]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/cifs/smbdirect.c
cifs: smbd: avoid reconnect lockup
[mirror_ubuntu-jammy-kernel.git] / fs / cifs / smbdirect.c
CommitLineData
03bee01d
LL
1/*
2 * Copyright (C) 2017, Microsoft Corporation.
3 *
4 * Author(s): Long Li <longli@microsoft.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
14 * the GNU General Public License for more details.
15 */
f198186a 16#include <linux/module.h>
f64b78fd 17#include <linux/highmem.h>
03bee01d 18#include "smbdirect.h"
f198186a
LL
19#include "cifs_debug.h"
20
21static struct smbd_response *get_empty_queue_buffer(
22 struct smbd_connection *info);
23static struct smbd_response *get_receive_buffer(
24 struct smbd_connection *info);
25static void put_receive_buffer(
26 struct smbd_connection *info,
27 struct smbd_response *response);
28static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
29static void destroy_receive_buffers(struct smbd_connection *info);
30
31static void put_empty_packet(
32 struct smbd_connection *info, struct smbd_response *response);
33static void enqueue_reassembly(
34 struct smbd_connection *info,
35 struct smbd_response *response, int data_length);
36static struct smbd_response *_get_first_reassembly(
37 struct smbd_connection *info);
38
39static int smbd_post_recv(
40 struct smbd_connection *info,
41 struct smbd_response *response);
42
43static int smbd_post_send_empty(struct smbd_connection *info);
d649e1bb
LL
44static int smbd_post_send_data(
45 struct smbd_connection *info,
46 struct kvec *iov, int n_vec, int remaining_data_length);
47static int smbd_post_send_page(struct smbd_connection *info,
48 struct page *page, unsigned long offset,
49 size_t size, int remaining_data_length);
03bee01d 50
c7398583
LL
51static void destroy_mr_list(struct smbd_connection *info);
52static int allocate_mr_list(struct smbd_connection *info);
53
03bee01d
LL
54/* SMBD version number */
55#define SMBD_V1 0x0100
56
57/* Port numbers for SMBD transport */
58#define SMB_PORT 445
59#define SMBD_PORT 5445
60
61/* Address lookup and resolve timeout in ms */
62#define RDMA_RESOLVE_TIMEOUT 5000
63
64/* SMBD negotiation timeout in seconds */
65#define SMBD_NEGOTIATE_TIMEOUT 120
66
67/* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
68#define SMBD_MIN_RECEIVE_SIZE 128
69#define SMBD_MIN_FRAGMENTED_SIZE 131072
70
71/*
72 * Default maximum number of RDMA read/write outstanding on this connection
73 * This value is possibly decreased during QP creation on hardware limit
74 */
75#define SMBD_CM_RESPONDER_RESOURCES 32
76
77/* Maximum number of retries on data transfer operations */
78#define SMBD_CM_RETRY 6
79/* No need to retry on Receiver Not Ready since SMBD manages credits */
80#define SMBD_CM_RNR_RETRY 0
81
82/*
83 * User configurable initial values per SMBD transport connection
84 * as defined in [MS-SMBD] 3.1.1.1
85 * Those may change after a SMBD negotiation
86 */
87/* The local peer's maximum number of credits to grant to the peer */
88int smbd_receive_credit_max = 255;
89
90/* The remote peer's credit request of local peer */
91int smbd_send_credit_target = 255;
92
93/* The maximum single message size can be sent to remote peer */
94int smbd_max_send_size = 1364;
95
96/* The maximum fragmented upper-layer payload receive size supported */
97int smbd_max_fragmented_recv_size = 1024 * 1024;
98
99/* The maximum single-message size which can be received */
100int smbd_max_receive_size = 8192;
101
102/* The timeout to initiate send of a keepalive message on idle */
103int smbd_keep_alive_interval = 120;
104
105/*
106 * User configurable initial values for RDMA transport
107 * The actual values used may be lower and are limited to hardware capabilities
108 */
109/* Default maximum number of SGEs in a RDMA write/read */
110int smbd_max_frmr_depth = 2048;
111
112/* If payload is less than this byte, use RDMA send/recv not read/write */
113int rdma_readwrite_threshold = 4096;
f198186a
LL
114
115/* Transport logging functions
116 * Logging are defined as classes. They can be OR'ed to define the actual
117 * logging level via module parameter smbd_logging_class
118 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
119 * log_rdma_event()
120 */
121#define LOG_OUTGOING 0x1
122#define LOG_INCOMING 0x2
123#define LOG_READ 0x4
124#define LOG_WRITE 0x8
125#define LOG_RDMA_SEND 0x10
126#define LOG_RDMA_RECV 0x20
127#define LOG_KEEP_ALIVE 0x40
128#define LOG_RDMA_EVENT 0x80
129#define LOG_RDMA_MR 0x100
130static unsigned int smbd_logging_class;
131module_param(smbd_logging_class, uint, 0644);
132MODULE_PARM_DESC(smbd_logging_class,
133 "Logging class for SMBD transport 0x0 to 0x100");
134
135#define ERR 0x0
136#define INFO 0x1
137static unsigned int smbd_logging_level = ERR;
138module_param(smbd_logging_level, uint, 0644);
139MODULE_PARM_DESC(smbd_logging_level,
140 "Logging level for SMBD transport, 0 (default): error, 1: info");
141
142#define log_rdma(level, class, fmt, args...) \
143do { \
144 if (level <= smbd_logging_level || class & smbd_logging_class) \
145 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
146} while (0)
147
148#define log_outgoing(level, fmt, args...) \
149 log_rdma(level, LOG_OUTGOING, fmt, ##args)
150#define log_incoming(level, fmt, args...) \
151 log_rdma(level, LOG_INCOMING, fmt, ##args)
152#define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
153#define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
154#define log_rdma_send(level, fmt, args...) \
155 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
156#define log_rdma_recv(level, fmt, args...) \
157 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
158#define log_keep_alive(level, fmt, args...) \
159 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
160#define log_rdma_event(level, fmt, args...) \
161 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
162#define log_rdma_mr(level, fmt, args...) \
163 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
164
165/*
166 * Destroy the transport and related RDMA and memory resources
167 * Need to go through all the pending counters and make sure on one is using
168 * the transport while it is destroyed
169 */
170static void smbd_destroy_rdma_work(struct work_struct *work)
171{
172 struct smbd_response *response;
173 struct smbd_connection *info =
174 container_of(work, struct smbd_connection, destroy_work);
175 unsigned long flags;
176
177 log_rdma_event(INFO, "destroying qp\n");
178 ib_drain_qp(info->id->qp);
179 rdma_destroy_qp(info->id);
180
181 /* Unblock all I/O waiting on the send queue */
182 wake_up_interruptible_all(&info->wait_send_queue);
183
184 log_rdma_event(INFO, "cancelling idle timer\n");
185 cancel_delayed_work_sync(&info->idle_timer_work);
186 log_rdma_event(INFO, "cancelling send immediate work\n");
187 cancel_delayed_work_sync(&info->send_immediate_work);
188
d649e1bb
LL
189 log_rdma_event(INFO, "wait for all send to finish\n");
190 wait_event(info->wait_smbd_send_pending,
191 info->smbd_send_pending == 0);
192
f198186a
LL
193 log_rdma_event(INFO, "wait for all recv to finish\n");
194 wake_up_interruptible(&info->wait_reassembly_queue);
f64b78fd
LL
195 wait_event(info->wait_smbd_recv_pending,
196 info->smbd_recv_pending == 0);
f198186a
LL
197
198 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
199 wait_event(info->wait_send_pending,
200 atomic_read(&info->send_pending) == 0);
201 wait_event(info->wait_send_payload_pending,
202 atomic_read(&info->send_payload_pending) == 0);
203
c7398583
LL
204 log_rdma_event(INFO, "freeing mr list\n");
205 wake_up_interruptible_all(&info->wait_mr);
206 wait_event(info->wait_for_mr_cleanup,
207 atomic_read(&info->mr_used_count) == 0);
208 destroy_mr_list(info);
209
f198186a
LL
210 /* It's not posssible for upper layer to get to reassembly */
211 log_rdma_event(INFO, "drain the reassembly queue\n");
212 do {
213 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
214 response = _get_first_reassembly(info);
215 if (response) {
216 list_del(&response->list);
217 spin_unlock_irqrestore(
218 &info->reassembly_queue_lock, flags);
219 put_receive_buffer(info, response);
f9de151b
SF
220 } else
221 spin_unlock_irqrestore(&info->reassembly_queue_lock, flags);
f198186a 222 } while (response);
f9de151b 223
f198186a
LL
224 info->reassembly_data_length = 0;
225
226 log_rdma_event(INFO, "free receive buffers\n");
227 wait_event(info->wait_receive_queues,
228 info->count_receive_queue + info->count_empty_packet_queue
229 == info->receive_credit_max);
230 destroy_receive_buffers(info);
231
232 ib_free_cq(info->send_cq);
233 ib_free_cq(info->recv_cq);
234 ib_dealloc_pd(info->pd);
235 rdma_destroy_id(info->id);
236
237 /* free mempools */
238 mempool_destroy(info->request_mempool);
239 kmem_cache_destroy(info->request_cache);
240
241 mempool_destroy(info->response_mempool);
242 kmem_cache_destroy(info->response_cache);
243
244 info->transport_status = SMBD_DESTROYED;
245 wake_up_all(&info->wait_destroy);
246}
247
248static int smbd_process_disconnected(struct smbd_connection *info)
249{
250 schedule_work(&info->destroy_work);
251 return 0;
252}
253
254static void smbd_disconnect_rdma_work(struct work_struct *work)
255{
256 struct smbd_connection *info =
257 container_of(work, struct smbd_connection, disconnect_work);
258
259 if (info->transport_status == SMBD_CONNECTED) {
260 info->transport_status = SMBD_DISCONNECTING;
261 rdma_disconnect(info->id);
262 }
263}
264
265static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
266{
267 queue_work(info->workqueue, &info->disconnect_work);
268}
269
270/* Upcall from RDMA CM */
271static int smbd_conn_upcall(
272 struct rdma_cm_id *id, struct rdma_cm_event *event)
273{
274 struct smbd_connection *info = id->context;
275
276 log_rdma_event(INFO, "event=%d status=%d\n",
277 event->event, event->status);
278
279 switch (event->event) {
280 case RDMA_CM_EVENT_ADDR_RESOLVED:
281 case RDMA_CM_EVENT_ROUTE_RESOLVED:
282 info->ri_rc = 0;
283 complete(&info->ri_done);
284 break;
285
286 case RDMA_CM_EVENT_ADDR_ERROR:
287 info->ri_rc = -EHOSTUNREACH;
288 complete(&info->ri_done);
289 break;
290
291 case RDMA_CM_EVENT_ROUTE_ERROR:
292 info->ri_rc = -ENETUNREACH;
293 complete(&info->ri_done);
294 break;
295
296 case RDMA_CM_EVENT_ESTABLISHED:
297 log_rdma_event(INFO, "connected event=%d\n", event->event);
298 info->transport_status = SMBD_CONNECTED;
299 wake_up_interruptible(&info->conn_wait);
300 break;
301
302 case RDMA_CM_EVENT_CONNECT_ERROR:
303 case RDMA_CM_EVENT_UNREACHABLE:
304 case RDMA_CM_EVENT_REJECTED:
305 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
