]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/buffer.c
ext4: fold ext4_nojournal_sops into ext4_sops
[mirror_ubuntu-bionic-kernel.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
630d9c47 32#include <linux/export.h>
1da177e4
LT
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
5305cb83 44#include <trace/events/block.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
47
48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
49
a3f3c29c 50void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
1da177e4
LT
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4 56
f0059afd
TH
57inline void touch_buffer(struct buffer_head *bh)
58{
5305cb83 59 trace_block_touch_buffer(bh);
f0059afd
TH
60 mark_page_accessed(bh->b_page);
61}
62EXPORT_SYMBOL(touch_buffer);
63
fc9b52cd 64void __lock_buffer(struct buffer_head *bh)
1da177e4 65{
74316201 66 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4
LT
67}
68EXPORT_SYMBOL(__lock_buffer);
69
fc9b52cd 70void unlock_buffer(struct buffer_head *bh)
1da177e4 71{
51b07fc3 72 clear_bit_unlock(BH_Lock, &bh->b_state);
4e857c58 73 smp_mb__after_atomic();
1da177e4
LT
74 wake_up_bit(&bh->b_state, BH_Lock);
75}
1fe72eaa 76EXPORT_SYMBOL(unlock_buffer);
1da177e4 77
b4597226
MG
78/*
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
82 */
83void buffer_check_dirty_writeback(struct page *page,
84 bool *dirty, bool *writeback)
85{
86 struct buffer_head *head, *bh;
87 *dirty = false;
88 *writeback = false;
89
90 BUG_ON(!PageLocked(page));
91
92 if (!page_has_buffers(page))
93 return;
94
95 if (PageWriteback(page))
96 *writeback = true;
97
98 head = page_buffers(page);
99 bh = head;
100 do {
101 if (buffer_locked(bh))
102 *writeback = true;
103
104 if (buffer_dirty(bh))
105 *dirty = true;
106
107 bh = bh->b_this_page;
108 } while (bh != head);
109}
110EXPORT_SYMBOL(buffer_check_dirty_writeback);
111
1da177e4
LT
112/*
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
116 */
117void __wait_on_buffer(struct buffer_head * bh)
118{
74316201 119 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
1da177e4 120}
1fe72eaa 121EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
122
123static void
124__clear_page_buffers(struct page *page)
125{
126 ClearPagePrivate(page);
4c21e2f2 127 set_page_private(page, 0);
1da177e4
LT
128 page_cache_release(page);
129}
130
08bafc03
KM
131
132static int quiet_error(struct buffer_head *bh)
133{
134 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
135 return 0;
136 return 1;
137}
138
139
1da177e4
LT
140static void buffer_io_error(struct buffer_head *bh)
141{
142 char b[BDEVNAME_SIZE];
1da177e4
LT
143 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
144 bdevname(bh->b_bdev, b),
145 (unsigned long long)bh->b_blocknr);
146}
147
148/*
68671f35
DM
149 * End-of-IO handler helper function which does not touch the bh after
150 * unlocking it.
151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152 * a race there is benign: unlock_buffer() only use the bh's address for
153 * hashing after unlocking the buffer, so it doesn't actually touch the bh
154 * itself.
1da177e4 155 */
68671f35 156static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
157{
158 if (uptodate) {
159 set_buffer_uptodate(bh);
160 } else {
161 /* This happens, due to failed READA attempts. */
162 clear_buffer_uptodate(bh);
163 }
164 unlock_buffer(bh);
68671f35
DM
165}
166
167/*
168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
169 * unlock the buffer. This is what ll_rw_block uses too.
170 */
171void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
172{
173 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
174 put_bh(bh);
175}
1fe72eaa 176EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
177
178void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
179{
180 char b[BDEVNAME_SIZE];
181
182 if (uptodate) {
183 set_buffer_uptodate(bh);
184 } else {
0edd55fa 185 if (!quiet_error(bh)) {
1da177e4
LT
186 buffer_io_error(bh);
187 printk(KERN_WARNING "lost page write due to "
188 "I/O error on %s\n",
189 bdevname(bh->b_bdev, b));
190 }
191 set_buffer_write_io_error(bh);
192 clear_buffer_uptodate(bh);
193 }
194 unlock_buffer(bh);
195 put_bh(bh);
196}
1fe72eaa 197EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 198
1da177e4
LT
199/*
200 * Various filesystems appear to want __find_get_block to be non-blocking.
201 * But it's the page lock which protects the buffers. To get around this,
202 * we get exclusion from try_to_free_buffers with the blockdev mapping's
203 * private_lock.
204 *
205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206 * may be quite high. This code could TryLock the page, and if that
207 * succeeds, there is no need to take private_lock. (But if
208 * private_lock is contended then so is mapping->tree_lock).
209 */
210static struct buffer_head *
385fd4c5 211__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
212{
213 struct inode *bd_inode = bdev->bd_inode;
214 struct address_space *bd_mapping = bd_inode->i_mapping;
215 struct buffer_head *ret = NULL;
216 pgoff_t index;
217 struct buffer_head *bh;
218 struct buffer_head *head;
219 struct page *page;
220 int all_mapped = 1;
221
222 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
2457aec6 223 page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
1da177e4
LT
224 if (!page)
225 goto out;
226
227 spin_lock(&bd_mapping->private_lock);
228 if (!page_has_buffers(page))
229 goto out_unlock;
230 head = page_buffers(page);
231 bh = head;
232 do {
97f76d3d
NK
233 if (!buffer_mapped(bh))
234 all_mapped = 0;
235 else if (bh->b_blocknr == block) {
1da177e4
LT
236 ret = bh;
237 get_bh(bh);
238 goto out_unlock;
239 }
1da177e4
LT
240 bh = bh->b_this_page;
241 } while (bh != head);
242
243 /* we might be here because some of the buffers on this page are
244 * not mapped. This is due to various races between
245 * file io on the block device and getblk. It gets dealt with
246 * elsewhere, don't buffer_error if we had some unmapped buffers
247 */
248 if (all_mapped) {
72a2ebd8
TM
249 char b[BDEVNAME_SIZE];
250
1da177e4
LT
251 printk("__find_get_block_slow() failed. "
252 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
253 (unsigned long long)block,
254 (unsigned long long)bh->b_blocknr);
255 printk("b_state=0x%08lx, b_size=%zu\n",
256 bh->b_state, bh->b_size);
72a2ebd8
TM
257 printk("device %s blocksize: %d\n", bdevname(bdev, b),
258 1 << bd_inode->i_blkbits);
1da177e4
LT
259 }
260out_unlock:
261 spin_unlock(&bd_mapping->private_lock);
262 page_cache_release(page);
263out:
264 return ret;
265}
266
1da177e4 267/*
5b0830cb 268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
269 */
270static void free_more_memory(void)
271{
19770b32 272 struct zone *zone;
0e88460d 273 int nid;
1da177e4 274
0e175a18 275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM);
1da177e4
LT
276 yield();
277
0e88460d 278 for_each_online_node(nid) {
19770b32
MG
279 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
280 gfp_zone(GFP_NOFS), NULL,
281 &zone);
282 if (zone)
54a6eb5c 283 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 284 GFP_NOFS, NULL);
1da177e4
LT
285 }
286}
287
288/*
289 * I/O completion handler for block_read_full_page() - pages
290 * which come unlocked at the end of I/O.
291 */
292static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
293{
1da177e4 294 unsigned long flags;
a3972203 295 struct buffer_head *first;
1da177e4
LT
296 struct buffer_head *tmp;
297 struct page *page;
298 int page_uptodate = 1;
299
300 BUG_ON(!buffer_async_read(bh));
301
302 page = bh->b_page;
303 if (uptodate) {
304 set_buffer_uptodate(bh);
305 } else {
306 clear_buffer_uptodate(bh);
08bafc03 307 if (!quiet_error(bh))
1da177e4
LT
308 buffer_io_error(bh);
309 SetPageError(page);
310 }
311
312 /*
313 * Be _very_ careful from here on. Bad things can happen if
314 * two buffer heads end IO at almost the same time and both
315 * decide that the page is now completely done.
316 */
a3972203
NP
317 first = page_buffers(page);
318 local_irq_save(flags);
319 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
320 clear_buffer_async_read(bh);
321 unlock_buffer(bh);
322 tmp = bh;
323 do {
324 if (!buffer_uptodate(tmp))
325 page_uptodate = 0;
326 if (buffer_async_read(tmp)) {
327 BUG_ON(!buffer_locked(tmp));
328 goto still_busy;
329 }
330 tmp = tmp->b_this_page;
331 } while (tmp != bh);
a3972203
NP
332 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
333 local_irq_restore(flags);
1da177e4
LT
334
335 /*
336 * If none of the buffers had errors and they are all
337 * uptodate then we can set the page uptodate.
338 */
339 if (page_uptodate && !PageError(page))
340 SetPageUptodate(page);
341 unlock_page(page);
342 return;
343
344still_busy:
a3972203
NP
345 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
346 local_irq_restore(flags);
1da177e4
LT
347 return;
348}
349
350/*
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
353 */
35c80d5f 354void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
355{
356 char b[BDEVNAME_SIZE];
1da177e4 357 unsigned long flags;
a3972203 358 struct buffer_head *first;
1da177e4
LT
359 struct buffer_head *tmp;
360 struct page *page;
361
362 BUG_ON(!buffer_async_write(bh));
363
364 page = bh->b_page;
365 if (uptodate) {
366 set_buffer_uptodate(bh);
367 } else {
08bafc03 368 if (!quiet_error(bh)) {
1da177e4
LT
369 buffer_io_error(bh);
370 printk(KERN_WARNING "lost page write due to "
371 "I/O error on %s\n",
372 bdevname(bh->b_bdev, b));
373 }
374 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 375 set_buffer_write_io_error(bh);
1da177e4
LT
376 clear_buffer_uptodate(bh);
377 SetPageError(page);
378 }
379
a3972203
NP
380 first = page_buffers(page);
381 local_irq_save(flags);
382 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
383
1da177e4
LT
384 clear_buffer_async_write(bh);
385 unlock_buffer(bh);
386 tmp = bh->b_this_page;
387 while (tmp != bh) {
388 if (buffer_async_write(tmp)) {
389 BUG_ON(!buffer_locked(tmp));
390 goto still_busy;
391 }
392 tmp = tmp->b_this_page;
393 }
a3972203
NP
394 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
395 local_irq_restore(flags);
1da177e4
LT
396 end_page_writeback(page);
397 return;
398
399still_busy:
a3972203
NP
400 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
401 local_irq_restore(flags);
1da177e4
LT
402 return;
403}
1fe72eaa 404EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
405
406/*
407 * If a page's buffers are under async readin (end_buffer_async_read
408 * completion) then there is a possibility that another thread of
409 * control could lock one of the buffers after it has completed
410 * but while some of the other buffers have not completed. This
411 * locked buffer would confuse end_buffer_async_read() into not unlocking
412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
413 * that this buffer is not under async I/O.
414 *
415 * The page comes unlocked when it has no locked buffer_async buffers
416 * left.
417 *
418 * PageLocked prevents anyone starting new async I/O reads any of
419 * the buffers.
420 *
421 * PageWriteback is used to prevent simultaneous writeout of the same
422 * page.
423 *
424 * PageLocked prevents anyone from starting writeback of a page which is
425 * under read I/O (PageWriteback is only ever set against a locked page).
426 */
427static void mark_buffer_async_read(struct buffer_head *bh)
428{
429 bh->b_end_io = end_buffer_async_read;
430 set_buffer_async_read(bh);
431}
432
1fe72eaa
HS
433static void mark_buffer_async_write_endio(struct buffer_head *bh,
434 bh_end_io_t *handler)
1da177e4 435{
35c80d5f 436 bh->b_end_io = handler;
1da177e4
LT
437 set_buffer_async_write(bh);
438}
35c80d5f
CM
439
440void mark_buffer_async_write(struct buffer_head *bh)
441{
442 mark_buffer_async_write_endio(bh, end_buffer_async_write);
443}
1da177e4
LT
444EXPORT_SYMBOL(mark_buffer_async_write);
445
446
447/*
448 * fs/buffer.c contains helper functions for buffer-backed address space's
449 * fsync functions. A common requirement for buffer-based filesystems is
450 * that certain data from the backing blockdev needs to be written out for
451 * a successful fsync(). For example, ext2 indirect blocks need to be
452 * written back and waited upon before fsync() returns.
453 *
454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456 * management of a list of dependent buffers at ->i_mapping->private_list.
457 *
458 * Locking is a little subtle: try_to_free_buffers() will remove buffers
459 * from their controlling inode's queue when they are being freed. But
460 * try_to_free_buffers() will be operating against the *blockdev* mapping
461 * at the time, not against the S_ISREG file which depends on those buffers.
462 * So the locking for private_list is via the private_lock in the address_space
463 * which backs the buffers. Which is different from the address_space
464 * against which the buffers are listed. So for a particular address_space,
465 * mapping->private_lock does *not* protect mapping->private_list! In fact,
466 * mapping->private_list will always be protected by the backing blockdev's
467 * ->private_lock.
468 *
469 * Which introduces a requirement: all buffers on an address_space's
470 * ->private_list must be from the same address_space: the blockdev's.
471 *
472 * address_spaces which do not place buffers at ->private_list via these
473 * utility functions are free to use private_lock and private_list for
474 * whatever they want. The only requirement is that list_empty(private_list)
475 * be true at clear_inode() time.
476 *
477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
478 * filesystems should do that. invalidate_inode_buffers() should just go
479 * BUG_ON(!list_empty).
480 *
481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
482 * take an address_space, not an inode. And it should be called
483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
484 * queued up.
485 *
486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487 * list if it is already on a list. Because if the buffer is on a list,
488 * it *must* already be on the right one. If not, the filesystem is being
489 * silly. This will save a ton of locking. But first we have to ensure
490 * that buffers are taken *off* the old inode's list when they are freed
491 * (presumably in truncate). That requires careful auditing of all
492 * filesystems (do it inside bforget()). It could also be done by bringing
493 * b_inode back.
494 */
495
496/*
497 * The buffer's backing address_space's private_lock must be held
498 */
dbacefc9 499static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
500{
501 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
502 WARN_ON(!bh->b_assoc_map);
503 if (buffer_write_io_error(bh))
504 set_bit(AS_EIO, &bh->b_assoc_map->flags);
505 bh->b_assoc_map = NULL;
1da177e4
LT
506}
507
508int inode_has_buffers(struct inode *inode)
509{
510 return !list_empty(&inode->i_data.private_list);
511}
512
513/*
514 * osync is designed to support O_SYNC io. It waits synchronously for
515 * all already-submitted IO to complete, but does not queue any new
516 * writes to the disk.
