked dirty, its page is dirtied, but the page's other | |
1163 | * buffers are not. | |
1164 | * | |
1165 | * Also. When blockdev buffers are explicitly read with bread(), they | |
1166 | * individually become uptodate. But their backing page remains not | |
1167 | * uptodate - even if all of its buffers are uptodate. A subsequent | |
1168 | * block_read_full_page() against that page will discover all the uptodate | |
1169 | * buffers, will set the page uptodate and will perform no I/O. | |
1170 | */ | |
1171 | ||
1172 | /** | |
1173 | * mark_buffer_dirty - mark a buffer_head as needing writeout | |
67be2dd1 | 1174 | * @bh: the buffer_head to mark dirty |
1da177e4 LT |
1175 | * |
1176 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set its | |
1177 | * backing page dirty, then tag the page as dirty in its address_space's radix | |
1178 | * tree and then attach the address_space's inode to its superblock's dirty | |
1179 | * inode list. | |
1180 | * | |
1181 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | |
1182 | * mapping->tree_lock and the global inode_lock. | |
1183 | */ | |
fc9b52cd | 1184 | void mark_buffer_dirty(struct buffer_head *bh) |
1da177e4 | 1185 | { |
787d2214 | 1186 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
1be62dc1 LT |
1187 | |
1188 | /* | |
1189 | * Very *carefully* optimize the it-is-already-dirty case. | |
1190 | * | |
1191 | * Don't let the final "is it dirty" escape to before we | |
1192 | * perhaps modified the buffer. | |
1193 | */ | |
1194 | if (buffer_dirty(bh)) { | |
1195 | smp_mb(); | |
1196 | if (buffer_dirty(bh)) | |
1197 | return; | |
1198 | } | |
1199 | ||
1200 | if (!test_set_buffer_dirty(bh)) | |
787d2214 | 1201 | __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0); |
1da177e4 LT |
1202 | } |
1203 | ||
1204 | /* | |
1205 | * Decrement a buffer_head's reference count. If all buffers against a page | |
1206 | * have zero reference count, are clean and unlocked, and if the page is clean | |
1207 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | |
1208 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | |
1209 | * a page but it ends up not being freed, and buffers may later be reattached). | |
1210 | */ | |
1211 | void __brelse(struct buffer_head * buf) | |
1212 | { | |
1213 | if (atomic_read(&buf->b_count)) { | |
1214 | put_bh(buf); | |
1215 | return; | |
1216 | } | |
5c752ad9 | 1217 | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); |
1da177e4 LT |
1218 | } |
1219 | ||
1220 | /* | |
1221 | * bforget() is like brelse(), except it discards any | |
1222 | * potentially dirty data. | |
1223 | */ | |
1224 | void __bforget(struct buffer_head *bh) | |
1225 | { | |
1226 | clear_buffer_dirty(bh); | |
535ee2fb | 1227 | if (bh->b_assoc_map) { |
1da177e4 LT |
1228 | struct address_space *buffer_mapping = bh->b_page->mapping; |
1229 | ||
1230 | spin_lock(&buffer_mapping->private_lock); | |
1231 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b | 1232 | bh->b_assoc_map = NULL; |
1da177e4 LT |
1233 | spin_unlock(&buffer_mapping->private_lock); |
1234 | } | |
1235 | __brelse(bh); | |
1236 | } | |
1237 | ||
1238 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | |
1239 | { | |
1240 | lock_buffer(bh); | |
1241 | if (buffer_uptodate(bh)) { | |
1242 | unlock_buffer(bh); | |
1243 | return bh; | |
1244 | } else { | |
1245 | get_bh(bh); | |
1246 | bh->b_end_io = end_buffer_read_sync; | |
1247 | submit_bh(READ, bh); | |
1248 | wait_on_buffer(bh); | |
1249 | if (buffer_uptodate(bh)) | |
1250 | return bh; | |
1251 | } | |
1252 | brelse(bh); | |
1253 | return NULL; | |
1254 | } | |
1255 | ||
1256 | /* | |
1257 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | |
1258 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | |
1259 | * refcount elevated by one when they're in an LRU. A buffer can only appear | |
1260 | * once in a particular CPU's LRU. A single buffer can be present in multiple | |
1261 | * CPU's LRUs at the same time. | |
1262 | * | |
1263 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | |
1264 | * sb_find_get_block(). | |
1265 | * | |
1266 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | |
1267 | * a local interrupt disable for that. | |
1268 | */ | |
1269 | ||
1270 | #define BH_LRU_SIZE 8 | |
1271 | ||
1272 | struct bh_lru { | |
1273 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1274 | }; | |
1275 | ||
1276 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | |
1277 | ||
1278 | #ifdef CONFIG_SMP | |
1279 | #define bh_lru_lock() local_irq_disable() | |
1280 | #define bh_lru_unlock() local_irq_enable() | |
1281 | #else | |
1282 | #define bh_lru_lock() preempt_disable() | |
1283 | #define bh_lru_unlock() preempt_enable() | |
1284 | #endif | |
1285 | ||
1286 | static inline void check_irqs_on(void) | |
1287 | { | |
1288 | #ifdef irqs_disabled | |
1289 | BUG_ON(irqs_disabled()); | |
1290 | #endif | |
1291 | } | |
1292 | ||
1293 | /* | |
1294 | * The LRU management algorithm is dopey-but-simple. Sorry. | |
1295 | */ | |
1296 | static void bh_lru_install(struct buffer_head *bh) | |
1297 | { | |
1298 | struct buffer_head *evictee = NULL; | |
1299 | struct bh_lru *lru; | |
1300 | ||
1301 | check_irqs_on(); | |
1302 | bh_lru_lock(); | |
1303 | lru = &__get_cpu_var(bh_lrus); | |
1304 | if (lru->bhs[0] != bh) { | |
1305 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1306 | int in; | |
1307 | int out = 0; | |
1308 | ||
1309 | get_bh(bh); | |
1310 | bhs[out++] = bh; | |
1311 | for (in = 0; in < BH_LRU_SIZE; in++) { | |
1312 | struct buffer_head *bh2 = lru->bhs[in]; | |
1313 | ||
1314 | if (bh2 == bh) { | |
1315 | __brelse(bh2); | |
1316 | } else { | |
1317 | if (out >= BH_LRU_SIZE) { | |
1318 | BUG_ON(evictee != NULL); | |
1319 | evictee = bh2; | |
1320 | } else { | |
1321 | bhs[out++] = bh2; | |
1322 | } | |
1323 | } | |
1324 | } | |
1325 | while (out < BH_LRU_SIZE) | |
1326 | bhs[out++] = NULL; | |
1327 | memcpy(lru->bhs, bhs, sizeof(bhs)); | |
1328 | } | |
1329 | bh_lru_unlock(); | |
1330 | ||
1331 | if (evictee) | |
1332 | __brelse(evictee); | |
1333 | } | |
1334 | ||
1335 | /* | |
1336 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | |
1337 | */ | |
858119e1 | 1338 | static struct buffer_head * |
3991d3bd | 1339 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1340 | { |
1341 | struct buffer_head *ret = NULL; | |
1342 | struct bh_lru *lru; | |
3991d3bd | 1343 | unsigned int i; |
1da177e4 LT |
1344 | |
1345 | check_irqs_on(); | |
1346 | bh_lru_lock(); | |
1347 | lru = &__get_cpu_var(bh_lrus); | |
1348 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1349 | struct buffer_head *bh = lru->bhs[i]; | |
1350 | ||
1351 | if (bh && bh->b_bdev == bdev && | |
1352 | bh->b_blocknr == block && bh->b_size == size) { | |
1353 | if (i) { | |
1354 | while (i) { | |
1355 | lru->bhs[i] = lru->bhs[i - 1]; | |
1356 | i--; | |
1357 | } | |
1358 | lru->bhs[0] = bh; | |
1359 | } | |
1360 | get_bh(bh); | |
1361 | ret = bh; | |
1362 | break; | |
1363 | } | |
1364 | } | |
1365 | bh_lru_unlock(); | |
1366 | return ret; | |
1367 | } | |
1368 | ||
1369 | /* | |
1370 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | |
1371 | * it in the LRU and mark it as accessed. If it is not present then return | |
1372 | * NULL | |
1373 | */ | |
1374 | struct buffer_head * | |
3991d3bd | 1375 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1376 | { |
1377 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | |
1378 | ||
1379 | if (bh == NULL) { | |
385fd4c5 | 1380 | bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1381 | if (bh) |
1382 | bh_lru_install(bh); | |
1383 | } | |
1384 | if (bh) | |
1385 | touch_buffer(bh); | |
1386 | return bh; | |
1387 | } | |
1388 | EXPORT_SYMBOL(__find_get_block); | |
1389 | ||
1390 | /* | |
1391 | * __getblk will locate (and, if necessary, create) the buffer_head | |
1392 | * which corresponds to the passed block_device, block and size. The | |
1393 | * returned buffer has its reference count incremented. | |
1394 | * | |
1395 | * __getblk() cannot fail - it just keeps trying. If you pass it an | |
1396 | * illegal block number, __getblk() will happily return a buffer_head | |
1397 | * which represents the non-existent block. Very weird. | |
1398 | * | |
1399 | * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() | |
1400 | * attempt is failing. FIXME, perhaps? | |
1401 | */ | |
1402 | struct buffer_head * | |
3991d3bd | 1403 | __getblk(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1404 | { |
1405 | struct buffer_head *bh = __find_get_block(bdev, block, size); | |
1406 | ||
1407 | might_sleep(); | |
1408 | if (bh == NULL) | |
1409 | bh = __getblk_slow(bdev, block, size); | |
1410 | return bh; | |
1411 | } | |
1412 | EXPORT_SYMBOL(__getblk); | |
1413 | ||
1414 | /* | |
1415 | * Do async read-ahead on a buffer.. | |
1416 | */ | |
3991d3bd | 1417 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1418 | { |
1419 | struct buffer_head *bh = __getblk(bdev, block, size); | |
a3e713b5 AM |
1420 | if (likely(bh)) { |
1421 | ll_rw_block(READA, 1, &bh); | |
1422 | brelse(bh); | |
1423 | } | |
1da177e4 LT |
1424 | } |
1425 | EXPORT_SYMBOL(__breadahead); | |
1426 | ||
1427 | /** | |
1428 | * __bread() - reads a specified block and returns the bh | |
67be2dd1 | 1429 | * @bdev: the block_device to read from |
1da177e4 LT |
1430 | * @block: number of block |
1431 | * @size: size (in bytes) to read | |
1432 | * | |
1433 | * Reads a specified block, and returns buffer head that contains it. | |
1434 | * It returns NULL if the block was unreadable. | |
1435 | */ | |
1436 | struct buffer_head * | |
3991d3bd | 1437 | __bread(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1438 | { |
1439 | struct buffer_head *bh = __getblk(bdev, block, size); | |
1440 | ||
a3e713b5 | 1441 | if (likely(bh) && !buffer_uptodate(bh)) |
1da177e4 LT |
1442 | bh = __bread_slow(bh); |
1443 | return bh; | |
1444 | } | |
1445 | EXPORT_SYMBOL(__bread); | |
1446 | ||
1447 | /* | |
1448 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | |
1449 | * This doesn't race because it runs in each cpu either in irq | |
1450 | * or with preempt disabled. | |
1451 | */ | |
