]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/buffer.c
mm: mempolicy: skip inaccessible VMAs when setting MPOL_MF_LAZY
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
630d9c47 32#include <linux/export.h>
1da177e4
LT
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
5305cb83 44#include <trace/events/block.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
a3f3c29c 50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4 56
f0059afd
TH
57inline void touch_buffer(struct buffer_head *bh)
58{
5305cb83 59 trace_block_touch_buffer(bh);
f0059afd
TH
60 mark_page_accessed(bh->b_page);
61}
62EXPORT_SYMBOL(touch_buffer);
63
fc9b52cd 64void __lock_buffer(struct buffer_head *bh)
1da177e4 65{
74316201 66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
67}
68EXPORT_SYMBOL(__lock_buffer);
69
fc9b52cd 70void unlock_buffer(struct buffer_head *bh)
1da177e4 71{
51b07fc3 72 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 73 smp_mb__after_atomic();
1da177e4
LT
74 wake_up_bit(&bh->b_state, BH_Lock);
75}
1fe72eaa 76EXPORT_SYMBOL(unlock_buffer);
1da177e4 77
b4597226
MG
78/*
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
82 */
83void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
85{
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
89
90 BUG_ON(!PageLocked(page));
91
92 if (!page_has_buffers(page))
93 return;
94
95 if (PageWriteback(page))
96 *writeback = true;
97
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
103
104 if (buffer_dirty(bh))
105 *dirty = true;
106
107 bh = bh->b_this_page;
108 } while (bh != head);
109}
110EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
1da177e4
LT
112/*
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
116 */
117void __wait_on_buffer(struct buffer_head * bh)
118{
74316201 119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 120}
1fe72eaa 121EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
122
123static void
124__clear_page_buffers(struct page *page)
125{
126 ClearPagePrivate(page);
4c21e2f2 127 set_page_private(page, 0);
1da177e4
LT
128 page_cache_release(page);
129}
130
08bafc03
KM
131
132static int quiet_error(struct buffer_head *bh)
133{
134 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135 return 0;
136 return 1;
137}
138
139
1da177e4
LT
140static void buffer_io_error(struct buffer_head *bh)
141{
142 char b[BDEVNAME_SIZE];
1da177e4
LT
143 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 bdevname(bh->b_bdev, b),
145 (unsigned long long)bh->b_blocknr);
146}
147
148/*
68671f35
DM
149 * End-of-IO handler helper function which does not touch the bh after
150 * unlocking it.
151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152 * a race there is benign: unlock_buffer() only use the bh's address for
153 * hashing after unlocking the buffer, so it doesn't actually touch the bh
154 * itself.
1da177e4 155 */
68671f35 156static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
157{
158 if (uptodate) {
159 set_buffer_uptodate(bh);
160 } else {
161 /* This happens, due to failed READA attempts. */
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
68671f35
DM
165}
166
167/*
168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
169 * unlock the buffer. This is what ll_rw_block uses too.
170 */
171void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172{
173 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
174 put_bh(bh);
175}
1fe72eaa 176EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
177
178void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179{
180 char b[BDEVNAME_SIZE];
181
182 if (uptodate) {
183 set_buffer_uptodate(bh);
184 } else {
0edd55fa 185 if (!quiet_error(bh)) {
1da177e4
LT
186 buffer_io_error(bh);
187 printk(KERN_WARNING "lost page write due to "
188 "I/O error on %s\n",
189 bdevname(bh->b_bdev, b));
190 }
191 set_buffer_write_io_error(bh);
192 clear_buffer_uptodate(bh);
193 }
194 unlock_buffer(bh);
195 put_bh(bh);
196}
1fe72eaa 197EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 198
1da177e4
LT
199/*
200 * Various filesystems appear to want __find_get_block to be non-blocking.
201 * But it's the page lock which protects the buffers. To get around this,
202 * we get exclusion from try_to_free_buffers with the blockdev mapping's
203 * private_lock.
204 *
205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206 * may be quite high. This code could TryLock the page, and if that
207 * succeeds, there is no need to take private_lock. (But if
208 * private_lock is contended then so is mapping->tree_lock).
209 */
210static struct buffer_head *
385fd4c5 211__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
212{
213 struct inode *bd_inode = bdev->bd_inode;
214 struct address_space *bd_mapping = bd_inode->i_mapping;
215 struct buffer_head *ret = NULL;
216 pgoff_t index;
217 struct buffer_head *bh;
218 struct buffer_head *head;
219 struct page *page;
220 int all_mapped = 1;
221
222 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
2457aec6 223 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
224 if (!page)
225 goto out;
226
227 spin_lock(&bd_mapping->private_lock);
228 if (!page_has_buffers(page))
229 goto out_unlock;
230 head = page_buffers(page);
231 bh = head;
232 do {
97f76d3d
NK
233 if (!buffer_mapped(bh))
234 all_mapped = 0;
235 else if (bh->b_blocknr == block) {
1da177e4
LT
236 ret = bh;
237 get_bh(bh);
238 goto out_unlock;
239 }
1da177e4
LT
240 bh = bh->b_this_page;
241 } while (bh != head);
242
243 /* we might be here because some of the buffers on this page are
244 * not mapped. This is due to various races between
245 * file io on the block device and getblk. It gets dealt with
246 * elsewhere, don't buffer_error if we had some unmapped buffers
247 */
248 if (all_mapped) {
72a2ebd8
TM
249 char b[BDEVNAME_SIZE];
250
1da177e4
LT
251 printk("__find_get_block_slow() failed. "
252 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
253 (unsigned long long)block,
254 (unsigned long long)bh->b_blocknr);
255 printk("b_state=0x%08lx, b_size=%zu\n",
256 bh->b_state, bh->b_size);
72a2ebd8
TM
257 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 1 << bd_inode->i_blkbits);
1da177e4
LT
259 }
260out_unlock:
261 spin_unlock(&bd_mapping->private_lock);
262 page_cache_release(page);
263out:
264 return ret;
265}
266
1da177e4 267/*
5b0830cb 268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
269 */
270static void free_more_memory(void)
271{
19770b32 272 struct zone *zone;
0e88460d 273 int nid;
1da177e4 274
0e175a18 275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
276 yield();
277
0e88460d 278 for_each_online_node(nid) {
19770b32
MG
279 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 gfp_zone(GFP_NOFS), NULL,
281 &zone);
282 if (zone)
54a6eb5c 283 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 284 GFP_NOFS, NULL);
1da177e4
LT
285 }
286}
287
288/*
289 * I/O completion handler for block_read_full_page() - pages
290 * which come unlocked at the end of I/O.
291 */
292static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293{
1da177e4 294 unsigned long flags;
a3972203 295 struct buffer_head *first;
1da177e4
LT
296 struct buffer_head *tmp;
297 struct page *page;
298 int page_uptodate = 1;
299
300 BUG_ON(!buffer_async_read(bh));
301
302 page = bh->b_page;
303 if (uptodate) {
304 set_buffer_uptodate(bh);
305 } else {
306 clear_buffer_uptodate(bh);
08bafc03 307 if (!quiet_error(bh))
1da177e4
LT
308 buffer_io_error(bh);
309 SetPageError(page);
310 }
311
312 /*
313 * Be _very_ careful from here on. Bad things can happen if
314 * two buffer heads end IO at almost the same time and both
315 * decide that the page is now completely done.
316 */
a3972203
NP
317 first = page_buffers(page);
318 local_irq_save(flags);
319 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
320 clear_buffer_async_read(bh);
321 unlock_buffer(bh);
322 tmp = bh;
323 do {
324 if (!buffer_uptodate(tmp))
325 page_uptodate = 0;
326 if (buffer_async_read(tmp)) {
327 BUG_ON(!buffer_locked(tmp));
328 goto still_busy;
329 }
330 tmp = tmp->b_this_page;
331 } while (tmp != bh);
a3972203
NP
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
1da177e4
LT
334
335 /*
336 * If none of the buffers had errors and they are all
337 * uptodate then we can set the page uptodate.
338 */
339 if (page_uptodate && !PageError(page))
340 SetPageUptodate(page);
341 unlock_page(page);
342 return;
343
344still_busy:
a3972203
NP
345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 local_irq_restore(flags);
1da177e4
LT
347 return;
348}
349
350/*
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
353 */
35c80d5f 354void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
355{
356 char b[BDEVNAME_SIZE];
1da177e4 357 unsigned long flags;
a3972203 358 struct buffer_head *first;
1da177e4
LT
359 struct buffer_head *tmp;
360 struct page *page;
361
362 BUG_ON(!buffer_async_write(bh));
363
364 page = bh->b_page;
365 if (uptodate) {
366 set_buffer_uptodate(bh);
367 } else {
08bafc03 368 if (!quiet_error(bh)) {
1da177e4
LT
369 buffer_io_error(bh);
370 printk(KERN_WARNING "lost page write due to "
371 "I/O error on %s\n",
372 bdevname(bh->b_bdev, b));
373 }
374 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 375 set_buffer_write_io_error(bh);
1da177e4
LT
376 clear_buffer_uptodate(bh);
377 SetPageError(page);
378 }
379
a3972203
NP
380 first = page_buffers(page);
381 local_irq_save(flags);
382 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383
1da177e4
LT
384 clear_buffer_async_write(bh);
385 unlock_buffer(bh);
386 tmp = bh->b_this_page;
387 while (tmp != bh) {
388 if (buffer_async_write(tmp)) {
389 BUG_ON(!buffer_locked(tmp));
390 goto still_busy;
391 }
392 tmp = tmp->b_this_page;
393 }
a3972203
NP
394 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 local_irq_restore(flags);
1da177e4
LT
396 end_page_writeback(page);
397 return;
398
399still_busy:
a3972203
NP
400 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 local_irq_restore(flags);
1da177e4
LT
402 return;
403}
1fe72eaa 404EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
405
406/*
407 * If a page's buffers are under async readin (end_buffer_async_read
408 * completion) then there is a possibility that another thread of
409 * control could lock one of the buffers after it has completed
410 * but while some of the other buffers have not completed. This
411 * locked buffer would confuse end_buffer_async_read() into not unlocking
412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
413 * that this buffer is not under async I/O.
414 *
415 * The page comes unlocked when it has no locked buffer_async buffers
416 * left.
417 *
418 * PageLocked prevents anyone starting new async I/O reads any of
419 * the buffers.
420 *
421 * PageWriteback is used to prevent simultaneous writeout of the same
422 * page.
423 *
424 * PageLocked prevents anyone from starting writeback of a page which is
425 * under read I/O (PageWriteback is only ever set against a locked page).
426 */
427static void mark_buffer_async_read(struct buffer_head *bh)
428{
429 bh->b_end_io = end_buffer_async_read;
430 set_buffer_async_read(bh);
431}
432
1fe72eaa
HS
433static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 bh_end_io_t *handler)
1da177e4 435{
35c80d5f 436 bh->b_end_io = handler;
1da177e4
LT
437 set_buffer_async_write(bh);
438}
35c80d5f
CM
439
440void mark_buffer_async_write(struct buffer_head *bh)
441{
442 mark_buffer_async_write_endio(bh, end_buffer_async_write);
443}
1da177e4
LT
444EXPORT_SYMBOL(mark_buffer_async_write);
445
446
447/*
448 * fs/buffer.c contains helper functions for buffer-backed address space's
449 * fsync functions. A common requirement for buffer-based filesystems is
450 * that certain data from the backing blockdev needs to be written out for
451 * a successful fsync(). For example, ext2 indirect blocks need to be
452 * written back and waited upon before fsync() returns.
453 *
454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456 * management of a list of dependent buffers at ->i_mapping->private_list.
457 *
458 * Locking is a little subtle: try_to_free_buffers() will remove buffers
459 * from their controlling inode's queue when they are being freed. But
460 * try_to_free_buffers() will be operating against the *blockdev* mapping
461 * at the time, not against the S_ISREG file which depends on those buffers.
462 * So the locking for private_list is via the private_lock in the address_space
463 * which backs the buffers. Which is different from the address_space
464 * against which the buffers are listed. So for a particular address_space,
465 * mapping->private_lock does *not* protect mapping->private_list! In fact,
466 * mapping->private_list will always be protected by the backing blockdev's
467 * ->private_lock.
468 *
469 * Which introduces a requirement: all buffers on an address_space's
470 * ->private_list must be from the same address_space: the blockdev's.
471 *
472 * address_spaces which do not place buffers at ->private_list via these
473 * utility functions are free to use private_lock and private_list for
474 * whatever they want. The only requirement is that list_empty(private_list)
475 * be true at clear_inode() time.
476 *
477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
478 * filesystems should do that. invalidate_inode_buffers() should just go
479 * BUG_ON(!list_empty).
480 *
481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
482 * take an address_space, not an inode. And it should be called
483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484 * queued up.
485 *
486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487 * list if it is already on a list. Because if the buffer is on a list,
488 * it *must* already be on the right one. If not, the filesystem is being
489 * silly. This will save a ton of locking. But first we have to ensure
490 * that buffers are taken *off* the old inode's list when they are freed
491 * (presumably in truncate). That requires careful auditing of all
492 * filesystems (do it inside bforget()). It could also be done by bringing
493 * b_inode back.
494 */
495
496/*
497 * The buffer's backing address_space's private_lock must be held
498 */
dbacefc9 499static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
500{
501 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
502 WARN_ON(!bh->b_assoc_map);
503 if (buffer_write_io_error(bh))
504 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 bh->b_assoc_map = NULL;
1da177e4
LT
506}
507
508int inode_has_buffers(struct inode *inode)
509{
510 return !list_empty(&inode->i_data.private_list);
511}
512
513/*
514 * osync is designed to support O_SYNC io. It waits synchronously for
515 * all already-submitted IO to complete, but does not queue any new
516 * writes to the disk.
