]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/buffer.c
mm: implement find_get_pages_range()
[mirror_ubuntu-bionic-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4 21#include <linux/kernel.h>
f361bf4a 22#include <linux/sched/signal.h>
1da177e4
LT
23#include <linux/syscalls.h>
24#include <linux/fs.h>
ae259a9c 25#include <linux/iomap.h>
1da177e4
LT
26#include <linux/mm.h>
27#include <linux/percpu.h>
28#include <linux/slab.h>
16f7e0fe 29#include <linux/capability.h>
1da177e4
LT
30#include <linux/blkdev.h>
31#include <linux/file.h>
32#include <linux/quotaops.h>
33#include <linux/highmem.h>
630d9c47 34#include <linux/export.h>
bafc0dba 35#include <linux/backing-dev.h>
1da177e4
LT
36#include <linux/writeback.h>
37#include <linux/hash.h>
38#include <linux/suspend.h>
39#include <linux/buffer_head.h>
55e829af 40#include <linux/task_io_accounting_ops.h>
1da177e4
LT
41#include <linux/bio.h>
42#include <linux/notifier.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
fb1c8f93 46#include <linux/bit_spinlock.h>
29f3ad7d 47#include <linux/pagevec.h>
5305cb83 48#include <trace/events/block.h>
1da177e4
LT
49
50static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
2a222ca9 51static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 52 enum rw_hint hint, struct writeback_control *wbc);
1da177e4
LT
53
54#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
a3f3c29c 56void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
57{
58 bh->b_end_io = handler;
59 bh->b_private = private;
60}
1fe72eaa 61EXPORT_SYMBOL(init_buffer);
1da177e4 62
f0059afd
TH
63inline void touch_buffer(struct buffer_head *bh)
64{
5305cb83 65 trace_block_touch_buffer(bh);
f0059afd
TH
66 mark_page_accessed(bh->b_page);
67}
68EXPORT_SYMBOL(touch_buffer);
69
fc9b52cd 70void __lock_buffer(struct buffer_head *bh)
1da177e4 71{
74316201 72 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
73}
74EXPORT_SYMBOL(__lock_buffer);
75
fc9b52cd 76void unlock_buffer(struct buffer_head *bh)
1da177e4 77{
51b07fc3 78 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 79 smp_mb__after_atomic();
1da177e4
LT
80 wake_up_bit(&bh->b_state, BH_Lock);
81}
1fe72eaa 82EXPORT_SYMBOL(unlock_buffer);
1da177e4 83
b4597226
MG
84/*
85 * Returns if the page has dirty or writeback buffers. If all the buffers
86 * are unlocked and clean then the PageDirty information is stale. If
87 * any of the pages are locked, it is assumed they are locked for IO.
88 */
89void buffer_check_dirty_writeback(struct page *page,
90 bool *dirty, bool *writeback)
91{
92 struct buffer_head *head, *bh;
93 *dirty = false;
94 *writeback = false;
95
96 BUG_ON(!PageLocked(page));
97
98 if (!page_has_buffers(page))
99 return;
100
101 if (PageWriteback(page))
102 *writeback = true;
103
104 head = page_buffers(page);
105 bh = head;
106 do {
107 if (buffer_locked(bh))
108 *writeback = true;
109
110 if (buffer_dirty(bh))
111 *dirty = true;
112
113 bh = bh->b_this_page;
114 } while (bh != head);
115}
116EXPORT_SYMBOL(buffer_check_dirty_writeback);
117
1da177e4
LT
118/*
119 * Block until a buffer comes unlocked. This doesn't stop it
120 * from becoming locked again - you have to lock it yourself
121 * if you want to preserve its state.
122 */
123void __wait_on_buffer(struct buffer_head * bh)
124{
74316201 125 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 126}
1fe72eaa 127EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
128
129static void
130__clear_page_buffers(struct page *page)
131{
132 ClearPagePrivate(page);
4c21e2f2 133 set_page_private(page, 0);
09cbfeaf 134 put_page(page);
1da177e4
LT
135}
136
b744c2ac 137static void buffer_io_error(struct buffer_head *bh, char *msg)
1da177e4 138{
432f16e6
RE
139 if (!test_bit(BH_Quiet, &bh->b_state))
140 printk_ratelimited(KERN_ERR
a1c6f057
DM
141 "Buffer I/O error on dev %pg, logical block %llu%s\n",
142 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
1da177e4
LT
143}
144
145/*
68671f35
DM
146 * End-of-IO handler helper function which does not touch the bh after
147 * unlocking it.
148 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
149 * a race there is benign: unlock_buffer() only use the bh's address for
150 * hashing after unlocking the buffer, so it doesn't actually touch the bh
151 * itself.
1da177e4 152 */
68671f35 153static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
154{
155 if (uptodate) {
156 set_buffer_uptodate(bh);
157 } else {
70246286 158 /* This happens, due to failed read-ahead attempts. */
1da177e4
LT
159 clear_buffer_uptodate(bh);
160 }
161 unlock_buffer(bh);
68671f35
DM
162}
163
164/*
165 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
166 * unlock the buffer. This is what ll_rw_block uses too.
167 */
168void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
169{
170 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
171 put_bh(bh);
172}
1fe72eaa 173EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
174
175void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
176{
1da177e4
LT
177 if (uptodate) {
178 set_buffer_uptodate(bh);
179 } else {
432f16e6 180 buffer_io_error(bh, ", lost sync page write");
87354e5d 181 mark_buffer_write_io_error(bh);
1da177e4
LT
182 clear_buffer_uptodate(bh);
183 }
184 unlock_buffer(bh);
185 put_bh(bh);
186}
1fe72eaa 187EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 188
1da177e4
LT
189/*
190 * Various filesystems appear to want __find_get_block to be non-blocking.
191 * But it's the page lock which protects the buffers. To get around this,
192 * we get exclusion from try_to_free_buffers with the blockdev mapping's
193 * private_lock.
194 *
195 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
196 * may be quite high. This code could TryLock the page, and if that
197 * succeeds, there is no need to take private_lock. (But if
198 * private_lock is contended then so is mapping->tree_lock).
199 */
200static struct buffer_head *
385fd4c5 201__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
202{
203 struct inode *bd_inode = bdev->bd_inode;
204 struct address_space *bd_mapping = bd_inode->i_mapping;
205 struct buffer_head *ret = NULL;
206 pgoff_t index;
207 struct buffer_head *bh;
208 struct buffer_head *head;
209 struct page *page;
210 int all_mapped = 1;
211
09cbfeaf 212 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
2457aec6 213 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
214 if (!page)
215 goto out;
216
217 spin_lock(&bd_mapping->private_lock);
218 if (!page_has_buffers(page))
219 goto out_unlock;
220 head = page_buffers(page);
221 bh = head;
222 do {
97f76d3d
NK
223 if (!buffer_mapped(bh))
224 all_mapped = 0;
225 else if (bh->b_blocknr == block) {
1da177e4
LT
226 ret = bh;
227 get_bh(bh);
228 goto out_unlock;
229 }
1da177e4
LT
230 bh = bh->b_this_page;
231 } while (bh != head);
232
233 /* we might be here because some of the buffers on this page are
234 * not mapped. This is due to various races between
235 * file io on the block device and getblk. It gets dealt with
236 * elsewhere, don't buffer_error if we had some unmapped buffers
237 */
238 if (all_mapped) {
239 printk("__find_get_block_slow() failed. "
240 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
241 (unsigned long long)block,
242 (unsigned long long)bh->b_blocknr);
243 printk("b_state=0x%08lx, b_size=%zu\n",
244 bh->b_state, bh->b_size);
a1c6f057 245 printk("device %pg blocksize: %d\n", bdev,
72a2ebd8 246 1 << bd_inode->i_blkbits);
1da177e4
LT
247 }
248out_unlock:
249 spin_unlock(&bd_mapping->private_lock);
09cbfeaf 250 put_page(page);
1da177e4
LT
251out:
252 return ret;
253}
254
1da177e4 255/*
5b0830cb 256 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
257 */
258static void free_more_memory(void)
259{
c33d6c06 260 struct zoneref *z;
0e88460d 261 int nid;
1da177e4 262
0e175a18 263 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
264 yield();
265
0e88460d 266 for_each_online_node(nid) {
c33d6c06
MG
267
268 z = first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
269 gfp_zone(GFP_NOFS), NULL);
270 if (z->zone)
54a6eb5c 271 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 272 GFP_NOFS, NULL);
1da177e4
LT
273 }
274}
275
276/*
277 * I/O completion handler for block_read_full_page() - pages
278 * which come unlocked at the end of I/O.
279 */
280static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
281{
1da177e4 282 unsigned long flags;
a3972203 283 struct buffer_head *first;
1da177e4
LT
284 struct buffer_head *tmp;
285 struct page *page;
286 int page_uptodate = 1;
287
288 BUG_ON(!buffer_async_read(bh));
289
290 page = bh->b_page;
291 if (uptodate) {
292 set_buffer_uptodate(bh);
293 } else {
294 clear_buffer_uptodate(bh);
432f16e6 295 buffer_io_error(bh, ", async page read");
1da177e4
LT
296 SetPageError(page);
297 }
298
299 /*
300 * Be _very_ careful from here on. Bad things can happen if
301 * two buffer heads end IO at almost the same time and both
302 * decide that the page is now completely done.
303 */
a3972203
NP
304 first = page_buffers(page);
305 local_irq_save(flags);
306 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
307 clear_buffer_async_read(bh);
308 unlock_buffer(bh);
309 tmp = bh;
310 do {
311 if (!buffer_uptodate(tmp))
312 page_uptodate = 0;
313 if (buffer_async_read(tmp)) {
314 BUG_ON(!buffer_locked(tmp));
315 goto still_busy;
316 }
317 tmp = tmp->b_this_page;
318 } while (tmp != bh);
a3972203
NP
319 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
320 local_irq_restore(flags);
1da177e4
LT
321
322 /*
323 * If none of the buffers had errors and they are all
324 * uptodate then we can set the page uptodate.
325 */
326 if (page_uptodate && !PageError(page))
327 SetPageUptodate(page);
328 unlock_page(page);
329 return;
330
331still_busy:
a3972203
NP
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
1da177e4
LT
334 return;
335}
336
337/*
338 * Completion handler for block_write_full_page() - pages which are unlocked
339 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 */
35c80d5f 341void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4 342{
1da177e4 343 unsigned long flags;
a3972203 344 struct buffer_head *first;
1da177e4
LT
345 struct buffer_head *tmp;
346 struct page *page;
347
348 BUG_ON(!buffer_async_write(bh));
349
350 page = bh->b_page;
351 if (uptodate) {
352 set_buffer_uptodate(bh);
353 } else {
432f16e6 354 buffer_io_error(bh, ", lost async page write");
87354e5d 355 mark_buffer_write_io_error(bh);
1da177e4
LT
356 clear_buffer_uptodate(bh);
357 SetPageError(page);
358 }
359
a3972203
NP
360 first = page_buffers(page);
361 local_irq_save(flags);
362 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
363
1da177e4
LT
364 clear_buffer_async_write(bh);
365 unlock_buffer(bh);
366 tmp = bh->b_this_page;
367 while (tmp != bh) {
368 if (buffer_async_write(tmp)) {
369 BUG_ON(!buffer_locked(tmp));
370 goto still_busy;
371 }
372 tmp = tmp->b_this_page;
373 }
a3972203
NP
374 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
375 local_irq_restore(flags);
1da177e4
LT
376 end_page_writeback(page);
377 return;
378
379still_busy:
a3972203
NP
380 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
381 local_irq_restore(flags);
1da177e4
LT
382 return;
383}
1fe72eaa 384EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
385
386/*
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
394 *
395 * The page comes unlocked when it has no locked buffer_async buffers
396 * left.
397 *
398 * PageLocked prevents anyone starting new async I/O reads any of
399 * the buffers.
400 *
401 * PageWriteback is used to prevent simultaneous writeout of the same
402 * page.
403 *
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
406 */
407static void mark_buffer_async_read(struct buffer_head *bh)
408{
409 bh->b_end_io = end_buffer_async_read;
410 set_buffer_async_read(bh);
411}
412
1fe72eaa
HS
413static void mark_buffer_async_write_endio(struct buffer_head *bh,
414 bh_end_io_t *handler)
1da177e4 415{
35c80d5f 416 bh->b_end_io = handler;
1da177e4
LT
417 set_buffer_async_write(bh);
418}
35c80d5f
CM
419
420void mark_buffer_async_write(struct buffer_head *bh)
421{
422 mark_buffer_async_write_endio(bh, end_buffer_async_write);
423}
1da177e4
LT
424EXPORT_SYMBOL(mark_buffer_async_write);
425
426
427/*
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
433 *
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
437 *
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
447 * ->private_lock.
448 *
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
451 *
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
456 *
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
460 *
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
464 * queued up.
465 *
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
473 * b_inode back.
474 */
475
476/*
477 * The buffer's backing address_space's private_lock must be held
478 */
dbacefc9 479static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
480{
481 list_del_init(&bh->b_assoc_buffers);
58ff407b 482 WARN_ON(!bh->b_assoc_map);
58ff407b 483 bh->b_assoc_map = NULL;
1da177e4
LT
484}
485
486int inode_has_buffers(struct inode *inode)
487{
488 return !list_empty(&inode->i_data.private_list);
489}
490
491/*
492 * osync is designed to support O_SYNC io. It waits synchronously for
493 * all already-submitted IO to complete, but does not queue any new
494 * writes to the disk.
495 *
496 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
497 * you dirty the buffers, and then use osync_inode_buffers to wait for
498 * completion. Any other dirty buffers which are not yet queued for
499 * write will not be flushed to disk by the osync.
500 */
501static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
502{
503 struct buffer_head *bh;
504 struct list_head *p;
505 int err = 0;
506
507 spin_lock(lock);
508repeat:
509 list_for_each_prev(p, list) {
510 bh = BH_ENTRY(p);
511 if (buffer_locked(bh)) {
512 get_bh(bh);
513 spin_unlock(lock);
514 wait_on_buffer(bh);
515 if (!buffer_uptodate(bh))
516 err = -EIO;
517 brelse(bh);
518 spin_lock(lock);
519 goto repeat;
520 }
521 }
522 spin_unlock(lock);
523 return err;
524}
525
01a05b33 526static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 527{
01a05b33 528 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
a1c6f057 529 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
01a05b33 530}
c2d75438 531
01a05b33
AV
532static void do_thaw_all(struct work_struct *work)
533{
534 iterate_supers(do_thaw_one, NULL);
053c525f 535 kfree(work);
c2d75438
ES
536 printk(KERN_WARNING "Emergency Thaw complete\n");
537}
538
539/**
540 * emergency_thaw_all -- forcibly thaw every frozen filesystem
541 *
542 * Used for emergency unfreeze of all filesystems via SysRq
543 */
544void emergency_thaw_all(void)
545{
053c525f
JA
546 struct work_struct *work;
547
548 work = kmalloc(sizeof(*work), GFP_ATOMIC);
549 if (work) {
550 INIT_WORK(work, do_thaw_all);
551 schedule_work(work);
552 }
c2d75438
ES
553}
554
1da177e4 555/**
78a4a50a 556 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 557 * @mapping: the mapping which wants those buffers written
1da177e4
LT
558 *
559 * Starts I/O against the buffers at mapping->private_list, and waits upon
560 * that I/O.
