]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/buffer.c
Merge branch 'master' of hera.kernel.org:/pub/scm/linux/kernel/git/kyle/parisc-2.6
[mirror_ubuntu-bionic-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
55
56static int sync_buffer(void *word)
57{
58 struct block_device *bd;
59 struct buffer_head *bh
60 = container_of(word, struct buffer_head, b_state);
61
62 smp_mb();
63 bd = bh->b_bdev;
64 if (bd)
65 blk_run_address_space(bd->bd_inode->i_mapping);
66 io_schedule();
67 return 0;
68}
69
70void fastcall __lock_buffer(struct buffer_head *bh)
71{
72 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 TASK_UNINTERRUPTIBLE);
74}
75EXPORT_SYMBOL(__lock_buffer);
76
77void fastcall unlock_buffer(struct buffer_head *bh)
78{
72ed3d03 79 smp_mb__before_clear_bit();
1da177e4
LT
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
84
85/*
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
89 */
90void __wait_on_buffer(struct buffer_head * bh)
91{
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93}
94
95static void
96__clear_page_buffers(struct page *page)
97{
98 ClearPagePrivate(page);
4c21e2f2 99 set_page_private(page, 0);
1da177e4
LT
100 page_cache_release(page);
101}
102
103static void buffer_io_error(struct buffer_head *bh)
104{
105 char b[BDEVNAME_SIZE];
106
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
110}
111
112/*
68671f35
DM
113 * End-of-IO handler helper function which does not touch the bh after
114 * unlocking it.
115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116 * a race there is benign: unlock_buffer() only use the bh's address for
117 * hashing after unlocking the buffer, so it doesn't actually touch the bh
118 * itself.
1da177e4 119 */
68671f35 120static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
121{
122 if (uptodate) {
123 set_buffer_uptodate(bh);
124 } else {
125 /* This happens, due to failed READA attempts. */
126 clear_buffer_uptodate(bh);
127 }
128 unlock_buffer(bh);
68671f35
DM
129}
130
131/*
132 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
133 * unlock the buffer. This is what ll_rw_block uses too.
134 */
135void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136{
137 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
138 put_bh(bh);
139}
140
141void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142{
143 char b[BDEVNAME_SIZE];
144
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149 buffer_io_error(bh);
150 printk(KERN_WARNING "lost page write due to "
151 "I/O error on %s\n",
152 bdevname(bh->b_bdev, b));
153 }
154 set_buffer_write_io_error(bh);
155 clear_buffer_uptodate(bh);
156 }
157 unlock_buffer(bh);
158 put_bh(bh);
159}
160
161/*
162 * Write out and wait upon all the dirty data associated with a block
163 * device via its mapping. Does not take the superblock lock.
164 */
165int sync_blockdev(struct block_device *bdev)
166{
167 int ret = 0;
168
28fd1298
OH
169 if (bdev)
170 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
1da177e4
LT
171 return ret;
172}
173EXPORT_SYMBOL(sync_blockdev);
174
1da177e4
LT
175/*
176 * Write out and wait upon all dirty data associated with this
177 * device. Filesystem data as well as the underlying block
178 * device. Takes the superblock lock.
179 */
180int fsync_bdev(struct block_device *bdev)
181{
182 struct super_block *sb = get_super(bdev);
183 if (sb) {
184 int res = fsync_super(sb);
185 drop_super(sb);
186 return res;
187 }
188 return sync_blockdev(bdev);
189}
190
191/**
192 * freeze_bdev -- lock a filesystem and force it into a consistent state
193 * @bdev: blockdevice to lock
194 *
f73ca1b7 195 * This takes the block device bd_mount_sem to make sure no new mounts
1da177e4
LT
196 * happen on bdev until thaw_bdev() is called.
197 * If a superblock is found on this device, we take the s_umount semaphore
198 * on it to make sure nobody unmounts until the snapshot creation is done.
199 */
200struct super_block *freeze_bdev(struct block_device *bdev)
201{
202 struct super_block *sb;
203
f73ca1b7 204 down(&bdev->bd_mount_sem);
1da177e4
LT
205 sb = get_super(bdev);
206 if (sb && !(sb->s_flags & MS_RDONLY)) {
207 sb->s_frozen = SB_FREEZE_WRITE;
d59dd462 208 smp_wmb();
1da177e4 209
d25b9a1f 210 __fsync_super(sb);
1da177e4
LT
211
212 sb->s_frozen = SB_FREEZE_TRANS;
d59dd462 213 smp_wmb();
1da177e4
LT
214
215 sync_blockdev(sb->s_bdev);
216
217 if (sb->s_op->write_super_lockfs)
218 sb->s_op->write_super_lockfs(sb);
219 }
220
221 sync_blockdev(bdev);
222 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
223}
224EXPORT_SYMBOL(freeze_bdev);
225
226/**
227 * thaw_bdev -- unlock filesystem
228 * @bdev: blockdevice to unlock
229 * @sb: associated superblock
230 *
231 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232 */
233void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234{
235 if (sb) {
236 BUG_ON(sb->s_bdev != bdev);
237
238 if (sb->s_op->unlockfs)
239 sb->s_op->unlockfs(sb);
240 sb->s_frozen = SB_UNFROZEN;
d59dd462 241 smp_wmb();
1da177e4
LT
242 wake_up(&sb->s_wait_unfrozen);
243 drop_super(sb);
244 }
245
f73ca1b7 246 up(&bdev->bd_mount_sem);
1da177e4
LT
247}
248EXPORT_SYMBOL(thaw_bdev);
249
1da177e4
LT
250/*
251 * Various filesystems appear to want __find_get_block to be non-blocking.
252 * But it's the page lock which protects the buffers. To get around this,
253 * we get exclusion from try_to_free_buffers with the blockdev mapping's
254 * private_lock.
255 *
256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257 * may be quite high. This code could TryLock the page, and if that
258 * succeeds, there is no need to take private_lock. (But if
259 * private_lock is contended then so is mapping->tree_lock).
260 */
261static struct buffer_head *
385fd4c5 262__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
263{
264 struct inode *bd_inode = bdev->bd_inode;
265 struct address_space *bd_mapping = bd_inode->i_mapping;
266 struct buffer_head *ret = NULL;
267 pgoff_t index;
268 struct buffer_head *bh;
269 struct buffer_head *head;
270 struct page *page;
271 int all_mapped = 1;
272
273 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 page = find_get_page(bd_mapping, index);
275 if (!page)
276 goto out;
277
278 spin_lock(&bd_mapping->private_lock);
279 if (!page_has_buffers(page))
280 goto out_unlock;
281 head = page_buffers(page);
282 bh = head;
283 do {
284 if (bh->b_blocknr == block) {
285 ret = bh;
286 get_bh(bh);
287 goto out_unlock;
288 }
289 if (!buffer_mapped(bh))
290 all_mapped = 0;
291 bh = bh->b_this_page;
292 } while (bh != head);
293
294 /* we might be here because some of the buffers on this page are
295 * not mapped. This is due to various races between
296 * file io on the block device and getblk. It gets dealt with
297 * elsewhere, don't buffer_error if we had some unmapped buffers
298 */
299 if (all_mapped) {
300 printk("__find_get_block_slow() failed. "
301 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
302 (unsigned long long)block,
303 (unsigned long long)bh->b_blocknr);
304 printk("b_state=0x%08lx, b_size=%zu\n",
305 bh->b_state, bh->b_size);
1da177e4
LT
306 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307 }
308out_unlock:
309 spin_unlock(&bd_mapping->private_lock);
310 page_cache_release(page);
311out:
312 return ret;
313}
314
315/* If invalidate_buffers() will trash dirty buffers, it means some kind
316 of fs corruption is going on. Trashing dirty data always imply losing
317 information that was supposed to be just stored on the physical layer
318 by the user.
319
320 Thus invalidate_buffers in general usage is not allwowed to trash
321 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322 be preserved. These buffers are simply skipped.
323
324 We also skip buffers which are still in use. For example this can
325 happen if a userspace program is reading the block device.
326
327 NOTE: In the case where the user removed a removable-media-disk even if
328 there's still dirty data not synced on disk (due a bug in the device driver
329 or due an error of the user), by not destroying the dirty buffers we could
330 generate corruption also on the next media inserted, thus a parameter is
331 necessary to handle this case in the most safe way possible (trying
332 to not corrupt also the new disk inserted with the data belonging to
333 the old now corrupted disk). Also for the ramdisk the natural thing
334 to do in order to release the ramdisk memory is to destroy dirty buffers.
335
336 These are two special cases. Normal usage imply the device driver
337 to issue a sync on the device (without waiting I/O completion) and
338 then an invalidate_buffers call that doesn't trash dirty buffers.
339
340 For handling cache coherency with the blkdev pagecache the 'update' case
341 is been introduced. It is needed to re-read from disk any pinned
342 buffer. NOTE: re-reading from disk is destructive so we can do it only
343 when we assume nobody is changing the buffercache under our I/O and when
344 we think the disk contains more recent information than the buffercache.
345 The update == 1 pass marks the buffers we need to update, the update == 2
346 pass does the actual I/O. */
f98393a6 347void invalidate_bdev(struct block_device *bdev)
1da177e4 348{
0e1dfc66
AM
349 struct address_space *mapping = bdev->bd_inode->i_mapping;
350
351 if (mapping->nrpages == 0)
352 return;
353
1da177e4 354 invalidate_bh_lrus();
fc0ecff6 355 invalidate_mapping_pages(mapping, 0, -1);
1da177e4
LT
356}
357
358/*
359 * Kick pdflush then try to free up some ZONE_NORMAL memory.
360 */
361static void free_more_memory(void)
362{
363 struct zone **zones;
364 pg_data_t *pgdat;
365
687a21ce 366 wakeup_pdflush(1024);
1da177e4
LT
367 yield();
368
ec936fc5 369 for_each_online_pgdat(pgdat) {
af4ca457 370 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
1da177e4 371 if (*zones)
5ad333eb 372 try_to_free_pages(zones, 0, GFP_NOFS);
1da177e4
LT
373 }
374}
375
376/*
377 * I/O completion handler for block_read_full_page() - pages
378 * which come unlocked at the end of I/O.
379 */
380static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381{
1da177e4 382 unsigned long flags;
a3972203 383 struct buffer_head *first;
1da177e4
LT
384 struct buffer_head *tmp;
385 struct page *page;
386 int page_uptodate = 1;
387
388 BUG_ON(!buffer_async_read(bh));
389
390 page = bh->b_page;
391 if (uptodate) {
392 set_buffer_uptodate(bh);
393 } else {
394 clear_buffer_uptodate(bh);
395 if (printk_ratelimit())
396 buffer_io_error(bh);
397 SetPageError(page);
398 }
399
400 /*
401 * Be _very_ careful from here on. Bad things can happen if
402 * two buffer heads end IO at almost the same time and both
403 * decide that the page is now completely done.
404 */
a3972203
NP
405 first = page_buffers(page);
406 local_irq_save(flags);
407 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
408 clear_buffer_async_read(bh);
409 unlock_buffer(bh);
410 tmp = bh;
411 do {
412 if (!buffer_uptodate(tmp))
413 page_uptodate = 0;
414 if (buffer_async_read(tmp)) {
415 BUG_ON(!buffer_locked(tmp));
416 goto still_busy;
417 }
418 tmp = tmp->b_this_page;
419 } while (tmp != bh);
a3972203
NP
420 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421 local_irq_restore(flags);
1da177e4
LT
422
423 /*
424 * If none of the buffers had errors and they are all
425 * uptodate then we can set the page uptodate.
426 */
427 if (page_uptodate && !PageError(page))
428 SetPageUptodate(page);
429 unlock_page(page);
430 return;
431
432still_busy:
a3972203
NP
433 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434 local_irq_restore(flags);
1da177e4
LT
435 return;
436}
437
438/*
439 * Completion handler for block_write_full_page() - pages which are unlocked
440 * during I/O, and which have PageWriteback cleared upon I/O completion.
441 */
b6cd0b77 442static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
443{
444 char b[BDEVNAME_SIZE];
1da177e4 445 unsigned long flags;
a3972203 446 struct buffer_head *first;
1da177e4
LT
447 struct buffer_head *tmp;
448 struct page *page;
449
450 BUG_ON(!buffer_async_write(bh));
451
452 page = bh->b_page;
453 if (uptodate) {
454 set_buffer_uptodate(bh);
455 } else {
456 if (printk_ratelimit()) {
457 buffer_io_error(bh);
458 printk(KERN_WARNING "lost page write due to "
459 "I/O error on %s\n",
460 bdevname(bh->b_bdev, b));
461 }
462 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 463 set_buffer_write_io_error(bh);
1da177e4
LT
464 clear_buffer_uptodate(bh);
465 SetPageError(page);
466 }
467
a3972203
NP
468 first = page_buffers(page);
469 local_irq_save(flags);
470 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471
1da177e4
LT
472 clear_buffer_async_write(bh);
473 unlock_buffer(bh);
474 tmp = bh->b_this_page;
475 while (tmp != bh) {
476 if (buffer_async_write(tmp)) {
477 BUG_ON(!buffer_locked(tmp));
478 goto still_busy;
479 }
480 tmp = tmp->b_this_page;
481 }
a3972203
NP
482 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483 local_irq_restore(flags);
1da177e4
LT
484 end_page_writeback(page);
485 return;
486
487still_busy:
a3972203
NP
488 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489 local_irq_restore(flags);
1da177e4
LT
490 return;
491}
492
493/*
494 * If a page's buffers are under async readin (end_buffer_async_read
495 * completion) then there is a possibility that another thread of
496 * control could lock one of the buffers after it has completed
497 * but while some of the other buffers have not completed. This
498 * locked buffer would confuse end_buffer_async_read() into not unlocking
499 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
500 * that this buffer is not under async I/O.
