]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/buffer.c
highmem: Use this_cpu_xx_return() operations
[mirror_ubuntu-artful-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4
LT
56
57static int sync_buffer(void *word)
58{
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69}
70
fc9b52cd 71void __lock_buffer(struct buffer_head *bh)
1da177e4
LT
72{
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75}
76EXPORT_SYMBOL(__lock_buffer);
77
fc9b52cd 78void unlock_buffer(struct buffer_head *bh)
1da177e4 79{
51b07fc3 80 clear_bit_unlock(BH_Lock, &bh->b_state);
1da177e4
LT
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
1fe72eaa 84EXPORT_SYMBOL(unlock_buffer);
1da177e4
LT
85
86/*
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
90 */
91void __wait_on_buffer(struct buffer_head * bh)
92{
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94}
1fe72eaa 95EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
96
97static void
98__clear_page_buffers(struct page *page)
99{
100 ClearPagePrivate(page);
4c21e2f2 101 set_page_private(page, 0);
1da177e4
LT
102 page_cache_release(page);
103}
104
08bafc03
KM
105
106static int quiet_error(struct buffer_head *bh)
107{
108 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 return 0;
110 return 1;
111}
112
113
1da177e4
LT
114static void buffer_io_error(struct buffer_head *bh)
115{
116 char b[BDEVNAME_SIZE];
1da177e4
LT
117 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 bdevname(bh->b_bdev, b),
119 (unsigned long long)bh->b_blocknr);
120}
121
122/*
68671f35
DM
123 * End-of-IO handler helper function which does not touch the bh after
124 * unlocking it.
125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126 * a race there is benign: unlock_buffer() only use the bh's address for
127 * hashing after unlocking the buffer, so it doesn't actually touch the bh
128 * itself.
1da177e4 129 */
68671f35 130static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
131{
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 /* This happens, due to failed READA attempts. */
136 clear_buffer_uptodate(bh);
137 }
138 unlock_buffer(bh);
68671f35
DM
139}
140
141/*
142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
143 * unlock the buffer. This is what ll_rw_block uses too.
144 */
145void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146{
147 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
148 put_bh(bh);
149}
1fe72eaa 150EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
151
152void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153{
154 char b[BDEVNAME_SIZE];
155
156 if (uptodate) {
157 set_buffer_uptodate(bh);
158 } else {
0edd55fa 159 if (!quiet_error(bh)) {
1da177e4
LT
160 buffer_io_error(bh);
161 printk(KERN_WARNING "lost page write due to "
162 "I/O error on %s\n",
163 bdevname(bh->b_bdev, b));
164 }
165 set_buffer_write_io_error(bh);
166 clear_buffer_uptodate(bh);
167 }
168 unlock_buffer(bh);
169 put_bh(bh);
170}
1fe72eaa 171EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 172
1da177e4
LT
173/*
174 * Various filesystems appear to want __find_get_block to be non-blocking.
175 * But it's the page lock which protects the buffers. To get around this,
176 * we get exclusion from try_to_free_buffers with the blockdev mapping's
177 * private_lock.
178 *
179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180 * may be quite high. This code could TryLock the page, and if that
181 * succeeds, there is no need to take private_lock. (But if
182 * private_lock is contended then so is mapping->tree_lock).
183 */
184static struct buffer_head *
385fd4c5 185__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
186{
187 struct inode *bd_inode = bdev->bd_inode;
188 struct address_space *bd_mapping = bd_inode->i_mapping;
189 struct buffer_head *ret = NULL;
190 pgoff_t index;
191 struct buffer_head *bh;
192 struct buffer_head *head;
193 struct page *page;
194 int all_mapped = 1;
195
196 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 page = find_get_page(bd_mapping, index);
198 if (!page)
199 goto out;
200
201 spin_lock(&bd_mapping->private_lock);
202 if (!page_has_buffers(page))
203 goto out_unlock;
204 head = page_buffers(page);
205 bh = head;
206 do {
97f76d3d
NK
207 if (!buffer_mapped(bh))
208 all_mapped = 0;
209 else if (bh->b_blocknr == block) {
1da177e4
LT
210 ret = bh;
211 get_bh(bh);
212 goto out_unlock;
213 }
1da177e4
LT
214 bh = bh->b_this_page;
215 } while (bh != head);
216
217 /* we might be here because some of the buffers on this page are
218 * not mapped. This is due to various races between
219 * file io on the block device and getblk. It gets dealt with
220 * elsewhere, don't buffer_error if we had some unmapped buffers
221 */
222 if (all_mapped) {
223 printk("__find_get_block_slow() failed. "
224 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
225 (unsigned long long)block,
226 (unsigned long long)bh->b_blocknr);
227 printk("b_state=0x%08lx, b_size=%zu\n",
228 bh->b_state, bh->b_size);
1da177e4
LT
229 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 }
231out_unlock:
232 spin_unlock(&bd_mapping->private_lock);
233 page_cache_release(page);
234out:
235 return ret;
236}
237
238/* If invalidate_buffers() will trash dirty buffers, it means some kind
239 of fs corruption is going on. Trashing dirty data always imply losing
240 information that was supposed to be just stored on the physical layer
241 by the user.
242
243 Thus invalidate_buffers in general usage is not allwowed to trash
244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245 be preserved. These buffers are simply skipped.
246
247 We also skip buffers which are still in use. For example this can
248 happen if a userspace program is reading the block device.
249
250 NOTE: In the case where the user removed a removable-media-disk even if
251 there's still dirty data not synced on disk (due a bug in the device driver
252 or due an error of the user), by not destroying the dirty buffers we could
253 generate corruption also on the next media inserted, thus a parameter is
254 necessary to handle this case in the most safe way possible (trying
255 to not corrupt also the new disk inserted with the data belonging to
256 the old now corrupted disk). Also for the ramdisk the natural thing
257 to do in order to release the ramdisk memory is to destroy dirty buffers.
258
259 These are two special cases. Normal usage imply the device driver
260 to issue a sync on the device (without waiting I/O completion) and
261 then an invalidate_buffers call that doesn't trash dirty buffers.
262
263 For handling cache coherency with the blkdev pagecache the 'update' case
264 is been introduced. It is needed to re-read from disk any pinned
265 buffer. NOTE: re-reading from disk is destructive so we can do it only
266 when we assume nobody is changing the buffercache under our I/O and when
267 we think the disk contains more recent information than the buffercache.
268 The update == 1 pass marks the buffers we need to update, the update == 2
269 pass does the actual I/O. */
f98393a6 270void invalidate_bdev(struct block_device *bdev)
1da177e4 271{
0e1dfc66
AM
272 struct address_space *mapping = bdev->bd_inode->i_mapping;
273
274 if (mapping->nrpages == 0)
275 return;
276
1da177e4 277 invalidate_bh_lrus();
fa4b9074 278 lru_add_drain_all(); /* make sure all lru add caches are flushed */
fc0ecff6 279 invalidate_mapping_pages(mapping, 0, -1);
1da177e4 280}
1fe72eaa 281EXPORT_SYMBOL(invalidate_bdev);
1da177e4
LT
282
283/*
5b0830cb 284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
285 */
286static void free_more_memory(void)
287{
19770b32 288 struct zone *zone;
0e88460d 289 int nid;
1da177e4 290
03ba3782 291 wakeup_flusher_threads(1024);
1da177e4
LT
292 yield();
293
0e88460d 294 for_each_online_node(nid) {
19770b32
MG
295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 gfp_zone(GFP_NOFS), NULL,
297 &zone);
298 if (zone)
54a6eb5c 299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 300 GFP_NOFS, NULL);
1da177e4
LT
301 }
302}
303
304/*
305 * I/O completion handler for block_read_full_page() - pages
306 * which come unlocked at the end of I/O.
307 */
308static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309{
1da177e4 310 unsigned long flags;
a3972203 311 struct buffer_head *first;
1da177e4
LT
312 struct buffer_head *tmp;
313 struct page *page;
314 int page_uptodate = 1;
315
316 BUG_ON(!buffer_async_read(bh));
317
318 page = bh->b_page;
319 if (uptodate) {
320 set_buffer_uptodate(bh);
321 } else {
322 clear_buffer_uptodate(bh);
08bafc03 323 if (!quiet_error(bh))
1da177e4
LT
324 buffer_io_error(bh);
325 SetPageError(page);
326 }
327
328 /*
329 * Be _very_ careful from here on. Bad things can happen if
330 * two buffer heads end IO at almost the same time and both
331 * decide that the page is now completely done.
332 */
a3972203
NP
333 first = page_buffers(page);
334 local_irq_save(flags);
335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
336 clear_buffer_async_read(bh);
337 unlock_buffer(bh);
338 tmp = bh;
339 do {
340 if (!buffer_uptodate(tmp))
341 page_uptodate = 0;
342 if (buffer_async_read(tmp)) {
343 BUG_ON(!buffer_locked(tmp));
344 goto still_busy;
345 }
346 tmp = tmp->b_this_page;
347 } while (tmp != bh);
a3972203
NP
348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 local_irq_restore(flags);
1da177e4
LT
350
351 /*
352 * If none of the buffers had errors and they are all
353 * uptodate then we can set the page uptodate.
354 */
355 if (page_uptodate && !PageError(page))
356 SetPageUptodate(page);
357 unlock_page(page);
358 return;
359
360still_busy:
a3972203
NP
361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 local_irq_restore(flags);
1da177e4
LT
363 return;
364}
365
366/*
367 * Completion handler for block_write_full_page() - pages which are unlocked
368 * during I/O, and which have PageWriteback cleared upon I/O completion.
369 */
35c80d5f 370void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
371{
372 char b[BDEVNAME_SIZE];
1da177e4 373 unsigned long flags;
a3972203 374 struct buffer_head *first;
1da177e4
LT
375 struct buffer_head *tmp;
376 struct page *page;
377
378 BUG_ON(!buffer_async_write(bh));
379
380 page = bh->b_page;
381 if (uptodate) {
382 set_buffer_uptodate(bh);
383 } else {
08bafc03 384 if (!quiet_error(bh)) {
1da177e4
LT
385 buffer_io_error(bh);
386 printk(KERN_WARNING "lost page write due to "
387 "I/O error on %s\n",
388 bdevname(bh->b_bdev, b));
389 }
390 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 391 set_buffer_write_io_error(bh);
1da177e4
LT
392 clear_buffer_uptodate(bh);
393 SetPageError(page);
394 }
395
a3972203
NP
396 first = page_buffers(page);
397 local_irq_save(flags);
398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
1da177e4
LT
400 clear_buffer_async_write(bh);
401 unlock_buffer(bh);
402 tmp = bh->b_this_page;
403 while (tmp != bh) {
404 if (buffer_async_write(tmp)) {
405 BUG_ON(!buffer_locked(tmp));
406 goto still_busy;
407 }
408 tmp = tmp->b_this_page;
409 }
a3972203
NP
410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 local_irq_restore(flags);
1da177e4
LT
412 end_page_writeback(page);
413 return;
414
415still_busy:
a3972203
NP
416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 local_irq_restore(flags);
1da177e4
LT
418 return;
419}
1fe72eaa 420EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
421
422/*
423 * If a page's buffers are under async readin (end_buffer_async_read
424 * completion) then there is a possibility that another thread of
425 * control could lock one of the buffers after it has completed
426 * but while some of the other buffers have not completed. This
427 * locked buffer would confuse end_buffer_async_read() into not unlocking
428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
429 * that this buffer is not under async I/O.
430 *
431 * The page comes unlocked when it has no locked buffer_async buffers
432 * left.
433 *
434 * PageLocked prevents anyone starting new async I/O reads any of
435 * the buffers.
436 *
437 * PageWriteback is used to prevent simultaneous writeout of the same
438 * page.
439 *
440 * PageLocked prevents anyone from starting writeback of a page which is
441 * under read I/O (PageWriteback is only ever set against a locked page).
442 */
443static void mark_buffer_async_read(struct buffer_head *bh)
444{
445 bh->b_end_io = end_buffer_async_read;
446 set_buffer_async_read(bh);
447}
448
1fe72eaa
HS
449static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 bh_end_io_t *handler)
1da177e4 451{
35c80d5f 452 bh->b_end_io = handler;
1da177e4
LT
453 set_buffer_async_write(bh);
454}
35c80d5f
CM
455
456void mark_buffer_async_write(struct buffer_head *bh)
457{
458 mark_buffer_async_write_endio(bh, end_buffer_async_write);
459}
1da177e4
LT
460EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463/*
464 * fs/buffer.c contains helper functions for buffer-backed address space's
465 * fsync functions. A common requirement for buffer-based filesystems is
466 * that certain data from the backing blockdev needs to be written out for
467 * a successful fsync(). For example, ext2 indirect blocks need to be
468 * written back and waited upon before fsync() returns.
469 *
470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472 * management of a list of dependent buffers at ->i_mapping->private_list.
473 *
474 * Locking is a little subtle: try_to_free_buffers() will remove buffers
475 * from their controlling inode's queue when they are being freed. But
476 * try_to_free_buffers() will be operating against the *blockdev* mapping
477 * at the time, not against the S_ISREG file which depends on those buffers.