517 *
518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519 * you dirty the buffers, and then use osync_inode_buffers to wait for
520 * completion. Any other dirty buffers which are not yet queued for
521 * write will not be flushed to disk by the osync.
522 */
523static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
524{
525 struct buffer_head *bh;
526 struct list_head *p;
527 int err = 0;
528
529 spin_lock(lock);
530repeat:
531 list_for_each_prev(p, list) {
532 bh = BH_ENTRY(p);
533 if (buffer_locked(bh)) {
534 get_bh(bh);
535 spin_unlock(lock);
536 wait_on_buffer(bh);
537 if (!buffer_uptodate(bh))
538 err = -EIO;
539 brelse(bh);
540 spin_lock(lock);
541 goto repeat;
542 }
543 }
544 spin_unlock(lock);
545 return err;
546}
547
01a05b33 548static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 549{
c2d75438 550 char b[BDEVNAME_SIZE];
01a05b33
AV
551 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
552 printk(KERN_WARNING "Emergency Thaw on %s\n",
553 bdevname(sb->s_bdev, b));
554}
c2d75438 555
01a05b33
AV
556static void do_thaw_all(struct work_struct *work)
557{
558 iterate_supers(do_thaw_one, NULL);
053c525f 559 kfree(work);
c2d75438
ES
560 printk(KERN_WARNING "Emergency Thaw complete\n");
561}
562
563/**
564 * emergency_thaw_all -- forcibly thaw every frozen filesystem
565 *
566 * Used for emergency unfreeze of all filesystems via SysRq
567 */
568void emergency_thaw_all(void)
569{
053c525f
JA
570 struct work_struct *work;
571
572 work = kmalloc(sizeof(*work), GFP_ATOMIC);
573 if (work) {
574 INIT_WORK(work, do_thaw_all);
575 schedule_work(work);
576 }
c2d75438
ES
577}
578
1da177e4 579/**
78a4a50a 580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 581 * @mapping: the mapping which wants those buffers written
1da177e4
LT
582 *
583 * Starts I/O against the buffers at mapping->private_list, and waits upon
584 * that I/O.
585 *
67be2dd1
MW
586 * Basically, this is a convenience function for fsync().
587 * @mapping is a file or directory which needs those buffers to be written for
588 * a successful fsync().
1da177e4
LT
589 */
590int sync_mapping_buffers(struct address_space *mapping)
591{
252aa6f5 592 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
593
594 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
595 return 0;
596
597 return fsync_buffers_list(&buffer_mapping->private_lock,
598 &mapping->private_list);
599}
600EXPORT_SYMBOL(sync_mapping_buffers);
601
602/*
603 * Called when we've recently written block `bblock', and it is known that
604 * `bblock' was for a buffer_boundary() buffer. This means that the block at
605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
606 * dirty, schedule it for IO. So that indirects merge nicely with their data.
607 */
608void write_boundary_block(struct block_device *bdev,
609 sector_t bblock, unsigned blocksize)
610{
611 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
612 if (bh) {
613 if (buffer_dirty(bh))
614 ll_rw_block(WRITE, 1, &bh);
615 put_bh(bh);
616 }
617}
618
619void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
620{
621 struct address_space *mapping = inode->i_mapping;
622 struct address_space *buffer_mapping = bh->b_page->mapping;
623
624 mark_buffer_dirty(bh);
252aa6f5
RA
625 if (!mapping->private_data) {
626 mapping->private_data = buffer_mapping;
1da177e4 627 } else {
252aa6f5 628 BUG_ON(mapping->private_data != buffer_mapping);
1da177e4 629 }
535ee2fb 630 if (!bh->b_assoc_map) {
1da177e4
LT
631 spin_lock(&buffer_mapping->private_lock);
632 list_move_tail(&bh->b_assoc_buffers,
633 &mapping->private_list);
58ff407b 634 bh->b_assoc_map = mapping;
1da177e4
LT
635 spin_unlock(&buffer_mapping->private_lock);
636 }
637}
638EXPORT_SYMBOL(mark_buffer_dirty_inode);
639
787d2214
NP
640/*
641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
642 * dirty.
643 *
644 * If warn is true, then emit a warning if the page is not uptodate and has
645 * not been truncated.
646 */
a8e7d49a 647static void __set_page_dirty(struct page *page,
787d2214
NP
648 struct address_space *mapping, int warn)
649{
227d53b3
KM
650 unsigned long flags;
651
652 spin_lock_irqsave(&mapping->tree_lock, flags);
787d2214
NP
653 if (page->mapping) { /* Race with truncate? */
654 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 655 account_page_dirtied(page, mapping);
787d2214
NP
656 radix_tree_tag_set(&mapping->page_tree,
657 page_index(page), PAGECACHE_TAG_DIRTY);
658 }
227d53b3 659 spin_unlock_irqrestore(&mapping->tree_lock, flags);
787d2214 660 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
661}
662
1da177e4
LT
663/*
664 * Add a page to the dirty page list.
665 *
666 * It is a sad fact of life that this function is called from several places
667 * deeply under spinlocking. It may not sleep.
668 *
669 * If the page has buffers, the uptodate buffers are set dirty, to preserve
670 * dirty-state coherency between the page and the buffers. It the page does
671 * not have buffers then when they are later attached they will all be set
672 * dirty.
673 *
674 * The buffers are dirtied before the page is dirtied. There's a small race
675 * window in which a writepage caller may see the page cleanness but not the
676 * buffer dirtiness. That's fine. If this code were to set the page dirty
677 * before the buffers, a concurrent writepage caller could clear the page dirty
678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679 * page on the dirty page list.
680 *
681 * We use private_lock to lock against try_to_free_buffers while using the
682 * page's buffer list. Also use this to protect against clean buffers being
683 * added to the page after it was set dirty.
684 *
685 * FIXME: may need to call ->reservepage here as well. That's rather up to the
686 * address_space though.
687 */
688int __set_page_dirty_buffers(struct page *page)
689{
a8e7d49a 690 int newly_dirty;
787d2214 691 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
692
693 if (unlikely(!mapping))
694 return !TestSetPageDirty(page);
1da177e4
LT
695
696 spin_lock(&mapping->private_lock);
697 if (page_has_buffers(page)) {
698 struct buffer_head *head = page_buffers(page);
699 struct buffer_head *bh = head;
700
701 do {
702 set_buffer_dirty(bh);
703 bh = bh->b_this_page;
704 } while (bh != head);
705 }
a8e7d49a 706 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
707 spin_unlock(&mapping->private_lock);
708
a8e7d49a
LT
709 if (newly_dirty)
710 __set_page_dirty(page, mapping, 1);
711 return newly_dirty;
1da177e4
LT
712}
713EXPORT_SYMBOL(__set_page_dirty_buffers);
714
715/*
716 * Write out and wait upon a list of buffers.
717 *
718 * We have conflicting pressures: we want to make sure that all
719 * initially dirty buffers get waited on, but that any subsequently
720 * dirtied buffers don't. After all, we don't want fsync to last
721 * forever if somebody is actively writing to the file.
722 *
723 * Do this in two main stages: first we copy dirty buffers to a
724 * temporary inode list, queueing the writes as we go. Then we clean
725 * up, waiting for those writes to complete.
726 *
727 * During this second stage, any subsequent updates to the file may end
728 * up refiling the buffer on the original inode's dirty list again, so
729 * there is a chance we will end up with a buffer queued for write but
730 * not yet completed on that list. So, as a final cleanup we go through
731 * the osync code to catch these locked, dirty buffers without requeuing
732 * any newly dirty buffers for write.
733 */
734static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
735{
736 struct buffer_head *bh;
737 struct list_head tmp;
7eaceacc 738 struct address_space *mapping;
1da177e4 739 int err = 0, err2;
4ee2491e 740 struct blk_plug plug;
1da177e4
LT
741
742 INIT_LIST_HEAD(&tmp);
4ee2491e 743 blk_start_plug(&plug);
1da177e4
LT
744
745 spin_lock(lock);
746 while (!list_empty(list)) {
747 bh = BH_ENTRY(list->next);
535ee2fb 748 mapping = bh->b_assoc_map;
58ff407b 749 __remove_assoc_queue(bh);
535ee2fb
JK
750 /* Avoid race with mark_buffer_dirty_inode() which does
751 * a lockless check and we rely on seeing the dirty bit */
752 smp_mb();
1da177e4
LT
753 if (buffer_dirty(bh) || buffer_locked(bh)) {
754 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 755 bh->b_assoc_map = mapping;
1da177e4
LT
756 if (buffer_dirty(bh)) {
757 get_bh(bh);
758 spin_unlock(lock);
759 /*
760 * Ensure any pending I/O completes so that
9cb569d6
CH
761 * write_dirty_buffer() actually writes the
762 * current contents - it is a noop if I/O is
763 * still in flight on potentially older
764 * contents.
1da177e4 765 */
721a9602 766 write_dirty_buffer(bh, WRITE_SYNC);
9cf6b720
JA
767
768 /*
769 * Kick off IO for the previous mapping. Note
770 * that we will not run the very last mapping,
771 * wait_on_buffer() will do that for us
772 * through sync_buffer().
773 */
1da177e4
LT
774 brelse(bh);
775 spin_lock(lock);
776 }
777 }
778 }
779
4ee2491e
JA
780 spin_unlock(lock);
781 blk_finish_plug(&plug);
782 spin_lock(lock);
783
1da177e4
LT
784 while (!list_empty(&tmp)) {
785 bh = BH_ENTRY(tmp.prev);
1da177e4 786 get_bh(bh);
535ee2fb
JK
787 mapping = bh->b_assoc_map;
788 __remove_assoc_queue(bh);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
791 smp_mb();
792 if (buffer_dirty(bh)) {
793 list_add(&bh->b_assoc_buffers,
e3892296 794 &mapping->private_list);
535ee2fb
JK
795 bh->b_assoc_map = mapping;
796 }
1da177e4
LT
797 spin_unlock(lock);
798 wait_on_buffer(bh);
799 if (!buffer_uptodate(bh))
800 err = -EIO;
801 brelse(bh);
802 spin_lock(lock);
803 }
804
805 spin_unlock(lock);
806 err2 = osync_buffers_list(lock, list);
807 if (err)
808 return err;
809 else
810 return err2;
811}
812
813/*
814 * Invalidate any and all dirty buffers on a given inode. We are
815 * probably unmounting the fs, but that doesn't mean we have already
816 * done a sync(). Just drop the buffers from the inode list.
817 *
818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
819 * assumes that all the buffers are against the blockdev. Not true
820 * for reiserfs.
821 */
822void invalidate_inode_buffers(struct inode *inode)
823{
824 if (inode_has_buffers(inode)) {
825 struct address_space *mapping = &inode->i_data;
826 struct list_head *list = &mapping->private_list;
252aa6f5 827 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
828
829 spin_lock(&buffer_mapping->private_lock);
830 while (!list_empty(list))
831 __remove_assoc_queue(BH_ENTRY(list->next));
832 spin_unlock(&buffer_mapping->private_lock);
833 }
834}
52b19ac9 835EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
836
837/*
838 * Remove any clean buffers from the inode's buffer list. This is called
839 * when we're trying to free the inode itself. Those buffers can pin it.
840 *
841 * Returns true if all buffers were removed.
842 */
843int remove_inode_buffers(struct inode *inode)
844{
845 int ret = 1;
846
847 if (inode_has_buffers(inode)) {
848 struct address_space *mapping = &inode->i_data;
849 struct list_head *list = &mapping->private_list;
252aa6f5 850 struct address_space *buffer_mapping = mapping->private_data;
1da177e4
LT
851
852 spin_lock(&buffer_mapping->private_lock);
853 while (!list_empty(list)) {
854 struct buffer_head *bh = BH_ENTRY(list->next);
855 if (buffer_dirty(bh)) {
856 ret = 0;
857 break;
858 }
859 __remove_assoc_queue(bh);
860 }
861 spin_unlock(&buffer_mapping->private_lock);
862 }
863 return ret;
864}
865
866/*
867 * Create the appropriate buffers when given a page for data area and
868 * the size of each buffer.. Use the bh->b_this_page linked list to
869 * follow the buffers created. Return NULL if unable to create more
870 * buffers.
871 *
872 * The retry flag is used to differentiate async IO (paging, swapping)
873 * which may not fail from ordinary buffer allocations.
874 */
875struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
876 int retry)
877{
878 struct buffer_head *bh, *head;
879 long offset;
880
881try_again:
882 head = NULL;
883 offset = PAGE_SIZE;
884 while ((offset -= size) >= 0) {
885 bh = alloc_buffer_head(GFP_NOFS);
886 if (!bh)
887 goto no_grow;
888
1da177e4
LT
889 bh->b_this_page = head;
890 bh->b_blocknr = -1;
891 head = bh;
892
1da177e4
LT
893 bh->b_size = size;
894
895 /* Link the buffer to its page */
896 set_bh_page(bh, page, offset);
1da177e4
LT
897 }
898 return head;
899/*
900 * In case anything failed, we just free everything we got.
901 */
902no_grow:
903 if (head) {
904 do {
905 bh = head;
906 head = head->b_this_page;
907 free_buffer_head(bh);
908 } while (head);
909 }
910
911 /*
912 * Return failure for non-async IO requests. Async IO requests
913 * are not allowed to fail, so we have to wait until buffer heads
914 * become available. But we don't want tasks sleeping with
915 * partially complete buffers, so all were released above.
916 */
917 if (!retry)
918 return NULL;
919
920 /* We're _really_ low on memory. Now we just
921 * wait for old buffer heads to become free due to
922 * finishing IO. Since this is an async request and
923 * the reserve list is empty, we're sure there are
924 * async buffer heads in use.
925 */
926 free_more_memory();
927 goto try_again;
928}
929EXPORT_SYMBOL_GPL(alloc_page_buffers);
930
931static inline void
932link_dev_buffers(struct page *page, struct buffer_head *head)
933{
934 struct buffer_head *bh, *tail;
935
936 bh = head;
937 do {
938 tail = bh;
939 bh = bh->b_this_page;
940 } while (bh);
941 tail->b_this_page = head;
942 attach_page_buffers(page, head);
943}
944
bbec0270
LT
945static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
946{
947 sector_t retval = ~((sector_t)0);
948 loff_t sz = i_size_read(bdev->bd_inode);
949
950 if (sz) {
951 unsigned int sizebits = blksize_bits(size);
952 retval = (sz >> sizebits);
953 }
954 return retval;
955}
956
1da177e4
LT
957/*
958 * Initialise the state of a blockdev page's buffers.
