]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ceph/messenger.c
ceph: add feature bits to connection handshake (protocol change)
[mirror_ubuntu-bionic-kernel.git] / fs / ceph / messenger.c
CommitLineData
31b8006e
SW
1#include "ceph_debug.h"
2
3#include <linux/crc32c.h>
4#include <linux/ctype.h>
5#include <linux/highmem.h>
6#include <linux/inet.h>
7#include <linux/kthread.h>
8#include <linux/net.h>
9#include <linux/socket.h>
10#include <linux/string.h>
11#include <net/tcp.h>
12
13#include "super.h"
14#include "messenger.h"
63f2d211 15#include "decode.h"
31b8006e
SW
16
17/*
18 * Ceph uses the messenger to exchange ceph_msg messages with other
19 * hosts in the system. The messenger provides ordered and reliable
20 * delivery. We tolerate TCP disconnects by reconnecting (with
21 * exponential backoff) in the case of a fault (disconnection, bad
22 * crc, protocol error). Acks allow sent messages to be discarded by
23 * the sender.
24 */
25
26/* static tag bytes (protocol control messages) */
27static char tag_msg = CEPH_MSGR_TAG_MSG;
28static char tag_ack = CEPH_MSGR_TAG_ACK;
29static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
30
31
32static void queue_con(struct ceph_connection *con);
33static void con_work(struct work_struct *);
34static void ceph_fault(struct ceph_connection *con);
35
36const char *ceph_name_type_str(int t)
37{
38 switch (t) {
39 case CEPH_ENTITY_TYPE_MON: return "mon";
40 case CEPH_ENTITY_TYPE_MDS: return "mds";
41 case CEPH_ENTITY_TYPE_OSD: return "osd";
42 case CEPH_ENTITY_TYPE_CLIENT: return "client";
43 case CEPH_ENTITY_TYPE_ADMIN: return "admin";
44 default: return "???";
45 }
46}
47
48/*
49 * nicely render a sockaddr as a string.
50 */
51#define MAX_ADDR_STR 20
52static char addr_str[MAX_ADDR_STR][40];
53static DEFINE_SPINLOCK(addr_str_lock);
54static int last_addr_str;
55
56const char *pr_addr(const struct sockaddr_storage *ss)
57{
58 int i;
59 char *s;
60 struct sockaddr_in *in4 = (void *)ss;
61 unsigned char *quad = (void *)&in4->sin_addr.s_addr;
62 struct sockaddr_in6 *in6 = (void *)ss;
63
64 spin_lock(&addr_str_lock);
65 i = last_addr_str++;
66 if (last_addr_str == MAX_ADDR_STR)
67 last_addr_str = 0;
68 spin_unlock(&addr_str_lock);
69 s = addr_str[i];
70
71 switch (ss->ss_family) {
72 case AF_INET:
73 sprintf(s, "%u.%u.%u.%u:%u",
74 (unsigned int)quad[0],
75 (unsigned int)quad[1],
76 (unsigned int)quad[2],
77 (unsigned int)quad[3],
78 (unsigned int)ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u",
83 in6->sin6_addr.s6_addr16[0],
84 in6->sin6_addr.s6_addr16[1],
85 in6->sin6_addr.s6_addr16[2],
86 in6->sin6_addr.s6_addr16[3],
87 in6->sin6_addr.s6_addr16[4],
88 in6->sin6_addr.s6_addr16[5],
89 in6->sin6_addr.s6_addr16[6],
90 in6->sin6_addr.s6_addr16[7],
91 (unsigned int)ntohs(in6->sin6_port));
92 break;
93
94 default:
95 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
96 }
97
98 return s;
99}
100
63f2d211
SW
101static void encode_my_addr(struct ceph_messenger *msgr)
102{
103 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
104 ceph_encode_addr(&msgr->my_enc_addr);
105}
106
31b8006e
SW
107/*
108 * work queue for all reading and writing to/from the socket.
109 */
110struct workqueue_struct *ceph_msgr_wq;
111
112int __init ceph_msgr_init(void)
113{
114 ceph_msgr_wq = create_workqueue("ceph-msgr");
115 if (IS_ERR(ceph_msgr_wq)) {
116 int ret = PTR_ERR(ceph_msgr_wq);
117 pr_err("msgr_init failed to create workqueue: %d\n", ret);
118 ceph_msgr_wq = NULL;
119 return ret;
120 }
121 return 0;
122}
123
124void ceph_msgr_exit(void)
125{
126 destroy_workqueue(ceph_msgr_wq);
127}
128
129/*
130 * socket callback functions
131 */
132
133/* data available on socket, or listen socket received a connect */
134static void ceph_data_ready(struct sock *sk, int count_unused)
135{
136 struct ceph_connection *con =
137 (struct ceph_connection *)sk->sk_user_data;
138 if (sk->sk_state != TCP_CLOSE_WAIT) {
139 dout("ceph_data_ready on %p state = %lu, queueing work\n",
140 con, con->state);
141 queue_con(con);
142 }
143}
144
145/* socket has buffer space for writing */
146static void ceph_write_space(struct sock *sk)
147{
148 struct ceph_connection *con =
149 (struct ceph_connection *)sk->sk_user_data;
150
151 /* only queue to workqueue if there is data we want to write. */
152 if (test_bit(WRITE_PENDING, &con->state)) {
153 dout("ceph_write_space %p queueing write work\n", con);
154 queue_con(con);
155 } else {
156 dout("ceph_write_space %p nothing to write\n", con);
157 }
158
159 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
160 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
161}
162
163/* socket's state has changed */
164static void ceph_state_change(struct sock *sk)
165{
166 struct ceph_connection *con =
167 (struct ceph_connection *)sk->sk_user_data;
168
169 dout("ceph_state_change %p state = %lu sk_state = %u\n",
170 con, con->state, sk->sk_state);
171
172 if (test_bit(CLOSED, &con->state))
173 return;
174
175 switch (sk->sk_state) {
176 case TCP_CLOSE:
177 dout("ceph_state_change TCP_CLOSE\n");
178 case TCP_CLOSE_WAIT:
179 dout("ceph_state_change TCP_CLOSE_WAIT\n");
180 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
181 if (test_bit(CONNECTING, &con->state))
182 con->error_msg = "connection failed";
183 else
184 con->error_msg = "socket closed";
185 queue_con(con);
186 }
187 break;
188 case TCP_ESTABLISHED:
189 dout("ceph_state_change TCP_ESTABLISHED\n");
190 queue_con(con);
191 break;
192 }
193}
194
195/*
196 * set up socket callbacks
197 */
198static void set_sock_callbacks(struct socket *sock,
199 struct ceph_connection *con)
200{
201 struct sock *sk = sock->sk;
202 sk->sk_user_data = (void *)con;
203 sk->sk_data_ready = ceph_data_ready;
204 sk->sk_write_space = ceph_write_space;
205 sk->sk_state_change = ceph_state_change;
206}
207
208
209/*
210 * socket helpers
211 */
212
213/*
214 * initiate connection to a remote socket.
215 */
216static struct socket *ceph_tcp_connect(struct ceph_connection *con)
217{
218 struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr;
219 struct socket *sock;
220 int ret;
221
222 BUG_ON(con->sock);
223 ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock);
224 if (ret)
225 return ERR_PTR(ret);
226 con->sock = sock;
227 sock->sk->sk_allocation = GFP_NOFS;
228
229 set_sock_callbacks(sock, con);
230
231 dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
232
233 ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK);
234 if (ret == -EINPROGRESS) {
235 dout("connect %s EINPROGRESS sk_state = %u\n",
236 pr_addr(&con->peer_addr.in_addr),
237 sock->sk->sk_state);
238 ret = 0;
239 }
240 if (ret < 0) {
241 pr_err("connect %s error %d\n",
242 pr_addr(&con->peer_addr.in_addr), ret);
243 sock_release(sock);
244 con->sock = NULL;
245 con->error_msg = "connect error";
246 }
247
248 if (ret < 0)
249 return ERR_PTR(ret);
250 return sock;
251}
252
253static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
254{
255 struct kvec iov = {buf, len};
256 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
257
258 return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
259}
260
261/*
262 * write something. @more is true if caller will be sending more data
263 * shortly.
264 */
265static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
266 size_t kvlen, size_t len, int more)
267{
268 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
269
270 if (more)
271 msg.msg_flags |= MSG_MORE;
272 else
273 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
274
275 return kernel_sendmsg(sock, &msg, iov, kvlen, len);
276}
277
278
279/*
280 * Shutdown/close the socket for the given connection.
281 */
282static int con_close_socket(struct ceph_connection *con)
283{
284 int rc;
285
286 dout("con_close_socket on %p sock %p\n", con, con->sock);
287 if (!con->sock)
288 return 0;
289 set_bit(SOCK_CLOSED, &con->state);
290 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
291 sock_release(con->sock);
292 con->sock = NULL;
293 clear_bit(SOCK_CLOSED, &con->state);
294 return rc;
295}
296
297/*
298 * Reset a connection. Discard all incoming and outgoing messages
299 * and clear *_seq state.
