]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/crypto/crypto.c
Merge tag 'ceph-for-4.15-rc1' of git://github.com/ceph/ceph-client
[mirror_ubuntu-bionic-kernel.git] / fs / crypto / crypto.c
CommitLineData
0b81d077
JK
1/*
2 * This contains encryption functions for per-file encryption.
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Michael Halcrow, 2014.
8 *
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
15 *
16 * This has not yet undergone a rigorous security audit.
17 *
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
20 */
21
0b81d077
JK
22#include <linux/pagemap.h>
23#include <linux/mempool.h>
24#include <linux/module.h>
25#include <linux/scatterlist.h>
26#include <linux/ratelimit.h>
0b81d077 27#include <linux/dcache.h>
03a8bb0e 28#include <linux/namei.h>
b7e7cf7a 29#include <crypto/aes.h>
cc4e0df0 30#include "fscrypt_private.h"
0b81d077
JK
31
32static unsigned int num_prealloc_crypto_pages = 32;
33static unsigned int num_prealloc_crypto_ctxs = 128;
34
35module_param(num_prealloc_crypto_pages, uint, 0444);
36MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 "Number of crypto pages to preallocate");
38module_param(num_prealloc_crypto_ctxs, uint, 0444);
39MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 "Number of crypto contexts to preallocate");
41
42static mempool_t *fscrypt_bounce_page_pool = NULL;
43
44static LIST_HEAD(fscrypt_free_ctxs);
45static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46
58ae7468 47struct workqueue_struct *fscrypt_read_workqueue;
0b81d077
JK
48static DEFINE_MUTEX(fscrypt_init_mutex);
49
50static struct kmem_cache *fscrypt_ctx_cachep;
51struct kmem_cache *fscrypt_info_cachep;
52
53/**
54 * fscrypt_release_ctx() - Releases an encryption context
55 * @ctx: The encryption context to release.
56 *
57 * If the encryption context was allocated from the pre-allocated pool, returns
58 * it to that pool. Else, frees it.
59 *
60 * If there's a bounce page in the context, this frees that.
61 */
62void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63{
64 unsigned long flags;
65
6a34e4d2 66 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
0b81d077
JK
67 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 ctx->w.bounce_page = NULL;
69 }
70 ctx->w.control_page = NULL;
71 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 } else {
74 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 }
78}
79EXPORT_SYMBOL(fscrypt_release_ctx);
80
81/**
82 * fscrypt_get_ctx() - Gets an encryption context
83 * @inode: The inode for which we are doing the crypto
b32e4482 84 * @gfp_flags: The gfp flag for memory allocation
0b81d077
JK
85 *
86 * Allocates and initializes an encryption context.
87 *
88 * Return: An allocated and initialized encryption context on success; error
89 * value or NULL otherwise.
90 */
0b93e1b9 91struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
0b81d077
JK
92{
93 struct fscrypt_ctx *ctx = NULL;
94 struct fscrypt_info *ci = inode->i_crypt_info;
95 unsigned long flags;
96
97 if (ci == NULL)
98 return ERR_PTR(-ENOKEY);
99
100 /*
101 * We first try getting the ctx from a free list because in
102 * the common case the ctx will have an allocated and
103 * initialized crypto tfm, so it's probably a worthwhile
104 * optimization. For the bounce page, we first try getting it
105 * from the kernel allocator because that's just about as fast
106 * as getting it from a list and because a cache of free pages
107 * should generally be a "last resort" option for a filesystem
108 * to be able to do its job.