501 *
502 * The page comes unlocked when it has no locked buffer_async buffers
503 * left.
504 *
505 * PageLocked prevents anyone starting new async I/O reads any of
506 * the buffers.
507 *
508 * PageWriteback is used to prevent simultaneous writeout of the same
509 * page.
510 *
511 * PageLocked prevents anyone from starting writeback of a page which is
512 * under read I/O (PageWriteback is only ever set against a locked page).
513 */
514static void mark_buffer_async_read(struct buffer_head *bh)
515{
516 bh->b_end_io = end_buffer_async_read;
517 set_buffer_async_read(bh);
518}
519
520void mark_buffer_async_write(struct buffer_head *bh)
521{
522 bh->b_end_io = end_buffer_async_write;
523 set_buffer_async_write(bh);
524}
525EXPORT_SYMBOL(mark_buffer_async_write);
526
527
528/*
529 * fs/buffer.c contains helper functions for buffer-backed address space's
530 * fsync functions. A common requirement for buffer-based filesystems is
531 * that certain data from the backing blockdev needs to be written out for
532 * a successful fsync(). For example, ext2 indirect blocks need to be
533 * written back and waited upon before fsync() returns.
534 *
535 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537 * management of a list of dependent buffers at ->i_mapping->private_list.
538 *
539 * Locking is a little subtle: try_to_free_buffers() will remove buffers
540 * from their controlling inode's queue when they are being freed. But
541 * try_to_free_buffers() will be operating against the *blockdev* mapping
542 * at the time, not against the S_ISREG file which depends on those buffers.
543 * So the locking for private_list is via the private_lock in the address_space
544 * which backs the buffers. Which is different from the address_space
545 * against which the buffers are listed. So for a particular address_space,
546 * mapping->private_lock does *not* protect mapping->private_list! In fact,
547 * mapping->private_list will always be protected by the backing blockdev's
548 * ->private_lock.
549 *
550 * Which introduces a requirement: all buffers on an address_space's
551 * ->private_list must be from the same address_space: the blockdev's.
552 *
553 * address_spaces which do not place buffers at ->private_list via these
554 * utility functions are free to use private_lock and private_list for
555 * whatever they want. The only requirement is that list_empty(private_list)
556 * be true at clear_inode() time.
557 *
558 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
559 * filesystems should do that. invalidate_inode_buffers() should just go
560 * BUG_ON(!list_empty).
561 *
562 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
563 * take an address_space, not an inode. And it should be called
564 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565 * queued up.
566 *
567 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568 * list if it is already on a list. Because if the buffer is on a list,
569 * it *must* already be on the right one. If not, the filesystem is being
570 * silly. This will save a ton of locking. But first we have to ensure
571 * that buffers are taken *off* the old inode's list when they are freed
572 * (presumably in truncate). That requires careful auditing of all
573 * filesystems (do it inside bforget()). It could also be done by bringing
574 * b_inode back.
575 */
576
577/*
578 * The buffer's backing address_space's private_lock must be held
579 */
580static inline void __remove_assoc_queue(struct buffer_head *bh)
581{
582 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
583 WARN_ON(!bh->b_assoc_map);
584 if (buffer_write_io_error(bh))
585 set_bit(AS_EIO, &bh->b_assoc_map->flags);
586 bh->b_assoc_map = NULL;
1da177e4
LT
587}
588
589int inode_has_buffers(struct inode *inode)
590{
591 return !list_empty(&inode->i_data.private_list);
592}
593
594/*
595 * osync is designed to support O_SYNC io. It waits synchronously for
596 * all already-submitted IO to complete, but does not queue any new
597 * writes to the disk.
598 *
599 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600 * you dirty the buffers, and then use osync_inode_buffers to wait for
601 * completion. Any other dirty buffers which are not yet queued for
602 * write will not be flushed to disk by the osync.
603 */
604static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605{
606 struct buffer_head *bh;
607 struct list_head *p;
608 int err = 0;
609
610 spin_lock(lock);
611repeat:
612 list_for_each_prev(p, list) {
613 bh = BH_ENTRY(p);
614 if (buffer_locked(bh)) {
615 get_bh(bh);
616 spin_unlock(lock);
617 wait_on_buffer(bh);
618 if (!buffer_uptodate(bh))
619 err = -EIO;
620 brelse(bh);
621 spin_lock(lock);
622 goto repeat;
623 }
624 }
625 spin_unlock(lock);
626 return err;
627}
628
629/**
630 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631 * buffers
67be2dd1 632 * @mapping: the mapping which wants those buffers written
1da177e4
LT
633 *
634 * Starts I/O against the buffers at mapping->private_list, and waits upon
635 * that I/O.
636 *
67be2dd1
MW
637 * Basically, this is a convenience function for fsync().
638 * @mapping is a file or directory which needs those buffers to be written for
639 * a successful fsync().
1da177e4
LT
640 */
641int sync_mapping_buffers(struct address_space *mapping)
642{
643 struct address_space *buffer_mapping = mapping->assoc_mapping;
644
645 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646 return 0;
647
648 return fsync_buffers_list(&buffer_mapping->private_lock,
649 &mapping->private_list);
650}
651EXPORT_SYMBOL(sync_mapping_buffers);
652
653/*
654 * Called when we've recently written block `bblock', and it is known that
655 * `bblock' was for a buffer_boundary() buffer. This means that the block at
656 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
657 * dirty, schedule it for IO. So that indirects merge nicely with their data.
658 */
659void write_boundary_block(struct block_device *bdev,
660 sector_t bblock, unsigned blocksize)
661{
662 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663 if (bh) {
664 if (buffer_dirty(bh))
665 ll_rw_block(WRITE, 1, &bh);
666 put_bh(bh);
667 }
668}
669
670void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671{
672 struct address_space *mapping = inode->i_mapping;
673 struct address_space *buffer_mapping = bh->b_page->mapping;
674
675 mark_buffer_dirty(bh);
676 if (!mapping->assoc_mapping) {
677 mapping->assoc_mapping = buffer_mapping;
678 } else {
e827f923 679 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4
LT
680 }
681 if (list_empty(&bh->b_assoc_buffers)) {
682 spin_lock(&buffer_mapping->private_lock);
683 list_move_tail(&bh->b_assoc_buffers,
684 &mapping->private_list);
58ff407b 685 bh->b_assoc_map = mapping;
1da177e4
LT
686 spin_unlock(&buffer_mapping->private_lock);
687 }
688}
689EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
787d2214
NP
691/*
692 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693 * dirty.
694 *
695 * If warn is true, then emit a warning if the page is not uptodate and has
696 * not been truncated.
697 */
698static int __set_page_dirty(struct page *page,
699 struct address_space *mapping, int warn)
700{
701 if (unlikely(!mapping))
702 return !TestSetPageDirty(page);
703
704 if (TestSetPageDirty(page))
705 return 0;
706
707 write_lock_irq(&mapping->tree_lock);
708 if (page->mapping) { /* Race with truncate? */
709 WARN_ON_ONCE(warn && !PageUptodate(page));
710
711 if (mapping_cap_account_dirty(mapping)) {
712 __inc_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
713 __inc_bdi_stat(mapping->backing_dev_info,
714 BDI_RECLAIMABLE);
787d2214
NP
715 task_io_account_write(PAGE_CACHE_SIZE);
716 }
717 radix_tree_tag_set(&mapping->page_tree,
718 page_index(page), PAGECACHE_TAG_DIRTY);
719 }
720 write_unlock_irq(&mapping->tree_lock);
721 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
722
723 return 1;
724}
725
1da177e4
LT
726/*
727 * Add a page to the dirty page list.
728 *
729 * It is a sad fact of life that this function is called from several places
730 * deeply under spinlocking. It may not sleep.
731 *
732 * If the page has buffers, the uptodate buffers are set dirty, to preserve
733 * dirty-state coherency between the page and the buffers. It the page does
734 * not have buffers then when they are later attached they will all be set
735 * dirty.
736 *
737 * The buffers are dirtied before the page is dirtied. There's a small race
738 * window in which a writepage caller may see the page cleanness but not the
739 * buffer dirtiness. That's fine. If this code were to set the page dirty
740 * before the buffers, a concurrent writepage caller could clear the page dirty
741 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
742 * page on the dirty page list.
743 *
744 * We use private_lock to lock against try_to_free_buffers while using the
745 * page's buffer list. Also use this to protect against clean buffers being
746 * added to the page after it was set dirty.
747 *
748 * FIXME: may need to call ->reservepage here as well. That's rather up to the
749 * address_space though.
750 */
751int __set_page_dirty_buffers(struct page *page)
752{
787d2214 753 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
754
755 if (unlikely(!mapping))
756 return !TestSetPageDirty(page);
1da177e4
LT
757
758 spin_lock(&mapping->private_lock);
759 if (page_has_buffers(page)) {
760 struct buffer_head *head = page_buffers(page);
761 struct buffer_head *bh = head;
762
763 do {
764 set_buffer_dirty(bh);
765 bh = bh->b_this_page;
766 } while (bh != head);
767 }
768 spin_unlock(&mapping->private_lock);
769
787d2214 770 return __set_page_dirty(page, mapping, 1);
1da177e4
LT
771}
772EXPORT_SYMBOL(__set_page_dirty_buffers);
773
774/*
775 * Write out and wait upon a list of buffers.
776 *
777 * We have conflicting pressures: we want to make sure that all
778 * initially dirty buffers get waited on, but that any subsequently
779 * dirtied buffers don't. After all, we don't want fsync to last
780 * forever if somebody is actively writing to the file.
781 *
782 * Do this in two main stages: first we copy dirty buffers to a
783 * temporary inode list, queueing the writes as we go. Then we clean
784 * up, waiting for those writes to complete.
785 *
786 * During this second stage, any subsequent updates to the file may end
787 * up refiling the buffer on the original inode's dirty list again, so
788 * there is a chance we will end up with a buffer queued for write but
789 * not yet completed on that list. So, as a final cleanup we go through
790 * the osync code to catch these locked, dirty buffers without requeuing
791 * any newly dirty buffers for write.
792 */
793static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
794{
795 struct buffer_head *bh;
796 struct list_head tmp;
797 int err = 0, err2;
798
799 INIT_LIST_HEAD(&tmp);
800
801 spin_lock(lock);
802 while (!list_empty(list)) {
803 bh = BH_ENTRY(list->next);
58ff407b 804 __remove_assoc_queue(bh);
1da177e4
LT
805 if (buffer_dirty(bh) || buffer_locked(bh)) {
806 list_add(&bh->b_assoc_buffers, &tmp);
807 if (buffer_dirty(bh)) {
808 get_bh(bh);
809 spin_unlock(lock);
810 /*
811 * Ensure any pending I/O completes so that
812 * ll_rw_block() actually writes the current
813 * contents - it is a noop if I/O is still in
814 * flight on potentially older contents.
815 */
a7662236 816 ll_rw_block(SWRITE, 1, &bh);
1da177e4
LT
817 brelse(bh);
818 spin_lock(lock);
819 }
820 }
821 }
822
823 while (!list_empty(&tmp)) {
824 bh = BH_ENTRY(tmp.prev);
58ff407b 825 list_del_init(&bh->b_assoc_buffers);
1da177e4
LT
826 get_bh(bh);
827 spin_unlock(lock);
828 wait_on_buffer(bh);
829 if (!buffer_uptodate(bh))
830 err = -EIO;
831 brelse(bh);
832 spin_lock(lock);
833 }
834
835 spin_unlock(lock);
836 err2 = osync_buffers_list(lock, list);
837 if (err)
838 return err;
839 else
840 return err2;
841}
842
843/*
844 * Invalidate any and all dirty buffers on a given inode. We are
845 * probably unmounting the fs, but that doesn't mean we have already
846 * done a sync(). Just drop the buffers from the inode list.
847 *
848 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
849 * assumes that all the buffers are against the blockdev. Not true
850 * for reiserfs.
851 */
852void invalidate_inode_buffers(struct inode *inode)
853{
854 if (inode_has_buffers(inode)) {
855 struct address_space *mapping = &inode->i_data;
856 struct list_head *list = &mapping->private_list;
857 struct address_space *buffer_mapping = mapping->assoc_mapping;
858
859 spin_lock(&buffer_mapping->private_lock);
860 while (!list_empty(list))
861 __remove_assoc_queue(BH_ENTRY(list->next));
862 spin_unlock(&buffer_mapping->private_lock);
863 }
864}
865
866/*
867 * Remove any clean buffers from the inode's buffer list. This is called
868 * when we're trying to free the inode itself. Those buffers can pin it.