300 */
301static void ceph_msg_remove(struct ceph_msg *msg)
302{
303 list_del_init(&msg->list_head);
304 ceph_msg_put(msg);
305}
306static void ceph_msg_remove_list(struct list_head *head)
307{
308 while (!list_empty(head)) {
309 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
310 list_head);
311 ceph_msg_remove(msg);
312 }
313}
314
315static void reset_connection(struct ceph_connection *con)
316{
317 /* reset connection, out_queue, msg_ and connect_seq */
318 /* discard existing out_queue and msg_seq */
31b8006e
SW
319 ceph_msg_remove_list(&con->out_queue);
320 ceph_msg_remove_list(&con->out_sent);
321
cf3e5c40
SW
322 if (con->in_msg) {
323 ceph_msg_put(con->in_msg);
324 con->in_msg = NULL;
325 }
326
31b8006e
SW
327 con->connect_seq = 0;
328 con->out_seq = 0;
c86a2930
SW
329 if (con->out_msg) {
330 ceph_msg_put(con->out_msg);
331 con->out_msg = NULL;
332 }
31b8006e 333 con->in_seq = 0;
31b8006e
SW
334}
335
336/*
337 * mark a peer down. drop any open connections.
338 */
339void ceph_con_close(struct ceph_connection *con)
340{
341 dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
342 set_bit(CLOSED, &con->state); /* in case there's queued work */
343 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
ec302645 344 mutex_lock(&con->mutex);
31b8006e 345 reset_connection(con);
ec302645 346 mutex_unlock(&con->mutex);
31b8006e
SW
347 queue_con(con);
348}
349
31b8006e
SW
350/*
351 * Reopen a closed connection, with a new peer address.
352 */
353void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
354{
355 dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
356 set_bit(OPENING, &con->state);
357 clear_bit(CLOSED, &con->state);
358 memcpy(&con->peer_addr, addr, sizeof(*addr));
03c677e1 359 con->delay = 0; /* reset backoff memory */
31b8006e
SW
360 queue_con(con);
361}
362
363/*
364 * generic get/put
365 */
366struct ceph_connection *ceph_con_get(struct ceph_connection *con)
367{
368 dout("con_get %p nref = %d -> %d\n", con,
369 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
370 if (atomic_inc_not_zero(&con->nref))
371 return con;
372 return NULL;
373}
374
375void ceph_con_put(struct ceph_connection *con)
376{
377 dout("con_put %p nref = %d -> %d\n", con,
378 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
379 BUG_ON(atomic_read(&con->nref) == 0);
380 if (atomic_dec_and_test(&con->nref)) {
71ececda 381 BUG_ON(con->sock);
31b8006e
SW
382 kfree(con);
383 }
384}
385
386/*
387 * initialize a new connection.
388 */
389void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
390{
391 dout("con_init %p\n", con);
392 memset(con, 0, sizeof(*con));
393 atomic_set(&con->nref, 1);
394 con->msgr = msgr;
ec302645 395 mutex_init(&con->mutex);
31b8006e
SW
396 INIT_LIST_HEAD(&con->out_queue);
397 INIT_LIST_HEAD(&con->out_sent);
398 INIT_DELAYED_WORK(&con->work, con_work);
399}
400
401
402/*
403 * We maintain a global counter to order connection attempts. Get
404 * a unique seq greater than @gt.
405 */
406static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
407{
408 u32 ret;
409
410 spin_lock(&msgr->global_seq_lock);
411 if (msgr->global_seq < gt)
412 msgr->global_seq = gt;
413 ret = ++msgr->global_seq;
414 spin_unlock(&msgr->global_seq_lock);
415 return ret;
416}
417
418
419/*
420 * Prepare footer for currently outgoing message, and finish things
421 * off. Assumes out_kvec* are already valid.. we just add on to the end.
422 */
423static void prepare_write_message_footer(struct ceph_connection *con, int v)
424{
425 struct ceph_msg *m = con->out_msg;
426
427 dout("prepare_write_message_footer %p\n", con);
428 con->out_kvec_is_msg = true;
429 con->out_kvec[v].iov_base = &m->footer;
430 con->out_kvec[v].iov_len = sizeof(m->footer);
431 con->out_kvec_bytes += sizeof(m->footer);
432 con->out_kvec_left++;
433 con->out_more = m->more_to_follow;
c86a2930 434 con->out_msg_done = true;
31b8006e
SW
435}
436
437/*
438 * Prepare headers for the next outgoing message.
439 */
440static void prepare_write_message(struct ceph_connection *con)
441{
442 struct ceph_msg *m;
443 int v = 0;
444
445 con->out_kvec_bytes = 0;
446 con->out_kvec_is_msg = true;
c86a2930 447 con->out_msg_done = false;
31b8006e
SW
448
449 /* Sneak an ack in there first? If we can get it into the same
450 * TCP packet that's a good thing. */
451 if (con->in_seq > con->in_seq_acked) {
452 con->in_seq_acked = con->in_seq;
453 con->out_kvec[v].iov_base = &tag_ack;
454 con->out_kvec[v++].iov_len = 1;
455 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
456 con->out_kvec[v].iov_base = &con->out_temp_ack;
457 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
458 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
459 }
460
31b8006e
SW
461 m = list_first_entry(&con->out_queue,
462 struct ceph_msg, list_head);
c86a2930 463 con->out_msg = m;
b3d1dbbd
SW
464 if (test_bit(LOSSYTX, &con->state)) {
465 /* put message on sent list */
466 ceph_msg_get(m);
467 list_move_tail(&m->list_head, &con->out_sent);
468 } else {
469 list_del_init(&m->list_head);
470 }
31b8006e
SW
471
472 m->hdr.seq = cpu_to_le64(++con->out_seq);
473
474 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
475 m, con->out_seq, le16_to_cpu(m->hdr.type),
476 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
477 le32_to_cpu(m->hdr.data_len),
478 m->nr_pages);
479 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
480
481 /* tag + hdr + front + middle */
482 con->out_kvec[v].iov_base = &tag_msg;
483 con->out_kvec[v++].iov_len = 1;
484 con->out_kvec[v].iov_base = &m->hdr;
485 con->out_kvec[v++].iov_len = sizeof(m->hdr);
486 con->out_kvec[v++] = m->front;
487 if (m->middle)
488 con->out_kvec[v++] = m->middle->vec;
489 con->out_kvec_left = v;
490 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
491 (m->middle ? m->middle->vec.iov_len : 0);
492 con->out_kvec_cur = con->out_kvec;
493
494 /* fill in crc (except data pages), footer */
495 con->out_msg->hdr.crc =
496 cpu_to_le32(crc32c(0, (void *)&m->hdr,
497 sizeof(m->hdr) - sizeof(m->hdr.crc)));
498 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
499 con->out_msg->footer.front_crc =
500 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
501 if (m->middle)
502 con->out_msg->footer.middle_crc =
503 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
504 m->middle->vec.iov_len));
505 else
506 con->out_msg->footer.middle_crc = 0;
507 con->out_msg->footer.data_crc = 0;
508 dout("prepare_write_message front_crc %u data_crc %u\n",
509 le32_to_cpu(con->out_msg->footer.front_crc),
510 le32_to_cpu(con->out_msg->footer.middle_crc));
511
512 /* is there a data payload? */
513 if (le32_to_cpu(m->hdr.data_len) > 0) {
514 /* initialize page iterator */
515 con->out_msg_pos.page = 0;
516 con->out_msg_pos.page_pos =
517 le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
518 con->out_msg_pos.data_pos = 0;
519 con->out_msg_pos.did_page_crc = 0;
520 con->out_more = 1; /* data + footer will follow */
521 } else {
522 /* no, queue up footer too and be done */
523 prepare_write_message_footer(con, v);
524 }
525
526 set_bit(WRITE_PENDING, &con->state);
527}
528
529/*
530 * Prepare an ack.
531 */
532static void prepare_write_ack(struct ceph_connection *con)
533{
534 dout("prepare_write_ack %p %llu -> %llu\n", con,
535 con->in_seq_acked, con->in_seq);
536 con->in_seq_acked = con->in_seq;
537
538 con->out_kvec[0].iov_base = &tag_ack;
539 con->out_kvec[0].iov_len = 1;
540 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
541 con->out_kvec[1].iov_base = &con->out_temp_ack;
542 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
543 con->out_kvec_left = 2;
544 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
545 con->out_kvec_cur = con->out_kvec;
546 con->out_more = 1; /* more will follow.. eventually.. */
547 set_bit(WRITE_PENDING, &con->state);
548}
549
550/*
551 * Prepare to write keepalive byte.
552 */
553static void prepare_write_keepalive(struct ceph_connection *con)
554{
555 dout("prepare_write_keepalive %p\n", con);
556 con->out_kvec[0].iov_base = &tag_keepalive;
557 con->out_kvec[0].iov_len = 1;
558 con->out_kvec_left = 1;
559 con->out_kvec_bytes = 1;
560 con->out_kvec_cur = con->out_kvec;
561 set_bit(WRITE_PENDING, &con->state);
562}
563
564/*
565 * Connection negotiation.