306 info->transport_status = SMBD_DISCONNECTED;
307 wake_up_interruptible(&info->conn_wait);
308 break;
309
310 case RDMA_CM_EVENT_DEVICE_REMOVAL:
311 case RDMA_CM_EVENT_DISCONNECTED:
312 /* This happenes when we fail the negotiation */
313 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
314 info->transport_status = SMBD_DISCONNECTED;
315 wake_up(&info->conn_wait);
316 break;
317 }
318
319 info->transport_status = SMBD_DISCONNECTED;
320 smbd_process_disconnected(info);
321 break;
322
323 default:
324 break;
325 }
326
327 return 0;
328}
329
330/* Upcall from RDMA QP */
331static void
332smbd_qp_async_error_upcall(struct ib_event *event, void *context)
333{
334 struct smbd_connection *info = context;
335
336 log_rdma_event(ERR, "%s on device %s info %p\n",
337 ib_event_msg(event->event), event->device->name, info);
338
339 switch (event->event) {
340 case IB_EVENT_CQ_ERR:
341 case IB_EVENT_QP_FATAL:
342 smbd_disconnect_rdma_connection(info);
343
344 default:
345 break;
346 }
347}
348
349static inline void *smbd_request_payload(struct smbd_request *request)
350{
351 return (void *)request->packet;
352}
353
354static inline void *smbd_response_payload(struct smbd_response *response)
355{
356 return (void *)response->packet;
357}
358
359/* Called when a RDMA send is done */
360static void send_done(struct ib_cq *cq, struct ib_wc *wc)
361{
362 int i;
363 struct smbd_request *request =
364 container_of(wc->wr_cqe, struct smbd_request, cqe);
365
366 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
367 request, wc->status);
368
369 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
370 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
371 wc->status, wc->opcode);
372 smbd_disconnect_rdma_connection(request->info);
373 }
374
375 for (i = 0; i < request->num_sge; i++)
376 ib_dma_unmap_single(request->info->id->device,
377 request->sge[i].addr,
378 request->sge[i].length,
379 DMA_TO_DEVICE);
380
381 if (request->has_payload) {
382 if (atomic_dec_and_test(&request->info->send_payload_pending))
383 wake_up(&request->info->wait_send_payload_pending);
384 } else {
385 if (atomic_dec_and_test(&request->info->send_pending))
386 wake_up(&request->info->wait_send_pending);
387 }
388
389 mempool_free(request, request->info->request_mempool);
390}
391
392static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
393{
394 log_rdma_event(INFO, "resp message min_version %u max_version %u "
395 "negotiated_version %u credits_requested %u "
396 "credits_granted %u status %u max_readwrite_size %u "
397 "preferred_send_size %u max_receive_size %u "
398 "max_fragmented_size %u\n",
399 resp->min_version, resp->max_version, resp->negotiated_version,
400 resp->credits_requested, resp->credits_granted, resp->status,
401 resp->max_readwrite_size, resp->preferred_send_size,
402 resp->max_receive_size, resp->max_fragmented_size);
403}
404
405/*
406 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
407 * response, packet_length: the negotiation response message
408 * return value: true if negotiation is a success, false if failed
409 */
410static bool process_negotiation_response(
411 struct smbd_response *response, int packet_length)
412{
413 struct smbd_connection *info = response->info;
414 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
415
416 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
417 log_rdma_event(ERR,
418 "error: packet_length=%d\n", packet_length);
419 return false;
420 }
421
422 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
423 log_rdma_event(ERR, "error: negotiated_version=%x\n",
424 le16_to_cpu(packet->negotiated_version));
425 return false;
426 }
427 info->protocol = le16_to_cpu(packet->negotiated_version);
428
429 if (packet->credits_requested == 0) {
430 log_rdma_event(ERR, "error: credits_requested==0\n");
431 return false;
432 }
433 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
434
435 if (packet->credits_granted == 0) {
436 log_rdma_event(ERR, "error: credits_granted==0\n");
437 return false;
438 }
439 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
440
441 atomic_set(&info->receive_credits, 0);
442
443 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
444 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
445 le32_to_cpu(packet->preferred_send_size));
446 return false;
447 }
448 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
449
450 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
451 log_rdma_event(ERR, "error: max_receive_size=%d\n",
452 le32_to_cpu(packet->max_receive_size));
453 return false;
454 }
455 info->max_send_size = min_t(int, info->max_send_size,
456 le32_to_cpu(packet->max_receive_size));
457
458 if (le32_to_cpu(packet->max_fragmented_size) <
459 SMBD_MIN_FRAGMENTED_SIZE) {
460 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
461 le32_to_cpu(packet->max_fragmented_size));
462 return false;
463 }
464 info->max_fragmented_send_size =
465 le32_to_cpu(packet->max_fragmented_size);
c7398583
LL
466 info->rdma_readwrite_threshold =
467 rdma_readwrite_threshold > info->max_fragmented_send_size ?
468 info->max_fragmented_send_size :
469 rdma_readwrite_threshold;
470
471
472 info->max_readwrite_size = min_t(u32,
473 le32_to_cpu(packet->max_readwrite_size),
474 info->max_frmr_depth * PAGE_SIZE);
475 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
f198186a
LL
476
477 return true;
478}
479
480/*
481 * Check and schedule to send an immediate packet
482 * This is used to extend credtis to remote peer to keep the transport busy
483 */
484static void check_and_send_immediate(struct smbd_connection *info)
485{
486 if (info->transport_status != SMBD_CONNECTED)
487 return;
488
489 info->send_immediate = true;
490
491 /*
492 * Promptly send a packet if our peer is running low on receive
493 * credits
494 */
495 if (atomic_read(&info->receive_credits) <
496 info->receive_credit_target - 1)
497 queue_delayed_work(
498 info->workqueue, &info->send_immediate_work, 0);
499}
500
501static void smbd_post_send_credits(struct work_struct *work)
502{
503 int ret = 0;
504 int use_receive_queue = 1;
505 int rc;
506 struct smbd_response *response;
507 struct smbd_connection *info =
508 container_of(work, struct smbd_connection,
509 post_send_credits_work);
510
511 if (info->transport_status != SMBD_CONNECTED) {
512 wake_up(&info->wait_receive_queues);
513 return;
514 }
515
516 if (info->receive_credit_target >
517 atomic_read(&info->receive_credits)) {
518 while (true) {
519 if (use_receive_queue)
520 response = get_receive_buffer(info);
521 else
522 response = get_empty_queue_buffer(info);
523 if (!response) {
524 /* now switch to emtpy packet queue */
525 if (use_receive_queue) {
526 use_receive_queue = 0;
527 continue;
528 } else
529 break;
530 }
531
532 response->type = SMBD_TRANSFER_DATA;
533 response->first_segment = false;
534 rc = smbd_post_recv(info, response);
535 if (rc) {
536 log_rdma_recv(ERR,
537 "post_recv failed rc=%d\n", rc);
538 put_receive_buffer(info, response);
539 break;
540 }
541
542 ret++;
543 }
544 }
545
546 spin_lock(&info->lock_new_credits_offered);
547 info->new_credits_offered += ret;
548 spin_unlock(&info->lock_new_credits_offered);
549
550 atomic_add(ret, &info->receive_credits);
551
552 /* Check if we can post new receive and grant credits to peer */
553 check_and_send_immediate(info);
554}
555
556static void smbd_recv_done_work(struct work_struct *work)
557{
558 struct smbd_connection *info =
559 container_of(work, struct smbd_connection, recv_done_work);
560
561 /*
562 * We may have new send credits granted from remote peer
563 * If any sender is blcoked on lack of credets, unblock it
564 */
565 if (atomic_read(&info->send_credits))
566 wake_up_interruptible(&info->wait_send_queue);
567
568 /*
569 * Check if we need to send something to remote peer to
570 * grant more credits or respond to KEEP_ALIVE packet
571 */
572 check_and_send_immediate(info);
573}
574
575/* Called from softirq, when recv is done */
576static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
577{
578 struct smbd_data_transfer *data_transfer;
579 struct smbd_response *response =
580 container_of(wc->wr_cqe, struct smbd_response, cqe);
581 struct smbd_connection *info = response->info;
582 int data_length = 0;
583
584 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d "
585 "byte_len=%d pkey_index=%x\n",
586 response, response->type, wc->status, wc->opcode,
587 wc->byte_len, wc->pkey_index);
588
589 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
590 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
591 wc->status, wc->opcode);
592 smbd_disconnect_rdma_connection(info);
593 goto error;
594 }
595
596 ib_dma_sync_single_for_cpu(
597 wc->qp->device,
598 response->sge.addr,
599 response->sge.length,
600 DMA_FROM_DEVICE);
601
602 switch (response->type) {
603 /* SMBD negotiation response */
604 case SMBD_NEGOTIATE_RESP:
605 dump_smbd_negotiate_resp(smbd_response_payload(response));
606 info->full_packet_received = true;
607 info->negotiate_done =
608 process_negotiation_response(response, wc->byte_len);
609 complete(&info->negotiate_completion);
610 break;
611
612 /* SMBD data transfer packet */
613 case SMBD_TRANSFER_DATA:
614 data_transfer = smbd_response_payload(response);
615 data_length = le32_to_cpu(data_transfer->data_length);
616
617 /*
618 * If this is a packet with data playload place the data in
619 * reassembly queue and wake up the reading thread
620 */
621 if (data_length) {
622 if (info->full_packet_received)
623 response->first_segment = true;
624
625 if (le32_to_cpu(data_transfer->remaining_data_length))
626 info->full_packet_received = false;
627 else
628 info->full_packet_received = true;
629
630 enqueue_reassembly(
631 info,
632 response,
633 data_length);
634 } else
635 put_empty_packet(info, response);
636
637 if (data_length)
638 wake_up_interruptible(&info->wait_reassembly_queue);
639
640 atomic_dec(&info->receive_credits);
641 info->receive_credit_target =
642 le16_to_cpu(data_transfer->credits_requested);
643 atomic_add(le16_to_cpu(data_transfer->credits_granted),
644 &info->send_credits);
645
646 log_incoming(INFO, "data flags %d data_offset %d "
647 "data_length %d remaining_data_length %d\n",
648 le16_to_cpu(data_transfer->flags),
649 le32_to_cpu(data_transfer->data_offset),
650 le32_to_cpu(data_transfer->data_length),
651 le32_to_cpu(data_transfer->remaining_data_length));
652
653 /* Send a KEEP_ALIVE response right away if requested */
654 info->keep_alive_requested = KEEP_ALIVE_NONE;
655 if (le16_to_cpu(data_transfer->flags) &
656 SMB_DIRECT_RESPONSE_REQUESTED) {