109 */
110 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 struct fscrypt_ctx, free_list);
113 if (ctx)
114 list_del(&ctx->free_list);
115 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 if (!ctx) {
b32e4482 117 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
0b81d077
JK
118 if (!ctx)
119 return ERR_PTR(-ENOMEM);
120 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 } else {
122 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 }
6a34e4d2 124 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
0b81d077
JK
125 return ctx;
126}
127EXPORT_SYMBOL(fscrypt_get_ctx);
128
58ae7468
RW
129int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
130 u64 lblk_num, struct page *src_page,
131 struct page *dest_page, unsigned int len,
132 unsigned int offs, gfp_t gfp_flags)
0b81d077 133{
fb445437
EB
134 struct {
135 __le64 index;
b7e7cf7a
DW
136 u8 padding[FS_IV_SIZE - sizeof(__le64)];
137 } iv;
d407574e 138 struct skcipher_request *req = NULL;
d0082e1a 139 DECLARE_CRYPTO_WAIT(wait);
0b81d077
JK
140 struct scatterlist dst, src;
141 struct fscrypt_info *ci = inode->i_crypt_info;
d407574e 142 struct crypto_skcipher *tfm = ci->ci_ctfm;
0b81d077
JK
143 int res = 0;
144
1400451f
DG
145 BUG_ON(len == 0);
146
b7e7cf7a
DW
147 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
148 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
149 iv.index = cpu_to_le64(lblk_num);
150 memset(iv.padding, 0, sizeof(iv.padding));
151
152 if (ci->ci_essiv_tfm != NULL) {
153 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
154 (u8 *)&iv);
155 }
156
b32e4482 157 req = skcipher_request_alloc(tfm, gfp_flags);
0b81d077
JK
158 if (!req) {
159 printk_ratelimited(KERN_ERR
160 "%s: crypto_request_alloc() failed\n",
161 __func__);
162 return -ENOMEM;
163 }
164
d407574e 165 skcipher_request_set_callback(
0b81d077 166 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
d0082e1a 167 crypto_req_done, &wait);
0b81d077 168
0b81d077 169 sg_init_table(&dst, 1);
1400451f 170 sg_set_page(&dst, dest_page, len, offs);
0b81d077 171 sg_init_table(&src, 1);
1400451f 172 sg_set_page(&src, src_page, len, offs);
b7e7cf7a 173 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
0b81d077 174 if (rw == FS_DECRYPT)
d0082e1a 175 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
0b81d077 176 else
d0082e1a 177 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
d407574e 178 skcipher_request_free(req);
0b81d077
JK
179 if (res) {
180 printk_ratelimited(KERN_ERR
d407574e 181 "%s: crypto_skcipher_encrypt() returned %d\n",
0b81d077
JK
182 __func__, res);
183 return res;
184 }
185 return 0;
186}
187
58ae7468
RW
188struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
189 gfp_t gfp_flags)
0b81d077 190{
b32e4482 191 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
0b81d077
JK
192 if (ctx->w.bounce_page == NULL)
193 return ERR_PTR(-ENOMEM);
6a34e4d2 194 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
0b81d077
JK
195 return ctx->w.bounce_page;
196}
197
198/**
199 * fscypt_encrypt_page() - Encrypts a page
1400451f
DG
200 * @inode: The inode for which the encryption should take place
201 * @page: The page to encrypt. Must be locked for bounce-page
202 * encryption.
203 * @len: Length of data to encrypt in @page and encrypted
204 * data in returned page.
205 * @offs: Offset of data within @page and returned
206 * page holding encrypted data.
207 * @lblk_num: Logical block number. This must be unique for multiple
208 * calls with same inode, except when overwriting
209 * previously written data.
210 * @gfp_flags: The gfp flag for memory allocation
0b81d077 211 *
1400451f
DG
212 * Encrypts @page using the ctx encryption context. Performs encryption
213 * either in-place or into a newly allocated bounce page.
214 * Called on the page write path.
0b81d077 215 *
1400451f
DG
216 * Bounce page allocation is the default.
217 * In this case, the contents of @page are encrypted and stored in an
218 * allocated bounce page. @page has to be locked and the caller must call
0b81d077
JK
219 * fscrypt_restore_control_page() on the returned ciphertext page to
220 * release the bounce buffer and the encryption context.
221 *
bd7b8290 222 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
1400451f
DG
223 * fscrypt_operations. Here, the input-page is returned with its content
224 * encrypted.
225 *
226 * Return: A page with the encrypted content on success. Else, an
0b81d077
JK
227 * error value or NULL.
