]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/buffer.c
fs: Provide function to unmap metadata for a range of blocks
[mirror_ubuntu-zesty-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
ae259a9c 24#include <linux/iomap.h>
1da177e4
LT
25#include <linux/mm.h>
26#include <linux/percpu.h>
27#include <linux/slab.h>
16f7e0fe 28#include <linux/capability.h>
1da177e4
LT
29#include <linux/blkdev.h>
30#include <linux/file.h>
31#include <linux/quotaops.h>
32#include <linux/highmem.h>
630d9c47 33#include <linux/export.h>
bafc0dba 34#include <linux/backing-dev.h>
1da177e4
LT
35#include <linux/writeback.h>
36#include <linux/hash.h>
37#include <linux/suspend.h>
38#include <linux/buffer_head.h>
55e829af 39#include <linux/task_io_accounting_ops.h>
1da177e4
LT
40#include <linux/bio.h>
41#include <linux/notifier.h>
42#include <linux/cpu.h>
43#include <linux/bitops.h>
44#include <linux/mpage.h>
fb1c8f93 45#include <linux/bit_spinlock.h>
29f3ad7d 46#include <linux/pagevec.h>
5305cb83 47#include <trace/events/block.h>
1da177e4
LT
48
49static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 50static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
b16b1deb
TH
51 unsigned long bio_flags,
52 struct writeback_control *wbc);
1da177e4
LT
53
54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
a3f3c29c 56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
57{
58 bh->b_end_io = handler;
59 bh->b_private = private;
60}
1fe72eaa 61EXPORT_SYMBOL(init_buffer);
1da177e4 62
f0059afd
TH
63inline void touch_buffer(struct buffer_head *bh)
64{
5305cb83 65 trace_block_touch_buffer(bh);
f0059afd
TH
66 mark_page_accessed(bh->b_page);
67}
68EXPORT_SYMBOL(touch_buffer);
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4 71{
74316201 72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
73}
74EXPORT_SYMBOL(__lock_buffer);
75
fc9b52cd 76void unlock_buffer(struct buffer_head *bh)
1da177e4 77{
51b07fc3 78 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 79 smp_mb__after_atomic();
1da177e4
LT
80 wake_up_bit(&bh->b_state, BH_Lock);
81}
1fe72eaa 82EXPORT_SYMBOL(unlock_buffer);
1da177e4 83
b4597226
MG
84/*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91{
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115}
116EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
1da177e4
LT
118/*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123void __wait_on_buffer(struct buffer_head * bh)
124{
74316201 125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 126}
1fe72eaa 127EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
128
129static void
130__clear_page_buffers(struct page *page)
131{
132 ClearPagePrivate(page);
4c21e2f2 133 set_page_private(page, 0);
09cbfeaf 134 put_page(page);
1da177e4
LT
135}
136
b744c2ac 137static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 138{
432f16e6
RE
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
a1c6f057
DM
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
143}
144
145/*
68671f35
DM
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
1da177e4 152 */
68671f35 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
154{
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
70246286 158 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
68671f35
DM
162}
163
164/*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169{
170 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
171 put_bh(bh);
172}
1fe72eaa 173EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
174
175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176{
1da177e4
LT
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
432f16e6 180 buffer_io_error(bh, ", lost sync page write");
1da177e4
LT
181 set_buffer_write_io_error(bh);
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186}
1fe72eaa 187EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 188
1da177e4
LT
189/*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200static struct buffer_head *
385fd4c5 201__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
202{
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
09cbfeaf 212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
97f76d3d
NK
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
1da177e4
LT
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
1da177e4
LT
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
a1c6f057 245 printk("device %pg blocksize: %d\n", bdev,
72a2ebd8 246 1 << bd_inode->i_blkbits);
1da177e4
LT
247 }
248out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 250 put_page(page);
1da177e4
LT
251out:
252 return ret;
253}
254
1da177e4 255/*
5b0830cb 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
257 */
258static void free_more_memory(void)
259{
c33d6c06 260 struct zoneref *z;
0e88460d 261 int nid;
1da177e4 262
0e175a18 263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
264 yield();
265
0e88460d 266 for_each_online_node(nid) {
c33d6c06
MG
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
54a6eb5c 271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 272 GFP_NOFS, NULL);
1da177e4
LT
273 }
274}
275
276/*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281{
1da177e4 282 unsigned long flags;
a3972203 283 struct buffer_head *first;
1da177e4
LT
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
432f16e6 295 buffer_io_error(bh, ", async page read");
1da177e4
LT
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
a3972203
NP
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
a3972203
NP
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
1da177e4
LT
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331still_busy:
a3972203
NP
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
1da177e4
LT
334 return;
335}
336
337/*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
35c80d5f 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 342{
1da177e4 343 unsigned long flags;
a3972203 344 struct buffer_head *first;
1da177e4
LT
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
432f16e6 354 buffer_io_error(bh, ", lost async page write");
5114a97a 355 mapping_set_error(page->mapping, -EIO);
58ff407b 356 set_buffer_write_io_error(bh);
1da177e4
LT
357 clear_buffer_uptodate(bh);
358 SetPageError(page);
359 }
360
a3972203
NP
361 first = page_buffers(page);
362 local_irq_save(flags);
363 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
364
1da177e4
LT
365 clear_buffer_async_write(bh);
366 unlock_buffer(bh);
367 tmp = bh->b_this_page;
368 while (tmp != bh) {
369 if (buffer_async_write(tmp)) {
370 BUG_ON(!buffer_locked(tmp));
371 goto still_busy;
372 }
373 tmp = tmp->b_this_page;
374 }
a3972203
NP
375 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
376 local_irq_restore(flags);
1da177e4
LT
377 end_page_writeback(page);
378 return;
379
380still_busy:
a3972203
NP
381 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
382 local_irq_restore(flags);
1da177e4
LT
383 return;
384}
1fe72eaa 385EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
386
387/*
388 * If a page's buffers are under async readin (end_buffer_async_read
389 * completion) then there is a possibility that another thread of
390 * control could lock one of the buffers after it has completed
391 * but while some of the other buffers have not completed. This
392 * locked buffer would confuse end_buffer_async_read() into not unlocking
393 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
394 * that this buffer is not under async I/O.
395 *
396 * The page comes unlocked when it has no locked buffer_async buffers
397 * left.
398 *
399 * PageLocked prevents anyone starting new async I/O reads any of
400 * the buffers.
401 *
402 * PageWriteback is used to prevent simultaneous writeout of the same
403 * page.
404 *
405 * PageLocked prevents anyone from starting writeback of a page which is
406 * under read I/O (PageWriteback is only ever set against a locked page).
407 */
408static void mark_buffer_async_read(struct buffer_head *bh)
409{
410 bh->b_end_io = end_buffer_async_read;
411 set_buffer_async_read(bh);
412}
413
1fe72eaa
HS
414static void mark_buffer_async_write_endio(struct buffer_head *bh,
415 bh_end_io_t *handler)
1da177e4 416{
35c80d5f 417 bh->b_end_io = handler;
1da177e4
LT
418 set_buffer_async_write(bh);
419}
35c80d5f
CM
420
421void mark_buffer_async_write(struct buffer_head *bh)
422{
423 mark_buffer_async_write_endio(bh, end_buffer_async_write);
424}
1da177e4
LT
425EXPORT_SYMBOL(mark_buffer_async_write);
426
427
428/*
429 * fs/buffer.c contains helper functions for buffer-backed address space's
430 * fsync functions. A common requirement for buffer-based filesystems is
431 * that certain data from the backing blockdev needs to be written out for
432 * a successful fsync(). For example, ext2 indirect blocks need to be
433 * written back and waited upon before fsync() returns.
434 *
435 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
436 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
437 * management of a list of dependent buffers at ->i_mapping->private_list.
438 *
439 * Locking is a little subtle: try_to_free_buffers() will remove buffers
440 * from their controlling inode's queue when they are being freed. But
441 * try_to_free_buffers() will be operating against the *blockdev* mapping
442 * at the time, not against the S_ISREG file which depends on those buffers.
443 * So the locking for private_list is via the private_lock in the address_space
444 * which backs the buffers. Which is different from the address_space
445 * against which the buffers are listed. So for a particular address_space,
446 * mapping->private_lock does *not* protect mapping->private_list! In fact,
447 * mapping->private_list will always be protected by the backing blockdev's
448 * ->private_lock.
449 *
450 * Which introduces a requirement: all buffers on an address_space's
451 * ->private_list must be from the same address_space: the blockdev's.
452 *
453 * address_spaces which do not place buffers at ->private_list via these
454 * utility functions are free to use private_lock and private_list for
455 * whatever they want. The only requirement is that list_empty(private_list)
456 * be true at clear_inode() time.
457 *
458 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
459 * filesystems should do that. invalidate_inode_buffers() should just go
460 * BUG_ON(!list_empty).
461 *
462 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
463 * take an address_space, not an inode. And it should be called
464 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
465 * queued up.
466 *
467 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
468 * list if it is already on a list. Because if the buffer is on a list,
469 * it *must* already be on the right one. If not, the filesystem is being
470 * silly. This will save a ton of locking. But first we have to ensure
471 * that buffers are taken *off* the old inode's list when they are freed
472 * (presumably in truncate). That requires careful auditing of all
473 * filesystems (do it inside bforget()). It could also be done by bringing
474 * b_inode back.
475 */
476
477/*
478 * The buffer's backing address_space's private_lock must be held
479 */
dbacefc9 480static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
481{
482 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
483 WARN_ON(!bh->b_assoc_map);
484 if (buffer_write_io_error(bh))
485 set_bit(AS_EIO, &bh->b_assoc_map->flags);
486 bh->b_assoc_map = NULL;
1da177e4
LT
487}
488
489int inode_has_buffers(struct inode *inode)
490{
491 return !list_empty(&inode->i_data.private_list);
492}
493
494/*
495 * osync is designed to support O_SYNC io. It waits synchronously for
496 * all already-submitted IO to complete, but does not queue any new
497 * writes to the disk.
498 *
499 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
500 * you dirty the buffers, and then use osync_inode_buffers to wait for
501 * completion. Any other dirty buffers which are not yet queued for
502 * write will not be flushed to disk by the osync.
503 */
504static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
505{
506 struct buffer_head *bh;
507 struct list_head *p;
508 int err = 0;
509
510 spin_lock(lock);
511repeat:
512 list_for_each_prev(p, list) {
513 bh = BH_ENTRY(p);
514 if (buffer_locked(bh)) {
515 get_bh(bh);
516 spin_unlock(lock);
517 wait_on_buffer(bh);
518 if (!buffer_uptodate(bh))
519 err = -EIO;
520 brelse(bh);
521 spin_lock(lock);
522 goto repeat;
523 }
524 }
525 spin_unlock(lock);
526 return err;
527}
528
01a05b33 529static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 530{
01a05b33 531 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 532 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 533}
c2d75438 534
01a05b33
AV
535static void do_thaw_all(struct work_struct *work)
536{
537 iterate_supers(do_thaw_one, NULL);
053c525f 538 kfree(work);
c2d75438
ES
539 printk(KERN_WARNING "Emergency Thaw complete\n");
540}
541
542/**
543 * emergency_thaw_all -- forcibly thaw every frozen filesystem
544 *
545 * Used for emergency unfreeze of all filesystems via SysRq
546 */
547void emergency_thaw_all(void)
548{
053c525f
JA
549 struct work_struct *work;
550
551 work = kmalloc(sizeof(*work), GFP_ATOMIC);
552 if (work) {
553 INIT_WORK(work, do_thaw_all);
554 schedule_work(work);
555 }
c2d75438
ES
556}
557
1da177e4 558/**
78a4a50a 559 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 560 * @mapping: the mapping which wants those buffers written
1da177e4
LT
561 *
562 * Starts I/O against the buffers at mapping->private_list, and waits upon
563 * that I/O.
564 *
67be2dd1
MW
565 * Basically, this is a convenience function for fsync().
566 * @mapping is a file or directory which needs those buffers to be written for
567 * a successful fsync().
1da177e4
LT
568 */
569int sync_mapping_buffers(struct address_space *mapping)
570{
252aa6f5 571 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
572
573 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
574 return 0;
575
576 return fsync_buffers_list(&buffer_mapping->private_lock,
577 &mapping->private_list);
578}
579EXPORT_SYMBOL(sync_mapping_buffers);
580
581/*
582 * Called when we've recently written block `bblock', and it is known that
583 * `bblock' was for a buffer_boundary() buffer. This means that the block at
584 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
585 * dirty, schedule it for IO. So that indirects merge nicely with their data.
586 */
587void write_boundary_block(struct block_device *bdev,
588 sector_t bblock, unsigned blocksize)
589{
590 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
591 if (bh) {
592 if (buffer_dirty(bh))
dfec8a14 593 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
594 put_bh(bh);
595 }
596}
597
598void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
599{
600 struct address_space *mapping = inode->i_mapping;
601 struct address_space *buffer_mapping = bh->b_page->mapping;
602
603 mark_buffer_dirty(bh);
252aa6f5
RA
604 if (!mapping->private_data) {
605 mapping->private_data = buffer_mapping;
1da177e4 606 } else {
252aa6f5 607 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 608 }
535ee2fb 609 if (!bh->b_assoc_map) {
1da177e4
LT
610 spin_lock(&buffer_mapping->private_lock);
611 list_move_tail(&bh->b_assoc_buffers,
612 &mapping->private_list);
58ff407b 613 bh->b_assoc_map = mapping;
1da177e4
LT
614 spin_unlock(&buffer_mapping->private_lock);
615 }
616}
617EXPORT_SYMBOL(mark_buffer_dirty_inode);
618
787d2214
NP
619/*
620 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
621 * dirty.
