]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/buffer.c
[PATCH] change buffer_head.b_size to size_t
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/config.h>
22#include <linux/kernel.h>
23#include <linux/syscalls.h>
24#include <linux/fs.h>
25#include <linux/mm.h>
26#include <linux/percpu.h>
27#include <linux/slab.h>
28#include <linux/smp_lock.h>
16f7e0fe 29#include <linux/capability.h>
1da177e4
LT
30#include <linux/blkdev.h>
31#include <linux/file.h>
32#include <linux/quotaops.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/writeback.h>
36#include <linux/hash.h>
37#include <linux/suspend.h>
38#include <linux/buffer_head.h>
39#include <linux/bio.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/bitops.h>
43#include <linux/mpage.h>
fb1c8f93 44#include <linux/bit_spinlock.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47static void invalidate_bh_lrus(void);
48
49#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51inline void
52init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53{
54 bh->b_end_io = handler;
55 bh->b_private = private;
56}
57
58static int sync_buffer(void *word)
59{
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
63
64 smp_mb();
65 bd = bh->b_bdev;
66 if (bd)
67 blk_run_address_space(bd->bd_inode->i_mapping);
68 io_schedule();
69 return 0;
70}
71
72void fastcall __lock_buffer(struct buffer_head *bh)
73{
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
76}
77EXPORT_SYMBOL(__lock_buffer);
78
79void fastcall unlock_buffer(struct buffer_head *bh)
80{
81 clear_buffer_locked(bh);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh->b_state, BH_Lock);
84}
85
86/*
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
90 */
91void __wait_on_buffer(struct buffer_head * bh)
92{
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94}
95
96static void
97__clear_page_buffers(struct page *page)
98{
99 ClearPagePrivate(page);
4c21e2f2 100 set_page_private(page, 0);
1da177e4
LT
101 page_cache_release(page);
102}
103
104static void buffer_io_error(struct buffer_head *bh)
105{
106 char b[BDEVNAME_SIZE];
107
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
111}
112
113/*
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
116 */
117void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118{
119 if (uptodate) {
120 set_buffer_uptodate(bh);
121 } else {
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh);
124 }
125 unlock_buffer(bh);
126 put_bh(bh);
127}
128
129void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130{
131 char b[BDEVNAME_SIZE];
132
133 if (uptodate) {
134 set_buffer_uptodate(bh);
135 } else {
136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 buffer_io_error(bh);
138 printk(KERN_WARNING "lost page write due to "
139 "I/O error on %s\n",
140 bdevname(bh->b_bdev, b));
141 }
142 set_buffer_write_io_error(bh);
143 clear_buffer_uptodate(bh);
144 }
145 unlock_buffer(bh);
146 put_bh(bh);
147}
148
149/*
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
152 */
153int sync_blockdev(struct block_device *bdev)
154{
155 int ret = 0;
156
28fd1298
OH
157 if (bdev)
158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
1da177e4
LT
159 return ret;
160}
161EXPORT_SYMBOL(sync_blockdev);
162
d25b9a1f 163static void __fsync_super(struct super_block *sb)
1da177e4
LT
164{
165 sync_inodes_sb(sb, 0);
166 DQUOT_SYNC(sb);
167 lock_super(sb);
168 if (sb->s_dirt && sb->s_op->write_super)
169 sb->s_op->write_super(sb);
170 unlock_super(sb);
171 if (sb->s_op->sync_fs)
172 sb->s_op->sync_fs(sb, 1);
173 sync_blockdev(sb->s_bdev);
174 sync_inodes_sb(sb, 1);
d25b9a1f 175}
1da177e4 176
d25b9a1f
OH
177/*
178 * Write out and wait upon all dirty data associated with this
179 * superblock. Filesystem data as well as the underlying block
180 * device. Takes the superblock lock.
181 */
182int fsync_super(struct super_block *sb)
183{
184 __fsync_super(sb);
1da177e4
LT
185 return sync_blockdev(sb->s_bdev);
186}
187
188/*
189 * Write out and wait upon all dirty data associated with this
190 * device. Filesystem data as well as the underlying block
191 * device. Takes the superblock lock.
192 */
193int fsync_bdev(struct block_device *bdev)
194{
195 struct super_block *sb = get_super(bdev);
196 if (sb) {
197 int res = fsync_super(sb);
198 drop_super(sb);
199 return res;
200 }
201 return sync_blockdev(bdev);
202}
203
204/**
205 * freeze_bdev -- lock a filesystem and force it into a consistent state
206 * @bdev: blockdevice to lock
207 *
c039e313 208 * This takes the block device bd_mount_mutex to make sure no new mounts
1da177e4
LT
209 * happen on bdev until thaw_bdev() is called.
210 * If a superblock is found on this device, we take the s_umount semaphore
211 * on it to make sure nobody unmounts until the snapshot creation is done.
212 */
213struct super_block *freeze_bdev(struct block_device *bdev)
214{
215 struct super_block *sb;
216
c039e313 217 mutex_lock(&bdev->bd_mount_mutex);
1da177e4
LT
218 sb = get_super(bdev);
219 if (sb && !(sb->s_flags & MS_RDONLY)) {
220 sb->s_frozen = SB_FREEZE_WRITE;
d59dd462 221 smp_wmb();
1da177e4 222
d25b9a1f 223 __fsync_super(sb);
1da177e4
LT
224
225 sb->s_frozen = SB_FREEZE_TRANS;
d59dd462 226 smp_wmb();
1da177e4
LT
227
228 sync_blockdev(sb->s_bdev);
229
230 if (sb->s_op->write_super_lockfs)
231 sb->s_op->write_super_lockfs(sb);
232 }
233
234 sync_blockdev(bdev);
235 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
236}
237EXPORT_SYMBOL(freeze_bdev);
238
239/**
240 * thaw_bdev -- unlock filesystem
241 * @bdev: blockdevice to unlock
242 * @sb: associated superblock
243 *
244 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245 */
246void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247{
248 if (sb) {
249 BUG_ON(sb->s_bdev != bdev);
250
251 if (sb->s_op->unlockfs)
252 sb->s_op->unlockfs(sb);
253 sb->s_frozen = SB_UNFROZEN;
d59dd462 254 smp_wmb();
1da177e4
LT
255 wake_up(&sb->s_wait_unfrozen);
256 drop_super(sb);
257 }
258
c039e313 259 mutex_unlock(&bdev->bd_mount_mutex);
1da177e4
LT
260}
261EXPORT_SYMBOL(thaw_bdev);
262
263/*
264 * sync everything. Start out by waking pdflush, because that writes back
265 * all queues in parallel.
266 */
267static void do_sync(unsigned long wait)
268{
687a21ce 269 wakeup_pdflush(0);
1da177e4
LT
270 sync_inodes(0); /* All mappings, inodes and their blockdevs */
271 DQUOT_SYNC(NULL);
272 sync_supers(); /* Write the superblocks */
273 sync_filesystems(0); /* Start syncing the filesystems */
274 sync_filesystems(wait); /* Waitingly sync the filesystems */
275 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
276 if (!wait)
277 printk("Emergency Sync complete\n");
278 if (unlikely(laptop_mode))
279 laptop_sync_completion();
280}
281
282asmlinkage long sys_sync(void)
283{
284 do_sync(1);
285 return 0;
286}
287
288void emergency_sync(void)
289{
290 pdflush_operation(do_sync, 0);
291}
292
293/*
294 * Generic function to fsync a file.
295 *
296 * filp may be NULL if called via the msync of a vma.
297 */
298
299int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300{
301 struct inode * inode = dentry->d_inode;
302 struct super_block * sb;
303 int ret, err;
304
305 /* sync the inode to buffers */
306 ret = write_inode_now(inode, 0);
307
308 /* sync the superblock to buffers */
309 sb = inode->i_sb;
310 lock_super(sb);
311 if (sb->s_op->write_super)
312 sb->s_op->write_super(sb);
313 unlock_super(sb);
314
315 /* .. finally sync the buffers to disk */
316 err = sync_blockdev(sb->s_bdev);
317 if (!ret)
318 ret = err;
319 return ret;
320}
321
18e79b40 322long do_fsync(struct file *file, int datasync)
1da177e4 323{
18e79b40
AM
324 int ret;
325 int err;
326 struct address_space *mapping = file->f_mapping;
1da177e4 327
1da177e4
LT
328 if (!file->f_op || !file->f_op->fsync) {
329 /* Why? We can still call filemap_fdatawrite */
18e79b40
AM
330 ret = -EINVAL;
331 goto out;
1da177e4
LT
332 }
333
334 current->flags |= PF_SYNCWRITE;
335 ret = filemap_fdatawrite(mapping);
336
337 /*
18e79b40
AM
338 * We need to protect against concurrent writers, which could cause
339 * livelocks in fsync_buffers_list().
1da177e4 340 */
1b1dcc1b 341 mutex_lock(&mapping->host->i_mutex);
dfb388bf 342 err = file->f_op->fsync(file, file->f_dentry, datasync);
1da177e4
LT
343 if (!ret)
344 ret = err;
1b1dcc1b 345 mutex_unlock(&mapping->host->i_mutex);
1da177e4
LT
346 err = filemap_fdatawait(mapping);
347 if (!ret)
348 ret = err;
349 current->flags &= ~PF_SYNCWRITE;
1da177e4
LT
350out:
351 return ret;
352}
353
18e79b40
AM
354static long __do_fsync(unsigned int fd, int datasync)
355{
356 struct file *file;
357 int ret = -EBADF;
358
359 file = fget(fd);
360 if (file) {
361 ret = do_fsync(file, datasync);
362 fput(file);
363 }
364 return ret;
365}
366
dfb388bf 367asmlinkage long sys_fsync(unsigned int fd)
1da177e4 368{
18e79b40 369 return __do_fsync(fd, 0);
dfb388bf 370}
1da177e4 371
dfb388bf
ON
372asmlinkage long sys_fdatasync(unsigned int fd)
373{
18e79b40 374 return __do_fsync(fd, 1);
1da177e4
LT
375}
376
377/*
378 * Various filesystems appear to want __find_get_block to be non-blocking.
379 * But it's the page lock which protects the buffers. To get around this,
380 * we get exclusion from try_to_free_buffers with the blockdev mapping's
381 * private_lock.
382 *
383 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384 * may be quite high. This code could TryLock the page, and if that
385 * succeeds, there is no need to take private_lock. (But if
386 * private_lock is contended then so is mapping->tree_lock).
387 */
388static struct buffer_head *
385fd4c5 389__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
390{
391 struct inode *bd_inode = bdev->bd_inode;
392 struct address_space *bd_mapping = bd_inode->i_mapping;
393 struct buffer_head *ret = NULL;
394 pgoff_t index;
395 struct buffer_head *bh;
396 struct buffer_head *head;
397 struct page *page;
398 int all_mapped = 1;
399
400 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401 page = find_get_page(bd_mapping, index);
402 if (!page)
403 goto out;
404
405 spin_lock(&bd_mapping->private_lock);
406 if (!page_has_buffers(page))
407 goto out_unlock;
408 head = page_buffers(page);
409 bh = head;
410 do {
411 if (bh->b_blocknr == block) {
412 ret = bh;
413 get_bh(bh);
414 goto out_unlock;
415 }
416 if (!buffer_mapped(bh))
417 all_mapped = 0;
418 bh = bh->b_this_page;
419 } while (bh != head);
420
421 /* we might be here because some of the buffers on this page are
422 * not mapped. This is due to various races between
423 * file io on the block device and getblk. It gets dealt with
424 * elsewhere, don't buffer_error if we had some unmapped buffers
425 */
426 if (all_mapped) {
427 printk("__find_get_block_slow() failed. "
428 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
429 (unsigned long long)block,
430 (unsigned long long)bh->b_blocknr);
431 printk("b_state=0x%08lx, b_size=%zu\n",
432 bh->b_state, bh->b_size);
1da177e4
LT
433 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
434 }
435out_unlock:
436 spin_unlock(&bd_mapping->private_lock);
437 page_cache_release(page);
438out:
439 return ret;
440}
441
442/* If invalidate_buffers() will trash dirty buffers, it means some kind
443 of fs corruption is going on. Trashing dirty data always imply losing
444 information that was supposed to be just stored on the physical layer
445 by the user.
446
447 Thus invalidate_buffers in general usage is not allwowed to trash
448 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
449 be preserved. These buffers are simply skipped.
450
451 We also skip buffers which are still in use. For example this can
452 happen if a userspace program is reading the block device.