566 */
567
4e7a5dcd
SW
568static void prepare_connect_authorizer(struct ceph_connection *con)
569{
570 void *auth_buf;
571 int auth_len = 0;
572 int auth_protocol = 0;
573
ec302645 574 mutex_unlock(&con->mutex);
4e7a5dcd
SW
575 if (con->ops->get_authorizer)
576 con->ops->get_authorizer(con, &auth_buf, &auth_len,
577 &auth_protocol, &con->auth_reply_buf,
578 &con->auth_reply_buf_len,
579 con->auth_retry);
ec302645 580 mutex_lock(&con->mutex);
4e7a5dcd
SW
581
582 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
583 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
584
585 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
586 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
587 con->out_kvec_left++;
588 con->out_kvec_bytes += auth_len;
589}
590
31b8006e
SW
591/*
592 * We connected to a peer and are saying hello.
593 */
eed0ef2c
SW
594static void prepare_write_banner(struct ceph_messenger *msgr,
595 struct ceph_connection *con)
31b8006e
SW
596{
597 int len = strlen(CEPH_BANNER);
eed0ef2c
SW
598
599 con->out_kvec[0].iov_base = CEPH_BANNER;
600 con->out_kvec[0].iov_len = len;
601 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
602 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
603 con->out_kvec_left = 2;
604 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
605 con->out_kvec_cur = con->out_kvec;
606 con->out_more = 0;
607 set_bit(WRITE_PENDING, &con->state);
608}
609
610static void prepare_write_connect(struct ceph_messenger *msgr,
611 struct ceph_connection *con,
612 int after_banner)
613{
31b8006e
SW
614 unsigned global_seq = get_global_seq(con->msgr, 0);
615 int proto;
616
617 switch (con->peer_name.type) {
618 case CEPH_ENTITY_TYPE_MON:
619 proto = CEPH_MONC_PROTOCOL;
620 break;
621 case CEPH_ENTITY_TYPE_OSD:
622 proto = CEPH_OSDC_PROTOCOL;
623 break;
624 case CEPH_ENTITY_TYPE_MDS:
625 proto = CEPH_MDSC_PROTOCOL;
626 break;
627 default:
628 BUG();
629 }
630
631 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
632 con->connect_seq, global_seq, proto);
4e7a5dcd 633
04a419f9 634 con->out_connect.features = CEPH_FEATURE_SUPPORTED;
31b8006e
SW
635 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
636 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
637 con->out_connect.global_seq = cpu_to_le32(global_seq);
638 con->out_connect.protocol_version = cpu_to_le32(proto);
639 con->out_connect.flags = 0;
31b8006e 640
eed0ef2c
SW
641 if (!after_banner) {
642 con->out_kvec_left = 0;
643 con->out_kvec_bytes = 0;
644 }
645 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
646 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
647 con->out_kvec_left++;
648 con->out_kvec_bytes += sizeof(con->out_connect);
31b8006e
SW
649 con->out_kvec_cur = con->out_kvec;
650 con->out_more = 0;
651 set_bit(WRITE_PENDING, &con->state);
4e7a5dcd
SW
652
653 prepare_connect_authorizer(con);
31b8006e
SW
654}
655
656
657/*
658 * write as much of pending kvecs to the socket as we can.
659 * 1 -> done
660 * 0 -> socket full, but more to do
661 * <0 -> error
662 */
663static int write_partial_kvec(struct ceph_connection *con)
664{
665 int ret;
666
667 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
668 while (con->out_kvec_bytes > 0) {
669 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
670 con->out_kvec_left, con->out_kvec_bytes,
671 con->out_more);
672 if (ret <= 0)
673 goto out;
674 con->out_kvec_bytes -= ret;
675 if (con->out_kvec_bytes == 0)
676 break; /* done */
677 while (ret > 0) {
678 if (ret >= con->out_kvec_cur->iov_len) {
679 ret -= con->out_kvec_cur->iov_len;
680 con->out_kvec_cur++;
681 con->out_kvec_left--;
682 } else {
683 con->out_kvec_cur->iov_len -= ret;
684 con->out_kvec_cur->iov_base += ret;
685 ret = 0;
686 break;
687 }
688 }
689 }
690 con->out_kvec_left = 0;
691 con->out_kvec_is_msg = false;
692 ret = 1;
693out:
694 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
695 con->out_kvec_bytes, con->out_kvec_left, ret);
696 return ret; /* done! */
697}
698
699/*
700 * Write as much message data payload as we can. If we finish, queue
701 * up the footer.
702 * 1 -> done, footer is now queued in out_kvec[].
703 * 0 -> socket full, but more to do
704 * <0 -> error
705 */
706static int write_partial_msg_pages(struct ceph_connection *con)
707{
708 struct ceph_msg *msg = con->out_msg;
709 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
710 size_t len;
711 int crc = con->msgr->nocrc;
712 int ret;
713
714 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
715 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
716 con->out_msg_pos.page_pos);
717
718 while (con->out_msg_pos.page < con->out_msg->nr_pages) {
719 struct page *page = NULL;
720 void *kaddr = NULL;
721
722 /*
723 * if we are calculating the data crc (the default), we need
724 * to map the page. if our pages[] has been revoked, use the
725 * zero page.
726 */
727 if (msg->pages) {
728 page = msg->pages[con->out_msg_pos.page];
729 if (crc)
730 kaddr = kmap(page);
731 } else {
732 page = con->msgr->zero_page;
733 if (crc)
734 kaddr = page_address(con->msgr->zero_page);
735 }
736 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
737 (int)(data_len - con->out_msg_pos.data_pos));
738 if (crc && !con->out_msg_pos.did_page_crc) {
739 void *base = kaddr + con->out_msg_pos.page_pos;
740 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
741
742 BUG_ON(kaddr == NULL);
743 con->out_msg->footer.data_crc =
744 cpu_to_le32(crc32c(tmpcrc, base, len));
745 con->out_msg_pos.did_page_crc = 1;
746 }
747
748 ret = kernel_sendpage(con->sock, page,
749 con->out_msg_pos.page_pos, len,
750 MSG_DONTWAIT | MSG_NOSIGNAL |
751 MSG_MORE);
752
753 if (crc && msg->pages)
754 kunmap(page);
755
756 if (ret <= 0)
757 goto out;
758
759 con->out_msg_pos.data_pos += ret;
760 con->out_msg_pos.page_pos += ret;
761 if (ret == len) {
762 con->out_msg_pos.page_pos = 0;
763 con->out_msg_pos.page++;
764 con->out_msg_pos.did_page_crc = 0;
765 }
766 }
767
768 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
769
770 /* prepare and queue up footer, too */
771 if (!crc)
772 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
773 con->out_kvec_bytes = 0;
774 con->out_kvec_left = 0;
775 con->out_kvec_cur = con->out_kvec;
776 prepare_write_message_footer(con, 0);
777 ret = 1;
778out:
779 return ret;
780}
781
782/*
783 * write some zeros
784 */
785static int write_partial_skip(struct ceph_connection *con)
786{
787 int ret;
788
789 while (con->out_skip > 0) {
790 struct kvec iov = {
791 .iov_base = page_address(con->msgr->zero_page),
792 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
793 };
794
795 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
796 if (ret <= 0)
797 goto out;
798 con->out_skip -= ret;
799 }
800 ret = 1;
801out:
802 return ret;
803}
804
805/*
806 * Prepare to read connection handshake, or an ack.
807 */
eed0ef2c
SW
808static void prepare_read_banner(struct ceph_connection *con)
809{
810 dout("prepare_read_banner %p\n", con);
811 con->in_base_pos = 0;
812}
813
31b8006e
SW
814static void prepare_read_connect(struct ceph_connection *con)
815{
816 dout("prepare_read_connect %p\n", con);
817 con->in_base_pos = 0;
818}
819
4e7a5dcd
SW
820static void prepare_read_connect_retry(struct ceph_connection *con)
821{
822 dout("prepare_read_connect_retry %p\n", con);
823 con->in_base_pos = strlen(CEPH_BANNER) + sizeof(con->actual_peer_addr)
824 + sizeof(con->peer_addr_for_me);
825}
826
31b8006e
SW
827static void prepare_read_ack(struct ceph_connection *con)
828{
829 dout("prepare_read_ack %p\n", con);
830 con->in_base_pos = 0;
831}
832
833static void prepare_read_tag(struct ceph_connection *con)
834{
835 dout("prepare_read_tag %p\n", con);
836 con->in_base_pos = 0;
837 con->in_tag = CEPH_MSGR_TAG_READY;
838}
839
840/*
841 * Prepare to read a message.