622 *
623 * If warn is true, then emit a warning if the page is not uptodate and has
624 * not been truncated.
c4843a75 625 *
81f8c3a4 626 * The caller must hold lock_page_memcg().
787d2214 627 */
c4843a75 628static void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 629 int warn)
787d2214 630{
227d53b3
KM
631 unsigned long flags;
632
633 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
634 if (page->mapping) { /* Race with truncate? */
635 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 636 account_page_dirtied(page, mapping);
787d2214
NP
637 radix_tree_tag_set(&mapping->page_tree,
638 page_index(page), PAGECACHE_TAG_DIRTY);
639 }
227d53b3 640 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214
NP
641}
642
1da177e4
LT
643/*
644 * Add a page to the dirty page list.
645 *
646 * It is a sad fact of life that this function is called from several places
647 * deeply under spinlocking. It may not sleep.
648 *
649 * If the page has buffers, the uptodate buffers are set dirty, to preserve
650 * dirty-state coherency between the page and the buffers. It the page does
651 * not have buffers then when they are later attached they will all be set
652 * dirty.
653 *
654 * The buffers are dirtied before the page is dirtied. There's a small race
655 * window in which a writepage caller may see the page cleanness but not the
656 * buffer dirtiness. That's fine. If this code were to set the page dirty
657 * before the buffers, a concurrent writepage caller could clear the page dirty
658 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
659 * page on the dirty page list.
660 *
661 * We use private_lock to lock against try_to_free_buffers while using the
662 * page's buffer list. Also use this to protect against clean buffers being
663 * added to the page after it was set dirty.
664 *
665 * FIXME: may need to call ->reservepage here as well. That's rather up to the
666 * address_space though.
667 */
668int __set_page_dirty_buffers(struct page *page)
669{
a8e7d49a 670 int newly_dirty;
787d2214 671 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
672
673 if (unlikely(!mapping))
674 return !TestSetPageDirty(page);
1da177e4
LT
675
676 spin_lock(&mapping->private_lock);
677 if (page_has_buffers(page)) {
678 struct buffer_head *head = page_buffers(page);
679 struct buffer_head *bh = head;
680
681 do {
682 set_buffer_dirty(bh);
683 bh = bh->b_this_page;
684 } while (bh != head);
685 }
c4843a75 686 /*
81f8c3a4
JW
687 * Lock out page->mem_cgroup migration to keep PageDirty
688 * synchronized with per-memcg dirty page counters.
c4843a75 689 */
62cccb8c 690 lock_page_memcg(page);
a8e7d49a 691 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
692 spin_unlock(&mapping->private_lock);
693
a8e7d49a 694 if (newly_dirty)
62cccb8c 695 __set_page_dirty(page, mapping, 1);
c4843a75 696
62cccb8c 697 unlock_page_memcg(page);
c4843a75
GT
698
699 if (newly_dirty)
700 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
701
a8e7d49a 702 return newly_dirty;
1da177e4
LT
703}
704EXPORT_SYMBOL(__set_page_dirty_buffers);
705
706/*
707 * Write out and wait upon a list of buffers.
708 *
709 * We have conflicting pressures: we want to make sure that all
710 * initially dirty buffers get waited on, but that any subsequently
711 * dirtied buffers don't. After all, we don't want fsync to last
712 * forever if somebody is actively writing to the file.
713 *
714 * Do this in two main stages: first we copy dirty buffers to a
715 * temporary inode list, queueing the writes as we go. Then we clean
716 * up, waiting for those writes to complete.
717 *
718 * During this second stage, any subsequent updates to the file may end
719 * up refiling the buffer on the original inode's dirty list again, so
720 * there is a chance we will end up with a buffer queued for write but
721 * not yet completed on that list. So, as a final cleanup we go through
722 * the osync code to catch these locked, dirty buffers without requeuing
723 * any newly dirty buffers for write.
724 */
725static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
726{
727 struct buffer_head *bh;
728 struct list_head tmp;
7eaceacc 729 struct address_space *mapping;
1da177e4 730 int err = 0, err2;
4ee2491e 731 struct blk_plug plug;
1da177e4
LT
732
733 INIT_LIST_HEAD(&tmp);
4ee2491e 734 blk_start_plug(&plug);
1da177e4
LT
735
736 spin_lock(lock);
737 while (!list_empty(list)) {
738 bh = BH_ENTRY(list->next);
535ee2fb 739 mapping = bh->b_assoc_map;
58ff407b 740 __remove_assoc_queue(bh);
535ee2fb
JK
741 /* Avoid race with mark_buffer_dirty_inode() which does
742 * a lockless check and we rely on seeing the dirty bit */
743 smp_mb();
1da177e4
LT
744 if (buffer_dirty(bh) || buffer_locked(bh)) {
745 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 746 bh->b_assoc_map = mapping;
1da177e4
LT
747 if (buffer_dirty(bh)) {
748 get_bh(bh);
749 spin_unlock(lock);
750 /*
751 * Ensure any pending I/O completes so that
9cb569d6
CH
752 * write_dirty_buffer() actually writes the
753 * current contents - it is a noop if I/O is
754 * still in flight on potentially older
755 * contents.
1da177e4 756 */
70fd7614 757 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
758
759 /*
760 * Kick off IO for the previous mapping. Note
761 * that we will not run the very last mapping,
762 * wait_on_buffer() will do that for us
763 * through sync_buffer().
764 */
1da177e4
LT
765 brelse(bh);
766 spin_lock(lock);
767 }
768 }
769 }
770
4ee2491e
JA
771 spin_unlock(lock);
772 blk_finish_plug(&plug);
773 spin_lock(lock);
774
1da177e4
LT
775 while (!list_empty(&tmp)) {
776 bh = BH_ENTRY(tmp.prev);
1da177e4 777 get_bh(bh);
535ee2fb
JK
778 mapping = bh->b_assoc_map;
779 __remove_assoc_queue(bh);
780 /* Avoid race with mark_buffer_dirty_inode() which does
781 * a lockless check and we rely on seeing the dirty bit */
782 smp_mb();
783 if (buffer_dirty(bh)) {
784 list_add(&bh->b_assoc_buffers,
e3892296 785 &mapping->private_list);
535ee2fb
JK
786 bh->b_assoc_map = mapping;
787 }
1da177e4
LT
788 spin_unlock(lock);
789 wait_on_buffer(bh);
790 if (!buffer_uptodate(bh))
791 err = -EIO;
792 brelse(bh);
793 spin_lock(lock);
794 }
795
796 spin_unlock(lock);
797 err2 = osync_buffers_list(lock, list);
798 if (err)
799 return err;
800 else
801 return err2;
802}
803
804/*
805 * Invalidate any and all dirty buffers on a given inode. We are
806 * probably unmounting the fs, but that doesn't mean we have already
807 * done a sync(). Just drop the buffers from the inode list.
808 *
809 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
810 * assumes that all the buffers are against the blockdev. Not true
811 * for reiserfs.
812 */
813void invalidate_inode_buffers(struct inode *inode)
814{
815 if (inode_has_buffers(inode)) {
816 struct address_space *mapping = &inode->i_data;
817 struct list_head *list = &mapping->private_list;
252aa6f5 818 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
819
820 spin_lock(&buffer_mapping->private_lock);
821 while (!list_empty(list))
822 __remove_assoc_queue(BH_ENTRY(list->next));
823 spin_unlock(&buffer_mapping->private_lock);
824 }
825}
52b19ac9 826EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
827
828/*
829 * Remove any clean buffers from the inode's buffer list. This is called
830 * when we're trying to free the inode itself. Those buffers can pin it.
831 *
832 * Returns true if all buffers were removed.
833 */
834int remove_inode_buffers(struct inode *inode)
835{
836 int ret = 1;
837
838 if (inode_has_buffers(inode)) {
839 struct address_space *mapping = &inode->i_data;
840 struct list_head *list = &mapping->private_list;
252aa6f5 841 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
842
843 spin_lock(&buffer_mapping->private_lock);
844 while (!list_empty(list)) {
845 struct buffer_head *bh = BH_ENTRY(list->next);
846 if (buffer_dirty(bh)) {
847 ret = 0;
848 break;
849 }
850 __remove_assoc_queue(bh);
851 }
852 spin_unlock(&buffer_mapping->private_lock);
853 }
854 return ret;
855}
856
857/*
858 * Create the appropriate buffers when given a page for data area and
859 * the size of each buffer.. Use the bh->b_this_page linked list to
860 * follow the buffers created. Return NULL if unable to create more
861 * buffers.
862 *
863 * The retry flag is used to differentiate async IO (paging, swapping)
864 * which may not fail from ordinary buffer allocations.
865 */
866struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
867 int retry)
868{
869 struct buffer_head *bh, *head;
870 long offset;
871
872try_again:
873 head = NULL;
874 offset = PAGE_SIZE;
875 while ((offset -= size) >= 0) {
876 bh = alloc_buffer_head(GFP_NOFS);
877 if (!bh)
878 goto no_grow;
879
1da177e4
LT
880 bh->b_this_page = head;
881 bh->b_blocknr = -1;
882 head = bh;
883
1da177e4
LT
884 bh->b_size = size;
885
886 /* Link the buffer to its page */
887 set_bh_page(bh, page, offset);
1da177e4
LT
888 }
889 return head;
890/*
891 * In case anything failed, we just free everything we got.
892 */
893no_grow:
894 if (head) {
895 do {
896 bh = head;
897 head = head->b_this_page;
898 free_buffer_head(bh);
899 } while (head);
900 }
901
902 /*
903 * Return failure for non-async IO requests. Async IO requests
904 * are not allowed to fail, so we have to wait until buffer heads
905 * become available. But we don't want tasks sleeping with
906 * partially complete buffers, so all were released above.
907 */
908 if (!retry)
909 return NULL;
910
911 /* We're _really_ low on memory. Now we just
912 * wait for old buffer heads to become free due to
913 * finishing IO. Since this is an async request and
914 * the reserve list is empty, we're sure there are
915 * async buffer heads in use.
916 */
917 free_more_memory();
918 goto try_again;
919}
920EXPORT_SYMBOL_GPL(alloc_page_buffers);
921
922static inline void
923link_dev_buffers(struct page *page, struct buffer_head *head)
924{
925 struct buffer_head *bh, *tail;
926
927 bh = head;
928 do {
929 tail = bh;
930 bh = bh->b_this_page;
931 } while (bh);
932 tail->b_this_page = head;
933 attach_page_buffers(page, head);
934}
935
bbec0270
LT
936static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
937{
938 sector_t retval = ~((sector_t)0);
939 loff_t sz = i_size_read(bdev->bd_inode);
940
941 if (sz) {
942 unsigned int sizebits = blksize_bits(size);
943 retval = (sz >> sizebits);
944 }
945 return retval;
946}
947
1da177e4
LT
948/*
949 * Initialise the state of a blockdev page's buffers.
950 */
676ce6d5 951static sector_t
1da177e4
LT
952init_page_buffers(struct page *page, struct block_device *bdev,
953 sector_t block, int size)
954{
955 struct buffer_head *head = page_buffers(page);
956 struct buffer_head *bh = head;
957 int uptodate = PageUptodate(page);
bbec0270 958 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
959
960 do {
961 if (!buffer_mapped(bh)) {
962 init_buffer(bh, NULL, NULL);
963 bh->b_bdev = bdev;
964 bh->b_blocknr = block;
965 if (uptodate)
966 set_buffer_uptodate(bh);
080399aa
JM
967 if (block < end_block)
968 set_buffer_mapped(bh);
1da177e4
LT
969 }
970 block++;
971 bh = bh->b_this_page;
972 } while (bh != head);
676ce6d5
HD
973
974 /*
975 * Caller needs to validate requested block against end of device.
976 */
977 return end_block;
1da177e4
LT
978}
979
980/*
981 * Create the page-cache page that contains the requested block.
982 *
676ce6d5 983 * This is used purely for blockdev mappings.
1da177e4 984 */
676ce6d5 985static int
1da177e4 986grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 987 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
988{
989 struct inode *inode = bdev->bd_inode;
990 struct page *page;
991 struct buffer_head *bh;
676ce6d5
HD
992 sector_t end_block;
993 int ret = 0; /* Will call free_more_memory() */
84235de3 994 gfp_t gfp_mask;
1da177e4 995
c62d2555 996 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 997
84235de3
JW
998 /*
999 * XXX: __getblk_slow() can not really deal with failure and
1000 * will endlessly loop on improvised global reclaim. Prefer
1001 * looping in the allocator rather than here, at least that
1002 * code knows what it's doing.
1003 */
1004 gfp_mask |= __GFP_NOFAIL;
1005
1006 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1007 if (!page)
676ce6d5 1008 return ret;
1da177e4 1009
e827f923 1010 BUG_ON(!PageLocked(page));
1da177e4
LT
1011
1012 if (page_has_buffers(page)) {
1013 bh = page_buffers(page);
1014 if (bh->b_size == size) {
676ce6d5 1015 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
1016 (sector_t)index << sizebits,
1017 size);
676ce6d5 1018 goto done;
1da177e4
LT
1019 }
1020 if (!try_to_free_buffers(page))
1021 goto failed;
1022 }
1023
1024 /*
1025 * Allocate some buffers for this page
1026 */
1027 bh = alloc_page_buffers(page, size, 0);
1028 if (!bh)
1029 goto failed;
1030
1031 /*
1032 * Link the page to the buffers and initialise them. Take the
1033 * lock to be atomic wrt __find_get_block(), which does not
1034 * run under the page lock.