453
454 NOTE: In the case where the user removed a removable-media-disk even if
455 there's still dirty data not synced on disk (due a bug in the device driver
456 or due an error of the user), by not destroying the dirty buffers we could
457 generate corruption also on the next media inserted, thus a parameter is
458 necessary to handle this case in the most safe way possible (trying
459 to not corrupt also the new disk inserted with the data belonging to
460 the old now corrupted disk). Also for the ramdisk the natural thing
461 to do in order to release the ramdisk memory is to destroy dirty buffers.
462
463 These are two special cases. Normal usage imply the device driver
464 to issue a sync on the device (without waiting I/O completion) and
465 then an invalidate_buffers call that doesn't trash dirty buffers.
466
467 For handling cache coherency with the blkdev pagecache the 'update' case
468 is been introduced. It is needed to re-read from disk any pinned
469 buffer. NOTE: re-reading from disk is destructive so we can do it only
470 when we assume nobody is changing the buffercache under our I/O and when
471 we think the disk contains more recent information than the buffercache.
472 The update == 1 pass marks the buffers we need to update, the update == 2
473 pass does the actual I/O. */
474void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
475{
476 invalidate_bh_lrus();
477 /*
478 * FIXME: what about destroy_dirty_buffers?
479 * We really want to use invalidate_inode_pages2() for
480 * that, but not until that's cleaned up.
481 */
482 invalidate_inode_pages(bdev->bd_inode->i_mapping);
483}
484
485/*
486 * Kick pdflush then try to free up some ZONE_NORMAL memory.
487 */
488static void free_more_memory(void)
489{
490 struct zone **zones;
491 pg_data_t *pgdat;
492
687a21ce 493 wakeup_pdflush(1024);
1da177e4
LT
494 yield();
495
496 for_each_pgdat(pgdat) {
af4ca457 497 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
1da177e4 498 if (*zones)
1ad539b2 499 try_to_free_pages(zones, GFP_NOFS);
1da177e4
LT
500 }
501}
502
503/*
504 * I/O completion handler for block_read_full_page() - pages
505 * which come unlocked at the end of I/O.
506 */
507static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
508{
1da177e4 509 unsigned long flags;
a3972203 510 struct buffer_head *first;
1da177e4
LT
511 struct buffer_head *tmp;
512 struct page *page;
513 int page_uptodate = 1;
514
515 BUG_ON(!buffer_async_read(bh));
516
517 page = bh->b_page;
518 if (uptodate) {
519 set_buffer_uptodate(bh);
520 } else {
521 clear_buffer_uptodate(bh);
522 if (printk_ratelimit())
523 buffer_io_error(bh);
524 SetPageError(page);
525 }
526
527 /*
528 * Be _very_ careful from here on. Bad things can happen if
529 * two buffer heads end IO at almost the same time and both
530 * decide that the page is now completely done.
531 */
a3972203
NP
532 first = page_buffers(page);
533 local_irq_save(flags);
534 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
535 clear_buffer_async_read(bh);
536 unlock_buffer(bh);
537 tmp = bh;
538 do {
539 if (!buffer_uptodate(tmp))
540 page_uptodate = 0;
541 if (buffer_async_read(tmp)) {
542 BUG_ON(!buffer_locked(tmp));
543 goto still_busy;
544 }
545 tmp = tmp->b_this_page;
546 } while (tmp != bh);
a3972203
NP
547 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
548 local_irq_restore(flags);
1da177e4
LT
549
550 /*
551 * If none of the buffers had errors and they are all
552 * uptodate then we can set the page uptodate.
553 */
554 if (page_uptodate && !PageError(page))
555 SetPageUptodate(page);
556 unlock_page(page);
557 return;
558
559still_busy:
a3972203
NP
560 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
561 local_irq_restore(flags);
1da177e4
LT
562 return;
563}
564
565/*
566 * Completion handler for block_write_full_page() - pages which are unlocked
567 * during I/O, and which have PageWriteback cleared upon I/O completion.
568 */
569void end_buffer_async_write(struct buffer_head *bh, int uptodate)
570{
571 char b[BDEVNAME_SIZE];
1da177e4 572 unsigned long flags;
a3972203 573 struct buffer_head *first;
1da177e4
LT
574 struct buffer_head *tmp;
575 struct page *page;
576
577 BUG_ON(!buffer_async_write(bh));
578
579 page = bh->b_page;
580 if (uptodate) {
581 set_buffer_uptodate(bh);
582 } else {
583 if (printk_ratelimit()) {
584 buffer_io_error(bh);
585 printk(KERN_WARNING "lost page write due to "
586 "I/O error on %s\n",
587 bdevname(bh->b_bdev, b));
588 }
589 set_bit(AS_EIO, &page->mapping->flags);
590 clear_buffer_uptodate(bh);
591 SetPageError(page);
592 }
593
a3972203
NP
594 first = page_buffers(page);
595 local_irq_save(flags);
596 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
597
1da177e4
LT
598 clear_buffer_async_write(bh);
599 unlock_buffer(bh);
600 tmp = bh->b_this_page;
601 while (tmp != bh) {
602 if (buffer_async_write(tmp)) {
603 BUG_ON(!buffer_locked(tmp));
604 goto still_busy;
605 }
606 tmp = tmp->b_this_page;
607 }
a3972203
NP
608 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
609 local_irq_restore(flags);
1da177e4
LT
610 end_page_writeback(page);
611 return;
612
613still_busy:
a3972203
NP
614 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
615 local_irq_restore(flags);
1da177e4
LT
616 return;
617}
618
619/*
620 * If a page's buffers are under async readin (end_buffer_async_read
621 * completion) then there is a possibility that another thread of
622 * control could lock one of the buffers after it has completed
623 * but while some of the other buffers have not completed. This
624 * locked buffer would confuse end_buffer_async_read() into not unlocking
625 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
626 * that this buffer is not under async I/O.
627 *
628 * The page comes unlocked when it has no locked buffer_async buffers
629 * left.
630 *
631 * PageLocked prevents anyone starting new async I/O reads any of
632 * the buffers.
633 *
634 * PageWriteback is used to prevent simultaneous writeout of the same
635 * page.
636 *
637 * PageLocked prevents anyone from starting writeback of a page which is
638 * under read I/O (PageWriteback is only ever set against a locked page).
639 */
640static void mark_buffer_async_read(struct buffer_head *bh)
641{
642 bh->b_end_io = end_buffer_async_read;
643 set_buffer_async_read(bh);
644}
645
646void mark_buffer_async_write(struct buffer_head *bh)
647{
648 bh->b_end_io = end_buffer_async_write;
649 set_buffer_async_write(bh);
650}
651EXPORT_SYMBOL(mark_buffer_async_write);
652
653
654/*
655 * fs/buffer.c contains helper functions for buffer-backed address space's
656 * fsync functions. A common requirement for buffer-based filesystems is
657 * that certain data from the backing blockdev needs to be written out for
658 * a successful fsync(). For example, ext2 indirect blocks need to be
659 * written back and waited upon before fsync() returns.
660 *
661 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
662 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
663 * management of a list of dependent buffers at ->i_mapping->private_list.
664 *
665 * Locking is a little subtle: try_to_free_buffers() will remove buffers
666 * from their controlling inode's queue when they are being freed. But
667 * try_to_free_buffers() will be operating against the *blockdev* mapping
668 * at the time, not against the S_ISREG file which depends on those buffers.
669 * So the locking for private_list is via the private_lock in the address_space
670 * which backs the buffers. Which is different from the address_space
671 * against which the buffers are listed. So for a particular address_space,
672 * mapping->private_lock does *not* protect mapping->private_list! In fact,
673 * mapping->private_list will always be protected by the backing blockdev's
674 * ->private_lock.
675 *
676 * Which introduces a requirement: all buffers on an address_space's
677 * ->private_list must be from the same address_space: the blockdev's.
678 *
679 * address_spaces which do not place buffers at ->private_list via these
680 * utility functions are free to use private_lock and private_list for
681 * whatever they want. The only requirement is that list_empty(private_list)
682 * be true at clear_inode() time.
683 *
684 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
685 * filesystems should do that. invalidate_inode_buffers() should just go
686 * BUG_ON(!list_empty).
687 *
688 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
689 * take an address_space, not an inode. And it should be called
690 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
691 * queued up.
692 *
693 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
694 * list if it is already on a list. Because if the buffer is on a list,
695 * it *must* already be on the right one. If not, the filesystem is being
696 * silly. This will save a ton of locking. But first we have to ensure
697 * that buffers are taken *off* the old inode's list when they are freed
698 * (presumably in truncate). That requires careful auditing of all
699 * filesystems (do it inside bforget()). It could also be done by bringing
700 * b_inode back.
701 */
702
703/*
704 * The buffer's backing address_space's private_lock must be held
705 */
706static inline void __remove_assoc_queue(struct buffer_head *bh)
707{
708 list_del_init(&bh->b_assoc_buffers);
709}
710
711int inode_has_buffers(struct inode *inode)
712{
713 return !list_empty(&inode->i_data.private_list);
714}
715
716/*
717 * osync is designed to support O_SYNC io. It waits synchronously for
718 * all already-submitted IO to complete, but does not queue any new
719 * writes to the disk.
720 *
721 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
722 * you dirty the buffers, and then use osync_inode_buffers to wait for
723 * completion. Any other dirty buffers which are not yet queued for
724 * write will not be flushed to disk by the osync.
725 */
726static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
727{
728 struct buffer_head *bh;
729 struct list_head *p;
730 int err = 0;
731
732 spin_lock(lock);
733repeat:
734 list_for_each_prev(p, list) {
735 bh = BH_ENTRY(p);
736 if (buffer_locked(bh)) {
737 get_bh(bh);
738 spin_unlock(lock);
739 wait_on_buffer(bh);
740 if (!buffer_uptodate(bh))
741 err = -EIO;
742 brelse(bh);
743 spin_lock(lock);
744 goto repeat;
745 }
746 }
747 spin_unlock(lock);
748 return err;
749}
750
751/**
752 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
753 * buffers
67be2dd1 754 * @mapping: the mapping which wants those buffers written
1da177e4
LT
755 *
756 * Starts I/O against the buffers at mapping->private_list, and waits upon
757 * that I/O.
758 *
67be2dd1
MW
759 * Basically, this is a convenience function for fsync().
760 * @mapping is a file or directory which needs those buffers to be written for
761 * a successful fsync().
1da177e4
LT
762 */
763int sync_mapping_buffers(struct address_space *mapping)
764{
765 struct address_space *buffer_mapping = mapping->assoc_mapping;
766
767 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
768 return 0;
769
770 return fsync_buffers_list(&buffer_mapping->private_lock,
771 &mapping->private_list);
772}
773EXPORT_SYMBOL(sync_mapping_buffers);
774
775/*
776 * Called when we've recently written block `bblock', and it is known that
777 * `bblock' was for a buffer_boundary() buffer. This means that the block at
778 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
779 * dirty, schedule it for IO. So that indirects merge nicely with their data.
780 */
781void write_boundary_block(struct block_device *bdev,
782 sector_t bblock, unsigned blocksize)
783{
784 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
785 if (bh) {
786 if (buffer_dirty(bh))
787 ll_rw_block(WRITE, 1, &bh);
788 put_bh(bh);
789 }
790}
791
792void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
793{
794 struct address_space *mapping = inode->i_mapping;
795 struct address_space *buffer_mapping = bh->b_page->mapping;
796
797 mark_buffer_dirty(bh);
798 if (!mapping->assoc_mapping) {
799 mapping->assoc_mapping = buffer_mapping;
800 } else {
801 if (mapping->assoc_mapping != buffer_mapping)
802 BUG();
803 }
804 if (list_empty(&bh->b_assoc_buffers)) {
805 spin_lock(&buffer_mapping->private_lock);
806 list_move_tail(&bh->b_assoc_buffers,
807 &mapping->private_list);
808 spin_unlock(&buffer_mapping->private_lock);
809 }
810}
811EXPORT_SYMBOL(mark_buffer_dirty_inode);
812
813/*
814 * Add a page to the dirty page list.
815 *
816 * It is a sad fact of life that this function is called from several places
817 * deeply under spinlocking. It may not sleep.
818 *
819 * If the page has buffers, the uptodate buffers are set dirty, to preserve
820 * dirty-state coherency between the page and the buffers. It the page does
821 * not have buffers then when they are later attached they will all be set
822 * dirty.
823 *
824 * The buffers are dirtied before the page is dirtied. There's a small race
825 * window in which a writepage caller may see the page cleanness but not the
826 * buffer dirtiness. That's fine. If this code were to set the page dirty
827 * before the buffers, a concurrent writepage caller could clear the page dirty
828 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
829 * page on the dirty page list.
830 *
831 * We use private_lock to lock against try_to_free_buffers while using the
832 * page's buffer list. Also use this to protect against clean buffers being
833 * added to the page after it was set dirty.