561 *
67be2dd1
MW
562 * Basically, this is a convenience function for fsync().
563 * @mapping is a file or directory which needs those buffers to be written for
564 * a successful fsync().
1da177e4
LT
565 */
566int sync_mapping_buffers(struct address_space *mapping)
567{
252aa6f5 568 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
569
570 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
571 return 0;
572
573 return fsync_buffers_list(&buffer_mapping->private_lock,
574 &mapping->private_list);
575}
576EXPORT_SYMBOL(sync_mapping_buffers);
577
578/*
579 * Called when we've recently written block `bblock', and it is known that
580 * `bblock' was for a buffer_boundary() buffer. This means that the block at
581 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
582 * dirty, schedule it for IO. So that indirects merge nicely with their data.
583 */
584void write_boundary_block(struct block_device *bdev,
585 sector_t bblock, unsigned blocksize)
586{
587 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
588 if (bh) {
589 if (buffer_dirty(bh))
dfec8a14 590 ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
1da177e4
LT
591 put_bh(bh);
592 }
593}
594
595void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
596{
597 struct address_space *mapping = inode->i_mapping;
598 struct address_space *buffer_mapping = bh->b_page->mapping;
599
600 mark_buffer_dirty(bh);
252aa6f5
RA
601 if (!mapping->private_data) {
602 mapping->private_data = buffer_mapping;
1da177e4 603 } else {
252aa6f5 604 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 605 }
535ee2fb 606 if (!bh->b_assoc_map) {
1da177e4
LT
607 spin_lock(&buffer_mapping->private_lock);
608 list_move_tail(&bh->b_assoc_buffers,
609 &mapping->private_list);
58ff407b 610 bh->b_assoc_map = mapping;
1da177e4
LT
611 spin_unlock(&buffer_mapping->private_lock);
612 }
613}
614EXPORT_SYMBOL(mark_buffer_dirty_inode);
615
787d2214
NP
616/*
617 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
618 * dirty.
619 *
620 * If warn is true, then emit a warning if the page is not uptodate and has
621 * not been truncated.
c4843a75 622 *
81f8c3a4 623 * The caller must hold lock_page_memcg().
787d2214 624 */
c4843a75 625static void __set_page_dirty(struct page *page, struct address_space *mapping,
62cccb8c 626 int warn)
787d2214 627{
227d53b3
KM
628 unsigned long flags;
629
630 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
631 if (page->mapping) { /* Race with truncate? */
632 WARN_ON_ONCE(warn && !PageUptodate(page));
62cccb8c 633 account_page_dirtied(page, mapping);
787d2214
NP
634 radix_tree_tag_set(&mapping->page_tree,
635 page_index(page), PAGECACHE_TAG_DIRTY);
636 }
227d53b3 637 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214
NP
638}
639
1da177e4
LT
640/*
641 * Add a page to the dirty page list.
642 *
643 * It is a sad fact of life that this function is called from several places
644 * deeply under spinlocking. It may not sleep.
645 *
646 * If the page has buffers, the uptodate buffers are set dirty, to preserve
647 * dirty-state coherency between the page and the buffers. It the page does
648 * not have buffers then when they are later attached they will all be set
649 * dirty.
650 *
651 * The buffers are dirtied before the page is dirtied. There's a small race
652 * window in which a writepage caller may see the page cleanness but not the
653 * buffer dirtiness. That's fine. If this code were to set the page dirty
654 * before the buffers, a concurrent writepage caller could clear the page dirty
655 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
656 * page on the dirty page list.
657 *
658 * We use private_lock to lock against try_to_free_buffers while using the
659 * page's buffer list. Also use this to protect against clean buffers being
660 * added to the page after it was set dirty.
661 *
662 * FIXME: may need to call ->reservepage here as well. That's rather up to the
663 * address_space though.
664 */
665int __set_page_dirty_buffers(struct page *page)
666{
a8e7d49a 667 int newly_dirty;
787d2214 668 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
669
670 if (unlikely(!mapping))
671 return !TestSetPageDirty(page);
1da177e4
LT
672
673 spin_lock(&mapping->private_lock);
674 if (page_has_buffers(page)) {
675 struct buffer_head *head = page_buffers(page);
676 struct buffer_head *bh = head;
677
678 do {
679 set_buffer_dirty(bh);
680 bh = bh->b_this_page;
681 } while (bh != head);
682 }
c4843a75 683 /*
81f8c3a4
JW
684 * Lock out page->mem_cgroup migration to keep PageDirty
685 * synchronized with per-memcg dirty page counters.
c4843a75 686 */
62cccb8c 687 lock_page_memcg(page);
a8e7d49a 688 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
689 spin_unlock(&mapping->private_lock);
690
a8e7d49a 691 if (newly_dirty)
62cccb8c 692 __set_page_dirty(page, mapping, 1);
c4843a75 693
62cccb8c 694 unlock_page_memcg(page);
c4843a75
GT
695
696 if (newly_dirty)
697 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
698
a8e7d49a 699 return newly_dirty;
1da177e4
LT
700}
701EXPORT_SYMBOL(__set_page_dirty_buffers);
702
703/*
704 * Write out and wait upon a list of buffers.
705 *
706 * We have conflicting pressures: we want to make sure that all
707 * initially dirty buffers get waited on, but that any subsequently
708 * dirtied buffers don't. After all, we don't want fsync to last
709 * forever if somebody is actively writing to the file.
710 *
711 * Do this in two main stages: first we copy dirty buffers to a
712 * temporary inode list, queueing the writes as we go. Then we clean
713 * up, waiting for those writes to complete.
714 *
715 * During this second stage, any subsequent updates to the file may end
716 * up refiling the buffer on the original inode's dirty list again, so
717 * there is a chance we will end up with a buffer queued for write but
718 * not yet completed on that list. So, as a final cleanup we go through
719 * the osync code to catch these locked, dirty buffers without requeuing
720 * any newly dirty buffers for write.
721 */
722static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
723{
724 struct buffer_head *bh;
725 struct list_head tmp;
7eaceacc 726 struct address_space *mapping;
1da177e4 727 int err = 0, err2;
4ee2491e 728 struct blk_plug plug;
1da177e4
LT
729
730 INIT_LIST_HEAD(&tmp);
4ee2491e 731 blk_start_plug(&plug);
1da177e4
LT
732
733 spin_lock(lock);
734 while (!list_empty(list)) {
735 bh = BH_ENTRY(list->next);
535ee2fb 736 mapping = bh->b_assoc_map;
58ff407b 737 __remove_assoc_queue(bh);
535ee2fb
JK
738 /* Avoid race with mark_buffer_dirty_inode() which does
739 * a lockless check and we rely on seeing the dirty bit */
740 smp_mb();
1da177e4
LT
741 if (buffer_dirty(bh) || buffer_locked(bh)) {
742 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 743 bh->b_assoc_map = mapping;
1da177e4
LT
744 if (buffer_dirty(bh)) {
745 get_bh(bh);
746 spin_unlock(lock);
747 /*
748 * Ensure any pending I/O completes so that
9cb569d6
CH
749 * write_dirty_buffer() actually writes the
750 * current contents - it is a noop if I/O is
751 * still in flight on potentially older
752 * contents.
1da177e4 753 */
70fd7614 754 write_dirty_buffer(bh, REQ_SYNC);
9cf6b720
JA
755
756 /*
757 * Kick off IO for the previous mapping. Note
758 * that we will not run the very last mapping,
759 * wait_on_buffer() will do that for us
760 * through sync_buffer().
761 */
1da177e4
LT
762 brelse(bh);
763 spin_lock(lock);
764 }
765 }
766 }
767
4ee2491e
JA
768 spin_unlock(lock);
769 blk_finish_plug(&plug);
770 spin_lock(lock);
771
1da177e4
LT
772 while (!list_empty(&tmp)) {
773 bh = BH_ENTRY(tmp.prev);
1da177e4 774 get_bh(bh);
535ee2fb
JK
775 mapping = bh->b_assoc_map;
776 __remove_assoc_queue(bh);
777 /* Avoid race with mark_buffer_dirty_inode() which does
778 * a lockless check and we rely on seeing the dirty bit */
779 smp_mb();
780 if (buffer_dirty(bh)) {
781 list_add(&bh->b_assoc_buffers,
e3892296 782 &mapping->private_list);
535ee2fb
JK
783 bh->b_assoc_map = mapping;
784 }
1da177e4
LT
785 spin_unlock(lock);
786 wait_on_buffer(bh);
787 if (!buffer_uptodate(bh))
788 err = -EIO;
789 brelse(bh);
790 spin_lock(lock);
791 }
792
793 spin_unlock(lock);
794 err2 = osync_buffers_list(lock, list);
795 if (err)
796 return err;
797 else
798 return err2;
799}
800
801/*
802 * Invalidate any and all dirty buffers on a given inode. We are
803 * probably unmounting the fs, but that doesn't mean we have already
804 * done a sync(). Just drop the buffers from the inode list.
805 *
806 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
807 * assumes that all the buffers are against the blockdev. Not true
808 * for reiserfs.
809 */
810void invalidate_inode_buffers(struct inode *inode)
811{
812 if (inode_has_buffers(inode)) {
813 struct address_space *mapping = &inode->i_data;
814 struct list_head *list = &mapping->private_list;
252aa6f5 815 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
816
817 spin_lock(&buffer_mapping->private_lock);
818 while (!list_empty(list))
819 __remove_assoc_queue(BH_ENTRY(list->next));
820 spin_unlock(&buffer_mapping->private_lock);
821 }
822}
52b19ac9 823EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
824
825/*
826 * Remove any clean buffers from the inode's buffer list. This is called
827 * when we're trying to free the inode itself. Those buffers can pin it.
828 *
829 * Returns true if all buffers were removed.
830 */
831int remove_inode_buffers(struct inode *inode)
832{
833 int ret = 1;
834
835 if (inode_has_buffers(inode)) {
836 struct address_space *mapping = &inode->i_data;
837 struct list_head *list = &mapping->private_list;
252aa6f5 838 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
839
840 spin_lock(&buffer_mapping->private_lock);
841 while (!list_empty(list)) {
842 struct buffer_head *bh = BH_ENTRY(list->next);
843 if (buffer_dirty(bh)) {
844 ret = 0;
845 break;
846 }
847 __remove_assoc_queue(bh);
848 }
849 spin_unlock(&buffer_mapping->private_lock);
850 }
851 return ret;
852}
853
854/*
855 * Create the appropriate buffers when given a page for data area and
856 * the size of each buffer.. Use the bh->b_this_page linked list to
857 * follow the buffers created. Return NULL if unable to create more
858 * buffers.
859 *
860 * The retry flag is used to differentiate async IO (paging, swapping)
861 * which may not fail from ordinary buffer allocations.
862 */
863struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
864 int retry)
865{
866 struct buffer_head *bh, *head;
867 long offset;
868
869try_again:
870 head = NULL;
871 offset = PAGE_SIZE;
872 while ((offset -= size) >= 0) {
873 bh = alloc_buffer_head(GFP_NOFS);
874 if (!bh)
875 goto no_grow;
876
1da177e4
LT
877 bh->b_this_page = head;
878 bh->b_blocknr = -1;
879 head = bh;
880
1da177e4
LT
881 bh->b_size = size;
882
883 /* Link the buffer to its page */
884 set_bh_page(bh, page, offset);
1da177e4
LT
885 }
886 return head;
887/*
888 * In case anything failed, we just free everything we got.
889 */
890no_grow:
891 if (head) {
892 do {
893 bh = head;
894 head = head->b_this_page;
895 free_buffer_head(bh);
896 } while (head);
897 }
898
899 /*
900 * Return failure for non-async IO requests. Async IO requests
901 * are not allowed to fail, so we have to wait until buffer heads
902 * become available. But we don't want tasks sleeping with
903 * partially complete buffers, so all were released above.
904 */
905 if (!retry)
906 return NULL;
907
908 /* We're _really_ low on memory. Now we just
909 * wait for old buffer heads to become free due to
910 * finishing IO. Since this is an async request and
911 * the reserve list is empty, we're sure there are
912 * async buffer heads in use.
913 */
914 free_more_memory();
915 goto try_again;
916}
917EXPORT_SYMBOL_GPL(alloc_page_buffers);
918
919static inline void
920link_dev_buffers(struct page *page, struct buffer_head *head)
921{
922 struct buffer_head *bh, *tail;
923
924 bh = head;
925 do {
926 tail = bh;
927 bh = bh->b_this_page;
928 } while (bh);
929 tail->b_this_page = head;
930 attach_page_buffers(page, head);
931}
932
bbec0270
LT
933static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
934{
935 sector_t retval = ~((sector_t)0);
936 loff_t sz = i_size_read(bdev->bd_inode);
937
938 if (sz) {
939 unsigned int sizebits = blksize_bits(size);
940 retval = (sz >> sizebits);
941 }
942 return retval;
943}
944
1da177e4
LT
945/*
946 * Initialise the state of a blockdev page's buffers.
947 */
676ce6d5 948static sector_t
1da177e4
LT
949init_page_buffers(struct page *page, struct block_device *bdev,
950 sector_t block, int size)
951{
952 struct buffer_head *head = page_buffers(page);
953 struct buffer_head *bh = head;
954 int uptodate = PageUptodate(page);
bbec0270 955 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
956
957 do {
958 if (!buffer_mapped(bh)) {
959 init_buffer(bh, NULL, NULL);
960 bh->b_bdev = bdev;
961 bh->b_blocknr = block;
962 if (uptodate)
963 set_buffer_uptodate(bh);
080399aa
JM
964 if (block < end_block)
965 set_buffer_mapped(bh);
1da177e4
LT
966 }
967 block++;
968 bh = bh->b_this_page;
969 } while (bh != head);
676ce6d5
HD
970
971 /*
972 * Caller needs to validate requested block against end of device.
973 */
974 return end_block;
1da177e4
LT
975}
976
977/*
978 * Create the page-cache page that contains the requested block.
979 *
676ce6d5 980 * This is used purely for blockdev mappings.
1da177e4 981 */
676ce6d5 982static int
1da177e4 983grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 984 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
985{
986 struct inode *inode = bdev->bd_inode;
987 struct page *page;
988 struct buffer_head *bh;
676ce6d5
HD
989 sector_t end_block;
990 int ret = 0; /* Will call free_more_memory() */
84235de3 991 gfp_t gfp_mask;
1da177e4 992
c62d2555 993 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
3b5e6454 994
84235de3
JW
995 /*
996 * XXX: __getblk_slow() can not really deal with failure and
997 * will endlessly loop on improvised global reclaim. Prefer
998 * looping in the allocator rather than here, at least that
999 * code knows what it's doing.