959 */
676ce6d5 960static sector_t
1da177e4
LT
961init_page_buffers(struct page *page, struct block_device *bdev,
962 sector_t block, int size)
963{
964 struct buffer_head *head = page_buffers(page);
965 struct buffer_head *bh = head;
966 int uptodate = PageUptodate(page);
bbec0270 967 sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
1da177e4
LT
968
969 do {
970 if (!buffer_mapped(bh)) {
971 init_buffer(bh, NULL, NULL);
972 bh->b_bdev = bdev;
973 bh->b_blocknr = block;
974 if (uptodate)
975 set_buffer_uptodate(bh);
080399aa
JM
976 if (block < end_block)
977 set_buffer_mapped(bh);
1da177e4
LT
978 }
979 block++;
980 bh = bh->b_this_page;
981 } while (bh != head);
676ce6d5
HD
982
983 /*
984 * Caller needs to validate requested block against end of device.
985 */
986 return end_block;
1da177e4
LT
987}
988
989/*
990 * Create the page-cache page that contains the requested block.
991 *
676ce6d5 992 * This is used purely for blockdev mappings.
1da177e4 993 */
676ce6d5 994static int
1da177e4 995grow_dev_page(struct block_device *bdev, sector_t block,
3b5e6454 996 pgoff_t index, int size, int sizebits, gfp_t gfp)
1da177e4
LT
997{
998 struct inode *inode = bdev->bd_inode;
999 struct page *page;
1000 struct buffer_head *bh;
676ce6d5
HD
1001 sector_t end_block;
1002 int ret = 0; /* Will call free_more_memory() */
84235de3 1003 gfp_t gfp_mask;
1da177e4 1004
3b5e6454
GK
1005 gfp_mask = (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS) | gfp;
1006
84235de3
JW
1007 /*
1008 * XXX: __getblk_slow() can not really deal with failure and
1009 * will endlessly loop on improvised global reclaim. Prefer
1010 * looping in the allocator rather than here, at least that
1011 * code knows what it's doing.
1012 */
1013 gfp_mask |= __GFP_NOFAIL;
1014
1015 page = find_or_create_page(inode->i_mapping, index, gfp_mask);
1da177e4 1016 if (!page)
676ce6d5 1017 return ret;
1da177e4 1018
e827f923 1019 BUG_ON(!PageLocked(page));
1da177e4
LT
1020
1021 if (page_has_buffers(page)) {
1022 bh = page_buffers(page);
1023 if (bh->b_size == size) {
676ce6d5
HD
1024 end_block = init_page_buffers(page, bdev,
1025 index << sizebits, size);
1026 goto done;
1da177e4
LT
1027 }
1028 if (!try_to_free_buffers(page))
1029 goto failed;
1030 }
1031
1032 /*
1033 * Allocate some buffers for this page
1034 */
1035 bh = alloc_page_buffers(page, size, 0);
1036 if (!bh)
1037 goto failed;
1038
1039 /*
1040 * Link the page to the buffers and initialise them. Take the
1041 * lock to be atomic wrt __find_get_block(), which does not
1042 * run under the page lock.
1043 */
1044 spin_lock(&inode->i_mapping->private_lock);
1045 link_dev_buffers(page, bh);
676ce6d5 1046 end_block = init_page_buffers(page, bdev, index << sizebits, size);
1da177e4 1047 spin_unlock(&inode->i_mapping->private_lock);
676ce6d5
HD
1048done:
1049 ret = (block < end_block) ? 1 : -ENXIO;
1da177e4 1050failed:
1da177e4
LT
1051 unlock_page(page);
1052 page_cache_release(page);
676ce6d5 1053 return ret;
1da177e4
LT
1054}
1055
1056/*
1057 * Create buffers for the specified block device block's page. If
1058 * that page was dirty, the buffers are set dirty also.
1da177e4 1059 */
858119e1 1060static int
3b5e6454 1061grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1da177e4 1062{
1da177e4
LT
1063 pgoff_t index;
1064 int sizebits;
1065
1066 sizebits = -1;
1067 do {
1068 sizebits++;
1069 } while ((size << sizebits) < PAGE_SIZE);
1070
1071 index = block >> sizebits;
1da177e4 1072
e5657933
AM
1073 /*
1074 * Check for a block which wants to lie outside our maximum possible
1075 * pagecache index. (this comparison is done using sector_t types).
1076 */
1077 if (unlikely(index != block >> sizebits)) {
1078 char b[BDEVNAME_SIZE];
1079
1080 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1081 "device %s\n",
8e24eea7 1082 __func__, (unsigned long long)block,
e5657933
AM
1083 bdevname(bdev, b));
1084 return -EIO;
1085 }
676ce6d5 1086
1da177e4 1087 /* Create a page with the proper size buffers.. */
3b5e6454 1088 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1da177e4
LT
1089}
1090
3b5e6454
GK
1091struct buffer_head *
1092__getblk_slow(struct block_device *bdev, sector_t block,
1093 unsigned size, gfp_t gfp)
1da177e4
LT
1094{
1095 /* Size must be multiple of hard sectorsize */
e1defc4f 1096 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1097 (size < 512 || size > PAGE_SIZE))) {
1098 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1099 size);
e1defc4f
MP
1100 printk(KERN_ERR "logical block size: %d\n",
1101 bdev_logical_block_size(bdev));
1da177e4
LT
1102
1103 dump_stack();
1104 return NULL;
1105 }
1106
676ce6d5
HD
1107 for (;;) {
1108 struct buffer_head *bh;
1109 int ret;
1da177e4
LT
1110
1111 bh = __find_get_block(bdev, block, size);
1112 if (bh)
1113 return bh;
676ce6d5 1114
3b5e6454 1115 ret = grow_buffers(bdev, block, size, gfp);
676ce6d5
HD
1116 if (ret < 0)
1117 return NULL;
1118 if (ret == 0)
1119 free_more_memory();
1da177e4
LT
1120 }
1121}
3b5e6454 1122EXPORT_SYMBOL(__getblk_slow);
1da177e4
LT
1123
1124/*
1125 * The relationship between dirty buffers and dirty pages:
1126 *
1127 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128 * the page is tagged dirty in its radix tree.
1129 *
1130 * At all times, the dirtiness of the buffers represents the dirtiness of
1131 * subsections of the page. If the page has buffers, the page dirty bit is
1132 * merely a hint about the true dirty state.
1133 *
1134 * When a page is set dirty in its entirety, all its buffers are marked dirty
1135 * (if the page has buffers).
1136 *
1137 * When a buffer is marked dirty, its page is dirtied, but the page's other
1138 * buffers are not.
1139 *
1140 * Also. When blockdev buffers are explicitly read with bread(), they
1141 * individually become uptodate. But their backing page remains not
1142 * uptodate - even if all of its buffers are uptodate. A subsequent
1143 * block_read_full_page() against that page will discover all the uptodate
1144 * buffers, will set the page uptodate and will perform no I/O.
1145 */
1146
1147/**
1148 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1149 * @bh: the buffer_head to mark dirty
1da177e4
LT
1150 *
1151 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152 * backing page dirty, then tag the page as dirty in its address_space's radix
1153 * tree and then attach the address_space's inode to its superblock's dirty
1154 * inode list.
1155 *
1156 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
250df6ed 1157 * mapping->tree_lock and mapping->host->i_lock.
1da177e4 1158 */
fc9b52cd 1159void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1160{
787d2214 1161 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1 1162
5305cb83
TH
1163 trace_block_dirty_buffer(bh);
1164
1be62dc1
LT
1165 /*
1166 * Very *carefully* optimize the it-is-already-dirty case.
1167 *
1168 * Don't let the final "is it dirty" escape to before we
1169 * perhaps modified the buffer.
1170 */
1171 if (buffer_dirty(bh)) {
1172 smp_mb();
1173 if (buffer_dirty(bh))
1174 return;
1175 }
1176
a8e7d49a
LT
1177 if (!test_set_buffer_dirty(bh)) {
1178 struct page *page = bh->b_page;
8e9d78ed
LT
1179 if (!TestSetPageDirty(page)) {
1180 struct address_space *mapping = page_mapping(page);
1181 if (mapping)
1182 __set_page_dirty(page, mapping, 0);
1183 }
a8e7d49a 1184 }
1da177e4 1185}
1fe72eaa 1186EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1187
1188/*
1189 * Decrement a buffer_head's reference count. If all buffers against a page
1190 * have zero reference count, are clean and unlocked, and if the page is clean
1191 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1192 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1193 * a page but it ends up not being freed, and buffers may later be reattached).
1194 */
1195void __brelse(struct buffer_head * buf)
1196{
1197 if (atomic_read(&buf->b_count)) {
1198 put_bh(buf);
1199 return;
1200 }
5c752ad9 1201 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1202}
1fe72eaa 1203EXPORT_SYMBOL(__brelse);
1da177e4
LT
1204
1205/*
1206 * bforget() is like brelse(), except it discards any
1207 * potentially dirty data.
1208 */
1209void __bforget(struct buffer_head *bh)
1210{
1211 clear_buffer_dirty(bh);
535ee2fb 1212 if (bh->b_assoc_map) {
1da177e4
LT
1213 struct address_space *buffer_mapping = bh->b_page->mapping;
1214
1215 spin_lock(&buffer_mapping->private_lock);
1216 list_del_init(&bh->b_assoc_buffers);
58ff407b 1217 bh->b_assoc_map = NULL;
1da177e4
LT
1218 spin_unlock(&buffer_mapping->private_lock);
1219 }
1220 __brelse(bh);
1221}
1fe72eaa 1222EXPORT_SYMBOL(__bforget);
1da177e4
LT
1223
1224static struct buffer_head *__bread_slow(struct buffer_head *bh)
1225{
1226 lock_buffer(bh);
1227 if (buffer_uptodate(bh)) {
1228 unlock_buffer(bh);
1229 return bh;
1230 } else {
1231 get_bh(bh);
1232 bh->b_end_io = end_buffer_read_sync;
1233 submit_bh(READ, bh);
1234 wait_on_buffer(bh);
1235 if (buffer_uptodate(bh))
1236 return bh;
1237 }
1238 brelse(bh);
1239 return NULL;
1240}
1241
1242/*
1243 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1244 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1245 * refcount elevated by one when they're in an LRU. A buffer can only appear
1246 * once in a particular CPU's LRU. A single buffer can be present in multiple
1247 * CPU's LRUs at the same time.
1248 *
1249 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250 * sb_find_get_block().
1251 *
1252 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1253 * a local interrupt disable for that.
1254 */
1255
1256#define BH_LRU_SIZE 8
1257
1258struct bh_lru {
1259 struct buffer_head *bhs[BH_LRU_SIZE];
1260};
1261
1262static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1263
1264#ifdef CONFIG_SMP
1265#define bh_lru_lock() local_irq_disable()
1266#define bh_lru_unlock() local_irq_enable()
1267#else
1268#define bh_lru_lock() preempt_disable()
1269#define bh_lru_unlock() preempt_enable()
1270#endif
1271
1272static inline void check_irqs_on(void)
1273{
1274#ifdef irqs_disabled
1275 BUG_ON(irqs_disabled());
1276#endif
1277}
1278
1279/*
1280 * The LRU management algorithm is dopey-but-simple. Sorry.
1281 */
1282static void bh_lru_install(struct buffer_head *bh)
1283{
1284 struct buffer_head *evictee = NULL;
1da177e4
LT
1285
1286 check_irqs_on();
1287 bh_lru_lock();
c7b92516 1288 if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1da177e4
LT
1289 struct buffer_head *bhs[BH_LRU_SIZE];
1290 int in;
1291 int out = 0;
1292
1293 get_bh(bh);
1294 bhs[out++] = bh;
1295 for (in = 0; in < BH_LRU_SIZE; in++) {
c7b92516
CL
1296 struct buffer_head *bh2 =
1297 __this_cpu_read(bh_lrus.bhs[in]);
1da177e4
LT
1298
1299 if (bh2 == bh) {
1300 __brelse(bh2);
1301 } else {
1302 if (out >= BH_LRU_SIZE) {
1303 BUG_ON(evictee != NULL);
1304 evictee = bh2;
1305 } else {
1306 bhs[out++] = bh2;
1307 }
1308 }
1309 }
1310 while (out < BH_LRU_SIZE)
1311 bhs[out++] = NULL;
ca6673b0 1312 memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1da177e4
LT
1313 }
1314 bh_lru_unlock();
1315
1316 if (evictee)
1317 __brelse(evictee);
1318}
1319
1320/*
1321 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1322 */
858119e1 1323static struct buffer_head *
3991d3bd 1324lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1325{
1326 struct buffer_head *ret = NULL;
3991d3bd 1327 unsigned int i;
1da177e4
LT
1328
1329 check_irqs_on();
1330 bh_lru_lock();
1da177e4 1331 for (i = 0; i < BH_LRU_SIZE; i++) {
c7b92516 1332 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1da177e4
LT
1333
1334 if (bh && bh->b_bdev == bdev &&
1335 bh->b_blocknr == block && bh->b_size == size) {
1336 if (i) {
1337 while (i) {
c7b92516
CL
1338 __this_cpu_write(bh_lrus.bhs[i],
1339 __this_cpu_read(bh_lrus.bhs[i - 1]));
1da177e4
LT
1340 i--;
1341 }
c7b92516 1342 __this_cpu_write(bh_lrus.bhs[0], bh);
1da177e4
LT
1343 }
1344 get_bh(bh);
1345 ret = bh;
1346 break;
1347 }
1348 }
1349 bh_lru_unlock();
1350 return ret;
1351}
1352
1353/*
1354 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1355 * it in the LRU and mark it as accessed. If it is not present then return
1356 * NULL
1357 */
1358struct buffer_head *
3991d3bd 1359__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1360{
1361 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362
1363 if (bh == NULL) {
2457aec6 1364 /* __find_get_block_slow will mark the page accessed */
385fd4c5 1365 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1366 if (bh)
1367 bh_lru_install(bh);
2457aec6 1368 } else
1da177e4 1369 touch_buffer(bh);
2457aec6 1370
1da177e4
LT
1371 return bh;
1372}
1373EXPORT_SYMBOL(__find_get_block);
1374
1375/*
3b5e6454 1376 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1da177e4
LT
1377 * which corresponds to the passed block_device, block and size. The
1378 * returned buffer has its reference count incremented.