842 */
843static int prepare_read_message(struct ceph_connection *con)
844{
845 dout("prepare_read_message %p\n", con);
846 BUG_ON(con->in_msg != NULL);
847 con->in_base_pos = 0;
848 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
849 return 0;
850}
851
852
853static int read_partial(struct ceph_connection *con,
854 int *to, int size, void *object)
855{
856 *to += size;
857 while (con->in_base_pos < *to) {
858 int left = *to - con->in_base_pos;
859 int have = size - left;
860 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
861 if (ret <= 0)
862 return ret;
863 con->in_base_pos += ret;
864 }
865 return 1;
866}
867
868
869/*
870 * Read all or part of the connect-side handshake on a new connection
871 */
eed0ef2c 872static int read_partial_banner(struct ceph_connection *con)
31b8006e
SW
873{
874 int ret, to = 0;
875
eed0ef2c 876 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
31b8006e
SW
877
878 /* peer's banner */
879 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
880 if (ret <= 0)
881 goto out;
882 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
883 &con->actual_peer_addr);
884 if (ret <= 0)
885 goto out;
886 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
887 &con->peer_addr_for_me);
888 if (ret <= 0)
889 goto out;
eed0ef2c
SW
890out:
891 return ret;
892}
893
894static int read_partial_connect(struct ceph_connection *con)
895{
896 int ret, to = 0;
897
898 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
899
31b8006e
SW
900 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
901 if (ret <= 0)
902 goto out;
4e7a5dcd
SW
903 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
904 con->auth_reply_buf);
905 if (ret <= 0)
906 goto out;
31b8006e 907
4e7a5dcd
SW
908 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
909 con, (int)con->in_reply.tag,
910 le32_to_cpu(con->in_reply.connect_seq),
31b8006e
SW
911 le32_to_cpu(con->in_reply.global_seq));
912out:
913 return ret;
eed0ef2c 914
31b8006e
SW
915}
916
917/*
918 * Verify the hello banner looks okay.
919 */
920static int verify_hello(struct ceph_connection *con)
921{
922 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
13e38c8a 923 pr_err("connect to %s got bad banner\n",
31b8006e
SW
924 pr_addr(&con->peer_addr.in_addr));
925 con->error_msg = "protocol error, bad banner";
926 return -1;
927 }
928 return 0;
929}
930
931static bool addr_is_blank(struct sockaddr_storage *ss)
932{
933 switch (ss->ss_family) {
934 case AF_INET:
935 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
936 case AF_INET6:
937 return
938 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
939 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
940 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
941 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
942 }
943 return false;
944}
945
946static int addr_port(struct sockaddr_storage *ss)
947{
948 switch (ss->ss_family) {
949 case AF_INET:
f28bcfbe 950 return ntohs(((struct sockaddr_in *)ss)->sin_port);
31b8006e 951 case AF_INET6:
f28bcfbe 952 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
31b8006e
SW
953 }
954 return 0;
955}
956
957static void addr_set_port(struct sockaddr_storage *ss, int p)
958{
959 switch (ss->ss_family) {
960 case AF_INET:
961 ((struct sockaddr_in *)ss)->sin_port = htons(p);
962 case AF_INET6:
963 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
964 }
965}
966
967/*
968 * Parse an ip[:port] list into an addr array. Use the default
969 * monitor port if a port isn't specified.
970 */
971int ceph_parse_ips(const char *c, const char *end,
972 struct ceph_entity_addr *addr,
973 int max_count, int *count)
974{
975 int i;
976 const char *p = c;
977
978 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
979 for (i = 0; i < max_count; i++) {
980 const char *ipend;
981 struct sockaddr_storage *ss = &addr[i].in_addr;
982 struct sockaddr_in *in4 = (void *)ss;
983 struct sockaddr_in6 *in6 = (void *)ss;
984 int port;
985
986 memset(ss, 0, sizeof(*ss));
987 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
988 ',', &ipend)) {
989 ss->ss_family = AF_INET;
990 } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
991 ',', &ipend)) {
992 ss->ss_family = AF_INET6;
993 } else {
994 goto bad;
995 }
996 p = ipend;
997
998 /* port? */
999 if (p < end && *p == ':') {
1000 port = 0;
1001 p++;
1002 while (p < end && *p >= '0' && *p <= '9') {
1003 port = (port * 10) + (*p - '0');
1004 p++;
1005 }
1006 if (port > 65535 || port == 0)
1007 goto bad;
1008 } else {
1009 port = CEPH_MON_PORT;
1010 }
1011
1012 addr_set_port(ss, port);
1013
1014 dout("parse_ips got %s\n", pr_addr(ss));
1015
1016 if (p == end)
1017 break;
1018 if (*p != ',')
1019 goto bad;
1020 p++;
1021 }
1022
1023 if (p != end)
1024 goto bad;
1025
1026 if (count)
1027 *count = i + 1;
1028 return 0;
1029
1030bad:
1031 pr_err("parse_ips bad ip '%s'\n", c);
1032 return -EINVAL;
1033}
1034
eed0ef2c 1035static int process_banner(struct ceph_connection *con)
31b8006e 1036{
eed0ef2c 1037 dout("process_banner on %p\n", con);
31b8006e
SW
1038
1039 if (verify_hello(con) < 0)
1040 return -1;
1041
63f2d211
SW
1042 ceph_decode_addr(&con->actual_peer_addr);
1043 ceph_decode_addr(&con->peer_addr_for_me);
1044
31b8006e
SW
1045 /*
1046 * Make sure the other end is who we wanted. note that the other
1047 * end may not yet know their ip address, so if it's 0.0.0.0, give
1048 * them the benefit of the doubt.
1049 */
1050 if (!ceph_entity_addr_is_local(&con->peer_addr,
1051 &con->actual_peer_addr) &&
1052 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1053 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1054 pr_err("wrong peer, want %s/%d, "
1055 "got %s/%d, wtf\n",
1056 pr_addr(&con->peer_addr.in_addr),
1057 con->peer_addr.nonce,
1058 pr_addr(&con->actual_peer_addr.in_addr),
1059 con->actual_peer_addr.nonce);
1060 con->error_msg = "protocol error, wrong peer";
1061 return -1;
1062 }
1063
1064 /*
1065 * did we learn our address?
1066 */
1067 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1068 int port = addr_port(&con->msgr->inst.addr.in_addr);
1069
1070 memcpy(&con->msgr->inst.addr.in_addr,
1071 &con->peer_addr_for_me.in_addr,
1072 sizeof(con->peer_addr_for_me.in_addr));
1073 addr_set_port(&con->msgr->inst.addr.in_addr, port);
63f2d211 1074 encode_my_addr(con->msgr);
eed0ef2c 1075 dout("process_banner learned my addr is %s\n",
31b8006e
SW
1076 pr_addr(&con->msgr->inst.addr.in_addr));
1077 }
1078
eed0ef2c
SW
1079 set_bit(NEGOTIATING, &con->state);
1080 prepare_read_connect(con);
1081 return 0;
1082}
1083
04a419f9
SW
1084static void fail_protocol(struct ceph_connection *con)
1085{
1086 reset_connection(con);
1087 set_bit(CLOSED, &con->state); /* in case there's queued work */
1088
1089 mutex_unlock(&con->mutex);
1090 if (con->ops->bad_proto)
1091 con->ops->bad_proto(con);
1092 mutex_lock(&con->mutex);
1093}
1094
eed0ef2c
SW
1095static int process_connect(struct ceph_connection *con)
1096{
04a419f9
SW
1097 u64 sup_feat = CEPH_FEATURE_SUPPORTED;
1098 u64 req_feat = CEPH_FEATURE_REQUIRED;
1099 u64 server_feat = le64_to_cpu(con->in_reply.features);
1100
eed0ef2c
SW
1101 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1102
31b8006e 1103 switch (con->in_reply.tag) {
04a419f9
SW
1104 case CEPH_MSGR_TAG_FEATURES:
1105 pr_err("%s%lld %s feature set mismatch,"
1106 " my %llx < server's %llx, missing %llx\n",
1107 ENTITY_NAME(con->peer_name),
1108 pr_addr(&con->peer_addr.in_addr),
1109 sup_feat, server_feat, server_feat & ~sup_feat);
1110 con->error_msg = "missing required protocol features";
1111 fail_protocol(con);
1112 return -1;
1113
31b8006e 1114 case CEPH_MSGR_TAG_BADPROTOVER:
31b8006e
SW
1115 pr_err("%s%lld %s protocol version mismatch,"
1116 " my %d != server's %d\n",
1117 ENTITY_NAME(con->peer_name),
1118 pr_addr(&con->peer_addr.in_addr),
1119 le32_to_cpu(con->out_connect.protocol_version),
1120 le32_to_cpu(con->in_reply.protocol_version));
1121 con->error_msg = "protocol version mismatch";
04a419f9 1122 fail_protocol(con);
31b8006e
SW
1123 return -1;
1124
4e7a5dcd
SW
1125 case CEPH_MSGR_TAG_BADAUTHORIZER:
1126 con->auth_retry++;
1127 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1128 con->auth_retry);
1129 if (con->auth_retry == 2) {
1130 con->error_msg = "connect authorization failure";
1131 reset_connection(con);
1132 set_bit(CLOSED, &con->state);
1133 return -1;
1134 }
1135 con->auth_retry = 1;
1136 prepare_write_connect(con->msgr, con, 0);
1137 prepare_read_connect_retry(con);
1138 break;
31b8006e
SW
1139
1140 case CEPH_MSGR_TAG_RESETSESSION:
1141 /*
1142 * If we connected with a large connect_seq but the peer
1143 * has no record of a session with us (no connection, or
1144 * connect_seq == 0), they will send RESETSESION to indicate
1145 * that they must have reset their session, and may have
1146 * dropped messages.