1452 | static void invalidate_bh_lru(void *arg) | |
1453 | { | |
1454 | struct bh_lru *b = &get_cpu_var(bh_lrus); | |
1455 | int i; | |
1456 | ||
1457 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1458 | brelse(b->bhs[i]); | |
1459 | b->bhs[i] = NULL; | |
1460 | } | |
1461 | put_cpu_var(bh_lrus); | |
1462 | } | |
1463 | ||
f9a14399 | 1464 | void invalidate_bh_lrus(void) |
1da177e4 | 1465 | { |
15c8b6c1 | 1466 | on_each_cpu(invalidate_bh_lru, NULL, 1); |
1da177e4 | 1467 | } |
9db5579b | 1468 | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); |
1da177e4 LT |
1469 | |
1470 | void set_bh_page(struct buffer_head *bh, | |
1471 | struct page *page, unsigned long offset) | |
1472 | { | |
1473 | bh->b_page = page; | |
e827f923 | 1474 | BUG_ON(offset >= PAGE_SIZE); |
1da177e4 LT |
1475 | if (PageHighMem(page)) |
1476 | /* | |
1477 | * This catches illegal uses and preserves the offset: | |
1478 | */ | |
1479 | bh->b_data = (char *)(0 + offset); | |
1480 | else | |
1481 | bh->b_data = page_address(page) + offset; | |
1482 | } | |
1483 | EXPORT_SYMBOL(set_bh_page); | |
1484 | ||
1485 | /* | |
1486 | * Called when truncating a buffer on a page completely. | |
1487 | */ | |
858119e1 | 1488 | static void discard_buffer(struct buffer_head * bh) |
1da177e4 LT |
1489 | { |
1490 | lock_buffer(bh); | |
1491 | clear_buffer_dirty(bh); | |
1492 | bh->b_bdev = NULL; | |
1493 | clear_buffer_mapped(bh); | |
1494 | clear_buffer_req(bh); | |
1495 | clear_buffer_new(bh); | |
1496 | clear_buffer_delay(bh); | |
33a266dd | 1497 | clear_buffer_unwritten(bh); |
1da177e4 LT |
1498 | unlock_buffer(bh); |
1499 | } | |
1500 | ||
1da177e4 LT |
1501 | /** |
1502 | * block_invalidatepage - invalidate part of all of a buffer-backed page | |
1503 | * | |
1504 | * @page: the page which is affected | |
1505 | * @offset: the index of the truncation point | |
1506 | * | |
1507 | * block_invalidatepage() is called when all or part of the page has become | |
1508 | * invalidatedby a truncate operation. | |
1509 | * | |
1510 | * block_invalidatepage() does not have to release all buffers, but it must | |
1511 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
1512 | * is underway against any of the blocks which are outside the truncation | |
1513 | * point. Because the caller is about to free (and possibly reuse) those | |
1514 | * blocks on-disk. | |
1515 | */ | |
2ff28e22 | 1516 | void block_invalidatepage(struct page *page, unsigned long offset) |
1da177e4 LT |
1517 | { |
1518 | struct buffer_head *head, *bh, *next; | |
1519 | unsigned int curr_off = 0; | |
1da177e4 LT |
1520 | |
1521 | BUG_ON(!PageLocked(page)); | |
1522 | if (!page_has_buffers(page)) | |
1523 | goto out; | |
1524 | ||
1525 | head = page_buffers(page); | |
1526 | bh = head; | |
1527 | do { | |
1528 | unsigned int next_off = curr_off + bh->b_size; | |
1529 | next = bh->b_this_page; | |
1530 | ||
1531 | /* | |
1532 | * is this block fully invalidated? | |
1533 | */ | |
1534 | if (offset <= curr_off) | |
1535 | discard_buffer(bh); | |
1536 | curr_off = next_off; | |
1537 | bh = next; | |
1538 | } while (bh != head); | |
1539 | ||
1540 | /* | |
1541 | * We release buffers only if the entire page is being invalidated. | |
1542 | * The get_block cached value has been unconditionally invalidated, | |
1543 | * so real IO is not possible anymore. | |
1544 | */ | |
1545 | if (offset == 0) | |
2ff28e22 | 1546 | try_to_release_page(page, 0); |
1da177e4 | 1547 | out: |
2ff28e22 | 1548 | return; |
1da177e4 LT |
1549 | } |
1550 | EXPORT_SYMBOL(block_invalidatepage); | |
1551 | ||
1552 | /* | |
1553 | * We attach and possibly dirty the buffers atomically wrt | |
1554 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | |
1555 | * is already excluded via the page lock. | |
1556 | */ | |
1557 | void create_empty_buffers(struct page *page, | |
1558 | unsigned long blocksize, unsigned long b_state) | |
1559 | { | |
1560 | struct buffer_head *bh, *head, *tail; | |
1561 | ||
1562 | head = alloc_page_buffers(page, blocksize, 1); | |
1563 | bh = head; | |
1564 | do { | |
1565 | bh->b_state |= b_state; | |
1566 | tail = bh; | |
1567 | bh = bh->b_this_page; | |
1568 | } while (bh); | |
1569 | tail->b_this_page = head; | |
1570 | ||
1571 | spin_lock(&page->mapping->private_lock); | |
1572 | if (PageUptodate(page) || PageDirty(page)) { | |
1573 | bh = head; | |
1574 | do { | |
1575 | if (PageDirty(page)) | |
1576 | set_buffer_dirty(bh); | |
1577 | if (PageUptodate(page)) | |
1578 | set_buffer_uptodate(bh); | |
1579 | bh = bh->b_this_page; | |
1580 | } while (bh != head); | |
1581 | } | |
1582 | attach_page_buffers(page, head); | |
1583 | spin_unlock(&page->mapping->private_lock); | |
1584 | } | |
1585 | EXPORT_SYMBOL(create_empty_buffers); | |
1586 | ||
1587 | /* | |
1588 | * We are taking a block for data and we don't want any output from any | |
1589 | * buffer-cache aliases starting from return from that function and | |
1590 | * until the moment when something will explicitly mark the buffer | |
1591 | * dirty (hopefully that will not happen until we will free that block ;-) | |
1592 | * We don't even need to mark it not-uptodate - nobody can expect | |
1593 | * anything from a newly allocated buffer anyway. We used to used | |
1594 | * unmap_buffer() for such invalidation, but that was wrong. We definitely | |
1595 | * don't want to mark the alias unmapped, for example - it would confuse | |
1596 | * anyone who might pick it with bread() afterwards... | |
1597 | * | |
1598 | * Also.. Note that bforget() doesn't lock the buffer. So there can | |
1599 | * be writeout I/O going on against recently-freed buffers. We don't | |
1600 | * wait on that I/O in bforget() - it's more efficient to wait on the I/O | |
1601 | * only if we really need to. That happens here. | |
1602 | */ | |
1603 | void unmap_underlying_metadata(struct block_device *bdev, sector_t block) | |
1604 | { | |
1605 | struct buffer_head *old_bh; | |
1606 | ||
1607 | might_sleep(); | |
1608 | ||
385fd4c5 | 1609 | old_bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1610 | if (old_bh) { |
1611 | clear_buffer_dirty(old_bh); | |
1612 | wait_on_buffer(old_bh); | |
1613 | clear_buffer_req(old_bh); | |
1614 | __brelse(old_bh); | |
1615 | } | |
1616 | } | |
1617 | EXPORT_SYMBOL(unmap_underlying_metadata); | |
1618 | ||
1619 | /* | |
1620 | * NOTE! All mapped/uptodate combinations are valid: | |
1621 | * | |
1622 | * Mapped Uptodate Meaning | |
1623 | * | |
1624 | * No No "unknown" - must do get_block() | |
1625 | * No Yes "hole" - zero-filled | |
1626 | * Yes No "allocated" - allocated on disk, not read in | |
1627 | * Yes Yes "valid" - allocated and up-to-date in memory. | |
1628 | * | |
1629 | * "Dirty" is valid only with the last case (mapped+uptodate). | |
1630 | */ | |
1631 | ||
1632 | /* | |
1633 | * While block_write_full_page is writing back the dirty buffers under | |
1634 | * the page lock, whoever dirtied the buffers may decide to clean them | |
1635 | * again at any time. We handle that by only looking at the buffer | |
1636 | * state inside lock_buffer(). | |
1637 | * | |
1638 | * If block_write_full_page() is called for regular writeback | |
1639 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | |
1640 | * locked buffer. This only can happen if someone has written the buffer | |
1641 | * directly, with submit_bh(). At the address_space level PageWriteback | |
1642 | * prevents this contention from occurring. | |
1643 | */ | |
1644 | static int __block_write_full_page(struct inode *inode, struct page *page, | |
1645 | get_block_t *get_block, struct writeback_control *wbc) | |
1646 | { | |
1647 | int err; | |
1648 | sector_t block; | |
1649 | sector_t last_block; | |
f0fbd5fc | 1650 | struct buffer_head *bh, *head; |
b0cf2321 | 1651 | const unsigned blocksize = 1 << inode->i_blkbits; |
1da177e4 LT |
1652 | int nr_underway = 0; |
1653 | ||
1654 | BUG_ON(!PageLocked(page)); | |
1655 | ||
1656 | last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; | |
1657 | ||
1658 | if (!page_has_buffers(page)) { | |
b0cf2321 | 1659 | create_empty_buffers(page, blocksize, |
1da177e4 LT |
1660 | (1 << BH_Dirty)|(1 << BH_Uptodate)); |
1661 | } | |
1662 | ||
1663 | /* | |
1664 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | |
1665 | * here, and the (potentially unmapped) buffers may become dirty at | |
1666 | * any time. If a buffer becomes dirty here after we've inspected it | |
1667 | * then we just miss that fact, and the page stays dirty. | |
1668 | * | |
1669 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | |
1670 | * handle that here by just cleaning them. | |
1671 | */ | |
1672 | ||
54b21a79 | 1673 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
1674 | head = page_buffers(page); |
1675 | bh = head; | |
1676 | ||
1677 | /* | |
1678 | * Get all the dirty buffers mapped to disk addresses and | |
1679 | * handle any aliases from the underlying blockdev's mapping. | |
1680 | */ | |
1681 | do { | |
1682 | if (block > last_block) { | |
1683 | /* | |
1684 | * mapped buffers outside i_size will occur, because | |
1685 | * this page can be outside i_size when there is a | |
1686 | * truncate in progress. | |
1687 | */ | |
1688 | /* | |
1689 | * The buffer was zeroed by block_write_full_page() | |
1690 | */ | |
1691 | clear_buffer_dirty(bh); | |
1692 | set_buffer_uptodate(bh); | |
29a814d2 AT |
1693 | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && |
1694 | buffer_dirty(bh)) { | |
b0cf2321 | 1695 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1696 | err = get_block(inode, block, bh, 1); |
1697 | if (err) | |
1698 | goto recover; | |
29a814d2 | 1699 | clear_buffer_delay(bh); |
1da177e4 LT |
1700 | if (buffer_new(bh)) { |
1701 | /* blockdev mappings never come here */ | |
1702 | clear_buffer_new(bh); | |
1703 | unmap_underlying_metadata(bh->b_bdev, | |
1704 | bh->b_blocknr); | |
1705 | } | |
1706 | } | |
1707 | bh = bh->b_this_page; | |
1708 | block++; | |
1709 | } while (bh != head); | |
1710 | ||
1711 | do { | |
1da177e4 LT |
1712 | if (!buffer_mapped(bh)) |
1713 | continue; | |
1714 | /* | |
1715 | * If it's a fully non-blocking write attempt and we cannot | |