869 *
870 * Returns true if all buffers were removed.
871 */
872int remove_inode_buffers(struct inode *inode)
873{
874 int ret = 1;
875
876 if (inode_has_buffers(inode)) {
877 struct address_space *mapping = &inode->i_data;
878 struct list_head *list = &mapping->private_list;
879 struct address_space *buffer_mapping = mapping->assoc_mapping;
880
881 spin_lock(&buffer_mapping->private_lock);
882 while (!list_empty(list)) {
883 struct buffer_head *bh = BH_ENTRY(list->next);
884 if (buffer_dirty(bh)) {
885 ret = 0;
886 break;
887 }
888 __remove_assoc_queue(bh);
889 }
890 spin_unlock(&buffer_mapping->private_lock);
891 }
892 return ret;
893}
894
895/*
896 * Create the appropriate buffers when given a page for data area and
897 * the size of each buffer.. Use the bh->b_this_page linked list to
898 * follow the buffers created. Return NULL if unable to create more
899 * buffers.
900 *
901 * The retry flag is used to differentiate async IO (paging, swapping)
902 * which may not fail from ordinary buffer allocations.
903 */
904struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
905 int retry)
906{
907 struct buffer_head *bh, *head;
908 long offset;
909
910try_again:
911 head = NULL;
912 offset = PAGE_SIZE;
913 while ((offset -= size) >= 0) {
914 bh = alloc_buffer_head(GFP_NOFS);
915 if (!bh)
916 goto no_grow;
917
918 bh->b_bdev = NULL;
919 bh->b_this_page = head;
920 bh->b_blocknr = -1;
921 head = bh;
922
923 bh->b_state = 0;
924 atomic_set(&bh->b_count, 0);
fc5cd582 925 bh->b_private = NULL;
1da177e4
LT
926 bh->b_size = size;
927
928 /* Link the buffer to its page */
929 set_bh_page(bh, page, offset);
930
01ffe339 931 init_buffer(bh, NULL, NULL);
1da177e4
LT
932 }
933 return head;
934/*
935 * In case anything failed, we just free everything we got.
936 */
937no_grow:
938 if (head) {
939 do {
940 bh = head;
941 head = head->b_this_page;
942 free_buffer_head(bh);
943 } while (head);
944 }
945
946 /*
947 * Return failure for non-async IO requests. Async IO requests
948 * are not allowed to fail, so we have to wait until buffer heads
949 * become available. But we don't want tasks sleeping with
950 * partially complete buffers, so all were released above.
951 */
952 if (!retry)
953 return NULL;
954
955 /* We're _really_ low on memory. Now we just
956 * wait for old buffer heads to become free due to
957 * finishing IO. Since this is an async request and
958 * the reserve list is empty, we're sure there are
959 * async buffer heads in use.
960 */
961 free_more_memory();
962 goto try_again;
963}
964EXPORT_SYMBOL_GPL(alloc_page_buffers);
965
966static inline void
967link_dev_buffers(struct page *page, struct buffer_head *head)
968{
969 struct buffer_head *bh, *tail;
970
971 bh = head;
972 do {
973 tail = bh;
974 bh = bh->b_this_page;
975 } while (bh);
976 tail->b_this_page = head;
977 attach_page_buffers(page, head);
978}
979
980/*
981 * Initialise the state of a blockdev page's buffers.
982 */
983static void
984init_page_buffers(struct page *page, struct block_device *bdev,
985 sector_t block, int size)
986{
987 struct buffer_head *head = page_buffers(page);
988 struct buffer_head *bh = head;
989 int uptodate = PageUptodate(page);
990
991 do {
992 if (!buffer_mapped(bh)) {
993 init_buffer(bh, NULL, NULL);
994 bh->b_bdev = bdev;
995 bh->b_blocknr = block;
996 if (uptodate)
997 set_buffer_uptodate(bh);
998 set_buffer_mapped(bh);
999 }
1000 block++;
1001 bh = bh->b_this_page;
1002 } while (bh != head);
1003}
1004
1005/*
1006 * Create the page-cache page that contains the requested block.
1007 *
1008 * This is user purely for blockdev mappings.
1009 */
1010static struct page *
1011grow_dev_page(struct block_device *bdev, sector_t block,
1012 pgoff_t index, int size)
1013{
1014 struct inode *inode = bdev->bd_inode;
1015 struct page *page;
1016 struct buffer_head *bh;
1017
ea125892 1018 page = find_or_create_page(inode->i_mapping, index,
769848c0 1019 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4
LT
1020 if (!page)
1021 return NULL;
1022
e827f923 1023 BUG_ON(!PageLocked(page));
1da177e4
LT
1024
1025 if (page_has_buffers(page)) {
1026 bh = page_buffers(page);
1027 if (bh->b_size == size) {
1028 init_page_buffers(page, bdev, block, size);
1029 return page;
1030 }
1031 if (!try_to_free_buffers(page))
1032 goto failed;
1033 }
1034
1035 /*
1036 * Allocate some buffers for this page
1037 */
1038 bh = alloc_page_buffers(page, size, 0);
1039 if (!bh)
1040 goto failed;
1041
1042 /*
1043 * Link the page to the buffers and initialise them. Take the
1044 * lock to be atomic wrt __find_get_block(), which does not
1045 * run under the page lock.
1046 */
1047 spin_lock(&inode->i_mapping->private_lock);
1048 link_dev_buffers(page, bh);
1049 init_page_buffers(page, bdev, block, size);
1050 spin_unlock(&inode->i_mapping->private_lock);
1051 return page;
1052
1053failed:
1054 BUG();
1055 unlock_page(page);
1056 page_cache_release(page);
1057 return NULL;
1058}
1059
1060/*
1061 * Create buffers for the specified block device block's page. If
1062 * that page was dirty, the buffers are set dirty also.
1da177e4 1063 */
858119e1 1064static int
1da177e4
LT
1065grow_buffers(struct block_device *bdev, sector_t block, int size)
1066{
1067 struct page *page;
1068 pgoff_t index;
1069 int sizebits;
1070
1071 sizebits = -1;
1072 do {
1073 sizebits++;
1074 } while ((size << sizebits) < PAGE_SIZE);
1075
1076 index = block >> sizebits;
1da177e4 1077
e5657933
AM
1078 /*
1079 * Check for a block which wants to lie outside our maximum possible
1080 * pagecache index. (this comparison is done using sector_t types).
1081 */
1082 if (unlikely(index != block >> sizebits)) {
1083 char b[BDEVNAME_SIZE];
1084
1085 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1086 "device %s\n",
1087 __FUNCTION__, (unsigned long long)block,
1088 bdevname(bdev, b));
1089 return -EIO;
1090 }
1091 block = index << sizebits;
1da177e4
LT
1092 /* Create a page with the proper size buffers.. */
1093 page = grow_dev_page(bdev, block, index, size);
1094 if (!page)
1095 return 0;
1096 unlock_page(page);
1097 page_cache_release(page);
1098 return 1;
1099}
1100
75c96f85 1101static struct buffer_head *
1da177e4
LT
1102__getblk_slow(struct block_device *bdev, sector_t block, int size)
1103{
1104 /* Size must be multiple of hard sectorsize */
1105 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1106 (size < 512 || size > PAGE_SIZE))) {
1107 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1108 size);
1109 printk(KERN_ERR "hardsect size: %d\n",
1110 bdev_hardsect_size(bdev));
1111
1112 dump_stack();
1113 return NULL;
1114 }
1115
1116 for (;;) {
1117 struct buffer_head * bh;
e5657933 1118 int ret;
1da177e4
LT
1119
1120 bh = __find_get_block(bdev, block, size);
1121 if (bh)
1122 return bh;
1123
e5657933
AM
1124 ret = grow_buffers(bdev, block, size);
1125 if (ret < 0)
1126 return NULL;
1127 if (ret == 0)
1da177e4
LT
1128 free_more_memory();
1129 }
1130}
1131
1132/*
1133 * The relationship between dirty buffers and dirty pages:
1134 *
1135 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1136 * the page is tagged dirty in its radix tree.
1137 *
1138 * At all times, the dirtiness of the buffers represents the dirtiness of
1139 * subsections of the page. If the page has buffers, the page dirty bit is
1140 * merely a hint about the true dirty state.
1141 *
1142 * When a page is set dirty in its entirety, all its buffers are marked dirty
1143 * (if the page has buffers).
1144 *
1145 * When a buffer is marked dirty, its page is dirtied, but the page's other
1146 * buffers are not.
1147 *
1148 * Also. When blockdev buffers are explicitly read with bread(), they
1149 * individually become uptodate. But their backing page remains not
1150 * uptodate - even if all of its buffers are uptodate. A subsequent
1151 * block_read_full_page() against that page will discover all the uptodate
1152 * buffers, will set the page uptodate and will perform no I/O.
1153 */
1154
1155/**
1156 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1157 * @bh: the buffer_head to mark dirty
1da177e4
LT
1158 *
1159 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1160 * backing page dirty, then tag the page as dirty in its address_space's radix
1161 * tree and then attach the address_space's inode to its superblock's dirty
1162 * inode list.
1163 *
1164 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1165 * mapping->tree_lock and the global inode_lock.
1166 */
1167void fastcall mark_buffer_dirty(struct buffer_head *bh)
1168{
787d2214 1169 WARN_ON_ONCE(!buffer_uptodate(bh));
1da177e4 1170 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
787d2214 1171 __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1da177e4
LT
1172}
1173
1174/*
1175 * Decrement a buffer_head's reference count. If all buffers against a page
1176 * have zero reference count, are clean and unlocked, and if the page is clean
1177 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1178 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1179 * a page but it ends up not being freed, and buffers may later be reattached).
1180 */
1181void __brelse(struct buffer_head * buf)
1182{
1183 if (atomic_read(&buf->b_count)) {
1184 put_bh(buf);
1185 return;
1186 }
1187 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1188 WARN_ON(1);
1189}
1190
1191/*
1192 * bforget() is like brelse(), except it discards any
1193 * potentially dirty data.
1194 */
1195void __bforget(struct buffer_head *bh)
1196{
1197 clear_buffer_dirty(bh);
1198 if (!list_empty(&bh->b_assoc_buffers)) {
1199 struct address_space *buffer_mapping = bh->b_page->mapping;
1200
1201 spin_lock(&buffer_mapping->private_lock);
1202 list_del_init(&bh->b_assoc_buffers);
58ff407b 1203 bh->b_assoc_map = NULL;
1da177e4
LT
1204 spin_unlock(&buffer_mapping->private_lock);
1205 }
1206 __brelse(bh);
1207}
1208
1209static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210{
1211 lock_buffer(bh);
1212 if (buffer_uptodate(bh)) {
1213 unlock_buffer(bh);
1214 return bh;
1215 } else {
1216 get_bh(bh);
1217 bh->b_end_io = end_buffer_read_sync;
1218 submit_bh(READ, bh);
1219 wait_on_buffer(bh);
1220 if (buffer_uptodate(bh))
1221 return bh;
1222 }
1223 brelse(bh);
1224 return NULL;
1225}
1226
1227/*
1228 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1229 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1230 * refcount elevated by one when they're in an LRU. A buffer can only appear
1231 * once in a particular CPU's LRU. A single buffer can be present in multiple
1232 * CPU's LRUs at the same time.
1233 *
1234 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235 * sb_find_get_block().
1236 *
1237 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1238 * a local interrupt disable for that.
1239 */
1240
1241#define BH_LRU_SIZE 8
1242
1243struct bh_lru {
1244 struct buffer_head *bhs[BH_LRU_SIZE];
1245};
1246
1247static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248
1249#ifdef CONFIG_SMP
1250#define bh_lru_lock() local_irq_disable()
1251#define bh_lru_unlock() local_irq_enable()
1252#else
1253#define bh_lru_lock() preempt_disable()
1254#define bh_lru_unlock() preempt_enable()
1255#endif
1256
1257static inline void check_irqs_on(void)
1258{
1259#ifdef irqs_disabled
1260 BUG_ON(irqs_disabled());
1261#endif
1262}
1263
1264/*
1265 * The LRU management algorithm is dopey-but-simple. Sorry.