1147 */
1148 dout("process_connect got RESET peer seq %u\n",
1149 le32_to_cpu(con->in_connect.connect_seq));
1150 pr_err("%s%lld %s connection reset\n",
1151 ENTITY_NAME(con->peer_name),
1152 pr_addr(&con->peer_addr.in_addr));
1153 reset_connection(con);
eed0ef2c 1154 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1155 prepare_read_connect(con);
1156
1157 /* Tell ceph about it. */
ec302645 1158 mutex_unlock(&con->mutex);
31b8006e
SW
1159 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1160 if (con->ops->peer_reset)
1161 con->ops->peer_reset(con);
ec302645 1162 mutex_lock(&con->mutex);
31b8006e
SW
1163 break;
1164
1165 case CEPH_MSGR_TAG_RETRY_SESSION:
1166 /*
1167 * If we sent a smaller connect_seq than the peer has, try
1168 * again with a larger value.
1169 */
1170 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1171 le32_to_cpu(con->out_connect.connect_seq),
1172 le32_to_cpu(con->in_connect.connect_seq));
1173 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
eed0ef2c 1174 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1175 prepare_read_connect(con);
1176 break;
1177
1178 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1179 /*
1180 * If we sent a smaller global_seq than the peer has, try
1181 * again with a larger value.
1182 */
eed0ef2c 1183 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
31b8006e
SW
1184 con->peer_global_seq,
1185 le32_to_cpu(con->in_connect.global_seq));
1186 get_global_seq(con->msgr,
1187 le32_to_cpu(con->in_connect.global_seq));
eed0ef2c 1188 prepare_write_connect(con->msgr, con, 0);
31b8006e
SW
1189 prepare_read_connect(con);
1190 break;
1191
1192 case CEPH_MSGR_TAG_READY:
04a419f9
SW
1193 if (req_feat & ~server_feat) {
1194 pr_err("%s%lld %s protocol feature mismatch,"
1195 " my required %llx > server's %llx, need %llx\n",
1196 ENTITY_NAME(con->peer_name),
1197 pr_addr(&con->peer_addr.in_addr),
1198 req_feat, server_feat, req_feat & ~server_feat);
1199 con->error_msg = "missing required protocol features";
1200 fail_protocol(con);
1201 return -1;
1202 }
31b8006e 1203 clear_bit(CONNECTING, &con->state);
31b8006e
SW
1204 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1205 con->connect_seq++;
1206 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1207 con->peer_global_seq,
1208 le32_to_cpu(con->in_reply.connect_seq),
1209 con->connect_seq);
1210 WARN_ON(con->connect_seq !=
1211 le32_to_cpu(con->in_reply.connect_seq));
92ac41d0
SW
1212
1213 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1214 set_bit(LOSSYTX, &con->state);
1215
31b8006e
SW
1216 prepare_read_tag(con);
1217 break;
1218
1219 case CEPH_MSGR_TAG_WAIT:
1220 /*
1221 * If there is a connection race (we are opening
1222 * connections to each other), one of us may just have
1223 * to WAIT. This shouldn't happen if we are the
1224 * client.
1225 */
1226 pr_err("process_connect peer connecting WAIT\n");
1227
1228 default:
1229 pr_err("connect protocol error, will retry\n");
1230 con->error_msg = "protocol error, garbage tag during connect";
1231 return -1;
1232 }
1233 return 0;
1234}
1235
1236
1237/*
1238 * read (part of) an ack
1239 */
1240static int read_partial_ack(struct ceph_connection *con)
1241{
1242 int to = 0;
1243
1244 return read_partial(con, &to, sizeof(con->in_temp_ack),
1245 &con->in_temp_ack);
1246}
1247
1248
1249/*
1250 * We can finally discard anything that's been acked.
1251 */
1252static void process_ack(struct ceph_connection *con)
1253{
1254 struct ceph_msg *m;
1255 u64 ack = le64_to_cpu(con->in_temp_ack);
1256 u64 seq;
1257
31b8006e
SW
1258 while (!list_empty(&con->out_sent)) {
1259 m = list_first_entry(&con->out_sent, struct ceph_msg,
1260 list_head);
1261 seq = le64_to_cpu(m->hdr.seq);
1262 if (seq > ack)
1263 break;
1264 dout("got ack for seq %llu type %d at %p\n", seq,
1265 le16_to_cpu(m->hdr.type), m);
1266 ceph_msg_remove(m);
1267 }
31b8006e
SW
1268 prepare_read_tag(con);
1269}
1270
1271
1272
1273
1274
1275
1276/*
1277 * read (part of) a message.
1278 */
1279static int read_partial_message(struct ceph_connection *con)
1280{
1281 struct ceph_msg *m = con->in_msg;
1282 void *p;
1283 int ret;
1284 int to, want, left;
1285 unsigned front_len, middle_len, data_len, data_off;
1286 int datacrc = con->msgr->nocrc;
1287
1288 dout("read_partial_message con %p msg %p\n", con, m);
1289
1290 /* header */
1291 while (con->in_base_pos < sizeof(con->in_hdr)) {
1292 left = sizeof(con->in_hdr) - con->in_base_pos;
1293 ret = ceph_tcp_recvmsg(con->sock,
1294 (char *)&con->in_hdr + con->in_base_pos,
1295 left);
1296 if (ret <= 0)
1297 return ret;
1298 con->in_base_pos += ret;
1299 if (con->in_base_pos == sizeof(con->in_hdr)) {
1300 u32 crc = crc32c(0, (void *)&con->in_hdr,
1301 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1302 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1303 pr_err("read_partial_message bad hdr "
1304 " crc %u != expected %u\n",
1305 crc, con->in_hdr.crc);
1306 return -EBADMSG;
1307 }
1308 }
1309 }
1310
1311 front_len = le32_to_cpu(con->in_hdr.front_len);
1312 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1313 return -EIO;
1314 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1315 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1316 return -EIO;
1317 data_len = le32_to_cpu(con->in_hdr.data_len);
1318 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1319 return -EIO;
1320
1321 /* allocate message? */
1322 if (!con->in_msg) {
1323 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1324 con->in_hdr.front_len, con->in_hdr.data_len);
1325 con->in_msg = con->ops->alloc_msg(con, &con->in_hdr);
1326 if (!con->in_msg) {
1327 /* skip this message */
cf3e5c40 1328 pr_err("alloc_msg returned NULL, skipping message\n");
31b8006e
SW
1329 con->in_base_pos = -front_len - middle_len - data_len -
1330 sizeof(m->footer);
1331 con->in_tag = CEPH_MSGR_TAG_READY;
1332 return 0;
1333 }
1334 if (IS_ERR(con->in_msg)) {
1335 ret = PTR_ERR(con->in_msg);
1336 con->in_msg = NULL;
1337 con->error_msg = "out of memory for incoming message";
1338 return ret;
1339 }
1340 m = con->in_msg;
1341 m->front.iov_len = 0; /* haven't read it yet */
1342 memcpy(&m->hdr, &con->in_hdr, sizeof(con->in_hdr));
1343 }
1344
1345 /* front */
1346 while (m->front.iov_len < front_len) {
1347 BUG_ON(m->front.iov_base == NULL);
1348 left = front_len - m->front.iov_len;
1349 ret = ceph_tcp_recvmsg(con->sock, (char *)m->front.iov_base +
1350 m->front.iov_len, left);
1351 if (ret <= 0)
1352 return ret;
1353 m->front.iov_len += ret;
1354 if (m->front.iov_len == front_len)
1355 con->in_front_crc = crc32c(0, m->front.iov_base,
1356 m->front.iov_len);
1357 }
1358
1359 /* middle */
1360 while (middle_len > 0 && (!m->middle ||
1361 m->middle->vec.iov_len < middle_len)) {
1362 if (m->middle == NULL) {
1363 ret = -EOPNOTSUPP;
1364 if (con->ops->alloc_middle)
1365 ret = con->ops->alloc_middle(con, m);
1366 if (ret < 0) {
cf3e5c40 1367 pr_err("alloc_middle fail skipping payload\n");
31b8006e
SW
1368 con->in_base_pos = -middle_len - data_len
1369 - sizeof(m->footer);
1370 ceph_msg_put(con->in_msg);
1371 con->in_msg = NULL;
1372 con->in_tag = CEPH_MSGR_TAG_READY;
1373 return 0;
1374 }
1375 m->middle->vec.iov_len = 0;
1376 }
1377 left = middle_len - m->middle->vec.iov_len;
1378 ret = ceph_tcp_recvmsg(con->sock,
1379 (char *)m->middle->vec.iov_base +
1380 m->middle->vec.iov_len, left);
1381 if (ret <= 0)
1382 return ret;
1383 m->middle->vec.iov_len += ret;
1384 if (m->middle->vec.iov_len == middle_len)
1385 con->in_middle_crc = crc32c(0, m->middle->vec.iov_base,
1386 m->middle->vec.iov_len);
1387 }
1388
1389 /* (page) data */
1390 data_off = le16_to_cpu(m->hdr.data_off);
1391 if (data_len == 0)
1392 goto no_data;
1393
1394 if (m->nr_pages == 0) {
1395 con->in_msg_pos.page = 0;