1716 | * lock the buffer then redirty the page. Note that this can | |
1717 | * potentially cause a busy-wait loop from pdflush and kswapd | |
1718 | * activity, but those code paths have their own higher-level | |
1719 | * throttling. | |
1720 | */ | |
1721 | if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { | |
1722 | lock_buffer(bh); | |
ca5de404 | 1723 | } else if (!trylock_buffer(bh)) { |
1da177e4 LT |
1724 | redirty_page_for_writepage(wbc, page); |
1725 | continue; | |
1726 | } | |
1727 | if (test_clear_buffer_dirty(bh)) { | |
1728 | mark_buffer_async_write(bh); | |
1729 | } else { | |
1730 | unlock_buffer(bh); | |
1731 | } | |
1732 | } while ((bh = bh->b_this_page) != head); | |
1733 | ||
1734 | /* | |
1735 | * The page and its buffers are protected by PageWriteback(), so we can | |
1736 | * drop the bh refcounts early. | |
1737 | */ | |
1738 | BUG_ON(PageWriteback(page)); | |
1739 | set_page_writeback(page); | |
1da177e4 LT |
1740 | |
1741 | do { | |
1742 | struct buffer_head *next = bh->b_this_page; | |
1743 | if (buffer_async_write(bh)) { | |
1744 | submit_bh(WRITE, bh); | |
1745 | nr_underway++; | |
1746 | } | |
1da177e4 LT |
1747 | bh = next; |
1748 | } while (bh != head); | |
05937baa | 1749 | unlock_page(page); |
1da177e4 LT |
1750 | |
1751 | err = 0; | |
1752 | done: | |
1753 | if (nr_underway == 0) { | |
1754 | /* | |
1755 | * The page was marked dirty, but the buffers were | |
1756 | * clean. Someone wrote them back by hand with | |
1757 | * ll_rw_block/submit_bh. A rare case. | |
1758 | */ | |
1da177e4 | 1759 | end_page_writeback(page); |
3d67f2d7 | 1760 | |
1da177e4 LT |
1761 | /* |
1762 | * The page and buffer_heads can be released at any time from | |
1763 | * here on. | |
1764 | */ | |
1da177e4 LT |
1765 | } |
1766 | return err; | |
1767 | ||
1768 | recover: | |
1769 | /* | |
1770 | * ENOSPC, or some other error. We may already have added some | |
1771 | * blocks to the file, so we need to write these out to avoid | |
1772 | * exposing stale data. | |
1773 | * The page is currently locked and not marked for writeback | |
1774 | */ | |
1775 | bh = head; | |
1776 | /* Recovery: lock and submit the mapped buffers */ | |
1777 | do { | |
29a814d2 AT |
1778 | if (buffer_mapped(bh) && buffer_dirty(bh) && |
1779 | !buffer_delay(bh)) { | |
1da177e4 LT |
1780 | lock_buffer(bh); |
1781 | mark_buffer_async_write(bh); | |
1782 | } else { | |
1783 | /* | |
1784 | * The buffer may have been set dirty during | |
1785 | * attachment to a dirty page. | |
1786 | */ | |
1787 | clear_buffer_dirty(bh); | |
1788 | } | |
1789 | } while ((bh = bh->b_this_page) != head); | |
1790 | SetPageError(page); | |
1791 | BUG_ON(PageWriteback(page)); | |
7e4c3690 | 1792 | mapping_set_error(page->mapping, err); |
1da177e4 | 1793 | set_page_writeback(page); |
1da177e4 LT |
1794 | do { |
1795 | struct buffer_head *next = bh->b_this_page; | |
1796 | if (buffer_async_write(bh)) { | |
1797 | clear_buffer_dirty(bh); | |
1798 | submit_bh(WRITE, bh); | |
1799 | nr_underway++; | |
1800 | } | |
1da177e4 LT |
1801 | bh = next; |
1802 | } while (bh != head); | |
ffda9d30 | 1803 | unlock_page(page); |
1da177e4 LT |
1804 | goto done; |
1805 | } | |
1806 | ||
afddba49 NP |
1807 | /* |
1808 | * If a page has any new buffers, zero them out here, and mark them uptodate | |
1809 | * and dirty so they'll be written out (in order to prevent uninitialised | |
1810 | * block data from leaking). And clear the new bit. | |
1811 | */ | |
1812 | void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) | |
1813 | { | |
1814 | unsigned int block_start, block_end; | |
1815 | struct buffer_head *head, *bh; | |
1816 | ||
1817 | BUG_ON(!PageLocked(page)); | |
1818 | if (!page_has_buffers(page)) | |
1819 | return; | |
1820 | ||
1821 | bh = head = page_buffers(page); | |
1822 | block_start = 0; | |
1823 | do { | |
1824 | block_end = block_start + bh->b_size; | |
1825 | ||
1826 | if (buffer_new(bh)) { | |
1827 | if (block_end > from && block_start < to) { | |
1828 | if (!PageUptodate(page)) { | |
1829 | unsigned start, size; | |
1830 | ||
1831 | start = max(from, block_start); | |
1832 | size = min(to, block_end) - start; | |
1833 | ||
eebd2aa3 | 1834 | zero_user(page, start, size); |
afddba49 NP |
1835 | set_buffer_uptodate(bh); |
1836 | } | |
1837 | ||
1838 | clear_buffer_new(bh); | |
1839 | mark_buffer_dirty(bh); | |
1840 | } | |
1841 | } | |
1842 | ||
1843 | block_start = block_end; | |
1844 | bh = bh->b_this_page; | |
1845 | } while (bh != head); | |
1846 | } | |
1847 | EXPORT_SYMBOL(page_zero_new_buffers); | |
1848 | ||
1da177e4 LT |
1849 | static int __block_prepare_write(struct inode *inode, struct page *page, |
1850 | unsigned from, unsigned to, get_block_t *get_block) | |
1851 | { | |
1852 | unsigned block_start, block_end; | |
1853 | sector_t block; | |
1854 | int err = 0; | |
1855 | unsigned blocksize, bbits; | |
1856 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | |
1857 | ||
1858 | BUG_ON(!PageLocked(page)); | |
1859 | BUG_ON(from > PAGE_CACHE_SIZE); | |
1860 | BUG_ON(to > PAGE_CACHE_SIZE); | |
1861 | BUG_ON(from > to); | |
1862 | ||
1863 | blocksize = 1 << inode->i_blkbits; | |
1864 | if (!page_has_buffers(page)) | |
1865 | create_empty_buffers(page, blocksize, 0); | |
1866 | head = page_buffers(page); | |
1867 | ||
1868 | bbits = inode->i_blkbits; | |
1869 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); | |
1870 | ||
1871 | for(bh = head, block_start = 0; bh != head || !block_start; | |
1872 | block++, block_start=block_end, bh = bh->b_this_page) { | |
1873 | block_end = block_start + blocksize; | |
1874 | if (block_end <= from || block_start >= to) { | |
1875 | if (PageUptodate(page)) { | |
1876 | if (!buffer_uptodate(bh)) | |
1877 | set_buffer_uptodate(bh); | |
1878 | } | |
1879 | continue; | |
1880 | } | |
1881 | if (buffer_new(bh)) | |
1882 | clear_buffer_new(bh); | |
1883 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 1884 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1885 | err = get_block(inode, block, bh, 1); |
1886 | if (err) | |
f3ddbdc6 | 1887 | break; |
1da177e4 | 1888 | if (buffer_new(bh)) { |
1da177e4 LT |
1889 | unmap_underlying_metadata(bh->b_bdev, |
1890 | bh->b_blocknr); | |
1891 | if (PageUptodate(page)) { | |
637aff46 | 1892 | clear_buffer_new(bh); |
1da177e4 | 1893 | set_buffer_uptodate(bh); |
637aff46 | 1894 | mark_buffer_dirty(bh); |
1da177e4 LT |
1895 | continue; |
1896 | } | |
eebd2aa3 CL |
1897 | if (block_end > to || block_start < from) |
1898 | zero_user_segments(page, | |
1899 | to, block_end, | |
1900 | block_start, from); | |
1da177e4 LT |
1901 | continue; |
1902 | } | |
1903 | } | |
1904 | if (PageUptodate(page)) { | |
1905 | if (!buffer_uptodate(bh)) | |
1906 | set_buffer_uptodate(bh); | |
1907 | continue; | |
1908 | } | |
1909 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
33a266dd | 1910 | !buffer_unwritten(bh) && |
1da177e4 LT |
1911 | (block_start < from || block_end > to)) { |
1912 | ll_rw_block(READ, 1, &bh); | |
1913 | *wait_bh++=bh; | |
1914 | } | |
1915 | } | |
1916 | /* | |
1917 | * If we issued read requests - let them complete. | |
1918 | */ | |
1919 | while(wait_bh > wait) { | |
1920 | wait_on_buffer(*--wait_bh); | |
1921 | if (!buffer_uptodate(*wait_bh)) | |
f3ddbdc6 | 1922 | err = -EIO; |
1da177e4 | 1923 | } |
afddba49 NP |
1924 | if (unlikely(err)) |
1925 | page_zero_new_buffers(page, from, to); | |
1da177e4 LT |
1926 | return err; |
1927 | } | |
1928 | ||
1929 | static int __block_commit_write(struct inode *inode, struct page *page, | |
1930 | unsigned from, unsigned to) | |
1931 | { | |
1932 | unsigned block_start, block_end; | |
1933 | int partial = 0; | |
1934 | unsigned blocksize; | |
1935 | struct buffer_head *bh, *head; | |
1936 | ||
1937 | blocksize = 1 << inode->i_blkbits; | |
1938 | ||
1939 | for(bh = head = page_buffers(page), block_start = 0; | |
1940 | bh != head || !block_start; | |
1941 | block_start=block_end, bh = bh->b_this_page) { | |
1942 | block_end = block_start + blocksize; | |
1943 | if (block_end <= from || block_start >= to) { | |
1944 | if (!buffer_uptodate(bh)) | |
1945 | partial = 1; | |
1946 | } else { | |
1947 | set_buffer_uptodate(bh); | |
1948 | mark_buffer_dirty(bh); | |
1949 | } | |
afddba49 | 1950 | clear_buffer_new(bh); |
1da177e4 LT |
1951 | } |
1952 | ||
1953 | /* | |
1954 | * If this is a partial write which happened to make all buffers | |
1955 | * uptodate then we can optimize away a bogus readpage() for | |
1956 | * the next read(). Here we 'discover' whether the page went | |
1957 | * uptodate as a result of this (potentially partial) write. | |
1958 | */ | |
1959 | if (!partial) | |
1960 | SetPageUptodate(page); | |
1961 | return 0; | |
1962 | } | |
1963 | ||
afddba49 NP |
1964 | /* |
1965 | * block_write_begin takes care of the basic task of block allocation and | |
1966 | * bringing partial write blocks uptodate first. | |
1967 | * | |
1968 | * If *pagep is not NULL, then block_write_begin uses the locked page | |
1969 | * at *pagep rather than allocating its own. In this case, the page will | |
1970 | * not be unlocked or deallocated on failure. | |
1971 | */ | |
1972 | int block_write_begin(struct file *file, struct address_space *mapping, | |
1973 | loff_t pos, unsigned len, unsigned flags, | |
1974 | struct page **pagep, void **fsdata, | |
1975 | get_block_t *get_block) | |
1976 | { | |
1977 | struct inode *inode = mapping->host; | |
1978 | int status = 0; | |
1979 | struct page *page; | |
1980 | pgoff_t index; | |
1981 | unsigned start, end; | |
1982 | int ownpage = 0; | |
1983 | ||
1984 | index = pos >> PAGE_CACHE_SHIFT; | |
1985 | start = pos & (PAGE_CACHE_SIZE - 1); | |
1986 | end = start + len; | |
1987 | ||
1988 | page = *pagep; | |
1989 | if (page == NULL) { | |
1990 | ownpage = 1; | |
1991 | page = __grab_cache_page(mapping, index); | |
1992 | if (!page) { | |
1993 | status = -ENOMEM; | |
1994 | goto out; | |
1995 | } | |
1996 | *pagep = page; | |
1997 | } else | |
1998 | BUG_ON(!PageLocked(page)); | |
1999 | ||
2000 | status = __block_prepare_write(inode, page, start, end, get_block); | |
2001 | if (unlikely(status)) { | |
2002 | ClearPageUptodate(page); | |