1266 */
1267static void bh_lru_install(struct buffer_head *bh)
1268{
1269 struct buffer_head *evictee = NULL;
1270 struct bh_lru *lru;
1271
1272 check_irqs_on();
1273 bh_lru_lock();
1274 lru = &__get_cpu_var(bh_lrus);
1275 if (lru->bhs[0] != bh) {
1276 struct buffer_head *bhs[BH_LRU_SIZE];
1277 int in;
1278 int out = 0;
1279
1280 get_bh(bh);
1281 bhs[out++] = bh;
1282 for (in = 0; in < BH_LRU_SIZE; in++) {
1283 struct buffer_head *bh2 = lru->bhs[in];
1284
1285 if (bh2 == bh) {
1286 __brelse(bh2);
1287 } else {
1288 if (out >= BH_LRU_SIZE) {
1289 BUG_ON(evictee != NULL);
1290 evictee = bh2;
1291 } else {
1292 bhs[out++] = bh2;
1293 }
1294 }
1295 }
1296 while (out < BH_LRU_SIZE)
1297 bhs[out++] = NULL;
1298 memcpy(lru->bhs, bhs, sizeof(bhs));
1299 }
1300 bh_lru_unlock();
1301
1302 if (evictee)
1303 __brelse(evictee);
1304}
1305
1306/*
1307 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1308 */
858119e1 1309static struct buffer_head *
3991d3bd 1310lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1311{
1312 struct buffer_head *ret = NULL;
1313 struct bh_lru *lru;
3991d3bd 1314 unsigned int i;
1da177e4
LT
1315
1316 check_irqs_on();
1317 bh_lru_lock();
1318 lru = &__get_cpu_var(bh_lrus);
1319 for (i = 0; i < BH_LRU_SIZE; i++) {
1320 struct buffer_head *bh = lru->bhs[i];
1321
1322 if (bh && bh->b_bdev == bdev &&
1323 bh->b_blocknr == block && bh->b_size == size) {
1324 if (i) {
1325 while (i) {
1326 lru->bhs[i] = lru->bhs[i - 1];
1327 i--;
1328 }
1329 lru->bhs[0] = bh;
1330 }
1331 get_bh(bh);
1332 ret = bh;
1333 break;
1334 }
1335 }
1336 bh_lru_unlock();
1337 return ret;
1338}
1339
1340/*
1341 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1342 * it in the LRU and mark it as accessed. If it is not present then return
1343 * NULL
1344 */
1345struct buffer_head *
3991d3bd 1346__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1347{
1348 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349
1350 if (bh == NULL) {
385fd4c5 1351 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1352 if (bh)
1353 bh_lru_install(bh);
1354 }
1355 if (bh)
1356 touch_buffer(bh);
1357 return bh;
1358}
1359EXPORT_SYMBOL(__find_get_block);
1360
1361/*
1362 * __getblk will locate (and, if necessary, create) the buffer_head
1363 * which corresponds to the passed block_device, block and size. The
1364 * returned buffer has its reference count incremented.
1365 *
1366 * __getblk() cannot fail - it just keeps trying. If you pass it an
1367 * illegal block number, __getblk() will happily return a buffer_head
1368 * which represents the non-existent block. Very weird.
1369 *
1370 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371 * attempt is failing. FIXME, perhaps?
1372 */
1373struct buffer_head *
3991d3bd 1374__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1375{
1376 struct buffer_head *bh = __find_get_block(bdev, block, size);
1377
1378 might_sleep();
1379 if (bh == NULL)
1380 bh = __getblk_slow(bdev, block, size);
1381 return bh;
1382}
1383EXPORT_SYMBOL(__getblk);
1384
1385/*
1386 * Do async read-ahead on a buffer..
1387 */
3991d3bd 1388void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1389{
1390 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1391 if (likely(bh)) {
1392 ll_rw_block(READA, 1, &bh);
1393 brelse(bh);
1394 }
1da177e4
LT
1395}
1396EXPORT_SYMBOL(__breadahead);
1397
1398/**
1399 * __bread() - reads a specified block and returns the bh
67be2dd1 1400 * @bdev: the block_device to read from
1da177e4
LT
1401 * @block: number of block
1402 * @size: size (in bytes) to read
1403 *
1404 * Reads a specified block, and returns buffer head that contains it.
1405 * It returns NULL if the block was unreadable.
1406 */
1407struct buffer_head *
3991d3bd 1408__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1409{
1410 struct buffer_head *bh = __getblk(bdev, block, size);
1411
a3e713b5 1412 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1413 bh = __bread_slow(bh);
1414 return bh;
1415}
1416EXPORT_SYMBOL(__bread);
1417
1418/*
1419 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420 * This doesn't race because it runs in each cpu either in irq
1421 * or with preempt disabled.
1422 */
1423static void invalidate_bh_lru(void *arg)
1424{
1425 struct bh_lru *b = &get_cpu_var(bh_lrus);
1426 int i;
1427
1428 for (i = 0; i < BH_LRU_SIZE; i++) {
1429 brelse(b->bhs[i]);
1430 b->bhs[i] = NULL;
1431 }
1432 put_cpu_var(bh_lrus);
1433}
1434
f9a14399 1435void invalidate_bh_lrus(void)
1da177e4
LT
1436{
1437 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1438}
1439
1440void set_bh_page(struct buffer_head *bh,
1441 struct page *page, unsigned long offset)
1442{
1443 bh->b_page = page;
e827f923 1444 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1445 if (PageHighMem(page))
1446 /*
1447 * This catches illegal uses and preserves the offset:
1448 */
1449 bh->b_data = (char *)(0 + offset);
1450 else
1451 bh->b_data = page_address(page) + offset;
1452}
1453EXPORT_SYMBOL(set_bh_page);
1454
1455/*
1456 * Called when truncating a buffer on a page completely.
1457 */
858119e1 1458static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1459{
1460 lock_buffer(bh);
1461 clear_buffer_dirty(bh);
1462 bh->b_bdev = NULL;
1463 clear_buffer_mapped(bh);
1464 clear_buffer_req(bh);
1465 clear_buffer_new(bh);
1466 clear_buffer_delay(bh);
33a266dd 1467 clear_buffer_unwritten(bh);
1da177e4
LT
1468 unlock_buffer(bh);
1469}
1470
1da177e4
LT
1471/**
1472 * block_invalidatepage - invalidate part of all of a buffer-backed page
1473 *
1474 * @page: the page which is affected
1475 * @offset: the index of the truncation point
1476 *
1477 * block_invalidatepage() is called when all or part of the page has become
1478 * invalidatedby a truncate operation.
1479 *
1480 * block_invalidatepage() does not have to release all buffers, but it must
1481 * ensure that no dirty buffer is left outside @offset and that no I/O
1482 * is underway against any of the blocks which are outside the truncation
1483 * point. Because the caller is about to free (and possibly reuse) those
1484 * blocks on-disk.
1485 */
2ff28e22 1486void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1487{
1488 struct buffer_head *head, *bh, *next;
1489 unsigned int curr_off = 0;
1da177e4
LT
1490
1491 BUG_ON(!PageLocked(page));
1492 if (!page_has_buffers(page))
1493 goto out;
1494
1495 head = page_buffers(page);
1496 bh = head;
1497 do {
1498 unsigned int next_off = curr_off + bh->b_size;
1499 next = bh->b_this_page;
1500
1501 /*
1502 * is this block fully invalidated?
1503 */
1504 if (offset <= curr_off)
1505 discard_buffer(bh);
1506 curr_off = next_off;
1507 bh = next;
1508 } while (bh != head);
1509
1510 /*
1511 * We release buffers only if the entire page is being invalidated.
1512 * The get_block cached value has been unconditionally invalidated,
1513 * so real IO is not possible anymore.
1514 */
1515 if (offset == 0)
2ff28e22 1516 try_to_release_page(page, 0);
1da177e4 1517out:
2ff28e22 1518 return;
1da177e4
LT
1519}
1520EXPORT_SYMBOL(block_invalidatepage);
1521
1522/*
1523 * We attach and possibly dirty the buffers atomically wrt
1524 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1525 * is already excluded via the page lock.
1526 */
1527void create_empty_buffers(struct page *page,
1528 unsigned long blocksize, unsigned long b_state)
1529{
1530 struct buffer_head *bh, *head, *tail;
1531
1532 head = alloc_page_buffers(page, blocksize, 1);
1533 bh = head;
1534 do {
1535 bh->b_state |= b_state;
1536 tail = bh;
1537 bh = bh->b_this_page;
1538 } while (bh);
1539 tail->b_this_page = head;
1540
1541 spin_lock(&page->mapping->private_lock);
1542 if (PageUptodate(page) || PageDirty(page)) {
1543 bh = head;
1544 do {
1545 if (PageDirty(page))
1546 set_buffer_dirty(bh);
1547 if (PageUptodate(page))
1548 set_buffer_uptodate(bh);
1549 bh = bh->b_this_page;
1550 } while (bh != head);
1551 }
1552 attach_page_buffers(page, head);
1553 spin_unlock(&page->mapping->private_lock);
1554}
1555EXPORT_SYMBOL(create_empty_buffers);
1556
1557/*
1558 * We are taking a block for data and we don't want any output from any
1559 * buffer-cache aliases starting from return from that function and
1560 * until the moment when something will explicitly mark the buffer
1561 * dirty (hopefully that will not happen until we will free that block ;-)
1562 * We don't even need to mark it not-uptodate - nobody can expect
1563 * anything from a newly allocated buffer anyway. We used to used
1564 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1565 * don't want to mark the alias unmapped, for example - it would confuse
1566 * anyone who might pick it with bread() afterwards...
1567 *
1568 * Also.. Note that bforget() doesn't lock the buffer. So there can
1569 * be writeout I/O going on against recently-freed buffers. We don't
1570 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1571 * only if we really need to. That happens here.
1572 */
1573void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1574{
1575 struct buffer_head *old_bh;
1576
1577 might_sleep();
1578
385fd4c5 1579 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1580 if (old_bh) {
1581 clear_buffer_dirty(old_bh);
1582 wait_on_buffer(old_bh);
1583 clear_buffer_req(old_bh);
1584 __brelse(old_bh);
1585 }
1586}
1587EXPORT_SYMBOL(unmap_underlying_metadata);
1588
1589/*
1590 * NOTE! All mapped/uptodate combinations are valid:
1591 *
1592 * Mapped Uptodate Meaning
1593 *
1594 * No No "unknown" - must do get_block()
1595 * No Yes "hole" - zero-filled
1596 * Yes No "allocated" - allocated on disk, not read in
1597 * Yes Yes "valid" - allocated and up-to-date in memory.
1598 *
1599 * "Dirty" is valid only with the last case (mapped+uptodate).
1600 */
1601
1602/*
1603 * While block_write_full_page is writing back the dirty buffers under
1604 * the page lock, whoever dirtied the buffers may decide to clean them
1605 * again at any time. We handle that by only looking at the buffer
1606 * state inside lock_buffer().
1607 *
1608 * If block_write_full_page() is called for regular writeback
1609 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610 * locked buffer. This only can happen if someone has written the buffer
1611 * directly, with submit_bh(). At the address_space level PageWriteback
1612 * prevents this contention from occurring.
1613 */
1614static int __block_write_full_page(struct inode *inode, struct page *page,
1615 get_block_t *get_block, struct writeback_control *wbc)
1616{
1617 int err;
1618 sector_t block;
1619 sector_t last_block;
f0fbd5fc 1620 struct buffer_head *bh, *head;
b0cf2321 1621 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4
LT
1622 int nr_underway = 0;
1623
1624 BUG_ON(!PageLocked(page));
1625
1626 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1627
1628 if (!page_has_buffers(page)) {
b0cf2321 1629 create_empty_buffers(page, blocksize,
1da177e4
LT
1630 (1 << BH_Dirty)|(1 << BH_Uptodate));
1631 }
1632
1633 /*
1634 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1635 * here, and the (potentially unmapped) buffers may become dirty at
1636 * any time. If a buffer becomes dirty here after we've inspected it
1637 * then we just miss that fact, and the page stays dirty.
1638 *
1639 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1640 * handle that here by just cleaning them.
1641 */
1642
54b21a79 1643 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1644 head = page_buffers(page);
1645 bh = head;
1646
1647 /*
1648 * Get all the dirty buffers mapped to disk addresses and
1649 * handle any aliases from the underlying blockdev's mapping.
1650 */
1651 do {
1652 if (block > last_block) {
1653 /*
1654 * mapped buffers outside i_size will occur, because
1655 * this page can be outside i_size when there is a
1656 * truncate in progress.
1657 */
1658 /*
1659 * The buffer was zeroed by block_write_full_page()
1660 */
1661 clear_buffer_dirty(bh);
1662 set_buffer_uptodate(bh);
1663 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
b0cf2321 1664 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1665 err = get_block(inode, block, bh, 1);
1666 if (err)
1667 goto recover;
1668 if (buffer_new(bh)) {
1669 /* blockdev mappings never come here */
1670 clear_buffer_new(bh);
1671 unmap_underlying_metadata(bh->b_bdev,
1672 bh->b_blocknr);
1673 }
1674 }
1675 bh = bh->b_this_page;
1676 block++;
1677 } while (bh != head);
1678
1679 do {
1da177e4
LT
1680 if (!buffer_mapped(bh))
1681 continue;
1682 /*
1683 * If it's a fully non-blocking write attempt and we cannot
1684 * lock the buffer then redirty the page. Note that this can
1685 * potentially cause a busy-wait loop from pdflush and kswapd
1686 * activity, but those code paths have their own higher-level
1687 * throttling.
1688 */
1689 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1690 lock_buffer(bh);
1691 } else if (test_set_buffer_locked(bh)) {
1692 redirty_page_for_writepage(wbc, page);
1693 continue;
1694 }
1695 if (test_clear_buffer_dirty(bh)) {
1696 mark_buffer_async_write(bh);
1697 } else {
1698 unlock_buffer(bh);
1699 }
1700 } while ((bh = bh->b_this_page) != head);
1701
1702 /*
1703 * The page and its buffers are protected by PageWriteback(), so we can
1704 * drop the bh refcounts early.