517 *
518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519 * you dirty the buffers, and then use osync_inode_buffers to wait for
520 * completion. Any other dirty buffers which are not yet queued for
521 * write will not be flushed to disk by the osync.
522 */
523static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524{
525 struct buffer_head *bh;
526 struct list_head *p;
527 int err = 0;
528
529 spin_lock(lock);
530repeat:
531 list_for_each_prev(p, list) {
532 bh = BH_ENTRY(p);
533 if (buffer_locked(bh)) {
534 get_bh(bh);
535 spin_unlock(lock);
536 wait_on_buffer(bh);
537 if (!buffer_uptodate(bh))
538 err = -EIO;
539 brelse(bh);
540 spin_lock(lock);
541 goto repeat;
542 }
543 }
544 spin_unlock(lock);
545 return err;
546}
547
01a05b33 548static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 549{
c2d75438 550 char b[BDEVNAME_SIZE];
01a05b33
AV
551 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 printk(KERN_WARNING "Emergency Thaw on %s\n",
553 bdevname(sb->s_bdev, b));
554}
c2d75438 555
01a05b33
AV
556static void do_thaw_all(struct work_struct *work)
557{
558 iterate_supers(do_thaw_one, NULL);
053c525f 559 kfree(work);
c2d75438
ES
560 printk(KERN_WARNING "Emergency Thaw complete\n");
561}
562
563/**
564 * emergency_thaw_all -- forcibly thaw every frozen filesystem
565 *
566 * Used for emergency unfreeze of all filesystems via SysRq
567 */
568void emergency_thaw_all(void)
569{
053c525f
JA
570 struct work_struct *work;
571
572 work = kmalloc(sizeof(*work), GFP_ATOMIC);
573 if (work) {
574 INIT_WORK(work, do_thaw_all);
575 schedule_work(work);
576 }
c2d75438
ES
577}
578
1da177e4 579/**
78a4a50a 580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 581 * @mapping: the mapping which wants those buffers written
1da177e4
LT
582 *
583 * Starts I/O against the buffers at mapping->private_list, and waits upon
584 * that I/O.
585 *
67be2dd1
MW
586 * Basically, this is a convenience function for fsync().
587 * @mapping is a file or directory which needs those buffers to be written for
588 * a successful fsync().
1da177e4
LT
589 */
590int sync_mapping_buffers(struct address_space *mapping)
591{
252aa6f5 592 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
593
594 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595 return 0;
596
597 return fsync_buffers_list(&buffer_mapping->private_lock,
598 &mapping->private_list);
599}
600EXPORT_SYMBOL(sync_mapping_buffers);
601
602/*
603 * Called when we've recently written block `bblock', and it is known that
604 * `bblock' was for a buffer_boundary() buffer. This means that the block at
605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
606 * dirty, schedule it for IO. So that indirects merge nicely with their data.
607 */
608void write_boundary_block(struct block_device *bdev,
609 sector_t bblock, unsigned blocksize)
610{
611 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612 if (bh) {
613 if (buffer_dirty(bh))
614 ll_rw_block(WRITE, 1, &bh);
615 put_bh(bh);
616 }
617}
618
619void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620{
621 struct address_space *mapping = inode->i_mapping;
622 struct address_space *buffer_mapping = bh->b_page->mapping;
623
624 mark_buffer_dirty(bh);
252aa6f5
RA
625 if (!mapping->private_data) {
626 mapping->private_data = buffer_mapping;
1da177e4 627 } else {
252aa6f5 628 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 629 }
535ee2fb 630 if (!bh->b_assoc_map) {
1da177e4
LT
631 spin_lock(&buffer_mapping->private_lock);
632 list_move_tail(&bh->b_assoc_buffers,
633 &mapping->private_list);
58ff407b 634 bh->b_assoc_map = mapping;
1da177e4
LT
635 spin_unlock(&buffer_mapping->private_lock);
636 }
637}
638EXPORT_SYMBOL(mark_buffer_dirty_inode);
639
787d2214
NP
640/*
641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642 * dirty.
643 *
644 * If warn is true, then emit a warning if the page is not uptodate and has
645 * not been truncated.
646 */
a8e7d49a 647static void __set_page_dirty(struct page *page,
787d2214
NP
648 struct address_space *mapping, int warn)
649{
227d53b3
KM
650 unsigned long flags;
651
652 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
653 if (page->mapping) { /* Race with truncate? */
654 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 655 account_page_dirtied(page, mapping);
787d2214
NP
656 radix_tree_tag_set(&mapping->page_tree,
657 page_index(page), PAGECACHE_TAG_DIRTY);
658 }
227d53b3 659 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214 660 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
661}
662
1da177e4
LT
663/*
664 * Add a page to the dirty page list.
665 *
666 * It is a sad fact of life that this function is called from several places
667 * deeply under spinlocking. It may not sleep.
668 *
669 * If the page has buffers, the uptodate buffers are set dirty, to preserve
670 * dirty-state coherency between the page and the buffers. It the page does
671 * not have buffers then when they are later attached they will all be set
672 * dirty.
673 *
674 * The buffers are dirtied before the page is dirtied. There's a small race
675 * window in which a writepage caller may see the page cleanness but not the
676 * buffer dirtiness. That's fine. If this code were to set the page dirty
677 * before the buffers, a concurrent writepage caller could clear the page dirty
678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679 * page on the dirty page list.
680 *
681 * We use private_lock to lock against try_to_free_buffers while using the
682 * page's buffer list. Also use this to protect against clean buffers being
683 * added to the page after it was set dirty.
684 *
685 * FIXME: may need to call ->reservepage here as well. That's rather up to the
686 * address_space though.
687 */
688int __set_page_dirty_buffers(struct page *page)
689{
a8e7d49a 690 int newly_dirty;
787d2214 691 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
692
693 if (unlikely(!mapping))
694 return !TestSetPageDirty(page);
1da177e4
LT
695
696 spin_lock(&mapping->private_lock);
697 if (page_has_buffers(page)) {
698 struct buffer_head *head = page_buffers(page);
699 struct buffer_head *bh = head;
700
701 do {
702 set_buffer_dirty(bh);
703 bh = bh->b_this_page;
704 } while (bh != head);
705 }
a8e7d49a 706 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
707 spin_unlock(&mapping->private_lock);
708
a8e7d49a
LT
709 if (newly_dirty)
710 __set_page_dirty(page, mapping, 1);
711 return newly_dirty;
1da177e4
LT
712}
713EXPORT_SYMBOL(__set_page_dirty_buffers);
714
715/*
716 * Write out and wait upon a list of buffers.
717 *
718 * We have conflicting pressures: we want to make sure that all
719 * initially dirty buffers get waited on, but that any subsequently
720 * dirtied buffers don't. After all, we don't want fsync to last
721 * forever if somebody is actively writing to the file.
722 *
723 * Do this in two main stages: first we copy dirty buffers to a
724 * temporary inode list, queueing the writes as we go. Then we clean
725 * up, waiting for those writes to complete.
726 *
727 * During this second stage, any subsequent updates to the file may end
728 * up refiling the buffer on the original inode's dirty list again, so
729 * there is a chance we will end up with a buffer queued for write but
730 * not yet completed on that list. So, as a final cleanup we go through
731 * the osync code to catch these locked, dirty buffers without requeuing
732 * any newly dirty buffers for write.
733 */
734static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735{
736 struct buffer_head *bh;
737 struct list_head tmp;
7eaceacc 738 struct address_space *mapping;
1da177e4 739 int err = 0, err2;
4ee2491e 740 struct blk_plug plug;
1da177e4
LT
741
742 INIT_LIST_HEAD(&tmp);
4ee2491e 743 blk_start_plug(&plug);
1da177e4
LT
744
745 spin_lock(lock);
746 while (!list_empty(list)) {
747 bh = BH_ENTRY(list->next);
535ee2fb 748 mapping = bh->b_assoc_map;
58ff407b 749 __remove_assoc_queue(bh);
535ee2fb
JK
750 /* Avoid race with mark_buffer_dirty_inode() which does
751 * a lockless check and we rely on seeing the dirty bit */
752 smp_mb();
1da177e4
LT
753 if (buffer_dirty(bh) || buffer_locked(bh)) {
754 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 755 bh->b_assoc_map = mapping;
1da177e4
LT
756 if (buffer_dirty(bh)) {
757 get_bh(bh);
758 spin_unlock(lock);
759 /*
760 * Ensure any pending I/O completes so that
9cb569d6
CH
761 * write_dirty_buffer() actually writes the
762 * current contents - it is a noop if I/O is
763 * still in flight on potentially older
764 * contents.
1da177e4 765 */
721a9602 766 write_dirty_buffer(bh, WRITE_SYNC);
9cf6b720
JA
767
768 /*
769 * Kick off IO for the previous mapping. Note
770 * that we will not run the very last mapping,
771 * wait_on_buffer() will do that for us
772 * through sync_buffer().
773 */
1da177e4
LT
774 brelse(bh);
775 spin_lock(lock);
776 }
777 }
778 }
779
4ee2491e
JA
780 spin_unlock(lock);
781 blk_finish_plug(&plug);
782 spin_lock(lock);
783
1da177e4
LT
784 while (!list_empty(&tmp)) {
785 bh = BH_ENTRY(tmp.prev);
1da177e4 786 get_bh(bh);
535ee2fb
JK
787 mapping = bh->b_assoc_map;
788 __remove_assoc_queue(bh);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
791 smp_mb();
792 if (buffer_dirty(bh)) {
793 list_add(&bh->b_assoc_buffers,
e3892296 794 &mapping->private_list);
535ee2fb
JK
795 bh->b_assoc_map = mapping;
796 }
1da177e4
LT
797 spin_unlock(lock);
798 wait_on_buffer(bh);
799 if (!buffer_uptodate(bh))
800 err = -EIO;
801 brelse(bh);
802 spin_lock(lock);
803 }
804
805 spin_unlock(lock);
806 err2 = osync_buffers_list(lock, list);
807 if (err)
808 return err;
809 else
810 return err2;
811}
812
813/*
814 * Invalidate any and all dirty buffers on a given inode. We are
815 * probably unmounting the fs, but that doesn't mean we have already
816 * done a sync(). Just drop the buffers from the inode list.
817 *
818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
819 * assumes that all the buffers are against the blockdev. Not true
820 * for reiserfs.
821 */
822void invalidate_inode_buffers(struct inode *inode)
823{
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
252aa6f5 827 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
828
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list))
831 __remove_assoc_queue(BH_ENTRY(list->next));
832 spin_unlock(&buffer_mapping->private_lock);
833 }
834}
52b19ac9 835EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
836
837/*
838 * Remove any clean buffers from the inode's buffer list. This is called
839 * when we're trying to free the inode itself. Those buffers can pin it.
840 *
841 * Returns true if all buffers were removed.
842 */
843int remove_inode_buffers(struct inode *inode)
844{
845 int ret = 1;
846
847 if (inode_has_buffers(inode)) {
848 struct address_space *mapping = &inode->i_data;
849 struct list_head *list = &mapping->private_list;
252aa6f5 850 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
851
852 spin_lock(&buffer_mapping->private_lock);
853 while (!list_empty(list)) {
854 struct buffer_head *bh = BH_ENTRY(list->next);
855 if (buffer_dirty(bh)) {
856 ret = 0;
857 break;
858 }
859 __remove_assoc_queue(bh);
860 }
861 spin_unlock(&buffer_mapping->private_lock);
862 }
863 return ret;
864}
865
866/*
867 * Create the appropriate buffers when given a page for data area and
868 * the size of each buffer.. Use the bh->b_this_page linked list to
869 * follow the buffers created. Return NULL if unable to create more
870 * buffers.
871 *
872 * The retry flag is used to differentiate async IO (paging, swapping)
873 * which may not fail from ordinary buffer allocations.
874 */
875struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 int retry)
877{
878 struct buffer_head *bh, *head;
879 long offset;
880
881try_again:
882 head = NULL;
883 offset = PAGE_SIZE;
884 while ((offset -= size) >= 0) {
885 bh = alloc_buffer_head(GFP_NOFS);
886 if (!bh)
887 goto no_grow;
888
1da177e4
LT
889 bh->b_this_page = head;
890 bh->b_blocknr = -1;
891 head = bh;
892
1da177e4
LT
893 bh->b_size = size;
894
895 /* Link the buffer to its page */
896 set_bh_page(bh, page, offset);
1da177e4
LT
897 }
898 return head;
899/*
900 * In case anything failed, we just free everything we got.
901 */
902no_grow:
903 if (head) {
904 do {
905 bh = head;
906 head = head->b_this_page;
907 free_buffer_head(bh);
908 } while (head);
909 }
910
911 /*
912 * Return failure for non-async IO requests. Async IO requests
913 * are not allowed to fail, so we have to wait until buffer heads
914 * become available. But we don't want tasks sleeping with
915 * partially complete buffers, so all were released above.
916 */
917 if (!retry)
918 return NULL;
919
920 /* We're _really_ low on memory. Now we just
921 * wait for old buffer heads to become free due to
922 * finishing IO. Since this is an async request and
923 * the reserve list is empty, we're sure there are
924 * async buffer heads in use.