1000 */
1001 gfp_mask |= __GFP_NOFAIL;
1002
1003 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1004 if (!page)
676ce6d5 1005 return ret;
1da177e4 1006
e827f923 1007 BUG_ON(!PageLocked(page));
1da177e4
LT
1008
1009 if (page_has_buffers(page)) {
1010 bh = page_buffers(page);
1011 if (bh->b_size == size) {
676ce6d5 1012 end_block = init_page_buffers(page, bdev,
f2d5a944
AA
1013 (sector_t)index << sizebits,
1014 size);
676ce6d5 1015 goto done;
1da177e4
LT
1016 }
1017 if (!try_to_free_buffers(page))
1018 goto failed;
1019 }
1020
1021 /*
1022 * Allocate some buffers for this page
1023 */
1024 bh = alloc_page_buffers(page, size, 0);
1025 if (!bh)
1026 goto failed;
1027
1028 /*
1029 * Link the page to the buffers and initialise them. Take the
1030 * lock to be atomic wrt __find_get_block(), which does not
1031 * run under the page lock.
1032 */
1033 spin_lock(&inode->i_mapping->private_lock);
1034 link_dev_buffers(page, bh);
f2d5a944
AA
1035 end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1036 size);
1da177e4 1037 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1038done:
1039 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1040failed:
1da177e4 1041 unlock_page(page);
09cbfeaf 1042 put_page(page);
676ce6d5 1043 return ret;
1da177e4
LT
1044}
1045
1046/*
1047 * Create buffers for the specified block device block's page. If
1048 * that page was dirty, the buffers are set dirty also.
1da177e4 1049 */
858119e1 1050static int
3b5e6454 1051grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1052{
1da177e4
LT
1053 pgoff_t index;
1054 int sizebits;
1055
1056 sizebits = -1;
1057 do {
1058 sizebits++;
1059 } while ((size << sizebits) < PAGE_SIZE);
1060
1061 index = block >> sizebits;
1da177e4 1062
e5657933
AM
1063 /*
1064 * Check for a block which wants to lie outside our maximum possible
1065 * pagecache index. (this comparison is done using sector_t types).
1066 */
1067 if (unlikely(index != block >> sizebits)) {
e5657933 1068 printk(KERN_ERR "%s: requested out-of-range block %llu for "
a1c6f057 1069 "device %pg\n",
8e24eea7 1070 __func__, (unsigned long long)block,
a1c6f057 1071 bdev);
e5657933
AM
1072 return -EIO;
1073 }
676ce6d5 1074
1da177e4 1075 /* Create a page with the proper size buffers.. */
3b5e6454 1076 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1077}
1078
0026ba40 1079static struct buffer_head *
3b5e6454
GK
1080__getblk_slow(struct block_device *bdev, sector_t block,
1081 unsigned size, gfp_t gfp)
1da177e4
LT
1082{
1083 /* Size must be multiple of hard sectorsize */
e1defc4f 1084 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1085 (size < 512 || size > PAGE_SIZE))) {
1086 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1087 size);
e1defc4f
MP
1088 printk(KERN_ERR "logical block size: %d\n",
1089 bdev_logical_block_size(bdev));
1da177e4
LT
1090
1091 dump_stack();
1092 return NULL;
1093 }
1094
676ce6d5
HD
1095 for (;;) {
1096 struct buffer_head *bh;
1097 int ret;
1da177e4
LT
1098
1099 bh = __find_get_block(bdev, block, size);
1100 if (bh)
1101 return bh;
676ce6d5 1102
3b5e6454 1103 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1104 if (ret < 0)
1105 return NULL;
1106 if (ret == 0)
1107 free_more_memory();
1da177e4
LT
1108 }
1109}
1110
1111/*
1112 * The relationship between dirty buffers and dirty pages:
1113 *
1114 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1115 * the page is tagged dirty in its radix tree.
1116 *
1117 * At all times, the dirtiness of the buffers represents the dirtiness of
1118 * subsections of the page. If the page has buffers, the page dirty bit is
1119 * merely a hint about the true dirty state.
1120 *
1121 * When a page is set dirty in its entirety, all its buffers are marked dirty
1122 * (if the page has buffers).
1123 *
1124 * When a buffer is marked dirty, its page is dirtied, but the page's other
1125 * buffers are not.
1126 *
1127 * Also. When blockdev buffers are explicitly read with bread(), they
1128 * individually become uptodate. But their backing page remains not
1129 * uptodate - even if all of its buffers are uptodate. A subsequent
1130 * block_read_full_page() against that page will discover all the uptodate
1131 * buffers, will set the page uptodate and will perform no I/O.
1132 */
1133
1134/**
1135 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1136 * @bh: the buffer_head to mark dirty
1da177e4
LT
1137 *
1138 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1139 * backing page dirty, then tag the page as dirty in its address_space's radix
1140 * tree and then attach the address_space's inode to its superblock's dirty
1141 * inode list.
1142 *
1143 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1144 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1145 */
fc9b52cd 1146void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1147{
787d2214 1148 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1149
5305cb83
TH
1150 trace_block_dirty_buffer(bh);
1151
1be62dc1
LT
1152 /*
1153 * Very *carefully* optimize the it-is-already-dirty case.
1154 *
1155 * Don't let the final "is it dirty" escape to before we
1156 * perhaps modified the buffer.
1157 */
1158 if (buffer_dirty(bh)) {
1159 smp_mb();
1160 if (buffer_dirty(bh))
1161 return;
1162 }
1163
a8e7d49a
LT
1164 if (!test_set_buffer_dirty(bh)) {
1165 struct page *page = bh->b_page;
c4843a75 1166 struct address_space *mapping = NULL;
c4843a75 1167
62cccb8c 1168 lock_page_memcg(page);
8e9d78ed 1169 if (!TestSetPageDirty(page)) {
c4843a75 1170 mapping = page_mapping(page);
8e9d78ed 1171 if (mapping)
62cccb8c 1172 __set_page_dirty(page, mapping, 0);
8e9d78ed 1173 }
62cccb8c 1174 unlock_page_memcg(page);
c4843a75
GT
1175 if (mapping)
1176 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
a8e7d49a 1177 }
1da177e4 1178}
1fe72eaa 1179EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4 1180
87354e5d
JL
1181void mark_buffer_write_io_error(struct buffer_head *bh)
1182{
1183 set_buffer_write_io_error(bh);
1184 /* FIXME: do we need to set this in both places? */
1185 if (bh->b_page && bh->b_page->mapping)
1186 mapping_set_error(bh->b_page->mapping, -EIO);
1187 if (bh->b_assoc_map)
1188 mapping_set_error(bh->b_assoc_map, -EIO);
1189}
1190EXPORT_SYMBOL(mark_buffer_write_io_error);
1191
1da177e4
LT
1192/*
1193 * Decrement a buffer_head's reference count. If all buffers against a page
1194 * have zero reference count, are clean and unlocked, and if the page is clean
1195 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1196 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1197 * a page but it ends up not being freed, and buffers may later be reattached).
1198 */
1199void __brelse(struct buffer_head * buf)
1200{
1201 if (atomic_read(&buf->b_count)) {
1202 put_bh(buf);
1203 return;
1204 }
5c752ad9 1205 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1206}
1fe72eaa 1207EXPORT_SYMBOL(__brelse);
1da177e4
LT
1208
1209/*
1210 * bforget() is like brelse(), except it discards any
1211 * potentially dirty data.
1212 */
1213void __bforget(struct buffer_head *bh)
1214{
1215 clear_buffer_dirty(bh);
535ee2fb 1216 if (bh->b_assoc_map) {
1da177e4
LT
1217 struct address_space *buffer_mapping = bh->b_page->mapping;
1218
1219 spin_lock(&buffer_mapping->private_lock);
1220 list_del_init(&bh->b_assoc_buffers);
58ff407b 1221 bh->b_assoc_map = NULL;
1da177e4
LT
1222 spin_unlock(&buffer_mapping->private_lock);
1223 }
1224 __brelse(bh);
1225}
1fe72eaa 1226EXPORT_SYMBOL(__bforget);
1da177e4
LT
1227
1228static struct buffer_head *__bread_slow(struct buffer_head *bh)
1229{
1230 lock_buffer(bh);
1231 if (buffer_uptodate(bh)) {
1232 unlock_buffer(bh);
1233 return bh;
1234 } else {
1235 get_bh(bh);
1236 bh->b_end_io = end_buffer_read_sync;
2a222ca9 1237 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
1238 wait_on_buffer(bh);
1239 if (buffer_uptodate(bh))
1240 return bh;
1241 }
1242 brelse(bh);
1243 return NULL;
1244}
1245
1246/*
1247 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1248 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1249 * refcount elevated by one when they're in an LRU. A buffer can only appear
1250 * once in a particular CPU's LRU. A single buffer can be present in multiple
1251 * CPU's LRUs at the same time.
1252 *
1253 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1254 * sb_find_get_block().
1255 *
1256 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1257 * a local interrupt disable for that.
1258 */
1259
86cf78d7 1260#define BH_LRU_SIZE 16
1da177e4
LT
1261
1262struct bh_lru {
1263 struct buffer_head *bhs[BH_LRU_SIZE];
1264};
1265
1266static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1267
1268#ifdef CONFIG_SMP
1269#define bh_lru_lock() local_irq_disable()
1270#define bh_lru_unlock() local_irq_enable()
1271#else
1272#define bh_lru_lock() preempt_disable()
1273#define bh_lru_unlock() preempt_enable()
1274#endif
1275
1276static inline void check_irqs_on(void)
1277{
1278#ifdef irqs_disabled
1279 BUG_ON(irqs_disabled());
1280#endif
1281}
1282
1283/*
241f01fb
EB
1284 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1285 * inserted at the front, and the buffer_head at the back if any is evicted.
1286 * Or, if already in the LRU it is moved to the front.
1da177e4
LT
1287 */
1288static void bh_lru_install(struct buffer_head *bh)
1289{
241f01fb
EB
1290 struct buffer_head *evictee = bh;
1291 struct bh_lru *b;
1292 int i;
1da177e4
LT
1293
1294 check_irqs_on();
1295 bh_lru_lock();
1da177e4 1296
241f01fb
EB
1297 b = this_cpu_ptr(&bh_lrus);
1298 for (i = 0; i < BH_LRU_SIZE; i++) {
1299 swap(evictee, b->bhs[i]);
1300 if (evictee == bh) {
1301 bh_lru_unlock();
1302 return;
1da177e4 1303 }
1da177e4 1304 }
1da177e4 1305
241f01fb
EB
1306 get_bh(bh);
1307 bh_lru_unlock();
1308 brelse(evictee);
1da177e4
LT
1309}
1310
1311/*
1312 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1313 */
858119e1 1314static struct buffer_head *
3991d3bd 1315lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1316{
1317 struct buffer_head *ret = NULL;
3991d3bd 1318 unsigned int i;
1da177e4
LT
1319
1320 check_irqs_on();
1321 bh_lru_lock();
1da177e4 1322 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1323 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4 1324
9470dd5d
ZB
1325 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1326 bh->b_size == size) {
1da177e4
LT
1327 if (i) {
1328 while (i) {
c7b92516
CL
1329 __this_cpu_write(bh_lrus.bhs[i],
1330 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1331 i--;
1332 }
c7b92516 1333 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1334 }
1335 get_bh(bh);
1336 ret = bh;
1337 break;
1338 }
1339 }
1340 bh_lru_unlock();
1341 return ret;
1342}
1343
1344/*
1345 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1346 * it in the LRU and mark it as accessed. If it is not present then return
1347 * NULL
1348 */
1349struct buffer_head *
3991d3bd 1350__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1351{
1352 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1353
1354 if (bh == NULL) {
2457aec6 1355 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1356 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1357 if (bh)
1358 bh_lru_install(bh);
2457aec6 1359 } else
1da177e4 1360 touch_buffer(bh);
2457aec6 1361
1da177e4
LT
1362 return bh;
1363}
1364EXPORT_SYMBOL(__find_get_block);
1365
1366/*
3b5e6454 1367 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1368 * which corresponds to the passed block_device, block and size. The
1369 * returned buffer has its reference count incremented.
1370 *
3b5e6454
GK
1371 * __getblk_gfp() will lock up the machine if grow_dev_page's
1372 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1373 */
1374struct buffer_head *
3b5e6454
GK
1375__getblk_gfp(struct block_device *bdev, sector_t block,
1376 unsigned size, gfp_t gfp)
1da177e4
LT
1377{
1378 struct buffer_head *bh = __find_get_block(bdev, block, size);
1379
1380 might_sleep();
1381 if (bh == NULL)
3b5e6454 1382 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1383 return bh;
1384}
3b5e6454 1385EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1386
1387/*
1388 * Do async read-ahead on a buffer..
1389 */
3991d3bd 1390void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1391{
1392 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5 1393 if (likely(bh)) {
70246286 1394 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
a3e713b5
AM
1395 brelse(bh);
1396 }
1da177e4
LT
1397}
1398EXPORT_SYMBOL(__breadahead);
1399
1400/**
3b5e6454 1401 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1402 * @bdev: the block_device to read from
1da177e4
LT
1403 * @block: number of block
1404 * @size: size (in bytes) to read
3b5e6454
GK
1405 * @gfp: page allocation flag
1406 *
1da177e4 1407 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1408 * The page cache can be allocated from non-movable area
1409 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1410 * It returns NULL if the block was unreadable.
1411 */
1412struct buffer_head *
3b5e6454
GK
1413__bread_gfp(struct block_device *bdev, sector_t block,
1414 unsigned size, gfp_t gfp)
1da177e4 1415{
3b5e6454 1416 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1417
a3e713b5 1418 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1419 bh = __bread_slow(bh);
1420 return bh;
1421}
3b5e6454 1422EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1423
1424/*
1425 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1426 * This doesn't race because it runs in each cpu either in irq
1427 * or with preempt disabled.
1428 */
1429static void invalidate_bh_lru(void *arg)
1430{
1431 struct bh_lru *b = &get_cpu_var(bh_lrus);
1432 int i;
1433
1434 for (i = 0; i < BH_LRU_SIZE; i++) {
1435 brelse(b->bhs[i]);
1436 b->bhs[i] = NULL;
1437 }
1438 put_cpu_var(bh_lrus);
1439}
42be35d0
GBY
1440
1441static bool has_bh_in_lru(int cpu, void *dummy)
1442{
1443 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1444 int i;
1da177e4 1445
42be35d0
GBY
1446 for (i = 0; i < BH_LRU_SIZE; i++) {
1447 if (b->bhs[i])
1448 return 1;
1449 }
1450
1451 return 0;
1452}
1453
f9a14399 1454void invalidate_bh_lrus(void)
1da177e4 1455{
42be35d0 1456 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1457}
9db5579b 1458EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1459
1460void set_bh_page(struct buffer_head *bh,
1461 struct page *page, unsigned long offset)
1462{
1463 bh->b_page = page;
e827f923 1464 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1465 if (PageHighMem(page))
1466 /*
1467 * This catches illegal uses and preserves the offset:
1468 */
1469 bh->b_data = (char *)(0 + offset);
1470 else
1471 bh->b_data = page_address(page) + offset;
1472}
1473EXPORT_SYMBOL(set_bh_page);
1474
1475/*
1476 * Called when truncating a buffer on a page completely.