1705 */
1706 BUG_ON(PageWriteback(page));
1707 set_page_writeback(page);
1da177e4
LT
1708
1709 do {
1710 struct buffer_head *next = bh->b_this_page;
1711 if (buffer_async_write(bh)) {
1712 submit_bh(WRITE, bh);
1713 nr_underway++;
1714 }
1da177e4
LT
1715 bh = next;
1716 } while (bh != head);
05937baa 1717 unlock_page(page);
1da177e4
LT
1718
1719 err = 0;
1720done:
1721 if (nr_underway == 0) {
1722 /*
1723 * The page was marked dirty, but the buffers were
1724 * clean. Someone wrote them back by hand with
1725 * ll_rw_block/submit_bh. A rare case.
1726 */
1da177e4 1727 end_page_writeback(page);
3d67f2d7 1728
1da177e4
LT
1729 /*
1730 * The page and buffer_heads can be released at any time from
1731 * here on.
1732 */
1da177e4
LT
1733 }
1734 return err;
1735
1736recover:
1737 /*
1738 * ENOSPC, or some other error. We may already have added some
1739 * blocks to the file, so we need to write these out to avoid
1740 * exposing stale data.
1741 * The page is currently locked and not marked for writeback
1742 */
1743 bh = head;
1744 /* Recovery: lock and submit the mapped buffers */
1745 do {
1da177e4
LT
1746 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1747 lock_buffer(bh);
1748 mark_buffer_async_write(bh);
1749 } else {
1750 /*
1751 * The buffer may have been set dirty during
1752 * attachment to a dirty page.
1753 */
1754 clear_buffer_dirty(bh);
1755 }
1756 } while ((bh = bh->b_this_page) != head);
1757 SetPageError(page);
1758 BUG_ON(PageWriteback(page));
7e4c3690 1759 mapping_set_error(page->mapping, err);
1da177e4 1760 set_page_writeback(page);
1da177e4
LT
1761 do {
1762 struct buffer_head *next = bh->b_this_page;
1763 if (buffer_async_write(bh)) {
1764 clear_buffer_dirty(bh);
1765 submit_bh(WRITE, bh);
1766 nr_underway++;
1767 }
1da177e4
LT
1768 bh = next;
1769 } while (bh != head);
ffda9d30 1770 unlock_page(page);
1da177e4
LT
1771 goto done;
1772}
1773
afddba49
NP
1774/*
1775 * If a page has any new buffers, zero them out here, and mark them uptodate
1776 * and dirty so they'll be written out (in order to prevent uninitialised
1777 * block data from leaking). And clear the new bit.
1778 */
1779void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1780{
1781 unsigned int block_start, block_end;
1782 struct buffer_head *head, *bh;
1783
1784 BUG_ON(!PageLocked(page));
1785 if (!page_has_buffers(page))
1786 return;
1787
1788 bh = head = page_buffers(page);
1789 block_start = 0;
1790 do {
1791 block_end = block_start + bh->b_size;
1792
1793 if (buffer_new(bh)) {
1794 if (block_end > from && block_start < to) {
1795 if (!PageUptodate(page)) {
1796 unsigned start, size;
1797
1798 start = max(from, block_start);
1799 size = min(to, block_end) - start;
1800
1801 zero_user_page(page, start, size, KM_USER0);
1802 set_buffer_uptodate(bh);
1803 }
1804
1805 clear_buffer_new(bh);
1806 mark_buffer_dirty(bh);
1807 }
1808 }
1809
1810 block_start = block_end;
1811 bh = bh->b_this_page;
1812 } while (bh != head);
1813}
1814EXPORT_SYMBOL(page_zero_new_buffers);
1815
1da177e4
LT
1816static int __block_prepare_write(struct inode *inode, struct page *page,
1817 unsigned from, unsigned to, get_block_t *get_block)
1818{
1819 unsigned block_start, block_end;
1820 sector_t block;
1821 int err = 0;
1822 unsigned blocksize, bbits;
1823 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1824
1825 BUG_ON(!PageLocked(page));
1826 BUG_ON(from > PAGE_CACHE_SIZE);
1827 BUG_ON(to > PAGE_CACHE_SIZE);
1828 BUG_ON(from > to);
1829
1830 blocksize = 1 << inode->i_blkbits;
1831 if (!page_has_buffers(page))
1832 create_empty_buffers(page, blocksize, 0);
1833 head = page_buffers(page);
1834
1835 bbits = inode->i_blkbits;
1836 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1837
1838 for(bh = head, block_start = 0; bh != head || !block_start;
1839 block++, block_start=block_end, bh = bh->b_this_page) {
1840 block_end = block_start + blocksize;
1841 if (block_end <= from || block_start >= to) {
1842 if (PageUptodate(page)) {
1843 if (!buffer_uptodate(bh))
1844 set_buffer_uptodate(bh);
1845 }
1846 continue;
1847 }
1848 if (buffer_new(bh))
1849 clear_buffer_new(bh);
1850 if (!buffer_mapped(bh)) {
b0cf2321 1851 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1852 err = get_block(inode, block, bh, 1);
1853 if (err)
f3ddbdc6 1854 break;
1da177e4 1855 if (buffer_new(bh)) {
1da177e4
LT
1856 unmap_underlying_metadata(bh->b_bdev,
1857 bh->b_blocknr);
1858 if (PageUptodate(page)) {
637aff46 1859 clear_buffer_new(bh);
1da177e4 1860 set_buffer_uptodate(bh);
637aff46 1861 mark_buffer_dirty(bh);
1da177e4
LT
1862 continue;
1863 }
1864 if (block_end > to || block_start < from) {
1865 void *kaddr;
1866
1867 kaddr = kmap_atomic(page, KM_USER0);
1868 if (block_end > to)
1869 memset(kaddr+to, 0,
1870 block_end-to);
1871 if (block_start < from)
1872 memset(kaddr+block_start,
1873 0, from-block_start);
1874 flush_dcache_page(page);
1875 kunmap_atomic(kaddr, KM_USER0);
1876 }
1877 continue;
1878 }
1879 }
1880 if (PageUptodate(page)) {
1881 if (!buffer_uptodate(bh))
1882 set_buffer_uptodate(bh);
1883 continue;
1884 }
1885 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1886 !buffer_unwritten(bh) &&
1da177e4
LT
1887 (block_start < from || block_end > to)) {
1888 ll_rw_block(READ, 1, &bh);
1889 *wait_bh++=bh;
1890 }
1891 }
1892 /*
1893 * If we issued read requests - let them complete.
1894 */
1895 while(wait_bh > wait) {
1896 wait_on_buffer(*--wait_bh);
1897 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1898 err = -EIO;
1da177e4 1899 }
afddba49
NP
1900 if (unlikely(err))
1901 page_zero_new_buffers(page, from, to);
1da177e4
LT
1902 return err;
1903}
1904
1905static int __block_commit_write(struct inode *inode, struct page *page,
1906 unsigned from, unsigned to)
1907{
1908 unsigned block_start, block_end;
1909 int partial = 0;
1910 unsigned blocksize;
1911 struct buffer_head *bh, *head;
1912
1913 blocksize = 1 << inode->i_blkbits;
1914
1915 for(bh = head = page_buffers(page), block_start = 0;
1916 bh != head || !block_start;
1917 block_start=block_end, bh = bh->b_this_page) {
1918 block_end = block_start + blocksize;
1919 if (block_end <= from || block_start >= to) {
1920 if (!buffer_uptodate(bh))
1921 partial = 1;
1922 } else {
1923 set_buffer_uptodate(bh);
1924 mark_buffer_dirty(bh);
1925 }
afddba49 1926 clear_buffer_new(bh);
1da177e4
LT
1927 }
1928
1929 /*
1930 * If this is a partial write which happened to make all buffers
1931 * uptodate then we can optimize away a bogus readpage() for
1932 * the next read(). Here we 'discover' whether the page went
1933 * uptodate as a result of this (potentially partial) write.
1934 */
1935 if (!partial)
1936 SetPageUptodate(page);
1937 return 0;
1938}
1939
afddba49
NP
1940/*
1941 * block_write_begin takes care of the basic task of block allocation and
1942 * bringing partial write blocks uptodate first.
1943 *
1944 * If *pagep is not NULL, then block_write_begin uses the locked page
1945 * at *pagep rather than allocating its own. In this case, the page will
1946 * not be unlocked or deallocated on failure.
1947 */
1948int block_write_begin(struct file *file, struct address_space *mapping,
1949 loff_t pos, unsigned len, unsigned flags,
1950 struct page **pagep, void **fsdata,
1951 get_block_t *get_block)
1952{
1953 struct inode *inode = mapping->host;
1954 int status = 0;
1955 struct page *page;
1956 pgoff_t index;
1957 unsigned start, end;
1958 int ownpage = 0;
1959
1960 index = pos >> PAGE_CACHE_SHIFT;
1961 start = pos & (PAGE_CACHE_SIZE - 1);
1962 end = start + len;
1963
1964 page = *pagep;
1965 if (page == NULL) {
1966 ownpage = 1;
1967 page = __grab_cache_page(mapping, index);
1968 if (!page) {
1969 status = -ENOMEM;
1970 goto out;
1971 }
1972 *pagep = page;
1973 } else
1974 BUG_ON(!PageLocked(page));
1975
1976 status = __block_prepare_write(inode, page, start, end, get_block);
1977 if (unlikely(status)) {
1978 ClearPageUptodate(page);
1979
1980 if (ownpage) {
1981 unlock_page(page);
1982 page_cache_release(page);
1983 *pagep = NULL;
1984
1985 /*
1986 * prepare_write() may have instantiated a few blocks
1987 * outside i_size. Trim these off again. Don't need
1988 * i_size_read because we hold i_mutex.
1989 */
1990 if (pos + len > inode->i_size)
1991 vmtruncate(inode, inode->i_size);
1992 }
1993 goto out;
1994 }
1995
1996out:
1997 return status;
1998}
1999EXPORT_SYMBOL(block_write_begin);
2000
2001int block_write_end(struct file *file, struct address_space *mapping,
2002 loff_t pos, unsigned len, unsigned copied,
2003 struct page *page, void *fsdata)
2004{
2005 struct inode *inode = mapping->host;
2006 unsigned start;
2007
2008 start = pos & (PAGE_CACHE_SIZE - 1);
2009
2010 if (unlikely(copied < len)) {
2011 /*
2012 * The buffers that were written will now be uptodate, so we
2013 * don't have to worry about a readpage reading them and
2014 * overwriting a partial write. However if we have encountered
2015 * a short write and only partially written into a buffer, it
2016 * will not be marked uptodate, so a readpage might come in and
2017 * destroy our partial write.
2018 *
2019 * Do the simplest thing, and just treat any short write to a
2020 * non uptodate page as a zero-length write, and force the
2021 * caller to redo the whole thing.
2022 */
2023 if (!PageUptodate(page))
2024 copied = 0;
2025
2026 page_zero_new_buffers(page, start+copied, start+len);
2027 }
2028 flush_dcache_page(page);
2029
2030 /* This could be a short (even 0-length) commit */
2031 __block_commit_write(inode, page, start, start+copied);
2032
2033 return copied;
2034}
2035EXPORT_SYMBOL(block_write_end);
2036
2037int generic_write_end(struct file *file, struct address_space *mapping,
2038 loff_t pos, unsigned len, unsigned copied,
2039 struct page *page, void *fsdata)
2040{
2041 struct inode *inode = mapping->host;
2042
2043 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2044
2045 /*
2046 * No need to use i_size_read() here, the i_size
2047 * cannot change under us because we hold i_mutex.
2048 *
2049 * But it's important to update i_size while still holding page lock:
2050 * page writeout could otherwise come in and zero beyond i_size.
2051 */
2052 if (pos+copied > inode->i_size) {
2053 i_size_write(inode, pos+copied);
2054 mark_inode_dirty(inode);
2055 }
2056
2057 unlock_page(page);
2058 page_cache_release(page);
2059
2060 return copied;
2061}
2062EXPORT_SYMBOL(generic_write_end);
2063
1da177e4
LT
2064/*
2065 * Generic "read page" function for block devices that have the normal
2066 * get_block functionality. This is most of the block device filesystems.
2067 * Reads the page asynchronously --- the unlock_buffer() and
2068 * set/clear_buffer_uptodate() functions propagate buffer state into the
2069 * page struct once IO has completed.