925 */
926 free_more_memory();
927 goto try_again;
928}
929EXPORT_SYMBOL_GPL(alloc_page_buffers);
930
931static inline void
932link_dev_buffers(struct page *page, struct buffer_head *head)
933{
934 struct buffer_head *bh, *tail;
935
936 bh = head;
937 do {
938 tail = bh;
939 bh = bh->b_this_page;
940 } while (bh);
941 tail->b_this_page = head;
942 attach_page_buffers(page, head);
943}
944
bbec0270
LT
945static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946{
947 sector_t retval = ~((sector_t)0);
948 loff_t sz = i_size_read(bdev->bd_inode);
949
950 if (sz) {
951 unsigned int sizebits = blksize_bits(size);
952 retval = (sz >> sizebits);
953 }
954 return retval;
955}
956
1da177e4
LT
957/*
958 * Initialise the state of a blockdev page's buffers.
959 */
676ce6d5 960static sector_t
1da177e4
LT
961init_page_buffers(struct page *page, struct block_device *bdev,
962 sector_t block, int size)
963{
964 struct buffer_head *head = page_buffers(page);
965 struct buffer_head *bh = head;
966 int uptodate = PageUptodate(page);
bbec0270 967 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
968
969 do {
970 if (!buffer_mapped(bh)) {
971 init_buffer(bh, NULL, NULL);
972 bh->b_bdev = bdev;
973 bh->b_blocknr = block;
974 if (uptodate)
975 set_buffer_uptodate(bh);
080399aa
JM
976 if (block < end_block)
977 set_buffer_mapped(bh);
1da177e4
LT
978 }
979 block++;
980 bh = bh->b_this_page;
981 } while (bh != head);
676ce6d5
HD
982
983 /*
984 * Caller needs to validate requested block against end of device.
985 */
986 return end_block;
1da177e4
LT
987}
988
989/*
990 * Create the page-cache page that contains the requested block.
991 *
676ce6d5 992 * This is used purely for blockdev mappings.
1da177e4 993 */
676ce6d5 994static int
1da177e4 995grow_dev_page(struct block_device *bdev, sector_t block,
676ce6d5 996 pgoff_t index, int size, int sizebits)
1da177e4
LT
997{
998 struct inode *inode = bdev->bd_inode;
999 struct page *page;
1000 struct buffer_head *bh;
676ce6d5
HD
1001 sector_t end_block;
1002 int ret = 0; /* Will call free_more_memory() */
84235de3 1003 gfp_t gfp_mask;
1da177e4 1004
84235de3
JW
1005 gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
1006 gfp_mask |= __GFP_MOVABLE;
1007 /*
1008 * XXX: __getblk_slow() can not really deal with failure and
1009 * will endlessly loop on improvised global reclaim. Prefer
1010 * looping in the allocator rather than here, at least that
1011 * code knows what it's doing.
1012 */
1013 gfp_mask |= __GFP_NOFAIL;
1014
1015 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1016 if (!page)
676ce6d5 1017 return ret;
1da177e4 1018
e827f923 1019 BUG_ON(!PageLocked(page));
1da177e4
LT
1020
1021 if (page_has_buffers(page)) {
1022 bh = page_buffers(page);
1023 if (bh->b_size == size) {
676ce6d5 1024 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
1025 (sector_t)index << sizebits,
1026 size);
676ce6d5 1027 goto done;
1da177e4
LT
1028 }
1029 if (!try_to_free_buffers(page))
1030 goto failed;
1031 }
1032
1033 /*
1034 * Allocate some buffers for this page
1035 */
1036 bh = alloc_page_buffers(page, size, 0);
1037 if (!bh)
1038 goto failed;
1039
1040 /*
1041 * Link the page to the buffers and initialise them. Take the
1042 * lock to be atomic wrt __find_get_block(), which does not
1043 * run under the page lock.
1044 */
1045 spin_lock(&inode->i_mapping->private_lock);
1046 link_dev_buffers(page, bh);
f2d5a944
AA
1047 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1048 size);
1da177e4 1049 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1050done:
1051 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1052failed:
1da177e4
LT
1053 unlock_page(page);
1054 page_cache_release(page);
676ce6d5 1055 return ret;
1da177e4
LT
1056}
1057
1058/*
1059 * Create buffers for the specified block device block's page. If
1060 * that page was dirty, the buffers are set dirty also.
1da177e4 1061 */
858119e1 1062static int
1da177e4
LT
1063grow_buffers(struct block_device *bdev, sector_t block, int size)
1064{
1da177e4
LT
1065 pgoff_t index;
1066 int sizebits;
1067
1068 sizebits = -1;
1069 do {
1070 sizebits++;
1071 } while ((size << sizebits) < PAGE_SIZE);
1072
1073 index = block >> sizebits;
1da177e4 1074
e5657933
AM
1075 /*
1076 * Check for a block which wants to lie outside our maximum possible
1077 * pagecache index. (this comparison is done using sector_t types).
1078 */
1079 if (unlikely(index != block >> sizebits)) {
1080 char b[BDEVNAME_SIZE];
1081
1082 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1083 "device %s\n",
8e24eea7 1084 __func__, (unsigned long long)block,
e5657933
AM
1085 bdevname(bdev, b));
1086 return -EIO;
1087 }
676ce6d5 1088
1da177e4 1089 /* Create a page with the proper size buffers.. */
676ce6d5 1090 return grow_dev_page(bdev, block, index, size, sizebits);
1da177e4
LT
1091}
1092
75c96f85 1093static struct buffer_head *
1da177e4
LT
1094__getblk_slow(struct block_device *bdev, sector_t block, int size)
1095{
1096 /* Size must be multiple of hard sectorsize */
e1defc4f 1097 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1098 (size < 512 || size > PAGE_SIZE))) {
1099 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1100 size);
e1defc4f
MP
1101 printk(KERN_ERR "logical block size: %d\n",
1102 bdev_logical_block_size(bdev));
1da177e4
LT
1103
1104 dump_stack();
1105 return NULL;
1106 }
1107
676ce6d5
HD
1108 for (;;) {
1109 struct buffer_head *bh;
1110 int ret;
1da177e4
LT
1111
1112 bh = __find_get_block(bdev, block, size);
1113 if (bh)
1114 return bh;
676ce6d5
HD
1115
1116 ret = grow_buffers(bdev, block, size);
1117 if (ret < 0)
1118 return NULL;
1119 if (ret == 0)
1120 free_more_memory();
1da177e4
LT
1121 }
1122}
1123
1124/*
1125 * The relationship between dirty buffers and dirty pages:
1126 *
1127 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128 * the page is tagged dirty in its radix tree.
1129 *
1130 * At all times, the dirtiness of the buffers represents the dirtiness of
1131 * subsections of the page. If the page has buffers, the page dirty bit is
1132 * merely a hint about the true dirty state.
1133 *
1134 * When a page is set dirty in its entirety, all its buffers are marked dirty
1135 * (if the page has buffers).
1136 *
1137 * When a buffer is marked dirty, its page is dirtied, but the page's other
1138 * buffers are not.
1139 *
1140 * Also. When blockdev buffers are explicitly read with bread(), they
1141 * individually become uptodate. But their backing page remains not
1142 * uptodate - even if all of its buffers are uptodate. A subsequent
1143 * block_read_full_page() against that page will discover all the uptodate
1144 * buffers, will set the page uptodate and will perform no I/O.
1145 */
1146
1147/**
1148 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1149 * @bh: the buffer_head to mark dirty
1da177e4
LT
1150 *
1151 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152 * backing page dirty, then tag the page as dirty in its address_space's radix
1153 * tree and then attach the address_space's inode to its superblock's dirty
1154 * inode list.
1155 *
1156 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1157 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1158 */
fc9b52cd 1159void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1160{
787d2214 1161 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1162
5305cb83
TH
1163 trace_block_dirty_buffer(bh);
1164
1be62dc1
LT
1165 /*
1166 * Very *carefully* optimize the it-is-already-dirty case.
1167 *
1168 * Don't let the final "is it dirty" escape to before we
1169 * perhaps modified the buffer.
1170 */
1171 if (buffer_dirty(bh)) {
1172 smp_mb();
1173 if (buffer_dirty(bh))
1174 return;
1175 }
1176
a8e7d49a
LT
1177 if (!test_set_buffer_dirty(bh)) {
1178 struct page *page = bh->b_page;
8e9d78ed
LT
1179 if (!TestSetPageDirty(page)) {
1180 struct address_space *mapping = page_mapping(page);
1181 if (mapping)
1182 __set_page_dirty(page, mapping, 0);
1183 }
a8e7d49a 1184 }
1da177e4 1185}
1fe72eaa 1186EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1187
1188/*
1189 * Decrement a buffer_head's reference count. If all buffers against a page
1190 * have zero reference count, are clean and unlocked, and if the page is clean
1191 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1192 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1193 * a page but it ends up not being freed, and buffers may later be reattached).
1194 */
1195void __brelse(struct buffer_head * buf)
1196{
1197 if (atomic_read(&buf->b_count)) {
1198 put_bh(buf);
1199 return;
1200 }
5c752ad9 1201 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1202}
1fe72eaa 1203EXPORT_SYMBOL(__brelse);
1da177e4
LT
1204
1205/*
1206 * bforget() is like brelse(), except it discards any
1207 * potentially dirty data.
1208 */
1209void __bforget(struct buffer_head *bh)
1210{
1211 clear_buffer_dirty(bh);
535ee2fb 1212 if (bh->b_assoc_map) {
1da177e4
LT
1213 struct address_space *buffer_mapping = bh->b_page->mapping;
1214
1215 spin_lock(&buffer_mapping->private_lock);
1216 list_del_init(&bh->b_assoc_buffers);
58ff407b 1217 bh->b_assoc_map = NULL;
1da177e4
LT
1218 spin_unlock(&buffer_mapping->private_lock);
1219 }
1220 __brelse(bh);
1221}
1fe72eaa 1222EXPORT_SYMBOL(__bforget);
1da177e4
LT
1223
1224static struct buffer_head *__bread_slow(struct buffer_head *bh)
1225{
1226 lock_buffer(bh);
1227 if (buffer_uptodate(bh)) {
1228 unlock_buffer(bh);
1229 return bh;
1230 } else {
1231 get_bh(bh);
1232 bh->b_end_io = end_buffer_read_sync;
1233 submit_bh(READ, bh);
1234 wait_on_buffer(bh);
1235 if (buffer_uptodate(bh))
1236 return bh;
1237 }
1238 brelse(bh);
1239 return NULL;
1240}
1241
1242/*
1243 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1244 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1245 * refcount elevated by one when they're in an LRU. A buffer can only appear
1246 * once in a particular CPU's LRU. A single buffer can be present in multiple
1247 * CPU's LRUs at the same time.
1248 *
1249 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250 * sb_find_get_block().
1251 *
1252 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1253 * a local interrupt disable for that.
1254 */
1255
1256#define BH_LRU_SIZE 8
1257
1258struct bh_lru {
1259 struct buffer_head *bhs[BH_LRU_SIZE];
1260};
1261
1262static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1263
1264#ifdef CONFIG_SMP
1265#define bh_lru_lock() local_irq_disable()
1266#define bh_lru_unlock() local_irq_enable()
1267#else
1268#define bh_lru_lock() preempt_disable()
1269#define bh_lru_unlock() preempt_enable()
1270#endif
1271
1272static inline void check_irqs_on(void)
1273{
1274#ifdef irqs_disabled
1275 BUG_ON(irqs_disabled());
1276#endif
1277}
1278
1279/*
1280 * The LRU management algorithm is dopey-but-simple. Sorry.
1281 */
1282static void bh_lru_install(struct buffer_head *bh)
1283{
1284 struct buffer_head *evictee = NULL;
1da177e4
LT
1285
1286 check_irqs_on();
1287 bh_lru_lock();
c7b92516 1288 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1289 struct buffer_head *bhs[BH_LRU_SIZE];
1290 int in;
1291 int out = 0;
1292
1293 get_bh(bh);
1294 bhs[out++] = bh;
1295 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1296 struct buffer_head *bh2 =
1297 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1298
1299 if (bh2 == bh) {
1300 __brelse(bh2);
1301 } else {
1302 if (out >= BH_LRU_SIZE) {
1303 BUG_ON(evictee != NULL);
1304 evictee = bh2;
1305 } else {
1306 bhs[out++] = bh2;
1307 }
1308 }
1309 }
1310 while (out < BH_LRU_SIZE)
1311 bhs[out++] = NULL;
ca6673b0 1312 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1313 }
1314 bh_lru_unlock();
1315
1316 if (evictee)
1317 __brelse(evictee);
1318}
1319
1320/*
1321 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1322 */
858119e1 1323static struct buffer_head *
3991d3bd 1324lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1325{
1326 struct buffer_head *ret = NULL;
3991d3bd 1327 unsigned int i;
1da177e4
LT
1328
1329 check_irqs_on();
1330 bh_lru_lock();
1da177e4 1331 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1332 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4
LT
1333
1334 if (bh && bh->b_bdev == bdev &&
1335 bh->b_blocknr == block && bh->b_size == size) {
1336 if (i) {
1337 while (i) {
c7b92516
CL
1338 __this_cpu_write(bh_lrus.bhs[i],
1339 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1340 i--;
1341 }
c7b92516 1342 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1343 }
1344 get_bh(bh);
1345 ret = bh;
1346 break;
1347 }
1348 }
1349 bh_lru_unlock();
1350 return ret;
1351}
1352
1353/*
1354 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1355 * it in the LRU and mark it as accessed. If it is not present then return
1356 * NULL
1357 */
1358struct buffer_head *
3991d3bd 1359__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1360{
1361 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362
1363 if (bh == NULL) {
2457aec6 1364 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1365 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1366 if (bh)
1367 bh_lru_install(bh);
2457aec6 1368 } else
1da177e4 1369 touch_buffer(bh);
2457aec6 1370
1da177e4
LT
1371 return bh;
1372}
1373EXPORT_SYMBOL(__find_get_block);
1374
1375/*
1376 * __getblk will locate (and, if necessary, create) the buffer_head
1377 * which corresponds to the passed block_device, block and size. The
1378 * returned buffer has its reference count incremented.