1477 */
e7470ee8
MG
1478
1479/* Bits that are cleared during an invalidate */
1480#define BUFFER_FLAGS_DISCARD \
1481 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1482 1 << BH_Delay | 1 << BH_Unwritten)
1483
858119e1 1484static void discard_buffer(struct buffer_head * bh)
1da177e4 1485{
e7470ee8
MG
1486 unsigned long b_state, b_state_old;
1487
1da177e4
LT
1488 lock_buffer(bh);
1489 clear_buffer_dirty(bh);
1490 bh->b_bdev = NULL;
e7470ee8
MG
1491 b_state = bh->b_state;
1492 for (;;) {
1493 b_state_old = cmpxchg(&bh->b_state, b_state,
1494 (b_state & ~BUFFER_FLAGS_DISCARD));
1495 if (b_state_old == b_state)
1496 break;
1497 b_state = b_state_old;
1498 }
1da177e4
LT
1499 unlock_buffer(bh);
1500}
1501
1da177e4 1502/**
814e1d25 1503 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1504 *
1505 * @page: the page which is affected
d47992f8
LC
1506 * @offset: start of the range to invalidate
1507 * @length: length of the range to invalidate
1da177e4
LT
1508 *
1509 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1510 * invalidated by a truncate operation.
1da177e4
LT
1511 *
1512 * block_invalidatepage() does not have to release all buffers, but it must
1513 * ensure that no dirty buffer is left outside @offset and that no I/O
1514 * is underway against any of the blocks which are outside the truncation
1515 * point. Because the caller is about to free (and possibly reuse) those
1516 * blocks on-disk.
1517 */
d47992f8
LC
1518void block_invalidatepage(struct page *page, unsigned int offset,
1519 unsigned int length)
1da177e4
LT
1520{
1521 struct buffer_head *head, *bh, *next;
1522 unsigned int curr_off = 0;
d47992f8 1523 unsigned int stop = length + offset;
1da177e4
LT
1524
1525 BUG_ON(!PageLocked(page));
1526 if (!page_has_buffers(page))
1527 goto out;
1528
d47992f8
LC
1529 /*
1530 * Check for overflow
1531 */
09cbfeaf 1532 BUG_ON(stop > PAGE_SIZE || stop < length);
d47992f8 1533
1da177e4
LT
1534 head = page_buffers(page);
1535 bh = head;
1536 do {
1537 unsigned int next_off = curr_off + bh->b_size;
1538 next = bh->b_this_page;
1539
d47992f8
LC
1540 /*
1541 * Are we still fully in range ?
1542 */
1543 if (next_off > stop)
1544 goto out;
1545
1da177e4
LT
1546 /*
1547 * is this block fully invalidated?
1548 */
1549 if (offset <= curr_off)
1550 discard_buffer(bh);
1551 curr_off = next_off;
1552 bh = next;
1553 } while (bh != head);
1554
1555 /*
1556 * We release buffers only if the entire page is being invalidated.
1557 * The get_block cached value has been unconditionally invalidated,
1558 * so real IO is not possible anymore.
1559 */
1560 if (offset == 0)
2ff28e22 1561 try_to_release_page(page, 0);
1da177e4 1562out:
2ff28e22 1563 return;
1da177e4
LT
1564}
1565EXPORT_SYMBOL(block_invalidatepage);
1566
d47992f8 1567
1da177e4
LT
1568/*
1569 * We attach and possibly dirty the buffers atomically wrt
1570 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1571 * is already excluded via the page lock.
1572 */
1573void create_empty_buffers(struct page *page,
1574 unsigned long blocksize, unsigned long b_state)
1575{
1576 struct buffer_head *bh, *head, *tail;
1577
1578 head = alloc_page_buffers(page, blocksize, 1);
1579 bh = head;
1580 do {
1581 bh->b_state |= b_state;
1582 tail = bh;
1583 bh = bh->b_this_page;
1584 } while (bh);
1585 tail->b_this_page = head;
1586
1587 spin_lock(&page->mapping->private_lock);
1588 if (PageUptodate(page) || PageDirty(page)) {
1589 bh = head;
1590 do {
1591 if (PageDirty(page))
1592 set_buffer_dirty(bh);
1593 if (PageUptodate(page))
1594 set_buffer_uptodate(bh);
1595 bh = bh->b_this_page;
1596 } while (bh != head);
1597 }
1598 attach_page_buffers(page, head);
1599 spin_unlock(&page->mapping->private_lock);
1600}
1601EXPORT_SYMBOL(create_empty_buffers);
1602
29f3ad7d
JK
1603/**
1604 * clean_bdev_aliases: clean a range of buffers in block device
1605 * @bdev: Block device to clean buffers in
1606 * @block: Start of a range of blocks to clean
1607 * @len: Number of blocks to clean
1da177e4 1608 *
29f3ad7d
JK
1609 * We are taking a range of blocks for data and we don't want writeback of any
1610 * buffer-cache aliases starting from return from this function and until the
1611 * moment when something will explicitly mark the buffer dirty (hopefully that
1612 * will not happen until we will free that block ;-) We don't even need to mark
1613 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1614 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1615 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1616 * would confuse anyone who might pick it with bread() afterwards...
1617 *
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1619 * writeout I/O going on against recently-freed buffers. We don't wait on that
1620 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1621 * need to. That happens here.
1da177e4 1622 */
29f3ad7d 1623void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1da177e4 1624{
29f3ad7d
JK
1625 struct inode *bd_inode = bdev->bd_inode;
1626 struct address_space *bd_mapping = bd_inode->i_mapping;
1627 struct pagevec pvec;
1628 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1629 pgoff_t end;
1630 int i;
1631 struct buffer_head *bh;
1632 struct buffer_head *head;
1da177e4 1633
29f3ad7d
JK
1634 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1635 pagevec_init(&pvec, 0);
d72dc8a2 1636 while (index <= end && pagevec_lookup(&pvec, bd_mapping, &index,
29f3ad7d
JK
1637 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
1638 for (i = 0; i < pagevec_count(&pvec); i++) {
1639 struct page *page = pvec.pages[i];
1da177e4 1640
d72dc8a2 1641 if (page->index > end)
29f3ad7d
JK
1642 break;
1643 if (!page_has_buffers(page))
1644 continue;
1645 /*
1646 * We use page lock instead of bd_mapping->private_lock
1647 * to pin buffers here since we can afford to sleep and
1648 * it scales better than a global spinlock lock.
1649 */
1650 lock_page(page);
1651 /* Recheck when the page is locked which pins bhs */
1652 if (!page_has_buffers(page))
1653 goto unlock_page;
1654 head = page_buffers(page);
1655 bh = head;
1656 do {
6c006a9d 1657 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
29f3ad7d
JK
1658 goto next;
1659 if (bh->b_blocknr >= block + len)
1660 break;
1661 clear_buffer_dirty(bh);
1662 wait_on_buffer(bh);
1663 clear_buffer_req(bh);
1664next:
1665 bh = bh->b_this_page;
1666 } while (bh != head);
1667unlock_page:
1668 unlock_page(page);
1669 }
1670 pagevec_release(&pvec);
1671 cond_resched();
1da177e4
LT
1672 }
1673}
29f3ad7d 1674EXPORT_SYMBOL(clean_bdev_aliases);
1da177e4 1675
45bce8f3
LT
1676/*
1677 * Size is a power-of-two in the range 512..PAGE_SIZE,
1678 * and the case we care about most is PAGE_SIZE.
1679 *
1680 * So this *could* possibly be written with those
1681 * constraints in mind (relevant mostly if some
1682 * architecture has a slow bit-scan instruction)
1683 */
1684static inline int block_size_bits(unsigned int blocksize)
1685{
1686 return ilog2(blocksize);
1687}
1688
1689static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1690{
1691 BUG_ON(!PageLocked(page));
1692
1693 if (!page_has_buffers(page))
1694 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1695 return page_buffers(page);
1696}
1697
1da177e4
LT
1698/*
1699 * NOTE! All mapped/uptodate combinations are valid:
1700 *
1701 * Mapped Uptodate Meaning
1702 *
1703 * No No "unknown" - must do get_block()
1704 * No Yes "hole" - zero-filled
1705 * Yes No "allocated" - allocated on disk, not read in
1706 * Yes Yes "valid" - allocated and up-to-date in memory.
1707 *
1708 * "Dirty" is valid only with the last case (mapped+uptodate).
1709 */
1710
1711/*
1712 * While block_write_full_page is writing back the dirty buffers under
1713 * the page lock, whoever dirtied the buffers may decide to clean them
1714 * again at any time. We handle that by only looking at the buffer
1715 * state inside lock_buffer().
1716 *
1717 * If block_write_full_page() is called for regular writeback
1718 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1719 * locked buffer. This only can happen if someone has written the buffer
1720 * directly, with submit_bh(). At the address_space level PageWriteback
1721 * prevents this contention from occurring.
6e34eedd
TT
1722 *
1723 * If block_write_full_page() is called with wbc->sync_mode ==
70fd7614 1724 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
721a9602 1725 * causes the writes to be flagged as synchronous writes.
1da177e4 1726 */
b4bba389 1727int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1728 get_block_t *get_block, struct writeback_control *wbc,
1729 bh_end_io_t *handler)
1da177e4
LT
1730{
1731 int err;
1732 sector_t block;
1733 sector_t last_block;
f0fbd5fc 1734 struct buffer_head *bh, *head;
45bce8f3 1735 unsigned int blocksize, bbits;
1da177e4 1736 int nr_underway = 0;
7637241e 1737 int write_flags = wbc_to_write_flags(wbc);
1da177e4 1738
45bce8f3 1739 head = create_page_buffers(page, inode,
1da177e4 1740 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1741
1742 /*
1743 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1744 * here, and the (potentially unmapped) buffers may become dirty at
1745 * any time. If a buffer becomes dirty here after we've inspected it
1746 * then we just miss that fact, and the page stays dirty.
1747 *
1748 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1749 * handle that here by just cleaning them.
1750 */
1751
1da177e4 1752 bh = head;
45bce8f3
LT
1753 blocksize = bh->b_size;
1754 bbits = block_size_bits(blocksize);
1755
09cbfeaf 1756 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 1757 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1758
1759 /*
1760 * Get all the dirty buffers mapped to disk addresses and
1761 * handle any aliases from the underlying blockdev's mapping.
1762 */
1763 do {
1764 if (block > last_block) {
1765 /*
1766 * mapped buffers outside i_size will occur, because
1767 * this page can be outside i_size when there is a
1768 * truncate in progress.
1769 */
1770 /*
1771 * The buffer was zeroed by block_write_full_page()
1772 */
1773 clear_buffer_dirty(bh);
1774 set_buffer_uptodate(bh);
29a814d2
AT
1775 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1776 buffer_dirty(bh)) {
b0cf2321 1777 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1778 err = get_block(inode, block, bh, 1);
1779 if (err)
1780 goto recover;
29a814d2 1781 clear_buffer_delay(bh);
1da177e4
LT
1782 if (buffer_new(bh)) {
1783 /* blockdev mappings never come here */
1784 clear_buffer_new(bh);
e64855c6 1785 clean_bdev_bh_alias(bh);
1da177e4
LT
1786 }
1787 }
1788 bh = bh->b_this_page;
1789 block++;
1790 } while (bh != head);
1791
1792 do {
1da177e4
LT
1793 if (!buffer_mapped(bh))
1794 continue;
1795 /*
1796 * If it's a fully non-blocking write attempt and we cannot
1797 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1798 * potentially cause a busy-wait loop from writeback threads
1799 * and kswapd activity, but those code paths have their own
1800 * higher-level throttling.
1da177e4 1801 */
1b430bee 1802 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1803 lock_buffer(bh);
ca5de404 1804 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1805 redirty_page_for_writepage(wbc, page);
1806 continue;
1807 }
1808 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1809 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1810 } else {
1811 unlock_buffer(bh);
1812 }
1813 } while ((bh = bh->b_this_page) != head);
1814
1815 /*
1816 * The page and its buffers are protected by PageWriteback(), so we can
1817 * drop the bh refcounts early.
1818 */
1819 BUG_ON(PageWriteback(page));
1820 set_page_writeback(page);
1da177e4
LT
1821
1822 do {
1823 struct buffer_head *next = bh->b_this_page;
1824 if (buffer_async_write(bh)) {
8e8f9298
JA
1825 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1826 inode->i_write_hint, wbc);
1da177e4
LT
1827 nr_underway++;
1828 }
1da177e4
LT
1829 bh = next;
1830 } while (bh != head);
05937baa 1831 unlock_page(page);
1da177e4
LT
1832
1833 err = 0;
1834done:
1835 if (nr_underway == 0) {
1836 /*
1837 * The page was marked dirty, but the buffers were
1838 * clean. Someone wrote them back by hand with
1839 * ll_rw_block/submit_bh. A rare case.
1840 */
1da177e4 1841 end_page_writeback(page);
3d67f2d7 1842
1da177e4
LT
1843 /*
1844 * The page and buffer_heads can be released at any time from
1845 * here on.
1846 */
1da177e4
LT
1847 }
1848 return err;
1849
1850recover:
1851 /*
1852 * ENOSPC, or some other error. We may already have added some
1853 * blocks to the file, so we need to write these out to avoid
1854 * exposing stale data.
1855 * The page is currently locked and not marked for writeback
1856 */
1857 bh = head;
1858 /* Recovery: lock and submit the mapped buffers */
1859 do {
29a814d2
AT
1860 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1861 !buffer_delay(bh)) {
1da177e4 1862 lock_buffer(bh);
35c80d5f 1863 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1864 } else {
1865 /*
1866 * The buffer may have been set dirty during
1867 * attachment to a dirty page.
1868 */
1869 clear_buffer_dirty(bh);
1870 }
1871 } while ((bh = bh->b_this_page) != head);
1872 SetPageError(page);
1873 BUG_ON(PageWriteback(page));
7e4c3690 1874 mapping_set_error(page->mapping, err);
1da177e4 1875 set_page_writeback(page);
1da177e4
LT
1876 do {
1877 struct buffer_head *next = bh->b_this_page;
1878 if (buffer_async_write(bh)) {
1879 clear_buffer_dirty(bh);
8e8f9298
JA
1880 submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1881 inode->i_write_hint, wbc);
1da177e4
LT
1882 nr_underway++;
1883 }
1da177e4
LT
1884 bh = next;
1885 } while (bh != head);
ffda9d30 1886 unlock_page(page);
1da177e4
LT
1887 goto done;
1888}
b4bba389 1889EXPORT_SYMBOL(__block_write_full_page);
1da177e4 1890
afddba49
NP
1891/*
1892 * If a page has any new buffers, zero them out here, and mark them uptodate
1893 * and dirty so they'll be written out (in order to prevent uninitialised
1894 * block data from leaking). And clear the new bit.
1895 */
1896void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1897{
1898 unsigned int block_start, block_end;
1899 struct buffer_head *head, *bh;
1900
1901 BUG_ON(!PageLocked(page));
1902 if (!page_has_buffers(page))
1903 return;
1904
1905 bh = head = page_buffers(page);
1906 block_start = 0;
1907 do {
1908 block_end = block_start + bh->b_size;
1909
1910 if (buffer_new(bh)) {
1911 if (block_end > from && block_start < to) {
1912 if (!PageUptodate(page)) {
1913 unsigned start, size;
1914
1915 start = max(from, block_start);
1916 size = min(to, block_end) - start;
1917
eebd2aa3 1918 zero_user(page, start, size);
afddba49
NP
1919 set_buffer_uptodate(bh);
1920 }
1921
1922 clear_buffer_new(bh);
1923 mark_buffer_dirty(bh);
1924 }
1925 }
1926
1927 block_start = block_end;
1928 bh = bh->b_this_page;
1929 } while (bh != head);
1930}
1931EXPORT_SYMBOL(page_zero_new_buffers);
1932
ae259a9c
CH
1933static void
1934iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1935 struct iomap *iomap)
1936{
1937 loff_t offset = block << inode->i_blkbits;
1938
1939 bh->b_bdev = iomap->bdev;
1940
1941 /*
1942 * Block points to offset in file we need to map, iomap contains
1943 * the offset at which the map starts. If the map ends before the
1944 * current block, then do not map the buffer and let the caller
1945 * handle it.