1035 */
1036 spin_lock(&inode->i_mapping->private_lock);
1037 link_dev_buffers(page, bh);
f2d5a944
AA
1038 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1039 size);
1da177e4 1040 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1041done:
1042 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1043failed:
1da177e4 1044 unlock_page(page);
09cbfeaf 1045 put_page(page);
676ce6d5 1046 return ret;
1da177e4
LT
1047}
1048
1049/*
1050 * Create buffers for the specified block device block's page. If
1051 * that page was dirty, the buffers are set dirty also.
1da177e4 1052 */
858119e1 1053static int
3b5e6454 1054grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1055{
1da177e4
LT
1056 pgoff_t index;
1057 int sizebits;
1058
1059 sizebits = -1;
1060 do {
1061 sizebits++;
1062 } while ((size << sizebits) < PAGE_SIZE);
1063
1064 index = block >> sizebits;
1da177e4 1065
e5657933
AM
1066 /*
1067 * Check for a block which wants to lie outside our maximum possible
1068 * pagecache index. (this comparison is done using sector_t types).
1069 */
1070 if (unlikely(index != block >> sizebits)) {
e5657933 1071 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1072 "device %pg\n",
8e24eea7 1073 __func__, (unsigned long long)block,
a1c6f057 1074 bdev);
e5657933
AM
1075 return -EIO;
1076 }
676ce6d5 1077
1da177e4 1078 /* Create a page with the proper size buffers.. */
3b5e6454 1079 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1080}
1081
0026ba40 1082static struct buffer_head *
3b5e6454
GK
1083__getblk_slow(struct block_device *bdev, sector_t block,
1084 unsigned size, gfp_t gfp)
1da177e4
LT
1085{
1086 /* Size must be multiple of hard sectorsize */
e1defc4f 1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
e1defc4f
MP
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1da177e4
LT
1093
1094 dump_stack();
1095 return NULL;
1096 }
1097
676ce6d5
HD
1098 for (;;) {
1099 struct buffer_head *bh;
1100 int ret;
1da177e4
LT
1101
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
676ce6d5 1105
3b5e6454 1106 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1110 free_more_memory();
1da177e4
LT
1111 }
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1139 * @bh: the buffer_head to mark dirty
1da177e4
LT
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1147 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1148 */
fc9b52cd 1149void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1150{
787d2214 1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1152
5305cb83
TH
1153 trace_block_dirty_buffer(bh);
1154
1be62dc1
LT
1155 /*
1156 * Very *carefully* optimize the it-is-already-dirty case.
1157 *
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1160 */
1161 if (buffer_dirty(bh)) {
1162 smp_mb();
1163 if (buffer_dirty(bh))
1164 return;
1165 }
1166
a8e7d49a
LT
1167 if (!test_set_buffer_dirty(bh)) {
1168 struct page *page = bh->b_page;
c4843a75 1169 struct address_space *mapping = NULL;
c4843a75 1170
62cccb8c 1171 lock_page_memcg(page);
8e9d78ed 1172 if (!TestSetPageDirty(page)) {
c4843a75 1173 mapping = page_mapping(page);
8e9d78ed 1174 if (mapping)
62cccb8c 1175 __set_page_dirty(page, mapping, 0);
8e9d78ed 1176 }
62cccb8c 1177 unlock_page_memcg(page);
c4843a75
GT
1178 if (mapping)
1179 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1180 }
1da177e4 1181}
1fe72eaa 1182EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1183
1184/*
1185 * Decrement a buffer_head's reference count. If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1190 */
1191void __brelse(struct buffer_head * buf)
1192{
1193 if (atomic_read(&buf->b_count)) {
1194 put_bh(buf);
1195 return;
1196 }
5c752ad9 1197 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1198}
1fe72eaa 1199EXPORT_SYMBOL(__brelse);
1da177e4
LT
1200
1201/*
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1204 */
1205void __bforget(struct buffer_head *bh)
1206{
1207 clear_buffer_dirty(bh);
535ee2fb 1208 if (bh->b_assoc_map) {
1da177e4
LT
1209 struct address_space *buffer_mapping = bh->b_page->mapping;
1210
1211 spin_lock(&buffer_mapping->private_lock);
1212 list_del_init(&bh->b_assoc_buffers);
58ff407b 1213 bh->b_assoc_map = NULL;
1da177e4
LT
1214 spin_unlock(&buffer_mapping->private_lock);
1215 }
1216 __brelse(bh);
1217}
1fe72eaa 1218EXPORT_SYMBOL(__bforget);
1da177e4
LT
1219
1220static struct buffer_head *__bread_slow(struct buffer_head *bh)
1221{
1222 lock_buffer(bh);
1223 if (buffer_uptodate(bh)) {
1224 unlock_buffer(bh);
1225 return bh;
1226 } else {
1227 get_bh(bh);
1228 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1229 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1230 wait_on_buffer(bh);
1231 if (buffer_uptodate(bh))
1232 return bh;
1233 }
1234 brelse(bh);
1235 return NULL;
1236}
1237
1238/*
1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1241 * refcount elevated by one when they're in an LRU. A buffer can only appear
1242 * once in a particular CPU's LRU. A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1244 *
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1247 *
1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1249 * a local interrupt disable for that.
1250 */
1251
86cf78d7 1252#define BH_LRU_SIZE 16
1da177e4
LT
1253
1254struct bh_lru {
1255 struct buffer_head *bhs[BH_LRU_SIZE];
1256};
1257
1258static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1259
1260#ifdef CONFIG_SMP
1261#define bh_lru_lock() local_irq_disable()
1262#define bh_lru_unlock() local_irq_enable()
1263#else
1264#define bh_lru_lock() preempt_disable()
1265#define bh_lru_unlock() preempt_enable()
1266#endif
1267
1268static inline void check_irqs_on(void)
1269{
1270#ifdef irqs_disabled
1271 BUG_ON(irqs_disabled());
1272#endif
1273}
1274
1275/*
1276 * The LRU management algorithm is dopey-but-simple. Sorry.
1277 */
1278static void bh_lru_install(struct buffer_head *bh)
1279{
1280 struct buffer_head *evictee = NULL;
1da177e4
LT
1281
1282 check_irqs_on();
1283 bh_lru_lock();
c7b92516 1284 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1285 struct buffer_head *bhs[BH_LRU_SIZE];
1286 int in;
1287 int out = 0;
1288
1289 get_bh(bh);
1290 bhs[out++] = bh;
1291 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1292 struct buffer_head *bh2 =
1293 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1294
1295 if (bh2 == bh) {
1296 __brelse(bh2);
1297 } else {
1298 if (out >= BH_LRU_SIZE) {
1299 BUG_ON(evictee != NULL);
1300 evictee = bh2;
1301 } else {
1302 bhs[out++] = bh2;
1303 }
1304 }
1305 }
1306 while (out < BH_LRU_SIZE)
1307 bhs[out++] = NULL;
ca6673b0 1308 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1309 }
1310 bh_lru_unlock();
1311
1312 if (evictee)
1313 __brelse(evictee);
1314}
1315
1316/*
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 */
858119e1 1319static struct buffer_head *
3991d3bd 1320lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1321{
1322 struct buffer_head *ret = NULL;
3991d3bd 1323 unsigned int i;
1da177e4
LT
1324
1325 check_irqs_on();
1326 bh_lru_lock();
1da177e4 1327 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1328 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1329
9470dd5d
ZB
1330 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1331 bh->b_size == size) {
1da177e4
LT
1332 if (i) {
1333 while (i) {
c7b92516
CL
1334 __this_cpu_write(bh_lrus.bhs[i],
1335 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1336 i--;
1337 }
c7b92516 1338 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1339 }
1340 get_bh(bh);
1341 ret = bh;
1342 break;
1343 }
1344 }
1345 bh_lru_unlock();
1346 return ret;
1347}
1348
1349/*
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1352 * NULL
1353 */
1354struct buffer_head *
3991d3bd 1355__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1356{
1357 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1358
1359 if (bh == NULL) {
2457aec6 1360 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1361 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1362 if (bh)
1363 bh_lru_install(bh);
2457aec6 1364 } else
1da177e4 1365 touch_buffer(bh);
2457aec6 1366
1da177e4
LT
1367 return bh;
1368}
1369EXPORT_SYMBOL(__find_get_block);
1370
1371/*
3b5e6454 1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1375 *
3b5e6454
GK
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1378 */
1379struct buffer_head *
3b5e6454
GK
1380__getblk_gfp(struct block_device *bdev, sector_t block,
1381 unsigned size, gfp_t gfp)
1da177e4
LT
1382{
1383 struct buffer_head *bh = __find_get_block(bdev, block, size);
1384
1385 might_sleep();
1386 if (bh == NULL)
3b5e6454 1387 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1388 return bh;
1389}
3b5e6454 1390EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1391
1392/*
1393 * Do async read-ahead on a buffer..
1394 */
3991d3bd 1395void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1396{
1397 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1398 if (likely(bh)) {
70246286 1399 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1400 brelse(bh);
1401 }
1da177e4
LT
1402}
1403EXPORT_SYMBOL(__breadahead);
1404
1405/**
3b5e6454 1406 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1407 * @bdev: the block_device to read from
1da177e4
LT
1408 * @block: number of block
1409 * @size: size (in bytes) to read
3b5e6454
GK
1410 * @gfp: page allocation flag
1411 *
1da177e4 1412 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1413 * The page cache can be allocated from non-movable area
1414 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1415 * It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
3b5e6454
GK
1418__bread_gfp(struct block_device *bdev, sector_t block,
1419 unsigned size, gfp_t gfp)
1da177e4 1420{
3b5e6454 1421 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1422
a3e713b5 1423 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1424 bh = __bread_slow(bh);
1425 return bh;
1426}
3b5e6454 1427EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1428
1429/*
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1433 */
1434static void invalidate_bh_lru(void *arg)
1435{
1436 struct bh_lru *b = &get_cpu_var(bh_lrus);
1437 int i;
1438
1439 for (i = 0; i < BH_LRU_SIZE; i++) {
1440 brelse(b->bhs[i]);
1441 b->bhs[i] = NULL;
1442 }
1443 put_cpu_var(bh_lrus);
1444}
42be35d0
GBY
1445
1446static bool has_bh_in_lru(int cpu, void *dummy)
1447{
1448 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1449 int i;
1da177e4 1450
42be35d0
GBY
1451 for (i = 0; i < BH_LRU_SIZE; i++) {
1452 if (b->bhs[i])
1453 return 1;
1454 }
1455
1456 return 0;
1457}
1458
f9a14399 1459void invalidate_bh_lrus(void)
1da177e4 1460{
42be35d0 1461 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1462}
9db5579b 1463EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1464
1465void set_bh_page(struct buffer_head *bh,
1466 struct page *page, unsigned long offset)
1467{
1468 bh->b_page = page;
e827f923 1469 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1470 if (PageHighMem(page))
1471 /*
1472 * This catches illegal uses and preserves the offset:
1473 */
1474 bh->b_data = (char *)(0 + offset);
1475 else
1476 bh->b_data = page_address(page) + offset;
1477}
1478EXPORT_SYMBOL(set_bh_page);
1479
1480/*
1481 * Called when truncating a buffer on a page completely.
1482 */
e7470ee8
MG
1483
1484/* Bits that are cleared during an invalidate */
1485#define BUFFER_FLAGS_DISCARD \
1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 1 << BH_Delay | 1 << BH_Unwritten)
1488
858119e1 1489static void discard_buffer(struct buffer_head * bh)
1da177e4 1490{
e7470ee8
MG
1491 unsigned long b_state, b_state_old;
1492
1da177e4
LT
1493 lock_buffer(bh);
1494 clear_buffer_dirty(bh);
1495 bh->b_bdev = NULL;
e7470ee8
MG
1496 b_state = bh->b_state;
1497 for (;;) {
1498 b_state_old = cmpxchg(&bh->b_state, b_state,
1499 (b_state & ~BUFFER_FLAGS_DISCARD));
1500 if (b_state_old == b_state)
1501 break;
1502 b_state = b_state_old;
1503 }
1da177e4
LT
1504 unlock_buffer(bh);
1505}
1506
1da177e4 1507/**
814e1d25 1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1509 *
1510 * @page: the page which is affected
d47992f8
LC
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1da177e4
LT
1513 *
1514 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1515 * invalidated by a truncate operation.
1da177e4
LT
1516 *
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point. Because the caller is about to free (and possibly reuse) those
1521 * blocks on-disk.
1522 */
d47992f8
LC
1523void block_invalidatepage(struct page *page, unsigned int offset,
1524 unsigned int length)
1da177e4
LT
1525{
1526 struct buffer_head *head, *bh, *next;
1527 unsigned int curr_off = 0;
d47992f8 1528 unsigned int stop = length + offset;
1da177e4
LT
1529
1530 BUG_ON(!PageLocked(page));
1531 if (!page_has_buffers(page))
1532 goto out;
1533
d47992f8
LC
1534 /*
1535 * Check for overflow
1536 */
09cbfeaf 1537 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1538
1da177e4
LT
1539 head = page_buffers(page);
1540 bh = head;
1541 do {
1542 unsigned int next_off = curr_off + bh->b_size;
1543 next = bh->b_this_page;
1544
d47992f8
LC
1545 /*
1546 * Are we still fully in range ?
1547 */
1548 if (next_off > stop)
1549 goto out;
1550
1da177e4
LT
1551 /*
1552 * is this block fully invalidated?