1379 *
1da177e4
LT
1380 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1381 * attempt is failing. FIXME, perhaps?
1382 */
1383struct buffer_head *
3991d3bd 1384__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1385{
1386 struct buffer_head *bh = __find_get_block(bdev, block, size);
1387
1388 might_sleep();
1389 if (bh == NULL)
1390 bh = __getblk_slow(bdev, block, size);
1391 return bh;
1392}
1393EXPORT_SYMBOL(__getblk);
1394
1395/*
1396 * Do async read-ahead on a buffer..
1397 */
3991d3bd 1398void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1399{
1400 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1401 if (likely(bh)) {
1402 ll_rw_block(READA, 1, &bh);
1403 brelse(bh);
1404 }
1da177e4
LT
1405}
1406EXPORT_SYMBOL(__breadahead);
1407
1408/**
1409 * __bread() - reads a specified block and returns the bh
67be2dd1 1410 * @bdev: the block_device to read from
1da177e4
LT
1411 * @block: number of block
1412 * @size: size (in bytes) to read
1413 *
1414 * Reads a specified block, and returns buffer head that contains it.
1415 * It returns NULL if the block was unreadable.
1416 */
1417struct buffer_head *
3991d3bd 1418__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1419{
1420 struct buffer_head *bh = __getblk(bdev, block, size);
1421
a3e713b5 1422 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1423 bh = __bread_slow(bh);
1424 return bh;
1425}
1426EXPORT_SYMBOL(__bread);
1427
1428/*
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1432 */
1433static void invalidate_bh_lru(void *arg)
1434{
1435 struct bh_lru *b = &get_cpu_var(bh_lrus);
1436 int i;
1437
1438 for (i = 0; i < BH_LRU_SIZE; i++) {
1439 brelse(b->bhs[i]);
1440 b->bhs[i] = NULL;
1441 }
1442 put_cpu_var(bh_lrus);
1443}
42be35d0
GBY
1444
1445static bool has_bh_in_lru(int cpu, void *dummy)
1446{
1447 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1448 int i;
1da177e4 1449
42be35d0
GBY
1450 for (i = 0; i < BH_LRU_SIZE; i++) {
1451 if (b->bhs[i])
1452 return 1;
1453 }
1454
1455 return 0;
1456}
1457
f9a14399 1458void invalidate_bh_lrus(void)
1da177e4 1459{
42be35d0 1460 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1461}
9db5579b 1462EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1463
1464void set_bh_page(struct buffer_head *bh,
1465 struct page *page, unsigned long offset)
1466{
1467 bh->b_page = page;
e827f923 1468 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1469 if (PageHighMem(page))
1470 /*
1471 * This catches illegal uses and preserves the offset:
1472 */
1473 bh->b_data = (char *)(0 + offset);
1474 else
1475 bh->b_data = page_address(page) + offset;
1476}
1477EXPORT_SYMBOL(set_bh_page);
1478
1479/*
1480 * Called when truncating a buffer on a page completely.
1481 */
e7470ee8
MG
1482
1483/* Bits that are cleared during an invalidate */
1484#define BUFFER_FLAGS_DISCARD \
1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 1 << BH_Delay | 1 << BH_Unwritten)
1487
858119e1 1488static void discard_buffer(struct buffer_head * bh)
1da177e4 1489{
e7470ee8
MG
1490 unsigned long b_state, b_state_old;
1491
1da177e4
LT
1492 lock_buffer(bh);
1493 clear_buffer_dirty(bh);
1494 bh->b_bdev = NULL;
e7470ee8
MG
1495 b_state = bh->b_state;
1496 for (;;) {
1497 b_state_old = cmpxchg(&bh->b_state, b_state,
1498 (b_state & ~BUFFER_FLAGS_DISCARD));
1499 if (b_state_old == b_state)
1500 break;
1501 b_state = b_state_old;
1502 }
1da177e4
LT
1503 unlock_buffer(bh);
1504}
1505
1da177e4 1506/**
814e1d25 1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1508 *
1509 * @page: the page which is affected
d47992f8
LC
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1da177e4
LT
1512 *
1513 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1514 * invalidated by a truncate operation.
1da177e4
LT
1515 *
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point. Because the caller is about to free (and possibly reuse) those
1520 * blocks on-disk.
1521 */
d47992f8
LC
1522void block_invalidatepage(struct page *page, unsigned int offset,
1523 unsigned int length)
1da177e4
LT
1524{
1525 struct buffer_head *head, *bh, *next;
1526 unsigned int curr_off = 0;
d47992f8 1527 unsigned int stop = length + offset;
1da177e4
LT
1528
1529 BUG_ON(!PageLocked(page));
1530 if (!page_has_buffers(page))
1531 goto out;
1532
d47992f8
LC
1533 /*
1534 * Check for overflow
1535 */
1536 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1537
1da177e4
LT
1538 head = page_buffers(page);
1539 bh = head;
1540 do {
1541 unsigned int next_off = curr_off + bh->b_size;
1542 next = bh->b_this_page;
1543
d47992f8
LC
1544 /*
1545 * Are we still fully in range ?
1546 */
1547 if (next_off > stop)
1548 goto out;
1549
1da177e4
LT
1550 /*
1551 * is this block fully invalidated?
1552 */
1553 if (offset <= curr_off)
1554 discard_buffer(bh);
1555 curr_off = next_off;
1556 bh = next;
1557 } while (bh != head);
1558
1559 /*
1560 * We release buffers only if the entire page is being invalidated.
1561 * The get_block cached value has been unconditionally invalidated,
1562 * so real IO is not possible anymore.
1563 */
1564 if (offset == 0)
2ff28e22 1565 try_to_release_page(page, 0);
1da177e4 1566out:
2ff28e22 1567 return;
1da177e4
LT
1568}
1569EXPORT_SYMBOL(block_invalidatepage);
1570
d47992f8 1571
1da177e4
LT
1572/*
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1575 * is already excluded via the page lock.
1576 */
1577void create_empty_buffers(struct page *page,
1578 unsigned long blocksize, unsigned long b_state)
1579{
1580 struct buffer_head *bh, *head, *tail;
1581
1582 head = alloc_page_buffers(page, blocksize, 1);
1583 bh = head;
1584 do {
1585 bh->b_state |= b_state;
1586 tail = bh;
1587 bh = bh->b_this_page;
1588 } while (bh);
1589 tail->b_this_page = head;
1590
1591 spin_lock(&page->mapping->private_lock);
1592 if (PageUptodate(page) || PageDirty(page)) {
1593 bh = head;
1594 do {
1595 if (PageDirty(page))
1596 set_buffer_dirty(bh);
1597 if (PageUptodate(page))
1598 set_buffer_uptodate(bh);
1599 bh = bh->b_this_page;
1600 } while (bh != head);
1601 }
1602 attach_page_buffers(page, head);
1603 spin_unlock(&page->mapping->private_lock);
1604}
1605EXPORT_SYMBOL(create_empty_buffers);
1606
1607/*
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1617 *
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can
1619 * be writeout I/O going on against recently-freed buffers. We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to. That happens here.
1622 */
1623void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1624{
1625 struct buffer_head *old_bh;
1626
1627 might_sleep();
1628
385fd4c5 1629 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1630 if (old_bh) {
1631 clear_buffer_dirty(old_bh);
1632 wait_on_buffer(old_bh);
1633 clear_buffer_req(old_bh);
1634 __brelse(old_bh);
1635 }
1636}
1637EXPORT_SYMBOL(unmap_underlying_metadata);
1638
45bce8f3
LT
1639/*
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1642 *
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1646 */
1647static inline int block_size_bits(unsigned int blocksize)
1648{
1649 return ilog2(blocksize);
1650}
1651
1652static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1653{
1654 BUG_ON(!PageLocked(page));
1655
1656 if (!page_has_buffers(page))
1657 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1658 return page_buffers(page);
1659}
1660
1da177e4
LT
1661/*
1662 * NOTE! All mapped/uptodate combinations are valid:
1663 *
1664 * Mapped Uptodate Meaning
1665 *
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1670 *
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1672 */
1673
1674/*
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1679 *
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
6e34eedd
TT
1685 *
1686 * If block_write_full_page() is called with wbc->sync_mode ==
721a9602
JA
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1da177e4
LT
1689 */
1690static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1691 get_block_t *get_block, struct writeback_control *wbc,
1692 bh_end_io_t *handler)
1da177e4
LT
1693{
1694 int err;
1695 sector_t block;
1696 sector_t last_block;
f0fbd5fc 1697 struct buffer_head *bh, *head;
45bce8f3 1698 unsigned int blocksize, bbits;
1da177e4 1699 int nr_underway = 0;
6e34eedd 1700 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
721a9602 1701 WRITE_SYNC : WRITE);
1da177e4 1702
45bce8f3 1703 head = create_page_buffers(page, inode,
1da177e4 1704 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1705
1706 /*
1707 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1708 * here, and the (potentially unmapped) buffers may become dirty at
1709 * any time. If a buffer becomes dirty here after we've inspected it
1710 * then we just miss that fact, and the page stays dirty.
1711 *
1712 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 * handle that here by just cleaning them.
1714 */
1715
1da177e4 1716 bh = head;
45bce8f3
LT
1717 blocksize = bh->b_size;
1718 bbits = block_size_bits(blocksize);
1719
1720 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1721 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1722
1723 /*
1724 * Get all the dirty buffers mapped to disk addresses and
1725 * handle any aliases from the underlying blockdev's mapping.
1726 */
1727 do {
1728 if (block > last_block) {
1729 /*
1730 * mapped buffers outside i_size will occur, because
1731 * this page can be outside i_size when there is a
1732 * truncate in progress.
1733 */
1734 /*
1735 * The buffer was zeroed by block_write_full_page()
1736 */
1737 clear_buffer_dirty(bh);
1738 set_buffer_uptodate(bh);
29a814d2
AT
1739 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1740 buffer_dirty(bh)) {
b0cf2321 1741 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1742 err = get_block(inode, block, bh, 1);
1743 if (err)
1744 goto recover;
29a814d2 1745 clear_buffer_delay(bh);
1da177e4
LT
1746 if (buffer_new(bh)) {
1747 /* blockdev mappings never come here */
1748 clear_buffer_new(bh);
1749 unmap_underlying_metadata(bh->b_bdev,
1750 bh->b_blocknr);
1751 }
1752 }
1753 bh = bh->b_this_page;
1754 block++;
1755 } while (bh != head);
1756
1757 do {
1da177e4
LT
1758 if (!buffer_mapped(bh))
1759 continue;
1760 /*
1761 * If it's a fully non-blocking write attempt and we cannot
1762 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1763 * potentially cause a busy-wait loop from writeback threads
1764 * and kswapd activity, but those code paths have their own
1765 * higher-level throttling.
1da177e4 1766 */
1b430bee 1767 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1768 lock_buffer(bh);
ca5de404 1769 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1770 redirty_page_for_writepage(wbc, page);
1771 continue;
1772 }
1773 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1774 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1775 } else {
1776 unlock_buffer(bh);
1777 }
1778 } while ((bh = bh->b_this_page) != head);
1779
1780 /*
1781 * The page and its buffers are protected by PageWriteback(), so we can
1782 * drop the bh refcounts early.
1783 */
1784 BUG_ON(PageWriteback(page));
1785 set_page_writeback(page);
1da177e4
LT
1786
1787 do {
1788 struct buffer_head *next = bh->b_this_page;
1789 if (buffer_async_write(bh)) {
a64c8610 1790 submit_bh(write_op, bh);
1da177e4
LT
1791 nr_underway++;
1792 }
1da177e4
LT
1793 bh = next;
1794 } while (bh != head);
05937baa 1795 unlock_page(page);
1da177e4
LT
1796
1797 err = 0;
1798done:
1799 if (nr_underway == 0) {
1800 /*
1801 * The page was marked dirty, but the buffers were
1802 * clean. Someone wrote them back by hand with
1803 * ll_rw_block/submit_bh. A rare case.
1804 */
1da177e4 1805 end_page_writeback(page);
3d67f2d7 1806
1da177e4
LT
1807 /*
1808 * The page and buffer_heads can be released at any time from
1809 * here on.
1810 */
1da177e4
LT
1811 }
1812 return err;
1813
1814recover:
1815 /*
1816 * ENOSPC, or some other error. We may already have added some
1817 * blocks to the file, so we need to write these out to avoid
1818 * exposing stale data.
1819 * The page is currently locked and not marked for writeback
1820 */
1821 bh = head;
1822 /* Recovery: lock and submit the mapped buffers */
1823 do {
29a814d2
AT
1824 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1825 !buffer_delay(bh)) {
1da177e4 1826 lock_buffer(bh);
35c80d5f 1827 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1828 } else {
1829 /*
1830 * The buffer may have been set dirty during
1831 * attachment to a dirty page.