1946 */
1947 BUG_ON(offset >= iomap->offset + iomap->length);
1948
1949 switch (iomap->type) {
1950 case IOMAP_HOLE:
1951 /*
1952 * If the buffer is not up to date or beyond the current EOF,
1953 * we need to mark it as new to ensure sub-block zeroing is
1954 * executed if necessary.
1955 */
1956 if (!buffer_uptodate(bh) ||
1957 (offset >= i_size_read(inode)))
1958 set_buffer_new(bh);
1959 break;
1960 case IOMAP_DELALLOC:
1961 if (!buffer_uptodate(bh) ||
1962 (offset >= i_size_read(inode)))
1963 set_buffer_new(bh);
1964 set_buffer_uptodate(bh);
1965 set_buffer_mapped(bh);
1966 set_buffer_delay(bh);
1967 break;
1968 case IOMAP_UNWRITTEN:
1969 /*
1970 * For unwritten regions, we always need to ensure that
1971 * sub-block writes cause the regions in the block we are not
1972 * writing to are zeroed. Set the buffer as new to ensure this.
1973 */
1974 set_buffer_new(bh);
1975 set_buffer_unwritten(bh);
1976 /* FALLTHRU */
1977 case IOMAP_MAPPED:
1978 if (offset >= i_size_read(inode))
1979 set_buffer_new(bh);
1980 bh->b_blocknr = (iomap->blkno >> (inode->i_blkbits - 9)) +
1981 ((offset - iomap->offset) >> inode->i_blkbits);
1982 set_buffer_mapped(bh);
1983 break;
1984 }
1985}
1986
1987int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1988 get_block_t *get_block, struct iomap *iomap)
1da177e4 1989{
09cbfeaf 1990 unsigned from = pos & (PAGE_SIZE - 1);
ebdec241 1991 unsigned to = from + len;
6e1db88d 1992 struct inode *inode = page->mapping->host;
1da177e4
LT
1993 unsigned block_start, block_end;
1994 sector_t block;
1995 int err = 0;
1996 unsigned blocksize, bbits;
1997 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1998
1999 BUG_ON(!PageLocked(page));
09cbfeaf
KS
2000 BUG_ON(from > PAGE_SIZE);
2001 BUG_ON(to > PAGE_SIZE);
1da177e4
LT
2002 BUG_ON(from > to);
2003
45bce8f3
LT
2004 head = create_page_buffers(page, inode, 0);
2005 blocksize = head->b_size;
2006 bbits = block_size_bits(blocksize);
1da177e4 2007
09cbfeaf 2008 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1da177e4
LT
2009
2010 for(bh = head, block_start = 0; bh != head || !block_start;
2011 block++, block_start=block_end, bh = bh->b_this_page) {
2012 block_end = block_start + blocksize;
2013 if (block_end <= from || block_start >= to) {
2014 if (PageUptodate(page)) {
2015 if (!buffer_uptodate(bh))
2016 set_buffer_uptodate(bh);
2017 }
2018 continue;
2019 }
2020 if (buffer_new(bh))
2021 clear_buffer_new(bh);
2022 if (!buffer_mapped(bh)) {
b0cf2321 2023 WARN_ON(bh->b_size != blocksize);
ae259a9c
CH
2024 if (get_block) {
2025 err = get_block(inode, block, bh, 1);
2026 if (err)
2027 break;
2028 } else {
2029 iomap_to_bh(inode, block, bh, iomap);
2030 }
2031
1da177e4 2032 if (buffer_new(bh)) {
e64855c6 2033 clean_bdev_bh_alias(bh);
1da177e4 2034 if (PageUptodate(page)) {
637aff46 2035 clear_buffer_new(bh);
1da177e4 2036 set_buffer_uptodate(bh);
637aff46 2037 mark_buffer_dirty(bh);
1da177e4
LT
2038 continue;
2039 }
eebd2aa3
CL
2040 if (block_end > to || block_start < from)
2041 zero_user_segments(page,
2042 to, block_end,
2043 block_start, from);
1da177e4
LT
2044 continue;
2045 }
2046 }
2047 if (PageUptodate(page)) {
2048 if (!buffer_uptodate(bh))
2049 set_buffer_uptodate(bh);
2050 continue;
2051 }
2052 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 2053 !buffer_unwritten(bh) &&
1da177e4 2054 (block_start < from || block_end > to)) {
dfec8a14 2055 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2056 *wait_bh++=bh;
2057 }
2058 }
2059 /*
2060 * If we issued read requests - let them complete.
2061 */
2062 while(wait_bh > wait) {
2063 wait_on_buffer(*--wait_bh);
2064 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 2065 err = -EIO;
1da177e4 2066 }
f9f07b6c 2067 if (unlikely(err))
afddba49 2068 page_zero_new_buffers(page, from, to);
1da177e4
LT
2069 return err;
2070}
ae259a9c
CH
2071
2072int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2073 get_block_t *get_block)
2074{
2075 return __block_write_begin_int(page, pos, len, get_block, NULL);
2076}
ebdec241 2077EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
2078
2079static int __block_commit_write(struct inode *inode, struct page *page,
2080 unsigned from, unsigned to)
2081{
2082 unsigned block_start, block_end;
2083 int partial = 0;
2084 unsigned blocksize;
2085 struct buffer_head *bh, *head;
2086
45bce8f3
LT
2087 bh = head = page_buffers(page);
2088 blocksize = bh->b_size;
1da177e4 2089
45bce8f3
LT
2090 block_start = 0;
2091 do {
1da177e4
LT
2092 block_end = block_start + blocksize;
2093 if (block_end <= from || block_start >= to) {
2094 if (!buffer_uptodate(bh))
2095 partial = 1;
2096 } else {
2097 set_buffer_uptodate(bh);
2098 mark_buffer_dirty(bh);
2099 }
afddba49 2100 clear_buffer_new(bh);
45bce8f3
LT
2101
2102 block_start = block_end;
2103 bh = bh->b_this_page;
2104 } while (bh != head);
1da177e4
LT
2105
2106 /*
2107 * If this is a partial write which happened to make all buffers
2108 * uptodate then we can optimize away a bogus readpage() for
2109 * the next read(). Here we 'discover' whether the page went
2110 * uptodate as a result of this (potentially partial) write.
2111 */
2112 if (!partial)
2113 SetPageUptodate(page);
2114 return 0;
2115}
2116
afddba49 2117/*
155130a4
CH
2118 * block_write_begin takes care of the basic task of block allocation and
2119 * bringing partial write blocks uptodate first.
2120 *
7bb46a67 2121 * The filesystem needs to handle block truncation upon failure.
afddba49 2122 */
155130a4
CH
2123int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2124 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2125{
09cbfeaf 2126 pgoff_t index = pos >> PAGE_SHIFT;
afddba49 2127 struct page *page;
6e1db88d 2128 int status;
afddba49 2129
6e1db88d
CH
2130 page = grab_cache_page_write_begin(mapping, index, flags);
2131 if (!page)
2132 return -ENOMEM;
afddba49 2133
6e1db88d 2134 status = __block_write_begin(page, pos, len, get_block);
afddba49 2135 if (unlikely(status)) {
6e1db88d 2136 unlock_page(page);
09cbfeaf 2137 put_page(page);
6e1db88d 2138 page = NULL;
afddba49
NP
2139 }
2140
6e1db88d 2141 *pagep = page;
afddba49
NP
2142 return status;
2143}
2144EXPORT_SYMBOL(block_write_begin);
2145
2146int block_write_end(struct file *file, struct address_space *mapping,
2147 loff_t pos, unsigned len, unsigned copied,
2148 struct page *page, void *fsdata)
2149{
2150 struct inode *inode = mapping->host;
2151 unsigned start;
2152
09cbfeaf 2153 start = pos & (PAGE_SIZE - 1);
afddba49
NP
2154
2155 if (unlikely(copied < len)) {
2156 /*
2157 * The buffers that were written will now be uptodate, so we
2158 * don't have to worry about a readpage reading them and
2159 * overwriting a partial write. However if we have encountered
2160 * a short write and only partially written into a buffer, it
2161 * will not be marked uptodate, so a readpage might come in and
2162 * destroy our partial write.
2163 *
2164 * Do the simplest thing, and just treat any short write to a
2165 * non uptodate page as a zero-length write, and force the
2166 * caller to redo the whole thing.
2167 */
2168 if (!PageUptodate(page))
2169 copied = 0;
2170
2171 page_zero_new_buffers(page, start+copied, start+len);
2172 }
2173 flush_dcache_page(page);
2174
2175 /* This could be a short (even 0-length) commit */
2176 __block_commit_write(inode, page, start, start+copied);
2177
2178 return copied;
2179}
2180EXPORT_SYMBOL(block_write_end);
2181
2182int generic_write_end(struct file *file, struct address_space *mapping,
2183 loff_t pos, unsigned len, unsigned copied,
2184 struct page *page, void *fsdata)
2185{
2186 struct inode *inode = mapping->host;
90a80202 2187 loff_t old_size = inode->i_size;
c7d206b3 2188 int i_size_changed = 0;
afddba49
NP
2189
2190 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2191
2192 /*
2193 * No need to use i_size_read() here, the i_size
2194 * cannot change under us because we hold i_mutex.
2195 *
2196 * But it's important to update i_size while still holding page lock:
2197 * page writeout could otherwise come in and zero beyond i_size.
2198 */
2199 if (pos+copied > inode->i_size) {
2200 i_size_write(inode, pos+copied);
c7d206b3 2201 i_size_changed = 1;
afddba49
NP
2202 }
2203
2204 unlock_page(page);
09cbfeaf 2205 put_page(page);
afddba49 2206
90a80202
JK
2207 if (old_size < pos)
2208 pagecache_isize_extended(inode, old_size, pos);
c7d206b3
JK
2209 /*
2210 * Don't mark the inode dirty under page lock. First, it unnecessarily
2211 * makes the holding time of page lock longer. Second, it forces lock
2212 * ordering of page lock and transaction start for journaling
2213 * filesystems.
2214 */
2215 if (i_size_changed)
2216 mark_inode_dirty(inode);
2217
afddba49
NP
2218 return copied;
2219}
2220EXPORT_SYMBOL(generic_write_end);
2221
8ab22b9a
HH
2222/*
2223 * block_is_partially_uptodate checks whether buffers within a page are
2224 * uptodate or not.
2225 *
2226 * Returns true if all buffers which correspond to a file portion
2227 * we want to read are uptodate.
2228 */
c186afb4
AV
2229int block_is_partially_uptodate(struct page *page, unsigned long from,
2230 unsigned long count)
8ab22b9a 2231{
8ab22b9a
HH
2232 unsigned block_start, block_end, blocksize;
2233 unsigned to;
2234 struct buffer_head *bh, *head;
2235 int ret = 1;
2236
2237 if (!page_has_buffers(page))
2238 return 0;
2239
45bce8f3
LT
2240 head = page_buffers(page);
2241 blocksize = head->b_size;
09cbfeaf 2242 to = min_t(unsigned, PAGE_SIZE - from, count);
8ab22b9a 2243 to = from + to;
09cbfeaf 2244 if (from < blocksize && to > PAGE_SIZE - blocksize)
8ab22b9a
HH
2245 return 0;
2246
8ab22b9a
HH
2247 bh = head;
2248 block_start = 0;
2249 do {
2250 block_end = block_start + blocksize;
2251 if (block_end > from && block_start < to) {
2252 if (!buffer_uptodate(bh)) {
2253 ret = 0;
2254 break;
2255 }
2256 if (block_end >= to)
2257 break;
2258 }
2259 block_start = block_end;
2260 bh = bh->b_this_page;
2261 } while (bh != head);
2262
2263 return ret;
2264}
2265EXPORT_SYMBOL(block_is_partially_uptodate);
2266
1da177e4
LT
2267/*
2268 * Generic "read page" function for block devices that have the normal
2269 * get_block functionality. This is most of the block device filesystems.
2270 * Reads the page asynchronously --- the unlock_buffer() and
2271 * set/clear_buffer_uptodate() functions propagate buffer state into the
2272 * page struct once IO has completed.
2273 */
2274int block_read_full_page(struct page *page, get_block_t *get_block)
2275{
2276 struct inode *inode = page->mapping->host;
2277 sector_t iblock, lblock;
2278 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2279 unsigned int blocksize, bbits;
1da177e4
LT
2280 int nr, i;
2281 int fully_mapped = 1;
2282
45bce8f3
LT
2283 head = create_page_buffers(page, inode, 0);
2284 blocksize = head->b_size;
2285 bbits = block_size_bits(blocksize);
1da177e4 2286
09cbfeaf 2287 iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
45bce8f3 2288 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2289 bh = head;
2290 nr = 0;
2291 i = 0;
2292
2293 do {
2294 if (buffer_uptodate(bh))
2295 continue;
2296
2297 if (!buffer_mapped(bh)) {
c64610ba
AM
2298 int err = 0;
2299
1da177e4
LT
2300 fully_mapped = 0;
2301 if (iblock < lblock) {
b0cf2321 2302 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2303 err = get_block(inode, iblock, bh, 0);
2304 if (err)
1da177e4
LT
2305 SetPageError(page);
2306 }
2307 if (!buffer_mapped(bh)) {
eebd2aa3 2308 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2309 if (!err)
2310 set_buffer_uptodate(bh);
1da177e4
LT
2311 continue;
2312 }
2313 /*
2314 * get_block() might have updated the buffer
2315 * synchronously
2316 */
2317 if (buffer_uptodate(bh))
2318 continue;
2319 }
2320 arr[nr++] = bh;
2321 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2322
2323 if (fully_mapped)
2324 SetPageMappedToDisk(page);
2325
2326 if (!nr) {
2327 /*
2328 * All buffers are uptodate - we can set the page uptodate
2329 * as well. But not if get_block() returned an error.
2330 */
2331 if (!PageError(page))
2332 SetPageUptodate(page);
2333 unlock_page(page);
2334 return 0;
2335 }
2336
2337 /* Stage two: lock the buffers */
2338 for (i = 0; i < nr; i++) {
2339 bh = arr[i];
2340 lock_buffer(bh);
2341 mark_buffer_async_read(bh);
2342 }
2343
2344 /*
2345 * Stage 3: start the IO. Check for uptodateness
2346 * inside the buffer lock in case another process reading
2347 * the underlying blockdev brought it uptodate (the sct fix).