1396 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1397 con->in_msg_pos.data_pos = 0;
1398 /* find pages for data payload */
1399 want = calc_pages_for(data_off & ~PAGE_MASK, data_len);
1400 ret = -1;
ec302645 1401 mutex_unlock(&con->mutex);
31b8006e
SW
1402 if (con->ops->prepare_pages)
1403 ret = con->ops->prepare_pages(con, m, want);
ec302645 1404 mutex_lock(&con->mutex);
31b8006e
SW
1405 if (ret < 0) {
1406 dout("%p prepare_pages failed, skipping payload\n", m);
1407 con->in_base_pos = -data_len - sizeof(m->footer);
1408 ceph_msg_put(con->in_msg);
1409 con->in_msg = NULL;
1410 con->in_tag = CEPH_MSGR_TAG_READY;
1411 return 0;
1412 }
1413 BUG_ON(m->nr_pages < want);
1414 }
1415 while (con->in_msg_pos.data_pos < data_len) {
1416 left = min((int)(data_len - con->in_msg_pos.data_pos),
1417 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1418 BUG_ON(m->pages == NULL);
1419 p = kmap(m->pages[con->in_msg_pos.page]);
1420 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1421 left);
1422 if (ret > 0 && datacrc)
1423 con->in_data_crc =
1424 crc32c(con->in_data_crc,
1425 p + con->in_msg_pos.page_pos, ret);
1426 kunmap(m->pages[con->in_msg_pos.page]);
1427 if (ret <= 0)
1428 return ret;
1429 con->in_msg_pos.data_pos += ret;
1430 con->in_msg_pos.page_pos += ret;
1431 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1432 con->in_msg_pos.page_pos = 0;
1433 con->in_msg_pos.page++;
1434 }
1435 }
1436
1437no_data:
1438 /* footer */
1439 to = sizeof(m->hdr) + sizeof(m->footer);
1440 while (con->in_base_pos < to) {
1441 left = to - con->in_base_pos;
1442 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1443 (con->in_base_pos - sizeof(m->hdr)),
1444 left);
1445 if (ret <= 0)
1446 return ret;
1447 con->in_base_pos += ret;
1448 }
1449 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1450 m, front_len, m->footer.front_crc, middle_len,
1451 m->footer.middle_crc, data_len, m->footer.data_crc);
1452
1453 /* crc ok? */
1454 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1455 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1456 m, con->in_front_crc, m->footer.front_crc);
1457 return -EBADMSG;
1458 }
1459 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1460 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1461 m, con->in_middle_crc, m->footer.middle_crc);
1462 return -EBADMSG;
1463 }
1464 if (datacrc &&
1465 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1466 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1467 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1468 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1469 return -EBADMSG;
1470 }
1471
1472 return 1; /* done! */
1473}
1474
1475/*
1476 * Process message. This happens in the worker thread. The callback should
1477 * be careful not to do anything that waits on other incoming messages or it
1478 * may deadlock.
1479 */
1480static void process_message(struct ceph_connection *con)
1481{
5e095e8b 1482 struct ceph_msg *msg;
31b8006e 1483
5e095e8b 1484 msg = con->in_msg;
31b8006e
SW
1485 con->in_msg = NULL;
1486
1487 /* if first message, set peer_name */
1488 if (con->peer_name.type == 0)
1489 con->peer_name = msg->hdr.src.name;
1490
31b8006e 1491 con->in_seq++;
ec302645 1492 mutex_unlock(&con->mutex);
31b8006e
SW
1493
1494 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1495 msg, le64_to_cpu(msg->hdr.seq),
1496 ENTITY_NAME(msg->hdr.src.name),
1497 le16_to_cpu(msg->hdr.type),
1498 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1499 le32_to_cpu(msg->hdr.front_len),
1500 le32_to_cpu(msg->hdr.data_len),
1501 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1502 con->ops->dispatch(con, msg);
ec302645
SW
1503
1504 mutex_lock(&con->mutex);
31b8006e
SW
1505 prepare_read_tag(con);
1506}
1507
1508
1509/*
1510 * Write something to the socket. Called in a worker thread when the
1511 * socket appears to be writeable and we have something ready to send.
1512 */
1513static int try_write(struct ceph_connection *con)
1514{
1515 struct ceph_messenger *msgr = con->msgr;
1516 int ret = 1;
1517
1518 dout("try_write start %p state %lu nref %d\n", con, con->state,
1519 atomic_read(&con->nref));
1520
ec302645 1521 mutex_lock(&con->mutex);
31b8006e
SW
1522more:
1523 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1524
1525 /* open the socket first? */
1526 if (con->sock == NULL) {
1527 /*
1528 * if we were STANDBY and are reconnecting _this_
1529 * connection, bump connect_seq now. Always bump
1530 * global_seq.
1531 */
1532 if (test_and_clear_bit(STANDBY, &con->state))
1533 con->connect_seq++;
1534
eed0ef2c
SW
1535 prepare_write_banner(msgr, con);
1536 prepare_write_connect(msgr, con, 1);
1537 prepare_read_banner(con);
31b8006e 1538 set_bit(CONNECTING, &con->state);
eed0ef2c 1539 clear_bit(NEGOTIATING, &con->state);
31b8006e 1540
cf3e5c40 1541 BUG_ON(con->in_msg);
31b8006e
SW
1542 con->in_tag = CEPH_MSGR_TAG_READY;
1543 dout("try_write initiating connect on %p new state %lu\n",
1544 con, con->state);
1545 con->sock = ceph_tcp_connect(con);
1546 if (IS_ERR(con->sock)) {
1547 con->sock = NULL;
1548 con->error_msg = "connect error";
1549 ret = -1;
1550 goto out;
1551 }
1552 }
1553
1554more_kvec:
1555 /* kvec data queued? */
1556 if (con->out_skip) {
1557 ret = write_partial_skip(con);
1558 if (ret <= 0)
1559 goto done;
1560 if (ret < 0) {
1561 dout("try_write write_partial_skip err %d\n", ret);
1562 goto done;
1563 }
1564 }
1565 if (con->out_kvec_left) {
1566 ret = write_partial_kvec(con);
1567 if (ret <= 0)
1568 goto done;
31b8006e
SW
1569 }
1570
1571 /* msg pages? */
1572 if (con->out_msg) {
c86a2930
SW
1573 if (con->out_msg_done) {
1574 ceph_msg_put(con->out_msg);
1575 con->out_msg = NULL; /* we're done with this one */
1576 goto do_next;
1577 }
1578
31b8006e
SW
1579 ret = write_partial_msg_pages(con);
1580 if (ret == 1)
1581 goto more_kvec; /* we need to send the footer, too! */
1582 if (ret == 0)
1583 goto done;
1584 if (ret < 0) {
1585 dout("try_write write_partial_msg_pages err %d\n",
1586 ret);
1587 goto done;
1588 }
1589 }
1590
c86a2930 1591do_next:
31b8006e
SW
1592 if (!test_bit(CONNECTING, &con->state)) {
1593 /* is anything else pending? */
1594 if (!list_empty(&con->out_queue)) {
1595 prepare_write_message(con);
1596 goto more;
1597 }
1598 if (con->in_seq > con->in_seq_acked) {
1599 prepare_write_ack(con);
1600 goto more;
1601 }
1602 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1603 prepare_write_keepalive(con);
1604 goto more;
1605 }
1606 }
1607
1608 /* Nothing to do! */
1609 clear_bit(WRITE_PENDING, &con->state);
1610 dout("try_write nothing else to write.\n");
1611done:
1612 ret = 0;
1613out:
ec302645 1614 mutex_unlock(&con->mutex);
31b8006e
SW
1615 dout("try_write done on %p\n", con);
1616 return ret;
1617}
1618
1619
1620
1621/*
1622 * Read what we can from the socket.
1623 */
1624static int try_read(struct ceph_connection *con)
1625{
1626 struct ceph_messenger *msgr;
1627 int ret = -1;
1628
1629 if (!con->sock)
1630 return 0;
1631
1632 if (test_bit(STANDBY, &con->state))
1633 return 0;
1634
1635 dout("try_read start on %p\n", con);
1636 msgr = con->msgr;
1637
ec302645
SW
1638 mutex_lock(&con->mutex);
1639
31b8006e
SW
1640more:
1641 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1642 con->in_base_pos);
1643 if (test_bit(CONNECTING, &con->state)) {
eed0ef2c
SW
1644 if (!test_bit(NEGOTIATING, &con->state)) {
1645 dout("try_read connecting\n");
1646 ret = read_partial_banner(con);
1647 if (ret <= 0)
1648 goto done;
1649 if (process_banner(con) < 0) {
1650 ret = -1;
1651 goto out;
1652 }
1653 }
31b8006e
SW
1654 ret = read_partial_connect(con);
1655 if (ret <= 0)
1656 goto done;
1657 if (process_connect(con) < 0) {
1658 ret = -1;
1659 goto out;
1660 }
1661 goto more;
1662 }
1663
1664 if (con->in_base_pos < 0) {
1665 /*
1666 * skipping + discarding content.