834 *
835 * FIXME: may need to call ->reservepage here as well. That's rather up to the
836 * address_space though.
837 */
838int __set_page_dirty_buffers(struct page *page)
839{
840 struct address_space * const mapping = page->mapping;
841
842 spin_lock(&mapping->private_lock);
843 if (page_has_buffers(page)) {
844 struct buffer_head *head = page_buffers(page);
845 struct buffer_head *bh = head;
846
847 do {
848 set_buffer_dirty(bh);
849 bh = bh->b_this_page;
850 } while (bh != head);
851 }
852 spin_unlock(&mapping->private_lock);
853
854 if (!TestSetPageDirty(page)) {
855 write_lock_irq(&mapping->tree_lock);
856 if (page->mapping) { /* Race with truncate? */
857 if (mapping_cap_account_dirty(mapping))
858 inc_page_state(nr_dirty);
859 radix_tree_tag_set(&mapping->page_tree,
860 page_index(page),
861 PAGECACHE_TAG_DIRTY);
862 }
863 write_unlock_irq(&mapping->tree_lock);
864 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
4741c9fd 865 return 1;
1da177e4 866 }
1da177e4
LT
867 return 0;
868}
869EXPORT_SYMBOL(__set_page_dirty_buffers);
870
871/*
872 * Write out and wait upon a list of buffers.
873 *
874 * We have conflicting pressures: we want to make sure that all
875 * initially dirty buffers get waited on, but that any subsequently
876 * dirtied buffers don't. After all, we don't want fsync to last
877 * forever if somebody is actively writing to the file.
878 *
879 * Do this in two main stages: first we copy dirty buffers to a
880 * temporary inode list, queueing the writes as we go. Then we clean
881 * up, waiting for those writes to complete.
882 *
883 * During this second stage, any subsequent updates to the file may end
884 * up refiling the buffer on the original inode's dirty list again, so
885 * there is a chance we will end up with a buffer queued for write but
886 * not yet completed on that list. So, as a final cleanup we go through
887 * the osync code to catch these locked, dirty buffers without requeuing
888 * any newly dirty buffers for write.
889 */
890static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
891{
892 struct buffer_head *bh;
893 struct list_head tmp;
894 int err = 0, err2;
895
896 INIT_LIST_HEAD(&tmp);
897
898 spin_lock(lock);
899 while (!list_empty(list)) {
900 bh = BH_ENTRY(list->next);
901 list_del_init(&bh->b_assoc_buffers);
902 if (buffer_dirty(bh) || buffer_locked(bh)) {
903 list_add(&bh->b_assoc_buffers, &tmp);
904 if (buffer_dirty(bh)) {
905 get_bh(bh);
906 spin_unlock(lock);
907 /*
908 * Ensure any pending I/O completes so that
909 * ll_rw_block() actually writes the current
910 * contents - it is a noop if I/O is still in
911 * flight on potentially older contents.
912 */
a7662236 913 ll_rw_block(SWRITE, 1, &bh);
1da177e4
LT
914 brelse(bh);
915 spin_lock(lock);
916 }
917 }
918 }
919
920 while (!list_empty(&tmp)) {
921 bh = BH_ENTRY(tmp.prev);
922 __remove_assoc_queue(bh);
923 get_bh(bh);
924 spin_unlock(lock);
925 wait_on_buffer(bh);
926 if (!buffer_uptodate(bh))
927 err = -EIO;
928 brelse(bh);
929 spin_lock(lock);
930 }
931
932 spin_unlock(lock);
933 err2 = osync_buffers_list(lock, list);
934 if (err)
935 return err;
936 else
937 return err2;
938}
939
940/*
941 * Invalidate any and all dirty buffers on a given inode. We are
942 * probably unmounting the fs, but that doesn't mean we have already
943 * done a sync(). Just drop the buffers from the inode list.
944 *
945 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
946 * assumes that all the buffers are against the blockdev. Not true
947 * for reiserfs.
948 */
949void invalidate_inode_buffers(struct inode *inode)
950{
951 if (inode_has_buffers(inode)) {
952 struct address_space *mapping = &inode->i_data;
953 struct list_head *list = &mapping->private_list;
954 struct address_space *buffer_mapping = mapping->assoc_mapping;
955
956 spin_lock(&buffer_mapping->private_lock);
957 while (!list_empty(list))
958 __remove_assoc_queue(BH_ENTRY(list->next));
959 spin_unlock(&buffer_mapping->private_lock);
960 }
961}
962
963/*
964 * Remove any clean buffers from the inode's buffer list. This is called
965 * when we're trying to free the inode itself. Those buffers can pin it.
966 *
967 * Returns true if all buffers were removed.
968 */
969int remove_inode_buffers(struct inode *inode)
970{
971 int ret = 1;
972
973 if (inode_has_buffers(inode)) {
974 struct address_space *mapping = &inode->i_data;
975 struct list_head *list = &mapping->private_list;
976 struct address_space *buffer_mapping = mapping->assoc_mapping;
977
978 spin_lock(&buffer_mapping->private_lock);
979 while (!list_empty(list)) {
980 struct buffer_head *bh = BH_ENTRY(list->next);
981 if (buffer_dirty(bh)) {
982 ret = 0;
983 break;
984 }
985 __remove_assoc_queue(bh);
986 }
987 spin_unlock(&buffer_mapping->private_lock);
988 }
989 return ret;
990}
991
992/*
993 * Create the appropriate buffers when given a page for data area and
994 * the size of each buffer.. Use the bh->b_this_page linked list to
995 * follow the buffers created. Return NULL if unable to create more
996 * buffers.
997 *
998 * The retry flag is used to differentiate async IO (paging, swapping)
999 * which may not fail from ordinary buffer allocations.
1000 */
1001struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1002 int retry)
1003{
1004 struct buffer_head *bh, *head;
1005 long offset;
1006
1007try_again:
1008 head = NULL;
1009 offset = PAGE_SIZE;
1010 while ((offset -= size) >= 0) {
1011 bh = alloc_buffer_head(GFP_NOFS);
1012 if (!bh)
1013 goto no_grow;
1014
1015 bh->b_bdev = NULL;
1016 bh->b_this_page = head;
1017 bh->b_blocknr = -1;
1018 head = bh;
1019
1020 bh->b_state = 0;
1021 atomic_set(&bh->b_count, 0);
fc5cd582 1022 bh->b_private = NULL;
1da177e4
LT
1023 bh->b_size = size;
1024
1025 /* Link the buffer to its page */
1026 set_bh_page(bh, page, offset);
1027
01ffe339 1028 init_buffer(bh, NULL, NULL);
1da177e4
LT
1029 }
1030 return head;
1031/*
1032 * In case anything failed, we just free everything we got.
1033 */
1034no_grow:
1035 if (head) {
1036 do {
1037 bh = head;
1038 head = head->b_this_page;
1039 free_buffer_head(bh);
1040 } while (head);
1041 }
1042
1043 /*
1044 * Return failure for non-async IO requests. Async IO requests
1045 * are not allowed to fail, so we have to wait until buffer heads
1046 * become available. But we don't want tasks sleeping with
1047 * partially complete buffers, so all were released above.
1048 */
1049 if (!retry)
1050 return NULL;
1051
1052 /* We're _really_ low on memory. Now we just
1053 * wait for old buffer heads to become free due to
1054 * finishing IO. Since this is an async request and
1055 * the reserve list is empty, we're sure there are
1056 * async buffer heads in use.
1057 */
1058 free_more_memory();
1059 goto try_again;
1060}
1061EXPORT_SYMBOL_GPL(alloc_page_buffers);
1062
1063static inline void
1064link_dev_buffers(struct page *page, struct buffer_head *head)
1065{
1066 struct buffer_head *bh, *tail;
1067
1068 bh = head;
1069 do {
1070 tail = bh;
1071 bh = bh->b_this_page;
1072 } while (bh);
1073 tail->b_this_page = head;
1074 attach_page_buffers(page, head);
1075}
1076
1077/*
1078 * Initialise the state of a blockdev page's buffers.
1079 */
1080static void
1081init_page_buffers(struct page *page, struct block_device *bdev,
1082 sector_t block, int size)
1083{
1084 struct buffer_head *head = page_buffers(page);
1085 struct buffer_head *bh = head;
1086 int uptodate = PageUptodate(page);
1087
1088 do {
1089 if (!buffer_mapped(bh)) {
1090 init_buffer(bh, NULL, NULL);
1091 bh->b_bdev = bdev;
1092 bh->b_blocknr = block;
1093 if (uptodate)
1094 set_buffer_uptodate(bh);
1095 set_buffer_mapped(bh);
1096 }
1097 block++;
1098 bh = bh->b_this_page;
1099 } while (bh != head);
1100}
1101
1102/*
1103 * Create the page-cache page that contains the requested block.
1104 *
1105 * This is user purely for blockdev mappings.
1106 */
1107static struct page *
1108grow_dev_page(struct block_device *bdev, sector_t block,
1109 pgoff_t index, int size)
1110{
1111 struct inode *inode = bdev->bd_inode;
1112 struct page *page;
1113 struct buffer_head *bh;
1114
1115 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1116 if (!page)
1117 return NULL;
1118
1119 if (!PageLocked(page))
1120 BUG();
1121
1122 if (page_has_buffers(page)) {
1123 bh = page_buffers(page);
1124 if (bh->b_size == size) {
1125 init_page_buffers(page, bdev, block, size);
1126 return page;
1127 }
1128 if (!try_to_free_buffers(page))
1129 goto failed;
1130 }
1131
1132 /*
1133 * Allocate some buffers for this page
1134 */
1135 bh = alloc_page_buffers(page, size, 0);
1136 if (!bh)
1137 goto failed;
1138
1139 /*
1140 * Link the page to the buffers and initialise them. Take the
1141 * lock to be atomic wrt __find_get_block(), which does not
1142 * run under the page lock.
1143 */
1144 spin_lock(&inode->i_mapping->private_lock);
1145 link_dev_buffers(page, bh);
1146 init_page_buffers(page, bdev, block, size);
1147 spin_unlock(&inode->i_mapping->private_lock);
1148 return page;
1149
1150failed:
1151 BUG();
1152 unlock_page(page);
1153 page_cache_release(page);
1154 return NULL;
1155}
1156
1157/*
1158 * Create buffers for the specified block device block's page. If
1159 * that page was dirty, the buffers are set dirty also.
1160 *
1161 * Except that's a bug. Attaching dirty buffers to a dirty
1162 * blockdev's page can result in filesystem corruption, because
1163 * some of those buffers may be aliases of filesystem data.
1164 * grow_dev_page() will go BUG() if this happens.
1165 */
858119e1 1166static int
1da177e4
LT
1167grow_buffers(struct block_device *bdev, sector_t block, int size)
1168{
1169 struct page *page;
1170 pgoff_t index;
1171 int sizebits;
1172
1173 sizebits = -1;
1174 do {
1175 sizebits++;
1176 } while ((size << sizebits) < PAGE_SIZE);
1177
1178 index = block >> sizebits;
1179 block = index << sizebits;
1180
1181 /* Create a page with the proper size buffers.. */
1182 page = grow_dev_page(bdev, block, index, size);
1183 if (!page)
1184 return 0;
1185 unlock_page(page);
1186 page_cache_release(page);
1187 return 1;
1188}
1189
75c96f85 1190static struct buffer_head *
1da177e4
LT
1191__getblk_slow(struct block_device *bdev, sector_t block, int size)
1192{
1193 /* Size must be multiple of hard sectorsize */
1194 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1195 (size < 512 || size > PAGE_SIZE))) {
1196 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1197 size);
1198 printk(KERN_ERR "hardsect size: %d\n",
1199 bdev_hardsect_size(bdev));
1200
1201 dump_stack();
1202 return NULL;
1203 }
1204
1205 for (;;) {
1206 struct buffer_head * bh;
1207
1208 bh = __find_get_block(bdev, block, size);
1209 if (bh)
1210 return bh;
1211
1212 if (!grow_buffers(bdev, block, size))
1213 free_more_memory();
1214 }
1215}
1216
1217/*
1218 * The relationship between dirty buffers and dirty pages:
1219 *
1220 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1221 * the page is tagged dirty in its radix tree.
1222 *
1223 * At all times, the dirtiness of the buffers represents the dirtiness of
1224 * subsections of the page. If the page has buffers, the page dirty bit is
1225 * merely a hint about the true dirty state.
1226 *
1227 * When a page is set dirty in its entirety, all its buffers are marked dirty
1228 * (if the page has buffers).
1229 *
1230 * When a buffer is marked dirty, its page is dirtied, but the page's other
1231 * buffers are not.