2003 | ||
2004 | if (ownpage) { | |
2005 | unlock_page(page); | |
2006 | page_cache_release(page); | |
2007 | *pagep = NULL; | |
2008 | ||
2009 | /* | |
2010 | * prepare_write() may have instantiated a few blocks | |
2011 | * outside i_size. Trim these off again. Don't need | |
2012 | * i_size_read because we hold i_mutex. | |
2013 | */ | |
2014 | if (pos + len > inode->i_size) | |
2015 | vmtruncate(inode, inode->i_size); | |
2016 | } | |
2017 | goto out; | |
2018 | } | |
2019 | ||
2020 | out: | |
2021 | return status; | |
2022 | } | |
2023 | EXPORT_SYMBOL(block_write_begin); | |
2024 | ||
2025 | int block_write_end(struct file *file, struct address_space *mapping, | |
2026 | loff_t pos, unsigned len, unsigned copied, | |
2027 | struct page *page, void *fsdata) | |
2028 | { | |
2029 | struct inode *inode = mapping->host; | |
2030 | unsigned start; | |
2031 | ||
2032 | start = pos & (PAGE_CACHE_SIZE - 1); | |
2033 | ||
2034 | if (unlikely(copied < len)) { | |
2035 | /* | |
2036 | * The buffers that were written will now be uptodate, so we | |
2037 | * don't have to worry about a readpage reading them and | |
2038 | * overwriting a partial write. However if we have encountered | |
2039 | * a short write and only partially written into a buffer, it | |
2040 | * will not be marked uptodate, so a readpage might come in and | |
2041 | * destroy our partial write. | |
2042 | * | |
2043 | * Do the simplest thing, and just treat any short write to a | |
2044 | * non uptodate page as a zero-length write, and force the | |
2045 | * caller to redo the whole thing. | |
2046 | */ | |
2047 | if (!PageUptodate(page)) | |
2048 | copied = 0; | |
2049 | ||
2050 | page_zero_new_buffers(page, start+copied, start+len); | |
2051 | } | |
2052 | flush_dcache_page(page); | |
2053 | ||
2054 | /* This could be a short (even 0-length) commit */ | |
2055 | __block_commit_write(inode, page, start, start+copied); | |
2056 | ||
2057 | return copied; | |
2058 | } | |
2059 | EXPORT_SYMBOL(block_write_end); | |
2060 | ||
2061 | int generic_write_end(struct file *file, struct address_space *mapping, | |
2062 | loff_t pos, unsigned len, unsigned copied, | |
2063 | struct page *page, void *fsdata) | |
2064 | { | |
2065 | struct inode *inode = mapping->host; | |
c7d206b3 | 2066 | int i_size_changed = 0; |
afddba49 NP |
2067 | |
2068 | copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); | |
2069 | ||
2070 | /* | |
2071 | * No need to use i_size_read() here, the i_size | |
2072 | * cannot change under us because we hold i_mutex. | |
2073 | * | |
2074 | * But it's important to update i_size while still holding page lock: | |
2075 | * page writeout could otherwise come in and zero beyond i_size. | |
2076 | */ | |
2077 | if (pos+copied > inode->i_size) { | |
2078 | i_size_write(inode, pos+copied); | |
c7d206b3 | 2079 | i_size_changed = 1; |
afddba49 NP |
2080 | } |
2081 | ||
2082 | unlock_page(page); | |
2083 | page_cache_release(page); | |
2084 | ||
c7d206b3 JK |
2085 | /* |
2086 | * Don't mark the inode dirty under page lock. First, it unnecessarily | |
2087 | * makes the holding time of page lock longer. Second, it forces lock | |
2088 | * ordering of page lock and transaction start for journaling | |
2089 | * filesystems. | |
2090 | */ | |
2091 | if (i_size_changed) | |
2092 | mark_inode_dirty(inode); | |
2093 | ||
afddba49 NP |
2094 | return copied; |
2095 | } | |
2096 | EXPORT_SYMBOL(generic_write_end); | |
2097 | ||
8ab22b9a HH |
2098 | /* |
2099 | * block_is_partially_uptodate checks whether buffers within a page are | |
2100 | * uptodate or not. | |
2101 | * | |
2102 | * Returns true if all buffers which correspond to a file portion | |
2103 | * we want to read are uptodate. | |
2104 | */ | |
2105 | int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, | |
2106 | unsigned long from) | |
2107 | { | |
2108 | struct inode *inode = page->mapping->host; | |
2109 | unsigned block_start, block_end, blocksize; | |
2110 | unsigned to; | |
2111 | struct buffer_head *bh, *head; | |
2112 | int ret = 1; | |
2113 | ||
2114 | if (!page_has_buffers(page)) | |
2115 | return 0; | |
2116 | ||
2117 | blocksize = 1 << inode->i_blkbits; | |
2118 | to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); | |
2119 | to = from + to; | |
2120 | if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) | |
2121 | return 0; | |
2122 | ||
2123 | head = page_buffers(page); | |
2124 | bh = head; | |
2125 | block_start = 0; | |
2126 | do { | |
2127 | block_end = block_start + blocksize; | |
2128 | if (block_end > from && block_start < to) { | |
2129 | if (!buffer_uptodate(bh)) { | |
2130 | ret = 0; | |
2131 | break; | |
2132 | } | |
2133 | if (block_end >= to) | |
2134 | break; | |
2135 | } | |
2136 | block_start = block_end; | |
2137 | bh = bh->b_this_page; | |
2138 | } while (bh != head); | |
2139 | ||
2140 | return ret; | |
2141 | } | |
2142 | EXPORT_SYMBOL(block_is_partially_uptodate); | |
2143 | ||
1da177e4 LT |
2144 | /* |
2145 | * Generic "read page" function for block devices that have the normal | |
2146 | * get_block functionality. This is most of the block device filesystems. | |
2147 | * Reads the page asynchronously --- the unlock_buffer() and | |
2148 | * set/clear_buffer_uptodate() functions propagate buffer state into the | |
2149 | * page struct once IO has completed. | |
2150 | */ | |
2151 | int block_read_full_page(struct page *page, get_block_t *get_block) | |
2152 | { | |
2153 | struct inode *inode = page->mapping->host; | |
2154 | sector_t iblock, lblock; | |
2155 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | |
2156 | unsigned int blocksize; | |
2157 | int nr, i; | |
2158 | int fully_mapped = 1; | |
2159 | ||
cd7619d6 | 2160 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
2161 | blocksize = 1 << inode->i_blkbits; |
2162 | if (!page_has_buffers(page)) | |
2163 | create_empty_buffers(page, blocksize, 0); | |
2164 | head = page_buffers(page); | |
2165 | ||
2166 | iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
2167 | lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; | |
2168 | bh = head; | |
2169 | nr = 0; | |
2170 | i = 0; | |
2171 | ||
2172 | do { | |
2173 | if (buffer_uptodate(bh)) | |
2174 | continue; | |
2175 | ||
2176 | if (!buffer_mapped(bh)) { | |
c64610ba AM |
2177 | int err = 0; |
2178 | ||
1da177e4 LT |
2179 | fully_mapped = 0; |
2180 | if (iblock < lblock) { | |
b0cf2321 | 2181 | WARN_ON(bh->b_size != blocksize); |
c64610ba AM |
2182 | err = get_block(inode, iblock, bh, 0); |
2183 | if (err) | |
1da177e4 LT |
2184 | SetPageError(page); |
2185 | } | |
2186 | if (!buffer_mapped(bh)) { | |
eebd2aa3 | 2187 | zero_user(page, i * blocksize, blocksize); |
c64610ba AM |
2188 | if (!err) |
2189 | set_buffer_uptodate(bh); | |
1da177e4 LT |
2190 | continue; |
2191 | } | |
2192 | /* | |
2193 | * get_block() might have updated the buffer | |
2194 | * synchronously | |
2195 | */ | |
2196 | if (buffer_uptodate(bh)) | |
2197 | continue; | |
2198 | } | |
2199 | arr[nr++] = bh; | |
2200 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | |
2201 | ||
2202 | if (fully_mapped) | |
2203 | SetPageMappedToDisk(page); | |
2204 | ||
2205 | if (!nr) { | |
2206 | /* | |
2207 | * All buffers are uptodate - we can set the page uptodate | |
2208 | * as well. But not if get_block() returned an error. | |
2209 | */ | |
2210 | if (!PageError(page)) | |
2211 | SetPageUptodate(page); | |
2212 | unlock_page(page); | |
2213 | return 0; | |
2214 | } | |
2215 | ||
2216 | /* Stage two: lock the buffers */ | |
2217 | for (i = 0; i < nr; i++) { | |
2218 | bh = arr[i]; | |
2219 | lock_buffer(bh); | |
2220 | mark_buffer_async_read(bh); | |
2221 | } | |
2222 | ||
2223 | /* | |
2224 | * Stage 3: start the IO. Check for uptodateness | |
2225 | * inside the buffer lock in case another process reading | |
2226 | * the underlying blockdev brought it uptodate (the sct fix). | |
2227 | */ | |
2228 | for (i = 0; i < nr; i++) { | |
2229 | bh = arr[i]; | |
2230 | if (buffer_uptodate(bh)) | |
2231 | end_buffer_async_read(bh, 1); | |
2232 | else | |
2233 | submit_bh(READ, bh); | |
2234 | } | |
2235 | return 0; | |
2236 | } | |
2237 | ||
2238 | /* utility function for filesystems that need to do work on expanding | |
89e10787 | 2239 | * truncates. Uses filesystem pagecache writes to allow the filesystem to |
1da177e4 LT |
2240 | * deal with the hole. |
2241 | */ | |
89e10787 | 2242 | int generic_cont_expand_simple(struct inode *inode, loff_t size) |
1da177e4 LT |
2243 | { |
2244 | struct address_space *mapping = inode->i_mapping; | |
2245 | struct page *page; | |
89e10787 | 2246 | void *fsdata; |
05eb0b51 | 2247 | unsigned long limit; |
1da177e4 LT |
2248 | int err; |
2249 | ||
2250 | err = -EFBIG; | |
2251 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
2252 | if (limit != RLIM_INFINITY && size > (loff_t)limit) { | |
2253 | send_sig(SIGXFSZ, current, 0); | |
2254 | goto out; | |
2255 | } | |
2256 | if (size > inode->i_sb->s_maxbytes) | |
2257 | goto out; | |
2258 | ||
89e10787 NP |
2259 | err = pagecache_write_begin(NULL, mapping, size, 0, |
2260 | AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, | |
2261 | &page, &fsdata); | |
2262 | if (err) | |
05eb0b51 | 2263 | goto out; |
05eb0b51 | 2264 | |
89e10787 NP |
2265 | err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); |
2266 | BUG_ON(err > 0); | |
05eb0b51 | 2267 | |
1da177e4 LT |
2268 | out: |
2269 | return err; | |
2270 | } | |
2271 | ||
f1e3af72 AB |
2272 | static int cont_expand_zero(struct file *file, struct address_space *mapping, |
2273 | loff_t pos, loff_t *bytes) | |
1da177e4 | 2274 | { |
1da177e4 | 2275 | struct inode *inode = mapping->host; |
1da177e4 | 2276 | unsigned blocksize = 1 << inode->i_blkbits; |
89e10787 NP |
2277 | struct page *page; |
2278 | void *fsdata; | |
2279 | pgoff_t index, curidx; | |
2280 | loff_t curpos; | |
2281 | unsigned zerofrom, offset, len; | |
2282 | int err = 0; | |
1da177e4 | 2283 | |
89e10787 NP |
2284 | index = pos >> PAGE_CACHE_SHIFT; |
2285 | offset = pos & ~PAGE_CACHE_MASK; | |
2286 | ||
2287 | while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { | |
2288 | zerofrom = curpos & ~PAGE_CACHE_MASK; | |