478 * So the locking for private_list is via the private_lock in the address_space
479 * which backs the buffers. Which is different from the address_space
480 * against which the buffers are listed. So for a particular address_space,
481 * mapping->private_lock does *not* protect mapping->private_list! In fact,
482 * mapping->private_list will always be protected by the backing blockdev's
483 * ->private_lock.
484 *
485 * Which introduces a requirement: all buffers on an address_space's
486 * ->private_list must be from the same address_space: the blockdev's.
487 *
488 * address_spaces which do not place buffers at ->private_list via these
489 * utility functions are free to use private_lock and private_list for
490 * whatever they want. The only requirement is that list_empty(private_list)
491 * be true at clear_inode() time.
492 *
493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
494 * filesystems should do that. invalidate_inode_buffers() should just go
495 * BUG_ON(!list_empty).
496 *
497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
498 * take an address_space, not an inode. And it should be called
499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500 * queued up.
501 *
502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503 * list if it is already on a list. Because if the buffer is on a list,
504 * it *must* already be on the right one. If not, the filesystem is being
505 * silly. This will save a ton of locking. But first we have to ensure
506 * that buffers are taken *off* the old inode's list when they are freed
507 * (presumably in truncate). That requires careful auditing of all
508 * filesystems (do it inside bforget()). It could also be done by bringing
509 * b_inode back.
510 */
511
512/*
513 * The buffer's backing address_space's private_lock must be held
514 */
dbacefc9 515static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
516{
517 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
518 WARN_ON(!bh->b_assoc_map);
519 if (buffer_write_io_error(bh))
520 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 bh->b_assoc_map = NULL;
1da177e4
LT
522}
523
524int inode_has_buffers(struct inode *inode)
525{
526 return !list_empty(&inode->i_data.private_list);
527}
528
529/*
530 * osync is designed to support O_SYNC io. It waits synchronously for
531 * all already-submitted IO to complete, but does not queue any new
532 * writes to the disk.
533 *
534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535 * you dirty the buffers, and then use osync_inode_buffers to wait for
536 * completion. Any other dirty buffers which are not yet queued for
537 * write will not be flushed to disk by the osync.
538 */
539static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540{
541 struct buffer_head *bh;
542 struct list_head *p;
543 int err = 0;
544
545 spin_lock(lock);
546repeat:
547 list_for_each_prev(p, list) {
548 bh = BH_ENTRY(p);
549 if (buffer_locked(bh)) {
550 get_bh(bh);
551 spin_unlock(lock);
552 wait_on_buffer(bh);
553 if (!buffer_uptodate(bh))
554 err = -EIO;
555 brelse(bh);
556 spin_lock(lock);
557 goto repeat;
558 }
559 }
560 spin_unlock(lock);
561 return err;
562}
563
01a05b33 564static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 565{
c2d75438 566 char b[BDEVNAME_SIZE];
01a05b33
AV
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 printk(KERN_WARNING "Emergency Thaw on %s\n",
569 bdevname(sb->s_bdev, b));
570}
c2d75438 571
01a05b33
AV
572static void do_thaw_all(struct work_struct *work)
573{
574 iterate_supers(do_thaw_one, NULL);
053c525f 575 kfree(work);
c2d75438
ES
576 printk(KERN_WARNING "Emergency Thaw complete\n");
577}
578
579/**
580 * emergency_thaw_all -- forcibly thaw every frozen filesystem
581 *
582 * Used for emergency unfreeze of all filesystems via SysRq
583 */
584void emergency_thaw_all(void)
585{
053c525f
JA
586 struct work_struct *work;
587
588 work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 if (work) {
590 INIT_WORK(work, do_thaw_all);
591 schedule_work(work);
592 }
c2d75438
ES
593}
594
1da177e4 595/**
78a4a50a 596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 597 * @mapping: the mapping which wants those buffers written
1da177e4
LT
598 *
599 * Starts I/O against the buffers at mapping->private_list, and waits upon
600 * that I/O.
601 *
67be2dd1
MW
602 * Basically, this is a convenience function for fsync().
603 * @mapping is a file or directory which needs those buffers to be written for
604 * a successful fsync().
1da177e4
LT
605 */
606int sync_mapping_buffers(struct address_space *mapping)
607{
608 struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 return 0;
612
613 return fsync_buffers_list(&buffer_mapping->private_lock,
614 &mapping->private_list);
615}
616EXPORT_SYMBOL(sync_mapping_buffers);
617
618/*
619 * Called when we've recently written block `bblock', and it is known that
620 * `bblock' was for a buffer_boundary() buffer. This means that the block at
621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
622 * dirty, schedule it for IO. So that indirects merge nicely with their data.
623 */
624void write_boundary_block(struct block_device *bdev,
625 sector_t bblock, unsigned blocksize)
626{
627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 if (bh) {
629 if (buffer_dirty(bh))
630 ll_rw_block(WRITE, 1, &bh);
631 put_bh(bh);
632 }
633}
634
635void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636{
637 struct address_space *mapping = inode->i_mapping;
638 struct address_space *buffer_mapping = bh->b_page->mapping;
639
640 mark_buffer_dirty(bh);
641 if (!mapping->assoc_mapping) {
642 mapping->assoc_mapping = buffer_mapping;
643 } else {
e827f923 644 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4 645 }
535ee2fb 646 if (!bh->b_assoc_map) {
1da177e4
LT
647 spin_lock(&buffer_mapping->private_lock);
648 list_move_tail(&bh->b_assoc_buffers,
649 &mapping->private_list);
58ff407b 650 bh->b_assoc_map = mapping;
1da177e4
LT
651 spin_unlock(&buffer_mapping->private_lock);
652 }
653}
654EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
787d2214
NP
656/*
657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658 * dirty.
659 *
660 * If warn is true, then emit a warning if the page is not uptodate and has
661 * not been truncated.
662 */
a8e7d49a 663static void __set_page_dirty(struct page *page,
787d2214
NP
664 struct address_space *mapping, int warn)
665{
19fd6231 666 spin_lock_irq(&mapping->tree_lock);
787d2214
NP
667 if (page->mapping) { /* Race with truncate? */
668 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 669 account_page_dirtied(page, mapping);
787d2214
NP
670 radix_tree_tag_set(&mapping->page_tree,
671 page_index(page), PAGECACHE_TAG_DIRTY);
672 }
19fd6231 673 spin_unlock_irq(&mapping->tree_lock);
787d2214 674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
675}
676
1da177e4
LT
677/*
678 * Add a page to the dirty page list.
679 *
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
682 *
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
686 * dirty.
687 *
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
694 *
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
698 *
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
701 */
702int __set_page_dirty_buffers(struct page *page)
703{
a8e7d49a 704 int newly_dirty;
787d2214 705 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
706
707 if (unlikely(!mapping))
708 return !TestSetPageDirty(page);
1da177e4
LT
709
710 spin_lock(&mapping->private_lock);
711 if (page_has_buffers(page)) {
712 struct buffer_head *head = page_buffers(page);
713 struct buffer_head *bh = head;
714
715 do {
716 set_buffer_dirty(bh);
717 bh = bh->b_this_page;
718 } while (bh != head);
719 }
a8e7d49a 720 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
721 spin_unlock(&mapping->private_lock);
722
a8e7d49a
LT
723 if (newly_dirty)
724 __set_page_dirty(page, mapping, 1);
725 return newly_dirty;
1da177e4
LT
726}
727EXPORT_SYMBOL(__set_page_dirty_buffers);
728
729/*
730 * Write out and wait upon a list of buffers.
731 *
732 * We have conflicting pressures: we want to make sure that all
733 * initially dirty buffers get waited on, but that any subsequently
734 * dirtied buffers don't. After all, we don't want fsync to last
735 * forever if somebody is actively writing to the file.
736 *
737 * Do this in two main stages: first we copy dirty buffers to a
738 * temporary inode list, queueing the writes as we go. Then we clean
739 * up, waiting for those writes to complete.
740 *
741 * During this second stage, any subsequent updates to the file may end
742 * up refiling the buffer on the original inode's dirty list again, so
743 * there is a chance we will end up with a buffer queued for write but
744 * not yet completed on that list. So, as a final cleanup we go through
745 * the osync code to catch these locked, dirty buffers without requeuing
746 * any newly dirty buffers for write.
747 */
748static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749{
750 struct buffer_head *bh;
751 struct list_head tmp;
9cf6b720 752 struct address_space *mapping, *prev_mapping = NULL;
1da177e4
LT
753 int err = 0, err2;
754
755 INIT_LIST_HEAD(&tmp);
756
757 spin_lock(lock);
758 while (!list_empty(list)) {
759 bh = BH_ENTRY(list->next);
535ee2fb 760 mapping = bh->b_assoc_map;
58ff407b 761 __remove_assoc_queue(bh);
535ee2fb
JK
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
1da177e4
LT
765 if (buffer_dirty(bh) || buffer_locked(bh)) {
766 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 767 bh->b_assoc_map = mapping;
1da177e4
LT
768 if (buffer_dirty(bh)) {
769 get_bh(bh);
770 spin_unlock(lock);
771 /*
772 * Ensure any pending I/O completes so that
9cb569d6
CH
773 * write_dirty_buffer() actually writes the
774 * current contents - it is a noop if I/O is
775 * still in flight on potentially older
776 * contents.
1da177e4 777 */
9cb569d6 778 write_dirty_buffer(bh, WRITE_SYNC_PLUG);
9cf6b720
JA
779
780 /*
781 * Kick off IO for the previous mapping. Note
782 * that we will not run the very last mapping,
783 * wait_on_buffer() will do that for us
784 * through sync_buffer().
785 */
786 if (prev_mapping && prev_mapping != mapping)
787 blk_run_address_space(prev_mapping);
788 prev_mapping = mapping;
789
1da177e4
LT
790 brelse(bh);
791 spin_lock(lock);
792 }
793 }
794 }
795
796 while (!list_empty(&tmp)) {
797 bh = BH_ENTRY(tmp.prev);
1da177e4 798 get_bh(bh);
535ee2fb
JK
799 mapping = bh->b_assoc_map;
800 __remove_assoc_queue(bh);
801 /* Avoid race with mark_buffer_dirty_inode() which does
802 * a lockless check and we rely on seeing the dirty bit */
803 smp_mb();
804 if (buffer_dirty(bh)) {
805 list_add(&bh->b_assoc_buffers,
e3892296 806 &mapping->private_list);
535ee2fb
JK
807 bh->b_assoc_map = mapping;
808 }
1da177e4
LT
809 spin_unlock(lock);
810 wait_on_buffer(bh);
811 if (!buffer_uptodate(bh))
812 err = -EIO;
813 brelse(bh);
814 spin_lock(lock);
815 }
816
817 spin_unlock(lock);
818 err2 = osync_buffers_list(lock, list);
819 if (err)
820 return err;
821 else
822 return err2;
823}
824
825/*
826 * Invalidate any and all dirty buffers on a given inode. We are
827 * probably unmounting the fs, but that doesn't mean we have already
828 * done a sync(). Just drop the buffers from the inode list.
829 *
830 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
831 * assumes that all the buffers are against the blockdev. Not true
832 * for reiserfs.
833 */
834void invalidate_inode_buffers(struct inode *inode)
835{
836 if (inode_has_buffers(inode)) {
837 struct address_space *mapping = &inode->i_data;
838 struct list_head *list = &mapping->private_list;
839 struct address_space *buffer_mapping = mapping->assoc_mapping;
840
841 spin_lock(&buffer_mapping->private_lock);
842 while (!list_empty(list))
843 __remove_assoc_queue(BH_ENTRY(list->next));
844 spin_unlock(&buffer_mapping->private_lock);
845 }
846}
52b19ac9 847EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
848
849/*
850 * Remove any clean buffers from the inode's buffer list. This is called
851 * when we're trying to free the inode itself. Those buffers can pin it.
852 *
853 * Returns true if all buffers were removed.
854 */
855int remove_inode_buffers(struct inode *inode)
856{
857 int ret = 1;
858
859 if (inode_has_buffers(inode)) {
860 struct address_space *mapping = &inode->i_data;
861 struct list_head *list = &mapping->private_list;
862 struct address_space *buffer_mapping = mapping->assoc_mapping;
863
864 spin_lock(&buffer_mapping->private_lock);
865 while (!list_empty(list)) {
866 struct buffer_head *bh = BH_ENTRY(list->next);
867 if (buffer_dirty(bh)) {
868 ret = 0;
869 break;
870 }
871 __remove_assoc_queue(bh);
872 }
873 spin_unlock(&buffer_mapping->private_lock);
874 }
875 return ret;
876}
877
878/*
879 * Create the appropriate buffers when given a page for data area and
880 * the size of each buffer.. Use the bh->b_this_page linked list to
881 * follow the buffers created. Return NULL if unable to create more
882 * buffers.
883 *
884 * The retry flag is used to differentiate async IO (paging, swapping)
885 * which may not fail from ordinary buffer allocations.
