]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/crypto/crypto.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / fs / crypto / crypto.c
CommitLineData
0b81d077
JK
1/*
2 * This contains encryption functions for per-file encryption.
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Michael Halcrow, 2014.
8 *
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
15 *
16 * This has not yet undergone a rigorous security audit.
17 *
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
20 */
21
0b81d077
JK
22#include <linux/pagemap.h>
23#include <linux/mempool.h>
24#include <linux/module.h>
25#include <linux/scatterlist.h>
26#include <linux/ratelimit.h>
0b81d077 27#include <linux/dcache.h>
03a8bb0e 28#include <linux/namei.h>
b7e7cf7a 29#include <crypto/aes.h>
cc4e0df0 30#include "fscrypt_private.h"
0b81d077
JK
31
32static unsigned int num_prealloc_crypto_pages = 32;
33static unsigned int num_prealloc_crypto_ctxs = 128;
34
35module_param(num_prealloc_crypto_pages, uint, 0444);
36MODULE_PARM_DESC(num_prealloc_crypto_pages,
37 "Number of crypto pages to preallocate");
38module_param(num_prealloc_crypto_ctxs, uint, 0444);
39MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
40 "Number of crypto contexts to preallocate");
41
42static mempool_t *fscrypt_bounce_page_pool = NULL;
43
44static LIST_HEAD(fscrypt_free_ctxs);
45static DEFINE_SPINLOCK(fscrypt_ctx_lock);
46
58ae7468 47struct workqueue_struct *fscrypt_read_workqueue;
0b81d077
JK
48static DEFINE_MUTEX(fscrypt_init_mutex);
49
50static struct kmem_cache *fscrypt_ctx_cachep;
51struct kmem_cache *fscrypt_info_cachep;
52
53/**
54 * fscrypt_release_ctx() - Releases an encryption context
55 * @ctx: The encryption context to release.
56 *
57 * If the encryption context was allocated from the pre-allocated pool, returns
58 * it to that pool. Else, frees it.
59 *
60 * If there's a bounce page in the context, this frees that.
61 */
62void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
63{
64 unsigned long flags;
65
6a34e4d2 66 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
0b81d077
JK
67 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
68 ctx->w.bounce_page = NULL;
69 }
70 ctx->w.control_page = NULL;
71 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
72 kmem_cache_free(fscrypt_ctx_cachep, ctx);
73 } else {
74 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
75 list_add(&ctx->free_list, &fscrypt_free_ctxs);
76 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
77 }
78}
79EXPORT_SYMBOL(fscrypt_release_ctx);
80
81/**
82 * fscrypt_get_ctx() - Gets an encryption context
83 * @inode: The inode for which we are doing the crypto
b32e4482 84 * @gfp_flags: The gfp flag for memory allocation
0b81d077
JK
85 *
86 * Allocates and initializes an encryption context.
87 *
88 * Return: An allocated and initialized encryption context on success; error
89 * value or NULL otherwise.
90 */
0b93e1b9 91struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
0b81d077
JK
92{
93 struct fscrypt_ctx *ctx = NULL;
94 struct fscrypt_info *ci = inode->i_crypt_info;
95 unsigned long flags;
96
97 if (ci == NULL)
98 return ERR_PTR(-ENOKEY);
99
100 /*
101 * We first try getting the ctx from a free list because in
102 * the common case the ctx will have an allocated and
103 * initialized crypto tfm, so it's probably a worthwhile
104 * optimization. For the bounce page, we first try getting it
105 * from the kernel allocator because that's just about as fast
106 * as getting it from a list and because a cache of free pages
107 * should generally be a "last resort" option for a filesystem
108 * to be able to do its job.