1832 */
1833 clear_buffer_dirty(bh);
1834 }
1835 } while ((bh = bh->b_this_page) != head);
1836 SetPageError(page);
1837 BUG_ON(PageWriteback(page));
7e4c3690 1838 mapping_set_error(page->mapping, err);
1da177e4 1839 set_page_writeback(page);
1da177e4
LT
1840 do {
1841 struct buffer_head *next = bh->b_this_page;
1842 if (buffer_async_write(bh)) {
1843 clear_buffer_dirty(bh);
a64c8610 1844 submit_bh(write_op, bh);
1da177e4
LT
1845 nr_underway++;
1846 }
1da177e4
LT
1847 bh = next;
1848 } while (bh != head);
ffda9d30 1849 unlock_page(page);
1da177e4
LT
1850 goto done;
1851}
1852
afddba49
NP
1853/*
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1857 */
1858void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1859{
1860 unsigned int block_start, block_end;
1861 struct buffer_head *head, *bh;
1862
1863 BUG_ON(!PageLocked(page));
1864 if (!page_has_buffers(page))
1865 return;
1866
1867 bh = head = page_buffers(page);
1868 block_start = 0;
1869 do {
1870 block_end = block_start + bh->b_size;
1871
1872 if (buffer_new(bh)) {
1873 if (block_end > from && block_start < to) {
1874 if (!PageUptodate(page)) {
1875 unsigned start, size;
1876
1877 start = max(from, block_start);
1878 size = min(to, block_end) - start;
1879
eebd2aa3 1880 zero_user(page, start, size);
afddba49
NP
1881 set_buffer_uptodate(bh);
1882 }
1883
1884 clear_buffer_new(bh);
1885 mark_buffer_dirty(bh);
1886 }
1887 }
1888
1889 block_start = block_end;
1890 bh = bh->b_this_page;
1891 } while (bh != head);
1892}
1893EXPORT_SYMBOL(page_zero_new_buffers);
1894
ebdec241 1895int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1896 get_block_t *get_block)
1da177e4 1897{
ebdec241
CH
1898 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1899 unsigned to = from + len;
6e1db88d 1900 struct inode *inode = page->mapping->host;
1da177e4
LT
1901 unsigned block_start, block_end;
1902 sector_t block;
1903 int err = 0;
1904 unsigned blocksize, bbits;
1905 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1906
1907 BUG_ON(!PageLocked(page));
1908 BUG_ON(from > PAGE_CACHE_SIZE);
1909 BUG_ON(to > PAGE_CACHE_SIZE);
1910 BUG_ON(from > to);
1911
45bce8f3
LT
1912 head = create_page_buffers(page, inode, 0);
1913 blocksize = head->b_size;
1914 bbits = block_size_bits(blocksize);
1da177e4 1915
1da177e4
LT
1916 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1917
1918 for(bh = head, block_start = 0; bh != head || !block_start;
1919 block++, block_start=block_end, bh = bh->b_this_page) {
1920 block_end = block_start + blocksize;
1921 if (block_end <= from || block_start >= to) {
1922 if (PageUptodate(page)) {
1923 if (!buffer_uptodate(bh))
1924 set_buffer_uptodate(bh);
1925 }
1926 continue;
1927 }
1928 if (buffer_new(bh))
1929 clear_buffer_new(bh);
1930 if (!buffer_mapped(bh)) {
b0cf2321 1931 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1932 err = get_block(inode, block, bh, 1);
1933 if (err)
f3ddbdc6 1934 break;
1da177e4 1935 if (buffer_new(bh)) {
1da177e4
LT
1936 unmap_underlying_metadata(bh->b_bdev,
1937 bh->b_blocknr);
1938 if (PageUptodate(page)) {
637aff46 1939 clear_buffer_new(bh);
1da177e4 1940 set_buffer_uptodate(bh);
637aff46 1941 mark_buffer_dirty(bh);
1da177e4
LT
1942 continue;
1943 }
eebd2aa3
CL
1944 if (block_end > to || block_start < from)
1945 zero_user_segments(page,
1946 to, block_end,
1947 block_start, from);
1da177e4
LT
1948 continue;
1949 }
1950 }
1951 if (PageUptodate(page)) {
1952 if (!buffer_uptodate(bh))
1953 set_buffer_uptodate(bh);
1954 continue;
1955 }
1956 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1957 !buffer_unwritten(bh) &&
1da177e4
LT
1958 (block_start < from || block_end > to)) {
1959 ll_rw_block(READ, 1, &bh);
1960 *wait_bh++=bh;
1961 }
1962 }
1963 /*
1964 * If we issued read requests - let them complete.
1965 */
1966 while(wait_bh > wait) {
1967 wait_on_buffer(*--wait_bh);
1968 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1969 err = -EIO;
1da177e4 1970 }
f9f07b6c 1971 if (unlikely(err))
afddba49 1972 page_zero_new_buffers(page, from, to);
1da177e4
LT
1973 return err;
1974}
ebdec241 1975EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1976
1977static int __block_commit_write(struct inode *inode, struct page *page,
1978 unsigned from, unsigned to)
1979{
1980 unsigned block_start, block_end;
1981 int partial = 0;
1982 unsigned blocksize;
1983 struct buffer_head *bh, *head;
1984
45bce8f3
LT
1985 bh = head = page_buffers(page);
1986 blocksize = bh->b_size;
1da177e4 1987
45bce8f3
LT
1988 block_start = 0;
1989 do {
1da177e4
LT
1990 block_end = block_start + blocksize;
1991 if (block_end <= from || block_start >= to) {
1992 if (!buffer_uptodate(bh))
1993 partial = 1;
1994 } else {
1995 set_buffer_uptodate(bh);
1996 mark_buffer_dirty(bh);
1997 }
afddba49 1998 clear_buffer_new(bh);
45bce8f3
LT
1999
2000 block_start = block_end;
2001 bh = bh->b_this_page;
2002 } while (bh != head);
1da177e4
LT
2003
2004 /*
2005 * If this is a partial write which happened to make all buffers
2006 * uptodate then we can optimize away a bogus readpage() for
2007 * the next read(). Here we 'discover' whether the page went
2008 * uptodate as a result of this (potentially partial) write.
2009 */
2010 if (!partial)
2011 SetPageUptodate(page);
2012 return 0;
2013}
2014
afddba49 2015/*
155130a4
CH
2016 * block_write_begin takes care of the basic task of block allocation and
2017 * bringing partial write blocks uptodate first.
2018 *
7bb46a67 2019 * The filesystem needs to handle block truncation upon failure.
afddba49 2020 */
155130a4
CH
2021int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2022 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2023{
6e1db88d 2024 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 2025 struct page *page;
6e1db88d 2026 int status;
afddba49 2027
6e1db88d
CH
2028 page = grab_cache_page_write_begin(mapping, index, flags);
2029 if (!page)
2030 return -ENOMEM;
afddba49 2031
6e1db88d 2032 status = __block_write_begin(page, pos, len, get_block);
afddba49 2033 if (unlikely(status)) {
6e1db88d
CH
2034 unlock_page(page);
2035 page_cache_release(page);
2036 page = NULL;
afddba49
NP
2037 }
2038
6e1db88d 2039 *pagep = page;
afddba49
NP
2040 return status;
2041}
2042EXPORT_SYMBOL(block_write_begin);
2043
2044int block_write_end(struct file *file, struct address_space *mapping,
2045 loff_t pos, unsigned len, unsigned copied,
2046 struct page *page, void *fsdata)
2047{
2048 struct inode *inode = mapping->host;
2049 unsigned start;
2050
2051 start = pos & (PAGE_CACHE_SIZE - 1);
2052
2053 if (unlikely(copied < len)) {
2054 /*
2055 * The buffers that were written will now be uptodate, so we
2056 * don't have to worry about a readpage reading them and
2057 * overwriting a partial write. However if we have encountered
2058 * a short write and only partially written into a buffer, it
2059 * will not be marked uptodate, so a readpage might come in and
2060 * destroy our partial write.
2061 *
2062 * Do the simplest thing, and just treat any short write to a
2063 * non uptodate page as a zero-length write, and force the
2064 * caller to redo the whole thing.
2065 */
2066 if (!PageUptodate(page))
2067 copied = 0;
2068
2069 page_zero_new_buffers(page, start+copied, start+len);
2070 }
2071 flush_dcache_page(page);
2072
2073 /* This could be a short (even 0-length) commit */
2074 __block_commit_write(inode, page, start, start+copied);
2075
2076 return copied;
2077}
2078EXPORT_SYMBOL(block_write_end);
2079
2080int generic_write_end(struct file *file, struct address_space *mapping,
2081 loff_t pos, unsigned len, unsigned copied,
2082 struct page *page, void *fsdata)
2083{
2084 struct inode *inode = mapping->host;
c7d206b3 2085 int i_size_changed = 0;
afddba49
NP
2086
2087 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2088
2089 /*
2090 * No need to use i_size_read() here, the i_size
2091 * cannot change under us because we hold i_mutex.
2092 *
2093 * But it's important to update i_size while still holding page lock:
2094 * page writeout could otherwise come in and zero beyond i_size.
2095 */
2096 if (pos+copied > inode->i_size) {
2097 i_size_write(inode, pos+copied);
c7d206b3 2098 i_size_changed = 1;
afddba49
NP
2099 }
2100
2101 unlock_page(page);
2102 page_cache_release(page);
2103
c7d206b3
JK
2104 /*
2105 * Don't mark the inode dirty under page lock. First, it unnecessarily
2106 * makes the holding time of page lock longer. Second, it forces lock
2107 * ordering of page lock and transaction start for journaling
2108 * filesystems.
2109 */
2110 if (i_size_changed)
2111 mark_inode_dirty(inode);
2112
afddba49
NP
2113 return copied;
2114}
2115EXPORT_SYMBOL(generic_write_end);
2116
8ab22b9a
HH
2117/*
2118 * block_is_partially_uptodate checks whether buffers within a page are
2119 * uptodate or not.
2120 *
2121 * Returns true if all buffers which correspond to a file portion
2122 * we want to read are uptodate.
2123 */
c186afb4
AV
2124int block_is_partially_uptodate(struct page *page, unsigned long from,
2125 unsigned long count)
8ab22b9a 2126{
8ab22b9a
HH
2127 unsigned block_start, block_end, blocksize;
2128 unsigned to;
2129 struct buffer_head *bh, *head;
2130 int ret = 1;
2131
2132 if (!page_has_buffers(page))
2133 return 0;
2134
45bce8f3
LT
2135 head = page_buffers(page);
2136 blocksize = head->b_size;
c186afb4 2137 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
8ab22b9a
HH
2138 to = from + to;
2139 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2140 return 0;
2141
8ab22b9a
HH
2142 bh = head;
2143 block_start = 0;
2144 do {
2145 block_end = block_start + blocksize;
2146 if (block_end > from && block_start < to) {
2147 if (!buffer_uptodate(bh)) {
2148 ret = 0;
2149 break;
2150 }
2151 if (block_end >= to)
2152 break;
2153 }
2154 block_start = block_end;
2155 bh = bh->b_this_page;
2156 } while (bh != head);
2157
2158 return ret;
2159}
2160EXPORT_SYMBOL(block_is_partially_uptodate);
2161
1da177e4
LT
2162/*
2163 * Generic "read page" function for block devices that have the normal
2164 * get_block functionality. This is most of the block device filesystems.
2165 * Reads the page asynchronously --- the unlock_buffer() and
2166 * set/clear_buffer_uptodate() functions propagate buffer state into the
2167 * page struct once IO has completed.
2168 */
2169int block_read_full_page(struct page *page, get_block_t *get_block)
2170{
2171 struct inode *inode = page->mapping->host;
2172 sector_t iblock, lblock;
2173 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2174 unsigned int blocksize, bbits;
1da177e4
LT
2175 int nr, i;
2176 int fully_mapped = 1;
2177
45bce8f3
LT
2178 head = create_page_buffers(page, inode, 0);
2179 blocksize = head->b_size;
2180 bbits = block_size_bits(blocksize);
1da177e4 2181
45bce8f3
LT
2182 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2183 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2184 bh = head;
2185 nr = 0;
2186 i = 0;
2187
2188 do {
2189 if (buffer_uptodate(bh))
2190 continue;
2191
2192 if (!buffer_mapped(bh)) {
c64610ba
AM
2193 int err = 0;
2194
1da177e4
LT
2195 fully_mapped = 0;
2196 if (iblock < lblock) {
b0cf2321 2197 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2198 err = get_block(inode, iblock, bh, 0);
2199 if (err)
1da177e4
LT
2200 SetPageError(page);
2201 }
2202 if (!buffer_mapped(bh)) {
eebd2aa3 2203 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2204 if (!err)
2205 set_buffer_uptodate(bh);
1da177e4
LT
2206 continue;
2207 }
2208 /*
2209 * get_block() might have updated the buffer
2210 * synchronously
2211 */
2212 if (buffer_uptodate(bh))
2213 continue;
2214 }
2215 arr[nr++] = bh;
2216 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2217
2218 if (fully_mapped)
2219 SetPageMappedToDisk(page);
2220
2221 if (!nr) {
2222 /*
2223 * All buffers are uptodate - we can set the page uptodate
2224 * as well. But not if get_block() returned an error.