886 */
887struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888 int retry)
889{
890 struct buffer_head *bh, *head;
891 long offset;
892
893try_again:
894 head = NULL;
895 offset = PAGE_SIZE;
896 while ((offset -= size) >= 0) {
897 bh = alloc_buffer_head(GFP_NOFS);
898 if (!bh)
899 goto no_grow;
900
901 bh->b_bdev = NULL;
902 bh->b_this_page = head;
903 bh->b_blocknr = -1;
904 head = bh;
905
906 bh->b_state = 0;
907 atomic_set(&bh->b_count, 0);
908 bh->b_size = size;
909
910 /* Link the buffer to its page */
911 set_bh_page(bh, page, offset);
912
01ffe339 913 init_buffer(bh, NULL, NULL);
1da177e4
LT
914 }
915 return head;
916/*
917 * In case anything failed, we just free everything we got.
918 */
919no_grow:
920 if (head) {
921 do {
922 bh = head;
923 head = head->b_this_page;
924 free_buffer_head(bh);
925 } while (head);
926 }
927
928 /*
929 * Return failure for non-async IO requests. Async IO requests
930 * are not allowed to fail, so we have to wait until buffer heads
931 * become available. But we don't want tasks sleeping with
932 * partially complete buffers, so all were released above.
933 */
934 if (!retry)
935 return NULL;
936
937 /* We're _really_ low on memory. Now we just
938 * wait for old buffer heads to become free due to
939 * finishing IO. Since this is an async request and
940 * the reserve list is empty, we're sure there are
941 * async buffer heads in use.
942 */
943 free_more_memory();
944 goto try_again;
945}
946EXPORT_SYMBOL_GPL(alloc_page_buffers);
947
948static inline void
949link_dev_buffers(struct page *page, struct buffer_head *head)
950{
951 struct buffer_head *bh, *tail;
952
953 bh = head;
954 do {
955 tail = bh;
956 bh = bh->b_this_page;
957 } while (bh);
958 tail->b_this_page = head;
959 attach_page_buffers(page, head);
960}
961
962/*
963 * Initialise the state of a blockdev page's buffers.
964 */
965static void
966init_page_buffers(struct page *page, struct block_device *bdev,
967 sector_t block, int size)
968{
969 struct buffer_head *head = page_buffers(page);
970 struct buffer_head *bh = head;
971 int uptodate = PageUptodate(page);
972
973 do {
974 if (!buffer_mapped(bh)) {
975 init_buffer(bh, NULL, NULL);
976 bh->b_bdev = bdev;
977 bh->b_blocknr = block;
978 if (uptodate)
979 set_buffer_uptodate(bh);
980 set_buffer_mapped(bh);
981 }
982 block++;
983 bh = bh->b_this_page;
984 } while (bh != head);
985}
986
987/*
988 * Create the page-cache page that contains the requested block.
989 *
990 * This is user purely for blockdev mappings.
991 */
992static struct page *
993grow_dev_page(struct block_device *bdev, sector_t block,
994 pgoff_t index, int size)
995{
996 struct inode *inode = bdev->bd_inode;
997 struct page *page;
998 struct buffer_head *bh;
999
ea125892 1000 page = find_or_create_page(inode->i_mapping, index,
769848c0 1001 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4
LT
1002 if (!page)
1003 return NULL;
1004
e827f923 1005 BUG_ON(!PageLocked(page));
1da177e4
LT
1006
1007 if (page_has_buffers(page)) {
1008 bh = page_buffers(page);
1009 if (bh->b_size == size) {
1010 init_page_buffers(page, bdev, block, size);
1011 return page;
1012 }
1013 if (!try_to_free_buffers(page))
1014 goto failed;
1015 }
1016
1017 /*
1018 * Allocate some buffers for this page
1019 */
1020 bh = alloc_page_buffers(page, size, 0);
1021 if (!bh)
1022 goto failed;
1023
1024 /*
1025 * Link the page to the buffers and initialise them. Take the
1026 * lock to be atomic wrt __find_get_block(), which does not
1027 * run under the page lock.
1028 */
1029 spin_lock(&inode->i_mapping->private_lock);
1030 link_dev_buffers(page, bh);
1031 init_page_buffers(page, bdev, block, size);
1032 spin_unlock(&inode->i_mapping->private_lock);
1033 return page;
1034
1035failed:
1036 BUG();
1037 unlock_page(page);
1038 page_cache_release(page);
1039 return NULL;
1040}
1041
1042/*
1043 * Create buffers for the specified block device block's page. If
1044 * that page was dirty, the buffers are set dirty also.
1da177e4 1045 */
858119e1 1046static int
1da177e4
LT
1047grow_buffers(struct block_device *bdev, sector_t block, int size)
1048{
1049 struct page *page;
1050 pgoff_t index;
1051 int sizebits;
1052
1053 sizebits = -1;
1054 do {
1055 sizebits++;
1056 } while ((size << sizebits) < PAGE_SIZE);
1057
1058 index = block >> sizebits;
1da177e4 1059
e5657933
AM
1060 /*
1061 * Check for a block which wants to lie outside our maximum possible
1062 * pagecache index. (this comparison is done using sector_t types).
1063 */
1064 if (unlikely(index != block >> sizebits)) {
1065 char b[BDEVNAME_SIZE];
1066
1067 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068 "device %s\n",
8e24eea7 1069 __func__, (unsigned long long)block,
e5657933
AM
1070 bdevname(bdev, b));
1071 return -EIO;
1072 }
1073 block = index << sizebits;
1da177e4
LT
1074 /* Create a page with the proper size buffers.. */
1075 page = grow_dev_page(bdev, block, index, size);
1076 if (!page)
1077 return 0;
1078 unlock_page(page);
1079 page_cache_release(page);
1080 return 1;
1081}
1082
75c96f85 1083static struct buffer_head *
1da177e4
LT
1084__getblk_slow(struct block_device *bdev, sector_t block, int size)
1085{
1086 /* Size must be multiple of hard sectorsize */
e1defc4f 1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
e1defc4f
MP
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1da177e4
LT
1093
1094 dump_stack();
1095 return NULL;
1096 }
1097
1098 for (;;) {
1099 struct buffer_head * bh;
e5657933 1100 int ret;
1da177e4
LT
1101
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
1105
e5657933
AM
1106 ret = grow_buffers(bdev, block, size);
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1da177e4
LT
1110 free_more_memory();
1111 }
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1139 * @bh: the buffer_head to mark dirty
1da177e4
LT
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and the global inode_lock.
1148 */
fc9b52cd 1149void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1150{
787d2214 1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1
LT
1152
1153 /*
1154 * Very *carefully* optimize the it-is-already-dirty case.
1155 *
1156 * Don't let the final "is it dirty" escape to before we
1157 * perhaps modified the buffer.
1158 */
1159 if (buffer_dirty(bh)) {
1160 smp_mb();
1161 if (buffer_dirty(bh))
1162 return;
1163 }
1164
a8e7d49a
LT
1165 if (!test_set_buffer_dirty(bh)) {
1166 struct page *page = bh->b_page;
8e9d78ed
LT
1167 if (!TestSetPageDirty(page)) {
1168 struct address_space *mapping = page_mapping(page);
1169 if (mapping)
1170 __set_page_dirty(page, mapping, 0);
1171 }
a8e7d49a 1172 }
1da177e4 1173}
1fe72eaa 1174EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1175
1176/*
1177 * Decrement a buffer_head's reference count. If all buffers against a page
1178 * have zero reference count, are clean and unlocked, and if the page is clean
1179 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181 * a page but it ends up not being freed, and buffers may later be reattached).
1182 */
1183void __brelse(struct buffer_head * buf)
1184{
1185 if (atomic_read(&buf->b_count)) {
1186 put_bh(buf);
1187 return;
1188 }
5c752ad9 1189 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1190}
1fe72eaa 1191EXPORT_SYMBOL(__brelse);
1da177e4
LT
1192
1193/*
1194 * bforget() is like brelse(), except it discards any
1195 * potentially dirty data.
1196 */
1197void __bforget(struct buffer_head *bh)
1198{
1199 clear_buffer_dirty(bh);
535ee2fb 1200 if (bh->b_assoc_map) {
1da177e4
LT
1201 struct address_space *buffer_mapping = bh->b_page->mapping;
1202
1203 spin_lock(&buffer_mapping->private_lock);
1204 list_del_init(&bh->b_assoc_buffers);
58ff407b 1205 bh->b_assoc_map = NULL;
1da177e4
LT
1206 spin_unlock(&buffer_mapping->private_lock);
1207 }
1208 __brelse(bh);
1209}
1fe72eaa 1210EXPORT_SYMBOL(__bforget);
1da177e4
LT
1211
1212static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213{
1214 lock_buffer(bh);
1215 if (buffer_uptodate(bh)) {
1216 unlock_buffer(bh);
1217 return bh;
1218 } else {
1219 get_bh(bh);
1220 bh->b_end_io = end_buffer_read_sync;
1221 submit_bh(READ, bh);
1222 wait_on_buffer(bh);
1223 if (buffer_uptodate(bh))
1224 return bh;
1225 }
1226 brelse(bh);
1227 return NULL;
1228}
1229
1230/*
1231 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1232 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1233 * refcount elevated by one when they're in an LRU. A buffer can only appear
1234 * once in a particular CPU's LRU. A single buffer can be present in multiple
1235 * CPU's LRUs at the same time.
1236 *
1237 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238 * sb_find_get_block().
1239 *
1240 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1241 * a local interrupt disable for that.
1242 */
1243
1244#define BH_LRU_SIZE 8
1245
1246struct bh_lru {
1247 struct buffer_head *bhs[BH_LRU_SIZE];
1248};
1249
1250static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251
1252#ifdef CONFIG_SMP
1253#define bh_lru_lock() local_irq_disable()
1254#define bh_lru_unlock() local_irq_enable()
1255#else
1256#define bh_lru_lock() preempt_disable()
1257#define bh_lru_unlock() preempt_enable()
1258#endif
1259
1260static inline void check_irqs_on(void)
1261{
1262#ifdef irqs_disabled
1263 BUG_ON(irqs_disabled());
1264#endif
1265}
1266
1267/*
1268 * The LRU management algorithm is dopey-but-simple. Sorry.
1269 */
1270static void bh_lru_install(struct buffer_head *bh)
1271{
1272 struct buffer_head *evictee = NULL;
1da177e4
LT
1273
1274 check_irqs_on();
1275 bh_lru_lock();
c7b92516 1276 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1277 struct buffer_head *bhs[BH_LRU_SIZE];
1278 int in;
1279 int out = 0;
1280
1281 get_bh(bh);
1282 bhs[out++] = bh;
1283 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1284 struct buffer_head *bh2 =
1285 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1286
1287 if (bh2 == bh) {
1288 __brelse(bh2);
1289 } else {
1290 if (out >= BH_LRU_SIZE) {
1291 BUG_ON(evictee != NULL);
1292 evictee = bh2;
1293 } else {
1294 bhs[out++] = bh2;
1295 }
1296 }
1297 }
1298 while (out < BH_LRU_SIZE)
1299 bhs[out++] = NULL;
c7b92516 1300 memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1301 }
1302 bh_lru_unlock();
1303
1304 if (evictee)
1305 __brelse(evictee);
1306}
1307
1308/*
1309 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1310 */
858119e1 1311static struct buffer_head *
3991d3bd 1312lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1313{
1314 struct buffer_head *ret = NULL;
3991d3bd 1315 unsigned int i;
1da177e4
LT
1316
1317 check_irqs_on();
1318 bh_lru_lock();
1da177e4 1319 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1320 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4
LT
1321
1322 if (bh && bh->b_bdev == bdev &&
1323 bh->b_blocknr == block && bh->b_size == size) {
1324 if (i) {
1325 while (i) {
c7b92516
CL
1326 __this_cpu_write(bh_lrus.bhs[i],
1327 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1328 i--;
1329 }
c7b92516 1330 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1331 }
1332 get_bh(bh);
1333 ret = bh;
1334 break;
1335 }
1336 }
1337 bh_lru_unlock();
1338 return ret;
1339}
1340
1341/*
1342 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1343 * it in the LRU and mark it as accessed. If it is not present then return
1344 * NULL
1345 */
1346struct buffer_head *
3991d3bd 1347__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1348{
1349 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1350
1351 if (bh == NULL) {
385fd4c5 1352 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1353 if (bh)
1354 bh_lru_install(bh);
1355 }
1356 if (bh)
1357 touch_buffer(bh);
1358 return bh;
1359}
1360EXPORT_SYMBOL(__find_get_block);
1361
1362/*
1363 * __getblk will locate (and, if necessary, create) the buffer_head
1364 * which corresponds to the passed block_device, block and size. The
1365 * returned buffer has its reference count incremented.
1366 *
1367 * __getblk() cannot fail - it just keeps trying. If you pass it an
1368 * illegal block number, __getblk() will happily return a buffer_head
1369 * which represents the non-existent block. Very weird.
1370 *
1371 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1372 * attempt is failing. FIXME, perhaps?