657 info->keep_alive_requested = KEEP_ALIVE_PENDING;
658 }
659
660 queue_work(info->workqueue, &info->recv_done_work);
661 return;
662
663 default:
664 log_rdma_recv(ERR,
665 "unexpected response type=%d\n", response->type);
666 }
667
668error:
669 put_receive_buffer(info, response);
670}
671
672static struct rdma_cm_id *smbd_create_id(
673 struct smbd_connection *info,
674 struct sockaddr *dstaddr, int port)
675{
676 struct rdma_cm_id *id;
677 int rc;
678 __be16 *sport;
679
680 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
681 RDMA_PS_TCP, IB_QPT_RC);
682 if (IS_ERR(id)) {
683 rc = PTR_ERR(id);
684 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
685 return id;
686 }
687
688 if (dstaddr->sa_family == AF_INET6)
689 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
690 else
691 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
692
693 *sport = htons(port);
694
695 init_completion(&info->ri_done);
696 info->ri_rc = -ETIMEDOUT;
697
698 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
699 RDMA_RESOLVE_TIMEOUT);
700 if (rc) {
701 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
702 goto out;
703 }
704 wait_for_completion_interruptible_timeout(
705 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
706 rc = info->ri_rc;
707 if (rc) {
708 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
709 goto out;
710 }
711
712 info->ri_rc = -ETIMEDOUT;
713 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
714 if (rc) {
715 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
716 goto out;
717 }
718 wait_for_completion_interruptible_timeout(
719 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
720 rc = info->ri_rc;
721 if (rc) {
722 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
723 goto out;
724 }
725
726 return id;
727
728out:
729 rdma_destroy_id(id);
730 return ERR_PTR(rc);
731}
732
733/*
734 * Test if FRWR (Fast Registration Work Requests) is supported on the device
735 * This implementation requries FRWR on RDMA read/write
736 * return value: true if it is supported
737 */
738static bool frwr_is_supported(struct ib_device_attr *attrs)
739{
740 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
741 return false;
742 if (attrs->max_fast_reg_page_list_len == 0)
743 return false;
744 return true;
745}
746
747static int smbd_ia_open(
748 struct smbd_connection *info,
749 struct sockaddr *dstaddr, int port)
750{
751 int rc;
752
753 info->id = smbd_create_id(info, dstaddr, port);
754 if (IS_ERR(info->id)) {
755 rc = PTR_ERR(info->id);
756 goto out1;
757 }
758
759 if (!frwr_is_supported(&info->id->device->attrs)) {
760 log_rdma_event(ERR,
761 "Fast Registration Work Requests "
762 "(FRWR) is not supported\n");
763 log_rdma_event(ERR,
764 "Device capability flags = %llx "
765 "max_fast_reg_page_list_len = %u\n",
766 info->id->device->attrs.device_cap_flags,
767 info->id->device->attrs.max_fast_reg_page_list_len);
768 rc = -EPROTONOSUPPORT;
769 goto out2;
770 }
c7398583
LL
771 info->max_frmr_depth = min_t(int,
772 smbd_max_frmr_depth,
773 info->id->device->attrs.max_fast_reg_page_list_len);
774 info->mr_type = IB_MR_TYPE_MEM_REG;
775 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
776 info->mr_type = IB_MR_TYPE_SG_GAPS;
f198186a
LL
777
778 info->pd = ib_alloc_pd(info->id->device, 0);
779 if (IS_ERR(info->pd)) {
780 rc = PTR_ERR(info->pd);
781 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
782 goto out2;
783 }
784
785 return 0;
786
787out2:
788 rdma_destroy_id(info->id);
789 info->id = NULL;
790
791out1:
792 return rc;
793}
794
795/*
796 * Send a negotiation request message to the peer
797 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
798 * After negotiation, the transport is connected and ready for
799 * carrying upper layer SMB payload
800 */
801static int smbd_post_send_negotiate_req(struct smbd_connection *info)
802{
803 struct ib_send_wr send_wr, *send_wr_fail;
804 int rc = -ENOMEM;
805 struct smbd_request *request;
806 struct smbd_negotiate_req *packet;
807
808 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
809 if (!request)
810 return rc;
811
812 request->info = info;
813
814 packet = smbd_request_payload(request);
815 packet->min_version = cpu_to_le16(SMBD_V1);
816 packet->max_version = cpu_to_le16(SMBD_V1);
817 packet->reserved = 0;
818 packet->credits_requested = cpu_to_le16(info->send_credit_target);
819 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
820 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
821 packet->max_fragmented_size =
822 cpu_to_le32(info->max_fragmented_recv_size);
823
824 request->num_sge = 1;
825 request->sge[0].addr = ib_dma_map_single(
826 info->id->device, (void *)packet,
827 sizeof(*packet), DMA_TO_DEVICE);
828 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
829 rc = -EIO;
830 goto dma_mapping_failed;
831 }
832
833 request->sge[0].length = sizeof(*packet);
834 request->sge[0].lkey = info->pd->local_dma_lkey;
835
836 ib_dma_sync_single_for_device(
837 info->id->device, request->sge[0].addr,
838 request->sge[0].length, DMA_TO_DEVICE);
839
840 request->cqe.done = send_done;
841
842 send_wr.next = NULL;
843 send_wr.wr_cqe = &request->cqe;
844 send_wr.sg_list = request->sge;
845 send_wr.num_sge = request->num_sge;
846 send_wr.opcode = IB_WR_SEND;
847 send_wr.send_flags = IB_SEND_SIGNALED;
848
849 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
850 request->sge[0].addr,
851 request->sge[0].length, request->sge[0].lkey);
852
853 request->has_payload = false;
854 atomic_inc(&info->send_pending);
855 rc = ib_post_send(info->id->qp, &send_wr, &send_wr_fail);
856 if (!rc)
857 return 0;
858
859 /* if we reach here, post send failed */
860 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
861 atomic_dec(&info->send_pending);
862 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
863 request->sge[0].length, DMA_TO_DEVICE);
864
865dma_mapping_failed:
866 mempool_free(request, info->request_mempool);
867 return rc;
868}
869
870/*
871 * Extend the credits to remote peer
872 * This implements [MS-SMBD] 3.1.5.9
873 * The idea is that we should extend credits to remote peer as quickly as
874 * it's allowed, to maintain data flow. We allocate as much receive
875 * buffer as possible, and extend the receive credits to remote peer
876 * return value: the new credtis being granted.
877 */
878static int manage_credits_prior_sending(struct smbd_connection *info)
879{
880 int new_credits;
881
882 spin_lock(&info->lock_new_credits_offered);
883 new_credits = info->new_credits_offered;
884 info->new_credits_offered = 0;
885 spin_unlock(&info->lock_new_credits_offered);
886
887 return new_credits;
888}
889
890/*
891 * Check if we need to send a KEEP_ALIVE message
892 * The idle connection timer triggers a KEEP_ALIVE message when expires
893 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
894 * back a response.
895 * return value:
896 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
897 * 0: otherwise
898 */
899static int manage_keep_alive_before_sending(struct smbd_connection *info)
900{
901 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
902 info->keep_alive_requested = KEEP_ALIVE_SENT;
903 return 1;
904 }
905 return 0;
906}
907
908/*
909 * Build and prepare the SMBD packet header
910 * This function waits for avaialbe send credits and build a SMBD packet
911 * header. The caller then optional append payload to the packet after
912 * the header
913 * intput values
914 * size: the size of the payload
915 * remaining_data_length: remaining data to send if this is part of a
916 * fragmented packet
917 * output values
918 * request_out: the request allocated from this function
919 * return values: 0 on success, otherwise actual error code returned
920 */
921static int smbd_create_header(struct smbd_connection *info,
922 int size, int remaining_data_length,
923 struct smbd_request **request_out)
924{
925 struct smbd_request *request;
926 struct smbd_data_transfer *packet;
927 int header_length;
928 int rc;
929
930 /* Wait for send credits. A SMBD packet needs one credit */
931 rc = wait_event_interruptible(info->wait_send_queue,
932 atomic_read(&info->send_credits) > 0 ||
933 info->transport_status != SMBD_CONNECTED);
934 if (rc)
935 return rc;
936
937 if (info->transport_status != SMBD_CONNECTED) {
938 log_outgoing(ERR, "disconnected not sending\n");
939 return -ENOENT;
940 }
941 atomic_dec(&info->send_credits);
942
943 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
944 if (!request) {
945 rc = -ENOMEM;
946 goto err;
947 }
948
949 request->info = info;
950
951 /* Fill in the packet header */
952 packet = smbd_request_payload(request);
953 packet->credits_requested = cpu_to_le16(info->send_credit_target);
954 packet->credits_granted =
955 cpu_to_le16(manage_credits_prior_sending(info));
956 info->send_immediate = false;
957
958 packet->flags = 0;
959 if (manage_keep_alive_before_sending(info))
960 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
961
962 packet->reserved = 0;
963 if (!size)
964 packet->data_offset = 0;
965 else
966 packet->data_offset = cpu_to_le32(24);
967 packet->data_length = cpu_to_le32(size);
968 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
969 packet->padding = 0;
970
971 log_outgoing(INFO, "credits_requested=%d credits_granted=%d "
972 "data_offset=%d data_length=%d remaining_data_length=%d\n",
973 le16_to_cpu(packet->credits_requested),
974 le16_to_cpu(packet->credits_granted),
975 le32_to_cpu(packet->data_offset),
976 le32_to_cpu(packet->data_length),
977 le32_to_cpu(packet->remaining_data_length));
978
979 /* Map the packet to DMA */
980 header_length = sizeof(struct smbd_data_transfer);
981 /* If this is a packet without payload, don't send padding */
982 if (!size)
983 header_length = offsetof(struct smbd_data_transfer, padding);
984
985 request->num_sge = 1;
986 request->sge[0].addr = ib_dma_map_single(info->id->device,
987 (void *)packet,
988 header_length,
989 DMA_BIDIRECTIONAL);
990 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
991 mempool_free(request, info->request_mempool);
992 rc = -EIO;
993 goto err;
994 }
995
996 request->sge[0].length = header_length;
997 request->sge[0].lkey = info->pd->local_dma_lkey;
998
999 *request_out = request;
1000 return 0;
1001
1002err:
1003 atomic_inc(&info->send_credits);
1004 return rc;
1005}
1006
1007static void smbd_destroy_header(struct smbd_connection *info,
1008 struct smbd_request *request)
1009{
1010
1011 ib_dma_unmap_single(info->id->device,
1012 request->sge[0].addr,
1013 request->sge[0].length,
1014 DMA_TO_DEVICE);
1015 mempool_free(request, info->request_mempool);