228 */
0b93e1b9 229struct page *fscrypt_encrypt_page(const struct inode *inode,
1400451f
DG
230 struct page *page,
231 unsigned int len,
232 unsigned int offs,
233 u64 lblk_num, gfp_t gfp_flags)
7821d4dd 234
0b81d077
JK
235{
236 struct fscrypt_ctx *ctx;
1400451f 237 struct page *ciphertext_page = page;
0b81d077
JK
238 int err;
239
1400451f 240 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
0b81d077 241
bd7b8290 242 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
9e532772 243 /* with inplace-encryption we just encrypt the page */
58ae7468
RW
244 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
245 ciphertext_page, len, offs,
246 gfp_flags);
9e532772
DG
247 if (err)
248 return ERR_PTR(err);
249
250 return ciphertext_page;
251 }
252
bd7b8290
DG
253 BUG_ON(!PageLocked(page));
254
b32e4482 255 ctx = fscrypt_get_ctx(inode, gfp_flags);
0b81d077
JK
256 if (IS_ERR(ctx))
257 return (struct page *)ctx;
258
9e532772 259 /* The encryption operation will require a bounce page. */
58ae7468 260 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
9e532772
DG
261 if (IS_ERR(ciphertext_page))
262 goto errout;
0b81d077 263
1400451f 264 ctx->w.control_page = page;
58ae7468
RW
265 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
266 page, ciphertext_page, len, offs,
267 gfp_flags);
0b81d077
JK
268 if (err) {
269 ciphertext_page = ERR_PTR(err);
270 goto errout;
271 }
9e532772
DG
272 SetPagePrivate(ciphertext_page);
273 set_page_private(ciphertext_page, (unsigned long)ctx);
274 lock_page(ciphertext_page);
0b81d077
JK
275 return ciphertext_page;
276
277errout:
278 fscrypt_release_ctx(ctx);
279 return ciphertext_page;
280}
281EXPORT_SYMBOL(fscrypt_encrypt_page);
282
283/**
7821d4dd 284 * fscrypt_decrypt_page() - Decrypts a page in-place
1400451f
DG
285 * @inode: The corresponding inode for the page to decrypt.
286 * @page: The page to decrypt. Must be locked in case
bd7b8290 287 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
1400451f
DG
288 * @len: Number of bytes in @page to be decrypted.
289 * @offs: Start of data in @page.
290 * @lblk_num: Logical block number.
0b81d077
JK
291 *
292 * Decrypts page in-place using the ctx encryption context.
293 *
294 * Called from the read completion callback.
295 *
296 * Return: Zero on success, non-zero otherwise.
297 */
0b93e1b9 298int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
1400451f 299 unsigned int len, unsigned int offs, u64 lblk_num)
0b81d077 300{
bd7b8290
DG
301 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
302 BUG_ON(!PageLocked(page));
303
58ae7468
RW
304 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
305 len, offs, GFP_NOFS);
0b81d077
JK
306}
307EXPORT_SYMBOL(fscrypt_decrypt_page);
308
0b81d077
JK
309/*
310 * Validate dentries for encrypted directories to make sure we aren't
311 * potentially caching stale data after a key has been added or
312 * removed.
313 */
314static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
315{
d7d75352 316 struct dentry *dir;
0b81d077
JK
317 int dir_has_key, cached_with_key;
318
03a8bb0e
JK
319 if (flags & LOOKUP_RCU)
320 return -ECHILD;
321
d7d75352 322 dir = dget_parent(dentry);
e0428a26 323 if (!IS_ENCRYPTED(d_inode(dir))) {
d7d75352 324 dput(dir);
0b81d077 325 return 0;
d7d75352 326 }
0b81d077 327
0b81d077
JK
328 /* this should eventually be an flag in d_flags */
329 spin_lock(&dentry->d_lock);
330 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
331 spin_unlock(&dentry->d_lock);
1b53cf98 332 dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
d7d75352 333 dput(dir);
0b81d077
JK
334
335 /*
336 * If the dentry was cached without the key, and it is a
337 * negative dentry, it might be a valid name. We can't check
338 * if the key has since been made available due to locking
339 * reasons, so we fail the validation so ext4_lookup() can do
340 * this check.
341 *
342 * We also fail the validation if the dentry was created with
343 * the key present, but we no longer have the key, or vice versa.