1373 */
1374struct buffer_head *
3991d3bd 1375__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1376{
1377 struct buffer_head *bh = __find_get_block(bdev, block, size);
1378
1379 might_sleep();
1380 if (bh == NULL)
1381 bh = __getblk_slow(bdev, block, size);
1382 return bh;
1383}
1384EXPORT_SYMBOL(__getblk);
1385
1386/*
1387 * Do async read-ahead on a buffer..
1388 */
3991d3bd 1389void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1390{
1391 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1392 if (likely(bh)) {
1393 ll_rw_block(READA, 1, &bh);
1394 brelse(bh);
1395 }
1da177e4
LT
1396}
1397EXPORT_SYMBOL(__breadahead);
1398
1399/**
1400 * __bread() - reads a specified block and returns the bh
67be2dd1 1401 * @bdev: the block_device to read from
1da177e4
LT
1402 * @block: number of block
1403 * @size: size (in bytes) to read
1404 *
1405 * Reads a specified block, and returns buffer head that contains it.
1406 * It returns NULL if the block was unreadable.
1407 */
1408struct buffer_head *
3991d3bd 1409__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1410{
1411 struct buffer_head *bh = __getblk(bdev, block, size);
1412
a3e713b5 1413 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1414 bh = __bread_slow(bh);
1415 return bh;
1416}
1417EXPORT_SYMBOL(__bread);
1418
1419/*
1420 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1421 * This doesn't race because it runs in each cpu either in irq
1422 * or with preempt disabled.
1423 */
1424static void invalidate_bh_lru(void *arg)
1425{
1426 struct bh_lru *b = &get_cpu_var(bh_lrus);
1427 int i;
1428
1429 for (i = 0; i < BH_LRU_SIZE; i++) {
1430 brelse(b->bhs[i]);
1431 b->bhs[i] = NULL;
1432 }
1433 put_cpu_var(bh_lrus);
1434}
1435
f9a14399 1436void invalidate_bh_lrus(void)
1da177e4 1437{
15c8b6c1 1438 on_each_cpu(invalidate_bh_lru, NULL, 1);
1da177e4 1439}
9db5579b 1440EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1441
1442void set_bh_page(struct buffer_head *bh,
1443 struct page *page, unsigned long offset)
1444{
1445 bh->b_page = page;
e827f923 1446 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1447 if (PageHighMem(page))
1448 /*
1449 * This catches illegal uses and preserves the offset:
1450 */
1451 bh->b_data = (char *)(0 + offset);
1452 else
1453 bh->b_data = page_address(page) + offset;
1454}
1455EXPORT_SYMBOL(set_bh_page);
1456
1457/*
1458 * Called when truncating a buffer on a page completely.
1459 */
858119e1 1460static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1461{
1462 lock_buffer(bh);
1463 clear_buffer_dirty(bh);
1464 bh->b_bdev = NULL;
1465 clear_buffer_mapped(bh);
1466 clear_buffer_req(bh);
1467 clear_buffer_new(bh);
1468 clear_buffer_delay(bh);
33a266dd 1469 clear_buffer_unwritten(bh);
1da177e4
LT
1470 unlock_buffer(bh);
1471}
1472
1da177e4
LT
1473/**
1474 * block_invalidatepage - invalidate part of all of a buffer-backed page
1475 *
1476 * @page: the page which is affected
1477 * @offset: the index of the truncation point
1478 *
1479 * block_invalidatepage() is called when all or part of the page has become
1480 * invalidatedby a truncate operation.
1481 *
1482 * block_invalidatepage() does not have to release all buffers, but it must
1483 * ensure that no dirty buffer is left outside @offset and that no I/O
1484 * is underway against any of the blocks which are outside the truncation
1485 * point. Because the caller is about to free (and possibly reuse) those
1486 * blocks on-disk.
1487 */
2ff28e22 1488void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1489{
1490 struct buffer_head *head, *bh, *next;
1491 unsigned int curr_off = 0;
1da177e4
LT
1492
1493 BUG_ON(!PageLocked(page));
1494 if (!page_has_buffers(page))
1495 goto out;
1496
1497 head = page_buffers(page);
1498 bh = head;
1499 do {
1500 unsigned int next_off = curr_off + bh->b_size;
1501 next = bh->b_this_page;
1502
1503 /*
1504 * is this block fully invalidated?
1505 */
1506 if (offset <= curr_off)
1507 discard_buffer(bh);
1508 curr_off = next_off;
1509 bh = next;
1510 } while (bh != head);
1511
1512 /*
1513 * We release buffers only if the entire page is being invalidated.
1514 * The get_block cached value has been unconditionally invalidated,
1515 * so real IO is not possible anymore.
1516 */
1517 if (offset == 0)
2ff28e22 1518 try_to_release_page(page, 0);
1da177e4 1519out:
2ff28e22 1520 return;
1da177e4
LT
1521}
1522EXPORT_SYMBOL(block_invalidatepage);
1523
1524/*
1525 * We attach and possibly dirty the buffers atomically wrt
1526 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1527 * is already excluded via the page lock.
1528 */
1529void create_empty_buffers(struct page *page,
1530 unsigned long blocksize, unsigned long b_state)
1531{
1532 struct buffer_head *bh, *head, *tail;
1533
1534 head = alloc_page_buffers(page, blocksize, 1);
1535 bh = head;
1536 do {
1537 bh->b_state |= b_state;
1538 tail = bh;
1539 bh = bh->b_this_page;
1540 } while (bh);
1541 tail->b_this_page = head;
1542
1543 spin_lock(&page->mapping->private_lock);
1544 if (PageUptodate(page) || PageDirty(page)) {
1545 bh = head;
1546 do {
1547 if (PageDirty(page))
1548 set_buffer_dirty(bh);
1549 if (PageUptodate(page))
1550 set_buffer_uptodate(bh);
1551 bh = bh->b_this_page;
1552 } while (bh != head);
1553 }
1554 attach_page_buffers(page, head);
1555 spin_unlock(&page->mapping->private_lock);
1556}
1557EXPORT_SYMBOL(create_empty_buffers);
1558
1559/*
1560 * We are taking a block for data and we don't want any output from any
1561 * buffer-cache aliases starting from return from that function and
1562 * until the moment when something will explicitly mark the buffer
1563 * dirty (hopefully that will not happen until we will free that block ;-)
1564 * We don't even need to mark it not-uptodate - nobody can expect
1565 * anything from a newly allocated buffer anyway. We used to used
1566 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1567 * don't want to mark the alias unmapped, for example - it would confuse
1568 * anyone who might pick it with bread() afterwards...
1569 *
1570 * Also.. Note that bforget() doesn't lock the buffer. So there can
1571 * be writeout I/O going on against recently-freed buffers. We don't
1572 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1573 * only if we really need to. That happens here.
1574 */
1575void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1576{
1577 struct buffer_head *old_bh;
1578
1579 might_sleep();
1580
385fd4c5 1581 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1582 if (old_bh) {
1583 clear_buffer_dirty(old_bh);
1584 wait_on_buffer(old_bh);
1585 clear_buffer_req(old_bh);
1586 __brelse(old_bh);
1587 }
1588}
1589EXPORT_SYMBOL(unmap_underlying_metadata);
1590
1591/*
1592 * NOTE! All mapped/uptodate combinations are valid:
1593 *
1594 * Mapped Uptodate Meaning
1595 *
1596 * No No "unknown" - must do get_block()
1597 * No Yes "hole" - zero-filled
1598 * Yes No "allocated" - allocated on disk, not read in
1599 * Yes Yes "valid" - allocated and up-to-date in memory.
1600 *
1601 * "Dirty" is valid only with the last case (mapped+uptodate).
1602 */
1603
1604/*
1605 * While block_write_full_page is writing back the dirty buffers under
1606 * the page lock, whoever dirtied the buffers may decide to clean them
1607 * again at any time. We handle that by only looking at the buffer
1608 * state inside lock_buffer().
1609 *
1610 * If block_write_full_page() is called for regular writeback
1611 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1612 * locked buffer. This only can happen if someone has written the buffer
1613 * directly, with submit_bh(). At the address_space level PageWriteback
1614 * prevents this contention from occurring.
6e34eedd
TT
1615 *
1616 * If block_write_full_page() is called with wbc->sync_mode ==
1617 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1618 * causes the writes to be flagged as synchronous writes, but the
1619 * block device queue will NOT be unplugged, since usually many pages
1620 * will be pushed to the out before the higher-level caller actually
1621 * waits for the writes to be completed. The various wait functions,
1622 * such as wait_on_writeback_range() will ultimately call sync_page()
1623 * which will ultimately call blk_run_backing_dev(), which will end up
1624 * unplugging the device queue.
1da177e4
LT
1625 */
1626static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1627 get_block_t *get_block, struct writeback_control *wbc,
1628 bh_end_io_t *handler)
1da177e4
LT
1629{
1630 int err;
1631 sector_t block;
1632 sector_t last_block;
f0fbd5fc 1633 struct buffer_head *bh, *head;
b0cf2321 1634 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4 1635 int nr_underway = 0;
6e34eedd
TT
1636 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1637 WRITE_SYNC_PLUG : WRITE);
1da177e4
LT
1638
1639 BUG_ON(!PageLocked(page));
1640
1641 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1642
1643 if (!page_has_buffers(page)) {
b0cf2321 1644 create_empty_buffers(page, blocksize,
1da177e4
LT
1645 (1 << BH_Dirty)|(1 << BH_Uptodate));
1646 }
1647
1648 /*
1649 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1650 * here, and the (potentially unmapped) buffers may become dirty at
1651 * any time. If a buffer becomes dirty here after we've inspected it
1652 * then we just miss that fact, and the page stays dirty.
1653 *
1654 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1655 * handle that here by just cleaning them.
1656 */
1657
54b21a79 1658 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1659 head = page_buffers(page);
1660 bh = head;
1661
1662 /*
1663 * Get all the dirty buffers mapped to disk addresses and
1664 * handle any aliases from the underlying blockdev's mapping.
1665 */
1666 do {
1667 if (block > last_block) {
1668 /*
1669 * mapped buffers outside i_size will occur, because
1670 * this page can be outside i_size when there is a
1671 * truncate in progress.
1672 */
1673 /*
1674 * The buffer was zeroed by block_write_full_page()
1675 */
1676 clear_buffer_dirty(bh);
1677 set_buffer_uptodate(bh);
29a814d2
AT
1678 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1679 buffer_dirty(bh)) {
b0cf2321 1680 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1681 err = get_block(inode, block, bh, 1);
1682 if (err)
1683 goto recover;
29a814d2 1684 clear_buffer_delay(bh);
1da177e4
LT
1685 if (buffer_new(bh)) {
1686 /* blockdev mappings never come here */
1687 clear_buffer_new(bh);
1688 unmap_underlying_metadata(bh->b_bdev,
1689 bh->b_blocknr);
1690 }
1691 }
1692 bh = bh->b_this_page;
1693 block++;
1694 } while (bh != head);
1695
1696 do {
1da177e4
LT
1697 if (!buffer_mapped(bh))
1698 continue;
1699 /*
1700 * If it's a fully non-blocking write attempt and we cannot
1701 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1702 * potentially cause a busy-wait loop from writeback threads
1703 * and kswapd activity, but those code paths have their own
1704 * higher-level throttling.
1da177e4 1705 */
1b430bee 1706 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1707 lock_buffer(bh);
ca5de404 1708 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1709 redirty_page_for_writepage(wbc, page);
1710 continue;
1711 }
1712 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1713 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1714 } else {
1715 unlock_buffer(bh);
1716 }
1717 } while ((bh = bh->b_this_page) != head);
1718
1719 /*
1720 * The page and its buffers are protected by PageWriteback(), so we can
1721 * drop the bh refcounts early.
1722 */
1723 BUG_ON(PageWriteback(page));
1724 set_page_writeback(page);
1da177e4
LT
1725
1726 do {
1727 struct buffer_head *next = bh->b_this_page;
1728 if (buffer_async_write(bh)) {
a64c8610 1729 submit_bh(write_op, bh);
1da177e4
LT
1730 nr_underway++;
1731 }
1da177e4
LT
1732 bh = next;
1733 } while (bh != head);
05937baa 1734 unlock_page(page);
1da177e4
LT
1735
1736 err = 0;
1737done:
1738 if (nr_underway == 0) {
1739 /*
1740 * The page was marked dirty, but the buffers were
1741 * clean. Someone wrote them back by hand with
1742 * ll_rw_block/submit_bh. A rare case.
1743 */
1da177e4 1744 end_page_writeback(page);
3d67f2d7 1745
1da177e4
LT
1746 /*
1747 * The page and buffer_heads can be released at any time from
1748 * here on.
1749 */
1da177e4
LT
1750 }
1751 return err;
1752
1753recover:
1754 /*
1755 * ENOSPC, or some other error. We may already have added some
1756 * blocks to the file, so we need to write these out to avoid
1757 * exposing stale data.