1da177e4 LT |
2289 | if (zerofrom & (blocksize-1)) { |
2290 | *bytes |= (blocksize-1); | |
2291 | (*bytes)++; | |
2292 | } | |
89e10787 | 2293 | len = PAGE_CACHE_SIZE - zerofrom; |
1da177e4 | 2294 | |
89e10787 NP |
2295 | err = pagecache_write_begin(file, mapping, curpos, len, |
2296 | AOP_FLAG_UNINTERRUPTIBLE, | |
2297 | &page, &fsdata); | |
2298 | if (err) | |
2299 | goto out; | |
eebd2aa3 | 2300 | zero_user(page, zerofrom, len); |
89e10787 NP |
2301 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2302 | page, fsdata); | |
2303 | if (err < 0) | |
2304 | goto out; | |
2305 | BUG_ON(err != len); | |
2306 | err = 0; | |
061e9746 OH |
2307 | |
2308 | balance_dirty_pages_ratelimited(mapping); | |
89e10787 | 2309 | } |
1da177e4 | 2310 | |
89e10787 NP |
2311 | /* page covers the boundary, find the boundary offset */ |
2312 | if (index == curidx) { | |
2313 | zerofrom = curpos & ~PAGE_CACHE_MASK; | |
1da177e4 | 2314 | /* if we will expand the thing last block will be filled */ |
89e10787 NP |
2315 | if (offset <= zerofrom) { |
2316 | goto out; | |
2317 | } | |
2318 | if (zerofrom & (blocksize-1)) { | |
1da177e4 LT |
2319 | *bytes |= (blocksize-1); |
2320 | (*bytes)++; | |
2321 | } | |
89e10787 | 2322 | len = offset - zerofrom; |
1da177e4 | 2323 | |
89e10787 NP |
2324 | err = pagecache_write_begin(file, mapping, curpos, len, |
2325 | AOP_FLAG_UNINTERRUPTIBLE, | |
2326 | &page, &fsdata); | |
2327 | if (err) | |
2328 | goto out; | |
eebd2aa3 | 2329 | zero_user(page, zerofrom, len); |
89e10787 NP |
2330 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2331 | page, fsdata); | |
2332 | if (err < 0) | |
2333 | goto out; | |
2334 | BUG_ON(err != len); | |
2335 | err = 0; | |
1da177e4 | 2336 | } |
89e10787 NP |
2337 | out: |
2338 | return err; | |
2339 | } | |
2340 | ||
2341 | /* | |
2342 | * For moronic filesystems that do not allow holes in file. | |
2343 | * We may have to extend the file. | |
2344 | */ | |
2345 | int cont_write_begin(struct file *file, struct address_space *mapping, | |
2346 | loff_t pos, unsigned len, unsigned flags, | |
2347 | struct page **pagep, void **fsdata, | |
2348 | get_block_t *get_block, loff_t *bytes) | |
2349 | { | |
2350 | struct inode *inode = mapping->host; | |
2351 | unsigned blocksize = 1 << inode->i_blkbits; | |
2352 | unsigned zerofrom; | |
2353 | int err; | |
2354 | ||
2355 | err = cont_expand_zero(file, mapping, pos, bytes); | |
2356 | if (err) | |
2357 | goto out; | |
2358 | ||
2359 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | |
2360 | if (pos+len > *bytes && zerofrom & (blocksize-1)) { | |
2361 | *bytes |= (blocksize-1); | |
2362 | (*bytes)++; | |
1da177e4 | 2363 | } |
1da177e4 | 2364 | |
89e10787 NP |
2365 | *pagep = NULL; |
2366 | err = block_write_begin(file, mapping, pos, len, | |
2367 | flags, pagep, fsdata, get_block); | |
1da177e4 | 2368 | out: |
89e10787 | 2369 | return err; |
1da177e4 LT |
2370 | } |
2371 | ||
2372 | int block_prepare_write(struct page *page, unsigned from, unsigned to, | |
2373 | get_block_t *get_block) | |
2374 | { | |
2375 | struct inode *inode = page->mapping->host; | |
2376 | int err = __block_prepare_write(inode, page, from, to, get_block); | |
2377 | if (err) | |
2378 | ClearPageUptodate(page); | |
2379 | return err; | |
2380 | } | |
2381 | ||
2382 | int block_commit_write(struct page *page, unsigned from, unsigned to) | |
2383 | { | |
2384 | struct inode *inode = page->mapping->host; | |
2385 | __block_commit_write(inode,page,from,to); | |
2386 | return 0; | |
2387 | } | |
2388 | ||
54171690 DC |
2389 | /* |
2390 | * block_page_mkwrite() is not allowed to change the file size as it gets | |
2391 | * called from a page fault handler when a page is first dirtied. Hence we must | |
2392 | * be careful to check for EOF conditions here. We set the page up correctly | |
2393 | * for a written page which means we get ENOSPC checking when writing into | |
2394 | * holes and correct delalloc and unwritten extent mapping on filesystems that | |
2395 | * support these features. | |
2396 | * | |
2397 | * We are not allowed to take the i_mutex here so we have to play games to | |
2398 | * protect against truncate races as the page could now be beyond EOF. Because | |
2399 | * vmtruncate() writes the inode size before removing pages, once we have the | |
2400 | * page lock we can determine safely if the page is beyond EOF. If it is not | |
2401 | * beyond EOF, then the page is guaranteed safe against truncation until we | |
2402 | * unlock the page. | |
2403 | */ | |
2404 | int | |
2405 | block_page_mkwrite(struct vm_area_struct *vma, struct page *page, | |
2406 | get_block_t get_block) | |
2407 | { | |
2408 | struct inode *inode = vma->vm_file->f_path.dentry->d_inode; | |
2409 | unsigned long end; | |
2410 | loff_t size; | |
2411 | int ret = -EINVAL; | |
2412 | ||
2413 | lock_page(page); | |
2414 | size = i_size_read(inode); | |
2415 | if ((page->mapping != inode->i_mapping) || | |
18336338 | 2416 | (page_offset(page) > size)) { |
54171690 DC |
2417 | /* page got truncated out from underneath us */ |
2418 | goto out_unlock; | |
2419 | } | |
2420 | ||
2421 | /* page is wholly or partially inside EOF */ | |
2422 | if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) | |
2423 | end = size & ~PAGE_CACHE_MASK; | |
2424 | else | |
2425 | end = PAGE_CACHE_SIZE; | |
2426 | ||
2427 | ret = block_prepare_write(page, 0, end, get_block); | |
2428 | if (!ret) | |
2429 | ret = block_commit_write(page, 0, end); | |
2430 | ||
2431 | out_unlock: | |
2432 | unlock_page(page); | |
2433 | return ret; | |
2434 | } | |
1da177e4 LT |
2435 | |
2436 | /* | |
03158cd7 | 2437 | * nobh_write_begin()'s prereads are special: the buffer_heads are freed |
1da177e4 LT |
2438 | * immediately, while under the page lock. So it needs a special end_io |
2439 | * handler which does not touch the bh after unlocking it. | |
1da177e4 LT |
2440 | */ |
2441 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | |
2442 | { | |
68671f35 | 2443 | __end_buffer_read_notouch(bh, uptodate); |
1da177e4 LT |
2444 | } |
2445 | ||
03158cd7 NP |
2446 | /* |
2447 | * Attach the singly-linked list of buffers created by nobh_write_begin, to | |
2448 | * the page (converting it to circular linked list and taking care of page | |
2449 | * dirty races). | |
2450 | */ | |
2451 | static void attach_nobh_buffers(struct page *page, struct buffer_head *head) | |
2452 | { | |
2453 | struct buffer_head *bh; | |
2454 | ||
2455 | BUG_ON(!PageLocked(page)); | |
2456 | ||
2457 | spin_lock(&page->mapping->private_lock); | |
2458 | bh = head; | |
2459 | do { | |
2460 | if (PageDirty(page)) | |
2461 | set_buffer_dirty(bh); | |
2462 | if (!bh->b_this_page) | |
2463 | bh->b_this_page = head; | |
2464 | bh = bh->b_this_page; | |
2465 | } while (bh != head); | |
2466 | attach_page_buffers(page, head); | |
2467 | spin_unlock(&page->mapping->private_lock); | |
2468 | } | |
2469 | ||
1da177e4 LT |
2470 | /* |
2471 | * On entry, the page is fully not uptodate. | |
2472 | * On exit the page is fully uptodate in the areas outside (from,to) | |
2473 | */ | |
03158cd7 NP |
2474 | int nobh_write_begin(struct file *file, struct address_space *mapping, |
2475 | loff_t pos, unsigned len, unsigned flags, | |
2476 | struct page **pagep, void **fsdata, | |
1da177e4 LT |
2477 | get_block_t *get_block) |
2478 | { | |
03158cd7 | 2479 | struct inode *inode = mapping->host; |
1da177e4 LT |
2480 | const unsigned blkbits = inode->i_blkbits; |
2481 | const unsigned blocksize = 1 << blkbits; | |
a4b0672d | 2482 | struct buffer_head *head, *bh; |
03158cd7 NP |
2483 | struct page *page; |
2484 | pgoff_t index; | |
2485 | unsigned from, to; | |
1da177e4 | 2486 | unsigned block_in_page; |
a4b0672d | 2487 | unsigned block_start, block_end; |
1da177e4 | 2488 | sector_t block_in_file; |
1da177e4 | 2489 | int nr_reads = 0; |
1da177e4 LT |
2490 | int ret = 0; |
2491 | int is_mapped_to_disk = 1; | |
1da177e4 | 2492 | |
03158cd7 NP |
2493 | index = pos >> PAGE_CACHE_SHIFT; |
2494 | from = pos & (PAGE_CACHE_SIZE - 1); | |
2495 | to = from + len; | |
2496 | ||
2497 | page = __grab_cache_page(mapping, index); | |
2498 | if (!page) | |
2499 | return -ENOMEM; | |
2500 | *pagep = page; | |
2501 | *fsdata = NULL; | |
2502 | ||
2503 | if (page_has_buffers(page)) { | |
2504 | unlock_page(page); | |
2505 | page_cache_release(page); | |
2506 | *pagep = NULL; | |
2507 | return block_write_begin(file, mapping, pos, len, flags, pagep, | |
2508 | fsdata, get_block); | |
2509 | } | |
a4b0672d | 2510 | |
1da177e4 LT |
2511 | if (PageMappedToDisk(page)) |
2512 | return 0; | |
2513 | ||
a4b0672d NP |
2514 | /* |
2515 | * Allocate buffers so that we can keep track of state, and potentially | |
2516 | * attach them to the page if an error occurs. In the common case of | |
2517 | * no error, they will just be freed again without ever being attached | |
2518 | * to the page (which is all OK, because we're under the page lock). | |
2519 | * | |
2520 | * Be careful: the buffer linked list is a NULL terminated one, rather | |
2521 | * than the circular one we're used to. | |
2522 | */ | |
2523 | head = alloc_page_buffers(page, blocksize, 0); | |
03158cd7 NP |
2524 | if (!head) { |
2525 | ret = -ENOMEM; | |
2526 | goto out_release; | |
2527 | } | |
a4b0672d | 2528 | |
1da177e4 | 2529 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
1da177e4 LT |
2530 | |
2531 | /* | |
2532 | * We loop across all blocks in the page, whether or not they are | |
2533 | * part of the affected region. This is so we can discover if the | |
2534 | * page is fully mapped-to-disk. | |
2535 | */ | |
a4b0672d | 2536 | for (block_start = 0, block_in_page = 0, bh = head; |
1da177e4 | 2537 | block_start < PAGE_CACHE_SIZE; |
a4b0672d | 2538 | block_in_page++, block_start += blocksize, bh = bh->b_this_page) { |
1da177e4 LT |
2539 | int create; |
2540 | ||
a4b0672d NP |
2541 | block_end = block_start + blocksize; |
2542 | bh->b_state = 0; | |
1da177e4 LT |
2543 | create = 1; |
2544 | if (block_start >= to) | |
2545 | create = 0; | |
2546 | ret = get_block(inode, block_in_file + block_in_page, | |
a4b0672d | 2547 | bh, create); |
1da177e4 LT |