1379 *
3b5e6454
GK
1380 * __getblk_gfp() will lock up the machine if grow_dev_page's
1381 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1da177e4
LT
1382 */
1383struct buffer_head *
3b5e6454
GK
1384__getblk_gfp(struct block_device *bdev, sector_t block,
1385 unsigned size, gfp_t gfp)
1da177e4
LT
1386{
1387 struct buffer_head *bh = __find_get_block(bdev, block, size);
1388
1389 might_sleep();
1390 if (bh == NULL)
3b5e6454 1391 bh = __getblk_slow(bdev, block, size, gfp);
1da177e4
LT
1392 return bh;
1393}
3b5e6454 1394EXPORT_SYMBOL(__getblk_gfp);
1da177e4
LT
1395
1396/*
1397 * Do async read-ahead on a buffer..
1398 */
3991d3bd 1399void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1400{
1401 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1402 if (likely(bh)) {
1403 ll_rw_block(READA, 1, &bh);
1404 brelse(bh);
1405 }
1da177e4
LT
1406}
1407EXPORT_SYMBOL(__breadahead);
1408
1409/**
3b5e6454 1410 * __bread_gfp() - reads a specified block and returns the bh
67be2dd1 1411 * @bdev: the block_device to read from
1da177e4
LT
1412 * @block: number of block
1413 * @size: size (in bytes) to read
3b5e6454
GK
1414 * @gfp: page allocation flag
1415 *
1da177e4 1416 * Reads a specified block, and returns buffer head that contains it.
3b5e6454
GK
1417 * The page cache can be allocated from non-movable area
1418 * not to prevent page migration if you set gfp to zero.
1da177e4
LT
1419 * It returns NULL if the block was unreadable.
1420 */
1421struct buffer_head *
3b5e6454
GK
1422__bread_gfp(struct block_device *bdev, sector_t block,
1423 unsigned size, gfp_t gfp)
1da177e4 1424{
3b5e6454 1425 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1da177e4 1426
a3e713b5 1427 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1428 bh = __bread_slow(bh);
1429 return bh;
1430}
3b5e6454 1431EXPORT_SYMBOL(__bread_gfp);
1da177e4
LT
1432
1433/*
1434 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1435 * This doesn't race because it runs in each cpu either in irq
1436 * or with preempt disabled.
1437 */
1438static void invalidate_bh_lru(void *arg)
1439{
1440 struct bh_lru *b = &get_cpu_var(bh_lrus);
1441 int i;
1442
1443 for (i = 0; i < BH_LRU_SIZE; i++) {
1444 brelse(b->bhs[i]);
1445 b->bhs[i] = NULL;
1446 }
1447 put_cpu_var(bh_lrus);
1448}
42be35d0
GBY
1449
1450static bool has_bh_in_lru(int cpu, void *dummy)
1451{
1452 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1453 int i;
1da177e4 1454
42be35d0
GBY
1455 for (i = 0; i < BH_LRU_SIZE; i++) {
1456 if (b->bhs[i])
1457 return 1;
1458 }
1459
1460 return 0;
1461}
1462
f9a14399 1463void invalidate_bh_lrus(void)
1da177e4 1464{
42be35d0 1465 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1da177e4 1466}
9db5579b 1467EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1468
1469void set_bh_page(struct buffer_head *bh,
1470 struct page *page, unsigned long offset)
1471{
1472 bh->b_page = page;
e827f923 1473 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1474 if (PageHighMem(page))
1475 /*
1476 * This catches illegal uses and preserves the offset:
1477 */
1478 bh->b_data = (char *)(0 + offset);
1479 else
1480 bh->b_data = page_address(page) + offset;
1481}
1482EXPORT_SYMBOL(set_bh_page);
1483
1484/*
1485 * Called when truncating a buffer on a page completely.
1486 */
e7470ee8
MG
1487
1488/* Bits that are cleared during an invalidate */
1489#define BUFFER_FLAGS_DISCARD \
1490 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1491 1 << BH_Delay | 1 << BH_Unwritten)
1492
858119e1 1493static void discard_buffer(struct buffer_head * bh)
1da177e4 1494{
e7470ee8
MG
1495 unsigned long b_state, b_state_old;
1496
1da177e4
LT
1497 lock_buffer(bh);
1498 clear_buffer_dirty(bh);
1499 bh->b_bdev = NULL;
e7470ee8
MG
1500 b_state = bh->b_state;
1501 for (;;) {
1502 b_state_old = cmpxchg(&bh->b_state, b_state,
1503 (b_state & ~BUFFER_FLAGS_DISCARD));
1504 if (b_state_old == b_state)
1505 break;
1506 b_state = b_state_old;
1507 }
1da177e4
LT
1508 unlock_buffer(bh);
1509}
1510
1da177e4 1511/**
814e1d25 1512 * block_invalidatepage - invalidate part or all of a buffer-backed page
1da177e4
LT
1513 *
1514 * @page: the page which is affected
d47992f8
LC
1515 * @offset: start of the range to invalidate
1516 * @length: length of the range to invalidate
1da177e4
LT
1517 *
1518 * block_invalidatepage() is called when all or part of the page has become
814e1d25 1519 * invalidated by a truncate operation.
1da177e4
LT
1520 *
1521 * block_invalidatepage() does not have to release all buffers, but it must
1522 * ensure that no dirty buffer is left outside @offset and that no I/O
1523 * is underway against any of the blocks which are outside the truncation
1524 * point. Because the caller is about to free (and possibly reuse) those
1525 * blocks on-disk.
1526 */
d47992f8
LC
1527void block_invalidatepage(struct page *page, unsigned int offset,
1528 unsigned int length)
1da177e4
LT
1529{
1530 struct buffer_head *head, *bh, *next;
1531 unsigned int curr_off = 0;
d47992f8 1532 unsigned int stop = length + offset;
1da177e4
LT
1533
1534 BUG_ON(!PageLocked(page));
1535 if (!page_has_buffers(page))
1536 goto out;
1537
d47992f8
LC
1538 /*
1539 * Check for overflow
1540 */
1541 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1542
1da177e4
LT
1543 head = page_buffers(page);
1544 bh = head;
1545 do {
1546 unsigned int next_off = curr_off + bh->b_size;
1547 next = bh->b_this_page;
1548
d47992f8
LC
1549 /*
1550 * Are we still fully in range ?
1551 */
1552 if (next_off > stop)
1553 goto out;
1554
1da177e4
LT
1555 /*
1556 * is this block fully invalidated?
1557 */
1558 if (offset <= curr_off)
1559 discard_buffer(bh);
1560 curr_off = next_off;
1561 bh = next;
1562 } while (bh != head);
1563
1564 /*
1565 * We release buffers only if the entire page is being invalidated.
1566 * The get_block cached value has been unconditionally invalidated,
1567 * so real IO is not possible anymore.
1568 */
1569 if (offset == 0)
2ff28e22 1570 try_to_release_page(page, 0);
1da177e4 1571out:
2ff28e22 1572 return;
1da177e4
LT
1573}
1574EXPORT_SYMBOL(block_invalidatepage);
1575
d47992f8 1576
1da177e4
LT
1577/*
1578 * We attach and possibly dirty the buffers atomically wrt
1579 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1580 * is already excluded via the page lock.
1581 */
1582void create_empty_buffers(struct page *page,
1583 unsigned long blocksize, unsigned long b_state)
1584{
1585 struct buffer_head *bh, *head, *tail;
1586
1587 head = alloc_page_buffers(page, blocksize, 1);
1588 bh = head;
1589 do {
1590 bh->b_state |= b_state;
1591 tail = bh;
1592 bh = bh->b_this_page;
1593 } while (bh);
1594 tail->b_this_page = head;
1595
1596 spin_lock(&page->mapping->private_lock);
1597 if (PageUptodate(page) || PageDirty(page)) {
1598 bh = head;
1599 do {
1600 if (PageDirty(page))
1601 set_buffer_dirty(bh);
1602 if (PageUptodate(page))
1603 set_buffer_uptodate(bh);
1604 bh = bh->b_this_page;
1605 } while (bh != head);
1606 }
1607 attach_page_buffers(page, head);
1608 spin_unlock(&page->mapping->private_lock);
1609}
1610EXPORT_SYMBOL(create_empty_buffers);
1611
1612/*
1613 * We are taking a block for data and we don't want any output from any
1614 * buffer-cache aliases starting from return from that function and
1615 * until the moment when something will explicitly mark the buffer
1616 * dirty (hopefully that will not happen until we will free that block ;-)
1617 * We don't even need to mark it not-uptodate - nobody can expect
1618 * anything from a newly allocated buffer anyway. We used to used
1619 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1620 * don't want to mark the alias unmapped, for example - it would confuse
1621 * anyone who might pick it with bread() afterwards...
1622 *
1623 * Also.. Note that bforget() doesn't lock the buffer. So there can
1624 * be writeout I/O going on against recently-freed buffers. We don't
1625 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1626 * only if we really need to. That happens here.
1627 */
1628void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1629{
1630 struct buffer_head *old_bh;
1631
1632 might_sleep();
1633
385fd4c5 1634 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1635 if (old_bh) {
1636 clear_buffer_dirty(old_bh);
1637 wait_on_buffer(old_bh);
1638 clear_buffer_req(old_bh);
1639 __brelse(old_bh);
1640 }
1641}
1642EXPORT_SYMBOL(unmap_underlying_metadata);
1643
45bce8f3
LT
1644/*
1645 * Size is a power-of-two in the range 512..PAGE_SIZE,
1646 * and the case we care about most is PAGE_SIZE.
1647 *
1648 * So this *could* possibly be written with those
1649 * constraints in mind (relevant mostly if some
1650 * architecture has a slow bit-scan instruction)
1651 */
1652static inline int block_size_bits(unsigned int blocksize)
1653{
1654 return ilog2(blocksize);
1655}
1656
1657static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1658{
1659 BUG_ON(!PageLocked(page));
1660
1661 if (!page_has_buffers(page))
1662 create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state);
1663 return page_buffers(page);
1664}
1665
1da177e4
LT
1666/*
1667 * NOTE! All mapped/uptodate combinations are valid:
1668 *
1669 * Mapped Uptodate Meaning
1670 *
1671 * No No "unknown" - must do get_block()
1672 * No Yes "hole" - zero-filled
1673 * Yes No "allocated" - allocated on disk, not read in
1674 * Yes Yes "valid" - allocated and up-to-date in memory.
1675 *
1676 * "Dirty" is valid only with the last case (mapped+uptodate).
1677 */
1678
1679/*
1680 * While block_write_full_page is writing back the dirty buffers under
1681 * the page lock, whoever dirtied the buffers may decide to clean them
1682 * again at any time. We handle that by only looking at the buffer
1683 * state inside lock_buffer().
1684 *
1685 * If block_write_full_page() is called for regular writeback
1686 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1687 * locked buffer. This only can happen if someone has written the buffer
1688 * directly, with submit_bh(). At the address_space level PageWriteback
1689 * prevents this contention from occurring.
6e34eedd
TT
1690 *
1691 * If block_write_full_page() is called with wbc->sync_mode ==
721a9602
JA
1692 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1693 * causes the writes to be flagged as synchronous writes.
1da177e4
LT
1694 */
1695static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1696 get_block_t *get_block, struct writeback_control *wbc,
1697 bh_end_io_t *handler)
1da177e4
LT
1698{
1699 int err;
1700 sector_t block;
1701 sector_t last_block;
f0fbd5fc 1702 struct buffer_head *bh, *head;
45bce8f3 1703 unsigned int blocksize, bbits;
1da177e4 1704 int nr_underway = 0;
6e34eedd 1705 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
721a9602 1706 WRITE_SYNC : WRITE);
1da177e4 1707
45bce8f3 1708 head = create_page_buffers(page, inode,
1da177e4 1709 (1 << BH_Dirty)|(1 << BH_Uptodate));
1da177e4
LT
1710
1711 /*
1712 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1713 * here, and the (potentially unmapped) buffers may become dirty at
1714 * any time. If a buffer becomes dirty here after we've inspected it
1715 * then we just miss that fact, and the page stays dirty.
1716 *
1717 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1718 * handle that here by just cleaning them.
1719 */
1720
1da177e4 1721 bh = head;
45bce8f3
LT
1722 blocksize = bh->b_size;
1723 bbits = block_size_bits(blocksize);
1724
1725 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1726 last_block = (i_size_read(inode) - 1) >> bbits;
1da177e4
LT
1727
1728 /*
1729 * Get all the dirty buffers mapped to disk addresses and
1730 * handle any aliases from the underlying blockdev's mapping.
1731 */
1732 do {
1733 if (block > last_block) {
1734 /*
1735 * mapped buffers outside i_size will occur, because
1736 * this page can be outside i_size when there is a
1737 * truncate in progress.
1738 */
1739 /*
1740 * The buffer was zeroed by block_write_full_page()
1741 */
1742 clear_buffer_dirty(bh);
1743 set_buffer_uptodate(bh);
29a814d2
AT
1744 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1745 buffer_dirty(bh)) {
b0cf2321 1746 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1747 err = get_block(inode, block, bh, 1);
1748 if (err)
1749 goto recover;
29a814d2 1750 clear_buffer_delay(bh);
1da177e4
LT
1751 if (buffer_new(bh)) {
1752 /* blockdev mappings never come here */
1753 clear_buffer_new(bh);
1754 unmap_underlying_metadata(bh->b_bdev,
1755 bh->b_blocknr);
1756 }
1757 }
1758 bh = bh->b_this_page;
1759 block++;
1760 } while (bh != head);
1761
1762 do {
1da177e4
LT
1763 if (!buffer_mapped(bh))
1764 continue;
1765 /*
1766 * If it's a fully non-blocking write attempt and we cannot
1767 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1768 * potentially cause a busy-wait loop from writeback threads
1769 * and kswapd activity, but those code paths have their own
1770 * higher-level throttling.
1da177e4 1771 */
1b430bee 1772 if (wbc->sync_mode != WB_SYNC_NONE) {
1da177e4 1773 lock_buffer(bh);
ca5de404 1774 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1775 redirty_page_for_writepage(wbc, page);
1776 continue;
1777 }
1778 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1779 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1780 } else {
1781 unlock_buffer(bh);
1782 }
1783 } while ((bh = bh->b_this_page) != head);
1784
1785 /*
1786 * The page and its buffers are protected by PageWriteback(), so we can
1787 * drop the bh refcounts early.