2225 */
2226 if (!PageError(page))
2227 SetPageUptodate(page);
2228 unlock_page(page);
2229 return 0;
2230 }
2231
2232 /* Stage two: lock the buffers */
2233 for (i = 0; i < nr; i++) {
2234 bh = arr[i];
2235 lock_buffer(bh);
2236 mark_buffer_async_read(bh);
2237 }
2238
2239 /*
2240 * Stage 3: start the IO. Check for uptodateness
2241 * inside the buffer lock in case another process reading
2242 * the underlying blockdev brought it uptodate (the sct fix).
2243 */
2244 for (i = 0; i < nr; i++) {
2245 bh = arr[i];
2246 if (buffer_uptodate(bh))
2247 end_buffer_async_read(bh, 1);
2248 else
2249 submit_bh(READ, bh);
2250 }
2251 return 0;
2252}
1fe72eaa 2253EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2254
2255/* utility function for filesystems that need to do work on expanding
89e10787 2256 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2257 * deal with the hole.
2258 */
89e10787 2259int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2260{
2261 struct address_space *mapping = inode->i_mapping;
2262 struct page *page;
89e10787 2263 void *fsdata;
1da177e4
LT
2264 int err;
2265
c08d3b0e 2266 err = inode_newsize_ok(inode, size);
2267 if (err)
1da177e4
LT
2268 goto out;
2269
89e10787
NP
2270 err = pagecache_write_begin(NULL, mapping, size, 0,
2271 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2272 &page, &fsdata);
2273 if (err)
05eb0b51 2274 goto out;
05eb0b51 2275
89e10787
NP
2276 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2277 BUG_ON(err > 0);
05eb0b51 2278
1da177e4
LT
2279out:
2280 return err;
2281}
1fe72eaa 2282EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2283
f1e3af72
AB
2284static int cont_expand_zero(struct file *file, struct address_space *mapping,
2285 loff_t pos, loff_t *bytes)
1da177e4 2286{
1da177e4 2287 struct inode *inode = mapping->host;
1da177e4 2288 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2289 struct page *page;
2290 void *fsdata;
2291 pgoff_t index, curidx;
2292 loff_t curpos;
2293 unsigned zerofrom, offset, len;
2294 int err = 0;
1da177e4 2295
89e10787
NP
2296 index = pos >> PAGE_CACHE_SHIFT;
2297 offset = pos & ~PAGE_CACHE_MASK;
2298
2299 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2300 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2301 if (zerofrom & (blocksize-1)) {
2302 *bytes |= (blocksize-1);
2303 (*bytes)++;
2304 }
89e10787 2305 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2306
89e10787
NP
2307 err = pagecache_write_begin(file, mapping, curpos, len,
2308 AOP_FLAG_UNINTERRUPTIBLE,
2309 &page, &fsdata);
2310 if (err)
2311 goto out;
eebd2aa3 2312 zero_user(page, zerofrom, len);
89e10787
NP
2313 err = pagecache_write_end(file, mapping, curpos, len, len,
2314 page, fsdata);
2315 if (err < 0)
2316 goto out;
2317 BUG_ON(err != len);
2318 err = 0;
061e9746
OH
2319
2320 balance_dirty_pages_ratelimited(mapping);
89e10787 2321 }
1da177e4 2322
89e10787
NP
2323 /* page covers the boundary, find the boundary offset */
2324 if (index == curidx) {
2325 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2326 /* if we will expand the thing last block will be filled */
89e10787
NP
2327 if (offset <= zerofrom) {
2328 goto out;
2329 }
2330 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2331 *bytes |= (blocksize-1);
2332 (*bytes)++;
2333 }
89e10787 2334 len = offset - zerofrom;
1da177e4 2335
89e10787
NP
2336 err = pagecache_write_begin(file, mapping, curpos, len,
2337 AOP_FLAG_UNINTERRUPTIBLE,
2338 &page, &fsdata);
2339 if (err)
2340 goto out;
eebd2aa3 2341 zero_user(page, zerofrom, len);
89e10787
NP
2342 err = pagecache_write_end(file, mapping, curpos, len, len,
2343 page, fsdata);
2344 if (err < 0)
2345 goto out;
2346 BUG_ON(err != len);
2347 err = 0;
1da177e4 2348 }
89e10787
NP
2349out:
2350 return err;
2351}
2352
2353/*
2354 * For moronic filesystems that do not allow holes in file.
2355 * We may have to extend the file.
2356 */
282dc178 2357int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2358 loff_t pos, unsigned len, unsigned flags,
2359 struct page **pagep, void **fsdata,
2360 get_block_t *get_block, loff_t *bytes)
2361{
2362 struct inode *inode = mapping->host;
2363 unsigned blocksize = 1 << inode->i_blkbits;
2364 unsigned zerofrom;
2365 int err;
2366
2367 err = cont_expand_zero(file, mapping, pos, bytes);
2368 if (err)
155130a4 2369 return err;
89e10787
NP
2370
2371 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2372 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2373 *bytes |= (blocksize-1);
2374 (*bytes)++;
1da177e4 2375 }
1da177e4 2376
155130a4 2377 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2378}
1fe72eaa 2379EXPORT_SYMBOL(cont_write_begin);
1da177e4 2380
1da177e4
LT
2381int block_commit_write(struct page *page, unsigned from, unsigned to)
2382{
2383 struct inode *inode = page->mapping->host;
2384 __block_commit_write(inode,page,from,to);
2385 return 0;
2386}
1fe72eaa 2387EXPORT_SYMBOL(block_commit_write);
1da177e4 2388
54171690
DC
2389/*
2390 * block_page_mkwrite() is not allowed to change the file size as it gets
2391 * called from a page fault handler when a page is first dirtied. Hence we must
2392 * be careful to check for EOF conditions here. We set the page up correctly
2393 * for a written page which means we get ENOSPC checking when writing into
2394 * holes and correct delalloc and unwritten extent mapping on filesystems that
2395 * support these features.
2396 *
2397 * We are not allowed to take the i_mutex here so we have to play games to
2398 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2399 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2400 * page lock we can determine safely if the page is beyond EOF. If it is not
2401 * beyond EOF, then the page is guaranteed safe against truncation until we
2402 * unlock the page.
ea13a864 2403 *
14da9200
JK
2404 * Direct callers of this function should protect against filesystem freezing
2405 * using sb_start_write() - sb_end_write() functions.
54171690 2406 */
24da4fab
JK
2407int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2408 get_block_t get_block)
54171690 2409{
c2ec175c 2410 struct page *page = vmf->page;
496ad9aa 2411 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2412 unsigned long end;
2413 loff_t size;
24da4fab 2414 int ret;
54171690
DC
2415
2416 lock_page(page);
2417 size = i_size_read(inode);
2418 if ((page->mapping != inode->i_mapping) ||
18336338 2419 (page_offset(page) > size)) {
24da4fab
JK
2420 /* We overload EFAULT to mean page got truncated */
2421 ret = -EFAULT;
2422 goto out_unlock;
54171690
DC
2423 }
2424
2425 /* page is wholly or partially inside EOF */
2426 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2427 end = size & ~PAGE_CACHE_MASK;
2428 else
2429 end = PAGE_CACHE_SIZE;
2430
ebdec241 2431 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2432 if (!ret)
2433 ret = block_commit_write(page, 0, end);
2434
24da4fab
JK
2435 if (unlikely(ret < 0))
2436 goto out_unlock;
ea13a864 2437 set_page_dirty(page);
1d1d1a76 2438 wait_for_stable_page(page);
24da4fab
JK
2439 return 0;
2440out_unlock:
2441 unlock_page(page);
54171690 2442 return ret;
24da4fab
JK
2443}
2444EXPORT_SYMBOL(__block_page_mkwrite);
2445
2446int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2447 get_block_t get_block)
2448{
ea13a864 2449 int ret;
496ad9aa 2450 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
24da4fab 2451
14da9200 2452 sb_start_pagefault(sb);
041bbb6d
TT
2453
2454 /*
2455 * Update file times before taking page lock. We may end up failing the
2456 * fault so this update may be superfluous but who really cares...
2457 */
2458 file_update_time(vma->vm_file);
2459
ea13a864 2460 ret = __block_page_mkwrite(vma, vmf, get_block);
14da9200 2461 sb_end_pagefault(sb);
24da4fab 2462 return block_page_mkwrite_return(ret);
54171690 2463}
1fe72eaa 2464EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2465
2466/*
03158cd7 2467 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2468 * immediately, while under the page lock. So it needs a special end_io
2469 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2470 */
2471static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2472{
68671f35 2473 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2474}
2475
03158cd7
NP
2476/*
2477 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2478 * the page (converting it to circular linked list and taking care of page
2479 * dirty races).
2480 */
2481static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2482{
2483 struct buffer_head *bh;
2484
2485 BUG_ON(!PageLocked(page));
2486
2487 spin_lock(&page->mapping->private_lock);
2488 bh = head;
2489 do {
2490 if (PageDirty(page))
2491 set_buffer_dirty(bh);
2492 if (!bh->b_this_page)
2493 bh->b_this_page = head;
2494 bh = bh->b_this_page;
2495 } while (bh != head);
2496 attach_page_buffers(page, head);
2497 spin_unlock(&page->mapping->private_lock);
2498}
2499
1da177e4 2500/*
ea0f04e5
CH
2501 * On entry, the page is fully not uptodate.
2502 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2503 * The filesystem needs to handle block truncation upon failure.
1da177e4 2504 */
ea0f04e5 2505int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2506 loff_t pos, unsigned len, unsigned flags,
2507 struct page **pagep, void **fsdata,
1da177e4
LT
2508 get_block_t *get_block)
2509{
03158cd7 2510 struct inode *inode = mapping->host;
1da177e4
LT
2511 const unsigned blkbits = inode->i_blkbits;
2512 const unsigned blocksize = 1 << blkbits;
a4b0672d 2513 struct buffer_head *head, *bh;
03158cd7
NP
2514 struct page *page;
2515 pgoff_t index;
2516 unsigned from, to;
1da177e4 2517 unsigned block_in_page;
a4b0672d 2518 unsigned block_start, block_end;
1da177e4 2519 sector_t block_in_file;
1da177e4 2520 int nr_reads = 0;
1da177e4
LT
2521 int ret = 0;
2522 int is_mapped_to_disk = 1;
1da177e4 2523
03158cd7
NP
2524 index = pos >> PAGE_CACHE_SHIFT;
2525 from = pos & (PAGE_CACHE_SIZE - 1);
2526 to = from + len;
2527
54566b2c 2528 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2529 if (!page)
2530 return -ENOMEM;
2531 *pagep = page;
2532 *fsdata = NULL;
2533
2534 if (page_has_buffers(page)) {
309f77ad
NK
2535 ret = __block_write_begin(page, pos, len, get_block);
2536 if (unlikely(ret))
2537 goto out_release;
2538 return ret;
03158cd7 2539 }
a4b0672d 2540
1da177e4
LT
2541 if (PageMappedToDisk(page))
2542 return 0;
2543
a4b0672d
NP
2544 /*
2545 * Allocate buffers so that we can keep track of state, and potentially
2546 * attach them to the page if an error occurs. In the common case of
2547 * no error, they will just be freed again without ever being attached
2548 * to the page (which is all OK, because we're under the page lock).
2549 *
2550 * Be careful: the buffer linked list is a NULL terminated one, rather
2551 * than the circular one we're used to.
2552 */
2553 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2554 if (!head) {
2555 ret = -ENOMEM;
2556 goto out_release;
2557 }
a4b0672d 2558
1da177e4 2559 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2560
2561 /*
2562 * We loop across all blocks in the page, whether or not they are
2563 * part of the affected region. This is so we can discover if the
2564 * page is fully mapped-to-disk.
2565 */
a4b0672d 2566 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2567 block_start < PAGE_CACHE_SIZE;
a4b0672d 2568 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2569 int create;
2570
a4b0672d
NP
2571 block_end = block_start + blocksize;
2572 bh->b_state = 0;
1da177e4
LT
2573 create = 1;
2574 if (block_start >= to)
2575 create = 0;
2576 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2577 bh, create);
1da177e4
LT
2578 if (ret)
2579 goto failed;
a4b0672d 2580 if (!buffer_mapped(bh))
1da177e4 2581 is_mapped_to_disk = 0;
a4b0672d
NP
2582 if (buffer_new(bh))
2583 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2584 if (PageUptodate(page)) {
2585 set_buffer_uptodate(bh);
1da177e4 2586 continue;
a4b0672d
NP
2587 }
2588 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2589 zero_user_segments(page, block_start, from,
2590 to, block_end);
1da177e4
LT
2591 continue;
2592 }
a4b0672d 2593 if (buffer_uptodate(bh))
1da177e4
LT
2594 continue; /* reiserfs does this */
2595 if (block_start < from || block_end > to) {
a4b0672d
NP
2596 lock_buffer(bh);
2597 bh->b_end_io = end_buffer_read_nobh;
2598 submit_bh(READ, bh);
2599 nr_reads++;
1da177e4
LT
2600 }
2601 }
2602
2603 if (nr_reads) {
1da177e4
LT
2604 /*
2605 * The page is locked, so these buffers are protected from
2606 * any VM or truncate activity. Hence we don't need to care
2607 * for the buffer_head refcounts.
2608 */
a4b0672d 2609 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2610 wait_on_buffer(bh);
2611 if (!buffer_uptodate(bh))
2612 ret = -EIO;
1da177e4
LT
2613 }
2614 if (ret)
2615 goto failed;
2616 }
2617
2618 if (is_mapped_to_disk)
2619 SetPageMappedToDisk(page);
1da177e4 2620
03158cd7 2621 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2622
1da177e4
LT
2623 return 0;
2624
2625failed:
03158cd7 2626 BUG_ON(!ret);
1da177e4 2627 /*
a4b0672d
NP
2628 * Error recovery is a bit difficult. We need to zero out blocks that
2629 * were newly allocated, and dirty them to ensure they get written out.