109 */
110 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
111 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
112 struct fscrypt_ctx, free_list);
113 if (ctx)
114 list_del(&ctx->free_list);
115 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
116 if (!ctx) {
b32e4482 117 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
0b81d077
JK
118 if (!ctx)
119 return ERR_PTR(-ENOMEM);
120 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
121 } else {
122 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
123 }
6a34e4d2 124 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
0b81d077
JK
125 return ctx;
126}
127EXPORT_SYMBOL(fscrypt_get_ctx);
128
58ae7468
RW
129int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
130 u64 lblk_num, struct page *src_page,
131 struct page *dest_page, unsigned int len,
132 unsigned int offs, gfp_t gfp_flags)
0b81d077 133{
fb445437
EB
134 struct {
135 __le64 index;
b7e7cf7a
DW
136 u8 padding[FS_IV_SIZE - sizeof(__le64)];
137 } iv;
d407574e 138 struct skcipher_request *req = NULL;
d0082e1a 139 DECLARE_CRYPTO_WAIT(wait);
0b81d077
JK
140 struct scatterlist dst, src;
141 struct fscrypt_info *ci = inode->i_crypt_info;
d407574e 142 struct crypto_skcipher *tfm = ci->ci_ctfm;
0b81d077
JK
143 int res = 0;
144
a15d15ee
EB
145 if (WARN_ON_ONCE(len <= 0))
146 return -EINVAL;
147 if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
148 return -EINVAL;
1400451f 149
b7e7cf7a
DW
150 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
151 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
152 iv.index = cpu_to_le64(lblk_num);
153 memset(iv.padding, 0, sizeof(iv.padding));
154
155 if (ci->ci_essiv_tfm != NULL) {
156 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
157 (u8 *)&iv);
158 }
159
b32e4482 160 req = skcipher_request_alloc(tfm, gfp_flags);
0b81d077
JK
161 if (!req) {
162 printk_ratelimited(KERN_ERR
163 "%s: crypto_request_alloc() failed\n",
164 __func__);
165 return -ENOMEM;
166 }
167
d407574e 168 skcipher_request_set_callback(
0b81d077 169 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
d0082e1a 170 crypto_req_done, &wait);
0b81d077 171
0b81d077 172 sg_init_table(&dst, 1);
1400451f 173 sg_set_page(&dst, dest_page, len, offs);
0b81d077 174 sg_init_table(&src, 1);
1400451f 175 sg_set_page(&src, src_page, len, offs);
b7e7cf7a 176 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
0b81d077 177 if (rw == FS_DECRYPT)
d0082e1a 178 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
0b81d077 179 else
d0082e1a 180 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
d407574e 181 skcipher_request_free(req);
0b81d077
JK
182 if (res) {
183 printk_ratelimited(KERN_ERR
d407574e 184 "%s: crypto_skcipher_encrypt() returned %d\n",
0b81d077
JK
185 __func__, res);
186 return res;
187 }
188 return 0;
189}
190
58ae7468
RW
191struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
192 gfp_t gfp_flags)
0b81d077 193{
b32e4482 194 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
0b81d077
JK
195 if (ctx->w.bounce_page == NULL)
196 return ERR_PTR(-ENOMEM);
6a34e4d2 197 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
0b81d077
JK
198 return ctx->w.bounce_page;
199}
200
201/**
202 * fscypt_encrypt_page() - Encrypts a page
1400451f
DG
203 * @inode: The inode for which the encryption should take place
204 * @page: The page to encrypt. Must be locked for bounce-page
205 * encryption.
206 * @len: Length of data to encrypt in @page and encrypted
207 * data in returned page.
208 * @offs: Offset of data within @page and returned
209 * page holding encrypted data.
210 * @lblk_num: Logical block number. This must be unique for multiple
211 * calls with same inode, except when overwriting
212 * previously written data.
213 * @gfp_flags: The gfp flag for memory allocation
0b81d077 214 *
1400451f
DG
215 * Encrypts @page using the ctx encryption context. Performs encryption
216 * either in-place or into a newly allocated bounce page.
217 * Called on the page write path.
0b81d077 218 *
1400451f
DG
219 * Bounce page allocation is the default.
220 * In this case, the contents of @page are encrypted and stored in an
221 * allocated bounce page. @page has to be locked and the caller must call
0b81d077
JK
222 * fscrypt_restore_control_page() on the returned ciphertext page to
223 * release the bounce buffer and the encryption context.
224 *
bd7b8290 225 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
1400451f
DG
226 * fscrypt_operations. Here, the input-page is returned with its content
227 * encrypted.
228 *
229 * Return: A page with the encrypted content on success. Else, an
0b81d077
JK
230 * error value or NULL.