1232 *
1233 * Also. When blockdev buffers are explicitly read with bread(), they
1234 * individually become uptodate. But their backing page remains not
1235 * uptodate - even if all of its buffers are uptodate. A subsequent
1236 * block_read_full_page() against that page will discover all the uptodate
1237 * buffers, will set the page uptodate and will perform no I/O.
1238 */
1239
1240/**
1241 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1242 * @bh: the buffer_head to mark dirty
1da177e4
LT
1243 *
1244 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1245 * backing page dirty, then tag the page as dirty in its address_space's radix
1246 * tree and then attach the address_space's inode to its superblock's dirty
1247 * inode list.
1248 *
1249 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1250 * mapping->tree_lock and the global inode_lock.
1251 */
1252void fastcall mark_buffer_dirty(struct buffer_head *bh)
1253{
1254 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1255 __set_page_dirty_nobuffers(bh->b_page);
1256}
1257
1258/*
1259 * Decrement a buffer_head's reference count. If all buffers against a page
1260 * have zero reference count, are clean and unlocked, and if the page is clean
1261 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1262 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1263 * a page but it ends up not being freed, and buffers may later be reattached).
1264 */
1265void __brelse(struct buffer_head * buf)
1266{
1267 if (atomic_read(&buf->b_count)) {
1268 put_bh(buf);
1269 return;
1270 }
1271 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1272 WARN_ON(1);
1273}
1274
1275/*
1276 * bforget() is like brelse(), except it discards any
1277 * potentially dirty data.
1278 */
1279void __bforget(struct buffer_head *bh)
1280{
1281 clear_buffer_dirty(bh);
1282 if (!list_empty(&bh->b_assoc_buffers)) {
1283 struct address_space *buffer_mapping = bh->b_page->mapping;
1284
1285 spin_lock(&buffer_mapping->private_lock);
1286 list_del_init(&bh->b_assoc_buffers);
1287 spin_unlock(&buffer_mapping->private_lock);
1288 }
1289 __brelse(bh);
1290}
1291
1292static struct buffer_head *__bread_slow(struct buffer_head *bh)
1293{
1294 lock_buffer(bh);
1295 if (buffer_uptodate(bh)) {
1296 unlock_buffer(bh);
1297 return bh;
1298 } else {
1299 get_bh(bh);
1300 bh->b_end_io = end_buffer_read_sync;
1301 submit_bh(READ, bh);
1302 wait_on_buffer(bh);
1303 if (buffer_uptodate(bh))
1304 return bh;
1305 }
1306 brelse(bh);
1307 return NULL;
1308}
1309
1310/*
1311 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1312 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1313 * refcount elevated by one when they're in an LRU. A buffer can only appear
1314 * once in a particular CPU's LRU. A single buffer can be present in multiple
1315 * CPU's LRUs at the same time.
1316 *
1317 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1318 * sb_find_get_block().
1319 *
1320 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1321 * a local interrupt disable for that.
1322 */
1323
1324#define BH_LRU_SIZE 8
1325
1326struct bh_lru {
1327 struct buffer_head *bhs[BH_LRU_SIZE];
1328};
1329
1330static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1331
1332#ifdef CONFIG_SMP
1333#define bh_lru_lock() local_irq_disable()
1334#define bh_lru_unlock() local_irq_enable()
1335#else
1336#define bh_lru_lock() preempt_disable()
1337#define bh_lru_unlock() preempt_enable()
1338#endif
1339
1340static inline void check_irqs_on(void)
1341{
1342#ifdef irqs_disabled
1343 BUG_ON(irqs_disabled());
1344#endif
1345}
1346
1347/*
1348 * The LRU management algorithm is dopey-but-simple. Sorry.
1349 */
1350static void bh_lru_install(struct buffer_head *bh)
1351{
1352 struct buffer_head *evictee = NULL;
1353 struct bh_lru *lru;
1354
1355 check_irqs_on();
1356 bh_lru_lock();
1357 lru = &__get_cpu_var(bh_lrus);
1358 if (lru->bhs[0] != bh) {
1359 struct buffer_head *bhs[BH_LRU_SIZE];
1360 int in;
1361 int out = 0;
1362
1363 get_bh(bh);
1364 bhs[out++] = bh;
1365 for (in = 0; in < BH_LRU_SIZE; in++) {
1366 struct buffer_head *bh2 = lru->bhs[in];
1367
1368 if (bh2 == bh) {
1369 __brelse(bh2);
1370 } else {
1371 if (out >= BH_LRU_SIZE) {
1372 BUG_ON(evictee != NULL);
1373 evictee = bh2;
1374 } else {
1375 bhs[out++] = bh2;
1376 }
1377 }
1378 }
1379 while (out < BH_LRU_SIZE)
1380 bhs[out++] = NULL;
1381 memcpy(lru->bhs, bhs, sizeof(bhs));
1382 }
1383 bh_lru_unlock();
1384
1385 if (evictee)
1386 __brelse(evictee);
1387}
1388
1389/*
1390 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1391 */
858119e1 1392static struct buffer_head *
1da177e4
LT
1393lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1394{
1395 struct buffer_head *ret = NULL;
1396 struct bh_lru *lru;
1397 int i;
1398
1399 check_irqs_on();
1400 bh_lru_lock();
1401 lru = &__get_cpu_var(bh_lrus);
1402 for (i = 0; i < BH_LRU_SIZE; i++) {
1403 struct buffer_head *bh = lru->bhs[i];
1404
1405 if (bh && bh->b_bdev == bdev &&
1406 bh->b_blocknr == block && bh->b_size == size) {
1407 if (i) {
1408 while (i) {
1409 lru->bhs[i] = lru->bhs[i - 1];
1410 i--;
1411 }
1412 lru->bhs[0] = bh;
1413 }
1414 get_bh(bh);
1415 ret = bh;
1416 break;
1417 }
1418 }
1419 bh_lru_unlock();
1420 return ret;
1421}
1422
1423/*
1424 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1425 * it in the LRU and mark it as accessed. If it is not present then return
1426 * NULL
1427 */
1428struct buffer_head *
1429__find_get_block(struct block_device *bdev, sector_t block, int size)
1430{
1431 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1432
1433 if (bh == NULL) {
385fd4c5 1434 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1435 if (bh)
1436 bh_lru_install(bh);
1437 }
1438 if (bh)
1439 touch_buffer(bh);
1440 return bh;
1441}
1442EXPORT_SYMBOL(__find_get_block);
1443
1444/*
1445 * __getblk will locate (and, if necessary, create) the buffer_head
1446 * which corresponds to the passed block_device, block and size. The
1447 * returned buffer has its reference count incremented.
1448 *
1449 * __getblk() cannot fail - it just keeps trying. If you pass it an
1450 * illegal block number, __getblk() will happily return a buffer_head
1451 * which represents the non-existent block. Very weird.
1452 *
1453 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1454 * attempt is failing. FIXME, perhaps?
1455 */
1456struct buffer_head *
1457__getblk(struct block_device *bdev, sector_t block, int size)
1458{
1459 struct buffer_head *bh = __find_get_block(bdev, block, size);
1460
1461 might_sleep();
1462 if (bh == NULL)
1463 bh = __getblk_slow(bdev, block, size);
1464 return bh;
1465}
1466EXPORT_SYMBOL(__getblk);
1467
1468/*
1469 * Do async read-ahead on a buffer..
1470 */
1471void __breadahead(struct block_device *bdev, sector_t block, int size)
1472{
1473 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1474 if (likely(bh)) {
1475 ll_rw_block(READA, 1, &bh);
1476 brelse(bh);
1477 }
1da177e4
LT
1478}
1479EXPORT_SYMBOL(__breadahead);
1480
1481/**
1482 * __bread() - reads a specified block and returns the bh
67be2dd1 1483 * @bdev: the block_device to read from
1da177e4
LT
1484 * @block: number of block
1485 * @size: size (in bytes) to read
1486 *
1487 * Reads a specified block, and returns buffer head that contains it.
1488 * It returns NULL if the block was unreadable.
1489 */
1490struct buffer_head *
1491__bread(struct block_device *bdev, sector_t block, int size)
1492{
1493 struct buffer_head *bh = __getblk(bdev, block, size);
1494
a3e713b5 1495 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1496 bh = __bread_slow(bh);
1497 return bh;
1498}
1499EXPORT_SYMBOL(__bread);
1500
1501/*
1502 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1503 * This doesn't race because it runs in each cpu either in irq
1504 * or with preempt disabled.
1505 */
1506static void invalidate_bh_lru(void *arg)
1507{
1508 struct bh_lru *b = &get_cpu_var(bh_lrus);
1509 int i;
1510
1511 for (i = 0; i < BH_LRU_SIZE; i++) {
1512 brelse(b->bhs[i]);
1513 b->bhs[i] = NULL;
1514 }
1515 put_cpu_var(bh_lrus);
1516}
1517
1518static void invalidate_bh_lrus(void)
1519{
1520 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1521}
1522
1523void set_bh_page(struct buffer_head *bh,
1524 struct page *page, unsigned long offset)
1525{
1526 bh->b_page = page;
1527 if (offset >= PAGE_SIZE)
1528 BUG();
1529 if (PageHighMem(page))
1530 /*
1531 * This catches illegal uses and preserves the offset:
1532 */
1533 bh->b_data = (char *)(0 + offset);
1534 else
1535 bh->b_data = page_address(page) + offset;
1536}
1537EXPORT_SYMBOL(set_bh_page);
1538
1539/*
1540 * Called when truncating a buffer on a page completely.
1541 */
858119e1 1542static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1543{
1544 lock_buffer(bh);
1545 clear_buffer_dirty(bh);
1546 bh->b_bdev = NULL;
1547 clear_buffer_mapped(bh);
1548 clear_buffer_req(bh);
1549 clear_buffer_new(bh);
1550 clear_buffer_delay(bh);
1551 unlock_buffer(bh);
1552}
1553
1554/**
1555 * try_to_release_page() - release old fs-specific metadata on a page
1556 *
1557 * @page: the page which the kernel is trying to free
1558 * @gfp_mask: memory allocation flags (and I/O mode)
1559 *
1560 * The address_space is to try to release any data against the page
1561 * (presumably at page->private). If the release was successful, return `1'.
1562 * Otherwise return zero.
1563 *
1564 * The @gfp_mask argument specifies whether I/O may be performed to release
1565 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1566 *
1567 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1568 */
27496a8c 1569int try_to_release_page(struct page *page, gfp_t gfp_mask)
1da177e4
LT
1570{
1571 struct address_space * const mapping = page->mapping;
1572
1573 BUG_ON(!PageLocked(page));
1574 if (PageWriteback(page))
1575 return 0;
1576
1577 if (mapping && mapping->a_ops->releasepage)
1578 return mapping->a_ops->releasepage(page, gfp_mask);
1579 return try_to_free_buffers(page);
1580}
1581EXPORT_SYMBOL(try_to_release_page);
1582
1583/**
1584 * block_invalidatepage - invalidate part of all of a buffer-backed page
1585 *
1586 * @page: the page which is affected
1587 * @offset: the index of the truncation point
1588 *
1589 * block_invalidatepage() is called when all or part of the page has become
1590 * invalidatedby a truncate operation.
1591 *
1592 * block_invalidatepage() does not have to release all buffers, but it must
1593 * ensure that no dirty buffer is left outside @offset and that no I/O
1594 * is underway against any of the blocks which are outside the truncation
1595 * point. Because the caller is about to free (and possibly reuse) those
1596 * blocks on-disk.
1597 */
2ff28e22 1598void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1599{
1600 struct buffer_head *head, *bh, *next;
1601 unsigned int curr_off = 0;
1da177e4
LT
1602
1603 BUG_ON(!PageLocked(page));
1604 if (!page_has_buffers(page))
1605 goto out;
1606
1607 head = page_buffers(page);
1608 bh = head;
1609 do {
1610 unsigned int next_off = curr_off + bh->b_size;
1611 next = bh->b_this_page;
1612
1613 /*
1614 * is this block fully invalidated?
1615 */
1616 if (offset <= curr_off)
1617 discard_buffer(bh);
1618 curr_off = next_off;
1619 bh = next;
1620 } while (bh != head);
1621
1622 /*
1623 * We release buffers only if the entire page is being invalidated.
1624 * The get_block cached value has been unconditionally invalidated,
1625 * so real IO is not possible anymore.