1788 */
1789 BUG_ON(PageWriteback(page));
1790 set_page_writeback(page);
1da177e4
LT
1791
1792 do {
1793 struct buffer_head *next = bh->b_this_page;
1794 if (buffer_async_write(bh)) {
a64c8610 1795 submit_bh(write_op, bh);
1da177e4
LT
1796 nr_underway++;
1797 }
1da177e4
LT
1798 bh = next;
1799 } while (bh != head);
05937baa 1800 unlock_page(page);
1da177e4
LT
1801
1802 err = 0;
1803done:
1804 if (nr_underway == 0) {
1805 /*
1806 * The page was marked dirty, but the buffers were
1807 * clean. Someone wrote them back by hand with
1808 * ll_rw_block/submit_bh. A rare case.
1809 */
1da177e4 1810 end_page_writeback(page);
3d67f2d7 1811
1da177e4
LT
1812 /*
1813 * The page and buffer_heads can be released at any time from
1814 * here on.
1815 */
1da177e4
LT
1816 }
1817 return err;
1818
1819recover:
1820 /*
1821 * ENOSPC, or some other error. We may already have added some
1822 * blocks to the file, so we need to write these out to avoid
1823 * exposing stale data.
1824 * The page is currently locked and not marked for writeback
1825 */
1826 bh = head;
1827 /* Recovery: lock and submit the mapped buffers */
1828 do {
29a814d2
AT
1829 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1830 !buffer_delay(bh)) {
1da177e4 1831 lock_buffer(bh);
35c80d5f 1832 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1833 } else {
1834 /*
1835 * The buffer may have been set dirty during
1836 * attachment to a dirty page.
1837 */
1838 clear_buffer_dirty(bh);
1839 }
1840 } while ((bh = bh->b_this_page) != head);
1841 SetPageError(page);
1842 BUG_ON(PageWriteback(page));
7e4c3690 1843 mapping_set_error(page->mapping, err);
1da177e4 1844 set_page_writeback(page);
1da177e4
LT
1845 do {
1846 struct buffer_head *next = bh->b_this_page;
1847 if (buffer_async_write(bh)) {
1848 clear_buffer_dirty(bh);
a64c8610 1849 submit_bh(write_op, bh);
1da177e4
LT
1850 nr_underway++;
1851 }
1da177e4
LT
1852 bh = next;
1853 } while (bh != head);
ffda9d30 1854 unlock_page(page);
1da177e4
LT
1855 goto done;
1856}
1857
afddba49
NP
1858/*
1859 * If a page has any new buffers, zero them out here, and mark them uptodate
1860 * and dirty so they'll be written out (in order to prevent uninitialised
1861 * block data from leaking). And clear the new bit.
1862 */
1863void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1864{
1865 unsigned int block_start, block_end;
1866 struct buffer_head *head, *bh;
1867
1868 BUG_ON(!PageLocked(page));
1869 if (!page_has_buffers(page))
1870 return;
1871
1872 bh = head = page_buffers(page);
1873 block_start = 0;
1874 do {
1875 block_end = block_start + bh->b_size;
1876
1877 if (buffer_new(bh)) {
1878 if (block_end > from && block_start < to) {
1879 if (!PageUptodate(page)) {
1880 unsigned start, size;
1881
1882 start = max(from, block_start);
1883 size = min(to, block_end) - start;
1884
eebd2aa3 1885 zero_user(page, start, size);
afddba49
NP
1886 set_buffer_uptodate(bh);
1887 }
1888
1889 clear_buffer_new(bh);
1890 mark_buffer_dirty(bh);
1891 }
1892 }
1893
1894 block_start = block_end;
1895 bh = bh->b_this_page;
1896 } while (bh != head);
1897}
1898EXPORT_SYMBOL(page_zero_new_buffers);
1899
ebdec241 1900int __block_write_begin(struct page *page, loff_t pos, unsigned len,
6e1db88d 1901 get_block_t *get_block)
1da177e4 1902{
ebdec241
CH
1903 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1904 unsigned to = from + len;
6e1db88d 1905 struct inode *inode = page->mapping->host;
1da177e4
LT
1906 unsigned block_start, block_end;
1907 sector_t block;
1908 int err = 0;
1909 unsigned blocksize, bbits;
1910 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1911
1912 BUG_ON(!PageLocked(page));
1913 BUG_ON(from > PAGE_CACHE_SIZE);
1914 BUG_ON(to > PAGE_CACHE_SIZE);
1915 BUG_ON(from > to);
1916
45bce8f3
LT
1917 head = create_page_buffers(page, inode, 0);
1918 blocksize = head->b_size;
1919 bbits = block_size_bits(blocksize);
1da177e4 1920
1da177e4
LT
1921 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1922
1923 for(bh = head, block_start = 0; bh != head || !block_start;
1924 block++, block_start=block_end, bh = bh->b_this_page) {
1925 block_end = block_start + blocksize;
1926 if (block_end <= from || block_start >= to) {
1927 if (PageUptodate(page)) {
1928 if (!buffer_uptodate(bh))
1929 set_buffer_uptodate(bh);
1930 }
1931 continue;
1932 }
1933 if (buffer_new(bh))
1934 clear_buffer_new(bh);
1935 if (!buffer_mapped(bh)) {
b0cf2321 1936 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1937 err = get_block(inode, block, bh, 1);
1938 if (err)
f3ddbdc6 1939 break;
1da177e4 1940 if (buffer_new(bh)) {
1da177e4
LT
1941 unmap_underlying_metadata(bh->b_bdev,
1942 bh->b_blocknr);
1943 if (PageUptodate(page)) {
637aff46 1944 clear_buffer_new(bh);
1da177e4 1945 set_buffer_uptodate(bh);
637aff46 1946 mark_buffer_dirty(bh);
1da177e4
LT
1947 continue;
1948 }
eebd2aa3
CL
1949 if (block_end > to || block_start < from)
1950 zero_user_segments(page,
1951 to, block_end,
1952 block_start, from);
1da177e4
LT
1953 continue;
1954 }
1955 }
1956 if (PageUptodate(page)) {
1957 if (!buffer_uptodate(bh))
1958 set_buffer_uptodate(bh);
1959 continue;
1960 }
1961 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1962 !buffer_unwritten(bh) &&
1da177e4
LT
1963 (block_start < from || block_end > to)) {
1964 ll_rw_block(READ, 1, &bh);
1965 *wait_bh++=bh;
1966 }
1967 }
1968 /*
1969 * If we issued read requests - let them complete.
1970 */
1971 while(wait_bh > wait) {
1972 wait_on_buffer(*--wait_bh);
1973 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1974 err = -EIO;
1da177e4 1975 }
f9f07b6c 1976 if (unlikely(err))
afddba49 1977 page_zero_new_buffers(page, from, to);
1da177e4
LT
1978 return err;
1979}
ebdec241 1980EXPORT_SYMBOL(__block_write_begin);
1da177e4
LT
1981
1982static int __block_commit_write(struct inode *inode, struct page *page,
1983 unsigned from, unsigned to)
1984{
1985 unsigned block_start, block_end;
1986 int partial = 0;
1987 unsigned blocksize;
1988 struct buffer_head *bh, *head;
1989
45bce8f3
LT
1990 bh = head = page_buffers(page);
1991 blocksize = bh->b_size;
1da177e4 1992
45bce8f3
LT
1993 block_start = 0;
1994 do {
1da177e4
LT
1995 block_end = block_start + blocksize;
1996 if (block_end <= from || block_start >= to) {
1997 if (!buffer_uptodate(bh))
1998 partial = 1;
1999 } else {
2000 set_buffer_uptodate(bh);
2001 mark_buffer_dirty(bh);
2002 }
afddba49 2003 clear_buffer_new(bh);
45bce8f3
LT
2004
2005 block_start = block_end;
2006 bh = bh->b_this_page;
2007 } while (bh != head);
1da177e4
LT
2008
2009 /*
2010 * If this is a partial write which happened to make all buffers
2011 * uptodate then we can optimize away a bogus readpage() for
2012 * the next read(). Here we 'discover' whether the page went
2013 * uptodate as a result of this (potentially partial) write.
2014 */
2015 if (!partial)
2016 SetPageUptodate(page);
2017 return 0;
2018}
2019
afddba49 2020/*
155130a4
CH
2021 * block_write_begin takes care of the basic task of block allocation and
2022 * bringing partial write blocks uptodate first.
2023 *
7bb46a67 2024 * The filesystem needs to handle block truncation upon failure.
afddba49 2025 */
155130a4
CH
2026int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2027 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 2028{
6e1db88d 2029 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 2030 struct page *page;
6e1db88d 2031 int status;
afddba49 2032
6e1db88d
CH
2033 page = grab_cache_page_write_begin(mapping, index, flags);
2034 if (!page)
2035 return -ENOMEM;
afddba49 2036
6e1db88d 2037 status = __block_write_begin(page, pos, len, get_block);
afddba49 2038 if (unlikely(status)) {
6e1db88d
CH
2039 unlock_page(page);
2040 page_cache_release(page);
2041 page = NULL;
afddba49
NP
2042 }
2043
6e1db88d 2044 *pagep = page;
afddba49
NP
2045 return status;
2046}
2047EXPORT_SYMBOL(block_write_begin);
2048
2049int block_write_end(struct file *file, struct address_space *mapping,
2050 loff_t pos, unsigned len, unsigned copied,
2051 struct page *page, void *fsdata)
2052{
2053 struct inode *inode = mapping->host;
2054 unsigned start;
2055
2056 start = pos & (PAGE_CACHE_SIZE - 1);
2057
2058 if (unlikely(copied < len)) {
2059 /*
2060 * The buffers that were written will now be uptodate, so we
2061 * don't have to worry about a readpage reading them and
2062 * overwriting a partial write. However if we have encountered
2063 * a short write and only partially written into a buffer, it
2064 * will not be marked uptodate, so a readpage might come in and
2065 * destroy our partial write.
2066 *
2067 * Do the simplest thing, and just treat any short write to a
2068 * non uptodate page as a zero-length write, and force the
2069 * caller to redo the whole thing.
2070 */
2071 if (!PageUptodate(page))
2072 copied = 0;
2073
2074 page_zero_new_buffers(page, start+copied, start+len);
2075 }
2076 flush_dcache_page(page);
2077
2078 /* This could be a short (even 0-length) commit */
2079 __block_commit_write(inode, page, start, start+copied);
2080
2081 return copied;
2082}
2083EXPORT_SYMBOL(block_write_end);
2084
2085int generic_write_end(struct file *file, struct address_space *mapping,
2086 loff_t pos, unsigned len, unsigned copied,
2087 struct page *page, void *fsdata)
2088{
2089 struct inode *inode = mapping->host;
c7d206b3 2090 int i_size_changed = 0;
afddba49
NP
2091
2092 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2093
2094 /*
2095 * No need to use i_size_read() here, the i_size
2096 * cannot change under us because we hold i_mutex.
2097 *
2098 * But it's important to update i_size while still holding page lock:
2099 * page writeout could otherwise come in and zero beyond i_size.
2100 */
2101 if (pos+copied > inode->i_size) {
2102 i_size_write(inode, pos+copied);
c7d206b3 2103 i_size_changed = 1;
afddba49
NP
2104 }
2105
2106 unlock_page(page);
2107 page_cache_release(page);
2108
c7d206b3
JK
2109 /*
2110 * Don't mark the inode dirty under page lock. First, it unnecessarily
2111 * makes the holding time of page lock longer. Second, it forces lock
2112 * ordering of page lock and transaction start for journaling
2113 * filesystems.
2114 */
2115 if (i_size_changed)
2116 mark_inode_dirty(inode);
2117
afddba49
NP
2118 return copied;
2119}
2120EXPORT_SYMBOL(generic_write_end);
2121
8ab22b9a
HH
2122/*
2123 * block_is_partially_uptodate checks whether buffers within a page are
2124 * uptodate or not.
2125 *
2126 * Returns true if all buffers which correspond to a file portion
2127 * we want to read are uptodate.
2128 */
c186afb4
AV
2129int block_is_partially_uptodate(struct page *page, unsigned long from,
2130 unsigned long count)
8ab22b9a 2131{
8ab22b9a
HH
2132 unsigned block_start, block_end, blocksize;
2133 unsigned to;
2134 struct buffer_head *bh, *head;
2135 int ret = 1;
2136
2137 if (!page_has_buffers(page))
2138 return 0;
2139
45bce8f3
LT
2140 head = page_buffers(page);
2141 blocksize = head->b_size;
c186afb4 2142 to = min_t(unsigned, PAGE_CACHE_SIZE - from, count);
8ab22b9a
HH
2143 to = from + to;
2144 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2145 return 0;
2146
8ab22b9a
HH
2147 bh = head;
2148 block_start = 0;
2149 do {
2150 block_end = block_start + blocksize;
2151 if (block_end > from && block_start < to) {
2152 if (!buffer_uptodate(bh)) {
2153 ret = 0;
2154 break;
2155 }
2156 if (block_end >= to)
2157 break;
2158 }
2159 block_start = block_end;
2160 bh = bh->b_this_page;
2161 } while (bh != head);
2162
2163 return ret;
2164}
2165EXPORT_SYMBOL(block_is_partially_uptodate);
2166
1da177e4
LT
2167/*
2168 * Generic "read page" function for block devices that have the normal
2169 * get_block functionality. This is most of the block device filesystems.
2170 * Reads the page asynchronously --- the unlock_buffer() and
2171 * set/clear_buffer_uptodate() functions propagate buffer state into the
2172 * page struct once IO has completed.