1758 * The page is currently locked and not marked for writeback
1759 */
1760 bh = head;
1761 /* Recovery: lock and submit the mapped buffers */
1762 do {
29a814d2
AT
1763 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1764 !buffer_delay(bh)) {
1da177e4 1765 lock_buffer(bh);
35c80d5f 1766 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1767 } else {
1768 /*
1769 * The buffer may have been set dirty during
1770 * attachment to a dirty page.
1771 */
1772 clear_buffer_dirty(bh);
1773 }
1774 } while ((bh = bh->b_this_page) != head);
1775 SetPageError(page);
1776 BUG_ON(PageWriteback(page));
7e4c3690 1777 mapping_set_error(page->mapping, err);
1da177e4 1778 set_page_writeback(page);
1da177e4
LT
1779 do {
1780 struct buffer_head *next = bh->b_this_page;
1781 if (buffer_async_write(bh)) {
1782 clear_buffer_dirty(bh);
a64c8610 1783 submit_bh(write_op, bh);
1da177e4
LT
1784 nr_underway++;
1785 }
1da177e4
LT
1786 bh = next;
1787 } while (bh != head);
ffda9d30 1788 unlock_page(page);
1da177e4
LT
1789 goto done;
1790}
1791
afddba49
NP
1792/*
1793 * If a page has any new buffers, zero them out here, and mark them uptodate
1794 * and dirty so they'll be written out (in order to prevent uninitialised
1795 * block data from leaking). And clear the new bit.
1796 */
1797void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1798{
1799 unsigned int block_start, block_end;
1800 struct buffer_head *head, *bh;
1801
1802 BUG_ON(!PageLocked(page));
1803 if (!page_has_buffers(page))
1804 return;
1805
1806 bh = head = page_buffers(page);
1807 block_start = 0;
1808 do {
1809 block_end = block_start + bh->b_size;
1810
1811 if (buffer_new(bh)) {
1812 if (block_end > from && block_start < to) {
1813 if (!PageUptodate(page)) {
1814 unsigned start, size;
1815
1816 start = max(from, block_start);
1817 size = min(to, block_end) - start;
1818
eebd2aa3 1819 zero_user(page, start, size);
afddba49
NP
1820 set_buffer_uptodate(bh);
1821 }
1822
1823 clear_buffer_new(bh);
1824 mark_buffer_dirty(bh);
1825 }
1826 }
1827
1828 block_start = block_end;
1829 bh = bh->b_this_page;
1830 } while (bh != head);
1831}
1832EXPORT_SYMBOL(page_zero_new_buffers);
1833
ebdec241 1834int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1835 get_block_t *get_block)
1da177e4 1836{
ebdec241
CH
1837 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1838 unsigned to = from + len;
6e1db88d 1839 struct inode *inode = page->mapping->host;
1da177e4
LT
1840 unsigned block_start, block_end;
1841 sector_t block;
1842 int err = 0;
1843 unsigned blocksize, bbits;
1844 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1845
1846 BUG_ON(!PageLocked(page));
1847 BUG_ON(from > PAGE_CACHE_SIZE);
1848 BUG_ON(to > PAGE_CACHE_SIZE);
1849 BUG_ON(from > to);
1850
1851 blocksize = 1 << inode->i_blkbits;
1852 if (!page_has_buffers(page))
1853 create_empty_buffers(page, blocksize, 0);
1854 head = page_buffers(page);
1855
1856 bbits = inode->i_blkbits;
1857 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1858
1859 for(bh = head, block_start = 0; bh != head || !block_start;
1860 block++, block_start=block_end, bh = bh->b_this_page) {
1861 block_end = block_start + blocksize;
1862 if (block_end <= from || block_start >= to) {
1863 if (PageUptodate(page)) {
1864 if (!buffer_uptodate(bh))
1865 set_buffer_uptodate(bh);
1866 }
1867 continue;
1868 }
1869 if (buffer_new(bh))
1870 clear_buffer_new(bh);
1871 if (!buffer_mapped(bh)) {
b0cf2321 1872 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1873 err = get_block(inode, block, bh, 1);
1874 if (err)
f3ddbdc6 1875 break;
1da177e4 1876 if (buffer_new(bh)) {
1da177e4
LT
1877 unmap_underlying_metadata(bh->b_bdev,
1878 bh->b_blocknr);
1879 if (PageUptodate(page)) {
637aff46 1880 clear_buffer_new(bh);
1da177e4 1881 set_buffer_uptodate(bh);
637aff46 1882 mark_buffer_dirty(bh);
1da177e4
LT
1883 continue;
1884 }
eebd2aa3
CL
1885 if (block_end > to || block_start < from)
1886 zero_user_segments(page,
1887 to, block_end,
1888 block_start, from);
1da177e4
LT
1889 continue;
1890 }
1891 }
1892 if (PageUptodate(page)) {
1893 if (!buffer_uptodate(bh))
1894 set_buffer_uptodate(bh);
1895 continue;
1896 }
1897 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1898 !buffer_unwritten(bh) &&
1da177e4
LT
1899 (block_start < from || block_end > to)) {
1900 ll_rw_block(READ, 1, &bh);
1901 *wait_bh++=bh;
1902 }
1903 }
1904 /*
1905 * If we issued read requests - let them complete.
1906 */
1907 while(wait_bh > wait) {
1908 wait_on_buffer(*--wait_bh);
1909 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1910 err = -EIO;
1da177e4 1911 }
6e1db88d 1912 if (unlikely(err)) {
afddba49 1913 page_zero_new_buffers(page, from, to);
6e1db88d
CH
1914 ClearPageUptodate(page);
1915 }
1da177e4
LT
1916 return err;
1917}
ebdec241 1918EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1919
1920static int __block_commit_write(struct inode *inode, struct page *page,
1921 unsigned from, unsigned to)
1922{
1923 unsigned block_start, block_end;
1924 int partial = 0;
1925 unsigned blocksize;
1926 struct buffer_head *bh, *head;
1927
1928 blocksize = 1 << inode->i_blkbits;
1929
1930 for(bh = head = page_buffers(page), block_start = 0;
1931 bh != head || !block_start;
1932 block_start=block_end, bh = bh->b_this_page) {
1933 block_end = block_start + blocksize;
1934 if (block_end <= from || block_start >= to) {
1935 if (!buffer_uptodate(bh))
1936 partial = 1;
1937 } else {
1938 set_buffer_uptodate(bh);
1939 mark_buffer_dirty(bh);
1940 }
afddba49 1941 clear_buffer_new(bh);
1da177e4
LT
1942 }
1943
1944 /*
1945 * If this is a partial write which happened to make all buffers
1946 * uptodate then we can optimize away a bogus readpage() for
1947 * the next read(). Here we 'discover' whether the page went
1948 * uptodate as a result of this (potentially partial) write.
1949 */
1950 if (!partial)
1951 SetPageUptodate(page);
1952 return 0;
1953}
1954
afddba49 1955/*
155130a4
CH
1956 * block_write_begin takes care of the basic task of block allocation and
1957 * bringing partial write blocks uptodate first.
1958 *
7bb46a67 1959 * The filesystem needs to handle block truncation upon failure.
afddba49 1960 */
155130a4
CH
1961int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1962 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 1963{
6e1db88d 1964 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 1965 struct page *page;
6e1db88d 1966 int status;
afddba49 1967
6e1db88d
CH
1968 page = grab_cache_page_write_begin(mapping, index, flags);
1969 if (!page)
1970 return -ENOMEM;
afddba49 1971
6e1db88d 1972 status = __block_write_begin(page, pos, len, get_block);
afddba49 1973 if (unlikely(status)) {
6e1db88d
CH
1974 unlock_page(page);
1975 page_cache_release(page);
1976 page = NULL;
afddba49
NP
1977 }
1978
6e1db88d 1979 *pagep = page;
afddba49
NP
1980 return status;
1981}
1982EXPORT_SYMBOL(block_write_begin);
1983
1984int block_write_end(struct file *file, struct address_space *mapping,
1985 loff_t pos, unsigned len, unsigned copied,
1986 struct page *page, void *fsdata)
1987{
1988 struct inode *inode = mapping->host;
1989 unsigned start;
1990
1991 start = pos & (PAGE_CACHE_SIZE - 1);
1992
1993 if (unlikely(copied < len)) {
1994 /*
1995 * The buffers that were written will now be uptodate, so we
1996 * don't have to worry about a readpage reading them and
1997 * overwriting a partial write. However if we have encountered
1998 * a short write and only partially written into a buffer, it
1999 * will not be marked uptodate, so a readpage might come in and
2000 * destroy our partial write.
2001 *
2002 * Do the simplest thing, and just treat any short write to a
2003 * non uptodate page as a zero-length write, and force the
2004 * caller to redo the whole thing.
2005 */
2006 if (!PageUptodate(page))
2007 copied = 0;
2008
2009 page_zero_new_buffers(page, start+copied, start+len);
2010 }
2011 flush_dcache_page(page);
2012
2013 /* This could be a short (even 0-length) commit */
2014 __block_commit_write(inode, page, start, start+copied);
2015
2016 return copied;
2017}
2018EXPORT_SYMBOL(block_write_end);
2019
2020int generic_write_end(struct file *file, struct address_space *mapping,
2021 loff_t pos, unsigned len, unsigned copied,
2022 struct page *page, void *fsdata)
2023{
2024 struct inode *inode = mapping->host;
c7d206b3 2025 int i_size_changed = 0;
afddba49
NP
2026
2027 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2028
2029 /*
2030 * No need to use i_size_read() here, the i_size
2031 * cannot change under us because we hold i_mutex.
2032 *
2033 * But it's important to update i_size while still holding page lock:
2034 * page writeout could otherwise come in and zero beyond i_size.
2035 */
2036 if (pos+copied > inode->i_size) {
2037 i_size_write(inode, pos+copied);
c7d206b3 2038 i_size_changed = 1;
afddba49
NP
2039 }
2040
2041 unlock_page(page);
2042 page_cache_release(page);
2043
c7d206b3
JK
2044 /*
2045 * Don't mark the inode dirty under page lock. First, it unnecessarily
2046 * makes the holding time of page lock longer. Second, it forces lock
2047 * ordering of page lock and transaction start for journaling
2048 * filesystems.
2049 */
2050 if (i_size_changed)
2051 mark_inode_dirty(inode);
2052
afddba49
NP
2053 return copied;
2054}
2055EXPORT_SYMBOL(generic_write_end);
2056
8ab22b9a
HH
2057/*
2058 * block_is_partially_uptodate checks whether buffers within a page are
2059 * uptodate or not.
2060 *
2061 * Returns true if all buffers which correspond to a file portion
2062 * we want to read are uptodate.
2063 */
2064int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2065 unsigned long from)
2066{
2067 struct inode *inode = page->mapping->host;
2068 unsigned block_start, block_end, blocksize;
2069 unsigned to;
2070 struct buffer_head *bh, *head;
2071 int ret = 1;
2072
2073 if (!page_has_buffers(page))
2074 return 0;
2075
2076 blocksize = 1 << inode->i_blkbits;
2077 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2078 to = from + to;
2079 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2080 return 0;
2081
2082 head = page_buffers(page);
2083 bh = head;
2084 block_start = 0;
2085 do {
2086 block_end = block_start + blocksize;
2087 if (block_end > from && block_start < to) {
2088 if (!buffer_uptodate(bh)) {
2089 ret = 0;
2090 break;
2091 }
2092 if (block_end >= to)
2093 break;
2094 }
2095 block_start = block_end;
2096 bh = bh->b_this_page;
2097 } while (bh != head);
2098
2099 return ret;
2100}
2101EXPORT_SYMBOL(block_is_partially_uptodate);
2102
1da177e4
LT
2103/*
2104 * Generic "read page" function for block devices that have the normal
2105 * get_block functionality. This is most of the block device filesystems.
2106 * Reads the page asynchronously --- the unlock_buffer() and
2107 * set/clear_buffer_uptodate() functions propagate buffer state into the
2108 * page struct once IO has completed.
2109 */
2110int block_read_full_page(struct page *page, get_block_t *get_block)
2111{
2112 struct inode *inode = page->mapping->host;
2113 sector_t iblock, lblock;
2114 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2115 unsigned int blocksize;
2116 int nr, i;
2117 int fully_mapped = 1;
2118
cd7619d6 2119 BUG_ON(!PageLocked(page));
1da177e4
LT
2120 blocksize = 1 << inode->i_blkbits;
2121 if (!page_has_buffers(page))
2122 create_empty_buffers(page, blocksize, 0);
2123 head = page_buffers(page);
2124
2125 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2126 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2127 bh = head;
2128 nr = 0;
2129 i = 0;
2130
2131 do {
2132 if (buffer_uptodate(bh))
2133 continue;
2134
2135 if (!buffer_mapped(bh)) {
c64610ba
AM
2136 int err = 0;
2137
1da177e4
LT
2138 fully_mapped = 0;
2139 if (iblock < lblock) {
b0cf2321 2140 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2141 err = get_block(inode, iblock, bh, 0);
2142 if (err)
1da177e4
LT
2143 SetPageError(page);
2144 }
2145 if (!buffer_mapped(bh)) {
eebd2aa3 2146 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2147 if (!err)
2148 set_buffer_uptodate(bh);
1da177e4
LT
2149 continue;
2150 }
2151 /*
2152 * get_block() might have updated the buffer
2153 * synchronously
2154 */
2155 if (buffer_uptodate(bh))
2156 continue;
2157 }
2158 arr[nr++] = bh;
2159 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2160
2161 if (fully_mapped)
2162 SetPageMappedToDisk(page);
2163
2164 if (!nr) {
2165 /*
2166 * All buffers are uptodate - we can set the page uptodate
2167 * as well. But not if get_block() returned an error.