1016 atomic_inc(&info->send_credits);
1017}
1018
1019/* Post the send request */
1020static int smbd_post_send(struct smbd_connection *info,
1021 struct smbd_request *request, bool has_payload)
1022{
1023 struct ib_send_wr send_wr, *send_wr_fail;
1024 int rc, i;
1025
1026 for (i = 0; i < request->num_sge; i++) {
1027 log_rdma_send(INFO,
ac65cb62 1028 "rdma_request sge[%d] addr=%llu length=%u\n",
f198186a
LL
1029 i, request->sge[0].addr, request->sge[0].length);
1030 ib_dma_sync_single_for_device(
1031 info->id->device,
1032 request->sge[i].addr,
1033 request->sge[i].length,
1034 DMA_TO_DEVICE);
1035 }
1036
1037 request->cqe.done = send_done;
1038
1039 send_wr.next = NULL;
1040 send_wr.wr_cqe = &request->cqe;
1041 send_wr.sg_list = request->sge;
1042 send_wr.num_sge = request->num_sge;
1043 send_wr.opcode = IB_WR_SEND;
1044 send_wr.send_flags = IB_SEND_SIGNALED;
1045
1046 if (has_payload) {
1047 request->has_payload = true;
1048 atomic_inc(&info->send_payload_pending);
1049 } else {
1050 request->has_payload = false;
1051 atomic_inc(&info->send_pending);
1052 }
1053
1054 rc = ib_post_send(info->id->qp, &send_wr, &send_wr_fail);
1055 if (rc) {
1056 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1057 if (has_payload) {
1058 if (atomic_dec_and_test(&info->send_payload_pending))
1059 wake_up(&info->wait_send_payload_pending);
1060 } else {
1061 if (atomic_dec_and_test(&info->send_pending))
1062 wake_up(&info->wait_send_pending);
1063 }
1064 } else
1065 /* Reset timer for idle connection after packet is sent */
1066 mod_delayed_work(info->workqueue, &info->idle_timer_work,
1067 info->keep_alive_interval*HZ);
1068
1069 return rc;
1070}
1071
1072static int smbd_post_send_sgl(struct smbd_connection *info,
1073 struct scatterlist *sgl, int data_length, int remaining_data_length)
1074{
1075 int num_sgs;
1076 int i, rc;
1077 struct smbd_request *request;
1078 struct scatterlist *sg;
1079
1080 rc = smbd_create_header(
1081 info, data_length, remaining_data_length, &request);
1082 if (rc)
1083 return rc;
1084
1085 num_sgs = sgl ? sg_nents(sgl) : 0;
1086 for_each_sg(sgl, sg, num_sgs, i) {
1087 request->sge[i+1].addr =
1088 ib_dma_map_page(info->id->device, sg_page(sg),
1089 sg->offset, sg->length, DMA_BIDIRECTIONAL);
1090 if (ib_dma_mapping_error(
1091 info->id->device, request->sge[i+1].addr)) {
1092 rc = -EIO;
1093 request->sge[i+1].addr = 0;
1094 goto dma_mapping_failure;
1095 }
1096 request->sge[i+1].length = sg->length;
1097 request->sge[i+1].lkey = info->pd->local_dma_lkey;
1098 request->num_sge++;
1099 }
1100
1101 rc = smbd_post_send(info, request, data_length);
1102 if (!rc)
1103 return 0;
1104
1105dma_mapping_failure:
1106 for (i = 1; i < request->num_sge; i++)
1107 if (request->sge[i].addr)
1108 ib_dma_unmap_single(info->id->device,
1109 request->sge[i].addr,
1110 request->sge[i].length,
1111 DMA_TO_DEVICE);
1112 smbd_destroy_header(info, request);
1113 return rc;
1114}
1115
d649e1bb
LL
1116/*
1117 * Send a page
1118 * page: the page to send
1119 * offset: offset in the page to send
1120 * size: length in the page to send
1121 * remaining_data_length: remaining data to send in this payload
1122 */
1123static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
1124 unsigned long offset, size_t size, int remaining_data_length)
1125{
1126 struct scatterlist sgl;
1127
1128 sg_init_table(&sgl, 1);
1129 sg_set_page(&sgl, page, size, offset);
1130
1131 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
1132}
1133
f198186a
LL
1134/*
1135 * Send an empty message
1136 * Empty message is used to extend credits to peer to for keep live
1137 * while there is no upper layer payload to send at the time
1138 */
1139static int smbd_post_send_empty(struct smbd_connection *info)
1140{
1141 info->count_send_empty++;
1142 return smbd_post_send_sgl(info, NULL, 0, 0);
1143}
1144
d649e1bb
LL
1145/*
1146 * Send a data buffer
1147 * iov: the iov array describing the data buffers
1148 * n_vec: number of iov array
1149 * remaining_data_length: remaining data to send following this packet
1150 * in segmented SMBD packet
1151 */
1152static int smbd_post_send_data(
1153 struct smbd_connection *info, struct kvec *iov, int n_vec,
1154 int remaining_data_length)
1155{
1156 int i;
1157 u32 data_length = 0;
1158 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1159
1160 if (n_vec > SMBDIRECT_MAX_SGE) {
1161 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1162 return -ENOMEM;
1163 }
1164
1165 sg_init_table(sgl, n_vec);
1166 for (i = 0; i < n_vec; i++) {
1167 data_length += iov[i].iov_len;
1168 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1169 }
1170
1171 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1172}
1173
f198186a
LL
1174/*
1175 * Post a receive request to the transport
1176 * The remote peer can only send data when a receive request is posted
1177 * The interaction is controlled by send/receive credit system
1178 */
1179static int smbd_post_recv(
1180 struct smbd_connection *info, struct smbd_response *response)
1181{
1182 struct ib_recv_wr recv_wr, *recv_wr_fail = NULL;
1183 int rc = -EIO;
1184
1185 response->sge.addr = ib_dma_map_single(
1186 info->id->device, response->packet,
1187 info->max_receive_size, DMA_FROM_DEVICE);
1188 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1189 return rc;
1190
1191 response->sge.length = info->max_receive_size;
1192 response->sge.lkey = info->pd->local_dma_lkey;
1193
1194 response->cqe.done = recv_done;
1195
1196 recv_wr.wr_cqe = &response->cqe;
1197 recv_wr.next = NULL;
1198 recv_wr.sg_list = &response->sge;
1199 recv_wr.num_sge = 1;
1200
1201 rc = ib_post_recv(info->id->qp, &recv_wr, &recv_wr_fail);
1202 if (rc) {
1203 ib_dma_unmap_single(info->id->device, response->sge.addr,
1204 response->sge.length, DMA_FROM_DEVICE);
1205
1206 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1207 }
1208
1209 return rc;
1210}
1211
1212/* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1213static int smbd_negotiate(struct smbd_connection *info)
1214{
1215 int rc;
1216 struct smbd_response *response = get_receive_buffer(info);
1217
1218 response->type = SMBD_NEGOTIATE_RESP;
1219 rc = smbd_post_recv(info, response);
1220 log_rdma_event(INFO,
1221 "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x "
1222 "iov.lkey=%x\n",
1223 rc, response->sge.addr,
1224 response->sge.length, response->sge.lkey);
1225 if (rc)
1226 return rc;
1227
1228 init_completion(&info->negotiate_completion);
1229 info->negotiate_done = false;
1230 rc = smbd_post_send_negotiate_req(info);
1231 if (rc)
1232 return rc;
1233
1234 rc = wait_for_completion_interruptible_timeout(
1235 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1236 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1237
1238 if (info->negotiate_done)
1239 return 0;
1240
1241 if (rc == 0)
1242 rc = -ETIMEDOUT;
1243 else if (rc == -ERESTARTSYS)
1244 rc = -EINTR;
1245 else
1246 rc = -ENOTCONN;
1247
1248 return rc;
1249}
1250
1251static void put_empty_packet(
1252 struct smbd_connection *info, struct smbd_response *response)
1253{
1254 spin_lock(&info->empty_packet_queue_lock);
1255 list_add_tail(&response->list, &info->empty_packet_queue);
1256 info->count_empty_packet_queue++;
1257 spin_unlock(&info->empty_packet_queue_lock);
1258
1259 queue_work(info->workqueue, &info->post_send_credits_work);
1260}
1261
1262/*
1263 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1264 * This is a queue for reassembling upper layer payload and present to upper
1265 * layer. All the inncoming payload go to the reassembly queue, regardless of
1266 * if reassembly is required. The uuper layer code reads from the queue for all
1267 * incoming payloads.
1268 * Put a received packet to the reassembly queue
1269 * response: the packet received
1270 * data_length: the size of payload in this packet
1271 */
1272static void enqueue_reassembly(
1273 struct smbd_connection *info,
1274 struct smbd_response *response,
1275 int data_length)
1276{
1277 spin_lock(&info->reassembly_queue_lock);
1278 list_add_tail(&response->list, &info->reassembly_queue);
1279 info->reassembly_queue_length++;
1280 /*
1281 * Make sure reassembly_data_length is updated after list and
1282 * reassembly_queue_length are updated. On the dequeue side
1283 * reassembly_data_length is checked without a lock to determine
1284 * if reassembly_queue_length and list is up to date
1285 */
1286 virt_wmb();
1287 info->reassembly_data_length += data_length;
1288 spin_unlock(&info->reassembly_queue_lock);
1289 info->count_reassembly_queue++;
1290 info->count_enqueue_reassembly_queue++;
1291}
1292
1293/*
1294 * Get the first entry at the front of reassembly queue
1295 * Caller is responsible for locking
1296 * return value: the first entry if any, NULL if queue is empty
1297 */
1298static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1299{
1300 struct smbd_response *ret = NULL;
1301
1302 if (!list_empty(&info->reassembly_queue)) {
1303 ret = list_first_entry(
1304 &info->reassembly_queue,
1305 struct smbd_response, list);
1306 }
1307 return ret;
1308}
1309
1310static struct smbd_response *get_empty_queue_buffer(
1311 struct smbd_connection *info)
1312{
1313 struct smbd_response *ret = NULL;
1314 unsigned long flags;
1315
1316 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1317 if (!list_empty(&info->empty_packet_queue)) {
1318 ret = list_first_entry(
1319 &info->empty_packet_queue,
1320 struct smbd_response, list);
1321 list_del(&ret->list);
1322 info->count_empty_packet_queue--;
1323 }
1324 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1325
1326 return ret;
1327}
1328
1329/*
1330 * Get a receive buffer
1331 * For each remote send, we need to post a receive. The receive buffers are
1332 * pre-allocated in advance.
1333 * return value: the receive buffer, NULL if none is available
1334 */
1335static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1336{
1337 struct smbd_response *ret = NULL;
1338 unsigned long flags;
1339
1340 spin_lock_irqsave(&info->receive_queue_lock, flags);
1341 if (!list_empty(&info->receive_queue)) {
1342 ret = list_first_entry(
1343 &info->receive_queue,
1344 struct smbd_response, list);
1345 list_del(&ret->list);
1346 info->count_receive_queue--;
1347 info->count_get_receive_buffer++;
1348 }
1349 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1350
1351 return ret;
1352}
1353
1354/*
1355 * Return a receive buffer
1356 * Upon returning of a receive buffer, we can post new receive and extend
1357 * more receive credits to remote peer. This is done immediately after a
1358 * receive buffer is returned.