344 */
345 if ((!cached_with_key && d_is_negative(dentry)) ||
346 (!cached_with_key && dir_has_key) ||
347 (cached_with_key && !dir_has_key))
348 return 0;
349 return 1;
350}
351
352const struct dentry_operations fscrypt_d_ops = {
353 .d_revalidate = fscrypt_d_revalidate,
354};
355EXPORT_SYMBOL(fscrypt_d_ops);
356
0b81d077
JK
357void fscrypt_restore_control_page(struct page *page)
358{
359 struct fscrypt_ctx *ctx;
360
361 ctx = (struct fscrypt_ctx *)page_private(page);
362 set_page_private(page, (unsigned long)NULL);
363 ClearPagePrivate(page);
364 unlock_page(page);
365 fscrypt_release_ctx(ctx);
366}
367EXPORT_SYMBOL(fscrypt_restore_control_page);
368
369static void fscrypt_destroy(void)
370{
371 struct fscrypt_ctx *pos, *n;
372
373 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
374 kmem_cache_free(fscrypt_ctx_cachep, pos);
375 INIT_LIST_HEAD(&fscrypt_free_ctxs);
376 mempool_destroy(fscrypt_bounce_page_pool);
377 fscrypt_bounce_page_pool = NULL;
378}
379
380/**
381 * fscrypt_initialize() - allocate major buffers for fs encryption.
f32d7ac2 382 * @cop_flags: fscrypt operations flags
0b81d077
JK
383 *
384 * We only call this when we start accessing encrypted files, since it
385 * results in memory getting allocated that wouldn't otherwise be used.
386 *
387 * Return: Zero on success, non-zero otherwise.
388 */
f32d7ac2 389int fscrypt_initialize(unsigned int cop_flags)
0b81d077
JK
390{
391 int i, res = -ENOMEM;
392
a0b3bc85
EB
393 /* No need to allocate a bounce page pool if this FS won't use it. */
394 if (cop_flags & FS_CFLG_OWN_PAGES)
0b81d077
JK
395 return 0;
396
397 mutex_lock(&fscrypt_init_mutex);
398 if (fscrypt_bounce_page_pool)
399 goto already_initialized;
400
401 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
402 struct fscrypt_ctx *ctx;
403
404 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
405 if (!ctx)
406 goto fail;
407 list_add(&ctx->free_list, &fscrypt_free_ctxs);
408 }
409
410 fscrypt_bounce_page_pool =
411 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
412 if (!fscrypt_bounce_page_pool)
413 goto fail;
414
415already_initialized:
416 mutex_unlock(&fscrypt_init_mutex);
417 return 0;
418fail:
419 fscrypt_destroy();
420 mutex_unlock(&fscrypt_init_mutex);
421 return res;
422}
0b81d077
JK
423
424/**
425 * fscrypt_init() - Set up for fs encryption.
426 */
427static int __init fscrypt_init(void)
428{
429 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
430 WQ_HIGHPRI, 0);
431 if (!fscrypt_read_workqueue)
432 goto fail;
433
434 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
435 if (!fscrypt_ctx_cachep)
436 goto fail_free_queue;
437
438 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
439 if (!fscrypt_info_cachep)
440 goto fail_free_ctx;
441
442 return 0;
443
444fail_free_ctx:
445 kmem_cache_destroy(fscrypt_ctx_cachep);
446fail_free_queue:
447 destroy_workqueue(fscrypt_read_workqueue);
448fail:
449 return -ENOMEM;
450}
451module_init(fscrypt_init)
452
453/**
454 * fscrypt_exit() - Shutdown the fs encryption system
455 */
456static void __exit fscrypt_exit(void)
457{
458 fscrypt_destroy();
459
460 if (fscrypt_read_workqueue)
461 destroy_workqueue(fscrypt_read_workqueue);
462 kmem_cache_destroy(fscrypt_ctx_cachep);
463 kmem_cache_destroy(fscrypt_info_cachep);
b7e7cf7a
DW
464
465 fscrypt_essiv_cleanup();
0b81d077
JK
466}
467module_exit(fscrypt_exit);
468
469MODULE_LICENSE("GPL");