2168 */
2169 if (!PageError(page))
2170 SetPageUptodate(page);
2171 unlock_page(page);
2172 return 0;
2173 }
2174
2175 /* Stage two: lock the buffers */
2176 for (i = 0; i < nr; i++) {
2177 bh = arr[i];
2178 lock_buffer(bh);
2179 mark_buffer_async_read(bh);
2180 }
2181
2182 /*
2183 * Stage 3: start the IO. Check for uptodateness
2184 * inside the buffer lock in case another process reading
2185 * the underlying blockdev brought it uptodate (the sct fix).
2186 */
2187 for (i = 0; i < nr; i++) {
2188 bh = arr[i];
2189 if (buffer_uptodate(bh))
2190 end_buffer_async_read(bh, 1);
2191 else
2192 submit_bh(READ, bh);
2193 }
2194 return 0;
2195}
1fe72eaa 2196EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2197
2198/* utility function for filesystems that need to do work on expanding
89e10787 2199 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2200 * deal with the hole.
2201 */
89e10787 2202int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2203{
2204 struct address_space *mapping = inode->i_mapping;
2205 struct page *page;
89e10787 2206 void *fsdata;
1da177e4
LT
2207 int err;
2208
c08d3b0e 2209 err = inode_newsize_ok(inode, size);
2210 if (err)
1da177e4
LT
2211 goto out;
2212
89e10787
NP
2213 err = pagecache_write_begin(NULL, mapping, size, 0,
2214 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2215 &page, &fsdata);
2216 if (err)
05eb0b51 2217 goto out;
05eb0b51 2218
89e10787
NP
2219 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2220 BUG_ON(err > 0);
05eb0b51 2221
1da177e4
LT
2222out:
2223 return err;
2224}
1fe72eaa 2225EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2226
f1e3af72
AB
2227static int cont_expand_zero(struct file *file, struct address_space *mapping,
2228 loff_t pos, loff_t *bytes)
1da177e4 2229{
1da177e4 2230 struct inode *inode = mapping->host;
1da177e4 2231 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2232 struct page *page;
2233 void *fsdata;
2234 pgoff_t index, curidx;
2235 loff_t curpos;
2236 unsigned zerofrom, offset, len;
2237 int err = 0;
1da177e4 2238
89e10787
NP
2239 index = pos >> PAGE_CACHE_SHIFT;
2240 offset = pos & ~PAGE_CACHE_MASK;
2241
2242 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2243 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2244 if (zerofrom & (blocksize-1)) {
2245 *bytes |= (blocksize-1);
2246 (*bytes)++;
2247 }
89e10787 2248 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2249
89e10787
NP
2250 err = pagecache_write_begin(file, mapping, curpos, len,
2251 AOP_FLAG_UNINTERRUPTIBLE,
2252 &page, &fsdata);
2253 if (err)
2254 goto out;
eebd2aa3 2255 zero_user(page, zerofrom, len);
89e10787
NP
2256 err = pagecache_write_end(file, mapping, curpos, len, len,
2257 page, fsdata);
2258 if (err < 0)
2259 goto out;
2260 BUG_ON(err != len);
2261 err = 0;
061e9746
OH
2262
2263 balance_dirty_pages_ratelimited(mapping);
89e10787 2264 }
1da177e4 2265
89e10787
NP
2266 /* page covers the boundary, find the boundary offset */
2267 if (index == curidx) {
2268 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2269 /* if we will expand the thing last block will be filled */
89e10787
NP
2270 if (offset <= zerofrom) {
2271 goto out;
2272 }
2273 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2274 *bytes |= (blocksize-1);
2275 (*bytes)++;
2276 }
89e10787 2277 len = offset - zerofrom;
1da177e4 2278
89e10787
NP
2279 err = pagecache_write_begin(file, mapping, curpos, len,
2280 AOP_FLAG_UNINTERRUPTIBLE,
2281 &page, &fsdata);
2282 if (err)
2283 goto out;
eebd2aa3 2284 zero_user(page, zerofrom, len);
89e10787
NP
2285 err = pagecache_write_end(file, mapping, curpos, len, len,
2286 page, fsdata);
2287 if (err < 0)
2288 goto out;
2289 BUG_ON(err != len);
2290 err = 0;
1da177e4 2291 }
89e10787
NP
2292out:
2293 return err;
2294}
2295
2296/*
2297 * For moronic filesystems that do not allow holes in file.
2298 * We may have to extend the file.
2299 */
282dc178 2300int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2301 loff_t pos, unsigned len, unsigned flags,
2302 struct page **pagep, void **fsdata,
2303 get_block_t *get_block, loff_t *bytes)
2304{
2305 struct inode *inode = mapping->host;
2306 unsigned blocksize = 1 << inode->i_blkbits;
2307 unsigned zerofrom;
2308 int err;
2309
2310 err = cont_expand_zero(file, mapping, pos, bytes);
2311 if (err)
155130a4 2312 return err;
89e10787
NP
2313
2314 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2315 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2316 *bytes |= (blocksize-1);
2317 (*bytes)++;
1da177e4 2318 }
1da177e4 2319
155130a4 2320 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2321}
1fe72eaa 2322EXPORT_SYMBOL(cont_write_begin);
1da177e4 2323
1da177e4
LT
2324int block_commit_write(struct page *page, unsigned from, unsigned to)
2325{
2326 struct inode *inode = page->mapping->host;
2327 __block_commit_write(inode,page,from,to);
2328 return 0;
2329}
1fe72eaa 2330EXPORT_SYMBOL(block_commit_write);
1da177e4 2331
54171690
DC
2332/*
2333 * block_page_mkwrite() is not allowed to change the file size as it gets
2334 * called from a page fault handler when a page is first dirtied. Hence we must
2335 * be careful to check for EOF conditions here. We set the page up correctly
2336 * for a written page which means we get ENOSPC checking when writing into
2337 * holes and correct delalloc and unwritten extent mapping on filesystems that
2338 * support these features.
2339 *
2340 * We are not allowed to take the i_mutex here so we have to play games to
2341 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2342 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2343 * page lock we can determine safely if the page is beyond EOF. If it is not
2344 * beyond EOF, then the page is guaranteed safe against truncation until we
2345 * unlock the page.
2346 */
2347int
c2ec175c 2348block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
54171690
DC
2349 get_block_t get_block)
2350{
c2ec175c 2351 struct page *page = vmf->page;
54171690
DC
2352 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2353 unsigned long end;
2354 loff_t size;
56a76f82 2355 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
54171690
DC
2356
2357 lock_page(page);
2358 size = i_size_read(inode);
2359 if ((page->mapping != inode->i_mapping) ||
18336338 2360 (page_offset(page) > size)) {
54171690 2361 /* page got truncated out from underneath us */
b827e496
NP
2362 unlock_page(page);
2363 goto out;
54171690
DC
2364 }
2365
2366 /* page is wholly or partially inside EOF */
2367 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2368 end = size & ~PAGE_CACHE_MASK;
2369 else
2370 end = PAGE_CACHE_SIZE;
2371
ebdec241 2372 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2373 if (!ret)
2374 ret = block_commit_write(page, 0, end);
2375
56a76f82 2376 if (unlikely(ret)) {
b827e496 2377 unlock_page(page);
56a76f82
NP
2378 if (ret == -ENOMEM)
2379 ret = VM_FAULT_OOM;
2380 else /* -ENOSPC, -EIO, etc */
2381 ret = VM_FAULT_SIGBUS;
b827e496
NP
2382 } else
2383 ret = VM_FAULT_LOCKED;
c2ec175c 2384
b827e496 2385out:
54171690
DC
2386 return ret;
2387}
1fe72eaa 2388EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2389
2390/*
03158cd7 2391 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2392 * immediately, while under the page lock. So it needs a special end_io
2393 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2394 */
2395static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2396{
68671f35 2397 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2398}
2399
03158cd7
NP
2400/*
2401 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2402 * the page (converting it to circular linked list and taking care of page
2403 * dirty races).
2404 */
2405static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2406{
2407 struct buffer_head *bh;
2408
2409 BUG_ON(!PageLocked(page));
2410
2411 spin_lock(&page->mapping->private_lock);
2412 bh = head;
2413 do {
2414 if (PageDirty(page))
2415 set_buffer_dirty(bh);
2416 if (!bh->b_this_page)
2417 bh->b_this_page = head;
2418 bh = bh->b_this_page;
2419 } while (bh != head);
2420 attach_page_buffers(page, head);
2421 spin_unlock(&page->mapping->private_lock);
2422}
2423
1da177e4 2424/*
ea0f04e5
CH
2425 * On entry, the page is fully not uptodate.
2426 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2427 * The filesystem needs to handle block truncation upon failure.
1da177e4 2428 */
ea0f04e5 2429int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2430 loff_t pos, unsigned len, unsigned flags,
2431 struct page **pagep, void **fsdata,
1da177e4
LT
2432 get_block_t *get_block)
2433{
03158cd7 2434 struct inode *inode = mapping->host;
1da177e4
LT
2435 const unsigned blkbits = inode->i_blkbits;
2436 const unsigned blocksize = 1 << blkbits;
a4b0672d 2437 struct buffer_head *head, *bh;
03158cd7
NP
2438 struct page *page;
2439 pgoff_t index;
2440 unsigned from, to;
1da177e4 2441 unsigned block_in_page;
a4b0672d 2442 unsigned block_start, block_end;
1da177e4 2443 sector_t block_in_file;
1da177e4 2444 int nr_reads = 0;
1da177e4
LT
2445 int ret = 0;
2446 int is_mapped_to_disk = 1;
1da177e4 2447
03158cd7
NP
2448 index = pos >> PAGE_CACHE_SHIFT;
2449 from = pos & (PAGE_CACHE_SIZE - 1);
2450 to = from + len;
2451
54566b2c 2452 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2453 if (!page)
2454 return -ENOMEM;
2455 *pagep = page;
2456 *fsdata = NULL;
2457
2458 if (page_has_buffers(page)) {
309f77ad
NK
2459 ret = __block_write_begin(page, pos, len, get_block);
2460 if (unlikely(ret))
2461 goto out_release;
2462 return ret;
03158cd7 2463 }
a4b0672d 2464
1da177e4
LT
2465 if (PageMappedToDisk(page))
2466 return 0;
2467
a4b0672d
NP
2468 /*
2469 * Allocate buffers so that we can keep track of state, and potentially
2470 * attach them to the page if an error occurs. In the common case of
2471 * no error, they will just be freed again without ever being attached
2472 * to the page (which is all OK, because we're under the page lock).
2473 *
2474 * Be careful: the buffer linked list is a NULL terminated one, rather
2475 * than the circular one we're used to.
2476 */
2477 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2478 if (!head) {
2479 ret = -ENOMEM;
2480 goto out_release;
2481 }
a4b0672d 2482
1da177e4 2483 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2484
2485 /*
2486 * We loop across all blocks in the page, whether or not they are
2487 * part of the affected region. This is so we can discover if the
2488 * page is fully mapped-to-disk.
2489 */
a4b0672d 2490 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2491 block_start < PAGE_CACHE_SIZE;
a4b0672d 2492 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2493 int create;
2494
a4b0672d
NP
2495 block_end = block_start + blocksize;
2496 bh->b_state = 0;
1da177e4
LT
2497 create = 1;
2498 if (block_start >= to)
2499 create = 0;
2500 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2501 bh, create);
1da177e4
LT
2502 if (ret)
2503 goto failed;
a4b0672d 2504 if (!buffer_mapped(bh))
1da177e4 2505 is_mapped_to_disk = 0;
a4b0672d
NP
2506 if (buffer_new(bh))
2507 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2508 if (PageUptodate(page)) {
2509 set_buffer_uptodate(bh);
1da177e4 2510 continue;
a4b0672d
NP
2511 }
2512 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2513 zero_user_segments(page, block_start, from,
2514 to, block_end);
1da177e4
LT
2515 continue;
2516 }
a4b0672d 2517 if (buffer_uptodate(bh))
1da177e4
LT
2518 continue; /* reiserfs does this */
2519 if (block_start < from || block_end > to) {
a4b0672d
NP
2520 lock_buffer(bh);
2521 bh->b_end_io = end_buffer_read_nobh;
2522 submit_bh(READ, bh);
2523 nr_reads++;
1da177e4
LT
2524 }
2525 }
2526
2527 if (nr_reads) {
1da177e4
LT
2528 /*
2529 * The page is locked, so these buffers are protected from
2530 * any VM or truncate activity. Hence we don't need to care
2531 * for the buffer_head refcounts.