231 */
0b93e1b9 232struct page *fscrypt_encrypt_page(const struct inode *inode,
1400451f
DG
233 struct page *page,
234 unsigned int len,
235 unsigned int offs,
236 u64 lblk_num, gfp_t gfp_flags)
7821d4dd 237
0b81d077
JK
238{
239 struct fscrypt_ctx *ctx;
1400451f 240 struct page *ciphertext_page = page;
0b81d077
JK
241 int err;
242
bd7b8290 243 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
9e532772 244 /* with inplace-encryption we just encrypt the page */
58ae7468
RW
245 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
246 ciphertext_page, len, offs,
247 gfp_flags);
9e532772
DG
248 if (err)
249 return ERR_PTR(err);
250
251 return ciphertext_page;
252 }
253
a15d15ee
EB
254 if (WARN_ON_ONCE(!PageLocked(page)))
255 return ERR_PTR(-EINVAL);
bd7b8290 256
b32e4482 257 ctx = fscrypt_get_ctx(inode, gfp_flags);
0b81d077
JK
258 if (IS_ERR(ctx))
259 return (struct page *)ctx;
260
9e532772 261 /* The encryption operation will require a bounce page. */
58ae7468 262 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
9e532772
DG
263 if (IS_ERR(ciphertext_page))
264 goto errout;
0b81d077 265
1400451f 266 ctx->w.control_page = page;
58ae7468
RW
267 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
268 page, ciphertext_page, len, offs,
269 gfp_flags);
0b81d077
JK
270 if (err) {
271 ciphertext_page = ERR_PTR(err);
272 goto errout;
273 }
9e532772
DG
274 SetPagePrivate(ciphertext_page);
275 set_page_private(ciphertext_page, (unsigned long)ctx);
276 lock_page(ciphertext_page);
0b81d077
JK
277 return ciphertext_page;
278
279errout:
280 fscrypt_release_ctx(ctx);
281 return ciphertext_page;
282}
283EXPORT_SYMBOL(fscrypt_encrypt_page);
284
285/**
7821d4dd 286 * fscrypt_decrypt_page() - Decrypts a page in-place
1400451f
DG
287 * @inode: The corresponding inode for the page to decrypt.
288 * @page: The page to decrypt. Must be locked in case
bd7b8290 289 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
1400451f
DG
290 * @len: Number of bytes in @page to be decrypted.
291 * @offs: Start of data in @page.
292 * @lblk_num: Logical block number.
0b81d077
JK
293 *
294 * Decrypts page in-place using the ctx encryption context.
295 *
296 * Called from the read completion callback.
297 *
298 * Return: Zero on success, non-zero otherwise.
299 */
0b93e1b9 300int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
1400451f 301 unsigned int len, unsigned int offs, u64 lblk_num)
0b81d077 302{
a15d15ee
EB
303 if (WARN_ON_ONCE(!PageLocked(page) &&
304 !(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES)))
305 return -EINVAL;
bd7b8290 306
58ae7468
RW
307 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
308 len, offs, GFP_NOFS);
0b81d077
JK
309}
310EXPORT_SYMBOL(fscrypt_decrypt_page);
311
0b81d077
JK
312/*
313 * Validate dentries for encrypted directories to make sure we aren't
314 * potentially caching stale data after a key has been added or
315 * removed.
316 */
317static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
318{
d7d75352 319 struct dentry *dir;
0b81d077
JK
320 int dir_has_key, cached_with_key;
321
03a8bb0e
JK
322 if (flags & LOOKUP_RCU)
323 return -ECHILD;
324
d7d75352 325 dir = dget_parent(dentry);
e0428a26 326 if (!IS_ENCRYPTED(d_inode(dir))) {
d7d75352 327 dput(dir);
0b81d077 328 return 0;
d7d75352 329 }
0b81d077 330
0b81d077
JK
331 /* this should eventually be an flag in d_flags */
332 spin_lock(&dentry->d_lock);
333 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
334 spin_unlock(&dentry->d_lock);
1b53cf98 335 dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
d7d75352 336 dput(dir);
0b81d077
JK
337
338 /*
339 * If the dentry was cached without the key, and it is a
340 * negative dentry, it might be a valid name. We can't check
341 * if the key has since been made available due to locking
342 * reasons, so we fail the validation so ext4_lookup() can do
343 * this check.
344 *
345 * We also fail the validation if the dentry was created with
346 * the key present, but we no longer have the key, or vice versa.