1359 */
1360static void put_receive_buffer(
1361 struct smbd_connection *info, struct smbd_response *response)
1362{
1363 unsigned long flags;
1364
1365 ib_dma_unmap_single(info->id->device, response->sge.addr,
1366 response->sge.length, DMA_FROM_DEVICE);
1367
1368 spin_lock_irqsave(&info->receive_queue_lock, flags);
1369 list_add_tail(&response->list, &info->receive_queue);
1370 info->count_receive_queue++;
1371 info->count_put_receive_buffer++;
1372 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1373
1374 queue_work(info->workqueue, &info->post_send_credits_work);
1375}
1376
1377/* Preallocate all receive buffer on transport establishment */
1378static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1379{
1380 int i;
1381 struct smbd_response *response;
1382
1383 INIT_LIST_HEAD(&info->reassembly_queue);
1384 spin_lock_init(&info->reassembly_queue_lock);
1385 info->reassembly_data_length = 0;
1386 info->reassembly_queue_length = 0;
1387
1388 INIT_LIST_HEAD(&info->receive_queue);
1389 spin_lock_init(&info->receive_queue_lock);
1390 info->count_receive_queue = 0;
1391
1392 INIT_LIST_HEAD(&info->empty_packet_queue);
1393 spin_lock_init(&info->empty_packet_queue_lock);
1394 info->count_empty_packet_queue = 0;
1395
1396 init_waitqueue_head(&info->wait_receive_queues);
1397
1398 for (i = 0; i < num_buf; i++) {
1399 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1400 if (!response)
1401 goto allocate_failed;
1402
1403 response->info = info;
1404 list_add_tail(&response->list, &info->receive_queue);
1405 info->count_receive_queue++;
1406 }
1407
1408 return 0;
1409
1410allocate_failed:
1411 while (!list_empty(&info->receive_queue)) {
1412 response = list_first_entry(
1413 &info->receive_queue,
1414 struct smbd_response, list);
1415 list_del(&response->list);
1416 info->count_receive_queue--;
1417
1418 mempool_free(response, info->response_mempool);
1419 }
1420 return -ENOMEM;
1421}
1422
1423static void destroy_receive_buffers(struct smbd_connection *info)
1424{
1425 struct smbd_response *response;
1426
1427 while ((response = get_receive_buffer(info)))
1428 mempool_free(response, info->response_mempool);
1429
1430 while ((response = get_empty_queue_buffer(info)))
1431 mempool_free(response, info->response_mempool);
1432}
1433
1434/*
1435 * Check and send an immediate or keep alive packet
1436 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1
1437 * Connection.KeepaliveRequested and Connection.SendImmediate
1438 * The idea is to extend credits to server as soon as it becomes available
1439 */
1440static void send_immediate_work(struct work_struct *work)
1441{
1442 struct smbd_connection *info = container_of(
1443 work, struct smbd_connection,
1444 send_immediate_work.work);
1445
1446 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
1447 info->send_immediate) {
1448 log_keep_alive(INFO, "send an empty message\n");
1449 smbd_post_send_empty(info);
1450 }
1451}
1452
1453/* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1454static void idle_connection_timer(struct work_struct *work)
1455{
1456 struct smbd_connection *info = container_of(
1457 work, struct smbd_connection,
1458 idle_timer_work.work);
1459
1460 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1461 log_keep_alive(ERR,
1462 "error status info->keep_alive_requested=%d\n",
1463 info->keep_alive_requested);
1464 smbd_disconnect_rdma_connection(info);
1465 return;
1466 }
1467
1468 log_keep_alive(INFO, "about to send an empty idle message\n");
1469 smbd_post_send_empty(info);
1470
1471 /* Setup the next idle timeout work */
1472 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1473 info->keep_alive_interval*HZ);
1474}
1475
8ef130f9
LL
1476/* Destroy this SMBD connection, called from upper layer */
1477void smbd_destroy(struct smbd_connection *info)
1478{
1479 log_rdma_event(INFO, "destroying rdma session\n");
1480
1481 /* Kick off the disconnection process */
1482 smbd_disconnect_rdma_connection(info);
1483
1484 log_rdma_event(INFO, "wait for transport being destroyed\n");
1485 wait_event(info->wait_destroy,
1486 info->transport_status == SMBD_DESTROYED);
1487
1488 destroy_workqueue(info->workqueue);
1489 kfree(info);
1490}
1491
ad57b8e1
LL
1492/*
1493 * Reconnect this SMBD connection, called from upper layer
1494 * return value: 0 on success, or actual error code
1495 */
1496int smbd_reconnect(struct TCP_Server_Info *server)
1497{
1498 log_rdma_event(INFO, "reconnecting rdma session\n");
1499
1500 if (!server->smbd_conn) {
48f238a7
LL
1501 log_rdma_event(INFO, "rdma session already destroyed\n");
1502 goto create_conn;
ad57b8e1
LL
1503 }
1504
1505 /*
1506 * This is possible if transport is disconnected and we haven't received
1507 * notification from RDMA, but upper layer has detected timeout
1508 */
1509 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1510 log_rdma_event(INFO, "disconnecting transport\n");
1511 smbd_disconnect_rdma_connection(server->smbd_conn);
1512 }
1513
1514 /* wait until the transport is destroyed */
48f238a7
LL
1515 if (!wait_event_timeout(server->smbd_conn->wait_destroy,
1516 server->smbd_conn->transport_status == SMBD_DESTROYED, 5*HZ))
1517 return -EAGAIN;
ad57b8e1
LL
1518
1519 destroy_workqueue(server->smbd_conn->workqueue);
1520 kfree(server->smbd_conn);
1521
48f238a7 1522create_conn:
ad57b8e1
LL
1523 log_rdma_event(INFO, "creating rdma session\n");
1524 server->smbd_conn = smbd_get_connection(
1525 server, (struct sockaddr *) &server->dstaddr);
48f238a7
LL
1526 log_rdma_event(INFO, "created rdma session info=%p\n",
1527 server->smbd_conn);
ad57b8e1
LL
1528
1529 return server->smbd_conn ? 0 : -ENOENT;
1530}
1531
f198186a
LL
1532static void destroy_caches_and_workqueue(struct smbd_connection *info)
1533{
1534 destroy_receive_buffers(info);
1535 destroy_workqueue(info->workqueue);
1536 mempool_destroy(info->response_mempool);
1537 kmem_cache_destroy(info->response_cache);
1538 mempool_destroy(info->request_mempool);
1539 kmem_cache_destroy(info->request_cache);
1540}
1541
1542#define MAX_NAME_LEN 80
1543static int allocate_caches_and_workqueue(struct smbd_connection *info)
1544{
1545 char name[MAX_NAME_LEN];
1546 int rc;
1547
1548 snprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1549 info->request_cache =
1550 kmem_cache_create(
1551 name,
1552 sizeof(struct smbd_request) +
1553 sizeof(struct smbd_data_transfer),
1554 0, SLAB_HWCACHE_ALIGN, NULL);
1555 if (!info->request_cache)
1556 return -ENOMEM;
1557
1558 info->request_mempool =
1559 mempool_create(info->send_credit_target, mempool_alloc_slab,
1560 mempool_free_slab, info->request_cache);
1561 if (!info->request_mempool)
1562 goto out1;
1563
1564 snprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1565 info->response_cache =
1566 kmem_cache_create(
1567 name,
1568 sizeof(struct smbd_response) +
1569 info->max_receive_size,
1570 0, SLAB_HWCACHE_ALIGN, NULL);
1571 if (!info->response_cache)
1572 goto out2;
1573
1574 info->response_mempool =
1575 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1576 mempool_free_slab, info->response_cache);
1577 if (!info->response_mempool)
1578 goto out3;
1579
1580 snprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1581 info->workqueue = create_workqueue(name);
1582 if (!info->workqueue)
1583 goto out4;
1584
1585 rc = allocate_receive_buffers(info, info->receive_credit_max);
1586 if (rc) {
1587 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1588 goto out5;
1589 }
1590
1591 return 0;
1592
1593out5:
1594 destroy_workqueue(info->workqueue);
1595out4:
1596 mempool_destroy(info->response_mempool);
1597out3:
1598 kmem_cache_destroy(info->response_cache);
1599out2:
1600 mempool_destroy(info->request_mempool);
1601out1:
1602 kmem_cache_destroy(info->request_cache);
1603 return -ENOMEM;
1604}
1605
1606/* Create a SMBD connection, called by upper layer */
9084432c 1607static struct smbd_connection *_smbd_get_connection(
f198186a
LL
1608 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1609{
1610 int rc;
1611 struct smbd_connection *info;
1612 struct rdma_conn_param conn_param;
1613 struct ib_qp_init_attr qp_attr;
1614 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
c7398583
LL
1615 struct ib_port_immutable port_immutable;
1616 u32 ird_ord_hdr[2];
f198186a
LL
1617
1618 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1619 if (!info)
1620 return NULL;
1621
1622 info->transport_status = SMBD_CONNECTING;
1623 rc = smbd_ia_open(info, dstaddr, port);
1624 if (rc) {
1625 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1626 goto create_id_failed;
1627 }
1628
1629 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1630 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1631 log_rdma_event(ERR,
1632 "consider lowering send_credit_target = %d. "
1633 "Possible CQE overrun, device "
1634 "reporting max_cpe %d max_qp_wr %d\n",
1635 smbd_send_credit_target,
1636 info->id->device->attrs.max_cqe,
1637 info->id->device->attrs.max_qp_wr);
1638 goto config_failed;
1639 }
1640
1641 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1642 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1643 log_rdma_event(ERR,
1644 "consider lowering receive_credit_max = %d. "
1645 "Possible CQE overrun, device "
1646 "reporting max_cpe %d max_qp_wr %d\n",
1647 smbd_receive_credit_max,
1648 info->id->device->attrs.max_cqe,
1649 info->id->device->attrs.max_qp_wr);
1650 goto config_failed;
1651 }
1652
1653 info->receive_credit_max = smbd_receive_credit_max;
1654 info->send_credit_target = smbd_send_credit_target;
1655 info->max_send_size = smbd_max_send_size;
1656 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1657 info->max_receive_size = smbd_max_receive_size;
1658 info->keep_alive_interval = smbd_keep_alive_interval;
1659
1660 if (info->id->device->attrs.max_sge < SMBDIRECT_MAX_SGE) {
1661 log_rdma_event(ERR, "warning: device max_sge = %d too small\n",
1662 info->id->device->attrs.max_sge);
1663 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1664 }
1665
1666 info->send_cq = NULL;
1667 info->recv_cq = NULL;
1668 info->send_cq = ib_alloc_cq(info->id->device, info,
1669 info->send_credit_target, 0, IB_POLL_SOFTIRQ);
1670 if (IS_ERR(info->send_cq)) {
1671 info->send_cq = NULL;
1672 goto alloc_cq_failed;
1673 }
1674
1675 info->recv_cq = ib_alloc_cq(info->id->device, info,
1676 info->receive_credit_max, 0, IB_POLL_SOFTIRQ);
1677 if (IS_ERR(info->recv_cq)) {
1678 info->recv_cq = NULL;
1679 goto alloc_cq_failed;
1680 }
1681
1682 memset(&qp_attr, 0, sizeof(qp_attr));
1683 qp_attr.event_handler = smbd_qp_async_error_upcall;
1684 qp_attr.qp_context = info;
1685 qp_attr.cap.max_send_wr = info->send_credit_target;
1686 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1687 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1688 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1689 qp_attr.cap.max_inline_data = 0;
1690 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1691 qp_attr.qp_type = IB_QPT_RC;
1692 qp_attr.send_cq = info->send_cq;
1693 qp_attr.recv_cq = info->recv_cq;
1694 qp_attr.port_num = ~0;
1695
1696 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1697 if (rc) {
1698 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1699 goto create_qp_failed;
1700 }
1701
1702 memset(&conn_param, 0, sizeof(conn_param));
1703 conn_param.initiator_depth = 0;
1704
c7398583
LL
1705 conn_param.responder_resources =
1706 info->id->device->attrs.max_qp_rd_atom
1707 < SMBD_CM_RESPONDER_RESOURCES ?