2070 */
2071int block_read_full_page(struct page *page, get_block_t *get_block)
2072{
2073 struct inode *inode = page->mapping->host;
2074 sector_t iblock, lblock;
2075 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2076 unsigned int blocksize;
2077 int nr, i;
2078 int fully_mapped = 1;
2079
cd7619d6 2080 BUG_ON(!PageLocked(page));
1da177e4
LT
2081 blocksize = 1 << inode->i_blkbits;
2082 if (!page_has_buffers(page))
2083 create_empty_buffers(page, blocksize, 0);
2084 head = page_buffers(page);
2085
2086 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2087 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2088 bh = head;
2089 nr = 0;
2090 i = 0;
2091
2092 do {
2093 if (buffer_uptodate(bh))
2094 continue;
2095
2096 if (!buffer_mapped(bh)) {
c64610ba
AM
2097 int err = 0;
2098
1da177e4
LT
2099 fully_mapped = 0;
2100 if (iblock < lblock) {
b0cf2321 2101 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2102 err = get_block(inode, iblock, bh, 0);
2103 if (err)
1da177e4
LT
2104 SetPageError(page);
2105 }
2106 if (!buffer_mapped(bh)) {
01f2705d
ND
2107 zero_user_page(page, i * blocksize, blocksize,
2108 KM_USER0);
c64610ba
AM
2109 if (!err)
2110 set_buffer_uptodate(bh);
1da177e4
LT
2111 continue;
2112 }
2113 /*
2114 * get_block() might have updated the buffer
2115 * synchronously
2116 */
2117 if (buffer_uptodate(bh))
2118 continue;
2119 }
2120 arr[nr++] = bh;
2121 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2122
2123 if (fully_mapped)
2124 SetPageMappedToDisk(page);
2125
2126 if (!nr) {
2127 /*
2128 * All buffers are uptodate - we can set the page uptodate
2129 * as well. But not if get_block() returned an error.
2130 */
2131 if (!PageError(page))
2132 SetPageUptodate(page);
2133 unlock_page(page);
2134 return 0;
2135 }
2136
2137 /* Stage two: lock the buffers */
2138 for (i = 0; i < nr; i++) {
2139 bh = arr[i];
2140 lock_buffer(bh);
2141 mark_buffer_async_read(bh);
2142 }
2143
2144 /*
2145 * Stage 3: start the IO. Check for uptodateness
2146 * inside the buffer lock in case another process reading
2147 * the underlying blockdev brought it uptodate (the sct fix).
2148 */
2149 for (i = 0; i < nr; i++) {
2150 bh = arr[i];
2151 if (buffer_uptodate(bh))
2152 end_buffer_async_read(bh, 1);
2153 else
2154 submit_bh(READ, bh);
2155 }
2156 return 0;
2157}
2158
2159/* utility function for filesystems that need to do work on expanding
89e10787 2160 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2161 * deal with the hole.
2162 */
89e10787 2163int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2164{
2165 struct address_space *mapping = inode->i_mapping;
2166 struct page *page;
89e10787 2167 void *fsdata;
05eb0b51 2168 unsigned long limit;
1da177e4
LT
2169 int err;
2170
2171 err = -EFBIG;
2172 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2173 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2174 send_sig(SIGXFSZ, current, 0);
2175 goto out;
2176 }
2177 if (size > inode->i_sb->s_maxbytes)
2178 goto out;
2179
89e10787
NP
2180 err = pagecache_write_begin(NULL, mapping, size, 0,
2181 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2182 &page, &fsdata);
2183 if (err)
05eb0b51 2184 goto out;
05eb0b51 2185
89e10787
NP
2186 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2187 BUG_ON(err > 0);
05eb0b51 2188
1da177e4
LT
2189out:
2190 return err;
2191}
2192
89e10787
NP
2193int cont_expand_zero(struct file *file, struct address_space *mapping,
2194 loff_t pos, loff_t *bytes)
1da177e4 2195{
1da177e4 2196 struct inode *inode = mapping->host;
1da177e4 2197 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2198 struct page *page;
2199 void *fsdata;
2200 pgoff_t index, curidx;
2201 loff_t curpos;
2202 unsigned zerofrom, offset, len;
2203 int err = 0;
1da177e4 2204
89e10787
NP
2205 index = pos >> PAGE_CACHE_SHIFT;
2206 offset = pos & ~PAGE_CACHE_MASK;
2207
2208 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2209 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2210 if (zerofrom & (blocksize-1)) {
2211 *bytes |= (blocksize-1);
2212 (*bytes)++;
2213 }
89e10787 2214 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2215
89e10787
NP
2216 err = pagecache_write_begin(file, mapping, curpos, len,
2217 AOP_FLAG_UNINTERRUPTIBLE,
2218 &page, &fsdata);
2219 if (err)
2220 goto out;
2221 zero_user_page(page, zerofrom, len, KM_USER0);
2222 err = pagecache_write_end(file, mapping, curpos, len, len,
2223 page, fsdata);
2224 if (err < 0)
2225 goto out;
2226 BUG_ON(err != len);
2227 err = 0;
2228 }
1da177e4 2229
89e10787
NP
2230 /* page covers the boundary, find the boundary offset */
2231 if (index == curidx) {
2232 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2233 /* if we will expand the thing last block will be filled */
89e10787
NP
2234 if (offset <= zerofrom) {
2235 goto out;
2236 }
2237 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2238 *bytes |= (blocksize-1);
2239 (*bytes)++;
2240 }
89e10787 2241 len = offset - zerofrom;
1da177e4 2242
89e10787
NP
2243 err = pagecache_write_begin(file, mapping, curpos, len,
2244 AOP_FLAG_UNINTERRUPTIBLE,
2245 &page, &fsdata);
2246 if (err)
2247 goto out;
2248 zero_user_page(page, zerofrom, len, KM_USER0);
2249 err = pagecache_write_end(file, mapping, curpos, len, len,
2250 page, fsdata);
2251 if (err < 0)
2252 goto out;
2253 BUG_ON(err != len);
2254 err = 0;
1da177e4 2255 }
89e10787
NP
2256out:
2257 return err;
2258}
2259
2260/*
2261 * For moronic filesystems that do not allow holes in file.
2262 * We may have to extend the file.
2263 */
2264int cont_write_begin(struct file *file, struct address_space *mapping,
2265 loff_t pos, unsigned len, unsigned flags,
2266 struct page **pagep, void **fsdata,
2267 get_block_t *get_block, loff_t *bytes)
2268{
2269 struct inode *inode = mapping->host;
2270 unsigned blocksize = 1 << inode->i_blkbits;
2271 unsigned zerofrom;
2272 int err;
2273
2274 err = cont_expand_zero(file, mapping, pos, bytes);
2275 if (err)
2276 goto out;
2277
2278 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2279 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2280 *bytes |= (blocksize-1);
2281 (*bytes)++;
1da177e4 2282 }
1da177e4 2283
89e10787
NP
2284 *pagep = NULL;
2285 err = block_write_begin(file, mapping, pos, len,
2286 flags, pagep, fsdata, get_block);
1da177e4 2287out:
89e10787 2288 return err;
1da177e4
LT
2289}
2290
2291int block_prepare_write(struct page *page, unsigned from, unsigned to,
2292 get_block_t *get_block)
2293{
2294 struct inode *inode = page->mapping->host;
2295 int err = __block_prepare_write(inode, page, from, to, get_block);
2296 if (err)
2297 ClearPageUptodate(page);
2298 return err;
2299}
2300
2301int block_commit_write(struct page *page, unsigned from, unsigned to)
2302{
2303 struct inode *inode = page->mapping->host;
2304 __block_commit_write(inode,page,from,to);
2305 return 0;
2306}
2307
2308int generic_commit_write(struct file *file, struct page *page,
2309 unsigned from, unsigned to)
2310{
2311 struct inode *inode = page->mapping->host;
2312 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2313 __block_commit_write(inode,page,from,to);
2314 /*
2315 * No need to use i_size_read() here, the i_size
1b1dcc1b 2316 * cannot change under us because we hold i_mutex.
1da177e4
LT
2317 */
2318 if (pos > inode->i_size) {
2319 i_size_write(inode, pos);
2320 mark_inode_dirty(inode);
2321 }
2322 return 0;
2323}
2324
54171690
DC
2325/*
2326 * block_page_mkwrite() is not allowed to change the file size as it gets
2327 * called from a page fault handler when a page is first dirtied. Hence we must
2328 * be careful to check for EOF conditions here. We set the page up correctly
2329 * for a written page which means we get ENOSPC checking when writing into
2330 * holes and correct delalloc and unwritten extent mapping on filesystems that
2331 * support these features.
2332 *
2333 * We are not allowed to take the i_mutex here so we have to play games to
2334 * protect against truncate races as the page could now be beyond EOF. Because
2335 * vmtruncate() writes the inode size before removing pages, once we have the
2336 * page lock we can determine safely if the page is beyond EOF. If it is not
2337 * beyond EOF, then the page is guaranteed safe against truncation until we
2338 * unlock the page.
2339 */
2340int
2341block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2342 get_block_t get_block)
2343{
2344 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2345 unsigned long end;
2346 loff_t size;
2347 int ret = -EINVAL;
2348
2349 lock_page(page);
2350 size = i_size_read(inode);
2351 if ((page->mapping != inode->i_mapping) ||
18336338 2352 (page_offset(page) > size)) {
54171690
DC
2353 /* page got truncated out from underneath us */
2354 goto out_unlock;
2355 }
2356
2357 /* page is wholly or partially inside EOF */
2358 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2359 end = size & ~PAGE_CACHE_MASK;
2360 else
2361 end = PAGE_CACHE_SIZE;
2362
2363 ret = block_prepare_write(page, 0, end, get_block);
2364 if (!ret)
2365 ret = block_commit_write(page, 0, end);
2366
2367out_unlock:
2368 unlock_page(page);
2369 return ret;
2370}
1da177e4
LT
2371
2372/*
03158cd7 2373 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2374 * immediately, while under the page lock. So it needs a special end_io
2375 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2376 */
2377static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2378{
68671f35 2379 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2380}
2381
03158cd7
NP
2382/*
2383 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2384 * the page (converting it to circular linked list and taking care of page
2385 * dirty races).
2386 */
2387static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2388{
2389 struct buffer_head *bh;
2390
2391 BUG_ON(!PageLocked(page));
2392
2393 spin_lock(&page->mapping->private_lock);
2394 bh = head;
2395 do {
2396 if (PageDirty(page))
2397 set_buffer_dirty(bh);
2398 if (!bh->b_this_page)
2399 bh->b_this_page = head;
2400 bh = bh->b_this_page;
2401 } while (bh != head);
2402 attach_page_buffers(page, head);
2403 spin_unlock(&page->mapping->private_lock);
2404}
2405
1da177e4
LT
2406/*
2407 * On entry, the page is fully not uptodate.
2408 * On exit the page is fully uptodate in the areas outside (from,to)
2409 */
03158cd7
NP
2410int nobh_write_begin(struct file *file, struct address_space *mapping,
2411 loff_t pos, unsigned len, unsigned flags,
2412 struct page **pagep, void **fsdata,
1da177e4
LT
2413 get_block_t *get_block)
2414{
03158cd7 2415 struct inode *inode = mapping->host;
1da177e4
LT
2416 const unsigned blkbits = inode->i_blkbits;
2417 const unsigned blocksize = 1 << blkbits;
a4b0672d 2418 struct buffer_head *head, *bh;
03158cd7
NP
2419 struct page *page;
2420 pgoff_t index;
2421 unsigned from, to;
1da177e4 2422 unsigned block_in_page;
a4b0672d 2423 unsigned block_start, block_end;
1da177e4
LT
2424 sector_t block_in_file;
2425 char *kaddr;
2426 int nr_reads = 0;
1da177e4
LT
2427 int ret = 0;
2428 int is_mapped_to_disk = 1;
1da177e4 2429
03158cd7
NP
2430 index = pos >> PAGE_CACHE_SHIFT;
2431 from = pos & (PAGE_CACHE_SIZE - 1);
2432 to = from + len;
2433
2434 page = __grab_cache_page(mapping, index);
2435 if (!page)
2436 return -ENOMEM;
2437 *pagep = page;
2438 *fsdata = NULL;
2439
2440 if (page_has_buffers(page)) {
2441 unlock_page(page);
2442 page_cache_release(page);
2443 *pagep = NULL;
2444 return block_write_begin(file, mapping, pos, len, flags, pagep,
2445 fsdata, get_block);
2446 }
a4b0672d 2447
1da177e4
LT
2448 if (PageMappedToDisk(page))
2449 return 0;
2450
a4b0672d
NP
2451 /*
2452 * Allocate buffers so that we can keep track of state, and potentially
2453 * attach them to the page if an error occurs. In the common case of
2454 * no error, they will just be freed again without ever being attached
2455 * to the page (which is all OK, because we're under the page lock).
2456 *
2457 * Be careful: the buffer linked list is a NULL terminated one, rather
2458 * than the circular one we're used to.
2459 */
2460 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2461 if (!head) {
2462 ret = -ENOMEM;
2463 goto out_release;
2464 }
a4b0672d 2465
1da177e4 2466 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2467
2468 /*
2469 * We loop across all blocks in the page, whether or not they are
2470 * part of the affected region. This is so we can discover if the
2471 * page is fully mapped-to-disk.