1626 */
1627 if (offset == 0)
2ff28e22 1628 try_to_release_page(page, 0);
1da177e4 1629out:
2ff28e22 1630 return;
1da177e4
LT
1631}
1632EXPORT_SYMBOL(block_invalidatepage);
1633
2ff28e22 1634void do_invalidatepage(struct page *page, unsigned long offset)
aaa4059b 1635{
2ff28e22
N
1636 void (*invalidatepage)(struct page *, unsigned long);
1637 invalidatepage = page->mapping->a_ops->invalidatepage ? :
1638 block_invalidatepage;
1639 (*invalidatepage)(page, offset);
aaa4059b
JK
1640}
1641
1da177e4
LT
1642/*
1643 * We attach and possibly dirty the buffers atomically wrt
1644 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1645 * is already excluded via the page lock.
1646 */
1647void create_empty_buffers(struct page *page,
1648 unsigned long blocksize, unsigned long b_state)
1649{
1650 struct buffer_head *bh, *head, *tail;
1651
1652 head = alloc_page_buffers(page, blocksize, 1);
1653 bh = head;
1654 do {
1655 bh->b_state |= b_state;
1656 tail = bh;
1657 bh = bh->b_this_page;
1658 } while (bh);
1659 tail->b_this_page = head;
1660
1661 spin_lock(&page->mapping->private_lock);
1662 if (PageUptodate(page) || PageDirty(page)) {
1663 bh = head;
1664 do {
1665 if (PageDirty(page))
1666 set_buffer_dirty(bh);
1667 if (PageUptodate(page))
1668 set_buffer_uptodate(bh);
1669 bh = bh->b_this_page;
1670 } while (bh != head);
1671 }
1672 attach_page_buffers(page, head);
1673 spin_unlock(&page->mapping->private_lock);
1674}
1675EXPORT_SYMBOL(create_empty_buffers);
1676
1677/*
1678 * We are taking a block for data and we don't want any output from any
1679 * buffer-cache aliases starting from return from that function and
1680 * until the moment when something will explicitly mark the buffer
1681 * dirty (hopefully that will not happen until we will free that block ;-)
1682 * We don't even need to mark it not-uptodate - nobody can expect
1683 * anything from a newly allocated buffer anyway. We used to used
1684 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1685 * don't want to mark the alias unmapped, for example - it would confuse
1686 * anyone who might pick it with bread() afterwards...
1687 *
1688 * Also.. Note that bforget() doesn't lock the buffer. So there can
1689 * be writeout I/O going on against recently-freed buffers. We don't
1690 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1691 * only if we really need to. That happens here.
1692 */
1693void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1694{
1695 struct buffer_head *old_bh;
1696
1697 might_sleep();
1698
385fd4c5 1699 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1700 if (old_bh) {
1701 clear_buffer_dirty(old_bh);
1702 wait_on_buffer(old_bh);
1703 clear_buffer_req(old_bh);
1704 __brelse(old_bh);
1705 }
1706}
1707EXPORT_SYMBOL(unmap_underlying_metadata);
1708
1709/*
1710 * NOTE! All mapped/uptodate combinations are valid:
1711 *
1712 * Mapped Uptodate Meaning
1713 *
1714 * No No "unknown" - must do get_block()
1715 * No Yes "hole" - zero-filled
1716 * Yes No "allocated" - allocated on disk, not read in
1717 * Yes Yes "valid" - allocated and up-to-date in memory.
1718 *
1719 * "Dirty" is valid only with the last case (mapped+uptodate).
1720 */
1721
1722/*
1723 * While block_write_full_page is writing back the dirty buffers under
1724 * the page lock, whoever dirtied the buffers may decide to clean them
1725 * again at any time. We handle that by only looking at the buffer
1726 * state inside lock_buffer().
1727 *
1728 * If block_write_full_page() is called for regular writeback
1729 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1730 * locked buffer. This only can happen if someone has written the buffer
1731 * directly, with submit_bh(). At the address_space level PageWriteback
1732 * prevents this contention from occurring.
1733 */
1734static int __block_write_full_page(struct inode *inode, struct page *page,
1735 get_block_t *get_block, struct writeback_control *wbc)
1736{
1737 int err;
1738 sector_t block;
1739 sector_t last_block;
f0fbd5fc 1740 struct buffer_head *bh, *head;
1da177e4
LT
1741 int nr_underway = 0;
1742
1743 BUG_ON(!PageLocked(page));
1744
1745 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1746
1747 if (!page_has_buffers(page)) {
1748 create_empty_buffers(page, 1 << inode->i_blkbits,
1749 (1 << BH_Dirty)|(1 << BH_Uptodate));
1750 }
1751
1752 /*
1753 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1754 * here, and the (potentially unmapped) buffers may become dirty at
1755 * any time. If a buffer becomes dirty here after we've inspected it
1756 * then we just miss that fact, and the page stays dirty.
1757 *
1758 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1759 * handle that here by just cleaning them.
1760 */
1761
54b21a79 1762 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1763 head = page_buffers(page);
1764 bh = head;
1765
1766 /*
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1769 */
1770 do {
1771 if (block > last_block) {
1772 /*
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1776 */
1777 /*
1778 * The buffer was zeroed by block_write_full_page()
1779 */
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
1782 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1783 err = get_block(inode, block, bh, 1);
1784 if (err)
1785 goto recover;
1786 if (buffer_new(bh)) {
1787 /* blockdev mappings never come here */
1788 clear_buffer_new(bh);
1789 unmap_underlying_metadata(bh->b_bdev,
1790 bh->b_blocknr);
1791 }
1792 }
1793 bh = bh->b_this_page;
1794 block++;
1795 } while (bh != head);
1796
1797 do {
1da177e4
LT
1798 if (!buffer_mapped(bh))
1799 continue;
1800 /*
1801 * If it's a fully non-blocking write attempt and we cannot
1802 * lock the buffer then redirty the page. Note that this can
1803 * potentially cause a busy-wait loop from pdflush and kswapd
1804 * activity, but those code paths have their own higher-level
1805 * throttling.
1806 */
1807 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1808 lock_buffer(bh);
1809 } else if (test_set_buffer_locked(bh)) {
1810 redirty_page_for_writepage(wbc, page);
1811 continue;
1812 }
1813 if (test_clear_buffer_dirty(bh)) {
1814 mark_buffer_async_write(bh);
1815 } else {
1816 unlock_buffer(bh);
1817 }
1818 } while ((bh = bh->b_this_page) != head);
1819
1820 /*
1821 * The page and its buffers are protected by PageWriteback(), so we can
1822 * drop the bh refcounts early.
1823 */
1824 BUG_ON(PageWriteback(page));
1825 set_page_writeback(page);
1da177e4
LT
1826
1827 do {
1828 struct buffer_head *next = bh->b_this_page;
1829 if (buffer_async_write(bh)) {
1830 submit_bh(WRITE, bh);
1831 nr_underway++;
1832 }
1da177e4
LT
1833 bh = next;
1834 } while (bh != head);
05937baa 1835 unlock_page(page);
1da177e4
LT
1836
1837 err = 0;
1838done:
1839 if (nr_underway == 0) {
1840 /*
1841 * The page was marked dirty, but the buffers were
1842 * clean. Someone wrote them back by hand with
1843 * ll_rw_block/submit_bh. A rare case.
1844 */
1845 int uptodate = 1;
1846 do {
1847 if (!buffer_uptodate(bh)) {
1848 uptodate = 0;
1849 break;
1850 }
1851 bh = bh->b_this_page;
1852 } while (bh != head);
1853 if (uptodate)
1854 SetPageUptodate(page);
1855 end_page_writeback(page);
1856 /*
1857 * The page and buffer_heads can be released at any time from
1858 * here on.
1859 */
1860 wbc->pages_skipped++; /* We didn't write this page */
1861 }
1862 return err;
1863
1864recover:
1865 /*
1866 * ENOSPC, or some other error. We may already have added some
1867 * blocks to the file, so we need to write these out to avoid
1868 * exposing stale data.
1869 * The page is currently locked and not marked for writeback
1870 */
1871 bh = head;
1872 /* Recovery: lock and submit the mapped buffers */
1873 do {
1da177e4
LT
1874 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1875 lock_buffer(bh);
1876 mark_buffer_async_write(bh);
1877 } else {
1878 /*
1879 * The buffer may have been set dirty during
1880 * attachment to a dirty page.
1881 */
1882 clear_buffer_dirty(bh);
1883 }
1884 } while ((bh = bh->b_this_page) != head);
1885 SetPageError(page);
1886 BUG_ON(PageWriteback(page));
1887 set_page_writeback(page);
1888 unlock_page(page);
1889 do {
1890 struct buffer_head *next = bh->b_this_page;
1891 if (buffer_async_write(bh)) {
1892 clear_buffer_dirty(bh);
1893 submit_bh(WRITE, bh);
1894 nr_underway++;
1895 }
1da177e4
LT
1896 bh = next;
1897 } while (bh != head);
1898 goto done;
1899}
1900
1901static int __block_prepare_write(struct inode *inode, struct page *page,
1902 unsigned from, unsigned to, get_block_t *get_block)
1903{
1904 unsigned block_start, block_end;
1905 sector_t block;
1906 int err = 0;
1907 unsigned blocksize, bbits;
1908 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1909
1910 BUG_ON(!PageLocked(page));
1911 BUG_ON(from > PAGE_CACHE_SIZE);
1912 BUG_ON(to > PAGE_CACHE_SIZE);
1913 BUG_ON(from > to);
1914
1915 blocksize = 1 << inode->i_blkbits;
1916 if (!page_has_buffers(page))
1917 create_empty_buffers(page, blocksize, 0);
1918 head = page_buffers(page);
1919
1920 bbits = inode->i_blkbits;
1921 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1922
1923 for(bh = head, block_start = 0; bh != head || !block_start;
1924 block++, block_start=block_end, bh = bh->b_this_page) {
1925 block_end = block_start + blocksize;
1926 if (block_end <= from || block_start >= to) {
1927 if (PageUptodate(page)) {
1928 if (!buffer_uptodate(bh))
1929 set_buffer_uptodate(bh);
1930 }
1931 continue;
1932 }
1933 if (buffer_new(bh))
1934 clear_buffer_new(bh);
1935 if (!buffer_mapped(bh)) {
1936 err = get_block(inode, block, bh, 1);
1937 if (err)
f3ddbdc6 1938 break;
1da177e4 1939 if (buffer_new(bh)) {
1da177e4
LT
1940 unmap_underlying_metadata(bh->b_bdev,
1941 bh->b_blocknr);
1942 if (PageUptodate(page)) {
1943 set_buffer_uptodate(bh);
1944 continue;
1945 }
1946 if (block_end > to || block_start < from) {
1947 void *kaddr;
1948
1949 kaddr = kmap_atomic(page, KM_USER0);
1950 if (block_end > to)
1951 memset(kaddr+to, 0,
1952 block_end-to);
1953 if (block_start < from)
1954 memset(kaddr+block_start,
1955 0, from-block_start);
1956 flush_dcache_page(page);
1957 kunmap_atomic(kaddr, KM_USER0);
1958 }
1959 continue;
1960 }
1961 }
1962 if (PageUptodate(page)) {
1963 if (!buffer_uptodate(bh))
1964 set_buffer_uptodate(bh);
1965 continue;
1966 }
1967 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1968 (block_start < from || block_end > to)) {
1969 ll_rw_block(READ, 1, &bh);
1970 *wait_bh++=bh;
1971 }
1972 }
1973 /*
1974 * If we issued read requests - let them complete.
1975 */
1976 while(wait_bh > wait) {
1977 wait_on_buffer(*--wait_bh);
1978 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1979 err = -EIO;
1da177e4 1980 }
152becd2
AA
1981 if (!err) {
1982 bh = head;
1983 do {
1984 if (buffer_new(bh))
1985 clear_buffer_new(bh);
1986 } while ((bh = bh->b_this_page) != head);
1987 return 0;
1988 }
f3ddbdc6 1989 /* Error case: */
1da177e4
LT
1990 /*
1991 * Zero out any newly allocated blocks to avoid exposing stale
1992 * data. If BH_New is set, we know that the block was newly
1993 * allocated in the above loop.