2173 */
2174int block_read_full_page(struct page *page, get_block_t *get_block)
2175{
2176 struct inode *inode = page->mapping->host;
2177 sector_t iblock, lblock;
2178 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
45bce8f3 2179 unsigned int blocksize, bbits;
1da177e4
LT
2180 int nr, i;
2181 int fully_mapped = 1;
2182
45bce8f3
LT
2183 head = create_page_buffers(page, inode, 0);
2184 blocksize = head->b_size;
2185 bbits = block_size_bits(blocksize);
1da177e4 2186
45bce8f3
LT
2187 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
2188 lblock = (i_size_read(inode)+blocksize-1) >> bbits;
1da177e4
LT
2189 bh = head;
2190 nr = 0;
2191 i = 0;
2192
2193 do {
2194 if (buffer_uptodate(bh))
2195 continue;
2196
2197 if (!buffer_mapped(bh)) {
c64610ba
AM
2198 int err = 0;
2199
1da177e4
LT
2200 fully_mapped = 0;
2201 if (iblock < lblock) {
b0cf2321 2202 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2203 err = get_block(inode, iblock, bh, 0);
2204 if (err)
1da177e4
LT
2205 SetPageError(page);
2206 }
2207 if (!buffer_mapped(bh)) {
eebd2aa3 2208 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2209 if (!err)
2210 set_buffer_uptodate(bh);
1da177e4
LT
2211 continue;
2212 }
2213 /*
2214 * get_block() might have updated the buffer
2215 * synchronously
2216 */
2217 if (buffer_uptodate(bh))
2218 continue;
2219 }
2220 arr[nr++] = bh;
2221 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2222
2223 if (fully_mapped)
2224 SetPageMappedToDisk(page);
2225
2226 if (!nr) {
2227 /*
2228 * All buffers are uptodate - we can set the page uptodate
2229 * as well. But not if get_block() returned an error.
2230 */
2231 if (!PageError(page))
2232 SetPageUptodate(page);
2233 unlock_page(page);
2234 return 0;
2235 }
2236
2237 /* Stage two: lock the buffers */
2238 for (i = 0; i < nr; i++) {
2239 bh = arr[i];
2240 lock_buffer(bh);
2241 mark_buffer_async_read(bh);
2242 }
2243
2244 /*
2245 * Stage 3: start the IO. Check for uptodateness
2246 * inside the buffer lock in case another process reading
2247 * the underlying blockdev brought it uptodate (the sct fix).
2248 */
2249 for (i = 0; i < nr; i++) {
2250 bh = arr[i];
2251 if (buffer_uptodate(bh))
2252 end_buffer_async_read(bh, 1);
2253 else
2254 submit_bh(READ, bh);
2255 }
2256 return 0;
2257}
1fe72eaa 2258EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2259
2260/* utility function for filesystems that need to do work on expanding
89e10787 2261 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2262 * deal with the hole.
2263 */
89e10787 2264int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2265{
2266 struct address_space *mapping = inode->i_mapping;
2267 struct page *page;
89e10787 2268 void *fsdata;
1da177e4
LT
2269 int err;
2270
c08d3b0e 2271 err = inode_newsize_ok(inode, size);
2272 if (err)
1da177e4
LT
2273 goto out;
2274
89e10787
NP
2275 err = pagecache_write_begin(NULL, mapping, size, 0,
2276 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2277 &page, &fsdata);
2278 if (err)
05eb0b51 2279 goto out;
05eb0b51 2280
89e10787
NP
2281 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2282 BUG_ON(err > 0);
05eb0b51 2283
1da177e4
LT
2284out:
2285 return err;
2286}
1fe72eaa 2287EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2288
f1e3af72
AB
2289static int cont_expand_zero(struct file *file, struct address_space *mapping,
2290 loff_t pos, loff_t *bytes)
1da177e4 2291{
1da177e4 2292 struct inode *inode = mapping->host;
1da177e4 2293 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2294 struct page *page;
2295 void *fsdata;
2296 pgoff_t index, curidx;
2297 loff_t curpos;
2298 unsigned zerofrom, offset, len;
2299 int err = 0;
1da177e4 2300
89e10787
NP
2301 index = pos >> PAGE_CACHE_SHIFT;
2302 offset = pos & ~PAGE_CACHE_MASK;
2303
2304 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2305 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2306 if (zerofrom & (blocksize-1)) {
2307 *bytes |= (blocksize-1);
2308 (*bytes)++;
2309 }
89e10787 2310 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2311
89e10787
NP
2312 err = pagecache_write_begin(file, mapping, curpos, len,
2313 AOP_FLAG_UNINTERRUPTIBLE,
2314 &page, &fsdata);
2315 if (err)
2316 goto out;
eebd2aa3 2317 zero_user(page, zerofrom, len);
89e10787
NP
2318 err = pagecache_write_end(file, mapping, curpos, len, len,
2319 page, fsdata);
2320 if (err < 0)
2321 goto out;
2322 BUG_ON(err != len);
2323 err = 0;
061e9746
OH
2324
2325 balance_dirty_pages_ratelimited(mapping);
89e10787 2326 }
1da177e4 2327
89e10787
NP
2328 /* page covers the boundary, find the boundary offset */
2329 if (index == curidx) {
2330 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2331 /* if we will expand the thing last block will be filled */
89e10787
NP
2332 if (offset <= zerofrom) {
2333 goto out;
2334 }
2335 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2336 *bytes |= (blocksize-1);
2337 (*bytes)++;
2338 }
89e10787 2339 len = offset - zerofrom;
1da177e4 2340
89e10787
NP
2341 err = pagecache_write_begin(file, mapping, curpos, len,
2342 AOP_FLAG_UNINTERRUPTIBLE,
2343 &page, &fsdata);
2344 if (err)
2345 goto out;
eebd2aa3 2346 zero_user(page, zerofrom, len);
89e10787
NP
2347 err = pagecache_write_end(file, mapping, curpos, len, len,
2348 page, fsdata);
2349 if (err < 0)
2350 goto out;
2351 BUG_ON(err != len);
2352 err = 0;
1da177e4 2353 }
89e10787
NP
2354out:
2355 return err;
2356}
2357
2358/*
2359 * For moronic filesystems that do not allow holes in file.
2360 * We may have to extend the file.
2361 */
282dc178 2362int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2363 loff_t pos, unsigned len, unsigned flags,
2364 struct page **pagep, void **fsdata,
2365 get_block_t *get_block, loff_t *bytes)
2366{
2367 struct inode *inode = mapping->host;
2368 unsigned blocksize = 1 << inode->i_blkbits;
2369 unsigned zerofrom;
2370 int err;
2371
2372 err = cont_expand_zero(file, mapping, pos, bytes);
2373 if (err)
155130a4 2374 return err;
89e10787
NP
2375
2376 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2377 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2378 *bytes |= (blocksize-1);
2379 (*bytes)++;
1da177e4 2380 }
1da177e4 2381
155130a4 2382 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2383}
1fe72eaa 2384EXPORT_SYMBOL(cont_write_begin);
1da177e4 2385
1da177e4
LT
2386int block_commit_write(struct page *page, unsigned from, unsigned to)
2387{
2388 struct inode *inode = page->mapping->host;
2389 __block_commit_write(inode,page,from,to);
2390 return 0;
2391}
1fe72eaa 2392EXPORT_SYMBOL(block_commit_write);
1da177e4 2393
54171690
DC
2394/*
2395 * block_page_mkwrite() is not allowed to change the file size as it gets
2396 * called from a page fault handler when a page is first dirtied. Hence we must
2397 * be careful to check for EOF conditions here. We set the page up correctly
2398 * for a written page which means we get ENOSPC checking when writing into
2399 * holes and correct delalloc and unwritten extent mapping on filesystems that
2400 * support these features.
2401 *
2402 * We are not allowed to take the i_mutex here so we have to play games to
2403 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2404 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2405 * page lock we can determine safely if the page is beyond EOF. If it is not
2406 * beyond EOF, then the page is guaranteed safe against truncation until we
2407 * unlock the page.
ea13a864 2408 *
14da9200
JK
2409 * Direct callers of this function should protect against filesystem freezing
2410 * using sb_start_write() - sb_end_write() functions.
54171690 2411 */
24da4fab
JK
2412int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2413 get_block_t get_block)
54171690 2414{
c2ec175c 2415 struct page *page = vmf->page;
496ad9aa 2416 struct inode *inode = file_inode(vma->vm_file);
54171690
DC
2417 unsigned long end;
2418 loff_t size;
24da4fab 2419 int ret;
54171690
DC
2420
2421 lock_page(page);
2422 size = i_size_read(inode);
2423 if ((page->mapping != inode->i_mapping) ||
18336338 2424 (page_offset(page) > size)) {
24da4fab
JK
2425 /* We overload EFAULT to mean page got truncated */
2426 ret = -EFAULT;
2427 goto out_unlock;
54171690
DC
2428 }
2429
2430 /* page is wholly or partially inside EOF */
2431 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2432 end = size & ~PAGE_CACHE_MASK;
2433 else
2434 end = PAGE_CACHE_SIZE;
2435
ebdec241 2436 ret = __block_write_begin(page, 0, end, get_block);
54171690
DC
2437 if (!ret)
2438 ret = block_commit_write(page, 0, end);
2439
24da4fab
JK
2440 if (unlikely(ret < 0))
2441 goto out_unlock;
ea13a864 2442 set_page_dirty(page);
1d1d1a76 2443 wait_for_stable_page(page);
24da4fab
JK
2444 return 0;
2445out_unlock:
2446 unlock_page(page);
54171690 2447 return ret;
24da4fab
JK
2448}
2449EXPORT_SYMBOL(__block_page_mkwrite);
2450
2451int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2452 get_block_t get_block)
2453{
ea13a864 2454 int ret;
496ad9aa 2455 struct super_block *sb = file_inode(vma->vm_file)->i_sb;
24da4fab 2456
14da9200 2457 sb_start_pagefault(sb);
041bbb6d
TT
2458
2459 /*
2460 * Update file times before taking page lock. We may end up failing the
2461 * fault so this update may be superfluous but who really cares...
2462 */
2463 file_update_time(vma->vm_file);
2464
ea13a864 2465 ret = __block_page_mkwrite(vma, vmf, get_block);
14da9200 2466 sb_end_pagefault(sb);
24da4fab 2467 return block_page_mkwrite_return(ret);
54171690 2468}
1fe72eaa 2469EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2470
2471/*
03158cd7 2472 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2473 * immediately, while under the page lock. So it needs a special end_io
2474 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2475 */
2476static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2477{
68671f35 2478 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2479}
2480
03158cd7
NP
2481/*
2482 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2483 * the page (converting it to circular linked list and taking care of page
2484 * dirty races).
2485 */
2486static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2487{
2488 struct buffer_head *bh;
2489
2490 BUG_ON(!PageLocked(page));
2491
2492 spin_lock(&page->mapping->private_lock);
2493 bh = head;
2494 do {
2495 if (PageDirty(page))
2496 set_buffer_dirty(bh);
2497 if (!bh->b_this_page)
2498 bh->b_this_page = head;
2499 bh = bh->b_this_page;
2500 } while (bh != head);
2501 attach_page_buffers(page, head);
2502 spin_unlock(&page->mapping->private_lock);
2503}
2504
1da177e4 2505/*
ea0f04e5
CH
2506 * On entry, the page is fully not uptodate.
2507 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2508 * The filesystem needs to handle block truncation upon failure.
1da177e4 2509 */
ea0f04e5 2510int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2511 loff_t pos, unsigned len, unsigned flags,
2512 struct page **pagep, void **fsdata,
1da177e4
LT
2513 get_block_t *get_block)
2514{
03158cd7 2515 struct inode *inode = mapping->host;
1da177e4
LT
2516 const unsigned blkbits = inode->i_blkbits;
2517 const unsigned blocksize = 1 << blkbits;
a4b0672d 2518 struct buffer_head *head, *bh;
03158cd7
NP
2519 struct page *page;
2520 pgoff_t index;
2521 unsigned from, to;
1da177e4 2522 unsigned block_in_page;
a4b0672d 2523 unsigned block_start, block_end;
1da177e4 2524 sector_t block_in_file;
1da177e4 2525 int nr_reads = 0;
1da177e4
LT
2526 int ret = 0;
2527 int is_mapped_to_disk = 1;
1da177e4 2528
03158cd7
NP
2529 index = pos >> PAGE_CACHE_SHIFT;
2530 from = pos & (PAGE_CACHE_SIZE - 1);
2531 to = from + len;
2532
54566b2c 2533 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2534 if (!page)
2535 return -ENOMEM;
2536 *pagep = page;
2537 *fsdata = NULL;
2538
2539 if (page_has_buffers(page)) {
309f77ad
NK
2540 ret = __block_write_begin(page, pos, len, get_block);
2541 if (unlikely(ret))
2542 goto out_release;
2543 return ret;
03158cd7 2544 }
a4b0672d 2545
1da177e4
LT
2546 if (PageMappedToDisk(page))
2547 return 0;
2548
a4b0672d
NP
2549 /*
2550 * Allocate buffers so that we can keep track of state, and potentially
2551 * attach them to the page if an error occurs. In the common case of
2552 * no error, they will just be freed again without ever being attached
2553 * to the page (which is all OK, because we're under the page lock).
2554 *
2555 * Be careful: the buffer linked list is a NULL terminated one, rather
2556 * than the circular one we're used to.
2557 */
2558 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2559 if (!head) {
2560 ret = -ENOMEM;
2561 goto out_release;
2562 }
a4b0672d 2563
1da177e4 2564 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2565
2566 /*
2567 * We loop across all blocks in the page, whether or not they are
2568 * part of the affected region. This is so we can discover if the
2569 * page is fully mapped-to-disk.
2570 */
a4b0672d 2571 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2572 block_start < PAGE_CACHE_SIZE;
a4b0672d 2573 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2574 int create;
2575
a4b0672d
NP
2576 block_end = block_start + blocksize;
2577 bh->b_state = 0;
1da177e4
LT
2578 create = 1;
2579 if (block_start >= to)
2580 create = 0;
2581 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2582 bh, create);
1da177e4
LT
2583 if (ret)
2584 goto failed;
a4b0672d 2585 if (!buffer_mapped(bh))
1da177e4 2586 is_mapped_to_disk = 0;
a4b0672d
NP
2587 if (buffer_new(bh))
2588 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2589 if (PageUptodate(page)) {
2590 set_buffer_uptodate(bh);
1da177e4 2591 continue;
a4b0672d
NP
2592 }
2593 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2594 zero_user_segments(page, block_start, from,
2595 to, block_end);
1da177e4
LT
2596 continue;
2597 }
a4b0672d 2598 if (buffer_uptodate(bh))
1da177e4
LT
2599 continue; /* reiserfs does this */
2600 if (block_start < from || block_end > to) {
a4b0672d
NP
2601 lock_buffer(bh);
2602 bh->b_end_io = end_buffer_read_nobh;
2603 submit_bh(READ, bh);
2604 nr_reads++;
1da177e4
LT
2605 }
2606 }
2607
2608 if (nr_reads) {
1da177e4
LT
2609 /*
2610 * The page is locked, so these buffers are protected from
2611 * any VM or truncate activity. Hence we don't need to care
2612 * for the buffer_head refcounts.