2630 * Buffers need to be attached to the page at this point, otherwise
2631 * the handling of potential IO errors during writeout would be hard
2632 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2633 */
03158cd7
NP
2634 attach_nobh_buffers(page, head);
2635 page_zero_new_buffers(page, from, to);
a4b0672d 2636
03158cd7
NP
2637out_release:
2638 unlock_page(page);
2639 page_cache_release(page);
2640 *pagep = NULL;
a4b0672d 2641
7bb46a67 2642 return ret;
2643}
03158cd7 2644EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2645
03158cd7
NP
2646int nobh_write_end(struct file *file, struct address_space *mapping,
2647 loff_t pos, unsigned len, unsigned copied,
2648 struct page *page, void *fsdata)
1da177e4
LT
2649{
2650 struct inode *inode = page->mapping->host;
efdc3131 2651 struct buffer_head *head = fsdata;
03158cd7 2652 struct buffer_head *bh;
5b41e74a 2653 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2654
d4cf109f 2655 if (unlikely(copied < len) && head)
5b41e74a
DM
2656 attach_nobh_buffers(page, head);
2657 if (page_has_buffers(page))
2658 return generic_write_end(file, mapping, pos, len,
2659 copied, page, fsdata);
a4b0672d 2660
22c8ca78 2661 SetPageUptodate(page);
1da177e4 2662 set_page_dirty(page);
03158cd7
NP
2663 if (pos+copied > inode->i_size) {
2664 i_size_write(inode, pos+copied);
1da177e4
LT
2665 mark_inode_dirty(inode);
2666 }
03158cd7
NP
2667
2668 unlock_page(page);
2669 page_cache_release(page);
2670
03158cd7
NP
2671 while (head) {
2672 bh = head;
2673 head = head->b_this_page;
2674 free_buffer_head(bh);
2675 }
2676
2677 return copied;
1da177e4 2678}
03158cd7 2679EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2680
2681/*
2682 * nobh_writepage() - based on block_full_write_page() except
2683 * that it tries to operate without attaching bufferheads to
2684 * the page.
2685 */
2686int nobh_writepage(struct page *page, get_block_t *get_block,
2687 struct writeback_control *wbc)
2688{
2689 struct inode * const inode = page->mapping->host;
2690 loff_t i_size = i_size_read(inode);
2691 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2692 unsigned offset;
1da177e4
LT
2693 int ret;
2694
2695 /* Is the page fully inside i_size? */
2696 if (page->index < end_index)
2697 goto out;
2698
2699 /* Is the page fully outside i_size? (truncate in progress) */
2700 offset = i_size & (PAGE_CACHE_SIZE-1);
2701 if (page->index >= end_index+1 || !offset) {
2702 /*
2703 * The page may have dirty, unmapped buffers. For example,
2704 * they may have been added in ext3_writepage(). Make them
2705 * freeable here, so the page does not leak.
2706 */
2707#if 0
2708 /* Not really sure about this - do we need this ? */
2709 if (page->mapping->a_ops->invalidatepage)
2710 page->mapping->a_ops->invalidatepage(page, offset);
2711#endif
2712 unlock_page(page);
2713 return 0; /* don't care */
2714 }
2715
2716 /*
2717 * The page straddles i_size. It must be zeroed out on each and every
2718 * writepage invocation because it may be mmapped. "A file is mapped
2719 * in multiples of the page size. For a file that is not a multiple of
2720 * the page size, the remaining memory is zeroed when mapped, and
2721 * writes to that region are not written out to the file."
2722 */
eebd2aa3 2723 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2724out:
2725 ret = mpage_writepage(page, get_block, wbc);
2726 if (ret == -EAGAIN)
35c80d5f
CM
2727 ret = __block_write_full_page(inode, page, get_block, wbc,
2728 end_buffer_async_write);
1da177e4
LT
2729 return ret;
2730}
2731EXPORT_SYMBOL(nobh_writepage);
2732
03158cd7
NP
2733int nobh_truncate_page(struct address_space *mapping,
2734 loff_t from, get_block_t *get_block)
1da177e4 2735{
1da177e4
LT
2736 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2737 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2738 unsigned blocksize;
2739 sector_t iblock;
2740 unsigned length, pos;
2741 struct inode *inode = mapping->host;
1da177e4 2742 struct page *page;
03158cd7
NP
2743 struct buffer_head map_bh;
2744 int err;
1da177e4 2745
03158cd7
NP
2746 blocksize = 1 << inode->i_blkbits;
2747 length = offset & (blocksize - 1);
2748
2749 /* Block boundary? Nothing to do */
2750 if (!length)
2751 return 0;
2752
2753 length = blocksize - length;
2754 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2755
1da177e4 2756 page = grab_cache_page(mapping, index);
03158cd7 2757 err = -ENOMEM;
1da177e4
LT
2758 if (!page)
2759 goto out;
2760
03158cd7
NP
2761 if (page_has_buffers(page)) {
2762has_buffers:
2763 unlock_page(page);
2764 page_cache_release(page);
2765 return block_truncate_page(mapping, from, get_block);
2766 }
2767
2768 /* Find the buffer that contains "offset" */
2769 pos = blocksize;
2770 while (offset >= pos) {
2771 iblock++;
2772 pos += blocksize;
2773 }
2774
460bcf57
TT
2775 map_bh.b_size = blocksize;
2776 map_bh.b_state = 0;
03158cd7
NP
2777 err = get_block(inode, iblock, &map_bh, 0);
2778 if (err)
2779 goto unlock;
2780 /* unmapped? It's a hole - nothing to do */
2781 if (!buffer_mapped(&map_bh))
2782 goto unlock;
2783
2784 /* Ok, it's mapped. Make sure it's up-to-date */
2785 if (!PageUptodate(page)) {
2786 err = mapping->a_ops->readpage(NULL, page);
2787 if (err) {
2788 page_cache_release(page);
2789 goto out;
2790 }
2791 lock_page(page);
2792 if (!PageUptodate(page)) {
2793 err = -EIO;
2794 goto unlock;
2795 }
2796 if (page_has_buffers(page))
2797 goto has_buffers;
1da177e4 2798 }
eebd2aa3 2799 zero_user(page, offset, length);
03158cd7
NP
2800 set_page_dirty(page);
2801 err = 0;
2802
2803unlock:
1da177e4
LT
2804 unlock_page(page);
2805 page_cache_release(page);
2806out:
03158cd7 2807 return err;
1da177e4
LT
2808}
2809EXPORT_SYMBOL(nobh_truncate_page);
2810
2811int block_truncate_page(struct address_space *mapping,
2812 loff_t from, get_block_t *get_block)
2813{
2814 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2815 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2816 unsigned blocksize;
54b21a79 2817 sector_t iblock;
1da177e4
LT
2818 unsigned length, pos;
2819 struct inode *inode = mapping->host;
2820 struct page *page;
2821 struct buffer_head *bh;
1da177e4
LT
2822 int err;
2823
2824 blocksize = 1 << inode->i_blkbits;
2825 length = offset & (blocksize - 1);
2826
2827 /* Block boundary? Nothing to do */
2828 if (!length)
2829 return 0;
2830
2831 length = blocksize - length;
54b21a79 2832 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2833
2834 page = grab_cache_page(mapping, index);
2835 err = -ENOMEM;
2836 if (!page)
2837 goto out;
2838
2839 if (!page_has_buffers(page))
2840 create_empty_buffers(page, blocksize, 0);
2841
2842 /* Find the buffer that contains "offset" */
2843 bh = page_buffers(page);
2844 pos = blocksize;
2845 while (offset >= pos) {
2846 bh = bh->b_this_page;
2847 iblock++;
2848 pos += blocksize;
2849 }
2850
2851 err = 0;
2852 if (!buffer_mapped(bh)) {
b0cf2321 2853 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2854 err = get_block(inode, iblock, bh, 0);
2855 if (err)
2856 goto unlock;
2857 /* unmapped? It's a hole - nothing to do */
2858 if (!buffer_mapped(bh))
2859 goto unlock;
2860 }
2861
2862 /* Ok, it's mapped. Make sure it's up-to-date */
2863 if (PageUptodate(page))
2864 set_buffer_uptodate(bh);
2865
33a266dd 2866 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2867 err = -EIO;
2868 ll_rw_block(READ, 1, &bh);
2869 wait_on_buffer(bh);
2870 /* Uhhuh. Read error. Complain and punt. */
2871 if (!buffer_uptodate(bh))
2872 goto unlock;
2873 }
2874
eebd2aa3 2875 zero_user(page, offset, length);
1da177e4
LT
2876 mark_buffer_dirty(bh);
2877 err = 0;
2878
2879unlock:
2880 unlock_page(page);
2881 page_cache_release(page);
2882out:
2883 return err;
2884}
1fe72eaa 2885EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2886
2887/*
2888 * The generic ->writepage function for buffer-backed address_spaces
2889 */
1b938c08
MW
2890int block_write_full_page(struct page *page, get_block_t *get_block,
2891 struct writeback_control *wbc)
1da177e4
LT
2892{
2893 struct inode * const inode = page->mapping->host;
2894 loff_t i_size = i_size_read(inode);
2895 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2896 unsigned offset;
1da177e4
LT
2897
2898 /* Is the page fully inside i_size? */
2899 if (page->index < end_index)
35c80d5f 2900 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2901 end_buffer_async_write);
1da177e4
LT
2902
2903 /* Is the page fully outside i_size? (truncate in progress) */
2904 offset = i_size & (PAGE_CACHE_SIZE-1);
2905 if (page->index >= end_index+1 || !offset) {
2906 /*
2907 * The page may have dirty, unmapped buffers. For example,
2908 * they may have been added in ext3_writepage(). Make them
2909 * freeable here, so the page does not leak.
2910 */
d47992f8 2911 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1da177e4
LT
2912 unlock_page(page);
2913 return 0; /* don't care */
2914 }
2915
2916 /*
2917 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2918 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2919 * in multiples of the page size. For a file that is not a multiple of
2920 * the page size, the remaining memory is zeroed when mapped, and
2921 * writes to that region are not written out to the file."
2922 */
eebd2aa3 2923 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1b938c08
MW
2924 return __block_write_full_page(inode, page, get_block, wbc,
2925 end_buffer_async_write);
35c80d5f 2926}
1fe72eaa 2927EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2928
1da177e4
LT
2929sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2930 get_block_t *get_block)
2931{
2932 struct buffer_head tmp;
2933 struct inode *inode = mapping->host;
2934 tmp.b_state = 0;
2935 tmp.b_blocknr = 0;
b0cf2321 2936 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2937 get_block(inode, block, &tmp, 0);
2938 return tmp.b_blocknr;
2939}
1fe72eaa 2940EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2941
6712ecf8 2942static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2943{
2944 struct buffer_head *bh = bio->bi_private;
2945
1da177e4
LT
2946 if (err == -EOPNOTSUPP) {
2947 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
1da177e4
LT
2948 }
2949
08bafc03
KM
2950 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2951 set_bit(BH_Quiet, &bh->b_state);
2952
1da177e4
LT
2953 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2954 bio_put(bio);
1da177e4
LT
2955}
2956
57302e0d
LT
2957/*
2958 * This allows us to do IO even on the odd last sectors
59d43914 2959 * of a device, even if the block size is some multiple
57302e0d
LT
2960 * of the physical sector size.
2961 *
2962 * We'll just truncate the bio to the size of the device,
2963 * and clear the end of the buffer head manually.
2964 *
2965 * Truly out-of-range accesses will turn into actual IO
2966 * errors, this only handles the "we need to be able to
2967 * do IO at the final sector" case.
2968 */
4db96b71 2969void guard_bio_eod(int rw, struct bio *bio)
57302e0d
LT
2970{
2971 sector_t maxsector;
59d43914
AM
2972 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
2973 unsigned truncated_bytes;
57302e0d
LT
2974
2975 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2976 if (!maxsector)
2977 return;
2978
2979 /*
2980 * If the *whole* IO is past the end of the device,
2981 * let it through, and the IO layer will turn it into
2982 * an EIO.