1667 *
1668 * FIXME: there must be a better way to do this!
1669 */
1670 static char buf[1024];
1671 int skip = min(1024, -con->in_base_pos);
1672 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1673 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1674 if (ret <= 0)
1675 goto done;
1676 con->in_base_pos += ret;
1677 if (con->in_base_pos)
1678 goto more;
1679 }
1680 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1681 /*
1682 * what's next?
1683 */
1684 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1685 if (ret <= 0)
1686 goto done;
1687 dout("try_read got tag %d\n", (int)con->in_tag);
1688 switch (con->in_tag) {
1689 case CEPH_MSGR_TAG_MSG:
1690 prepare_read_message(con);
1691 break;
1692 case CEPH_MSGR_TAG_ACK:
1693 prepare_read_ack(con);
1694 break;
1695 case CEPH_MSGR_TAG_CLOSE:
1696 set_bit(CLOSED, &con->state); /* fixme */
1697 goto done;
1698 default:
1699 goto bad_tag;
1700 }
1701 }
1702 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1703 ret = read_partial_message(con);
1704 if (ret <= 0) {
1705 switch (ret) {
1706 case -EBADMSG:
1707 con->error_msg = "bad crc";
1708 ret = -EIO;
1709 goto out;
1710 case -EIO:
1711 con->error_msg = "io error";
1712 goto out;
1713 default:
1714 goto done;
1715 }
1716 }
1717 if (con->in_tag == CEPH_MSGR_TAG_READY)
1718 goto more;
1719 process_message(con);
1720 goto more;
1721 }
1722 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1723 ret = read_partial_ack(con);
1724 if (ret <= 0)
1725 goto done;
1726 process_ack(con);
1727 goto more;
1728 }
1729
1730done:
1731 ret = 0;
1732out:
ec302645 1733 mutex_unlock(&con->mutex);
31b8006e
SW
1734 dout("try_read done on %p\n", con);
1735 return ret;
1736
1737bad_tag:
1738 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1739 con->error_msg = "protocol error, garbage tag";
1740 ret = -1;
1741 goto out;
1742}
1743
1744
1745/*
1746 * Atomically queue work on a connection. Bump @con reference to
1747 * avoid races with connection teardown.
1748 *
1749 * There is some trickery going on with QUEUED and BUSY because we
1750 * only want a _single_ thread operating on each connection at any
1751 * point in time, but we want to use all available CPUs.
1752 *
1753 * The worker thread only proceeds if it can atomically set BUSY. It
1754 * clears QUEUED and does it's thing. When it thinks it's done, it
1755 * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1756 * (tries again to set BUSY).
1757 *
1758 * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1759 * try to queue work. If that fails (work is already queued, or BUSY)
1760 * we give up (work also already being done or is queued) but leave QUEUED
1761 * set so that the worker thread will loop if necessary.
1762 */
1763static void queue_con(struct ceph_connection *con)
1764{
1765 if (test_bit(DEAD, &con->state)) {
1766 dout("queue_con %p ignoring: DEAD\n",
1767 con);
1768 return;
1769 }
1770
1771 if (!con->ops->get(con)) {
1772 dout("queue_con %p ref count 0\n", con);
1773 return;
1774 }
1775
1776 set_bit(QUEUED, &con->state);
1777 if (test_bit(BUSY, &con->state)) {
1778 dout("queue_con %p - already BUSY\n", con);
1779 con->ops->put(con);
1780 } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1781 dout("queue_con %p - already queued\n", con);
1782 con->ops->put(con);
1783 } else {
1784 dout("queue_con %p\n", con);
1785 }
1786}
1787
1788/*
1789 * Do some work on a connection. Drop a connection ref when we're done.
1790 */
1791static void con_work(struct work_struct *work)
1792{
1793 struct ceph_connection *con = container_of(work, struct ceph_connection,
1794 work.work);
1795 int backoff = 0;
1796
1797more:
1798 if (test_and_set_bit(BUSY, &con->state) != 0) {
1799 dout("con_work %p BUSY already set\n", con);
1800 goto out;
1801 }
1802 dout("con_work %p start, clearing QUEUED\n", con);
1803 clear_bit(QUEUED, &con->state);
1804
1805 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1806 dout("con_work CLOSED\n");
1807 con_close_socket(con);
1808 goto done;
1809 }
1810 if (test_and_clear_bit(OPENING, &con->state)) {
1811 /* reopen w/ new peer */
1812 dout("con_work OPENING\n");
1813 con_close_socket(con);
1814 }
1815
1816 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1817 try_read(con) < 0 ||
1818 try_write(con) < 0) {
1819 backoff = 1;
1820 ceph_fault(con); /* error/fault path */
1821 }
1822
1823done:
1824 clear_bit(BUSY, &con->state);
1825 dout("con->state=%lu\n", con->state);
1826 if (test_bit(QUEUED, &con->state)) {
1827 if (!backoff) {
1828 dout("con_work %p QUEUED reset, looping\n", con);
1829 goto more;
1830 }
1831 dout("con_work %p QUEUED reset, but just faulted\n", con);
1832 clear_bit(QUEUED, &con->state);
1833 }
1834 dout("con_work %p done\n", con);
1835
1836out:
1837 con->ops->put(con);
1838}
1839
1840
1841/*
1842 * Generic error/fault handler. A retry mechanism is used with
1843 * exponential backoff
1844 */
1845static void ceph_fault(struct ceph_connection *con)
1846{
1847 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1848 pr_addr(&con->peer_addr.in_addr), con->error_msg);
1849 dout("fault %p state %lu to peer %s\n",
1850 con, con->state, pr_addr(&con->peer_addr.in_addr));
1851
1852 if (test_bit(LOSSYTX, &con->state)) {
1853 dout("fault on LOSSYTX channel\n");
1854 goto out;
1855 }
1856
1857 clear_bit(BUSY, &con->state); /* to avoid an improbable race */
1858
ec302645
SW
1859 mutex_lock(&con->mutex);
1860
31b8006e 1861 con_close_socket(con);
5e095e8b
SW
1862
1863 if (con->in_msg) {
1864 ceph_msg_put(con->in_msg);
1865 con->in_msg = NULL;
1866 }
31b8006e
SW
1867
1868 /* If there are no messages in the queue, place the connection
1869 * in a STANDBY state (i.e., don't try to reconnect just yet). */
31b8006e
SW
1870 if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1871 dout("fault setting STANDBY\n");
1872 set_bit(STANDBY, &con->state);
ec302645 1873 mutex_unlock(&con->mutex);
31b8006e
SW
1874 goto out;
1875 }
1876
1877 /* Requeue anything that hasn't been acked, and retry after a
1878 * delay. */
1879 list_splice_init(&con->out_sent, &con->out_queue);
31b8006e
SW
1880
1881 if (con->delay == 0)
1882 con->delay = BASE_DELAY_INTERVAL;
1883 else if (con->delay < MAX_DELAY_INTERVAL)
1884 con->delay *= 2;
1885
ec302645
SW
1886 mutex_unlock(&con->mutex);
1887
31b8006e
SW
1888 /* explicitly schedule work to try to reconnect again later. */
1889 dout("fault queueing %p delay %lu\n", con, con->delay);
1890 con->ops->get(con);
1891 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1892 round_jiffies_relative(con->delay)) == 0)
1893 con->ops->put(con);
1894
1895out:
1896 if (con->ops->fault)
1897 con->ops->fault(con);
1898}
1899
1900
1901
1902/*
1903 * create a new messenger instance
1904 */
1905struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1906{
1907 struct ceph_messenger *msgr;
1908
1909 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1910 if (msgr == NULL)
1911 return ERR_PTR(-ENOMEM);
1912
1913 spin_lock_init(&msgr->global_seq_lock);
1914
1915 /* the zero page is needed if a request is "canceled" while the message
1916 * is being written over the socket */
1917 msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1918 if (!msgr->zero_page) {
1919 kfree(msgr);
1920 return ERR_PTR(-ENOMEM);
1921 }
1922 kmap(msgr->zero_page);
1923
1924 if (myaddr)
1925 msgr->inst.addr = *myaddr;
1926
1927 /* select a random nonce */
1928 get_random_bytes(&msgr->inst.addr.nonce,
1929 sizeof(msgr->inst.addr.nonce));
63f2d211 1930 encode_my_addr(msgr);
31b8006e
SW
1931
1932 dout("messenger_create %p\n", msgr);
1933 return msgr;
1934}
1935
1936void ceph_messenger_destroy(struct ceph_messenger *msgr)
1937{
1938 dout("destroy %p\n", msgr);
1939 kunmap(msgr->zero_page);
1940 __free_page(msgr->zero_page);
1941 kfree(msgr);
1942 dout("destroyed messenger %p\n", msgr);
1943}
1944
1945/*
1946 * Queue up an outgoing message on the given connection.