2613 */
a4b0672d 2614 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2615 wait_on_buffer(bh);
2616 if (!buffer_uptodate(bh))
2617 ret = -EIO;
1da177e4
LT
2618 }
2619 if (ret)
2620 goto failed;
2621 }
2622
2623 if (is_mapped_to_disk)
2624 SetPageMappedToDisk(page);
1da177e4 2625
03158cd7 2626 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2627
1da177e4
LT
2628 return 0;
2629
2630failed:
03158cd7 2631 BUG_ON(!ret);
1da177e4 2632 /*
a4b0672d
NP
2633 * Error recovery is a bit difficult. We need to zero out blocks that
2634 * were newly allocated, and dirty them to ensure they get written out.
2635 * Buffers need to be attached to the page at this point, otherwise
2636 * the handling of potential IO errors during writeout would be hard
2637 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2638 */
03158cd7
NP
2639 attach_nobh_buffers(page, head);
2640 page_zero_new_buffers(page, from, to);
a4b0672d 2641
03158cd7
NP
2642out_release:
2643 unlock_page(page);
2644 page_cache_release(page);
2645 *pagep = NULL;
a4b0672d 2646
7bb46a67 2647 return ret;
2648}
03158cd7 2649EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2650
03158cd7
NP
2651int nobh_write_end(struct file *file, struct address_space *mapping,
2652 loff_t pos, unsigned len, unsigned copied,
2653 struct page *page, void *fsdata)
1da177e4
LT
2654{
2655 struct inode *inode = page->mapping->host;
efdc3131 2656 struct buffer_head *head = fsdata;
03158cd7 2657 struct buffer_head *bh;
5b41e74a 2658 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2659
d4cf109f 2660 if (unlikely(copied < len) && head)
5b41e74a
DM
2661 attach_nobh_buffers(page, head);
2662 if (page_has_buffers(page))
2663 return generic_write_end(file, mapping, pos, len,
2664 copied, page, fsdata);
a4b0672d 2665
22c8ca78 2666 SetPageUptodate(page);
1da177e4 2667 set_page_dirty(page);
03158cd7
NP
2668 if (pos+copied > inode->i_size) {
2669 i_size_write(inode, pos+copied);
1da177e4
LT
2670 mark_inode_dirty(inode);
2671 }
03158cd7
NP
2672
2673 unlock_page(page);
2674 page_cache_release(page);
2675
03158cd7
NP
2676 while (head) {
2677 bh = head;
2678 head = head->b_this_page;
2679 free_buffer_head(bh);
2680 }
2681
2682 return copied;
1da177e4 2683}
03158cd7 2684EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2685
2686/*
2687 * nobh_writepage() - based on block_full_write_page() except
2688 * that it tries to operate without attaching bufferheads to
2689 * the page.
2690 */
2691int nobh_writepage(struct page *page, get_block_t *get_block,
2692 struct writeback_control *wbc)
2693{
2694 struct inode * const inode = page->mapping->host;
2695 loff_t i_size = i_size_read(inode);
2696 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2697 unsigned offset;
1da177e4
LT
2698 int ret;
2699
2700 /* Is the page fully inside i_size? */
2701 if (page->index < end_index)
2702 goto out;
2703
2704 /* Is the page fully outside i_size? (truncate in progress) */
2705 offset = i_size & (PAGE_CACHE_SIZE-1);
2706 if (page->index >= end_index+1 || !offset) {
2707 /*
2708 * The page may have dirty, unmapped buffers. For example,
2709 * they may have been added in ext3_writepage(). Make them
2710 * freeable here, so the page does not leak.
2711 */
2712#if 0
2713 /* Not really sure about this - do we need this ? */
2714 if (page->mapping->a_ops->invalidatepage)
2715 page->mapping->a_ops->invalidatepage(page, offset);
2716#endif
2717 unlock_page(page);
2718 return 0; /* don't care */
2719 }
2720
2721 /*
2722 * The page straddles i_size. It must be zeroed out on each and every
2723 * writepage invocation because it may be mmapped. "A file is mapped
2724 * in multiples of the page size. For a file that is not a multiple of
2725 * the page size, the remaining memory is zeroed when mapped, and
2726 * writes to that region are not written out to the file."
2727 */
eebd2aa3 2728 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2729out:
2730 ret = mpage_writepage(page, get_block, wbc);
2731 if (ret == -EAGAIN)
35c80d5f
CM
2732 ret = __block_write_full_page(inode, page, get_block, wbc,
2733 end_buffer_async_write);
1da177e4
LT
2734 return ret;
2735}
2736EXPORT_SYMBOL(nobh_writepage);
2737
03158cd7
NP
2738int nobh_truncate_page(struct address_space *mapping,
2739 loff_t from, get_block_t *get_block)
1da177e4 2740{
1da177e4
LT
2741 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2742 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2743 unsigned blocksize;
2744 sector_t iblock;
2745 unsigned length, pos;
2746 struct inode *inode = mapping->host;
1da177e4 2747 struct page *page;
03158cd7
NP
2748 struct buffer_head map_bh;
2749 int err;
1da177e4 2750
03158cd7
NP
2751 blocksize = 1 << inode->i_blkbits;
2752 length = offset & (blocksize - 1);
2753
2754 /* Block boundary? Nothing to do */
2755 if (!length)
2756 return 0;
2757
2758 length = blocksize - length;
2759 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2760
1da177e4 2761 page = grab_cache_page(mapping, index);
03158cd7 2762 err = -ENOMEM;
1da177e4
LT
2763 if (!page)
2764 goto out;
2765
03158cd7
NP
2766 if (page_has_buffers(page)) {
2767has_buffers:
2768 unlock_page(page);
2769 page_cache_release(page);
2770 return block_truncate_page(mapping, from, get_block);
2771 }
2772
2773 /* Find the buffer that contains "offset" */
2774 pos = blocksize;
2775 while (offset >= pos) {
2776 iblock++;
2777 pos += blocksize;
2778 }
2779
460bcf57
TT
2780 map_bh.b_size = blocksize;
2781 map_bh.b_state = 0;
03158cd7
NP
2782 err = get_block(inode, iblock, &map_bh, 0);
2783 if (err)
2784 goto unlock;
2785 /* unmapped? It's a hole - nothing to do */
2786 if (!buffer_mapped(&map_bh))
2787 goto unlock;
2788
2789 /* Ok, it's mapped. Make sure it's up-to-date */
2790 if (!PageUptodate(page)) {
2791 err = mapping->a_ops->readpage(NULL, page);
2792 if (err) {
2793 page_cache_release(page);
2794 goto out;
2795 }
2796 lock_page(page);
2797 if (!PageUptodate(page)) {
2798 err = -EIO;
2799 goto unlock;
2800 }
2801 if (page_has_buffers(page))
2802 goto has_buffers;
1da177e4 2803 }
eebd2aa3 2804 zero_user(page, offset, length);
03158cd7
NP
2805 set_page_dirty(page);
2806 err = 0;
2807
2808unlock:
1da177e4
LT
2809 unlock_page(page);
2810 page_cache_release(page);
2811out:
03158cd7 2812 return err;
1da177e4
LT
2813}
2814EXPORT_SYMBOL(nobh_truncate_page);
2815
2816int block_truncate_page(struct address_space *mapping,
2817 loff_t from, get_block_t *get_block)
2818{
2819 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2820 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2821 unsigned blocksize;
54b21a79 2822 sector_t iblock;
1da177e4
LT
2823 unsigned length, pos;
2824 struct inode *inode = mapping->host;
2825 struct page *page;
2826 struct buffer_head *bh;
1da177e4
LT
2827 int err;
2828
2829 blocksize = 1 << inode->i_blkbits;
2830 length = offset & (blocksize - 1);
2831
2832 /* Block boundary? Nothing to do */
2833 if (!length)
2834 return 0;
2835
2836 length = blocksize - length;
54b21a79 2837 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2838
2839 page = grab_cache_page(mapping, index);
2840 err = -ENOMEM;
2841 if (!page)
2842 goto out;
2843
2844 if (!page_has_buffers(page))
2845 create_empty_buffers(page, blocksize, 0);
2846
2847 /* Find the buffer that contains "offset" */
2848 bh = page_buffers(page);
2849 pos = blocksize;
2850 while (offset >= pos) {
2851 bh = bh->b_this_page;
2852 iblock++;
2853 pos += blocksize;
2854 }
2855
2856 err = 0;
2857 if (!buffer_mapped(bh)) {
b0cf2321 2858 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2859 err = get_block(inode, iblock, bh, 0);
2860 if (err)
2861 goto unlock;
2862 /* unmapped? It's a hole - nothing to do */
2863 if (!buffer_mapped(bh))
2864 goto unlock;
2865 }
2866
2867 /* Ok, it's mapped. Make sure it's up-to-date */
2868 if (PageUptodate(page))
2869 set_buffer_uptodate(bh);
2870
33a266dd 2871 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2872 err = -EIO;
2873 ll_rw_block(READ, 1, &bh);
2874 wait_on_buffer(bh);
2875 /* Uhhuh. Read error. Complain and punt. */
2876 if (!buffer_uptodate(bh))
2877 goto unlock;
2878 }
2879
eebd2aa3 2880 zero_user(page, offset, length);
1da177e4
LT
2881 mark_buffer_dirty(bh);
2882 err = 0;
2883
2884unlock:
2885 unlock_page(page);
2886 page_cache_release(page);
2887out:
2888 return err;
2889}
1fe72eaa 2890EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2891
2892/*
2893 * The generic ->writepage function for buffer-backed address_spaces
2894 */
1b938c08
MW
2895int block_write_full_page(struct page *page, get_block_t *get_block,
2896 struct writeback_control *wbc)
1da177e4
LT
2897{
2898 struct inode * const inode = page->mapping->host;
2899 loff_t i_size = i_size_read(inode);
2900 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2901 unsigned offset;
1da177e4
LT
2902
2903 /* Is the page fully inside i_size? */
2904 if (page->index < end_index)
35c80d5f 2905 return __block_write_full_page(inode, page, get_block, wbc,
1b938c08 2906 end_buffer_async_write);
1da177e4
LT
2907
2908 /* Is the page fully outside i_size? (truncate in progress) */
2909 offset = i_size & (PAGE_CACHE_SIZE-1);
2910 if (page->index >= end_index+1 || !offset) {
2911 /*
2912 * The page may have dirty, unmapped buffers. For example,
2913 * they may have been added in ext3_writepage(). Make them
2914 * freeable here, so the page does not leak.
2915 */
d47992f8 2916 do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1da177e4
LT
2917 unlock_page(page);
2918 return 0; /* don't care */
2919 }
2920
2921 /*
2922 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2923 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2924 * in multiples of the page size. For a file that is not a multiple of
2925 * the page size, the remaining memory is zeroed when mapped, and
2926 * writes to that region are not written out to the file."
2927 */
eebd2aa3 2928 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1b938c08
MW
2929 return __block_write_full_page(inode, page, get_block, wbc,
2930 end_buffer_async_write);
35c80d5f 2931}
1fe72eaa 2932EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2933
1da177e4
LT
2934sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2935 get_block_t *get_block)
2936{
2937 struct buffer_head tmp;
2938 struct inode *inode = mapping->host;
2939 tmp.b_state = 0;
2940 tmp.b_blocknr = 0;
b0cf2321 2941 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2942 get_block(inode, block, &tmp, 0);
2943 return tmp.b_blocknr;
2944}
1fe72eaa 2945EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2946
6712ecf8 2947static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2948{
2949 struct buffer_head *bh = bio->bi_private;
2950
1da177e4
LT
2951 if (err == -EOPNOTSUPP) {
2952 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
1da177e4
LT
2953 }
2954
08bafc03
KM
2955 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2956 set_bit(BH_Quiet, &bh->b_state);
2957
1da177e4
LT
2958 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2959 bio_put(bio);
1da177e4
LT
2960}
2961
57302e0d
LT
2962/*
2963 * This allows us to do IO even on the odd last sectors
2964 * of a device, even if the bh block size is some multiple
2965 * of the physical sector size.
2966 *
2967 * We'll just truncate the bio to the size of the device,
2968 * and clear the end of the buffer head manually.
2969 *
2970 * Truly out-of-range accesses will turn into actual IO
2971 * errors, this only handles the "we need to be able to
2972 * do IO at the final sector" case.
2973 */
2974static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh)
2975{
2976 sector_t maxsector;
2977 unsigned bytes;
2978
2979 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
2980 if (!maxsector)
2981 return;
2982
2983 /*
2984 * If the *whole* IO is past the end of the device,
2985 * let it through, and the IO layer will turn it into
2986 * an EIO.