1994 */
1995 bh = head;
1996 block_start = 0;
1997 do {
1998 block_end = block_start+blocksize;
1999 if (block_end <= from)
2000 goto next_bh;
2001 if (block_start >= to)
2002 break;
2003 if (buffer_new(bh)) {
2004 void *kaddr;
2005
2006 clear_buffer_new(bh);
2007 kaddr = kmap_atomic(page, KM_USER0);
2008 memset(kaddr+block_start, 0, bh->b_size);
2009 kunmap_atomic(kaddr, KM_USER0);
2010 set_buffer_uptodate(bh);
2011 mark_buffer_dirty(bh);
2012 }
2013next_bh:
2014 block_start = block_end;
2015 bh = bh->b_this_page;
2016 } while (bh != head);
2017 return err;
2018}
2019
2020static int __block_commit_write(struct inode *inode, struct page *page,
2021 unsigned from, unsigned to)
2022{
2023 unsigned block_start, block_end;
2024 int partial = 0;
2025 unsigned blocksize;
2026 struct buffer_head *bh, *head;
2027
2028 blocksize = 1 << inode->i_blkbits;
2029
2030 for(bh = head = page_buffers(page), block_start = 0;
2031 bh != head || !block_start;
2032 block_start=block_end, bh = bh->b_this_page) {
2033 block_end = block_start + blocksize;
2034 if (block_end <= from || block_start >= to) {
2035 if (!buffer_uptodate(bh))
2036 partial = 1;
2037 } else {
2038 set_buffer_uptodate(bh);
2039 mark_buffer_dirty(bh);
2040 }
2041 }
2042
2043 /*
2044 * If this is a partial write which happened to make all buffers
2045 * uptodate then we can optimize away a bogus readpage() for
2046 * the next read(). Here we 'discover' whether the page went
2047 * uptodate as a result of this (potentially partial) write.
2048 */
2049 if (!partial)
2050 SetPageUptodate(page);
2051 return 0;
2052}
2053
2054/*
2055 * Generic "read page" function for block devices that have the normal
2056 * get_block functionality. This is most of the block device filesystems.
2057 * Reads the page asynchronously --- the unlock_buffer() and
2058 * set/clear_buffer_uptodate() functions propagate buffer state into the
2059 * page struct once IO has completed.
2060 */
2061int block_read_full_page(struct page *page, get_block_t *get_block)
2062{
2063 struct inode *inode = page->mapping->host;
2064 sector_t iblock, lblock;
2065 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2066 unsigned int blocksize;
2067 int nr, i;
2068 int fully_mapped = 1;
2069
cd7619d6 2070 BUG_ON(!PageLocked(page));
1da177e4
LT
2071 blocksize = 1 << inode->i_blkbits;
2072 if (!page_has_buffers(page))
2073 create_empty_buffers(page, blocksize, 0);
2074 head = page_buffers(page);
2075
2076 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2078 bh = head;
2079 nr = 0;
2080 i = 0;
2081
2082 do {
2083 if (buffer_uptodate(bh))
2084 continue;
2085
2086 if (!buffer_mapped(bh)) {
c64610ba
AM
2087 int err = 0;
2088
1da177e4
LT
2089 fully_mapped = 0;
2090 if (iblock < lblock) {
c64610ba
AM
2091 err = get_block(inode, iblock, bh, 0);
2092 if (err)
1da177e4
LT
2093 SetPageError(page);
2094 }
2095 if (!buffer_mapped(bh)) {
2096 void *kaddr = kmap_atomic(page, KM_USER0);
2097 memset(kaddr + i * blocksize, 0, blocksize);
2098 flush_dcache_page(page);
2099 kunmap_atomic(kaddr, KM_USER0);
c64610ba
AM
2100 if (!err)
2101 set_buffer_uptodate(bh);
1da177e4
LT
2102 continue;
2103 }
2104 /*
2105 * get_block() might have updated the buffer
2106 * synchronously
2107 */
2108 if (buffer_uptodate(bh))
2109 continue;
2110 }
2111 arr[nr++] = bh;
2112 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2113
2114 if (fully_mapped)
2115 SetPageMappedToDisk(page);
2116
2117 if (!nr) {
2118 /*
2119 * All buffers are uptodate - we can set the page uptodate
2120 * as well. But not if get_block() returned an error.
2121 */
2122 if (!PageError(page))
2123 SetPageUptodate(page);
2124 unlock_page(page);
2125 return 0;
2126 }
2127
2128 /* Stage two: lock the buffers */
2129 for (i = 0; i < nr; i++) {
2130 bh = arr[i];
2131 lock_buffer(bh);
2132 mark_buffer_async_read(bh);
2133 }
2134
2135 /*
2136 * Stage 3: start the IO. Check for uptodateness
2137 * inside the buffer lock in case another process reading
2138 * the underlying blockdev brought it uptodate (the sct fix).
2139 */
2140 for (i = 0; i < nr; i++) {
2141 bh = arr[i];
2142 if (buffer_uptodate(bh))
2143 end_buffer_async_read(bh, 1);
2144 else
2145 submit_bh(READ, bh);
2146 }
2147 return 0;
2148}
2149
2150/* utility function for filesystems that need to do work on expanding
2151 * truncates. Uses prepare/commit_write to allow the filesystem to
2152 * deal with the hole.
2153 */
05eb0b51
OH
2154static int __generic_cont_expand(struct inode *inode, loff_t size,
2155 pgoff_t index, unsigned int offset)
1da177e4
LT
2156{
2157 struct address_space *mapping = inode->i_mapping;
2158 struct page *page;
05eb0b51 2159 unsigned long limit;
1da177e4
LT
2160 int err;
2161
2162 err = -EFBIG;
2163 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2164 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2165 send_sig(SIGXFSZ, current, 0);
2166 goto out;
2167 }
2168 if (size > inode->i_sb->s_maxbytes)
2169 goto out;
2170
1da177e4
LT
2171 err = -ENOMEM;
2172 page = grab_cache_page(mapping, index);
2173 if (!page)
2174 goto out;
2175 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
05eb0b51
OH
2176 if (err) {
2177 /*
2178 * ->prepare_write() may have instantiated a few blocks
2179 * outside i_size. Trim these off again.
2180 */
2181 unlock_page(page);
2182 page_cache_release(page);
2183 vmtruncate(inode, inode->i_size);
2184 goto out;
1da177e4 2185 }
05eb0b51
OH
2186
2187 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2188
1da177e4
LT
2189 unlock_page(page);
2190 page_cache_release(page);
2191 if (err > 0)
2192 err = 0;
2193out:
2194 return err;
2195}
2196
05eb0b51
OH
2197int generic_cont_expand(struct inode *inode, loff_t size)
2198{
2199 pgoff_t index;
2200 unsigned int offset;
2201
2202 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2203
2204 /* ugh. in prepare/commit_write, if from==to==start of block, we
2205 ** skip the prepare. make sure we never send an offset for the start
2206 ** of a block
2207 */
2208 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2209 /* caller must handle this extra byte. */
2210 offset++;
2211 }
2212 index = size >> PAGE_CACHE_SHIFT;
2213
2214 return __generic_cont_expand(inode, size, index, offset);
2215}
2216
2217int generic_cont_expand_simple(struct inode *inode, loff_t size)
2218{
2219 loff_t pos = size - 1;
2220 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2221 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2222
2223 /* prepare/commit_write can handle even if from==to==start of block. */
2224 return __generic_cont_expand(inode, size, index, offset);
2225}
2226
1da177e4
LT
2227/*
2228 * For moronic filesystems that do not allow holes in file.
2229 * We may have to extend the file.
2230 */
2231
2232int cont_prepare_write(struct page *page, unsigned offset,
2233 unsigned to, get_block_t *get_block, loff_t *bytes)
2234{
2235 struct address_space *mapping = page->mapping;
2236 struct inode *inode = mapping->host;
2237 struct page *new_page;
2238 pgoff_t pgpos;
2239 long status;
2240 unsigned zerofrom;
2241 unsigned blocksize = 1 << inode->i_blkbits;
2242 void *kaddr;
2243
2244 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2245 status = -ENOMEM;
2246 new_page = grab_cache_page(mapping, pgpos);
2247 if (!new_page)
2248 goto out;
2249 /* we might sleep */
2250 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2251 unlock_page(new_page);
2252 page_cache_release(new_page);
2253 continue;
2254 }
2255 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2256 if (zerofrom & (blocksize-1)) {
2257 *bytes |= (blocksize-1);
2258 (*bytes)++;
2259 }
2260 status = __block_prepare_write(inode, new_page, zerofrom,
2261 PAGE_CACHE_SIZE, get_block);
2262 if (status)
2263 goto out_unmap;
2264 kaddr = kmap_atomic(new_page, KM_USER0);
2265 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2266 flush_dcache_page(new_page);
2267 kunmap_atomic(kaddr, KM_USER0);
2268 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2269 unlock_page(new_page);
2270 page_cache_release(new_page);
2271 }
2272
2273 if (page->index < pgpos) {
2274 /* completely inside the area */
2275 zerofrom = offset;
2276 } else {
2277 /* page covers the boundary, find the boundary offset */
2278 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2279
2280 /* if we will expand the thing last block will be filled */
2281 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2282 *bytes |= (blocksize-1);
2283 (*bytes)++;
2284 }
2285
2286 /* starting below the boundary? Nothing to zero out */
2287 if (offset <= zerofrom)
2288 zerofrom = offset;
2289 }
2290 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2291 if (status)
2292 goto out1;
2293 if (zerofrom < offset) {
2294 kaddr = kmap_atomic(page, KM_USER0);
2295 memset(kaddr+zerofrom, 0, offset-zerofrom);
2296 flush_dcache_page(page);
2297 kunmap_atomic(kaddr, KM_USER0);
2298 __block_commit_write(inode, page, zerofrom, offset);
2299 }
2300 return 0;
2301out1:
2302 ClearPageUptodate(page);
2303 return status;
2304
2305out_unmap:
2306 ClearPageUptodate(new_page);
2307 unlock_page(new_page);
2308 page_cache_release(new_page);
2309out:
2310 return status;
2311}
2312
2313int block_prepare_write(struct page *page, unsigned from, unsigned to,
2314 get_block_t *get_block)
2315{
2316 struct inode *inode = page->mapping->host;
2317 int err = __block_prepare_write(inode, page, from, to, get_block);
2318 if (err)
2319 ClearPageUptodate(page);
2320 return err;
2321}
2322
2323int block_commit_write(struct page *page, unsigned from, unsigned to)
2324{
2325 struct inode *inode = page->mapping->host;
2326 __block_commit_write(inode,page,from,to);
2327 return 0;
2328}
2329
2330int generic_commit_write(struct file *file, struct page *page,
2331 unsigned from, unsigned to)
2332{
2333 struct inode *inode = page->mapping->host;
2334 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2335 __block_commit_write(inode,page,from,to);
2336 /*
2337 * No need to use i_size_read() here, the i_size
1b1dcc1b 2338 * cannot change under us because we hold i_mutex.
1da177e4
LT
2339 */
2340 if (pos > inode->i_size) {
2341 i_size_write(inode, pos);
2342 mark_inode_dirty(inode);
2343 }
2344 return 0;
2345}
2346
2347
2348/*
2349 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2350 * immediately, while under the page lock. So it needs a special end_io
2351 * handler which does not touch the bh after unlocking it.
2352 *
2353 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2354 * a race there is benign: unlock_buffer() only use the bh's address for
2355 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2356 * itself.
2357 */
2358static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2359{
2360 if (uptodate) {
2361 set_buffer_uptodate(bh);
2362 } else {
2363 /* This happens, due to failed READA attempts. */
2364 clear_buffer_uptodate(bh);
2365 }
2366 unlock_buffer(bh);
2367}
2368
2369/*
2370 * On entry, the page is fully not uptodate.
2371 * On exit the page is fully uptodate in the areas outside (from,to)
2372 */
2373int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2374 get_block_t *get_block)
2375{
2376 struct inode *inode = page->mapping->host;
2377 const unsigned blkbits = inode->i_blkbits;
2378 const unsigned blocksize = 1 << blkbits;
2379 struct buffer_head map_bh;
2380 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2381 unsigned block_in_page;
2382 unsigned block_start;
2383 sector_t block_in_file;
2384 char *kaddr;
2385 int nr_reads = 0;
2386 int i;
2387 int ret = 0;
2388 int is_mapped_to_disk = 1;
2389 int dirtied_it = 0;
2390
2391 if (PageMappedToDisk(page))
2392 return 0;
2393
2394 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2395 map_bh.b_page = page;
2396
2397 /*
2398 * We loop across all blocks in the page, whether or not they are
2399 * part of the affected region. This is so we can discover if the
2400 * page is fully mapped-to-disk.