1553 */
1554 if (offset <= curr_off)
1555 discard_buffer(bh);
1556 curr_off = next_off;
1557 bh = next;
1558 } while (bh != head);
1559
1560 /*
1561 * We release buffers only if the entire page is being invalidated.
1562 * The get_block cached value has been unconditionally invalidated,
1563 * so real IO is not possible anymore.
1564 */
1565 if (offset == 0)
2ff28e22 1566 try_to_release_page(page, 0);
1da177e4 1567out:
2ff28e22 1568 return;
1da177e4
LT
1569}
1570EXPORT_SYMBOL(block_invalidatepage);
1571
d47992f8 1572
1da177e4
LT
1573/*
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1576 * is already excluded via the page lock.
1577 */
1578void create_empty_buffers(struct page *page,
1579 unsigned long blocksize, unsigned long b_state)
1580{
1581 struct buffer_head *bh, *head, *tail;
1582
1583 head = alloc_page_buffers(page, blocksize, 1);
1584 bh = head;
1585 do {
1586 bh->b_state |= b_state;
1587 tail = bh;
1588 bh = bh->b_this_page;
1589 } while (bh);
1590 tail->b_this_page = head;
1591
1592 spin_lock(&page->mapping->private_lock);
1593 if (PageUptodate(page) || PageDirty(page)) {
1594 bh = head;
1595 do {
1596 if (PageDirty(page))
1597 set_buffer_dirty(bh);
1598 if (PageUptodate(page))
1599 set_buffer_uptodate(bh);
1600 bh = bh->b_this_page;
1601 } while (bh != head);
1602 }
1603 attach_page_buffers(page, head);
1604 spin_unlock(&page->mapping->private_lock);
1605}
1606EXPORT_SYMBOL(create_empty_buffers);
1607
1608/*
1609 * We are taking a block for data and we don't want any output from any
1610 * buffer-cache aliases starting from return from that function and
1611 * until the moment when something will explicitly mark the buffer
1612 * dirty (hopefully that will not happen until we will free that block ;-)
1613 * We don't even need to mark it not-uptodate - nobody can expect
1614 * anything from a newly allocated buffer anyway. We used to used
1615 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1616 * don't want to mark the alias unmapped, for example - it would confuse
1617 * anyone who might pick it with bread() afterwards...
1618 *
1619 * Also.. Note that bforget() doesn't lock the buffer. So there can
1620 * be writeout I/O going on against recently-freed buffers. We don't
1621 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1622 * only if we really need to. That happens here.
1623 */
1624void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1625{
1626 struct buffer_head *old_bh;
1627
1628 might_sleep();
1629
385fd4c5 1630 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1631 if (old_bh) {
1632 clear_buffer_dirty(old_bh);
1633 wait_on_buffer(old_bh);
1634 clear_buffer_req(old_bh);
1635 __brelse(old_bh);
1636 }
1637}
1638EXPORT_SYMBOL(unmap_underlying_metadata);
1639
29f3ad7d
JK
1640/**
1641 * clean_bdev_aliases: clean a range of buffers in block device
1642 * @bdev: Block device to clean buffers in
1643 * @block: Start of a range of blocks to clean
1644 * @len: Number of blocks to clean
1645 *
1646 * We are taking a range of blocks for data and we don't want writeback of any
1647 * buffer-cache aliases starting from return from this function and until the
1648 * moment when something will explicitly mark the buffer dirty (hopefully that
1649 * will not happen until we will free that block ;-) We don't even need to mark
1650 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1651 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1652 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1653 * would confuse anyone who might pick it with bread() afterwards...
1654 *
1655 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1656 * writeout I/O going on against recently-freed buffers. We don't wait on that
1657 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1658 * need to. That happens here.
1659 */
1660void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1661{
1662 struct inode *bd_inode = bdev->bd_inode;
1663 struct address_space *bd_mapping = bd_inode->i_mapping;
1664 struct pagevec pvec;
1665 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1666 pgoff_t end;
1667 int i;
1668 struct buffer_head *bh;
1669 struct buffer_head *head;
1670
1671 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1672 pagevec_init(&pvec, 0);
1673 while (index <= end && pagevec_lookup(&pvec, bd_mapping, index,
1674 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1675 for (i = 0; i < pagevec_count(&pvec); i++) {
1676 struct page *page = pvec.pages[i];
1677
1678 index = page->index;
1679 if (index > end)
1680 break;
1681 if (!page_has_buffers(page))
1682 continue;
1683 /*
1684 * We use page lock instead of bd_mapping->private_lock
1685 * to pin buffers here since we can afford to sleep and
1686 * it scales better than a global spinlock lock.
1687 */
1688 lock_page(page);
1689 /* Recheck when the page is locked which pins bhs */
1690 if (!page_has_buffers(page))
1691 goto unlock_page;
1692 head = page_buffers(page);
1693 bh = head;
1694 do {
1695 if (!buffer_mapped(bh))
1696 goto next;
1697 if (bh->b_blocknr >= block + len)
1698 break;
1699 clear_buffer_dirty(bh);
1700 wait_on_buffer(bh);
1701 clear_buffer_req(bh);
1702next:
1703 bh = bh->b_this_page;
1704 } while (bh != head);
1705unlock_page:
1706 unlock_page(page);
1707 }
1708 pagevec_release(&pvec);
1709 cond_resched();
1710 index++;
1711 }
1712}
1713EXPORT_SYMBOL(clean_bdev_aliases);
1714
45bce8f3
LT
1715/*
1716 * Size is a power-of-two in the range 512..PAGE_SIZE,
1717 * and the case we care about most is PAGE_SIZE.
1718 *
1719 * So this *could* possibly be written with those
1720 * constraints in mind (relevant mostly if some
1721 * architecture has a slow bit-scan instruction)
1722 */
1723static inline int block_size_bits(unsigned int blocksize)
1724{
1725 return ilog2(blocksize);
1726}
1727
1728static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1729{
1730 BUG_ON(!PageLocked(page));
1731
1732 if (!page_has_buffers(page))
1733 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1734 return page_buffers(page);
1735}
1736
1da177e4
LT
1737/*
1738 * NOTE! All mapped/uptodate combinations are valid:
1739 *
1740 * Mapped Uptodate Meaning
1741 *
1742 * No No "unknown" - must do get_block()
1743 * No Yes "hole" - zero-filled
1744 * Yes No "allocated" - allocated on disk, not read in
1745 * Yes Yes "valid" - allocated and up-to-date in memory.
1746 *
1747 * "Dirty" is valid only with the last case (mapped+uptodate).
1748 */
1749
1750/*
1751 * While block_write_full_page is writing back the dirty buffers under
1752 * the page lock, whoever dirtied the buffers may decide to clean them
1753 * again at any time. We handle that by only looking at the buffer
1754 * state inside lock_buffer().
1755 *
1756 * If block_write_full_page() is called for regular writeback
1757 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1758 * locked buffer. This only can happen if someone has written the buffer
1759 * directly, with submit_bh(). At the address_space level PageWriteback
1760 * prevents this contention from occurring.
6e34eedd
TT
1761 *
1762 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1763 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1764 * causes the writes to be flagged as synchronous writes.
1da177e4 1765 */
b4bba389 1766int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1767 get_block_t *get_block, struct writeback_control *wbc,
1768 bh_end_io_t *handler)
1da177e4
LT
1769{
1770 int err;
1771 sector_t block;
1772 sector_t last_block;
f0fbd5fc 1773 struct buffer_head *bh, *head;
45bce8f3 1774 unsigned int blocksize, bbits;
1da177e4 1775 int nr_underway = 0;
7637241e 1776 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1777
45bce8f3 1778 head = create_page_buffers(page, inode,
1da177e4 1779 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1780
1781 /*
1782 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1783 * here, and the (potentially unmapped) buffers may become dirty at
1784 * any time. If a buffer becomes dirty here after we've inspected it
1785 * then we just miss that fact, and the page stays dirty.
1786 *
1787 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1788 * handle that here by just cleaning them.
1789 */
1790
1da177e4 1791 bh = head;
45bce8f3
LT
1792 blocksize = bh->b_size;
1793 bbits = block_size_bits(blocksize);
1794
09cbfeaf 1795 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1796 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1797
1798 /*
1799 * Get all the dirty buffers mapped to disk addresses and
1800 * handle any aliases from the underlying blockdev's mapping.
1801 */
1802 do {
1803 if (block > last_block) {
1804 /*
1805 * mapped buffers outside i_size will occur, because
1806 * this page can be outside i_size when there is a
1807 * truncate in progress.
1808 */
1809 /*
1810 * The buffer was zeroed by block_write_full_page()
1811 */
1812 clear_buffer_dirty(bh);
1813 set_buffer_uptodate(bh);
29a814d2
AT
1814 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1815 buffer_dirty(bh)) {
b0cf2321 1816 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1817 err = get_block(inode, block, bh, 1);
1818 if (err)
1819 goto recover;
29a814d2 1820 clear_buffer_delay(bh);
1da177e4
LT
1821 if (buffer_new(bh)) {
1822 /* blockdev mappings never come here */
1823 clear_buffer_new(bh);
1824 unmap_underlying_metadata(bh->b_bdev,
1825 bh->b_blocknr);
1826 }
1827 }
1828 bh = bh->b_this_page;
1829 block++;
1830 } while (bh != head);
1831
1832 do {
1da177e4
LT
1833 if (!buffer_mapped(bh))
1834 continue;
1835 /*
1836 * If it's a fully non-blocking write attempt and we cannot
1837 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1838 * potentially cause a busy-wait loop from writeback threads
1839 * and kswapd activity, but those code paths have their own
1840 * higher-level throttling.
1da177e4 1841 */
1b430bee 1842 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1843 lock_buffer(bh);
ca5de404 1844 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1845 redirty_page_for_writepage(wbc, page);
1846 continue;
1847 }
1848 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1849 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1850 } else {
1851 unlock_buffer(bh);
1852 }
1853 } while ((bh = bh->b_this_page) != head);
1854
1855 /*
1856 * The page and its buffers are protected by PageWriteback(), so we can
1857 * drop the bh refcounts early.
1858 */
1859 BUG_ON(PageWriteback(page));
1860 set_page_writeback(page);
1da177e4
LT
1861
1862 do {
1863 struct buffer_head *next = bh->b_this_page;
1864 if (buffer_async_write(bh)) {
2a222ca9 1865 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1da177e4
LT
1866 nr_underway++;
1867 }
1da177e4
LT
1868 bh = next;
1869 } while (bh != head);
05937baa 1870 unlock_page(page);
1da177e4
LT
1871
1872 err = 0;
1873done:
1874 if (nr_underway == 0) {
1875 /*
1876 * The page was marked dirty, but the buffers were
1877 * clean. Someone wrote them back by hand with
1878 * ll_rw_block/submit_bh. A rare case.
1879 */
1da177e4 1880 end_page_writeback(page);
3d67f2d7 1881
1da177e4
LT
1882 /*
1883 * The page and buffer_heads can be released at any time from
1884 * here on.
1885 */
1da177e4
LT
1886 }
1887 return err;
1888
1889recover:
1890 /*
1891 * ENOSPC, or some other error. We may already have added some
1892 * blocks to the file, so we need to write these out to avoid
1893 * exposing stale data.
1894 * The page is currently locked and not marked for writeback
1895 */
1896 bh = head;
1897 /* Recovery: lock and submit the mapped buffers */
1898 do {
29a814d2
AT
1899 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1900 !buffer_delay(bh)) {
1da177e4 1901 lock_buffer(bh);
35c80d5f 1902 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1903 } else {
1904 /*
1905 * The buffer may have been set dirty during
1906 * attachment to a dirty page.
1907 */
1908 clear_buffer_dirty(bh);
1909 }
1910 } while ((bh = bh->b_this_page) != head);
1911 SetPageError(page);
1912 BUG_ON(PageWriteback(page));
7e4c3690 1913 mapping_set_error(page->mapping, err);
1da177e4 1914 set_page_writeback(page);
1da177e4
LT
1915 do {
1916 struct buffer_head *next = bh->b_this_page;
1917 if (buffer_async_write(bh)) {
1918 clear_buffer_dirty(bh);
2a222ca9 1919 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh, 0, wbc);
1da177e4
LT
1920 nr_underway++;
1921 }
1da177e4
LT
1922 bh = next;
1923 } while (bh != head);
ffda9d30 1924 unlock_page(page);
1da177e4
LT
1925 goto done;
1926}
b4bba389 1927EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1928
afddba49
NP
1929/*
1930 * If a page has any new buffers, zero them out here, and mark them uptodate
1931 * and dirty so they'll be written out (in order to prevent uninitialised
1932 * block data from leaking). And clear the new bit.
1933 */
1934void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1935{
1936 unsigned int block_start, block_end;
1937 struct buffer_head *head, *bh;
1938
1939 BUG_ON(!PageLocked(page));
1940 if (!page_has_buffers(page))
1941 return;
1942
1943 bh = head = page_buffers(page);
1944 block_start = 0;
1945 do {
1946 block_end = block_start + bh->b_size;
1947
1948 if (buffer_new(bh)) {
1949 if (block_end > from && block_start < to) {
1950 if (!PageUptodate(page)) {
1951 unsigned start, size;
1952
1953 start = max(from, block_start);
1954 size = min(to, block_end) - start;
1955
eebd2aa3 1956 zero_user(page, start, size);
afddba49
NP
1957 set_buffer_uptodate(bh);
1958 }
1959
1960 clear_buffer_new(bh);
1961 mark_buffer_dirty(bh);
1962 }
1963 }
1964
1965 block_start = block_end;
1966 bh = bh->b_this_page;
1967 } while (bh != head);
1968}
1969EXPORT_SYMBOL(page_zero_new_buffers);
1970
ae259a9c
CH
1971static void
1972iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1973 struct iomap *iomap)
1974{
1975 loff_t offset = block << inode->i_blkbits;
1976
1977 bh->b_bdev = iomap->bdev;
1978
1979 /*
1980 * Block points to offset in file we need to map, iomap contains
1981 * the offset at which the map starts. If the map ends before the
1982 * current block, then do not map the buffer and let the caller
1983 * handle it.