2987 */
4f024f37 2988 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
57302e0d
LT
2989 return;
2990
4f024f37
KO
2991 maxsector -= bio->bi_iter.bi_sector;
2992 bytes = bio->bi_iter.bi_size;
57302e0d
LT
2993 if (likely((bytes >> 9) <= maxsector))
2994 return;
2995
2996 /* Uhhuh. We've got a bh that straddles the device size! */
2997 bytes = maxsector << 9;
2998
2999 /* Truncate the bio.. */
4f024f37 3000 bio->bi_iter.bi_size = bytes;
57302e0d
LT
3001 bio->bi_io_vec[0].bv_len = bytes;
3002
3003 /* ..and clear the end of the buffer for reads */
27d7c2a0 3004 if ((rw & RW_MASK) == READ) {
57302e0d
LT
3005 void *kaddr = kmap_atomic(bh->b_page);
3006 memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes);
3007 kunmap_atomic(kaddr);
6d283dba 3008 flush_dcache_page(bh->b_page);
57302e0d
LT
3009 }
3010}
3011
71368511 3012int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags)
1da177e4
LT
3013{
3014 struct bio *bio;
3015 int ret = 0;
3016
3017 BUG_ON(!buffer_locked(bh));
3018 BUG_ON(!buffer_mapped(bh));
3019 BUG_ON(!bh->b_end_io);
8fb0e342
AK
3020 BUG_ON(buffer_delay(bh));
3021 BUG_ON(buffer_unwritten(bh));
1da177e4 3022
1da177e4 3023 /*
48fd4f93 3024 * Only clear out a write error when rewriting
1da177e4 3025 */
48fd4f93 3026 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
3027 clear_buffer_write_io_error(bh);
3028
3029 /*
3030 * from here on down, it's all bio -- do the initial mapping,
3031 * submit_bio -> generic_make_request may further map this bio around
3032 */
3033 bio = bio_alloc(GFP_NOIO, 1);
3034
4f024f37 3035 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
1da177e4
LT
3036 bio->bi_bdev = bh->b_bdev;
3037 bio->bi_io_vec[0].bv_page = bh->b_page;
3038 bio->bi_io_vec[0].bv_len = bh->b_size;
3039 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
3040
3041 bio->bi_vcnt = 1;
4f024f37 3042 bio->bi_iter.bi_size = bh->b_size;
1da177e4
LT
3043
3044 bio->bi_end_io = end_bio_bh_io_sync;
3045 bio->bi_private = bh;
71368511 3046 bio->bi_flags |= bio_flags;
1da177e4 3047
57302e0d
LT
3048 /* Take care of bh's that straddle the end of the device */
3049 guard_bh_eod(rw, bio, bh);
3050
877f962c
TT
3051 if (buffer_meta(bh))
3052 rw |= REQ_META;
3053 if (buffer_prio(bh))
3054 rw |= REQ_PRIO;
3055
1da177e4
LT
3056 bio_get(bio);
3057 submit_bio(rw, bio);
3058
3059 if (bio_flagged(bio, BIO_EOPNOTSUPP))
3060 ret = -EOPNOTSUPP;
3061
3062 bio_put(bio);
3063 return ret;
3064}
71368511
DW
3065EXPORT_SYMBOL_GPL(_submit_bh);
3066
3067int submit_bh(int rw, struct buffer_head *bh)
3068{
3069 return _submit_bh(rw, bh, 0);
3070}
1fe72eaa 3071EXPORT_SYMBOL(submit_bh);
1da177e4
LT
3072
3073/**
3074 * ll_rw_block: low-level access to block devices (DEPRECATED)
9cb569d6 3075 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
1da177e4
LT
3076 * @nr: number of &struct buffer_heads in the array
3077 * @bhs: array of pointers to &struct buffer_head
3078 *
a7662236
JK
3079 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3080 * requests an I/O operation on them, either a %READ or a %WRITE. The third
9cb569d6
CH
3081 * %READA option is described in the documentation for generic_make_request()
3082 * which ll_rw_block() calls.
1da177e4
LT
3083 *
3084 * This function drops any buffer that it cannot get a lock on (with the
9cb569d6
CH
3085 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3086 * request, and any buffer that appears to be up-to-date when doing read
3087 * request. Further it marks as clean buffers that are processed for
3088 * writing (the buffer cache won't assume that they are actually clean
3089 * until the buffer gets unlocked).
1da177e4
LT
3090 *
3091 * ll_rw_block sets b_end_io to simple completion handler that marks
e227867f 3092 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
1da177e4
LT
3093 * any waiters.
3094 *
3095 * All of the buffers must be for the same device, and must also be a
3096 * multiple of the current approved size for the device.
3097 */
3098void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3099{
3100 int i;
3101
3102 for (i = 0; i < nr; i++) {
3103 struct buffer_head *bh = bhs[i];
3104
9cb569d6 3105 if (!trylock_buffer(bh))
1da177e4 3106 continue;
9cb569d6 3107 if (rw == WRITE) {
1da177e4 3108 if (test_clear_buffer_dirty(bh)) {
76c3073a 3109 bh->b_end_io = end_buffer_write_sync;
e60e5c50 3110 get_bh(bh);
9cb569d6 3111 submit_bh(WRITE, bh);
1da177e4
LT
3112 continue;
3113 }
3114 } else {
1da177e4 3115 if (!buffer_uptodate(bh)) {
76c3073a 3116 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3117 get_bh(bh);
1da177e4
LT
3118 submit_bh(rw, bh);
3119 continue;
3120 }
3121 }
3122 unlock_buffer(bh);
1da177e4
LT
3123 }
3124}
1fe72eaa 3125EXPORT_SYMBOL(ll_rw_block);
1da177e4 3126
9cb569d6
CH
3127void write_dirty_buffer(struct buffer_head *bh, int rw)
3128{
3129 lock_buffer(bh);
3130 if (!test_clear_buffer_dirty(bh)) {
3131 unlock_buffer(bh);
3132 return;
3133 }
3134 bh->b_end_io = end_buffer_write_sync;
3135 get_bh(bh);
3136 submit_bh(rw, bh);
3137}
3138EXPORT_SYMBOL(write_dirty_buffer);
3139
1da177e4
LT
3140/*
3141 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3142 * and then start new I/O and then wait upon it. The caller must have a ref on
3143 * the buffer_head.
3144 */
87e99511 3145int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3146{
3147 int ret = 0;
3148
3149 WARN_ON(atomic_read(&bh->b_count) < 1);
3150 lock_buffer(bh);
3151 if (test_clear_buffer_dirty(bh)) {
3152 get_bh(bh);
3153 bh->b_end_io = end_buffer_write_sync;
87e99511 3154 ret = submit_bh(rw, bh);
1da177e4 3155 wait_on_buffer(bh);
1da177e4
LT
3156 if (!ret && !buffer_uptodate(bh))
3157 ret = -EIO;
3158 } else {
3159 unlock_buffer(bh);
3160 }
3161 return ret;
3162}
87e99511
CH
3163EXPORT_SYMBOL(__sync_dirty_buffer);
3164
3165int sync_dirty_buffer(struct buffer_head *bh)
3166{
3167 return __sync_dirty_buffer(bh, WRITE_SYNC);
3168}
1fe72eaa 3169EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3170
3171/*
3172 * try_to_free_buffers() checks if all the buffers on this particular page
3173 * are unused, and releases them if so.
3174 *
3175 * Exclusion against try_to_free_buffers may be obtained by either
3176 * locking the page or by holding its mapping's private_lock.
3177 *
3178 * If the page is dirty but all the buffers are clean then we need to
3179 * be sure to mark the page clean as well. This is because the page
3180 * may be against a block device, and a later reattachment of buffers
3181 * to a dirty page will set *all* buffers dirty. Which would corrupt
3182 * filesystem data on the same device.
3183 *
3184 * The same applies to regular filesystem pages: if all the buffers are
3185 * clean then we set the page clean and proceed. To do that, we require
3186 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3187 * private_lock.
3188 *
3189 * try_to_free_buffers() is non-blocking.
3190 */
3191static inline int buffer_busy(struct buffer_head *bh)
3192{
3193 return atomic_read(&bh->b_count) |
3194 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3195}
3196
3197static int
3198drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3199{
3200 struct buffer_head *head = page_buffers(page);
3201 struct buffer_head *bh;
3202
3203 bh = head;
3204 do {
de7d5a3b 3205 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3206 set_bit(AS_EIO, &page->mapping->flags);
3207 if (buffer_busy(bh))
3208 goto failed;
3209 bh = bh->b_this_page;
3210 } while (bh != head);
3211
3212 do {
3213 struct buffer_head *next = bh->b_this_page;
3214
535ee2fb 3215 if (bh->b_assoc_map)
1da177e4
LT
3216 __remove_assoc_queue(bh);
3217 bh = next;
3218 } while (bh != head);
3219 *buffers_to_free = head;
3220 __clear_page_buffers(page);
3221 return 1;
3222failed:
3223 return 0;
3224}
3225
3226int try_to_free_buffers(struct page *page)
3227{
3228 struct address_space * const mapping = page->mapping;
3229 struct buffer_head *buffers_to_free = NULL;
3230 int ret = 0;
3231
3232 BUG_ON(!PageLocked(page));
ecdfc978 3233 if (PageWriteback(page))
1da177e4
LT
3234 return 0;
3235
3236 if (mapping == NULL) { /* can this still happen? */
3237 ret = drop_buffers(page, &buffers_to_free);
3238 goto out;
3239 }
3240
3241 spin_lock(&mapping->private_lock);
3242 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3243
3244 /*
3245 * If the filesystem writes its buffers by hand (eg ext3)
3246 * then we can have clean buffers against a dirty page. We
3247 * clean the page here; otherwise the VM will never notice
3248 * that the filesystem did any IO at all.
3249 *
3250 * Also, during truncate, discard_buffer will have marked all
3251 * the page's buffers clean. We discover that here and clean
3252 * the page also.
87df7241
NP
3253 *
3254 * private_lock must be held over this entire operation in order
3255 * to synchronise against __set_page_dirty_buffers and prevent the
3256 * dirty bit from being lost.
ecdfc978
LT
3257 */
3258 if (ret)
3259 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3260 spin_unlock(&mapping->private_lock);
1da177e4
LT
3261out:
3262 if (buffers_to_free) {
3263 struct buffer_head *bh = buffers_to_free;
3264
3265 do {
3266 struct buffer_head *next = bh->b_this_page;
3267 free_buffer_head(bh);
3268 bh = next;
3269 } while (bh != buffers_to_free);
3270 }
3271 return ret;
3272}
3273EXPORT_SYMBOL(try_to_free_buffers);
3274
1da177e4
LT
3275/*
3276 * There are no bdflush tunables left. But distributions are
3277 * still running obsolete flush daemons, so we terminate them here.
3278 *
3279 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3280 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3281 */
bdc480e3 3282SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3283{
3284 static int msg_count;
3285
3286 if (!capable(CAP_SYS_ADMIN))
3287 return -EPERM;
3288
3289 if (msg_count < 5) {
3290 msg_count++;
3291 printk(KERN_INFO
3292 "warning: process `%s' used the obsolete bdflush"
3293 " system call\n", current->comm);
3294 printk(KERN_INFO "Fix your initscripts?\n");
3295 }
3296
3297 if (func == 1)
3298 do_exit(0);
3299 return 0;
3300}
3301
3302/*
3303 * Buffer-head allocation
3304 */
a0a9b043 3305static struct kmem_cache *bh_cachep __read_mostly;
1da177e4
LT
3306
3307/*
3308 * Once the number of bh's in the machine exceeds this level, we start
3309 * stripping them in writeback.
3310 */
43be594a 3311static unsigned long max_buffer_heads;
1da177e4
LT
3312
3313int buffer_heads_over_limit;
3314
3315struct bh_accounting {
3316 int nr; /* Number of live bh's */
3317 int ratelimit; /* Limit cacheline bouncing */
3318};
3319
3320static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3321
3322static void recalc_bh_state(void)
3323{
3324 int i;
3325 int tot = 0;
3326
ee1be862 3327 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
1da177e4 3328 return;
c7b92516 3329 __this_cpu_write(bh_accounting.ratelimit, 0);
8a143426 3330 for_each_online_cpu(i)
1da177e4
LT
3331 tot += per_cpu(bh_accounting, i).nr;
3332 buffer_heads_over_limit = (tot > max_buffer_heads);
3333}
c7b92516 3334
dd0fc66f 3335struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3336{
019b4d12 3337 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3338 if (ret) {
a35afb83 3339 INIT_LIST_HEAD(&ret->b_assoc_buffers);
c7b92516
CL
3340 preempt_disable();
3341 __this_cpu_inc(bh_accounting.nr);
1da177e4 3342 recalc_bh_state();
c7b92516 3343 preempt_enable();
1da177e4
LT
3344 }
3345 return ret;
3346}
3347EXPORT_SYMBOL(alloc_buffer_head);
3348
3349void free_buffer_head(struct buffer_head *bh)
3350{
3351 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3352 kmem_cache_free(bh_cachep, bh);
c7b92516
CL
3353 preempt_disable();
3354 __this_cpu_dec(bh_accounting.nr);
1da177e4 3355 recalc_bh_state();
c7b92516 3356 preempt_enable();
1da177e4
LT
3357}
3358EXPORT_SYMBOL(free_buffer_head);
3359
1da177e4
LT
3360static void buffer_exit_cpu(int cpu)
3361{
3362 int i;
3363 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3364
3365 for (i = 0; i < BH_LRU_SIZE; i++) {
3366 brelse(b->bhs[i]);
3367 b->bhs[i] = NULL;
3368 }
c7b92516 3369 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
8a143426 3370 per_cpu(bh_accounting, cpu).nr = 0;
1da177e4
LT
3371}
3372
3373static int buffer_cpu_notify(struct notifier_block *self,
3374 unsigned long action, void *hcpu)
3375{
8bb78442 3376 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3377 buffer_exit_cpu((unsigned long)hcpu);
3378 return NOTIFY_OK;
3379}
1da177e4 3380
389d1b08 3381/**
a6b91919 3382 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3383 * @bh: struct buffer_head
3384 *
3385 * Return true if the buffer is up-to-date and false,
3386 * with the buffer locked, if not.
3387 */
3388int bh_uptodate_or_lock(struct buffer_head *bh)
3389{
3390 if (!buffer_uptodate(bh)) {
3391 lock_buffer(bh);
3392 if (!buffer_uptodate(bh))
3393 return 0;
3394 unlock_buffer(bh);
3395 }
3396 return 1;
3397}
3398EXPORT_SYMBOL(bh_uptodate_or_lock);
3399
3400/**
a6b91919 3401 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3402 * @bh: struct buffer_head
3403 *
3404 * Returns zero on success and -EIO on error.
3405 */
3406int bh_submit_read(struct buffer_head *bh)
3407{
3408 BUG_ON(!buffer_locked(bh));
3409
3410 if (buffer_uptodate(bh)) {
3411 unlock_buffer(bh);
3412 return 0;
3413 }
3414
3415 get_bh(bh);
3416 bh->b_end_io = end_buffer_read_sync;
3417 submit_bh(READ, bh);
3418 wait_on_buffer(bh);
3419 if (buffer_uptodate(bh))
3420 return 0;
3421 return -EIO;
3422}
3423EXPORT_SYMBOL(bh_submit_read);
3424
1da177e4
LT
3425void __init buffer_init(void)
3426{
43be594a 3427 unsigned long nrpages;
1da177e4 3428
b98938c3
CL
3429 bh_cachep = kmem_cache_create("buffer_head",
3430 sizeof(struct buffer_head), 0,
3431 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3432 SLAB_MEM_SPREAD),
019b4d12 3433 NULL);
1da177e4
LT
3434
3435 /*
3436 * Limit the bh occupancy to 10% of ZONE_NORMAL
3437 */
3438 nrpages = (nr_free_buffer_pages() * 10) / 100;
3439 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3440 hotcpu_notifier(buffer_cpu_notify, 0);
3441}