2548 | if (ret) |
2549 | goto failed; | |
a4b0672d | 2550 | if (!buffer_mapped(bh)) |
1da177e4 | 2551 | is_mapped_to_disk = 0; |
a4b0672d NP |
2552 | if (buffer_new(bh)) |
2553 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | |
2554 | if (PageUptodate(page)) { | |
2555 | set_buffer_uptodate(bh); | |
1da177e4 | 2556 | continue; |
a4b0672d NP |
2557 | } |
2558 | if (buffer_new(bh) || !buffer_mapped(bh)) { | |
eebd2aa3 CL |
2559 | zero_user_segments(page, block_start, from, |
2560 | to, block_end); | |
1da177e4 LT |
2561 | continue; |
2562 | } | |
a4b0672d | 2563 | if (buffer_uptodate(bh)) |
1da177e4 LT |
2564 | continue; /* reiserfs does this */ |
2565 | if (block_start < from || block_end > to) { | |
a4b0672d NP |
2566 | lock_buffer(bh); |
2567 | bh->b_end_io = end_buffer_read_nobh; | |
2568 | submit_bh(READ, bh); | |
2569 | nr_reads++; | |
1da177e4 LT |
2570 | } |
2571 | } | |
2572 | ||
2573 | if (nr_reads) { | |
1da177e4 LT |
2574 | /* |
2575 | * The page is locked, so these buffers are protected from | |
2576 | * any VM or truncate activity. Hence we don't need to care | |
2577 | * for the buffer_head refcounts. | |
2578 | */ | |
a4b0672d | 2579 | for (bh = head; bh; bh = bh->b_this_page) { |
1da177e4 LT |
2580 | wait_on_buffer(bh); |
2581 | if (!buffer_uptodate(bh)) | |
2582 | ret = -EIO; | |
1da177e4 LT |
2583 | } |
2584 | if (ret) | |
2585 | goto failed; | |
2586 | } | |
2587 | ||
2588 | if (is_mapped_to_disk) | |
2589 | SetPageMappedToDisk(page); | |
1da177e4 | 2590 | |
03158cd7 | 2591 | *fsdata = head; /* to be released by nobh_write_end */ |
a4b0672d | 2592 | |
1da177e4 LT |
2593 | return 0; |
2594 | ||
2595 | failed: | |
03158cd7 | 2596 | BUG_ON(!ret); |
1da177e4 | 2597 | /* |
a4b0672d NP |
2598 | * Error recovery is a bit difficult. We need to zero out blocks that |
2599 | * were newly allocated, and dirty them to ensure they get written out. | |
2600 | * Buffers need to be attached to the page at this point, otherwise | |
2601 | * the handling of potential IO errors during writeout would be hard | |
2602 | * (could try doing synchronous writeout, but what if that fails too?) | |
1da177e4 | 2603 | */ |
03158cd7 NP |
2604 | attach_nobh_buffers(page, head); |
2605 | page_zero_new_buffers(page, from, to); | |
a4b0672d | 2606 | |
03158cd7 NP |
2607 | out_release: |
2608 | unlock_page(page); | |
2609 | page_cache_release(page); | |
2610 | *pagep = NULL; | |
a4b0672d | 2611 | |
03158cd7 NP |
2612 | if (pos + len > inode->i_size) |
2613 | vmtruncate(inode, inode->i_size); | |
a4b0672d | 2614 | |
1da177e4 LT |
2615 | return ret; |
2616 | } | |
03158cd7 | 2617 | EXPORT_SYMBOL(nobh_write_begin); |
1da177e4 | 2618 | |
03158cd7 NP |
2619 | int nobh_write_end(struct file *file, struct address_space *mapping, |
2620 | loff_t pos, unsigned len, unsigned copied, | |
2621 | struct page *page, void *fsdata) | |
1da177e4 LT |
2622 | { |
2623 | struct inode *inode = page->mapping->host; | |
efdc3131 | 2624 | struct buffer_head *head = fsdata; |
03158cd7 | 2625 | struct buffer_head *bh; |
5b41e74a | 2626 | BUG_ON(fsdata != NULL && page_has_buffers(page)); |
1da177e4 | 2627 | |
5b41e74a DM |
2628 | if (unlikely(copied < len) && !page_has_buffers(page)) |
2629 | attach_nobh_buffers(page, head); | |
2630 | if (page_has_buffers(page)) | |
2631 | return generic_write_end(file, mapping, pos, len, | |
2632 | copied, page, fsdata); | |
a4b0672d | 2633 | |
22c8ca78 | 2634 | SetPageUptodate(page); |
1da177e4 | 2635 | set_page_dirty(page); |
03158cd7 NP |
2636 | if (pos+copied > inode->i_size) { |
2637 | i_size_write(inode, pos+copied); | |
1da177e4 LT |
2638 | mark_inode_dirty(inode); |
2639 | } | |
03158cd7 NP |
2640 | |
2641 | unlock_page(page); | |
2642 | page_cache_release(page); | |
2643 | ||
03158cd7 NP |
2644 | while (head) { |
2645 | bh = head; | |
2646 | head = head->b_this_page; | |
2647 | free_buffer_head(bh); | |
2648 | } | |
2649 | ||
2650 | return copied; | |
1da177e4 | 2651 | } |
03158cd7 | 2652 | EXPORT_SYMBOL(nobh_write_end); |
1da177e4 LT |
2653 | |
2654 | /* | |
2655 | * nobh_writepage() - based on block_full_write_page() except | |
2656 | * that it tries to operate without attaching bufferheads to | |
2657 | * the page. | |
2658 | */ | |
2659 | int nobh_writepage(struct page *page, get_block_t *get_block, | |
2660 | struct writeback_control *wbc) | |
2661 | { | |
2662 | struct inode * const inode = page->mapping->host; | |
2663 | loff_t i_size = i_size_read(inode); | |
2664 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2665 | unsigned offset; | |
1da177e4 LT |
2666 | int ret; |
2667 | ||
2668 | /* Is the page fully inside i_size? */ | |
2669 | if (page->index < end_index) | |
2670 | goto out; | |
2671 | ||
2672 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2673 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2674 | if (page->index >= end_index+1 || !offset) { | |
2675 | /* | |
2676 | * The page may have dirty, unmapped buffers. For example, | |
2677 | * they may have been added in ext3_writepage(). Make them | |
2678 | * freeable here, so the page does not leak. | |
2679 | */ | |
2680 | #if 0 | |
2681 | /* Not really sure about this - do we need this ? */ | |
2682 | if (page->mapping->a_ops->invalidatepage) | |
2683 | page->mapping->a_ops->invalidatepage(page, offset); | |
2684 | #endif | |
2685 | unlock_page(page); | |
2686 | return 0; /* don't care */ | |
2687 | } | |
2688 | ||
2689 | /* | |
2690 | * The page straddles i_size. It must be zeroed out on each and every | |
2691 | * writepage invocation because it may be mmapped. "A file is mapped | |
2692 | * in multiples of the page size. For a file that is not a multiple of | |
2693 | * the page size, the remaining memory is zeroed when mapped, and | |
2694 | * writes to that region are not written out to the file." | |
2695 | */ | |
eebd2aa3 | 2696 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1da177e4 LT |
2697 | out: |
2698 | ret = mpage_writepage(page, get_block, wbc); | |
2699 | if (ret == -EAGAIN) | |
2700 | ret = __block_write_full_page(inode, page, get_block, wbc); | |
2701 | return ret; | |
2702 | } | |
2703 | EXPORT_SYMBOL(nobh_writepage); | |
2704 | ||
03158cd7 NP |
2705 | int nobh_truncate_page(struct address_space *mapping, |
2706 | loff_t from, get_block_t *get_block) | |
1da177e4 | 2707 | { |
1da177e4 LT |
2708 | pgoff_t index = from >> PAGE_CACHE_SHIFT; |
2709 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
03158cd7 NP |
2710 | unsigned blocksize; |
2711 | sector_t iblock; | |
2712 | unsigned length, pos; | |
2713 | struct inode *inode = mapping->host; | |
1da177e4 | 2714 | struct page *page; |
03158cd7 NP |
2715 | struct buffer_head map_bh; |
2716 | int err; | |
1da177e4 | 2717 | |
03158cd7 NP |
2718 | blocksize = 1 << inode->i_blkbits; |
2719 | length = offset & (blocksize - 1); | |
2720 | ||
2721 | /* Block boundary? Nothing to do */ | |
2722 | if (!length) | |
2723 | return 0; | |
2724 | ||
2725 | length = blocksize - length; | |
2726 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
1da177e4 | 2727 | |
1da177e4 | 2728 | page = grab_cache_page(mapping, index); |
03158cd7 | 2729 | err = -ENOMEM; |
1da177e4 LT |
2730 | if (!page) |
2731 | goto out; | |
2732 | ||
03158cd7 NP |
2733 | if (page_has_buffers(page)) { |
2734 | has_buffers: | |
2735 | unlock_page(page); | |
2736 | page_cache_release(page); | |
2737 | return block_truncate_page(mapping, from, get_block); | |
2738 | } | |
2739 | ||
2740 | /* Find the buffer that contains "offset" */ | |
2741 | pos = blocksize; | |
2742 | while (offset >= pos) { | |
2743 | iblock++; | |
2744 | pos += blocksize; | |
2745 | } | |
2746 | ||
2747 | err = get_block(inode, iblock, &map_bh, 0); | |
2748 | if (err) | |
2749 | goto unlock; | |
2750 | /* unmapped? It's a hole - nothing to do */ | |
2751 | if (!buffer_mapped(&map_bh)) | |
2752 | goto unlock; | |
2753 | ||
2754 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2755 | if (!PageUptodate(page)) { | |
2756 | err = mapping->a_ops->readpage(NULL, page); | |
2757 | if (err) { | |
2758 | page_cache_release(page); | |
2759 | goto out; | |
2760 | } | |
2761 | lock_page(page); | |
2762 | if (!PageUptodate(page)) { | |
2763 | err = -EIO; | |
2764 | goto unlock; | |
2765 | } | |
2766 | if (page_has_buffers(page)) | |
2767 | goto has_buffers; | |
1da177e4 | 2768 | } |
eebd2aa3 | 2769 | zero_user(page, offset, length); |
03158cd7 NP |
2770 | set_page_dirty(page); |
2771 | err = 0; | |
2772 | ||
2773 | unlock: | |
1da177e4 LT |
2774 | unlock_page(page); |
2775 | page_cache_release(page); | |
2776 | out: | |
03158cd7 | 2777 | return err; |
1da177e4 LT |
2778 | } |
2779 | EXPORT_SYMBOL(nobh_truncate_page); | |
2780 | ||
2781 | int block_truncate_page(struct address_space *mapping, | |
2782 | loff_t from, get_block_t *get_block) | |
2783 | { | |
2784 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | |
2785 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
2786 | unsigned blocksize; | |
54b21a79 | 2787 | sector_t iblock; |
1da177e4 LT |
2788 | unsigned length, pos; |
2789 | struct inode *inode = mapping->host; | |
2790 | struct page *page; | |
2791 | struct buffer_head *bh; | |
1da177e4 LT |
2792 | int err; |
2793 | ||
2794 | blocksize = 1 << inode->i_blkbits; | |
2795 | length = offset & (blocksize - 1); | |
2796 | ||
2797 | /* Block boundary? Nothing to do */ | |
2798 | if (!length) | |
2799 | return 0; | |
2800 | ||
2801 | length = blocksize - length; | |
54b21a79 | 2802 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
2803 | |
2804 | page = grab_cache_page(mapping, index); | |
2805 | err = -ENOMEM; | |
2806 | if (!page) | |
2807 | goto out; | |
2808 | ||
2809 | if (!page_has_buffers(page)) | |
2810 | create_empty_buffers(page, blocksize, 0); | |
2811 | ||
2812 | /* Find the buffer that contains "offset" */ | |
2813 | bh = page_buffers(page); | |
2814 | pos = blocksize; | |
2815 | while (offset >= pos) { | |
2816 | bh = bh->b_this_page; | |
2817 | iblock++; | |
2818 | pos += blocksize; | |
2819 | } | |
2820 | ||
2821 | err = 0; | |
2822 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 2823 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