1984 */
1985 BUG_ON(offset >= iomap->offset + iomap->length);
1986
1987 switch (iomap->type) {
1988 case IOMAP_HOLE:
1989 /*
1990 * If the buffer is not up to date or beyond the current EOF,
1991 * we need to mark it as new to ensure sub-block zeroing is
1992 * executed if necessary.
1993 */
1994 if (!buffer_uptodate(bh) ||
1995 (offset >= i_size_read(inode)))
1996 set_buffer_new(bh);
1997 break;
1998 case IOMAP_DELALLOC:
1999 if (!buffer_uptodate(bh) ||
2000 (offset >= i_size_read(inode)))
2001 set_buffer_new(bh);
2002 set_buffer_uptodate(bh);
2003 set_buffer_mapped(bh);
2004 set_buffer_delay(bh);
2005 break;
2006 case IOMAP_UNWRITTEN:
2007 /*
2008 * For unwritten regions, we always need to ensure that
2009 * sub-block writes cause the regions in the block we are not
2010 * writing to are zeroed. Set the buffer as new to ensure this.
2011 */
2012 set_buffer_new(bh);
2013 set_buffer_unwritten(bh);
2014 /* FALLTHRU */
2015 case IOMAP_MAPPED:
2016 if (offset >= i_size_read(inode))
2017 set_buffer_new(bh);
2018 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
2019 ((offset - iomap->offset) >> inode->i_blkbits);
2020 set_buffer_mapped(bh);
2021 break;
2022 }
2023}
2024
2025int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
2026 get_block_t *get_block, struct iomap *iomap)
1da177e4 2027{
09cbfeaf 2028 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 2029 unsigned to = from + len;
6e1db88d 2030 struct inode *inode = page->mapping->host;
1da177e4
LT
2031 unsigned block_start, block_end;
2032 sector_t block;
2033 int err = 0;
2034 unsigned blocksize, bbits;
2035 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2036
2037 BUG_ON(!PageLocked(page));
09cbfeaf
KS
2038 BUG_ON(from > PAGE_SIZE);
2039 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
2040 BUG_ON(from > to);
2041
45bce8f3
LT
2042 head = create_page_buffers(page, inode, 0);
2043 blocksize = head->b_size;
2044 bbits = block_size_bits(blocksize);
1da177e4 2045
09cbfeaf 2046 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
2047
2048 for(bh = head, block_start = 0; bh != head || !block_start;
2049 block++, block_start=block_end, bh = bh->b_this_page) {
2050 block_end = block_start + blocksize;
2051 if (block_end <= from || block_start >= to) {
2052 if (PageUptodate(page)) {
2053 if (!buffer_uptodate(bh))
2054 set_buffer_uptodate(bh);
2055 }
2056 continue;
2057 }
2058 if (buffer_new(bh))
2059 clear_buffer_new(bh);
2060 if (!buffer_mapped(bh)) {
b0cf2321 2061 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2062 if (get_block) {
2063 err = get_block(inode, block, bh, 1);
2064 if (err)
2065 break;
2066 } else {
2067 iomap_to_bh(inode, block, bh, iomap);
2068 }
2069
1da177e4 2070 if (buffer_new(bh)) {
1da177e4
LT
2071 unmap_underlying_metadata(bh->b_bdev,
2072 bh->b_blocknr);
2073 if (PageUptodate(page)) {
637aff46 2074 clear_buffer_new(bh);
1da177e4 2075 set_buffer_uptodate(bh);
637aff46 2076 mark_buffer_dirty(bh);
1da177e4
LT
2077 continue;
2078 }
eebd2aa3
CL
2079 if (block_end > to || block_start < from)
2080 zero_user_segments(page,
2081 to, block_end,
2082 block_start, from);
1da177e4
LT
2083 continue;
2084 }
2085 }
2086 if (PageUptodate(page)) {
2087 if (!buffer_uptodate(bh))
2088 set_buffer_uptodate(bh);
2089 continue;
2090 }
2091 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2092 !buffer_unwritten(bh) &&
1da177e4 2093 (block_start < from || block_end > to)) {
dfec8a14 2094 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2095 *wait_bh++=bh;
2096 }
2097 }
2098 /*
2099 * If we issued read requests - let them complete.
2100 */
2101 while(wait_bh > wait) {
2102 wait_on_buffer(*--wait_bh);
2103 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2104 err = -EIO;
1da177e4 2105 }
f9f07b6c 2106 if (unlikely(err))
afddba49 2107 page_zero_new_buffers(page, from, to);
1da177e4
LT
2108 return err;
2109}
ae259a9c
CH
2110
2111int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2112 get_block_t *get_block)
2113{
2114 return __block_write_begin_int(page, pos, len, get_block, NULL);
2115}
ebdec241 2116EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2117
2118static int __block_commit_write(struct inode *inode, struct page *page,
2119 unsigned from, unsigned to)
2120{
2121 unsigned block_start, block_end;
2122 int partial = 0;
2123 unsigned blocksize;
2124 struct buffer_head *bh, *head;
2125
45bce8f3
LT
2126 bh = head = page_buffers(page);
2127 blocksize = bh->b_size;
1da177e4 2128
45bce8f3
LT
2129 block_start = 0;
2130 do {
1da177e4
LT
2131 block_end = block_start + blocksize;
2132 if (block_end <= from || block_start >= to) {
2133 if (!buffer_uptodate(bh))
2134 partial = 1;
2135 } else {
2136 set_buffer_uptodate(bh);
2137 mark_buffer_dirty(bh);
2138 }
afddba49 2139 clear_buffer_new(bh);
45bce8f3
LT
2140
2141 block_start = block_end;
2142 bh = bh->b_this_page;
2143 } while (bh != head);
1da177e4
LT
2144
2145 /*
2146 * If this is a partial write which happened to make all buffers
2147 * uptodate then we can optimize away a bogus readpage() for
2148 * the next read(). Here we 'discover' whether the page went
2149 * uptodate as a result of this (potentially partial) write.
2150 */
2151 if (!partial)
2152 SetPageUptodate(page);
2153 return 0;
2154}
2155
afddba49 2156/*
155130a4
CH
2157 * block_write_begin takes care of the basic task of block allocation and
2158 * bringing partial write blocks uptodate first.
2159 *
7bb46a67 2160 * The filesystem needs to handle block truncation upon failure.
afddba49 2161 */
155130a4
CH
2162int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2163 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2164{
09cbfeaf 2165 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2166 struct page *page;
6e1db88d 2167 int status;
afddba49 2168
6e1db88d
CH
2169 page = grab_cache_page_write_begin(mapping, index, flags);
2170 if (!page)
2171 return -ENOMEM;
afddba49 2172
6e1db88d 2173 status = __block_write_begin(page, pos, len, get_block);
afddba49 2174 if (unlikely(status)) {
6e1db88d 2175 unlock_page(page);
09cbfeaf 2176 put_page(page);
6e1db88d 2177 page = NULL;
afddba49
NP
2178 }
2179
6e1db88d 2180 *pagep = page;
afddba49
NP
2181 return status;
2182}
2183EXPORT_SYMBOL(block_write_begin);
2184
2185int block_write_end(struct file *file, struct address_space *mapping,
2186 loff_t pos, unsigned len, unsigned copied,
2187 struct page *page, void *fsdata)
2188{
2189 struct inode *inode = mapping->host;
2190 unsigned start;
2191
09cbfeaf 2192 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2193
2194 if (unlikely(copied < len)) {
2195 /*
2196 * The buffers that were written will now be uptodate, so we
2197 * don't have to worry about a readpage reading them and
2198 * overwriting a partial write. However if we have encountered
2199 * a short write and only partially written into a buffer, it
2200 * will not be marked uptodate, so a readpage might come in and
2201 * destroy our partial write.
2202 *
2203 * Do the simplest thing, and just treat any short write to a
2204 * non uptodate page as a zero-length write, and force the
2205 * caller to redo the whole thing.
2206 */
2207 if (!PageUptodate(page))
2208 copied = 0;
2209
2210 page_zero_new_buffers(page, start+copied, start+len);
2211 }
2212 flush_dcache_page(page);
2213
2214 /* This could be a short (even 0-length) commit */
2215 __block_commit_write(inode, page, start, start+copied);
2216
2217 return copied;
2218}
2219EXPORT_SYMBOL(block_write_end);
2220
2221int generic_write_end(struct file *file, struct address_space *mapping,
2222 loff_t pos, unsigned len, unsigned copied,
2223 struct page *page, void *fsdata)
2224{
2225 struct inode *inode = mapping->host;
90a80202 2226 loff_t old_size = inode->i_size;
c7d206b3 2227 int i_size_changed = 0;
afddba49
NP
2228
2229 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2230
2231 /*
2232 * No need to use i_size_read() here, the i_size
2233 * cannot change under us because we hold i_mutex.
2234 *
2235 * But it's important to update i_size while still holding page lock:
2236 * page writeout could otherwise come in and zero beyond i_size.
2237 */
2238 if (pos+copied > inode->i_size) {
2239 i_size_write(inode, pos+copied);
c7d206b3 2240 i_size_changed = 1;
afddba49
NP
2241 }
2242
2243 unlock_page(page);
09cbfeaf 2244 put_page(page);
afddba49 2245
90a80202
JK
2246 if (old_size < pos)
2247 pagecache_isize_extended(inode, old_size, pos);
c7d206b3
JK
2248 /*
2249 * Don't mark the inode dirty under page lock. First, it unnecessarily
2250 * makes the holding time of page lock longer. Second, it forces lock
2251 * ordering of page lock and transaction start for journaling
2252 * filesystems.
2253 */
2254 if (i_size_changed)
2255 mark_inode_dirty(inode);
2256
afddba49
NP
2257 return copied;
2258}
2259EXPORT_SYMBOL(generic_write_end);
2260
8ab22b9a
HH
2261/*
2262 * block_is_partially_uptodate checks whether buffers within a page are
2263 * uptodate or not.
2264 *
2265 * Returns true if all buffers which correspond to a file portion
2266 * we want to read are uptodate.
2267 */
c186afb4
AV
2268int block_is_partially_uptodate(struct page *page, unsigned long from,
2269 unsigned long count)
8ab22b9a 2270{
8ab22b9a
HH
2271 unsigned block_start, block_end, blocksize;
2272 unsigned to;
2273 struct buffer_head *bh, *head;
2274 int ret = 1;
2275
2276 if (!page_has_buffers(page))
2277 return 0;
2278
45bce8f3
LT
2279 head = page_buffers(page);
2280 blocksize = head->b_size;
09cbfeaf 2281 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2282 to = from + to;
09cbfeaf 2283 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2284 return 0;
2285
8ab22b9a
HH
2286 bh = head;
2287 block_start = 0;
2288 do {
2289 block_end = block_start + blocksize;
2290 if (block_end > from && block_start < to) {
2291 if (!buffer_uptodate(bh)) {
2292 ret = 0;
2293 break;
2294 }
2295 if (block_end >= to)
2296 break;
2297 }
2298 block_start = block_end;
2299 bh = bh->b_this_page;
2300 } while (bh != head);
2301
2302 return ret;
2303}
2304EXPORT_SYMBOL(block_is_partially_uptodate);
2305
1da177e4
LT
2306/*
2307 * Generic "read page" function for block devices that have the normal
2308 * get_block functionality. This is most of the block device filesystems.
2309 * Reads the page asynchronously --- the unlock_buffer() and
2310 * set/clear_buffer_uptodate() functions propagate buffer state into the
2311 * page struct once IO has completed.
2312 */
2313int block_read_full_page(struct page *page, get_block_t *get_block)
2314{
2315 struct inode *inode = page->mapping->host;
2316 sector_t iblock, lblock;
2317 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2318 unsigned int blocksize, bbits;
1da177e4
LT
2319 int nr, i;
2320 int fully_mapped = 1;
2321
45bce8f3
LT
2322 head = create_page_buffers(page, inode, 0);
2323 blocksize = head->b_size;
2324 bbits = block_size_bits(blocksize);
1da177e4 2325
09cbfeaf 2326 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2327 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2328 bh = head;
2329 nr = 0;
2330 i = 0;
2331
2332 do {
2333 if (buffer_uptodate(bh))
2334 continue;
2335
2336 if (!buffer_mapped(bh)) {
c64610ba
AM
2337 int err = 0;
2338
1da177e4
LT
2339 fully_mapped = 0;
2340 if (iblock < lblock) {
b0cf2321 2341 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2342 err = get_block(inode, iblock, bh, 0);
2343 if (err)
1da177e4
LT
2344 SetPageError(page);
2345 }
2346 if (!buffer_mapped(bh)) {
eebd2aa3 2347 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2348 if (!err)
2349 set_buffer_uptodate(bh);
1da177e4
LT
2350 continue;
2351 }
2352 /*
2353 * get_block() might have updated the buffer
2354 * synchronously
2355 */
2356 if (buffer_uptodate(bh))
2357 continue;
2358 }
2359 arr[nr++] = bh;
2360 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2361
2362 if (fully_mapped)
2363 SetPageMappedToDisk(page);
2364
2365 if (!nr) {
2366 /*
2367 * All buffers are uptodate - we can set the page uptodate
2368 * as well. But not if get_block() returned an error.