2401 */
2402 for (block_start = 0, block_in_page = 0;
2403 block_start < PAGE_CACHE_SIZE;
2404 block_in_page++, block_start += blocksize) {
2405 unsigned block_end = block_start + blocksize;
2406 int create;
2407
2408 map_bh.b_state = 0;
2409 create = 1;
2410 if (block_start >= to)
2411 create = 0;
2412 ret = get_block(inode, block_in_file + block_in_page,
2413 &map_bh, create);
2414 if (ret)
2415 goto failed;
2416 if (!buffer_mapped(&map_bh))
2417 is_mapped_to_disk = 0;
2418 if (buffer_new(&map_bh))
2419 unmap_underlying_metadata(map_bh.b_bdev,
2420 map_bh.b_blocknr);
2421 if (PageUptodate(page))
2422 continue;
2423 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2424 kaddr = kmap_atomic(page, KM_USER0);
2425 if (block_start < from) {
2426 memset(kaddr+block_start, 0, from-block_start);
2427 dirtied_it = 1;
2428 }
2429 if (block_end > to) {
2430 memset(kaddr + to, 0, block_end - to);
2431 dirtied_it = 1;
2432 }
2433 flush_dcache_page(page);
2434 kunmap_atomic(kaddr, KM_USER0);
2435 continue;
2436 }
2437 if (buffer_uptodate(&map_bh))
2438 continue; /* reiserfs does this */
2439 if (block_start < from || block_end > to) {
2440 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2441
2442 if (!bh) {
2443 ret = -ENOMEM;
2444 goto failed;
2445 }
2446 bh->b_state = map_bh.b_state;
2447 atomic_set(&bh->b_count, 0);
2448 bh->b_this_page = NULL;
2449 bh->b_page = page;
2450 bh->b_blocknr = map_bh.b_blocknr;
2451 bh->b_size = blocksize;
2452 bh->b_data = (char *)(long)block_start;
2453 bh->b_bdev = map_bh.b_bdev;
2454 bh->b_private = NULL;
2455 read_bh[nr_reads++] = bh;
2456 }
2457 }
2458
2459 if (nr_reads) {
2460 struct buffer_head *bh;
2461
2462 /*
2463 * The page is locked, so these buffers are protected from
2464 * any VM or truncate activity. Hence we don't need to care
2465 * for the buffer_head refcounts.
2466 */
2467 for (i = 0; i < nr_reads; i++) {
2468 bh = read_bh[i];
2469 lock_buffer(bh);
2470 bh->b_end_io = end_buffer_read_nobh;
2471 submit_bh(READ, bh);
2472 }
2473 for (i = 0; i < nr_reads; i++) {
2474 bh = read_bh[i];
2475 wait_on_buffer(bh);
2476 if (!buffer_uptodate(bh))
2477 ret = -EIO;
2478 free_buffer_head(bh);
2479 read_bh[i] = NULL;
2480 }
2481 if (ret)
2482 goto failed;
2483 }
2484
2485 if (is_mapped_to_disk)
2486 SetPageMappedToDisk(page);
2487 SetPageUptodate(page);
2488
2489 /*
2490 * Setting the page dirty here isn't necessary for the prepare_write
2491 * function - commit_write will do that. But if/when this function is
2492 * used within the pagefault handler to ensure that all mmapped pages
2493 * have backing space in the filesystem, we will need to dirty the page
2494 * if its contents were altered.
2495 */
2496 if (dirtied_it)
2497 set_page_dirty(page);
2498
2499 return 0;
2500
2501failed:
2502 for (i = 0; i < nr_reads; i++) {
2503 if (read_bh[i])
2504 free_buffer_head(read_bh[i]);
2505 }
2506
2507 /*
2508 * Error recovery is pretty slack. Clear the page and mark it dirty
2509 * so we'll later zero out any blocks which _were_ allocated.
2510 */
2511 kaddr = kmap_atomic(page, KM_USER0);
2512 memset(kaddr, 0, PAGE_CACHE_SIZE);
2513 kunmap_atomic(kaddr, KM_USER0);
2514 SetPageUptodate(page);
2515 set_page_dirty(page);
2516 return ret;
2517}
2518EXPORT_SYMBOL(nobh_prepare_write);
2519
2520int nobh_commit_write(struct file *file, struct page *page,
2521 unsigned from, unsigned to)
2522{
2523 struct inode *inode = page->mapping->host;
2524 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2525
2526 set_page_dirty(page);
2527 if (pos > inode->i_size) {
2528 i_size_write(inode, pos);
2529 mark_inode_dirty(inode);
2530 }
2531 return 0;
2532}
2533EXPORT_SYMBOL(nobh_commit_write);
2534
2535/*
2536 * nobh_writepage() - based on block_full_write_page() except
2537 * that it tries to operate without attaching bufferheads to
2538 * the page.
2539 */
2540int nobh_writepage(struct page *page, get_block_t *get_block,
2541 struct writeback_control *wbc)
2542{
2543 struct inode * const inode = page->mapping->host;
2544 loff_t i_size = i_size_read(inode);
2545 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2546 unsigned offset;
2547 void *kaddr;
2548 int ret;
2549
2550 /* Is the page fully inside i_size? */
2551 if (page->index < end_index)
2552 goto out;
2553
2554 /* Is the page fully outside i_size? (truncate in progress) */
2555 offset = i_size & (PAGE_CACHE_SIZE-1);
2556 if (page->index >= end_index+1 || !offset) {
2557 /*
2558 * The page may have dirty, unmapped buffers. For example,
2559 * they may have been added in ext3_writepage(). Make them
2560 * freeable here, so the page does not leak.
2561 */
2562#if 0
2563 /* Not really sure about this - do we need this ? */
2564 if (page->mapping->a_ops->invalidatepage)
2565 page->mapping->a_ops->invalidatepage(page, offset);
2566#endif
2567 unlock_page(page);
2568 return 0; /* don't care */
2569 }
2570
2571 /*
2572 * The page straddles i_size. It must be zeroed out on each and every
2573 * writepage invocation because it may be mmapped. "A file is mapped
2574 * in multiples of the page size. For a file that is not a multiple of
2575 * the page size, the remaining memory is zeroed when mapped, and
2576 * writes to that region are not written out to the file."
2577 */
2578 kaddr = kmap_atomic(page, KM_USER0);
2579 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2580 flush_dcache_page(page);
2581 kunmap_atomic(kaddr, KM_USER0);
2582out:
2583 ret = mpage_writepage(page, get_block, wbc);
2584 if (ret == -EAGAIN)
2585 ret = __block_write_full_page(inode, page, get_block, wbc);
2586 return ret;
2587}
2588EXPORT_SYMBOL(nobh_writepage);
2589
2590/*
2591 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2592 */
2593int nobh_truncate_page(struct address_space *mapping, loff_t from)
2594{
2595 struct inode *inode = mapping->host;
2596 unsigned blocksize = 1 << inode->i_blkbits;
2597 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2598 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2599 unsigned to;
2600 struct page *page;
2601 struct address_space_operations *a_ops = mapping->a_ops;
2602 char *kaddr;
2603 int ret = 0;
2604
2605 if ((offset & (blocksize - 1)) == 0)
2606 goto out;
2607
2608 ret = -ENOMEM;
2609 page = grab_cache_page(mapping, index);
2610 if (!page)
2611 goto out;
2612
2613 to = (offset + blocksize) & ~(blocksize - 1);
2614 ret = a_ops->prepare_write(NULL, page, offset, to);
2615 if (ret == 0) {
2616 kaddr = kmap_atomic(page, KM_USER0);
2617 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2618 flush_dcache_page(page);
2619 kunmap_atomic(kaddr, KM_USER0);
2620 set_page_dirty(page);
2621 }
2622 unlock_page(page);
2623 page_cache_release(page);
2624out:
2625 return ret;
2626}
2627EXPORT_SYMBOL(nobh_truncate_page);
2628
2629int block_truncate_page(struct address_space *mapping,
2630 loff_t from, get_block_t *get_block)
2631{
2632 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2633 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2634 unsigned blocksize;
54b21a79 2635 sector_t iblock;
1da177e4
LT
2636 unsigned length, pos;
2637 struct inode *inode = mapping->host;
2638 struct page *page;
2639 struct buffer_head *bh;
2640 void *kaddr;
2641 int err;
2642
2643 blocksize = 1 << inode->i_blkbits;
2644 length = offset & (blocksize - 1);
2645
2646 /* Block boundary? Nothing to do */
2647 if (!length)
2648 return 0;
2649
2650 length = blocksize - length;
54b21a79 2651 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2652
2653 page = grab_cache_page(mapping, index);
2654 err = -ENOMEM;
2655 if (!page)
2656 goto out;
2657
2658 if (!page_has_buffers(page))
2659 create_empty_buffers(page, blocksize, 0);
2660
2661 /* Find the buffer that contains "offset" */
2662 bh = page_buffers(page);
2663 pos = blocksize;
2664 while (offset >= pos) {
2665 bh = bh->b_this_page;
2666 iblock++;
2667 pos += blocksize;
2668 }
2669
2670 err = 0;
2671 if (!buffer_mapped(bh)) {
2672 err = get_block(inode, iblock, bh, 0);
2673 if (err)
2674 goto unlock;
2675 /* unmapped? It's a hole - nothing to do */
2676 if (!buffer_mapped(bh))
2677 goto unlock;
2678 }
2679
2680 /* Ok, it's mapped. Make sure it's up-to-date */
2681 if (PageUptodate(page))
2682 set_buffer_uptodate(bh);
2683
2684 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2685 err = -EIO;
2686 ll_rw_block(READ, 1, &bh);
2687 wait_on_buffer(bh);
2688 /* Uhhuh. Read error. Complain and punt. */
2689 if (!buffer_uptodate(bh))
2690 goto unlock;
2691 }
2692
2693 kaddr = kmap_atomic(page, KM_USER0);
2694 memset(kaddr + offset, 0, length);
2695 flush_dcache_page(page);
2696 kunmap_atomic(kaddr, KM_USER0);
2697
2698 mark_buffer_dirty(bh);
2699 err = 0;
2700
2701unlock:
2702 unlock_page(page);
2703 page_cache_release(page);
2704out:
2705 return err;
2706}
2707
2708/*
2709 * The generic ->writepage function for buffer-backed address_spaces
2710 */
2711int block_write_full_page(struct page *page, get_block_t *get_block,
2712 struct writeback_control *wbc)
2713{
2714 struct inode * const inode = page->mapping->host;
2715 loff_t i_size = i_size_read(inode);
2716 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2717 unsigned offset;
2718 void *kaddr;
2719
2720 /* Is the page fully inside i_size? */
2721 if (page->index < end_index)
2722 return __block_write_full_page(inode, page, get_block, wbc);
2723
2724 /* Is the page fully outside i_size? (truncate in progress) */
2725 offset = i_size & (PAGE_CACHE_SIZE-1);
2726 if (page->index >= end_index+1 || !offset) {
2727 /*
2728 * The page may have dirty, unmapped buffers. For example,
2729 * they may have been added in ext3_writepage(). Make them
2730 * freeable here, so the page does not leak.
2731 */
aaa4059b 2732 do_invalidatepage(page, 0);
1da177e4
LT
2733 unlock_page(page);
2734 return 0; /* don't care */
2735 }
2736
2737 /*
2738 * The page straddles i_size. It must be zeroed out on each and every
2739 * writepage invokation because it may be mmapped. "A file is mapped
2740 * in multiples of the page size. For a file that is not a multiple of
2741 * the page size, the remaining memory is zeroed when mapped, and
2742 * writes to that region are not written out to the file."
2743 */
2744 kaddr = kmap_atomic(page, KM_USER0);
2745 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2746 flush_dcache_page(page);
2747 kunmap_atomic(kaddr, KM_USER0);
2748 return __block_write_full_page(inode, page, get_block, wbc);
2749}
2750
2751sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2752 get_block_t *get_block)
2753{
2754 struct buffer_head tmp;
2755 struct inode *inode = mapping->host;
2756 tmp.b_state = 0;
2757 tmp.b_blocknr = 0;
2758 get_block(inode, block, &tmp, 0);
2759 return tmp.b_blocknr;
2760}
2761
2762static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2763{
2764 struct buffer_head *bh = bio->bi_private;
2765
2766 if (bio->bi_size)
2767 return 1;
2768
2769 if (err == -EOPNOTSUPP) {
2770 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2771 set_bit(BH_Eopnotsupp, &bh->b_state);
2772 }
2773
2774 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2775 bio_put(bio);
2776 return 0;
2777}
2778
2779int submit_bh(int rw, struct buffer_head * bh)
2780{
2781 struct bio *bio;
2782 int ret = 0;
2783
2784 BUG_ON(!buffer_locked(bh));
2785 BUG_ON(!buffer_mapped(bh));
2786 BUG_ON(!bh->b_end_io);
2787
2788 if (buffer_ordered(bh) && (rw == WRITE))
2789 rw = WRITE_BARRIER;
2790
2791 /*
2792 * Only clear out a write error when rewriting, should this
2793 * include WRITE_SYNC as well?