1708 info->id->device->attrs.max_qp_rd_atom :
1709 SMBD_CM_RESPONDER_RESOURCES;
1710 info->responder_resources = conn_param.responder_resources;
1711 log_rdma_mr(INFO, "responder_resources=%d\n",
1712 info->responder_resources);
1713
1714 /* Need to send IRD/ORD in private data for iWARP */
1715 info->id->device->get_port_immutable(
1716 info->id->device, info->id->port_num, &port_immutable);
1717 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1718 ird_ord_hdr[0] = info->responder_resources;
1719 ird_ord_hdr[1] = 1;
1720 conn_param.private_data = ird_ord_hdr;
1721 conn_param.private_data_len = sizeof(ird_ord_hdr);
1722 } else {
1723 conn_param.private_data = NULL;
1724 conn_param.private_data_len = 0;
1725 }
1726
f198186a
LL
1727 conn_param.retry_count = SMBD_CM_RETRY;
1728 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1729 conn_param.flow_control = 0;
1730 init_waitqueue_head(&info->wait_destroy);
1731
1732 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1733 &addr_in->sin_addr, port);
1734
1735 init_waitqueue_head(&info->conn_wait);
1736 rc = rdma_connect(info->id, &conn_param);
1737 if (rc) {
1738 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1739 goto rdma_connect_failed;
1740 }
1741
1742 wait_event_interruptible(
1743 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1744
1745 if (info->transport_status != SMBD_CONNECTED) {
1746 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1747 goto rdma_connect_failed;
1748 }
1749
1750 log_rdma_event(INFO, "rdma_connect connected\n");
1751
1752 rc = allocate_caches_and_workqueue(info);
1753 if (rc) {
1754 log_rdma_event(ERR, "cache allocation failed\n");
1755 goto allocate_cache_failed;
1756 }
1757
1758 init_waitqueue_head(&info->wait_send_queue);
1759 init_waitqueue_head(&info->wait_reassembly_queue);
1760
1761 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1762 INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work);
1763 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1764 info->keep_alive_interval*HZ);
1765
d649e1bb
LL
1766 init_waitqueue_head(&info->wait_smbd_send_pending);
1767 info->smbd_send_pending = 0;
1768
f64b78fd
LL
1769 init_waitqueue_head(&info->wait_smbd_recv_pending);
1770 info->smbd_recv_pending = 0;
1771
f198186a
LL
1772 init_waitqueue_head(&info->wait_send_pending);
1773 atomic_set(&info->send_pending, 0);
1774
1775 init_waitqueue_head(&info->wait_send_payload_pending);
1776 atomic_set(&info->send_payload_pending, 0);
1777
1778 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1779 INIT_WORK(&info->destroy_work, smbd_destroy_rdma_work);
1780 INIT_WORK(&info->recv_done_work, smbd_recv_done_work);
1781 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1782 info->new_credits_offered = 0;
1783 spin_lock_init(&info->lock_new_credits_offered);
1784
1785 rc = smbd_negotiate(info);
1786 if (rc) {
1787 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1788 goto negotiation_failed;
1789 }
1790
c7398583
LL
1791 rc = allocate_mr_list(info);
1792 if (rc) {
1793 log_rdma_mr(ERR, "memory registration allocation failed\n");
1794 goto allocate_mr_failed;
1795 }
1796
f198186a
LL
1797 return info;
1798
c7398583
LL
1799allocate_mr_failed:
1800 /* At this point, need to a full transport shutdown */
1801 smbd_destroy(info);
1802 return NULL;
1803
f198186a
LL
1804negotiation_failed:
1805 cancel_delayed_work_sync(&info->idle_timer_work);
1806 destroy_caches_and_workqueue(info);
1807 info->transport_status = SMBD_NEGOTIATE_FAILED;
1808 init_waitqueue_head(&info->conn_wait);
1809 rdma_disconnect(info->id);
1810 wait_event(info->conn_wait,
1811 info->transport_status == SMBD_DISCONNECTED);
1812
1813allocate_cache_failed:
1814rdma_connect_failed:
1815 rdma_destroy_qp(info->id);
1816
1817create_qp_failed:
1818alloc_cq_failed:
1819 if (info->send_cq)
1820 ib_free_cq(info->send_cq);
1821 if (info->recv_cq)
1822 ib_free_cq(info->recv_cq);
1823
1824config_failed:
1825 ib_dealloc_pd(info->pd);
1826 rdma_destroy_id(info->id);
1827
1828create_id_failed:
1829 kfree(info);
1830 return NULL;
1831}
399f9539
LL
1832
1833struct smbd_connection *smbd_get_connection(
1834 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1835{
1836 struct smbd_connection *ret;
1837 int port = SMBD_PORT;
1838
1839try_again:
1840 ret = _smbd_get_connection(server, dstaddr, port);
1841
1842 /* Try SMB_PORT if SMBD_PORT doesn't work */
1843 if (!ret && port == SMBD_PORT) {
1844 port = SMB_PORT;
1845 goto try_again;
1846 }
1847 return ret;
1848}
f64b78fd
LL
1849
1850/*
1851 * Receive data from receive reassembly queue
1852 * All the incoming data packets are placed in reassembly queue
1853 * buf: the buffer to read data into
1854 * size: the length of data to read
1855 * return value: actual data read
1856 * Note: this implementation copies the data from reassebmly queue to receive
1857 * buffers used by upper layer. This is not the optimal code path. A better way
1858 * to do it is to not have upper layer allocate its receive buffers but rather
1859 * borrow the buffer from reassembly queue, and return it after data is
1860 * consumed. But this will require more changes to upper layer code, and also
1861 * need to consider packet boundaries while they still being reassembled.
1862 */
2026b06e
SF
1863static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1864 unsigned int size)
f64b78fd
LL
1865{
1866 struct smbd_response *response;
1867 struct smbd_data_transfer *data_transfer;
1868 int to_copy, to_read, data_read, offset;
1869 u32 data_length, remaining_data_length, data_offset;
1870 int rc;
f64b78fd
LL
1871
1872again:
1873 if (info->transport_status != SMBD_CONNECTED) {
1874 log_read(ERR, "disconnected\n");
1875 return -ENODEV;
1876 }
1877
1878 /*
1879 * No need to hold the reassembly queue lock all the time as we are
1880 * the only one reading from the front of the queue. The transport
1881 * may add more entries to the back of the queue at the same time
1882 */
1883 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1884 info->reassembly_data_length);
1885 if (info->reassembly_data_length >= size) {
1886 int queue_length;
1887 int queue_removed = 0;
1888
1889 /*
1890 * Need to make sure reassembly_data_length is read before
1891 * reading reassembly_queue_length and calling
1892 * _get_first_reassembly. This call is lock free
1893 * as we never read at the end of the queue which are being
1894 * updated in SOFTIRQ as more data is received
1895 */
1896 virt_rmb();
1897 queue_length = info->reassembly_queue_length;
1898 data_read = 0;
1899 to_read = size;
1900 offset = info->first_entry_offset;
1901 while (data_read < size) {
1902 response = _get_first_reassembly(info);
1903 data_transfer = smbd_response_payload(response);
1904 data_length = le32_to_cpu(data_transfer->data_length);
1905 remaining_data_length =
1906 le32_to_cpu(
1907 data_transfer->remaining_data_length);
1908 data_offset = le32_to_cpu(data_transfer->data_offset);
1909
1910 /*
1911 * The upper layer expects RFC1002 length at the
1912 * beginning of the payload. Return it to indicate
1913 * the total length of the packet. This minimize the
1914 * change to upper layer packet processing logic. This
1915 * will be eventually remove when an intermediate
1916 * transport layer is added
1917 */
1918 if (response->first_segment && size == 4) {
1919 unsigned int rfc1002_len =
1920 data_length + remaining_data_length;
1921 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1922 data_read = 4;
1923 response->first_segment = false;
1924 log_read(INFO, "returning rfc1002 length %d\n",
1925 rfc1002_len);
1926 goto read_rfc1002_done;
1927 }
1928
1929 to_copy = min_t(int, data_length - offset, to_read);
1930 memcpy(
1931 buf + data_read,
1932 (char *)data_transfer + data_offset + offset,
1933 to_copy);
1934
1935 /* move on to the next buffer? */
1936 if (to_copy == data_length - offset) {
1937 queue_length--;
1938 /*
1939 * No need to lock if we are not at the
1940 * end of the queue
1941 */
f9de151b
SF
1942 if (queue_length)
1943 list_del(&response->list);
1944 else {
e36c048a
AB
1945 spin_lock_irq(
1946 &info->reassembly_queue_lock);
f9de151b 1947 list_del(&response->list);
e36c048a
AB
1948 spin_unlock_irq(
1949 &info->reassembly_queue_lock);
f9de151b
SF
1950 }
1951 queue_removed++;
f64b78fd
LL
1952 info->count_reassembly_queue--;
1953 info->count_dequeue_reassembly_queue++;
1954 put_receive_buffer(info, response);
1955 offset = 0;
1956 log_read(INFO, "put_receive_buffer offset=0\n");
1957 } else
1958 offset += to_copy;
1959
1960 to_read -= to_copy;
1961 data_read += to_copy;
1962
1963 log_read(INFO, "_get_first_reassembly memcpy %d bytes "
1964 "data_transfer_length-offset=%d after that "
1965 "to_read=%d data_read=%d offset=%d\n",
1966 to_copy, data_length - offset,
1967 to_read, data_read, offset);
1968 }
1969
e36c048a 1970 spin_lock_irq(&info->reassembly_queue_lock);
f64b78fd
LL
1971 info->reassembly_data_length -= data_read;
1972 info->reassembly_queue_length -= queue_removed;
e36c048a 1973 spin_unlock_irq(&info->reassembly_queue_lock);
f64b78fd
LL
1974
1975 info->first_entry_offset = offset;
1976 log_read(INFO, "returning to thread data_read=%d "
1977 "reassembly_data_length=%d first_entry_offset=%d\n",
1978 data_read, info->reassembly_data_length,
1979 info->first_entry_offset);
1980read_rfc1002_done:
1981 return data_read;
1982 }
1983
1984 log_read(INFO, "wait_event on more data\n");
1985 rc = wait_event_interruptible(
1986 info->wait_reassembly_queue,
1987 info->reassembly_data_length >= size ||
1988 info->transport_status != SMBD_CONNECTED);
1989 /* Don't return any data if interrupted */
1990 if (rc)
1991 return -ENODEV;
1992
1993 goto again;
1994}
1995
1996/*
1997 * Receive a page from receive reassembly queue
1998 * page: the page to read data into
1999 * to_read: the length of data to read
2000 * return value: actual data read
2001 */
2026b06e 2002static int smbd_recv_page(struct smbd_connection *info,
f64b78fd
LL
2003 struct page *page, unsigned int to_read)
2004{
2005 int ret;
2006 char *to_address;
2007
2008 /* make sure we have the page ready for read */
2009 ret = wait_event_interruptible(
2010 info->wait_reassembly_queue,
2011 info->reassembly_data_length >= to_read ||
2012 info->transport_status != SMBD_CONNECTED);
2013 if (ret)
2014 return 0;
2015
2016 /* now we can read from reassembly queue and not sleep */
2017 to_address = kmap_atomic(page);
2018
2019 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
2020 page, to_address, to_read);
2021
2022 ret = smbd_recv_buf(info, to_address, to_read);
2023 kunmap_atomic(to_address);
2024
2025 return ret;
2026}
2027
2028/*
2029 * Receive data from transport
2030 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
2031 * return: total bytes read, or 0. SMB Direct will not do partial read.