2369 */
2370 if (!PageError(page))
2371 SetPageUptodate(page);
2372 unlock_page(page);
2373 return 0;
2374 }
2375
2376 /* Stage two: lock the buffers */
2377 for (i = 0; i < nr; i++) {
2378 bh = arr[i];
2379 lock_buffer(bh);
2380 mark_buffer_async_read(bh);
2381 }
2382
2383 /*
2384 * Stage 3: start the IO. Check for uptodateness
2385 * inside the buffer lock in case another process reading
2386 * the underlying blockdev brought it uptodate (the sct fix).
2387 */
2388 for (i = 0; i < nr; i++) {
2389 bh = arr[i];
2390 if (buffer_uptodate(bh))
2391 end_buffer_async_read(bh, 1);
2392 else
2a222ca9 2393 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2394 }
2395 return 0;
2396}
1fe72eaa 2397EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2398
2399/* utility function for filesystems that need to do work on expanding
89e10787 2400 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2401 * deal with the hole.
2402 */
89e10787 2403int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2404{
2405 struct address_space *mapping = inode->i_mapping;
2406 struct page *page;
89e10787 2407 void *fsdata;
1da177e4
LT
2408 int err;
2409
c08d3b0e 2410 err = inode_newsize_ok(inode, size);
2411 if (err)
1da177e4
LT
2412 goto out;
2413
89e10787
NP
2414 err = pagecache_write_begin(NULL, mapping, size, 0,
2415 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2416 &page, &fsdata);
2417 if (err)
05eb0b51 2418 goto out;
05eb0b51 2419
89e10787
NP
2420 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2421 BUG_ON(err > 0);
05eb0b51 2422
1da177e4
LT
2423out:
2424 return err;
2425}
1fe72eaa 2426EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2427
f1e3af72
AB
2428static int cont_expand_zero(struct file *file, struct address_space *mapping,
2429 loff_t pos, loff_t *bytes)
1da177e4 2430{
1da177e4 2431 struct inode *inode = mapping->host;
1da177e4 2432 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2433 struct page *page;
2434 void *fsdata;
2435 pgoff_t index, curidx;
2436 loff_t curpos;
2437 unsigned zerofrom, offset, len;
2438 int err = 0;
1da177e4 2439
09cbfeaf
KS
2440 index = pos >> PAGE_SHIFT;
2441 offset = pos & ~PAGE_MASK;
89e10787 2442
09cbfeaf
KS
2443 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2444 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2445 if (zerofrom & (blocksize-1)) {
2446 *bytes |= (blocksize-1);
2447 (*bytes)++;
2448 }
09cbfeaf 2449 len = PAGE_SIZE - zerofrom;
1da177e4 2450
89e10787
NP
2451 err = pagecache_write_begin(file, mapping, curpos, len,
2452 AOP_FLAG_UNINTERRUPTIBLE,
2453 &page, &fsdata);
2454 if (err)
2455 goto out;
eebd2aa3 2456 zero_user(page, zerofrom, len);
89e10787
NP
2457 err = pagecache_write_end(file, mapping, curpos, len, len,
2458 page, fsdata);
2459 if (err < 0)
2460 goto out;
2461 BUG_ON(err != len);
2462 err = 0;
061e9746
OH
2463
2464 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd
MP
2465
2466 if (unlikely(fatal_signal_pending(current))) {
2467 err = -EINTR;
2468 goto out;
2469 }
89e10787 2470 }
1da177e4 2471
89e10787
NP
2472 /* page covers the boundary, find the boundary offset */
2473 if (index == curidx) {
09cbfeaf 2474 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2475 /* if we will expand the thing last block will be filled */
89e10787
NP
2476 if (offset <= zerofrom) {
2477 goto out;
2478 }
2479 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2480 *bytes |= (blocksize-1);
2481 (*bytes)++;
2482 }
89e10787 2483 len = offset - zerofrom;
1da177e4 2484
89e10787
NP
2485 err = pagecache_write_begin(file, mapping, curpos, len,
2486 AOP_FLAG_UNINTERRUPTIBLE,
2487 &page, &fsdata);
2488 if (err)
2489 goto out;
eebd2aa3 2490 zero_user(page, zerofrom, len);
89e10787
NP
2491 err = pagecache_write_end(file, mapping, curpos, len, len,
2492 page, fsdata);
2493 if (err < 0)
2494 goto out;
2495 BUG_ON(err != len);
2496 err = 0;
1da177e4 2497 }
89e10787
NP
2498out:
2499 return err;
2500}
2501
2502/*
2503 * For moronic filesystems that do not allow holes in file.
2504 * We may have to extend the file.
2505 */
282dc178 2506int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2507 loff_t pos, unsigned len, unsigned flags,
2508 struct page **pagep, void **fsdata,
2509 get_block_t *get_block, loff_t *bytes)
2510{
2511 struct inode *inode = mapping->host;
2512 unsigned blocksize = 1 << inode->i_blkbits;
2513 unsigned zerofrom;
2514 int err;
2515
2516 err = cont_expand_zero(file, mapping, pos, bytes);
2517 if (err)
155130a4 2518 return err;
89e10787 2519
09cbfeaf 2520 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2521 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2522 *bytes |= (blocksize-1);
2523 (*bytes)++;
1da177e4 2524 }
1da177e4 2525
155130a4 2526 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2527}
1fe72eaa 2528EXPORT_SYMBOL(cont_write_begin);
1da177e4 2529
1da177e4
LT
2530int block_commit_write(struct page *page, unsigned from, unsigned to)
2531{
2532 struct inode *inode = page->mapping->host;
2533 __block_commit_write(inode,page,from,to);
2534 return 0;
2535}
1fe72eaa 2536EXPORT_SYMBOL(block_commit_write);
1da177e4 2537
54171690
DC
2538/*
2539 * block_page_mkwrite() is not allowed to change the file size as it gets
2540 * called from a page fault handler when a page is first dirtied. Hence we must
2541 * be careful to check for EOF conditions here. We set the page up correctly
2542 * for a written page which means we get ENOSPC checking when writing into
2543 * holes and correct delalloc and unwritten extent mapping on filesystems that
2544 * support these features.
2545 *
2546 * We are not allowed to take the i_mutex here so we have to play games to
2547 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2548 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2549 * page lock we can determine safely if the page is beyond EOF. If it is not
2550 * beyond EOF, then the page is guaranteed safe against truncation until we
2551 * unlock the page.
ea13a864 2552 *
14da9200 2553 * Direct callers of this function should protect against filesystem freezing
5c500029 2554 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2555 */
5c500029 2556int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2557 get_block_t get_block)
54171690 2558{
c2ec175c 2559 struct page *page = vmf->page;
496ad9aa 2560 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2561 unsigned long end;
2562 loff_t size;
24da4fab 2563 int ret;
54171690
DC
2564
2565 lock_page(page);
2566 size = i_size_read(inode);
2567 if ((page->mapping != inode->i_mapping) ||
18336338 2568 (page_offset(page) > size)) {
24da4fab
JK
2569 /* We overload EFAULT to mean page got truncated */
2570 ret = -EFAULT;
2571 goto out_unlock;
54171690
DC
2572 }
2573
2574 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2575 if (((page->index + 1) << PAGE_SHIFT) > size)
2576 end = size & ~PAGE_MASK;
54171690 2577 else
09cbfeaf 2578 end = PAGE_SIZE;
54171690 2579
ebdec241 2580 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2581 if (!ret)
2582 ret = block_commit_write(page, 0, end);
2583
24da4fab
JK
2584 if (unlikely(ret < 0))
2585 goto out_unlock;
ea13a864 2586 set_page_dirty(page);
1d1d1a76 2587 wait_for_stable_page(page);
24da4fab
JK
2588 return 0;
2589out_unlock:
2590 unlock_page(page);
54171690 2591 return ret;
24da4fab 2592}
1fe72eaa 2593EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2594
2595/*
03158cd7 2596 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2597 * immediately, while under the page lock. So it needs a special end_io
2598 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2599 */
2600static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2601{
68671f35 2602 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2603}
2604
03158cd7
NP
2605/*
2606 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2607 * the page (converting it to circular linked list and taking care of page
2608 * dirty races).
2609 */
2610static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2611{
2612 struct buffer_head *bh;
2613
2614 BUG_ON(!PageLocked(page));
2615
2616 spin_lock(&page->mapping->private_lock);
2617 bh = head;
2618 do {
2619 if (PageDirty(page))
2620 set_buffer_dirty(bh);
2621 if (!bh->b_this_page)
2622 bh->b_this_page = head;
2623 bh = bh->b_this_page;
2624 } while (bh != head);
2625 attach_page_buffers(page, head);
2626 spin_unlock(&page->mapping->private_lock);
2627}
2628
1da177e4 2629/*
ea0f04e5
CH
2630 * On entry, the page is fully not uptodate.
2631 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2632 * The filesystem needs to handle block truncation upon failure.
1da177e4 2633 */
ea0f04e5 2634int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2635 loff_t pos, unsigned len, unsigned flags,
2636 struct page **pagep, void **fsdata,
1da177e4
LT
2637 get_block_t *get_block)
2638{
03158cd7 2639 struct inode *inode = mapping->host;
1da177e4
LT
2640 const unsigned blkbits = inode->i_blkbits;
2641 const unsigned blocksize = 1 << blkbits;
a4b0672d 2642 struct buffer_head *head, *bh;
03158cd7
NP
2643 struct page *page;
2644 pgoff_t index;
2645 unsigned from, to;
1da177e4 2646 unsigned block_in_page;
a4b0672d 2647 unsigned block_start, block_end;
1da177e4 2648 sector_t block_in_file;
1da177e4 2649 int nr_reads = 0;
1da177e4
LT
2650 int ret = 0;
2651 int is_mapped_to_disk = 1;
1da177e4 2652
09cbfeaf
KS
2653 index = pos >> PAGE_SHIFT;
2654 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2655 to = from + len;
2656
54566b2c 2657 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2658 if (!page)
2659 return -ENOMEM;
2660 *pagep = page;
2661 *fsdata = NULL;
2662
2663 if (page_has_buffers(page)) {
309f77ad
NK
2664 ret = __block_write_begin(page, pos, len, get_block);
2665 if (unlikely(ret))
2666 goto out_release;
2667 return ret;
03158cd7 2668 }
a4b0672d 2669
1da177e4
LT
2670 if (PageMappedToDisk(page))
2671 return 0;
2672
a4b0672d
NP
2673 /*
2674 * Allocate buffers so that we can keep track of state, and potentially
2675 * attach them to the page if an error occurs. In the common case of
2676 * no error, they will just be freed again without ever being attached
2677 * to the page (which is all OK, because we're under the page lock).
2678 *
2679 * Be careful: the buffer linked list is a NULL terminated one, rather
2680 * than the circular one we're used to.
2681 */
2682 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2683 if (!head) {
2684 ret = -ENOMEM;
2685 goto out_release;
2686 }
a4b0672d 2687
09cbfeaf 2688 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2689
2690 /*
2691 * We loop across all blocks in the page, whether or not they are
2692 * part of the affected region. This is so we can discover if the
2693 * page is fully mapped-to-disk.
2694 */
a4b0672d 2695 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2696 block_start < PAGE_SIZE;
a4b0672d 2697 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2698 int create;
2699
a4b0672d
NP
2700 block_end = block_start + blocksize;
2701 bh->b_state = 0;
1da177e4
LT
2702 create = 1;
2703 if (block_start >= to)
2704 create = 0;
2705 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2706 bh, create);
1da177e4
LT
2707 if (ret)
2708 goto failed;
a4b0672d 2709 if (!buffer_mapped(bh))
1da177e4 2710 is_mapped_to_disk = 0;
a4b0672d
NP
2711 if (buffer_new(bh))
2712 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2713 if (PageUptodate(page)) {
2714 set_buffer_uptodate(bh);
1da177e4 2715 continue;
a4b0672d
NP
2716 }
2717 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2718 zero_user_segments(page, block_start, from,
2719 to, block_end);
1da177e4
LT
2720 continue;
2721 }
a4b0672d 2722 if (buffer_uptodate(bh))
1da177e4
LT
2723 continue; /* reiserfs does this */
2724 if (block_start < from || block_end > to) {
a4b0672d
NP
2725 lock_buffer(bh);
2726 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2727 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2728 nr_reads++;
1da177e4
LT
2729 }
2730 }
2731
2732 if (nr_reads) {
1da177e4
LT
2733 /*
2734 * The page is locked, so these buffers are protected from
2735 * any VM or truncate activity. Hence we don't need to care
2736 * for the buffer_head refcounts.
2737 */
a4b0672d 2738 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2739 wait_on_buffer(bh);
2740 if (!buffer_uptodate(bh))
2741 ret = -EIO;
1da177e4
LT
2742 }
2743 if (ret)
2744 goto failed;
2745 }
2746
2747 if (is_mapped_to_disk)
2748 SetPageMappedToDisk(page);
1da177e4 2749
03158cd7 2750 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2751
1da177e4
LT
2752 return 0;
2753
2754failed:
03158cd7 2755 BUG_ON(!ret);
1da177e4 2756 /*
a4b0672d
NP
2757 * Error recovery is a bit difficult. We need to zero out blocks that
2758 * were newly allocated, and dirty them to ensure they get written out.