2983 */
4f024f37 2984 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
2985 return;
2986
4f024f37 2987 maxsector -= bio->bi_iter.bi_sector;
59d43914 2988 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
2989 return;
2990
59d43914
AM
2991 /* Uhhuh. We've got a bio that straddles the device size! */
2992 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
2993
2994 /* Truncate the bio.. */
59d43914
AM
2995 bio->bi_iter.bi_size -= truncated_bytes;
2996 bvec->bv_len -= truncated_bytes;
57302e0d
LT
2997
2998 /* ..and clear the end of the buffer for reads */
27d7c2a0 2999 if ((rw & RW_MASK) == READ) {
59d43914
AM
3000 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3001 truncated_bytes);
57302e0d
LT
3002 }
3003}
3004
71368511 3005int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
1da177e4
LT
3006{
3007 struct bio *bio;
3008 int ret = 0;
3009
3010 BUG_ON(!buffer_locked(bh));
3011 BUG_ON(!buffer_mapped(bh));
3012 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3013 BUG_ON(buffer_delay(bh));
3014 BUG_ON(buffer_unwritten(bh));
1da177e4 3015
1da177e4 3016 /*
48fd4f93 3017 * Only clear out a write error when rewriting
1da177e4 3018 */
48fd4f93 3019 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
3020 clear_buffer_write_io_error(bh);
3021
3022 /*
3023 * from here on down, it's all bio -- do the initial mapping,
3024 * submit_bio -> generic_make_request may further map this bio around
3025 */
3026 bio = bio_alloc(GFP_NOIO, 1);
3027
4f024f37 3028 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4
LT
3029 bio->bi_bdev = bh->b_bdev;
3030 bio->bi_io_vec[0].bv_page = bh->b_page;
3031 bio->bi_io_vec[0].bv_len = bh->b_size;
3032 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3033
3034 bio->bi_vcnt = 1;
4f024f37 3035 bio->bi_iter.bi_size = bh->b_size;
1da177e4
LT
3036
3037 bio->bi_end_io = end_bio_bh_io_sync;
3038 bio->bi_private = bh;
71368511 3039 bio->bi_flags |= bio_flags;
1da177e4 3040
57302e0d 3041 /* Take care of bh's that straddle the end of the device */
59d43914 3042 guard_bio_eod(rw, bio);
57302e0d 3043
877f962c
TT
3044 if (buffer_meta(bh))
3045 rw |= REQ_META;
3046 if (buffer_prio(bh))
3047 rw |= REQ_PRIO;
3048
1da177e4
LT
3049 bio_get(bio);
3050 submit_bio(rw, bio);
3051
3052 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3053 ret = -EOPNOTSUPP;
3054
3055 bio_put(bio);
3056 return ret;
3057}
71368511
DW
3058EXPORT_SYMBOL_GPL(_submit_bh);
3059
3060int submit_bh(int rw, struct buffer_head *bh)
3061{
3062 return _submit_bh(rw, bh, 0);
3063}
1fe72eaa 3064EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3065
3066/**
3067 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 3068 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
3069 * @nr: number of &struct buffer_heads in the array
3070 * @bhs: array of pointers to &struct buffer_head
3071 *
a7662236
JK
3072 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3073 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
3074 * %READA option is described in the documentation for generic_make_request()
3075 * which ll_rw_block() calls.
1da177e4
LT
3076 *
3077 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3078 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3079 * request, and any buffer that appears to be up-to-date when doing read
3080 * request. Further it marks as clean buffers that are processed for
3081 * writing (the buffer cache won't assume that they are actually clean
3082 * until the buffer gets unlocked).
1da177e4
LT
3083 *
3084 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3085 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3086 * any waiters.
3087 *
3088 * All of the buffers must be for the same device, and must also be a
3089 * multiple of the current approved size for the device.
3090 */
3091void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3092{
3093 int i;
3094
3095 for (i = 0; i < nr; i++) {
3096 struct buffer_head *bh = bhs[i];
3097
9cb569d6 3098 if (!trylock_buffer(bh))
1da177e4 3099 continue;
9cb569d6 3100 if (rw == WRITE) {
1da177e4 3101 if (test_clear_buffer_dirty(bh)) {
76c3073a 3102 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3103 get_bh(bh);
9cb569d6 3104 submit_bh(WRITE, bh);
1da177e4
LT
3105 continue;
3106 }
3107 } else {
1da177e4 3108 if (!buffer_uptodate(bh)) {
76c3073a 3109 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3110 get_bh(bh);
1da177e4
LT
3111 submit_bh(rw, bh);
3112 continue;
3113 }
3114 }
3115 unlock_buffer(bh);
1da177e4
LT
3116 }
3117}
1fe72eaa 3118EXPORT_SYMBOL(ll_rw_block);
1da177e4 3119
9cb569d6
CH
3120void write_dirty_buffer(struct buffer_head *bh, int rw)
3121{
3122 lock_buffer(bh);
3123 if (!test_clear_buffer_dirty(bh)) {
3124 unlock_buffer(bh);
3125 return;
3126 }
3127 bh->b_end_io = end_buffer_write_sync;
3128 get_bh(bh);
3129 submit_bh(rw, bh);
3130}
3131EXPORT_SYMBOL(write_dirty_buffer);
3132
1da177e4
LT
3133/*
3134 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3135 * and then start new I/O and then wait upon it. The caller must have a ref on
3136 * the buffer_head.
3137 */
87e99511 3138int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3139{
3140 int ret = 0;
3141
3142 WARN_ON(atomic_read(&bh->b_count) < 1);
3143 lock_buffer(bh);
3144 if (test_clear_buffer_dirty(bh)) {
3145 get_bh(bh);
3146 bh->b_end_io = end_buffer_write_sync;
87e99511 3147 ret = submit_bh(rw, bh);
1da177e4 3148 wait_on_buffer(bh);
1da177e4
LT
3149 if (!ret && !buffer_uptodate(bh))
3150 ret = -EIO;
3151 } else {
3152 unlock_buffer(bh);
3153 }
3154 return ret;
3155}
87e99511
CH
3156EXPORT_SYMBOL(__sync_dirty_buffer);
3157
3158int sync_dirty_buffer(struct buffer_head *bh)
3159{
3160 return __sync_dirty_buffer(bh, WRITE_SYNC);
3161}
1fe72eaa 3162EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3163
3164/*
3165 * try_to_free_buffers() checks if all the buffers on this particular page
3166 * are unused, and releases them if so.
3167 *
3168 * Exclusion against try_to_free_buffers may be obtained by either
3169 * locking the page or by holding its mapping's private_lock.
3170 *
3171 * If the page is dirty but all the buffers are clean then we need to
3172 * be sure to mark the page clean as well. This is because the page
3173 * may be against a block device, and a later reattachment of buffers
3174 * to a dirty page will set *all* buffers dirty. Which would corrupt
3175 * filesystem data on the same device.
3176 *
3177 * The same applies to regular filesystem pages: if all the buffers are
3178 * clean then we set the page clean and proceed. To do that, we require
3179 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3180 * private_lock.
3181 *
3182 * try_to_free_buffers() is non-blocking.
3183 */
3184static inline int buffer_busy(struct buffer_head *bh)
3185{
3186 return atomic_read(&bh->b_count) |
3187 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3188}
3189
3190static int
3191drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3192{
3193 struct buffer_head *head = page_buffers(page);
3194 struct buffer_head *bh;
3195
3196 bh = head;
3197 do {
de7d5a3b 3198 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3199 set_bit(AS_EIO, &page->mapping->flags);
3200 if (buffer_busy(bh))
3201 goto failed;
3202 bh = bh->b_this_page;
3203 } while (bh != head);
3204
3205 do {
3206 struct buffer_head *next = bh->b_this_page;
3207
535ee2fb 3208 if (bh->b_assoc_map)
1da177e4
LT
3209 __remove_assoc_queue(bh);
3210 bh = next;
3211 } while (bh != head);
3212 *buffers_to_free = head;
3213 __clear_page_buffers(page);
3214 return 1;
3215failed:
3216 return 0;
3217}
3218
3219int try_to_free_buffers(struct page *page)
3220{
3221 struct address_space * const mapping = page->mapping;
3222 struct buffer_head *buffers_to_free = NULL;
3223 int ret = 0;
3224
3225 BUG_ON(!PageLocked(page));
ecdfc978 3226 if (PageWriteback(page))
1da177e4
LT
3227 return 0;
3228
3229 if (mapping == NULL) { /* can this still happen? */
3230 ret = drop_buffers(page, &buffers_to_free);
3231 goto out;
3232 }
3233
3234 spin_lock(&mapping->private_lock);
3235 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3236
3237 /*
3238 * If the filesystem writes its buffers by hand (eg ext3)
3239 * then we can have clean buffers against a dirty page. We
3240 * clean the page here; otherwise the VM will never notice
3241 * that the filesystem did any IO at all.
3242 *
3243 * Also, during truncate, discard_buffer will have marked all
3244 * the page's buffers clean. We discover that here and clean
3245 * the page also.
87df7241
NP
3246 *
3247 * private_lock must be held over this entire operation in order
3248 * to synchronise against __set_page_dirty_buffers and prevent the
3249 * dirty bit from being lost.
ecdfc978
LT
3250 */
3251 if (ret)
3252 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3253 spin_unlock(&mapping->private_lock);
1da177e4
LT
3254out:
3255 if (buffers_to_free) {
3256 struct buffer_head *bh = buffers_to_free;
3257
3258 do {
3259 struct buffer_head *next = bh->b_this_page;
3260 free_buffer_head(bh);
3261 bh = next;
3262 } while (bh != buffers_to_free);
3263 }
3264 return ret;
3265}
3266EXPORT_SYMBOL(try_to_free_buffers);
3267
1da177e4
LT
3268/*
3269 * There are no bdflush tunables left. But distributions are
3270 * still running obsolete flush daemons, so we terminate them here.
3271 *
3272 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3273 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3274 */
bdc480e3 3275SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3276{
3277 static int msg_count;
3278
3279 if (!capable(CAP_SYS_ADMIN))
3280 return -EPERM;
3281
3282 if (msg_count < 5) {
3283 msg_count++;
3284 printk(KERN_INFO
3285 "warning: process `%s' used the obsolete bdflush"
3286 " system call\n", current->comm);
3287 printk(KERN_INFO "Fix your initscripts?\n");
3288 }
3289
3290 if (func == 1)
3291 do_exit(0);
3292 return 0;
3293}
3294
3295/*
3296 * Buffer-head allocation
3297 */
a0a9b043 3298static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3299
3300/*
3301 * Once the number of bh's in the machine exceeds this level, we start
3302 * stripping them in writeback.
3303 */
43be594a 3304static unsigned long max_buffer_heads;
1da177e4
LT
3305
3306int buffer_heads_over_limit;
3307
3308struct bh_accounting {
3309 int nr; /* Number of live bh's */
3310 int ratelimit; /* Limit cacheline bouncing */
3311};
3312
3313static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3314
3315static void recalc_bh_state(void)
3316{
3317 int i;
3318 int tot = 0;
3319
ee1be862 3320 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3321 return;
c7b92516 3322 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3323 for_each_online_cpu(i)
1da177e4
LT
3324 tot += per_cpu(bh_accounting, i).nr;
3325 buffer_heads_over_limit = (tot > max_buffer_heads);
3326}
c7b92516 3327
dd0fc66f 3328struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3329{
019b4d12 3330 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3331 if (ret) {
a35afb83 3332 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3333 preempt_disable();
3334 __this_cpu_inc(bh_accounting.nr);
1da177e4 3335 recalc_bh_state();
c7b92516 3336 preempt_enable();
1da177e4
LT
3337 }
3338 return ret;
3339}
3340EXPORT_SYMBOL(alloc_buffer_head);
3341
3342void free_buffer_head(struct buffer_head *bh)
3343{
3344 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3345 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3346 preempt_disable();
3347 __this_cpu_dec(bh_accounting.nr);
1da177e4 3348 recalc_bh_state();
c7b92516 3349 preempt_enable();
1da177e4
LT
3350}
3351EXPORT_SYMBOL(free_buffer_head);
3352
1da177e4
LT
3353static void buffer_exit_cpu(int cpu)
3354{
3355 int i;
3356 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3357
3358 for (i = 0; i < BH_LRU_SIZE; i++) {
3359 brelse(b->bhs[i]);
3360 b->bhs[i] = NULL;
3361 }
c7b92516 3362 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3363 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3364}
3365
3366static int buffer_cpu_notify(struct notifier_block *self,
3367 unsigned long action, void *hcpu)
3368{
8bb78442 3369 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3370 buffer_exit_cpu((unsigned long)hcpu);
3371 return NOTIFY_OK;
3372}
1da177e4 3373
389d1b08 3374/**
a6b91919 3375 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3376 * @bh: struct buffer_head
3377 *
3378 * Return true if the buffer is up-to-date and false,
3379 * with the buffer locked, if not.
3380 */
3381int bh_uptodate_or_lock(struct buffer_head *bh)
3382{
3383 if (!buffer_uptodate(bh)) {
3384 lock_buffer(bh);
3385 if (!buffer_uptodate(bh))
3386 return 0;
3387 unlock_buffer(bh);
3388 }
3389 return 1;
3390}
3391EXPORT_SYMBOL(bh_uptodate_or_lock);
3392
3393/**
a6b91919 3394 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3395 * @bh: struct buffer_head
3396 *
3397 * Returns zero on success and -EIO on error.
3398 */
3399int bh_submit_read(struct buffer_head *bh)
3400{
3401 BUG_ON(!buffer_locked(bh));
3402
3403 if (buffer_uptodate(bh)) {
3404 unlock_buffer(bh);
3405 return 0;
3406 }
3407
3408 get_bh(bh);
3409 bh->b_end_io = end_buffer_read_sync;
3410 submit_bh(READ, bh);
3411 wait_on_buffer(bh);
3412 if (buffer_uptodate(bh))
3413 return 0;
3414 return -EIO;
3415}
3416EXPORT_SYMBOL(bh_submit_read);
3417
1da177e4
LT
3418void __init buffer_init(void)
3419{
43be594a 3420 unsigned long nrpages;
1da177e4 3421
b98938c3
CL
3422 bh_cachep = kmem_cache_create("buffer_head",
3423 sizeof(struct buffer_head), 0,
3424 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3425 SLAB_MEM_SPREAD),
019b4d12 3426 NULL);
1da177e4
LT
3427
3428 /*
3429 * Limit the bh occupancy to 10% of ZONE_NORMAL
3430 */
3431 nrpages = (nr_free_buffer_pages() * 10) / 100;
3432 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3433 hotcpu_notifier(buffer_cpu_notify, 0);
3434}