2472 */
a4b0672d 2473 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2474 block_start < PAGE_CACHE_SIZE;
a4b0672d 2475 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2476 int create;
2477
a4b0672d
NP
2478 block_end = block_start + blocksize;
2479 bh->b_state = 0;
1da177e4
LT
2480 create = 1;
2481 if (block_start >= to)
2482 create = 0;
2483 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2484 bh, create);
1da177e4
LT
2485 if (ret)
2486 goto failed;
a4b0672d 2487 if (!buffer_mapped(bh))
1da177e4 2488 is_mapped_to_disk = 0;
a4b0672d
NP
2489 if (buffer_new(bh))
2490 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2491 if (PageUptodate(page)) {
2492 set_buffer_uptodate(bh);
1da177e4 2493 continue;
a4b0672d
NP
2494 }
2495 if (buffer_new(bh) || !buffer_mapped(bh)) {
1da177e4 2496 kaddr = kmap_atomic(page, KM_USER0);
22c8ca78 2497 if (block_start < from)
1da177e4 2498 memset(kaddr+block_start, 0, from-block_start);
22c8ca78 2499 if (block_end > to)
1da177e4 2500 memset(kaddr + to, 0, block_end - to);
1da177e4
LT
2501 flush_dcache_page(page);
2502 kunmap_atomic(kaddr, KM_USER0);
2503 continue;
2504 }
a4b0672d 2505 if (buffer_uptodate(bh))
1da177e4
LT
2506 continue; /* reiserfs does this */
2507 if (block_start < from || block_end > to) {
a4b0672d
NP
2508 lock_buffer(bh);
2509 bh->b_end_io = end_buffer_read_nobh;
2510 submit_bh(READ, bh);
2511 nr_reads++;
1da177e4
LT
2512 }
2513 }
2514
2515 if (nr_reads) {
1da177e4
LT
2516 /*
2517 * The page is locked, so these buffers are protected from
2518 * any VM or truncate activity. Hence we don't need to care
2519 * for the buffer_head refcounts.
2520 */
a4b0672d 2521 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2522 wait_on_buffer(bh);
2523 if (!buffer_uptodate(bh))
2524 ret = -EIO;
1da177e4
LT
2525 }
2526 if (ret)
2527 goto failed;
2528 }
2529
2530 if (is_mapped_to_disk)
2531 SetPageMappedToDisk(page);
1da177e4 2532
03158cd7 2533 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2534
1da177e4
LT
2535 return 0;
2536
2537failed:
03158cd7 2538 BUG_ON(!ret);
1da177e4 2539 /*
a4b0672d
NP
2540 * Error recovery is a bit difficult. We need to zero out blocks that
2541 * were newly allocated, and dirty them to ensure they get written out.
2542 * Buffers need to be attached to the page at this point, otherwise
2543 * the handling of potential IO errors during writeout would be hard
2544 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2545 */
03158cd7
NP
2546 attach_nobh_buffers(page, head);
2547 page_zero_new_buffers(page, from, to);
a4b0672d 2548
03158cd7
NP
2549out_release:
2550 unlock_page(page);
2551 page_cache_release(page);
2552 *pagep = NULL;
a4b0672d 2553
03158cd7
NP
2554 if (pos + len > inode->i_size)
2555 vmtruncate(inode, inode->i_size);
a4b0672d 2556
1da177e4
LT
2557 return ret;
2558}
03158cd7 2559EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2560
03158cd7
NP
2561int nobh_write_end(struct file *file, struct address_space *mapping,
2562 loff_t pos, unsigned len, unsigned copied,
2563 struct page *page, void *fsdata)
1da177e4
LT
2564{
2565 struct inode *inode = page->mapping->host;
03158cd7
NP
2566 struct buffer_head *head = NULL;
2567 struct buffer_head *bh;
1da177e4 2568
03158cd7
NP
2569 if (!PageMappedToDisk(page)) {
2570 if (unlikely(copied < len) && !page_has_buffers(page))
2571 attach_nobh_buffers(page, head);
2572 if (page_has_buffers(page))
2573 return generic_write_end(file, mapping, pos, len,
2574 copied, page, fsdata);
2575 }
a4b0672d 2576
22c8ca78 2577 SetPageUptodate(page);
1da177e4 2578 set_page_dirty(page);
03158cd7
NP
2579 if (pos+copied > inode->i_size) {
2580 i_size_write(inode, pos+copied);
1da177e4
LT
2581 mark_inode_dirty(inode);
2582 }
03158cd7
NP
2583
2584 unlock_page(page);
2585 page_cache_release(page);
2586
2587 head = fsdata;
2588 while (head) {
2589 bh = head;
2590 head = head->b_this_page;
2591 free_buffer_head(bh);
2592 }
2593
2594 return copied;
1da177e4 2595}
03158cd7 2596EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2597
2598/*
2599 * nobh_writepage() - based on block_full_write_page() except
2600 * that it tries to operate without attaching bufferheads to
2601 * the page.
2602 */
2603int nobh_writepage(struct page *page, get_block_t *get_block,
2604 struct writeback_control *wbc)
2605{
2606 struct inode * const inode = page->mapping->host;
2607 loff_t i_size = i_size_read(inode);
2608 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2609 unsigned offset;
1da177e4
LT
2610 int ret;
2611
2612 /* Is the page fully inside i_size? */
2613 if (page->index < end_index)
2614 goto out;
2615
2616 /* Is the page fully outside i_size? (truncate in progress) */
2617 offset = i_size & (PAGE_CACHE_SIZE-1);
2618 if (page->index >= end_index+1 || !offset) {
2619 /*
2620 * The page may have dirty, unmapped buffers. For example,
2621 * they may have been added in ext3_writepage(). Make them
2622 * freeable here, so the page does not leak.
2623 */
2624#if 0
2625 /* Not really sure about this - do we need this ? */
2626 if (page->mapping->a_ops->invalidatepage)
2627 page->mapping->a_ops->invalidatepage(page, offset);
2628#endif
2629 unlock_page(page);
2630 return 0; /* don't care */
2631 }
2632
2633 /*
2634 * The page straddles i_size. It must be zeroed out on each and every
2635 * writepage invocation because it may be mmapped. "A file is mapped
2636 * in multiples of the page size. For a file that is not a multiple of
2637 * the page size, the remaining memory is zeroed when mapped, and
2638 * writes to that region are not written out to the file."
2639 */
01f2705d 2640 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
1da177e4
LT
2641out:
2642 ret = mpage_writepage(page, get_block, wbc);
2643 if (ret == -EAGAIN)
2644 ret = __block_write_full_page(inode, page, get_block, wbc);
2645 return ret;
2646}
2647EXPORT_SYMBOL(nobh_writepage);
2648
03158cd7
NP
2649int nobh_truncate_page(struct address_space *mapping,
2650 loff_t from, get_block_t *get_block)
1da177e4 2651{
1da177e4
LT
2652 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2653 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2654 unsigned blocksize;
2655 sector_t iblock;
2656 unsigned length, pos;
2657 struct inode *inode = mapping->host;
1da177e4 2658 struct page *page;
03158cd7
NP
2659 struct buffer_head map_bh;
2660 int err;
1da177e4 2661
03158cd7
NP
2662 blocksize = 1 << inode->i_blkbits;
2663 length = offset & (blocksize - 1);
2664
2665 /* Block boundary? Nothing to do */
2666 if (!length)
2667 return 0;
2668
2669 length = blocksize - length;
2670 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2671
1da177e4 2672 page = grab_cache_page(mapping, index);
03158cd7 2673 err = -ENOMEM;
1da177e4
LT
2674 if (!page)
2675 goto out;
2676
03158cd7
NP
2677 if (page_has_buffers(page)) {
2678has_buffers:
2679 unlock_page(page);
2680 page_cache_release(page);
2681 return block_truncate_page(mapping, from, get_block);
2682 }
2683
2684 /* Find the buffer that contains "offset" */
2685 pos = blocksize;
2686 while (offset >= pos) {
2687 iblock++;
2688 pos += blocksize;
2689 }
2690
2691 err = get_block(inode, iblock, &map_bh, 0);
2692 if (err)
2693 goto unlock;
2694 /* unmapped? It's a hole - nothing to do */
2695 if (!buffer_mapped(&map_bh))
2696 goto unlock;
2697
2698 /* Ok, it's mapped. Make sure it's up-to-date */
2699 if (!PageUptodate(page)) {
2700 err = mapping->a_ops->readpage(NULL, page);
2701 if (err) {
2702 page_cache_release(page);
2703 goto out;
2704 }
2705 lock_page(page);
2706 if (!PageUptodate(page)) {
2707 err = -EIO;
2708 goto unlock;
2709 }
2710 if (page_has_buffers(page))
2711 goto has_buffers;
1da177e4 2712 }
03158cd7
NP
2713 zero_user_page(page, offset, length, KM_USER0);
2714 set_page_dirty(page);
2715 err = 0;
2716
2717unlock:
1da177e4
LT
2718 unlock_page(page);
2719 page_cache_release(page);
2720out:
03158cd7 2721 return err;
1da177e4
LT
2722}
2723EXPORT_SYMBOL(nobh_truncate_page);
2724
2725int block_truncate_page(struct address_space *mapping,
2726 loff_t from, get_block_t *get_block)
2727{
2728 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2729 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2730 unsigned blocksize;
54b21a79 2731 sector_t iblock;
1da177e4
LT
2732 unsigned length, pos;
2733 struct inode *inode = mapping->host;
2734 struct page *page;
2735 struct buffer_head *bh;
1da177e4
LT
2736 int err;
2737
2738 blocksize = 1 << inode->i_blkbits;
2739 length = offset & (blocksize - 1);
2740
2741 /* Block boundary? Nothing to do */
2742 if (!length)
2743 return 0;
2744
2745 length = blocksize - length;
54b21a79 2746 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2747
2748 page = grab_cache_page(mapping, index);
2749 err = -ENOMEM;
2750 if (!page)
2751 goto out;
2752
2753 if (!page_has_buffers(page))
2754 create_empty_buffers(page, blocksize, 0);
2755
2756 /* Find the buffer that contains "offset" */
2757 bh = page_buffers(page);
2758 pos = blocksize;
2759 while (offset >= pos) {
2760 bh = bh->b_this_page;
2761 iblock++;
2762 pos += blocksize;
2763 }
2764
2765 err = 0;
2766 if (!buffer_mapped(bh)) {
b0cf2321 2767 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2768 err = get_block(inode, iblock, bh, 0);
2769 if (err)
2770 goto unlock;
2771 /* unmapped? It's a hole - nothing to do */
2772 if (!buffer_mapped(bh))
2773 goto unlock;
2774 }
2775
2776 /* Ok, it's mapped. Make sure it's up-to-date */
2777 if (PageUptodate(page))
2778 set_buffer_uptodate(bh);
2779
33a266dd 2780 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2781 err = -EIO;
2782 ll_rw_block(READ, 1, &bh);
2783 wait_on_buffer(bh);
2784 /* Uhhuh. Read error. Complain and punt. */
2785 if (!buffer_uptodate(bh))
2786 goto unlock;
2787 }
2788
01f2705d 2789 zero_user_page(page, offset, length, KM_USER0);
1da177e4
LT
2790 mark_buffer_dirty(bh);
2791 err = 0;
2792
2793unlock:
2794 unlock_page(page);
2795 page_cache_release(page);
2796out:
2797 return err;
2798}
2799
2800/*
2801 * The generic ->writepage function for buffer-backed address_spaces
2802 */
2803int block_write_full_page(struct page *page, get_block_t *get_block,
2804 struct writeback_control *wbc)
2805{
2806 struct inode * const inode = page->mapping->host;
2807 loff_t i_size = i_size_read(inode);
2808 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2809 unsigned offset;
1da177e4
LT
2810
2811 /* Is the page fully inside i_size? */
2812 if (page->index < end_index)
2813 return __block_write_full_page(inode, page, get_block, wbc);
2814
2815 /* Is the page fully outside i_size? (truncate in progress) */
2816 offset = i_size & (PAGE_CACHE_SIZE-1);
2817 if (page->index >= end_index+1 || !offset) {
2818 /*
2819 * The page may have dirty, unmapped buffers. For example,
2820 * they may have been added in ext3_writepage(). Make them
2821 * freeable here, so the page does not leak.
2822 */
aaa4059b 2823 do_invalidatepage(page, 0);
1da177e4
LT
2824 unlock_page(page);
2825 return 0; /* don't care */
2826 }
2827
2828 /*
2829 * The page straddles i_size. It must be zeroed out on each and every
2830 * writepage invokation because it may be mmapped. "A file is mapped
2831 * in multiples of the page size. For a file that is not a multiple of
2832 * the page size, the remaining memory is zeroed when mapped, and
2833 * writes to that region are not written out to the file."
2834 */
01f2705d 2835 zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
1da177e4
LT
2836 return __block_write_full_page(inode, page, get_block, wbc);
2837}
2838
2839sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2840 get_block_t *get_block)
2841{
2842 struct buffer_head tmp;
2843 struct inode *inode = mapping->host;
2844 tmp.b_state = 0;
2845 tmp.b_blocknr = 0;
b0cf2321 2846 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2847 get_block(inode, block, &tmp, 0);
2848 return tmp.b_blocknr;
2849}
2850
6712ecf8 2851static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2852{
2853 struct buffer_head *bh = bio->bi_private;
2854
1da177e4
LT
2855 if (err == -EOPNOTSUPP) {
2856 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2857 set_bit(BH_Eopnotsupp, &bh->b_state);
2858 }
2859
2860 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2861 bio_put(bio);
1da177e4
LT
2862}
2863
2864int submit_bh(int rw, struct buffer_head * bh)
2865{
2866 struct bio *bio;
2867 int ret = 0;
2868
2869 BUG_ON(!buffer_locked(bh));
2870 BUG_ON(!buffer_mapped(bh));
2871 BUG_ON(!bh->b_end_io);
2872
2873 if (buffer_ordered(bh) && (rw == WRITE))
2874 rw = WRITE_BARRIER;
2875
2876 /*
2877 * Only clear out a write error when rewriting, should this
2878 * include WRITE_SYNC as well?