2532 */
a4b0672d 2533 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2534 wait_on_buffer(bh);
2535 if (!buffer_uptodate(bh))
2536 ret = -EIO;
1da177e4
LT
2537 }
2538 if (ret)
2539 goto failed;
2540 }
2541
2542 if (is_mapped_to_disk)
2543 SetPageMappedToDisk(page);
1da177e4 2544
03158cd7 2545 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2546
1da177e4
LT
2547 return 0;
2548
2549failed:
03158cd7 2550 BUG_ON(!ret);
1da177e4 2551 /*
a4b0672d
NP
2552 * Error recovery is a bit difficult. We need to zero out blocks that
2553 * were newly allocated, and dirty them to ensure they get written out.
2554 * Buffers need to be attached to the page at this point, otherwise
2555 * the handling of potential IO errors during writeout would be hard
2556 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2557 */
03158cd7
NP
2558 attach_nobh_buffers(page, head);
2559 page_zero_new_buffers(page, from, to);
a4b0672d 2560
03158cd7
NP
2561out_release:
2562 unlock_page(page);
2563 page_cache_release(page);
2564 *pagep = NULL;
a4b0672d 2565
7bb46a67 2566 return ret;
2567}
03158cd7 2568EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2569
03158cd7
NP
2570int nobh_write_end(struct file *file, struct address_space *mapping,
2571 loff_t pos, unsigned len, unsigned copied,
2572 struct page *page, void *fsdata)
1da177e4
LT
2573{
2574 struct inode *inode = page->mapping->host;
efdc3131 2575 struct buffer_head *head = fsdata;
03158cd7 2576 struct buffer_head *bh;
5b41e74a 2577 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2578
d4cf109f 2579 if (unlikely(copied < len) && head)
5b41e74a
DM
2580 attach_nobh_buffers(page, head);
2581 if (page_has_buffers(page))
2582 return generic_write_end(file, mapping, pos, len,
2583 copied, page, fsdata);
a4b0672d 2584
22c8ca78 2585 SetPageUptodate(page);
1da177e4 2586 set_page_dirty(page);
03158cd7
NP
2587 if (pos+copied > inode->i_size) {
2588 i_size_write(inode, pos+copied);
1da177e4
LT
2589 mark_inode_dirty(inode);
2590 }
03158cd7
NP
2591
2592 unlock_page(page);
2593 page_cache_release(page);
2594
03158cd7
NP
2595 while (head) {
2596 bh = head;
2597 head = head->b_this_page;
2598 free_buffer_head(bh);
2599 }
2600
2601 return copied;
1da177e4 2602}
03158cd7 2603EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2604
2605/*
2606 * nobh_writepage() - based on block_full_write_page() except
2607 * that it tries to operate without attaching bufferheads to
2608 * the page.
2609 */
2610int nobh_writepage(struct page *page, get_block_t *get_block,
2611 struct writeback_control *wbc)
2612{
2613 struct inode * const inode = page->mapping->host;
2614 loff_t i_size = i_size_read(inode);
2615 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2616 unsigned offset;
1da177e4
LT
2617 int ret;
2618
2619 /* Is the page fully inside i_size? */
2620 if (page->index < end_index)
2621 goto out;
2622
2623 /* Is the page fully outside i_size? (truncate in progress) */
2624 offset = i_size & (PAGE_CACHE_SIZE-1);
2625 if (page->index >= end_index+1 || !offset) {
2626 /*
2627 * The page may have dirty, unmapped buffers. For example,
2628 * they may have been added in ext3_writepage(). Make them
2629 * freeable here, so the page does not leak.
2630 */
2631#if 0
2632 /* Not really sure about this - do we need this ? */
2633 if (page->mapping->a_ops->invalidatepage)
2634 page->mapping->a_ops->invalidatepage(page, offset);
2635#endif
2636 unlock_page(page);
2637 return 0; /* don't care */
2638 }
2639
2640 /*
2641 * The page straddles i_size. It must be zeroed out on each and every
2642 * writepage invocation because it may be mmapped. "A file is mapped
2643 * in multiples of the page size. For a file that is not a multiple of
2644 * the page size, the remaining memory is zeroed when mapped, and
2645 * writes to that region are not written out to the file."
2646 */
eebd2aa3 2647 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2648out:
2649 ret = mpage_writepage(page, get_block, wbc);
2650 if (ret == -EAGAIN)
35c80d5f
CM
2651 ret = __block_write_full_page(inode, page, get_block, wbc,
2652 end_buffer_async_write);
1da177e4
LT
2653 return ret;
2654}
2655EXPORT_SYMBOL(nobh_writepage);
2656
03158cd7
NP
2657int nobh_truncate_page(struct address_space *mapping,
2658 loff_t from, get_block_t *get_block)
1da177e4 2659{
1da177e4
LT
2660 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2661 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2662 unsigned blocksize;
2663 sector_t iblock;
2664 unsigned length, pos;
2665 struct inode *inode = mapping->host;
1da177e4 2666 struct page *page;
03158cd7
NP
2667 struct buffer_head map_bh;
2668 int err;
1da177e4 2669
03158cd7
NP
2670 blocksize = 1 << inode->i_blkbits;
2671 length = offset & (blocksize - 1);
2672
2673 /* Block boundary? Nothing to do */
2674 if (!length)
2675 return 0;
2676
2677 length = blocksize - length;
2678 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2679
1da177e4 2680 page = grab_cache_page(mapping, index);
03158cd7 2681 err = -ENOMEM;
1da177e4
LT
2682 if (!page)
2683 goto out;
2684
03158cd7
NP
2685 if (page_has_buffers(page)) {
2686has_buffers:
2687 unlock_page(page);
2688 page_cache_release(page);
2689 return block_truncate_page(mapping, from, get_block);
2690 }
2691
2692 /* Find the buffer that contains "offset" */
2693 pos = blocksize;
2694 while (offset >= pos) {
2695 iblock++;
2696 pos += blocksize;
2697 }
2698
460bcf57
TT
2699 map_bh.b_size = blocksize;
2700 map_bh.b_state = 0;
03158cd7
NP
2701 err = get_block(inode, iblock, &map_bh, 0);
2702 if (err)
2703 goto unlock;
2704 /* unmapped? It's a hole - nothing to do */
2705 if (!buffer_mapped(&map_bh))
2706 goto unlock;
2707
2708 /* Ok, it's mapped. Make sure it's up-to-date */
2709 if (!PageUptodate(page)) {
2710 err = mapping->a_ops->readpage(NULL, page);
2711 if (err) {
2712 page_cache_release(page);
2713 goto out;
2714 }
2715 lock_page(page);
2716 if (!PageUptodate(page)) {
2717 err = -EIO;
2718 goto unlock;
2719 }
2720 if (page_has_buffers(page))
2721 goto has_buffers;
1da177e4 2722 }
eebd2aa3 2723 zero_user(page, offset, length);
03158cd7
NP
2724 set_page_dirty(page);
2725 err = 0;
2726
2727unlock:
1da177e4
LT
2728 unlock_page(page);
2729 page_cache_release(page);
2730out:
03158cd7 2731 return err;
1da177e4
LT
2732}
2733EXPORT_SYMBOL(nobh_truncate_page);
2734
2735int block_truncate_page(struct address_space *mapping,
2736 loff_t from, get_block_t *get_block)
2737{
2738 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2739 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2740 unsigned blocksize;
54b21a79 2741 sector_t iblock;
1da177e4
LT
2742 unsigned length, pos;
2743 struct inode *inode = mapping->host;
2744 struct page *page;
2745 struct buffer_head *bh;
1da177e4
LT
2746 int err;
2747
2748 blocksize = 1 << inode->i_blkbits;
2749 length = offset & (blocksize - 1);
2750
2751 /* Block boundary? Nothing to do */
2752 if (!length)
2753 return 0;
2754
2755 length = blocksize - length;
54b21a79 2756 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2757
2758 page = grab_cache_page(mapping, index);
2759 err = -ENOMEM;
2760 if (!page)
2761 goto out;
2762
2763 if (!page_has_buffers(page))
2764 create_empty_buffers(page, blocksize, 0);
2765
2766 /* Find the buffer that contains "offset" */
2767 bh = page_buffers(page);
2768 pos = blocksize;
2769 while (offset >= pos) {
2770 bh = bh->b_this_page;
2771 iblock++;
2772 pos += blocksize;
2773 }
2774
2775 err = 0;
2776 if (!buffer_mapped(bh)) {
b0cf2321 2777 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2778 err = get_block(inode, iblock, bh, 0);
2779 if (err)
2780 goto unlock;
2781 /* unmapped? It's a hole - nothing to do */
2782 if (!buffer_mapped(bh))
2783 goto unlock;
2784 }
2785
2786 /* Ok, it's mapped. Make sure it's up-to-date */
2787 if (PageUptodate(page))
2788 set_buffer_uptodate(bh);
2789
33a266dd 2790 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2791 err = -EIO;
2792 ll_rw_block(READ, 1, &bh);
2793 wait_on_buffer(bh);
2794 /* Uhhuh. Read error. Complain and punt. */
2795 if (!buffer_uptodate(bh))
2796 goto unlock;
2797 }
2798
eebd2aa3 2799 zero_user(page, offset, length);
1da177e4
LT
2800 mark_buffer_dirty(bh);
2801 err = 0;
2802
2803unlock:
2804 unlock_page(page);
2805 page_cache_release(page);
2806out:
2807 return err;
2808}
1fe72eaa 2809EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2810
2811/*
2812 * The generic ->writepage function for buffer-backed address_spaces
35c80d5f 2813 * this form passes in the end_io handler used to finish the IO.
1da177e4 2814 */
35c80d5f
CM
2815int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2816 struct writeback_control *wbc, bh_end_io_t *handler)
1da177e4
LT
2817{
2818 struct inode * const inode = page->mapping->host;
2819 loff_t i_size = i_size_read(inode);
2820 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2821 unsigned offset;
1da177e4
LT
2822
2823 /* Is the page fully inside i_size? */
2824 if (page->index < end_index)
35c80d5f
CM
2825 return __block_write_full_page(inode, page, get_block, wbc,
2826 handler);
1da177e4
LT
2827
2828 /* Is the page fully outside i_size? (truncate in progress) */
2829 offset = i_size & (PAGE_CACHE_SIZE-1);
2830 if (page->index >= end_index+1 || !offset) {
2831 /*
2832 * The page may have dirty, unmapped buffers. For example,
2833 * they may have been added in ext3_writepage(). Make them
2834 * freeable here, so the page does not leak.
2835 */
aaa4059b 2836 do_invalidatepage(page, 0);
1da177e4
LT
2837 unlock_page(page);
2838 return 0; /* don't care */
2839 }
2840
2841 /*
2842 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2843 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2844 * in multiples of the page size. For a file that is not a multiple of
2845 * the page size, the remaining memory is zeroed when mapped, and
2846 * writes to that region are not written out to the file."
2847 */
eebd2aa3 2848 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
35c80d5f 2849 return __block_write_full_page(inode, page, get_block, wbc, handler);
1da177e4 2850}
1fe72eaa 2851EXPORT_SYMBOL(block_write_full_page_endio);
1da177e4 2852
35c80d5f
CM
2853/*
2854 * The generic ->writepage function for buffer-backed address_spaces
2855 */
2856int block_write_full_page(struct page *page, get_block_t *get_block,
2857 struct writeback_control *wbc)
2858{
2859 return block_write_full_page_endio(page, get_block, wbc,
2860 end_buffer_async_write);
2861}
1fe72eaa 2862EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2863
1da177e4
LT
2864sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2865 get_block_t *get_block)
2866{
2867 struct buffer_head tmp;
2868 struct inode *inode = mapping->host;
2869 tmp.b_state = 0;
2870 tmp.b_blocknr = 0;
b0cf2321 2871 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2872 get_block(inode, block, &tmp, 0);
2873 return tmp.b_blocknr;
2874}
1fe72eaa 2875EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2876
6712ecf8 2877static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2878{
2879 struct buffer_head *bh = bio->bi_private;
2880
1da177e4
LT
2881 if (err == -EOPNOTSUPP) {
2882 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
1da177e4
LT
2883 }
2884
08bafc03
KM
2885 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2886 set_bit(BH_Quiet, &bh->b_state);
2887
1da177e4
LT
2888 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2889 bio_put(bio);
1da177e4
LT
2890}
2891
2892int submit_bh(int rw, struct buffer_head * bh)
2893{
2894 struct bio *bio;
2895 int ret = 0;
2896
2897 BUG_ON(!buffer_locked(bh));
2898 BUG_ON(!buffer_mapped(bh));
2899 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2900 BUG_ON(buffer_delay(bh));
2901 BUG_ON(buffer_unwritten(bh));
1da177e4 2902
1da177e4 2903 /*
48fd4f93 2904 * Only clear out a write error when rewriting
1da177e4 2905 */
48fd4f93 2906 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
2907 clear_buffer_write_io_error(bh);
2908
2909 /*
2910 * from here on down, it's all bio -- do the initial mapping,
2911 * submit_bio -> generic_make_request may further map this bio around
2912 */
2913 bio = bio_alloc(GFP_NOIO, 1);
2914
2915 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2916 bio->bi_bdev = bh->b_bdev;
2917 bio->bi_io_vec[0].bv_page = bh->b_page;
2918 bio->bi_io_vec[0].bv_len = bh->b_size;
2919 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2920
2921 bio->bi_vcnt = 1;
2922 bio->bi_idx = 0;
2923 bio->bi_size = bh->b_size;
2924
2925 bio->bi_end_io = end_bio_bh_io_sync;
2926 bio->bi_private = bh;
2927
2928 bio_get(bio);
2929 submit_bio(rw, bio);
2930
2931 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2932 ret = -EOPNOTSUPP;
2933
2934 bio_put(bio);
2935 return ret;
2936}
1fe72eaa 2937EXPORT_SYMBOL(submit_bh);
1da177e4
LT
2938
2939/**
2940 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 2941 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
2942 * @nr: number of &struct buffer_heads in the array
2943 * @bhs: array of pointers to &struct buffer_head
2944 *
a7662236
JK
2945 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2946 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
2947 * %READA option is described in the documentation for generic_make_request()
2948 * which ll_rw_block() calls.