2348 */
2349 for (i = 0; i < nr; i++) {
2350 bh = arr[i];
2351 if (buffer_uptodate(bh))
2352 end_buffer_async_read(bh, 1);
2353 else
2a222ca9 2354 submit_bh(REQ_OP_READ, 0, bh);
1da177e4
LT
2355 }
2356 return 0;
2357}
1fe72eaa 2358EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2359
2360/* utility function for filesystems that need to do work on expanding
89e10787 2361 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2362 * deal with the hole.
2363 */
89e10787 2364int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2365{
2366 struct address_space *mapping = inode->i_mapping;
2367 struct page *page;
89e10787 2368 void *fsdata;
1da177e4
LT
2369 int err;
2370
c08d3b0e 2371 err = inode_newsize_ok(inode, size);
2372 if (err)
1da177e4
LT
2373 goto out;
2374
89e10787 2375 err = pagecache_write_begin(NULL, mapping, size, 0,
c718a975 2376 AOP_FLAG_CONT_EXPAND, &page, &fsdata);
89e10787 2377 if (err)
05eb0b51 2378 goto out;
05eb0b51 2379
89e10787
NP
2380 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2381 BUG_ON(err > 0);
05eb0b51 2382
1da177e4
LT
2383out:
2384 return err;
2385}
1fe72eaa 2386EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2387
f1e3af72
AB
2388static int cont_expand_zero(struct file *file, struct address_space *mapping,
2389 loff_t pos, loff_t *bytes)
1da177e4 2390{
1da177e4 2391 struct inode *inode = mapping->host;
93407472 2392 unsigned int blocksize = i_blocksize(inode);
89e10787
NP
2393 struct page *page;
2394 void *fsdata;
2395 pgoff_t index, curidx;
2396 loff_t curpos;
2397 unsigned zerofrom, offset, len;
2398 int err = 0;
1da177e4 2399
09cbfeaf
KS
2400 index = pos >> PAGE_SHIFT;
2401 offset = pos & ~PAGE_MASK;
89e10787 2402
09cbfeaf
KS
2403 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2404 zerofrom = curpos & ~PAGE_MASK;
1da177e4
LT
2405 if (zerofrom & (blocksize-1)) {
2406 *bytes |= (blocksize-1);
2407 (*bytes)++;
2408 }
09cbfeaf 2409 len = PAGE_SIZE - zerofrom;
1da177e4 2410
c718a975
TH
2411 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2412 &page, &fsdata);
89e10787
NP
2413 if (err)
2414 goto out;
eebd2aa3 2415 zero_user(page, zerofrom, len);
89e10787
NP
2416 err = pagecache_write_end(file, mapping, curpos, len, len,
2417 page, fsdata);
2418 if (err < 0)
2419 goto out;
2420 BUG_ON(err != len);
2421 err = 0;
061e9746
OH
2422
2423 balance_dirty_pages_ratelimited(mapping);
c2ca0fcd
MP
2424
2425 if (unlikely(fatal_signal_pending(current))) {
2426 err = -EINTR;
2427 goto out;
2428 }
89e10787 2429 }
1da177e4 2430
89e10787
NP
2431 /* page covers the boundary, find the boundary offset */
2432 if (index == curidx) {
09cbfeaf 2433 zerofrom = curpos & ~PAGE_MASK;
1da177e4 2434 /* if we will expand the thing last block will be filled */
89e10787
NP
2435 if (offset <= zerofrom) {
2436 goto out;
2437 }
2438 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2439 *bytes |= (blocksize-1);
2440 (*bytes)++;
2441 }
89e10787 2442 len = offset - zerofrom;
1da177e4 2443
c718a975
TH
2444 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2445 &page, &fsdata);
89e10787
NP
2446 if (err)
2447 goto out;
eebd2aa3 2448 zero_user(page, zerofrom, len);
89e10787
NP
2449 err = pagecache_write_end(file, mapping, curpos, len, len,
2450 page, fsdata);
2451 if (err < 0)
2452 goto out;
2453 BUG_ON(err != len);
2454 err = 0;
1da177e4 2455 }
89e10787
NP
2456out:
2457 return err;
2458}
2459
2460/*
2461 * For moronic filesystems that do not allow holes in file.
2462 * We may have to extend the file.
2463 */
282dc178 2464int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2465 loff_t pos, unsigned len, unsigned flags,
2466 struct page **pagep, void **fsdata,
2467 get_block_t *get_block, loff_t *bytes)
2468{
2469 struct inode *inode = mapping->host;
93407472
FF
2470 unsigned int blocksize = i_blocksize(inode);
2471 unsigned int zerofrom;
89e10787
NP
2472 int err;
2473
2474 err = cont_expand_zero(file, mapping, pos, bytes);
2475 if (err)
155130a4 2476 return err;
89e10787 2477
09cbfeaf 2478 zerofrom = *bytes & ~PAGE_MASK;
89e10787
NP
2479 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2480 *bytes |= (blocksize-1);
2481 (*bytes)++;
1da177e4 2482 }
1da177e4 2483
155130a4 2484 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2485}
1fe72eaa 2486EXPORT_SYMBOL(cont_write_begin);
1da177e4 2487
1da177e4
LT
2488int block_commit_write(struct page *page, unsigned from, unsigned to)
2489{
2490 struct inode *inode = page->mapping->host;
2491 __block_commit_write(inode,page,from,to);
2492 return 0;
2493}
1fe72eaa 2494EXPORT_SYMBOL(block_commit_write);
1da177e4 2495
54171690
DC
2496/*
2497 * block_page_mkwrite() is not allowed to change the file size as it gets
2498 * called from a page fault handler when a page is first dirtied. Hence we must
2499 * be careful to check for EOF conditions here. We set the page up correctly
2500 * for a written page which means we get ENOSPC checking when writing into
2501 * holes and correct delalloc and unwritten extent mapping on filesystems that
2502 * support these features.
2503 *
2504 * We are not allowed to take the i_mutex here so we have to play games to
2505 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2506 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2507 * page lock we can determine safely if the page is beyond EOF. If it is not
2508 * beyond EOF, then the page is guaranteed safe against truncation until we
2509 * unlock the page.
ea13a864 2510 *
14da9200 2511 * Direct callers of this function should protect against filesystem freezing
5c500029 2512 * using sb_start_pagefault() - sb_end_pagefault() functions.
54171690 2513 */
5c500029 2514int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
24da4fab 2515 get_block_t get_block)
54171690 2516{
c2ec175c 2517 struct page *page = vmf->page;
496ad9aa 2518 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2519 unsigned long end;
2520 loff_t size;
24da4fab 2521 int ret;
54171690
DC
2522
2523 lock_page(page);
2524 size = i_size_read(inode);
2525 if ((page->mapping != inode->i_mapping) ||
18336338 2526 (page_offset(page) > size)) {
24da4fab
JK
2527 /* We overload EFAULT to mean page got truncated */
2528 ret = -EFAULT;
2529 goto out_unlock;
54171690
DC
2530 }
2531
2532 /* page is wholly or partially inside EOF */
09cbfeaf
KS
2533 if (((page->index + 1) << PAGE_SHIFT) > size)
2534 end = size & ~PAGE_MASK;
54171690 2535 else
09cbfeaf 2536 end = PAGE_SIZE;
54171690 2537
ebdec241 2538 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2539 if (!ret)
2540 ret = block_commit_write(page, 0, end);
2541
24da4fab
JK
2542 if (unlikely(ret < 0))
2543 goto out_unlock;
ea13a864 2544 set_page_dirty(page);
1d1d1a76 2545 wait_for_stable_page(page);
24da4fab
JK
2546 return 0;
2547out_unlock:
2548 unlock_page(page);
54171690 2549 return ret;
24da4fab 2550}
1fe72eaa 2551EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2552
2553/*
03158cd7 2554 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2555 * immediately, while under the page lock. So it needs a special end_io
2556 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2557 */
2558static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2559{
68671f35 2560 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2561}
2562
03158cd7
NP
2563/*
2564 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2565 * the page (converting it to circular linked list and taking care of page
2566 * dirty races).
2567 */
2568static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2569{
2570 struct buffer_head *bh;
2571
2572 BUG_ON(!PageLocked(page));
2573
2574 spin_lock(&page->mapping->private_lock);
2575 bh = head;
2576 do {
2577 if (PageDirty(page))
2578 set_buffer_dirty(bh);
2579 if (!bh->b_this_page)
2580 bh->b_this_page = head;
2581 bh = bh->b_this_page;
2582 } while (bh != head);
2583 attach_page_buffers(page, head);
2584 spin_unlock(&page->mapping->private_lock);
2585}
2586
1da177e4 2587/*
ea0f04e5
CH
2588 * On entry, the page is fully not uptodate.
2589 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2590 * The filesystem needs to handle block truncation upon failure.
1da177e4 2591 */
ea0f04e5 2592int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2593 loff_t pos, unsigned len, unsigned flags,
2594 struct page **pagep, void **fsdata,
1da177e4
LT
2595 get_block_t *get_block)
2596{
03158cd7 2597 struct inode *inode = mapping->host;
1da177e4
LT
2598 const unsigned blkbits = inode->i_blkbits;
2599 const unsigned blocksize = 1 << blkbits;
a4b0672d 2600 struct buffer_head *head, *bh;
03158cd7
NP
2601 struct page *page;
2602 pgoff_t index;
2603 unsigned from, to;
1da177e4 2604 unsigned block_in_page;
a4b0672d 2605 unsigned block_start, block_end;
1da177e4 2606 sector_t block_in_file;
1da177e4 2607 int nr_reads = 0;
1da177e4
LT
2608 int ret = 0;
2609 int is_mapped_to_disk = 1;
1da177e4 2610
09cbfeaf
KS
2611 index = pos >> PAGE_SHIFT;
2612 from = pos & (PAGE_SIZE - 1);
03158cd7
NP
2613 to = from + len;
2614
54566b2c 2615 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2616 if (!page)
2617 return -ENOMEM;
2618 *pagep = page;
2619 *fsdata = NULL;
2620
2621 if (page_has_buffers(page)) {
309f77ad
NK
2622 ret = __block_write_begin(page, pos, len, get_block);
2623 if (unlikely(ret))
2624 goto out_release;
2625 return ret;
03158cd7 2626 }
a4b0672d 2627
1da177e4
LT
2628 if (PageMappedToDisk(page))
2629 return 0;
2630
a4b0672d
NP
2631 /*
2632 * Allocate buffers so that we can keep track of state, and potentially
2633 * attach them to the page if an error occurs. In the common case of
2634 * no error, they will just be freed again without ever being attached
2635 * to the page (which is all OK, because we're under the page lock).
2636 *
2637 * Be careful: the buffer linked list is a NULL terminated one, rather
2638 * than the circular one we're used to.
2639 */
2640 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2641 if (!head) {
2642 ret = -ENOMEM;
2643 goto out_release;
2644 }
a4b0672d 2645
09cbfeaf 2646 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
1da177e4
LT
2647
2648 /*
2649 * We loop across all blocks in the page, whether or not they are
2650 * part of the affected region. This is so we can discover if the
2651 * page is fully mapped-to-disk.
2652 */
a4b0672d 2653 for (block_start = 0, block_in_page = 0, bh = head;
09cbfeaf 2654 block_start < PAGE_SIZE;
a4b0672d 2655 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2656 int create;
2657
a4b0672d
NP
2658 block_end = block_start + blocksize;
2659 bh->b_state = 0;
1da177e4
LT
2660 create = 1;
2661 if (block_start >= to)
2662 create = 0;
2663 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2664 bh, create);
1da177e4
LT
2665 if (ret)
2666 goto failed;
a4b0672d 2667 if (!buffer_mapped(bh))
1da177e4 2668 is_mapped_to_disk = 0;
a4b0672d 2669 if (buffer_new(bh))
e64855c6 2670 clean_bdev_bh_alias(bh);
a4b0672d
NP
2671 if (PageUptodate(page)) {
2672 set_buffer_uptodate(bh);
1da177e4 2673 continue;
a4b0672d
NP
2674 }
2675 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2676 zero_user_segments(page, block_start, from,
2677 to, block_end);
1da177e4
LT
2678 continue;
2679 }
a4b0672d 2680 if (buffer_uptodate(bh))
1da177e4
LT
2681 continue; /* reiserfs does this */
2682 if (block_start < from || block_end > to) {
a4b0672d
NP
2683 lock_buffer(bh);
2684 bh->b_end_io = end_buffer_read_nobh;
2a222ca9 2685 submit_bh(REQ_OP_READ, 0, bh);
a4b0672d 2686 nr_reads++;
1da177e4
LT
2687 }
2688 }
2689
2690 if (nr_reads) {
1da177e4
LT
2691 /*
2692 * The page is locked, so these buffers are protected from
2693 * any VM or truncate activity. Hence we don't need to care
2694 * for the buffer_head refcounts.
2695 */
a4b0672d 2696 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2697 wait_on_buffer(bh);
2698 if (!buffer_uptodate(bh))
2699 ret = -EIO;
1da177e4
LT
2700 }
2701 if (ret)
2702 goto failed;
2703 }
2704
2705 if (is_mapped_to_disk)
2706 SetPageMappedToDisk(page);
1da177e4 2707
03158cd7 2708 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2709
1da177e4
LT
2710 return 0;
2711
2712failed:
03158cd7 2713 BUG_ON(!ret);
1da177e4 2714 /*
a4b0672d
NP
2715 * Error recovery is a bit difficult. We need to zero out blocks that
2716 * were newly allocated, and dirty them to ensure they get written out.
2717 * Buffers need to be attached to the page at this point, otherwise
2718 * the handling of potential IO errors during writeout would be hard
2719 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2720 */
03158cd7
NP
2721 attach_nobh_buffers(page, head);
2722 page_zero_new_buffers(page, from, to);
a4b0672d 2723
03158cd7
NP
2724out_release:
2725 unlock_page(page);
09cbfeaf 2726 put_page(page);
03158cd7 2727 *pagep = NULL;
a4b0672d 2728
7bb46a67 2729 return ret;
2730}
03158cd7 2731EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2732
03158cd7
NP
2733int nobh_write_end(struct file *file, struct address_space *mapping,
2734 loff_t pos, unsigned len, unsigned copied,
2735 struct page *page, void *fsdata)
1da177e4
LT
2736{
2737 struct inode *inode = page->mapping->host;
efdc3131 2738 struct buffer_head *head = fsdata;
03158cd7 2739 struct buffer_head *bh;
5b41e74a 2740 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2741
d4cf109f 2742 if (unlikely(copied < len) && head)
5b41e74a
DM
2743 attach_nobh_buffers(page, head);
2744 if (page_has_buffers(page))
2745 return generic_write_end(file, mapping, pos, len,
2746 copied, page, fsdata);
a4b0672d 2747
22c8ca78 2748 SetPageUptodate(page);
1da177e4 2749 set_page_dirty(page);
03158cd7
NP
2750 if (pos+copied > inode->i_size) {
2751 i_size_write(inode, pos+copied);
1da177e4
LT
2752 mark_inode_dirty(inode);
2753 }
03158cd7
NP
2754
2755 unlock_page(page);
09cbfeaf 2756 put_page(page);
03158cd7 2757
03158cd7
NP
2758 while (head) {
2759 bh = head;
2760 head = head->b_this_page;
2761 free_buffer_head(bh);
2762 }
2763
2764 return copied;
1da177e4 2765}
03158cd7 2766EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2767
2768/*
2769 * nobh_writepage() - based on block_full_write_page() except
2770 * that it tries to operate without attaching bufferheads to
2771 * the page.