347 */
348 if ((!cached_with_key && d_is_negative(dentry)) ||
349 (!cached_with_key && dir_has_key) ||
350 (cached_with_key && !dir_has_key))
351 return 0;
352 return 1;
353}
354
355const struct dentry_operations fscrypt_d_ops = {
356 .d_revalidate = fscrypt_d_revalidate,
357};
358EXPORT_SYMBOL(fscrypt_d_ops);
359
0b81d077
JK
360void fscrypt_restore_control_page(struct page *page)
361{
362 struct fscrypt_ctx *ctx;
363
364 ctx = (struct fscrypt_ctx *)page_private(page);
365 set_page_private(page, (unsigned long)NULL);
366 ClearPagePrivate(page);
367 unlock_page(page);
368 fscrypt_release_ctx(ctx);
369}
370EXPORT_SYMBOL(fscrypt_restore_control_page);
371
372static void fscrypt_destroy(void)
373{
374 struct fscrypt_ctx *pos, *n;
375
376 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
377 kmem_cache_free(fscrypt_ctx_cachep, pos);
378 INIT_LIST_HEAD(&fscrypt_free_ctxs);
379 mempool_destroy(fscrypt_bounce_page_pool);
380 fscrypt_bounce_page_pool = NULL;
381}
382
383/**
384 * fscrypt_initialize() - allocate major buffers for fs encryption.
f32d7ac2 385 * @cop_flags: fscrypt operations flags
0b81d077
JK
386 *
387 * We only call this when we start accessing encrypted files, since it
388 * results in memory getting allocated that wouldn't otherwise be used.
389 *
390 * Return: Zero on success, non-zero otherwise.
391 */
f32d7ac2 392int fscrypt_initialize(unsigned int cop_flags)
0b81d077
JK
393{
394 int i, res = -ENOMEM;
395
a0b3bc85
EB
396 /* No need to allocate a bounce page pool if this FS won't use it. */
397 if (cop_flags & FS_CFLG_OWN_PAGES)
0b81d077
JK
398 return 0;
399
400 mutex_lock(&fscrypt_init_mutex);
401 if (fscrypt_bounce_page_pool)
402 goto already_initialized;
403
404 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
405 struct fscrypt_ctx *ctx;
406
407 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
408 if (!ctx)
409 goto fail;
410 list_add(&ctx->free_list, &fscrypt_free_ctxs);
411 }
412
413 fscrypt_bounce_page_pool =
414 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
415 if (!fscrypt_bounce_page_pool)
416 goto fail;
417
418already_initialized:
419 mutex_unlock(&fscrypt_init_mutex);
420 return 0;
421fail:
422 fscrypt_destroy();
423 mutex_unlock(&fscrypt_init_mutex);
424 return res;
425}
0b81d077
JK
426
427/**
428 * fscrypt_init() - Set up for fs encryption.
429 */
430static int __init fscrypt_init(void)
431{
6096431b
EB
432 /*
433 * Use an unbound workqueue to allow bios to be decrypted in parallel
434 * even when they happen to complete on the same CPU. This sacrifices
435 * locality, but it's worthwhile since decryption is CPU-intensive.
436 *
437 * Also use a high-priority workqueue to prioritize decryption work,
438 * which blocks reads from completing, over regular application tasks.
439 */
0b81d077 440 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
6096431b
EB
441 WQ_UNBOUND | WQ_HIGHPRI,
442 num_online_cpus());
0b81d077
JK
443 if (!fscrypt_read_workqueue)
444 goto fail;
445
446 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
447 if (!fscrypt_ctx_cachep)
448 goto fail_free_queue;
449
450 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
451 if (!fscrypt_info_cachep)
452 goto fail_free_ctx;
453
454 return 0;
455
456fail_free_ctx:
457 kmem_cache_destroy(fscrypt_ctx_cachep);
458fail_free_queue:
459 destroy_workqueue(fscrypt_read_workqueue);
460fail:
461 return -ENOMEM;
462}
463module_init(fscrypt_init)
464
465/**
466 * fscrypt_exit() - Shutdown the fs encryption system
467 */
468static void __exit fscrypt_exit(void)
469{
470 fscrypt_destroy();
471
472 if (fscrypt_read_workqueue)
473 destroy_workqueue(fscrypt_read_workqueue);
474 kmem_cache_destroy(fscrypt_ctx_cachep);
475 kmem_cache_destroy(fscrypt_info_cachep);
b7e7cf7a
DW
476
477 fscrypt_essiv_cleanup();
0b81d077
JK
478}
479module_exit(fscrypt_exit);
480
481MODULE_LICENSE("GPL");