1da177e4
LT
2949 *
2950 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
2951 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2952 * request, and any buffer that appears to be up-to-date when doing read
2953 * request. Further it marks as clean buffers that are processed for
2954 * writing (the buffer cache won't assume that they are actually clean
2955 * until the buffer gets unlocked).
1da177e4
LT
2956 *
2957 * ll_rw_block sets b_end_io to simple completion handler that marks
2958 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2959 * any waiters.
2960 *
2961 * All of the buffers must be for the same device, and must also be a
2962 * multiple of the current approved size for the device.
2963 */
2964void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2965{
2966 int i;
2967
2968 for (i = 0; i < nr; i++) {
2969 struct buffer_head *bh = bhs[i];
2970
9cb569d6 2971 if (!trylock_buffer(bh))
1da177e4 2972 continue;
9cb569d6 2973 if (rw == WRITE) {
1da177e4 2974 if (test_clear_buffer_dirty(bh)) {
76c3073a 2975 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2976 get_bh(bh);
9cb569d6 2977 submit_bh(WRITE, bh);
1da177e4
LT
2978 continue;
2979 }
2980 } else {
1da177e4 2981 if (!buffer_uptodate(bh)) {
76c3073a 2982 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2983 get_bh(bh);
1da177e4
LT
2984 submit_bh(rw, bh);
2985 continue;
2986 }
2987 }
2988 unlock_buffer(bh);
1da177e4
LT
2989 }
2990}
1fe72eaa 2991EXPORT_SYMBOL(ll_rw_block);
1da177e4 2992
9cb569d6
CH
2993void write_dirty_buffer(struct buffer_head *bh, int rw)
2994{
2995 lock_buffer(bh);
2996 if (!test_clear_buffer_dirty(bh)) {
2997 unlock_buffer(bh);
2998 return;
2999 }
3000 bh->b_end_io = end_buffer_write_sync;
3001 get_bh(bh);
3002 submit_bh(rw, bh);
3003}
3004EXPORT_SYMBOL(write_dirty_buffer);
3005
1da177e4
LT
3006/*
3007 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3008 * and then start new I/O and then wait upon it. The caller must have a ref on
3009 * the buffer_head.
3010 */
87e99511 3011int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3012{
3013 int ret = 0;
3014
3015 WARN_ON(atomic_read(&bh->b_count) < 1);
3016 lock_buffer(bh);
3017 if (test_clear_buffer_dirty(bh)) {
3018 get_bh(bh);
3019 bh->b_end_io = end_buffer_write_sync;
87e99511 3020 ret = submit_bh(rw, bh);
1da177e4 3021 wait_on_buffer(bh);
1da177e4
LT
3022 if (!ret && !buffer_uptodate(bh))
3023 ret = -EIO;
3024 } else {
3025 unlock_buffer(bh);
3026 }
3027 return ret;
3028}
87e99511
CH
3029EXPORT_SYMBOL(__sync_dirty_buffer);
3030
3031int sync_dirty_buffer(struct buffer_head *bh)
3032{
3033 return __sync_dirty_buffer(bh, WRITE_SYNC);
3034}
1fe72eaa 3035EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3036
3037/*
3038 * try_to_free_buffers() checks if all the buffers on this particular page
3039 * are unused, and releases them if so.
3040 *
3041 * Exclusion against try_to_free_buffers may be obtained by either
3042 * locking the page or by holding its mapping's private_lock.
3043 *
3044 * If the page is dirty but all the buffers are clean then we need to
3045 * be sure to mark the page clean as well. This is because the page
3046 * may be against a block device, and a later reattachment of buffers
3047 * to a dirty page will set *all* buffers dirty. Which would corrupt
3048 * filesystem data on the same device.
3049 *
3050 * The same applies to regular filesystem pages: if all the buffers are
3051 * clean then we set the page clean and proceed. To do that, we require
3052 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3053 * private_lock.
3054 *
3055 * try_to_free_buffers() is non-blocking.
3056 */
3057static inline int buffer_busy(struct buffer_head *bh)
3058{
3059 return atomic_read(&bh->b_count) |
3060 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3061}
3062
3063static int
3064drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3065{
3066 struct buffer_head *head = page_buffers(page);
3067 struct buffer_head *bh;
3068
3069 bh = head;
3070 do {
de7d5a3b 3071 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3072 set_bit(AS_EIO, &page->mapping->flags);
3073 if (buffer_busy(bh))
3074 goto failed;
3075 bh = bh->b_this_page;
3076 } while (bh != head);
3077
3078 do {
3079 struct buffer_head *next = bh->b_this_page;
3080
535ee2fb 3081 if (bh->b_assoc_map)
1da177e4
LT
3082 __remove_assoc_queue(bh);
3083 bh = next;
3084 } while (bh != head);
3085 *buffers_to_free = head;
3086 __clear_page_buffers(page);
3087 return 1;
3088failed:
3089 return 0;
3090}
3091
3092int try_to_free_buffers(struct page *page)
3093{
3094 struct address_space * const mapping = page->mapping;
3095 struct buffer_head *buffers_to_free = NULL;
3096 int ret = 0;
3097
3098 BUG_ON(!PageLocked(page));
ecdfc978 3099 if (PageWriteback(page))
1da177e4
LT
3100 return 0;
3101
3102 if (mapping == NULL) { /* can this still happen? */
3103 ret = drop_buffers(page, &buffers_to_free);
3104 goto out;
3105 }
3106
3107 spin_lock(&mapping->private_lock);
3108 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3109
3110 /*
3111 * If the filesystem writes its buffers by hand (eg ext3)
3112 * then we can have clean buffers against a dirty page. We
3113 * clean the page here; otherwise the VM will never notice
3114 * that the filesystem did any IO at all.
3115 *
3116 * Also, during truncate, discard_buffer will have marked all
3117 * the page's buffers clean. We discover that here and clean
3118 * the page also.
87df7241
NP
3119 *
3120 * private_lock must be held over this entire operation in order
3121 * to synchronise against __set_page_dirty_buffers and prevent the
3122 * dirty bit from being lost.
ecdfc978
LT
3123 */
3124 if (ret)
3125 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3126 spin_unlock(&mapping->private_lock);
1da177e4
LT
3127out:
3128 if (buffers_to_free) {
3129 struct buffer_head *bh = buffers_to_free;
3130
3131 do {
3132 struct buffer_head *next = bh->b_this_page;
3133 free_buffer_head(bh);
3134 bh = next;
3135 } while (bh != buffers_to_free);
3136 }
3137 return ret;
3138}
3139EXPORT_SYMBOL(try_to_free_buffers);
3140
3978d717 3141void block_sync_page(struct page *page)
1da177e4
LT
3142{
3143 struct address_space *mapping;
3144
3145 smp_mb();
3146 mapping = page_mapping(page);
3147 if (mapping)
3148 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4 3149}
1fe72eaa 3150EXPORT_SYMBOL(block_sync_page);
1da177e4
LT
3151
3152/*
3153 * There are no bdflush tunables left. But distributions are
3154 * still running obsolete flush daemons, so we terminate them here.
3155 *
3156 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3157 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3158 */
bdc480e3 3159SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3160{
3161 static int msg_count;
3162
3163 if (!capable(CAP_SYS_ADMIN))
3164 return -EPERM;
3165
3166 if (msg_count < 5) {
3167 msg_count++;
3168 printk(KERN_INFO
3169 "warning: process `%s' used the obsolete bdflush"
3170 " system call\n", current->comm);
3171 printk(KERN_INFO "Fix your initscripts?\n");
3172 }
3173
3174 if (func == 1)
3175 do_exit(0);
3176 return 0;
3177}
3178
3179/*
3180 * Buffer-head allocation
3181 */
e18b890b 3182static struct kmem_cache *bh_cachep;
1da177e4
LT
3183
3184/*
3185 * Once the number of bh's in the machine exceeds this level, we start
3186 * stripping them in writeback.
3187 */
3188static int max_buffer_heads;
3189
3190int buffer_heads_over_limit;
3191
3192struct bh_accounting {
3193 int nr; /* Number of live bh's */
3194 int ratelimit; /* Limit cacheline bouncing */
3195};
3196
3197static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3198
3199static void recalc_bh_state(void)
3200{
3201 int i;
3202 int tot = 0;
3203
3204 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3205 return;
c7b92516 3206 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3207 for_each_online_cpu(i)
1da177e4
LT
3208 tot += per_cpu(bh_accounting, i).nr;
3209 buffer_heads_over_limit = (tot > max_buffer_heads);
3210}
c7b92516 3211
dd0fc66f 3212struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3213{
019b4d12 3214 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3215 if (ret) {
a35afb83 3216 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3217 preempt_disable();
3218 __this_cpu_inc(bh_accounting.nr);
1da177e4 3219 recalc_bh_state();
c7b92516 3220 preempt_enable();
1da177e4
LT
3221 }
3222 return ret;
3223}
3224EXPORT_SYMBOL(alloc_buffer_head);
3225
3226void free_buffer_head(struct buffer_head *bh)
3227{
3228 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3229 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3230 preempt_disable();
3231 __this_cpu_dec(bh_accounting.nr);
1da177e4 3232 recalc_bh_state();
c7b92516 3233 preempt_enable();
1da177e4
LT
3234}
3235EXPORT_SYMBOL(free_buffer_head);
3236
1da177e4
LT
3237static void buffer_exit_cpu(int cpu)
3238{
3239 int i;
3240 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3241
3242 for (i = 0; i < BH_LRU_SIZE; i++) {
3243 brelse(b->bhs[i]);
3244 b->bhs[i] = NULL;
3245 }
c7b92516 3246 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3247 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3248}
3249
3250static int buffer_cpu_notify(struct notifier_block *self,
3251 unsigned long action, void *hcpu)
3252{
8bb78442 3253 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3254 buffer_exit_cpu((unsigned long)hcpu);
3255 return NOTIFY_OK;
3256}
1da177e4 3257
389d1b08 3258/**
a6b91919 3259 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3260 * @bh: struct buffer_head
3261 *
3262 * Return true if the buffer is up-to-date and false,
3263 * with the buffer locked, if not.
3264 */
3265int bh_uptodate_or_lock(struct buffer_head *bh)
3266{
3267 if (!buffer_uptodate(bh)) {
3268 lock_buffer(bh);
3269 if (!buffer_uptodate(bh))
3270 return 0;
3271 unlock_buffer(bh);
3272 }
3273 return 1;
3274}
3275EXPORT_SYMBOL(bh_uptodate_or_lock);
3276
3277/**
a6b91919 3278 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3279 * @bh: struct buffer_head
3280 *
3281 * Returns zero on success and -EIO on error.
3282 */
3283int bh_submit_read(struct buffer_head *bh)
3284{
3285 BUG_ON(!buffer_locked(bh));
3286
3287 if (buffer_uptodate(bh)) {
3288 unlock_buffer(bh);
3289 return 0;
3290 }
3291
3292 get_bh(bh);
3293 bh->b_end_io = end_buffer_read_sync;
3294 submit_bh(READ, bh);
3295 wait_on_buffer(bh);
3296 if (buffer_uptodate(bh))
3297 return 0;
3298 return -EIO;
3299}
3300EXPORT_SYMBOL(bh_submit_read);
3301
1da177e4
LT
3302void __init buffer_init(void)
3303{
3304 int nrpages;
3305
b98938c3
CL
3306 bh_cachep = kmem_cache_create("buffer_head",
3307 sizeof(struct buffer_head), 0,
3308 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3309 SLAB_MEM_SPREAD),
019b4d12 3310 NULL);
1da177e4
LT
3311
3312 /*
3313 * Limit the bh occupancy to 10% of ZONE_NORMAL
3314 */
3315 nrpages = (nr_free_buffer_pages() * 10) / 100;
3316 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3317 hotcpu_notifier(buffer_cpu_notify, 0);
3318}