2824 | err = get_block(inode, iblock, bh, 0); |
2825 | if (err) | |
2826 | goto unlock; | |
2827 | /* unmapped? It's a hole - nothing to do */ | |
2828 | if (!buffer_mapped(bh)) | |
2829 | goto unlock; | |
2830 | } | |
2831 | ||
2832 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2833 | if (PageUptodate(page)) | |
2834 | set_buffer_uptodate(bh); | |
2835 | ||
33a266dd | 2836 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
1da177e4 LT |
2837 | err = -EIO; |
2838 | ll_rw_block(READ, 1, &bh); | |
2839 | wait_on_buffer(bh); | |
2840 | /* Uhhuh. Read error. Complain and punt. */ | |
2841 | if (!buffer_uptodate(bh)) | |
2842 | goto unlock; | |
2843 | } | |
2844 | ||
eebd2aa3 | 2845 | zero_user(page, offset, length); |
1da177e4 LT |
2846 | mark_buffer_dirty(bh); |
2847 | err = 0; | |
2848 | ||
2849 | unlock: | |
2850 | unlock_page(page); | |
2851 | page_cache_release(page); | |
2852 | out: | |
2853 | return err; | |
2854 | } | |
2855 | ||
2856 | /* | |
2857 | * The generic ->writepage function for buffer-backed address_spaces | |
2858 | */ | |
2859 | int block_write_full_page(struct page *page, get_block_t *get_block, | |
2860 | struct writeback_control *wbc) | |
2861 | { | |
2862 | struct inode * const inode = page->mapping->host; | |
2863 | loff_t i_size = i_size_read(inode); | |
2864 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2865 | unsigned offset; | |
1da177e4 LT |
2866 | |
2867 | /* Is the page fully inside i_size? */ | |
2868 | if (page->index < end_index) | |
2869 | return __block_write_full_page(inode, page, get_block, wbc); | |
2870 | ||
2871 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2872 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2873 | if (page->index >= end_index+1 || !offset) { | |
2874 | /* | |
2875 | * The page may have dirty, unmapped buffers. For example, | |
2876 | * they may have been added in ext3_writepage(). Make them | |
2877 | * freeable here, so the page does not leak. | |
2878 | */ | |
aaa4059b | 2879 | do_invalidatepage(page, 0); |
1da177e4 LT |
2880 | unlock_page(page); |
2881 | return 0; /* don't care */ | |
2882 | } | |
2883 | ||
2884 | /* | |
2885 | * The page straddles i_size. It must be zeroed out on each and every | |
2886 | * writepage invokation because it may be mmapped. "A file is mapped | |
2887 | * in multiples of the page size. For a file that is not a multiple of | |
2888 | * the page size, the remaining memory is zeroed when mapped, and | |
2889 | * writes to that region are not written out to the file." | |
2890 | */ | |
eebd2aa3 | 2891 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1da177e4 LT |
2892 | return __block_write_full_page(inode, page, get_block, wbc); |
2893 | } | |
2894 | ||
2895 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, | |
2896 | get_block_t *get_block) | |
2897 | { | |
2898 | struct buffer_head tmp; | |
2899 | struct inode *inode = mapping->host; | |
2900 | tmp.b_state = 0; | |
2901 | tmp.b_blocknr = 0; | |
b0cf2321 | 2902 | tmp.b_size = 1 << inode->i_blkbits; |
1da177e4 LT |
2903 | get_block(inode, block, &tmp, 0); |
2904 | return tmp.b_blocknr; | |
2905 | } | |
2906 | ||
6712ecf8 | 2907 | static void end_bio_bh_io_sync(struct bio *bio, int err) |
1da177e4 LT |
2908 | { |
2909 | struct buffer_head *bh = bio->bi_private; | |
2910 | ||
1da177e4 LT |
2911 | if (err == -EOPNOTSUPP) { |
2912 | set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); | |
2913 | set_bit(BH_Eopnotsupp, &bh->b_state); | |
2914 | } | |
2915 | ||
2916 | bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); | |
2917 | bio_put(bio); | |
1da177e4 LT |
2918 | } |
2919 | ||
2920 | int submit_bh(int rw, struct buffer_head * bh) | |
2921 | { | |
2922 | struct bio *bio; | |
2923 | int ret = 0; | |
2924 | ||
2925 | BUG_ON(!buffer_locked(bh)); | |
2926 | BUG_ON(!buffer_mapped(bh)); | |
2927 | BUG_ON(!bh->b_end_io); | |
2928 | ||
48fd4f93 JA |
2929 | /* |
2930 | * Mask in barrier bit for a write (could be either a WRITE or a | |
2931 | * WRITE_SYNC | |
2932 | */ | |
2933 | if (buffer_ordered(bh) && (rw & WRITE)) | |
2934 | rw |= WRITE_BARRIER; | |
1da177e4 LT |
2935 | |
2936 | /* | |
48fd4f93 | 2937 | * Only clear out a write error when rewriting |
1da177e4 | 2938 | */ |
48fd4f93 | 2939 | if (test_set_buffer_req(bh) && (rw & WRITE)) |
1da177e4 LT |
2940 | clear_buffer_write_io_error(bh); |
2941 | ||
2942 | /* | |
2943 | * from here on down, it's all bio -- do the initial mapping, | |
2944 | * submit_bio -> generic_make_request may further map this bio around | |
2945 | */ | |
2946 | bio = bio_alloc(GFP_NOIO, 1); | |
2947 | ||
2948 | bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); | |
2949 | bio->bi_bdev = bh->b_bdev; | |
2950 | bio->bi_io_vec[0].bv_page = bh->b_page; | |
2951 | bio->bi_io_vec[0].bv_len = bh->b_size; | |
2952 | bio->bi_io_vec[0].bv_offset = bh_offset(bh); | |
2953 | ||
2954 | bio->bi_vcnt = 1; | |
2955 | bio->bi_idx = 0; | |
2956 | bio->bi_size = bh->b_size; | |
2957 | ||
2958 | bio->bi_end_io = end_bio_bh_io_sync; | |
2959 | bio->bi_private = bh; | |
2960 | ||
2961 | bio_get(bio); | |
2962 | submit_bio(rw, bio); | |
2963 | ||
2964 | if (bio_flagged(bio, BIO_EOPNOTSUPP)) | |
2965 | ret = -EOPNOTSUPP; | |
2966 | ||
2967 | bio_put(bio); | |
2968 | return ret; | |
2969 | } | |
2970 | ||
2971 | /** | |
2972 | * ll_rw_block: low-level access to block devices (DEPRECATED) | |
a7662236 | 2973 | * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) |
1da177e4 LT |
2974 | * @nr: number of &struct buffer_heads in the array |
2975 | * @bhs: array of pointers to &struct buffer_head | |
2976 | * | |
a7662236 JK |
2977 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
2978 | * requests an I/O operation on them, either a %READ or a %WRITE. The third | |
2979 | * %SWRITE is like %WRITE only we make sure that the *current* data in buffers | |
2980 | * are sent to disk. The fourth %READA option is described in the documentation | |
2981 | * for generic_make_request() which ll_rw_block() calls. | |
1da177e4 LT |
2982 | * |
2983 | * This function drops any buffer that it cannot get a lock on (with the | |
a7662236 JK |
2984 | * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be |
2985 | * clean when doing a write request, and any buffer that appears to be | |
2986 | * up-to-date when doing read request. Further it marks as clean buffers that | |
2987 | * are processed for writing (the buffer cache won't assume that they are | |
2988 | * actually clean until the buffer gets unlocked). | |
1da177e4 LT |
2989 | * |
2990 | * ll_rw_block sets b_end_io to simple completion handler that marks | |
2991 | * the buffer up-to-date (if approriate), unlocks the buffer and wakes | |
2992 | * any waiters. | |
2993 | * | |
2994 | * All of the buffers must be for the same device, and must also be a | |
2995 | * multiple of the current approved size for the device. | |
2996 | */ | |
2997 | void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) | |
2998 | { | |
2999 | int i; | |
3000 | ||
3001 | for (i = 0; i < nr; i++) { | |
3002 | struct buffer_head *bh = bhs[i]; | |
3003 | ||
18ce3751 | 3004 | if (rw == SWRITE || rw == SWRITE_SYNC) |
a7662236 | 3005 | lock_buffer(bh); |
ca5de404 | 3006 | else if (!trylock_buffer(bh)) |
1da177e4 LT |
3007 | continue; |
3008 | ||
18ce3751 | 3009 | if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC) { |
1da177e4 | 3010 | if (test_clear_buffer_dirty(bh)) { |
76c3073a | 3011 | bh->b_end_io = end_buffer_write_sync; |
e60e5c50 | 3012 | get_bh(bh); |
18ce3751 JA |
3013 | if (rw == SWRITE_SYNC) |
3014 | submit_bh(WRITE_SYNC, bh); | |
3015 | else | |
3016 | submit_bh(WRITE, bh); | |
1da177e4 LT |
3017 | continue; |
3018 | } | |
3019 | } else { | |
1da177e4 | 3020 | if (!buffer_uptodate(bh)) { |
76c3073a | 3021 | bh->b_end_io = end_buffer_read_sync; |
e60e5c50 | 3022 | get_bh(bh); |
1da177e4 LT |
3023 | submit_bh(rw, bh); |
3024 | continue; | |
3025 | } | |
3026 | } | |
3027 | unlock_buffer(bh); | |
1da177e4 LT |
3028 | } |
3029 | } | |
3030 | ||
3031 | /* | |
3032 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | |
3033 | * and then start new I/O and then wait upon it. The caller must have a ref on | |
3034 | * the buffer_head. | |
3035 | */ | |
3036 | int sync_dirty_buffer(struct buffer_head *bh) | |
3037 | { | |
3038 | int ret = 0; | |
3039 | ||
3040 | WARN_ON(atomic_read(&bh->b_count) < 1); | |
3041 | lock_buffer(bh); | |
3042 | if (test_clear_buffer_dirty(bh)) { | |
3043 | get_bh(bh); | |
3044 | bh->b_end_io = end_buffer_write_sync; | |
18ce3751 | 3045 | ret = submit_bh(WRITE_SYNC, bh); |
1da177e4 LT |
3046 | wait_on_buffer(bh); |
3047 | if (buffer_eopnotsupp(bh)) { | |
3048 | clear_buffer_eopnotsupp(bh); | |
3049 | ret = -EOPNOTSUPP; | |
3050 | } | |
3051 | if (!ret && !buffer_uptodate(bh)) | |
3052 | ret = -EIO; | |
3053 | } else { | |
3054 | unlock_buffer(bh); | |
3055 | } | |
3056 | return ret; | |
3057 | } | |
3058 | ||
3059 | /* | |
3060 | * try_to_free_buffers() checks if all the buffers on this particular page | |
3061 | * are unused, and releases them if so. | |
3062 | * | |
3063 | * Exclusion against try_to_free_buffers may be obtained by either | |
3064 | * locking the page or by holding its mapping's private_lock. | |
3065 | * | |
3066 | * If the page is dirty but all the buffers are clean then we need to | |
3067 | * be sure to mark the page clean as well. This is because the page | |
3068 | * may be against a block device, and a later reattachment of buffers | |
3069 | * to a dirty page will set *all* buffers dirty. Which would corrupt | |
3070 | * filesystem data on the same device. | |
3071 | * | |
3072 | * The same applies to regular filesystem pages: if all the buffers are | |
3073 | * clean then we set the page clean and proceed. To do that, we require | |
3074 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | |
3075 | * private_lock. | |
3076 | * | |
3077 | * try_to_free_buffers() is non-blocking. | |
3078 | */ | |
3079 | static inline int buffer_busy(struct buffer_head *bh) | |
3080 | { | |
3081 | return atomic_read(&bh->b_count) | | |
3082 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | |
3083 | } | |
3084 | ||