2794 */
2795 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2796 clear_buffer_write_io_error(bh);
2797
2798 /*
2799 * from here on down, it's all bio -- do the initial mapping,
2800 * submit_bio -> generic_make_request may further map this bio around
2801 */
2802 bio = bio_alloc(GFP_NOIO, 1);
2803
2804 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2805 bio->bi_bdev = bh->b_bdev;
2806 bio->bi_io_vec[0].bv_page = bh->b_page;
2807 bio->bi_io_vec[0].bv_len = bh->b_size;
2808 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2809
2810 bio->bi_vcnt = 1;
2811 bio->bi_idx = 0;
2812 bio->bi_size = bh->b_size;
2813
2814 bio->bi_end_io = end_bio_bh_io_sync;
2815 bio->bi_private = bh;
2816
2817 bio_get(bio);
2818 submit_bio(rw, bio);
2819
2820 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2821 ret = -EOPNOTSUPP;
2822
2823 bio_put(bio);
2824 return ret;
2825}
2826
2827/**
2828 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2829 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2830 * @nr: number of &struct buffer_heads in the array
2831 * @bhs: array of pointers to &struct buffer_head
2832 *
a7662236
JK
2833 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2834 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2835 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2836 * are sent to disk. The fourth %READA option is described in the documentation
2837 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2838 *
2839 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2840 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2841 * clean when doing a write request, and any buffer that appears to be
2842 * up-to-date when doing read request. Further it marks as clean buffers that
2843 * are processed for writing (the buffer cache won't assume that they are
2844 * actually clean until the buffer gets unlocked).
1da177e4
LT
2845 *
2846 * ll_rw_block sets b_end_io to simple completion handler that marks
2847 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2848 * any waiters.
2849 *
2850 * All of the buffers must be for the same device, and must also be a
2851 * multiple of the current approved size for the device.
2852 */
2853void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2854{
2855 int i;
2856
2857 for (i = 0; i < nr; i++) {
2858 struct buffer_head *bh = bhs[i];
2859
a7662236
JK
2860 if (rw == SWRITE)
2861 lock_buffer(bh);
2862 else if (test_set_buffer_locked(bh))
1da177e4
LT
2863 continue;
2864
a7662236 2865 if (rw == WRITE || rw == SWRITE) {
1da177e4 2866 if (test_clear_buffer_dirty(bh)) {
76c3073a 2867 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2868 get_bh(bh);
1da177e4
LT
2869 submit_bh(WRITE, bh);
2870 continue;
2871 }
2872 } else {
1da177e4 2873 if (!buffer_uptodate(bh)) {
76c3073a 2874 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2875 get_bh(bh);
1da177e4
LT
2876 submit_bh(rw, bh);
2877 continue;
2878 }
2879 }
2880 unlock_buffer(bh);
1da177e4
LT
2881 }
2882}
2883
2884/*
2885 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2886 * and then start new I/O and then wait upon it. The caller must have a ref on
2887 * the buffer_head.
2888 */
2889int sync_dirty_buffer(struct buffer_head *bh)
2890{
2891 int ret = 0;
2892
2893 WARN_ON(atomic_read(&bh->b_count) < 1);
2894 lock_buffer(bh);
2895 if (test_clear_buffer_dirty(bh)) {
2896 get_bh(bh);
2897 bh->b_end_io = end_buffer_write_sync;
2898 ret = submit_bh(WRITE, bh);
2899 wait_on_buffer(bh);
2900 if (buffer_eopnotsupp(bh)) {
2901 clear_buffer_eopnotsupp(bh);
2902 ret = -EOPNOTSUPP;
2903 }
2904 if (!ret && !buffer_uptodate(bh))
2905 ret = -EIO;
2906 } else {
2907 unlock_buffer(bh);
2908 }
2909 return ret;
2910}
2911
2912/*
2913 * try_to_free_buffers() checks if all the buffers on this particular page
2914 * are unused, and releases them if so.
2915 *
2916 * Exclusion against try_to_free_buffers may be obtained by either
2917 * locking the page or by holding its mapping's private_lock.
2918 *
2919 * If the page is dirty but all the buffers are clean then we need to
2920 * be sure to mark the page clean as well. This is because the page
2921 * may be against a block device, and a later reattachment of buffers
2922 * to a dirty page will set *all* buffers dirty. Which would corrupt
2923 * filesystem data on the same device.
2924 *
2925 * The same applies to regular filesystem pages: if all the buffers are
2926 * clean then we set the page clean and proceed. To do that, we require
2927 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2928 * private_lock.
2929 *
2930 * try_to_free_buffers() is non-blocking.
2931 */
2932static inline int buffer_busy(struct buffer_head *bh)
2933{
2934 return atomic_read(&bh->b_count) |
2935 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2936}
2937
2938static int
2939drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2940{
2941 struct buffer_head *head = page_buffers(page);
2942 struct buffer_head *bh;
2943
2944 bh = head;
2945 do {
de7d5a3b 2946 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
2947 set_bit(AS_EIO, &page->mapping->flags);
2948 if (buffer_busy(bh))
2949 goto failed;
2950 bh = bh->b_this_page;
2951 } while (bh != head);
2952
2953 do {
2954 struct buffer_head *next = bh->b_this_page;
2955
2956 if (!list_empty(&bh->b_assoc_buffers))
2957 __remove_assoc_queue(bh);
2958 bh = next;
2959 } while (bh != head);
2960 *buffers_to_free = head;
2961 __clear_page_buffers(page);
2962 return 1;
2963failed:
2964 return 0;
2965}
2966
2967int try_to_free_buffers(struct page *page)
2968{
2969 struct address_space * const mapping = page->mapping;
2970 struct buffer_head *buffers_to_free = NULL;
2971 int ret = 0;
2972
2973 BUG_ON(!PageLocked(page));
2974 if (PageWriteback(page))
2975 return 0;
2976
2977 if (mapping == NULL) { /* can this still happen? */
2978 ret = drop_buffers(page, &buffers_to_free);
2979 goto out;
2980 }
2981
2982 spin_lock(&mapping->private_lock);
2983 ret = drop_buffers(page, &buffers_to_free);
2984 if (ret) {
2985 /*
2986 * If the filesystem writes its buffers by hand (eg ext3)
2987 * then we can have clean buffers against a dirty page. We
2988 * clean the page here; otherwise later reattachment of buffers
2989 * could encounter a non-uptodate page, which is unresolvable.
2990 * This only applies in the rare case where try_to_free_buffers
2991 * succeeds but the page is not freed.
2992 */
2993 clear_page_dirty(page);
2994 }
2995 spin_unlock(&mapping->private_lock);
2996out:
2997 if (buffers_to_free) {
2998 struct buffer_head *bh = buffers_to_free;
2999
3000 do {
3001 struct buffer_head *next = bh->b_this_page;
3002 free_buffer_head(bh);
3003 bh = next;
3004 } while (bh != buffers_to_free);
3005 }
3006 return ret;
3007}
3008EXPORT_SYMBOL(try_to_free_buffers);
3009
3978d717 3010void block_sync_page(struct page *page)
1da177e4
LT
3011{
3012 struct address_space *mapping;
3013
3014 smp_mb();
3015 mapping = page_mapping(page);
3016 if (mapping)
3017 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
3018}
3019
3020/*
3021 * There are no bdflush tunables left. But distributions are
3022 * still running obsolete flush daemons, so we terminate them here.
3023 *
3024 * Use of bdflush() is deprecated and will be removed in a future kernel.
3025 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3026 */
3027asmlinkage long sys_bdflush(int func, long data)
3028{
3029 static int msg_count;
3030
3031 if (!capable(CAP_SYS_ADMIN))
3032 return -EPERM;
3033
3034 if (msg_count < 5) {
3035 msg_count++;
3036 printk(KERN_INFO
3037 "warning: process `%s' used the obsolete bdflush"
3038 " system call\n", current->comm);
3039 printk(KERN_INFO "Fix your initscripts?\n");
3040 }
3041
3042 if (func == 1)
3043 do_exit(0);
3044 return 0;
3045}
3046
3047/*
3048 * Buffer-head allocation
3049 */
3050static kmem_cache_t *bh_cachep;
3051
3052/*
3053 * Once the number of bh's in the machine exceeds this level, we start
3054 * stripping them in writeback.
3055 */
3056static int max_buffer_heads;
3057
3058int buffer_heads_over_limit;
3059
3060struct bh_accounting {
3061 int nr; /* Number of live bh's */
3062 int ratelimit; /* Limit cacheline bouncing */
3063};
3064
3065static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3066
3067static void recalc_bh_state(void)
3068{
3069 int i;
3070 int tot = 0;
3071
3072 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3073 return;
3074 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 3075 for_each_online_cpu(i)
1da177e4
LT
3076 tot += per_cpu(bh_accounting, i).nr;
3077 buffer_heads_over_limit = (tot > max_buffer_heads);
3078}
3079
dd0fc66f 3080struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4
LT
3081{
3082 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3083 if (ret) {
736c7b80 3084 get_cpu_var(bh_accounting).nr++;
1da177e4 3085 recalc_bh_state();
736c7b80 3086 put_cpu_var(bh_accounting);
1da177e4
LT
3087 }
3088 return ret;
3089}
3090EXPORT_SYMBOL(alloc_buffer_head);
3091
3092void free_buffer_head(struct buffer_head *bh)
3093{
3094 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3095 kmem_cache_free(bh_cachep, bh);
736c7b80 3096 get_cpu_var(bh_accounting).nr--;
1da177e4 3097 recalc_bh_state();
736c7b80 3098 put_cpu_var(bh_accounting);
1da177e4
LT
3099}
3100EXPORT_SYMBOL(free_buffer_head);
3101
3102static void
3103init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3104{
3105 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3106 SLAB_CTOR_CONSTRUCTOR) {
3107 struct buffer_head * bh = (struct buffer_head *)data;
3108
3109 memset(bh, 0, sizeof(*bh));
3110 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3111 }
3112}
3113
3114#ifdef CONFIG_HOTPLUG_CPU
3115static void buffer_exit_cpu(int cpu)
3116{
3117 int i;
3118 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3119
3120 for (i = 0; i < BH_LRU_SIZE; i++) {
3121 brelse(b->bhs[i]);
3122 b->bhs[i] = NULL;
3123 }
8a143426
ED
3124 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3125 per_cpu(bh_accounting, cpu).nr = 0;
3126 put_cpu_var(bh_accounting);
1da177e4
LT
3127}
3128
3129static int buffer_cpu_notify(struct notifier_block *self,
3130 unsigned long action, void *hcpu)
3131{
3132 if (action == CPU_DEAD)
3133 buffer_exit_cpu((unsigned long)hcpu);
3134 return NOTIFY_OK;
3135}
3136#endif /* CONFIG_HOTPLUG_CPU */
3137
3138void __init buffer_init(void)
3139{
3140 int nrpages;
3141
3142 bh_cachep = kmem_cache_create("buffer_head",
b0196009
PJ
3143 sizeof(struct buffer_head), 0,
3144 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3145 SLAB_MEM_SPREAD),
3146 init_buffer_head,
3147 NULL);
1da177e4
LT
3148
3149 /*
3150 * Limit the bh occupancy to 10% of ZONE_NORMAL
3151 */
3152 nrpages = (nr_free_buffer_pages() * 10) / 100;
3153 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3154 hotcpu_notifier(buffer_cpu_notify, 0);
3155}
3156
3157EXPORT_SYMBOL(__bforget);
3158EXPORT_SYMBOL(__brelse);
3159EXPORT_SYMBOL(__wait_on_buffer);
3160EXPORT_SYMBOL(block_commit_write);
3161EXPORT_SYMBOL(block_prepare_write);
3162EXPORT_SYMBOL(block_read_full_page);
3163EXPORT_SYMBOL(block_sync_page);
3164EXPORT_SYMBOL(block_truncate_page);
3165EXPORT_SYMBOL(block_write_full_page);
3166EXPORT_SYMBOL(cont_prepare_write);
3167EXPORT_SYMBOL(end_buffer_async_write);
3168EXPORT_SYMBOL(end_buffer_read_sync);
3169EXPORT_SYMBOL(end_buffer_write_sync);
3170EXPORT_SYMBOL(file_fsync);
3171EXPORT_SYMBOL(fsync_bdev);
3172EXPORT_SYMBOL(generic_block_bmap);
3173EXPORT_SYMBOL(generic_commit_write);
3174EXPORT_SYMBOL(generic_cont_expand);
05eb0b51 3175EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
3176EXPORT_SYMBOL(init_buffer);
3177EXPORT_SYMBOL(invalidate_bdev);
3178EXPORT_SYMBOL(ll_rw_block);
3179EXPORT_SYMBOL(mark_buffer_dirty);
3180EXPORT_SYMBOL(submit_bh);
3181EXPORT_SYMBOL(sync_dirty_buffer);
3182EXPORT_SYMBOL(unlock_buffer);