2772 */
2773int nobh_writepage(struct page *page, get_block_t *get_block,
2774 struct writeback_control *wbc)
2775{
2776 struct inode * const inode = page->mapping->host;
2777 loff_t i_size = i_size_read(inode);
09cbfeaf 2778 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2779 unsigned offset;
1da177e4
LT
2780 int ret;
2781
2782 /* Is the page fully inside i_size? */
2783 if (page->index < end_index)
2784 goto out;
2785
2786 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2787 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2788 if (page->index >= end_index+1 || !offset) {
2789 /*
2790 * The page may have dirty, unmapped buffers. For example,
2791 * they may have been added in ext3_writepage(). Make them
2792 * freeable here, so the page does not leak.
2793 */
2794#if 0
2795 /* Not really sure about this - do we need this ? */
2796 if (page->mapping->a_ops->invalidatepage)
2797 page->mapping->a_ops->invalidatepage(page, offset);
2798#endif
2799 unlock_page(page);
2800 return 0; /* don't care */
2801 }
2802
2803 /*
2804 * The page straddles i_size. It must be zeroed out on each and every
2805 * writepage invocation because it may be mmapped. "A file is mapped
2806 * in multiples of the page size. For a file that is not a multiple of
2807 * the page size, the remaining memory is zeroed when mapped, and
2808 * writes to that region are not written out to the file."
2809 */
09cbfeaf 2810 zero_user_segment(page, offset, PAGE_SIZE);
1da177e4
LT
2811out:
2812 ret = mpage_writepage(page, get_block, wbc);
2813 if (ret == -EAGAIN)
35c80d5f
CM
2814 ret = __block_write_full_page(inode, page, get_block, wbc,
2815 end_buffer_async_write);
1da177e4
LT
2816 return ret;
2817}
2818EXPORT_SYMBOL(nobh_writepage);
2819
03158cd7
NP
2820int nobh_truncate_page(struct address_space *mapping,
2821 loff_t from, get_block_t *get_block)
1da177e4 2822{
09cbfeaf
KS
2823 pgoff_t index = from >> PAGE_SHIFT;
2824 unsigned offset = from & (PAGE_SIZE-1);
03158cd7
NP
2825 unsigned blocksize;
2826 sector_t iblock;
2827 unsigned length, pos;
2828 struct inode *inode = mapping->host;
1da177e4 2829 struct page *page;
03158cd7
NP
2830 struct buffer_head map_bh;
2831 int err;
1da177e4 2832
93407472 2833 blocksize = i_blocksize(inode);
03158cd7
NP
2834 length = offset & (blocksize - 1);
2835
2836 /* Block boundary? Nothing to do */
2837 if (!length)
2838 return 0;
2839
2840 length = blocksize - length;
09cbfeaf 2841 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4 2842
1da177e4 2843 page = grab_cache_page(mapping, index);
03158cd7 2844 err = -ENOMEM;
1da177e4
LT
2845 if (!page)
2846 goto out;
2847
03158cd7
NP
2848 if (page_has_buffers(page)) {
2849has_buffers:
2850 unlock_page(page);
09cbfeaf 2851 put_page(page);
03158cd7
NP
2852 return block_truncate_page(mapping, from, get_block);
2853 }
2854
2855 /* Find the buffer that contains "offset" */
2856 pos = blocksize;
2857 while (offset >= pos) {
2858 iblock++;
2859 pos += blocksize;
2860 }
2861
460bcf57
TT
2862 map_bh.b_size = blocksize;
2863 map_bh.b_state = 0;
03158cd7
NP
2864 err = get_block(inode, iblock, &map_bh, 0);
2865 if (err)
2866 goto unlock;
2867 /* unmapped? It's a hole - nothing to do */
2868 if (!buffer_mapped(&map_bh))
2869 goto unlock;
2870
2871 /* Ok, it's mapped. Make sure it's up-to-date */
2872 if (!PageUptodate(page)) {
2873 err = mapping->a_ops->readpage(NULL, page);
2874 if (err) {
09cbfeaf 2875 put_page(page);
03158cd7
NP
2876 goto out;
2877 }
2878 lock_page(page);
2879 if (!PageUptodate(page)) {
2880 err = -EIO;
2881 goto unlock;
2882 }
2883 if (page_has_buffers(page))
2884 goto has_buffers;
1da177e4 2885 }
eebd2aa3 2886 zero_user(page, offset, length);
03158cd7
NP
2887 set_page_dirty(page);
2888 err = 0;
2889
2890unlock:
1da177e4 2891 unlock_page(page);
09cbfeaf 2892 put_page(page);
1da177e4 2893out:
03158cd7 2894 return err;
1da177e4
LT
2895}
2896EXPORT_SYMBOL(nobh_truncate_page);
2897
2898int block_truncate_page(struct address_space *mapping,
2899 loff_t from, get_block_t *get_block)
2900{
09cbfeaf
KS
2901 pgoff_t index = from >> PAGE_SHIFT;
2902 unsigned offset = from & (PAGE_SIZE-1);
1da177e4 2903 unsigned blocksize;
54b21a79 2904 sector_t iblock;
1da177e4
LT
2905 unsigned length, pos;
2906 struct inode *inode = mapping->host;
2907 struct page *page;
2908 struct buffer_head *bh;
1da177e4
LT
2909 int err;
2910
93407472 2911 blocksize = i_blocksize(inode);
1da177e4
LT
2912 length = offset & (blocksize - 1);
2913
2914 /* Block boundary? Nothing to do */
2915 if (!length)
2916 return 0;
2917
2918 length = blocksize - length;
09cbfeaf 2919 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
1da177e4
LT
2920
2921 page = grab_cache_page(mapping, index);
2922 err = -ENOMEM;
2923 if (!page)
2924 goto out;
2925
2926 if (!page_has_buffers(page))
2927 create_empty_buffers(page, blocksize, 0);
2928
2929 /* Find the buffer that contains "offset" */
2930 bh = page_buffers(page);
2931 pos = blocksize;
2932 while (offset >= pos) {
2933 bh = bh->b_this_page;
2934 iblock++;
2935 pos += blocksize;
2936 }
2937
2938 err = 0;
2939 if (!buffer_mapped(bh)) {
b0cf2321 2940 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2941 err = get_block(inode, iblock, bh, 0);
2942 if (err)
2943 goto unlock;
2944 /* unmapped? It's a hole - nothing to do */
2945 if (!buffer_mapped(bh))
2946 goto unlock;
2947 }
2948
2949 /* Ok, it's mapped. Make sure it's up-to-date */
2950 if (PageUptodate(page))
2951 set_buffer_uptodate(bh);
2952
33a266dd 2953 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4 2954 err = -EIO;
dfec8a14 2955 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1da177e4
LT
2956 wait_on_buffer(bh);
2957 /* Uhhuh. Read error. Complain and punt. */
2958 if (!buffer_uptodate(bh))
2959 goto unlock;
2960 }
2961
eebd2aa3 2962 zero_user(page, offset, length);
1da177e4
LT
2963 mark_buffer_dirty(bh);
2964 err = 0;
2965
2966unlock:
2967 unlock_page(page);
09cbfeaf 2968 put_page(page);
1da177e4
LT
2969out:
2970 return err;
2971}
1fe72eaa 2972EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2973
2974/*
2975 * The generic ->writepage function for buffer-backed address_spaces
2976 */
1b938c08
MW
2977int block_write_full_page(struct page *page, get_block_t *get_block,
2978 struct writeback_control *wbc)
1da177e4
LT
2979{
2980 struct inode * const inode = page->mapping->host;
2981 loff_t i_size = i_size_read(inode);
09cbfeaf 2982 const pgoff_t end_index = i_size >> PAGE_SHIFT;
1da177e4 2983 unsigned offset;
1da177e4
LT
2984
2985 /* Is the page fully inside i_size? */
2986 if (page->index < end_index)
35c80d5f 2987 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2988 end_buffer_async_write);
1da177e4
LT
2989
2990 /* Is the page fully outside i_size? (truncate in progress) */
09cbfeaf 2991 offset = i_size & (PAGE_SIZE-1);
1da177e4
LT
2992 if (page->index >= end_index+1 || !offset) {
2993 /*
2994 * The page may have dirty, unmapped buffers. For example,
2995 * they may have been added in ext3_writepage(). Make them
2996 * freeable here, so the page does not leak.
2997 */
09cbfeaf 2998 do_invalidatepage(page, 0, PAGE_SIZE);
1da177e4
LT
2999 unlock_page(page);
3000 return 0; /* don't care */
3001 }
3002
3003 /*
3004 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 3005 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
3006 * in multiples of the page size. For a file that is not a multiple of
3007 * the page size, the remaining memory is zeroed when mapped, and
3008 * writes to that region are not written out to the file."
3009 */
09cbfeaf 3010 zero_user_segment(page, offset, PAGE_SIZE);
1b938c08
MW
3011 return __block_write_full_page(inode, page, get_block, wbc,
3012 end_buffer_async_write);
35c80d5f 3013}
1fe72eaa 3014EXPORT_SYMBOL(block_write_full_page);
35c80d5f 3015
1da177e4
LT
3016sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
3017 get_block_t *get_block)
3018{
1da177e4 3019 struct inode *inode = mapping->host;
2a527d68
AP
3020 struct buffer_head tmp = {
3021 .b_size = i_blocksize(inode),
3022 };
3023
1da177e4
LT
3024 get_block(inode, block, &tmp, 0);
3025 return tmp.b_blocknr;
3026}
1fe72eaa 3027EXPORT_SYMBOL(generic_block_bmap);
1da177e4 3028
4246a0b6 3029static void end_bio_bh_io_sync(struct bio *bio)
1da177e4
LT
3030{
3031 struct buffer_head *bh = bio->bi_private;
3032
b7c44ed9 3033 if (unlikely(bio_flagged(bio, BIO_QUIET)))
08bafc03
KM
3034 set_bit(BH_Quiet, &bh->b_state);
3035
4e4cbee9 3036 bh->b_end_io(bh, !bio->bi_status);
1da177e4 3037 bio_put(bio);
1da177e4
LT
3038}
3039
57302e0d
LT
3040/*
3041 * This allows us to do IO even on the odd last sectors
59d43914 3042 * of a device, even if the block size is some multiple
57302e0d
LT
3043 * of the physical sector size.
3044 *
3045 * We'll just truncate the bio to the size of the device,
3046 * and clear the end of the buffer head manually.
3047 *
3048 * Truly out-of-range accesses will turn into actual IO
3049 * errors, this only handles the "we need to be able to
3050 * do IO at the final sector" case.
3051 */
2a222ca9 3052void guard_bio_eod(int op, struct bio *bio)
57302e0d
LT
3053{
3054 sector_t maxsector;
59d43914
AM
3055 struct bio_vec *bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
3056 unsigned truncated_bytes;
57302e0d
LT
3057
3058 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
3059 if (!maxsector)
3060 return;
3061
3062 /*
3063 * If the *whole* IO is past the end of the device,
3064 * let it through, and the IO layer will turn it into
3065 * an EIO.
3066 */
4f024f37 3067 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
3068 return;
3069
4f024f37 3070 maxsector -= bio->bi_iter.bi_sector;
59d43914 3071 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
57302e0d
LT
3072 return;
3073
59d43914
AM
3074 /* Uhhuh. We've got a bio that straddles the device size! */
3075 truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
57302e0d
LT
3076
3077 /* Truncate the bio.. */
59d43914
AM
3078 bio->bi_iter.bi_size -= truncated_bytes;
3079 bvec->bv_len -= truncated_bytes;
57302e0d
LT
3080
3081 /* ..and clear the end of the buffer for reads */
2a222ca9 3082 if (op == REQ_OP_READ) {
59d43914
AM
3083 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3084 truncated_bytes);
57302e0d
LT
3085 }
3086}
3087
2a222ca9 3088static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
8e8f9298 3089 enum rw_hint write_hint, struct writeback_control *wbc)
1da177e4
LT
3090{
3091 struct bio *bio;
1da177e4
LT
3092
3093 BUG_ON(!buffer_locked(bh));
3094 BUG_ON(!buffer_mapped(bh));
3095 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3096 BUG_ON(buffer_delay(bh));
3097 BUG_ON(buffer_unwritten(bh));
1da177e4 3098
1da177e4 3099 /*
48fd4f93 3100 * Only clear out a write error when rewriting
1da177e4 3101 */
2a222ca9 3102 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
1da177e4
LT
3103 clear_buffer_write_io_error(bh);
3104
3105 /*
3106 * from here on down, it's all bio -- do the initial mapping,
3107 * submit_bio -> generic_make_request may further map this bio around
3108 */
3109 bio = bio_alloc(GFP_NOIO, 1);
3110
2a814908 3111 if (wbc) {
b16b1deb 3112 wbc_init_bio(wbc, bio);
2a814908
TH
3113 wbc_account_io(wbc, bh->b_page, bh->b_size);
3114 }
bafc0dba 3115
4f024f37 3116 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4 3117 bio->bi_bdev = bh->b_bdev;
8e8f9298 3118 bio->bi_write_hint = write_hint;
1da177e4 3119
6cf66b4c
KO
3120 bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3121 BUG_ON(bio->bi_iter.bi_size != bh->b_size);
1da177e4
LT
3122
3123 bio->bi_end_io = end_bio_bh_io_sync;
3124 bio->bi_private = bh;
3125
57302e0d 3126 /* Take care of bh's that straddle the end of the device */
2a222ca9 3127 guard_bio_eod(op, bio);
57302e0d 3128
877f962c 3129 if (buffer_meta(bh))
2a222ca9 3130 op_flags |= REQ_META;
877f962c 3131 if (buffer_prio(bh))
2a222ca9
MC
3132 op_flags |= REQ_PRIO;
3133 bio_set_op_attrs(bio, op, op_flags);
877f962c 3134
4e49ea4a 3135 submit_bio(bio);
f6454b04 3136 return 0;
1da177e4 3137}
bafc0dba 3138
020c2833 3139int submit_bh(int op, int op_flags, struct buffer_head *bh)
bafc0dba 3140{
8e8f9298 3141 return submit_bh_wbc(op, op_flags, bh, 0, NULL);
71368511 3142}
1fe72eaa 3143EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3144
3145/**
3146 * ll_rw_block: low-level access to block devices (DEPRECATED)
dfec8a14 3147 * @op: whether to %READ or %WRITE
ef295ecf 3148 * @op_flags: req_flag_bits
1da177e4
LT
3149 * @nr: number of &struct buffer_heads in the array
3150 * @bhs: array of pointers to &struct buffer_head
3151 *
a7662236 3152 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
70246286
CH
3153 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3154 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3155 * %REQ_RAHEAD.
1da177e4
LT
3156 *
3157 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3158 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3159 * request, and any buffer that appears to be up-to-date when doing read
3160 * request. Further it marks as clean buffers that are processed for
3161 * writing (the buffer cache won't assume that they are actually clean
3162 * until the buffer gets unlocked).
1da177e4
LT
3163 *
3164 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3165 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3166 * any waiters.