2879 */
2880 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2881 clear_buffer_write_io_error(bh);
2882
2883 /*
2884 * from here on down, it's all bio -- do the initial mapping,
2885 * submit_bio -> generic_make_request may further map this bio around
2886 */
2887 bio = bio_alloc(GFP_NOIO, 1);
2888
2889 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2890 bio->bi_bdev = bh->b_bdev;
2891 bio->bi_io_vec[0].bv_page = bh->b_page;
2892 bio->bi_io_vec[0].bv_len = bh->b_size;
2893 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2894
2895 bio->bi_vcnt = 1;
2896 bio->bi_idx = 0;
2897 bio->bi_size = bh->b_size;
2898
2899 bio->bi_end_io = end_bio_bh_io_sync;
2900 bio->bi_private = bh;
2901
2902 bio_get(bio);
2903 submit_bio(rw, bio);
2904
2905 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2906 ret = -EOPNOTSUPP;
2907
2908 bio_put(bio);
2909 return ret;
2910}
2911
2912/**
2913 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2914 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2915 * @nr: number of &struct buffer_heads in the array
2916 * @bhs: array of pointers to &struct buffer_head
2917 *
a7662236
JK
2918 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2919 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2920 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2921 * are sent to disk. The fourth %READA option is described in the documentation
2922 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2923 *
2924 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2925 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2926 * clean when doing a write request, and any buffer that appears to be
2927 * up-to-date when doing read request. Further it marks as clean buffers that
2928 * are processed for writing (the buffer cache won't assume that they are
2929 * actually clean until the buffer gets unlocked).
1da177e4
LT
2930 *
2931 * ll_rw_block sets b_end_io to simple completion handler that marks
2932 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2933 * any waiters.
2934 *
2935 * All of the buffers must be for the same device, and must also be a
2936 * multiple of the current approved size for the device.
2937 */
2938void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2939{
2940 int i;
2941
2942 for (i = 0; i < nr; i++) {
2943 struct buffer_head *bh = bhs[i];
2944
a7662236
JK
2945 if (rw == SWRITE)
2946 lock_buffer(bh);
2947 else if (test_set_buffer_locked(bh))
1da177e4
LT
2948 continue;
2949
a7662236 2950 if (rw == WRITE || rw == SWRITE) {
1da177e4 2951 if (test_clear_buffer_dirty(bh)) {
76c3073a 2952 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2953 get_bh(bh);
1da177e4
LT
2954 submit_bh(WRITE, bh);
2955 continue;
2956 }
2957 } else {
1da177e4 2958 if (!buffer_uptodate(bh)) {
76c3073a 2959 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2960 get_bh(bh);
1da177e4
LT
2961 submit_bh(rw, bh);
2962 continue;
2963 }
2964 }
2965 unlock_buffer(bh);
1da177e4
LT
2966 }
2967}
2968
2969/*
2970 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2971 * and then start new I/O and then wait upon it. The caller must have a ref on
2972 * the buffer_head.
2973 */
2974int sync_dirty_buffer(struct buffer_head *bh)
2975{
2976 int ret = 0;
2977
2978 WARN_ON(atomic_read(&bh->b_count) < 1);
2979 lock_buffer(bh);
2980 if (test_clear_buffer_dirty(bh)) {
2981 get_bh(bh);
2982 bh->b_end_io = end_buffer_write_sync;
2983 ret = submit_bh(WRITE, bh);
2984 wait_on_buffer(bh);
2985 if (buffer_eopnotsupp(bh)) {
2986 clear_buffer_eopnotsupp(bh);
2987 ret = -EOPNOTSUPP;
2988 }
2989 if (!ret && !buffer_uptodate(bh))
2990 ret = -EIO;
2991 } else {
2992 unlock_buffer(bh);
2993 }
2994 return ret;
2995}
2996
2997/*
2998 * try_to_free_buffers() checks if all the buffers on this particular page
2999 * are unused, and releases them if so.
3000 *
3001 * Exclusion against try_to_free_buffers may be obtained by either
3002 * locking the page or by holding its mapping's private_lock.
3003 *
3004 * If the page is dirty but all the buffers are clean then we need to
3005 * be sure to mark the page clean as well. This is because the page
3006 * may be against a block device, and a later reattachment of buffers
3007 * to a dirty page will set *all* buffers dirty. Which would corrupt
3008 * filesystem data on the same device.
3009 *
3010 * The same applies to regular filesystem pages: if all the buffers are
3011 * clean then we set the page clean and proceed. To do that, we require
3012 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3013 * private_lock.
3014 *
3015 * try_to_free_buffers() is non-blocking.
3016 */
3017static inline int buffer_busy(struct buffer_head *bh)
3018{
3019 return atomic_read(&bh->b_count) |
3020 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3021}
3022
3023static int
3024drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3025{
3026 struct buffer_head *head = page_buffers(page);
3027 struct buffer_head *bh;
3028
3029 bh = head;
3030 do {
de7d5a3b 3031 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3032 set_bit(AS_EIO, &page->mapping->flags);
3033 if (buffer_busy(bh))
3034 goto failed;
3035 bh = bh->b_this_page;
3036 } while (bh != head);
3037
3038 do {
3039 struct buffer_head *next = bh->b_this_page;
3040
3041 if (!list_empty(&bh->b_assoc_buffers))
3042 __remove_assoc_queue(bh);
3043 bh = next;
3044 } while (bh != head);
3045 *buffers_to_free = head;
3046 __clear_page_buffers(page);
3047 return 1;
3048failed:
3049 return 0;
3050}
3051
3052int try_to_free_buffers(struct page *page)
3053{
3054 struct address_space * const mapping = page->mapping;
3055 struct buffer_head *buffers_to_free = NULL;
3056 int ret = 0;
3057
3058 BUG_ON(!PageLocked(page));
ecdfc978 3059 if (PageWriteback(page))
1da177e4
LT
3060 return 0;
3061
3062 if (mapping == NULL) { /* can this still happen? */
3063 ret = drop_buffers(page, &buffers_to_free);
3064 goto out;
3065 }
3066
3067 spin_lock(&mapping->private_lock);
3068 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3069
3070 /*
3071 * If the filesystem writes its buffers by hand (eg ext3)
3072 * then we can have clean buffers against a dirty page. We
3073 * clean the page here; otherwise the VM will never notice
3074 * that the filesystem did any IO at all.
3075 *
3076 * Also, during truncate, discard_buffer will have marked all
3077 * the page's buffers clean. We discover that here and clean
3078 * the page also.
87df7241
NP
3079 *
3080 * private_lock must be held over this entire operation in order
3081 * to synchronise against __set_page_dirty_buffers and prevent the
3082 * dirty bit from being lost.
ecdfc978
LT
3083 */
3084 if (ret)
3085 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3086 spin_unlock(&mapping->private_lock);
1da177e4
LT
3087out:
3088 if (buffers_to_free) {
3089 struct buffer_head *bh = buffers_to_free;
3090
3091 do {
3092 struct buffer_head *next = bh->b_this_page;
3093 free_buffer_head(bh);
3094 bh = next;
3095 } while (bh != buffers_to_free);
3096 }
3097 return ret;
3098}
3099EXPORT_SYMBOL(try_to_free_buffers);
3100
3978d717 3101void block_sync_page(struct page *page)
1da177e4
LT
3102{
3103 struct address_space *mapping;
3104
3105 smp_mb();
3106 mapping = page_mapping(page);
3107 if (mapping)
3108 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
3109}
3110
3111/*
3112 * There are no bdflush tunables left. But distributions are
3113 * still running obsolete flush daemons, so we terminate them here.
3114 *
3115 * Use of bdflush() is deprecated and will be removed in a future kernel.
3116 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3117 */
3118asmlinkage long sys_bdflush(int func, long data)
3119{
3120 static int msg_count;
3121
3122 if (!capable(CAP_SYS_ADMIN))
3123 return -EPERM;
3124
3125 if (msg_count < 5) {
3126 msg_count++;
3127 printk(KERN_INFO
3128 "warning: process `%s' used the obsolete bdflush"
3129 " system call\n", current->comm);
3130 printk(KERN_INFO "Fix your initscripts?\n");
3131 }
3132
3133 if (func == 1)
3134 do_exit(0);
3135 return 0;
3136}
3137
3138/*
3139 * Buffer-head allocation
3140 */
e18b890b 3141static struct kmem_cache *bh_cachep;
1da177e4
LT
3142
3143/*
3144 * Once the number of bh's in the machine exceeds this level, we start
3145 * stripping them in writeback.
3146 */
3147static int max_buffer_heads;
3148
3149int buffer_heads_over_limit;
3150
3151struct bh_accounting {
3152 int nr; /* Number of live bh's */
3153 int ratelimit; /* Limit cacheline bouncing */
3154};
3155
3156static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3157
3158static void recalc_bh_state(void)
3159{
3160 int i;
3161 int tot = 0;
3162
3163 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3164 return;
3165 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 3166 for_each_online_cpu(i)
1da177e4
LT
3167 tot += per_cpu(bh_accounting, i).nr;
3168 buffer_heads_over_limit = (tot > max_buffer_heads);
3169}
3170
dd0fc66f 3171struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3172{
e12ba74d
MG
3173 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep,
3174 set_migrateflags(gfp_flags, __GFP_RECLAIMABLE));
1da177e4 3175 if (ret) {
a35afb83 3176 INIT_LIST_HEAD(&ret->b_assoc_buffers);
736c7b80 3177 get_cpu_var(bh_accounting).nr++;
1da177e4 3178 recalc_bh_state();
736c7b80 3179 put_cpu_var(bh_accounting);
1da177e4
LT
3180 }
3181 return ret;
3182}
3183EXPORT_SYMBOL(alloc_buffer_head);
3184
3185void free_buffer_head(struct buffer_head *bh)
3186{
3187 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3188 kmem_cache_free(bh_cachep, bh);
736c7b80 3189 get_cpu_var(bh_accounting).nr--;
1da177e4 3190 recalc_bh_state();
736c7b80 3191 put_cpu_var(bh_accounting);
1da177e4
LT
3192}
3193EXPORT_SYMBOL(free_buffer_head);
3194
1da177e4
LT
3195static void buffer_exit_cpu(int cpu)
3196{
3197 int i;
3198 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3199
3200 for (i = 0; i < BH_LRU_SIZE; i++) {
3201 brelse(b->bhs[i]);
3202 b->bhs[i] = NULL;
3203 }
8a143426
ED
3204 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3205 per_cpu(bh_accounting, cpu).nr = 0;
3206 put_cpu_var(bh_accounting);
1da177e4
LT
3207}
3208
3209static int buffer_cpu_notify(struct notifier_block *self,
3210 unsigned long action, void *hcpu)
3211{
8bb78442 3212 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3213 buffer_exit_cpu((unsigned long)hcpu);
3214 return NOTIFY_OK;
3215}
1da177e4
LT
3216
3217void __init buffer_init(void)
3218{
3219 int nrpages;
3220
a35afb83
CL
3221 bh_cachep = KMEM_CACHE(buffer_head,
3222 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3223
3224 /*
3225 * Limit the bh occupancy to 10% of ZONE_NORMAL
3226 */
3227 nrpages = (nr_free_buffer_pages() * 10) / 100;
3228 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3229 hotcpu_notifier(buffer_cpu_notify, 0);
3230}
3231
3232EXPORT_SYMBOL(__bforget);
3233EXPORT_SYMBOL(__brelse);
3234EXPORT_SYMBOL(__wait_on_buffer);
3235EXPORT_SYMBOL(block_commit_write);
3236EXPORT_SYMBOL(block_prepare_write);
54171690 3237EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
3238EXPORT_SYMBOL(block_read_full_page);
3239EXPORT_SYMBOL(block_sync_page);
3240EXPORT_SYMBOL(block_truncate_page);
3241EXPORT_SYMBOL(block_write_full_page);
89e10787 3242EXPORT_SYMBOL(cont_write_begin);
1da177e4
LT
3243EXPORT_SYMBOL(end_buffer_read_sync);
3244EXPORT_SYMBOL(end_buffer_write_sync);
3245EXPORT_SYMBOL(file_fsync);
3246EXPORT_SYMBOL(fsync_bdev);
3247EXPORT_SYMBOL(generic_block_bmap);
3248EXPORT_SYMBOL(generic_commit_write);
05eb0b51 3249EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
3250EXPORT_SYMBOL(init_buffer);
3251EXPORT_SYMBOL(invalidate_bdev);
3252EXPORT_SYMBOL(ll_rw_block);
3253EXPORT_SYMBOL(mark_buffer_dirty);
3254EXPORT_SYMBOL(submit_bh);
3255EXPORT_SYMBOL(sync_dirty_buffer);
3256EXPORT_SYMBOL(unlock_buffer);