3085 | static int | |
3086 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | |
3087 | { | |
3088 | struct buffer_head *head = page_buffers(page); | |
3089 | struct buffer_head *bh; | |
3090 | ||
3091 | bh = head; | |
3092 | do { | |
de7d5a3b | 3093 | if (buffer_write_io_error(bh) && page->mapping) |
1da177e4 LT |
3094 | set_bit(AS_EIO, &page->mapping->flags); |
3095 | if (buffer_busy(bh)) | |
3096 | goto failed; | |
3097 | bh = bh->b_this_page; | |
3098 | } while (bh != head); | |
3099 | ||
3100 | do { | |
3101 | struct buffer_head *next = bh->b_this_page; | |
3102 | ||
535ee2fb | 3103 | if (bh->b_assoc_map) |
1da177e4 LT |
3104 | __remove_assoc_queue(bh); |
3105 | bh = next; | |
3106 | } while (bh != head); | |
3107 | *buffers_to_free = head; | |
3108 | __clear_page_buffers(page); | |
3109 | return 1; | |
3110 | failed: | |
3111 | return 0; | |
3112 | } | |
3113 | ||
3114 | int try_to_free_buffers(struct page *page) | |
3115 | { | |
3116 | struct address_space * const mapping = page->mapping; | |
3117 | struct buffer_head *buffers_to_free = NULL; | |
3118 | int ret = 0; | |
3119 | ||
3120 | BUG_ON(!PageLocked(page)); | |
ecdfc978 | 3121 | if (PageWriteback(page)) |
1da177e4 LT |
3122 | return 0; |
3123 | ||
3124 | if (mapping == NULL) { /* can this still happen? */ | |
3125 | ret = drop_buffers(page, &buffers_to_free); | |
3126 | goto out; | |
3127 | } | |
3128 | ||
3129 | spin_lock(&mapping->private_lock); | |
3130 | ret = drop_buffers(page, &buffers_to_free); | |
ecdfc978 LT |
3131 | |
3132 | /* | |
3133 | * If the filesystem writes its buffers by hand (eg ext3) | |
3134 | * then we can have clean buffers against a dirty page. We | |
3135 | * clean the page here; otherwise the VM will never notice | |
3136 | * that the filesystem did any IO at all. | |
3137 | * | |
3138 | * Also, during truncate, discard_buffer will have marked all | |
3139 | * the page's buffers clean. We discover that here and clean | |
3140 | * the page also. | |
87df7241 NP |
3141 | * |
3142 | * private_lock must be held over this entire operation in order | |
3143 | * to synchronise against __set_page_dirty_buffers and prevent the | |
3144 | * dirty bit from being lost. | |
ecdfc978 LT |
3145 | */ |
3146 | if (ret) | |
3147 | cancel_dirty_page(page, PAGE_CACHE_SIZE); | |
87df7241 | 3148 | spin_unlock(&mapping->private_lock); |
1da177e4 LT |
3149 | out: |
3150 | if (buffers_to_free) { | |
3151 | struct buffer_head *bh = buffers_to_free; | |
3152 | ||
3153 | do { | |
3154 | struct buffer_head *next = bh->b_this_page; | |
3155 | free_buffer_head(bh); | |
3156 | bh = next; | |
3157 | } while (bh != buffers_to_free); | |
3158 | } | |
3159 | return ret; | |
3160 | } | |
3161 | EXPORT_SYMBOL(try_to_free_buffers); | |
3162 | ||
3978d717 | 3163 | void block_sync_page(struct page *page) |
1da177e4 LT |
3164 | { |
3165 | struct address_space *mapping; | |
3166 | ||
3167 | smp_mb(); | |
3168 | mapping = page_mapping(page); | |
3169 | if (mapping) | |
3170 | blk_run_backing_dev(mapping->backing_dev_info, page); | |
1da177e4 LT |
3171 | } |
3172 | ||
3173 | /* | |
3174 | * There are no bdflush tunables left. But distributions are | |
3175 | * still running obsolete flush daemons, so we terminate them here. | |
3176 | * | |
3177 | * Use of bdflush() is deprecated and will be removed in a future kernel. | |
3178 | * The `pdflush' kernel threads fully replace bdflush daemons and this call. | |
3179 | */ | |
3180 | asmlinkage long sys_bdflush(int func, long data) | |
3181 | { | |
3182 | static int msg_count; | |
3183 | ||
3184 | if (!capable(CAP_SYS_ADMIN)) | |
3185 | return -EPERM; | |
3186 | ||
3187 | if (msg_count < 5) { | |
3188 | msg_count++; | |
3189 | printk(KERN_INFO | |
3190 | "warning: process `%s' used the obsolete bdflush" | |
3191 | " system call\n", current->comm); | |
3192 | printk(KERN_INFO "Fix your initscripts?\n"); | |
3193 | } | |
3194 | ||
3195 | if (func == 1) | |
3196 | do_exit(0); | |
3197 | return 0; | |
3198 | } | |
3199 | ||
3200 | /* | |
3201 | * Buffer-head allocation | |
3202 | */ | |
e18b890b | 3203 | static struct kmem_cache *bh_cachep; |
1da177e4 LT |
3204 | |
3205 | /* | |
3206 | * Once the number of bh's in the machine exceeds this level, we start | |
3207 | * stripping them in writeback. | |
3208 | */ | |
3209 | static int max_buffer_heads; | |
3210 | ||
3211 | int buffer_heads_over_limit; | |
3212 | ||
3213 | struct bh_accounting { | |
3214 | int nr; /* Number of live bh's */ | |
3215 | int ratelimit; /* Limit cacheline bouncing */ | |
3216 | }; | |
3217 | ||
3218 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | |
3219 | ||
3220 | static void recalc_bh_state(void) | |
3221 | { | |
3222 | int i; | |
3223 | int tot = 0; | |
3224 | ||
3225 | if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) | |
3226 | return; | |
3227 | __get_cpu_var(bh_accounting).ratelimit = 0; | |
8a143426 | 3228 | for_each_online_cpu(i) |
1da177e4 LT |
3229 | tot += per_cpu(bh_accounting, i).nr; |
3230 | buffer_heads_over_limit = (tot > max_buffer_heads); | |
3231 | } | |
3232 | ||
dd0fc66f | 3233 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
1da177e4 | 3234 | { |
488514d1 | 3235 | struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags); |
1da177e4 | 3236 | if (ret) { |
a35afb83 | 3237 | INIT_LIST_HEAD(&ret->b_assoc_buffers); |
736c7b80 | 3238 | get_cpu_var(bh_accounting).nr++; |
1da177e4 | 3239 | recalc_bh_state(); |
736c7b80 | 3240 | put_cpu_var(bh_accounting); |
1da177e4 LT |
3241 | } |
3242 | return ret; | |
3243 | } | |
3244 | EXPORT_SYMBOL(alloc_buffer_head); | |
3245 | ||
3246 | void free_buffer_head(struct buffer_head *bh) | |
3247 | { | |
3248 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | |
3249 | kmem_cache_free(bh_cachep, bh); | |
736c7b80 | 3250 | get_cpu_var(bh_accounting).nr--; |
1da177e4 | 3251 | recalc_bh_state(); |
736c7b80 | 3252 | put_cpu_var(bh_accounting); |
1da177e4 LT |
3253 | } |
3254 | EXPORT_SYMBOL(free_buffer_head); | |
3255 | ||
1da177e4 LT |
3256 | static void buffer_exit_cpu(int cpu) |
3257 | { | |
3258 | int i; | |
3259 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | |
3260 | ||
3261 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
3262 | brelse(b->bhs[i]); | |
3263 | b->bhs[i] = NULL; | |
3264 | } | |
8a143426 ED |
3265 | get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; |
3266 | per_cpu(bh_accounting, cpu).nr = 0; | |
3267 | put_cpu_var(bh_accounting); | |
1da177e4 LT |
3268 | } |
3269 | ||
3270 | static int buffer_cpu_notify(struct notifier_block *self, | |
3271 | unsigned long action, void *hcpu) | |
3272 | { | |
8bb78442 | 3273 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) |
1da177e4 LT |
3274 | buffer_exit_cpu((unsigned long)hcpu); |
3275 | return NOTIFY_OK; | |
3276 | } | |
1da177e4 | 3277 | |
389d1b08 | 3278 | /** |
a6b91919 | 3279 | * bh_uptodate_or_lock - Test whether the buffer is uptodate |
389d1b08 AK |
3280 | * @bh: struct buffer_head |
3281 | * | |
3282 | * Return true if the buffer is up-to-date and false, | |
3283 | * with the buffer locked, if not. | |
3284 | */ | |
3285 | int bh_uptodate_or_lock(struct buffer_head *bh) | |
3286 | { | |
3287 | if (!buffer_uptodate(bh)) { | |
3288 | lock_buffer(bh); | |
3289 | if (!buffer_uptodate(bh)) | |
3290 | return 0; | |
3291 | unlock_buffer(bh); | |
3292 | } | |
3293 | return 1; | |
3294 | } | |
3295 | EXPORT_SYMBOL(bh_uptodate_or_lock); | |
3296 | ||
3297 | /** | |
a6b91919 | 3298 | * bh_submit_read - Submit a locked buffer for reading |
389d1b08 AK |
3299 | * @bh: struct buffer_head |
3300 | * | |
3301 | * Returns zero on success and -EIO on error. | |
3302 | */ | |
3303 | int bh_submit_read(struct buffer_head *bh) | |
3304 | { | |
3305 | BUG_ON(!buffer_locked(bh)); | |
3306 | ||
3307 | if (buffer_uptodate(bh)) { | |
3308 | unlock_buffer(bh); | |
3309 | return 0; | |
3310 | } | |
3311 | ||
3312 | get_bh(bh); | |
3313 | bh->b_end_io = end_buffer_read_sync; | |
3314 | submit_bh(READ, bh); | |
3315 | wait_on_buffer(bh); | |
3316 | if (buffer_uptodate(bh)) | |
3317 | return 0; | |
3318 | return -EIO; | |
3319 | } | |
3320 | EXPORT_SYMBOL(bh_submit_read); | |
3321 | ||
b98938c3 | 3322 | static void |
51cc5068 | 3323 | init_buffer_head(void *data) |
b98938c3 CL |
3324 | { |
3325 | struct buffer_head *bh = data; | |
3326 | ||
3327 | memset(bh, 0, sizeof(*bh)); | |
3328 | INIT_LIST_HEAD(&bh->b_assoc_buffers); | |
3329 | } | |
3330 | ||
1da177e4 LT |
3331 | void __init buffer_init(void) |
3332 | { | |
3333 | int nrpages; | |
3334 | ||
b98938c3 CL |
3335 | bh_cachep = kmem_cache_create("buffer_head", |
3336 | sizeof(struct buffer_head), 0, | |
3337 | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | |
3338 | SLAB_MEM_SPREAD), | |
3339 | init_buffer_head); | |
1da177e4 LT |
3340 | |
3341 | /* | |
3342 | * Limit the bh occupancy to 10% of ZONE_NORMAL | |
3343 | */ | |
3344 | nrpages = (nr_free_buffer_pages() * 10) / 100; | |
3345 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | |
3346 | hotcpu_notifier(buffer_cpu_notify, 0); | |
3347 | } | |
3348 | ||
3349 | EXPORT_SYMBOL(__bforget); | |
3350 | EXPORT_SYMBOL(__brelse); | |
3351 | EXPORT_SYMBOL(__wait_on_buffer); | |
3352 | EXPORT_SYMBOL(block_commit_write); | |
3353 | EXPORT_SYMBOL(block_prepare_write); | |
54171690 | 3354 | EXPORT_SYMBOL(block_page_mkwrite); |
1da177e4 LT |
3355 | EXPORT_SYMBOL(block_read_full_page); |
3356 | EXPORT_SYMBOL(block_sync_page); | |
3357 | EXPORT_SYMBOL(block_truncate_page); | |
3358 | EXPORT_SYMBOL(block_write_full_page); | |
89e10787 | 3359 | EXPORT_SYMBOL(cont_write_begin); |
1da177e4 LT |
3360 | EXPORT_SYMBOL(end_buffer_read_sync); |
3361 | EXPORT_SYMBOL(end_buffer_write_sync); | |
3362 | EXPORT_SYMBOL(file_fsync); | |
3363 | EXPORT_SYMBOL(fsync_bdev); | |
3364 | EXPORT_SYMBOL(generic_block_bmap); | |
05eb0b51 | 3365 | EXPORT_SYMBOL(generic_cont_expand_simple); |
1da177e4 LT |
3366 | EXPORT_SYMBOL(init_buffer); |
3367 | EXPORT_SYMBOL(invalidate_bdev); | |
3368 | EXPORT_SYMBOL(ll_rw_block); | |
3369 | EXPORT_SYMBOL(mark_buffer_dirty); | |
3370 | EXPORT_SYMBOL(submit_bh); | |
3371 | EXPORT_SYMBOL(sync_dirty_buffer); | |
3372 | EXPORT_SYMBOL(unlock_buffer); |