3167 *
3168 * All of the buffers must be for the same device, and must also be a
3169 * multiple of the current approved size for the device.
3170 */
dfec8a14 3171void ll_rw_block(int op, int op_flags, int nr, struct buffer_head *bhs[])
1da177e4
LT
3172{
3173 int i;
3174
3175 for (i = 0; i < nr; i++) {
3176 struct buffer_head *bh = bhs[i];
3177
9cb569d6 3178 if (!trylock_buffer(bh))
1da177e4 3179 continue;
dfec8a14 3180 if (op == WRITE) {
1da177e4 3181 if (test_clear_buffer_dirty(bh)) {
76c3073a 3182 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3183 get_bh(bh);
dfec8a14 3184 submit_bh(op, op_flags, bh);
1da177e4
LT
3185 continue;
3186 }
3187 } else {
1da177e4 3188 if (!buffer_uptodate(bh)) {
76c3073a 3189 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3190 get_bh(bh);
dfec8a14 3191 submit_bh(op, op_flags, bh);
1da177e4
LT
3192 continue;
3193 }
3194 }
3195 unlock_buffer(bh);
1da177e4
LT
3196 }
3197}
1fe72eaa 3198EXPORT_SYMBOL(ll_rw_block);
1da177e4 3199
2a222ca9 3200void write_dirty_buffer(struct buffer_head *bh, int op_flags)
9cb569d6
CH
3201{
3202 lock_buffer(bh);
3203 if (!test_clear_buffer_dirty(bh)) {
3204 unlock_buffer(bh);
3205 return;
3206 }
3207 bh->b_end_io = end_buffer_write_sync;
3208 get_bh(bh);
2a222ca9 3209 submit_bh(REQ_OP_WRITE, op_flags, bh);
9cb569d6
CH
3210}
3211EXPORT_SYMBOL(write_dirty_buffer);
3212
1da177e4
LT
3213/*
3214 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3215 * and then start new I/O and then wait upon it. The caller must have a ref on
3216 * the buffer_head.
3217 */
2a222ca9 3218int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
1da177e4
LT
3219{
3220 int ret = 0;
3221
3222 WARN_ON(atomic_read(&bh->b_count) < 1);
3223 lock_buffer(bh);
3224 if (test_clear_buffer_dirty(bh)) {
3225 get_bh(bh);
3226 bh->b_end_io = end_buffer_write_sync;
2a222ca9 3227 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
1da177e4 3228 wait_on_buffer(bh);
1da177e4
LT
3229 if (!ret && !buffer_uptodate(bh))
3230 ret = -EIO;
3231 } else {
3232 unlock_buffer(bh);
3233 }
3234 return ret;
3235}
87e99511
CH
3236EXPORT_SYMBOL(__sync_dirty_buffer);
3237
3238int sync_dirty_buffer(struct buffer_head *bh)
3239{
70fd7614 3240 return __sync_dirty_buffer(bh, REQ_SYNC);
87e99511 3241}
1fe72eaa 3242EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3243
3244/*
3245 * try_to_free_buffers() checks if all the buffers on this particular page
3246 * are unused, and releases them if so.
3247 *
3248 * Exclusion against try_to_free_buffers may be obtained by either
3249 * locking the page or by holding its mapping's private_lock.
3250 *
3251 * If the page is dirty but all the buffers are clean then we need to
3252 * be sure to mark the page clean as well. This is because the page
3253 * may be against a block device, and a later reattachment of buffers
3254 * to a dirty page will set *all* buffers dirty. Which would corrupt
3255 * filesystem data on the same device.
3256 *
3257 * The same applies to regular filesystem pages: if all the buffers are
3258 * clean then we set the page clean and proceed. To do that, we require
3259 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3260 * private_lock.
3261 *
3262 * try_to_free_buffers() is non-blocking.
3263 */
3264static inline int buffer_busy(struct buffer_head *bh)
3265{
3266 return atomic_read(&bh->b_count) |
3267 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3268}
3269
3270static int
3271drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3272{
3273 struct buffer_head *head = page_buffers(page);
3274 struct buffer_head *bh;
3275
3276 bh = head;
3277 do {
1da177e4
LT
3278 if (buffer_busy(bh))
3279 goto failed;
3280 bh = bh->b_this_page;
3281 } while (bh != head);
3282
3283 do {
3284 struct buffer_head *next = bh->b_this_page;
3285
535ee2fb 3286 if (bh->b_assoc_map)
1da177e4
LT
3287 __remove_assoc_queue(bh);
3288 bh = next;
3289 } while (bh != head);
3290 *buffers_to_free = head;
3291 __clear_page_buffers(page);
3292 return 1;
3293failed:
3294 return 0;
3295}
3296
3297int try_to_free_buffers(struct page *page)
3298{
3299 struct address_space * const mapping = page->mapping;
3300 struct buffer_head *buffers_to_free = NULL;
3301 int ret = 0;
3302
3303 BUG_ON(!PageLocked(page));
ecdfc978 3304 if (PageWriteback(page))
1da177e4
LT
3305 return 0;
3306
3307 if (mapping == NULL) { /* can this still happen? */
3308 ret = drop_buffers(page, &buffers_to_free);
3309 goto out;
3310 }
3311
3312 spin_lock(&mapping->private_lock);
3313 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3314
3315 /*
3316 * If the filesystem writes its buffers by hand (eg ext3)
3317 * then we can have clean buffers against a dirty page. We
3318 * clean the page here; otherwise the VM will never notice
3319 * that the filesystem did any IO at all.
3320 *
3321 * Also, during truncate, discard_buffer will have marked all
3322 * the page's buffers clean. We discover that here and clean
3323 * the page also.
87df7241
NP
3324 *
3325 * private_lock must be held over this entire operation in order
3326 * to synchronise against __set_page_dirty_buffers and prevent the
3327 * dirty bit from being lost.
ecdfc978 3328 */
11f81bec
TH
3329 if (ret)
3330 cancel_dirty_page(page);
87df7241 3331 spin_unlock(&mapping->private_lock);
1da177e4
LT
3332out:
3333 if (buffers_to_free) {
3334 struct buffer_head *bh = buffers_to_free;
3335
3336 do {
3337 struct buffer_head *next = bh->b_this_page;
3338 free_buffer_head(bh);
3339 bh = next;
3340 } while (bh != buffers_to_free);
3341 }
3342 return ret;
3343}
3344EXPORT_SYMBOL(try_to_free_buffers);
3345
1da177e4
LT
3346/*
3347 * There are no bdflush tunables left. But distributions are
3348 * still running obsolete flush daemons, so we terminate them here.
3349 *
3350 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3351 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3352 */
bdc480e3 3353SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3354{
3355 static int msg_count;
3356
3357 if (!capable(CAP_SYS_ADMIN))
3358 return -EPERM;
3359
3360 if (msg_count < 5) {
3361 msg_count++;
3362 printk(KERN_INFO
3363 "warning: process `%s' used the obsolete bdflush"
3364 " system call\n", current->comm);
3365 printk(KERN_INFO "Fix your initscripts?\n");
3366 }
3367
3368 if (func == 1)
3369 do_exit(0);
3370 return 0;
3371}
3372
3373/*
3374 * Buffer-head allocation
3375 */
a0a9b043 3376static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3377
3378/*
3379 * Once the number of bh's in the machine exceeds this level, we start
3380 * stripping them in writeback.
3381 */
43be594a 3382static unsigned long max_buffer_heads;
1da177e4
LT
3383
3384int buffer_heads_over_limit;
3385
3386struct bh_accounting {
3387 int nr; /* Number of live bh's */
3388 int ratelimit; /* Limit cacheline bouncing */
3389};
3390
3391static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3392
3393static void recalc_bh_state(void)
3394{
3395 int i;
3396 int tot = 0;
3397
ee1be862 3398 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3399 return;
c7b92516 3400 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3401 for_each_online_cpu(i)
1da177e4
LT
3402 tot += per_cpu(bh_accounting, i).nr;
3403 buffer_heads_over_limit = (tot > max_buffer_heads);
3404}
c7b92516 3405
dd0fc66f 3406struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3407{
019b4d12 3408 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3409 if (ret) {
a35afb83 3410 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3411 preempt_disable();
3412 __this_cpu_inc(bh_accounting.nr);
1da177e4 3413 recalc_bh_state();
c7b92516 3414 preempt_enable();
1da177e4
LT
3415 }
3416 return ret;
3417}
3418EXPORT_SYMBOL(alloc_buffer_head);
3419
3420void free_buffer_head(struct buffer_head *bh)
3421{
3422 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3423 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3424 preempt_disable();
3425 __this_cpu_dec(bh_accounting.nr);
1da177e4 3426 recalc_bh_state();
c7b92516 3427 preempt_enable();
1da177e4
LT
3428}
3429EXPORT_SYMBOL(free_buffer_head);
3430
fc4d24c9 3431static int buffer_exit_cpu_dead(unsigned int cpu)
1da177e4
LT
3432{
3433 int i;
3434 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3435
3436 for (i = 0; i < BH_LRU_SIZE; i++) {
3437 brelse(b->bhs[i]);
3438 b->bhs[i] = NULL;
3439 }
c7b92516 3440 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3441 per_cpu(bh_accounting, cpu).nr = 0;
fc4d24c9 3442 return 0;
1da177e4 3443}
1da177e4 3444
389d1b08 3445/**
a6b91919 3446 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3447 * @bh: struct buffer_head
3448 *
3449 * Return true if the buffer is up-to-date and false,
3450 * with the buffer locked, if not.
3451 */
3452int bh_uptodate_or_lock(struct buffer_head *bh)
3453{
3454 if (!buffer_uptodate(bh)) {
3455 lock_buffer(bh);
3456 if (!buffer_uptodate(bh))
3457 return 0;
3458 unlock_buffer(bh);
3459 }
3460 return 1;
3461}
3462EXPORT_SYMBOL(bh_uptodate_or_lock);
3463
3464/**
a6b91919 3465 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3466 * @bh: struct buffer_head
3467 *
3468 * Returns zero on success and -EIO on error.
3469 */
3470int bh_submit_read(struct buffer_head *bh)
3471{
3472 BUG_ON(!buffer_locked(bh));
3473
3474 if (buffer_uptodate(bh)) {
3475 unlock_buffer(bh);
3476 return 0;
3477 }
3478
3479 get_bh(bh);
3480 bh->b_end_io = end_buffer_read_sync;
2a222ca9 3481 submit_bh(REQ_OP_READ, 0, bh);
389d1b08
AK
3482 wait_on_buffer(bh);
3483 if (buffer_uptodate(bh))
3484 return 0;
3485 return -EIO;
3486}
3487EXPORT_SYMBOL(bh_submit_read);
3488
334fd34d
AG
3489/*
3490 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
3491 *
3492 * Returns the offset within the file on success, and -ENOENT otherwise.
3493 */
3494static loff_t
3495page_seek_hole_data(struct page *page, loff_t lastoff, int whence)
3496{
3497 loff_t offset = page_offset(page);
3498 struct buffer_head *bh, *head;
3499 bool seek_data = whence == SEEK_DATA;
3500
3501 if (lastoff < offset)
3502 lastoff = offset;
3503
3504 bh = head = page_buffers(page);
3505 do {
3506 offset += bh->b_size;
3507 if (lastoff >= offset)
3508 continue;
3509
3510 /*
3511 * Unwritten extents that have data in the page cache covering
3512 * them can be identified by the BH_Unwritten state flag.
3513 * Pages with multiple buffers might have a mix of holes, data
3514 * and unwritten extents - any buffer with valid data in it
3515 * should have BH_Uptodate flag set on it.
3516 */
3517
3518 if ((buffer_unwritten(bh) || buffer_uptodate(bh)) == seek_data)
3519 return lastoff;
3520
3521 lastoff = offset;
3522 } while ((bh = bh->b_this_page) != head);
3523 return -ENOENT;
3524}
3525
3526/*
3527 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3528 *
3529 * Within unwritten extents, the page cache determines which parts are holes
3530 * and which are data: unwritten and uptodate buffer heads count as data;
3531 * everything else counts as a hole.
3532 *
3533 * Returns the resulting offset on successs, and -ENOENT otherwise.
3534 */
3535loff_t
3536page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
3537 int whence)
3538{
3539 pgoff_t index = offset >> PAGE_SHIFT;
3540 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
3541 loff_t lastoff = offset;
3542 struct pagevec pvec;
3543
3544 if (length <= 0)
3545 return -ENOENT;
3546
3547 pagevec_init(&pvec, 0);
3548
3549 do {
3550 unsigned want, nr_pages, i;
3551
3552 want = min_t(unsigned, end - index, PAGEVEC_SIZE);
d72dc8a2
JK
3553 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, &index,
3554 want);
334fd34d
AG
3555 if (nr_pages == 0)
3556 break;
3557
3558 for (i = 0; i < nr_pages; i++) {
3559 struct page *page = pvec.pages[i];
3560
3561 /*
3562 * At this point, the page may be truncated or
3563 * invalidated (changing page->mapping to NULL), or
3564 * even swizzled back from swapper_space to tmpfs file
3565 * mapping. However, page->index will not change
3566 * because we have a reference on the page.
3567 *
3568 * If current page offset is beyond where we've ended,
3569 * we've found a hole.
3570 */
3571 if (whence == SEEK_HOLE &&
3572 lastoff < page_offset(page))
3573 goto check_range;
3574
3575 /* Searching done if the page index is out of range. */
3576 if (page->index >= end)
3577 goto not_found;
3578
3579 lock_page(page);
3580 if (likely(page->mapping == inode->i_mapping) &&
3581 page_has_buffers(page)) {
3582 lastoff = page_seek_hole_data(page, lastoff, whence);
3583 if (lastoff >= 0) {
3584 unlock_page(page);
3585 goto check_range;
3586 }
3587 }
3588 unlock_page(page);
3589 lastoff = page_offset(page) + PAGE_SIZE;
3590 }
3591
3592 /* Searching done if fewer pages returned than wanted. */
3593 if (nr_pages < want)
3594 break;
3595
334fd34d
AG
3596 pagevec_release(&pvec);
3597 } while (index < end);
3598
3599 /* When no page at lastoff and we are not done, we found a hole. */
3600 if (whence != SEEK_HOLE)
3601 goto not_found;
3602
3603check_range:
3604 if (lastoff < offset + length)
3605 goto out;
3606not_found:
3607 lastoff = -ENOENT;
3608out:
3609 pagevec_release(&pvec);
3610 return lastoff;
3611}
3612
1da177e4
LT
3613void __init buffer_init(void)
3614{
43be594a 3615 unsigned long nrpages;
fc4d24c9 3616 int ret;
1da177e4 3617
b98938c3
CL
3618 bh_cachep = kmem_cache_create("buffer_head",
3619 sizeof(struct buffer_head), 0,
3620 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3621 SLAB_MEM_SPREAD),
019b4d12 3622 NULL);
1da177e4
LT
3623
3624 /*
3625 * Limit the bh occupancy to 10% of ZONE_NORMAL
3626 */
3627 nrpages = (nr_free_buffer_pages() * 10) / 100;
3628 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
fc4d24c9
SAS
3629 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3630 NULL, buffer_exit_cpu_dead);
3631 WARN_ON(ret < 0);
1da177e4 3632}