2032 */
2033int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2034{
2035 char *buf;
2036 struct page *page;
2037 unsigned int to_read;
2038 int rc;
2039
2040 info->smbd_recv_pending++;
2041
2042 switch (msg->msg_iter.type) {
2043 case READ | ITER_KVEC:
2044 buf = msg->msg_iter.kvec->iov_base;
2045 to_read = msg->msg_iter.kvec->iov_len;
2046 rc = smbd_recv_buf(info, buf, to_read);
2047 break;
2048
2049 case READ | ITER_BVEC:
2050 page = msg->msg_iter.bvec->bv_page;
2051 to_read = msg->msg_iter.bvec->bv_len;
2052 rc = smbd_recv_page(info, page, to_read);
2053 break;
2054
2055 default:
2056 /* It's a bug in upper layer to get there */
2057 cifs_dbg(VFS, "CIFS: invalid msg type %d\n",
2058 msg->msg_iter.type);
2059 rc = -EIO;
2060 }
2061
2062 info->smbd_recv_pending--;
2063 wake_up(&info->wait_smbd_recv_pending);
2064
2065 /* SMBDirect will read it all or nothing */
2066 if (rc > 0)
2067 msg->msg_iter.count = 0;
2068 return rc;
2069}
d649e1bb
LL
2070
2071/*
2072 * Send data to transport
2073 * Each rqst is transported as a SMBDirect payload
2074 * rqst: the data to write
2075 * return value: 0 if successfully write, otherwise error code
2076 */
2077int smbd_send(struct smbd_connection *info, struct smb_rqst *rqst)
2078{
2079 struct kvec vec;
2080 int nvecs;
2081 int size;
2082 int buflen = 0, remaining_data_length;
2083 int start, i, j;
2084 int max_iov_size =
2085 info->max_send_size - sizeof(struct smbd_data_transfer);
2086 struct kvec iov[SMBDIRECT_MAX_SGE];
2087 int rc;
2088
2089 info->smbd_send_pending++;
2090 if (info->transport_status != SMBD_CONNECTED) {
2091 rc = -ENODEV;
2092 goto done;
2093 }
2094
2095 /*
2096 * This usually means a configuration error
2097 * We use RDMA read/write for packet size > rdma_readwrite_threshold
2098 * as long as it's properly configured we should never get into this
2099 * situation
2100 */
2101 if (rqst->rq_nvec + rqst->rq_npages > SMBDIRECT_MAX_SGE) {
2102 log_write(ERR, "maximum send segment %x exceeding %x\n",
2103 rqst->rq_nvec + rqst->rq_npages, SMBDIRECT_MAX_SGE);
2104 rc = -EINVAL;
2105 goto done;
2106 }
2107
2108 /*
2109 * Remove the RFC1002 length defined in MS-SMB2 section 2.1
2110 * It is used only for TCP transport
2111 * In future we may want to add a transport layer under protocol
2112 * layer so this will only be issued to TCP transport
2113 */
2114 iov[0].iov_base = (char *)rqst->rq_iov[0].iov_base + 4;
2115 iov[0].iov_len = rqst->rq_iov[0].iov_len - 4;
2116 buflen += iov[0].iov_len;
2117
2118 /* total up iov array first */
2119 for (i = 1; i < rqst->rq_nvec; i++) {
2120 iov[i].iov_base = rqst->rq_iov[i].iov_base;
2121 iov[i].iov_len = rqst->rq_iov[i].iov_len;
2122 buflen += iov[i].iov_len;
2123 }
2124
2125 /* add in the page array if there is one */
2126 if (rqst->rq_npages) {
2127 buflen += rqst->rq_pagesz * (rqst->rq_npages - 1);
2128 buflen += rqst->rq_tailsz;
2129 }
2130
2131 if (buflen + sizeof(struct smbd_data_transfer) >
2132 info->max_fragmented_send_size) {
2133 log_write(ERR, "payload size %d > max size %d\n",
2134 buflen, info->max_fragmented_send_size);
2135 rc = -EINVAL;
2136 goto done;
2137 }
2138
2139 remaining_data_length = buflen;
2140
2141 log_write(INFO, "rqst->rq_nvec=%d rqst->rq_npages=%d rq_pagesz=%d "
2142 "rq_tailsz=%d buflen=%d\n",
2143 rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2144 rqst->rq_tailsz, buflen);
2145
2146 start = i = iov[0].iov_len ? 0 : 1;
2147 buflen = 0;
2148 while (true) {
2149 buflen += iov[i].iov_len;
2150 if (buflen > max_iov_size) {
2151 if (i > start) {
2152 remaining_data_length -=
2153 (buflen-iov[i].iov_len);
2154 log_write(INFO, "sending iov[] from start=%d "
2155 "i=%d nvecs=%d "
2156 "remaining_data_length=%d\n",
2157 start, i, i-start,
2158 remaining_data_length);
2159 rc = smbd_post_send_data(
2160 info, &iov[start], i-start,
2161 remaining_data_length);
2162 if (rc)
2163 goto done;
2164 } else {
2165 /* iov[start] is too big, break it */
2166 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2167 log_write(INFO, "iov[%d] iov_base=%p buflen=%d"
2168 " break to %d vectors\n",
2169 start, iov[start].iov_base,
2170 buflen, nvecs);
2171 for (j = 0; j < nvecs; j++) {
2172 vec.iov_base =
2173 (char *)iov[start].iov_base +
2174 j*max_iov_size;
2175 vec.iov_len = max_iov_size;
2176 if (j == nvecs-1)
2177 vec.iov_len =
2178 buflen -
2179 max_iov_size*(nvecs-1);
2180 remaining_data_length -= vec.iov_len;
2181 log_write(INFO,
2182 "sending vec j=%d iov_base=%p"
2183 " iov_len=%zu "
2184 "remaining_data_length=%d\n",
2185 j, vec.iov_base, vec.iov_len,
2186 remaining_data_length);
2187 rc = smbd_post_send_data(
2188 info, &vec, 1,
2189 remaining_data_length);
2190 if (rc)
2191 goto done;
2192 }
2193 i++;
2194 }
2195 start = i;
2196 buflen = 0;
2197 } else {
2198 i++;
2199 if (i == rqst->rq_nvec) {
2200 /* send out all remaining vecs */
2201 remaining_data_length -= buflen;
2202 log_write(INFO,
2203 "sending iov[] from start=%d i=%d "
2204 "nvecs=%d remaining_data_length=%d\n",
2205 start, i, i-start,
2206 remaining_data_length);
2207 rc = smbd_post_send_data(info, &iov[start],
2208 i-start, remaining_data_length);
2209 if (rc)
2210 goto done;
2211 break;
2212 }
2213 }
2214 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2215 }
2216
2217 /* now sending pages if there are any */
2218 for (i = 0; i < rqst->rq_npages; i++) {
2219 buflen = (i == rqst->rq_npages-1) ?
2220 rqst->rq_tailsz : rqst->rq_pagesz;
2221 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2222 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2223 buflen, nvecs);
2224 for (j = 0; j < nvecs; j++) {
2225 size = max_iov_size;
2226 if (j == nvecs-1)
2227 size = buflen - j*max_iov_size;
2228 remaining_data_length -= size;
2229 log_write(INFO, "sending pages i=%d offset=%d size=%d"
2230 " remaining_data_length=%d\n",
2231 i, j*max_iov_size, size, remaining_data_length);
2232 rc = smbd_post_send_page(
2233 info, rqst->rq_pages[i], j*max_iov_size,
2234 size, remaining_data_length);
2235 if (rc)
2236 goto done;
2237 }
2238 }
2239
2240done:
2241 /*
2242 * As an optimization, we don't wait for individual I/O to finish
2243 * before sending the next one.
2244 * Send them all and wait for pending send count to get to 0
2245 * that means all the I/Os have been out and we are good to return
2246 */
2247
2248 wait_event(info->wait_send_payload_pending,
2249 atomic_read(&info->send_payload_pending) == 0);
2250
2251 info->smbd_send_pending--;
2252 wake_up(&info->wait_smbd_send_pending);
2253
2254 return rc;
2255}
c7398583
LL
2256
2257static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2258{
2259 struct smbd_mr *mr;
2260 struct ib_cqe *cqe;
2261
2262 if (wc->status) {
2263 log_rdma_mr(ERR, "status=%d\n", wc->status);
2264 cqe = wc->wr_cqe;
2265 mr = container_of(cqe, struct smbd_mr, cqe);
2266 smbd_disconnect_rdma_connection(mr->conn);
2267 }
2268}
2269
2270/*
2271 * The work queue function that recovers MRs
2272 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2273 * again. Both calls are slow, so finish them in a workqueue. This will not
2274 * block I/O path.
2275 * There is one workqueue that recovers MRs, there is no need to lock as the
2276 * I/O requests calling smbd_register_mr will never update the links in the
2277 * mr_list.