1947 */
1948void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1949{
1950 if (test_bit(CLOSED, &con->state)) {
1951 dout("con_send %p closed, dropping %p\n", con, msg);
1952 ceph_msg_put(msg);
1953 return;
1954 }
1955
1956 /* set src+dst */
63f2d211
SW
1957 msg->hdr.src.name = con->msgr->inst.name;
1958 msg->hdr.src.addr = con->msgr->my_enc_addr;
1959 msg->hdr.orig_src = msg->hdr.src;
31b8006e
SW
1960 msg->hdr.dst_erank = con->peer_addr.erank;
1961
1962 /* queue */
ec302645 1963 mutex_lock(&con->mutex);
31b8006e
SW
1964 BUG_ON(!list_empty(&msg->list_head));
1965 list_add_tail(&msg->list_head, &con->out_queue);
1966 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
1967 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
1968 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1969 le32_to_cpu(msg->hdr.front_len),
1970 le32_to_cpu(msg->hdr.middle_len),
1971 le32_to_cpu(msg->hdr.data_len));
ec302645 1972 mutex_unlock(&con->mutex);
31b8006e
SW
1973
1974 /* if there wasn't anything waiting to send before, queue
1975 * new work */
1976 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
1977 queue_con(con);
1978}
1979
1980/*
1981 * Revoke a message that was previously queued for send
1982 */
1983void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
1984{
ec302645 1985 mutex_lock(&con->mutex);
31b8006e
SW
1986 if (!list_empty(&msg->list_head)) {
1987 dout("con_revoke %p msg %p\n", con, msg);
1988 list_del_init(&msg->list_head);
1989 ceph_msg_put(msg);
1990 msg->hdr.seq = 0;
c86a2930
SW
1991 if (con->out_msg == msg) {
1992 ceph_msg_put(con->out_msg);
31b8006e 1993 con->out_msg = NULL;
c86a2930 1994 }
31b8006e
SW
1995 if (con->out_kvec_is_msg) {
1996 con->out_skip = con->out_kvec_bytes;
1997 con->out_kvec_is_msg = false;
1998 }
1999 } else {
2000 dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg);
2001 }
ec302645 2002 mutex_unlock(&con->mutex);
31b8006e
SW
2003}
2004
350b1c32
SW
2005/*
2006 * Revoke a page vector that we may be reading data into
2007 */
2008void ceph_con_revoke_pages(struct ceph_connection *con, struct page **pages)
2009{
2010 mutex_lock(&con->mutex);
2011 if (con->in_msg && con->in_msg->pages == pages) {
2012 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2013
2014 /* skip rest of message */
2015 dout("con_revoke_pages %p msg %p pages %p revoked\n", con,
2016 con->in_msg, pages);
2017 if (con->in_msg_pos.data_pos < data_len)
2018 con->in_base_pos = con->in_msg_pos.data_pos - data_len;
2019 else
2020 con->in_base_pos = con->in_base_pos -
2021 sizeof(struct ceph_msg_header) -
2022 sizeof(struct ceph_msg_footer);
2023 con->in_msg->pages = NULL;
2024 ceph_msg_put(con->in_msg);
2025 con->in_msg = NULL;
2026 con->in_tag = CEPH_MSGR_TAG_READY;
2027 } else {
2028 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2029 con, con->in_msg, pages);
2030 }
2031 mutex_unlock(&con->mutex);
2032}
2033
31b8006e
SW
2034/*
2035 * Queue a keepalive byte to ensure the tcp connection is alive.
2036 */
2037void ceph_con_keepalive(struct ceph_connection *con)
2038{
2039 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2040 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2041 queue_con(con);
2042}
2043
2044
2045/*
2046 * construct a new message with given type, size
2047 * the new msg has a ref count of 1.
2048 */
2049struct ceph_msg *ceph_msg_new(int type, int front_len,
2050 int page_len, int page_off, struct page **pages)
2051{
2052 struct ceph_msg *m;
2053
2054 m = kmalloc(sizeof(*m), GFP_NOFS);
2055 if (m == NULL)
2056 goto out;
c2e552e7 2057 kref_init(&m->kref);
31b8006e
SW
2058 INIT_LIST_HEAD(&m->list_head);
2059
2060 m->hdr.type = cpu_to_le16(type);
2061 m->hdr.front_len = cpu_to_le32(front_len);
2062 m->hdr.middle_len = 0;
2063 m->hdr.data_len = cpu_to_le32(page_len);
2064 m->hdr.data_off = cpu_to_le16(page_off);
2065 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2066 m->footer.front_crc = 0;
2067 m->footer.middle_crc = 0;
2068 m->footer.data_crc = 0;
2069 m->front_max = front_len;
2070 m->front_is_vmalloc = false;
2071 m->more_to_follow = false;
2072 m->pool = NULL;
2073
2074 /* front */
2075 if (front_len) {
2076 if (front_len > PAGE_CACHE_SIZE) {
2077 m->front.iov_base = __vmalloc(front_len, GFP_NOFS,
2078 PAGE_KERNEL);
2079 m->front_is_vmalloc = true;
2080 } else {
2081 m->front.iov_base = kmalloc(front_len, GFP_NOFS);
2082 }
2083 if (m->front.iov_base == NULL) {
2084 pr_err("msg_new can't allocate %d bytes\n",
2085 front_len);
2086 goto out2;
2087 }
2088 } else {
2089 m->front.iov_base = NULL;
2090 }
2091 m->front.iov_len = front_len;
2092
2093 /* middle */
2094 m->middle = NULL;
2095
2096 /* data */
2097 m->nr_pages = calc_pages_for(page_off, page_len);
2098 m->pages = pages;
2099
2100 dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len,
2101 m->nr_pages);
2102 return m;
2103
2104out2:
2105 ceph_msg_put(m);
2106out:
2107 pr_err("msg_new can't create type %d len %d\n", type, front_len);
2108 return ERR_PTR(-ENOMEM);
2109}
2110
2111/*
2112 * Generic message allocator, for incoming messages.
2113 */
2114struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2115 struct ceph_msg_header *hdr)
2116{
2117 int type = le16_to_cpu(hdr->type);
2118 int front_len = le32_to_cpu(hdr->front_len);
2119 struct ceph_msg *msg = ceph_msg_new(type, front_len, 0, 0, NULL);
2120
2121 if (!msg) {
2122 pr_err("unable to allocate msg type %d len %d\n",
2123 type, front_len);
2124 return ERR_PTR(-ENOMEM);
2125 }
2126 return msg;
2127}
2128
2129/*
2130 * Allocate "middle" portion of a message, if it is needed and wasn't
2131 * allocated by alloc_msg. This allows us to read a small fixed-size
2132 * per-type header in the front and then gracefully fail (i.e.,
2133 * propagate the error to the caller based on info in the front) when
2134 * the middle is too large.
2135 */
2136int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2137{
2138 int type = le16_to_cpu(msg->hdr.type);
2139 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2140
2141 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2142 ceph_msg_type_name(type), middle_len);
2143 BUG_ON(!middle_len);
2144 BUG_ON(msg->middle);
2145
b6c1d5b8 2146 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
31b8006e
SW
2147 if (!msg->middle)
2148 return -ENOMEM;
2149 return 0;
2150}
2151
2152
2153/*
2154 * Free a generically kmalloc'd message.
2155 */
2156void ceph_msg_kfree(struct ceph_msg *m)
2157{
2158 dout("msg_kfree %p\n", m);
2159 if (m->front_is_vmalloc)
2160 vfree(m->front.iov_base);
2161 else
2162 kfree(m->front.iov_base);
2163 kfree(m);
2164}
2165
2166/*
2167 * Drop a msg ref. Destroy as needed.
2168 */
c2e552e7
SW
2169void ceph_msg_last_put(struct kref *kref)
2170{
2171 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
31b8006e 2172
c2e552e7
SW
2173 dout("ceph_msg_put last one on %p\n", m);
2174 WARN_ON(!list_empty(&m->list_head));
2175
2176 /* drop middle, data, if any */
2177 if (m->middle) {
2178 ceph_buffer_put(m->middle);
2179 m->middle = NULL;
31b8006e 2180 }
c2e552e7
SW
2181 m->nr_pages = 0;
2182 m->pages = NULL;
2183
2184 if (m->pool)
2185 ceph_msgpool_put(m->pool, m);
2186 else
2187 ceph_msg_kfree(m);
31b8006e 2188}
9ec7cab1
SW
2189
2190void ceph_msg_dump(struct ceph_msg *msg)
2191{
2192 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2193 msg->front_max, msg->nr_pages);
2194 print_hex_dump(KERN_DEBUG, "header: ",
2195 DUMP_PREFIX_OFFSET, 16, 1,
2196 &msg->hdr, sizeof(msg->hdr), true);
2197 print_hex_dump(KERN_DEBUG, " front: ",
2198 DUMP_PREFIX_OFFSET, 16, 1,
2199 msg->front.iov_base, msg->front.iov_len, true);
2200 if (msg->middle)
2201 print_hex_dump(KERN_DEBUG, "middle: ",
2202 DUMP_PREFIX_OFFSET, 16, 1,
2203 msg->middle->vec.iov_base,
2204 msg->middle->vec.iov_len, true);
2205 print_hex_dump(KERN_DEBUG, "footer: ",
2206 DUMP_PREFIX_OFFSET, 16, 1,
2207 &msg->footer, sizeof(msg->footer), true);
2208}