2759 * Buffers need to be attached to the page at this point, otherwise
2760 * the handling of potential IO errors during writeout would be hard
2761 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2762 */
03158cd7
NP
2763 attach_nobh_buffers(page, head);
2764 page_zero_new_buffers(page, from, to);
a4b0672d 2765
03158cd7
NP
2766out_release:
2767 unlock_page(page);
09cbfeaf 2768 put_page(page);
03158cd7 2769 *pagep = NULL;
a4b0672d 2770
7bb46a67 2771 return ret;
2772}
03158cd7 2773EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2774
03158cd7
NP
2775int nobh_write_end(struct file *file, struct address_space *mapping,
2776 loff_t pos, unsigned len, unsigned copied,
2777 struct page *page, void *fsdata)
1da177e4
LT
2778{
2779 struct inode *inode = page->mapping->host;
efdc3131 2780 struct buffer_head *head = fsdata;
03158cd7 2781 struct buffer_head *bh;
5b41e74a 2782 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2783
d4cf109f 2784 if (unlikely(copied < len) && head)
5b41e74a
DM
2785 attach_nobh_buffers(page, head);
2786 if (page_has_buffers(page))
2787 return generic_write_end(file, mapping, pos, len,
2788 copied, page, fsdata);
a4b0672d 2789
22c8ca78 2790 SetPageUptodate(page);
1da177e4 2791 set_page_dirty(page);
03158cd7
NP
2792 if (pos+copied > inode->i_size) {
2793 i_size_write(inode, pos+copied);
1da177e4
LT
2794 mark_inode_dirty(inode);
2795 }
03158cd7
NP
2796
2797 unlock_page(page);
09cbfeaf 2798 put_page(page);
03158cd7 2799
03158cd7
NP
2800 while (head) {
2801 bh = head;
2802 head = head->b_this_page;
2803 free_buffer_head(bh);
2804 }
2805
2806 return copied;
1da177e4 2807}
03158cd7 2808EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2809
2810/*
2811 * nobh_writepage() - based on block_full_write_page() except
2812 * that it tries to operate without attaching bufferheads to
2813 * the page.
2814 */
2815int nobh_writepage(struct page *page, get_block_t *get_block,
2816 struct writeback_control *wbc)
2817{
2818 struct inode * const inode = page->mapping->host;
2819 loff_t i_size = i_size_read(inode);
09cbfeaf 2820 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2821 unsigned offset;
1da177e4
LT
2822 int ret;
2823
2824 /* Is the page fully inside i_size? */
2825 if (page->index < end_index)
2826 goto out;
2827
2828 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2829 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2830 if (page->index >= end_index+1 || !offset) {
2831 /*
2832 * The page may have dirty, unmapped buffers. For example,
2833 * they may have been added in ext3_writepage(). Make them
2834 * freeable here, so the page does not leak.
2835 */
2836#if 0
2837 /* Not really sure about this - do we need this ? */
2838 if (page->mapping->a_ops->invalidatepage)
2839 page->mapping->a_ops->invalidatepage(page, offset);
2840#endif
2841 unlock_page(page);
2842 return 0; /* don't care */
2843 }
2844
2845 /*
2846 * The page straddles i_size. It must be zeroed out on each and every
2847 * writepage invocation because it may be mmapped. "A file is mapped
2848 * in multiples of the page size. For a file that is not a multiple of
2849 * the page size, the remaining memory is zeroed when mapped, and
2850 * writes to that region are not written out to the file."
2851 */
09cbfeaf 2852 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2853out:
2854 ret = mpage_writepage(page, get_block, wbc);
2855 if (ret == -EAGAIN)
35c80d5f
CM
2856 ret = __block_write_full_page(inode, page, get_block, wbc,
2857 end_buffer_async_write);
1da177e4
LT
2858 return ret;
2859}
2860EXPORT_SYMBOL(nobh_writepage);
2861
03158cd7
NP
2862int nobh_truncate_page(struct address_space *mapping,
2863 loff_t from, get_block_t *get_block)
1da177e4 2864{
09cbfeaf
KS
2865 pgoff_t index = from >> PAGE_SHIFT;
2866 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2867 unsigned blocksize;
2868 sector_t iblock;
2869 unsigned length, pos;
2870 struct inode *inode = mapping->host;
1da177e4 2871 struct page *page;
03158cd7
NP
2872 struct buffer_head map_bh;
2873 int err;
1da177e4 2874
03158cd7
NP
2875 blocksize = 1 << inode->i_blkbits;
2876 length = offset & (blocksize - 1);
2877
2878 /* Block boundary? Nothing to do */
2879 if (!length)
2880 return 0;
2881
2882 length = blocksize - length;
09cbfeaf 2883 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2884
1da177e4 2885 page = grab_cache_page(mapping, index);
03158cd7 2886 err = -ENOMEM;
1da177e4
LT
2887 if (!page)
2888 goto out;
2889
03158cd7
NP
2890 if (page_has_buffers(page)) {
2891has_buffers:
2892 unlock_page(page);
09cbfeaf 2893 put_page(page);
03158cd7
NP
2894 return block_truncate_page(mapping, from, get_block);
2895 }
2896
2897 /* Find the buffer that contains "offset" */
2898 pos = blocksize;
2899 while (offset >= pos) {
2900 iblock++;
2901 pos += blocksize;
2902 }
2903
460bcf57
TT
2904 map_bh.b_size = blocksize;
2905 map_bh.b_state = 0;
03158cd7
NP
2906 err = get_block(inode, iblock, &map_bh, 0);
2907 if (err)
2908 goto unlock;
2909 /* unmapped? It's a hole - nothing to do */
2910 if (!buffer_mapped(&map_bh))
2911 goto unlock;
2912
2913 /* Ok, it's mapped. Make sure it's up-to-date */
2914 if (!PageUptodate(page)) {
2915 err = mapping->a_ops->readpage(NULL, page);
2916 if (err) {
09cbfeaf 2917 put_page(page);
03158cd7
NP
2918 goto out;
2919 }
2920 lock_page(page);
2921 if (!PageUptodate(page)) {
2922 err = -EIO;
2923 goto unlock;
2924 }
2925 if (page_has_buffers(page))
2926 goto has_buffers;
1da177e4 2927 }
eebd2aa3 2928 zero_user(page, offset, length);
03158cd7
NP
2929 set_page_dirty(page);
2930 err = 0;
2931
2932unlock:
1da177e4 2933 unlock_page(page);
09cbfeaf 2934 put_page(page);
1da177e4 2935out:
03158cd7 2936 return err;
1da177e4
LT
2937}
2938EXPORT_SYMBOL(nobh_truncate_page);
2939
2940int block_truncate_page(struct address_space *mapping,
2941 loff_t from, get_block_t *get_block)
2942{
09cbfeaf
KS
2943 pgoff_t index = from >> PAGE_SHIFT;
2944 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2945 unsigned blocksize;
54b21a79 2946 sector_t iblock;
1da177e4
LT
2947 unsigned length, pos;
2948 struct inode *inode = mapping->host;
2949 struct page *page;
2950 struct buffer_head *bh;
1da177e4
LT
2951 int err;
2952
2953 blocksize = 1 << inode->i_blkbits;
2954 length = offset & (blocksize - 1);
2955
2956 /* Block boundary? Nothing to do */
2957 if (!length)
2958 return 0;
2959
2960 length = blocksize - length;
09cbfeaf 2961 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2962
2963 page = grab_cache_page(mapping, index);
2964 err = -ENOMEM;
2965 if (!page)
2966 goto out;
2967
2968 if (!page_has_buffers(page))
2969 create_empty_buffers(page, blocksize, 0);
2970
2971 /* Find the buffer that contains "offset" */
2972 bh = page_buffers(page);
2973 pos = blocksize;
2974 while (offset >= pos) {
2975 bh = bh->b_this_page;
2976 iblock++;
2977 pos += blocksize;
2978 }
2979
2980 err = 0;
2981 if (!buffer_mapped(bh)) {
b0cf2321 2982 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2983 err = get_block(inode, iblock, bh, 0);
2984 if (err)
2985 goto unlock;
2986 /* unmapped? It's a hole - nothing to do */
2987 if (!buffer_mapped(bh))
2988 goto unlock;
2989 }
2990
2991 /* Ok, it's mapped. Make sure it's up-to-date */
2992 if (PageUptodate(page))
2993 set_buffer_uptodate(bh);
2994
33a266dd 2995 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2996 err = -EIO;
dfec8a14 2997 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2998 wait_on_buffer(bh);
2999 /* Uhhuh. Read error. Complain and punt. */
3000 if (!buffer_uptodate(bh))
3001 goto unlock;
3002 }
3003
eebd2aa3 3004 zero_user(page, offset, length);
1da177e4
LT
3005 mark_buffer_dirty(bh);
3006 err = 0;
3007
3008unlock:
3009 unlock_page(page);
09cbfeaf 3010 put_page(page);
1da177e4
LT
3011out:
3012 return err;
3013}
1fe72eaa 3014EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
3015
3016/*
3017 * The generic ->writepage function for buffer-backed address_spaces
3018 */
1b938c08
MW
3019int block_write_full_page(struct page *page, get_block_t *get_block,
3020 struct writeback_control *wbc)
1da177e4
LT
3021{
3022 struct inode * const inode = page->mapping->host;
3023 loff_t i_size = i_size_read(inode);
09cbfeaf 3024 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 3025 unsigned offset;
1da177e4
LT
3026
3027 /* Is the page fully inside i_size? */
3028 if (page->index < end_index)
35c80d5f 3029 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 3030 end_buffer_async_write);
1da177e4
LT
3031
3032 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 3033 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
3034 if (page->index >= end_index+1 || !offset) {
3035 /*
3036 * The page may have dirty, unmapped buffers. For example,
3037 * they may have been added in ext3_writepage(). Make them
3038 * freeable here, so the page does not leak.
3039 */
09cbfeaf 3040 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4
LT
3041 unlock_page(page);
3042 return 0; /* don't care */
3043 }
3044
3045 /*
3046 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 3047 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
3048 * in multiples of the page size. For a file that is not a multiple of
3049 * the page size, the remaining memory is zeroed when mapped, and
3050 * writes to that region are not written out to the file."
3051 */
09cbfeaf 3052 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
3053 return __block_write_full_page(inode, page, get_block, wbc,
3054 end_buffer_async_write);
35c80d5f 3055}
1fe72eaa 3056EXPORT_SYMBOL(block_write_full_page);
35c80d5f 3057
1da177e4
LT
3058sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3059 get_block_t *get_block)
3060{
3061 struct buffer_head tmp;
3062 struct inode *inode = mapping->host;
3063 tmp.b_state = 0;
3064 tmp.b_blocknr = 0;
b0cf2321 3065 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
3066 get_block(inode, block, &tmp, 0);
3067 return tmp.b_blocknr;
3068}
1fe72eaa 3069EXPORT_SYMBOL(generic_block_bmap);
1da177e4 3070
4246a0b6 3071static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
3072{
3073 struct buffer_head *bh = bio->bi_private;
3074
b7c44ed9 3075 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
3076 set_bit(BH_Quiet, &bh->b_state);
3077
4246a0b6 3078 bh->b_end_io(bh, !bio->bi_error);
1da177e4 3079 bio_put(bio);
1da177e4
LT
3080}
3081
57302e0d
LT
3082/*
3083 * This allows us to do IO even on the odd last sectors
59d43914 3084 * of a device, even if the block size is some multiple
57302e0d
LT
3085 * of the physical sector size.
3086 *
3087 * We'll just truncate the bio to the size of the device,
3088 * and clear the end of the buffer head manually.
3089 *
3090 * Truly out-of-range accesses will turn into actual IO
3091 * errors, this only handles the "we need to be able to
3092 * do IO at the final sector" case.
3093 */
2a222ca9 3094void guard_bio_eod(int op, struct bio *bio)
57302e0d
LT
3095{
3096 sector_t maxsector;
59d43914
AM
3097 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3098 unsigned truncated_bytes;
57302e0d
LT
3099
3100 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3101 if (!maxsector)
3102 return;
3103
3104 /*
3105 * If the *whole* IO is past the end of the device,
3106 * let it through, and the IO layer will turn it into
3107 * an EIO.