2278 */
2279static void smbd_mr_recovery_work(struct work_struct *work)
2280{
2281 struct smbd_connection *info =
2282 container_of(work, struct smbd_connection, mr_recovery_work);
2283 struct smbd_mr *smbdirect_mr;
2284 int rc;
2285
2286 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2287 if (smbdirect_mr->state == MR_INVALIDATED ||
2288 smbdirect_mr->state == MR_ERROR) {
2289
2290 if (smbdirect_mr->state == MR_INVALIDATED) {
2291 ib_dma_unmap_sg(
2292 info->id->device, smbdirect_mr->sgl,
2293 smbdirect_mr->sgl_count,
2294 smbdirect_mr->dir);
2295 smbdirect_mr->state = MR_READY;
2296 } else if (smbdirect_mr->state == MR_ERROR) {
2297
2298 /* recover this MR entry */
2299 rc = ib_dereg_mr(smbdirect_mr->mr);
2300 if (rc) {
2301 log_rdma_mr(ERR,
ac65cb62 2302 "ib_dereg_mr failed rc=%x\n",
c7398583
LL
2303 rc);
2304 smbd_disconnect_rdma_connection(info);
2305 }
2306
2307 smbdirect_mr->mr = ib_alloc_mr(
2308 info->pd, info->mr_type,
2309 info->max_frmr_depth);
2310 if (IS_ERR(smbdirect_mr->mr)) {
2311 log_rdma_mr(ERR,
2312 "ib_alloc_mr failed mr_type=%x "
2313 "max_frmr_depth=%x\n",
2314 info->mr_type,
2315 info->max_frmr_depth);
2316 smbd_disconnect_rdma_connection(info);
2317 }
2318
2319 smbdirect_mr->state = MR_READY;
2320 }
2321 /* smbdirect_mr->state is updated by this function
2322 * and is read and updated by I/O issuing CPUs trying
2323 * to get a MR, the call to atomic_inc_return
2324 * implicates a memory barrier and guarantees this
2325 * value is updated before waking up any calls to
2326 * get_mr() from the I/O issuing CPUs
2327 */
2328 if (atomic_inc_return(&info->mr_ready_count) == 1)
2329 wake_up_interruptible(&info->wait_mr);
2330 }
2331 }
2332}
2333
2334static void destroy_mr_list(struct smbd_connection *info)
2335{
2336 struct smbd_mr *mr, *tmp;
2337
2338 cancel_work_sync(&info->mr_recovery_work);
2339 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2340 if (mr->state == MR_INVALIDATED)
2341 ib_dma_unmap_sg(info->id->device, mr->sgl,
2342 mr->sgl_count, mr->dir);
2343 ib_dereg_mr(mr->mr);
2344 kfree(mr->sgl);
2345 kfree(mr);
2346 }
2347}
2348
2349/*
2350 * Allocate MRs used for RDMA read/write
2351 * The number of MRs will not exceed hardware capability in responder_resources
2352 * All MRs are kept in mr_list. The MR can be recovered after it's used
2353 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2354 * as MRs are used and recovered for I/O, but the list links will not change
2355 */
2356static int allocate_mr_list(struct smbd_connection *info)
2357{
2358 int i;
2359 struct smbd_mr *smbdirect_mr, *tmp;
2360
2361 INIT_LIST_HEAD(&info->mr_list);
2362 init_waitqueue_head(&info->wait_mr);
2363 spin_lock_init(&info->mr_list_lock);
2364 atomic_set(&info->mr_ready_count, 0);
2365 atomic_set(&info->mr_used_count, 0);
2366 init_waitqueue_head(&info->wait_for_mr_cleanup);
2367 /* Allocate more MRs (2x) than hardware responder_resources */
2368 for (i = 0; i < info->responder_resources * 2; i++) {
2369 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2370 if (!smbdirect_mr)
2371 goto out;
2372 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2373 info->max_frmr_depth);
2374 if (IS_ERR(smbdirect_mr->mr)) {
2375 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x "
2376 "max_frmr_depth=%x\n",
2377 info->mr_type, info->max_frmr_depth);
2378 goto out;
2379 }
2380 smbdirect_mr->sgl = kcalloc(
2381 info->max_frmr_depth,
2382 sizeof(struct scatterlist),
2383 GFP_KERNEL);
2384 if (!smbdirect_mr->sgl) {
2385 log_rdma_mr(ERR, "failed to allocate sgl\n");
2386 ib_dereg_mr(smbdirect_mr->mr);
2387 goto out;
2388 }
2389 smbdirect_mr->state = MR_READY;
2390 smbdirect_mr->conn = info;
2391
2392 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2393 atomic_inc(&info->mr_ready_count);
2394 }
2395 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2396 return 0;
2397
2398out:
2399 kfree(smbdirect_mr);
2400
2401 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2402 ib_dereg_mr(smbdirect_mr->mr);
2403 kfree(smbdirect_mr->sgl);
2404 kfree(smbdirect_mr);
2405 }
2406 return -ENOMEM;
2407}
2408
2409/*
2410 * Get a MR from mr_list. This function waits until there is at least one
2411 * MR available in the list. It may access the list while the
2412 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2413 * as they never modify the same places. However, there may be several CPUs
2414 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2415 * protect this situation.
2416 */
2417static struct smbd_mr *get_mr(struct smbd_connection *info)
2418{
2419 struct smbd_mr *ret;
2420 int rc;
2421again:
2422 rc = wait_event_interruptible(info->wait_mr,
2423 atomic_read(&info->mr_ready_count) ||
2424 info->transport_status != SMBD_CONNECTED);
2425 if (rc) {
2426 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2427 return NULL;
2428 }
2429
2430 if (info->transport_status != SMBD_CONNECTED) {
2431 log_rdma_mr(ERR, "info->transport_status=%x\n",
2432 info->transport_status);
2433 return NULL;
2434 }
2435
2436 spin_lock(&info->mr_list_lock);
2437 list_for_each_entry(ret, &info->mr_list, list) {
2438 if (ret->state == MR_READY) {
2439 ret->state = MR_REGISTERED;
2440 spin_unlock(&info->mr_list_lock);
2441 atomic_dec(&info->mr_ready_count);
2442 atomic_inc(&info->mr_used_count);
2443 return ret;
2444 }
2445 }
2446
2447 spin_unlock(&info->mr_list_lock);
2448 /*
2449 * It is possible that we could fail to get MR because other processes may
2450 * try to acquire a MR at the same time. If this is the case, retry it.
2451 */
2452 goto again;
2453}
2454
2455/*
2456 * Register memory for RDMA read/write
2457 * pages[]: the list of pages to register memory with
2458 * num_pages: the number of pages to register
2459 * tailsz: if non-zero, the bytes to register in the last page
2460 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2461 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2462 * return value: the MR registered, NULL if failed.
2463 */
2464struct smbd_mr *smbd_register_mr(
2465 struct smbd_connection *info, struct page *pages[], int num_pages,
2466 int tailsz, bool writing, bool need_invalidate)
2467{
2468 struct smbd_mr *smbdirect_mr;
2469 int rc, i;
2470 enum dma_data_direction dir;
2471 struct ib_reg_wr *reg_wr;
2472 struct ib_send_wr *bad_wr;
2473
2474 if (num_pages > info->max_frmr_depth) {
2475 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2476 num_pages, info->max_frmr_depth);
2477 return NULL;
2478 }
2479
2480 smbdirect_mr = get_mr(info);
2481 if (!smbdirect_mr) {
2482 log_rdma_mr(ERR, "get_mr returning NULL\n");
2483 return NULL;
2484 }
2485 smbdirect_mr->need_invalidate = need_invalidate;
2486 smbdirect_mr->sgl_count = num_pages;
2487 sg_init_table(smbdirect_mr->sgl, num_pages);
2488
2489 for (i = 0; i < num_pages - 1; i++)
2490 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2491
2492 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2493 tailsz ? tailsz : PAGE_SIZE, 0);
2494
2495 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2496 smbdirect_mr->dir = dir;
2497 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2498 if (!rc) {
2499 log_rdma_mr(INFO, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2500 num_pages, dir, rc);
2501 goto dma_map_error;
2502 }
2503
2504 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2505 NULL, PAGE_SIZE);
2506 if (rc != num_pages) {
2507 log_rdma_mr(INFO,
2508 "ib_map_mr_sg failed rc = %x num_pages = %x\n",
2509 rc, num_pages);
2510 goto map_mr_error;
2511 }
2512
2513 ib_update_fast_reg_key(smbdirect_mr->mr,
2514 ib_inc_rkey(smbdirect_mr->mr->rkey));
2515 reg_wr = &smbdirect_mr->wr;
2516 reg_wr->wr.opcode = IB_WR_REG_MR;
2517 smbdirect_mr->cqe.done = register_mr_done;
2518 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2519 reg_wr->wr.num_sge = 0;
2520 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2521 reg_wr->mr = smbdirect_mr->mr;
2522 reg_wr->key = smbdirect_mr->mr->rkey;
2523 reg_wr->access = writing ?
2524 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2525 IB_ACCESS_REMOTE_READ;
2526
2527 /*
2528 * There is no need for waiting for complemtion on ib_post_send
2529 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2530 * on the next ib_post_send when we actaully send I/O to remote peer
2531 */
2532 rc = ib_post_send(info->id->qp, &reg_wr->wr, &bad_wr);
2533 if (!rc)
2534 return smbdirect_mr;
2535
2536 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2537 rc, reg_wr->key);
2538
2539 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2540map_mr_error:
2541 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2542 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2543
2544dma_map_error:
2545 smbdirect_mr->state = MR_ERROR;
2546 if (atomic_dec_and_test(&info->mr_used_count))
2547 wake_up(&info->wait_for_mr_cleanup);
2548
2549 return NULL;
2550}
2551
2552static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2553{
2554 struct smbd_mr *smbdirect_mr;
2555 struct ib_cqe *cqe;
2556
2557 cqe = wc->wr_cqe;
2558 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2559 smbdirect_mr->state = MR_INVALIDATED;
2560 if (wc->status != IB_WC_SUCCESS) {
2561 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2562 smbdirect_mr->state = MR_ERROR;
2563 }
2564 complete(&smbdirect_mr->invalidate_done);
2565}
2566
2567/*
2568 * Deregister a MR after I/O is done
2569 * This function may wait if remote invalidation is not used
2570 * and we have to locally invalidate the buffer to prevent data is being
2571 * modified by remote peer after upper layer consumes it
2572 */
2573int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2574{
2575 struct ib_send_wr *wr, *bad_wr;
2576 struct smbd_connection *info = smbdirect_mr->conn;
2577 int rc = 0;
2578
2579 if (smbdirect_mr->need_invalidate) {
2580 /* Need to finish local invalidation before returning */
2581 wr = &smbdirect_mr->inv_wr;
2582 wr->opcode = IB_WR_LOCAL_INV;
2583 smbdirect_mr->cqe.done = local_inv_done;
2584 wr->wr_cqe = &smbdirect_mr->cqe;
2585 wr->num_sge = 0;
2586 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2587 wr->send_flags = IB_SEND_SIGNALED;
2588
2589 init_completion(&smbdirect_mr->invalidate_done);
2590 rc = ib_post_send(info->id->qp, wr, &bad_wr);
2591 if (rc) {
2592 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2593 smbd_disconnect_rdma_connection(info);
2594 goto done;
2595 }
2596 wait_for_completion(&smbdirect_mr->invalidate_done);
2597 smbdirect_mr->need_invalidate = false;
2598 } else
2599 /*
2600 * For remote invalidation, just set it to MR_INVALIDATED
2601 * and defer to mr_recovery_work to recover the MR for next use
2602 */
2603 smbdirect_mr->state = MR_INVALIDATED;
2604
2605 /*
2606 * Schedule the work to do MR recovery for future I/Os
2607 * MR recovery is slow and we don't want it to block the current I/O
2608 */
2609 queue_work(info->workqueue, &info->mr_recovery_work);
2610
2611done:
2612 if (atomic_dec_and_test(&info->mr_used_count))
2613 wake_up(&info->wait_for_mr_cleanup);
2614
2615 return rc;
2616}