3108 */
4f024f37 3109 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3110 return;
3111
4f024f37 3112 maxsector -= bio->bi_iter.bi_sector;
59d43914 3113 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3114 return;
3115
59d43914
AM
3116 /* Uhhuh. We've got a bio that straddles the device size! */
3117 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
3118
3119 /* Truncate the bio.. */
59d43914
AM
3120 bio->bi_iter.bi_size -= truncated_bytes;
3121 bvec->bv_len -= truncated_bytes;
57302e0d
LT
3122
3123 /* ..and clear the end of the buffer for reads */
2a222ca9 3124 if (op == REQ_OP_READ) {
59d43914
AM
3125 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3126 truncated_bytes);
57302e0d
LT
3127 }
3128}
3129
2a222ca9 3130static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
b16b1deb 3131 unsigned long bio_flags, struct writeback_control *wbc)
1da177e4
LT
3132{
3133 struct bio *bio;
1da177e4
LT
3134
3135 BUG_ON(!buffer_locked(bh));
3136 BUG_ON(!buffer_mapped(bh));
3137 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3138 BUG_ON(buffer_delay(bh));
3139 BUG_ON(buffer_unwritten(bh));
1da177e4 3140
1da177e4 3141 /*
48fd4f93 3142 * Only clear out a write error when rewriting
1da177e4 3143 */
2a222ca9 3144 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3145 clear_buffer_write_io_error(bh);
3146
3147 /*
3148 * from here on down, it's all bio -- do the initial mapping,
3149 * submit_bio -> generic_make_request may further map this bio around
3150 */
3151 bio = bio_alloc(GFP_NOIO, 1);
3152
2a814908 3153 if (wbc) {
b16b1deb 3154 wbc_init_bio(wbc, bio);
2a814908
TH
3155 wbc_account_io(wbc, bh->b_page, bh->b_size);
3156 }
bafc0dba 3157
4f024f37 3158 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4 3159 bio->bi_bdev = bh->b_bdev;
1da177e4 3160
6cf66b4c
KO
3161 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3162 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3163
3164 bio->bi_end_io = end_bio_bh_io_sync;
3165 bio->bi_private = bh;
71368511 3166 bio->bi_flags |= bio_flags;
1da177e4 3167
57302e0d 3168 /* Take care of bh's that straddle the end of the device */
2a222ca9 3169 guard_bio_eod(op, bio);
57302e0d 3170
877f962c 3171 if (buffer_meta(bh))
2a222ca9 3172 op_flags |= REQ_META;
877f962c 3173 if (buffer_prio(bh))
2a222ca9
MC
3174 op_flags |= REQ_PRIO;
3175 bio_set_op_attrs(bio, op, op_flags);
877f962c 3176
4e49ea4a 3177 submit_bio(bio);
f6454b04 3178 return 0;
1da177e4 3179}
bafc0dba 3180
2a222ca9
MC
3181int _submit_bh(int op, int op_flags, struct buffer_head *bh,
3182 unsigned long bio_flags)
bafc0dba 3183{
2a222ca9 3184 return submit_bh_wbc(op, op_flags, bh, bio_flags, NULL);
bafc0dba 3185}
71368511
DW
3186EXPORT_SYMBOL_GPL(_submit_bh);
3187
2a222ca9 3188int submit_bh(int op, int op_flags, struct buffer_head *bh)
71368511 3189{
2a222ca9 3190 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3191}
1fe72eaa 3192EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3193
3194/**
3195 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3196 * @op: whether to %READ or %WRITE
ef295ecf 3197 * @op_flags: req_flag_bits
1da177e4
LT
3198 * @nr: number of &struct buffer_heads in the array
3199 * @bhs: array of pointers to &struct buffer_head
3200 *
a7662236 3201 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3202 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3203 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3204 * %REQ_RAHEAD.
1da177e4
LT
3205 *
3206 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3207 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3208 * request, and any buffer that appears to be up-to-date when doing read
3209 * request. Further it marks as clean buffers that are processed for
3210 * writing (the buffer cache won't assume that they are actually clean
3211 * until the buffer gets unlocked).
1da177e4
LT
3212 *
3213 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3214 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3215 * any waiters.
3216 *
3217 * All of the buffers must be for the same device, and must also be a
3218 * multiple of the current approved size for the device.
3219 */
dfec8a14 3220void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3221{
3222 int i;
3223
3224 for (i = 0; i < nr; i++) {
3225 struct buffer_head *bh = bhs[i];
3226
9cb569d6 3227 if (!trylock_buffer(bh))
1da177e4 3228 continue;
dfec8a14 3229 if (op == WRITE) {
1da177e4 3230 if (test_clear_buffer_dirty(bh)) {
76c3073a 3231 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3232 get_bh(bh);
dfec8a14 3233 submit_bh(op, op_flags, bh);
1da177e4
LT
3234 continue;
3235 }
3236 } else {
1da177e4 3237 if (!buffer_uptodate(bh)) {
76c3073a 3238 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3239 get_bh(bh);
dfec8a14 3240 submit_bh(op, op_flags, bh);
1da177e4
LT
3241 continue;
3242 }
3243 }
3244 unlock_buffer(bh);
1da177e4
LT
3245 }
3246}
1fe72eaa 3247EXPORT_SYMBOL(ll_rw_block);
1da177e4 3248
2a222ca9 3249void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3250{
3251 lock_buffer(bh);
3252 if (!test_clear_buffer_dirty(bh)) {
3253 unlock_buffer(bh);
3254 return;
3255 }
3256 bh->b_end_io = end_buffer_write_sync;
3257 get_bh(bh);
2a222ca9 3258 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3259}
3260EXPORT_SYMBOL(write_dirty_buffer);
3261
1da177e4
LT
3262/*
3263 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3264 * and then start new I/O and then wait upon it. The caller must have a ref on
3265 * the buffer_head.
3266 */
2a222ca9 3267int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3268{
3269 int ret = 0;
3270
3271 WARN_ON(atomic_read(&bh->b_count) < 1);
3272 lock_buffer(bh);
3273 if (test_clear_buffer_dirty(bh)) {
3274 get_bh(bh);
3275 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3276 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3277 wait_on_buffer(bh);
1da177e4
LT
3278 if (!ret && !buffer_uptodate(bh))
3279 ret = -EIO;
3280 } else {
3281 unlock_buffer(bh);
3282 }
3283 return ret;
3284}
87e99511
CH
3285EXPORT_SYMBOL(__sync_dirty_buffer);
3286
3287int sync_dirty_buffer(struct buffer_head *bh)
3288{
70fd7614 3289 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3290}
1fe72eaa 3291EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3292
3293/*
3294 * try_to_free_buffers() checks if all the buffers on this particular page
3295 * are unused, and releases them if so.
3296 *
3297 * Exclusion against try_to_free_buffers may be obtained by either
3298 * locking the page or by holding its mapping's private_lock.
3299 *
3300 * If the page is dirty but all the buffers are clean then we need to
3301 * be sure to mark the page clean as well. This is because the page
3302 * may be against a block device, and a later reattachment of buffers
3303 * to a dirty page will set *all* buffers dirty. Which would corrupt
3304 * filesystem data on the same device.
3305 *
3306 * The same applies to regular filesystem pages: if all the buffers are
3307 * clean then we set the page clean and proceed. To do that, we require
3308 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3309 * private_lock.
3310 *
3311 * try_to_free_buffers() is non-blocking.
3312 */
3313static inline int buffer_busy(struct buffer_head *bh)
3314{
3315 return atomic_read(&bh->b_count) |
3316 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3317}
3318
3319static int
3320drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3321{
3322 struct buffer_head *head = page_buffers(page);
3323 struct buffer_head *bh;
3324
3325 bh = head;
3326 do {
de7d5a3b 3327 if (buffer_write_io_error(bh) && page->mapping)
5114a97a 3328 mapping_set_error(page->mapping, -EIO);
1da177e4
LT
3329 if (buffer_busy(bh))
3330 goto failed;
3331 bh = bh->b_this_page;
3332 } while (bh != head);
3333
3334 do {
3335 struct buffer_head *next = bh->b_this_page;
3336
535ee2fb 3337 if (bh->b_assoc_map)
1da177e4
LT
3338 __remove_assoc_queue(bh);
3339 bh = next;
3340 } while (bh != head);
3341 *buffers_to_free = head;
3342 __clear_page_buffers(page);
3343 return 1;
3344failed:
3345 return 0;
3346}
3347
3348int try_to_free_buffers(struct page *page)
3349{
3350 struct address_space * const mapping = page->mapping;
3351 struct buffer_head *buffers_to_free = NULL;
3352 int ret = 0;
3353
3354 BUG_ON(!PageLocked(page));
ecdfc978 3355 if (PageWriteback(page))
1da177e4
LT
3356 return 0;
3357
3358 if (mapping == NULL) { /* can this still happen? */
3359 ret = drop_buffers(page, &buffers_to_free);
3360 goto out;
3361 }
3362
3363 spin_lock(&mapping->private_lock);
3364 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3365
3366 /*
3367 * If the filesystem writes its buffers by hand (eg ext3)
3368 * then we can have clean buffers against a dirty page. We
3369 * clean the page here; otherwise the VM will never notice
3370 * that the filesystem did any IO at all.
3371 *
3372 * Also, during truncate, discard_buffer will have marked all
3373 * the page's buffers clean. We discover that here and clean
3374 * the page also.
87df7241
NP
3375 *
3376 * private_lock must be held over this entire operation in order
3377 * to synchronise against __set_page_dirty_buffers and prevent the
3378 * dirty bit from being lost.
ecdfc978 3379 */
11f81bec
TH
3380 if (ret)
3381 cancel_dirty_page(page);
87df7241 3382 spin_unlock(&mapping->private_lock);
1da177e4
LT
3383out:
3384 if (buffers_to_free) {
3385 struct buffer_head *bh = buffers_to_free;
3386
3387 do {
3388 struct buffer_head *next = bh->b_this_page;
3389 free_buffer_head(bh);
3390 bh = next;
3391 } while (bh != buffers_to_free);
3392 }
3393 return ret;
3394}
3395EXPORT_SYMBOL(try_to_free_buffers);
3396
1da177e4
LT
3397/*
3398 * There are no bdflush tunables left. But distributions are
3399 * still running obsolete flush daemons, so we terminate them here.
3400 *
3401 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3402 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3403 */
bdc480e3 3404SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3405{
3406 static int msg_count;
3407
3408 if (!capable(CAP_SYS_ADMIN))
3409 return -EPERM;
3410
3411 if (msg_count < 5) {
3412 msg_count++;
3413 printk(KERN_INFO
3414 "warning: process `%s' used the obsolete bdflush"
3415 " system call\n", current->comm);
3416 printk(KERN_INFO "Fix your initscripts?\n");
3417 }
3418
3419 if (func == 1)
3420 do_exit(0);
3421 return 0;
3422}
3423
3424/*
3425 * Buffer-head allocation
3426 */
a0a9b043 3427static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3428
3429/*
3430 * Once the number of bh's in the machine exceeds this level, we start
3431 * stripping them in writeback.
3432 */
43be594a 3433static unsigned long max_buffer_heads;
1da177e4
LT
3434
3435int buffer_heads_over_limit;
3436
3437struct bh_accounting {
3438 int nr; /* Number of live bh's */
3439 int ratelimit; /* Limit cacheline bouncing */
3440};
3441
3442static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3443
3444static void recalc_bh_state(void)
3445{
3446 int i;
3447 int tot = 0;
3448
ee1be862 3449 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3450 return;
c7b92516 3451 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3452 for_each_online_cpu(i)
1da177e4
LT
3453 tot += per_cpu(bh_accounting, i).nr;
3454 buffer_heads_over_limit = (tot > max_buffer_heads);
3455}
c7b92516 3456
dd0fc66f 3457struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3458{
019b4d12 3459 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3460 if (ret) {
a35afb83 3461 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3462 preempt_disable();
3463 __this_cpu_inc(bh_accounting.nr);
1da177e4 3464 recalc_bh_state();
c7b92516 3465 preempt_enable();
1da177e4
LT
3466 }
3467 return ret;
3468}
3469EXPORT_SYMBOL(alloc_buffer_head);
3470
3471void free_buffer_head(struct buffer_head *bh)
3472{
3473 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3474 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3475 preempt_disable();
3476 __this_cpu_dec(bh_accounting.nr);
1da177e4 3477 recalc_bh_state();
c7b92516 3478 preempt_enable();
1da177e4
LT
3479}
3480EXPORT_SYMBOL(free_buffer_head);
3481
1da177e4
LT
3482static void buffer_exit_cpu(int cpu)
3483{
3484 int i;
3485 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3486
3487 for (i = 0; i < BH_LRU_SIZE; i++) {
3488 brelse(b->bhs[i]);
3489 b->bhs[i] = NULL;
3490 }
c7b92516 3491 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3492 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3493}
3494
3495static int buffer_cpu_notify(struct notifier_block *self,
3496 unsigned long action, void *hcpu)
3497{
8bb78442 3498 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3499 buffer_exit_cpu((unsigned long)hcpu);
3500 return NOTIFY_OK;
3501}
1da177e4 3502
389d1b08 3503/**
a6b91919 3504 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3505 * @bh: struct buffer_head
3506 *
3507 * Return true if the buffer is up-to-date and false,
3508 * with the buffer locked, if not.
3509 */
3510int bh_uptodate_or_lock(struct buffer_head *bh)
3511{
3512 if (!buffer_uptodate(bh)) {
3513 lock_buffer(bh);
3514 if (!buffer_uptodate(bh))
3515 return 0;
3516 unlock_buffer(bh);
3517 }
3518 return 1;
3519}
3520EXPORT_SYMBOL(bh_uptodate_or_lock);
3521
3522/**
a6b91919 3523 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3524 * @bh: struct buffer_head
3525 *
3526 * Returns zero on success and -EIO on error.
3527 */
3528int bh_submit_read(struct buffer_head *bh)
3529{
3530 BUG_ON(!buffer_locked(bh));
3531
3532 if (buffer_uptodate(bh)) {
3533 unlock_buffer(bh);
3534 return 0;
3535 }
3536
3537 get_bh(bh);
3538 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3539 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3540 wait_on_buffer(bh);
3541 if (buffer_uptodate(bh))
3542 return 0;
3543 return -EIO;
3544}
3545EXPORT_SYMBOL(bh_submit_read);
3546
1da177e4
LT
3547void __init buffer_init(void)
3548{
43be594a 3549 unsigned long nrpages;
1da177e4 3550
b98938c3
CL
3551 bh_cachep = kmem_cache_create("buffer_head",
3552 sizeof(struct buffer_head), 0,
3553 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3554 SLAB_MEM_SPREAD),
019b4d12 3555 NULL);
1da177e4
LT
3556
3557 /*
3558 * Limit the bh occupancy to 10% of ZONE_NORMAL
3559 */
3560 nrpages = (nr_free_buffer_pages() * 10) / 100;
3561 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3562 hotcpu_notifier(buffer_cpu_notify, 0);
3563}